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FOREWORD

A few short words on progress. I believe that the truth of scientific progress and un-
derstanding lies in simplification in its various forms – in the sense of distillation and
reduction to leave only that which is essential. It might mean that a new generation
has an intuition about ideas too abstract for the previous generation, a prime exam-
ple of which is how quantum mechanics is now taught to Physics students already
in their second year. Another facet might be a new mathematical representation in
which an idea suddenly becomes clearer. On the other hand one might have to take
a step back and revisit old ideas and representations and reformulate them.

This is the progress I set out to achieve in my work: simplifying and improving the
mathematical and computational tools for the methods in this field of science for the
next generation of students, so that they may find them more obvious, clearer and
easier to use, in one word simpler.

Simplification can also mean easier access to knowledge, which is why significant
stress was placed on the open availability of the written software and it was designed
to be easy to use by anyone, anywhere and on any device. My wish for this project
was not simply to have people use the software, but to enhance collaboration by
helping the exchange of results and reducing the barrier to view and even reproduce
the work of others.

Many of the goals I set for my project I have achieved and I firmly believe that the
directions taken are the right ones and that the tools which have been created will
make it easier for new scientists in magnetism to gain an intuitive understanding of
the systems they study and the methods they apply. Furthermore, I maintain that the
mathematical framework presented here has the potential to describe more methods
and models from the same point of view.
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AB STRACT

An active field of research in magnetism today involves studies of solitons – localised
magnetic textures possessing particle-like properties. They are considered promis-
ing for various applications but are also intriguing from a fundamental point of view.
Most of the effects related to magnetic solitons, including in particular skyrmions, can
be described in classical spin-lattice models. In this context, effective tools for mate-
rials and device design are needed in order to calculate properties, such as thermal
stability, lifetime, critical velocity, characteristic dynamical modes and much more.
This thesis is devoted to the development of new methodology and the implemen-
tation and verification of a new software framework for the simulation of atomistic
spin systems.

Going beyond the widely known approaches of Monte Carlo and Landau-Lifshitz-
Gilbert (LLG) dynamics, this thesis describes the recently developed geodesic nudged
elastic band (GNEB) method and harmonic transition state theory in a consistent
mathematical framework. The minimum mode following (MMF) method, which can
be used to seek out first order saddle points in the energy landscape, is formulated
for magnetic systems. Such saddle point searches are an essential part in identifying
possible transition processes between magnetic configurations and therefore in esti-
mating the rates of transitions between magnetic states, which determine the states’
lifetimes. Using the MMF method, a mitosis-like skyrmion duplication – or inversely a
merger – transition was found and could be reproduced in LLG dynamics simulations
using an external magnetic field pulse.

The entire set of methods discussed in this thesis has been implemented into a
novel, open source software framework. Using scripting and graphical user interfaces,
including powerful real-time visualisation features, the methods can now be used
easily in conjunction with and complementary to one another. The implementation,
including high performance parallelisation schemes, is described and a key set of its
features are demonstrated.

The software framework is applied to a variety of challenging problems in two-
and three-dimensional systems. In two dimensions, complex higher-order skyrmionic
textures are studied using the GNEB method and mitosis-like transitions identified.
Three-dimensional systems are shown to host a large variety of complex spin textures,
including a novel three-dimensionally localised state – the magnetic globule. This
state is composed of two coupled quasi-monopoles, also known as Bloch points, and
may form stable spin textures in a wide range of parameters and in various situations.

The software framework presented here brings simulations of atomic scale mag-
netic systems to a higher level and represents a significant step in the modernisation
of computational tools in magnetism. It brings benefits in productivity and ease of
use and improves accessibility of recent and novel methodology.
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KURZZUSAMMENFASSUNG

Ein zur Zeit aktives Forschungsfeld im Bereich des Magnetismus bezieht sich auf so-
genannte Solitonen – lokalisierte magnetische Texturen mit teilchenartigen Eigen-
schaften. Sie werden für diverse Anwendungen als vielversprechend angesehen, sind
aber auch von einem fundamentalen Blickwinkel aus interessant. Die meisten Effekte
im Zusammenhang mit magnetischen Solitonen, insbesondere Skyrmionen, können
im Rahmen klassischer Spin-Gitter Modelle beschrieben werden. In diesem Kontext
werden effektive Werkzeuge für das Entwerfen von Materialien und Anordnungen
benötigt, um Eigenschaften wie thermische Stabilität, Lebenszeit, kritische Geschwindi-
geit, charakteristische dynamische Eigenmoden und viel mehr zu berechnen. Diese
Arbeit widmet sich der Entwicklung neuer Methodik und dem Implementieren und
Verifizieren einer neuen Software für die Simulation atomistischer Spin-Systeme.

Über die weithin bekannten Ansätze der Monte Carlo-Methode und Landau-Lifshitz-
Gilbert (LLG) Dynamik hinaus werden die kürzlich entwickelte "geodesic nudged
elastic band" (GNEB) Methode und die "harmonic transition state theory" in einem
konsistenten mathematischen Rahmen beschrieben. Die "minimum mode following"
(MMF) Methode, welche verwendet werden kann, um Sattelpunkte in der Energieland-
schaft ausfindig zu machen, wird für magnetische Systeme formuliert. Solche Sat-
telpunktsuchen spielen eine wichtige Rolle in der Identifikation möglicher Übergangs-
prozesse zwischen magnetischen Konfigurationen und somit in der Bestimmung der
Übergangsraten, welche die Lebenszeiten magnetischer Zustände bestimmen. Mit der
MMF-Methode wurde eine mitoseartige Skyrmionverdoppelung – invers betrachtet
eine Kollision – gefunden und in LLG Dynamik-Simulationen mit Hilfe eines mag-
netischen Feld-Pulses reproduziert.

Die gesamte Menge der Methoden, welche in dieser Arbeit diskutiert werden, wurde
in einer neuen, frei verfügbaren Software implementiert. Mithilfe von Skripten und
grafischen User-Interfaces, einschließlich Echtzeitvisualisierung, können die Metho-
den nun leicht zusammen und komplementär zu einander verwendet werden. Die Im-
plementierung wird einschließlich hochperformanter Parallelisierungen beschrieben
und die wichtigsten Merkmale werden demonstriert.

Die Software wird auf eine Vielzahl herausfordernder Probleme in zwei- und dreidi-
mensionalen Systemen angewandt. In zwei Dimensionen werden komplexe skyrmion-
ische Texturen höherer Ordnung unter Verwendung der GNEB-Methode studiert und
weitere mitoseartige Übergänge identifiziert. Es wird gezeigt, dass dreidimensionale
Systeme eine große Vielzahl komplexer Spin-Texturen ermöglichen, einschließlich
eines neu entdecken dreidimensional lokalisierten Zustandes – dem "magnetic glob-
ule". Dieser Zustand besteht aus zwei aneinander gekoppelten Quasimonopolen, auch
Bloch-Punkte genannt, und kann in einem großen Parameterbereich und in diversen
Situationen stabile Spin-Texturen formen.

Die hier vorgestellte Software bringt Simulationen von magnetischen Systemen
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auf der atomistischen Skala auf ein höheres Niveau und stellt einen nennenswerten
Schritt in der Modernisierung der numerischen Werkzeuge im Magnetismus dar. Sie
bringt Vorteile in Produktivität und einfacher Benutzung und verbessert die Zugänglich-
keit kürzlich entwickelter, sowie neuer Methodik.
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ÁGRIP

Staðbundin segulástönd, svokallaðir einfarar, hafa agnaeiginleika og eru mikið rann-
sökuð í dag. Vonir standa til að hægt verði að nota þau á ýmsan hátt í framtíðar
tækni en grundvallar eiginleikar þeirra eru einnig mjög áhugaverðir. Að mestu leiti
er hægt að lýsa slíkum ástöndum með klassískum spuna-grindar líkönum. Mikilvægt
er að hafa skilvirkar aðferðir til að reikna út hina ýmsu eiginleika svo sem varmafræði-
legan stöðugleika, líftíma, krítískan hraða, eiginhætti o.sv.frv. Þessi ritgerð fjallar um
þróun aðferðafræði, innsetningu og beitingu nýs hugbúnaðar fyrir tölvureikninga á
spunakerfum á atómskala.

Til að komast umfram það sem hægt er að gera með algengum aðferðum svo
sem Monte Carlo og Landau-Lifshitz-Gilbert (LLG) tímaferlum, byggir ritgerðin á
heilsteyptri framsetningu á ’geodesic nudged elastic band’ (GNEB) aðferðinni og
kjörsveifilsnálgun á virkjunarástandskenningunni (HTST). ’Minimum mode follow-
ing’ (MMF) aðferðin til að finna fyrsta stigs söðulpunkta er útvíkkuð fyrir segulkerfi.
Slíkar söðulpunktaleitir eru mikilvægar til að finna mögulega hvarfganga fyrir breyt-
ingar úr einu segulástandi í annað sem er nauðsynlegur undanfari þess að meta hvarf-
hraða og þar með líftíma segulástanda. Með MMF aðferðinni var fundinn hvarfgangur
þar sem skyrmeind skiptist upp í tvær skyrmeindir, eða öfugt – að tvær skyrmeindir
renna saman í eina – og sýnt fram á að hægt væri að kalla fram slíkan hvarfgang í
LLG reikningum á tímaframvindu þegar beitt er segulsviðspúlsi.

Hinar ýmsu aðferðir sem fjallað er um í ritgerðinni hafa verið innleiddar í nýjum
hugbúnaðarpakka. Með skriftum og sjónrænu viðmóti sem og öflugri rauntíma mynd-
gerfingu er auðvelt að bbeita hinum ýmsu aðferðum og nýta kosti hverrar um sig.
Innsetningu aðferðanna er lýst sem og lykil eiginleikum hugbúnaðarins.

Hugbúnaðinum er beitt á ýmis krefjandi verkefni sem tengjast tví- og þrívíðum kerf-
um. Í tvívíðum kerfum eru skyrmeindir rannsakaðar með GNEB aðferðinni og hún
notuð til að greina skiptingu skyrmeindar. Fyrir þrívíð kerfi er sýnt fram á að ýmis
flókin segulkerfi geta myndast, þar með nýtt þrívítt segulkerfi sem nefnt hhefur verið
’globule’. Þetta ástand felur í sér tvö tengd einskaut, þ.e. Bloch punkta, og það getur
verið stöðugt fyrir mörg stikugildi og við ýmsar aðstæður. Hubúnaðurinn gerir atóm-
skala reikninga á segulkerfum auðvelda og felur í sér stórt skref til að nútímavæða þau
tól sem hægt er að nota í tölvureikningum á segulkerfum. Hann sameinar kosti þess
að vera auðveldur í notkun og eykur aðgengi að nýrri- og endurbættri aðferðafræði.
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INTRODUCTION

I.1 GENERAL

Magnetism is a large and vibrant field of Physics with a long history and was in
fact discovered in ancient times, when humans observed the unusual behaviour of
lodestones. Since the invention of the compass, countless further applications have
been invented and magnetism has become ubiquitous in our daily lives. One of the
most evident examples of its application which is broadly used today, is the hard disk
drive (HDD), which has played a major role in the development of modern computer
technology. The key concept of the technology, the giant magnetoresistance (GMR)
effect [1–3], led to a Nobel prize for P. Grünberg and A. Fert in 2007. The HDD has
driven miniaturisation of data storage and due to the durability of the read/write
processes and the long lifetime of the information, it has become a key component
in datacentres. Mechanical components, however, limit the speed of the reading and
writing processes and also the thermal efficiency. In contrast to flash storage – used
in solid state drives (SSDs), portable data storage such as USB flash drives or mobile
devices – HDDs store data on magnetic material in the form of magnetic domains
pointing in one of two directions. SSDs use integrated electric circuits for persistent
data storage and thereby avoid mechanically moving parts and increase reading and
writing speed, but suffer from shorter lifetimes.

A magnetic racetrack memory design was developed aiming to alleviate these limi-
tations [4, 5]. By applying electric currents, as illustrated in Figure I.1, domain walls
can be moved along a magnetic strip at high speed. Analogous to the HDD, the binary
information is encoded in the form of domains, but now stationary read/write heads
can be used and no mechanical parts are needed as the domains themselves are mov-
able. This development has become a powerful impetus in the field of non-collinear
magnetism.

The domain wall racetrack design, however, can only be competitive when man-
ufacturing costs of racetracks are sufficiently low. At the same time, the material
must provide a sufficiently low depinning current for the movement of the domain
walls and their speed of movement at such currents must be sufficiently high. Finally,
the track needs to be miniaturised enough for application in modern devices. Espe-
cially for the usage in mobile devices like mobile phones, tablets and laptops, energy
efficiency and miniaturisation are fundamental. Note that cost factors also play an
important role in device design. In spite of rapid developments, the cost of storing a

1
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FIGURE I .1 – Domain wall racetrack memory concept

The racetrack is a ferromagnetic nanowire, where the data is encoded as a pat-
tern of magnetic domains. Spin-polarized currents move the entire pattern of
domain walls (DWs) past stationary read and write elements. (A) A vertical-
configuration racetrack could increase storage density and the magnetic pat-
terns before and after the movement of the DWs past the read and write ele-
ments. (B) A horizontal, flat configuration. (C) Reading data from the stored
pattern is done by measuring the magnetoresistance of a magnetic tunnel junc-
tion element connected to the racetrack. (D) Writing data can be accomplished
by the fringing fields of a DW moved in a second nanowire placed at a right
angle to the storage nanowire. (E) Illustration of an array of racetracks, built
on a chip to enable high-density storage. From [4]. Reprinted with permission
from AAAS.
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I.1 G E N E R A L

certain amount of data on an HDD remains approximately 100 times cheaper than
in a (random access) SSD. This underlines the potential benefits of a data storage
device that combines the low cost of an HDD with the high performance of an SSD.

Subsequently, interesting theoretical predictions from condensed matter physics
sparked interest in topology and the emergence of vortex-like structures. One of the
more recent but also most prominent examples is the 2016 Nobel prize which was
awarded to D. J. Thouless, F. D. M. Haldane and J. M. Kosterlitz for their work on
topological phases of matter and phase transitions [6]. Said topological phase tran-
sitions are driven by vortices and anti-vortices, representing topological defects, as
shown in Figure I.2.

Red, 
n=(1,0,0)

Green, 
n=(-0.5,-√3/2,0)

Blue, 
n=(-0.5, -√3/2,0)

nz=0

ny

120o

120o

120o

nx

Vortex Vortex-Antivortex Pair Colour Code

FIGURE I .2 – Topological vortices in 2D and colour code visualisation

A vortex and vortex-antivortex pair in the X Y -Heisenberg model and the cor-
responding hue-lightness (HL) colour code, used throughout this thesis, are
shown. The in-plane component is encoded by the hue, while the z-component
is encoded by the lightness of the colour, white being nz = 1 and black being
nz = −1. The vortex images, captured in the graphical user interface (GUI) of
Spirit, are analogous to the informational paper of the 2016 Nobel prize [6].
Colour code visualisation provided by Nikolai Kiselev.

In magnetism, analogies have been drawn to the vortex-like magnetic skyrmions,
such as shown in Figure I.3, which also carry a topological charge. These highly non-
collinear structures were predicted to exist in magnetic materials [7–14] and are gen-
erally stabilised by antisymmetric exchange interaction (usually called Dzyaloshinskyi-
Moriya interaction) [15, 16] or frustrated exchange interaction. Their existence was
later verified experimentally [17–20].

Due to their nontrivial topology, skyrmions possess interesting transport proper-
ties and can, for example, be propagated by electric currents [21–24] – much like
domain walls – and are therefore considered interesting and promising for various
applications, as well as for fundamental research. In terms of application, they have
attracted significant attention due to their stability and compact size down to a few
nano-meters [25] or even a few atomic distances [26]. This characteristic makes them
promising candidates for a novel concept of racetrack memory [27–29], in which do-
main walls as data carriers are replaced by skyrmions. Compared to domain walls,

3
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Néel Bloch Cylindrical

FIGURE I .3 – Skyrmions in two and three dimensions

A Néel skyrmion and a Bloch skyrmion in a monolayer, as well as the nz =
0 isosurface of a cylindrical skyrmion tube in a three-dimensional thin layer.
The modulations of the skyrmion tube along its axis appear due to a conical
background and the free surfaces of the sample (see also Chapter 4).

they are more movable and less easily pinned by defects [21, 30, 31]. These two
properties can facilitate the aim of reducing the currents required to drive their mo-
tion.

An essential part of spintronic device design is the theoretical prediction of mate-
rial and device properties, from analytical results [7, 32–34] or numerical calcula-
tions [35–38]. The ability to predict experimental outcome by calculation can signifi-
cantly decrease the effort required to design novel material compositions and systems.
It can even point in new directions of research, as it is often easier to explore a wide
parameter space by computation than by experiment.

For numerical calculations, it is common to employ multiscale approaches [39],
as physical parameters should ideally be derived from first principles calculations,
such as density functional theory (DFT), in order to understand the physics from a
fundamental point of view. As the numerical cost of DFT and other ab initio methods
is comparatively high and it is desirable to generate predictions over a broad range
of length and time scales, their output is transformed into model parameters on a
higher level.1

The skyrmion racetrack, as shown in Figure I.4, is an example where such a mul-
tiscale approach can be successfully applied [38, 40], for instance in order to guide
designs where skyrmions are most stable while being easily created when needed.
While this work is embedded in the currently highly active field of skyrmionics and
the search for next-generation data devices [41], nanomagnetism in general is a wide
field with a large variety of other potential applications [42].

Assuming a continuum field of the magnetisation distribution in a system, both
the aforementioned domain wall and skyrmion textures are topological solitons, i.e.
solutions to a system of partial differential equations homotopically distinct from the

1 Parameters can also be heuristically modelled after experimental data in order to achieve good
agreement.
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FIGURE I .4 – Skyrmions and antiskyrmions on a racetrack

Schematic of a skyrmion-antiskyrmion racetrack device, where an electric cur-
rent drives the skyrmions to move past a read/write head. As illustrated, data
bits "0" and "1" in this device would be encoded by skyrmions and antiskyrmions
respectively. Image provided by Markus Hoffmann.

trivial solution. As will be illustrated later in this work, chiral magnetic systems may
host a wide variety of such solitons, even in two dimensions. In three-dimensional
systems, the complexity is drastically increased and additional states, such as the
Hopfion, become relevant [43].

As developments, such as the skyrmion racetrack, represent a move towards three-
dimensional microelectronic devices and nanomagnetism, it is crucial to understand
the complex magnetic ordering which can take place inside a 3D crystal. While
skyrmions are already under considerable investigation also in 3D systems [13], Hop-
fions and other more complicated solitons are only now gaining attention [44–46].
Three-dimensional solitons may turn out to be crucial for the next level of data stor-
age designs, moving away from planar arrangements.

This thesis provides the necessary tools for studying a very broad variety out of the
effects mentioned above. By using the Spirit framework [47, 48], magnetic states and
potential applications can be examined not only quantitatively, but also intuitively
and qualitatively. Spirit is an open source,2 publicly available software framework
for spin simulations, designed and developed mainly by the author as part of this
work.

There are a number of well-known tools for micromagnetism, which have been
rigorously tested and provide powerful features, two prominent examples being mu-
Max [49] and OOMMF [50]. These software tools have certain GUI elements, which sim-
plify some processes and help with post processing. However, many parameters can-
not be changed during a calculation and the visualisation of complex vector fields is
limited. The same applies to atomistic codes, such as UppASD [51] and VAMPIRE [52],

2 spirit-code.github.io
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which for the most part have no GUIs at all and therefore require a significant level
of knowledge before they can be used. An important goal behind the idea of Spirit
was to create a tool which can be used "out of the box", i.e. which is intuitively clear in
its input and output, and also provides advanced in situ controls: manual interaction
with the vector field, control of all simulation parameters and complex initialisation
of states. Another issue was the lack of non-Fortran implementations of methods be-
yond Monte Carlo (MC) or Landau-Lifshitz-Gilbert (LLG) dynamics. While Fortran
is known as a powerful programming language, especially for numerical tasks, with
many years of tradition in science, it produces many difficulties when creating a GUI,
running the software on various different platforms and parallelising it on graphics
processing units (GPUs). C++ has no disadvantages in terms of performance, but
the aforementioned problems are easily solved by the abundance of freely available
libraries.

For these reasons, the Fortran JuSpinX [53, 54] code was re-written as Spirit – a
C++ software library together with a GUI and the additional goal to integrate CPU
and GPU parallelisation.

Besides creating a GUI, a major goal of this software development is the unification
of various computational methods commonly applied to atomistic (and in part also
to micromagnetic systems): Monte Carlo (MC) and Landau-Lifshitz-Gilbert (LLG) dy-
namics [55], geodesic nudged elastic band (GNEB) method [56], harmonic transition
state theory (HTST) [57], minimum mode following (MMF) [58] and the visualisa-
tion of eigenmodes, see also Table I.1.

Derivative Method

None Monte Carlo

Direct energy minimisation

Gradient Landau-Lifshitz-Gilbert dynamics

Minimum energy path calculations

Transition rate calculations

Hessian Saddle point searches and mode following

Calculation of eigenspectra

TABLE I .1 – Methods organised by required derivatives

The different methods discussed in this work are organised by the order of
derivative of the energy with respect to the spin orientation. The gradient is
the vector of first order derivatives, while the Hessian is the matrix of second
order derivatives.

All of these methods are quite distinct from one another and each one has various
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different applications [59]. However, they partly build up on each other. For exam-
ple, LLG can be used to find local minima of the energy landscape, GNEB and/or
MMF can be used to find first-order saddle points (corresponding to transition states
for thermally assisted transitions), and finally HTST can be applied to estimate the
lifetime of a metastable magnetic configuration.

This thesis deals largely with the development and extension of the Spirit software,
developed mainly by the author during the course of this work, into which all of
the above methods have been implemented. As this revolved around the variety of
different methods in the field and their integration into a single multifunctional tool
for atomistic spin systems, this thesis reviews some well-known methods and presents
their verification against the literature. Such verifications and other aspects from this
thesis have been published by the author in Ref. [47].3 The thesis is organised in the
following way:

In Section I.2, the classical atomistic spin model will be presented as a basis for
the entire work. Then, the well-known Monte Carlo and Landau-Lifshitz-Gilbert dy-
namics methods will be shortly reviewed in Section I.3 and Section I.4 respectively.
Their implementation in Spirit – performed mainly by the author, with some support
from collaborators – will be verified against known results. It will be illustrated that
these basic methods are insufficient for gaining a complete picture of a magnetic spin
system and Chapter 1 will deal with the more recently developed geodesic nudged
elastic band and harmonic transition state theory methods. These enable the statisti-
cal estimation of magnetic state lifetimes from fundamental properties of the energy
landscape. The existing mathematical derivations will be reproduced in the extrinsic
coordinate view chosen by the author and the implementation will be verified. Both
methods will subsequently be applied to produce novel results, where the author was
a collaborator on Ref. [38]. The need for an additional method for rate theory in spin
systems will be laid out. in Chapter 2, the mathematical basis derived – with aid
from collaborators – and the author’s implementation into Spirit demonstrated by
the calculation of novel results. The method and its application have been published
in Ref. [58]. Spirit will be discussed from a software point of view in Chapter 3. This
software as a whole was developed mainly by the author, but it should be noted that
the visualisation library VFRendering used inside the GUI of Spirit, was created by Flo-
rian Rhiem [60] and that several contributions to specific features of Spirit were made
by students under the supervision of the author.4 The novelty of its various features
and the potential productivity improvements will be demonstrated and the software
design explained. This has been published by the author in Ref. [47].5 In Chapter 4,
Spirit will be applied to complex three-dimensional spin configurations. The features
of Spirit and a third-party simulation software will be used to uncover details about
Bloch points in the atomistic model and to discover a new, stable particle-like state

3 The paper is on arxiv and currently under review at Physical Review B
4 A detailed list of contributors and their contributions can be found in the repository [48]
5 The paper is on arxiv and currently under review at Physical Review B
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in chiral magnets. This has been published by the author in Ref. [61].6

I.2 MODEL

As mentioned in the previous Section I.1, ab initio DFT calculations can be used to
determine parameters, such as the exchange interaction constants, of the extended
atomistic Heisenberg model, which in turn can be averaged out into parameters of
the micromagnetic model, such as spin stiffness. This work concerns itself with cases
where the approximation of the classical atomistic Heisenberg Hamiltonian is valid
(see also Figure I.5). While the methods presented in the following chapters are
generally also applicable to the micromagnetic model, it has some limitations which
may inhibit especially the use of stochastic and rate theory methods (see Chapter 1)
due to the assumption of T = 0 K and the possible appearance of topological defects
respectively.
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FIGURE I .5 – Hierarchy of time and length scales

The different scales of magnetisation dynamics covered by ab initio, atomistic
and micromagnetic methods in terms of length, time, and frequency. The atom-
istic model bridges the gap between ab initio and micromagnetic simulations.
Figure reprinted with minor modifications from [62] (see also [63]) with per-
mission from IOP Publishing.

This section will explain the atomistic classical Heisenberg Hamiltonian, as well as
its continuum limit, and then also derive the first and second order derivatives of the
energy, i.e. the gradient vector and the Hessian matrix respectively. This will lay the

6 The paper is on arxiv and currently under review at Physical Review Letters
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foundation for the entire thesis, as these will be needed repeatedly, especially for the
higher-order methods (see Table I.1).

I .2.1 The extended Heisenberg Hamiltonian

The relation of the quantum Heisenberg model and the classical model, where spins
are represented by classical vectors n*i instead of operators, will not be discussed in
detail here, as this has been done extensively in the literature. The derivations can
be found in Refs. [64–68] and a historical overview and detailed description of this
model can be found in Refs. [69, 70]. Due to the fact that the parameters of the
atomistic model can be determined from electronic structure calculations, with re-
sults comparing well with experiment, this semi-classical approach has proven useful.
Besides systems which cannot be approximated to the atomistic view, the major draw-
back of using a classical Heisenberg model is the low-temperature behaviour, where
quantum effects can play a major role. Note that the modelling of high-temperature
behaviour is also nontrivial.

In Spirit, the classical Heisenberg Hamiltonian is implemented in a general ex-
tended form

H =−
∑

〈i j〉
Ji jn

*

i · n* j −
∑

〈i j〉
D
*

i j · (n*i × n* j),

−
∑

i

µiB
* · n*i −

∑

i

∑

j

K j(K̂ j · n*i)
2

+
1
2
µ0

4π

∑

i, j
i 6= j

µiµ j

(n*i · r̂i j)(n
*

j · r̂i j)− n*in
*

j

ri j
3

,

(I.1)

where 〈i j〉 denotes unique pairs of interacting spins i and j, Ji j are parameters of the
symmetric exchange (Heisenberg exchange interaction), D

*

i j are the parameters of
the antisymmetric exchange (Dzyaloshinskii-Moriya interaction vectors) [15, 16], B

*

is the external magnetic field, the K̂ j represent uniaxial anisotropy axes and the n*i

are the normalized classical spin vectors, m* i = µin
*

i. The neighbour relations for the
pairwise interactions are visualised in terms of shells in Figure I.6.

The last term of Equation (I.1) describes the contributions from the point dipole
approximation of the magnetic field of the spins, in micromagnetism often referred to
as stray field interaction or demagnetising field interaction. Due to their long-range
nature, the numerical cost of the double summation over all spins scales proportion-
ally to N 2, which quickly becomes prohibitively expensive. More efficient methods of
calculating dipolar interactions have been implemented in Spirit under the supervi-
sion of the author (see also Section 3.2).

The Hamiltonian (I.1), as it is implemented in Spirit, is not limited to any given
number of neighbour shells for the exchange and Dzyaloshinskii-Moriya interactions.
The list of interaction pairs can be specified arbitrarily, meaning that both long-range
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FIGURE I .6 – Visualisation of neighbour relations on a simple cubic lattice

Simple cubic lattice with lattice constant a. The colour of the spheres indicates
which neighbouring atoms of the atom i are symmetry-equivalent. Only the
first four shells are shown. Image provided by Nikolai Kiselev (see also [71]).

and non-isotropic interactions can be used. The geometry of a system can be freely
chosen by defining a basis cell (containing any number of atoms), the Bravais vectors
and the number of repetitions along them. Individual spins, as well as entire boundary
layers can be pinned and defects (e.g. vacancies) and atoms of different types can be
inserted explicitly or randomly.

In addition to Equation (I.1), a higher-order quadruplet interaction term [72],
given by

EQuad = −
∑

i jkl

Ki jkl

�

n*i · n* j

�

(n*k · n*l) , (I.2)

is implemented in Spirit. The 4-spin-2-site [73] (or biquadratic, see Figure I.7a)), the
4-spin-3-site [74] (see Figure I.7b)), and the 4-spin-4-site [75] (also called "4-spin",
see Figure I.7c)) interactions can all be represented as subsets of these quadruplets.
Though they are implemented for completeness of the Hamiltonian model, they are
not discussed in this work and second order derivatives were neither performed nor
implemented. Further interaction terms can easily be added to the Heisenberg Hamil-
tonian in Spirit, as well as other models for the energy, such as the non-collinear
Alexander-Anderson [76, 77] and micromagnetic models, as the Hamiltonian has a
well-defined interface of functions.

10
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a) b) c)

FIGURE I .7 – Quadruplet interactions

The quadruplet interactions (I.2) in Spirit are a general expression and can be
used to represent a) 4-spin-2-site (biquadratic) b) 4-spin-3-site and c) 4-spin-
4-site "4-spin" interactions. The ellipses visualise the scalar products between
spins in these three cases.

I .2.2 The micromagnetic Hamiltonian

The next level of approximation beyond the extended Heisenberg model described in
Section I.2.1 is given by the micromagnetic model [78–80], which allows the treat-
ment of systems of a significantly larger scale. As this work repeatedly refers to the
micromagnetic model and certain results are compared to it, this subsection will in-
troduce some basic ideas and equations. The approach is to assume a continuum
magnetisation vector field m* (r*), defined at any point r* in space. It is not uncommon
to perform analytical calculations, even for complex non-collinear structures such as
domain walls [78, 81] or skyrmions [7, 32–34]. Note that an implementation of a
micromagnetic Hamiltonian into Spirit was outside the scope of this work, but will
likely be made in the future.

The continuum representation of the vectorfield allows using differential calcu-
lus on these systems, for which a very developed mathematical basis exists, which in
many cases can provide analytical solutions. The possibility of finding exact solutions
by applying calculus is arguably the main advantage of the micromagnetic approach
over atomistic calculations. Amongst many other applications, It is useful for com-
paring to other results, obtained for example by numerical methods, or to generalise
findings to a larger parameter space which would be costly to explore computation-
ally.

Another advantage of treating magnetic systems in a continuum limit is the ana-
lytical description of the topology of the magnetic textures. In a 2D system, there
is a well-defined topological winding number often used to characterise magnetic
systems, called the topological charge [82]. For a unit vector field n*(x , y) in the x y-
plane, the charge can be written

Q =
1

4π

∫

�

n* · (∂x n*× ∂y n*)
�

d xd y . (I.3)

As skyrmions carry a topological charge, it can be used to calculate the number of
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skyrmions in a system.

The micromagnetic model assumes a continuous magnetisation distribution in
space and time and the equivalent of the Hamiltonian is the total energy functional [83,
84]

F[r*] =
∫

V

E(r*)dr* , (I.4)

with the energy density E with respect to the energy E0 of the collinear state. It can
be written as an expansion in terms of magnetisation orientation n*(r*) and spatial
derivatives ∂ n*(r*)/∂ r* to the most common orders, corresponding to terms in the
atomistic Hamiltonian (I.1), as

E(r*) = E0 −MSBext
α

nα + nαKαβnβ +Dαβγ
�

nα
∂ nβ
∂ rγ
− nβ

∂ nα
∂ rγ

�

+
∂ nα
∂ rβ

Aβγ

∂ nα
∂ rγ

, (I.5)

where n* = M
*

/Ms is the orientation of the magnetisation at the point r*, Ms is the
saturation magnetisation, B

*

is an external magnetic field, K is the anisotropy tensor,
D is a representation of the so-called spiralisation tensor (generally dependent on
the magnetisation direction n*(r*)) and A is the exchange stiffness tensor. Note that
the exchange and spiralisation tensors can be written in various different forms and
simplifications for common underlying lattice geometries exist [7, 85].

While in most cases, such as simple cubic or hexagonal distributions of points,
a simple finite differences scheme suffices for the calculation of the spatial gradi-
ents ∂ n*/∂ r*, for a more general implementation, a more complicated finite element
method would be required. However, even the implementation of finite difference
schemes is not necessarily trivial, as for example non-periodical boundary conditions
require additional attention [86].

For the most common cases of isotropic magnets, where the tensors K, A and D
reduce to scalar constants, the relation to the atomistic model is given by [7–11]

Ms = µs/a
3, K = K/a3, A= J/(2a), D = D/a2 , (I.6)

where a is the lattice constant and µs is the magnetic dipole moment of each spin.
These expressions can be used to obtain useful analytical solutions. For the isotropic

case,

BD =
D2

2MSA
=

D2

µSJ
, LD = 4π

A
D = 2πa

J
D

, K0 =
a3D2

4A =
D2

2J
, (I.7)

where BD is the critical field for the transition from the spin spiral to the collinear
configuration as the ground state, lD is the period of the incommensurate spin spiral
and K0 is the reference anisotropy. These can be used to increase the generality of
the results of atomistic calculations by rescaling e.g. the domain size or the external
magnetic field.

12
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I .2.3 Derivatives of the energy

Due to the fact that magnetic systems are usually characterized by the orientation
of the magnetic moments, while the length of the magnetic moments is assumed to
be fixed and can be obtained from self-consistency calculations [77], the system is
effectively constrained to a physical space Mphys, given by a Riemannian manifold
which is the direct product of spheres

Mphys =
N
⊗

i

S2 ⊂ R3N , (I.8)

where S2 is a two-dimensional spherical surface. The notation will be that spin con-
figurations M = {n*i} ∈Mphys are points on the manifold. This means that special
care has to be taken when calculating derivatives [87, 88]. An extrinsic view onto
this manifold [89] has proven highly convenient, avoiding the use of spherical coor-
dinates and the undefined points and corresponding divergencies therein. Extrinsic
here means that the physical manifold of possible spin configurations M is consid-
ered embedded into a surrounding space E = R3N . As the Hamiltonian is defined
in the entire embedding space, we can make use of derivatives calculated there, i.e.
without any notion of constraints. In fact, it can be seen that methods, which use only
first order derivatives, can simply use the unconstrained derivatives and – if needed –
use a simple projection onto the tangent space to Mphys. The constrained derivatives
will be used to some extent in Chapter 1 and derived in completeness in Chapter 2,
where the extrinsic view is covered in more detail.

While the default throughout this thesis is generally the embedding space repre-
sentation (i.e. in 3N coordinates), to enhance clarity, or when this notation is more
convenient, the space in which an object is represented is denoted by

|3N in the embedding space E ,

|2N in the tangent space of M ,
(I.9)

where objects can be transformed as

vectors v|3N = T−1v|2N ,

matrices A|3N = T−1A|2N T ,
(I.10)

where T is an orthonormal basis of the tangent space to the manifold M. This means
it is a matrix with the shape 3N ×2N and is unitary, i.e. it has the property T−1 = T †

(if it is a real matrix it is orthogonal, i.e. T−1 = T T ).

We will now derive the gradient and the Hessian matrix, meaning the first and
second derivatives of the Hamiltonian model (I.1) with respect to the spin orientation,
which are used throughout this thesis. Analogous derivations can be made for the

13
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continuum model (I.5). For a more compact and general derivation, which is less
accessible and further from the implementation in Spirit, see Appendix C. We will
make use of the Einstein notation, in which the most commonly used part of the
Hamiltonian (I.1) has the form

H = −
∑

i

Bαniα −
∑

i

1
Ki
(Kiαniα)

2 −
∑

〈i j〉
Ji jniαn jα −

∑

〈i j〉
Di jαεαβγniβn jγ , (I.11)

where K
*

i is the uniaxial anisotropy with Ki = |K* i| and we used the Levy-Civita symbol
εαβγ to express the cross product of n*i and n* j. We denote H the Hamiltonian defined
on Mphys and its smooth continuation to the embedding space E as H̄.

The energy gradient in the embedding space has, in this notation, the form

(∇H̄)iα =
∂

∂ niα
H̄ = −Bα − 2

1
Ki
(K2

iαniα)− Ji jn jα − εαβγn jβDi jγ , (I.12)

where we derived the cross product via

∂

∂ niα

�

Di j,γεγνβniνn jβ

�

= Di j,γεγνβδανn jβ = εαβγn jβDi j,γ . (I.13)

The Hessian matrix in the embedding space E = R3N is written

H̄iα jβ = Hess(H̄)|3N =
∂ 2H̄

∂ niα∂ niβ
. (I.14)

Since the Zeeman term of the Hamiltonian is linear in n*, the contribution of the
external magnetic field to the Hessian is zero. The remaining terms we consider are
quadratic in n*. The uniaxial anisotropy has a contribution

H̄ani
iα jβ = −δi jδαβ 2

1
Ki
(Kiα)

2 . (I.15)

The exchange interaction obviously gives

H̄exc
iα jβ = −δαβ Ji j . (I.16)

Finally, for the DM interaction, we use that

∂

∂ n jβ

�

εανµDi j,νn jµ

�

= εανµDi j,νδβµ = εανβDi j,ν (I.17)

and write
H̄dmi

iα jβ = −εανβDi j,ν , (I.18)

14
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which gives us only off-diagonal terms. The complete Hessian is thus written

H̄iα, jβ = −δi jδαβ 2
1
Ki
(Kiα)

2 −δαβ Ji j − Di jεανβDi j,ν , (I.19)

which means that we get off-diagonal exchange and DMI contributions (Ji j = Di j = 0
for i = j) and on-diagonal anisotropy contributions. We thus get the following two
sub-matrices:

The spin-spin matrix blocks of the Hessian H̄ = ∂ 2H̄ become:
diagonal blocks per anisotropy axis:

H̄i= j = −2
1
Ki











Ki x Ki x Ki x Ki y Ki x Kiz

Ki y Ki x Ki y Ki y Ki y Kiz

KizKi x KizKi y KizKiz











, (I.20)

off-diagonal blocks without dipolar interactions:

H̄i 6= j =











−(Ji j + J ji) (−D
*

i j + D
*

ji)z −(−D
*

i j + D
*

ji)y

−(−D
*

i j + D
*

ji)z −Ji j − J ji (−D
*

i j + D
*

ji)x

(−D
*

i j + D
*

ji)y −(−D
*

i j + D
*

ji)x −Ji j − J ji











. (I.21)

The terms are obviously easy to calculate, but since the Hessian matrix is of size
3NS×3NS, it becomes increasingly difficult to handle with growing system size. Calcu-
lating even just a few eigenvectors of the Hessian can thus become computationally
very expensive. When using Spirit, the size of this matrix can also lead to problems
with memory consumption, where the implementation of a sparse matrix alterna-
tive would be highly beneficial for cases without dipole-dipole interactions, as only
(Nneighbours + 1)/Nspins blocks can be non-zero. For a simple cubic lattice of 200× 200
spins with only nearest-neighbour interactions, this would mean only 0.0125% of
the entries could be non-zero. Finite-difference schemes for which the matrix need
not be calculated in its entirety may also prove beneficial to the treatment of these
matrices for larger systems, especially when including dipolar interactions.

Note that for the dipole-dipole interaction term, we simply get another constant
contribution to the off-diagonal blocks

H̄ddi
iα jβ =

µ0µiµ j

4π

δαβ − 3ri jαri jβ

|r*i j|3
. (I.22)
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I.3 MONTE CARLO

To simulate thermodynamic properties of spin systems, such as the specific heat, mag-
netic susceptibility or critical temperature, one can use the well-established Monte
Carlo (MC) method,7 which is based on sampling a region of phase space [91]. For
a very comprehensive description of Monte Carlo methods, see Ref. [92]. In Spirit
the Metropolis Monte Carlo algorithm has been implemented, with an adaptive cone
angle [55, 93] for the step size of the displacements.

In order to perform Metropolis Monte Carlo simulations, only the energy of the
system needs to be calculated, making it the most straightforward method presented
in this thesis (see also Table I.1). While the micromagnetic model describes the limit
of T = 0, the well-known and precisely defined Monte Carlo algorithm, applied to an
atomistic spin lattice model, offers an easy recipe for the calculation of temperature-
dependent equilibrium properties.

The Hamiltonian (I.1) can readily be evaluated for single spins, meaning that the
energy change for the displacement of a single spin is cheap to evaluate, unless in-
teractions become long-ranged. Note that pair-wise interactions need to be counted
twice in the calculation of a single spin displacement, as the change also affects the
energies of the interacting spins.

Monte Carlo can for example be used to calculate the critical temperature Tc [94],
which for a ferromagnetic system is the Curie temperature of the transition from the
collinear phase at low temperature to the paramagnetic phase at high temperature.
For antiferromagnets, Tc is the Néel temperature at which the antiferromagnetic or-
der is lost. In general, as with other transitions, for example between non-collinear
and paramagnetic states, the low-temperature order will at some point be destroyed
by fluctuations, when the temperature is increased. Low-temperature ordering is de-
scribed, by definition, by an order parameter, which needs to be defined to adequately
characterise the problem at hand.

The critical temperature in a ferromagnet is related to the value of the exchange
constant and the lattice structure, e.g. the dimension of the system and the number
of neighbours. In the nearest neighbour mean field approximation [95] it can be
expressed as

Tc =
zJi j

3kB
, (I.23)

where z is the order number, which is in our model the number of unique near-
est neighbour exchange pairs Ji j for a single atom. However, this approximation is
known to be an over-estimation, as the correlations between spins are not accurately
taken into consideration. Other approaches, such as the classical spectral density

7 the name Monte Carlo – a reference to the city in Monaco – was coined by Metropolis et al. [90]
who were among the first to apply this method
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method [96] can be used to better estimate the critical temperature, where the high
temperature expansion method [97] gives the well-known result for a simple cubic
lattice [98]:

Tc = 1.44
Ji j

kB
. (I.24)

For a simple cubic lattice with Ji j = 1, this gives a mean-field value of Tc ≈ 23.2 K,
while the correct value should be close to Tc ≈ 16.71 K.

The average total magnetisation in dependence on the temperature is best de-
scribed by

M(T ) =







(1− T/Tc)b, T < Tc

0 else
, (I.25)

where b is the critical exponent.
It can be derived [91] that the linear response of the susceptibility is given by

χ =
∂ 〈M tot〉
∂ Bext

=
1

kBT

�〈(M tot)2〉 − 〈M tot〉2� (I.26)

and of the specific heat by

CV =
∂ 〈E〉
∂ T

=
1

kBT 2

�〈E2〉 − 〈E〉2� . (I.27)

Note that the averages 〈. . .〉 denote thermal averages, meaning that the observable
values should be calculated many times at each temperature in order to give physical

results. The total magnetization should be calculated as M tot =
Ç

�∑

i m* i

�2
. Both χ

and CV should diverge at T = Tc, making them suitable for correctness checks. The
specific heat CV is especially useful for identifying a phase transition, when the order
parameter is not known.

These above quantities can be used for the numerical calculation of Tc. Fig. I.8
shows the results of the mentioned observables for a Monte Carlo calculation of a
cube of size 30 × 30 × 30 with an exchange coupling of J = 1 meV.8 The results
demonstrate the validity of the implementation, as the expected critical temperature
of Tc ≈ 16.71 K is matched with an error of less than 1%.

8 These calculations were performed in part by Daniel Schürhoff, using Python scripts created by the
author.
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FIGURE I .8 – Monte Carlo test system

Normalized values of the total magnetization M , susceptibility χ, specific heat
CV and 4th order Binder cumulant U4. The expected critical temperature is
Tc ≈ 16.71 K, while the value given by the observables is Tc ≈ 16.60 K – an
agreement within 1%. The exponent is fitted with b = 0.33. The system used
is a 30× 30× 30 ferromagnet with J = 1 meV. At each temperature, 10k ther-
malisation steps were made before taking 100k samples. This graph has been
published in [47].

A further thermodynamic observable is the fourth-order cumulant U4, also known
as Binder cumulant [99], for ferromagnets given by

U4 = 1− 〈(M tot)4〉
3 〈(M tot)2〉2 , (I.28)

where again, 〈. . .〉 denotes thermal averaging. This quantity is an order parameter,
which can be used to calculate the critical temperature of systems with second-order
phase transitions, while accommodating for finite size scaling effects. U4 should start
at a value of 2/3, when below Tc and change to a value of 4/9 above Tc. By calculating
the intersection of the curves of U4 for different system sizes, a precise value for Tc

can be obtained.
To make certain that Tc estimation in Figure I.8 is correct and to illustrate this

method, the calculation is performed for additional cubes of size 253 and 203 atoms
and the intersection point of the Binder cumulant curves is determined. This is shown
in Figure I.9.

18



I.3 M O N T E CA R L O

0 5 10 15 20 25 30

0.45

0.5

0.55

0.6

0.65 Tc = 16.71

T [K]

U
4

L = 40 L = 30 L = 20 L = 15 L = 10

15 16 17 18
0.5

0.6

0.7

Tc

FIGURE I .9 – Monte Carlo test system

The 4th order Binder cumulant U4 is shown for parameters as in Figure I.8
and different system sizes L. The inset shows a zoom on the region where
the Binder cumulants intersect (16.25 K and 16.75 K, marked in grey). The
expected critical temperature Tc = 16.71 therefore lies within the precision of
these results, as the temperature step was chosen to be 0.5 K. This data in this
graph has been published in [47].

This kind of calculation is a basic example of how the Python application program-
ming interface (API) of Spirit can be used to easily extract the desired observables.
This is an important part of this work, making atomistic calculations accessible and
easy to run and will be detailed further in Chapter 3. The usefulness is exemplified
by the following Python script, similar to what was used to obtain Figure I.8 and
Figure I.9:

1 sample_temperatures = np.linspace(T_start, T_end, num=n_temperatures)
2
3 # Parameters
4 n_thermalisation = 10000
5 n_decorrelation = 10 # decorrelation between samples
6 n_samples = 100000
7
8 with state.State(input_file) as p_state: # State setup
9 # Ferromagnet in z−direction

10 configuration.plus_z(p_state)
11 # Loop over temperatures
12 for iT, T in enumerate(sample_temperatures):
13 parameters.mc.set_temperature(p_state, T)
14
15 # Cumulative average variables
16 E = 0
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17 E2 = 0
18 M = 0
19 M2 = 0
20 M4 = 0
21
22 # Thermalisation
23 parameters.mc.set_iterations(p_state, n_thermalisation, n_thermalisation) # We

want n_thermalisation iterations and only a single log message
24 simulation.start(p_state, MC) # Start a MC simulation
25
26 # Start a single−shot MC simulation (we manually trigger each new iteration)
27 simulation.start(p_state, MC, single_shot=True)
28 # Sampling at given temperature
29 for n in range(n_samples):
30 # Run decorrelation
31 for _ in range(n_decorrelation):
32 simulation.single_shot(p_state) # one MC iteration
33 # Get energy
34 E_local = system.get_energy(p_state) / NOS
35 # Get magnetization
36 M_local = np.array(quantities.get_magnetization(p_state))
37 M_local_tot = np.linalg.norm(M_local)
38 # Add to cumulative averages
39 E += E_local
40 E2 += E_local2
41 M += M_local_tot
42 M2 += M_local_tot2
43 M4 += M_local_tot4
44 # Make sure the MC simulation is not running anymore
45 simulation.stop(p_state)
46
47 # Average over samples
48 E /= n_samples
49 E2 /= n_samples
50 M /= n_samples
51 M2 /= n_samples
52 M4 /= n_samples
53
54 # Calculate observables
55 chi = (M2 − np.dot(M, M)) / (constants.k_B T)
56 c_v = (E2 − E2) / (constants.k_B T2)
57 cumulant = 1 − M4 / (3 M22)

LISTING 1 –

Using the Monte Carlo method to sample the magnetisation and other
observables. The length of the script is owed entirely to the usage of
decorrelation steps and the number of different observables, which are sampled
– the structure of the script is very simple.

Additional improvements on thermal sampling can be made, for example by using
the Ziggurat algorithm [100] in thermal equilibration. Also, the parallel tempering al-
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gorithm has proven to be effective [101–103] and while it has not been implemented
in Spirit, the usage of Python and a message passing interface (MPI) package would
enable one to quite easily reproduce this algorithm in a Python script, using the API
of Spirit.

There are a lot of other order parameters and observables, which can be calcu-
lated [63], but two are worth noting here. The first is the topological charge of a
discretised 2D system (see also Equation (I.3) for the continuum equivalent)

Q =
1

4π

∑

〈i jk〉
Ω(n*i, n* j, n*k) , (I.29)

where 〈i jk〉 are unique triplets and Ω is the solid angle between a triplet of spins. It
is often used as a measure for the number of skyrmions in a system, as they carry
a topological charge – for the simple case of a skyrmion pointing downward in an
upward homogeneous background the charge is Q = −1 (see also Figure 1.10 in
Section 1.2). The second is the entropy

S = kB log Γ , (I.30)

where Γ is the phase space volume compatible with a certain thermodynamical state,
and the free energy

F = 〈E〉 − TS . (I.31)

The entropy will appear again in transition rate calculations (see Section 1.3.3). As
the specific heat can be calculated as CT = T∂ S/∂ T and we already know Equa-
tion (I.27), the entropy can be found by integration

S(T ) = S(T0) +

∫ T

T0

CT (T ′)
T ′

dT ′ . (I.32)

For this, the entropy must be known at some initial temperature, where in systems
satisfying the third law of thermodynamics, we can choose T0 = 0, as S(0) = 0.
However, if there is a continuous symmetry in the ground state, we cannot choose
T0 = 0, as S(0) = −∞ in this case. In practice, one can then choose a large value
T →∞ and an approximation for S(∞) and integrate downwards.

Spin-spin and other correlation functions can also give additional information,
such as the magnon dispersion relation, but they are more complex to calculate, as
they generally involve double sums. Since the implementation of fast Fourier trans-
forms (FFTs) in Spirit for the calculation in the context of dipolar interactions (see
Section 3.2), the sampling of correlation functions has also become feasible, as the
double sums can be replaced by convolutions [92]. However, this has not yet been
implemented.
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I.4 LANDAU LIFSHITZ GILBERT DYNAMICS

In contrast to the Monte Carlo method, which has no time resolution, simulations
based on the Landau-Lifshitz-Gilbert (LLG) equation allow the calculation of physi-
cal transfromations from one state into another over time. Moreover, MC calculations
can be reproduced by the usage of thermal noise in the LLG equation. However, nu-
merically solving the LLG equation is a more involved task, as it requires derivatives
of the energy and the spin distribution (see also Table I.1).

The time evolution of the magnetisation can be calculated within DFT [66, 104]
and time-dependent DFT (TD-DFT) methods have been developed in order to go be-
yond the adiabatic approximation of atomistic spin dynamics. However, the (stochas-
tic) LLG is often employed for systems on the order of 104 to 109 magnetic atoms –
a size for which the evaluation of the equations of motion of TD-DFT over several
hundred ps is currently unfeasible. In contrast, atomistic spin dynamics of 104 spins
using the LLG equation can even be performed on current day mobile phones.9

The implicit form of the Landau-Lifshitz-Gilbert [78, 105] equation including spin
torque and temperature contributions can be written [106, 107]

∂ n*i

∂ t
= − γ

(1+α2)µi
n*i × B

*eff
i −

α− β
(1+α2)

un*i × ( ĵe · ∇)n*i + n*i ×
∂ n*i

∂ t
, (I.33)

where the explicit form of the LLG equation (I.33) then reads

∂ n*i

∂ t
=− γ

(1+α2)µi
n*i × B

*eff
i −

γα

(1+α2)µi
n*i × (n*i × B

*eff
i )

− α− β
(1+α2)

un*i × ( ĵe · ∇)n*i +
1+ βα
(1+α2)

un*i × (n*i × ( ĵe · ∇)n*i) ,
(I.34)

where µB ≈ 0.05788meV
T is the Bohr magneton and γ = geµB/ħh ≈ 0.1761 rad

ps T is the
electron gyromagnetic ratio, α is the scalar Gilbert damping parameter, m* i = µin

*

i,
µi is the spin magnetic moment, β is a non-adiabatic parameter and j

*

is the current
density vector. The spin current strength is given by u = P geµB/2eMs, where P is
the polarisation, ge the Landé g-factor, Ms the saturation magnetisation and e the
electron charge magnitude. B

*eff
= −∇H is the effective magnetic field.

The terms in the explicit LLG equation (I.34) correspond to the precession and
damping of the spin in an effective magnetic field – which may include stochastic
forces – as visualised in Figure I.10 and the precession-like and damping-like spin
current induced torque terms.

Note that the gradient approximation can be transferred to a thin layer approxi-
mation with orthogonal current [109–113] as ( ĵe · ∇)n*i → P

*

with P
*

the polarisation

9 See the web UI of Spirit at juspin.de
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FIGURE I .10 – Schematic of spin movement under LLG equation

Side by side: the movement of a single spin in an effective field under the LLG
equation. Left: only precession. Middle: also damping. Right: also stochastic
noise. Images adapted from [108].

direction. See Ref. [114] for more details on spin current torques and the calculation
of ( ĵe · ∇)n*i.

In this notation for the LLG equations (I.33) and (I.34), the effective field H
*

i may
contain also e.g. a stochastic thermal field (see also Figure I.10) and is therefore
written

H
* eff

i = −
∂H
∂ n*i
+H

* ther
i , H

* ther
i =

√

√

2α
µi

γ
kBTξ

*

i , (I.35)

where the vectors ξ
*

i consist of three standard normally distributed and independent
random values each and the amplitude of the fluctuating thermal field is accord-
ing to the fluctuation-dissipation theorem [115–117]. Note that in time-integration
schemes, to fulfill the fluctuation-dissipation relation, the thermal field needs to be
normalized by the time step with a factor 1/

p
δt. For more details on the integration

of the stochastic LLG equation see for example references [118, 119] and references
therein.

Note that the LLG equation restricts the movement of the spins to the surface of a
sphere, as all terms, due to the vector products with n*i, are orthogonal to the spin n*i

(see Figure I.10). This becomes plainly obvious when rewriting the LLG equation as

∂ n*i

∂ t
= n*i(t)× A

*

(t, {n*i(t)}) . (I.36)

This implies that only the component of the effective field, which is orthogonal to the
spin, acts on it:

∂H
∂ n*i
→ ∂H
∂ n*i
−
�

∂H
∂ n*i
· n*i

�

n*i . (I.37)

This corresponds to the physical restriction of the spin orientation onto the surface of
a unit sphere, mentioned in Section I.2. When implementing the numerical methods
to solve the system of coupled ordinary differential equations (ODEs) (I.36), this
constraint on the spin length must be considered. The details of the implementation
in Spirit are given in Section 3.3. Currently, Heun’s method [55], a 4th order Runge-
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Kutta solver, Mentink’s semi-implicit method B (SIB) [118] and Depondt’s Heun-like
method [120] are implemented.

I .4.1 Precession dynamics

A simple example of the LLG equation is the precession-only case (see Figure I.10).
The analytical solution for a single spin in a magnetic field is readily calculated and
for the initial condition nx = 1, is determined by the angle of the spin with respect
to the x-axis

ϕ(t) =
γ

(1+α2)µ
|B*|t . (I.38)

The calculation for this example is shown in Figure I.11.
Evidently and as expected, the spin rotates in the x y-plane, without changing its z-

component within the numerical precision over a time span of 500 ps. This analytical
equation can be compared to the numerical result produced by the various solvers
implemented in Spirit (see also Section 3.3) in order to determine a measure of
precision of the numerical solution. The results for the Depondt solver, shown in
Figure I.11, indicate that the spin is kept perfectly in the x y-plane. However, the
precession frequency is not met exactly and the error of the spin n* therefore increases
linearly over time, as it behaves additively.

We now take damping into account, so that the z-component becomes time-dependent
and the solution reads

nz(t) = tanh
�

αγ

(1+α2)µ
|B*|t

�

,

ϕ(t) =
γ

(1+α2)µ
|B*|t ,

nx(t) = cos(ϕ(t))
q

1− n2
z (t) ,

ny(t) = sin(ϕ(t))
q

1− n2
z (t) .

(I.39)

The simulation presented in Figure I.11 is repeated with a finite damping ofα= 0.1
and the results shown in Figure I.12.
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FIGURE I .11 – LLG dynamics: spin precession without damping

A single spin in a magnetic field of B = 1 T along z-direction, with zero damp-
ing α= 0 and time step d t = 0.01 ps, simulated for a total time of 500 ps. The
simulation is performed with the Depondt solver. Top: the components nx and
nz of the undamped spin over time t. As there is no damping, the nz remains
constant, while the spin rotates in the x y-plane. Bottom: the error of the nu-
merical simulation with respect to the analytically expected result. As there is
a numerical imprecision at every time step, the total error is additive and rises
linearly. The imprecision does not, however, rotate the spin out of the x y-plane.
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FIGURE I .12 – LLG dynamics: damped spin precession

A single spin in a magnetic field of B = 1 T, with a damping of α = 0.1 and
time step d t = 0.01 ps, simulated over a total time of 500 ps. The simulation
is performed with the Depondt solver. Top: the precession and damping of the
spin components nx and nz . The spin relaxes to the orientation of the external
magnetic field. Bottom: the error of the numerical simulation with respect to
the analytically expected result. While the error is additive and initially grows,
it is limited by the fact that the spin converges against the analytical result
and therefore converges down to zero for long times. This figure is adapted
from [47].

The profiles appear as expected, showing a quickly damped spin oscillation and
convergence to the orientation of the magnetic field. As the spin converges to the
z-axis, the error, after an initial rise, converges to zero.

See Section 3.3 for additional tests and comparisons of the implemented solvers.

Note that using LLG dynamics simulations, various correlation functions can be
calculated by time-dependent sampling (see Ref. [63] for an exhaustive overview
over LLG-related methods), for example to extract spin wave excitation spectra [121].
A time-dependent field can be applied to the system and the response measured in
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order to find resonance peaks and thereby find eigenmodes of a system without more
complicated approaches, such as those discussed in Section 1.5 – another benefit
being the memory-efficiency of this kind of calculation compared to the huge matrices
needed for the dynamical equation.

I .4.2 Stochastic LLG

Much like the Monte Carlo method, the stochastic LLG equation can be sampled in
order to obtain results about a given system, such as the critical temperature Tc. The
numerical integration of this stochastic equation requires some attention to details
of the solver, as has been laid out in the literature [118, 119, 122, 123].

The calculation of the temperature induced transition of a small ferromagnetic
cube to the paramagnetic phase, presented in Figure I.8, is reproduced here, though
with significantly more samples, in Figure I.13.10 The results agree well and give the
same expected value with a deviation of 1%.
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FIGURE I .13 – LLG temperature test system

The energy per spin E and normalized values of the total magnetization M , sus-
ceptibility χ, specific heat cV and 4th order Binder cumulant U4. The expected
critical temperature is Tc ≈ 16.71 K, while the value given by the observables
is Tc ≈ 16.92 K – an agreement of 1.2%. The exponent is fitted with b = 0.33.
The system used is a 30×30×30 ferromagnet with J = 1 meV. At each temper-
ature, 100k thermalisation steps were made before taking 200k samples. This
figure has been published in [47].

In general, Langevin dynamics can be used to obtain far more results, as it can –

10 These calculations were performed in part by Daniel Schürhoff, using Python scripts created by the
author.

27



I N T R O D U C T I O N

in principle – reproduce all the observables which can be gathered by Monte Carlo
(see Section I.3 and Ref. [63]). Though thermal sampling of static properties can be
significantly more costly when using LLG instead of MC, the benefit is that one can
sample time-dependent processes, such as the temperature gradient induced [124]
propagation of domain walls [125, 126] or skyrmions [127].

I .4.3 Current-driven dynamics

A very important part of the LLG equation (I.34) are the current-induced precession-
like and damping-like torques, which model the effect of an electric current onto the
magnetisation structure [107]. With the ability to simulate these effects, the current-
induced motion of magnetic configurations such as domain walls, and therefore po-
tential racetrack memory designs, can be studied numerically [32, 128].

As an illustrative example and a proof of concept, the movement velocity of a do-
main wall in a head-to-head spin chain is shown in dependence on the applied cur-
rent. The results from Ref. [107] for this dependence at different values of the non-
adiabatic parameter β are reproduced in Figure I.14.11 The chain is oriented along
the x-axis and the first and the last spin are pinned to point in +x and −x direction
respectively. As a special case of the more general Hamiltonian (I.1) of Section I.2,
the Hamiltonian for this example can be written as follows:

H = −
∑

i

K1S2
i x + K2S2

i y − J
∑

〈i j〉
S
*

i · S* j . (I.40)

where K1 = 0.01 meV and K2 = 0.005 meV are the values for the anisotropy in x-
and y-direction respectively. For details, see the reference [107].

The approximate prediction for the velocity, given in Ref. [32] 〈v〉=Æu2 − u2
c/(1+

α2) fits the results shown in Figure I.14 well. As expected, we observe the Walker
breakdown [109, 129] and a critical effective velocity of uc ≈ 0.0414, which is in
close agreement with the reported value of uc ≈ 0.0416. Note, for β = 0.1 and
currents larger than uW and for β = 0 and currents larger than uc, the domain wall
starts rotating around the x-axis.

This method can of course also be applied to simulate the skyrmion racetrack con-
cept. It is therefore directly related to calculations presented in the following Chap-
ter 1 and Refs. [38, 130], where the thermal stability of a skyrmion inside a racetrack
is estimated.

11 The data was gathered by Constantin Disselkamp
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FIGURE I .14 – Domain wall motion under current

The average velocity of head-to-head domain wall (see top) for various values
of the non-adiabatic parameter β . Damping is set to α = 0.02. For β = 0.10
the Walker breakdown occurs at approximately uW ≈ 0.01. For β = 0 a critical
current is at uc ≈ 0.0414. From this point the relation 〈v〉=Æu2 − u2

c/(1+α
2)

mentioned by Thiaville et al. [32] takes effect. The mentioned relation is fitted
to the data for β = 0. The dashed lines show linear fits and open symbols
denote rotation around the x-axis. The results from ref. [107] are reproduced
well. The data was gathered by Constantin Disselkamp and the figure is adapted
from [114]. This figure has been published in [47].

To illustrate the interesting dynamics, which can be induced by spin polarised elec-
tric currents, the nucleation of a skyrmion from a notch in a racetrack [21] is quali-
tatively reproduced in Figure I.15.

It can be seen that the simulation of a racetrack configuration including a notch
can easily be achieved and conveniently visualised in Spirit (see Section 3.4 on how
this can be conveniently created from the GUI).12 The first implementation of spin
currents (in the monolayer approximation) into Spirit was performed in collaboration
with the author by Daniel Schürhoff as a part of his Master thesis [131], who also
performed some quantitative skyrmion racetrack simulations. The implementation
of in-plane currents and further skyrmion racetrack simulations were performed by
Constantin Disselkamp as part of his Bachelor thesis [114] under the supervision of
the author.
12 It is even easily possible to simulate spin currents on current mobile phones in the web user interface

of Spirit
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FIGURE I .15 – Skyrmion nucleation under current

The shown screenshots from the GUI of Spirit show the nucleation of a skyrmion
from a notch (black area) in a monolayer racetrack configuration, analogous to
what is presented in [21], with a current flowing along the track with periodical
boundary conditions in the same direction. The system size was chosen to be
50× 30 and the notch of size 7× 11. Note the tilt along the boundaries of the
track and the notch, which help the nucleation of the skyrmion. This illustrates
the possibility to easily simulate such processes in Spirit.

I .4.4 Energy minimisation

In order to converge the system to a minimum of the energy landscape, various well
known numerical methods can be used, such as the nonlinear conjugate gradients
(NCG) method (see Section 3.3). However, a more straightforward approach can be
taken by iteratively moving the system towards the direction of the effective field
B
*eff

i = −∂H/∂ n*i using pseudodynamics. As long as the path towards the local min-
imum is not of interest, other dynamical equations can be used instead of the LLG
equation. The methods for solving the coupled ordinary differential equation (ODE)
can then also be used for energy minimisation. One option is to consider the damp-
ing term of the LLG equation (no precession term, stochastic fluctuations or spin
polarised currents), which gives

∂ n*

∂ t
∝ n*×

�

n*× ∂H
∂ n*i

�

. (I.41)

Since |n*| = 1, for any vector v* it holds that n* × (n*× v*) = v*− n* (n* · v*), i.e. only the
component orthogonal to the spin is relevant.

Analogously, a Verlet-like velocity projection method can be used. The correspond-
ing equation of motion gives

∂ 2n*

∂ t2
∝ n*×

�

n*× ∂H
∂ n*i

�

. (I.42)

This method has been implemented in Spirit (see Section 3.3) and has been seen
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to significantly improve the speed of convergence. Note that this velocity projection
method needs to separately consider the normalisation of the spin vectors, as, even in-
finitessimally, it does not confine the movement of the spin to the surface of a sphere.

In all these cases, the system will converge to a minimum of the energy landscape.
However, the result can be highly dependent on parameters, initial spin configuration
and the method used. The direct minimisation with respect to a given force vector also
finds application in other problems, such as the calculation of transition paths (see
Section 1.2) or the search for saddle points of the energy landscape (see Chapter 2).
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RATE THEORY AND MINIMUM ENERGY PATHS 1

"The career of a young theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction."

— Sidney Coleman

To make the flow of this thesis complete and consistent, this chapter will cover
rate theory methods, namely the geodesic nudged elastic band (GNEB) method to
calculate transition paths and the harmonic transition state theory (HTST) to calcu-
late transition rates. This will provide not only the background and motivation for
the saddle point search method, developed as a part of this work and presented in
Chapter 2, but also a more coherent description in the framework and notation of
this thesis. We will see how these higher order methods build onto the foundation of
the LLG dynamics and why there was a need to develop a method to search for new
transition paths.

1.1 INTRODUCTION

The development of novel magnetic devices, for example in spintronic applications [41],
can be greatly accelerated by the predictive potential of theoretical calculations. As
laid out in the Introduction, there is a need to determine the lifetimes of magnetic
states. The challenge in the estimation of lifetimes is to identify the various, phys-
ically possible transformations that a magnetic configuration can undergo and to
estimate the probabilities for their occurrence at finite temperature. A problem faced
by the Monte Carlo and stochastic LLG methods is the potential disparity between
the simulated and the laboratory timescale, which can easily be minutes, hours and
even significantly longer. Recall for example the challenge of designing materials in
which magnetic skyrmions are small enough while being sufficiently stable at ambi-
ent temperature, meaning skyrmion lifetimes on the order of magnitude of at least
days. Novel rate theory methods, different from the stochastic approaches shown in
the Introduction, therefore become necessary – especially when calculations, such as
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presented in Ref. [54], become too time-consuming due to the rare occurrence of tran-
sition events. Spin ice systems are a good example for systems with rare transition
events [132–134].

Transition state theory (TST) calculates statistical estimates of transition rates from
the basic properties of the energy landscape without the need for any sampling (see
Section 1.3 for details), but requires knowledge of the minimum energy paths (MEPs)
(more precisely: the saddle points along the MEPs) corresponding to the possible
transitions. A simple example would be the reversal of a magnetic domain, which
can occur by homogeneous rotation or nucleation and subsequent travel of a domain
wall. The methods presented in this chapter have very general applicability and are
not limited to any assumptions about the orientations of the spins, such as collinearity.

In such cases, where final states are known, the geodesic nudged elastic band
(GNEB) method [56, 77] can be used to find the MEPs of the transitions and, thereby,
the activation energies. An illustration of such an MEP is shown in Figure 1.1. Note
that the author has previously described the geodesic nudged elastic band (GNEB)
in his master thesis [108].

∆EA ∆EN

Rx

E

FIGURE 1.1 – Schematic energy barrier

An energy path E(Rx) is shown schematically, with the annihilation barrier∆EA
and the nucleation barrier∆EN of a metastable state with respect to the ground
state. The path is discretised by a set of configurations, often referred to as im-
ages. Rx is the reaction coordinate, which is simply a measure of distance along
the transition. Assuming a converged MEP E(Rx),∆EA is the lowest energy bar-
rier between the two states for this transition. Note that the energy landscape
of a spin system may have high dimensionality, meaning the maximum of E(Rx)
is in general a saddle point of the energy landscape. Image adapted from [108].

The reaction coordinate Rx is defined as the distance along a path through config-
uration space. For a discrete set of points along the path, referred to as images, it can
be simply defined as the cumulative sum of the distances between images:

Rxν =







0 , ν= 1
ν
∑

µ=2
Lµ−1,µ , ν > 1

, (1.1)
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FIGURE 1.2 – Schematic chain of images in energy contour with GNEB
forces

A schematic energy contour is shown as a contour plot in two coordinates ξ1
and ξ2 (imagine e.g. two angles of a spin). A path through the energy landscape
is drawn with visualised springs between images, where the spring force F

*

S and
energy gradient force F

*

E are visualised for one image. The spring force acts
tangent to the path, to keep the distance between images equal, whereas the
gradient force pulls the images towards lowest energy, orthogonal to the path.
It is comparable to an elastic band with movable weights attached, that is laid
onto a contoured surface. Image adapted from [108].

where µ and ν are indices of the discrete images along the chain and Lνµ is a measure
of distance in configuration space between two images Mν and Mµ.

1.2 CALCULATING MINIMUM ENERGY PATHS

1.2.1 The nudged elastic band method

The so-called nudged elastic band (NEB) method [135] was developed in the context
of chemical reactions and molecular dynamics for the exact goals outlined in the pre-
vious section. It was subsequently generalised to be applicable to spin systems [56],
where it is called geodesic nudged elastic band (GNEB) method. It has since been
used for various 2D and 3D spin systems, for example to prove the metastability of a
state with respect to a certain transition [38, 46, 47, 58, 61, 136].

The NEB method uses a discrete set of points along the path, called images, which
are iteratively optimised a) towards lower energies orthogonal to the transition path
and b) for equal distances along the discretised transition path, corresponding to
an elastic band. To achieve this, specially constructed gradient and spring forces are
applied to each configuration, as schematically visualised in Figure 1.2.
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The total NEB force is written

F tot
ν
= FS

ν
+ FE

ν
, (1.2)

where ν is the image index along the chain, FS is a spring force and FE
ν

is an energy
gradient force. The forces in this section are 3N -dimensional vectors.

A simple definition of the spring force, which will lead to convergence towards an
equidistant distribution of images (in phase space) along the path, is given by

FS
ν
= (Lν−1,ν − Lν,ν+1) τν , (1.3)

where Lν,µ is a measure of distance between images ν and µ, as in Equation (1.7),
and τν is the (normalised) path tangent at image ν.

As an alternative to the approach of spring forces exists, the images can instead
be redistributed, for example linearly, along the geodesic path between the images
after a given number of iterations. However, the author’s experience has shown that
this approach can exhibit worse behaviour than the spring forces in certain cases
where the density of images is low, as when large steps in the configuration space
may produce kinks in the path.

As previously stated, the gradient force FE
ν

should minimise the energy of the image
in the degrees of freedom orthogonal to the path. This is easily achieved by removing
the component of the gradient, which points along the path, i.e. by orthogonalising
it with respect to the tangents:

FE
ν
= −∇Eν + (∇Eν ·τν)τν . (1.4)

Note that the scalar product ∇Eν ·τν is that of the 3N -dimensional vectors.
The path tangents can be easily approximated by finite differences between the

images, but in order to avoid the formation of kinks in the path, the definitions given
in ref. [137] should be used. On slopes,

τν =







τ+
ν
, if Eν+1 > Eν > Eν−1

τ−
ν
, if Eν+1 < Eν < Eν−1

, (1.5)

and, to ensure smooth transitions between rising and falling slopes, at minima and
maxima of the path, i.e. if Eν is an extremum

τν =







τ+
ν
∆Emax

ν
+τ−

ν
∆Emin

ν
, if Eν+1 > Eν−1

τ+
ν
∆Emin

ν
+τ−

ν
∆Emax

ν
, if Eν+1 < Eν−1

, (1.6)

where τ+
ν

and τ−
ν

are the forward and backward finite difference tangents, respec-
tively (their definition is given in the following Section 1.2.2). The energy differences
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are given by
∆Emax =max (|Eν+1 − Eν|, |Eν−1 − Eν|) ,
∆Emin =min (|Eν+1 − Eν|, |Eν−1 − Eν|) .

Now, through adequate choice of the initial path between the first and last image
of the chain, one may calculate the MEPs of any transition containing a first order
saddle point in the energy. Higher order saddle points have one or multiple degrees
of freedom orthogonal to the path, in direction of which the energy can still be min-
imised. An educated guess or previous knowledge about a transition path will help
in generating an initial path which quickly converges to the transition one wishes to
study.

The initial path can be chosen arbitrarily and even randomly. Since the energy land-
scape of a nontrivial system is high-dimensional and complex, especially a random
path can lead to unexpected local minima between the states and the discovery of
new transition mechanisms. However, this is not a rigorous method of finding transi-
tion mechanisms and, in the author’s experience, will only lead to the most obvious
transitions.

Note that generating nontrivial initial paths for NEB calculations can be a time-
consuming and difficult task. This is alleviated significantly by the graphical user
interface (GUI) of Spirit, where the direct interaction with the system and a range
of tools, designed to generate potentially complex states, enable one to quickly and
effectively test and visually verify initial guesses. See Section 3.4 for more details.

To summarise the above, the algorithmic implementation of the NEB method is
illustrated in Figure 1.3.

1.2.2 Adaptation to spin systems

So far, the definitions match those of the regular NEB method. However, for spin
systems, special care has to be taken due to the fact that the phase space manifold
Mphys is curved due to the constraint on the spin length, as noted in the Introduction,
Section I.2 (see Equation (I.8)). The spins therefore move on unit spheres and the
method is then called geodesic nudged elastic band (GNEB) method [56].

The expression for the overall distance Lν,µ is the norm of the vector of distances
in the spin subspaces

Lνµ =
√

√

∑

i

(lν,µ
i )2 , (1.7)

where lνµi denotes the geodesic distance between the spin n*νi at position i in image
Mν and the spin n*µi , also at position i, but in image Mµ. While in the Euclidean
embedding space E the geodesics that measure the shortest distance between two
points are straight lines, here they are great circles, and the distance lνµi is thus given
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initialise systemdata input

calculate initial guess for path

1. calculate energies and effective fields

2. calculate geodesic distances

3. calculate tangents to the path

4. calculate forces on images

relax images

forces
converged?

stop

no

yes

FIGURE 1.3 – Flow chart of the GNEB algorithm

This flow chart visualises the general logic of the GNEB method. After initialis-
ing the system, an initial path has to be created. Subsequently, the iteration loop
is started, in which the forces are calculated and, if they are not yet converged,
applied. Image adapted from [108].
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by

lνµi = α
νµ

i = arccos

�

n*νi · n*µi
||n*νi || ||n*µi ||

�

, (1.8)

where ανµi is the angle between n*νi and n*µi .
For spin systems we can still write simple forward and backward differences be-

tween images

τ+
ν
=

Mν+1 −Mν

|Mν+1 −Mν|
, τ−

ν
=

Mν −Mν−1

|Mν −Mν−1|
, (1.9)

where the Mν = {n*i} ∈Mphys denote 3N -dimensional vectors of the spin configura-
tions. However, the tangents τν, defined by Equation (1.5) and Equation (1.6), need
to lie in the tangent space to their corresponding point Mν on the manifold. One
may correct the tangents for example by a simple projection, orthogonalizing the
corresponding 3-component subvectors with respect to the spins

τ*ν,i → τ*ν,i − (τ*ν,i · n*ν,i)n
*

ν,i . (1.10)

This tangent projection is illustrated for a single spin in Figure 1.4. Note that the tan-
gents are required to be normalised (in 3N) and therefore need to be re-normalized

τν→ τν/|τν| . (1.11)

τ
*proj
ν

τ
*FD
ν

τ
*

ν

n*ν+1

n*ν−1
n*ν

FIGURE 1.4 – Path tangents projection

Schematic visualisation of the projection of the tangents for a single-spin system.
After a tangent τFD

ν is determined by finite difference calculation, it needs to be
projected onto the tangent plane to the spin configuration so that it correctly
points along the path. This tangent is denoted τproj

ν and can be calculated e.g.
by removing the component in the direction of the image, see (1.10). Note that
the tangent vector τν needs to be normalized, which for a multi-spin system
needs to be performed in 3N dimensions. Figure originally adapted from [108]
and published in [47].

Finally, for the energy gradient force, the same scheme can be applied and we write
for each spin

F
*E
ν,i → F

*E
ν,i − (F

*E
ν,i · n*ν,i)n

*

ν,i . (1.12)
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While being orthogonal to FS, FE also needs to be in the tangent plane, since spin
length is conserved. The orthogonality constraint FS ⊥ FE is applied so that the two
forces do not interfere with each other, which would produce kinks in the path and
in the worst case prevent convergence.

1.2.3 Improvements on the regular NEB method

Three notable improvements on the NEB method can be made:

• Climbing, falling and stationary images

• Spring force modulations

• Path shortening force

Without any addition to the NEB method, the probability of an image to lie precisely
on the saddle point is virtually zero. Thus, we need to apply the so-called climbing
image (CI) method, which will force the image with highest energy to move up to the
saddle point, as illustrated in Figure 1.5. This is achieved through the deactivation

Rx

E

FIGURE 1.5 – Climbing image method

The CI method moves the image of highest energy towards the saddle point.
This ensures that, when properly relaxed, the saddle point is known precisely.
It is a critical tool for the GNEB method, as the saddle point can otherwise only
be determined approximately. Image adapted from [108].

of the spring force for that image, while applying the negative of the energy gradient
along the path:

FS,CI
ν
= 0, FE,CI

ν
= −∇Eν + 2(∇Eν ·τν)τν . (1.13)

The alternative is to increase the number of images to attain a sufficient resolution,
but this is neither computationally efficient, nor is it quantitatively guaranteed to be
precise, which can be required, for example by the HTST method presented in the
following Section 1.3. Note that in some cases, the CI can reveal the fact that a path
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is actually not a stable MEP, i.e. that the saddle point is not of first order, while the
regular NEB would converge nonetheless.

Analogously, local minima can lie along the transition path and it can be very useful
to converge a close-by image to the minimum. For this, one may apply a "falling
image", simply by setting FS = 0 for the image, resulting in the image sliding down
to the nearest local minimum due to the gradient force FE

ν
.

Note that in any case the images neighbouring a climbing (or falling) image will
rearrange and the chain will effectively behave like two independent chains that meet
at the climbing (or falling) image. As this behaviour can be useful in itself, the option
to make images "stationary" has also been implemented in Spirit, enabling one in
practice to take more precise influence on the convergence of a transition path.

The next improvement over the regular GNEB method is the equidistant placement
of images along the energy curve. This can significantly improve the convergence of
the CI onto the saddle point, as the resolution for the finite difference calculation of
the tangents at the saddle point is increased. It is common to calculate cubic polyno-
mials to interpolate between the discrete images on the path and generate a smooth
energy curve E(Rx) (see also Appendix A). The segment length of these polynomials
can be calculated by numerical integration and the spring forces can be modulated
between the images to produce equal distances along the interpolated curve. In Spirit,
a weighting ratio between energy and reaction coordinate is implemented as a cal-
culation parameter, with which one can vary the distribution of images along the
reaction coordinate versus the energy.

A significant novelty which has been developed by the author and implemented in
Spirit is the "path shortening force", which can be added in order to eliminate zero
modes – degrees of freedom which do not change the energy – without a prohibitive
amount of numerical overhead. Under certain conditions, the opportunity for an im-
age to move along a zero mode can become a problem, hindering the convergence
of the MEP. The concept presented is trivially simple: the path will be shortest when
all tangents are parallel, i.e. the path is a straight line. Therefore, one can easily cal-
culate finite differences to point a non-straight path towards the straight alignment
by taking the finite difference of finite differences

FPS
ν
=

Mν+1 −Mν

|Mν+1 −Mν|
− Mν−1 −Mν

|Mν−1 −Mν|
, (1.14)

as visualised in Figure 1.6 for the case of a planar energy landscape. It is clear that
the shortest trajectory is that which accumulates the least curvature.

It is clear that the path should only be optimised in this regard orthogonal to a)
the energy gradient direction and b) the (normalised) path tangent:

FPS
ν
→ FPS

ν
−
�

FPS
ν
· ∇H|∇H

� ∇H
|∇H

︸ ︷︷ ︸

a)

→ FPS
ν
− (FPS

ν
·τν)τν

︸ ︷︷ ︸

b)

. (1.15)
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τFD
ν−1

FPS
ν

τFD
ν+1

FIGURE 1.6 – Path shortening force to eliminate zero modes

The tangents are oriented towards growing reaction coordinate and the finite
difference to correctly direct the path shortening force is therefore trivially
FPS = τFD

ν+1 − τFD
ν−1, where the τFD

ν are the normalised finite difference tan-
gents (see Equation (1.14)). FPS

ν points towards the shortest path between the
neighbouring images Mν−1 and Mν+1. In order to work as intended, the path
shortening force still needs to be orthogonalised to the gradient force and the
tangent (tangents according to Equation (1.5) and Equation (1.6)) and scaled
appropriately.

An additional step must be taken, as the above orthogonalisation in a sense still fails
when the gradient orthogonal to the path is zero, which is exactly the case along a
MEP. When an image is on the desired MEP, the path shortening force (1.14) will
not be zero and may point to increasing energy, as the gradient force direction is
undefined. The calculation would therefore not converge, but oscillate around the
MEP. To solve this, the force can be normalised and scaled

FPS
ν
→max(|∇H|, NF)

FPS
ν

|FPS
ν
| , (1.16)

where N is the number of spins and F is the minimum value assigned to the force.
This method is therefore to be applied as a kind of pre-conditioner for the regular
GNEB method, applying the force with a minimum magnitude (set by the user), un-
til the path is sufficiently converged so that zero modes should no longer cause it
to malform. The minimum value for this force will prevent convergence to smaller
values and the stronger it is, the more the path becomes distorted towards the homo-
geneous interpolation, i.e. the shortest possible path between the images. When the
path is sufficiently pre-converged, the regular CI-GNEB method can be used to find
the precise MEP.

Though one might expect that the curvature of the spin manifold Mphys plays an
important role in the finite differences between tangent vectors, it turns out that this
approach works well.

1.2.4 Test: Gaussian potentials

Now that we have all the tools needed, we can apply the method to a simple test sys-
tem, which is here chosen to be a single spin n* in a gaussian superposition potential,
defined as

H =
∑

i

Hi =
∑

i

ai exp

�

− l2
i (n

*)

2σ2
i

�

, (1.17)
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where ai is the amplitude, σi the width and li(n
*) is a measure of distance of the

spin n* to the center c*i of the ith gaussian function. We now purposely choose not the
geodesic distance between the vectors as the measure of distance, but instead

li(n
*) = 1− n* · c*i , (1.18)

as the derivatives are easily calculated in this case (see Appendix B). Parameters for
the test case are given in Table 1.1 and the script to produce the data using the Python
API of Spirit is given in Appendix B.

a σ cx cy cz

−1.10 0.06 −0.20 0.00 −0.90

0.80 0.15 −1.00 0.20 −0.20

−0.90 0.10 1.00 −0.20 −0.10

0.09 0.03 0.80 0.50 −0.80

0.15 0.07 0.80 −0.50 −0.70

−0.90 0.10 0.50 1.20 −0.40

−0.90 0.10 0.20 −0.90 −0.40

TABLE 1.1 – Parameters of Gaussian Hamiltonian

The parameters defined in this table provide for a sufficiently interesting energy
landscape with several minima and saddle points (see Figure 1.7).

The example shown in Figure 1.7 concisely demonstrates how the climbing image
(CI) addition to the GNEB method may help in obtaining the correct transition path
without the need for an excessive amount of images. To illustrate the resulting paths,
the energy barriers are plotted in Figure 1.8.
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A

B

C

FIGURE 1.7 – Example of a GNEB calculation on a single spin

The energy landscape defined by Equation (1.17) and table 1.1 is plotted on
a sphere, together with three transition paths: the great-circle interpolation
between the two initial minima A and C (green); the minimum energy path
calculated with the regular GNEB method (blue); the minimum energy path
containing the exact saddle points (red, each saddle point marked by ×) and
central minimum B, calculated by additionally imposing two climbing images
(CIs) and the relaxation of the lowest-energy image. This image has been pub-
lished in [47].
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FIGURE 1.8 – Single spin energy barriers

The energy barriers corresponding to the paths shown in Figure 1.7. The great-
circle interpolation between the initial and final images, A and C, gives an un-
necessarily high barrier. The relaxation with the regular GNEB method gives
an approximate MEP, where the minima and maxima along the path are not ex-
actly known. The climbing image method and relaxation of the lowest-energy
image produce the exact saddle points and minimum B along the minimum
energy path. This graph has been published in [47].
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With this very intuitive proof of concept, we can now turn to the more general case
of systems of coupled spins. Monolayers containing skyrmions are a suitable test case
due to the emergent complexity produced by the interactions between the spins.

Note that this simple example already demonstrates that in general, several initial
guesses should be made, as well as some initial paths chosen randomly, in order
to sufficiently sample the energy landscape for possible transitions. However, even
with different initial guesses for the path, one could miss the fact that there are other
surrounding minima and corresponding transitions, which the system could undergo.
There is a need for a systematic method to seek out saddle points around a local
minimum and Chapter 2 will elaborate the development of such a method and deal
in more detail with this problem.

1.2.5 Application to a 2D skyrmion texture

In order to illustrate the usefulness for physical systems, the following shows the two
known processes of skyrmion nucleation and annihilation: the radial collapse and
the escape through a system boundary. We recall the Heisenberg Hamiltonian (I.1)
from the introduction, here written with the contributing interactions:

H = −µS

NS
∑

i=1

B
*ext · n*i −

∑

〈i j〉
Ji jn

*

i · n* j −
∑

〈i j〉
D
*

i j · (n*i × n* j) .

Parameters are chosen as

µS = 2µB , Bext = 2.5 T , Ji j = 2 meV , Di j = 0.6 meV . (1.19)

It is a point worth stressing again, exemplified by this kind of calculation, that
Spirit can significantly improve scientific productivity by reducing the effort required
for the combination of different methods, such as LLG and GNEB. This is illustrated
by the following Python script

1 NOI=10
2 with state.State(input_file, quiet=True) as p_state:
3 configuration.plus_z(p_state)
4 chain.image_to_clipboard(p_state)
5 chain.set_length(p_state, NOI)
6
7 configuration.skyrmion(p_state, 5.0, phase=−90.0, idx_image=0)
8 configuration.plus_z(p_state, idx_image=NOI−1)
9

10 simulation.start(p_state, LLG, VP, idx_image=0)
11
12 transition.homogeneous(p_state, 0, NOI−1)
13
14 chain.update_data(p_state)
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15 parameters.gneb.set_image_type_automatically(p_state)
16 simulation.start(p_state, GNEB, VP)

LISTING 1.1 –

Combination of LLG and GNEB to calculate the energy barrier and saddle point
for the skyrmion collapse.

Within only a few lines of code, without intermediate steps or post-processing, this
simple example can be run. Utilizing the powerful interactive features of the GUI,
one can quickly reproduce the above (see also Section 3.4) and effectively deal with
significantly more complex examples.

The minimum energy paths of both the collapse and the escape of the skyrmion
through an open boundary of the system are shown in Figure 1.9.
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FIGURE 1.9 – Skyrmion transitions: minimum energy paths

Skyrmion collapse and escape transitions in a simple cubic monolayer of size
N × N . The barriers are of similar height, but different profile.

1.2.6 Nontrivial 2D textures: skyrmion "sacks"

To show the applicability of the GNEB method in more general cases, where more
complicated transitions are possible, we will now look at a set of more general skyrmion
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states, recently described in Ref. [138]. We will see a large variety of transitions,
which will need to be studied thoroughly if the stability of these objects is to be esti-
mated. This will also showcase the usefulness of a software tool such as Spirit with
a graphical user interface and advanced abilities to generate initial paths. We again
use the Heisenberg Hamiltonian (I.1) from the Introduction, with parameters chosen
to give LD = 30a (for the parameter transformations see Equation (I.7)):

µS = 1µB , Hext = 0.65 HD , Ji j = 1 meV , Di j = 0.20944 meV . (1.20)

For these parameters, skyrmionic sacks, or loops – also referred to as heavy skyrmions
– can be stabilised and combined into new, arbitrarily large states. A few examples
of these are shown in Figure 1.10.

−2 Q = −1 0 1 2

FIGURE 1.10 – Skyrmion "sacks"

Different skyrmionic configurations of varying topological charge Q (see also
Equation (I.3)). The state Q = −1 is the regular skyrmion configuration. No-
tably, the skyrmionic ring has zero charge Q = 0, as it corresponds to a second
skyrmion of opposite charge Q = 1 being inserted into the Q = −1 configura-
tion. Therefore, the "sack" containing two regular skyrmions carries a charge
Q = −2, while being a single, localised object. Inversely, by inserting further
cores of charge Q = 1 into the Q = 0 configuration, one can create skyrmionic
loops.

Note that the topological charge Q no longer uniquely defines a configuration, as
becomes clear from the example of Q = −2, shown in Figure 1.10: the removal of one
of the skyrmions on the inside will result in the same topological charge of Q = −1
as the regular skyrmion, but in a very different spin texture.

The kπ skyrmion [139], resembling k nested domain wall rings, will in the case
of k = 2 and Q = 0 be referred to as "skyrmionium" [140, 141]. In contrast, the
alternative higher order combination of domain wall rings, such as the Q = 1 and
Q = 2 examples shown in Figure 1.10, will be referred to as skyrmionic "loops". Far
more complicated states can be created, as shown in Ref. [138], but we will see in
the following that these few states already pose significant complexity and the GNEB
calculations require effort.

Having stabilised these objects, we can now show that the notion of topological
charge is unsuitable to characterise these configurations. It should be clear that the
Q = 0 skyrmionium configuration can be destroyed by a continuous transformation
of the vector field, i.e. by a continuous homotopy transformation, such as visualised
in Figure 1.11.
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Q = −1 Q = −1 Q = −1 Q = −1 Q = −1

Q = −1 Q = −1 Q = 0 Q = +1 Q = +1

FIGURE 1.11 – Transformations between a skyrmion and an antiskyrmion

Top: homotopy transformation between a skyrmion and antiskyrmion of topo-
logical charge Q = −1, induced by rotation of all spins by 180 deg around the y-
axis. Bottom: non-homotopy transformation between a skyrmion with Q = −1
and an antiskyrmion with Q = 1, induced by linear interpolation between the
two states, where two defects appear along the path. The latter transformation
cannot be achieved without two defects, as the topological charge of the state
needs to be incremented twice.

The shown transformations illustrate the necessity of nucleating two defects in
order to change the topological charge from Q = −1 to Q = 1, which is analogous to
what is observed in the switching of skyrmions by external field pulses [142]. Note
that the transformation between two skyrmions of Néel and Bloch chirality is also a
homotopy transformation, corresponding simply to the rotation of all spins around
the z-axis. While the transformations between skyrmions are quite illustrative, a more
formal visualisation of a homotopy transformation is given in Figure 1.12.
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F : I × I → X •
x1

•
x0

⊂ X
I × I

F(0, t2)

β ' α

F(1, t2)

α

FIGURE 1.12 – Homotopy transformation

Roughly speaking, two functions are called homotopic when the can be contin-
uously deformed into one another – said deformation being a homotopy trans-
formation. This is illustrated here by the transformation F : I × I → X between
topological spaces of the flat grid I × I to a warped set of lines connecting the
points x0 = F(0, t2) and x1 = F(1, t2).1 The continuity of such transformations
implies that no "knots" can be made or untied by a homotopy transformation, i.e.
topological winding numbers are invariant under such transformations.2 Con-
sequently, in the continuum limit, a skyrmion in a homogeneous background
cannot be destroyed by such a transformation. The skyrmionium with Q = 0,
however, can collapse its ring shape without any discontinuity. Image recreated
from [143] by Stefan Kottwitz and Alain Matthes.3

From this it should be clear that between the different variations of states with
the same topological charge Q there is always a homotopy transformation, however
potentially corresponding to a significant change in the configuration of the system.
The Q = 0 skyrmionium is topologically equivalent to the homogeneous ferromag-
netic state with the same topological charge and a homotopy transition between the
two exists, as shown by example in Figure 1.13.

1 Note that this is not a Homeomorphism
2 The concept is illustrated nicely by the transformation of a cup into a torus

(see https://wikipedia.org/wiki/Homotopy)
3 See also http://www.texample.net/tikz/examples/homotopy/
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FIGURE 1.13 – Homotopy transformation of the skyrmionium

A topologically trivial transformation which destroys the skyrmionium. In the
atomistic model, it is common for this kind of transition to be energetically
more costly than the nucleation of a defect, such as shown in the following
MEP calculations in this section.

Attempts to stabilise a minimum energy path (MEP) corresponding to a homotopy
transition between the skyrmionium and the ferromagnetic state were not successful
– not even with the help of the GUI tools (see also Section 3.4) – and the nucleation of
one or multiple defects appeared instead. The homotopy transformations which can
destroy the Q = 0 state are not a trivial transition of the system and are accompanied
by a significant change in energy.

This means that the transitions and lifetimes of magnetic configurations cannot in
general be described by topology, but are instead determined entirely by the energy
landscape. In fact, while minimum energy paths (MEPs) may include topological
transitions, they do not have to, and it is important to note that therefore the saddle
point of the transition, too, need not coincide with a topological transition. This is
a signature of the discrete lattice model, as in continuum theory, topological transi-
tions are always accompanied by energy divergencies, meaning they represent saddle
points of the energy landscape. The fact that the continuum model is indeed insuf-
ficient for the estimation of the thermal stability of topological states can be further
underlined by HTST calculations, which show nontrivial dependencies, not only on
the energy barriers, but also on entropic contributions [40, 144] and the underlying
lattice geometry [145]. These insights warrant some further investigation of these
higher order skyrmionic states using the GNEB and HTST methods. Note that some
calculations have already been made, where in fact Spirit was used to perform GNEB
calculations [139].

Due to computational time constraints, the GNEB calculations in this section are
presented for LD = 30 and a lattice size limited to 130× 130, which is too small to
achieve quantitative precision for some of the larger states. However, the qualitative
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FIGURE 1.14 – Skyrmionic core collapse inside a Q = 2 skyrmion "sack"

MEP calculation for the collapse of a Q = 1 core inside the skyrmionic Q = 2
state. Note that the collision transition of two cores is not a stable MEP inside
of this configuration. The energy barrier is in this case below the precision of
the calculations, which is limited by the system size at a value of∆E ≈ 0.3 meV,
but in any case an order of magnitude smaller than the energy difference of
∆E = 11.1 meV between the Q = 2 and Q = 1 states.

relations between the energy barriers for the different transitions hold.
Figure 1.14 shows the MEP of the collapse of one of the skyrmionic cores inside a

skyrmionic loop of charge Q = 2, resulting in a loop with Q = 1.
As can be seen in Figure 1.14, the barrier for the collapse of one of the cores is an

order of magnitude smaller than the energy difference between the two loops with
Q = 2 and Q = 1 respectively.

This kind of transition path, where only a portion of a localised state is changed, is
difficult to create automatically and can even pose some challenges when using the
direct interaction tools of the GUI of Spirit (see also Section 3.4). However, together
with the real-time visualisation of the images on the transition path, the results of
actions can be checked and paths can be manually corrected until they converge as
desired. It should be noted that the spring force modulations, which redistribute the
images along the interpolated energy curve instead of just along the reaction coordi-
nate (see Section 1.2.3), and the path shortening force (see Figure 1.6), which were
both added to Spirit after these calculations were performed, significantly improved
the convergence of paths such as shown here, where sharp rises in the energy appear
close to the saddle point.

The collapse of a skyrmionic core in such a loop configuration is only one of the
possible transition. As will be detailed in Chapter 2, during the course of this work a
transition corresponding to the collision of two skyrmions was found to be a stable
minimum energy path. Subsequently, this transition was also tested in this system
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and found to result in a stable MEP, as shown in Figure 1.15 in the loop with Q = 1,
resulting in a transition to the skyrmionium (Q = 0).
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FIGURE 1.15 – Two transitions between Q = 1 and Q = 0 skyrmion "sacks"

MEP calculation for the transitions between a skyrmionic Q = 1 state and a Q =
0 skyrmionium state. Note that the collision transition of two skyrmions (see
transition A – SP1 – B) has only recently been initially reported by the author
of this work [58]. The energy difference between the two states is, similar to
the case in Figure 1.14, ∆E ≈ 11.5 meV and the collapse of one of the cores
has again a barrier of ∆E ≈ 0.3 meV. The energy barrier of the collision is on
the same order of magnitude as the collapse at ∆E ≈ 0.6 meV .

It is evident that the behaviour is generally the same as in the previous case, but
while the collision between the two skyrmionic cores has a higher energy barrier than
the collapse of one of the cores, the energy difference between the states of Q = 2 and
Q = 1 is still on a different order of magnitude. Qualitatively speaking, the skyrmionic
loop seems to be a tightly wound structure, which seems to cost a relatively high
amount of energy, while its tendency to shrink in size pushes the cores inside so close
together that they are easily collapsed or collided. This also holds for the collapse of
the skyrmionic core inside the Q = 0 skyrmionium, as shown in Figure 1.16.
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FIGURE 1.16 – Collapse of a skyrmionium to a skyrmion

MEP calculation for the transition from a skyrmion with Q = −1 state to a Q = 0
skyrmionium – or inversely the collapse of the skyrmionium. The energy differ-
ence between the two states is ∆EA−B ≈ 10.3 meV, while the energy barrier of
the collapse is ∆EB−SP ≈ 2 meV.

It appears that such skyrmionic loops are not particularly stable, but this should
be studied under different parameters as well. As the energy barriers do not change
significantly with the charge Q, the calculation of barriers for loops of low charge
would already provide a lot of information in general.

We will now examine the skyrmion sacks, such as the Q = −2 state shown in
Figure 1.10 which behave quite differently from the previous loop configurations.
Due to the fact that the energy difference between the states of different topological
charge is significantly lower in this case (see Ref. [138]), the barriers can be expected
to be – relatively – higher. The first example of this is shown in Figure 1.17, where
two transitions between the sacks of Q = −1 and Q = −2 are shown.
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FIGURE 1.17 – Two transitions between Q = −2 and Q = −1 skyrmion
"sacks"

MEP calculation for the transitions between a skyrmionic Q = −1 state and a
Q = −2 state. Note the analogous collision transition as in Figure 1.15 (see
transition B – SP1 – A) recently first reported by the author of this work [58].
The energy difference between the two states is ∆EA−B ≈ 1 meV, while the
energy barrier of the collision is ∆EB−SP2 ≈ 7 meV and the collapse of one of
the cores has a barrier of ∆EB−SP1 ≈ 7 meV.

The conjecture is found to be correct, as the barriers are now almost an order
of magnitude larger than the energy difference between the states – the relation has
been almost inverted. The distance between the skyrmion cores is significantly larger
inside the sack than in the case of the skyrmionic loops, as the energy cost for the
deformation and size increase of the surrounding wall is observed to be very small.
This effectively puts far less pressure on the skyrmions and there is consequently a
higher barrier for their collapse or collision.

Equivalent transitions between sacks with Q = −3 and Q = −2 are presented in
Figure 1.18.
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FIGURE 1.18 – Two transitions between Q = −3 and Q = −2 skyrmion
"sacks"

MEP calculation for the transitions between a skyrmionic Q = −2 state and a
Q = −3 state. The energy difference between the two states is ∆EA−B ≈ 1 meV,
while the energy barrier of the collision is ∆EB−SP2 ≈ 7 meV and the collapse
of one of the cores has a barrier of ∆EB−SP1 ≈ 6.5 meV.

Clearly, the tendency is the same and the relative energy differences can be ex-
pected to behave the same for arbitrarily large skyrmion sacks.

One transition remains to be shown: the collision of a skyrmion with the boundary
wall of the sack. This is shown for the sacks of Q = −3 and Q = −2 in Figure 1.19.
Note that this transition was not found to be a MEP for the transition from Q = −1
to Q = 0.
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FIGURE 1.19 – Skyrmion colliding with the "sack" wall

The energy barriers are equal within the precision of these calculations at∆E ≈
9 meV. The skyrmionium does not support the collision of the core and boundary
as a first-order saddle point.

Once more, the energy barrier for the transition is an order of magnitude larger
than the energy difference between the topologically distinct states.

Finally, there is a transition which is highly important for the stability of these
objects: the breaking of the sack. This transition was not found for the skyrmionium,
but is shown for charges Q = −1 to Q = −3 in Figure 1.20.
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FIGURE 1.20 – Breaking the outer wall of a skyrmion "sack"

The curves have slightly different shapes due to the fact that their boundary
images for the broken sack is slightly different. The energy barriers are approx-
imately equal at ∆E ≈ 4 meV. Note that the MEP does not constitute a mean-
ingful transition after the saddle point, as the state is broken and no useful
information is given by the rest of the transition.

Note that the position of the defect nucleation along the wall can change the energy
barrier, though not to a significant extent. However, if one were to attempt transition
rate calculations (see the following Section 1.3), this would be a difficult issue to
resolve correctly, especially as counting the number of saddle points and their corre-
sponding transition rates is an important part of the calculations.

It has been shown that a wide variety of interesting transitions can appear in chiral
magnetic systems, but aside from the energy barrier there is not yet any quantitative
measure of the likelihood of a transition actually occurring. The following Section 1.3
will introduce the mathematical tools to calculate approximate transition rates out
of the properties of the energy landscape, instead of having to rely on statistical sam-
pling methods.

1.3 TRANSITION RATE CALCULATIONS

In the estimation of the lifetimes of magnetic states, the time-scales between the fast
precession of magnetic moments relative to the transitions between states, may pro-
hibit the use of dynamical simulations (see also Section I.2 and Section I.4). There-
fore, statistical approaches to the calculation of transition rates may be preferable
[57]. The calculation of energy barriers with GNEB can give a first impression of the
stability of a state with respect to specific decay processes, but as a quantitative mea-
sure it is highly unreliable [38, 40]. This section will deal with HTST as a method to
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retrieve a more suitable measure of a states lifetime – a transition rate following an
Arrhenius-type law

Γ = Γ0e−∆E/kBT , (1.21)

where ∆E is the energy barrier for a given transition and the prefactor Γ0, corre-
sponding to a fundamental fluctuation rate expressing the characteristic time scales
of the dynamics of the barrier-crossing, is determined by the properties of the energy
landscape. The discussion is kept close to references [57] and [146].

1.3.1 Transition state theory

Transition state theory (TST) [147] has been widely used to estimate the rate of
thermally activated atomic rearrangements, such as chemical reactions and diffu-
sion [148]. The separation of time scale mentioned above makes it possible to es-
timate the rate from the probability of finding the system in the most restrictive and
least likely region of phase space, separating the initial state from possible final states
– the transition state. A general expression for the rate of escape from an initial state
is [149]

Γ = 〈δ[ f (x)]v⊥(x)χ[η(t)]〉 , (1.22)

where x represents the degrees of freedom of the system, angled brackets denote
thermal averaging with a Boltzmann distribution, f (x) = 0 defines a dividing surface,
which separates the initial state from other stable configurations in the remaining
configuration space, δ[ f (x)] restricts the averaging to the dividing surface, v⊥(x) =
∇ f (x)ẋ is the projection of the velocity on the local normal vector of the dividing
surface, and finally χ[η(t)] is the functional of a full trajectory described by η(t).

The functional χ[η(t)] includes coupling to the heat bath and takes the value of
unity if a trajectory, starting from the initial state, goes directly from a point x on
the dividing surface to the final state and remains there for a long time compared
to the time it takes to cross the barrier, but is zero otherwise. In the transition state
theory (TST) approximation, all trajectories pointing away from the initial state at
the dividing surface are assumed to be reactive, i.e. the functional χ[η(t)] is ap-
proximated by a Heaviside step function h[v⊥(x)]. This means that recrossings of
the dividing surface are neglected in the TST. Calculations of short time dynamical
trajectories can then be carried out starting at the dividing surface to determine the
recrossing correction factor [150, 151], κ, and obtain the exact rate Γ = κΓ TST. Note,
however, that recrossing corrections for spin systems have not yet been derived.

Given a transition state dividing surface, f (x) = 0, the reaction rate constant Γ TST,
corresponding to the flux through the dividing surface, can be estimated for spin
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systems, in a way that is analogous to atomic systems [152, 153], as

Γ TST =
1
C

∫

R

e−E(x)/kBT
︸ ︷︷ ︸

a)

v⊥(x)
︸ ︷︷ ︸

b)

δ[ f (x)]
︸ ︷︷ ︸

c)

h[v⊥(x)]
︸ ︷︷ ︸

d)

dx , (1.23)

where R denotes the region associated with the initial state up to and including the
dividing surface, the normalization constant – assuming a Boltzmann distribution
dP = C exp(− E

kBT )dx around the local minimum – is given by

C =

∫

R

e−E(x)/kBT
︸ ︷︷ ︸

a

dx (1.24)

and

a) is the Boltzmann distribution,

b) is the velocity along the dividing surface normal: v⊥(x) =∇ f (x)ẋ,

c) ensures that only the dividing surface is taken into account,

d) is the Heaviside function to eliminate recrossing.

The dividing surface f (x) can be chosen arbitrarily, as long as it contains the saddle
point and its normal is parallel to the unstable mode in this point. For convenience,
we choose a hyperplane, orthogonal to the unstable mode. Note, the length of the ve-
locity vector v⊥(x) is proportional to the magnitude of the energy gradient but due to
condition c), δ[ f (x)], for our choice of dividing surface, the damping contribution to
the velocity points inside the hyperplane, while the precessional contribution points
orthogonal to it. This is due to the fact that any point on the hyperplane, outside
of the saddle point, naturally has a gradient pointing inside the plane towards the
saddle point.

1.3.2 HTST: harmonic approximation

The transition rate (1.23) can be derived analytically in the harmonic approximation
to TST [155]. We expand the energy around a spin configuration M0 = {n*0,i} ∈M
(see also Equation (I.8)) and make the harmonic approximation

E ≈ E0 + Gini +
1
2

niHi jn j , (1.25)

where G is the covariant gradient and H the covariant Hessian matrix of second
derivatives at M0. The corresponding energy landscape contributions to Equation (1.23)
are schematically visualised in Figure 1.22.

While Section 2.2 of the following chapter will cover the derivation of the covariant
Hessian matrix at nonstationary points, the following HTST calculations only require
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FIGURE 1.21 – Visualisation of the dividing surface in HTST

Schematic visualisation of a region around a first order saddle point on an en-
ergy surface for a magnetic spin system. The hyperplanar transition state (also
called dividing surface), used in HTST, is shown as a dashed line. It includes
the saddle point and its normal vector points along the unstable mode. The ve-
locity orthogonal to the dividing surface vanishes at the saddle point according
to the LLG equation of motion. Reprinted from [154] with minor modifications,
licensed under CC BY-NC-ND 4.0.

the Hessian at local minima and first order saddle points of the energy landscape,
where it can be derived more easily (see Appendix C). Note that G = 0 at stationary
points of the energy landscape. Note that, writing

M = M0 + q , |q| � 1 , (1.26)

the above formulation is possible due to Gin0,i = 0 and Hi jn0, j = 0, as the covariant
gradient and Hessian – G and H – live in the tangent space to the physical manifold
M at M0 (see also sections I.2 and 2.2).

We choose the perturbations qi, which are required to be tangential to M0, to lie
along the eigenvectors Λi of the Hessian, i.e. q =

∑

qiΛi, as visualised schematically
in Figure 1.22. This yields us

EHTST = E0 +
1
2

2N
∑

i

λiq
2
i , (1.27)

where λi are the eigenvalues of the Hessian corresponding to the 2N tangential eigen-
vectors Λi. We assume an ordering of the eigenmodes by their eigenvalue, meaning

60



1.3 T R A N S I T I O N R AT E CA L C U L AT I O N S

that the unstable mode at the saddle point is ΛSP
1 .

z

y

x

z

n�

q1

q2
∂ 2H
∂ 2q1

= λ1

q1

E
∂ 2H
∂ 2q2

= λ2

q2

F IGURE 1.22 – Schematic of spin perturbation

Illustration of the tangential perturbations to a single spin. Left: the spherical
manifold of the spin vector n� and tangential perturbations q1 and q2. Right: the
harmonic approximation to the energy landscape assumes a parabolic potential
close to the point of expansion. The eigenmode directions have different cur-
vatures of the energy, given by the Hessians eigenvalues λ1 and λ2. Note that
the eigenmode directions can point in arbitrary tangential directions and in the
case of multiple spins need not be orthogonal for each spin, but only in total.

In this notation of perturbations, the LLG equation is linearized to the dynamical
equation

∂t n
�

i = Vi jn
�

j , (1.28)

where V is generally called the dynamical matrix, but in the context of the LLG equa-
tion sometimes velocity matrix. Of course ∂t n

�

0,i = Vi jn0, j = 0. This lets us rewrite the
transition rate Γ TST of Equation (1.23) into its harmonic approximation

ΓHTST =
1
C

∫
R

exp
�
− 1

kBT
E(x)

�
v⊥(x)δ[ f (x)]h[v⊥(x)] dxi

=
1
C

∫
V

exp

 
− 1

2kBT

2N∑
i=2

λSP
i q2

i

!
a · q

2N∏
l=2

dql e−ESP/kBT .

(1.29)

The energy E(x) is expanded quadratically around the saddle point according to Equa-
tion (1.27), where the E0 contribution gives the final exponential. The Heaviside func-
tion h[v⊥(x)] results in the requirement v⊥ > 0. The delta function δ[ f (x)] restricts
the integration to the dividing surface f (x) – the hyperplane to which the negative
mode is orthogonal – so that the sum and product start at i = 2. The perpendicu-
lar velocity v⊥, which points along the negative mode, is rewritten by representing
the velocities v = ∂t n

� = q̇ of the dynamical Equation (1.28) in the Hessian matrix’
eigenbasis, writing

v⊥ = q̇1 = VSP,P
1 j q j := a · q , (1.30)

where VSP,P is the precessional part of the dynamical matrix at the saddle point rep-
resented in the 2N tangent space (i.e. the same space as q)

V |2N = ΛTV |3NΛ . (1.31)
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As the damping contributions to q̇1 on the dividing surface necessarily would point
inside the dividing surface (towards the saddle point), they are zero. Therefore, a*

is the first line of the dynamical matrix V represented in the (2N -) basis of tangen-
tial perturbations (by our choice the Hessians eigenbasis). Note that the dynamical
matrix (1.31) can also be represented differently, by using Equation (I.10).

At this stage we factor modes of zero eigenvalue, also called zero modes or Gold-
stone modes, out of the integral. As the corresponding exponentials in Equation (1.29)
will take the value eλiq

2
i = e0 = 1 and the corresponding velocity factors are ai = 0,

we can pull the integration over those qi out of the product of integrals as a factor

V SP =

∫ NSP
0
∏

i=2

dqi . (1.32)

The following derivation has been published in different form [155], but the com-
paratively short version presented here was created from notes provided by Pavel
Bessarab and Igor Lobanov. In order to further simplify the integral, we rescale the
remaining integrals:

x i = qi

√

√ λi

2kBT
, (1.33)

bi = ai

√

√2kBT
λi

, (1.34)

ΓHTST =
V SP

C

p

2kBT
PSP

∏′
i

Æ

λSP
i

∫

V

exp

�

−
∑′

i

x2
i

�

b · x
∏′

l

d x l e−ESP/kBT , (1.35)

where PSP = 2N−(1+N SP
0 ) is the number of positive modes (i.e. λi > 0) at the saddle

point and
∏′ and

∑′ denote indexing only over positive eigenvalues, i.e. in this case
over [2+ N SP

0 , 2N]. We apply the condition that v⊥ = a · q = b · x > 0 (elimination
of recrossings by the Heaviside function h[v⊥(x]) and make use of the invariance of
the integral under rotation of the tangential basis, writing

b · x !
= |b|xp ⇒ xp > 0 , (1.36)

where Equation (1.34) trivially gives

|b|=
Æ

2kBT

√

√

√

∑′

i

a2
i

λSP
i

. (1.37)

This gives us separation of variables in the integral so that the Equation (1.35) re-
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duces to the evaluation of the Gaussian integrals

∞
∫

−∞

e−x2
d x =

p
π and

∞
∫

0

xe−x2
d x =

1
2

,

ΓHTST =
V SP

C

p

2kBT
PSP

∏′
i

Æ

λSP
i

|b|
∞
∫

−∞

∏′

l 6=p

d x l

∞
∫

0

d xp xp

∏′

i

e−x2
i e−ESP/kBT

=
1

2π
V SP

C

p

2πkBT
PSP+1

∏′
i

Æ

λSP
i

√

√

√

∑′

i

a2
i

λSP
i

e−ESP/kBT .

(1.38)

We apply the same process to retrieve the normalisation constant (note in this case
there is no negative mode):

C =

∫

R

exp
�

− 1
kBT

E(x)
�

dx

=

∫

R

exp

�

− 1
2kBT

2N
∑

i=1

λM
i q2

i

�

dq e−EM/kBT

= V M

p

2kBT
PM

∏′
i

Æ

λM
i

∫

R

exp

�

−
∑′

i

x2
i

�

dx e−EM/kBT

= V M

p

2πkBT
PM

∏′
i

Æ

λM
i

e−EM/kBT ,

(1.39)

where the primes again denote positive eigenvalues, in this case indexing over [1+
NM

0 , 2N], and we again pulled out the zero mode contributions, which are in this case

V M =

∞
∫

0

NM
0
∏

i=1

dqi . (1.40)

With ∆E = ESP − EM we therefore get

ΓHTST =
1

2π

Æ

2πkBT
NM

0 −NSP
0 V SP

V M

∏′
i

Æ

λM
i

∏′
i

Æ

λSP
i

√

√

√

∑′

i

a2
i

λSP
i

e−∆E/kBT . (1.41)

This finally brings us back to the transition rate (1.21), as we can compactly write

ΓHTST = Γ0e−∆E/kBT , Γ0 =
1

2π
V SP

V M
vΩ0

Æ

2πkBT
NM

0 −NSP
0 , (1.42)
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where Γ0 is the attempt rate and we factored out the dynamical factor

v =

√

√

√

∑′

i

a2
i

λSP
i

(1.43)

and the curvature factor

Ω0 =

√

√det′HM

det′HS
=

√

√

√

∏′
i λ

M
i

∏′
i λ

SP
i

. (1.44)

Note a subtle difference of in the definition of Ω0 between Langers theory (see
Ref. [144]) and HTST, where the former also includes the absolute value of the neg-
ative curvature at the saddle point.

1.3.3 Entropy contributions

Refs. [40, 144] (see also [156]) draw a relation between the attempt rate Γ0 and the
entropy. It can be shown that transition rates of individual processes can be domi-
nantly determined by a part of the prefactor, which can be interpreted as a measure
of entropy.

The partition function of a classical system of N spins in a canonical ensemble
reads

Z = (4π)−N

∫

Ω1

· · ·
∫

ΩN

∏

i

dΩie
−E/kBT , (1.45)

where dΩi is the element of solid angle in the direction of the ith spin. By applying the
same tools as in the previous derivations, the partition function, expanded around a
stationary point of the energy landscape (see Equation (1.25)), can be expressed as

Z =
e−E/kBT

(4π)N

∫

∏

i

dqie
− 1

2

∑

λiq
2
i /kBT

=
e−E/kBT

(4π)N
∏

i

∫

dqie
− 1

2λiq
2
i /kBT .

(1.46)

The integration over an unstable mode direction, one of which will appear for the sad-
dle point configuration, can be simplified by assuming constant energy for the width
σ of the infinitessimally thin transition state, i.e. we set λ1 → 0 in that case. And
with the same considerations of integration over zero modes as before, one obtains

Z =
σVe−E/kBT

(4π)N
∏′

i

√

√2πkBT
λi

, (1.47)

where V is the zero mode volume,σ the unstable mode volume and
∏′ again denotes
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the product of only positive eigenvalues. Note that analogous to before, V = 1 if
there are no zero modes and σ = 1 if there are no unstable modes. At the saddle
point configuration there should be exactly one unstable mode of negative curvature
λ1 < 0, while there should be none at the minimum. The Helmholtz free energy of
each state can be estimated as

F = −kBT ln(Z)

= E − kBT ln(σV ) + NkBT ln(4π)− kBT
∑′

i

ln

�
√

√2πkBT
λi

�

.
(1.48)

The entropy, in turn, can then be derived as (compare Eqs. (I.30) – (I.32))

S = −∂ F
∂ T
= kB ln(σV )− NkB ln(4π) + kB

∑′

i

ln

�
√

√2πkBT
λi

�

+ kB
P
2

, (1.49)

where P is the number of positive eigenvalues. This gives an entropy difference be-
tween the transition state and the (meta)stable state of

∆S
kB
=

NM
0 − N SP

0 − 1

2
+ ln

σSPV SP

V M
+ ln





Æ

2πkBT
NM

0 −NSP
0 −1

√

√

√

∏′
i λ

M
i

∏′
i λ

SP
i



 , (1.50)

where we used the fact that σM = 1, as there are no negative curvatures at the local
minimum. Therefore

e∆S/kB = e(N
M
0 −NSP

0 −1)/2σ
SPV SP

V M

Æ

2πkBT
NM

0 −NSP
0 −1

√

√

√

∏′
i λ

M
i

∏′
i λ

SP
i

, (1.51)

by which we can relate the attempt rate Γ0 to the configurational entropy as

Γ0 =
e−(N

M
0 −NSP

0 −1)/2

σSP
v
Æ

2πkBT e∆S/kB , (1.52)

meaning there is a direct relation between the rate prefactor and the difference in
entropy between the local minimum and the saddle point.

1.3.4 Zero mode contributions

These derivations are found in the supplementary material to Ref. [38]. For zero
modes (meaning modes with zero eigenvalue), often also called Goldstone modes,
we get contributions to the rate prefactor Γ0 of Equation (1.29) in form of integrals
over such modes,

Vq =

∫

dq . (1.53)
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Integration of the distribution function over a Goldstone mode is non-Gaussian and
results in the volume of the mode. For a skyrmion in a magnetic strip, the Goldstone
modes correspond to pure translations of the magnetic configuration. Consequently,
the volumes of the modes can be obtained by integration over a spatial coordinate.
Localized magnetic textures, such as the skyrmion or its saddle point state for the
radial collapse, can be described by a set of unit vectors M = {n*1, n*2, . . . , n*N}, where
N is the number of spins in the system. Let r* be the position of the localized state,
i.e. the position of the skyrmion center. Translation of the magnetic texture along a
direction e*a by an infinitessimal distance da can be described by

M(r*+ e*ada)−M(r*) =
dM
da

da . (1.54)

This is equivalent to the displacement along a zero mode Λi, meaning we can also
write

M(r*+ e*ada)−M(r*) = Λi(r
*)dq . (1.55)

These relations are schematically visualised in Figure 1.23.

M(r*)

M(r*+ e*ada)

∆M = dM
d x d x = Λi(r

*)dq

FIGURE 1.23 – Schematic visualisation of translational skyrmion mode

Schematic visualisation of the displacement of a skyrmion spin configuration.
The skyrmion core is shifted by a finite translation e*ada.

As, by our definition, the zero mode is normalized, i.e. |Λi|= 1, we can reformulate
this in absolute values and write

dq = |M(r*+ e*x d x)−M(r*)|=
�

�

�

�

dM(r*)
d x

�

�

�

�

d x . (1.56)

Specifically, if e*a is chosen to be along the lattice vector a*

�

�

�

�

dM(r*)
d x

�

�

�

�

≈ 1
a
|M(r*+ a*)−M(r*)|= 1

a

�

N
∑

i

|n*i(r
*+ a*)− n*i(r

*)|2
�1/2

, (1.57)

where a is the lattice constant. We can therefore replace the integration over the
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eigenmode by an integration over the spatial coordinate

Vq =

∫

dq =

La
∫

0

�

�

�

�

dM(r*)
d x

�

�

�

�

d x =
La

a

�

N
∑

i

|n*i(r
*+ a*)− n*i(r

*)|2
�1/2

. (1.58)

Note that special considerations need to be made for these calculations in order to
obtain physical results. For example, the system size La may be infinite, for example
under periodical boundary conditions, meaning that the fact that there are also in-
finitely many skyrmion collapse saddle points needs to be taken into account in order
to obtain a finite lifetime. Another example is the fact that, strictly speaking, a (nu-
merically) zero mode corresponding to a translation of a skyrmion in a non-periodical
direction is not a zero mode.

1.4 THE DYNAMICAL MATRIX

The dynamical prefactor v (see Eqs. (1.42) and (1.43)) takes into account the dy-
namics of the system at the saddle point and is determined in part by the set of N de-
terministic LLG equations, linearized around the saddle point (see Equation (1.28)),
which read in index notation

∂t n
i
α
= V i j

αβ
n j
β

. (1.59)

To ease notation, we split the dynamical Equation (1.28) into precession and damping
contributions

V |i j =
γ

(1+α2)µi
S

VP|i j +
γα

(1+α2)µi
S

VD|i j . (1.60)

Starting out with the precession contribution:

VP|i j
αβ

n j
β
= −εαµνni

µ

∂ E
∂ ni

ν

, (1.61)

we can write within the harmonic approximation (1.25), where ∂ G/∂ n = 0 and
∂ H/∂ n= 0,

∂ E
∂ ni

ν

=
∂

∂ ni
ν

�

E0 + Gk
α
nk
α
+

1
2

nk
α
Hkl
αβ

nl
β

�

= G i
ν
+

1
2
(H il

νβ
nl
β
+ nk

α
Hki
αν
)

= G i
ν
+H ik

νγ
nk
γ

.

(1.62)
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Note that G = 0 at stationary points and can therefore be omitted for HTST calcula-
tions. Using Equation (1.62), we can rewrite Equation (1.61) as

VP|i j
αβ

n j
β
= εαµνn

i
µ

�

G i
ν
+H ik

νγ
nk
γ

�

. (1.63)

Furthermore, the linearised LLG equation implies ∂ V/∂ n = 0 and therefore, taking
the derivative of Equation (1.63), we can write

VP|i j
αβ
=
∂

∂ n j
β

εαµνn
i
µ

�

G i
ν
+H ik

νγ
nk
γ

�

. (1.64)

It finally follows that the precession contribution to the velocity matrix has the form

VP|i j
αβ
= εαµνn

i
µ
H i j
νβ
+δi jεαβν

�

G i
ν
+H ik

νγ
nk
γ

�

. (1.65)

For the damping contribution we follow the same procedure, except that we can
make use of a*× (b*× c*) = b

*

(c* · a*)− c*(a* · b*) to rewrite the triple product

n*i ×
�

n*i × ∂ E

∂ n*i

�

= n*i
�

n*i · ∂ E

∂ n*i

�

− ∂ E

∂ n*i (1.66)

and thereby obtain
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=− εαµνni
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ενγρni
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(1.67)

In the frame of HTST, the Hessian matrix – needed as a contribution to the dynam-
ical matrix – only needs to be calculated at extremal points. To take the curvature of
the spin manifold into account, in this case, a derivation from Lagrange multipliers,
as shown in Appendix C.4, is sufficient. It gives a simple correction on the diagonal

H = H̄ − 1
�

x j ·
∂H
∂ n* j

�

. (1.68)

A generalized derivation of the Hessian matrix is shown in the following Section 2.2,
where the Hessian is needed also in non-stationary points.

As the Hessian (1.68) is given in the embedding space E , it includes unphysical
degrees of freedom which are parallel to the spins (see also Section I.2). In order to
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avoid these non-tangential degrees of freedom, we again transform into the tangent
space basis T (see also Equation (I.10))

Vi j → T T
i Vi j T j . (1.69)

Note Equation (1.31), giving the representation of the dynamical matrix in the tan-
gent space:

V |2N = ΛT |2N T TV |3N TΛ|2N . (1.70)

Of course, one can alternatively use the 3N representation of the Hessians eigenbasis:

V |2N = ΛTVΛ . (1.71)

1.5 EIGENMODES OF THE DYNAMICAL MATRIX

Note that the basis for this section was already covered, for example by David Bauer [53]
and transferred to non-collinear spin configurations, for example by Levente Rózsa [119]
(see ref. [157] for a more recent study of dynamical eigenmodes of skyrmions). How-
ever, the following will be written in the external frame of reference (see also Sec-
tion 2.2). In the author’s opinion, this approach gives a far more natural solution and
intuitive understanding, as well as simpler equations. Furthermore, it is not necessary
to only consider stationary points for the calculation of these quantities.

We are interested in the dynamical eigenmodes n*i(t) of a spin system. These can
be determined from the linearised LLG Equation (1.28), which, can be conveniently
rewritten

∂t n
*

i = Vi jn
*

j = EikDklE−1
l j n* j , (1.72)

where D is a matrix with the eigenvalues εi on its diagonal and E is the tangential part
of the eigenbasis of the dynamical matrix V and is taken to be a 3N ×2N matrix, i.e.
consisting of the 2N eigenvectors tangential to the spin configuration. The eigenbasis
E is known from the diagonalization of the 2N representation V |2N and subsequent
transformation into the embedding space E |3N = TE |2N T T .

If we use the notation of small tangential perturbations n(t) = n(t0) + q(t), anal-
ogous to the expansion performed in Section 1.3 (see Equations (1.26) and (1.27)),
we know that n(t0) is by construction not in the tangent space, i.e. Vn(t0) = 0 and
En(t0) = 0 and we can therefore write

∂tE−1
i j q* j = DikE−1

k j q* j = εiE−1
i j q* j

⇒ E−1
i j q* j = cie

εi t

⇔ q*i(t) = ciEie
εi t ,

(1.73)

where Ei denotes one eigenvector, i.e. a column of the eigenbasis matrix E .
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This means that the general solution is

n(t) = n(t0) + q(t), qi(t) = ciEie
εi t , (1.74)

where εi = γi + iωi are the eigenvalues.
However, we can simplify the general solution to the purely real eigenmodes. As V

is in general a real matrix with complex eigenvalues and eigenvectors, we can write
for any eigenvalue and -vector pair {εi,Ei}

VEi = εiEi ⇒ (VEi)
∗ = (εiEi)

∗ ⇐⇒ VE∗i = ε∗i E∗i . (1.75)

This means that the conjugate pair {ε j = ε∗i ,E j = E∗i ; i 6= j} is also an eigenmode.
Due to the structure of the differential Equation (1.73) for the perturbations, all linear
combinations of eigenvectors are still eigenvectors. We therefore choose q to be the
real solution

q(t) =
1
2

�

Eie
εt + E∗i eε

∗ t
�

= eγt (cos(ωt)ℜ(Ei) + sin(ωt)ℑ(Ei)) . (1.76)

Note that due to εi = ε∗j , it is sufficient to calculate only half the eigenmodes,
namely those with the highest or lowest imaginary part, as the counterpart has a
flipped sign.

While the above may seem somewhat abstract, the resulting eigenmodes are very
intuitive to understand when visualised. The case of a damped single spin at a local
minimum is shown in Figure 1.24, where – starting from an initial displacement – the
spin performs a damped, elliptic eigenprecession back to the minimum. In the case of
a saddle point as starting point, there may be an exponentially divergent contribution
from the negative real part γi of the eigenvalue εi.

1.5.1 Simplification in the precession-only case

When the damping term in the dynamical matrix is neglected, one of course gets only
stable eigenmodes, which do not decay or diverge. This can be shown by the fact that
V is in this case skew-symmetric. We can therefore write

Vn= εn⇒ n†Vn= ε|n|2 , (1.77)

where † denotes the Hermitian conjugate (i.e. complex conjugation and transposi-
tion) and |n| is of course a real number. Thus,

ε∗|n|2 = (n†Vn)† = n†V(n†)† = −n†Vn= −ε|n|2 . (1.78)
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FIGURE 1.24 – Dynamical eigenmode trajectories of a single spin

Effective damping parameter αeff
k as a function of the inverse aspect ratio bk/ak

of the polarisation ellipse of the eigenmode. The insets illustrate the correspond-
ing damped precession of a spin, corresponding to what is described in this
chapter for the case of finite damping at a local minimum. Reprinted with per-
mission from [158]. Copyright 2018 American Physical Society.

This means that ε∗ = −ε and thereforeV has only imaginary eigenvalues, i.e. εi = iωi.
The dynamical eigenmodes (1.76) hence simplify to stable solutions

q(t) = cos(ωt)ℜ(Ei) + sin(ωt)ℑ(Ei) . (1.79)

The case without damping is shown in Figure 1.25 for the more complex system
containing an isolated skyrmion. Though the modes are no longer trivial to plot, there
is a set of eigenfrequencies which distincly belong to the skyrmion (not the ferromag-
netic background state), corresponding to symmetry-related transformations of the
skyrmion: translation, core gyration, and elliptic and higher-order deformations.

The skyrmion is shown to have a breathing mode, a translational mode and an
elliptical, a triagonal, a quadruple and higher-order eigenmodes. There is a distinct
similarity to the eigenmodes of the Hessian, but from the derivations in this chapter
it is not clear if their relation can be quantitatively shown.
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FIGURE 1.25 – Dynamical skyrmion modes

Frequencies of localized spin wave modes at zero damping α= 0. The six low-
est eigenmodes of a skyrmion are visualised by colour-coding the out of plane
spin component of the configuration displaced along the mode. Reprinted with
permission from [157]. Copyright 2018 American Physical Society.

1.6 TRANSITION RATE TEST CASE: 2D SKYRMIONS

Due to the combination of different methods in Spirit [47, 48], it is very easy to
calculate the rates of transitions:

• calculate minima using direct minimisation

• calculate transition path and saddle point using GNEB

• calculate the transition rate prefactor using HTST

To extract the prefactor, one simply needs a chain containing the local minimum
and saddle point images:

1 NOI=10
2 with state.State(input_file, quiet=True) as p_state:
3 configuration.plus_z(p_state)
4 chain.image_to_clipboard(p_state)
5 chain.set_length(p_state, NOI)
6
7 configuration.skyrmion(p_state, 5.0, phase=−90.0, idx_image=0)
8 configuration.plus_z(p_state, idx_image=NOI−1)
9
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10 simulation.start(p_state, LLG, VP, idx_image=0)
11
12 transition.homogeneous(p_state, 0, NOI−1)
13 chain.update_data(p_state)
14 parameters.gneb.set_image_type_automatically(p_state)
15 simulation.start(p_state, GNEB, VP)
16
17 energies = chain.get_energy(p_state)
18 idx_max = energies.index(max(energies))
19
20 # returns value in 1/(Ks)
21 prefactor = quantities.get_htst_prefactor(p_state, idx_image_minimum, idx_image_sp)

LISTING 1.2 –

Combination of LLG, GNEB and HTST used to get the transition rate prefactor

The calculations in this thesis have been verified against the UppASD and Matjes
codes.

1.6.1 Simple cubic lattice

In order to test the implementation in Spirit, the following example is presented.
Parameters are chosen to be

µS = 3µB , Bext = 0.2 T , K = 0.5 T , Ji j = 20 meV , Di j = 2 meV . (1.80)

The lattice is simple cubic and of size 50× 50 with periodical boundaries.

FIGURE 1.26 – Skyrmion and collapse saddle point in simple cubic lattice

Simple cubic lattice with periodical boundary conditions, containing a single
Bloch skyrmion (left) and the saddle point configuration for the radial skyrmion
collapse (right).
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minimum saddle point

1.652613 · 10−09 −3.682553 · 10−01

1.652870 · 10−09 1.732453 · 10−03

1.137551 · 10−01 1.732453 · 10−03

9.639774 · 10−01 1.026862 · 10+00

1.023241 · 10+00 1.026862 · 10+00

1.023241 · 10+00 1.061867 · 10+00

1.328575 · 10+00 1.324041 · 10+00

1.328575 · 10+00 1.324041 · 10+00

1.354243 · 10+00 1.357010 · 10+00

1.361490 · 10+00 1.357010 · 10+00

TABLE 1.2 – Lowest eigenvalues of the skyrmion collapse (sc lattice)

As expected, the saddle point has one negative eigenvalue. The minimum has
two zero modes for the translation of the skyrmion, whereas those two modes
have grown in eigenvalue at the saddle point, due to the stronger curl in the
magnetisation, relative to the lattice. Values are given in meV.

We recall Equation (1.42):

ΓHTST =
v

2π
Ω0e−∆E/kBT ,

where the dynamical prefactor v is given by Equation (1.43)

v =
Æ

2πkBT
PSP−PM V SP

V M

√

√

√

∑′

i

a2
i

λSP
i

︸ ︷︷ ︸

s

.

s v cx cy cz

3.9076 · 10−1 1.3747 · 101 1 · 100 1.5391 · 10−2 1.2158 · 102

TABLE 1.3 – Prefactor contributions for the skyrmion collapse (sc lattice)

As expected, the saddle point has one negative eigenvalue. The minimum has
two zero modes for the translation of the skyrmion, whereas those two modes
have grown in eigenvalue at the saddle point, due to the stronger curl in the
magnetisation and relative to the lattice.

At the saddle point, one eigenvalue has turned negative, but due to the discretisa-
tion the zero modes are no longer present. The prefactor is then Γ0 = 9.05966845952·
1011 1

K·s .
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1.6.2 Hexagonal lattice

Hexagonal lattice (here chosen as 120 deg). Size of the system: 60x60 translations
along the lattice vectors, periodical boundaries.

µS = 3µB , Bext = 2T , K = 0.4 meV , Ji j = 5.9 meV , Di j = 1.6 meV . (1.81)

FIGURE 1.27 – Skyrmion and collapse saddle point in hexagonal lattice

Hexagonal lattice (120◦) with periodical boundary conditions, containing a
single Neel skyrmion (left) and the saddle point configuration for the radial
skyrmion collapse (right).
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minimum saddle point

−5.660782 · 10−09 −5.116295 · 10+00

8.525432 · 10−09 2.124529 · 10−01

1.948042 · 10−01 2.124529 · 10−01

6.586385 · 10−01 1.148786 · 10+00

6.586385 · 10−01 1.148786 · 10+00

1.158167 · 10+00 1.258589 · 10+00

1.158167 · 10+00 1.270695 · 10+00

1.273047 · 10+00 1.270695 · 10+00

1.273047 · 10+00 1.273199 · 10+00

1.277477 · 10+00 1.276659 · 10+00

TABLE 1.4 – Lowest eigenvalues of the skyrmion collapse (hexagonal
lattice)

Expectedly, the qualitative behaviour matches Table 1.2. The saddle point has
one negative eigenvalue, while the minimum has two translational zero modes.
At the saddle point, those zero modes vanish due to the stronger curl in the
magnetisation, relative to the lattice. Values are given in meV.

The prefactor, which is extracted from Spirit needs to be scaled by the number
of occurences per unit cell of the corresponding saddle point, which in this case is
2. This is schematically shown in the following Figure 1.28, illustrating the possible
positions of the centre of the saddle point skyrmion configuration.

T B

B

B

H H

FIGURE 1.28 – Schematic of skyrmion collapse saddle points in the
hexagonal unit cell

Schematic visualisation of the various skyrmion collapse saddle points, which
can be calculated using the GNEB method. At the given field of B = 0.2 T, the
"hollow" (H) configuration (see Figure 1.27) is a first order saddle point, while
"bridge" (B) and "top" (T) are not.

Therefore, the prefactor is Γ0 = 2 · 4.523811 · 1010 1
K·s = 9.047622 · 1010 1

K·s .

1.6.3 Arrhenius plot of the radial collapse

Using the temperature-dependent prefactor and the barrier- and temperature-dependent
exponential, one can create an Arrhenius plot of the lifetimes of a skyrmion in a pe-
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riodical system over the temperature and one parameter. The choice of parameters
for this example is J = 1 and D = 0.6, while the magnetic field is varied between
3.5 T and 5 T. This case is easily calculated, as there is only one relevant transition
for the skyrmion: its radial collapse. As Figure 1.29 shows, the temperature- and
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FIGURE 1.29 – HTST Arrhenius plot for the skyrmion collapse

The lifetime τ of an isolated skyrmion in a periodical two-dimensional system in
dependence on temperature T and external magnetic field H. Only the collapse
is considered as a possible transition, so the plot is quite simple. Isolines for
lifetimes between 1 ps and 1 year are shown. For the given parameters, the
lifetime varies by 20 orders of magnitude within a range of only 2 K. This figure
has been published in [47].

field-dependence is quite simple. Note that there are two translational zero modes
at the minimum, while – due to the lattice discretisation and the defect-like shape
of the skyrmion at the saddle point – there are no zero modes at the saddle point.
Consequently, the transition rate prefactor has a linear temperature dependence.

1.7 RATE THEORY APPLIED TO A SKYRMION ON A RACETRACK

This theory can consequently be applied to practical problems, such as the design of
skyrmion racetrack devices. Here, the calculation of skyrmion lifetimes for a racetrack
configuration is demonstrated, making use of the multiscale approach mentioned in
Section I.2 by taking atomistic parameters from first principles. Note that, while the
author collaborated on Ref. [38], the following results were obtained by P. Bessarab
using UppASD. The paper presents the predicted lifetime of a skyrmion in a periodi-
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cally continued racetrack as a function of temperature, magnetic field and track width
and shows consistency between prediction and experimental data. The model system
chosen is a Pd/Fe bilayer on an Ir(111) substrate, a well-studied system for which
accurate parameters for the Heisenberg model are known from ab initio calculations.

As the racetrack has a finite width, the skyrmion can escape through the boundary
of the system. Due to the skyrmion hall effect [24, 159], which pushes the skyrmions
towards the system boundary, potentially annihilating it [21, 160], this is an impor-
tant transition to consider for the skyrmion lifetime. In the paper [38] it is shown that
the escape through the track boundary dominates at low external magnetic field, but
above a certain crossover field, the collapse inside the track becomes more relevant.
This crossover stems from the contribution of the pre-exponential factor in the Arrhe-
nius law (1.21), which shows different dependencies on the external magnetic field
for the escape transition and for the collapse transition. These results are shown in
Figure 1.30.

FIGURE 1.30 – Arrhenius plot for the lifetime of racetrack skyrmions

Lifetime of a skyrmion in a Pd/Fe/Ir(111) racetrack. Contour plot of the calcu-
lated lifetime of an isolated skyrmion in a 23.5nm wide strip as a function of
applied magnetic field strength and temperature, shown for the fcc (a) and hcp
(b) stacking of the Pd layer. White contour lines have a characteristic cusp due
to the crossover between collapse and escape mechanism indicated by the cyan
line. Above the crossover line, the skyrmion lifetime is mostly defined by the
collapse mechanism, but the escape mechanism dominates below the crossover
line. White dashed lines are contour lines of the collapse and escape lifetimes.
Insets show the cut of the contour plot at T = 15 K (a) and T = 10 K (b). In the
insets, the annihilation time due to collapse in the interior and escape through
the boundary, as well as the total skyrmion lifetime are shown as red, purple and
black curves respectively. The data was gathered and plotted by Pavel Bessarab.
Reprinted from [38] with minor modifications, licensed under CC BY 4.0.

The crossover between the two annihilation mechanisms can be explained mostly
with the crossover of the energy barriers, which in turn can be interpreted as an
effect of the skyrmion radius rS. The energy barrier of the radial collapse is directly
proportional to the number of spins, which need to be flipped, and therefore scales
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with the skyrmions area∝∼ r2
S . Consequently, as the skyrmion configuration shrinks

proportionally with higher magnetic fields, the barrier tends to zero for large fields,
where the equilibrium skyrmion approaches the size of the saddle point configuration,
which is almost independent of the field. The escape barrier, however, is defined by
the number of spins at the boundary, which need to be untwisted. It therefore scales
with the skyrmions diameter ∝∼ rS. Hence, contrary to the collapse, the energy
barrier of the escape remains finite as long as the skyrmion solution remains stable,
as the skyrmion always has finite size.

All effects described above, such as the crossover, can be expected to be general
features of skyrmion systems.

It is conjectured that this multi-scale approach, where an atomistic spin Hamilto-
nian is parametrised from first-principles electronic structure calculations and used
in a statistical description of skyrmion stability, will give valuable insight into the
foundational mechanisms determining the lifetime of skyrmions, as well as provide
a tool for predictive materials design. Especially in the field of technological applica-
tions design, this may prove to reduce the efforts of searching for suitable materials
compositions. Through the future usage of automation tools, such as AiiDa [161] or
ASE [162], the human effort needed to screen material compositions and designs for
applicability to proposed devices like the skyrmion racetrack will be greatly reduced.

Finally, note that the presented data may not be enough to gain a correct picture
of how well a racetrack design would work, as only the previously well-known col-
lapse and escape transitions were studied. It is presented in the following Chapter 2
how, using the saddle point search method presented there, an additional skyrmion
transition was found, which may be highly relevant to racetracks on which multiple
skyrmions are present.
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"Things are only impossible until they’re not!"

— Jean Luc Picard

As previously discussed, the full set of transitions that a magnetic configuration can
undergo or the final states are not necessarily known, but the knowledge of these
states and transitions can be highly valuable. It has been laid out in the previous
chapter that any transition, meaning the mechanism and the transition rate, is char-
acterised by the corresponding first order saddle point in the energy landscape. This
chapter will introduce methodology to seek out saddle points and will derive the nec-
essary equations to transfer it to spin systems. The ability to systematically carry out
such searches is applied to an accessible example as well as a skyrmion. Notably, this
completes the class of methods for rate theory calculations for spin systems, which are
formulated in a consistent mathematical framework and are now combined together
in the Spirit framework, enabling new approaches and efficient exploration.

The main results presented in this chapter have been published by the author in
Ref. [58].

2.1 MINIMUM MODE FOLLOWING METHOD

In the study of atomic rearrangements, such as chemical reactions and diffusion
events, a category of methods for identifying possible transition mechanisms with-
out knowledge of the final state has turned out to be highly useful [163, 164]. The
category is that of single-ended saddle point search methods, which have been used
extensively in studies of atomic rearrangements. As was previously alluded to, unex-
pected or unintuitive transitions can often turn out to be preferred over mechanisms
that seem a priori most likely [165]. It can be expected that, though the context is
quite different, the same may be found in spin systems.

The basic idea is quite simple: given a local minimum of the energy landscape as an
initial state, the various possible transitions the system may undergo can be identified
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by climbing up the energy surface and converging on the various first order saddle
points on the energy ridge surrounding the minimum.

The approach for this, discussed in this thesis, will be the minimum mode following
(MMF) method [166, 167]. It is based on the curvatures of the energy landscape,
which are the eigenvalues of the Hessian H.

As one starts out close to a local minimum, all curvatures of the energy landscape
will be positive, i.e. the landscape is convex. The first step is to escape this convex
region, for example by following a random vector, the gradient of the energy or even
an eigenmode of the system.

Once an eigenvalueλi turns negative, one can follow the corresponding eigenmode
Λi, by applying an effective force

F eff = F grad − 2(Λi · F) Λi , (2.1)

where F grad = −∇H is the negative gradient of the energy, i.e. the force for direct
energy minimisation, and Λi is the normalized eigenvector corresponding to the neg-
ative eigenvalue. Note the notation, where these vectors are 3N -dimensional for a
system of N spins.

FIGURE 2.1 – MMF paths for atomic 2D system

A potential energy surface with minima (blue), maxima (yellow/red), and a
saddle point (black dot). The black lines show saddle point searches starting
from four different initial points. The red curves encircle the convex regions,
i.e. they mark where the lowest eigenvalue is zero. See also Figure 2.4 for the
corresponding figure for an atomistic spin system. Reprinted with permission
from [167]. Copyright 2017 American Chemical Society.

While finite difference approaches can be used to determine the direction of nega-
tive curvature, the Hessian matrix H of an atomistic spin Hamiltonian can be derived
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analytically and the direction found through diagonalisation. As the system is dis-
placed in the direction of the effective force, it moves to higher energy along Λi but
to lower energy along the orthogonal degrees of freedom. Eventually, this should
bring the system to a first order saddle point on the energy surface.

Note that if needed, the final state of the transition can be obtained by a slight
displacement further along Λi, followed by energy minimization.

initialise systemdata input

Calculate force

forces
converged?

step along force

stop

1. calculate gradient

2. calculate and diagonalise Hessian

3. in convex
region?

4. MF force 4. escape force

no

yes

no

yes

FIGURE 2.2 – Flow chart of the MMF algorithm

This flow chart visualises the general logic of the MMF method. After initialising
the system, the iteration loop is started, in which the force is calculated and, if
not yet converged, applied. The calculation of the force requires the calculation
of the energy gradient and Hessian and the evaluation of the Hessian’s eigen-
values to decide on how to proceed. If the system is in a convex region of the
energy landscape, an escape force is applied (for example a random direction
or the energy gradient) and otherwise the mode following force is used.
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When applying this scheme, it is important to consider that the iterative optimiza-
tion using F

*eff
may lead back into the convex region. If this leads to a back and forth

oscillation it may significantly slow down convergence and, under unfavourable sym-
metries, even stall the calculation. Moreover, throughout a calculation, eigenvalues
may cross, i.e. become degenerate, and the lowest eigenvalue mode may change sig-
nificantly. In order to avoid unintentional switching between eigenmodes, one needs
to distinguish different modes from each other. A straightforward solution is to take
the scalar product of the current candidate and the previously used mode and, if a
significant change in direction has occurred, search for the mode that has the (ab-
solutely) largest scalar product with the previous mode. As long as iterations make
small enough steps, this approach will work due to the fact that eigenmodes will
change continuously while being mutually orthogonal.

In special cases the gradient may become orthogonal to the mode to within a given
tolerance, in which case F

*eff
will simply produce a minimization in the gradient di-

rection. Therefore, this case needs to be treated specially.

The following algorithm is implemented as the default behaviour in Spirit and is
used in this thesis, where it is found to be successful:

• When the mode is not orthogonal to the gradient

– if the mode has a negative eigenvalue: follow F
*eff

– if the mode has a zero or positive eigenvalue: follow the mode.

• When the mode is orthogonal to the gradient

– if the eigenvalue is zero (to within a tolerance): follow the gradient

– if the eigenvalue is positive: follow F
*eff

.

This algorithm is illustrated by Figure 2.2.

Analogous to the discussion of the nudged elastic band (NEB) method in Sec-
tion 1.2, the above is held entirely general. The following Section 2.2 will discuss
the special considerations needed for spin systems, which are not found in the liter-
ature discussing molecular systems.

2.2 CONSIDERING CONSTRAINTS

Let us recall Section I.2 of the Introduction and that the configuration manifold of an
atomistic spin system with fixed spin lengths is a curved manifold embedded in Eu-
clidean space Mphys ⊂ E . For the saddle point search method outlined in the previous
section, the Hessian – the matrix of second derivatives – is needed for the calculation
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of eigenvalues and eigenvectors. The physical manifold is given by Equation (I.8):

Mphys =
N
⊗

i

S2 ⊂ R3N

and is a Riemannian manifold. As is well-known, second derivatives do not in general
have an intrinsic geometrical meaning and therefore have to be treated with special
care [87, 88].

It was mentioned in Section 1.3 that the Hessian can be calculated quite easily at
stationary points, where ∂H = 0. However, the MMF method requires its evaluation
at arbitrary points of the manifold, requiring the evaluation of covariant derivatives.
While the covariant derivatives on a spherical manifold are well-known in spherical
coordinates, they suffer from singularities at the poles, where the coordinate system
becomes undefined. The author therefore chose to use a 3N cartesian representation
of the spin coordinates and represent the covariant derivatives in the same.

The Hamiltonian H can be smoothly extended to a function H̄ which is defined
on E . As discussed in Section I.2, the derivatives of the unconstrained H̄ are readily
evaluated. We denote the gradient taken in the embedding space E as ∂ H̄ and the
gradient taken on the manifold Mphys as

∂H = Px∂ H̄ , (2.2)

which is the projection of the gradient onto the tangent space at a point x ∈Mphys.
The matrix of second derivatives in the embedding space is denoted ∂ 2H̄.

Note that both the Introduction and Chapter 1 already made use of the fact that
the first covariant derivatives are simply the derivatives in the embedding space, pro-
jected onto the tangent space of Mphys.

In order to calculate the second derivatives on the manifold Mphys, a projector-
based approach, described in Ref. [89], is used. For any scalar function f on Mphys

the true, covariant Hessian is defined as

Hess f (x)[z] = Px∂
2 f̄ (x)z +Wx(z, P⊥x ∂ f̄ ) . (2.3)

Wx denotes the so-called Weingarten map (see also Ref. [168]). For any vector v
at a point x of a spherical manifold, the Weingarten map is defined as

Wx(z, v) = −zx T v , (2.4)

where z is a tangent vector to the sphere at x . In order to calculate the Hessian,
v = P⊥x ∂ H̄ is inserted to give

Wx(z, P⊥x ∂ H̄) = −zx T P⊥x ∂ H̄ = −zx T x x T∂ H̄ = −zx T∂ H̄ , (2.5)

where x T∂ H̄ is the scalar product of the spin with the gradient.
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In Spirit [47, 48], the Hessian is implemented in matrix representation, so in order
to denote objects as they are implemented, we switch notation and drop the subscript
x . For spin indices i and j, we write the gradient ∂ H̄ as ∇iH̄ (now to be understood
as a three-dimensional object) and the second derivative ∂ 2H̄ as H̄. Equation (2.3)
within the Euclidean representation is then a 3N × 3N matrix

H|3N = (Hi j|3N ) =







H11|3N H12|3N · · ·
H21|3N H22|3N · · ·

...
...

. . .






, (2.6)

which consists of N 2 blocks, each corresponding to a different spin-spin subspace.
This matrix representation of the Hessian is obtained by acting with Equation (2.3)
on the Euclidean basis vectors of the embedding space E . Here, the subspace matrices
of size 3× 3 are defined as

Hi j|3N = PiH̄i j −δi j In* j · ∇ jH̄ , (2.7)

where I denotes the 3×3 unit matrix and n* j the normalized direction of spin j. The
resulting matrix H|3N will, however, have N eigenvectors orthogonal to the tangent
space of Mphys, representing the unphysical degrees of freedom in the embedding
space E . They can be removed by transforming the matrix using the tangent basis
to M ∈Mphys, writing Hi j = T T

i Hi j|3N T j, where Ti is the basis transformation ma-
trix of spin n*i fulfilling T T P = T T and T T T = I |2N . Thereby, the true Hessian of
Equation (2.3), in the 2N × 2N matrix representation, becomes H = (Hi j) with the
spin-spin blocks defined as

Hi j = T T
i H̄i j T j − T T

i I(n* j · ∇ jH̄)T j , (2.8)

and which now contains only the physical degrees of freedom. From this matrix, the
eigenmodes Λ|2N are calculated. The 3N representation is obtained as Λ|3N = TΛ|2N .

The basis transformation matrix Ti can be a 3×2 matrix of two tangent vectors to
spin i, which can even be obtained from any random vector and another vector found
by orthogonalization. For the implementation in Spirit the unit vectors of spherical
coordinates θ and ϕ were chosen

T = {e*θ , e*ϕ}=







cosθ cosϕ − sinϕ

cosθ sinϕ cosϕ

− sinθ 0






=







zx/rx y −y/rx y

z y/rx y x/rx y

−rx y 0






, (2.9)

where rx y = sinθ =
p

1− z2. Note that the poles of the sphere need to be excluded,
but one may simply choose e*x and e*y and orthogonalize them with respect to the
spin vector n*i.
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2.2.1 Eigenmodes of the Hessian matrix

The eigenmodes of the Hessian matrix are simply excitations along eigendirections of
the energy landscape and we can dynamically visualise them by periodically applying
them in the form of rotations to the spins.

n(t)≈ n(t0) + cΛi sin(ωt) , (2.10)

where the amplitude c and frequency ω can be chosen arbitrarily in order to ade-
quately visualise the mode (see also [40]). It should be clear that these eigenmodes
have no relation to precession or damping, as the eigenmodes of the dynamical ma-
trix do (see Section 1.5).

In Figure 2.3, this is visualised by the isosurface for nz = 0, shown at different
points of the dynamical excitation.

ωt = 0 ωt = π/2 ωt = π ωt = 3/2π

FIGURE 2.3 – Eigenmode of a skyrmion tube

3D skyrmion tube Hessian eigenmode visualised by the moving isosurface in
Spirit, shown as four screenshots at different points in time. Arrows have been
added to highlight the movement of the tube. This figure shows that eigen-
modes, even in a 3D system, can be calculated and are intuitive and easy to
visualise in Spirit.

Note the ease with which such complex eigenmodes can be understood in Spirit. It
needs to be stressed that the direct access to the isosurface(s) and parameters, such as
the amplitude for the application of the eigenmode, combined with the ability to view
the system from any position and angle, make the process of analysing the resulting
eigenmodes orders of magnitude faster. These kinds of improvements in productivity
for the user are the strength points of Spirit

2.3 MMF APPLIED TO A SINGLE SPIN

The first example will be – as in the first example of the GNEB method – a single spin
in a gaussian superposition potential. We recall Equation (1.17):

H =
∑

i

Hi =
∑

i

ai exp

�

− l2
i (n

*)

2σ2
i

�

,
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where ai is the amplitude, σi the width and li(n
*) is a measure of distance of the spin

n* to the center c*i of the ith gaussian function. Parameters for the test case are given
in Table 2.1, which are a slight variation on the parameters of the GNEB example,
given in Table 1.1. See Appendix B for the corresponding derivatives, needed for
this method, as well as the Python script with which the saddle point searches were
performed.

a σ px py pz

0.5 0.2 −1 0 0

0.7 0.25 0 0 −1

−0.8 0.1 1 0 −0.6

−0.8 5 · 10−2 0.8 0 0.5

−0.5 0.2 0 1 0

−1 0.2 0 −1 0

−1 0.1 0 0 1

TABLE 2.1 – Parameters of Gaussian Hamiltonian

These parameters are chosen to provide sufficiently interesting features in the
energy landscape, with a central minimum from which to initiate the calcula-
tions and three saddle points in the vicinity.
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FIGURE 2.4 – Mode following path of a single spin

An example of a saddle point search for a single spin in a Gaussian superposition
potential. In this case, the energy surface can be mapped onto a sphere. Saddle
points are marked by black ×. The red curves are the saddle point search paths
starting from various points close to a selected local minimum. In this case, the
energy gradient is chosen as a force vector to escape the convex region (encir-
cled by the white dashed line), and the minimum mode is followed thereafter.
The three reachable saddle points are found. This figure has been published
in [58]. Copyright 2018 American Physical Society.

It turns out that the eigenmodes of the single spin in this potential are largely
unuseful, as they often lead to circular motions around the local minimum (see Fig-
ure 2.5). Consequentially, the gradient was used to escape the convex region. This
yields good results for this system due to the symmetric nature of the potential around
the minima and the low-dimensional parameter space.
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FIGURE 2.5 – Spherical plot of the mode following force contributions

The vector fields of the gradient force (left), minimum mode (middle) and the
resulting effective force (right) are shown. The gradient force points away from
maxima, towards minima of the energy landscape. The minimum mode repre-
sents the symmetry of the energy landscape and, close to the saddle points,
points in the direction of the degree of freedom corresponding to the transition
between two of the minima. The effective force, inside the convex region (en-
circled by dashed gray lines), is simply the gradient, therefore pointing radially
outwards from the minima; inside the remaining regions, it is the minimum
mode following force. One can clearly see the effective force pointing towards
the saddle points. These images are shown in large in Appendix D.

In order to make sure that the Heisenberg Hamiltonian is working correctly, one
can do analogous tests for an interacting spin system, where one spin is pinned (e.g.
to the z-direction). For the following example, parameters are chosen to be

K = 4 , J = 1 , D
�

= (0, 0,1) . (2.11)

In this case it suffices to simply zero the forces applied to the pinned spin and to only
plot those forces and modes belonging to the movable spin, as shown in Figure 2.6.
It should be noted, however, that in a more general case one should also take the
Hessian matrix into consideration: if one sets the blocks of the pinned spins to zero,
one creates zero modes, but setting them to very large values (like a very narrow
and steep minimum for the spin to reside in) can cause numerical instabilities. As
Figure 2.6 illustrates, the minimum mode clearly reflects the symmetries of the un-
derlying energy landscape and lets us invert approximately the component of the
gradient force orthogonal to the energy isolines. The resulting force field therefore
gives a straightforward convergence onto the saddle point.
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FIGURE 2.6 – Mode following forces of a two spin system

With the second spin pinned, we can again plot everything on a sphere. In this
case, it is more useful to use a complete projection (here the so-called "Robin-
son" projection is used). As in Figure 2.5, the effective force clearly directs the
spin to the saddle point. These images have been published in [47].

2.4 NOVEL SKYRMION TRANSITION REVEALED BY THE MMF METHOD

After the successful test of the MMF method for simple test systems with only one
and two spins, the logical next step is to apply it to a more complicated case, such as
an isolated skyrmion. We recall the Heisenberg model (I.1), where for this section a
slightly simplified version is used:

H = −μS

N∑
i=1

B
� · n�i − J

∑
〈i j〉

n�i · n� j − D
∑
〈i j〉

d
�

i j · (n�i × n� j) , (2.12)

where B
�

is a uniform external magnetic field, J is the nearest neighbour exchange
coupling constant, D the nearest neighbour Dzyaloshinskii-Moriya interaction (DMI)
constant and the unit vectors d

�

i j are the Dzyaloshinskii-Moriya unit vectors in the
plane of the lattice parallel to the vector connecting spins i and j. The system consists
of 40×40 spins on a square lattice with open boundary conditions and the parameter
values and field strength are chosen to be the same as in Ref. [136], where D = 0.45 J
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and H = 0.8 HD, where HD = D2/(µSJ) is the critical field strength. For the parameter
values used here and choosing J = 1 meV, we get HD = 3.5 T.

The Bloch skyrmion, shown in Figure 2.7, is a local minimum of the energy land-
scape and therefore metastable with respect to the ferromagnetic phase. Figure 2.7
also shows an illustration of the eigenvectors corresponding to the three lowest eigen-
values, corresponding to translation, breathing and elliptical distortion.

FIGURE 2.7 – Lowest three eigenmodes of an isolated skyrmion

From left to right: isolated skyrmion, the translational, breathing and fourfold –
or elliptical – eigenmodes of the isolated skyrmion. While there are two transla-
tional modes with eigenvalue zero, the breathing mode and the elliptical mode
correspond to a positive curvature. These images have been published in [58].
Copyright 2018 American Physical Society.

For comparison see also the analysis of the dynamical skyrmion eigenmodes pre-
sented in Ref. [169].

As mentioned in Section 2.1, there are several approaches to escape the convex
region of the energy landscape, where arguably the simplest approach is to follow a
random direction until a negative eigenvalue is found. For the skyrmion it turns out
that it is highly effective to follow a selected mode right from the beginning. After the
corresponding eigenvalue turns negative, the effective force given by Equation (2.1)
is used, where Λi is now the eigenvector of the initially selected mode rather than the
one with lowest eigenvalue. Looking at the images in Figure 2.7, it should be clear
why this can lead the system straight to a saddle point. The translational mode, which
initially has the lowest eigenvalue, will move the skyrmion towards the boundary of
the system, until the mode for the escape is found and eventually, as it is pushed along
the effective force, it converges onto the saddle point corresponding to the escape
through the boundary. A small displacement along the unstable mode and subsequent
relaxation of the system will then bring it to the ferromagnetic state. By following the
breathing mode, the skyrmion can shrink until the eigenmode of the radial collapse
is found and the system converges to the corresponding saddle point. It turns out,
however, that the elliptical eigenmode leads to a stretching of the skyrmion until its
center becomes energetically unfavourable and the mode turns into a bisection of
the skyrmion in the middle. This brings the system to the saddle point of a skyrmion
duplication transition, which has not been covered in the literature so far. The saddle
points, which were found by this approach, are shown in Figure 2.8.
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FIGURE 2.8 – Saddle points of three skyrmion transitions: escape, collapse
and duplication

From left to right: saddle points of the skyrmions escape through the boundary,
the radial collapse and the duplication transition. Note that the duplication
transition can, inversely, be viewed as a skyrmion collision transition, which
may under certain conditions be an important considerations for skyrmion race-
tracks. These images have been published in [58]. Copyright 2018 American
Physical Society.

Due to the fact that random directions, here, may quickly lead to negative eigenval-
ues belonging to collective modes, the approach of following the skyrmion’s modes
was more successful.

The energy along the minimum energy paths (MEPs) for the three transitions is
shown in Figure 2.9. These were calculated using the GNEB method, using an initial
path formed by linear interpolation between the intial state and the saddle point, as
well as between the saddle point and the final state.
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FIGURE 2.9 – Minimum energy paths of the escape, collapse and
duplication transitions

Minimum energy paths for the three types of transitions found: Duplication,
collapse and escape. The reaction coordinate is the scaled total displacement
along the path. The energy is given in units of the exchange coupling constant,
J . This plot has been published in [58]. Copyright 2018 American Physical
Society.
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The energy barrier for the collapse and escape is quite similar, while in this case
the duplication has a higher barrier and a noticeably different shape. The total dis-
placement along the MEP from the initial state to the saddle point is shortest for the
duplication, while the saddle point for escape involves a larger and the displacement
of the skyrmion to the boundary the largest absolute displacement (where the lat-
ter of course depends on the system size). The collapse has the expected profile, as
previously reported [56, 170]. Note that the duplication of the skyrmion leads to an
increase in the energy of the system because the skyrmion is only metastable with re-
spect to the ferromagnetic state for this set of parameters. The other two transitions
reduce the number of skyrmions in the system and therefore lead to a decrease in
the energy.

Naturally, the relative height of the energy barriers for the three processes depends
on the choice of parameters. Using a 10% smaller field and 60% larger value of D/J
than in the previous example gives a lower activation energy for the duplication than
for the other two transitions. This is shown in Figure 2.10.
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FIGURE 2.10 – Minimum energy paths of the escape, collapse and
duplication transitions at different parameters

The energy barriers at a second parameter set, where the field is 10% smaller
and the value of D/J 60% is larger. This shows that the energy barrier for the
duplication and collision can be of the same order of magnitude as the bound-
ary escape/nucleation and the radial collapse/nucleation. This plot has been
published in [58]. Copyright 2018 American Physical Society.

The duplication transition identified in the context of this work has not been de-
scribed previously, but has further features of interest. It may turn out to be an im-
portant mechanism for generating skyrmions. Past its saddle point, the MEP of the
skyrmion duplication contains important information about skyrmion interaction, as
it shows how the repulsive interaction potential between skyrmions varies with the
distance between them. Also, when viewing the transition inversely, it represents the
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merging, or collision, of two skyrmions to form a single skyrmion. This could turn
out to be an important consideration for the design of skyrmion racetracks.

In this context, the question arises whether it is possible to dynamically induce
duplication events. Starting from the fact that the duplication transition is found by
an elliptical deformation of the skyrmion, it is reasonable to try and excite this kind
of mode in a dynamical simulation. To achieve the elliptical skyrmion deformation,
an inclined, short magnetic pulse is applied. As there is a constant external magnetic
field, for the duration of the pulse – 200 ps – the total magnetic field is tilted. Magnetic
field pulses are known to be an efficient way of exciting nonlinear skyrmion dynamics
[142] and the results, shown in Figure 2.11, support the idea.

0 ps,
H = 0HD

100 ps,
H = 0.63HD

200 ps,
H = 0HD

210 ps,
H = 0HD

400 ps,
H = 0HD

FIGURE 2.11 – Dynamics simulation of skyrmion duplication

Snapshots from a dynamical simulation where the duplication of a skyrmion is
induced by applying a magnetic pulse over 200 ps, giving a total field that is
tilted with respect to the normal of the plane. The labels on top of the frames
give the time and magnetic field of the pulse (which adds to a constant field in
the direction of the normal to the plane). The pulse is applied at time t=0 and
lasts until t = 200 ps. At the end of the pulse, an elongated defect is formed
which later splits up (at t = 209 ps) to form two skyrmions. These images have
been published in [58]. Copyright 2018 American Physical Society.

The pulse has a magnetic field directed along the vector {x , z}= {0.8,−0.61}while
the static magnetic field is directed along the normal vector {x , z} = {0, 1} so the
pulse partly cancels out the static field. The static field has magnitude H = 0.8 HD but
during the pulse the total magnetic field drops to Hp = 0.63 HD. The time evolution
was carried out using the semi-implicit midpoint algorithm of Mentink et al. [118]
with a time step of 0.01 ps.

While the out of plane component of the pulse brings the skyrmion closer towards
elliptical instability, the in plane component triggers the skyrmion to elongate and,
over time, form into a U shape. It therefore represents a combination of different
eigenmodes of the skyrmion in its ground and elongated state. When the pulse is
switched off again, the excitations (or spin waves), which then move along the elon-
gated skyrmion and cause it to split in half.

Other, more efficient or more reliable ways of inducing this duplication could prob-
ably be devised and the presented results should be taken as a proof of concept for
the existence of this novel transition – expected to be a quite general phenomenon.
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Suggestions are to pin the skyrmion, to introduce defects or by more complicated
external stimuli.

An argument in favour of the generality of the results is the presence of the first
order saddle point for parameters of a Pd/Fe bilayer on an Ir(111) substrate, a system
which has been extensively studied, both experimentally and theoretically, with good
agreement between the used parameters and experiment [38, 171]. In this system,
the energy barrier for the duplication turns out to be slightly lower than that of the
collapse, namely 78 meV versus 80 meV. In a follow-up study, performed by two stu-
dents under the supervision of Prof. Jónsson and the author, it was investigated how
prevalent the duplication transition is, i.e. in which parameter ranges of magnetic
field, D/J and K/J the saddle point of the duplication is of first order. The lowest
eigenvalues at the saddle point of the transition were evaluated in order to ensure
that the saddle point is of first order and to determine the points where the lowest
eigenvalue converges to zero and the path can no longer be relaxed by the GNEB
method. The results are shown in Figure 2.12.
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FIGURE 2.12 – Parameter ranges where the skyrmion duplication is a
minimum energy path

The parameter range of external field H (left) and anisotropy K (right) over
DMI interaction D in which the collapse transition (red) and mitosis (green)
exhibit a first order saddle point. In order to keep the generality of the results,
parameters are given as ratio over the exchange constant J .

The skyrmion mitosis transition is found to be a stable minimum energy path in
a wide range of parameters, meaning that for many systems it may turn out to be
a relevant transition, influencing skyrmion stability or posing opportunities for the
creation of skyrmions. Evidently, larger values of DMI support this transition, which
fits together with the fact that the saddle point includes a small region of strong curl
in the magnetisation, somewhat like a defect.

These results warrant further investigation still, as it is not clear how the prefactor
Γ0 of this transition behaves in dependence on the shown parameters. Estimation
of the rate of duplication and comparison with that of the other mechanisms as a
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function of parameter values remain interesting future tasks.
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IMPLEMENTATION: SPIRIT - A SPIN SIMULATION FRAME-

WORK 3

"Es ist unwürdig, die Zeit von hervorragenden Leuten mit knechtischen
Rechenarbeiten zu verschwenden, weil bei Einsatz einer Maschine

auch der Einfältigste die Ergebnisse sicher hinschreiben kann."

— Gottfried Wilhelm Leibniz

As mentioned repeatedly throughout this work, at the outset of the project, there
was a significant lack of modern tools for atomistic spin calculations – none of them
providing a graphical user interface (GUI) for real time visualisation or direct access
to calculation parameters. In order to achieve these benefits, as well as optional par-
allelisation on multi-core central processing units (CPUs) and graphics processing
units (GPUs), C++ was chosen as the programming language in which the software
should be implemented. For these reasons, the Spirit software was created – a specific
set of goals in mind:

• increase productivity of scientists running spin simulations

• reduce the barrier of entry into the field and ease understanding

• unify interfaces and methods of this field

The approaches described in the Introduction and Chapter 1 have been collectively
implemented into a library forming the core of the Spirit Framework. This chapter
will describe and motivate the code’s general design and structure and give additional
detail on how the methods and solvers were implemented numerically, and how the
author attempted to provide flexibility without loss of function. Furthermore, this
chapter will try to elaborate on the challenges in the layout of a software project of
this scale, explain the rationale behind certain decisions and suggest how to over-
come them. Significant aspects of the descriptions and verifications presented in this
chapter have been published by the author in Ref. [47].1

1 The paper is on arxiv and is under review at Physical Review B
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Spirit [47, 48] is an open-source project and has been published to GitHub.com.2

It should be noted that several other services, integrated with the hosting service,
were employed to automate building and testing of the framework on various plat-
forms (called continuous integration) – a necessary approach in a project of the given
scale and generally recommendable.

3.1 CODE STRUCTURE

User Interfaces

Web GUIDesktop GUI Command ine

Spirit Library API Layer

Python Other programming languages

Generic C/C++ API

Core

SolversComputational Methods Physical Models

Backends

OpenMP CPU parallelisationsingle-threaded CUDA GPU parallelisation

F IGURE 3.1 – Schematic of Spirit code structure

This flow chart visualises how the code is vertically layered. By placing an ap-
plication programming interface (API) layer on top of the core library, it can be
used generically and from various languages. Using this API for the computa-
tions, data manipulation and input/output, anyone is free to implement other
or interchangeable user interfaces. This figure has been adapted from [47].

2 spirit-code.github.io
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As illustrated in Figure 3.1, the framework is divided into three main layers: I) the
core library, containing all physical simulation methods II) an API layer, available
in several programming languages III) several user interfaces with which to interact
with Spirit more directly.

The core of the Spirit software is a library, which comprises the methods described
in the previous chapters, the energy minimizer and dynamical solvers, the Heisenberg
Hamiltonian, input and output. This structure is visualised in Figure 3.4.

It is worth noting the backends, which abstract the lower level performance-critical
routines, and which are used throughout the code. Figure 3.2 shows an examplary
speedup, which can be obtained using the CPU and GPU parallelisations for a cube of
100×100×100 spins with nearest-neighbour exchange, DMI and dipolar interactions.
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FIGURE 3.2 – Performance scaling of Spirit over number of parallel threads

An example performance measurement for Spirit is shown for a system of size
100× 100× 100 with nearest neighbour interactions with and without dipolar
interactions. The speedup on the 10-core CPU scales well with the number of
cores (solid lines). When using hyperthreading (dashed lines) the speedup at
20 threads on 10 cores is higher than without hyperthreading, but only by a fac-
tor of ∼ 1.2 at twice the number of threads. The case with dipolar interactions
scales worse and seems to be limited by the calculation of the FFTs, which can-
not be trivially parallelized. In both cases, the GPU gives a significantly better
speedup. As a CPU, the Intel Core i9-7900X 3.30GHz was used and the NVIDIA
GeForce GTX 1080 was chosen for the GPU. Note, however, that the scaling be-
haviour may depend heavily on system size and number of atoms in the basis
cell, number of neighbour shells, solver and method used.

Through this separation, the amount of code written for parallelisation is signifi-
cantly reduced, as the more abstract code does not need to be manually parallelised,
but can instead use the backend functions without any need to care about details of
performance on that level.
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FIGURE 3.3 – Performance scaling of Spirit over system size

The speed of a LLG simulation for a simple cubic lattice of varying size with
external field, nearest-neighbour exchange and DMI and dipolar interactions.
The calculation without dipolar interactions on one core is very close in speed
to the calculation with dipolar interactions on 10 cores. This figure has been
published in [47].

The core library has an application programming interface (API), written in the
C programming language, which gives access to its features through function calls.
As many other programming languages can directly use C functions, this significantly
increases the number of potential usage scenarios for this library. Two example usage
scenarios, which were realised in the context of this work, are the Python bindings
and the graphical user interface (GUI).

A notable feature of the core library is its logging, where initial input, relevant user
actions and output are written to the console, as well as optionally saved to a log file.
These log messages can be used for initial checks of consistency, such as the version
of spirit used and initial parameters (this can also greatly improve reproducibility),
to monitor running calculations, to extract performance timings and potentially to
obtain debugging information when something goes wrong.

The desktop GUI of Spirit was written in C++ using the QT framework [172] in
order to be able to provide a performant cross-platform interface into which the core
library is tightly integrated. A visualisation library was written by Florian Rhiem for
the purpose of high-quality real-time visualisations in this GUI. Aside from these
visualisations, which are shown throughout this thesis, the main goal of the GUI is
to enable direct interaction with simulations. Some of these features are shown in
Figure 3.5.
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Engine

Numerics
...

Backends

Data

State

Spin system and Chain

Parameters

IO

Parsing input

Read/write OVF

Writing energy output

Utility

Configurations

Log and Timing

Constants

FIGURE 3.4 – Schematic of Spirit core library layout

This schematic depiction of the structure of the core library shows how the code
is modularised, in order to avoid strong coupling between code components.
This means that rewriting, for example, the OVF file parser, will not require
significant changes in other areas of the code.

FIGURE 3.5 – Screenshot of Spirit graphical user interface (GUI)

The GUI of Spirit is shown with the visualisation of a complex 3D magnetic tex-
ture using isosurfaces, informational widgets and parameter control interfaces.
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Through its C API, the core library can be used to program command line tools,
for example for use on clusters, but the more versatile approach is to use the Python
bindings and write scripts instead. The latter gives very easy access to, for example,
the file system and many libraries for post-processing, e.g. to precisely track skyrmion
positions over the course of a simulation.

At time of writing, an unusual feat for a scientific code, accomplished through this
code structure, has been the creation of a web-based user interface, which can be run
in any current internet browser, and with which atomistic spin dynamics simulations
can be run on mobile devices, such as smartphones. This is achieved, similar to the
Python bindings, by calling the C library API, in this case from javascript code run
inside a website. The visualisation was again created by Florian Rhiem. The Web
interface gives a unique opportunity to make the code broadly available without any
effort for installation. While – at the current stage of the technology – this means
that the parallelisation features cannot be used and that performance is limited, it
removes further barriers of entry and, through interaction with the parameters and
visualisation, makes it easy to gain an intuitive understanding. The Web interface, as
seen in a window of the Firefox web browser, is shown in Figure 3.6.

FIGURE 3.6 – Screenshot of Spirit Web user interface (UI)

The Web UI of Spirit is shown with the visualisation of a skyrmionic 2D mag-
netic texture using interpolated values on a 2D plane and parameter control
interfaces.

For educational purposes, this interface could be a useful tool to teach students
about the relations of different interactions and about the LLG equation and the dy-
namics it produces. It can also be used for presentation and could – if implemented
into the website – even be used for data visualisation, e.g. when distributing calcu-
lation results between research groups. It should be stressed that in principle, all
methods implemented in Spirit, such as GNEB or the visualisation of eigenmodes,
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could be used in the Web interface. As we now carry computers in our pockets with
the computing power of supercomputers of not-so-long ago, this may well be the fu-
ture way to perform atomistic spin calculations – at least for reasonable system sizes
– quickly and easily and without the need for technical expertise.

3.1.1 Considerations for the variety of methods

The fact that the various methods implemented in Spirit can and should be used
together means that a user needs control, at the same time, over the parameters of
a single spin system and all methods that might run on it, as well as parameters of
the collection (or chain) of systems and corresponding methods. It also implies that
systems should be easy to add to or remove from the collection

There are several issues one can run into when designing a program for this, as
each method has its own requirements, which need to be checked whenever the user
changes certain parameters. For example: what should happen if a user sets several
different geometries and tries to start a GNEB calculation? And how can one make it
easy to set all geometries to be the same again?

In Spirit, the design choice was to allow any combination of calls to the API, but to
log warning messages when the behaviour might have unintended consequences and
to log error messages whenever an action is not possible. This means that all checks
for consistency can be made and applicability of any action or calculation method
can all be verified in the API layer, meaning they never have to be done inside the
actual core library. In consequence, Spirit should only crash in rare events, such as
running out of memory, but not due to user error, such as invalid input.

A difficulty in the layout of the core library was the reduction of duplicate code by
finding the abstract commonalities of all the methods, from MC over GNEB to MMF.
Mainly, this is the concept of iterating, where N iterations are made either through a
single API call or N API calls, and functionality such as the calculation of how many
iterations are being performed per second.

For several of the methods, namely LLG, GNEB and MMF, solvers are used to iter-
atively advance the spin configuration according to the given equations. This means
that all solvers, such as Heun’s method or the velocity projection method, should be
useable for all of these methods. Here, the challenge is for the solver to correctly
extract the required forces acting on the spin system(s) without knowledge of the
method currently in use. In fact, the solver should be agnostic to almost everything
except the parameters needed for its scheme of advancing the spin vectors to the next
iteration.
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3.1.2 Considerations for parallelisation

A highly important aspect of any code for numerical calculations is performance and,
in consequence, parallelisation. However, a great variety of heterogeneous platforms
exist, where a CPU can be single-threaded or multi-threaded and an accelerator, such
as a GPU may be available. To complicate things, it is a current-day norm to execute
code in parallel on multiple nodes of a computation cluster, increasing the potential
size of problems by adding an additional layer of parallelization (note that each node
might have a GPU) as visualised in Figure 3.7.

Node 1 Node 2 ... Node N

Network / Cluster

Memory

CPU 1
...

CPU N

(GPU)

Memory

CPU 1
...

CPU N

(GPU)

Memory

CPU 1
...

CPU N

(GPU)

FIGURE 3.7 – Schematic of parallelisation over multiple nodes

Using, for example, the message passing interface (MPI), execution of a pro-
gram can be distributed between multiple nodes, each with their own memory,
CPU and potentially accelerators, such as a GPU. This form of parallelisation is
not used in the core library of Spirit, as it was not found to be beneficial on the
level of the implemented methods.

In Spirit, the potential complexity of various parallelisation layers was mitigated
by two design decisions: I) parallelisation over multiple nodes should be done in spe-
cific applications (a problem-specific executable or Python script), not in the generic
core library of Spirit II) for CPUs, the parallelisation on a single node is covered by
OpenMP [173] and for GPUs it is performed by CUDA [174], where code duplication
is minimized by the usage of backends, separated from the more abstract parts of the
code, such as the solvers.

Spirit implements two backends (see Figure 3.1), both with the same interface of
functions to call. The CPU code of the library is written only once and only the im-
plementation is – in a sense – duplicated in the form of CUDA kernels for the numer-
ically time-consuming functions. The clean separation of the heavy-lifting backends
and the more abstract code allows the solvers and methods to be independent of
the parallelisation and effectively orthogonalises the problems of functionality and
performance.
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An important technical aspect of the GPU backend is the usage of unified memory
between CPU and GPU, meaning that the relevant objects are automatically created
on both the host and target devices and memory is automatically transferred when
needed. While this can have some negative performance impact, it greatly simpli-
fies the programming and logic, reduces the required effort and has the benefit that
no data is copied unless needed. This also enables better abstractions of the data
containers.

While most of the backend of Spirit is hand-written for its specific use-case, there
are computational and parallelisation libraries available, which give reasonable al-
ternatives to the approach taken here. To the authors knowledge, the most relevant
such library is VexCL [175], which also very effectively hides the parallelization when
implementing mathematical equations.

Finally, there is an important issue in the parallelisation of the entirety of methods,
namely that all those, which do not iterate some solver, cannot be trivially parallelised
in the same way. The Metropolis Monte Carlo algorithm, for instance, relies on ran-
dom sampling of the spins during an iteration, meaning that the system cannot be
trivially parallelised. Instead, the system has to be subdivided into domains, which
are sufficiently uncorrelated, in a kind of checkerboard pattern [176], as shown in
Figure 3.8.
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FIGURE 3.8 – Checkerboard domain decomposition for parallelised Monte
Carlo

Double checkerboard decomposition of a 18× 18 lattice, enabling parallelised
Metropolis Monte Carlo simulations. Each of the 3 × 3 large tiles is assigned
as one thread block, where individual threads of e.g. a CPU or GPU operate on
one of the two sub-lattices of all 6×6 sites of the tile in parallel. The large tiles
of the coarse decomposition can be updated independently. The blue shading
indicates the overlap of the one large tile with its neighbours for the case of only
nearest-neighbour interactions. Reprinted with minor modifications from [176]
with permission from Elsevier.

Especially when long-ranged, e.g. dipolar interactions are involved, this can be-
come increasingly difficult, though approaches have been developed for this as well [177].
The diagonalisations of the Hessian and the dynamical Matrix in the MMF and HTST
methods, respectively, requires entirely different considerations, where most likely it
is the best approach to use libraries, which have been written by experts for these
specific tasks.

One might intuitively think it a good idea to parallelise the GNEB method on
the level of the different images, iterating the images in parallel, for example using
message passing interface (MPI) to iterate each image on a separate node. However,
the author has found this to be not true in practice. The additional effort, needed
to implement MPI calls, does not seem worth it when the only benefit is the faster
execution on a large compute cluster. Usually, one will do significantly more than just
one calculation, so that the parallelisation can instead (much easier) be performed
on the level of executing multiple GNEB calculations.
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3.1.3 Considerations for simplicity

A very common problem in the design of the layout of code for a software project is
the question which parts should be modularised and which should be integrated. In
most cases, there are various benefits to either side. In the case of Spirit, one of the
main concerns was generality and extensibility to more general use cases than those
covered in this work. Hence, the core library was turned into a module, which can be
re-used in different contexts. Additionally, it was therefore crucial to make the APIs
as easy to use as possible without restricting the parameters, which can be adjusted,
or the combination of methods, which can be used together.

Note that every modularisation comes with the introduction of new interfaces to
the interacting modules. It is therefore usually only ever worth the cost, if a compo-
nent is reused. Otherwise it can significantly reduce simplicity.

Analogous to this is simplification by constraint. Such a constraint was initially
used in the early development of Spirit, where it seemed sensible to have a constant
geometry for the spins during one execution of the code, as it eliminated some corner
cases to check and provided some potential performance improvements. The more
constrained the use cases are, the more performant the corresponding code can be.
It later turned out that this constraint hindered some use cases, such as the compar-
ison of energy density for a spin spiral in different lattice sizes or the enlargement
of the system to fit a state which turned out to be larger than expected, and it was
very impractical to have to restart the code. Another example is that a lot had to
be refactored in Spirit in order to accomodate the possibility of disordered distribu-
tions of atom types and atom-dependent moment lengths. The elimination of such
constraints can be a significant effort and their implementation should therefore be
carefully evaluated beforehand.

Another hurdle in the development of such a large software framework is to keep
code readable and to not convolute it or create "spaghetti code" (i.e. a big pile of
long strings of code). Here, simplicity quite directly translates into code readability
and it is important to design code in such a way that it can easily be understood. For
example, parameters should be easily and centrally accessible, not forcing the reader
to sift through large amounts of code to find out e.g. what the magnitude of any
specific scaling parameter or the time step of a solver is.

A good example of code which is hard to simplify is the calculation of gradients
and energies in the Hamiltonian. While most methods at some point rely on the
energy gradient (and the energy could be calculated from a scalar product of the
gradient and the spin), the Monte Carlo method requires the change of energy when
a single spin is displaced. At time of writing, this has not been implemented in Spirit
without the duplication of code for the calculation of energies, as no approach to unify
these two concepts without significant performance loss was devised. Especially to
abstract away the use of GPU parallelisation in this case is challenging. However, the
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duplication of the energy calculation functions reduces the legibility of the code and
has produced several mistakes which had to be found and fixed.

3.2 HAMILTONIANS

This section deals with a few implementational details of different Hamiltonians. In
line with the extrinsic view on the degrees of freedom of the spins and the represen-
tation in the 3N embedding space (see Section I.2 and Section 2.2), the Hamiltonian
classes can implement – if known – the derivatives of the unconstrained (or smoothly
extended) Hamiltonians.

The Hamiltonian base class has been equipped with a finite difference approxima-
tion (FDA) calculation of the gradient as well as the Hessian. Since the derivatives are
only required in the embedding space, they can be trivially implemented. Therefore,
quite general Hamiltonians could be implemented without the need to implement
the analytical derivatives. Performance may however be an issue for large system
sizes, as the finite differences are generally less efficient than an implementation of
analytical derivatives.

In Spirit, the central difference approximation is used, where

G i
α
=
∂H
∂ ni

α

=
H({n*}+ hi

α
)−H({n*} − hi

α
)

2hi
α

(3.1)

and

Hi j =
∂ 2H
∂ n*i∂ n* j
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β
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α
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β
)

4h j
β

+
G j
β
({n*}+ hi

α
)− G j

β
({n*} − hi

α
)

4hi
α

,

(3.2)

with hi
α

denoting a finite displacement of the spin component ni
α
.

For testing purposes, a Hamiltonian composed of a superposition of Gaussian po-
tentials was implemented, as it allows the creation of arbitrary energy landscapes for
a single spin. This can be plotted and used to verify the implementation of a method,
as has been done for the GNEB and MMF methods (see Figure 1.7 and Figure 2.4
respectively). Further details on this Hamiltonian are given in Appendix B.

The implementation of dipolar interactions deserves some discussion at this point,
as they are the most difficult contribution to the Hamiltonian (I.1) to implement, due
to their long-ranged nature (compared to exchange interactions).

The initial implementation in Spirit was simply a direct summation with a cut-off
radius, an improvement of which was first attempted by implementing the approxi-
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mation of distant spins inside a macrocell by a single macrospin [52, 178]. While the
scaling of the macrocell approach may improve computation time significantly, there
is an issue of precision for those spins which are close to the boundary of a macrocell,
as a majority of their near-field neighbours are not taken into account with sufficient
precision.

Due to these issues, a more robust but scalable method is required. The method
of speeding up the calculation of dipolar fields on regular lattices by calculating FFT
convolutions is already well-known in micromagnetics [179]. It brings the computa-
tional complexity for the evaluation of these interactions from an order O(N 2) down
to an order of O(N log N). This was implemented in Spirit – under supervision of
the author – by Moritz Sallermann as part of his Master Thesis. While non-rectilinear
Bravais lattices can be treated trivially, the scheme had to be adapted to cases where
a basis cell contains multiple atoms. This is achieved by calculating one FFT per sub-
lattice (i.e. per basis atom) and performing corresponding additional convolutions.
High performance, robust FFT libraries are used [180, 181], both on CPU and GPU,
which eased implementation and ensures high efficiency.

In order to assert the correctness of the implementations, a set of tests is performed
and different evaluations compared against each-other where possible.3 The stray
field of a homogeneously magnetised monolayer is a simple example in which the
direct summation can be performed analytically and compared to the numerical re-
sults, which should converge against it for increasing system size. Another good test
is the reproduction of a calculation from Ref. [182], in which the micromagnetic cal-
culation of the stray field-induced vorticity of a ferromagnetic cube is presented. The
results of this calculation using Spirit are shown in Figure 3.9.

The squared vorticity is expected to approach the critical field linearly, so that a line
can be fitted to extract the precise result from the calculations. The results show the
expected behaviour and are already close to the micromagnetic limit with a lattice
of 50× 50× 50. Increasing the density of lattice sites further leads to a convergence
to the expected value for the critical field hc = 0.158.

In ongoing work, the implementation of the fast multipole method (FMM) [183]
in Spirit is attempted, with the goal of generalising the calculation of dipolar fields
to irregular lattices and in order to be able to directly test which method performs
the best. Note the Barnes-Hut method, which is a simpler form of the FMM [53].

Note that the comparison of different methods for random configurations with non-
symmetric basis cells can already reveal a lot of implementational errors, if present.

3 For some system sizes direct summation may not be feasible
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FIGURE 3.9 – Stray field-caused vorticity of a cube

A ferromagnetic simple cubic lattice of size 50× 50× 50 with lattice constant
a = 1 �A and with dipolar interactions and simple nearest-neighbour exchange
of J = 16.86 meV. Insets show the cube at h = 0 (left) and h = 0.1 (right)
The vorticity v (circles) and its square (triangles) are plotted against the re-
duced external magnetic field h, given in units of h = B/(μ0Ms) where Ms is
the saturation magnetisation density. Close to the critical field, the data is fitted
(solid lines), giving a value of hc = 0.159. When the lattice density is increased,
the micromagnetic limit of hc = 0.158 is approached. Therefore, the results
presented in ref. [182] are satisfactorily reproduced. This figure has been pub-
lished in [47].
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3.3 SOLVERS

To simplify the following discussion, we recall the LLG equation (I.34) written in the
form of Equation (I.36)

∂ n*i(t)
∂ t

= n*i(t)× A
*

i (t, {n*i(t)}) , (3.3)

where we keep the explicit time-dependence of A
*

, as the Hamiltonian can be time-
dependent, for example when an AC magnetic field is used. This formulation is equiv-
alent to the common notation of ordinary differential equations in the literature

∂t n(t) = n(t)× A(t, n(t)) ⇔ ∂t y(t) = f (y, t) , (3.4)

i.e. f Ò=n*× A
*

.

3.3.1 Heun

Heun’s method [184] is a common and illustrative way to solve ordinary differen-
tial equations (ODEs) by first calculating an intermediate prediction step and then
"averaging" to obtain the final approximation. It can be interpreted as a two-stage
Runge-Kutta method [185, 186]. Denoting the time step δt, for an ODE of the form

∂ y(t)
∂ t

= f (t, y(t)) , y(t0) = y0 , (3.5)

the predicted value y p is first calculated as

y p(t +δt) = y(t) +δt f (t, y(t)) (3.6)

and then the approximation for the next step as

y(t +δt) = y(t) + δt
f (t, y(t)) + f (t +δt, y p(t +δt))

2
, (3.7)

When applied to the LLG equation, where fÒ=n*× A
*

, this integration scheme obvi-
ously does not intrinsically preserve the spin length, requiring the re-normalization
of the vectors n*i after a given number of iterations, depending on the required preci-
sion. Note that Heun’s method falls into the category of Runge-Kutta methods, which
function analogously and therefore all have this property.
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3.3.2 Depondt

In order to improve on Heun’s method, Ref. [120] proposes to make use of the fact
that the spins are only allowed to rotate, by writing an appropriate rotation matrix R,
which is calculated directly from the field A

*

. Applied to Heun’s method, the prediction
step (3.6) reads

n* p
i (t +δt) = Ri

�

A
*

i(t, {n*i(t)})
�

n*i(t) . (3.8)

To perform the correction step (3.7), one needs the correction field A
*c

, which is cal-
culated from the average of the initial and predicted fields,

A
*c

i =
A
*

i(t, {n*i(t)}) + A
*p

i (t +δt, {n*p
i (t +δt)})

2
. (3.9)

From this, in turn, the rotation matrix for the correction step Rc
i

�

A
*c

i

�

is obtained and
the final step of the scheme reads

n*i(t +δt) = Rc
i

�

A
*c

i

�

n*i(t) . (3.10)

Higher order Runge-Kutta schemes could apply this approach analogously.

3.3.3 4th order Runge-Kutta

The most well-known of the Runge-Kutta schemes [185, 186] is the classical 4th order
Runge-Kutta method, sometimes referred to as "RK4". As always, we start from the
initial value problem

∂ y(t)
∂ t

= f (t, y(t)) , y(t0) = y0 . (3.11)

The position at the next step is calculated as the weighted average of several incre-
ments

y(t +δt) = y(t) +
1
6

�

k1 + 2k2 + 2k3 + k4

�

, (3.12)

where the increments are defined as

k1 = δt f (t, y(t))

k2 = δt f (t +δt/2, y(t) + k1/2)

k3 = δt f (t +δt/2, y(t) + k2/2)

k4 = δt f (t +δt, y(t) + k3) .

(3.13)
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3.3.4 Semi-implicit midpoint

Ref. [118] takes a different approach from the Runge-Kutta class of methods by using
an implicit midpoint (IMP) structure to preserve the spin length. The implicit mid-
point method, solves differential equations of the form y ′(t) = f (t, y(t)), y(t0) = y0

(see Equation (I.36)) and an iteration step is defined as

y(t +δt) = y(t) +δt f
�

t +
δt
2

,
y(t) + y(t +δt)

2

�

. (3.14)

For the LLG equation (I.34) and a time step δt this leads us to

n*i(t +δt) = n*i(t)+δt
n*i(t) + n*i(t +δt)

2
×

A
*

i

�

t +
δt
2

,
§

n*i(t) + n*i(t +δt)
2

ª�

.
(3.15)

The semi-implicit scheme B (SIB) [118] uses a predictor n*p
i to reduce the implicitness

of the equation above by replacing n*i(t+δt) in the argument of A
*

i. To preserve spin
length the predictor is obtained with the IMP structure.

n*p
i (t +δt) = n*i(t) +δt

n*i(t) + n*p
i (t +δt)
2

× A
*

(t, {n*i(t)}) . (3.16)

Equation (3.16) can be rewritten as

Mn*p(t +δt) = M T · n*(t) , (3.17)

with the matrix

M = I + skew(A
*

) =







1 −Az Ay

Az 1 −Ax

−Ay Ax 1






. (3.18)

The right hand side of Equation (3.17) can be easily calculated as

M T n*i = n*i + n*i × A
*

i =: a* . (3.19)

To solve Equation (3.17) we use Cramer’s rule. The components np
i,α of the predicted

spin vector n*p
i are calculated with

np
i,α =

det(Mα)
det(M)

, (3.20)
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where Mα is the same matrix as M but column α is replaced with the vector a*, for
example

M x =







ax −Az Ay

ay 1 −Ax

az Ax 1






. (3.21)

We now use the predictor n*p
i in the IMP step (3.15) to calculate the updated spin

vector as

n*i(t +δt) = n*i(t)+δt
n*i(t) + n*i(t +δt)

2
×

A
*

i

�

t +
δt
2

,

�

n*i(t) + n*p
i (t +δt)
2

��

.
(3.22)

The correction step is analogous to the prediction step (compare eqs. (3.16) and
(3.22)), meaning that the scheme (3.20) can be applied to obtain n*i(t +δt), too.

3.3.5 Velocity projection

This description is derived from Ref. [56]. Verlet-like methods [187, 188] generally
find application in solving second order differential equations of the form ẍ(t) =
F(t, x(t)), x(t0) = x0, ẋ(t0) = v0, such as Newtons equation of motion. In the formu-
lation of this method, implemented in Spirit, both the position and the velocity are
incremented at each time step:

x(t +δt) = x(t) +δt v(t) +
1

2m
δt2 F(t) , (3.23)

v(t +δt) = v(t) +
1

2m
δt(F(t) + F(t +δt)) . (3.24)

The velocity projection is used to accelerate convergence towards local minima, as
well as avoid overstepping due to momentum. The velocity at each time step is
damped by projecting it onto the force:

v→






(v · F)F/|F |2, (v · F)> 0

0 else
. (3.25)

Note that the dot product and norm in this equation denote those of 3N -dimensional
vectors.

Using the velocity projection solver, we are no longer solving the LLG equation,
but instead a similar equation which converges the system towards local minima
(see Section I.4)

∂ 2n*

∂ t2
= n*×

�

n*× ∂H
∂ n*i

�

. (3.26)
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The force is simply defined as

F
*

i = −
∂H
∂ n*i

. (3.27)

As the method does not conserve the length of the spins, they should be renormalized
after each iteration

n*i(t +δt)→ n*i(t +δt)
|n*i(t +δt)| . (3.28)

3.3.6 Nonlinear conjugate gradients

The nonlinear conjugate gradients (NCG) method is a sophisticated tool for minimi-
sation problems and can be formulated for nonlinear problems [189], such as the
minimisation of the energy of an atomistic spin system, given by a nonlinear Hamilto-
nian H (for example Equation (I.1)). This method, like the velocity projection solver,
is not suitable for the solution of the dynamical LLG equation and has to be adapted
to respect the constraint of constant spin length.

In the language of this method, we define the current position of the system in the
configuration space as the point x = {n*i} ∈Mphys (see also Section I.2 and Chapter 2)
and the residual

r = −∇H , (3.29)

which is simply the effective field. The step size α is a scalar value that minimises

H(x +αd) (3.30)

or, equivalently,
(∇H(x +αd)) d = 0 . (3.31)

Starting with d = 0 and β = 0, in each iteration of the algorithm, d is updated with
the following rule:

d(i+1) = r(i+1) + β(i+1)d(i) . (3.32)

With the step size α, the position x can be updated by

x(i+1) = x(i) +α(i)d(i) , (3.33)

which in our case requires subsequent re-normalisation of the spin vectors:

n*i →
n*i

|n*i|
, (3.34)

r(i+1) = −∇H(x(i+1)) . (3.35)

Since the Polak-Ribière equation for β does not immediately ensure convergence, it
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is slightly modified:

β(i+1) =max

�

r(i+1)(r(i+1) − r(i))

r(i)r(i)
, 0

�

, (3.36)

which will restart the CG if β becomes negative.
In order to perform an exact line search and find the correct value of α in this non-

quadratic case, several steps may need to be taken along the line until the minimum
is found.One NCG iteration may hence include many line search iterations. For more
information on the NCG method in general and line searches in particular, when con-
strained to a Riemannian manifold, as well as connected problems and solvers see
also [190]. This problem was not fully covered in the time span of this work, i.e.
the NCG method has not yet been fully implemented in Spirit. However, the method
has been found to be highly effective [136], which motivates the completion of its
implementation for energy minimisations and minimum energy path (MEP) calcula-
tions in the future. Notably, formulations in the frame of the Cartesian coordinate
representation used throughout this thesis have been made [191–193] and should
be taken advantage of.

3.3.7 Comparison of dynamics solvers

In this section only dynamical solvers, i.e. not those for energy minimisation, will be
compared. In order to judge the precision of the different solvers implemented in
Spirit, the total error, which is the euclidean norm of the distance between the ex-
pected and the calculated spin vector, is plotted over the time step ∆t in Figure 3.10.

Recall the analytical solution Equation (I.38) for the angle of the spin precessing
in the plane orthogonal to an applied magnetic field

ϕ(t) =
γ

(1+α2)µ
|B*|t . (3.37)

The range of time steps between 10−4 ps and 1 ps corresponds to a rotation of the
spin by µs|B*|γ∆t from 0, 003deg to 30deg per time step. It is obvious that the SIB
and Heun methods have exactly the same precision in this test case with the applied
error measurement. The Depondt and 4th order Runge-Kutta solvers have very similar
precision, but the Depondt solver appears to match this specific case exactly and it
therefore remains precise, even at a time step of 1ps. This is most likely due to the
fact that its iterations consist of the application of rotation matrices (see Section 3.3).
The numerical precision limit stems from the tradeoff between the additive nature
of the error, increasing with the number of time steps, and the decreased error per
time step when the time step ∆t is reduced.
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FIGURE 3.10 – Solvers’ precession error over time step

The maximum total error of the spin vector n* over time step ∆t is shown for
the same relaxation procedure as in Figure I.11 (i.e. the same time interval of
500 ps). Note that the maximum error of the relaxation process is only one
possible measure of the precision of a solver. The error has an interesting de-
pendence, as the Depondt solver has its lowest error at a time step of 1 ps, while
the other solvers show the expected behaviour of a decreasing error for smaller
time steps until the limit of numerical precision is reached. This is likely due to
the nature of the rotation matrix in the Depondt solver (see Section 3.3) and
the pure in-plane rotation in this test case (compare Figure 3.11). Note also
that the SIB and Heun solvers coincide everywhere.

Obviously the precession-only test case is educative, but does not provide a good
measure of precision of the solvers. In Figure 3.11, we show again the dependence
of the total error on the time step ∆t. Recall the analytical solution Equation (I.39):

nz(t) = tanh
�

αγ

(1+α2)µ
|B*|t

�

ϕ(t) =
γ

(1+α2)µ
|B*|t

nx(t) = cos(ϕ(t))
q

1− n2
z (t)

ny(t) = sin(ϕ(t))
q

1− n2
z (t) .

(3.38)

The total error of the damped precession over the time step∆t shows a dependence
similar to that of the undamped precession. The fact that the semi-implicit solver has
the highest error in this test is surprising and requires further investigation.
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FIGURE 3.11 – Solvers’ error dependence on time step

The maximum errors of the x- and z-components respectively are shown for the
same relaxation procedure as in Fig. I.12. In this measure, the 4th order Runge-
Kutta solver obviously shows the lowest error above the limit of numerical noise,
which it reaches already at time steps an order of magnitude larger than for the
other solvers. Note that the maximum error of the relaxation process is only
one possible measure of the precision of a solver.

In order to make sure that no change in the implementation compromises the
correctness of any of the solvers, the shown precession tests are reproduced as unit
tests in the continuous integration. To also test the minimisers and the convergence
of a complex spin texture, a skyrmion is relaxed with each solver and the energy
compared against the numerically known value.

3.4 GRAPHICAL USER INTERFACE

The graphical user interface (GUI) of Spirit is the core productivity tool of the frame-
work. Its features are intended to enable quick testing and execution of the various
implemented parameters and methods and to combine them into complex calcula-
tions. Note that in addition to describing the implemented features, this section is also
meant as a general guide, giving perspective beyond what has been implemented in
Spirit so far.

Use cases for such a simulation code can vary greatly and it is thus important to
keep a certain level of abstraction and generality. In the end, the amount of methods
and parameters should not overwhelm the user, but appear naturally and be intu-
itively accessible.
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FIGURE 3.12 – Screenshot of Spirit GUI running the GNEB method

In addition to the visualisation, information panels show useful data, such as
the energy of the current image, the maximum force currently acting along the
chain or the number of iterations per second. Controls to change the simulation
parameters, the Hamiltonian or the visualisation and to set initial states are
given on the right. A graph shows the energies of images along the chain, the
selected being colored red (indicated as a triangle because it is set as climbing
image). The control bar in the bottom allows for switching between images on
the chain and selecting the method to be applied and the solver to be used.

A major challenge in this endeavour is the presentation of information on a single
spin system as well as a chain of systems at the same time. A significant advantage
of handling a complete chain is the ability to run multiple single-system iterations
in parallel and monitoring them at the same time. These issues were resolved by
presenting one system of the chain in the visualisation, while also showing a plot
of the energies of the chain with an indication of the currently selected system, as
shown in Figure 3.12. Together with an intuitive copy-paste feature, enabling the
simple creation, reordering and manipulation of chains of systems, this makes all
calculations easy to monitor in the same GUI.

In the context of parallel calculations and different methods potentially conflicting
with each-other, one has to take care to adequately protect the user from himself, in
the sense that at any time, the available user input should be valid. For example, one
should not be able to start LLG calculations on a chain, where a GNEB calculation
is already running. Also, certain input needs time to be processed – for example the
calculation of eigenmodes – and the GUI should deactivate the appropriate controls
for the time it takes to finish the operation and block further operations, such as the
removal of the corresponding image from the chain. Due to the increasing complexity
with every added method and parameter set, this can become complicated to keep
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in check.

FIGURE 3.13 – Interactions input in the Spirit GUI

Screenshot of the GUI of Spirit, showing the input of three neighbour shells
of exchange, one neighbour shell of DMI and the usage of FFT convolutions
with 4 periodical images in each direction for the calculation of the dipolar
interactions. Note that the cutoff radius is only used if the direct summation is
selected as calculation method for dipole-dipole interactions.

The input of interactions from the GUI might seem trivial, but the fact that there
are many different ways to represent the same input means that this feature should
not be too limited. Due to the added complexity of higher order interactions, only
pairwise parameters can be set, such as neighbour shells of exchange and DMI, as
well as the method and parameters for the dipolar interactions. This is shown in
Figure 3.13. While exchange and DMI can, in general, be specified pairwise in order
to provide greater generality, the GUI does not provide this feature, as it would involve
additional challenges in the design of the interface.

It is difficult to make such functionality available through multiple different inter-
faces, namely input files, application programming interface (API) and graphical user
interface (GUI). A rule which the author found helpful in the design of these different
interfaces was that it should make no difference through which interface a parameter
was specified and when – the result should always be the same, also including run-
time performance. For example, neighbour shells and explicit pairs should be equally
fast.

In order to provide advanced functionality to initialise complex states and inter-
vene in running calculations, an interaction tool was implemented into the GUI of
Spirit, enabling the dragging or copying and pasting of a cylindrical region of the sys-
tem. This enables the easy generation of complex shapes or, for example, skyrmion
lattices without much effort – potentially saving a lot of time for example when the
outcome of various initial conditions is still unclear and has to be explored. This is
illustrated in Figure 3.14.
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FIGURE 3.14 – Interactively changing spin configurations in the GUI of
Spirit

An interactive tool of Spirit is shown dragging a skyrmion (left) and copying and
inserting multiple skyrmions (right). This tool can be especially useful when cre-
ating a chain of images representing a specific initial guess for the transition,
which would be complicated even to script. Also, GNEB calculations may often
show unexpected or undesired behaviour, for example due to the appearance
of translational or rotational modes. The transitions of skyrmion rings, see Fig-
ure 1.10, are a good example for this. It can often be very helpful to be able
to directly intervene and correct bad paths segments quickly after they appear.
This may, in turn, reduce the number of required images and therefore the com-
putational time needed.

Since its implementation, this tool has been used throughout this work to generate
the initial states for GNEB paths and has been found by the author to be highly useful
also to correct running calculations, especially in complex 3D systems as presented
in Chapter 4.

Analogous to the selective orientation of spins and generation of patterns, one
might want to create a pattern of vacancies or pinned spins.

As shown in fig. 3.15, through combination of different settings and features of
Spirit, it is quite easy to create complicated geometries and quickly test ideas. This
– once again – greatly reduces the users effort needed in setup, post-processing and
correction steps. Less time is wasted on trial and error and the intuition for studied
systems is again enhanced through the immediate visual feedback.
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FIGURE 3.15 – Creating simple and complex geometries in Spirit

A spherical arrangement of spins can be easily cut out of a system (left) by
setting all other sites to "atom type -1", corresponding to vacancies without any
other effect on the system parameters. This can be done very easily from the
Spirit GUI by setting the region and atom type (right) and the click of a button.

In addition to the specification of pinned boundary layers and similar initial condi-
tions through an input file, as well as setting them in the GUI, as shown in Figure 3.15,
a second interaction tool was implemented into spirit, allowing to pin or change the
atom types of spins in a cylindrical region. This is illustrated by the insertion of a
large region of vacancies by dragging the interaction tool over the sample, shown in
Figure 3.16

There is a challenge in the implementation of such features, which should be men-
tioned: depending on how the input is framed, the user might expect different things
to happen with vacancies or pinned spins when the geometry, atom types or the spin
configuration are changed. To achieve consistency, making such a tool intuitive to
use, is important. For example, what should happen if the user adds a second atom
to the basis cell at runtime – is a vacancy applied to the whole cell or is the new atom
initialised with some default atom type? Enabling more and more complex use cases
and adequately treating the various interactions between all of them is a challenging
task and will require significant improvements over the current GUI of Spirit.

Finally, one of the most compelling features of Spirit is its powerful visualisation.
The visualisation was created by Florian Rhiem in collaboration with the author and
written as a standalone C++ library [60]. The integration into the GUI of Spirit was
performed by the author. The visualisation capabilities of Spirit have already found
application for multiple publications [46, 47, 58, 61, 194, 195], several of which were
not in collaboration with the author of this work. Though the interpolated surface
colouring is already useful, for example in the visualisation of skyrmion eigenmodes
by visualising its contours, it unfolds its real usefulness in 3D systems, where post-
processing becomes increasingly cumbersome. See Figure 2.3 for an example of a
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FIGURE 3.16 – Interactively inserting vacancies in the GUI of Spirit

An interactive tool of Spirit is shown "erasing" spins from a system. Though
mostly useful for testing purposes, this tool allows for the easy creation of com-
plex geometries and experimentation on them – without the effort of creating
lists of atoms, or even remembering specific input keywords for such features.
This feature was used to produce the notch in the racetrack shown in Figure I.15
with just a few clicks.

more complex eigenmode, where the live visualisation becomes highly useful. See
also Chapter 4 for more examples of complex visualisations of 3D textures using
Spirit.

Regarding the quality of the visualisations presented in Figure 3.17, it should be
stressed once more that these publication quality visualisations are available in real
time during simulations and do not need to be generated by post-processing simula-
tion output.

There are plenty of different techniques one might want to use to visualise spin
systems and the potential to combine them increases the complexity of the implemen-
tation and GUI even further. It is therefore an important task to make the interface
easy to use without restricting features. While the author enabled the use of several
features in the same visualisation and the combination of multiple isosurfaces, in
hindsight there are many opportunities left open. Ideally, the GUI should provide the
ability to add arbitrarily many renderers (a renderer representing one isosurface, vi-
sualisation of arrows or any other feature), where the settings of the colour map, data
resolution, filters, light and shadows and all other settings should be available both
globally and once per renderer. This would enable the full complexity of almost arbi-
trary visualisations, without revealing the complexity to the user unless requested –
i.e. keeping it easy to use.

As was shown in this section, the graphical user interface (GUI) of Spirit can greatly
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FIGURE 3.17 – Hopfion isosurface visualisations

A Hopfion in a periodic cube is visualised with the isosurface for nz = 0
(left) and the ring-shaped isosurfaces for nx = 0.9, nx = −0.9, ny = 0.9 and
ny = −0.9. The coloured rings can be seen to mutually form single links, a
way of counting the order of the Hopfion. See [46] for more examples of these
isosurfaces, generated using Spirit.

increase user productivity in comparison to the currently far more common approach
of programmatically setting initial conditions for a calculation and subsequently run-
ning them without direct visual feedback. The benefits shown here will surely be
adopted by new software being developed in this field and hopefully pre-existing
software, too.

As a future endeavour, it would be a good idea to make use of the Python inter-
faces of both Spirit and VFRendering and write a new GUI in Python. The ability to
rapidly prototype new features and extend functionality would be greatly beneficial.
Furthermore, one could compile various different versions of the Spirit core library –
with and without CPU parallelisation, with GPU backend, with and without support
for defects or pinned spins – and load the desired version at runtime and, if desired,
switch between them. Finally, it would make the distribution of the GUI version of
Spirit far easier across all platforms.

Another important addition to the graphical features inside the Spirit software
framework will be post-processing features. While it was stated repeatedly that var-
ious features of the GUI make post-processing obsolete, there are several features
which should be added for greater convenience, such as the ability to automatically
generate a smooth transition movie from a chain of spin systems by interpolating
between the spin configurations and creating screenshots of each configuration to
produce a given framerate for a movie. Especially when a calculation was run on
a remote machine or cluster, the ability to automatically generate images or movies
in Spirit could be valuable. Stream-tubes, which have already been implemented in
VFRendering, but not yet in the GUI of Spirit, often find application in fluid mechanics
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and similar simulations, but can also be used to generate interesting visualisations of
spin systems.

3.5 APPLICATION PROGRAMMING INTERFACE

The application programming interface (API), is arguably the most important abstrac-
tion in the core library of Spirit. It enables the flexibility and versatile use of this code,
and provides an important separation of components, namely the core library and the
user interfaces, as shown in Figure 3.1. This section will detail some design decisions
and the most important aspects and functionalities of the underlying API, written in
the C programming language, as well as some lessons learnt. Finally, some aspects
specific to the Python language bindings are discussed.

3.5.1 C API layer

The essential part of the API is the C layer. As this language is widely supported
by other programming languages, it is comparatively easy to use from many other
languages, such as Python (see section 3.5.2) or JavaScript – the latter of which was
used to create a web-based user interface to Spirit, which can even be used on current-
day smartphones. This versatility guided the decision for the use of C.

An important consideration for any API is thread-safety, meaning it should be us-
able from multiple threads at the same time. To this end, an opaque State object is
used, which all API functions require and access, while using mutex locks to ensure
that resizing of data arrays will not lead to segmentation faults (for example when
the geometry of a system is changed).

The following example shows how to set an external field, two shells of exchange
interactions and one shell of DMI

1 float dir[3]{0, 0, 1};
2 Hamiltonian_Set_Field(p_state, 2.0, dir);
3 float jij[2]{1.0, -0.2};
4 Hamiltonian_Set_Exchange(p_state, 2, jij);
5 float dij[1]{0.45};
6 Hamiltonian_Set_DMI(p_state, 1, dij);

LISTING 3.1 –

C API example

3.5.2 Python API

Within the scope of this work, many reasons can be stated why to prefer a scripting
language, such as Python, when programming complicated calculations. The main
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differences are

• performance will generally be lower

• overhead of having to re-compile after any change is avoided

• less strict interpretation rules

• simpler syntax

• functional programming features

When the computationally significantly expensive parts are executed in compiled
code, these features are typically big time-savers. This means getting the best of both
worlds and is achieved by wrapping, or binding, the C API in a layer of Python.

For example, to set an external field, two exchange shells and one DMI shell:

1 hamiltonian.set_field(p_state, 2.0, [0,0,1])
2 hamiltonian.set_exchange(p_state, 2, [1.0, -0.2])
3 hamiltonian.set_dmi(p_state, 1, [0.45])

LISTING 3.2 –

Python API example
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"Heutzutage haben die Wissenschaftler mehr Fantasie
als die Verfasser von Kriminalromanen."

— Werner Heisenberg

As pointed out in the Introduction Section I.1, the field of nanomagnetism is mov-
ing towards three-dimensional systems, both in simulations [196] and experiment [197],
and towards increasingly complicated device designs. Spirit was developed, among
other goals, to be a tool for the theoretical exploration and quantitative study of com-
plex 3D magnetic textures. This chapter will show the usage of several features of
the software in order to study known states and reveal new ones.

As a typically suitable model for isotropic chiral magnets, the classical Heisenberg
model is used throughout this chapter, which is defined by the following Hamilto-
nian [17, 136]:

E= −µsB
*ext

∑

i

n*i− J
∑

〈i j〉
n*i · n* j −

∑

〈i j〉
D
*

i j · (n*i×n* j) , (4.1)

where n*i = m* i/µs is the unit vector of the magnetic moment at lattice site i, B
*

is an
external magnetic field, the 〈i j〉 denote nearest-neighbour pairs, J is the Heisenberg
exchange constant and D

*

i j is the Dzyaloshinskii-Moriya vector defined as D
*

i j = Dr*i j

with the scalar DMI constant, D and the unit vector r*i j pointing from site i to site j.
In order to keep the generality of the results presented in this chapter, as well as

consistency with earlier studies, the size of the simulated domain is always given in
reduced units of distances with respect to LD = 2πaJ/D – the lowest period of an
incommensurate spin spiral, where a is the cubic lattice constant – and the external
magnetic field is given in reduced units with respect to BD = D2/(µsJ) – the critical
field at which the bulk system reaches the field polarized ferromagnetic sate. For
external magnetic fields in the range 0< B < BD the ground state of the bulk crystal
corresponds to the conical state – a helical spin spiral with k

* ‖ B
*

and magnetization
tilted towards the direction of B

*

.
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4.1 THE CHIRAL BOBBER

Quite recently, a new, metastable magnetic state was introduced in the context of 3D
nanomagnetism: the chiral bobber [136] – a finite skyrmion tube extending from
a Bloch point to a free surface of the sample. This state was recently confirmed in
experiments [194]. A visualisation of a chiral bobber in Spirit is shown in Figure 4.1.

FIGURE 4.1 – Chiral bobber visualised in Spirit

A chiral magnetic bobber, visualised in the graphical user interface (GUI) of
Spirit. An isosurface for nz = 0 is drawn, colors indicating the in-plane orien-
tation of the magnetic moments, which are visualised by arrows. The configu-
ration is cut open to better show its full structure. Note that spins inside are
tilted against the z-axis, while they are tilted towards the z-axis on the outside.
At the bottom of the isosurface the colors meet in the Bloch point. This shows
the complexity of the bobber’s structure, which can easily be handled in Spirit
without any need for post-processing.

Bloch points (BPs) [198] are topologically nontrivial objects, representing point
singularities in the magnetisation field [199, 200] and have recently become com-
monly referred to as quasi-monopoles or monopoles [201, 202]. In its close vicinity,
the magnetisation is pointed radially away from the BP, though the magnetic flux
through the surface surrounding the point is equal to zero. Note that even in the
micromagnetic theory, where the magnetization vector becomes undefined at the BP,
the energy does not diverge [200].

The skyrmion tube and chiral bobber are especially interesting states, as their com-
bination was proposed for a new racetrack memory design, where the bits "0" and "1"
are encoded by skyrmions and bobbers respectively [194]. This design has a number
of advantages over current skyrmion racetrack designs, the most important of which
are the fact that skyrmion and bobber can be distinguished by measurement, making
the data readable, and that there is far less of an issue with spacing, as no data is rep-
resented by free space. Especially when pinning, for example due to defects, starts
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to play a role, it becomes important that there is no requirement for all the data to
move at the same speed all the time. Recently, theory of chiral orbital magnetism was
employed to try and enable the unambiguous differentiation between skyrmions and
bobbers by electrical measurement [196]. It is shown that the transport properties
of this state have unique qualities and can be tuned by external fields, for which the
topology of the Bloch point and the object itself play a major role.
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FIGURE 4.2 – GNEB path for skyrmion collapse with intermediate bobber

A 30 × 30 × 30 simple cubic lattice with periodical boundaries in x and y di-
rections and free surfaces in z-direction at an external field of B = 0.8 BD. The
minimum energy paths (MEPs) for the collapse of a skyrmion tube through nu-
cleation of a Bloch point at the surface (blue curve) and a pair of Bloch points
at the center (red curve) are shown. The skyrmion tube is either disconnected
from one of the surfaces through radial shrinking in the nearby layers, leading
to the nucleation of a Bloch point, or it is cut in half by the nucleation of a pair
of Bloch points in the center. In the latter case a pair of chiral bobbers appears
along the MEP, as well as a saddle point for the collapse of one of them, and
in both cases there is a single chiral bobber and its collapse saddle point on
the path. Note that the slight differences in the collapse of the bobber between
the two paths come from different initial paths. This figure has been published
in [47].

Spirit not only has the ability to visualise these states in real time, but to apply
both LLG dynamics simulations of such a racetrack with electric currents as well as
the GNEB method to find energy barriers for the various possible transitions in such
a system. While LLG simulations were performed, no conclusive results could be
obtained within the time frame of this work and this section will deal only with GNEB
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calculations. The parameter set used throughout this section is in accordance with
a calculation presented in ref. [136], for which a minimum energy path (MEP) was
presented. For these calculations the specific parameters are J = 1 and D = 0.45 J ,
meaning that the incommensurate spin spiral has a period of LD = 13.96 a. The first
calculation, presented in Figure 4.2, is an example and a proof of concept for the
GNEB method in 3D.

While Ref. [136] reports the process of nucleating a pair of Bloch points to cut
the skyrmion tube in half and produce a pair of bobbers, Figure 4.2 shows that the
nucleation of a single Bloch point at a free surface of the thin film is also a possible
MEP. At the given field, both processes have almost equal energy barriers of∆Ecenter =
23.13 J and∆Esurface = 22.81 J . The collapse of a chiral bobber has an energy barrier
of ∆Ebobber = 7.55 J .

In order to obtain the exact energy barriers, the climbing image method [203] was
used (see also Section 1.2) and – analogous to what is suggested in the reference –
the spring force modulated for an even distribution of images along the curve E(Rx).
The latter improves the convergence of the saddle point images quite significantly,
as the finite difference tangents become more accurate. The fact that the climbing
image method should be used when calculating energy barriers, especially when the
resolution close to the maximum is low, is illustrated by the fact that these results
give a ratio of the energy barriers between the collapse of the bobber and the Bloch
point nucleation of only 3.3, while ref. [136] – not using climbing images – reports
a ratio of 4.3.

It should also be noted that these calculations are made more difficult by the pres-
ence of a conical phase background – corresponding to the ground state of the system
– which introduces additional modes with little or no energy cost associated to them.
Such zero or very low energy modes can significantly slow down the convergence to
the minimum energy path.

The following calculations were made in order to further analyse the nucleation
of Bloch points, but also to determine a set of quantitative reference results for this
nontrivial kind of system, against which other codes might be tested. The dependence
of the various energy barriers on the external magnetic field was calculated and the
results are shown in Figure 4.3.
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FIGURE 4.3 – MEP barriers of the skyrmion tube and the bobber

Energy barriers of the two MEPs shown in Figure 4.2 (cube of size (30×30×30),
periodic boundary conditions in the x y-plane) are plotted against the applied
magnetic field B. The nucleation of a BP in a skyrmion tube at the surface of the
thin film (blue circles) and in the center of the skyrmion (green squares) are
shown, intersecting approximately at B = 0.8BD. The nucleation of an isolated
bobber at a surface of the thin film (red upwards triangle) and its collapse (red
downwards triangle) are shown as well. This figure has been published in [47].

The results reveal a crossover between the two Bloch point nucleation mechanisms
in a skyrmion tube: for increasing external magnetic field it becomes favourable to
nucleate just one Bloch point at a free surface of the thin film, while at lower fields,
where the out of plane component of the conical background is decreased, it becomes
more favourable to nucleate a pair in the center of the skyrmion tube. The energy
barrier for the collapse of the bobber goes to zero approximately at the critical field
BD, meaning that the bobber, at least in this model, can only be stabilised inside the
conical phase. Finally, in contrast to a radial collapse of the skyrmion tube, the nu-
cleation of a Bloch point at a free surface, producing a bobber, also becomes easier
towards lower external field.

4.2 IN SEARCH OF NEW LOCALISED STATES

The interesting properties of BPs, mentioned in the previous section, warrant further
investigation. In the course of this work, the formation of structures containing BPs
was investigated further and a new 3D-localised particle-like state, composed of two
Bloch points coupled together with the center resembling a skyrmion, was discovered.
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Due to the usually elliptical isosurface of these objects and the Bloch points at the
poles of the surface, as shown in Figure 4.4, they will in this work be referred to as
magnetic globules.

Results presented in this chapter have been published by the author in Ref. [61].1

FIGURE 4.4 – Comparison of skyrmion bobber and globule

The general structures of the vectorfields of the skyrmion tube (left), the chiral
bobber (middle) and the magnetic globule (right) are schematically visualised.
Image provided by Nikolai Kiselev.

This spin configuration represents a novel phenomenon, as the stability of these
objects does not depend on geometric confinement. This point will be proven in the
following. As shown in Figure 4.5a), it is possible for globules to attach themselves
to a skyrmion tube – also several at a time, at different positions and with varying
distances between the Bloch points. By creating a special set of boundary conditions,
a bulk state containing a defect line of the conical phase can be calculated.2 In x-
direction, the boundaries are set to represent the analytical solution of the conical
phase, where on one side there is one repetition less. In y-direction, the boundary
conditions can simply be periodical. In z-direction, however, spins at the boundary
have mirrored interactions, pointing back into the sample, creating the effect of an
infinite continuation of the same state, without periodical repetition of the defect line.
Special care has to be taken in order to obtain a smooth transition to this boundary
condition, in order to avoid numerical artefacts. As illustrated by Figure 4.5 b) and
c), the globule can also attach to such a defect line and exist effectively as an isolated
state.

Figure 4.5a) shows an isolated skyrmion tube within the conical phase (which is
evident by the spiral-formed distortion of the isosurfaces for n* ‖ B

*

and n* ⊥ H
*

) with
several globules of varying lenght attached to it, while b) and c) show a defect line
1 The paper is on arxiv and is under review at Physical Review Letters
2 The "bulk" boundary conditions were implemented by Filipp Rybakov in his code and the corre-

sponding calculations therefore not performed with Spirit
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of the bulk conical phase with a single globule attached to it. It was previously be-
lieved that such a pair of Bloch points could not form a stable, coupled configuration
without the presence of geometric confinement [204, 205]. This is improved upon by
these findings that the globule can exist as a metastable state, when located at such
inhomogeneities. When isolated and coupled to a defect line, the globule is found to
be metastable between 0.5HD and 0.85HD.

a) b)

c)

FIGURE 4.5 – Magnetic globules in bulk systems

a) Several globules coupled to a single skyrmion tube in a bulk system. The
isosurfaces show where the vector field is pointed in-plane (coloured) and close
to z-direction (white). b) Isolated globule stabilised within the conical phase at
an edge dislocation. c) a closer view of (b). These images have been published
in [61].

As the previously mentioned bulk boundary conditions have not been implemented
in Spirit, the GNEB calculation of an energy barrier for the collapse of this structure
was not possible. Instead, the stability of a globule coupled to a skyrmion tube was
studied further. The computational cost of the GNEB method prevented using large
systems, but the size was chosen to be sufficient for conclusions to be drawn from
them. Figure 4.6 shows the results of a minimum energy path for the nucleation of a
pair of Bloch points, which couples to a close-by skyrmion tube, and the subsequent
increase of distance between the Bloch points.

The results clearly show local energy minima for certain periods of the distance
dBP between the Bloch points and energy barriers for the collapse of these states.
This means that the globule attached to a skyrmion tube is indeed a metastable
state, which cannot be destroyed by arbitrarily small excitations. From the images
Figure 4.6 b) - d), it is obvious that dBP is quantised with a period of ∼ LD, while
the MEP shows that the lowest energy state always corresponds to the state with the
smallest dBP � LD (which can slightly vary with the applied magnetic field). The en-
ergy increases linearly with dBP and tends towards the energy of two infinitely long,
coupled skyrmion tubes. Such coupled skyrmions have recently been shown to appear
due to the attractive interaction between skyrmion tubes at B < BD [195, 206, 207]
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and it is conjectured that the same effect is responsible for the stability of the globule
in this case. As there is an energy barrier for the collapse of the globule, correspond-
ing to an annihilation of the pair of Bloch points, a single skyrmion tube can host
several globules, as was already shown in Figure 4.5a).
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FIGURE 4.6 – Skyrmion-globule GNEB path in the bulk

Globules coupled to a skyrmion tube in a periodical bulk system, calculated at
Bext=0.45BD. A coupled pair of Bloch points (BPs) may attach to a skyrmion
tube in a bulk system, allowing it to be metastable at varying distances between
the BPs. The minimum energy path (MEP) for the nucleation of a pair of BPs
next to the skyrmion and the subsequent increase of distance between them,
i.e. the elongation of the glouble, is plotted. The energy increases linearly with
the distance between the Bloch points, converging to the energy of two cou-
pled skyrmion tubes in the bulk. Finite energy barriers are present for both the
increase and the decrease of distance between the BPs. This figure has been
published in [61].

A natural conclusion from the above results is that inhomogeneities could stabilize
globules in general and a logical next step is to seek out systems where such mod-
ulations could be predictably stabilised. Instead of relying on metastable magnetic
textures to be present in the sample, they can be naturally provided by the presence of
so-called edge modulations, which are always present in finite size samples [13, 208–
211]. First, it is important to check once more that it is not geometrical confinement,
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which stabilises the globule.
As a system to examine, a nanowire with periodical boundary conditions along its

length was chosen – for simplicity the wire has a square shape. Figure 4.7 shows the
stability range of the globule over the wire width W for a set of external magnetic
fields B. It should be noted that for energy minimisation of large system sizes of
several millions of spins, the CUDA code of Filipp Rybakov was used due to its superior
performance and implementation of a nonlinear conjugate gradients (NCG) solver
(see also Section 3.3).
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FIGURE 4.7 – Energy of the globule in an infinite nanowire

A nanowire of varying width W at a set of applied fields B, where Lz = 10LD
and W up to 15LD with periodical boundary conditions along the z-axis, see
left inset. The dependence of the difference between the energy density of the
conical ground state and the globule is shown. The right inset shows the same
dependence in absolute units of energy. Stars on the left ends of lines denote
the collapse of the globule, indicating that it may remain stable towards infi-
nite width of the wire, as it can couple to a side or a corner of the wire (see
Figure 4.8). The convergence of the difference in energy density means that
the globule is indeed a well-localised state and does not fill the entire available
space.

Figure 4.7 also shows the convergence of the energy density of the globule in the
nanowire for increasing width W . This clearly indicates that, despite the presence
of two magnetic singularities, the globule represents a well-localised state, which
does not extend to fill the entire available space. In contrast to actual geometrical
confinement, which would restrict the size of the globule, edge modulations allow
for truly 3D-localised globules.
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Since the globule is – in this scenario – coupled to edge modulations, its equilib-
rium position is near the edge of the nanowire, as shown in Figure 4.8 for a very
wide nanowire. As is shown, for a square nanowire where W � 2LD, the globule is
attracted to the corner.

FIGURE 4.8 – Globule attached to nanowire edge state

Magnetic globule coupled to edge modulations in a wide nanowire with W =
3LD and B = 0.6BD (see Figure 4.9). Isosurfaces for nz = 0 (coloured) and
nz ≈ 1 (grey) of the globule and edge state are shown for a nanowire of large
width. The globule is always trapped between two branches of isosurfaces cor-
responding to spins pointing along the external field.

The next question is in which range of parameters such states might be found. To
answer this, the diagram in Figure 4.9, showing the range of stability of the globule
over nanowire width W and applied field B, was calculated. It should be noted that
the CUDA code of Filipp Rybakov was used instead of Spirit for wires with more than
ca. 1 M spins.

A surprisingly large range of applied field B at which a single MG remains stable
was found for nanowires of sufficient width W . When the applied field is increased
and approaches B= BD the edge modulations become suppressed, which limits the
stability of the globule at high magnetic fields. Below a certain critical applied field,
the Bloch points can escape from the system through the free edges, destroying the
globule. However, it turns out that there is critical width of the nanowire of W ≈ 10LD,
above which the Bloch points may remain inside the sample even at zero magnetic
field. After the magnetic field is increased again in the same direction, the globule
forms anew.

Another significant point should be noted for this system: inside the region where
the globule is metastable, there is a region where a single skyrmion tube along the
wire is of lower energy than the conical phase, meaning that it represents the ground
state of the system [212]. This is represented by the red region in Figure 4.9. Outside
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of this region, the skyrmion tube along the wire is metastable and at large enough
field B it collapses, as indicated by the gray line in Figure 4.9. The fact that the
skyrmion is energetically favourable in this region means that finite length skyrmion
cores become more likely to be nucleated under thermal fluctuations. In the case that
a long skyrmion tube is stabilised in the system, a way to create globules would be
to cut the skyrmion tube, by thermal or other external excitation, such as a spatially
localised alternating magnetic field or short pulse.
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FIGURE 4.9 – Stability of the globule in an infinite nanowire

Stability diagram for the globule in the nanowire over wire width W and applied
field B. The blue region indicates where the globule can be stabilised, where
W/LD →∞ denotes convergence to a bulk system with free edges. The red
region corresponds to the skyrmion tube along the wire being the ground state.
The collapse field of the skyrmion tube is denoted by the gray line. The green
triangle denotes parameters used to produce Figure 4.8 and the square denotes
parameters used in Figure 4.10. This figure has been published in [61].

The question of how to create magnetic globules sets the direction of the next step.
For this it is of interest to know the most favourable transition path for the nucle-
ation of a globule out of a skyrmion tube, as well as the associated energy barriers.
Figure 4.10 shows a MEP calculated for W = 2LD and H = 0.5HD, where the sin-
gle skyrmion tube is the ground state of the system (Ea < Ek). Note that the periodic
boundary conditions along the nanowire result in a collapse path between state (e→i,
dashed line) which does not have a strict physical meaning and may change with the
domain length Lz.

The MEP clearly shows an energy barrier of∆E = 4.7J for the collapse transition of
the globule (i→k), which is on the same order of magnitude as the energy barrier for
the chiral bobber estimated with the same method in Ref. [136] (see also Figure 4.3).
The transitions e→c and c→a, corresponding to the annihilation of Bloch points, have
significantly higher energy barriers of ∼ 30J , which is consistent with the barriers in
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FIGURE 4.10 – Globule collapse GNEB Path

A nanowire of width W = 2LD with periodical boundary conditions in z-
direction at external field Bext = 0.45BD. The plot shows the MEP for the nu-
cleation of a globule from a skyrmion tube by cutting the tube and nucleating
two pairs of Bloch points, as well as the subsequent collapse of the globules.
(a-j) show the nz = 0 isosurface at extremal points of the transition. (a) in-
finite skyrmion tube (b, d) saddle points for the nucleation of BP pairs, (c, e,
i) stable configurations of coupled pairs of BPs. The intermediate part of the
MEP, indicated as a dashed line, is an artefact of the periodical boundary and
the retraction of the finite skyrmion tube into a globule, where local minima
(f) and (g) appear along the path. The intermediate path is shown to illustrate
that interactions between the BPs are nontrivial. This figure has been published
in [61].

a thin layer shown in Figure 4.3. The consequence is that after a pair of BPs has been
nucleated they will most likely remain in the sample rather than annihilate each
other.

As the globule can evidently exist as a 3D-localised metastable state – especially
due to its shape – one also needs to ask whether it would be possible to form a lattice
of these objects and if they would cluster together on their own. For this, globule
lattices were studied at as confined, as well as periodical structures, as shown in
Figure 4.11.

As should be clear from the preceding results, a finite size geometry will allow
globules to stabilize at the boundaries. Figure 4.11 shows that the presence of other
globules can serve the same stabilising properties as the surface spirals and globules
can exist in the center of such a system if the density of globules is high enough. Such
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states might be achieved by a fast annealing process from the paramagnetic phase.

FIGURE 4.11 – Globule lattices

Lattices of globules in a confined space (left) and under periodical boundary
conditions (right). On the left, the isosurfaces for nz = 0 and nz = 1 are shown,
as well as three surfaces of the cube. Only the nz = 0 isosurface is shown in the
right image. The left image has been published in [61].

One might expect the globules to provide sufficient stabilisation to other globules,
such that a cluster of them might become a metastable structure on its own. In order
to test this, globules were placed in different lattice arrangements into a periodical
system. Figure 4.12 shows the energy curves over cube size L for a set of external
magnetic fields B for the simple cubic lattice of globules.

Stars indicate the collapse of the globules, meaning that the simple cubic lattice is
absolutely unstable, as there is no local minimum on any of the curves, which would
indicate an equilibrium lattice constant. This analysis was performed also for bcc, fcc
and hcp arrangements of globules, but none showed an equilibrium lattice arrange-
ment. While minima can appear in the energy curves, such as those presented in
Figure 4.12, a variation of another lattice parameter always led to a further decrease
of the energy, meaning there are plateaus, but no equilibrium lattice configurations.
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FIGURE 4.12 – Energy of the globule in a periodical cube

Simple cubic lattice of side length L. The plots shows the dependency of the
difference in energy density ∆E between a globule (see inset) and the conical
phase ground state of the system) over the cube size L for a set of applied
magnetic fields B. In this setup, L is also the period of the globule lattice. Stars
indicate the points at which the globule collapses.

The falling energy with the lattice spacing L indicates that the globules want to be
apart and will, space permitting, move away from each other, increasing the distance
between them until they become unstable and collapse.

The calculations and images presented in this section give a good impression of
the kind of complex 3D nanomagnetism, which can be tackled using Spirit and its
GUI. Arguably, such systems cannot be studied to such an extent without real time
visualisations of the simulated system or without running the numerically intensive
parts on a GPU. Especially for very large systems of 100 M or more spins, optimisa-
tions for memory consumption and computational speed – such as in the CUDA code
of Filipp Rybakov – become highly important.

The results themselves show that a wide class of isotropic chiral magnets can po-
tentially host a novel, truly three-dimensional particle-like state, composed of a pair
of Bloch points (BPs). The discovery of this object, named magnetic globule, extends
the class of 3D-localised magnetic objects with particle-like properties and magnetic
singularities coupled to a smooth magnetization field. By calculating MEPs using the
GNEB method, the metastability of globules was proven by revealing finite energy
barriers protecting it from collapsing and from growing.

It was shown that in a wide range of magnetic fields and geometries with both
natural and artificial confinement, magnetic globules can be stabilized as isolated
objects. While in homogeneous bulk systems the globule appears to be unstable, both
on its own and as a cluster or lattice, both a skyrmion tube and a defect line in the
conical background state can be nucleation points for single magnetic globules.
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In the paper on this topic [61], suggestions for the experimental observability using
high-resolution quantitative magnetic imaging methods are made. Off-axis electron
holography [211, 213] in a transmission electron microscope in combination with
tomography measurements, X-ray magnetic circular dichroism [214] or X-ray vector
nanotomography [197] seem promising methods, but the techniques still have to
evolve if coupled Bloch points are to be observed. An indirect detection might be
achievable with magnetoresistive measurements, known to be sensitive to magnetic
phase transitions in chiral magnetic nanostructures [209, 215].

It is to be expected that transport properties and dynamical behaviour of magnetic
globules are highly non-trivial and may result in a number of new effects.

As the magnetic globule is consistently stabilised by the presence of inhomogeneities
in the magnetic configuration, further research on these states could be performed in
the context of defects and vacancies, which are known to modulate their surround-
ings. Similar to the nucleation of skyrmions, such points could be nucleation grounds
for magnetic globules. Another conjecture in this context is the fact that the presence
of Bloch points significantly increases the entropy of the configuration with respect
to a regular skyrmion tube and could therefore be – together with the chiral bob-
ber appearing at surfaces – an explanation for the A-phase in chiral magnets. Intu-
itively, the probability of nucleating a complete skyrmion string out of thermal fluc-
tuation should shrink significantly when the sample size is increased. A finite length
skyrmionic string – essentially a globule – seems far more likely to nucleate. It is
possible that it is a lattice of coupled Bloch points, which constitutes the A-phase, or
that globules are the structures from which skyrmions are nucleated when the Bloch
points travel to the surfaces of the sample (analogous to what is described in [205]).
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CONCLUSION 5

This work has been placed in the context of nanomagnetism, simulation of magneti-
sation dynamics and calculation of ground states and fundamental properties of sys-
tems and magnetic configurations. The atomistic spin model, used throughout this
work, was introduced and illustrated. Due to the age of the most common software
used for this model – generally written in Fortran – the implementation of a new
C++ code was decided upon, which could be given a graphical user interface (GUI)
and could be parallelised both on CPU and GPU systems. In Fortran, it is significantly
more challenging to implement a cross-platform GUI or a GPU parallelisation, both
of which usually require interaction with the C programming language.

Well-known methodology for atomistic spin systems – Monte Carlo (MC), energy
minimisation and Landau-Lifshitz-Gilbert (LLG) dynamics – has been recounted in
this thesis and the implementations in the new software Spirit have been verified
against well-known results.

After covering recent, state-of-the-art methodological developments in the calcu-
lation of transition rates for magnetic systems, namely the geodesic nudged elastic
band (GNEB) method and harmonic transition state theory (HTST), they were ap-
plied to skyrmions and skyrmionic states. It was shown that topology is neither a
sufficient measure for the state of a skyrmionic configuration, nor a reliable argu-
ment when assessing the stability or especially the lifetime of skyrmions. HTST was
shown to be a way of extracting physically realistic skyrmion lifetimes through the
atomistic model with parameters from ab initio DFT calculations.

The need for knowledge of possible transitions of metastable magnetic configura-
tions was discussed and the requirement of the HTST to know the possible transi-
tions a metastable state may undertake has been laid out. As a solution to this issue,
a new method for rate theory was developed, implemented in Spirit and applied to
skyrmions: the minimum mode following (MMF) method. While this method has
been known and used for molecular dynamics and atomic rearrangements, the way
in which to transfer it to spin systems was previously unclear. In this work the math-
ematical basis was laid out and the successful application presented by revealing a
previously undiscussed skyrmion transition: a mitosis-like duplication. It was further
shown that this transition mechanism can be found in a wide range of parameters
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at which the skyrmion is stable and is therefore likely to be an important transi-
tion to take into account for skyrmion racetrack memories, where data persistence is
paramount.

The Spirit software framework, developed in most part by the author of this work,
has been presented. Its most important features have been shown, tests provided
and applications and potential applications discussed. The code structure and design
were explained and important implementation details highlighted, providing useful
guidance for anyone wishing to modify Spirit or write a new code for spin systems.

Finally, the software was applied to complex 3D nanomagnetism and successfully
revealed a novel magnetic state: the magnetic globule – two coupled Bloch points
joined by a finite length cylindrical skyrmion tube. This demonstrated the versatility
and usefulness of Spirit and the benefits of its advanced features for the study of
complicated systems and structures.

Outlook
Numerous projects could build on this work, both in terms of implementation and

application, and exciting research still lies ahead.
In addition to software-focused projects, such as bringing more of the methods im-

plemented in Spirit to the Web user interface, several additional Hamiltonian mod-
els could be implemented, the two most relevant being the micromagnetic and the
Ginzburg-Landau models [216, 217]. While the former could be implemented with
ease, operating mostly on the same constraints, the latter would require considering
of fluctuations of the spin length and would potentially be difficult to integrate into
the design of Spirit. However, the implementation of these models would be of great
benefit, as it would open new avenues for the simulation of macroscopic systems in
the same software framework. Even more advanced implementations could combine
the different models in the same system, for example by switching to an atomistic
description in regions of strong magnetic curl, but for such concepts it seems to be
necessary to implement a proper finite element method (FEM).

Further potential avenues are among others the non-collinear Alexander-Anderson
model [76], the inclusion of longitudinal spin fluctuations (LSF) [218], for example
via an additional term in the Hamiltonian describing how the total energy depends on
the moment size [219, 220] or the addition of molecular dynamics for lattice degrees
of freedom [104] to enable simultaneous modelling of magnetic and phononic low
energy bosonic excitations in an adiabatic and atomistic regime using a unified theory
based on ab initio DFT. Such a complete framework would enable the study of the
interactions between the dynamics of the lattice and the magnetisation, which is
relevant for magnon-phonon coupling [221, 222] and dynamical magneto-electric
effects [223–227]. A good overview and more details are given in Ref. [63].

Numerous minor improvements can still be made, but they cannot be dealt with
here. To cite but two: the implementation of an adaptive time step [228] in direct
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energy minimisation and LLG simulations, the addition of spin-spin correlation func-
tions calculated with FFTs or improvements for antiferromagnetic or ferrimagnetic
systems (e.g. using multiple interacting sublattices).

It has been discussed extensively how the calculation of lifetimes can be an im-
portant numerical tool, especially in the context of multiscale calculations. For the
estimation of lifetimes, Langer’s theory could be implemented in order to comple-
ment HTST, for which one would simply need to add the damping contributions to
the current implementation of the dynamical matrix. This would enable quantitative
comparisons of the methods and further studies of their respective benefits and limi-
tations. The dynamical matrix could already be used for the visualisation of dynam-
ical eigenmodes and magnon spectra, but the addition of the damping contribution
would make such studies more complete.

Finally, the MMF and HTST methods both suffer from the size of the matrices
needed for their calculations. Significant performance improvements could be made
for example by using sparse matrices when dipolar interactions can be neglected.
Parallelisation of the matrix diagonalisation used in both methods could also signifi-
cantly speed up calculations, but large systems would still be memory-bound.

Further calculations based on the numerical results of this work would also be of
interest and it is obvious that the development of a way to apply HTST to larger
systems would be highly useful. The higher order skyrmionic states discussed in this
work could be analysed with respect to their lifetime, though it is an open question
how to accurately calculate the volume of the saddle points for the breaking of a
skyrmionic "sack". The author expects a limitation of the lifetimes of higher order
skyrmionic states due to the increasing number of saddle points through which a
"sack" or loop might break or a skyrmionic core might collapse or collide with another
core or the wall, while the energy barriers do not appear to significantly depend on
the size of the structure and are therefore not expected to have much influence.

Evidently, for these states, the number of possible transitions quickly increases quite
dramatically and the skyrmion duplication/collision transition, originally discovered
by the MMF method, is a key component. The calculation of transition rates for this
specific transition would be of more general interest, as it might be engineered as a
nucleation mechanism for skyrmions or become a limiting factor in data persistence
in a skyrmion racetrack, where information can be changed by the thermally induced
nucleation of a skyrmion. Inversely, the collision of two skyrmions might be a limiting
factor when driving the data along the track. When one skyrmion is slightly pinned
at a defect, a following one might collide and merge with it, again leading to data
corruption.

Since the discovery of the chiral magnetic bobber, it has been suggested for an al-
ternative skyrmion racetrack, where the skyrmion and bobber might represent the
"0" and "1" bits respectively. Therefore, the simulation of such a device is of inter-
est and the current-driven dynamics of the bobber should be researched in order to
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assess the feasibility of such a device design. The study of the properties of Bloch
points (BPs) plays an important role in the understanding of complex 3D systems
and the discovery of the magnetic globule as a metastable configuration opens up
more questions about their ability to couple and their behaviour under spin torques.
The fundamental study of energy eigenmodes and dynamical eigenmodes in such
highly non-collinear systems, in dependence on parameters and present states inside
the magnetic configuration, could reveal important properties and lead to new dis-
coveries.

In summary, the developments in methodology and software and the discoveries
about chiral magnetic states achieved by this work lay a broad and solid foundation
for future research in magnetism. This work enables the study of complex magnetic
textures and nanoscale states to be pushed a significant step further.
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A ENERGY DATA INTERPOLATION

Energy paths throughout this work, such as shown in Figure 1.8, Figure 2.9 or Fig-
ure 4.2, have been interpolated between the discrete images using cubic Hermite poly-
nomials. This approach has been previously described, for example in Refs. [56] and
[108]. The images themselves are generally represented as dots on the line, while the
line describes the interpolated values. This is visualised schematically in Figure A.1,
where it is also shown how the interpolation may reveal intermediate minima or the
non-convergence of a path.

Rx

E

without inclination
using inclination

FIGURE A.1 – Interpolation with hermite polynomials

Schematic of interpolation of energy data points (blue). The piecewise interpo-
lation with Hermite polynomials ??, using the inclination information, (solid
line) may show more features and provide more information than a spline fit
without information about the inclinations (dashed line). It is shown schemat-
ically, how an intermediate minimum may go unnoticed if not using the incli-
nations. Image adapted from [108].

Viewing the interpolated energies between the data points during or after a GNEB
calculation – as can be done in the GUI of Spirit (see Figure 3.12) – allows checking
the convergence of a climbing or falling image or to better judge the general quality
of convergence of a transition path.

As, during a GNEB calculation, the distance Lνµ in configuration space, as well as
the energy difference ∆Eµν, between two images Mµ and Mν are known, as well as
the energy gradients at those images, the interpolations can be efficiently calculated
as byproducts of the calculation.

In the following, the data points will be denoted pν and the inclinations with re-
spect to an order parameter ξν will be denoted qν. Taking the reaction coordinate as
the order parameter, ξν = Rx , one need only determine the two quantities

pν = Eν(Rx) A.1
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and
qν = ||∇Eν(Rx)||= −Hν

eff(Rx) · τ̂νT (Rx) . A.2

In the interval (Rxν, Rxν+1), the piecewise interpolating cubic Hermite polynomials
are parameterised as

c(t) = h00(t)p
ν + h10(t)p

ν+1 + h01(t)q
νd + h11(t)q

ν+1d , A.3

where
t ∈ [0,1] and d = Rxν+1 − Rxν = Lν,ν+1 A.4

and the functions h are defined as

h00 = 2t3 − 3t2 + 1 ,

h10 = −2t3 + 3t2 ,

h01 = t3 − 2t2 + t ,

h11 = t3 − t2 .

A.5

This interpolation scheme may also be applied to an arbitrary other order parame-
ter, such as the z-component of the magnetisation (ξ = Mz). To apply the piecewise
interpolation, a set of points ξν and inclinations dξν/dRx is required. Using the chain
rule, the inclination can be expressed as

dξν

dRx
=

dξν

dE
dEν

dRx
. A.6

Since the energy gradient along the path can easily be calculated by projecting it on
the normalised path tangent τν as

qν =
dEν

dRx
= −Hν

eff ·τν . A.7

If dξν/dE is known or can be calculated by finite differences, the interpolation can
then be calculated. In the case of ξν = Mν

z , one may use

dMν
z

dRx
=
∑

i

dMz,i

dE
dE

dRx
=
∑

i

1
dE/dMz,i

dE
dRx

= −
∑

i

1

Heff
z,i

dE
dRx

. A.8

Thus, the energy values can in principle, with the help of the reaction coordinate, be
interpolated over various useful order parameters.
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B GAUSSIAN HAMILTONIAN

B .1 Derivatives

This appendix will deal with the interaction-free Gaussian Hamiltonian and its deriva-
tives. We recall the Hamiltonian (1.17) is defined – per spin – as

H =
∑

i

Hi =
∑

i

ai exp

�

− l2
i (n

*)

2σ2
i

�

, B.1

where ai is the amplitude, σi the width and li(n
*) is a measure of distance of the spin

n* to the center c*i of the ith gaussian function. This yields the gradient

∇H = −
∑

i

ai exp

�

− l2
i (n

*)

2σ2
i

�

,
li(n

*)
σ2

i

∇li , B.2

which can be written in index notation as

∂αH = −
∑

i

ai exp

�

− l2
i (n

*)

2σ2
i

�

li(n
*)
σ2

i

∂αli(n
*) , B.3

which in turn gives us the Hessian

Hess(H) = ∂α∂βH

=
∑

i

ai exp

�

− l2
i (n

*)

2σ2
i

�

1
σ2

i

��

li(n
*)2

σ2
i

− 1

�

∂β li(n
*)∂αli(n

*)− li(n
*)∂β∂αli(n

*)

�

.

B.4

The geodesic distance between the vectors was purposely not chosen as the geodesic
measure of distance, but as

li(n
*) = 1− n* · c*i , B.5

for which the derivatives are

∂αli = −ciα, ∂β∂αli = 0 . B.6

The gradient becomes

∇H =
∑

i

ai exp

�

−(1− n*c*i)2

2σ2
i

�

(1− n*c*i)
σ2

i

c*i . B.7
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The Hessian becomes

Hess(H) =
∑

i

ai exp

�

−(1− n*c*i)2

2σ2
i

�

1
σ2

i

�

(1− n*c*i)2

σ2
i

− 1

�

ciαciβ . B.8

B .2 GNEB test script

The following Python script shows how, at time of writing this work, the Python API of
Spirit can be used to reproduce the data of the GNEB calculation shown in Figure 1.7.
Note that this is merely an example of how the API could be used.

1 from spirit import state
2 from spirit import system
3 from spirit import chain
4 from spirit import simulation
5 from spirit import configuration
6 from spirit import hamiltonian
7 from spirit import io
8 from spirit import geometry
9 from spirit import parameters

10 from spirit import transition
11 from spirit import quantities
12 from spirit import constants
13
14 import numpy as np
15 import os
16
17 #######
18 output_folder = os.path.join(scriptdir, "output")
19 if not os.path.exists(output_folder):
20 os.makedirs(output_folder)
21 input_file = os.path.join(scriptdir, "input.cfg")
22 #######
23
24 LLG = simulation.METHOD_LLG
25 GNEB = simulation.METHOD_GNEB
26 VP = simulation.SOLVER_VP
27 OVF_TXT = io.FILEFORMAT_OVF_TEXT
28
29 LANDSCAPE_RESOLUTION = 100
30
31 NOI = 6
32
33 with state.State(input_file, quiet=True) as p_state: # State setup
34 # Set parameters
35 parameters.llg.set_output_general(p_state, any=False) # Disallow any output
36 parameters.llg.set_convergence(p_state, 1e−12)
37 parameters.gneb.set_output_general(p_state, any=False) # Disallow any output
38 parameters.gneb.set_convergence(p_state, 1e−12)
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39 parameters.gneb.set_n_interpolation(p_state, 20)
40
41 # Generate data of energy landscape over theta and phi
42 print("−−− sampling the energy landscape")
43 with open(os.path.join(output_folder, "landscape.txt"), "w") as outfile:
44 for theta in np.linspace(0.001, np.pi−0.001, LANDSCAPE_RESOLUTION):
45 for phi in np.linspace(0.001−np.pi, np.pi−0.001, LANDSCAPE_RESOLUTION):
46 spherical = [theta, phi]
47 direction = [np.sin(theta)np.cos(phi), np.sin(theta)np.sin(phi), np.cos(theta)]
48 configuration.domain(p_state, direction)
49 system.update_data(p_state)
50 energy = system.get_energy(p_state)
51 outfile.write("{:^20e} {:^20e}\n".format(’ ’.join(map(repr, spherical)),

str(energy)))
52 print("−−− energy landscape sampling done")
53
54 # Generate chain of images, write output and perform GNEB calculations
55 print("−−− gneb calculation...")
56
57 print("−−− creating first image")
58 configuration.domain(p_state, [0, −1, 0])
59 configuration.add_noise(p_state, 1)
60 io.image_write(p_state, os.path.join(output_folder, "image_first_initial.ovf"),

fileformat=OVF_TXT)
61 simulation.start(p_state, LLG, VP, n_iterations=100000, n_iterations_log=100000)
62 io.image_write(p_state, os.path.join(output_folder, "image_first.ovf"), fileformat=OVF_TXT)
63
64 print("−−− changing chain length")
65 chain.image_to_clipboard(p_state)
66 chain.set_length(p_state, NOI)
67
68 print("−−− creating final image")
69 configuration.domain(p_state, [0, 1, 0], idx_image=NOI−1)
70 configuration.add_noise(p_state, 1, idx_image=NOI−1)
71 io.image_write(p_state, os.path.join(output_folder, "image_last_initial.ovf"),

fileformat=OVF_TXT, idx_image=NOI−1)
72 simulation.start(p_state, LLG, VP, n_iterations=100000, n_iterations_log=100000,

idx_image=NOI−1)
73 io.image_write(p_state, os.path.join(output_folder, "image_last.ovf"), fileformat=OVF_TXT,

idx_image=NOI−1)
74
75 # Initial Path
76 print("−−− interpolating")
77 transition.homogeneous(p_state, 0, NOI−1)
78 chain.update_data(p_state)
79 io.chain_write(p_state, os.path.join(output_folder, "chain_initial.ovf"), fileformat=OVF_TXT)
80 Rx = chain.get_reaction_coordinate(p_state)
81 energies = chain.get_energy(p_state)
82 with open(os.path.join(output_folder, "energies_initial.txt"), "w") as outfile:
83 for i in range(len(Rx)):
84 outfile.write("{:^20e} {:^20e}\n".format(Rx[i], energies[i]))
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85 Rx_interp = chain.get_reaction_coordinate_interpolated(p_state)
86 energies_interp = chain.get_energy_interpolated(p_state)
87 with open(os.path.join(output_folder, "energies_initial_interp.txt"), "w") as outfile:
88 for i in range(len(Rx_interp)):
89 outfile.write("{:^20e} {:^20e}\n".format(Rx_interp[i], energies_interp[i]))
90
91 # First GNEB calculation
92 print("−−− first relaxation")
93 simulation.start(p_state, GNEB, VP, n_iterations=100000, n_iterations_log=100000)
94 io.chain_write(p_state, os.path.join(output_folder, "chain_relaxed.ovf"),

fileformat=OVF_TXT)
95 Rx = chain.get_reaction_coordinate(p_state)
96 energies = chain.get_energy(p_state)
97 with open(os.path.join(output_folder, "energies_relaxed.txt"), "w") as outfile:
98 for i in range(len(Rx)):
99 outfile.write("{:^20e} {:^20e}\n".format(Rx[i], energies[i]))

100 Rx_interp = chain.get_reaction_coordinate_interpolated(p_state)
101 energies_interp = chain.get_energy_interpolated(p_state)
102 with open(os.path.join(output_folder, "energies_relaxed_interp.txt"), "w") as outfile:
103 for i in range(len(Rx_interp)):
104 outfile.write("{:^20e} {:^20e}\n".format(Rx_interp[i], energies_interp[i]))
105
106 # GNEB with climbing and falling images (set automatically)
107 print("−−− CI relaxation")
108 parameters.gneb.set_image_type_automatically(p_state)
109 simulation.start(p_state, GNEB, VP, n_iterations=100000, n_iterations_log=100000)
110 io.chain_write(p_state, os.path.join(output_folder, "chain_relaxed_ci.ovf"),

fileformat=OVF_TXT)
111 Rx = chain.get_reaction_coordinate(p_state)
112 energies = chain.get_energy(p_state)
113 with open(os.path.join(output_folder, "energies_relaxed_ci.txt"), "w") as outfile:
114 for i in range(len(Rx)):
115 outfile.write("{:^20e} {:^20e}\n".format(Rx[i], energies[i]))
116 Rx_interp = chain.get_reaction_coordinate_interpolated(p_state)
117 energies_interp = chain.get_energy_interpolated(p_state)
118 with open(os.path.join(output_folder, "energies_relaxed_ci_interp.txt"), "w") as outfile:
119 for i in range(len(Rx_interp)):
120 outfile.write("{:^20e} {:^20e}\n".format(Rx_interp[i], energies_interp[i]))
121
122 print("−−− gneb calculation done")

L ISTING 1 –

Python script for single spin GNEB test case

B .3 MMF test script

The following Python script shows how, at time of writing this work, the Python API
of Spirit can be used to reproduce the data of the paths of the MMF calculation shown
in Figs. 2.4–2.6. Note that this is merely an example of how the API could be used.
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1 import os
2 import subprocess
3 from subprocess import CalledProcessError
4
5 import numpy as np
6
7 ### Import spirit library
8 from spirit import state
9 from spirit import system

10 from spirit import hamiltonian
11 from spirit import geometry
12 from spirit import chain
13 from spirit import configuration
14 from spirit import transition
15 from spirit import simulation
16 from spirit import quantities
17 from spirit import io
18 from spirit import log
19
20 datafolder_fixed = os.path.abspath(os.path.join(os.path.dirname( __file__ ), "output_fixed3"))
21
22 cfgfile = "single_spin_fixed3.cfg"
23
24 with state.State(cfgfile) as p_state:
25 for n in range(40):
26 # Start from the local minimum close to −z
27 configuration.MinusZ(p_state)
28 simulation.PlayPause(p_state, "LLG", "VP")
29 # Randomise the starting position
30 configuration.Add_Noise_Temperature(p_state, 0.2)
31 # Run the MMF calculation
32 if (n>=0):
33 simulation.PlayPause(p_state, "MMF", "VP")
34
35 # Move the data from the fixed output file to a custom name
36 fname_in = datafolder_fixed+"/mm_vf_Image−−1_Spins−archive.txt"
37 fname_out = datafolder_fixed+"/mmf_path_{}.txt".format(n)
38 try:
39 subprocess.run("mv {} {}".format(fname_in, fname_out), shell=True, check=True)
40 except CalledProcessError as error:
41 print("Error moving file. Message: ", error.output)

L ISTING 2 –

Python script for single spin MMF test case
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C DERIVATIONS OF THE HESSIAN MATRIX ON RIEMANNIAN MAN-
IFOLDS

C .1 The spin manifold

As was mentioned for example in Sections I.2, I.4, 1.2 and 2.2, the spins are con-
strained to the physical manifold, given by Equation (I.8):

M=
N
⊗

i=1

S2 ⊂ R3N .

It is a Riemannian submanifold of the embedding euclidean space E = R3N . As before,
we denote smooth extensions to the embedding space E with a bar, for example a
function f on M would have the smooth extension f̄ .

The atomistic Heisenberg Hamiltonian (I.1) can be written very generally as a
combination of linear and quadratic contributions in n*:

H = L i
α
ni
α
+ ni

α
Qi j
αβ

n j
β

. C.1

This easily gives the derivatives in the embedding space:

∂ H̄
∂ ni

α

= L i
α
+Qi j

αβ
n j
β
+ n j

β
Q ji
βα

, C.2

∂ 2H̄
∂ ni

α
∂ n j

β

=Qi j
αβ
+Q ji

βα
. C.3

As noted in the main part of this work, in general the second derivatives of the en-
ergy with respect to the spin orientations ∂ 2H need to be performed covariantly. The
following sections will detail some approaches alternative to the projector approach,
using the so-called Weingarten map, chosen in this thesis and presented in Chapter 2.

C .2 Projection

We can project any vector or matrix from the embedding space E (in euclidean rep-
resentation) onto the tangent space to the manifold M at a point x ∈M using a
projector P(x). For the sphere it is known the matrix representation in index nota-
tion reads

P i j
αβ
= δi j(δαβ − x i

α
x j
β
) . C.4

Compare this also to (2.5), where it is used that P⊥x = I − Px = x T x .
It is worth noting that the first covariant derivatives correspond simply to a projec-
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tion onto the tangent space
∂H = P∂ H̄ , C.5

allowing to use euclidean coordinates to effortlessly calculate the covariant energy
gradients.

C .3 Transformation

In order to (basis-) transform vectors between the (3N) euclidean basis and the (2N)
tangent space basis we simply need a matrix composed of two orthonormal tangent
vectors, represented in the embedding space (i.e. 3N) coordinates. These tangent
vectors may be generated from for example a) random vectors and subsequent orthog-
onalization b) a right-handed triplet and subsequent orthogonalization, or - and this
is probably the preferable choice - c) the unit vectors of spherical coordinates θ and ϕ.
Choosing the latter, we can write the transformation matrix

T = {e*θ , e*ϕ}

=







cosθ cosϕ − sinϕ

cosθ sinϕ cosϕ

− sinθ 0







=







zx/rx y −y/rx y

z y/rx y x/rx y

−rx y 0






,

C.6

where rx y = sinθ =
p

1− z2. This matrix is even reasonably inexpensive to compute.
Note that the poles need to be excluded, but one may simply choose T = {e*x , e*y}
and T = {e*x ,−e*y} at the two poles respectively, and re-orthodonalise the vectors
with respect to the spin orientation.

For the transormation of matrices, A2N = T T A3NT works fine but the inverse trans-
formation is not known to the author, as T T T = 1|2N but T T T 6= 1. Note also that
the transformation T of course automatically removes non-tangential components so
that

T T P = T T . C.7

C .4 Constrained Hessian approach

In some cases, such as HTST calculations (see Section 1.3), we only need to calculate
the Hessian at stationary points, at which the covariant energy gradient vanishes (i.e.
the spins are parallel to the effective field). The following describes a straightforward
derivation for such cases.
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We write the Lagrangian

L = H̄−
∑

i

λi(x i
α
x i
α
− 1) . C.8

By assuming that we are at a local extremum, we can calculate the Lagrange multi-
pliers

∂ L
∂ x i

α

= 0

⇒ ∂ H̄
∂ x i

α

−λi2x i
α
= 0

⇒ λi =
1
2

x i
α
∇i
α
H̄

C.9

The constrained Hessian is then written

H =
∂ 2 L

∂ x i
α
∂ x i

β

=
∂ 2H̄
∂ x i

α
∂ x i

β

− 2δi jδαβλ
i

= H̄ −δi jδαβ x i
α
∇i
α
H̄ ,

C.10

which in our notation becomes the Hessian in 3N -representation

H = H̄ − 1(x j · ∇ jH̄) . C.11

Due to the fact that T T T = 1 the 2N -representation reads

H|2N = T T HT = T T H̄T − 1(x j · ∇ jH̄) . C.12

C .5 Projector-based approach

This approach is more general and is very close to what has been used for the MMF
method in this thesis (see Chapter 2). The result is the same, but the derivation more
intuitive and, however, less rigorous.

We denote the manifold M and define the tangential gradient

∇= P∇̄ , C.13

where P is the projection operator, taking a vector to the tangent space of M in
any point x ∈ M and ∇ and ∇̄ denote the derivative of any function on M and
the derivative of the same function on the embedding space E . Compare this also to
Equation C.5.
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From H =∇∇ we can now easily define the tangential Hessian

H =∇∇= P∇̄P∇̄ . C.14

With the chain rule, this gives

H i j
αβ
= (PH̄PT )i j

αβ
+ P im

αµ
(∇̄m

µ
P jn
βν
)∇̄n

ν
. C.15

On spin systems, i.e. the 2N-sphere:
We will use ( · ) and ( ⊗ ) as the inner and outer product of vectors respectively, as

well as ( ⊕ ) as the direct sum of vector spaces. We now consider a spin system, where
the spins are constrained to constant length. The manifold on which the system is
allowed to move is the 2N -dimensional direct product of N spheres:

M =
N
⊗

i=1

S2 ⊂ R3N . C.16

Trivially, any 3-vector can be projected into the tangent plane to a surface by removing
the normal component. In this case, the normals are equal to the respective point on
the sphere and thus the projector takes a block-diagonal form:

P =
N
⊕

i

P i
αβ
=

N
⊕

i

(δαβ − x i
α
x i
β
) , C.17

where ⊕ denotes the direct sum of the matrices over the spin index ν ∈ [1..N]. Note
that this projector fulfills P = PT . In index notation we can write this using δi j:

P i j
αβ
= δi j(δαβ − x i

α
x j
β
) . C.18

After some derivations we end up with an expression for the Hessian in Euclidean
(i.e. 3N -) representation:

H i j = P iiH̄ i j P j j − P i j(x j · ∇̄ j)− (P i j∇̄ j)⊗ x j . C.19

Note that the resulting 3N×3N Hessian matrix can be transformed into the 2N×2N
basis of the tangent space to significantly reduce time needed to calculate eigen-
modes. This gives the following:

H i j = T T H̄ i j T − T T (x j · ∇̄ j)T − (T T∇̄ j)⊗ x j T , C.20

which, as T T T = 1 and x j T = 0, results in

H|2N = T T HT = T T H̄T − 1(x j · ∇̄ j) . C.21

Interestingly, this corresponds exactly to the result one gets when writing a con-
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strained Hessian using Lagrange multipliers.

C .6 Spherical coordinate approach

Another method to calculate the second derivatives at stationary points, i.e. where the
covariant gradient ∂H vanishes, is to use spherical coordinates. We denote spherical
coordinates ξα ∈ {θ ,φ}. We write the gradient in spherical coordinates as

∇ξαH((x , y, z)(θ ,φ)) =
∂H(θ ,φ)
∂ ξα

=
∂ H̄(x , y, z)
∂ xβ

∂ xβ
∂ ξα

=∇xβ H̄(x , y, z) J̃βα ,

C.22

where J̃ is the Jacobian of the coordinate transformation

J̃ T = J̃βα =
∂ xβ
∂ ξα

. C.23

The Hessian in spherical coordinates is then

H(H(θ ,φ)) =
∂ 2H(θ ,φ)
∂ ξα∂ ξβ

=
∂∇xβ H̄ J̃βα
∂ ξα

=∇xα∇xβ H̄J̃βαJβα +∇xβ H̄H̃αβ ,

C.24

where H̃ here denotes the Hessian of the coordinate transformation

H̃ =
∂ J̃
∂ ξα

=
∂ xγ

∂ ξα∂ ξβ
. C.25

C .7 Covariant approach

The covariant treatment of second derivatives can also be done in spherical coordi-
nates, instead of a projector approach in the embedding space. However, we will see
that this approach suffers from divergencies at the poles of the spherical coordinates
– the usual problem – and is therefore impractical for our means.

In this formulation we get correction terms accounting for the curvature of the
underlying manifold:

Hcov(H) =
∂ 2H(θ ,φ)
∂ ξα∂ ξβ

− Γ αjk∇ξαH , C.26
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which we can easily rewrite in euclidean representation. The Christoffel symbols Γ
for spherical coordinates are well-known and easily calculated.

The Hessian can be written almost without use of trigonometric functions, with
derivatives calculated entirely in 3N :

Hcov(H) =
∂ 2H(θ ,φ)
∂ ξα∂ ξβ

− Γ i
jk∇ξαH

=∇xα∇xβ H̄ J̃βα J̃βα

+∇xβ H̄ H̃αβ − Γ i
jkP∇xαH̄

= J̃Hx(H̄) J̃
+ gradx(H̄) H̃ − Γ αjk(J̃gradx(H̄))α ,

C.27

where J̃ and H̃ are again the Jacobian and Hessian of the spherical coordinate trans-
formation and J̃ , H̃ and Γ can all be efficiently written in euclidean coordinates:

Γ θ =

�

0 0

0 − sinθ cosθ

�

=

�

0 0

0 −zrx y

�

, C.28

Γϕ =

�

0 cotθ

cotθ 0

�

=

�

0 z/rx y

z/rx y 0

�

, C.29

where we merely need to exclude the poles of the sphere. Note that this may produce
unexpected behaviour, if one does not transform into a different spherical coordinate
system beforehand, which is why this approach is not the most practical.
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D MMF MODE AND FORCE FIELDS

FIGURE D.1 – Spherical plot of the gradient force in the MMF method

A single spin in a superposition of Gaussian potentials (see also Section 1.2,
Chapter 2 and Appendix Section B). As the configuration space manifold M is
a sphere (see Section I.2), the energy landscapecan be plotted, as well as the
MMF search paths and force fields. The gradient force is shown, pointing from
higher energies (yellow, green) to the local minima (blue).
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FIGURE D.2 – Spherical plot of the mode followed in the MMF method

A single spin in a superposition of Gaussian potentials (see also Section 1.2,
Chapter 2 and Appendix Section B). As the configuration space manifold M is
a sphere (see Section I.2), the energy landscapecan be plotted, as well as the
MMF search paths and force fields. The minimum mode is shown, indicating
the symmetry of the energy landscape and illustrating how the minimum mode
points orthogonal to the energy contour line at the saddle point. Note that the
gray dashed lines encircle the convex regions of the energy landscape, inside
which the minimum mode does not necessarily have any usefulness for the MMF
method, as following for example a circular mode around a local minimum
would not lead the system out of the convex region.
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FIGURE D.3 – Spherical plot of the mode following force field in the MMF
method

A single spin in a superposition of Gaussian potentials (see also Section 1.2,
Chapter 2 and Appendix Section B). As the configuration space manifold M
is a sphere (see Section I.2), the energy landscapecan be plotted, as well as
the MMF search paths and force fields. The effective force of the MMF method
is shown. From the gradient force field and the minimum mode orientations
outside the convex region it is obvious how this force field is created and that
it should point the system towards the saddle points. Note that the force field
inside the convex region is simply the energy gradient, which was used in this
case to escape the convex region.
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E CONTRIBUTORS TO SPIRIT

The following, with minor changes, corresponds to the list of contributions to Spirit
at time of writing this work. The approximate time frames of collaborations and
contributions are noted and affiliations during this time frame are indicated. Note
that the author of this work organised and coordinated the Spirit software project,
which was initiated by Nikolai Kiselev.

Gideon Müller

• RWTH Aachen

• University of Iceland

• PGI-1/IAS-1 at Forschungszentrum Jülich

General code design and project setup (including CMake). Implementation of the
core library and user interfaces, most notably: - GNEB and MMF methods - Velocity
projection solver - CUDA and OpenMP parallelizations of backend - C API and Python
bindings - C++ QT GUI and initial OpenGL code - Unit tests and continuous integra-
tion
(Oct. 2014 - ongoing)

Daniel Schürhoff

• RWTH Aachen

• PGI-1/IAS-1 at Forschungszentrum Jülich

Implementation of the initial core library, notably translating from Fortran90 to C++
and addition of STT to the SIB solver. Work on QT GUI and Python bindings.
(Oct. 2015 - Sept. 2016)

Nikolai Kiselev

• PGI-1/IAS-1 at Forschungszentrum Jülich
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Scientific advice, general help and feedback, initial (Fortran90) implementations of: -
isotropic Heisenberg Hamiltonian - Neighbour calculations - SIB solver - Monte Carlo
methods
(2007 - ongoing)

Florian Rhiem

• Scientific IT-Systems, PGI/JCNS at Forschungszentrum Jülich

Implementation of C++ OpenGL code (VFRendering library), as well as JavaScript
Web UI and WebGL code. Code design improvements, including the C API and CMake.
(Jan. 2016 - ongoing)

Moritz Sallermann

• RWTH Aachen

• PGI-1/IAS-1 at Forschungszentrum Jülich

Implementation of the dipole-dipole interaction using FFT convolutions.
(Apr. 2015 - Sept. 2016)

Stefanos Mavros

• RWTH Aachen

• PGI-1/IAS-1 at Forschungszentrum Jülich

Work on unit testing and documentation, implementation of the Depondt solver. Also
some general code design and IO improvements.
(Apr. 2017 - Oct. 2018)

Constantin Disselkamp

• RWTH Aachen

• PGI-1/IAS-1 at Forschungszentrum Jülich
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Implementation and testing of gradient approximation of spin transfer torque.
(Apr. 2017 - Jul. 2017)

Markus Hoffmann

• RWTH Aachen

• PGI-1/IAS-1 at Forschungszentrum Jülich

Bug-reports, feedback on code features and general help designing some of the func-
tionality, user interface and input file format.
(Jun. 2016 - ongoing)

Pavel Bessarab

• Various Universities

Help with the initial GNEB implementation. Initial (Fortran90) implementation of
the HTST method.
(Apr. 2015 - ongoing)

Filipp Rybakov

• Various Universities

Designs and ideas for the user interface and other code features, such as isosurfaces
and colormaps for 3D systems. Some help and ideas related to code performance and
CUDA.
(Jan. 2016 - ongoing)

Ingo Heimbach

• Scientific IT-Systems, PGI/JCNS at Forschungszentrum Jülich

Implementation of the initial OpenGL code. Code design suggestions and other gen-
eral help.
(Jan. 2016 - ongoing)
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Mathias Redies, Maximilian Merte, Rene Suckert

• RWTH Aachen

Initial CUDA implementation and tests. Code optimizations, suggestions and feed-
back.
(Sept. 2016 - Dec. 2016)

David Bauer

• RWTH Aachen

• PGI-1/IAS-1 at Forschungszentrum Jülich

Initial (Fortran90) implementations of the isotropic Heisenberg Hamiltonian, Neigh-
bour calculations and the SIB solver.
(Oct. 2007 - Sept. 2008)
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F USED SOFTWARE PACKAGES

Images of spin structures (arrows and isosurfaces) were created in Spirit [48]. Most
plots and diagrams of this thesis were created using Tikz/PGF [229] with some gnu-
plot [230]. A few images were generated using matplotlib [231].
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