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ABSTRACT

Working Too Much for Too Little:
Stochastic Rewards Cause Work
Addiction’

People are generally assumed to shy away from activities generating stochastic rewards,

thus requiring extra compensation for handling any additional risk. In contrast with this
view, neuroscience research with animals has shown that stochastic rewards may act as
a powerful motivator. Applying these ideas to the study of work addiction in humans,
and using a new experimental paradigm, we demonstrate how stochastic rewards may
lead people to continue working on a repetitive and effortful task even after monetary
compensation becomes saliently negligible. In line with our hypotheses, we show that
persistence on the work task is especially pronounced when the entropy of stochastic
rewards is high, which is also when the work task generates more stress to participants.
We discuss the economic and managerial implications of our findings.
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1. Introduction

In this paper, we study the incentive effects of stochastic rewards. Economic agents are gener-
ally assumed to dislike risk and uncertainty, thus requiring extra compensation to engage in any
activity in which rewards are stochastic.! For example, there is overwhelming evidence that people
are generally risk-averse (e.g., Holt & Laury, 2002; Dohmen et al. 2011; Falk et al. 2018) or am-
biguity-averse (e.g., Epstein & Schneider, 2008). In the economic theory of incentives (Jensen &
Meckling, 1976; Holmstrom, 1979; Hart & Holmstrom, 1986; Milgrom & Roberts, 1992; Laffont
& Martimort, 2002; Bolton & Dewatripont, 2004) as well as in the influential expectancy theory
in management research (Vroom, 1964), workers are expected to shy away from contractual envi-
ronments in which rewards are stochastic.? As expressed by Nadler & Lawler (2007, p. 177): “The
supervisor’s role in the motivation process becomes one of defining clear goals, setting clear re-
ward expectancies, and providing the right rewards for different people.”

However, research with non-human animals (rodents, pigeons and primates) has shown a pos-
itive relationship between reward uncertainty and motivation to complete effortful tasks (Davison,
1969; Boakes, 1977; Collins et al., 1983; Forkman, 1993; Hurly & Orseen, 1999; Fiorillo, Tobler,
& Schultz, 2003; Anselme et al., 2013; Robinson et al., 2014; Anselme, 2015). For example, An-
selme et al., (2013) show that reward uncertainty leads rodents to more actively press a lever indi-
cating the possible imminent release of a sucrose reward. Anselme et al. (2013) interpreted pushing
the lever as a sign of addictive behavior because it did not affect food delivery. Besides, rodents
did not value sugary rewards more highly when they were uncertain than when they were certain.
These findings suggest that reward uncertainty may trigger addictive behavior.

The positive relationship between uncertain rewards and lever activation in rodents can be rec-
onciled with economic models if we assume that the experimental subjects (rodents, pigeons, and
primates) generally love risk. However, there seems to be as much evidence of uncertainty-averse
as uncertainty-seeking behavior in rodents and primates (see Paglieri et al., 2014). An alternative

explanation pioneered by Berridge & Robinson (1998) posits that uncertainty motivates individu-

! We do not distinguish between risk (known probabilities) and ambiguity (unknown probabilities) in the present
discussion (see Wakker, 2010 for a review). Note that the animal research that motivated our study does not make that
distinction because the probability distribution of rewards can never be fully known by animal subjects.

2 One exception to this rule is when risk leads workers to exert more effort (see e.g., Corgnet & Hernan-Gonzélez,
2019; Sloof & Van Praag, 2010).



als to pursue an action by means of a release of dopamine in the brain’s mesolimbic system (Fio-
rillo et al., 2003; Preuschoff et al., 2006; Berridge, 2007; Linnet et al., 2012). This reactivity of the
mesocorticolimbic dopamine system, which they refer to as incentive salience, would lead animals
to ‘want’ to perform actions that they may not ‘like’. As such, this constitutes a theory of addiction.
Anselme et al., (2013) also put forward the argument that the positive effect of stochastic rewards
can be due to the increase in stress levels that uncertainty generates, which, in turn, leads to narrow
focusing and the inability to switch to a more desirable course of action.

In this paper, we are interested in whether the results from animal research carry over to hu-
mans. Although most of the incentive salience research was conducted with animals, the frame-
work ultimately aims at explaining human addictive behavior (Berridge, 2003). Because the brain
circuitry associated to ‘wanting’ by incentive salience researchers is identically present in rats,
primates as well as humans, it is not surprising that recent studies have identified such brain centers
in humans (Berridge & Robinson, 2016).

Inspired by the experiments of Anselme et al., (2013), we designed a lab environment to test
our hypotheses. We considered a setup in which participants could work on an effortful summation
task for a total of 60 minutes with the possibility of quitting the task at any moment in time to
browse the internet. After quitting the task, participants were not able to switch back to the task
screen and could only browse the web until the end of the experiment. In the deterministic treat-
ment (baseline), participants were always rewarded 12 tokens for each correct summation. How-
ever, the value of each token varied across periods of 10 minutes. In the first period, the value of
each token was equal to 1¢. In the remaining five periods, the value of a token collapsed over time
reaching 0.002¢ in the last 10 minutes. In the stochastic treatment, participants received a stochas-
tic reward for each correct summation. The number of rewarded tokens could be any integer value
between 1 and 23 with equal probability, and participants knew the stochastic process that gener-
ated the rewards. Identical to the baseline, the value of a token was 1¢ in the first period before
declining in subsequent periods. The two treatments entailed the same expected value for complet-
ing the task correctly (12 tokens), thus only differing on whether rewards were stochastic or deter-
ministic.

To derive our conceptual framework and our hypotheses, we built on related findings in the
neuroscience literature, which have shown how acute stress can impair a person’s level of attention

to relevant information (see e.g., Sdnger et al., 2014). Attentional costs increase with the level of



uncertainty in the environment because more attentional resources are needed to process infor-
mation when rewards are stochastic than when they are deterministic (see e.g., Sims, 2003). It
follows that workers’ response to a slash in monetary incentives on an effortful task will be slower
in the case of stochastic rewards. We thus expect people to work longer in the absence of stochastic
rewards than when rewards are deterministic (Hypothesis 1). We also expect people who possess
high attentional capacity to be more likely to quit the work task when monetary rewards become
negligible (Hypothesis 2). Finally, we conjecture that stochastic rewards will induce stress in work-
ers (Hypothesis 3). Our conceptual framework also posits that the effect of stochastic rewards on
stress and work persistence is driven by the level of unpredictability of rewards, which is formally
defined by the concept of entropy (Shannon, 1948).

In line with our first hypothesis, we found a positive effect of stochastic rewards on workers’
likelihood to continue working on the task in the absence of monetary incentives. In our first study
conducted in the US, we found that people were half as likely to quit the task in the stochastic
treatment as in the baseline when incentives became negligible. This difference is both statistically
and economically significant even after controlling for a battery of individual characteristics such
as cognitive ability, risk and loss attitudes, time and social preferences as well as workers’ ability
on the task. In the stochastic treatment, people are about 10% more likely to continue working on
the task when rewards become negligible compared to the deterministic treatment. In line with our
second hypothesis, we also found that people possessing higher attentional resources, as measured
by cognitive reflection, were more likely to abandon the work task when the rewards were slashed
to virtually zero.

In line with our third hypothesis, participants reported a higher level of stress in the stochastic
treatment than in the baseline. Using validated scales, we also show that workers did not like the
stochastic-reward environment more than the baseline, although they spent significantly more time
on the task when rewards were stochastic. This finding echoes the incentive salience ‘wanting’
hypothesis (e.g., Berridge, 2003; Anselme et al., 2013) according to which stochastic rewards cre-
ate addiction, leading workers to pursue a course of action (‘wanting’) they do not necessarily
value (‘liking’). Our findings put forward that neuroscience research conducted with small samples
of animals in abstract settings can shed light on human behavior in economically relevant environ-

ments.



Next, we studied the underlying mechanisms of the effect of stochastic rewards on work addic-
tion by both replicating and extending our first study, thus conducting new experimental sessions
with a new pool of participants in a different country (Spain). Despite observing lower quitting
rates, we replicated the qualitative nature of our findings by showing that stochastic rewards fos-
tered work addiction. We extended our analysis by conducting six additional treatments in which
we varied the stochastic process generating rewards while keeping the expected value of rewards
constant. In line with our model, we identified the entropy of random rewards rather than their
variance as the key driver of the effect of stochastic rewards on work addiction. In addition, we
showed that workers’ levels of stress increased with the entropy of rewards whereas stress levels
did not respond to the variance of the rewards.

Our work constitutes, to our knowledge, the first causal study of uncertainty on work addiction
in humans. Our findings cannot be explained by standard economic models building on informa-
tional asymmetries, information avoidance, learning or risk attitudes (see e.g., Bernheim & Whin-
ston, 1998; Brunnermeier & Parker, 2005; Bereby-Meyer & Roth, 2006; Hogarth & Villeval, 2014;
Jehiel, 2014; Ederer et al., 2018; Huck et al., 2018) because these dimensions were absent from
our experimental setting. Our findings cannot be explained by intrinsic motivation models either
(see e.g., Deci & Ryan, 2000) because workers tend to report a lower level of intrinsic motivation
on the task when rewards are stochastic than when they are deterministic. Instead, reward uncer-
tainty seems to trigger work addiction because of its effect on stress is consistent with results from

animal research in neuroscience.

2. Literature review: uncertainty, stress and addiction

To develop our conceptual framework which will culminate with three hypotheses, we start by
a succinct review of the neuroscience literature on uncertainty, stress, and addiction. This is a
necessary step given that these different strands of the literature have been developed in isolation

without almost any cross referencing.

2.1. Uncertainty and stress

A number of authors have established a close link between uncertainty and stress responses at
both empirical (e.g., Coates & Herbert, 2008; De Berker et al., 2016) and theoretical levels (e.g.,
Peters et al., 2017). Uncertainty over the environment makes it more difficult for people to achieve

their goals, thus generating frustration and prompting stress responses (e.g., Mason, 1968; Miller,



1979). For example, there is ample evidence suggesting that performance-contingent pay systems
are associated with higher levels of stress of the employees compared with fixed wages (Levi,
1972; Timio and Gentili, 1976; Timio, Gentili and Pede, 1979; Schleifer and Amick, 1989;
Schleifer and Okobaga, 1990; Shirom, Westman and Melamed, 1999). In a review of this literature,
Ganster et al., (2011) argue that this effect may be mediated by uncertainty and lack of job control,
so performance-contingent rewards are especially stressful when the uncertainty about the rela-
tionship between effort and rewards is high. De Berker et al., (2016) have recently shown that the
perceived uncertainty regarding the occurrence of an aversive stimulus (i.e., electric shock) was
closely related to both self-reported and physiological measures of stress. The authors assessed the
uncertainty of the random process generating the aversive stimulus using the concept of entropy
(Shannon, 1948).

At a conceptual level, Hirsh et al., (2012) view stress as a natural reaction to uncertain situa-
tions. Peters et al., (2017) go one step further by equating stress and uncertainty. Hirsh et al., (2012)
and Peters et al., (2017) agree on identifying unpredictability, formalized using the concept of

entropy, as the critical driver of stress.

2.2. Stress, attentional resources, and addiction

Stress has been shown to impair cognitive flexibility, which is the ability to switch from one
course of action to another (see e.g., Shields et al., 2016).> This means that an increase in stress
will tend to prevent a person from comprehensively assessing all alternative courses of action,
focusing instead on maintaining the current action. A reason why stress makes it more difficult to
consider alternative actions is that it limits a person’s ability to process all relevant information
(see e.g., Sdnger et al., 2014). Stress thus increases a person’s attentional costs.

A large number of studies have also shown that stress can promote automatic rather than delib-
erative thinking (see Yu, 2016 for a review). Research has also produced evidence that stress
prompts habitual behavior in humans (Schwabe & Wolf, 2009, 2011). Habitual behavior is ob-
served when people engage in actions independently of the value of the outcome (see Adams &
Dickinson, 1981; Adams, 1982; Dickinson, 1985; Balleine & Dickinson, 1991). In the context of

the experiment of Anselme et al., (2013), habit behavior is observed when rats push the lever

3 Cognitive flexibility is one of the three major executive functions along with working memory and inhibitory control
(Diamond, 2013).



frenetically, although it does not affect food delivery. Complementary evidence that stress can
promote harmful habits comes from the vast literature linking stress with addictive behavior (see
Sinha et al., 2011 and Mantsch et al., 2016 for reviews). This literature has shown that inducing
stress, by applying intermittent electric shocks, can lead to drug relapse in animals (e.g., Shalev et
al., 2001). Evidence of the effect of stressors on drug relapse has also been found in humans (e.g.,
Back et al., 2010; Sinha et al., 2011).

In sum, neuroscientists, using different methodologies, seem to converge toward a common
understanding of reward uncertainty as a decisive source of stress, which in turn can alter executive
functions and lead to addictive behaviors. Despite this growing consensus, we are not aware of
any human study assessing the role of uncertainty on work addiction. This may be explained by
the fact that the previously mentioned strands of literature have been developed in isolation pre-
venting the link between uncertainty and work addiction to be clearly established. We propose to
fill this gap by providing a unified conceptual framework along with an experimental paradigm to

study the connection between uncertainty and work addiction.

2.3. Stochastic rewards, attentional resources, and work addiction

Previous research allowed us to identify a direct link between uncertainty and stress and be-
tween stress and addiction. Connecting the dots between these different strands of literature, we
conjecture that unpredictability of rewards, as measured by entropy, will induce stress, which in
turn will trigger work addiction. More specifically, high entropy in the environment will tend to
deplete attentional resources because of the higher number of pieces of information that have to
be attended (see Sims, 2003; Marois and Ivanoff, 2005; Mackowiak et al., 2018 for a review). In
a related literature in neuroscience, high levels of entropy have also been associated with high
communication costs between different brain areas, which will mechanically limit attentional re-
sources (e.g., Dimitrov et al., 2011; Friston et al., 2013; 2017a,b).

Reward uncertainty will thus generate attentional costs, which will impair workers’ effort deci-
sions and favor the status-quo (Dean et al., 2017). This is the case because workers in high-entropy
environments will have less attentional resources available to process new relevant information
about work rewards. In a setup in which a worker’s decision is to abandon the current task to
engage in a leisure activity, the status-quo will induce work persistence. Entropy in rewards will
thus lead to inertia, which will lead workers to continue working even after the monetary incentives

for completing the task become negligible. Workers’ inertia will also depend on their individual

7



level of attentional capacity. We thus expect workers possessing high attentional capacity to be
less likely to continue working on the task after monetary rewards have become negligible.
In the next section, we develop a stylized framework aiming at capturing the main insights that

stochastic rewards foster stress and persistence at work.

3. Conceptual framework and hypotheses

We consider a setup in which a worker can decide, at any moment in time t € {0, ..., T}, whether
to complete an effortful task (e; = 1) at a fixed cost C > 0 or quit the task (e, = 0) to enjoy leisure.
When workers quit, they cannot come back to the work task at a later period.

If workers decide to complete the task at any time, they obtain a monetary prize (z;). This
monetary payment depends on the realization of a reward random variable R and the realization
of an exchange rate random variable Q (or the monetary incentives per unit of reward). The mon-
etary prize associated with the reward r received at time ¢ is defined as z;: = r,q,, where q; denotes
the exchange rate at time #. Each time a worker completes the task, a reward is drawn from R and
the worker is informed about its value and the corresponding monetary payment.

To study work addiction, we investigate the persistence of work effort when incentives are
substantially devalued. We thus consider the case in which incentives are decreased at time 7 so
that q, = qy forany t < t and q, = q, for any t > 7, where q, < qy.* We assume that the exchange
rates values are such that any worker basing their effort decision on all available information about
rewards and exchange rates would be willing to exert effort for any ¢t < 7 while being willing to
quit the task for > 7.°

Even though monetary incentives are slashed at time 7, workers who dislike the task (C > 0)
may still refrain from quitting the task to enjoy leisure. In our model, this is the case because
switching from a habitual course of action (working on the task) to an alternative action (the leisure
activity) is assumed to be costly. We refer to these costs as attentional costs.

Attentional costs come from the fact that the information on rewards and the exchange rate used

to make switching decisions are costly to process. More precisely, we can model attentional costs

4 Note that even if the sequence of exchange rates is known in advance, workers still need to be attentive to this piece
of information so as to identify the exact exchange rate value at a specific moment in time. This implies that, while
completing a task, workers are not necessarily fully certain of which exchange rate applies. The exchange rate can
thus be modeled as a random variable.

5 By focusing on the worker’s decision at the time monetary incentives become negligible, we abstract from dynamic
programming issues. This is the case as long as we assume that any worker are willing to quit the work task whenever
they are aware of the devalued monetary incentives.



using entropy following the literature on rational inattention (see Sims, 2003; Mackowiak et al.,
2018 for a review).® In this literature, attentional costs are measured as the expected reduction in
the level of uncertainty associated with attending a given piece of information (s). In our setup this
means attentional costs () can be defined as follows:
X =Ak=4(HR,Q)—H(R,Q|s)) [1]
where A; > 0 is the unit cost of information of individual i, and K is the amount of information
measured as the expected reduction in uncertainty (entropy, H(+)) from observing a piece of in-
formation (s), which in our setup consists of observing the actual value of the reward and the
exchange rate.

In our context, we have H(R, Q) = H(R) + H(Q) and H(R, Q|s) = 0, so that equation [1] boils
down to: A;(H(R) + H(Q)).” The unit cost of information A; is likely to vary widely across indi-
viduals. It captures people’s inherent attentional capacity, which can be measured, for example,
using the cognitive reflection test (e.g., Hasher et al., 2007; Toplak et al., 2011).

If we interpret the unit cost of information A; as the time needed to process an extra bit of
information, it follows that an increase in the entropy of rewards H(R) might prevent workers
from making a timely effort decision based on all currently available information. The interpreta-
tion of the unit cost of information in terms of processing time is consistent with the evidence in
the attention literature (see Pashler, 1998). For example, it takes more time to identify a given
symbol when the number of items to be searched for increases.

In our setup, we assume that no new effort decision can be made in a given period if attentional
costs are above a given threshold x*. In the absence of a timely decision, we assume that the level
of effort is set to be equal to its previous level. This is in line with the status-quo model in Dean et
al., (2017), who assume that a previous action tends to be selected if attentional costs are high. As
a result, inertia increases as the attentional costs associated with rewards (H (R)) increase. Entropy
will lead to inertia, which in our setup implies workers will continue to work on the task even after

monetary incentives become negligible. This result is captured in Hypothesis 1.

® For a discrete random variable (X) taking n possible values, each with probability p;, Shannon (1948) entropy is
calculated as follows: H(X) = — X.7., p; log, p;. Tsallis (1988) entropy of order 2 is also widely used: 1 — Z ;vz ) pZ.

This uncertainty measure has recently been characterized and axiomatized by economists (Caplin et al., 2017; Frankel
& Kamenica, 2019).
7 The first part follows from the fact that the exchange rate is determined independently of the actual value of the
reward. The second part follows from the fact that the reward and the exchange rate can be known for sure after a task
has been completed.



Hypothesis 1 (Work addiction and stochastic rewards) Workers facing higher entropy of re-
wards will be more likely to continue completing the task after monetary incentives have become

negligible.

It also follows from [1] that workers possessing higher attentional capacity (lower 4;) will be
less likely to continue working on the task when the exchange rate becomes negligible, regardless

of the uncertainty of rewards (see Hypothesis 2 below).

Hypothesis 2 (Work addiction and attentional resources) Workers possessing higher atten-
tional capacity will be more likely to switch to the leisure task after monetary incentives have

become negligible.

Recent works in neuroscience posit a close connection between stress and the level of entropy
in the environment (e.g., Coates & Herbert, 2008; De Berker et al., 2016; Peters et al., 2017). As
in our framework, these authors assessed the uncertainty of the random process generating the
aversive stimulus using the concept of entropy. Intuitively, uncertainty over the environment
makes it more difficult for people to achieve their goals, thus generating frustration and prompting
stress responses. In our model, this will occur in an environment in which attentional costs are
high, which is when the cognitive burden of making decisions is high. This is the case when the
entropy of the random reward is high. In that case, workers will be more likely to fail to process
any new information regarding the exchange rate. As a result, workers will continue working on
the task despite low monetary incentives. In that case, workers will be exerting an inefficiently
high level of effort, where the efficient level of effort is defined as the one chosen in the absence
of attentional costs.

In our setup, this means that the slower workers are to adapt their effort decision to the new
reward conditions, the higher will be their stress levels. It follows that an increase in the entropy

of rewards will increase stress levels. This effect is captured in Hypothesis 3.

Hypothesis 3 (Stress and entropy) Workers facing higher entropy of rewards will experience

higher stress levels.

By connecting uncertainty in rewards and stress, our framework also helps account for the re-

cent findings showing that tournament incentives lead to unusually high levels of stress (assessed

10



using either cortisol, heart-rate variability or self-reported measures) compared to individual in-
centives (see Buckert et al., 2017; Buser et al., 2017; Halko & Saédksvuori, 2017; Zhong et al. 2018)
or fixed wages (Stolp et al., 2017).8 Because tournament incentives generate substantial uncer-
tainty regarding the identity of the prize winner, our framework correctly predicts that they would
generate higher stress levels than other payment schemes such as individual incentives and fixed
wages for which rewards are highly predictable.

In Appendix E1, we discuss existing models that relate to our conceptual framework.

4. Experimental design
4.1. Treatments

To study work addiction we used a real-effort task in which participants had to make summa-
tions of five one-digit numbers for up to 60 minutes. They could quit the task at any moment in
time to browse the internet by clicking the corresponding button (see Figure 1). After quitting the
task, participants were not able to go back to the task screen and faced an internet browser until

the end of the experiment.

In the deterministic treatment (baseline), participants were rewarded 12 tokens per correct an-
swer (see Table 1). The reward per correct summation was equal to the number of tokens divided
by an exchange rate, which varied across the six 10-minute periods of the experiment. In the first
period, the exchange rate was equal to one, so that each summation was rewarded 12¢. In the
following five periods, the exchange rate was equal to 2, 4, 8, 80 and 500. This information was
known by the participants and displayed on their screen at all times. It follows that in the last period
of 10 minutes, participants did not obtain any meaningful monetary reward (0.024¢ per correct
summation) for completing the task. During the first five periods of the baseline, participants pro-
duced, on average, about 80 tables per period of 10 minutes, which would imply, if performance

was sustained at previous levels, a reward of 1.92¢ in the last period of 10 minutes.

8 Cahlikova et al., (2019) also show that inducing stress exogenously lowers a worker’s propensity to enter in a tour-
nament competition. We could account for this finding if we consider that the status-quo (or default) decision is to
choose piece-rate compensation. Stressed workers who are endowed with limited cognitive flexibility might then be
unable to consider the alternative compensation scheme (tournament incentives).

11
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FIGURE 1. Task screen.

In the stochastic treatment, the number of tokens received by participants for each correct sum-
mation followed a random pattern. The token value was an integer number between 1 and 23 with
equal probability. The token value was drawn after each correct summation, and participants knew
the stochastic process generating the token value. Similar to the baseline, the reward was divided
by an exchange rate equal to 2, 4, 8, 80, and 500 in the last five periods of the experiment. The two
treatments entailed the same expected value for the rewards thus only differing on the dispersion
of rewards.

We considered additional stochastic treatments that only varied in the probability distribution
used to generate the token value. The expected value of the token and the exchange rates across
periods were the same (see Table 1). In particular, we conducted treatments with a lower level of
entropy than the main stochastic treatment to assess the extent to which the level of entropy of a
random reward distribution could explain work persistence (see Hypothesis 1). These additional
treatments involved stochastic rewards that are characterized by a low level of entropy because
they can only take two possible values (see Table 1). At the same time, these reward distributions
had a higher variance than the main stochastic treatment, except for the ‘Uncertain (13, 90%; 0)’

treatment.

12



TABLE 1. Description of treatments

Token value distri- | Shannon ] Loss Number
Treatment . Variance . .
bution Entropy?* Domain | participants
62 (Study 1
Deterministic 12 0 0 No o1 (( Stllll d}}]/ 2))’
. 51 (Study 1),
U{1,23 4. 44
echwwe ot LR oLLE L o | sosuay)
Stochastic
1,50%; 23, 50% 1 121 N 60 (Study 2
(1.50%:23) | } © (Study 2)
Stochastic
5,90%; 75, 10% 0.5 441 N 59 (Study 2
(5.90%: 75) | ) © (Study 2)
Stochastic
13,90%; 0, 10% 0.5 15.21 N 60 (Study 2
B T e O At S L
Stochastic
-51,10%; 19,90% . 441 Y t 2
(-51, 10%; 19) { } 0.5 es 53 (Study 2)
Stochastic 54 (Studv 2
-23,50%; 47,50% 1 1,225 Y (Study 2)
(-23.50%: 47) | } ©s
Stochastic (-1,90%; 129,10%} 0.5 1,521 Yes 59 (Study 2)
(-1, 90%; 129) D7 AT ' : v

 Note that the observed error rate of 10% on the summation task (no significant differences across treatments), will
result in higher than reported entropy levels. However, this increment will be less pronounced for the ‘Uncertain (13,
90%; 0)’ treatment because a zero reward, in that case, could be due to either bad luck or a mistake.

We also conducted treatments involving losses to increase the variance of rewards further while
keeping entropy at a low level and maintaining the same expected value of rewards. We do not
speculate on the potential effect of losses on work persistence because the neuroscience literature
reviewed above does not offer any insight regarding the effect of losses. Any significant results
associated with loss treatments would thus be surprising.’

The two-outcome stochastic treatments will help us test whether the entropy of stochastic re-
wards is indeed the key driver of the positive effect of stochastic rewards on work persistence.
These stochastic treatments will also help us test whether any effect of stochastic rewards can
solely be ascribed to their entropy or whether it can also be explained by their variance. Variance
might play a role if we believe participants’ willingness to gamble on low-probability events gen-

erating large monetary prizes (see Barberis, 2012; Kahneman & Tversky, 1979) can help explain

® Taking into account participants’ loss aversion would not help predict lower work persistence in loss treatments,
because we assess work persistence when monetary payoffs have become negligible. Any cost associated to losses
must then be of a non-monetary nature.
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work persistence in our setup. One issue for the taste-for-gambling argument is to explain the
positive effect of stochastic rewards on work persistence after monetary payoffs have become neg-
ligible. One would then have to posit that there exists a taste for inconsequential gambling, which

we are not aware of in the literature.

4.2. Procedure

We conducted two studies. The first one took place at a major US lab. We recruited a total of
113 participants, 62 of which were assigned to the baseline and 51 were assigned to the stochastic
treatment. These participants also took part in an extensive survey which was conducted at the
beginning of the academic year and for which all the participants registered in the laboratory da-
tabase (n=1,963) were invited.!? This survey includes a large number of individual characteristics
such as fluid intelligence (Raven, 1936), verbal reasoning skills (Wonderlic, 1992), social intelli-
gence (Baron-Cohen et al., 1997; Baron-Cohen et al., 2001), students’ score in the Scholastic Ap-
titude Test (SAT), cognitive reflection (Frederick, 2005), risk attitudes (Holt & Laury, 2002), time
preferences (Laibson, 1997)!!, loss aversion (Mrkva et al., 2019), summation skills (see Corgnet
et al., 2015¢), and distributional social preferences (Bartling et al., 2009; Corgnet et al., 2015a).
Finally, participants spent the last five minutes of the experiment answering survey questions as-
sessing how tense and nervous they felt as well as how motivated they were to complete the task.
These questions were taken from the validated work climate questionnaire developed by the pro-
ponents of the self-determination theory of motivation (e.g., Deci & Ryan, 2000) (see Appendix
A).'? Our aim was to assess the effect of uncertain rewards on workers’ stress levels and on their
intrinsic motivation to complete the task. We also measured workers’ satisfaction by assessing
their self-reported affective reaction to completing the task using the emotional valence dimension
of the self-assessment manikin (SAM) developed by Bradley & Lang (1994) (see Appendix A).
This short questionnaire was completed right before and after the work task. Participants earned
an average of $24.8, including a $7 show-up fee for an experiment lasting one hour and fifteen

minutes.

19 Two participants in our study did not complete the survey.

1 'We elicit participants’ time preferences with a hypothetical payoffs task comparing payoffs today (in one month)
with payoffs in one month (in seven months). This task allows us to estimate the parameters beta (present bias) and
delta (exponential discount) of a quasi-hyperbolic specification of discounting.

12 These survey questions are available at: http://www.selfdeterminationtheory.org.
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In the second study, we recruited a total of 526 students at a major Spanish lab. Participants
were randomly assigned to one of the treatments described in Table 1. They earned an average of
€20.5, including a €5 show-up fee for an experiment lasting 90 minutes. The experiment was
slightly longer than in Study 1 because the lab in which the study was conducted had not imple-
mented a beginning-of-the-year survey for participants registered in the pool. We thus assessed
participants’ abilities on the task at the beginning of the experiment and collected additional infor-
mation at the end of the experiment.!3 As in Study 1, we collected the self-determination theory
scales on tension and intrinsic motivation as well as the cognitive reflection test. We also collected
the SAM at the beginning and at the end of the work task. Finally, we implemented a validated
survey on work/studying addiction (Bergen Work Addiction Scale; Andreassen et al., 2012).

In Appendix E2, we discuss related experimental designs.

5. Results
We start by testing our first two hypotheses comparing the two main treatments (deterministic

and stochastic) which were conducted in both studies.

5.1. Work persistence

We first assess the percentage of participants who decided to quit at different times during the
60-minute experiment. In Figure 2, we show the proportion of people who had quit the task before
a certain number of minutes had elapsed for both studies. In line with Hypothesis 1, workers are
more likely to quit the work task in the deterministic treatment than in the stochastic treatment
whenever monetary rewards are muted. Very few people quit in the first 30 minutes (1.96% and
1.42% in the deterministic and stochastic treatments, respectively); at minute 45, 16.34% of the

subjects had quit in the deterministic treatment and 7.09% in the stochastic treatment.

13 The ability task was the same as the one used in the survey conducted at the beginning of the year in Study 1.
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FIGURE 2. Percentage of participants who had quit the task (quitters, left axis) after a given
number of minutes had elapsed in the experiment across the two main treatments in both studies.
The average reward is represented in the right axis.

Regardless of the lab, quitting rates appear to be relatively low because a large majority of
participants are still completing the task despite monetary incentives being essentially muted from
period 5 (minute 40) onwards.!* A priori, the low quitting rates in the deterministic treatment
would seem to make it more difficult for us to spot a negative effect of stochastic rewards on
quitting. Nonetheless, Table 2 reports a negative and significant effect of stochastic rewards on the
likelihood of quitting the task, whether we assess quitting at minute 45, 50 or 55. This is the case
because the stochastic treatment dummy, which takes value one if a participant was assigned to
the stochastic treatment and value zero otherwise, is negative and significant across the three re-
gressions. Marginal effects indicate that being assigned to the stochastic treatment decreases one’s

probability of quitting by about 10%, whether quitting is assessed at minute 45, 50, or 55.13

14 One possible explanation could be that the tokens used to translate performance on the task into money was not
decreased in the course of the experiment (see Hsee et al., 2003). However, in contrast with Hsee et al., (2003), the
monetary equivalent of the number of tokens was very salient and continuously displayed on the screen (see Figure
2).

15 We do not find significant differences in the percentage of quitters before period 4 (see Table B1 in Appendix B).
In Study 1, 8.1% (8.1%) quitted before minute 35 (40) in the baseline compared with 5.9% (5.9%) in the stochastic
treatment. In Study 2, only 3.3% (4.4%) quitted before minute 35 (40) in the baseline whereas no participant quitted
before minute 40 in the stochastic treatment.
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TABLE 22
Probit regression for probability of quitting at different time intervals for both studies

Studies 1 & 2 t<45’ t<50° t<55’
Constant -1.089%*x* -1.129%%* -1.360%**
(0.387) (0.354) (0.313)
Stochastic -0.479%* -0.598*** -0.357*
Treatment Dummy (0.244) (0.229) (0.193)
[-0.070%%] [-0.101*%%*] [-0.079%]
Summation Skills -0.090%** -0.068%** -0.031
(0.028) (0.025) (0.021)
[-0.013%*%*] [-0.011%%*] [-0.007]
Cognitive Reflection 0.169** 0.154%** 0.129%**
(0.072) (0.066) (0.058)
[0.025%*] [0.026**] [0.029%*]
Male Dummy 0.855%** 0.680%*** 0.679%**
(0.246) (0.224) (0.189)
[0.125%%%*] [0.114%**] [0.150%**]
Study 1 Dummy 0.934** 1.038*** 0.981***
(0.245) (0.222) (0.194)
[0.136%**] [0.174%**] [0.217%**]
NP 292 292 292
R? 0.237 0.229 0.189
1 34.203%** 42.928%** 44 713%**

* Robust standard errors are in parentheses and marginal effects in square brackets.
® The number of observations is 292 (instead of 294) because two participants did not complete the
beginning-of-the-year survey in Study 1, so we do not have data on their summation skills or cognitive

reflection.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.

We find a similar effect using proportional hazards models (see Table B2 in Appendix B). The
results also hold when analyzing each study separately although statistical significance is de-
creased (see Table 3). All these findings support Hypothesis 1.

In Tables 2 and 3, we also report individual differences in work persistence (see more in Section
5.4) as workers who score high on cognitive reflection and low on summation skills were most
likely to stop working on the task after monetary incentives had become negligible. Workers who
possess high summation skills tend to have a lower cost of effort which would make the work task
more appealing compared to the leisure alternative. Because workers who possess high cognitive

reflection possess more attentional resources (e.g., Hasher et al., 2007; Toplak et al., 2011), they
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tend to react more quickly to the decrease in the exchange rate thus quitting the task earlier than

other workers.!® This finding supports Hypothesis 2.

TABLE 3°
Probit regression for probability of quitting at different time intervals.

Study 1 Study 2
t<45’ t<50° t<55’ t<45’ t<50’ t<55’
Constant -0.211 -0.084 -0.016 -0.951*  -1.142%*  -].845%**
(0.489) (0.444) (0.410) (0.552) (0.508) (0.483)
Stochastic -0.344 -0.511* -0.487* -0.686* -0.748* -0.227
Treatment Dummy (0.324) (0.294) (0.265) (0.398) (0.388) (0.286)
[-0.080] [-0.145*]  [-0.162*%] = [-0.060%] [-0.072%]  [-0.034]
Summation Skills -0.095** -0.072%* -0.047 -0.089* -0.065* -0.014
(0.038) (0.033) (0.029) (0.046) (0.039) (0.029)
[-0.022***]  [-0.020***]  [-0.016*] | [-0.008*]  [-0.006] [-0.002]
Cognitive Reflection 0.150%* 0.148%* 0.104 0.223%x* 0.181* 0.203%*
(0.090) (0.082) (0.074) (0.113) (0.101) (0.094)
[0.035%] [0.042%] [0.035] [0.020*]  [0.017*]  [0.030%%*]
Male Dummy 1.108%** 0.734%* 0.664** 0.511 0.606* 0.683**
(0.327) (0.297) (0.272) (0.359) (0.348) (0.282)
[0.258***]  [0.208***] [0.222***]  [0.045] [0.058*]  [0.101%%*]
NP 111 111 111 181 181 181
R? 0.189 0.132 0.097 0.160 0.148 0.124
Prob > y? 17.503*** 13.230%*  13.144** 8.225% 8.582* 9.501**

® Robust standard errors are in parentheses and marginal effects in square brackets.

b For Study 1, the number of observations is 111 -instead of 113- because two participants did not complete the survey, so we

do not have data on their summation skills or cognitive reflection.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.

In Appendix B, we show the robustness of our results to including additional controls for Study

1, which is the study for which we have additional individual information (see Table B3). This

analysis shows, for example, that risk and loss attitudes do not affect workers’ quitting decisions

in line with the argument that our work task does not involve risk or loss considerations. This is

the case because, by the time monetary rewards become negligible at the end of Period 4, workers

had completed an average of 320 summations, thus making the risk associated with random re-

wards practically absent.!” Even if random rewards had induced some level of risk, it would still

16 The fact that reflective workers produce less in our setting, as they stop working earlier, is particularly noteworthy
given that cognitive reflection has been commonly associated with diligence on the job and high performance levels
(e.g. Burks et al., 2015; Corgnet et al., 2015c).
17 1f participants in the stochastic treatment had received 12 tokens for each correct sum, as in the baseline treatment,
the difference with the number of tokens they actually obtained would have been negligible, CI(95%) = (-0.5%, 1.4%)
for Study 1 and CI(95%) = (-1.0%, 0.6%) for Study 2.
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not be straightforward to explain how stochastic rewards could affect workers’ decision to quit the
task when monetary incentives are absent unless we consider the unlikely scenario in which people
react to inconsequential risk. In Appendix B, we also show that workers’ quitting decisions are not
affected by time preferences, distributional social preferences or other cognitive skills.!8

Our findings thus support Hypothesis 1, although the two studies differed in the magnitude of
quitting rates. Participants in Study 1 were more likely to quit the work task compared to Study 2
participants. These differences are likely to echo lab idiosyncrasies which have been observed in
a previous real-effort task experiment (see Brandts et al., 2017) in which participants at the Study
2 lab were shown to be less likely to browse the internet when given the option to do so than in a
similar experiment conducted at the Study 1 lab. This is likely to be explained, beyond participants’
differences, by the fact that Study 1 lab is one in which a large number of studies give participants
the option to browse the internet instead of completing the main experimental task thus largely
attenuating the commonly-observed active participation in real-effort experiments (see Corgnet et
al., 2015¢).!” More generally, differences in levels of quitting rates across studies put forth the
heterogeneity in people’s reactions to stochastic rewards (see also Section 5.4).

The fact that workers stayed longer on the task in the stochastic treatment mechanically implied
that average production on the task was higher in the stochastic treatment than in the deterministic
treatment when monetary incentives became negligible (see Figure B1 and Table B4 in Appendix
B).2’ The reason why the reduced quitting rate in the stochastic treatment mechanically engen-
dered an increase in production compared to the deterministic treatment was that productivity lev-
els, as measured by the number of correct summations completed per time spent on the task, did
not substantially vary across treatments (see Table B6 in Appendix B).

In the next section, we go beyond the comparison of the stochastic and deterministic treatments
to assess the extent to which varying the level of entropy of the random reward distribution can
explain work persistence. To that end, we make use of the six additional treatments which were

conducted in Study 2. All these treatments have the same expected value for the reward (12 tokens)

18 We estimate participants’ level of behindness and aheadness aversion using the task proposed by Bartling et al.,
(2009).

19 In addition, screen resolution was substantially lower in the Spanish lab, thus possibly reducing the enjoyment of
browsing the internet.

20 In Table B35, we show the robustness of our results to including additional controls.
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as our two original treatments. These stochastic treatments are characterized by a low level of

entropy because rewards could only take two possible values (see Table 1).

5.2. Entropy and work behavior

In Figure 3, we show that work persistence increases with the level of entropy. We define as
‘average entropy’ all the stochastic treatments in which a reward can only take two possible values
except for treatment (13, 90%; 0). We assign the treatment (13, 90%; 0) to the ‘low-entropy’ cat-
egory along with the deterministic treatment because mistakes (which produce a zero reward) re-
duce the level of entropy of this treatment compared with the other two-outcome treatments.?!
‘High entropy’ corresponds to the original stochastic treatment in which rewards could take any
of 23 possible integer values (see Table 1). In line with Hypothesis 1, work persistence increased
when the entropy of the random rewards was higher. At minute 45 in Study 2, 9.93% of the subjects
in the low entropy treatments had quit, 5.61% in the average entropy treatments, and only 2.22%
in the high entropy treatments. Of particular interest is the fact that ‘average entropy’ treatments
which are characterized by a high variance of rewards led to less work persistence than the ‘high
entropy’ treatment which is characterized by a lower variance of rewards. This implies that entropy
rather than variance is the main driver of the positive effect of stochastic rewards on work persis-

tence.
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FIGURE 3. Percentage of participants (Study 2) who had quit the task (quitters, left axis) after a
given number of minutes had elapsed in the experiment. The average reward is represented in the
right axis.

2! Our results are robust to including the treatment (13, 90%; 0) in the ‘average entropy’ category.
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Our regression analysis in Table 4 confirms the positive effect of the entropy of stochastic re-

wards on work persistence, whereas the variance of rewards and the presence of losses did not

significantly affect work persistence.

TABLE 4*
Probit regression for probability of quitting at different time intervals
Studies 1 & 2 Study 2
t<45’ t<50° t<55’ t <45’ t<50° t<55°
Constant -1.816%**  -1.840%** -1.642%** -1.982%**  .2.090***  -]1.846%**
(0.273) (0.256) (0.220) (0.304) (0.298) (0.251)
Entropy -0.158**  -0.194%*** -0.120%* -0.213**  -0.229%* -0.087
(standardized) (0.072) (0.069) (0.061) (0.109) (0.102) (0.080)
[-0.021%*]  [-0.029%%*] [-0.026**] [-0.023*] [-0.028%*] [-0.016]
Variance -0.108 -0.041 0.134 -0.085 -0.033 0.142
(standardized) (0.162) (0.155) (0.131) (0.158) (0.156) (0.135)
[-0.014] [-0.006] [0.029] [-0.009] [-0.004] [0.026]
Loss Dummy 0.219 0.025 -0.050 0.163 0.001 -0.055
(0.310) (0.309) (0.277) (0.300) (0.306) (0.284)
[0.029] [0.004] [-0.011] [0.018] [0.000] [-0.010]
Summation -0.034** -0.023 -0.011 -0.015 -0.008 -0.002
Skills (0.017) (0.015) (0.013) (0.018) (0.017) (0.014)
[-0.005%*] [-0.004] [-0.002] [-0.002] [-0.001] [-0.000]
Cognitive 0.112%* 0.134%#%* 0.114%%* 0.117* 0.156%**  (.142%**
Reflection (0.049) (0.047) (0.043) (0.060) (0.058) (0.053)
[0.015%*]  [0.020%**] [0.024%%%*] [0.013*]  [0.019***] [0.026%**]
Male Dummy 0.658*#:* 0.618#** 0.754 %% 0.474%%  0.561***  (.780%***
(0.168) (0.155) (0.135) (0.195) (0.190) (0.162)
[0.088#**]  [0.093%**] [0.160%***] [0.051%*] [0.068***] [0.145%**]
Study 1 Dummy  0.819%*%** 0.9071#** 0.954 %%
(0.191) (0.182) (0.168)
[0.109%**]  [0.136%**] [0.203%*%*%*]
N 637 637 637 526 526 526
R? 0.143 0.160 0.147 0.065 0.093 0.115
ya 41.680***  58.669*** T1.357%** 11.380*  18.513%** 35.372%**

* Robust standard errors are in parentheses and marginal effects in square brackets.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.

In Appendix B, we report the results for work persistence using proportional hazards models

(see Table B7). Given the positive effect of entropy on work persistence and its null effect on
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productivity (see Table B9), it is not surprising to find a positive effect of entropy on work pro-

duction (see Table B8). These findings are in line with our first hypothesis.

5.3. Entropy and stress

We now test our third hypothesis regarding the effect of stochastic rewards on self-reported
stress. We measure self-reported stress using the tension and nervousness scale of the validated
self-determination questionnaire (see Deci et al., 1994; Deci & Ryan, 2000; Ryan, 1982). This
scale includes items such as ‘I was anxious while working on this task’ (see Appendix A).?? In
Figure 4, we show tension scores across entropy levels. In line with Hypothesis 3, tension levels

were higher for higher entropy levels.

Tension score

Low Average High
Entropy Entropy Entropy

FIGURE 4. Average tension scores for treatments with zero, average, and high entropy treatments
across the two studies. Error bars represent 95% confidence intervals.

In Table 5, we show that, in line with our third hypothesis, entropy levels tend to increase ten-
sion. This effect also holds when controlling for participants’ initial emotional valence (measured
at the beginning of the work task using the SAM) and the amount of time spent working on the
task.?® Similar results are obtained when comparing the baseline with our original stochastic treat-

ment (see Figure B2 and Table B10 in Appendix B). The negative effect of ability on stress is in

22 The Cronbach alpha coefficient for the scale was 0.863.
23 Note that participants who quit the task earlier had more time to rest and browse the internet before completing the
questionnaire on stress.
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line with the empirical evidence suggesting that low performers experience more stress from per-
formance-contingent rewards compared to fixed wages (Williams and Livingstone, 1994; Ganster

etal., 2011).

TABLE 5°
Linear regressions for stress (standardized tension scale)

Studies 1 & 2 [1] [2] [3]
Constant 0.460%*** -0.308 0.323

(0.126) (0.275) (0.284)
Entropy 0.112%** 0.100%** 0.103***
(standardized) (0.038) (0.039) (0.038)
Variance -0.021 -0.020 -0.021
(standardized) (0.080) (0.079) (0.077)
Loss Dummy 0.013 0.015 0.013

(0.183) (0.180) (0.175)
Summation Skills -0.025%** -0.026%** -0.023%**

(0.008) (0.008) (0.008)
Cognitive Reflection 0.012 0.019 0.019

(0.027) (0.027) (0.027)
Male Dummy -0.271%%* -0.238%** -0.259%**

(0.084) (0.084) (0.083)
Study 1 Dummy -0.036 0.021 0.007

(0.110) (0.110) (0.110)
Working Time on the task 0.790%** 0.795%**

(0.249) (0.233)

SAM Valence -0.104%**
(before the work task) (0.022)
N 637 637 637
R? 0.056 0.068 0.098
1 5.330%** 6.448*** 0.780%***

® Robust standard errors are in parentheses.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.

In the next section, we study the interaction effect between individual characteristics and the

entropy of rewards on work persistence.
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5.4. Individual differences

5.4.1. Gender

In Appendix C, we show that men tend to quit earlier than women. For example, pooling both
studies, we find that 30.16% of male subjects in the deterministic treatment had quit at minute 45,
compared with only 6.67% of females (p-value < 0.001).2* Interestingly, we find that men are more
responsive than women to stochastic rewards. In the stochastic treatment, 8.77% of the males and
5.95% of females had quit at minute 45 (vs. 30.16% and 6.67% in the deterministic treatment).
This may be explained by the evidence suggesting that men and women react differently to stress
(Taylor et al., 2000; Shalev et al., 2009). Our results are in line with previous literature in psychol-
ogy, showing that stress has a stronger negative effect on cognitive flexibility for men than for
women (Shields et al., 2016). Males are thus more likely to respond to the presence of stochastic
rewards and the associated increase in stress by continuing on the work task for no pay rather than
contemplating the possibly welfare-enhancing strategy of browsing the web (see Figure C1 as well
as Tables C1 and C2 in Appendix C).

Our findings suggest that the presence of reward uncertainty might explain gender differences
in work behavior. In particular, men might be more likely to end up addicted to their jobs when
rewards are highly variable, which is often the case of executive compensation (e.g., Abowd &
Kaplan, 1999; Bertrand & Mullainathan, 2001). It could then be interesting to assess the extent to
which uncertain rewards might account for some of the gender wage gap beyond potential differ-

ences in competitiveness across genders (e.g. Niederle & Vesterlund, 2007).

5.4.2. Work addicts

If uncertain rewards are critical for triggering work addiction, we should observe that people
who can be categorized as work addicts will be especially responsive to uncertain rewards. In
Appendix D, we provide a separate analysis to assess how individual scores on the Bergen Work
Addiction Scale (Andreassen et al., 2012) can explain the effect of stochastic rewards on work

persistence. Our findings suggest that work addicts, identified as scoring above the median on the

24 This p-value is calculated for the coefficient of the male dummy in a probit regression that uses the same specifica-
tion as in Table C1. Part of the difference in quitting rates across gender can be attributed to higher cognitive reflection
scores and tension scores in males. However, this gender difference remains significant even after controlling for these
individual factors.
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work addiction scale, are more likely to respond to stochastic rewards than non-addicts.?> In par-
ticular, we show that work addicts are more likely than non-addicts to persist longer on the task
when rewards are stochastic than when they are deterministic. This finding is consistent with pre-

vious results showing that addicts are particularly reliant on habit actions (see Voong et al., 2015).

5.5. Alternative interpretations of our findings

One could argue that entropic rewards increase participants’ intrinsic motivation to complete
the task, thus providing an alternative explanation for our findings. This argument is, however,
unlikely to be valid in our context since entropy generates tension, which according to self-deter-
mination theory (e.g., Ryan, 1982), would hamper rather than enhance intrinsic motivation. To
assess intrinsic motivation, we use the interest/enjoyment subscale of the Intrinsic Motivation In-
ventory (e.g., ‘I enjoyed doing this task very much’).2® In Appendix B, we show that, if anything,
entropy harms intrinsic motivation, as self-determination theory suggests (see Tables B11 and B12
in Appendix B).?’

Standard incentive theory (e.g., Laffont & Martimort, 2002) cannot account for our findings
because it predicts work persistence to be the same across treatments after monetary payoffs be-
come negligible. Besides, any explanation of our findings based on risk considerations is under-
mined by the fact that the stochastic treatments were designed to have a negligible effect on the
variability of workers’ income in the course of the experiment. Risk does not play a role in our
setup because participants face a large number of reward draws in the course of the experiment so
that the actual variance of cumulative monetary rewards in the stochastic treatment is practically
equal to zero. Unsurprisingly, our analysis of work behavior shows that risk attitudes do not affect
work persistence (see Table B3 in Appendix B).

Explanations for our results that are based on the motivating role of losses (see Sloof & Van
Praag, 2010; Corgnet & Hernan-Gonzalez, 2019) are also inconsistent with our findings. This is
the case because loss treatments do not lead to lower quitting rates or higher production levels (see
Table 4 as well as Tables B7 and B8 in Appendix B). Importantly, workers cannot cover up their

losses in the last two periods of the experiments, which is when the great majority of workers make

25 Qur results would supposedly be even more pronounced when considering only people who can be clinically defined
as work addicts. This would consist of less than 10% of our current sample (see Andreassen et al., 2014).

26 The Cronbach alpha coefficient is 0.918 for this scale.

27 Note that neither entropy nor the stochastic treatment dummy have a direct effect on intrinsic motivation.
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their decision on whether to continue on the task or not, as rewards for completing the tasks be-
come negligible. In line with this argument, our analysis of individual work behavior shows that
loss attitudes do not affect work persistence (see Table B3 in Appendix B).?

Our findings cannot be explained by models of information avoidance, which would imply that
stochastic rewards might motivate workers by either triggering optimistic beliefs (Brunnermeier
& Parker, 2005; Huck et al., 2018) or by alleviating self-control issues (Carrillo and Mariotti, 2000;
Bénabou and Tirole, 2002). In our setup, self-control issues are absent because workers are actually
reluctant to quit the job even after rewards have become negligible. Besides, holding optimistic
beliefs regarding which of the possible rewards will be received in the stochastic treatments should
not impact workers’ quitting decisions because those decisions are typically made when monetary
rewards are valueless.

Furthermore, any effect of stochastic rewards in our setup cannot be explained by the positive
implications of contractual opacity on work performance (e.g., Bernheim & Whinston, 1998; Je-
hiel, 2014; Ederer et al., 2018). This is the case because, in our setting, workers know the proba-
bility distribution of rewards in advance. In addition, our setup abstracts from strategic issues such
as informational asymmetry and verifiability which are crucial features for models establishing a
positive relationship between vague rewards and workers’ effort (Bernheim & Whinston, 1998;
Jehiel, 2014; Ederer, et al., 2018).

Finally, our findings cannot be easily accounted for by workers’ natural curiosity for uncovering
the realizations of uncertain rewards (e.g., Golman & Loewenstein, 2015a,b) or by people’s inner
drive to resolve uncertainty (Friston et al., 2013, 2015, 2017a,b) and entertainment utility for sus-
pense and surprise (Ely et al., 2015). In contrast with our findings, these theories would predict
that workers value the stochastic-reward environment more than the deterministic-reward environ-
ment. Instead, we find that the level of stress reduces the level of satisfaction of participants as
measured by the emotional valence dimension of SAM at the end of the work task (see models [1]
and [3] in Table B14 in Appendix B). In addition, we do not find a significant effect of entropy on
satisfaction (see models [2] and [3] in Table B14 in Appendix B).?

28 Recent field (Fryer et al., 2012; Hossain & List, 2012; Levitt et al., 2016) and lab experiments (Luft, 1994; Hannan
et al., 2005; Armantier & Boly, 2015; Imas et al., 2017) have put forward the motivational power of loss frames.

29 Similar results are obtained comparing the baseline with our main stochastic treatment (see Table B13 in Appendix
B).
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6. Discussion: stress, work addiction and uncertain rewards in the gig economy

Our findings highlight that reward uncertainty is a fundamental behavioral mechanism to ex-
plain workers’ persistence on the job. In line with incentive salience theory (e.g., Berridge, 2003;
Anselme et al., 2013), uncertain rewards may lead workers to hold on a task despite the extinction
of monetary incentives, thus showing signs of work addiction.

It follows that managers could induce workers to spend long hours by promoting chaotic work
environments that would trigger high stress levels (e.g., Selye, 1956; Mason, 1959, 1968; McEwen
& Stellar, 1993; McEwen & Wingfield, 2003; Peters & McEwen, 2015). Because managers are
likely to pursue efficiency gains and because workers are not necessarily aware of their addictive
behavior, there is no reason to believe that stress-related health concerns will be prominent when
designing work environments. It then seems important to recognize the need to design compensa-
tion schemes in which reward uncertainty and stress levels are under control. This statement echoes
a more general concern regarding the possibly excessive use of behavioral techniques such as loss
framing (Fryer et al., 2012, Hossain & List, 2012; Armantier & Boly, 2015; Imas et al., 2017) or
goal setting (Locke & Latham, 2002; Wu et al., 2008; Goerg & Kube, 2012; Corgnet et al., 2015b;
Markle et al., 2018) to incite people to work longer hours (Alter, 2017; Scheiber, 2017).

The need for keeping workers on the job is especially critical for companies in the ‘gig econ-
omy’ (Alter, 2017; Cook et al., 2018) that rely on an independent workforce rather than on em-
ployees ascribed to a predefined work schedule. It is thus not surprising that major ridesharing
companies have experimented with goal setting and loss frames to retain drivers (Scheiber, 2017;
Allon et al., 2018). Furthermore, they have started new reward programs, which provide a variety
of surprise gifts ranging from roadside assistance to dental repairs for the most active drivers
(Hawkins, 2018). These programs mimic the already-widespread surprise schemes used by major
online retailers to retain customers by offering unexpected discounts (Eyal, 2014; Alter, 2017).
Our research suggests that these reward programs, which add to the high level of variability in
hourly wages inherent to jobs in the gig economy (Abraham et al., 2018; Broughton et al., 2018),
might be successful in leading drivers to work longer hours. In sum, the inherent variability asso-
ciated with daily earnings of gig workers puts them at a higher risk of becoming work addicts. Our
experimental findings illustrate how difficult it might be for these workers to stop working even
though, in principle, “any driver can stop work literally at the tap of a button” (Uber spokesman

as reported by Scheiber, 2017). Our study might explain why these workers report experiencing
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stress as a result of frequent changes in the reward system (Huws et al., 2017). In the absence of a
fixed work schedule, stressed workers might thus end up spending excessive hours on the job.
Relatedly, Allon et al., (2018) have identified inertia in the work decisions of drivers of a ride-
hailing company who were more likely to continue driving when they had spent more hours on the
job. The findings of Butschek et al., (2019) that gig workers in the fashion industry do not typically
increase their supply of labor when the variability of pay is exogenously decreased might also be
partly explained by the positive effect of pay variability on work persistence.

Because of the rise of flexible work schedules (Council of Economic Advisors, 2010; Manyika
et al., 2015; Katz & Krueger, 2016; Oyer, 2016; Gallup’s survey, 2018; Késsi and Lehdonvirta,
2018), individual decisions of when to start or stop working are becoming increasingly complex
(Henly & Lambert, 2014). Our work highlights that uncertain rewards and the stress levels that
they induce might render these work decisions even more challenging.

It might be tempting to rationalize working over-time on the basis of reputational concerns and
signaling motives (Spence, 1973; Corgnet et al. 2015d). However, our study shows that overwork
can occur even in the absence of strategic motives. Actually, the non-strategic motives for work
addiction, related to stress and attentional costs, might be especially relevant in the case of gig
workers whose independent work status might weaken reputational and signaling concerns toward

their employer.

7. Conclusion

Business and economics scholars have repeatedly argued that rewarding effort in a clear and
predictable manner would most effectively motivate workers (see Nadler & Lawler, 2007). Despite
such calls, many organizations do not seem to follow these recommendations and instead often
implement highly uncertain reward policies. In this work, we imported ideas from the neuroscience
of incentives to develop a new paradigm allowing us to conduct what is, to our knowledge, the
first controlled study on the link between uncertainty and work addiction in humans. In particular,
we showed that stochastic rewards lead people to work longer on the task when monetary rewards
are absent compared to deterministic rewards. Our work also demonstrates that only very specific
types of stochastic rewards, characterized by high levels of entropy, can trigger work addiction.

Our work also suggests that attentional costs might trigger work persistence, thus implying that
cognitive training (see Jaeggi et al., 2011) and meditation techniques (e.g., Jha et al., 2007; Tang
et al. 2007; MacLean et al., 2010) targeting attentional control might alleviate work addiction.
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Finally, a major motivation for our work was to build bridges across the cognitive sciences by
providing an experimental paradigm that can be used across disciplines. For example, neuroscien-
tists could use our setup to identify the neural correlates of work addiction, whereas organizational
scientists could extend our setup to study work addiction in hierarchical structures. Even though
our lab study provides sharp results, we see our work as a first step in the analysis of stochastic
rewards and work addiction. Further studies should assess the robustness of our findings to more

complex tasks and more convoluted organizational settings.
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Appendix A
Experimental instructions and questionnaires.

Study 2 experiments were conducted in Spanish. The instructions in Spanish are available upon
request.

Instructions — Baseline [Stochastic rewards] treatment
This task consists in adding five one-digit numbers. During 6 periods of 600 seconds each, you
can solve as many problems as you want to. An example of the sum problem is displayed below.
Next to the display, there is an input box and an O.K. button. You will have to enter the result
into the box (only integer numbers are allowed) and then click on the O.K. button or press EN-
TER.
For each sum problem that you solve correctly, you will receive 12 tokens.
[For each sum problem that you solve correctly, you will receive a number of tokens. To deter-
mine the number of tokens for each sum problem, the computer will randomly generate an inte-
ger number between 1 and 23 all with equal chances.]
These tokens are converted to dollars using an exchange rate (=number of tokens you need to
earn 1 cent) that varies each period.
The exchange rate will be 1, 2, 4, 8, 80, and 500 in period 1, 2, 3, 4, 5, and 6, respectively.
For each table you complete correctly you will receive an amount of cents equal to the number of
tokens divided by the corresponding period exchange rate.
e Example 1: consider you complete a correct sum in period 2. In this period the ex-
change rate is 2 tokens per cent.

Therefore, you will receive 12 tokens which correspond to 6 cents (=12/2).

[Suppose that the number of tokens randomly selected by the computer is 10. Therefore, you
will receive 10 tokens which correspond to 5 cents (=10/2).]

e Example 2: consider you complete a correct sum in period 4. In this period the ex-
change rate is 8 tokens per cent.

Therefore, you will receive 12 tokens which correspond to 1.5 cents (=12/8).
[Suppose that the number of tokens randomly selected by the computer is 14. Therefore, you will
receive 14 tokens which correspond to 1.75 cents (=14/8).]
On the right hand side of the screen, you will see the current exchange rate, the number of tokens
and its value in cents for the last sum problem you completed. You will also see your cumulative
earnings.
Every time a correct answer is provided you will see the corresponding number of tokens falling
into a pot (on the left hand side of the screen).
Important: note that the number of tokens must be divided by the corresponding period exchange
rate to obtain your earnings in cents.
The current period and the time remaining in seconds for that period will be displayed in the up-
per right corner of the screen.
Any time, you can exit the task by clicking on the ' BROWSE THE INTERNET' button.
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IMPORTANT: once you exit the task you will be on the internet FOR THE REST of the experi-
ment and you will not come back to the task screen.

Intrinsic Motivation Inventory - Self-Determination Theory
Participants were asked to indicate using a 7 points Likert scale how true the following state-
ments were for them (1=not at all true; 7=very true).
The pressure/tension scale
¢ [ did not feel nervous at all while doing this Task.
e [ felt very tense while doing this Task.
e [ was very relaxed in doing this Task.
e [ was anxious while working on this Task.
e [ felt pressured while doing this Task.
The interest/enjoyment subscale
¢ [ enjoyed doing this Task very much
e This Task was fun to do.
e [ thought this was a boring Task.
e This Task did not hold my attention at all.
e [ would describe this Task as very interesting.
o [ thought this Task was quite enjoyable.
e While I was doing this Task, I was thinking about how much I enjoyed it.

The Intrinsic Motivation Inventory can be found here: http://selfdeterminationtheory.org/intrin-
sic-motivation-inventory/

SAM (self-assessment manikin, Bradley and Lang, 1994)

Select the number that best fits your mood:

1 represents feeling "unhappy. annoved, unsatisfied, melancholic, despairing. or bored”
9 represents feeling "happy. pleased. satisfied, contented. hopeful, relaxed"

o1 02 O3 04 O5 06 0O7 08 09
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Appendix B
Additional analyses of reward uncertainty and entropy.

TABLE B1?
Quitting behavior before rewards are muted
Probit regressions for the probability of quitting before minutes 35 or 40.

Studies 1 & 2 Study 1 Study 2°
t<3% t<40’ t<3% t<40’ t<3% t<40’
Constant -1.740%**  _1.615%**  -1.531%%* -1.531** -0.764 -0.812
(0.571) (0.543) (0.699) (0.699) (0.981) (0.856)
Stochastic -0.409 -0.464 -0.061 -0.061
Treatment Dummy (0.302) (0.303) (0.383) (0.383)
[-0.030] [-0.036] [-0.008] [-0.008]
Summation Skills -0.053 -0.062* -0.040 -0.040 -0.104 -0.129

(0.033) (0.034)  (0.044) (0.044)  (0.084)  (0.080)
[-0.004]  [-0.005%] [-0.005]  [-0.005] = [-0.007]  [-0.010]

Cognitive Reflection 0.105 0.140 0.088 0.088 0.134 0.320
(0.106) 0.108)  (0.122) 0.122)  (0.177)  (0.216)
[0.008] [0.011] [0.011] [0.011] [0.009] [0.026]
Male Dummy 0.503* 0.562%* | (0.848***  (.848*** 0,023 0.156

(0.263) (0.260) = (0.316) (0316)  (0.554)  (0.522)
[0.036%]  [0.043*] | [0.105**] [0.105**] [-0.002]  [0.012]

Study 1 Dummy 0.681** 0.571%*
(0.310) (0.299)
[0.049%%] [0.044%]

N 292 292 111 111 91 91
11 0.137 0.148 0.109 0.109 0.086 0.157
BIC 19.316%%*  21.485%%* = 12.427%*%  12.427** 8.768** 8.710**

® Robust standard errors are in parentheses and marginal effects in square brackets.

b The stochastic treatment variable cannot be estimated for Study 2 as none of the participants in the stochastic treat-
ment quitted until minute 41 whereas in the deterministic treatment only 3.3% (3 out of 91) and 4.4% (4 out of 91) of
the participants had quitted before minute 35 and 40, respectively.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B2#°

Proportional hazards models.

Studies 1 & 2 [1] [2] [3]
Constant -21.504%** -12.173%** -14.278***
(1.984) (1.420) (1.725)
Stochastic -1.351** -0.604 -0.859**
Treatment Dummy (0.556) (0.375) (0.371)
[0.259%] [0.547] [0.424%%]
Summation Skills -0.142%* -0.071 -0.086*
(0.061) (0.047) (0.046)
[0.868%*] [0.932] [0.917%*]
Cognitive Reflection 0.529%** 0.293** 0.326%**
(0.168) (0.123) (0.105)
[1.697%**] [1.341%%] [1.386%**]
Male Dummy 2.082°%#* 1.252%# 1.177%%*
(0.568) (0.469) (0.417)
[8.021#%*] [3.496%**] [3.243%%*]
Study 1 Dummy 3.654%** 2.162%%* 2.209%**
(0.556) (0.518) (0.403)
[38.641%*%*] [8.686%**] [9.105%**]
Period® 2.408%** 1.325%** 1.440%**
(0.298) (0.277) (0.232)
[11.115%%*] [3.762%%**] [4.223%%*]
N 16255 16255 16255
L1 -372.159 -377.535 -376.637
BIC 821.888 832.638 840.539

* Robust standard errors are in parentheses and hazard ratios in square brackets.

> Model [1] refers to a discrete-time proportional hazard model without unobserved individual heterogeneity (Prentice
& Gloeckler, 1978), whereas [2] and [3] assume either a gamma distribution (Meyer, 1990) or a discrete mixture
distribution (Heckman & Singer, 1984) to summarize unobserved individual heterogeneity. BIC represents the Bayes-
ian information criterion.

¢ Similar results are obtained when instead of controlling for the variable “period” we control for “last 2 periods” or
“last 3 periods” dummies, period exchange rate, period dummies or none of them. In some of these cases, models [2]
and [3] did not converge. The results reported here have the lowest BIC values.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B3*
Quitting behavior and additional controls
Probit regressions for the probability of quitting, with additional controls for Study 1.

<50’ <55
Study 1 (1] (2] (3] (4] [5] (1] (2] (3] (4] [5]
Constant -0.084 5572 -0.147 0.206 4618 -0.016 1.821 -0.048 -2.079 -1.766
(0.444)  (5.909)  (0.529)  (2.186)  (7.143) | (0.410)  (5.422)  (0473)  (2.068)  (6.954)
Stochastic 0.511%  -0447  -0.551*  -0.385 -0.230 -0.487%  -0.458%  -0.520*  -0.564*  -0.628*
Treatment Dummy 0.294)  (0301)  (0.295)  (0.350)  (0.358) | (0.265)  (0.268)  (0.269)  (0.308)  (0.330)
[0.145%]  [-0.124]  [-0.155%%] [-0.097]  [-0.055] & [-0.162%]  [-0.151%] [-0.172%%] [-0.177%] [-0.191%%]
Summation Skills 0.072%*  -0.078%*%  -0.075%*  -0.114%*  -0.142%**  .0.047 20.051*  -0.051*  -0.067*  -0.088**

0.033)  (0.034)  (0.033)  (0.046)  (0.054) (0.029) 0.030)  (0.029)  (0.036) (0.040)
[-0.020%*] [-0.022%*] [-0.021%*] [-0.029%**] [-0.034***] [-0.016*] [-0.017*] [-0.017*] [-0.021*] [-0.027**]
Cognitive Reflection 0.148*  0.187%*  0.147* 0.165 0.179 0.104 0.126 0.101 0.047 0.056
(0.082)  (0.090)  (0.082)  (0.118)  (0.131) (0.074) 0.080)  (0.076)  (0.099) (0.108)
[0.042%]  [0.052**] [0.041*]  [0.042]  [0.043] [0.035] [0.041]  [0.033]  [0.015] [0.017]
Male Dummy 0.734%%  0.744%x  (.783%%* [ [11**¥%  1409%**  0.664**  0.688**  0.708%*  (.869%*%*  (.976%**
(0.297)  (0.300)  (0.301)  (0.384)  (0.391) (0.272) (0287)  (0.279)  (0.337) (0.370)
[0.208%*%] [0.206***] [0.220%**] [0.281%**] [0.339%**] [0.222%**] [0.227***] [0.234%**] [0.272%**] [0.296%**]

Risk Aversion -0.094 -0.166 -0.048 -0.090
(0.077) (0.102) (0.069) (0.088)
[-0.026] [-0.040*] [-0.016] [-0.027]
Loss Aversion -0.034 0.072 0.065 0.111
(0.126) (0.165) (0.117) (0.154)
[-0.009] [0.017] [0.022] [0.034]
Time Preferences 0.830 2.035 0.316 -0.588
(Beta) (1.616) (2.085) (1.607) (1.917)
[0.230] [0.490] [0.104] [-0.179]
Time Preferences -5.983 -4.143 -2.224 0.701
(Delta) (7.027) (8.136) (6.460) (7.752)
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[-1.660] [-0.998] [-0.734] [0.213]

Aheadness Aversion 0.250 -0.075 0.254 0.267
(0.290) (0.368) (0.274) (0.332)

[0.070] [-0.018] [0.084] [0.081]

Behindness Aversion 0.012 -0.372 -0.044 -0.349
(0.305) (0.378) (0.280) (0.330)
[0.003] [-0.090] [-0.015] [-0.106]

Social Intelligence 0.030 0.012 0.022 0.014
(0.038)  (0.037) 0.037)  (0.038)

[0.008]  [0.003] [0.007] [0.004]

Raven Score 0.029 0.055 0.076 0.104
0.076)  (0.074) (0.081)  (0.081)

[0.007]  [0.013] [0.024] [0.032]

Wonderlic Score -0.111 -0.171%* -0.011 -0.021
(0.089)  (0.095) 0.079)  (0.082)
[-0.028]  [-0.041%] [-0.004]  [-0.006]

SAT 0.198 0.228 0.199 0.171
(0.192)  (0.200) 0.172)  (0.181)

[0.050]  [0.055] [0.062] [0.052]

N 111 111 111 91 91 111 111 111 91 91

R2 0.132 0.150 0.138 0.193 0.235 0.097 0.104 0.104 0.128 0.155
1 13.230%*  16.124%*  14.353**  17.015%* 22.720% 13.144%* 14.969* 13.967** 14.909* 18.208
BIC 129.506 146.050 138.165 117.289 140.154 148.786 166.578 157.197 136.697 160.642

® Robust standard errors are in parentheses and marginal effects in square brackets.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B4*
Linear regression for production (number of correct sums) for different periods and for both studies.

Studies 1 & 2 Avg Production Production Production Avg Production
Periods 1 to 4 Period 5 Period 6 Periods 5 & 6

Constant 21.452%** 27.593%** 29.761%** 28.677***
(2.898) (5.220) (6.159) (5.478)

Stochastic -0.423 7.385%* 6.722* 7.053**

Treatment Dummy (1.769) (3.178) 3.719) 3.292)

Summation Skills 3.763%** 3.573%*x 3.170%** 3.371%**
(0.193) (0.335) (0.420) (0.362)

Cognitive Reflection 0.173 -2.805%* -3.018** -2.912%*
(0.684) (1.178) (1.354) (1.212)

Male Dummy -3.113%* -15.523%** -17.231%** -16.377***
(1.874) (3.449) (3.818) (3.486)

Study 1 Dummy -1.691 -17.371%** -22.465%** -19.918%**
(1.970) (3.596) (4.159) (3.685)

N 292 292 292 292

R? 0.610 0.331 0.270 0.317

F 97.900%** 33.819%** 23.465%** 29.195%**

 Robust standard errors are in parentheses.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.

48



TABLE B5*
Production and additional controls
Linear regressions for production in the last period (number of correct sums), with additional
controls for Study 1.

Study 1; t<55° [1] [2] [3] [4] [5]
Constant 6.786 -91.458 9.722 28.530 -57.187
(10.934) (143.475) (12.113) (55.617) (204.351)
Stochastic 14.243* 12.904* 15.826** 12.046 13.375
Treatment Dummy® (7.395) (7.544) (7.607) (8.429) (8.940)
Summation skills 3.323%%* 3.374%** 3.488%** 3.992%** 4.407***
(0.816) (0.852) (0.801) (0.982) (1.094)
Cognitive Reflection -3.766* -4.070* -3.868* -3.492 -3.238
(2.119) (2.309) (2.201) (2.718) (3.082)
Male Dummy -25.7792%*%*  26.760***  27.492%** D5 657F*k*  28.345%**
(7.954) (8.526) (7.899) (9.207) (9.906)
Risk Aversion 0.738 0.558
(2.026) (2.523)
Loss Aversion -1.347 -3.007
(3.064) (3.383)
Time Preferences -37.003 -31.546
(Beta) (45.638) (50.851)
Time Preferences 138.312 116.667
(Delta) (169.515) (209.526)
Aheadness Aversion -12.245 -12.127
(7.582) (8.831)
Behindness Aversion 0.636 9.852
(7.674) (9.105)
Social Intelligence -0.174 0.147
(1.084) (1.105)
Raven Score -2.037 -3.202
(2.160) (2.277)
Wonderlic Score 0.875 1.039
(2.325) (2.509)
SAT -3.401 -1.538
(4.374) (4.665)
N 111 111 111 91 91
R? 0.224 0.233 0.245 0.247 0.291
F 9.304%** 5.417%** 7.845%*%* 4.46]1*** 3.469%**

2 Robust standard errors are in parentheses.

b Note that the coefficient for the stochastic treatment dummy is insignificant in models [4] and [5] with p-values of
p=0.157 and p=0.139, respectively.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B6*
Productivity

Linear regressions for productivity
(number of correct summations per second spent on the task).

Average

Both studies Periods 1 to 4 Period 5 Period 6
Constant -0.008 -0.014%** -0.018
(0.020) (0.006) (0.019)
Stochastic -0.002 0.002 0.001
Treatment Dummy (0.003) (0.006) (0.004)
Summation Skills 0.006*** 0.004%** 0.005%**
(0.001) (0.001) (0.001)
Cognitive Reflection 0.001 -0.003 -0.001
(0.001) (0.002) (0.001)
Male Dummy -0.004 -0.021%** -0.012%*
(0.003) (0.007) (0.047)
Study 1 Dummy -0.001 -0.014%** -0.014%**
(0.003) (0.006) (0.005)
Time on the task 0.001** 0.001*** 0.001***
(in seconds) (<0.001) (<0.0001) (<0.0001)
N 291 276 250
R? 0.662 0.381 0411
F 88.850%*** 48.520%** 21.640%**

 Robust standard errors are in parentheses.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B7%°
Proportional hazards models and entropy.

Studies 1 & 2 [1] [2] [3]
Constant -10.874%** -10.722%** -20.234
(1.242) (0.672) (116.285)
Entropy -0.219** -0.215%* -0.191*
(standardized) (0.098) (0.099) (0.104)
[0.803%*] [0.806%*] [0.826%]
Variance 0.214 0.214 0.214
(standardized) (0.189) (0.201) (0.196)
[1.239] [1.238] [1.238]
Loss Dummy -0.043 -0.042 -0.042
(0.430) (0.476) (0.463)
[0.958] [0.959] [0.959]
Summation Skills -0.003 -0.003 -0.003
(0.019) (0.020) (0.019)
[0.997] [0.997] [0.997]
Cognitive Reflection 0.166** 0.170%** 0.180%***
(0.067) (0.064) (0.063)
[1.180%*] [1.186%**] [1.198***]
Male Dummy 1.105%** 1.132%%* 1.120%**
(0.266) (0.243) (0.217)
[3.018%**] [3.103%**] [3.063%**]
Study 1 Dummy 1.622%** 1.661%** 1.632%%*
(0.326) (0.290) (0.246)
[5.065%**] [5.266%**] [5.114%%*]
Period 0.857%** 0.872%** 0.857***
(0.158) (0.106) (0.086)
[2.356%**] [2.392%**] [2.356%*%*]
N 35,681 35,681 35,681
11 -751.296 -751.104 -750.590
BIC 1,607.415 1,607.033 1,616.486

* Robust standard errors are in parentheses and hazard ratios in square brackets.

> Model [1] refers to a discrete-time proportional hazard model without unobserved individual heterogeneity (Prentice
& Gloeckler, 1978), whereas [2] and [3] assume either a gamma distribution (Meyer, 1990) or a discrete mixture
distribution (Heckman & Singer, 1984) to summarize unobserved individual heterogeneity. BIC represents the Bayes-
ian information criterion.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.

51



TABLE B§*
Production and entropy

Linear regression for production (number of correct sums) for different periods.

Studies 1 & 2 Production Production Production Production
Period 1 to 4 Period 4 Period 5 Period 6
Constant 19.595%%** 31.117%** 35.614%** 33.365%**
(2.032) (3.447) (4.129) (3.614)
Entropy 0.042 2.443%%* 2.118* 2.281%*
(standardized) (0.597) (1.044) (1.239) (1.088)
Variance -2.584* -1.519 -2.772 -2.145
(standardized) (1.229) (1.877) (2.191) (1.939)
Loss Dummy -3.992 -4.722 -4.647 -4.684
(2.585) (4.169) (4.837) (4.327)
Summation Skills 3.599%** 3.241%** 2.748%** 2.995%**
(0.148) (0.257) (0.305) (0.271)
Cognitive Reflection 0.807 -1.975%* -2.611%%* -2.293**
(0.529) (0.868) (1.007) (0.896)
Male Dummy -1.439 -11.977%** -16.266%** -14.121%**
(1.353) (2.167) (2.475) (2.230)
Study 1 Dummy -1.491 -17.497%** -22.545%** -20.021%**
(1.852) (3.467) (3.902) (3.503)
N 637 637 637 637
R2 0.599 0.291 0.216 0.264
F 122.703%** 34.165%** 25.195%** 30.043%**

2 Robust standard errors are in parentheses.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B9*
Productivity and entropy
Linear regressions for productivity
(number of correct summations per second spent on the task).

Studies 1 & 2 Periods 1 to 4 Period 5 Period 6
Constant 0.002 -0.054%** -0.003
(0.012) (0.012) (0.012)
Entropy -0.001 0.001 0.001
(standardized) (0.001) (0.001) (0.001)
Variance -0.005%* -0.005%* 0.001
(standardized) (0.002) (0.003) (0.022)
Loss Dummy -0.002 -0.002 -0.003
(0.002) (0.003) (0.002)
Summation Skills 0.006*** 0.004*** 0.005%**
(0.001) (0.001) (0.001)
Cognitive Reflection 0.001 -0.002 <0.001
(0.001) (0.002) (0.001)
Male Dummy -0.002 -0.018%*** -0.010%***
(0.002) (0.004) (0.002)
Study 1 Dummy -0.001 -0.021%*** -0.008
(0.003) (0.006) (0.003)
Time on the task 0.001*** 0.001*** 0.001***
(in seconds) (<0.0001) (<0.0001) (<0.0001)
N 581 554 516
R2? 0.670 0.352 0.387
F 115.540%** 53.010%** 23.630%**

2 Robust standard errors are in parentheses.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B10?
Stress and reward uncertainty
Linear regressions for stress (standardized tension scale).

Studies 1 & 2 [1] [2] [3]
Constant 0.199 -0.491 0.002
(0.172) (0.447) (0.518)
Stochastic 0.363%** 0.336%** 0.348%**
Treatment Dummy (0.109) 0.112) (0.111)
Summation Skills -0.022* -0.025%* -0.023**
(0.011) (0.011) (0.011)
Cognitive Reflection 0.002 0.012 0.013
(0.036) (0.037) (0.037)
Male Dummy -0.212%* -0.175 -0.194
(0.118) (0.119) (0.121)
Study 1 Dummy 0.057 0.112 0.097
(0.118) (0.120) (0.121)
Working Time 0.735%* 0.662
on the task (0.438) (0.450)
SAM Valence -0.070%**
(before the work task) (0.030)
N 292 292 292
R? 0.068 0.077 0.092
1 4.425%** 4.632%** 5.533%**

® Robust standard errors are in parentheses.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B11*
Linear regressions for intrinsic motivation
(Intrinsic Motivation Inventory — Self-determination theory).

Studies 1 & 2 [1] [2] [3]
Constant -1.428%** -1.457%** -1.449%#*
(0.316) (0.315) (0.316)
Stress -0.030 -0.027
(standardized tension scale) (0.040) (0.040)
Entropy -0.032 -0.029
(standardized) (0.039) (0.039)
Variance -0.129%* -0.127* -0.127*
(standardized) (0.074) (0.074) (0.074)
Loss Dummy -0.033 -0.044 -0.043
(0.156) (0.156) (0.157)
Summation Skills 0.022%** 0.023%** 0.022%**
(0.008) (0.008) (0.008)
Cognitive Reflection 0.038 0.038 0.038
(0.026) (0.026) (0.026)
Male Dummy -0.078 -0.071 -0.078
(0.081) (0.081) (0.081)
Study 1 Dummy -0.609%*** -0.604*** -0.604***
(0.106) (0.106) (0.106)
Working Time 1.022%#* 1.019%#* 1.040%**
on the task (0.249) (0.248) (0.249)
SAM Valence 0.033 0.036 0.033
(before the work task) (0.024) (0.023) (0.024)
N 637 637 637
R? 0.105 0.105 0.106
. 8.288*** 8.202%** 7.479%**

 Robust standard errors are in parentheses.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE B12*
Intrinsic motivation and reward uncertainty.
Linear regressions for intrinsic motivation
(Intrinsic Motivation Inventory — Self-determination theory).

Studies 1 & 2 [1] [2] [3]
Constant -1.4971%** -1.498%** -1.497%#*
(0.569) (0.570) (0.567)
Stress -0.116* -0.110*
(standardized tension scale) (0.062) (0.064)
Stochastic -0.098 -0.059
Treatment Dummy (0.116) (0.119)
Summation Skills 0.017 0.020 0.017
(0.013) (0.013) (0.013)
Cognitive Reflection 0.045 0.044 0.045
(0.036) (0.036) (0.036)
Male Dummy -0.005 0.019 -0.002
(0.125) (0.125) (0.125)
Study 1 Dummy -0.61 1*** -0.623%** -0.612%**
(0.125) (0.126) (0.126)
Working Time 1.314%** 1.270%** 1.343%#
on the task (0.474) (0.473) (0.474)
SAM Valence 0.020 0.029 0.022
(before the work task) (0.036) (0.036) (0.036)
N 292 292 292
R? 0.152 0.143 0.153
1 7.934 %% 7.178%** 6.887***

® Robust standard errors are in parentheses.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.



TABLE B13*
Satisfaction, stress and reward uncertainty.

Linear regressions for satisfaction measured by SAM emotional valence dimension at the end of

the work task (described in Appendix A).

Studies 1 & 2 [1] [2] [3]
Constant 0.706 0.709 0.710
(1.052) (1.062) (1.057)
Stress -0.259%* -0.263%*
(standardized tension scale) (0.116) 0.119)
Stochastic -0.053 0.039
Treatment Dummy (0.217) (0.220)
Summation Skills 0.004 0.010 0.004
(0.022) (0.022) (0.022)
Cognitive Reflection 0.000 -0.003 0.000
(0.074) (0.074) (0.074)
Male Dummy -0.037 0.012 -0.039
(0.223) (0.224) (0.223)
Study 1 Dummy -0.777%%* -0.802%** -0.776%**
(0.251) (0.251) (0.251)
Working Time 1.456 1.263 1.437
on the task (0.926) (0.954) (0.947)
SAM Valence 0.565%** 0.583%** 0.564%**
(before the work task) (0.065) (0.064) (0.065)
N 292 292 292
R? 0.293 0.280 0.293
ya 20.621%** 19.808*** 18.260%***

 Robust standard errors are in parentheses.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.



TABLE B14*
Linear regressions for satisfaction measured by SAM emotional valence dimension
at the end of the work task.

Studies 1 & 2

[1]

[2]

[3]

Constant 2.473%* 2.441%* 2.507%*
(0.974) (0.970) (0.982)
Stress -0.199%** -0.205%**
(standardized tension scale) (0.077) 0.077)
Entropy 0.027 0.048
(standardized) (0.074) (0.073)
Variance -0.240* -0.239* -0.243*
(standardized) (0.144) (0.145) (0.144)
Loss Dummy -0.015 -0.001 0.002
(0.317) (0.319) (0.319)
Summation Skills 0.019 0.024 0.019
(0.016) (0.016) (0.016)
Cognitive Reflection 0.001 -0.003 0.001
(0.054) (0.055) (0.054)
Male Dummy -0.161 -0.108 -0.161
(0.161) (0.161) (0.161)
Study 1 Dummy -0.986%** -0.996%*** -0.995%*x*
(0.222) (0.222) (0.221)
Working Time -0.407 -0.599 -0.437
on the task (0.799) (0.793) (0.807)
SAM Valence 0.526%** 0.546%** 0.525%**
(before the work task) (0.052) (0.052) (0.052)
N 637 637 637
R? 0.247 0.239 0.248
ya 21.339%%#* 20.967*** 19.526%**

 Robust standard errors are in parentheses.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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Study 1 Study 2
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Minutes in the experiment

FIGURE B1. Average number of correct summations per minute across the two treatments for Study 1
(left panel) and Study 2 (right panel).

Study 1 Study 2

Tension score

Deterministic Stochastic * " Deterministic Stochastic

FIGURE B2. Tension and reward uncertainty. Average tension scores (from 1 to 7, see Appendix
A) for the deterministic {12} and stochastic U{1,23} treatments.
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Appendix C
Gender analysis.

- | =— Deterministic {12} - male

40

e Stochastic U{1,23} - male
==mmmsssx Deterministic {12} - female

===smsm=s Stochastic U{1,23} - female

Percentage of quitters
20

I I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60
Minutes in the experiment

FIGURE CI1. Quitting behavior and gender. Percentage of males and females who had quit the
task after a given number of minutes had elapsed in the experiment across the two main treatments
in both studies.
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TABLE C1°

Quitting behavior, reward uncertainty and gender

Probit regressions for the probability of quitting at different time intervals for males (left panel)

and females (right panel), for the two main treatments.

Males Females
Both studies t<45’ t<50° t<55° t<45’ t<50° t<55’
Constant -0.348 -0.339 -0.916** -0.513 -1.084* -1.084*
(0.471) (0.457) (0.458) (0.743) (0.582) (0.476)
Stochastic -1.072%%** -1.182%** -0.647%* 0.201 -0.100 -0.129
Treatment Dummy (0.379) (0.371) (0.287) (0.327) (0.295) (0.261)
[-0.204%**]  [-0.236%**] [-0.172%%] [0.020] [-0.013] [-0.023]
Summation Skills -0.084%** -0.075%* -0.023 -0.154%%** -0.082%* -0.049
(0.037) (0.035) (0.028) (0.053) (0.040) (0.035)
[-0.016**] [-0.015%%*] [-0.006] [-0.015%%*] [-0.011%*%*] [-0.009]
Cognitive Reflec- 0.201* 0.200%* (0.233%%** 0.183 0.134 0.003
tion
(0.103) (0.099) (0.077) (0.113) (0.098) (0.100)
[0.038*%*] [0.040%*] [0.062%**] [0.018] [0.018] [0.001]
Study 1 Dummy 1.149%%** 1.105%%** 0.782%%** 0.699%** 1.000%** 1.159%%**
(0.323) (0.315) (0.282) (0.350) (0.308) (0.282)
[0.219%***] [0.221%**%*] [0.208%***] [0.069%] [0.135%%%*] [0.204%*%*]
N 119 119 119 173 173 173
R? 0.294 0.297 0.209 0.164 0.149 0.159
Prob > 2 24.020%** 26.104%** 26.078%** 15.951 %% 18.245%** 18.452%*

® Robust standard errors are in parentheses and marginal effects in square brackets.
*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE C2°

Quitting behavior, entropy and gender
Probit regressions for the probability of quitting at different time intervals for males (left panel)

and females (right panel), for all treatments.

Males Females
Both studies t<45 t<50° t<55° t<45’ t<50° t<55°
Constant -1.421%** -1.428%** -1.085%%** -1.394%%** -1.635%%** -1.490%**
(0.322) (0.306) (0.275) (0.454) (0.416) (0.342)
Entropy -0.338%** -0.365%** -0.198%** -0.014 -0.087 -0.083
(standardized) (0.120) (0.114) (0.092) (0.105) (0.102) (0.092)
[-0.059%**]  [-0.072%**] [-0.057%%*] [-0.001] [-0.009] [-0.012]
Variance -0.105 -0.035 0.223 -0.203 -0.187 -0.126
(standardized) (0.184) (0.179) (0.166) (0.296) (0.290) (0.208)
[-0.018] [-0.007] [0.064] [-0.018] [-0.020] [-0.018]
Loss Dummy 0.404 0.132 -0.178 0.144 0.089 0.283
(0.407) (0.410) (0.386) (0.529) (0.5006) (0.409)
[0.071] [0.026] [-0.051] [0.013] [0.009] [0.041]
Summation Skills -0.035 -0.027 -0.011 -0.038 -0.020 -0.016
(0.022) (0.020) (0.016) (0.032) (0.027) (0.023)
[-0.006*] [-0.005] [-0.003] [-0.003] [-0.002] [-0.002]
Cognitive Reflec- 0.175%** 0.209%** 0.190%** -0.022 0.001 -0.030
tion
(0.066) (0.064) (0.054) (0.090) (0.081) (0.077)
[0.031***] [0.041%**%*] [0.054%*%*] [-0.002] [0.000] [-0.004]
Study 1 Dummy 1.0317%%* 0.883*** 0.787%** 0.528%** 0.863%** 1.053%%**
(0.267) (0.262) (0.240) (0.269) (0.252) (0.233)
[0.180%***] [0.174%*%*] [0.226%**] [0.048%] [0.092%**] [0.152%%%*]
N 284 284 284 353 353 353
R? 0.178 0.171 0.109 0.060 0.111 0.119
Prob > 2 35.097%** 37.517%** 34, 732%** 7.495 18.423%** 25.352%%*

* Robust standard errors are in parentheses and marginal effects in square brackets.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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Appendix D
Work addicts analysis.

Analysis of Work Addiction according to the Bergen Work Addiction Scale (BWAS). Here we
study work addiction as a moderator of the relationship between the effect of stochastic rewards
on work behavior. We define work addicts (non-addicts) those who score above (below) the me-
dian on the Bergen Work Addiction Scale (Andreassen et al., 2012). It is important to note that
work addiction scores do not differ across genders (WRS, p-value = 0.333) thus stressing that any
direct effect of addiction on work behavior cannot be attributed to gender differences.

Study 2
High BWAS score Low BWAS score
o | o
@ «® Deterministic {12}
Stochastic U{1,23}
o | Q
N N
o | o |
o ol
0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60

Minutes in the experiment

FIGURE D1. Quitting behavior, reward uncertainty, and work addiction.
Percentage of work addicts (above median scores) -left panel- and non-work addicts -right panel-
who had quit the task after a given number of minutes had elapsed in the experiment in Study 2.
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TABLE D1°
Quitting behavior, reward uncertainty and work addiction
Probit regressions for the probability of quitting at different time intervals.

High BWAS score® Low BWAS score
t<45’ t<50’ t<55’ t<45’ t<50’ t<55’
Constant -1.357 -1.723* -2.501** -1.060 -1.060 -1.751%**
(1.037) (1.005) (1.010) (0.679) (0.679) (0.577)
Stochastic -0.930%* 0.068 0.068 0.142
Treatment Dummy 0.417) (0.481) (0.481) (0.366)
[-0.127%%] [0.004] [0.004] [0.021]
Summation Skills -0.057 -0.021 0.021 -0.177*%* -0.177%* -0.036
(0.063) (0.054) (0.046) (0.079) (0.079) (0.041)
[-0.009] [-0.004] [0.003] [-0.012%*] [-0.012%] [-0.005]
Cognitive Reflection 0.153 0.123 0.227* 0.639%** 0.639%** 0.284%*
(0.178) (0.170) (0.133) (0.203) (0.203) (0.157)
[0.025] [0.022] [0.031%] [0.042%%] [0.042%%*] [0.041%]
Male Dummy 1.055%* 1.165%* 1.126%** -0.223 -0.223 0.404
(0.518) (0.507) (0.492) (0.552) (0.552) (0.376)
[0.171%]  [0.213**] [0.154%%*] [-0.015] [-0.015] [0.058]
N 81 81 81 100 100 100
R? 0.144 0.153 0.224 0.266 0.266 0.122
1 5.806 5.950 8.413** 15.025%**  15.025%** 5.312

® Robust standard errors are in parentheses and marginal effects in square brackets.
® The stochastic treatment variable cannot be estimated for participants with a high BWAS score for t<45 or t<50’ as
none of them quitted in the stochastic treatment before t<55°, versus 13.3% (6 out of 45) in the baseline treatment.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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TABLE D2°

Quitting behavior, entropy and work addiction

Probit regressions for the probability of quitting at different time intervals, by participants’
scores in the BWAS test of addiction.

High BWAS score

Low BWAS score

<45 £<50° {<55° {<45’ £<50° £<55°
Constant J3.024%F% 3 107FFF D .609%KE | G68FFE | J20RFE _| 4T4%*x
(0.735)  (0.669)  (0.477)  (0.339)  (0.332)  (0.288)
Entropy 20.753*%  -0.644**  -0.193  -0.135 -0.161 -0.083
(standardized) (0.412)  (0.296)  (0.154) = (0.126)  (0.121)  (0.106)
[-0.058%] [-0.056**] [-0.026] [-0.017]  [-0.023]  [-0.018]
Variance 0.284 0.257 0.203 -0.253 -0.146 0.075
(standardized) (0.178)  (0.183)  (0.208)  (0.209)  (0.201)  (0.166)
[0.022] [0.022] [0.028] = [-0.032] [-0.021]  [0.017]
Loss Dummy 0349 -0482  -0.042 0.473 0.234 0.012
(0.268)  (0.293)  (0.477)  (0.426)  (0.437)  (0.378)
[-0.027] [-0.042] [-0.006] = [0.060]  [0.033]  [0.003]
Summation Skills 0.009 0.025 0.016 -0.027 -0.028 0.018
(0.033)  (0.030)  (0.025)  (0.023)  (0.022)  (0.018)
[0.001] [0.002] [0.002] [-0.003] [-0.004]  [-0.004]
Cognitive Reflection  0.092 0.091 0.131 0.139%  0.209%**  (.156%*
(0.103)  (0.095)  (0.086) = (0.077)  (0.079)  (0.069)
[0.007]  [0.008] [0.018] = [0.018%] [0.030%**] [0.034%*]
Male Dummy 1.099%*% 1 137%%% 1 173%%x 0277 0382  0.686%**
(0.390)  (0.383)  (0.300)  (0.253)  (0.246)  (0.211)
[0.084%%] [0.099%**] [0.160%**] [0.035]  [0.054]  [0.151%%*]
N 250 250 250 276 276 276
R 0.203 0.209 0.186 0.051 0.082 0.096
P 13.090%  16.715%* 23.239%** 6265 10.297  18.511%**

® Robust standard errors are in parentheses and marginal effects in square brackets.

*** Significant at the 0.01 level; ** at the 0.05 level; * at the 0.1 level.
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Appendix E
E1. Related models

Our conceptual framework relates to the theory of rational addiction in economics (see e.g.,
Stigler & Becker, 1977; Iannaccone, 1986; Becker & Murphy, 1988). These works put forth the
idea of ‘adjacent complementarity’ according to which past consumption of an addictive good
raises its future consumption. Our model differs from the theory of rational addiction because we
assume people are boundedly rational suffering attention costs a la Sims (2003). Our model pro-
vides novel predictions regarding the effect of uncertainty on work addiction and workers’ stress
levels.

Our model also relates to the work of Brocas & Carillo (2008), who propose a dual-system
model of incentive salience by using a principal-agent framework to represent the conflict between
the ‘liking’ system (System 1) and the ‘wanting’ system (System 2). The agent (the ‘liking’ sys-
tem) experiences the feeling of pleasure and pain whereas the principal can decide on which strat-
egy to deploy to complete the task. As in a standard principal-agent model, the two key elements
of their model are the conflict in goals between systems (the agent looks for immediate rewards
whereas the principal is forward-looking) and the asymmetry of information between the two sys-
tems. We depart from Brocas & Carrillo (2008) by considering that there is no conflict of interest
between System 1 and System 2. Instead, we can interpret our model as one in which attentional
costs might prevent a person from switching from System 1 (that implements the habitual action)
to System 2 (that implements the alternative action). These attentional switching costs could be
understood as anatomical constraints of neuronal information transmission (see e.g., Dimitrov,
Lazar & Victor, 2011). These anatomical constraints prevent System 2 to continually adjust the
level of effort to be implemented (see Abeless & Lass, 1975; Lass & Abeless, 1975 for early con-
tributions). This literature stresses that the costs of transmitting information from one part of the
brain to another via neuronal connections can be modeled with the tools of information theory.
The communication costs in the brain are tightly linked to the uncertainty of the environment
which is modeled using the concept of entropy (e.g., Dimitrov et al., 2011; Friston et al., 2013;
2015; 2017a,b). A vast literature in dual-system models have also stressed that updating one’s

action is costly (e.g., Evans, 2003; Kahneman, 2011; Stanovich, 2009).3° This is the case because

30 The dual-system approach has been successfully applied to economics to explain self-control issues and the crowd-
ing-out of intrinsic motivation (e.g., Bénabou and Tirole, 2002; Benhabib & Bisin, 2005; Bernheim & Rangel, 2004;
Fudenberg & Levine, 2006; Thaler & Sheffrin, 1981).
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switching from a habitual response to a deliberative one requires engaging scarce attentional re-
sources (see e.g., Hasher et al., 2007; Toplak et al., 2011).

Finally, Dean et al., (2017) have shown that, in the presence of attentional constraints, status-
quo options (continue to work on the task in our setup) are more likely to be considered than other
alternatives (leave the task). This work can thus explain why quitting rates might be low in our
setup but it cannot account for the crucial role of uncertainty on work persistence. An implication
of our work to this literature is that the status-quo bias would tend to be more pronounced when

the entropy of the default option is high compared to alternative options.

E2. Related designs

In our setup, the probabilistic structure of rewards is known. This design differs from economic
studies assessing the effect of stochastic rewards (Hogarth & Villeval, 2014) and feedback
(Bereby-Meyer & Roth, 2006) on learning the frequency of rewards. Even if participants in our
setup had difficulties understanding stated probabilities (see Goldstein & Rothschild, 2014), they
would experience a large number of draws, thus downplaying the role of learning in explaining a
participant’s decision to quit the task after monetary rewards become negligible.?!

Hogarth & Villeval (2014) assessed the extent to which participants continued to exert effort in
a repetitive letter-searching task after monetary rewards had been removed. In their design, partic-
ipants did not know whether their work in a given (2-minute) period would be rewarded or not.
After an unknown number of periods, rewards were effectively removed. The main task for par-
ticipants was to learn, over repeated trials, whether work was going to be rewarded or not in a
given period and thus identify the occurrence of a regime shift after which work was no longer
paid. At the beginning of each period, participants could decide whether to continue working on
the task in which case they had to pay a fee to participate. Using simulations of a reinforcement
learning model, the authors predicted that participants would quit right after the no-reward regime
shift occurred in the case in which work was rewarded at a known and fixed value. In that case,
the absence of a reward immediately signaled that the no-reward regime shift was in place. In their
other two treatments (fixed and random intermittent incentive treatments), work was not rewarded
every period even before the no-reward regime applied, thus making one’s learning about the re-

gime shift slower and leading participants to quit the work task at a later time than in the baseline.

3! In the baseline, participants completed on average about 80 sums per period of 10 minutes.
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The authors confirmed their predictions with experimental data. In our setting, the issue of learning
about the distribution of rewards is absent because this distribution is given to the participants and
displayed on their screen at all times.

The idea that learning tends to be hampered by stochastic feedback is also captured in Bereby-
Meyer & Roth (2006), who showed that the presence of stochastic payoffs prevents participants

from learning about the decay of cooperation in an otherwise standard prisoners’ dilemma.
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