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ABSTRACT
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The Effects of Prenatal Exposure to 
Temperature Extremes on Birth Outcomes

This paper investigates the effects of prenatal exposure to extreme temperatures on birth 

outcomes – specifically, the log of birth weight and an indicator for low birth weight – 

using a nationally representative dataset in rural China. During the span of our data (i.e., 

1991–2000), indoor air-conditioning was not widely available and migration was limited, 

allowing us to address identification issues endemic in the climate change literature related 

to adaptation and location sorting. We find substantial heterogeneity in the effects of 

extreme temperature exposure on birth outcomes. In particular, prenatal exposure to heat 

waves has stronger negative effects than exposure to cold spells on survivors.
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1. Introduction 

Climate change has induced more frequent yet largely unpredictable extreme 

weather events, such as days of extreme temperatures (heat waves and polar vortices), 

precipitation (flooding and drought), and windstorm variation (hurricanes) (IPCC 2014). 

In response to the increasing number of extreme weather events, there is a growing 

body of literature examining the impact of exposure to these events at various stages of 

the lifecycle.1 In particular, in utero exposure to extreme temperatures has been shown 

to affect birth outcomes (Deschênes, Greenstone and Guryan 2009; Andalon et al. 2016; 

Ha et al. 2017), as well as adult welfare outcomes, including educational attainments 

(Hu and Li 2019), disabilities (Wilde et al. 2017), annual earnings (Isen, Rossin-Slater 

and Walker 2017), and depression symptoms (Adhvaryu et al. 2017). 

In this paper, we investigate the effects of prenatal exposure to extreme 

temperatures on birth outcomes – specifically, birth weight and the incidence of low 

birth weight (LBW) – using a large representative dataset in rural China. Our paper 

contributes to the literature in several dimensions. 

First, our paper adds to the emerging literature in epidemiology that examines the 

impact of prenatal exposure to ambient temperature on birth outcomes; see, the 

important recent survey by Strand, Barbett and Tong (2011), by introducing new 

evidence in the important context of China (the largest developing country). Strand et 

al. (2011) surveys eight studies that examine the impact of early extreme temperature 

exposure on birth weight, but only one of these studies is in a developing country 

context (i.e., Elter et al. (2004) in the context of Turkey). 

Further, because the administrative records from which our data is drawn cover a 

wide range of regions in China, a geographically expansive nation with varying climatic 

conditions, we are also able to explore the potential nonlinear effects of in utero 

                                                             
1 A wide range of outcomes have been investigated, for example, birth outcomes (Currie and Rossin-
Slater 2013), human capital formation (Graff Zivin, Hsiang and Neidell 2018), health, education, and 
socioeconomic outcomes (Maccini and Yang 2009), hospitalizations (Karlsson and Ziebarth 2018), the 
allocation of time (Graff Zivin, Joshua and Neidell 2010), and the mortality rate (Huynen et al. 2001; 
Deschênes and Moretti 2009; Anderson and Bell 2009; Deschênes and Greenstone 2011; Barreca 2012; 
Burgess et al. 2014). Also see Graff Zivin, Joshua and Neidell (2013), Dell, Jones and Olken (2014), and 
Heal and Park (2015) for comprehensive surveys. 
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exposure to extreme temperatures on birth outcomes. While some recent studies in the 

literature have simultaneously investigated the effects of exposure to both ends of the 

temperature extremes (e.g., Isen, Rossin-Slater and Walker 2017; Ha et al. 2017; Wilde 

et al. 2017; Deschênes, Greenstone and Guryan 2009; Barreca, Deschênes and Guldi 

2018; Karlsson and Ziebarth 2018), almost all of these studies are in the context of 

developed nations. An important exception is Elter et al. (2004) who consider the 

impact of outdoor ambient temperatures in summer and winter on birth weight in the 

context of Turkey. The authors find that cold exposure during the middle trimester is 

associated with LBW. However, Elter et al. (2004)’s sample is relatively small (N = 

3333) and there are concerns over insufficient power to detect small effects due to hot 

temperatures. 

Importantly, information on gestational age in our data also allows us to examine, 

following the seminal work by Deschênes, Greenstone and Guryan (2009), the number 

of days within each trimester of the gestation period during which a woman is exposed 

to either extreme cold or hot weather. Hence, like Deschênes, Greenstone and Guryan 

(2009), our work allows for a finer treatment variable that more precisely targets the 

birth effects of gestational exposure to extreme temperatures. 

Investigating the effects from both ends of the temperature extremes is important 

since there has been a lack of consensus on the relative importance of cold versus hot 

temperature exposure in the absence of mitigation. While there is a large body of 

literature evaluating the health burden of heat waves as the shift of temperature 

distribution makes extreme heat events more frequent, severe, and long-lasting (Bobb 

et al. 2014; CDC 2018; Gasparrini et al. 2015; Gosling et al. 2009; Isen, Rossin-Slater 

and Walker 2017; Carolan-Olah and Frankowska 2014; Adhvaryu et al. 2017), cold 

spells are recently found to cause more deaths (Seltenrich 2015). The different 

mechanisms through which cold spells and heat waves may affect human health have 

also been of interest (Seltenrich 2015). 

Second, importantly, we focus on a rural sample in order to exploit the institutional 

aspects that are unique to the Chinese context to circumvent the identification 

challenges in isolating the biological effects of temperature extremes. Our clean study 
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context makes sure that the adaptation/mitigation effect is largely absent.2 For example, 

indoor air-conditioning (AC) can be used as an ex post strategy to cope with hot weather. 

Barreca et al. (2016) find in the U.S. context that, from 1960 onward, there was a 70% 

decline in the mortality impact of days with mean temperatures exceeding 80 °F, 

virtually all of which could be explained by the diffusion of residential AC. The 

diffusion of AC was not a concern in our sample period 1991–2000 since the number 

of AC units per 100 households in rural China was minimal (only around 1.32 even by 

the end of 2000 according to China Statistical Yearbook 2001). 

Another potentially serious threat to identification is ex ante residential sorting. If 

concerned pregnant mothers migrate to regions with less frequent extreme temperatures 

for the sake of their offspring’s health, then we cannot confidently tell whether our 

findings on birth outcomes reflect differences in the unobserved characteristics of 

pregnant mothers in our treatment and control groups or the direct impact of in utero 

temperature exposure. However, the average rural pregnant mother’s ability to engage 

in residential sorting was severely restricted in China by the residential registry (hukou) 

system since the 1960s. Massive migration did not take off until 1997 (Meng 2012).3 

The hukou restrictions imposed not only strong direct restrictions on the ability of 

pregnant rural mothers to migrate but also to access healthcare systems outside of their 

hukou. Residents with rural hukou living in urban areas during the sample period were 

not entitled to the health care enjoyed by their urban counterparts. Most migrants thus 

chose to give birth in their hometowns as they could not afford to pay for child delivery 

in urban hospitals.4 

                                                             
2  In comparison, existing studies using more recent data or from developed nations often identify 
combined effects that involve the biological effect and the adaptation/mitigation effect (see a 
comprehensive review and discussion about isolating biological effect in Currie et al. 2014). 
3  We run robustness checks where we replicate our benchmark exercises using the subsample of 
observations before the year 1997 just to make sure that migration is not driving our results. Our main 
findings remain qualitatively similar and robust (see Columns (5)-(6) in Table A4). Since using the 
subsample 1991-1997 leaves us 164,000 fewer newborn observations, in our main estimations we retain 
more sample by using the whole period 1991-2000. 
4  As Sun (2015) points out, “Although the Ministry of Labor and Social Security provides health 
insurance plans to urban hukou residents, rural-to-urban migrants are excluded from public healthcare 
because of their rural hukou status (Wei 2006). Most migrants and their children have limited access to 
sanitation and other basic health facilities…. Private hospitalization, the only option available to migrants, 
is a costly luxury that most will not take on. More importantly, they do not wish to “waste” remittances, 
which are designated to go home and support family, for their own health problems (Grey 2008).” 
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 Based on the matched dataset of birth records and daily prenatal temperature 

exposure, we find that heat waves are associated with a decrease in birth weight. 

Spending an additional day in the gestation period with a temperature above 28 °C, 

relative to a day in the 0–4 °C range, leads to a reduction in birth weight by 0.050 

percent (1.66 grams), which accounts for 2.36% of the gender gap and 2.16% of the 

educational gap in birth weight. Similarly, exposure to an additional hot day above 

28 °C during gestation increases the probability of LBW by 0.035 percentage points 

(1.05 percent of the mean incidence of LBW in the sample), which accounts for 3.18% 

of the gender gap and 2.30% of the education gap in the rate of LBW.5 However, we 

find no significantly detrimental effect on birth weight for survived newborns who are 

exposed to extremely cold days in utero. The latter is consistent with the literature 

suggesting that indoor heating reduces adverse health effects, including winter 

mortality (Chirakijja, Jayachandran and Ong 2019; Iparraguirre 2015).6 

In the 1980s, the population-weighted total number of days with a mean 

temperature above 28 °C was 233 days, which rapidly increased to 261 days in our 

sample during the 1990s. Our estimates indicate that 28 additional such hot days may 

have caused 1.4 percent (46.5 grams) additional damage to birth weight a decade later.7 

Put in perspective, based on findings in the literature, this estimated impact of extreme 

heat exposure in utero on birth weight would lead, in expectation, to about a 0.080 

centimeter decrease in height, a 0.126 percentage point decrease in the probability of 

high school completion, a 0.126% decrease in earnings (Black, Devereux and Salvanes 

2009), a 0.007 standard deviation reduction in mathematics scores (Figlio et al. 2014), 

and a 0.146% decline in permanent income (Bharadwaj, Lundbord and Rooth 2017). 

However, these long-term projections should be interpreted with caution as they may 

                                                             
5  The male-female gender gap is 70.44 grams for birth weight and 1.10% for LBW, while the gap 
between newborns to less educated mothers (primary school or below) and more educated mothers 
(college or above) is 76.79 grams for birth weight and 1.52% for LBW. 
6 While these findings are unlikely to be driven by migration, we should cautiously interpret our results. 
Since we are unable to completely rule out the possibility that a small share of expectant mothers could 
respond to unusually hot time periods via temporary moving, there would potentially be selection bias. 
7 Our identified effect on LBW is more sizable, which amounts to (1.05×28=) 29.4 percent increase in 
LBW, that is, 1.05 percent higher incidence of LBW per day of exposure to heat waves, for a total of 28 
more days during 1991-2000. This more salient effect on LBW may stem from larger effects towards 
dragging those vulnerable newborns who are slightly above the LBW cut-off to below the cut-off. 

https://www.nber.org/people/janjala_chirakijja
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not be quantitatively accurate or appropriate given different contexts. 

Finally, our paper also contributes to several other strains of work in the health and 

development literature. Our emphasis on in utero exposure to environmental stressors 

on birth outcomes relates to work on Barker (1992)’s “fetal origins hypothesis” (e.g., 

Almond and Currie 2011). This literature suggests that early exposure to stressors such 

as malnutrition (Meng and Qian 2009; Tan, Tan and Zhang 2015), family income shocks 

(Adhvaryu et al. 2017), and maternal stress (Persson and Ross-Slater 2014) have both 

short- and long-term effects on offspring. More broadly, our work relates to the new 

family investment models developed by Heckman and coauthors (Cunha, Heckman and 

Schennach 2010; Heckman and Mosso 2014) that examine parental investment 

responses to initial child disadvantages. These models emphasize the importance of 

reinforcing and compensatory responses to the perpetuation of initial shocks on future 

outcomes. 

The rest of the paper is organized as follows. We describe our data and empirical 

methodology in sections 2 and 3, respectively. We present our baseline and robustness 

results in section 4. Section 5 concludes. 

 

2. Data 

The birth record data are collected by China’s National Disease Surveillance 

Points (DSP) system, which includes 145 counties in 31 provinces (autonomous regions 

and municipalities), using multistage cluster probability sampling to cover a 1% 

nationally representative sample of the Chinese population (Yang et al. 2005). The data 

contain demographic information on the child, including the exact date and county of 

birth, sex, birth weight, birth order, and gestational week. 8  The data also provide 

demographic information on the parents, including their age at the birth of the child, 

ethnicity, education, and occupation. Table A1 presents summary statistics for these key 

                                                             
8 The gestational week information is recorded according to the exact date of the mother’s last menstrual 
period. Figure A1 plots the distribution of gestational age at birth in our sample. The distribution of 
gestational age in our sample is similar to that in Dai et al. (2004), which confirms the accuracy of the 
gestational age measurement. 
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characteristics in our analytical sample.  

We focus primarily on the 864,757 live singleton births during 1991–2000 in rural 

areas of 31 Chinese provinces. Due to there being 174,424 missing values for birth 

weight and 53,300 missing values for other household demographics, the final dataset 

includes 637,033 live singleton births.9 We interpolate the missing gestational age by 

39 weeks in the analysis. From the gestational age we infer the date of “conception” 

and measure the three trimesters of the pregnancy relative to that date.10 Specifically, 

we assign weeks 1–13 after conception to trimester 1, weeks 14–26 to trimester 2, and 

weeks 27–39 to trimester 3.11 As a robustness check below, we also report results for 

the subset of observations with gestational age values.12 

The weather data are provided by the China National Meteorological Data Service 

Center (CMDC) under the National Meteorological Information Center of China. It 

contains consecutive daily weather records of 824 monitoring stations along with their 

longitudes and latitudes in China. The key variable for our analysis is the daily mean 

temperature. The dataset also provides a rich set of climate controls, such as 

precipitation, wind speed, sunshine duration and relative humidity. 

To merge the birth data with the weather data, we calculate the average values of 

all the monitoring stations within 60 km to the centroid of each DSP county weighted 

by the inverse of the distance between the monitoring stations and the county centroid. 

When a county has no stations within 60 km, we match the county to the nearest station 

within 100 km.13 

                                                             
9 We run a linear probability model (LPM) model of the missing indicator (1 if the observation is missing 
from the estimation sample; 0 otherwise) on the 10 temperature bins. None of the coefficients are 
significant and the magnitudes are small, suggesting that the values are largely missing at random. 
10 The mean of gestational age is 39.2 weeks while the mode is 40 weeks in our sample. It is a common 
practice to assign weather exposure based on the expected gestational length (i.e., mean value in our case) 
instead of the actual exposure because of the concern over endogenous gestational age (Deschênes, 
Greenstone and Guryan 2009; Currie and Rossin-Slater 2013). Our baseline results are robust if we match 
temperatures to birth outcomes during the 40 weeks after the conception. The result is available upon 
request. 
11  Weeks 1-2 are usually before the conception even starts. To address this concern, we conduct a 
robustness check by assigning weeks 3-13 to trimester 1. Our result is robust to this change. The result 
is available upon request. 
12 These results are reported in Columns (5) and (6) of Table A2. Again, consistent with the baseline 
results in Columns (1)-(4), we show no distinguishable effect of exposure to extreme cold temperatures 
(<-4 °C) but significant effect after exposure to heat waves (>28 °C). 
13 The same approach is taken by Karlsson and Ziebarth (2018). The average matching distance in our 
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Figure 1 displays the spatial distribution of DSPs and weather stations. The 

weather stations are evenly distributed in China and could be well matched with the 

DSPs. We construct the number of days for which the daily mean temperature falls into 

one of 10 temperature bins, i.e., <-4 °C, -4–0 °C, 0–4 °C, 4–8 °C, 8–12 °C, 12–16 °C, 

16–20 °C, 20–24 °C, 24–28 °C, and >28 °C during the 39 gestational weeks in our 

sample. 14  Figure 2 depicts the distribution of daily mean temperature during the 

gestation period newborns in our sample are exposed. The vertical axis represents the 

average number of days that an expectant mother spends in each temperature bin while 

pregnant. The average number of days is 19.5 for the 0–4 °C range, 9.8 for the below -

4 °C bin, and 19.0 for the above 28 °C bin. In the subsequent analysis, the number of 

days in each temperature bin is calculated separately for each trimester of the gestation 

period to allow for substantial flexibility and nonlinear relationships between birth 

outcomes and temperature exposure. 

 

3. Empirical strategy 

Our baseline econometric specification is as follows: 

10

1
icyd j cydj cyd icyd y cd cy icyd

j
Y TEMP W X trendα β φ η δ ε

=

= + + + + + +∑ , (1) 

where the dependent variable Yicyd is the birth outcome of child i conceived in county c 

on day d (1-366) of year y. The two birth outcomes we test for this paper are log form 

of birth weight15  and an indicator for LBW (i.e., less than 2,500 grams). The key 

variables of interest TEMPcydj are the number of days in the temperature bin j (from 1 

to 10) during the 39 weeks after the conception for child i conceived in county c on day 

d of year y. We set the 0–4 °C temperature bin as the reference group in all the exercises. 

                                                             
sample is 32 km. Only 4.1% of our newborns are matched to weather stations beyond 60 km. Our 
matching radius is smaller than those used in Deschenes et al. (2009) and Deschenes and Greenstone 
(2011). 
14  Our benchmark temperature bins are similar to those in Isen et al. (2017). We also define the 
temperature bins using daily maximum temperatures and daily minimum temperatures. Our main 
findings remain unchanged. The results are available upon requests. 
15 Figure A2 displays the histogram of birth weight in our sample. As displayed in Figure A2, birth 
weight heaps mainly at 3,000 and 3,500 grams. Our results are still robust if we remove observations at 
3,000 and 3,500 grams. Please see the result in Column (9) of Table A4. 
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The vector Xicyd contains a set of demographic variables, including the child’s gender, 

birth order, maternal age and its square, and dummies for the maternal education. We 

also control for a vector of rich weather conditions Wcyd, involving the mean 

precipitation, wind speed, sunshine duration and relative humidity measured at the 

gestation period level. Finally, we control for county specific seasonality by including 

county×day of conception year fixed effect (δcd), and county level time trends (e.g., 

driven by economic growth over this period) by including county×linear conception 

year time trend (trendcy) and conception year fixed effects (ηy). εicyd is the error term.16 

Furthermore, the model could be refined to estimate the effects of exposure by 

individual pregnancy trimester: 
5 5 5

1 1 2 2 3 3

1 1 1

1 1 2 2 3 3

TR TR TR TR TR TR
icyd j cydj j cydj j cydj

j j j

TR TR TR TR TR TR
cyd cyd cyd icyd y cd cy icyd

Y TEMP TEMP TEMP

W W W X trend

α α α

β β β φ η δ ε
= = =

= + +

+ + + + + + + +

∑ ∑ ∑
, (2) 

where TR1, TR2, and TR3 are the indicators for the first, second, and third trimesters 

during the pregnancy. This specification allows us to test whether the estimated effects 

are driven by particular periods of pregnancy, such as the first trimester, when the fetus 

may be more sensitive to environmental insults. 

By conditioning on the full set of fixed effects listed above, the key parameters are 

identified by comparing children conceived in the same county on the same day in 

different years after excluding county-specific shocks across years. Due to the 

unpredictability of temperature fluctuations, it is reasonable to assume that this 

variation is orthogonal to the unobserved determinants of birth outcomes. We also ran 

parsimonious specifications by dropping the set of demographic controls. 17  If 

temperature fluctuations are random, then our treatment variables should be orthogonal 

to confounders and hence our regression estimates should be consistent. The inclusion 

of covariates should serve to improve the efficiency of the estimators, but we would 

expect then the point estimates from the parsimonious exercises to be similar to those 

                                                             
16  We have experimented with many fixed effects specifications to capture local heterogeneity and 
seasonality. We report the baseline findings for these specifications in Table A9 of the Appendix. Our 
benchmark findings are qualitatively robust to these alternatives. 
17 These results are reported in Columns (1) and (3) of Table A2. 
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from our benchmark exercises. We do, in fact, find that this is the case. 

 

4. Results 

4.1. Baseline results 

Throughout this section, our main estimation results are visually represented in 

Figures 3 and 4, while the full numerical results are presented in Tables A2 and A3. 

Our baseline findings are presented in Figure 3, which plots the estimates 

associated with each temperature bin (TEMPcydj) in equation (1) for the two birth 

outcomes. Specifically, Panels A and B in Figure 3 provide estimated impacts for log 

birth weight and LBW, respectively. The reference temperature bin is the 0–4 °C bin. 

Hence, the plotted coefficients can be interpreted as the estimated effects of an 

additional day in the corresponding temperature bin during the gestation period on birth 

outcomes relative to the reference temperature category. The 90 and 95 percent 

confidence intervals are included in all the panels in Figure 3. 

We now turn to a discussion of our main findings. Panel A of Figure 3 indicates a 

non-linear relationship between log birth weight and temperature, where a high 

temperature decreases birth weight. Specifically, an additional gestational day with a 

mean temperature above 28 °C, relative to a day in the 0–4 °C range, is associated with 

a reduction in the birth weight by 0.050 percent (1.66 grams).18 The economic size of 

this estimate is small but largely consistent with previous literature.19 

Panel B of Figure 3 plots the estimated coefficients for LBW. As displayed in Panel 

B of Figure 3, exposure to an additional hot day above 28 °C statistically significantly 

(at the 5% level) increased the probability of LBW by 0.035 percentage points (1.05 

percent of the mean incidence of LBW in the sample).20 Because having a LBW may 

                                                             
18 We also run quantile regressions on birth weight. Our main findings still hold. The results are available 
upon requests. 
19 For example, Deschênes, Greenstone and Guryan (2009) show that for all three trimesters, exposure 
to hot days (>85 °F or >29.4 °C) is associated with a statistically significant decline in birth weight 
ranging in magnitude from 0.003 to 0.009 percent per such day, relative to a day in the reference category 
(45-65 °F, or 7-18 °C). Our identified larger effect could be due to our lower reference temperatures than 
Deschênes, Greenstone and Guryan (2009). 
20 The main results are robust if we examine the effect of cold spells and heat waves separately. An 
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indicate a preterm birth or intrauterine growth restriction (i.e., being smaller than the 

norm given the gestational age), we also examine the impact of exposure to extreme 

temperatures on small for gestational age (SGA),21 preterm,22 and gestational age in 

Columns (7) through (9) in Table A2. We do not find a strong effect of exposure to heat 

waves on these three outcomes. 

We also test the statistical differences between coefficients on hot days versus 

other temperature bins for log birth weight and LBW, respectively. The differences 

between the hot temperature bin (>28 °C) and other temperature bins (i.e. <-4 °C, -4–

0 °C, 4–8 °C, 8–12 °C, 12–16 °C, 16–20 °C, 20–24 °C, 24–28 °C) are all significant at 

the 10% level or even the 1% level. All these test results suggest larger damage to birth 

weight is associated with exposure to heat waves as compared to cold temperatures. 

Finally, we examine if the timing of exposure to extreme temperatures during 

pregnancy has any heterogeneous effects across trimesters. Figure 4 shows the 

estimated coefficients associated with each temperature bin by trimester for log birth 

weight and LBW, respectively. As indicated by our previous analysis, the marginal 

effects of temperature bins are constant across the range 0-24 °C. Thus, we estimate a 

specification that aggregates exposure into five temperature bins (<-4 °C, -4-0 °C, 0-

24 °C, 24-28 °C, and >28 °C) with the 0-24 °C as the reference group. We find similar 

effects in Figure 4 as we do in our benchmark case above (Figure 3) across the three 

trimesters for all birth outcomes. For log birth weight, the point estimates suggest that 

exposure to extreme hot weather (above 28 °C) leads to a statistically significant 

damage in the first and third trimesters, with exposure of heat waves in the third 

trimester resulting in the largest negative impact. However, there are no significant 

differences in effects of extreme hot temperatures across trimesters as revealed by Wald 

                                                             
anonymous referee also suggested that the -4–0 °C category may be poorly powered and that it may be 
a good idea to combine the relevant temperature bins. Our baseline results are robust if we combine the 
<-4 °C and 0–4 °C bins together. In fact, after combining the two lower temperature bins, the estimates 
for hot temperatures are even more sizable across birth outcomes. These results are available upon 
request. 
21  The variable SGA refers to babies whose birth weights are below the 10th percentile for each 
gestational age by gender using data from the China National Population-based Birth Defects 
Surveillance System; see, Table 2 in Dai et al. (2014) for the gestational age-specific birth weight 
percentiles for Chinese babies. 
22 Preterm is defined as gestational age below 37 weeks. 
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test results. For LBW, the effects of hot days (above 28 °C) are distinguished between 

trimester 2 and trimester 3 at the 10% significance level. 

4.2. Placebo tests and robustness checks 

As is standard in the literature, we conduct placebo tests to further support our 

identifying assumptions. The placebo tests assign false treatments; i.e., temperature 

exposure three trimesters (39 weeks) before the conception date and three trimesters 

(39 weeks) after the birth date, to observational units. Figure 5 presents the results for 

log birth weight (Panel A) and LBW (Panel B), respectively. Specifically, the left part 

of each panel plots the estimated coefficients with 90% and 95% confidence intervals 

associated with each temperature bin when matching temperature exposure in 

trimesters before conception. The right part is drawn based on the estimates after birth. 

The middle part replicates the baseline results for ease of comparison. 

Neither pre-conception exposure nor postnatal exposure to extreme temperatures 

should affect log birth weight or LBW, unless the identified effect is driven by 

unobserved confounding factors or trends. In line with our expectations, the results 

from the placebo tests show that temperature exposure before conception and after birth 

do not have any significant effects on birth outcomes, and the magnitude of the 

coefficients are also small. Overall, the placebo tests lend us support that our empirical 

strategy is effective in identifying the causal impact of extreme temperature exposure 

on birth outcomes.23 

Our baseline results are also robust to a wide variety of specification checks. 

Columns (1) through (4) of Table A4 indicate that the results are robust to controlling 

for different sets of fixed effects; including, county×conception month fixed effects or 

county×day of conception year×sex fixed effects instead of county×day of conception 

year fixed effects. Columns (5) through (6) show that migration is unlikely to 

significantly bias our estimates. Furthermore, while we use forward counting to match 

                                                             
23 As expected, statistical tests show that our treatment effects (during pregnancy) are significantly larger 
than the placebo estimates (before conception; after birth). However, the difference in LBW between our 
treatment effect (during pregnancy) and a placebo estimate (before conception) is imprecisely estimated, 
which deserves a cautious interpretation. We thank an anonymous referee for suggesting this test. 
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the temperature exposure in the baseline results, Columns (7) through (8) show that the 

results are qualitatively unchanged if we use backward counting instead as per Currie 

and Rossin-Slater (2013).  

In addition, Column (9) of Table A4 also shows our results are still robust if we 

remove observations at 3,000 and 3,500 grams to address the heaping issues in birth 

weight (Figure A2). Finally, we also define the temperature bins using “feels like” 

temperatures, which take into account wind speeds, atmosphere pressure and relative 

humidity to assess how the human body actually feels temperature (Steadman 1984). 

As indicated by Figure A3, our main findings remain unchanged. 

4.3. Heterogeneous effects 

We explore possible heterogeneity in the effects of temperature exposure on birth 

weight across gender, geographic region, and socioeconomic status (SES) as measured 

by maternal education attainment. Figure 6 visualizes the results shown in Table A5 on 

heterogeneous effects by gender. Heat waves tend to impose larger negative effects on 

females than males in terms of LBW. However, the gender difference is not significant. 

There have been regional variations in the trends of number of heat waves during 

our sample period. Figure A4 shows the proportion of hot days (>28 °C) throughout 

each year over 10 years. Overall, in years with higher proportion of hot days, average 

birth weight is lower. There is some trend of rising number of hot days in north China, 

while no clear pattern is found for south China. Regarding average birth weight, 

northerners experience no clear trend, while southerners see an increasing trend. These 

simple graphs raise the possibility that while birth weight may indeed be negatively 

correlated with rising hot days in the aggregate, the correlation may be due to a 

composition effect or be driven by the experiences of parents in specific regions of the 

country. We explore this hypothesis systematically below.24 

For the purposes of our analysis, it is necessary to get a sense of not just the 

heterogeneity in ambient temperature trends across regions, but the actual exposure of 

mothers to such temperatures. Nevertheless, Figure A4 certainly suggests that our 

                                                             
24 We thank an anonymous referee for making this important observation. 
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model specification should include flexible county-specific time trends to account for 

such local variations in temperature patterns (which we do). In Figure A5, we plot the 

distribution of daily mean temperatures during the gestation period for the northern and 

southern regions of China divided by the Huai river.25 It is clearly the case that mothers 

from the southern region of China experience more high temperature days during 

pregnancy. It is therefore possible that the baseline results could be driven by these 

southern mothers because of their higher rates of exposure. Alternatively, it could be 

the case that southern mothers may exhibit natural adaptation to heat so that the baseline 

findings are instead driven by the experiences of northern mothers who are not as well 

adapted to extreme heat exposure. 

Table A6 shows the results of our baseline regression split by region. While the 

point estimates show that the negative impact of extreme heat exposure on birth weight 

is larger for infants born in the north compared to the south, the point estimates are not 

significantly different across the two regions. Our benchmark findings are therefore 

unlikely to be driven by factors that imply regional heterogeneity for these effects. 

In Table A7, we present results for our baseline regression for offspring of mothers 

with different levels of educational attainment; i.e., middle school or below versus high 

school or above. It seems that the impact of heat waves on birth weight is larger for 

newborns of less educated mothers, and the difference is significant for LBW. 

4.4. Alternative hypotheses 

Our findings that exposure to heat waves results in negative outcomes for birth 

weight stand in contrast with some existing work in the literature. For example, Wilde 

et al. (2017) find that a higher temperature at conception leads to better educational 

attainment and literacy, fewer disabilities, and lower child mortality. Andalon et al. 

(2016) find a positive and statistically significant association between APGAR scores 

                                                             
25 The lack of common support or overlap is an important concern when estimating the impact of extreme 
temperature exposure on birth outcomes. For example, when we investigate the impact of exposure to 
heat waves, are we only restricted to births in a region where temperatures are typically high? If so, the 
external validity of our findings may be called into question. As revealed in Figure A5, we find evidence 
for common support for both extreme heat and extreme cold across both regions in China—that is, across 
both regions, children have some likelihood of being exposed to both the highest (>28 °C) and lowest 
(<-4 °C) temperature bins while in utero. 
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and high-temperature shocks (events two or more SDs above the historical mean). 

4.4.1. Selection into conception during heat waves based on SES 

One argument for why we might expect exposure to heat waves to lead to positive 

birth outcomes (as opposed to what we found in this paper) is the possibility that heat 

waves may affect fertility patterns, for example, through falling sexual activity during 

heat waves (Buckles and Hungerman 2013; Barreca, Deschênes and Guldi 2018; Wilde 

et al. 2017). The effect may be disproportionally larger for parents of low SES if they 

are unable to shield against heat waves (by employing AC, for instance). Consequently, 

fertility may fall faster among lower SES families nine months after the heat wave, 

thereby raising the average SES among the pool of women conceiving children during 

heat waves. Naturally, children from more privileged backgrounds with fitter mothers 

are more likely to have better birth outcomes during heat waves. 

In Panel A of Figure 7, we directly test whether there is any sorting into 

temperature exposure in terms of SES (as measured by maternal education) around the 

time of conception (specifically, within 30 days before conception). As opposed to 

Wilde et al. (2017) and others, we do not find a salient pattern that, in the Chinese 

context, higher SES mothers sort into higher temperature bins before conception. No 

AC installed for almost all families may explain this absence of maternal sorting by 

SES. As shown in Panel A of Figure 8, we find the number of extreme hot days (above 

28 °C) during the gestation period is associated with higher SES at the 10% significance 

level. However, the significance disappears when we identify the relationship by 

trimester in Panel A of Figure A6. Therefore, we do not find strong evidence for the 

selection into conception during heat waves based on SES. 

4.4.2. In utero mortality selection as a result of exposure to extreme temperatures 

A second potential reason why we might expect to find that extreme heat exposure 

leads to better birth outcomes (we find the opposite) is mortality selection in utero. 

Extreme temperature may increase fetal mortality directly through an adverse, direct 

biological effect or indirectly through reduced farm income, poor nutrition, and 
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maternal health (Barreca 2017). This hypothesis implies that weaker fetuses are more 

likely to be selected out through the culling effect after exposure to extreme 

temperatures, while stronger fetuses tend to survive and are inherently healthier. One 

may therefore observe positive associations between extreme temperatures and birth 

outcomes when the culling effect dominates the scarring effect on the surviving babies. 

Several papers provide evidence about this channel. For example, Wilde et al. (2017) 

attribute the positive correlation between temperature at conception and later life 

outcomes largely to fetal selection. Importantly, such mortality selection is typically 

gender differentiated, as males tend to be more vulnerable to negative shocks. For 

example, Valente (2015) finds that, in the context of maternal stress, in utero shocks 

result in a decrease in the male-to-female sex ratio at birth. 

Residents in rural China, rich or poor, often have some access to traditional forms 

of winter heating with varying quality (e.g., burning firewood or coal, but no centralized 

winter heating). This probably explains why we do not observe statistically significant 

impact of cold exposure on birth outcomes. However, it is true that Chinese families 

generally have limited options to shield against heat waves. For example, according to 

the China Statistical Yearbook 2001, the rate of AC ownership in China was a mere 

1.32 units per 100 households in 2000. Nevertheless, do we observe a strong impact on 

mortality or gender selection implied by the above mortality selection mechanism? 

While our data does not provide information on infant mortality or still births, as 

we can see from Panels C of Figure 7 and Figure 8, there appears to be negative 

correlation between the number of days of high temperature exposure both in the 30 

days before conception and during the gestation period with the number of births at the 

conception-county-month level. This is also true when we look at the results at the 

trimester level, especially the first trimester; see, Panel C of Figure A6. However, the 

finding of larger negative correlation for 24-28 °C bin than for >28 °C bin deserves 

future investigation. 

Panel B of Figure 8 shows that the number of days of extreme temperature 

exposure during the gestation period does not predict the gender of the child. In fact, 

Panel B of Figure 7 finds that the number of days of extreme heat exposure in the 30 
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days before conception increases the probability that the child is male (and not female, 

as expected). Meanwhile, the evidence for mortality selection at the trimester level is 

also mixed and therefore difficult to interpret in favor of the hypothesis. As Panel B of 

Figure A6 shows, babies who experience more days of extreme heat during gestation 

in the second trimester are likely to be born female. However, those experiencing more 

extreme heat days in the first trimester are more likely to be born male. 

Taken together, these results suggest that the fetal mortality selection mechanism 

after being exposed to heat waves or cold spells is probably not strong in our context 

(China).26 

 

5. Conclusion 

The existing literature has focused on the economic burden imposed by a greater 

frequency of heat waves due to climate change on vulnerable populations. In this paper, 

we investigate the consequences of in utero exposure to extreme temperatures (both 

extreme cold and heat waves) on birth outcomes, i.e., log birth weight and LBW, using 

a large, nationally representative dataset in rural China. We find that in utero exposure 

to extreme cold has no impact on the birth outcomes of surviving children while 

exposure to heat waves yields significant negative effects. Lack of access to 

technological adaptation devices against heat, e.g., AC, is likely a key cause. If this is 

the case, the negative impact of exposure to heat waves might have become more muted 

in the past two decades with the diffusion of AC in rural China. 

 

 

 

 

 

                                                             
26 Of course, it is possible that the muted gender-biased mortality selection may have to do with strong 
son preference in rural China, where mothers who know that they are bearing sons take better care of 
themselves or even reallocate resources from daughters to sons to compensate for sons’ losses (Gupta et 
al. 2003; Lhila and Simon 2008; Chen et al. 2013). We have no way of directly verifying this possibility. 
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Figure 1: Distribution of DSPs and monitoring stations 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: This figure is plotted using ArcMap 10.5.1. 
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Figure 2: Distribution of daily mean temperature exposure during the gestation period 

 
Source: China Meteorological Data Service Center. 
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Figure 3: Estimated impacts of temperature on birth outcomes during the gestation period 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: The figure plots the estimated coefficients with 90% and 95% confidence intervals associated 
with each temperature bin identified from the regressions in Columns (2) and (4) of Table A2. Panels 
A and B correspond to the two birth outcomes, log birth weight and LBW (i.e., <2,500 grams), 
respectively. The reference temperature bin is 0-4°C. All the coefficients are scaled by 100 to make 
them more readable. All regressions include county × day of conception year fixed effects, 
county×linear conception year time trend, and conception year fixed effects. Demographic controls 
include gender, birth order, maternal age and its square, and dummies for maternal education. 
Environmental controls include mean precipitation, mean wind speed, mean sunshine duration and 
mean humidity during the gestation period in square polynomial forms. 
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Figure 4: Estimated impacts of temperature on birth outcomes in each trimester 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: The figure plots the estimated coefficients with 90% and 95% confidence intervals associated 
with each temperature bin in each trimester from the regressions in Table A3. Panels A and B 
correspond to the two birth outcomes, log birth weight and LBW (i.e., <2,500 grams), respectively. 
The reference temperature bin is 0-24°C. All the coefficients are scaled by 100 to make them more 
readable. All regressions include county× day of conception year fixed effects, county× linear 
conception year time trend, and conception year fixed effects. Demographic controls include gender, 
birth order, maternal age and its square, and dummies for maternal education. Environmental 
controls include mean precipitation, mean wind speed, mean sunshine duration and mean humidity 
in each trimester in square polynomial forms. 
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Figure 5: Placebo tests - Estimated impacts of temperature before conception and after birth 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: We match temperature exposure in three trimesters (39 weeks) before conception and after 
birth with birth outcomes to conduct these placebo tests. Specifically, the left part of each panel 
plots the estimated coefficients with 90% and 95% confidence intervals associated with each 
temperature bin when matching temperature exposure in trimesters before conception. The right 
part is drawn based on the estimates after birth. The middle part replicates the baseline results for 
ease of comparison. Panels A and B correspond to the two birth outcomes, log birth weight and 
LBW (i.e., <2,500 grams), respectively. The reference temperature bin is 0-24°C. All the 
coefficients are scaled by 100 to make them more readable. Other covariates and fixed effects 
are the same as those in Figure 3. 
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Figure 6: Estimated impacts of temperature on birth outcomes, by gender 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: The figure plots the estimated coefficients with 90% and 95% confidence intervals associated 
with each temperature bin identified from the regressions in Table A5 for males and females. Panels 
A and B correspond to the two birth outcomes, log birth weight and LBW (i.e., <2,500 grams), 
respectively. The reference temperature bin is 0-24°C. All the coefficients are scaled by 100 to 
make them more readable. Other covariates and fixed effects are the same as those in Figure 3. 

-.1
-.0

5
0

.0
5

Pe
rc

en
t c

ha
ng

e 
in

 b
irt

h 
w

ei
gh

t

<-4 C -4-0 C 0-24 C 24-28 C >28 C

male female

A. Estimated impacts of temperature on log birth weight

-.0
5

0
.0

5
.1

Pe
rc

en
ta

ge
 c

ha
ng

e 
in

 lo
w

 b
irt

h 
w

ei
gh

t

<-4 C -4-0 C 0-24 C 24-28 C >28 C

male female

B. Estimated impacts of temperature on low birth weight



30 
 

Figure 7: Mechanism tests – effects of temperature in the last 30 days before conception 

 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: The figure plots the estimated coefficients with 90% and 95% confidence intervals associated 
with each temperature bin identified from the regressions in Panel A of Table A8. Panels A, B and 
C correspond to the three birth outcomes, mother’s years of education, child being female and 
number of births at conception-county-month level, respectively. The reference temperature bin is 
0-24°C. The coefficients in Panel A and Panel B are scaled by 100 to make them more readable. 
Panel A and Panel B control county×day of conception year fixed effects, county×linear conception 
year time trend, and conception year fixed effects. Panel C controls county×conception month fixed 
effects and conception year fixed effects. Other covariates include mean precipitation, mean wind 
speed, mean sunshine duration and mean humidity in the last 30 days before conception in square 
polynomial forms. 
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Figure 8: Mechanism tests – effects of temperature during the gestation period 

 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: The figure plots the estimated coefficients with 90% and 95% confidence intervals associated 
with each temperature bin identified from the regressions in Panel B of Table A8. Panels A, B and 
C correspond to the three birth outcomes, mother’s years of education, child being female and 
number of births at conception-county-month level, respectively. The reference temperature bin is 
0-24°C. The coefficients in Panel A and Panel B are scaled by 100 to make them more readable. 
Panel A and Panel B control county×day of conception year fixed effects, county×linear conception 
year time trend, and conception year fixed effects. Panel C controls county×conception month fixed 
effects and conception year fixed effects. Other covariates include mean precipitation, mean wind 
speed, mean sunshine duration and mean humidity during the gestation period in square polynomial 
forms. 
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Online Appendix: Supplementary Figures and Tables 

Figure A1: Distribution of gestational age 

 
Source: China’s National Disease Surveillance Points system. 
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Figure A2: Distribution of birth weight 

 
Source: China’s National Disease Surveillance Points system. 
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Figure A3: Robustness checks - “feels like” temperatures 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: The figure plots the estimated coefficients with 90% and 95% confidence intervals associated 
with each temperature bin. Panels A and B correspond to the two birth outcomes, log birth weight 
and LBW (i.e., <2,500 grams), respectively. The reference temperature bin is 0-4°C. All the 
coefficients are scaled by 100 to make them more readable. The “feels like” temperatures take 
into account wind speeds, atmosphere pressure and relative humidity to assess how the human body 
actually feels temperature. All regressions include county×day of conception year fixed effects, 
county×linear conception year time trend, and conception year fixed effects. Demographic controls 
include gender, birth order, maternal age and its square, dummies for maternal education. 
Environmental controls include mean precipitation, mean wind speed, mean sunshine duration and 
mean humidity during the gestation period in square polynomial forms. 
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Figure A4: Trends in hot days and birth weight, by region 

 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
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Figure A5: Distribution of daily mean temperature exposure during the gestation period by region 

  
Source: China’s National Disease Surveillance Points system and China Meteorological Data Service Center. 
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Figure A6: Mechanism tests – effects of temperature in each trimester 

 

 

 
Source: China’s National Disease Surveillance Points system and China Meteorological Data 
Service Center. 
Note: The figure plots the estimated coefficients with 90% and 95% confidence intervals associated 
with each temperature bin. Panels A, B and C correspond to the three birth outcomes, mother’s years 
of education, child being female and number of births at conception-county-month level, 
respectively. The reference temperature bin is 0-24°C. The coefficients in Panel A and Panel B 
are scaled by 100 to make them more readable. Panel A and Panel B control county×day of 
conception year fixed effects, county×linear conception year time trend, and conception year fixed 
effects. Panel C controls county×conception month fixed effects and conception year fixed effects. 
Other covariates include mean precipitation, mean wind speed, mean sunshine duration and mean 
humidity in each trimester in square polynomial forms. 
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Table A1: Summary statistics 
Variable Mean Std. dev. 
birth weight (BW, gram) 3325.6 405.6 
low birth weight (LBW, %) 3.346 17.985 
small for gestational age (SGA, %) 7.050 25.599 
preterm (%) 3.093 17.312 
gestational age (week) 39.213 1.171 
the number of days in:   

<-4 °C 9.836 24.633 
-4-0 °C 9.851 13.811 
0-4 °C 19.534 16.572 
4-8 °C 28.593 17.240 
8-12 °C 30.865 14.727 
12-16 °C 31.093 12.638 
16-20 °C 37.068 16.551 
20-24 °C 43.262 17.828 
24-28 °C 43.896 27.516 
>28 °C 19.002 19.838 

male 0.551 0.497 
birth order 1.379 0.657 
maternal age 25.243 3.388 
maternal education   

Primary school or below 0.253 0.435 
Middle school 0.548 0.498 
High school or above 0.198 0.399 

Source: China’s National Disease Surveillance Points system. 
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Table A2: Baseline results 

Dependent variable 
Baseline  Subsample with 

gestational age  Other outcomes 

log birth weight  LBW  log birth 
weight LBW  SGA preterm gestational 

age 
 (1) (2)  (3) (4)  (5) (6)  (7) (8) (9) 
Mean of dependent variable 8.100 8.102  3.434% 3.346%  8.110 2.519%  5.667% 3.037% 39.431 
the number of days in:             

<-4 °C -0.018 -0.011  0.012 0.013  0.006 0.009  0.025 -0.026 -0.032 
 (0.024) (0.024)  (0.015) (0.015)  (0.019) (0.012)  (0.029) (0.050) (0.586) 
-4-0 °C -0.051* -0.045  0.006 0.009  -0.071** -0.000  0.018 0.064 -1.045 
 (0.029) (0.028)  (0.016) (0.017)  (0.032) (0.014)  (0.035) (0.080) (0.924) 
0-4 °C             
             
4-8 °C -0.024 -0.014  0.004 0.004  -0.003 0.003  -0.029 0.162 -1.454 
 (0.019) (0.020)  (0.012) (0.012)  (0.015) (0.013)  (0.031) (0.098) (1.141) 
8-12 °C -0.036** -0.032**  0.012 0.007  -0.031** 0.003  0.008 0.052 -0.125 
 (0.015) (0.015)  (0.012) (0.011)  (0.015) (0.009)  (0.024) (0.106) (1.306) 
12-16 °C -0.030 -0.021  0.009 0.008  -0.028 0.009  0.023 -0.017 0.587 
 (0.018) (0.019)  (0.013) (0.013)  (0.018) (0.012)  (0.027) (0.048) (0.470) 
16-20 °C -0.031* -0.021  0.024 0.022  -0.024 0.031**  0.059 0.089 -0.331 
 (0.016) (0.017)  (0.022) (0.022)  (0.016) (0.016)  (0.038) (0.078) (0.902) 
20-24 °C -0.019 -0.006  0.012 0.007  -0.005 0.016  0.009 0.042 -0.321 
 (0.018) (0.018)  (0.020) (0.019)  (0.015) (0.013)  (0.035) (0.057) (0.608) 
24-28 °C -0.031* -0.021  0.024 0.020  -0.038** 0.037**  0.040 0.100 -0.625 
 (0.018) (0.019)  (0.018) (0.017)  (0.018) (0.017)  (0.040) (0.066) (0.728) 
>28 °C -0.057*** -0.050**  0.041** 0.035**  -0.048** 0.042**  0.055 0.092 -0.835 
 (0.021) (0.022)  (0.016) (0.017)  (0.019) (0.016)  (0.041) (0.078) (0.864) 

Demographic controls No Yes  No Yes  Yes Yes  Yes Yes Yes 
Number of observations 685,446 637,033  685,446 637,033  313,244 313,244  313,244 333,445 333,445 
Adjusted-R2 0.177 0.184  0.061 0.068  0.211 0.108  0.098 0.237 0.324 

Source: China’s National Disease Surveillance Points system and China Meteorological Data Service Center. 
Note: *, **, and *** indicate significance level at 10%, 5%, and 1%, respectively. Robust standard errors, clustered at the county level, are presented in parentheses. 
The dependent variables are log birth weight and LBW (i.e., <2,500 grams). All the coefficients are scaled by 100 to make them more readable. The left-out 
temperature bin is 0-4°C. All regressions include county×day of conception year fixed effects, county×linear conception year time trend, and conception year fixed 
effects. Demographic controls include gender, birth order, maternal age and its square, and dummies for maternal education. Environmental controls include mean 
precipitation, mean wind speed, mean sunshine duration and mean humidity during the gestation period in square polynomial forms. 
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Table A3: Effects of temperature exposure on birth outcomes in each trimester 
Dependent variable log birth weight LBW 
 (1) (2) 
Mean of dependent variable 8.102 3.346% 
the number of days in trimester 1:   

<-4 °C - t1 0.002 0.007 
 (0.026) (0.018) 
-4-0 °C - t1 -0.019 -0.019 
 (0.024) (0.015) 
0-24 °C - t1   
   
24-28 °C - t1 -0.005 0.002 
 (0.010) (0.014) 
>28 °C - t1 -0.031** 0.019 
 (0.012) (0.016) 

the number of days in trimester 2:   
<-4 °C - t2 -0.005 0.026* 
 (0.024) (0.015) 
-4-0 °C - t2 -0.051* 0.032* 
 (0.027) (0.019) 
0-24 °C - t2   
   
24-28 °C - t2 0.003 -0.003 
 (0.010) (0.012) 
>28 °C - t2 -0.018 0.003 
 (0.014) (0.017) 

the number of days in trimester 3:   
<-4 °C - t3 -0.016 0.007 
 (0.025) (0.028) 
-4-0 °C - t3 -0.036 0.015 
 (0.024) (0.020) 
0-24 °C - t3   
   
24-28 °C - t3 -0.021** 0.021** 
 (0.011) (0.010) 
>28 °C - t3 -0.035** 0.037** 
 (0.014) (0.016) 

Number of observations 637,033 637,033 
Adjusted-R2 0.184 0.068 

Source: China’s National Disease Surveillance Points system and China Meteorological 
Data Service Center. 
Note: *, **, and *** indicate significance level at 10%, 5%, and 1%, respectively. Robust 
standard errors, clustered at the county level, are presented in parentheses. The dependent 
variables are log birth weight and LBW (i.e., <2,500 grams). All the coefficients are scaled 
by 100 to make them more readable. The left-out temperature bin is 0-24°C. All 
regressions include county×day of conception year fixed effects, county×linear conception 
year time trend, and conception year fixed effects. Demographic controls include gender, 
birth order, maternal age and its square, and dummies for maternal education. Environmental 
controls include mean precipitation, mean wind speed, mean sunshine duration and mean 
humidity in each trimester in square polynomial forms. 
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Table A4: Robustness checks 

Dependent variable Different forms of fixed effects  Cohorts 1991-1997  Backward counting  Heaping 
log BW LBW  log BW LBW  log BW LBW  log BW LBW  log BW 

 (1) (2)  (3) (4)  (5) (6)  (7) (8)  (9) 
Mean of dependent variable 8.102 3.346%  8.102 3.346%  8.101 3.484%  8.102 3.346%  8.116 
the number of days in:              

<-4 °C -0.016 0.014  -0.009 0.014  -0.001 0.025  -0.012 0.017  -0.029 
 (0.018) (0.012)  (0.025) (0.016)  (0.035) (0.029)  (0.024) (0.015)  (0.040) 
-4-0 °C -0.041 0.010  -0.046 0.008  -0.042 0.026  -0.043 0.009  -0.045 
 (0.026) (0.017)  (0.029) (0.018)  (0.029) (0.022)  (0.028) (0.017)  (0.036) 
0-4 °C              
              
4-8 °C -0.015 0.003  -0.015 0.003  0.004 0.004  -0.014 0.002  -0.022 
 (0.018) (0.011)  (0.021) (0.013)  (0.023) (0.014)  (0.020) (0.012)  (0.029) 
8-12 °C -0.029** 0.002  -0.032** 0.006  -0.014 0.007  -0.032** 0.005  -0.042** 
 (0.013) (0.009)  (0.016) (0.011)  (0.019) (0.013)  (0.015) (0.011)  (0.020) 
12-16 °C -0.021 0.002  -0.021 0.007  -0.016 0.008  -0.021 0.004  -0.039 
 (0.016) (0.010)  (0.020) (0.014)  (0.023) (0.016)  (0.019) (0.013)  (0.026) 
16-20 °C -0.021 0.014  -0.021 0.023  -0.012 0.020  -0.020 0.017  -0.037* 
 (0.013) (0.013)  (0.018) (0.022)  (0.024) (0.031)  (0.017) (0.022)  (0.022) 
20-24 °C -0.009 0.000  -0.008 0.007  0.003 0.022  -0.005 0.003  -0.023 
 (0.013) (0.010)  (0.019) (0.019)  (0.025) (0.023)  (0.019) (0.018)  (0.024) 
24-28 °C -0.022* 0.010  -0.023 0.019  -0.016 0.028  -0.021 0.015  -0.033 
 (0.013) (0.010)  (0.019) (0.018)  (0.024) (0.021)  (0.019) (0.017)  (0.026) 
>28 °C -0.048*** 0.026**  -0.052** 0.034*  -0.049* 0.051**  -0.048** 0.030*  -0.072** 
 (0.016) (0.012)  (0.023) (0.018)  (0.029) (0.024)  (0.022) (0.017)  (0.029) 

conception year FEs Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes 
county×linear conception year time trend Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes 
county×conception month FEs Yes Yes  No No  No No  No No  No 
county×day of conception year FEs No No  No No  Yes Yes  Yes Yes  Yes 
county×day of conception year×sex FEs No No  Yes Yes  No No  No No  No 
Number of observations 637,033 637,033  637,033 637,033  473,500 473,500  637,033 637,033  363,972 
Adjusted-R2 0.179 0.055  0.187 0.081  0.174 0.051  0.185 0.069  0.233 

Source: China’s National Disease Surveillance Points system and China Meteorological Data Service Center. 
Note: *, **, and *** indicate significance level at 10%, 5%, and 1%, respectively. Robust standard errors, clustered at the county level, are presented in parentheses. 
All the coefficients are scaled by 100 to make them more readable. The left-out temperature bin is 0-4°C. Demographic controls include gender, birth order, maternal 
age and its square, dummies for maternal education. Environmental controls include mean precipitation, mean wind speed, mean sunshine duration and mean humidity 
during the gestation period in square polynomial forms. 
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Table A5: Heterogeneous effects of temperature exposure on birth outcomes, by gender 
Dependent variable log birth weight  LBW 

 male female difference 
(p-value)  male female difference 

(p-value) 
 (1) (2) (3)  (4) (5) (6) 
Mean of dependent variable 8.111 8.090   2.854% 3.951%  
the number of days in:        

<-4 °C -0.003 -0.007 0.004  0.003 0.030 -0.027* 
 (0.024) (0.022) (0.736)  (0.013) (0.021) (0.072) 
-4-0 °C -0.029 -0.038 0.009  0.006 0.009 -0.003 
 (0.025) (0.024) (0.423)  (0.015) (0.021) (0.834) 
0-24 °C        
        
24-28 °C -0.011 -0.011 0.000  0.004 0.012 -0.008 
 (0.009) (0.008) (0.987)  (0.012) (0.010) (0.389) 
>28 °C -0.038*** -0.035*** -0.003  0.017 0.030** -0.013 
 (0.013) (0.010) (0.802)  (0.015) (0.014) (0.251) 

Number of observations 351,166 285,867   351,166 285,867  
Adjusted-R2 0.180 0.183   0.075 0.084  

Source: China’s National Disease Surveillance Points system and China Meteorological Data Service Center. 
Note: *, **, and *** indicate significance level at 10%, 5%, and 1%, respectively. Robust standard errors, clustered at the county 
level, are presented in parentheses. The dependent variables are log birth weight and LBW (i.e., <2,500 grams). All the coefficients 
are scaled by 100 to make them more readable. The left-out temperature bin is 0-24°C. All regressions include county×day of 
conception year fixed effects, county×linear conception year time trend, and conception year fixed effects. Demographic controls 
include gender, birth order, maternal age and its square, and dummies for maternal education. Environmental controls include mean 
precipitation, mean wind speed, mean sunshine duration and mean humidity during the gestation period in square polynomial forms. 
The significance of the differences is derived from Wald tests. 
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Table A6: Heterogeneous effects of temperature exposure on birth outcomes, by region 
Dependent variable log birth weight  LBW 

 north south difference 
(p-value)  north south difference 

(p-value) 
 (1) (2) (3)  (4) (5) (6) 
Mean of dependent variable 8.116 8.095   2.199% 3.909%  
the number of days in:        

<-4 °C -0.002 0.089 -0.091  0.020 -0.055 0.075 
 (0.026) (0.088) (0.324)  (0.012) (0.072) (0.307) 
-4-0 °C -0.032 -0.012 -0.020  0.010 0.004 0.006 
 (0.028) (0.024) (0.581)  (0.014) (0.031) (0.866) 
0-24 °C        
        
24-28 °C -0.025** -0.007 -0.018  0.005 0.016 -0.011 
 (0.012) (0.011) (0.275)  (0.011) (0.016) (0.586) 
>28 °C -0.036* -0.029** -0.007  0.002 0.032 -0.030 
 (0.019) (0.014) (0.785)  (0.008) (0.020) (0.164) 

Number of observations 209,548 427,485   209,548 427,485  
Adjusted-R2 0.194 0.175   0.053 0.075  

Source: China’s National Disease Surveillance Points system and China Meteorological Data Service Center. 
Note: *, **, and *** indicate significance level at 10%, 5%, and 1%, respectively. Robust standard errors, clustered at the county 
level, are presented in parentheses. The dependent variables are log birth weight and LBW (i.e., <2,500 grams). All the coefficients 
are scaled by 100 to make them more readable. The left-out temperature bin is 0-24°C. All regressions include county×day of 
conception year fixed effects, county×linear conception year time trend, and conception year fixed effects. Demographic controls 
include gender, birth order, maternal age and its square, and dummies for maternal education. Environmental controls include mean 
precipitation, mean wind speed, mean sunshine duration and mean humidity during the gestation period in square polynomial forms. 
The significance of the differences is derived from Wald tests. 
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Table A7: Heterogeneous effects of temperature exposure on birth outcomes, by maternal education attainment 
Dependent variable log birth weight  LBW 

 less 
educated educated difference 

(p-value)  less 
educated educated difference 

(p-value) 
 (1) (2) (3)  (4) (5) (6) 
Mean of dependent variable 8.102 8.103   3.358% 3.177%  
the number of days in:        

<-4 °C -0.009 -0.004 -0.005  0.018 0.015 0.003 
 (0.024) (0.027) (0.860)  (0.019) (0.016) (0.880) 
-4-0 °C -0.036 -0.036 0.000  0.006 0.019 -0.013 
 (0.023) (0.027) (0.996)  (0.019) (0.016) (0.613) 
0-24 °C        
        
24-28 °C -0.006 -0.021 0.015  0.008 0.010 -0.002 
 (0.009) (0.013) (0.353)  (0.012) (0.015) (0.897) 
>28 °C -0.037*** -0.033* -0.004  0.031* -0.007 0.038* 
 (0.012) (0.019) (0.822)  (0.017) (0.015) (0.097) 

Number of observations 507,862 125,467   507,862 125,467  
Adjusted-R2 0.188 0.196   0.078 0.053  

Source: China’s National Disease Surveillance Points system and China Meteorological Data Service Center. 
Note: *, **, and *** indicate significance level at 10%, 5%, and 1%, respectively. Robust standard errors, clustered at the county 
level, are presented in parentheses. The dependent variables are log birth weight and LBW (i.e., <2,500 grams). All the coefficients 
are scaled by 100 to make them more readable. The left-out temperature bin is 0-24°C. All regressions include county×day of 
conception year fixed effects, county×linear conception year time trend, and conception year fixed effects. Demographic controls 
include gender, birth order, maternal age and its square, and dummies for maternal education. Environmental controls include mean 
precipitation, mean wind speed, mean sunshine duration and mean humidity during the gestation period in square polynomial forms. 
The significance of the differences is derived from Wald tests. 
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Table A8: Mechanism tests – effects of temperature in the last 30 days before conception/during the gestation period 

Dependent variable 

A. # of days in the last 30 days before conception  B. # of days during the gestation period 

mother’s years 
of education 

child being 
female 

number of 
births at 

conception-
county-month 

level 

 mother’s years 
of education 

child being 
female 

number of 
births at 

conception-
county-month 

level 
 (1) (2) (3)  (4) (5) (6) 
Mean of dependent variable 8.756 0.449 79.524  8.756 0.449 79.524 
the number of days in:        

<-4 °C 0.036 0.118* 0.313  -0.183 0.016 -0.021 
 (0.717) (0.063) (0.212)  (0.638) (0.027) (0.121) 
-4-0 °C 0.045 0.035 0.139  -0.190 -0.032 -0.161 
 (0.573) (0.057) (0.188)  (0.514) (0.024) (0.143) 
0-24 °C        
        
24-28 °C 0.831* -0.104*** -0.423***  0.310 0.003 -0.222* 
 (0.444) (0.038) (0.156)  (0.310) (0.015) (0.116) 
>28 °C 0.613 -0.162** -0.385  0.745* 0.012 -0.079 
 (0.708) (0.064) (0.292)  (0.425) (0.023) (0.195) 

conception year fixed effects Yes Yes Yes  Yes Yes Yes 
county×linear conception year time trend Yes Yes No  Yes Yes No 
county×day of conception year fixed effects Yes Yes No  Yes Yes No 
county×conception month fixed effects No No Yes  No No Yes 
Number of observations 633,329 637,033 10,751  633,329 637,033 10,751 
Adjusted-R2 0.341 0.011 0.732  0.342 0.011 0.733 

Source: China’s National Disease Surveillance Points system and China Meteorological Data Service Center. 
Note: *, **, and *** indicate significance level at 10%, 5%, and 1%, respectively. Robust standard errors, clustered at the county level, are presented in parentheses. 
The dependent variables are mother’s years of education, child being female and number of births at conception-county-month level. The coefficients in Columns 
(1)- (2) and (4)-(5) are scaled by 100 to make them more readable. The left-out temperature bin is 0-24°C. Environmental controls include mean precipitation, 
mean wind speed, mean sunshine duration and mean humidity in square polynomial forms. 
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Table A9: Robustness checks with alternative specifications - county×birth/conception year FEs vs. county×linear birth/conception year time trend 
Dependent variable log BW LBW  log BW LBW  log BW LBW  log BW LBW 
 (1) (2)  (3) (4)  (5) (6)  (7) (8) 
the number of days in:            

<-4 °C -0.002 0.015  -0.014 0.016  -0.007 0.018  -0.011 0.013 
 (0.010) (0.010)  (0.020) (0.014)  (0.023) (0.015)  (0.024) (0.015) 
-4-0 °C -0.007 0.030*  -0.047* 0.010  -0.014 0.001  -0.045 0.009 
 (0.014) (0.016)  (0.027) (0.018)  (0.018) (0.016)  (0.028) (0.017) 
0-4 °C            
            
4-8 °C -0.003 0.022*  -0.013 0.002  -0.005 0.012  -0.014 0.004 
 (0.009) (0.012)  (0.019) (0.011)  (0.015) (0.013)  (0.020) (0.012) 
8-12 °C -0.007 0.016  -0.034** 0.009  -0.015 0.011  -0.032** 0.007 
 (0.008) (0.010)  (0.016) (0.010)  (0.014) (0.012)  (0.015) (0.011) 
12-16 °C -0.007 0.020  -0.021 0.005  -0.007 0.018  -0.021 0.008 
 (0.010) (0.012)  (0.018) (0.011)  (0.014) (0.016)  (0.019) (0.013) 
16-20 °C -0.004 0.037***  -0.023 0.022  -0.008 0.036**  -0.021 0.022 
 (0.008) (0.014)  (0.015) (0.017)  (0.013) (0.018)  (0.017) (0.022) 
20-24 °C -0.002 0.020  -0.013 0.010  0.016 0.004  -0.006 0.007 
 (0.009) (0.012)  (0.015) (0.012)  (0.013) (0.016)  (0.018) (0.019) 
24-28 °C -0.013 0.042***  -0.030** 0.027**  0.004 0.020  -0.021 0.020 
 (0.009) (0.015)  (0.015) (0.013)  (0.014) (0.017)  (0.019) (0.017) 
>28 °C -0.017 0.054***  -0.059*** 0.044***  -0.001 0.027  -0.050** 0.035** 
 (0.011) (0.018)  (0.018) (0.013)  (0.015) (0.020)  (0.022) (0.017) 

birth year fixed effects Yes Yes  Yes Yes  No No  No No 
county×birth year fixed effects Yes Yes  No No  No No  No No 
county×linear birth year time trend No No  Yes Yes  No No  No No 
county×day of birth year fixed effects Yes Yes  Yes Yes  No No  No No 
conception year fixed effects No No  No No  Yes Yes  Yes Yes 
county×conception year fixed effects No No  No No  Yes Yes  No No 
county×linear conception year time trend No No  No No  No No  Yes Yes 
county×day of conception year fixed effects No No  No No  Yes Yes  Yes Yes 
Number of observations 637,033 637,033  637,033 637,033  637,033 637,033  637,033 637,033 
Adjusted-R2 0.202 0.071  0.185 0.069  0.198 0.070  0.184 0.068 

Source: China’s National Disease Surveillance Points system and China Meteorological Data Service Center. 
Note: *, **, and *** indicate significance level at 10%, 5%, and 1%, respectively. Robust standard errors, clustered at the county level, are presented in parentheses. 
All the coefficients are scaled by 100 to make them more readable. The left-out temperature bin is 0-4°C. Demographic controls include gender, birth order, maternal 
age and its square, dummies for maternal education. Environmental controls include mean precipitation, mean wind speed, mean sunshine duration and mean humidity 
during the gestation period in square polynomial forms. 
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