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Abstract

The paper provides mathematical foundations for modeling strate-
gic interdependence with a continuum of agents where uncertainty has
an aggregate component and an agent-specific component and the lat-
ter satisfies a conditional law of large numbers. This decomposition
of uncertainty is implied by a condition of anonymity in beliefs, under
which the agent in question considers the other agents’ types to be
essentially pairwise exchangeable. If there is also anonymity in payoff
functions, all strategically relevant aspects of beliefs are contained in an
agent’s macro beliefs about the cross-section distribution of the other
agents’types. The paper also gives conditions under which a function
assigning macro beliefs to types is compatible with the existence of a
common prior.
Key Words: Incomplete-information games, large populations, be-

lief functions, common priors, exchangeability, conditional indepen-
dence, conditional exact law of large numbers.
JEL: C70, D82, D83.
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1 Introduction

This paper develops mathematical foundations for the study of incomplete-
information games with the following properties:

• The payoff for any one agent depends only on the agent’s own char-
acteristics and actions and on the cross-section distribution of actions
in the population.

• There are many agents, and each agent considers the effect of his own
actions on the cross-section distribution of actions to be negligible.

• Uncertainty can be decomposed into an aggregate component and an
agent-specific component, and the latter satisfies an exact law of large
numbers.

Such games are not covered by the standard approach to studying strate-
gic interdependence with incomplete information, which considers games
with finitely many participants where each participant has beliefs about
every other participant’s characteristics and actions.1

However, in many situations, people do not care about who does what
among the other participants. They only care about how many of them
engage in any one course of action. This is particularly true for strategic in-
teractions involving large masses of people where aggregate outcomes depend
only on aggregate measures of actions. The following examples illustrate the
point:

Currency attacks and bank runs: In models of currency attacks and
bank runs, the payoff to an agent’s choice to attack or to run depends on
how many agents are also choosing to attack or to run. Any one agent is
therefore concerned about the fraction of people in the population that have
received bad signals and are likely to speculate against the currency or run
on the bank.2

1This approach was introduced by Harsanyi (1967/8) and Mertens and Zamir (1985).
2Whereas the early models of bank runs in Bryant (1980) and Diamond and Dybvig

(1983) assumed homogeneous information, since Morris and Shin (1998), the literature
on currency attacks and bank runs has aasumed that each agent privately observes a
noisy signal of the fundamental. Given the observation of this signal, the agent forms
expectations about the value of the fundamental and about the population share of the
set of people who will choose to participate in a currency attack or a bank run. If the
chances are good that this population share is high enough for the attack to be successful,
the agent will also choose to particpate. In addition to Morris and Shin (1998) see C.
Hellwig (2002), Rochet and Vives (2004), Goldstein and Pauzner (2005), and Angeletos
and Werning (2006).
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Insider trading and market microstructure: Strategic behavior
in markets with asymmetric information depends on agents’ expectations
about the relative importance of information trading and liquidity trading.
In organized markets in which the identities of traders are not revealed, these
expectations concern the distribution of characteristics among the potential
traders.3

Durable-goods monopoly: A monopolistic seller of a durable com-
modity does not care about the potential buyers’individual valuations for
his good, only about the cross-section distribution of these valuations in the
population and the implications of this distribution for the demand that he
faces under alternative selling strategies.4

Corporate takeover battles: The outcome of a takeover battle for the
control of a widely-held corporation depends on the fractions of shareholders
that accept the different tender offers, or that reject them. In assessing the
alternatives, therefore, each shareholder is concerned with the distribution
of actions taken by the other shareholders.5

Electoral competition and voting: In voting, the identities of indi-
viduals are irrelevant. Only the fractions of the population that vote for or
against the given alternatives matter. In models of strategic voting, people
form expectations about the distribution of other people’s votes. This dis-
tribution depends on the distribution of other people’s characteristics, i.e.,
preference parameters or realizations of information variables, and on how
these characteritics affect their votes.6

Mechanism design and voting for public-good provision: Effi -
cient public-good provision hinges on a comparison of aggregate marginal
benefits and the marginal costs of an additional unit of a public good. Ag-
gregate marginal benefits are given by the sum of the marginal benefits of
the different participants. People’s identities do not matter, only the cross-
section distribution of characteristics in the population. In a large economy,
this distribution is independent of any one agent’s characteristics, and the
distribution of reported characteristics is independent of any one agent’s
report.7

In such applications, the notion that any one agent is too insignificant
to affect aggregate outcomes is usually formalized by assuming that there

3See, for example Kyle (1985, 1989).
4See, e.g., Gul et al. (1985).
5See Grossman and Hart (1980) and the subsequent literature.
6See, e.g. Lindbeck and Weibull (1987), Alesina and Tabellini (1990).
7See Bierbrauer and Hellwig (2010, 2015).
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is a continuum of agents. Uncertainty is decomposed into an aggregate
component and an agent-specific component, and a law of large numbers is
assumed for the latter. The mathematical diffi culties inherent in the notion
of a continuum of agent-specific random variables are usually ignored.

This is where the present paper steps in. I develop a Harsanyi (1967/68)
type space framework for studying strategic interdependence when there is
a continuum of agents, each one of them insignificant, and each agent has
incomplete information about the state of the world. Each agent’s character-
istics are summarized in terms of an abstract "type". This type determines
the agent’s probabilistic beliefs about the other agents’types as well as the
parameters that enter the agent’s payoff function in any strategic game.

Within this formalism, I show that the properties listed above can be
derived from two conditions of anonymity, one referring to payoff functions,
the other to beliefs. Anonymity in payoff functions postulates that the payoff
which an agent expects to obtain from a given action in a strategic game
depends only on the agent’s own type and action and on the cross-section
distribution of the other agents’actions. Which of the other agents is taking
which action makes no difference as long as the cross-section distribution of
actions is the same.

If all agents choose the same strategy, i.e. the same mapping from types
to actions, the cross-section distribution of actions itself determined by the
cross-section distribution of types and the common strategy. If different
agents choose different strategies, this decomposition is not available, but
then the condition of anonymity in beliefs ensures that an agent’s expecta-
tions about the cross-section distribution of actions is always determined by
his expectations about the cross-section distribution of types and the cross-
section distribution of strategies. Under this condition, the agent thinks
about the other agents’types as essentially pairwise exchangeable random
variables.

Exchangeability has very strong consequences. If agent a treats the
other agents’types as essentially pairwise exchangeable random variables, a
version of De Finetti’s Theorem implies that the agent considers the other
agents’types to be essentially pairwise conditionally independent and iden-
tically distributed. Moreover, if there are many agents, the conditioning
variable can be taken to be the distribution of the other agents’types across
the population. In this case, the agent’s beliefs can be summarized by
what I will call his macro beliefs, namely his probabilistic beliefs about the
cross-section distribution of types of the other agents. Conditional on this
cross-section distribution, the agent considers the other agents’types to be
independent and identically distributed with a common conditional proba-
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bility distribution that actually coincides with the cross-section distribution.
With a continuum of agents, the notion of (conditional) independence

of agents’types involves a well-known mathematical conundrum.8 If there
is any agent-specific uncertainty about types at all, independence of the
different agents’ types implies that, depending on the choice of σ-algebra
on the space of agents, the assignment of types to agents may be nonmea-
surable and the notion of "cross-section distribution of types" may not be
well defined. Specifically, if the space of agents’names is the Lebesgue unit
interval, then, with probability one, the assignment of types to agents is
nonmeasurable.

Sun (2006) has proposed to deal with this conundrum by having suffi -
ciently large σ-algebras on the space of agents and on the product of the
space of agents and the underlying probability space so that the random
variables of interest are jointly measurable in agents’names and in states of
nature and, moreover, integration over both agents’names and states of na-
ture exhibits the Fubini property that the order of integration does not make
a difference to the outcome. Subsequent work has refined this approach.9 In
particular, Qiao et al. (2016) provide a framework for studying a continuum
of exchangeable and of conditionally independent random variables. I will
follow their approach and rely heavily on their results.

In adapting Sun’s approach to games of incomplete information with a
continuum of agents, one must bridge the gap between Sun’s representation
of randomness in terms of a complete probability space and Harsanyi’s rep-
resentation of an agent’s beliefs as probability measures over constellations
of other agents’types. If one thinks about the belief ba(ta) of agent a with
type ta in isolation, this task is straightforward, though cumbersome. If one
thinks about beliefs as a result of conditioning on the observation of one’s
own type, the task is more diffi cult, because it is not a priori clear that the
condition of completeness of the probability spaces underlying the beliefs
ba(ta) for different types ta can be met for all types simultaneously. I will
show that this can be done if the beliefs ba(ta) of different types ta of agent
a are mutually absolutely continuous. I refer to such a belief function as
coherent.

The above-mentioned condition of anonymity in beliefs is imposed on the
belief ba(ta) of agent a with type ta. It implies that the belief ba(ta) is fully
determined by the agent’s macro belief b∗a(ta), i.e. his probabilistic expec-

8For early accounts, see Judd (1985) and Feldman and Gilles (1986).
9See Sun and Zhang (2009), Podczeck (2010), and Qiao et al. (2016). Hammond and

Sun (2003, 2008) develop a related approach that involves the limits of arbitrarily large
finite samples from the given measure space of agents.
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tations about the cross-section distribution of the other agents’types, with
the proviso that, given this cross-section distribution, the agent considers the
other agents’types to be conditionally independent and identically distrib-
uted with a conditional probability distribution equal to the cross-section
distribution. Together with anonymity in payoff functions, this condition en-
sures that the agent’s expected payoff in a strategic game is fully determined
by the agent’s macro belief and by the agent’s expectations about the cross-
section distribution of the other agents’strategies. All strategically relevant
features of the belief ba(ta) are thus contained in the associated macro belief
b∗a(ta).

If the belief function is coherent, the condition that ba(ta) satisfy anonymity
in beliefs for all ta is equivalent to the condition that, under any prior that
induces the belief function ba(·) as a regular conditional distribution, the
types ta′ , a′ 6= a, of the other agents are essentially pairwise exchangeable.
By a version of de Finetti’s theorem again, it follows that the agent’s prior
uncertainty about the other agents’ types can also be decomposed into a
macro component and a micro component, such that the macro component
concerns the cross-section distribution of types and the micro component
concerns each agent’s individual type, with a conditional probability dis-
tribution that coincides with the cross-section distribution of types in the
population.

The last part of the paper provides a characterization of common priors
and gives conditions for a coherent macro belief function to be compatible
with a common prior. Whereas, trivially, every probability distribution over
cross-section distributions of types can be used to specify a common prior
with associated belief and macro belief functions, not every belief function
that satisfies anonymity in beliefs is compatible with the existence of a com-
mon prior. A macro belief function that is what I call strongly coherent will
be shown to admit a common prior if and only if it satisfies a version of the
consistency condition that Harsanyi’s (1967/68) gave for the existence of a
common prior in a certain two-player game.
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2 An Incomplete Information Model with a Con-
tinuum of Agents

2.1 Agents, Types, and Beliefs

Let (A,A, α) be a complete atomless measure space of agents with α(A) = 1.
Given this measure space, an incomplete-information model

{Ta,Θa, θa, ba}a∈A (2.1)

is specified as follows. For each a ∈ A, Ta is a space of abstract "types",
and Θa is a space of "payoff types", i.e. a space of parameters that may
be relevant for the agent’s payoffs in any strategic game. Without loss of
generality, I assume that the spaces Ta and Θa are the same for all agents,
i.e. that, for some T and Θ, Ta = T and Θa = Θ for all a ∈ A. I also assume
that T and Θ are complete separable metric spaces.

Further, θa and ba are mappings such that, for any ta ∈ Ta, θa(ta) ∈
Θ determines the agent’s payoff function in any strategic game and ba(ta)
specifies the agent’s beliefs about other agents’types when his type is ta.

The belief ba(ta) is a probability measure over possible constellations
of the other agents’ abstract types. The set of such constellations might
in principle be identified with the product TA−a , where A−a := A\{a} is
the set of agents other than a. However, this product space is awkward
to deal with because, for an arbitrary element of TA−a , the assignment of
types to agents is not generally measurable and the notion of a cross-section
distribution of types is not generally well defined.10 Therefore, I assume
that the belief type ba(ta) of agent a with type ta is concentrated on a (very
small) subset of possible type constellations.

To specify this subset, I assume that, for some complete probability
space (Ωa(ta),Fa(ta), Pa(ta)) and some measurable function τa(·, ·|ta) from
Ωa ×A−a to T , agent a with abstract type ta assigns probability one to the
range Rτa(ta) ⊂ TA−a of the mapping

ω → τ a(ω|ta) := {τa(ω, a′|ta))}a′∈A−a . (2.2)

If Rτa(ta) is endowed with the σ-algebra F̂a(ta) of sets F̂ such that for some
F ∈ Fa(ta), {ta′}a′∈A−a ∈ F̂ if and only there exists ω ∈ F such that
τ a(ω|ta) = {ta′}a′∈A−a , belief types can be specified as follows.
10See Judd (1985), Feldman and Gilles (1986).
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Belief Types For any a ∈ A and ta ∈ T, the belief type ba(ta) is given as

ba(ta) = Pa(ta) ◦ τ a(·|ta)−1 (2.3)

In the preceding paragraph, I have been deliberately vague about the
measurability of the function τa(·, ·|ta). It might seem natural to require
measurability with respect to the usual product σ-algebra Fa(ta)⊗A−a.,
where A−a := { A′\{a}|A′ ∈ A} is the σ-algebra on A−a, . However, as was
shown by Sun (2006) and Hammond and Sun (2008), this requirement may
preclude any nontrivial uncertainty at the level of individuals. Following
Sun (2006) and Qiao et al. (2016), I therefore impose the weaker require-
ment that τa(·, ·|ta) be measurable with respect to a rich Fubini extension
of Fa(ta)⊗A−a, rather than Fa(ta)⊗A−a itself. For this purpose I first in-
troduce the notion of a Fubini extension and then the notion of richness of
this extension.

Fubini Extension Given the complete probability spaces (Ω,F , P ), and
(I, I, λ), the probability space (Ω × I,W, Q) is a Fubini extension
of the product space (Ω × I,F ⊗ I, P ⊗ λ) if for any real-valued Q-
integrable function f on (Ω× I,W ), (i) the sections f(·, i) and f(ω, ·)
are integrable, respectively, on (Ω,F , P ) for λ-almost all i ∈ I , and
on (I, I, λ) for P -almost all ω ∈ Ω, and (ii) the functions

i→
∫

Ω
f(ω, i)dP (ω) and ω →

∫
I
f(ω, i)dλ(i) (2.4)

are integrable, respectively, on (I, I, λ) and (Ω,F , P ) with∫
Ω×I

f(ω, i)dQ =

∫
Ω

[∫
I
f(ω, i)dλ(i)

]
dP (ω) =

∫
I

[∫
Ω
f(ω, i)dP (ω)

]
dλ(i)

(2.5)

To reflect the fact that the probability space (Ω×I,W,Q) has (Ω,F , P ),
and (I, I, λ) as its marginal spaces, as required by the Fubini property, I
write W = F � I and Q = P � λ, so the notation

(Ω× I,F � I, P � λ)

indicates that I refer to a Fubini extension of the product (Ω × I,F ⊗ I,
P ⊗ λ).
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Richness of the Fubini Extension A Fubini extension (Ω×I,F�I, P�
λ) of a product probability space (Ω × I,F ⊗ I, P ⊗ λ) is said to be
rich if there exists a measurable function h from (Ω× I,F � I, P �λ)
to the unit interval such that (i) the random variables h(·, i), i ∈ I,
are essentially pairwise independent, i.e., for λ-almost all i1 ∈ I, the
random variables h(·, i1) and h(·, i2) are independent for λ-almost all
i2 ∈ I, and, moreover, (ii) for λ-almost every i ∈ I, the random
variable h(·, i) has a uniform distribution.

The requirement of richness excludes the product space (Ω × I,F ⊗ I,
P ⊗ λ). If h is a measurable function from the product space (Ω× I,F ⊗I,
P ⊗ λ) to the unit interval and if the random variables h(·, i), i ∈ I, are
essentially pairwise independent, then, as shown in Proposition 2.1 of Sun
(2006), the random variables h(·, i), i ∈ I, must be essentially trivial, i.e.,
for λ-almost all i ∈ I, h(·, i) must be a constant random variable, which is
not compatible with richness.11

Conditions for the existence of a rich Fubini extension are given in Sun
(2006), Sun and Zhang (2009), and Podczeck (2010). In particular, Sun
(2006) shows that a rich Fubini extension exists if (I, I, λ) is a hyperfinite
Loeb space. Sun and Zhang (2009) show that, whereas a rich Fubini exten-
sion fails to exist if I is the unit interval with the Lebesgue σ-algebra, an
extended Lebesgue unit interval, with a larger σ-algebra, does permit the
construction of a rich Fubini extension of the product (Ω× I,F ⊗I, P ⊗λ).

In the present context, I set (I, I, λ) = (A−a,A−a, α−a), where α−a :=
α|A−a is the restriction of the measure α to A−a ⊂ A, and assume that the
function τa(·, ·|ta) in the specification of agent a’s beliefs is measurable with
respect to a rich Fubini extension Fa(ta)�A−a of the product Fa(ta)⊗A−a.

2.2 Strategic Games

Given an incomplete-information model {T,Θ, θa, ba}a∈A, a strategic game
of incomplete information is defined by specifying, for each a ∈ A, an action
set Sa and a payoff function ua : Θ×

∏
a′∈A

Sa → R. I assume that the actions

sets Sa are the same for all agents, i.e. that, for some S, Sa = S for all
a ∈ A, so the domain of the payoff function ua can be written as Θ× SA. I
also assume that S is a compact metric space.

11Proposition 4 in Hammond and Sun (2008) provides a version of this result with
essential pairwise conditional independence.
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A strategy for agent a is a function σa : T → S that indicates, for each
ta ∈ T, the action the agent is to take if his type is ta. The strategy that
agent a chooses will as a rule depend on the agent’s expectations about
the other agents’strategy choices. If σa(·, a′) is the strategy that agent a
expects to be followed by agent a′ ∈ A−a, the expected payoff of agent a
with abstract type ta from choosing an action sa is given as∫

Rτ

ua(θa(ta), sa, {σa(ta′ , a′)}a′∈A−a) dba({ta′}a′∈A−a |ta). (2.6)

A strategy s∗a of agent a is a best response to the strategies σa(·, a′) for
a′ ∈ A−a that the agent expects the other agents to choose if∫

Rτ

ua(θa(ta), s
∗
a(ta), {σa(ta′ , a′)}a′∈A−a) dba({ta′}a′∈A−a |ta)

≥
∫
Rτ

ua(θa(ta), sa, {σa(ta′ , a′)}a′∈A−a) dba({ta′}a′∈A−a |ta) (2.7)

for all ta ∈ T and all sa ∈ S. In this best-response condition, the compar-
ison between the agent’s payoff expectation under the choice s∗a(ta) and
an alternative choice sa depends on the agent’s expectations about the
constellation {σa(ta′ , a′)}a′∈A−a of the other agents’actions as well as the
agent’s own payoff type θa(ta). The agent’s expectations about the constel-
lation {σa(ta′ , a′)}a′∈A−a of the other agents’actions in turn depends on the
agents’expectaions about the constellation {ta′}a′∞A−a and the constella-
tion {σa(·, a′)}a′∞A−a of strategies that the agent expects the other agents
to follow.12

In this very general formulation, the other agents’names may matter. It
may make a difference to agent a whether a given action s is taken by agent
a′ or by agent a′′; in forming his expectations, the agent may also make a
difference between the events ta′ = t and the ta′′ = t, for any t. To eliminate
this possibility, I will introduce two conditions of anonymity under which
the agent does not care whether a given action or a given type pertains to
agent a′ or to agent a′′, one condition on payoff functions and one condition
on belief functions.

12This dependence is the reason why I formulate beliefs in terms of probability measures
over constellations {ta′}a′∈A−a , rather than pairs (a

′, ta′) like Sun (2006) or Qiao et al.
(2016). In Sun (2006) and Qiao et al. (2016), the simpler approach works because they
only consider applications in which the economic variables that are of interest, such as
aggregate resource requirements, take the form

∫
f(a, ta)dα(a). This functional form,

however, does not allow for the more general kinds of strategic interdependence that
appear in many games.
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3 Anonymity

3.1 Anonymity in Payoff Functions

It seems most natural to define anonymity by the condition that payoffs are
unchanged under any measurable permutation of the other agents’names. If
the measure space (A−a,A−a, α−a) is homogeneous, for example, if (A−a,A−a, α−a)
is a hyperfinite Loeb space, this definition of anonymity is equivalent to the
requirement that other agents’actions affect the payoff

ua(θa(ta), sa, {σa(ta′ , a′)}a′∈A−a)

of agent a only through their cross-section distributionD({σa(ta′ , a′)}a′∈A−a),
an element of the spaceM(S) of probability measures on S.13 Because the
latter requirement is more convenient to work with, I define:

Anonymity in Payoff Functions For any a ∈ A, there exists a function
u∗a : Θ× S ×M(S)→ R such that, for all ta ∈ T and all sa ∈ S,

ua(θa(ta), sa, {σa(ta′ , a′)}a′∈A−a) = u∗a(θa(ta), sa, D({σa(ta′ , a′)}a′∈A−a))
(3.1)

for all constellations of actions {σa(ta′ , a′)}a′∈A−a for which the cross-
section distribution D({σa(ta′ , a′)) is well defined.

Remark 3.1 If the map

(a′, ta′)→ σa(ta′ , a
′) (3.2)

from A−a × T to S is measurable, then, for any ta ∈ T, the cross-section
distribution of actions D({σa(ta′ , a′)}a′∈A−a) is ba(ta)-almost surely well de-
fined.

Proof. By assumption, ba(ta) is concentrated on the range Rτa(ta) of the
function τ a(·|ta). Therefore it suffi ces to show that, for every ω ∈ Ω, the
cross-section distribution D({σa(τa(ω, a′|ta), a′)}a′∈A−a) is well defined.

13See Khan and Sun (1999), Section 4. Homogeneity fails to hold if (A,A, α) is
the Lebesgue unit interval. In this case, the requirement that the strategy constella-
tion {σa(ta′ , a′)}a′∈A−a affects ua only through the distribution D({σa(ta′ , a

′)}a′∈A−a) is
stronger than the requirement of invariance under measurable permutations of names. Be-
cause the Lebesgue σ-algebra is based on neighbourhood structures, the set of measurable
permutations of names is too small for equivalence of the two notions of anonymity.
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Because the function τ a(·|ta) from Ωa(ta)×A−a to T is measurable with
respect to the Fubini σ-algebra Fa(ta)�A−a, the assumption that (3.2) is
measurable implies that, for given ta, the map

(ω, a′)→ ϕa(ω, a′|ta) := σa(τa(ω, a
′|ta), a′)

from Ωa(ta) × A−a to S is also measurable with respect to the Fubini σ-
algebra Fa(ta)�A−a. For every ω ∈ Ωa(ta), therefore, the section ϕa(ω, ·|ta)
of the function ϕa(·, ·|ta) is measurable with respect to A−a, and one may
write

D({σaa′(τa(ω, a′)}a′∈A−a) = α−a ◦ (ϕa(ω, ·|ta))−1, (3.3)

i.e., D({σa(τa(ω, a′|ta), a′)}a′∈A−a) is well defined.

With anonymity in payoff functions, the expected payoff (2.6) takes the
form ∫

Rτ

u∗a(θa(ta), sa, D({σa(ta′ , a′)}a′∈A−a)) dba({ta′}a′∈A−a |ta). (3.4)

The cross-section distribution of actions, D({σa(ta′ , a′)}a′∈A−a), depends
on the interplay between the constellations {σaa′(·)}a′∈A−a and {ta′}a′∈A−a
of strategies and of types. If the agent expects that all other agents use the
same (measurable) strategy σa(·, a′) = σa : T → S, this interplay takes a
very simple form and we obtain

D({σa(ta′ , a′)}a′∈A−a) = D({ta′}a′∈A−a) ◦ (σa)
−1, (3.5)

where D({ta′}a′∈A−a) is the cross-section distribution of types. In this case,
the agent is only concerned about the distribution of the other agents’types
and does not care about which agent has which type.

However, the assumption that agent a expects all other agents to use the
same strategy is problematic. After all, the other agents’strategy choices are
endogenous. With enough symmetry assumptions on the exogenous data,
namely the functions u∗a′ , θa′ , ba′ , in equilibrium, their strategy choices may
in fact be symmetric, but that is a very special case.14 I will therefore follow
an alternative approach and impose an additional anonymity condition on
beliefs.
14Even then, it might be the case that a Bayes-Nash equilibrium involves a symmetric

set of asymmetric strategy choice, rather than a single strategy that is chosen by all.

12



3.2 Anonymity in Beliefs

The fundamental idea is that, in forming his beliefs, agent a treats the other
agents symmetrically in the sense that the joint distribution of the types of
any two of them is unaffected if their names are interchanged.

Anonymity in Beliefs For any a ∈ A and ta ∈ T, the measure ba(ta)
satisfies anonymity in beliefs if, under this measure, the types ta′ of
agents a′ 6= a are essentially pairwise exchangeable, i.e., there exists
a probability measure pa(·|ta) on T 2 such that, for α−a-almost all
a1 ∈ A−a, one has

ba({ta1 ∈ B1} ∩ {ta2 ∈ B2}|ta) = pa(B1 ×B2|ta) = pa(B2 ×B1|ta)

for α−a-almost all a2 ∈ A−a and all Borel sets B1, B2 ⊂ T.

Anonymity in beliefs corresponds to de Finetti’s notion of exchange-
ability. For sequences of random variables, de Finetti’s Theorem asserts the
equivalence of exchangeability with the property of conditional independence
relative to some underlying σ-algebra. Kingman (1978) provides a lucid ac-
count of the argument and shows that the conditioning σ-algebra may be
identified with the algebra generated by the limiting sample distribution of
the process; moreover, by a conditional law of large numbers, this limiting
sample distribution of the process coincides with the conditional probabil-
ity distribution of any one of the random variables given the conditioning
σ-algebra.

For models with a continuum of random variables, Hammond and Sun
(2003, 2008) have shown that the property of essential pairwise exchange-
ability is equivalent to the property of essential pairwise conditional inde-
pendence relative to some countably generated σ-algebra, with identical con-
ditional distributions. Relying on the framework of a Fubini extension, Qiao
et al. (2016) have shown that the conditioning σ-algebra may be identified
with the algebra generated by the cross-section distributions of the random
variables in question; moreover, by a conditional law of large numbers, the
conditional probability distribution of any one of the random variables and
the cross-section sample distribution coincide.

In the following, I use these results to explore the implications of anonymity
in beliefs for incomplete-information games with a continuum of agents. A
key role is played by the cross-section type distribution D({ta′}a′∈A−a). This
distribution is an element of the spaceM (T ) of probability measures on T.
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Upon endowing this space with the topology of weak convergence and the
associated Borel σ-algebra, one obtains:

Remark 3.2 For any ta ∈ T, the map {ta′}a′∈A−a → D({ta′}a′∈A−a) from
type constellations in Rτa(ta) to cross-section distributions of types, i.e. mea-
sures inM (T ) , is measurable.

Proof. Given the definition of Rτa(ta) and the specification of the σ-algebra
F̂a(ta) on Rτa(ta), it suffi ces to show that the map

ω → δ(ω) := D({τa(ω, a′|ta)}a′∈A−a) (3.6)

from Ωa(ta) toM (T ) is measurable. Since T is a complete separable met-
rice space andM (T ) has the topology of weak convergence, there exists a
sequence {gi} of bounded continuous functions from T to the unit interval
such that the mapping

∆→
{∫

gi(t)d∆(t)

}∞
i=1

defines a homeomorphism betweenM (T ) and a subset of R∞ (Parthasarathy,
1967, p. 47). To prove the lemma, it therefore suffi ces so show that, for any
i, the mapping

ω →
∫
gi(t)dδ(t|ω) (3.7)

from Ω to R is measurable. The definition of δ implies that, for any ω,

δ(ω) = α−a ◦ (τa(ω, ·|ta))−1, (3.8)

and therefore, ∫
gi(t)dδ(t|ω) =

∫
gi(τa(ω, a

′|ta))dα−a(a′).

Measurability of (3.7) is therefore implied by the assumption that τa(·, ·|ta)
is measurable with respect to a Fubini extension.

The following proposition adapts Proposition 3 of Qiao et al. (2016) to
the present setting.

Proposition 3.3 Let D̂ ⊂ F̂a(ta) be the σ-algebra on Rτa(ta) that is gener-
ated by the mapping

{ta′}a′∈A−a → D({ta′}a′∈A−a). (3.9)
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Anonymity in beliefs is equivalent to the requirement that, for any ta ∈
T, under the measure ba(ta), conditionally on D̂, the types ta′, a′ ∈ A−a,
are essentially pairwise independent and identically distributed, i.e., that for
α−a-almost all a1 ∈ A−a, the agent considers the types ta1 and ta2 to be
conditionally independent given D̂, for α−a-almost all a2 ∈ A−a.

Moreover, the sample distribution D({ta′}a′∈A−a) of types in the popula-
tion is ba(ta)-almost surely equal to the common conditional distribution of
types ta1 in the population, i.e., for α−a-almost all a

1 ∈ A−a, the mapping
(3.9) from Rτa(ta) toM(T ) is a regular conditional distribution for ta1 given
D̂.

Proof. Given the definition of ba(ta), anonymity in beliefs is equivalent
to the condition that the random variables τa(·, a′|ta), a′ ∈ A−a, are essen-
tially pairwise exchangeable. Moreover, D̂ = {τ a(F |ta)|F ∈ D}, where D
is the sub-σ-algebra of Fa(ta) that is generated by the mapping (3.6). The
proposition is therefore equivalent to the statement that, with anonymity
in beliefs, conditionally on D, the random variables τa(·, a′|ta), a′ ∈ A−a,
are essentially pairwise independent and identically distributed with regular
conditional probability distribution δ(·). This latter statement is implied by
Proposition 3 of Qiao et al. (2016).

Proposition 3.3 has two components. One component asserts the equiv-
alence of anonymity in beliefs with essential pairwise conditional indepen-
dence (with identical conditional distributions). The other component as-
serts a conditional law of large numbers, namely under the belief ba(ta),
the cross-section distribution of types is almost surely equal to the common
conditional distribution of the other agents’ types given the σ-algebra D̂,
which in turn implies that the sample distributions can be interpreted as
conditional probability distributions.

3.3 Expected Payoffs under Anonymity in Beliefs

Proposition 3.3 provides the basis for the following result about the relation
between the cross-section distributions of actions and of types.

Proposition 3.4 If the map (a′, ta′)→ σaa′(ta′) from A−a× T to S is mea-
surable, then, under the assumption of anonymity in beliefs,

D({σa(ta′ , a′)}a′∈A−a) =

∫
A−a

D({ta′}a′∈A−a) ◦ σa(·, a′)−1dα−a(a
′), (3.10)

ba(ta)-almost surely.
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Proof. Since ba(ta) is concentrated on the range Rτa(ta) of the function
τ a(·|ta), it suffi ces to show that the equation

D({σa(τa(ω, a′|ta), a′)}a′∈A−a) =

∫
A−a

δ(ω) ◦ σa(·, a′)−1dα−a(a
′) (3.11)

holds for Pa(ta)-almost all ω ∈ Ωa(ta), where, for any ω, δ(ω) ∈ M(T )
is again given by (3.6). Since S is a complete separable metric space and
M (S) has the topology of weak convergence, there exists a sequence {hi}
of continuous functions from S to the unit interval such that the mapping

∆→
{∫

S
hi(s)d∆(s)

}∞
i=1

defines a homeomorphism betweenM (S) and a subset of R∞ (Parthasarathy,
1967, p. 47). Thus it suffi ces to prove that, for Pa(ta)-almost all ω ∈ Ωa(ta),
the equation∫
A.a

hi(σa(τa(ω, a
′|ta), a′))dα−a(a′) =

∫
A−a

∫
T
hi(σa(t, a

′))dδ(t|ω)dα−a(a
′)

(3.12)
holds for all i. For any i, consider the mapping

(ω, a′)→ ηi(ω, a
′|ta) := hi(σa(τa(ω, a

′|ta), a′) (3.13)

from Ωa(ta) × A−a to the unit interval, and note that the left-hand side
of (3.12) is equal to the integral

∫
A.a

ηi(ω, a
′|ta)dα−a(a′). Because the map

(a′, ta′) → σa(ta′ , a
′) from A−a × T to S is measurable, the map (ω, a′) →

ηi(ω, a
′|ta) is measurable with respect to the Fubini extension Fa(ta)�A−a

of the product σ-algebra Fa(ta)⊗A−a.
By the argument in the proof of Proposition 3.3, anonymity in beliefs im-

plies that, conditionally on the σ-algebra D that is generated by the mapping
(3.6), the random variables ηi(·, a′|ta) are essentially pairwise independent.
By Corollary 2 in Qiao et al. (2016), it follows that∫

A.a

ηi(·, a′|ta)dα−a(a′) =

∫
A−a

E
[
ηi(·, a′|ta)|D

]
dα−a(a

′) (3.14)

Pa(ta)-almost surely. The argument in the proof of Proposition 3.3 also
implies that, for α−a-almost all a′ ∈ A, δ ◦ σa(·, a′)−1 ◦ (hi)

−1 is a regular
conditional distribution for ηi(·, a′|ta) given D. For α−a-almost all a′ ∈ A,
therefore,

E
[
ηi(·, a′|ta)| δ(ω) = ·

]
=

∫
hi(σa(t, a

′))d∆(t|) (3.15)
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for all ∆ ∈M(T ), Pa(ta)-almost surely. From (3.13) - (3.15), it follows that,
for any i,∫
A.a

hi(σa(τa(ω, a
′|ta), a′))dα−a(a′) =

∫
A.a

ηi(ω, a
′|ta)dα−a(a′)

=

∫
A−a

E
[
ηi(·, a′|ta)|δ(ω)

]
dα−a(a

′)

=

∫
A−a

∫
T
hi(σa(t, a

′))dδ(t|ω)dα−a(a
′)

for all ω outside a Pa(ta)-null set Ni. Therefore (3.12) holds for all i and all
ω outside the union ∪iNi. Because a countable union of null sets is still a
null set, it follows that (3.12) holds for all i, Pa(ta)-almost surely.

Thus, with anonymity in beliefs, the cross-section distribution of ac-
tions of agents other than a can be written as a function of the constellation
{σa(·, a′)}a′∈A−a of strategies of the other agents and the cross-section distri-
bution D({ta′}a′∈A−a) of types of the other agents. By inspection of (3.10),
one sees that, in fact, the strategy constellation {σa(·, a′)}a′∈A−a enters only
through the cross-section distribution

D({σa(·, a′)}a′∈A−a) := α−a ◦ (σa)−1,

where σa is the mapping that assigns to each agent a′ ∈ A−a the strategy
σa(·, a′) that agent a expects agent a′ to follow. Equation (3.10) can thus
be rewritten in the form

D({σaa′(ta′)}a′∈A−a) =

∫
A−a

D({ta′}a′∈A−a) ◦ s(·)−1d(α−a ◦ (σa)−1)

=

∫
A−a

D({ta′}a′∈A−a) ◦ s(·)−1dΣa(s),

where
Σa := α−a ◦ (σa)−1 (3.16)

denotes the distribution of other agents’ strategies that is anticipated by
agent a.

With anonymity in beliefs as well as payoffs, the expected payoff of agent
a with abstract type ta from choosing an action sa can therefore be written
as
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∫
Rτ

ua(θa(ta), sa, {σa(ta′ , a′)}a′∈A−a) dba({ta′}a′∈A−a |ta)

=

∫
Rτ

u∗a(θa(ta), sa, D({σa(ta′ , a′)}a′∈A−a)) dba({ta′}a′∈A−a |ta)

=

∫
Rτ

u∗a

(
θa(ta), sa,

∫
A−a

D({ta′}a′∈A−a) ◦ s(·)−1dΣa(s)

)
dba({ta′}a′∈A−a |ta).

(3.17)

3.4 Expected Payoffs and Macro Beliefs

In (3.17), the agent’s belief ba(ta) matters only to the extent that it concerns
the cross-section type distribution D({ta′}a′∈A−a). It is therefore convenient
to replace the formulation of beliefs in terms of type constellations by one in
terms of type distributions. I will refer to such beliefs over type distributions
as macro beliefs.

Macro Beliefs For any a ∈ A and ta ∈ T, the macro belief of agent a with
belief type ba(ta) is a probability measure b∗a(ta) over the spaceM (T )
of cross-section distributions of abstract types that is defined by the
equation

b∗a(ta) = ba(ta) ◦D(·)−1. (3.18)

From (3.17), one now obtains the following corollary to Proposition 3.4:

Corollary 3.5 With anonymity in payoff functions and in beliefs, the ex-
pected payoff of agent a with abstract type ta from choosing an action sa
takes the form∫

Rτ

u∗a(θa(ta), sa,

∫
A−a

∆ ◦ s(·)−1dΣa(s) db∗a(∆|ta), (3.19)

A strategy s∗a of agent a is a best response to the constellation σ
a = {σa(·, a′)}a′∈A−a

that the agent expects the other agents to choose if and only if the inequality∫
Rτ

u∗a(θa(ta), s
∗
a(ta),

∫
A−a

∆ ◦ s(·)−1dΣa(s) db∗a(∆|ta)

≥
∫
Rτ

u∗a(θa(ta), sa,

∫
A−a

∆ ◦ s(·)−1dΣa(s) db∗a(∆|ta) (3.20)

holds for all ta ∈ T and all sa ∈ S.

18



Anonymity in payoff functions and anonymity in beliefs jointly can thus
be used to transform the incomplete-information model (2.1) in which agents
form beliefs and expectations as to what are the types and actions of every
single other agent, into a model in which agents only form beliefs and expec-
tations about cross-section distribution of types and cross-section distribu-
tions of strategies of the other agents. Whereas the other agents’"names"
play a substantive role in the best-response condition (2.7), they do not even
appear in the best-response condition (3.20).

The key to this simplification is provided by Propositions 3.3 and 3.4,
showing that anonymity in beliefs permits a simple decomposition of an
agent’s probabilistic beliefs into a macro component and a micro component,
his beliefs about the cross-section distribution of types and his beliefs about
each individual’s type, conditional on the cross-section distribution. The
micro component of the agent’s beliefs fully determined by the fact that,
conditional on the cross-section type distribution, the other agents’ types
are viewed as essentially pairwise independent and identically distributed,
with a conditional probability distribution that is equal to the cross-section
distribution.

3.5 The Scope of Macro Uncertainty

I conclude this section with a result showing that, if the Fubini extension
Fa(ta) � A−a is rich, then under anonymity in beliefs, the macro belief of
agent a with type ta can be any measure onM(T ), i.e., there is no restriction
on macro beliefs. The only restriction on admissible beliefs comes from the
principle that, for a given cross-section distribution of types, the conditional
probability distribution of the random variable τa(·, a′) that represents the
type of agent a′ 6= a is equal to the cross-section distribution of types, i.e.
that the agent’s beliefs about the other agents’types respect the conditional
law of large numbers that is implied by exchangeability.

Proposition 3.6 Let β be any probability measure onM(T ). If the Fubini
extension (Ωa(ta)×A−a,Fa(ta)�A−a, Pa(ta)�α−a) is rich, there exists an
Fa(ta)�A−a-measurable mapping τa(·|ta) from Ωa(ta)×A−a to T such that
the belief ba(ta) that is given by (2.3) satisfies anonymity in beliefs and the
associated macro belief is b∗a(ta) = β.

Proof. The proof proceeds along similar lines as the proof of Proposition
5.3 in Sun (2006). Let β ∈ M(M(T )) by given. By standard arguments,
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there exists anM(T )-valued random variable δ̃β on (Ωa(ta),Fa(ta), Pa(ta))
such that the probability distribution of δ̃β is β, i.e., Pa(ta) ◦ δ̃

−1
β = β.

By Lemma A.5 of Sun (2006), there also exists a measurable function f
fromM(T )× [0, 1] into T such that for any δ ∈M(T ),

` ◦ f(δ, ·)−1 = δ (3.21)

where ` is the uniform distribution on [0, 1]. Given this function f and the
random variable δ̃β, define a mapping τa(·, ·|ta) from Ωa(ta) × A−a into T
such that, for any ω ∈ Ωa(ta) and a′ ∈ A−a,

τa(ω, a
′|ta) = f(δ̃β(ω), h(ω, a′)), (3.22)

where h is the function given by the richness of the Fubini extension (Ωa(ta)×
A−a,Fa(ta)�A−a, Pa(ta)� α−a).

The function τa(·, ·) is measurable with respect to the σ-algebra Fa(ta)�
A−a. In fact, τa(·, ·|ta) is the composition of the measurable function f :
M(T )× [0, 1] → T with the function H : Ω× A−a →M(T )× [0, 1] that is
given by setting

H(ω, a′) = (δ̃β(ω), h(ω, a′))

for any ω ∈ Ωa(ta) and a′ ∈ A−a. Because the map ω → δ̃β(ω) is measurable
with respect to F and the map (ω, a′)→ h(ω, a′) is measurable with respect
to F � A−a, the map (ω, a′) → H(ω, a′|ta) is measurable with respect to
F �A−a, and so is the map (ω, a′)→ τa(ω, a

′|ta) = f(H(ω, a′)).
Let C be the sub-σ-algebra of F that is induced by δ̃. Because T is a

complete separable metric space,M(T ) is also a complete separable metric
space, and C is countably generated. Because the random variables h(·, a′),
a′ ∈ A−a, are essentially pairwise independent, Proposition 3 in Hammond
and Sun (2006) implies that they are also essentially pairwise conditionally
independent given C. As in Remark 1 of Hammond and Sun (2008), it
follows that the random pairs (δ̃β(·), h(·, a′)), a′ ∈ A−a, are also essentially
pairwise conditionally independent given C and so are the random variables
τa(·, a′|ta) = f(δ̃β(·), h(·, a′)), a′ ∈ A−a. By Proposition 3.3 above, it follows
that the belief ba(ta) that is given by (2.3) satisfies anonymity in beliefs.

Moreover, because, for α−a-almost every a′ ∈ A−a, the random variable
h(·, a′) has the uniform distribution `, (3.21) and (3.22) imply that, for α−a-
almost every a′ ∈ A−a, conditional on the event δ̃β(·) = δ, the probability
distribution of τa(·, a′|ta) is almost surely equal to δ. For α−a-almost every
a′ ∈ A−a, therefore the function δ̃β(·) is a regular conditional distribution
for τa(·, a′|ta) given the σ-algebra Cδ̃β that is generated by δ̃β. By Corollary
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2 of Qiao et al. (2016) and the fact that, conditionally on Cδ̃β , the random
variables τa(·, a′|ta), a′ ∈ A−a, are essentially pairwise independent, one also
infers that

D({τa(ω, a′|ta)}a′∈A−a) = δ̃β(ω),

Pa(ta)-almost surely, and, therefore, that the macro belief b∗a(ta) must coin-
cide with the probability distribution β of the random variable δ̃β.

Except for purposes of notation, the construction in the proof of Propo-
sition 3.6 makes no reference to the type ta of agent a. The belief ba(ta) =
Pa(ta) ◦ τ a(·|ta)−1 that results from this construction is fully determined by
the indicated macro belief β. Moreover, it depends on β only through the
random variable δ̃β. The following remark states this observation formally.

Remark 3.7 The belief ba(ta) in Proposition 3.6 takes the form ba(ta) =∫
M(T ) b̂a(δ) dβ(δ), where b̂(·) is a mapping fromM(T ) to the space of beliefs.

4 Coherent Belief Functions, Agent-Specific Pri-
ors, and Anonymity in Beliefs

4.1 Coherence of Belief Functions

The game theoretic literature contains two disctinct interpretations of the
belief ba(ta) of agent a with type ta. In one interpretation, this belief is given
as one of the exogenous data of the model. For any a ∈ A, ta ∈ T , the belief
ba(ta) was taken as given, without any account of how the probability spaces
(Ωa(ta),Fa(ta), Pa(ta)) and mappings τa(·, · |ta) for different ta and different
a relate to each other.

In another interpretation, the belief ba(ta) of agent a with type ta is in-
terpreted as the result of agent a’s observing some information and adapting
his beliefs accordingly. In this approach, the type ta of agent a is seen as
the realization of a random variable t̃a, and the belief ba(ta) is the result of
conditioning on the event t̃a = ta.

With this interpretation of belief functions, the question of how the prob-
ability spaces (Ωa(ta),Fa(ta), Pa(ta)) and mappings τa(·, · |ta) for different
ta and different a relate to each other cannot be avoided. Two distinct
questions arise. First, for any given agent a, under what conditions can the
beliefs ba(ta), ta ∈ T, be interpreted as resulting from the agent’s condition-
ing on the observation of ta? Second, if the beliefs ba(ta), ta ∈ T, of all agents
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a ∈ A can be interpreted as results of conditioning, under what conditions
can the underlying prior be taken to be the same for all agents, i.e. under
what conditions do the given belief functions admit a common prior? I will
address these two questions in turn, the first one in the remainder of this
section, the second one in Section 5 below.

If the belief function ba(·) of agent a is to be interpreted as a regular
conditional distribution, there must be some underlying probability space
that is independent of ta. The question is whether such a space can be
specified in a way that is compatible with the assumption that, for each ta ∈
T, the probability measure ba(ta) is the distribution of a random variable
τ a(·|ta) = {τa(·, a′|ta)}a′∈A−a that is defined on some complete probability
space (Ωa(ta),Fa(ta), Pa(ta)) where τa(·, · |ta) is measurable with respect to
a rich Fubini extension of the product Fa(ta)×A−a.

The answer to this question turns out to be positive if the belief function
satisfies an additional condition of coherence, which ensures that the beliefs
ba(ta) that are associated with different types ta ∈ T all have the same
domain and the same null sets.

Coherence of Belief Functions The belief function ba(·) is said to be
coherent if, for any ta and t̂a in T, the probability measures ba(ta)
and ba(t̂a) are mutually absolutely continuous, i.e., any set F ∈ TA−a
satisfies F ∈ F̂a(ta) and ba(F |ta) > 0 if and only if it also satisfies
F ∈ F̂a(t̂a) and ba(F |t̂a) > 0.

Lemma 4.1 If the belief function ba(·) is coherent, the ranges Rτa(tA) of the
mappings τa(·, ·|ta) and the σ-algebras F̂a(ta) are the same for all ta ∈ T, i.e.
there exists a measurable space (Ra, F̂a) such that for all ta ∈ T,Rτa(tA) =

Ra ⊂ TA−a and F̂a(ta) = F̂a.

Proof. Fix some t̂a ∈ T. I claim that, for any ta ∈ T and any F ∈ F̂a(ta), it
must be the case that F ∈ F̂a(t̂a). If ba(F |ta) > 0, the claim follows directly
from the assumption that the belief function is coherent. If ba(F |ta) = 0, the
claim follows by observing that Rτa(tA)\F ∈ F̂a(ta) and ba(Rτa(tA)\F |ta) =

1, so by the coherence of the belief function ba(·), Rτa(tA)\F ∈ F̂a(t̂a) and
therefore F ∈ F̂a(t̂a). Thus F̂a(ta) ⊂ F̂a(t̂a).

Since Rτa(tA) ∈ F̂a(ta), for any ta ⊂ T, it follows that Rτa(tA) ∈ F̂a(t̂a)
and therefore, that Rτa(tA) ⊂ Rτa(t̂A).
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By a completely symmetric argument, it must also be the case that, for
any ta ∈ T, F̂a(t̂a) ⊂ F̂a(ta) and Rτa(t̂A) ⊂ Rτa(tA). The lemma follows
immediately.

Proposition 4.2 If the belief function ba(·) is coherent, the measurable
spaces (Ωa(ta),Fa(ta)) and the mappings τa(·, ·|ta) can be taken to be the
same for all ta, i.e., for some fixed measurable space (Ωa, F̄a) and some fixed
mapping τa : Ωa ×A−a → T, there exist probability measures P̄a(ta), ta ∈ T,
such that (i) for every ta ∈ T, the probability space (Ωa, F̄a, P̄a(ta)) is com-
plete, (ii), for every ta ∈ T, ba(ta) = P̄a(ta)◦ (τ a)−1, where, for any ω ∈ Ωa,
τ a(ω) := {τa(ω, a′)}a′∈A−a , and (iii) the mapping τa is measurable with
respect to a Fubini extension of the product σ-algebra F̄a ⊗A−a.

Proof. Fix some t̂a ∈ T and set Ωa = Ωa(t̂a) and τa(·, ·) = τa(·, ·|t̂a).
Given that the range Rτa(t̂a) is endowed with the σ-algebra F̂a(t̂a), let Fa ⊂
Fa(ta) be the coarsest σ-algebra on Ωa with respect to which the function
ω → τ a(ω) = {τa(ω, a′)}a′∈A−a is measurable. Thus, Fa consists of the sets
F taking the form

F = {ω ∈ Ωa|τ a(ω) ∈ F̂ (F )} (4.1)

for some set F̂ (F ) ∈ F̂a(t̂a).
By Lemma 4.1, the coherence of the belief function ba(·) implies that, for

any ta ∈ T and any F ∈ Fa, the set F̂ (F ) belongs to the σ-algebra F̂a(ta)
so, under the measure ba(ta), the probability ba(F̂ (F )|ta) is well defined.
For any ta ∈ T, one may therefore define a probability measure P̂a(ta) on
(Ωa,Fa) by setting

P̂a(F |ta) = ba(F̂ (F )|ta). (4.2)

Given P̂a(ta) and (Ωa,Fa), I further define F̄a(ta) and P̄a(ta) so that
(Ωa, F̄a(ta), P̄a(ta)) is the completion of (Ωa,Fa, P̂a(ta)), i.e. F̄a(ta) is the
smallest σ-algebra on Ωa that contains all subsets of P̂a(ta)-null sets in Fa,
and P̄a(ta) is the unique extension of P̂a(ta) from Fa to F̄a(ta).

By the coherence of the belief function ba(·), the P̂a(ta)-null sets in Fa
are the same for all ta ∈ T. Therefore the class of subsets of P̂a(ta)-null
sets in Fa is the same for all ta ∈ T. Therefore, the σ-algebra F̄a(ta) that
is generated by Fa and the class of subsets of P̂a(ta)-null sets in Fa is the
same for all ta ∈ T and can be written as F̄a.

By construction, for any ta ∈ T , the probability space (Ωa, F̄a, P̄a(ta))
is complete and ba(ta) = P̄a(ta) ◦ (τ a)−1, i.e. (Ωa, F̄a, P̄a(ta)) has properties
(i) and (ii) in the statement of the proposition.

23



To prove that (Ωa, F̄a, P̄a(ta)) also has property (iii), let Fa(t̂a) � A−a
be the Fubini extension of Fa(t̂a)⊗A−a with respect to which the function
τa(·, ·) = τa(·, ·|t̂a) is measurable. Let W be the class of sets B ∈ Fa(t̂a) �
A−a for which the sections Ba′ = {ω ∈ Ωa|(ω, a′) ∈ B}, a′ ∈ A−a, belong
to F̄a. One easily verifies that W is an extension of the product σ-algebra
F̄a ⊗A−a and that W inherits the Fubini property from Fa(t̂a)�A−a, i.e.
that W is a Fubini extension of F̄a ⊗ A−a. Finally, the measurability of
τa(·, ·) with respect to Fa(t̂a)�A−a and the definition of Fa as the coarsest
σ-algebra with respect to which the function ω → τ a(ω) = {τa(ω, a′)}a′∈A−a
is measurable imply that τa(·, ·) is also measurable with respect to W.

The Fubini extension of the product σ-algebra F̄a ⊗A−a in Proposition
4.2 need not be rich. Since F̄a is a coarsening of Fa(ta), the σ-algebra
F̄a �A−a is a coarsening of Fa(t̂a)�A−a and need not inherit the richness
property of the latter. Indeed, F̄a � A−a will not be rich if, e.g., ba(t̂a) is
a degenerata measure that assigns all probability to a singleton {ta′}a′∈A−a .
In this case, F̄a is merely the trivial algebra {∅,Ωa}. However, F̄a � A−a
will be rich if the specification of ba(t̂a) involves nontrivial agent-specific
uncertainty, so that the measurability of the function τa(·, ·|t̂a) depends in
an essential way on the richness of Fa(t̂a)�A−a.

4.2 The Existence of Agent-Specific Priors

An interpretation of the belief function as a regular conditional distribution
presumes that the belief function is measurable. Since I have not introduced
a σ-algebra on the range of the belief function, i.e., the space of probability
measures on (Ra, F̂a), I use the following definition.

Measurability of Belief Functions The belief function ba(·) is said to be
measurable if and only if, for any F̂a-measurable function g from Ra to
[0, 1], the function ta →

∫
Ra
g(·)dba(·|ta) from T to [0, 1] is measurable.

Proposition 4.3 Assume that the belief function ba(·) is coherent and mea-
surable. Then there exists a complete probability space (Φ, Φ̄, Π̄a) and there
exists a function τ from Φ×A to T such that τ is measurable with respect to
a Fubini extension of the product σ-algebra Φ̄⊗A, and ba(τ(·, a)) is a regular
conditional distribution for {τ(·, a′)}a′∈A−a given τ(·, a).

Proof. Let Φ = Ωa × T and Φ = F̄a ⊗ B(T ) where Ωa and F̄a are given
by Proposition 4.2 and B(T ) is the Borel σ-algebra on T . Let πa be any

24



probability measure on (T,B(T )) and define a measure Πa(πa) as the unique
measure on (Φ,Φ) that satisfies

Πa(F ×B|πa) =

∫
F
ba(F |ta)dπa(ta) (4.3)

for F ∈ F̄a and B ∈ B(T ). Further, let Φ̄(πa) be the σ-algebra on Φ that
is induced by Φ and the class of subsets of sets in Φ that have Πa(πa)-
measure zero, and let Π̄a(πa) be the extension of Πa(πa) to Φ̄(πa), i.e.
the completion of Πa(πa). Then by construction, (Φ, Φ̄(πa), Π̄a(πa)) is a
complete probability space.

Next, let τ : Φ × A → T be such that, for any (ω, ta, a
′) ∈ Φ × A =

Ωa × T ×A,
τ(ω, t, ā) = ta if a′ = a (4.4)

and
τ(ω, ta, a

′) = τa(ω, a
′) if a′ 6= a (4.5)

where τa(·, ·) is given by Proposition 4.2.
To obtain the claimed measurability property of τ , consider the class V

of sets V ⊂ Φ×A = Ωa × T ×A that satisfy the following conditions:

ProjTV ∈ B(T ), (4.6)

ProjΩa×AV ∩ [Ωa × {a}] ∈ F̄a ⊗ {a}, (4.7)

and
ProjΩa×AV ∩ [Ωa ×A−a] ∈ W, (4.8)

where W is the Fubini extension of the product σ-algebra F̄a ⊗ A−a with
respect to which the function τa(·, ·) in Proposition 4.2 is measurable. One
easily verifies that V is a Fubini extension of the product σ-algebra Φ̄⊗A−a.
Measurability of the function τ with respect to V follows from (4.4) - (4.8)
and the measurability of the function τa(·, ·) with respect to W.

Finally, (4.3), (4.4), and (4.5) imply that, for πa-almost all ta ∈ T, ba(ta)
is a conditional distribution for {τ(·, a′)}a′∈A−a given τ(·, a).

In the preceding proof, the choice of the distribution πa on (T,B(T )) is
arbitrary. This observation yields:

Remark 4.4 The measure Π̄a in Proposition 4.3 can be chosen to have any
marginal distribution on the factor T in the product Φ = Ωa × T.
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Propositions 4.2 and 4.3 show that, if the belief function ba(·) of agent
a is coherent as well as measurable, it can be interpreted as a result of the
agent’s conditioning on the observation of his own type in a model with an
agent-specific prior. The requirement of coherence is restrictive, but I do not
see any way to eliminate it without losing the property that the probability
spaces (Ωa(ta),Fa(ta), Pa(ta)) that underlie the specification of the beliefs
ba(ta) for ta ∈ T are all complete, or equivalently the property that the
probability spaces (Rτa(ta), F̂a(ta), ba(ta)), ta ∈ T, are all complete. As
indicated by Lemma 4.1, the property of coherence ensures that the measures
ba(ta), ta ∈ T , all have the same domains and the same null sets. Without
this property, say if there are two types ta and t̂a with F̂a(ta) 6= F̂a(t̂a),
extending the measure ba(ta) to the union F̂a(ta) ∪ F̂a(t̂a) and then taking
the completion would seem to run afoul of the fact any suffi ciently rich space
will have nonmeasurable sets.

4.3 Agent-Specific Priors and Anonymity in Beliefs

In Section 3.2 above, I introduced anonymity in beliefs as a property of the
measure ba(ta) where ta was taken as given. I now consider the implications
of this property for an agent-specific prior that induces the belief function
ba(·) as a regular conditional distribution.

Proposition 4.5 Assume that the belief function ba(·) is coherent and mea-
surable. Let (Φ, Φ̄, Π̄a) and τ : Φ×A→ T be such that the probability space
(Φ, Φ̄, Π̄a) is complete, the mapping τ is measurable with respect to a Fu-
bini extension of the σ-algebra Φ̄⊗A, and ba(τ(·, a)) is a regular conditional
distribution for {τ(·, a′)}a′∈A−a given τ(·, a). Then the following statements
are equivalent:

(a) For all ϕ ∈ Φ, ba(τ(ϕ, a)) satisfies anonymity in beliefs.
(b) Under the measure Π̄a, the random variables τ(·, a′), a′ ∈ A−a, are es-

sentially pairwise exchangeable, i.e., there exists a probability measure pa(·)
on T 2 such that, for α−a-almost all a1 ∈ A−a,

Π̄a(τ(·, a1)−1(B1) ∩ τ(·, a2)−1(B2)) = pa(B1 ×B2) = pa(B2 ×B1) (4.9)

for α−a-almost all a2 ∈ A−a and all Borel sets B1, B2 ⊂ T.
(c) If D ⊂ Φ̄ is the Borel σ-algebra that is generated be the mapping ϕ→

D({τ(ϕ, a′)}a′∈A−a), then conditionally on D, the random variables τ(·, a′),
a′ ∈ A−a, are essentially pairwise conditionally independent and identi-
cally distributed. Moreover, the sample distribution D({τ(ϕ, a′)}a′∈A−a) of
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types in the population is almost surely equal to the common conditonal
distribution of types in the population, i..e., for α−a-almost all a1 ∈ A−a,
D({τ(·, a′)}a′∈A−a) is a regular conditional distribution for τ(·, a1) given D.

Proof. I first prove that (a) implies (b). The left-hand side of (4.9) can be
written in the form

Π̄a({ϕ|τ(ϕ, a1) ∈ B1} ∩ {ϕ|τ(ϕ, a2) ∈ B2})

=

∫
Φ
χB1(τ(ϕ, a1)) · χB2(τ(ϕ, a2))dΠ̄a(ϕ), (4.10)

where χB1 : T → {0, 1} and χB2 : T → {0, 1} are the characteristic functions
of the sets B1 and B2, i.e., for i = 1, 2, χBi(t

i) = 1 if (t, ti) ∈ Bi and
χBi(t

i) = 0 if ti /∈ Bi. It therefore suffi ces to show that, if the measure
ba(τ(ϕ, a)) satisfies anonymity in beliefs for Π̄a-almost all ϕ ∈ Φ, then∫

Φ
g(τ(ϕ, a1), τ(ϕ, a2))dΠ̄a(ϕ) =

∫
Φ
g(τ(ϕ, a2), τ(ϕ, a1))dΠ̄a(ϕ) (4.11)

for all measurable functions g : T 2 → [0, 1].
For any measurable functions g : T 2 → [0, 1]. the fact that ba(τ(·, a)) is a

regular conditional distribution for {τ(·, a′)}a′∈A−a given τ(·, a) implies that
the left-hand side of (4.11) is equal to∫

Φ

∫
Ra

g(ta1 , ta2) db({ta′}a′∈A−a |τ(ϕ, a))dΠ̄a(ϕ). (4.12)

By Proposition 3.3, statement (a) implies that (4.12) can be rewritten in
the form∫

Φ

∫
M(T )

∫
T

∫
T
g(ta1 , ta2) dδ(ta1)dδ(ta2)db

∗(δ|τ(ϕ, a))dΠ̄a(ϕ). (4.13)

By Fubini’s theorem, (4.13) in turn is equal to∫
Φ

∫
M(T )

∫
T

∫
T
g(ta1 , ta2) dδ(ta2)dδ(ta1)db

∗(δ|τ(ϕ, a))dΠ̄a(ϕ). (4.14)

By a relabeling of indices, finally, (4.14) can be rewritten as∫
Φ

∫
M(T )

∫
T

∫
T
g(ta2 , ta1) dδ(ta1)dδ(ta2)db

∗(δ|τ(ϕ, a))dΠ̄a(ϕ), (4.15)

which is easily seen to be equal to the right-hand side of (4.11).
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Next, if (b) holds, then (c) follows from Proposition 3 of Qiao et al.
(2016).

Finally, assume that (c) holds. Let C be the σ-algebra that is generated
by the mapping

ϕ→ (τ(ϕ, a), D({τ(ϕ, a′)}a′∈A−a)).

For any a1 ∈ A−a and a2 ∈ A−a, let µa
1a2(·) be a regular conditional distri-

bution for the pair (τ(·, a1), τ(·, a2)) given C and let

Φa1a2 := {ϕ ∈ Φ| µa1a2(ϕ)) = (D({τ(ϕ, a′)}a′∈A−a))2} (4.16)

is the set of states ϕ for which µa
1a2(ϕ) is equal to the product distribution

(D({τ(ϕ, a′)}a′∈A−a))2. I claim that, for α−a-almost all a1 ∈ A−a, one may
therefore infer that Π̄a(Φ

a1a2) = 1 for α−a-almost all a2 ∈ A−a.
Because T is a complete separable metric space,M(T ) is also a complete

separable metric space. By standard arguments, therefore C is countably
generated. Trivially also, D ⊂ C ⊂Φ̄. By Proposition 3 of Hammond and Sun
(2006) therefore, (c) implies that, conditionally on C, the random variables
τ(·, a′), a′ ∈ A−a, are essentially pairwise conditionally independent. By
the argument given in the proof of Proposition 3 in Hammond and Sun
(2006), (c) also implies that, conditionally on C, the random variables τ(·, a′),
a′ ∈ A−a, are essentially identically distributed and that, for α−a-almost all
a
′′ ∈ A−a, D({τ(·, a′)}a′∈A−a) is a regular conditional distribution for τ(·, a′′)
given C. The claim that, for α−a-almost all a1 ∈ A−a, Π̄a(Φ

a1a2) = 1 for
α−a-almost all a2 ∈ A−a follows immediately.

Because ba(τ(·, a)) is a regular conditional distribution for {τ(·, a′)}a′∈A−a
given τ(·, a), Π̄a(Φ

a1a2) = 1 implies∫
ba{{ta′}a′∈A−a | µa

1a2(ϕ) = D({ta′}a′∈A−a)2}|τ(ϕ, a)dΠ̄a(ϕ) = 1. (4.17)

Because µa
1a2(·) is measurable with respect to C, there exists a function

µ̂a
1a2(·) such that

µa
1a2(ϕ) = µ̂a

1a2(τ(ϕ, a), D({τ(ϕ, a′)}a′∈A−a)) (4.18)

for Π̄a-almost all ϕ. Moreover, for Π̄a-almost all ϕ, (c) implies

D({ta′}a′∈A−a) = D({τ(ϕ, a′)}a′∈A−a)
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for ba(τ(ϕ, a))-almost all {ta′}a′∈A−a . Thus (4.17) implies∫
ba{{ta′}a′∈A−a | µ̂a

1a2(τ(ϕ, a), D({ta′}a′∈A−a)) = D({ta′}a′∈A−a)2}|τ(ϕ, a)dΠ̄a(ϕ) = 1

and therefore

ba

(
{{ta′}a′∈A−a | µ̂a

1a2(τ(ϕ, a), D({ta′}a′∈A−a)) = (D({ta′}a′∈A−a)2}|τ(ϕ, a)
)

= 1

(4.19)
for Π̄a-almost all ϕ. Because the belief function ba(·) is coherent, it follows
that

ba

(
{{ta′}a′∈A−a | µ̂a

1a2(ta, D({ta′}a′∈A−a)) = (D({ta′}a′∈A−a)2}|ta
)

= 1

(4.20)
for all ta ∈ T.

Thus, if (c) holds, then for α−a-almost all a1 ∈ A−a, (4.20) holds for
α−a-almost all a2 ∈ A−a, for all ta ∈ T. By Proposition 3.3, it follows that,
for all ta ∈ T, ba(ta) satisfies anonymity in beliefs.

Thus at the level of priors, anonymity in beliefs translates into a condi-
tion of essential pairwise exchangeability and the accompanying conditional
law of large numbers.

Proposition 4.5 assumes, and the proof uses, the property of coherence
of the belief function ba(·). However, this property is less important here
than in Proposition 4.3 above. In the proof that (c) implies (a), coherence
yields the conclusion that ba(ta) satisfies anonymity in beliefs for all ta.
Without coherence, an admissible commutation of "almost all" quantifiers
would yield the conclusion that ba(τ(ϕ, a)) satisfies anonymity in beliefs for
Π̄a-almost all ϕ. As is evident from the proof, this weakening of statement
(a) does not affect the validity of the implication that (a) implies (b).

Which version of the result one prefers, depends on which interpretation
of the belief function ba(·) one considers appropriate. If one thinks of the
beliefs ba(ta), ta ∈ T, as the "real" representation of the agent’s expectations,
and of the prior Π̄a as a derived concept, one is likely to prefer the version
of the result given here, which involves anonymity in beliefs for all ta. In
contrast, if one thinks of the prior Π̄a as the "real" representation of the
agent’s expectations, and of the belief function ba(·) as a derived concept,
one is likely to prefer the version of the result that involves anonymity in
beliefs for Π̄a-almost all τ(ϕ, a) and that does not require coherence.
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4.4 Macro Belief Functions and Agent-Specific Priors

A belief function ba(·) that satisfies anonymity in beliefs is fully characterized
by the associated macro belief function b∗a(·) where b∗a(ta) = ba(ta) ◦D(·)−1

for all ta. In Proposition 3.6 above, I had shown that, for any type ta of
agent a, any measure β onM(T ), and any rich Fubini extension (Ωa(ta)×
A−a,Fa(ta)�A−a, Pa(ta)� α−a), there exists an Fa(ta)�A−a-measurable
mapping τ from Ωa(ta) × A−a to T such that the associated belief ba(ta)
satisfies anonymity in beliefs and the macro belief b∗a(ta) is equal to β, i.e.
once richness of the Fubini extension is imposed, there is no restriction on
the scope of macro uncertainty. In the following, I establish an analogous
result for macro belief functions and agent-specific priors. The construction
is more complicated than in Proposition 3.6 because, as in Proposition 4.3,
there is a need to ensure that the beliefs of different types are coherent and
measurable.

Coherence of Macro Belief Functions The macro belief function b∗a(·)
is said to be coherent if, for any ta and t̂a in T, the probability measures
b∗a(ta) and b

∗
a(t̂a) are mutually absolutely continuous, i.e., any Borel

set B ⊂ M(T ) satisfies b∗a(B|ta) > 0 if and only if it also satisfies
b∗a(B|t̂a) > 0.

Measurability of Macro Belief Functions The macro belief function b∗a(·)
is said to be measurable if, for any Borel set B ⊂ M(T ), the set of
types with macro beliefs in B, i.e. the set {ta ∈ T |b∗a(ta) ∈ B}, is itself
a Borel subset of T.

Given that, for any B ⊂ M(T ), the equation b∗a(ta) = ba(ta) ◦ D(·)−1

implies
b∗a(B|ta) = ba({{ta′}a′∈A−a |D({ta′}a′∈A−a) ∈ B}|ta),

one easily verifies that, if the belief function ba(·) is coherent, the associated
macro belief function b∗a(·) is also coherent. Similarly, it is easy to verify
that, if ba(·) is measurable, the associated macro belief function b∗a(·) is also
measurable. As a partial converse to these observations, the following result
shows, that, starting from a coherent and measurable function β(·) from T
toM(M(T )), one can always find a coherent and measurable belief function
ba(·) that has β(·) as its macro belief function.

Proposition 4.6 Let β(·) be any coherent and measurable function from T
to M(M(T )). Let (Φ, Φ̄, Π̄a) be a complete probability space. If the Fubini
extension (Φ×A, Φ̄�A, Π̄a�α) is rich, there exists a mapping τ : Φ×A→ T
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that is measurable with respect to Φ̄�A and a coherent and measurable belief
function ba(·) such that ba(τ(·, a)) is a regular conditional distribution for
{τ(·, a′)}a′∈A−a given τ(·, a), and, moreover, for all ta ∈ T, ba(ta) satisfies
anonymity in beliefs and the associated macro belief b∗a(ta) coincides with
β(ta).

Proof. The argument is similar to the one in the proof of Proposition
3.6, with (Ωa(ta),Fa(ta), Pa(ta)) replaced by (Φ, Φ̄, Π̄a). Given the function
β(·), let Ψβ ∈ M(T ×M(T )) be such that, for some (arbitrary) marginal
distribution ΨT

β on T, one has

Ψβ(Bt ×Bδ) =

∫
Bt

β(Bδ|ta)dΨT
β (ta) (4.21)

for all Borel sets Bt ⊂ T and Bδ ⊂ M(T ). By standard arguments, there
exists a pair (τβ(·, a), δ̃β(·)) of random variables on (Φ, Φ̄, Π̄a), taking values
in T ×M(T ), such that

Π̄a ◦ (τβ(·, a), δ̃β(·))−1 = Ψβ, (4.22)

i.e. the probability distribution of (τβ(·, a), δ̃β(·)) is Ψβ.
As in the proof of Proposition 3.6, let f be a measurable function from

M(T )× [0, 1] into T such that for any δ ∈M(T ),

` ◦ f(δ, ·)−1 = δ (4.23)

where ` is the uniform distribution on [0, 1]. Given this function f and the
random pair (τβ(·, a), δ̃β(·)), define a mapping τ(·, ·) from Ωa(ta) × A into
T by setting

τ(·, a) = τβ(·, a) (4.24)

and

τ(·, a′) = f(δ̃β(·), h(·, a′)) for a′ ∈ A−a, (4.25)

where h is the function given by the richness of the Fubini extension (Φ ×
A, Φ̄�A, Π̄a�α). Given that τ(·, ·) is measurable with respect to Φ̄�A−a,
one easily verifies that τ(·, ·) is measurable with respect to Φ̄�A, as claimed
in the proposition.

For any ta ∈ T, set ba(ta) =
∫
M(T ) b̂a(δ)dβ(δ|ta)) where b̂a is the func-

tion given by Remark 3.7. In the remainder of the proof, I will show that
the function ba satisfies the claims made in the proposition. I first show
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that ba(τ(·, a)) is a regular conditional distribution for {τ(·, a′)}a′∈A−a given
τ(·, a).

Let Cδ be the sub-σ-algebra of Φ̄ that is generated by the random variable
δ̃β(·). BecauseM(T ) is a complete separable metric space, Cδ̃ is countably
generated. Because the random variables h(·, a′), a′ ∈ A−a, are essentially
pairwise independent, Proposition 3 in Hammond and Sun (2006) implies
that they are also essentially pairwise conditionally independent given Cδ̃.
As in Remark 1 of Hammond and Sun (2008), it follows that the random
pairs (δ̃(·), h(·, a′)), a′ ∈ A−a, are also essentially pairwise conditionally inde-
pendent given Cδ̃ and so are the random variables τ(·, a′) = f(δ̃(·), h(·, a′)),
a′ ∈ A−a. By Proposition 3 in Qiao et al. (2016), these random variables
are also essentially pairwise exchangeable.

Because, for α−a-almost every a′ ∈ A−a, the random variable h(·, a′)
has the uniform distribution `, (4.23) and (4.25) imply that, for α−a-almost
every a′ ∈ A−a, conditional on the event δ̃β(·) = δ, the probability distribu-
tion of τa(·, a′) is almost surely equal to δ. For α−a-almost every a′ ∈ A−a,
therefore the function δ̃β(·) is a regular conditional distribution for the ran-
dom variable τa(·, a′) given Cδ.

Next, let Cτδ be the sub-σ-algebra of Φ̄ that is generated by the pair
(τβ(·, a), δ̃β(·)). Then Cτ δ̃ is also countably generated, and Cδ ⊂ Cτδ. By
another application of Proposition 3 in Hammond and Sun (2006), it fol-
lows that the random variables τ(·, a′) = f(δ̃(·), h(·, a′)), a′ ∈ A−a, are also
essentially pairwise conditionally independent given Cτδ. Moreover, by the
argument in the proof of Proposition 3 of Hammond and Sun (2006), for
almost every a′ ∈ A−a, the function δ̃β(·) is also a regular conditional distri-
bution for the random variable τa(·, a′) given Cτδ. δ̃ is a regular conditional
distribution for τ(·, a′) given Cτδ.
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For any measurable function g on T ×Ra, we therefore obtain∫
Φ
g(τ(ϕ, a), {τ(ϕ, a′)}a′∈A−a)dΠ̄a(ϕ)

=

∫
Φ

∫
Ra

g(τ(ϕ, a), {ta′}a′∈A−a)db̂a({ta′}a′∈A−a |δ̃β(ϕ))dΠ̄a(ϕ)

=

∫
T×M(T )

∫
Ra

g(ta, {ta′}a′∈A−a)db̂a({ta′}a′∈A−a |δ)dΨβ(ta, δ)

=

∫
T

∫
M(T )

∫
Ra

g(ta, {ta′}a′∈A−a)db̂a({ta′}a′∈A−a |δ)dβ(δ|ta)dΨT (ta)

=

∫
Φ

∫
M(T )

∫
Ra

g(τ(ϕ, a), {ta′}a′∈A−a)db̂a({ta′}a′∈A−a |δ)dβ(δ|τ(ϕ, a))dΠ̄a(ϕ)

=

∫
Φ

∫
M(T )

∫
Ra

g(τ(ϕ, a), {ta′}a′∈A−a)dba({ta′}a′∈A−a |τ(ϕ, a))dΠ̄a(ϕ),

which proves that ba(τ(·, a)) is in fact a regular conditional distribution for
{τ(·, a′)}a′∈A−a given τ(·, a).

Turning to the other claims in the proposition, coherence and measura-
bility of ba follow from the coherence and measurability of β. Because, con-
ditionally on Cτδ, the random variables τa(·, a′|ta), a′ ∈ A−a, are essentially
pairwise independent, Corollary 2 of Qiao et al. (2016) implies that

D({τ(ϕ, a′)}a′∈A−a) = δ̃β(ϕ),

Π̄a-almost surely, and therefore that the macro belief b∗a(ta) coincides with
β(ta) for all ta. Finally, anonymity in beliefs follows from the essential pair-
wise exchangeability of the random variables τ(·, a′), a′ ∈ A−a.

5 Common Priors

5.1 Common Priors with Anonymity in Beliefs

The incomplete-information model {T,Θ, θa, ba}a∈A is said to admit a com-
mon prior if there exist a complete probability space (Φ, Φ̄, Π̄) and a map-
ping τ : Φ×A→ T that is measurable with respect to a Fubini extension of
the σ-algebra Φ̄⊗A such that for α-almost all a ∈ A, ba(τ(·, ϕ)) is a regular
conditional distribution for {τ(·, a′)}a′∈A−a given τ(·, ϕ).

In the following, I discuss the existence of a common prior in the incomplete-
information model {T,Θ, θa, ba}a∈A. As is well known, even in models with
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finitely many agents, the existence of a common prior cannot be taken for
granted.15 The conditions on the belief system under which a common prior
exists in models with finitely many agents are very restrictive, the more so
the more agents there are.16

Having nothing to say on the general case, I focus on the case where
the beliefs ba(τ(ϕ, a)) satisfy the condition of anonymity in beliefs. The
following result is an immediate consequence of Proposition 4.5.

Proposition 5.1 Assume that the belief functions ba(·), a ∈ A, are coher-
ent and measurable. Let (Φ, Φ̄, Π̄) and τ : Φ × A → T be such that the
probability space (Φ, Φ̄, Π̄) is complete, the mapping τ is measurable with re-
spect to a Fubini extension of the σ-algebra Φ̄⊗A, and ba(τ(·, a)) is a regular
conditional distribution for {τ(·, a′)}a′∈A−a given τ(·, a). Then the following
statements are equivalent:

(a) For α-almost a ∈ A and all ϕ ∈ Φ, ba(τ(ϕ, a)) satisfies anonymity
in beliefs.

(b) Under the measure Π̄, the random variables τ(·, a′), a′ ∈ A, are es-
sentially pairwise exchangeable, i.e., there exists a probability measure pa(·)
on T 2 such that, for α-almost all a1 ∈ A,

Π̄(τ(·, a1)−1(B1) ∩ τ(·, a2)−1(B2)) = pa(B1 ×B2) = pa(B2 ×B1) (5.1)

for α-almost all a2 ∈ A and all Borel sets B1, B2 ⊂ T.
(c) If D ⊂ Φ̄ is the Borel σ-algebra that is generated be the mapping ϕ→

D({τ(ϕ, a′)}a′∈A), then conditionally on D, the random variables τ(·, a′),
a′ ∈ A, are essentially pairwise conditionally independent and identically
distributed. Moreover, the sample distribution D({τ(ϕ, a′)}a′∈A) of types in
the population is almost surely equal to the common conditonal distribution
of types in the population, i..e., for α-almost all a ∈ A, D({τ(·, a′)}a′∈A) is
a regular conditional distribution for τ(·, a) given D.

Proposition 5.1 provides a mathematical foundation for the applied-
theory work mentioned in the introduction where uncertainty is assumed
to have an aggregate component and an agent-specific component, with
symmetry and a law of large numbers holding for the latter. Whereas this
decomposition of uncertainty is usually introduced ad hoc in order to sim-
plify the analysis, Proposition 5.1 shows that it is actually implied by the

15Harsanyi (1967/68), Samet (1998 a, b), Feinberg (2000), Rodriguez-Neto (2010), Hell-
man and Samet (2012), Hellwig (2012).
16Hellman and Samet (2012).
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assumption of anonymity in beliefs. In settings in which agents do not
care about the names of the other agents but only about the distribution
of the other agents’types, uncertainty can always be decomposed into an
aggregate component and an agent-specific component. The aggregate com-
ponent concerns the cross-section distribution of types, the agent-specific
component concerns the different agents’ individual types. Conditionally
on the aggregate component, the agent-specific components are essentially
(pairwise) independent and identically distributed, the conditional distrib-
ution of any one agent’s type is equal to the cross-section distribution, and
an exact (conditional) law of large numbers holds.

5.2 Common Priors and Macro Belief Functions

Whereas the belief functions ba in Proposition 5.1 differ across agents, due
to their having different domains and ranges, the exchangeability of the
random variables τ(·, a′), a′ ∈ A, ensures that the associated macro belief
functions are the same for all agents. Thus, for any incomplete-information
model that admits a common prior and has beliefs satisfying the condition
of anonymity in beliefs, there exists a function β : T → M(M(T )) such
that, for any agent a, β(τ(·, a)) is a regular conditional distribution for
D({τ(·, a′)}a′∈A) given τ(·, a). Moreover, of the belief functions ba, a ∈ A,
are coherent and measurable, β is also coherent and measurable.

Suppose we take the macro belief function β as given. If β is coherent and
measurable, can we infer the existence of a set of belief functions ba, a ∈ A,
satisfying anonymity in beliefs such that the incomplete-information model
{T,Θ, θa, ba}a∈A admits a common prior and β is the associated macro belief
function? The answer to this question turns out to be negative. This finding
contrasts with Proposition 4.6 showing that for any coherent and measurable
macro belief function β and any a ∈ A, there exist an agent-specific prior
and a coherent and measurable belief function ba satisfying anonymity in
beliefs such that, under the given prior, ba(ta) is a conditional probability
distribution for {τ(·, a′)}a′∈A given that the agent’s own type is ta.

In the proof of Proposition 4.6, the random variable τ(·, a) for the agent’s
own type was specified without regard to the other agents’beliefs; the mar-
ginal distribution ΨT

β of this random variable was arbitrary. In a model with
a common prior, τ(·, a) cannot be specified arbitrarily but must be consis-
tent with the other agents’beliefs. The following result gives a necessary
and suffi cient condition for this requirement to be satisfied.

Proposition 5.2 Let (Φ, Φ̄, Π̄) be a complete probability space and let (Φ×
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A, Φ̄ � A, Π̄ � α) be a rich Fubini extension. For any coherent measurable
function β : T →M(M(T )), the following statements are equivalent.

(a) There exists a mapping τ : Φ×A→ T that is measurable with respect
to Φ̄�A and coherent and measurable belief functions ba(·), a ∈ A, such that,
for α-almost every a ∈ A, ba(τ(·, a)) is a regular conditional distribution for
{τ(·, a′)}a′∈A−a given τ(·, a), and, moreover, for all ta ∈ T, ba(ta) satisfies
anonymity in beliefs and the associated macro belief b∗a(ta) coincides with
β(ta).

(b) There exist distributions ΨT
β on T and Ψ

M(T )
β on M(T ) such that,

for all measurable sets Bt ⊂ T and Bδ ⊂M(T ),∫
Bδ

δ(Bt)dΨ
M(T )
β (δ) =

∫
Bt

β(Bδ|t)dΨT
β (t). (5.2)

Proof. Suppose that statement (a) is true. Let Ψβ be the joint distribution
of the pair (τ(·, a), D({τ(·, a′)}a′∈A−a)). Let a be such that, for all ta ∈ T,
ba(ta) satisfies anonymity in beliefs and the associated macro belief b∗a(ta)
satisfies b∗a(ta) = β(ta). If ΨT

β ∈ M(T ) and Ψ
M(T )
β ∈ M(M(T )) are the

associated marginal distributions on T andM(T ), then, for all measurable
sets Bt ⊂ T and Bδ ⊂M(T ),

Ψβ(Bt ×Bδ) =

∫
Bt

β(Bδ|t)dΨT
β (t) (5.3)

and

Ψβ(Bt ×Bδ) =

∫
Bδ

δ(Bt)dΨ
M(T )
β (δ). (5.4)

Equation (5.3) must hold because, by the definition of the macro belief
function b∗a and the coincidence of b

∗
a and β, β(τ(·, a)) is a regular condi-

tional distribution for D({τ(·, a′)}a′∈A−a) given τ(·, a) and, moreover, by
the atomlessness of α, D({τ(·, a′)}a′∈A−a) = D({τ(·, a′)}a′∈A). Equation
(5.4) must hold because, by the assumption that, for all ta ∈ T, ba(ta)
satisfies anonymity in beliefs, statement (c) in Proposition 4.5 implies that
D({τ(·, a′)}a′∈A−a) = D({τ(·, a′)}a′∈A) is a regular conditional distribution
for τ(·, a) given D({τ(·, a′)}a′∈A−a). Upon combining (5.3) and (5.4), one
obtains (5.2), which proves statement (b).

Conversely, suppose that statement (b) is true. Fix some a ∈ A. Use
the construction in the proof of Proposition 4.6 with the given ΨT

β to obtain
the desired τ(·, ·) and ba(·) (for this particular agent). The joint distrib-
ution of the pair (τ(·, a), D({τ(·, a′)}a′∈A−a)) is then given by (5.3). By
Proposition 4.5, for α-almost all a′′ ∈ A−a, D({τ(·, a′)}a′∈A−a) is a regular
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conditional distribution for τ(·, a′′) given D({τ(·, a′)}a′∈A−a). By (5.4), it
follows that, for α-almost all a′′ ∈ A−a, Ψβ is also the joint distribution of
the pair (τ(·, a′′), D({τ(·, a′)}a′∈A−a)). By another application of (5.3), there-
fore, β(τ(·, a′′)) is a regular conditional distribution for D({τ(·, a′)}a′∈A) =
D({τ(·, a′)}a′∈A−a′′ ) given τ(·, a′′). Upon setting

ba′′(ta′′) =

∫
M(T )

b̂a′′(δ)dβ(δ|ta′′)),

with b̂a′′ given by Remark 3.7, one obtains the desired belief function ba′′ for
agent a′′. The same arguments as in the proof of Proposition 4.5 show that
this belief function has the properties postulated in statement (a).

There are two ways to think about the joint distribution Ψβ of the pair
(τ(·, a), D({τ(·, a′)}a′∈A−a)). One way is to think about τ(·, a) as given and
to derive Ψβ from the distribution ΨT

β of τ(·, a) and the macro belief function
β. Another way is to think about D({τ(·, a′)}a′∈A−a) = D({τ(·, a′)}a′∈A) as

given and to derive Ψβ from the distribution Ψ
M(T )
β of D({τ(·, a′)}a′∈A)

and the fact that, conditionally on D({τ(·, a′)}a′∈A), τ(·, a) is distributed as
D({τ(·, a′)}a′∈A). Statement (b) in Proposition 5.2 ensures that these two
approaches are mutually consistent.

5.3 Existence of a Common Prior

The condition that Proposition 5.2 gives for the existence of a common prior
in a model with a continuum of agents and anonymity in beliefs is formally
equivalent to a condition for the existence of a common prior in a certain
two-player model. In this two-player model, player 1 has the type space T
and player 2 the type spaceM(T ). Beliefs are given by the functions t→ β(t)
and δ → δ. For each t ∈ T, the probabilistic beliefs of player 1 about the
type of player 2 are given by β(t) ∈ M(M(T )); for each δ ∈ M(T ), the
probabilistic beliefs of player 2 about the type of player 1 are given by δ.
For given β, a measure Ψβ ∈ M(T ×M(T )) that satisfies statement (b)
in Proposition 5.2 exists if and if Ψβ is a common prior for the specified
two-player model with belief functions t→ β(t) and δ → δ.

Given this equivalence, I use arguments from the analysis of two-player
games to give a condition on the macro belief function β under which this
function is compatible with the existence of a common prior. I begin with
a lemma showing that coherent macro beliefs have densities and that these
densities are positive.
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Lemma 5.3 If the macro belief function β(·) is coherent, there exists a
measurable functions f : M(T ) × T × T → R+ such that, for any t and t′

in T and any measurable set Bδ ⊂M(T ),

β(Bδ|t′) =

∫
Bδ

f(δ, t′, t) β(dδ|t). (5.5)

The function f satisfies the equation

f(δ, t′′, t) = f(δ, t′′, t′) · f(δ, t′, t) (5.6)

for β(t)-almost all δ ∈M(T ), for all t, t′, t′′ in T. Moreover,

f(δ, t, t′) > 0 (5.7)

for β(t′)-almost all δ ∈ D, for all t, t′ ∈ T.

Proof. The first statement of the lemma follows from strong coherence and
the Radon-Nikodym Theorem. To prove the second statement, it suffi ces
to note that, for any measurable set Bδ ⊂ M(T ) and any t, t′, t′′, the first
statement implies

β(Bδ|t′′) =

∫
Bδ

f(δ, t′′, t′) dβ(δ|t′) =

∫
Bδ

f(δ, t′′, t′) · f(δ, t′, t) dβ(δ|t),

so that the product f(·, t′′, t′)·f(·, t′, t) is a Radon-Nikodym derivative of the
measure β(t′′) with respect to the measure β(t). The statement follows be-
cause the Radon-Nikodym derivative of one measure with respect to another
is unique up to a set of measure zero.

To prove the last statement of the lemma, fix t′ ∈ T and δ′ ∈ D. Upon
setting t′′ = t in (5.6), one finds that f(δ, t, t′) · f(δ, t′, t) = 1 for β(t)-almost
all δ ∈ M(T ), for all t and t′ in T. Therefore f(δ, t, t′) > 0 for β(t)-almost
all δ ∈M(T ), for all t and t′ in T. The last statement of the lemma follows
because the measures β(t) and β(t′) are mutually absolutely continuous.

I next introduce a property ensuring that cross-section type distributions
in the support of the macro beliefs β(t), t ∈ T, also have positive densities.
For lack of a better term, I call this property strong coherence.

Strong Coherence of Macro Belief Functions Amacro belief function
β : T →M(M(T )) is said to be strongly coherent if it is coherent and
if there exists a set D ⊂M(T ) such that β(D|t) = 1 for all t ∈ T and
the measures δ ∈ D are mutually absolutely continuous.
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Lemma 5.4 If the macro belief function β(·) is strongly coherent, there
exists a measurable function g : T ×D ×D → R+ such that, for any δ and
δ′ in the specified set D and any measurable set Bt ⊂ T,

δ′(Bt) =

∫
Bt

g(t, δ′, δ) δ(dt). (5.8)

The function g satisfies the equation

g(t, δ′′, δ) = g(t, δ′′, δ′) · g(t, δ′, δ) (5.9)

for δ-almost all t ∈ T, for all δ, δ′, δ′′ in D. Moreover,

g(t, δ, δ′) > 0 (5.10)

for δ′-almost all t ∈ T, for all δ all δ′ ∈ D.

The proof of Lemma 5.4 is step for step the same as the proof of Lemma
5.3 and is left to the reader.

Proposition 5.5 A strongly coherent macro belief function β : T →M(M(T ))
admits a common prior if and only if the associated density functions f and
g satisfy the equation

g(t1, δ1, δ0) · f(δ1, t2, t0) · g(t2, δ2, δ0) · f(δ2, t1, t0)

= f(δ1, t1, t0) · g(t1, δ2, δ0) · f(δ2, t2, t0) · g(t2, δ1, δ0) (5.11)

for any t0 ∈ T and δ0 ∈ D, for β(t0)-almost all δ1 and δ2 in D and δ0-almost
all t1 and t2 in T .

Proof. If β admits a common prior, then statement (b) in Proposition 5.2
holds. Given the marginal distributions ΨT

β and Ψ
M(T )
β specified let there,

let Ψβ be the distribution onM(T ×M(T )) that is given by (5.3) and (5.4).

I note that the measure Ψ
M(T )
β and any one of the measures β(t0), t0 ∈ T,

are mutually absolutely continuous: For Bt = T and any t0 ∈ T, (5.3) and
Lemma 5.3 imply

Ψ
M(T )
β (Bδ) =

∫
T
β(Bδ|t) dΨT

β (t)

=

∫
T

∫
Bδ

f(δ, t, t0) dβ(δ|t0) dΨT
β (t)

=

∫
Bδ

∫
T
f(δ, t, t0) dΨT

β (t) dβ(δ|t0). (5.12)
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Absolute continuity of Ψ
M(T )
β with respect to β(t0) is immediate. Absolute

continuity of β(t0) with respect to Ψ
M(T )
β follows from the strict positivity

of f(δ, t, t0).
I next claim that the measure ΨT

β and any measure δ0 ∈ D are mutually
absolutely continuous. To see this, note that, for Bδ = D, equation (5.4)
implies

ΨT
β (Bt) =

∫
D
δ(Bt) dΨ

M(T )
β (δ)

=

∫
D

∫
Bt

g(t, δ, δ0) dδ0(t) dΨ
M(T )
β (δ)

=

∫
Bt

∫
D
g(t, δ, δ0) dΨ

M(T )
β (δ) dδ0(t) (5.13)

for any δ0 ∈ D. Hence ΨT
β is absolutely continuous with respect to δ0. By

the strict positivity of g(t, δ, δ0), (5.13) also implies that δ0 is absolutely
continuous with respect to ΨT

β .
Equations (5.13) and (5.12) also imply that the Radon-Nikodym deriv-

atives of ΨT
β and Ψ

M(T )
β with respect to δ0 and β(t0) are given as

ψt(·|δ0) :=

∫
D
g(·, δ) dΨ

M(T )
β (δ) (5.14)

and

ψδ(·|t0) :=

∫
T
f(·, t, t0) dΨT

β (t). (5.15)

Thus, equations (5.3) and (5.4) can be rewritten in the form

Ψβ(Bt ×Bδ) =

∫
Bδ

∫
Bt

g(t, δ) · ψδ(δ|t0) dδ0(t) dβ(δ|t0)

and

Ψβ(Bt ×Bδ) =

∫
Bt

∫
Bδ

f(δ, t, t0) · ψt(t|δ0) dβ(δ|t0) dδ0(t).

One easily sees that Ψβ is absolutely continuous with respect to the product
measure β(t0)× δ0, with a density ψ(·, ·|t0, δ0) satisfying

ψ(t, δ|t0, δ0) = g(t, δ, δ0) · ψδ(δ|t0) = f(δ, t, t0) · ψt(t|δ0) (5.16)

for δ0-almost all t ∈ T and β(t0)-almost all δ ∈ D.
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Consider the second equation in (5.16) with t and δ replaced by different
constellations of t1, t2 ∈ T and δ1, δ2 ∈ D. This yields the equation

g(t1, δ1) · ψδ(δ1, t0) · f(δ1, t2, t0) · ψt(t2)

·g(t2, δ2) · ψδ(δ2, t0) · f(δ2, t1, t0) · ψt(t1)

= (5.17)

f(δ1, t1, t0) · ψt(t1) · g(t1, δ2) · ψδ(δ2, t0)

·f(δ2, t2, t0) · ψt(t2) · g(t2, δ1) · ψδ(δ1, t0).

Because the measures ΨT
β and δ0, as well as the measures Ψ

M(T )
β and β(t0),

are mutually absolutely continuous, the same argument as in the proof of
Lemma 5.3 implies that

ψt(t, δ0) > 0 for δ0-almost all t

and
ψδ(δ, t0) > 0 for β(t0)-almost all δ.

For δ0-almost all t1 and t2 in T and β(t0)-almost all δ1 and δ2 inD, therefore,
the terms ψδ(δ1, t0), ψt(t2), ψδ(δ2, t0), and ψt(t1) in (5.17) can be cancelled,
which yields (5.11). Because the choice of t0 and δ0 was arbitrary, the
conclusion holds for all t0.

To prove the converse, suppose that, for some t0 ∈ T and δ0 ∈ D,
equation (5.11) is satisfied for δ0-almost all t1 and t2 in T and β(t0)-almost
all δ1 and δ2 in D. By Lemma 5.3, there exist some t1 and δ1 so that

f(δ1, t1, t0) > 0, g(t1, δ1) > 0,

and
g(t1, δ) > 0 for β(t0)-almost all δ.

For any t and δ, define

λ(t0, δ0) :=

[∫
D

∫
T

f(δ, t1, t0)

f(δ1, t1, t0)
· g(t, δ, δ0)

g(t1, δ, δ0)
dδ0(t)dβ(δ|t0)

]−1

, (5.18)

ψ(t, δ|t0, δ0) := λ(t0, δ0) · f(δ, t1, t0)

f(δ1, t1, t0)
· g(t, δ, δ0)

g(t1, δ, δ0)
(5.19)

if g(t1, δ, δ0) > 0, and
ψ(t, δ|t0, δ0) ::= 0
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if g(t1, δ, δ0) = 0. Further define a measure Ψβ ∈M(T ×D) by setting

Ψβ(Bt ×Bδ) :=

∫
Bδ

∫
Bt

ψ(t, δ|t0, δ0) dδ0(t)dβ(δ|t0) (5.20)

for any measurable Bt ⊂ T and Bδ ⊂ D. Then, by construction,

Ψβ(Bt ×Bδ) =

∫
Bδ

∫
Bt

λ · f(δ, t1, t0)

f(δ1, t1, t0)
· g(t, δ, δ0)

g(t1, δ, δ0)
dδ0(t)dβ(δ|t0)

=

∫
Bδ

∫
Bt

g(t, δ, δ0) dδ0(t) · dΨ
M(T )
β (δ)

=

∫
Bδ

∫
Bt

dδ(t) · dΨ
M(T )
β (δ), (5.21)

where Ψ
M(T )
β ∈M(M(T )) is given by the formula

Ψ
M(T )
β (Bδ) = Ψβ(T ×Bδ) =

∫
Bδ

λ · f(δ, t1, t0)

f(δ1, t1, t0)
· 1

g(t1, δ, δ0)
dβ(δ|t0).

Equation (5.21) shows that Ψβ satisfies (5.4).
To verify that Ψβ also satisfies (5.3), observe that, by Lemma 5.3 and

(5.19), we also have

ψ(t, δ|t0, δ0) = λ · f(δ, t, t0)

f(δ1, t, t0)
· g(t, δ1, δ0)

g(t1, δ1, δ0)
(5.22)

for δ0 × β(t0)-almost all (t, δ). Therefore, (5.20) can be rewritten as

Ψβ(Bt ×Bδ) =

∫
Bt

∫
Bδ

λ · f(δ, t, t0)

f(δ1, t, t0)
· g(t, δ1, δ0)

g(t1, δ1, δ0)
dδ0(t)dβ(δ|t0)

=

∫
Bt

∫
Bδ

f(δ, t, t0) dβ(δ|t0) · dΨT
β (t)

=

∫
Bt

∫
Bδ

dβ(δ|t) dΨT
β (t), (5.23)

where ΨT
β ∈M(T ) is given by the formula

ΨT
β (Bt) = Ψβ(Bt ×D) =

∫
Bt

λ · 1

f(δ1, t, t0)
· g(t, δ1, δ0)

g(t1, δ1, δ0)
dδ0(t).

Equation (5.23) shows that Ψβ also satisfies (5.3). Thus, the macro belief
function β satisfies statement (b) in Proposition 5.2.

42



The consistency condition (5.11) is well known from Harsanyi (1967/68).
Whereas most of the literature discusses this condition in terms of a two-
player game with finitely many states, Proposition 4.5 shows that it also mat-
ters for the existence of a common prior in a large eocnomy with anonymity,
with a potentially uncountable set of states. The underlying logic is the
same: If distribution Ψβ has a density ψ(·, ·|t0, δ0) with respect to the mea-

sure δ0 × β(t0), the ratio ψ(t′,δ′|t0,δ0)
ψ(t,δ|t0,δ0) can be computed from the equation

ψ(t′, δ′|t0, δ0)

ψ(t, δ|t0, δ0)
=
ψ(t′, δ|t0, δ0)

ψ(t, δ|t0, δ0)
· ψ(t′, δ′|t0, δ0)

ψ(t′, δ|t0, δ0)
(5.24)

or from the equation

ψ(t′, δ′|t0, δ0)

ψ(t, δ|t0, δ0)
=
ψ(t, δ′|t0, δ0)

ψ(t, δ|t0, δ0)
· ψ(t′, δ′|t0, δ0)

ψ(t, δ′|t0, δ0)
, (5.25)

and each time the result must be the same. If Ψβ satisfies (5.3) and (5.4),
the density ψ(·, ·|t0, δ0) satisfies (5.16), which yields

ψ(t′, δ|t0, δ0)

ψ(t, δ|t0, δ0)
=
g(t′, δ, δ0)

g(t, δ, δ0)
(5.26)

and
ψ(t, δ′|t0, δ0)

ψ(t, δ|t0, δ0)
=
f(δ′, t, t0)

f(δ, t, t0)
(5.27)

for any t, t′ ∈ T and any δ, δ′ ∈ D such that ψ(t, δ|t0, δ0) > 0 (and therefore
g(t, δ, δ0) > 0 and f(δ, t, t0) > 0). When applied to (5.24), (5.26) and (5.27)
yield

ψ(t′, δ′|t0, δ0)

ψ(t, δ|t0, δ0)
=
f(δ′, t, t0)

f(δ, t, t0)
· g(t′, δ′, δ0)

g(t, δ′, δ0)
, (5.28)

when applied to (5.25),

ψ(t′, δ′|t0, δ0)

ψ(t, δ|t0, δ0)
=
g(t′, δ, δ0)

g(t, δ, δ0)
· f(δ′, t′, t0)

f(δ, t′, t0)
. (5.29)

For these two expressions to be compatible, one needs equation (5.11).
Notice that, according to (5.28) and (5.29), the ratio ψ(t′,δ′|t0,δ0)

ψ(t,δ′|t0,δ0)
is uniquely

determined by the density functions f and g. Because the integral of ψ(·, ·|t0, δ0)
with respect to the measure δ0×β(t0) must be equal to one, it follows that,
up to modifications on a set of β(t0)× δ0-measure zero, the density function
ψ(·, ·|t0, δ0) and the measure Ψβ are uniquely determined by the functions
f and g.
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Remark 5.6 The common prior that is obtained if the condition in Propo-
sition 5.2 holds is unique.

Remark 5.6 implies, in particular, that Ψβ does not depend on the pair
(t1, δ1) that serves as a starting point for the construction in (5.18) - (5.20).
The following remark shows that Ψβ also does not depend on the choice of
the pair (t0, δ0) in equation (5.11) and the construction in (5.18) - (5.20).

Remark 5.7 The common prior that is obtained if the condition in Propo-
sition 5.2 holds does not depend on the particular pair (t0, δ0) that are used
in the construction.

Proof. I first note that the validity of (5.11) does not depend on the cho-
sen pair (t0, δ0). To see this, multiply both sides of (5.11) by the product
g(t1, δ0, δ

′
0)·f(δ1, t0, t

′
0)·g(t2, δ0, δ

′
0)·f(δ2, t0, t

′
0), for some t′0 ∈ T and δ′0 ∈ D,

and simplify the resulting equation using (5.6) and (5.9). The result is a
version of (5.11)with (t0, δ0) replaced by (t′0, δ

′
0).

To prove that Ψβ is unchanged if, in the construction (5.18) - (5.20),
(t0, δ0) replaced by (t′0, δ

′
0), I note that, by Lemmas 5.3 and 5.4, the right-

hand side of (5.20) can be written as∫
Bδ

∫
Bt

f(δ, t1, t0) · f(δ, t0, t
′
0)

f(δ1, t1, t0)
· g(t, δ, δ0) · g(t, δ0, δ

′
0)

g(t1, δ, δ0)
dδ′0(t)dβ(δ|t′0)).

By another application of Lemmas 5.3 and 5.4, therefore, (5.20) can be
rewritten as

Φ(Bt ×Bδ) =

∫
Bδ

∫
Bt

λ′ · f(δ, t1, t
′
0)

f(δ1, t1, t′0)
· g(t, δ, δ′0)

g(t1, δ, δ
′
0)
dδ′0(t)dβ(δ|t′0))

=
λ′

λ(t′0, δ
′
0)

∫
Bδ

∫
Bt

ψ(t, δ|t′0, δ′0) dδ′0(t)dβ(δ|t′0)), (5.30)

where λ′ := λ(t0, δ0) · f(δ1, t0, t
′
0) · g(t1, δ0, δ

′
0) and λ(t′0, δ

′
0) and ψ(t, δ|t′0, δ′0)

are given by (5.18) and (5.19) with (t0, δ0) replaced by (t′0, δ
′
0). For Bt = T

andBδ = D, we have Φ(Bt×Bδ) = 1 and
∫
Bδ

∫
Bt
ψ(t, δ, t′0, δ

′
0) δ′0(dt)β(dδ|t′0)) =

1. Therefore, λ′ = λ(t′0, δ
′
0), and (5.30) can be rewritten as

Φ(Bt ×Bδ) =

∫
Bδ

∫
Bt

ψ(t, δ|t′0, δ′0) δ′0(dt)β(dδ|t′0))

for all Bt and Bδ, which is just (5.20) with (t0, δ0) replaced by (t′0, δ
′
0).
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Whereas the Harsanyi consistency condition is usually discussed as a
necessary condition for the existence of a common prior, Proposition 4.5
shows that, under the given conditions, it is also suffi cient. This result
hinges on the strict positivity of the densities f and g, which in turn is
derived from the assumption that the macro belief function β is strongly
coherent.17

Strong coherence involves two properties, (i) coherence, i.e., mutual ab-
solute continuity of the measures β(t), t ∈ T, and (ii) mutual absolute con-
tinuity of the measures δ ∈ D, where β(D|t) = 1 for all t. Coherence of the
measures β(t), t ∈ T, is restrictive, but, as discussed in Section 4, this prop-
erty plays a key role in establishing that a given belief function ba admits
even an agent-specific prior, let alone a common prior.

Given the coherence of the measures β(t), t ∈ T, the additional condition
of mutual absolute continuity of the measures δ ∈ D, where β(D|t) = 1 for
all t, is close to being necessary for the existence of a common prior (as well
as being suffi cient, in combination with the Harsanyi consistency condition).

Remark 5.8 Suppose that a coherent macro belief function β : T →M(M(T ))
admits a common prior Ψβ ∈ M(T ×M(T )), with marginal distributions

ΨT
β ,Ψ

M(T )
β on T andM(T ). Then for every measurable set Bt ⊂ T, ΨT

β (Bt) =
0 if and only if δ(Bt) = 0 for β(t0)-almost all δ ∈M(T ), for every t0 ∈ T.

Proof. Fix Bt ⊂ T. By (5.4),

ΨT
β (Bt) =

∫
M(T )

δ(Bt)dΨ
M(T )
β (δ), (5.31)

so ΨT
β (Bt) = 0 implies Ψ

M(T )
β (Bδ(Bt)) = 1, where

Bδ(Bt) = {δ ∈M(T )|δ(Bt) = 0}.

By (5.3) and Lemma 5.3, we also have

Ψ
M(T )
β (Bδ) =

∫
Bδ

∫
T
f(δ, t, t0) dΨT

β (t) dβ(δ|t0),

17This suffi ciency result parallels the finding in Hellwig (2013) that, for games with
finitely many players, if any element of any player’s information partition intersects any
element of any other player’s information partition, then, for strictly positive belief systems,
a common prior exists if the Harsanyi condition holds for all "cycles" of length four or
less.
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for every measurable set Bδ ⊂M(T ) and every t0 ∈ T. Since f(δ, t, t0) is al-
most everywhere strictly positive, it follows that Ψ

M(T )
β and β(t0) are mutu-

ally absolutely continuous, soΨ
M(T )
β (Bδ(Bt)) = 1, i.e., ΨM(T )

β (M(T )\Bδ(Bt)) =
0, if and only if β(M(T )\Bδ(Bt)) = 0, i.e., β(Bδ(Bt)|t0) = 1. The remark
follows immediately.

In the condition that, for every Bt ⊂ T, ΨT
β (Bt) = 0 if and only if

δ(Bt) = 0 for β(t0)-almost all δ ∈M(T ), for every t0 ∈ T, the β(t0)-null set
of measures δ for which δ(Bt) > 0 even as ΨT

β (Bt) = 0 might depend on Bt.
Therefore this condition is slightly weaker than mutual absolute continuity
of ΨT

β and δ, for β(t0)-almost all δ ∈ M(T ), which in turn would imply
strong coherence.

If T was a finite set or if the measures β(t), t ∈ T, had finite supports,
the condition given in Remark 5.8 would actually be suffi cient for mutual
absolute continuity ofΨT

β and δ, for β(t0)-almost all δ ∈M(T ), and therefore
for strong coherence of β. In this case, Proposition 4.5 could be reformulated
as a result about coherent macro belief functions, with strong coherence
appearing as a part of the necessary and suffi cient condition for the existence
of a common prior.
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