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ABSTRACT
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Does Pollution Drive Achievement? 
The Effect of Traffic Pollution on 
Academic Performance*

We examine the effect of school traffic pollution on student outcomes by leveraging 

variation in wind patterns for schools the same distance from major highways. We compare 

within-student achievement for students transitioning between schools near highways, 

where one school has had greater levels of pollution because it is downwind of a highway. 

Students who move from an elementary/middle school that feeds into a “downwind” 

middle/high school in the same zip code experience decreases in test scores, more 

behavioral incidents, and more absences, relative to when they transition to an upwind 

school. Even within zip codes, microclimates can contribute to inequality.
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I. Introduction 

Over 6.4 million children attend public school within 250 meters of a major roadway 

(Kingsley et al., 2014), and nearly one in five schools that opened in the 2014-2015 school year 

were built near a busy road (Hopkins, 2017). Proximity to highways may make the land cheaper, 

but school districts and parents are often unaware of the health risks of highway pollution. 

Understanding the impact of traffic pollution in schools is critically relevant for social policy, but 

influences on academic achievement are largely absent from EPA estimates of the social costs of 

pollution. 

There is relatively little research on how pollution exposure over primary and secondary 

school influences human capital accumulation. We attempt to build on earlier work by estimating 

the impact of attending a school with higher ambient pollution levels on the academic and 

behavioral outcomes of public school students. We use a novel identification strategy that 

leverages variation in pollution exposure caused by movement through the Florida school system 

as students transition from elementary to middle school or middle school to high school. We 

compare achievement in students transitioning between schools near highways, where one school 

has had greater levels of pollution because it is downwind of a highway, in models with zip code, 

grade, and student fixed effects.  

A sizable literature in economics is interested in contemporaneous health- and mortality-

related impacts of pollution.1 Likewise recent evidence demonstrates that even mild early life 

 
1 A growing literature has linked air pollution to mortality among infants and the elderly 

(Anderson, 2015; Chay & Greenstone, 2003; Currie & Neidell, 2005; Deryugina, Heutel, Miller, 

Molitor, & Reif, 2016; Knittel, Miller, & Sanders, 2015), birth weight (Currie, Davis, Greenstone, 

& Walker, 2015; Currie & Walker, 2011), asthma attacks (Simeonova, Currie, Nilsson, & Walker, 

2018), and bronchitis (Beatty & Shimshack, 2011), among other contemporaneous health shocks. 
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health shocks can substantially affect long-term outcomes,2 but we know much less about how 

pollution exposure influences the years between early life and adulthood (Almond, Currie, & 

Duque, 2017). Additionally, while some recent research investigates how pollution exposure 

during gestation and early life affects later human capital outcomes (Almond, Edlund, & Palme, 

2009; Bharadwaj, Gibson, Zivin, & Neilson, 2017; Black, Bütikofer, Devereux, & Salvanes, 2013; 

Persico, Figlio, & Roth, 2016; Sanders, 2012), little is known about medium-term, year-to-year 

health shocks during childhood and adolescence affect human capital formation and child 

development.  

There are also a few studies that document how acute, short-term exposure to air pollution 

on testing days affects test score performance. For example, Marcotte (2017) used the variation in 

air quality on different testing days and found that children who took tests on worse days for pollen 

and fine airborne particulate matter had worse outcomes. Similarly, Roth (2016) found that 

pollution on testing days affected college students’ performance in the United Kingdom, and 

Ebenstein, Lavy, & Roth (2016) found that pollution affected performance on high school exit 

exams in Israel. However, the present paper is the first to compare both year-to-year exposure to 

pollution, as well as exposure on the testing days. 

To implement our natural experiment, we use a unique administrative dataset on the 

universe of public school students born in Florida from 1992-2002. We follow these students over 

time, observing rich information on their behavioral, demographic, and academic characteristics. 

We find that attending school where prevailing winds place it downwind of a nearby highway 

more than 60% of the time is associated with 0.040 of a standard deviation lower test scores, a 4.1 

 
2 For instance, early pollution exposure is related to the development of congenital anomalies 

(Currie, Greenstone, & Moretti, 2011), which affect outcomes long-term.  
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percentage point increase in behavioral incidents, and a 0.5 percentage point increase in the rate 

of absences over the school year, compared to attending a school upwind of a highway the same 

distance away.3 Given the size and diversity of the state of Florida, we are also able to examine 

these impacts by race, socioeconomic status, and gender.  

Our research design contrasts with an earlier literature that only either examined the 

influence of long-term in-utero exposure on test scores or the direct short-term effect of “day of 

test” exposure. This is the first paper to disambiguate the effects of acute exposure to pollution 

during testing days from medium-term exposure to pollution over a year. Along with Persico and 

Venator (2018), we are one of the first papers to estimate the impact of medium-term, year-to-year 

variation in pollution exposure on child achievement throughout childhood, and the first to do so 

using policy-generated moves through a school system as an identification strategy. Finally, we 

are the first paper to look at the causal impact on achievement of school districts locating schools 

downwind of major highways. Such policies expose students to higher levels of pollution, and we 

therefore shed light on policy implications related to school location decisions.  

These contributions are relevant to broader discussions in the fields of health, inequality, 

and children. As Almond et al. (2017) point out in their recent literature review, even mild health 

shocks in early life can lead to substantial long-term negative outcomes, but we know substantially 

less about the intervening period between early life and adulthood. Likewise, most studies on 

pollution use larger geographic areas than the zip code level. Recent research suggests that there 

is significant within-commuting zone variation in intergenerational inequality (Rothstein, 2018), 

 
3 Behavioral incidents are teacher reported student behavior infractions. Most of the time (>95%) 

behavioral incidents result in suspension from school. 
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and small geographic variations in childhood pollution exposure could be one factor behind this 

pattern. 

II. Background 

A growing literature has linked pollution to mortality among infants and the elderly 

(Anderson, 2015; Chay & Greenstone, 2003; Currie & Neidell, 2005; Deryugina, Heutel, Miller, 

Molitor, & Reif, 2016; Knittel, Miller, & Sanders, 2015), asthma attacks (Simeonova, Currie, 

Nilsson, & Walker, 2018), and bronchitis (Beatty & Shimshack, 2011). Additionally, in-utero air 

pollution could affect human capital accumulation in childhood. Persico, Figlio and Roth (2016) 

find that in utero exposure to pollution is associated with lower birth weight, a higher likelihood 

of having a behavioral incident in school, and worse academic achievement. Several other studies 

find a similar relationship between in-utero exposure and later test scores (Almond et al., 2009; 

Bharadwaj et al., 2017; Black et al., 2013; Persico et al., 2016; Rau, Urzúa, & Reyes, 2015; 

Sanders, 2012). Many of these pollutants are extreme, including toxic waste sites (Persico et al., 

2016; Rau et al., 2015), radioactive waste (Black et al., 2013), and nuclear fallout (Almond et al., 

2009).  

Much of this literature focuses on either the very young or the elderly. Younger populations 

are potentially of interest because investments in child health could result in greater later life 

productivity. While we know that early life health shocks can substantially affect long-term 

outcomes, we know very little about the years between early life and adulthood (Almond et al., 

2017). A few exceptions include Aizer, Currie, Simon, and Vivier (2018), who find that early 

exposure to lead in preschool affects later test scores, Persico and Venator (2018), who find that 

being near an industrial plant harms tests scores and suspensions, and Simon (2016), who finds 

that early life exposure to cigarette smoke harms childhood health.  
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A few economists have focused on the effects of exposure to wind-based traffic pollution: 

Herrnstadt and Muehlegger (2015) argue that traffic pollution influences impulse control. They 

showed that short-term hourly variation in wind direction in Chicago lead to higher crime in areas 

downwind of highways than on the opposite upwind side. There is also some work on the 

prolonged impacts of traffic pollution. In a study similar to ours, Anderson (2015) documented 

that long-term exposure to being downwind of a highway was associated with higher mortality 

rates among the elderly, though housing characteristics were similar on either side of the road. 

There is reason to believe that traffic pollution could be especially damaging during 

childhood because burning fossil fuels releases Polycyclic Aromatic Hydrocarbons (PAHs), 

carbon monoxide, and other toxicants. There are a growing number of epidemiological studies on 

how PAHs might harm child development, but most of the evidence of the effects of PAHs comes 

from in-vitro studies of embryonic rodent cells, which have shown that PAHs are potentially 

mutagenic (Lovasi et al., 2014; Margolis et al., 2016; Perera et al., 2009) or from associational 

studies that have found increased PAH exposure is associated with increased cases of asthma 

(Karimi, Peters, Bidad, & Strickland, 2015) and attention deficit hyperactivity disorder and 

learning disabilities (Abid, Roy, Herbstman, & Ettinger, 2014).  

Likewise, pollution shocks during the school year could impede human capital formation 

through several channels. Health effects may reduce attendance. Currie and colleagues found that 

high levels of carbon monoxide were associated with reduced school attendance under a 

difference-in-differences strategy accounting for persistent school and year effects (Currie, 

Hanushek, Kahn, Neidell, & Rivkin, 2009). Ransom and Pope (1992) similarly found a 

relationship between pollution and school attendance, with more small particulate matter in the air 

associated with more absences. Second, early exposure could affect a child’s development in ways 
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that could persist even after the child is removed from a high-pollution environment. Finally, 

pollution could cause short-term cognitive and health disruptions in either children or teachers 

during the school day that could affect performance and accumulate over the course of the school 

year. There is growing evidence in the economic literature that pollution has short-term impacts 

on cognition, productivity, and behavior. Chang et al. (2016a, 2016b) use hourly variation to show 

that increased exposure to fine particulate matter decreases productivity per hour of pear packers 

and call center workers, while Archsmith, Heyes, and Saberian (2018) showed that baseball 

umpires make more mistakes on days with higher pollution. 

School districts and parents are often unaware of the health risks of highway pollution, 

particularly because there are not many studies of the effects of air pollution from traffic on 

childhood health and achievement. In addition to shedding light on the causal relationship between 

traffic pollution in schools and child outcomes, this paper presents a timely evaluation of the effects 

of locating schools near highways.  

III.  Identification Strategy 

Baseline Difference in Differences Design 

 Naïve correlations between air pollution and academic outcomes cannot be interpreted as 

causal because pollution exposure is not randomly assigned. To disentangle the effects of pollution 

exposure from other factors that could influence child outcomes, we follow children over time, 

and compare their outcomes as they transition from elementary/middle school to middle/high 

school when both schools are near a highway, but where some schools are upwind and others are 

downwind of the highway. By including individual, grade, year, and zip code fixed effects in our 

regression models, our strategy can be thought of as a type of difference-in-differences approach: 
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we compare within-child differences in an outcome before versus after changing schools for 

children who attend an upwind relative to downwind school in the same zip code.  

We define a major highway as a US interstate or US highway and their immediate feeder 

routes.4 Pollutants from car/truck exhaust can be blown hundreds of meters by the wind from such 

highways, particularly NO/NO2 and ultrafine particles (UFP); the maximum distance we would 

expect pollutants to be blown is about 0.4 miles (Karner, Eisinger, & Niemeier, 2010).5 In a 

supplementary analysis, we use EPA data to directly document that pollution is elevated downwind 

of major highways in Florida. We thus limit our sample to only schools within 0.4 miles from the 

highway to ensure that our treated and control schools are similar in unobservable characteristics 

that might differ between schools near and far from a highway. This is the same as the cutoff in 

Anderson (2015), who found similar housing prices on either side of highways in Los Angeles, 

while the downwind side of the highway had higher pollution and higher mortality among the 

elderly6.  

 
4 In our baseline specification we use FDOT shape files that have defined road segments along 

each highway. In a few cases, such road segments extend beyond the official designation to include 

main feeder roads that we also include as a “highway” in our sample. We get similar results when 

excluding these roads.  
5 A recent meta-analysis found that nitrogen oxide (NO and NO2) blows up to 565 meters (0.35 

miles) and ultrafine particles (UFP, defined as particulate matter 0.1 micrometers or less in 

diameter) blow up to 910 meters (0.57 miles) downwind (Karner, Eisinger, & Niemeier, 2010). 

Particulate matter 10 micrometers or less in diameter (PM10) and ozone travel only 0.12 miles 

based on wind direction, while fine particular matter that is 2.5 micrometers or less in diameter 

(PM2.5) does not vary substantially relative to background levels based on wind direction and 

distance from highway (Karner et al., 2010). Other studies find that traffic pollution potentially 

travels further when pushed by wind. Currie and Walker (2011) examined exposure within 1.12 

miles, and recent work suggests that even 2 miles is possible in some cases 

(http://newsroom.ucla.edu/releases/air-pollution-from-freeway-extends-93857). We limit our 

analysis to 0.4 miles to remain conservative and to not compare schools near a highway to those 

that are further away.  
6 We also find null effects of wind direction on observable pollutants in our sample when we 

include pollutants more than 0.4 miles away in our sample. 

http://newsroom.ucla.edu/releases/air-pollution-from-freeway-extends-93857
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We classify a school as downwind if the wind consistently blows across the highway and 

towards that school; we elaborate on the definition below. Figure 1 illustrates our analytical 

strategy. In Panel A, the bold gray line represents a major highway in an anonymized part of the 

state. The gray dots represent schools. If the dominant wind pattern blows east to west in this part 

of the state, schools to the left of the vertical major highway will be exposed to additional pollution. 

Schools to the right of the highway, though still exposed to similar traffic, noise,7 or other 

characteristics that come with being proximate to a major highway, will receive substantially less 

pollution exposure. Students who attend a school upwind in, say, elementary school move to a new 

school when they switch from fifth to sixth grade. If that middle school is downwind of a major 

highway, that student is now treated, and the analysis compares their outcomes before and after 

treatment within the same zip code relative to students who move between schools and don’t 

change their up/downwind status. Panel B of Figure 1 displays the distribution of interstates and 

US highways across Florida.  

To implement this design, we limit the sample to just those students who either attend 

elementary school in fifth grade before moving to a middle school in sixth grade or those who 

attend a middle school in eighth grade and then move to a high school in ninth grade. The 

estimating equation is: 

(1)  𝑌𝑖𝑔𝑗 = 𝛽0 + 𝛽1𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑔𝑗 + 𝑆𝑔𝑗𝜔 + 𝐷𝑗𝛾 + 𝑋𝑖𝑔𝜌 + 𝜃𝑖 + 𝜏𝑔 + 𝛿𝑗 + 𝜀𝑖𝑔𝑗 

where 𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑔𝑗 is some measure of prevailing wind direction faced by school j attended by 

student i in grade g and 𝛽1 is the coefficient of interest for the effect on some outcome (𝑌𝑖𝑔𝑗) of 

being downwind. 𝜃𝑖 is an individual fixed effect to account for time-invariant student-level 

characteristics, 𝜏𝑔 is a grade fixed effect to account for any grade-specific effects, and 𝛿𝑗 is a zip-

 
7 Noise from traffic pollution does not vary significantly with wind direction (Allen et al., 2009).  
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code level fixed effect to account for constant zip-code level characteristics in schools over time. 

Zip codes in Florida are typically small and subsume school districts8, helping to absorb sorting 

by school district. The vector 𝑆𝑔𝑗 controls for time-varying school characteristics (percent Black, 

percent Hispanic, average maternal education by school, percent of children from married families, 

percent of teachers with a master’s degree, school size in 100’s of students, and the school’s 

stability rate9). The vector 𝐷𝑗 controls for two time-invariant school characteristics related to 

location: a vector of 0.1-mile-bin distance dummies measured from the nearest highway (0-0.1 

miles, 0.1-0.2 miles, 0.2-0.3 miles, and 0.3-0.4 miles) and a linear control for number of highways 

within a one-mile radius.10 The vector 𝑋𝑖𝑡 controls for time-varying individual characteristics: free-

and reduced-price lunch (FRL) status, year dummies, and an indicator for whether the student 

moved to a new school that year.11 The coefficient 𝛽1 on 𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑔𝑗 captures the differential 

change in test scores for a student who moves to a middle (high) school with a different prevailing 

wind direction relative to one who moves but whose school’s wind direction does not change. In 

our baseline model we cluster all standard errors at the school level. 12 

The drawback of this approach is that we can only estimate effects for those who change 

their exposure status from fifth to sixth grade or eighth to ninth grade. We thus re-estimate equation 

(1) for all students in all grades and show these results in the Appendix. Here, the coefficient 𝛽1 on 

 
8 School districts in Florida are synonymous with counties.  
9 The stability rate is defined as the percentage of students in October who are still present in the 

February membership count. 
10 The count of roads provides an estimate of the density of roads in the area. Using the one-mile 

distance balances between not being collinear with number of nearest roads in our “downwind” 

model, with still capturing urban density.  
11 Our key coefficient therefore directly estimates the effect of moving downwind independent of 

the effect of moving. 
12 We show that this choice is robust to other reasonable clustering schemes in Appendix Table 

A5.  
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𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑔𝑗 captures the change in test scores for a student who moves to any new school (for 

whatever reason) with a different prevailing wind direction relative to one who moves, but whose 

schools wind direction does not change.  

We make two main identifying assumptions. First, we assume that after implementing our 

difference-in-differences model there are no factors other than differences in pollution levels that 

affect child outcomes when students transition to downwind schools. For example, any 

identification strategy that relies on student moves might be biased if families select into moving. 

All of our models employ student fixed effects to account for any constant student ability or other 

constant family characteristics. However, results would still be biased if students who will, for 

unobserved reasons, have lower test scores in a given year systematically move to downwind 

schools. To help avoid such potentially choice-driven moves, we focus on changes between 

schools that occur as part of the “policy-induced” transition of graduating from elementary schools 

that feed into a middle school or from middle schools that directly feed into high schools. These 

students did not choose to move when their trajectories were changing; instead, their move was 

determined by district policy. In addition, we test for sorting and school quality differences in 

several ways. For example, we show a balancing test in which we regress various school quality 

indicators on our main predictor variables. These results suggest that children who switch schools 

are switching to schools with similar characteristics as the ones they previously attended. We also 

perform a large number of additional tests for sorting into schools shown in section V.D and V.E 

below. 

Second, we assume that in the absence of switching to a downwind or upwind school, other 

school switchers (to schools of the same downwind status) can serve as a valid counterfactual over 

the same time period. Estimations of equation 1 above will be biased if students who transition 
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to/from a downwind school are on a different trajectory relative to their peers who did not make 

such a transition. We directly test for differential trends between treated and control students using 

an event study design. Because estimating event studies requires defining a discrete move from an 

upwind to a downwind school (or the reverse) and looking only at students who have non-missing 

test scores over a balanced panel, the samples and specifications are slightly different from our 

main model. We discuss our exact methodology for the event study in detail in the data appendix. 

The treatment that we measure is a student attending a school that is downwind. This makes 

it difficult to separate the direct impact of individual level student pollution exposure from the 

impact of attending a school that has had longer-term high-level exposure to pollution. It is 

therefore important to interpret our baseline reduced form results as capturing the casual effect of 

both student pollution exposure and of attending a school that has had extended pollution exposure.  

Finally, the results may be biased towards zero if exposure effects are long-lasting. For 

example, even after a student moves from a downwind school to an unexposed upwind school, the 

student might continue to have lower academic performance because of the permanent damage 

pollution might have done (e.g. if the student gets asthma, they will have it for life). This scenario 

would bias our estimates towards zero, so we will explore the differences in to-upwind versus to-

downwind moves in detail below.  

Downwind Status 

 Essential for the estimation of equation (1) above is that we assign prevailing wind 

direction to schools. We construct proxies of prevailing winds from high frequency, hourly wind 

data in 2010 using only hours that occur during the school day. At the hourly level, we define a 

school j as downwind of a given highway if the wind direction blows within 45 degrees of a ray 
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running from the nearest point on the highway to the school.13 That is, school j is downwind of the 

rth nearest major highway segment in hour h, it would be considered downwind in that hour, as 

follows:   

(2)  𝐷𝑜𝑤𝑛𝑑𝑤𝑖𝑛𝑑𝑗𝑟ℎ = {
|𝑟𝑎𝑦𝑗𝑟 − 𝑤𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑗𝑟ℎ| < 45°

|𝑟𝑎𝑦𝑗𝑟 − 𝑤𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑗𝑟ℎ| ≥ 45°
= 1
= 0

 

We proxy all other years of data with the 2010 data because the 2010 wind data has substantially 

more functioning wind monitors. There were many fewer wind monitors in the early years, so we 

lack the power to reliably use annual variation in wind direction. Further, there were many more 

anomalous and missing wind direction readings for the wind monitors that we did have in the 

earlier years, making us concerned that using this data will add significant noise to our estimates. 

Finally, wind monitors were being non-randomly added in geographic areas over time in a way 

that could be correlated with observed demographics in Florida. We are therefore concerned that 

using an unbalanced panel of wind monitor could introduce bias into our estimates. We do check, 

with the wind monitor data we have, that wind direction is consistent across years; for instance, 

the correlations between our annual wind direction measures in 2010 and 2012 is 0.81.  

Some schools are near multiple major highways. Taking r = 1-5 highway segments, we 

take the maximum of 𝐷𝑜𝑤𝑛𝑑𝑤𝑖𝑛𝑑𝑗𝑟ℎ to obtain 𝐷𝑜𝑤𝑛𝑑𝑤𝑖𝑛𝑑𝑗ℎ, a measure of whether a school is 

downwind of at least one of the nearest five major highways in a given hour. We then collapse the 

data over the year to obtain 𝐷𝑜𝑤𝑛𝑑𝑤𝑖𝑛𝑑𝑗, which provides the percent of time a school is 

downwind from any nearby major highway over the course of the year. For our first measure of 

wind direction, we create a binary variable to delineate treated from non-treated schools, using a 

cutoff of 60% of time downwind. We originally chose the cutoff of 60% in our study to capture 

 
13 A road segment is a continuous portion of road with uniform characteristics as defined by the 

Florida Department of Transportation in their highway shape files.  
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schools that are downwind a large amount of the time and therefore get the most consistent 

exposure to pollution over the school day. Further, by focusing on schools that are downwind a 

high proportion of the time we make it more likely that students are regularly exposed throughout 

the day, as there is likely variation over the school day, depending on school and student schedules, 

in terms of when pollution matters the most for learning and cognition.14 We test the robustness of 

this choice to other cutoffs empirically (see Figure 2) and find that outcomes are non-linear over 

percent of time downwind, with a drop in performance for schools downwind 60 percent of the 

time or more. From here on we refer to “downwind” as a school that is downwind 60% or more of 

the time and any other school as “upwind”, unless we explicitly say otherwise.  

Overall there are 59 downwind schools in our sample and 750 upwind schools. One 

concern is that we are comparing a large number of “control” schools to a relatively smaller 

number of treated schools. One way we address this concern is by showing a robustness test that 

limits the sample to “upwind” schools that are in the same zip code as the “downwind” schools. 

After removing the zip-codes that don’t directly contribute to our identifying variation 25% of the 

schools in our sample are downwind (46 out of 187 schools), and our results are robust to this 

specification.  

In addition, we also show all of our results using a continuous measure of wind exposure. 

We construct a variable that captures whether the average wind pattern blows directly at a school, 

directly away from a school, or in-between these extremes. Specifically, for each hour of observed 

 
14 Finally, 2010 is just one representative year, so focusing on schools that are downwind the 

majority of the time in 2010 makes it more likely that we are capturing prevailing winds. Further, 

as Figure A1 shows, there is fair amount of variation over time in wind direction and breaks from 

pollution exposure over the course of a day could provide respite. By focusing on schools that are 

downwind a high proportion of the time we make it more likely that students are regularly exposed 

throughout the day. 
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wind data, we calculate the difference in degrees between bearing from the school to the highway 

and the direction the wind is blowing at a school: 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗1ℎ = |𝑟𝑎𝑦𝑗1ℎ − 𝑤𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑗1ℎ |. 

We only calculate this from the nearest highway (r=1), as there is no obvious way to measure 

intensity across multiple nearby highways like we do with downwind status. Because we do not 

average across multiple highways, when using wind intensity, we exclude parts of the road 

segment that go onto feeder routes in order to focus on only major US highway and interstates, 

meaning our N is smaller in this analysis. After calculating intensity within an hour, we take the 

average over all hours (𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗1ℎ) and transform this to equal zero when the average degree is 

directly away from a school (completely untreated by the wind) and one when the wind is always 

blowing directly towards a school. This measure has the advantage of capturing more information 

about wind direction and variation in how directly the wind is blowing at the school as a measure 

of treatment intensity.  

IV.  Data Description 

 Our sample contains the universe of students who were born in Florida in 1992-2002 and 

attended a Florida public school within 0.4 miles of a major US highway in 1996-2012. The data 

came from the Florida Department of Education (FDOE). This administrative data provides rich 

demographic characteristics and student-level outcomes not typically available in the literature. 

We exclude virtual academies where the physical location of a school is unrelated to student 

pollution exposure, as well as adult education centers, schools for troubled youths and teen parents, 

schools for children with disabilities, and juvenile justice centers. We link this student-level data 

to comprehensive data on school characteristics from the Florida School Indicator’s Report (FSIR) 

and the National Center for Education Statistics (NCES), Florida highways shape files and traffic 

monitor data, and Florida wind monitor data.  
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Our primary outcome of interest is individual-level scores on the annual Florida 

Comprehensive Assessment Test (FCAT) in math and reading. Students took the FCAT in math 

and reading in grades 3 to 10 in 2001 through 2012, and we take the average of the two test scores.15 

We also examine two additional outcomes: whether the student was written up for a behavioral 

incident during the year and the annual absence rate for students on a zero to one scale. FDOE 

data includes individual-level characteristics such as race, ethnicity, gender, and free- or reduced-

price lunch (FRL) eligibility.16  

Highway Data 

 We link schools to the nearest major highway using road data from Florida Department of 

Transportation (FDOT), which maintains geo-coded files on the location and traffic density of 

large roads in Florida. We use the files from 2010, as there is little change in these roads from year 

to year. Each major highway is subdivided into smaller segments. The segment length varied from 

74 feet to 29 miles, with a mean of 3.3 miles and a median of 2.0 miles. For matching roads to 

schools, we subdivide these road segments into a series of points that are a maximum of 0.1 miles 

apart. We match each school to its nearest five road segments using these points. Of the schools 

with at least one major highway within 0.4 miles, the average distance to the nearest road is 0.21 

miles. Fifty three percent of those schools have only one major road within 0.4 miles, 24 percent 

have two, 10 percent have three, and the remaining 12 percent have four or more.  

 
15 Scores are standardized by year and grade at the state level for each test, with a mean of zero 

and a standard deviation of one, and we average the math and reading scores by year to create one 

summary measure of academic performance. We take the average of the two scores rather than 

estimating them separately to reduce noise and guard against type 1 error from multiple hypothesis 

testing. When looking at these outcomes separately they both follow the same overall pattern in 

our data. 
16 Additional information about the data sets and construction of variables is available in the data 

appendix. 
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The FDOT calculates estimated average annual daily traffic (AADT) for each road 

segment. These counts are an annual measure that does not provide specific details on average 

traffic counts over the school year or school day. Likewise, there is not enough year-to-year 

variation in traffic to leverage within road segment changes in annual average traffic volume over 

time. We instead use 2010 AADT to stratify our estimates by traffic volume, and we consider this 

to be a rough proxy of additional pollution exposure due to more heavily trafficked roads. For 

major highway segments, the AADT ranged from 1,150 cars per day to 306,000 cars per day. In 

our sample, the mean AADT of student’s nearest road is 64,419 cars per day.  

Wind Direction  

To determine whether a school is downwind of a major highway, we use 2010 data from 

the U.S. Meteorological Assimilation Data Ingest System (MADIS), a part of the National Oceanic 

and Atmospheric Administration (NOAA). The 2010 data is the most complete year available that 

is within the time frame of education data. Each MADIS station includes wind readings once per 

minute, and we take the first observation per hour.17 There are 1,029 stations in the state of Florida, 

and we connect each school to its nearest station and assign it that station’s hourly wind data. We 

also match wind direction data to pollution monitor data which we discuss in detail in the data 

appendix. Across Florida winds vary substantially both within a 24 hour period and across 

geographic location (see Appendix Figure A1). 

Descriptive Characteristics 

Column 1 of Table 1 displays student-weighted average characteristics for all schools in 

Florida. Column 2 shows the same characteristics for all schools within 0.4 miles of a major 

highway, and Column 3 shows the average school characteristics for children who switch to 

 
17 We have also tried taking a random observation within the hour and the results are the same. 
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schools in sixth or ninth grade, for whom the downwind status of the school changes. Students 

attending schools within 0.4 miles of a highway are slightly more disadvantaged than children in 

Florida overall. They are more likely to have mothers who were not married at the time of birth, 

slightly more likely to be on free or reduced-price lunch, more likely to be Black, and less likely 

to be Hispanic. Overall, the children who switch to downwind or upwind schools are similar to 

other children attending schools within 0.4 miles of a highway on most characteristics, except for 

percent Hispanic, where they are more similar to the average for Florida.  

V. Results 

A. Main Results 

Table 2 presents our main results. The sample is based on our preferred specification with 

policy-induced movers to middle school (grades 5-6) and high school (grades 8-9); a version with 

all students in all years is available in Appendix Table A1. The first row of Panel A is the estimated 

effect for students when they are in a school downwind of a major highway 60% or more of the 

time, relative to those same students when they are not. Panel B shows results using our continuous 

intensity measure, which we interpret as the estimated effect of changing to a school with wind 

blowing entirely upwind (equal to zero when the wind from the nearest road always blows directly 

away from the school) to entirely downwind (equal to one when the wind from the nearest road 

always blows directly towards the school).  

 The different specifications present broadly similar results: being downwind of a major 

highway is associated with lower average FCAT scores, a higher likelihood of having a behavioral 

incident, and a higher absence rate. Attending a school that is downwind of a major highway is 

associated with 0.04 standard deviation decrease in scores, relative to attending a school that is 

not. There is a 4.10 percentage-point increase in the likelihood of having a behavioral incident and 
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a 0.54 percentage-point increase in the absence rate. Given that the average rate of absences in 

Florida schools is 5.6 percent, this is a 9.6 percent increase in the rate of absences from school. 

For the continuous measure, rotating wind such that a school is 10 percentage points “more” in the 

direction of the school is associated with a 0.014 standard deviation decrease in test scores. On 

this continuous measure, the effects are null for behavioral incidents and not statistically 

significant for rates of absence. Appendix Table A2 shows additional specifications for downwind 

status beginning only with a core set of fixed effects and controls, then gradually adding additional 

controls for school quality and demographic characteristics. If being downwind in our model was 

correlated to school characteristics due to student sorting or other reasons, we would expect the 

coefficient on downwind to change as we add these controls. We find similar results regardless of 

the specification.18   

As discussed above, we chose the 60% cutoff for downwind status because we believe 

schools who experience particularly consistent wind pattern exposure over the school day are the 

ones most likely to show detectable effects on student outcomes.19 Figure 2 directly tests this by 

presenting point estimates for average test scores using our main specification by the percent of 

time downwind, grouping schools into bins of downwind status: 0-20% of time downwind (the 

reference group), 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, or more than 70% of the time. The 

 
18 We did this for mean intensity as well, and the results are similarly robust to including different 

controls. Due to the large number of results in the paper, this is available upon request.  
19 For example, more variable wind patterns provide more breaks from pollution exposure during 

the school day so that learning is less disrupted. Another possibility is that there is a tipping point 

over which pollution exposure matters for academic performance. Compounding both of these 

issues is that measurement error in capturing the prevailing wind direction could downwardly bias 

estimates, and we are less likely to be capturing prevailing winds at low levels of percent of time 

downwind.  



20 

 

effects are close to zero at low- to mid-levels of time spent downwind, while those schools 

downwind 60-70% or more than 70% of the year have larger negative effects on test scores.  

The estimates based off of the policy-induced moves to middle/high school (Table 2) are 

somewhat larger than the magnitude of estimates using all students (Table A1), though the pattern 

of results is the same. Overall, our findings are consistent with moderately sized year-to-year 

effects of attending a school downwind on achievement. We discuss the economic significance of 

these magnitudes in the conclusion below. In the following sections, we use our preferred 

specification of using “policy-induced” moves unless otherwise stated.  

  A major concern with studies on pollution is that students will sort into schools, such that 

pollution is associated with poor performance but does not cause poor performance. However, 

there are many times where, within the same school district, students (or their parents) do not 

choose to move schools, but they instead moved into a new school due to district policy. 

Specifically, a student who graduates from elementary school (in grade 5) to middle school (in 

grade 6) will switch school locations. Without necessarily moving to a new home, some of these 

students move from an upwind to a downwind school, some move from a downwind to an upwind 

school, and some move within the same category. Therefore, we first test the validity of our results 

by showing an event study on the move from elementary to middle school. 20 This will make it 

transparent if those students who moved into a school with a different prevailing wind direction in 

 
20 We focus on the move to middle school first because it is a relatively transparent way of showing 

pre-trends for one of the major sources of policy-induced variation in the study. Further, there is a 

longer viable pre-period for this group due to a longer continuous period of elementary school than 

those moving from middle to high school. For the move from middle to high school there are fewer 

older students in the sample because tests end at grade 10, and they move more frequently, so we 

do not have enough statistical power to estimate an event study of substantial length on this move 

after balancing the sample. However, we do show an “all movers” event study in the appendix.  
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6th grade were on a different trajectory in achievement. Furthermore, the associated graphs help us 

understand how outcomes change relative to the timing of exposure to pollution.  

Figure 3 focuses on two groups: those who move from a downwind elementary school to 

an upwind middle school from fifth to sixth grade (“To upwind”) and those who move from an 

upwind elementary school to a downwind middle school from fifth to sixth grade (“To 

downwind”). We estimate the effects such that they are relative to grade 5. See the data appendix 

for more details on our event study methodology.  

 Several key patterns stand out. First, we see a relatively flat pre-trend in FCAT scores for 

both groups across grades 3-5. Second, scores drop sharply when students move to a downwind 

school in grade 6. Third, while there seems to be a slight increase in scores for students moving 

from a downwind to an upwind school, the impact is small and statistically insignificant. One 

explanation for this pattern is that the effects of pollution exposure may be persistent beyond the 

period of direct exposure. This would be the case if exposure to pollution in earlier grades has 

persistent effects on either cognition or skill acquisition that last even after pollution is alleviated. 

We also see a similar relatively flat pre-trend and sharp increase in behavioral incidents, with a 

more distinct effect of moving from downwind to upwind. Finally, the pre-period is mostly flat for 

percent of time absent, though there is a decline in absences in fifth grade followed by a sharp 

increase for those moving into a downwind school. We see a similar pattern if we instead use all 

students rather than our policy-induced movers (shown in appendix figure A2).21  

 
21 Appendix Figure A2 presents results for using variation from all moves for students who move 

from an upwind school (year -1) to a downwind school (year 0) in any grade (i.e., not only those 

students transitioning from elementary to middle school). Here, we see similar patterns for test 

scores and behavioral incidents. The pre-trends are slightly noisier but still relatively flat in the 

grades before the event with a sharp and persistent change in these outcomes as students move 

downwind. The pre-trends are not as flat for absences. We take these event studies as evidence 
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B. Annual versus Testing Week Pollution Exposure 

 Prior research finds that testing-day pollution exposure affects test performance (e.g., 

Ebenstein et al., 2016; Marcotte, 2017; Roth, 2016). In this section, we use our detailed wind data 

to assess this pattern, as well as test whether prevailing school year or testing week pollution better 

explains achievement outcomes. Though the designation of downwind status is static for each 

school for the annual variation, we can use the changing timing of the testing dates to examine 

whether testing-week-specific affects also drive results (Heissel & Norris, 2018). We do not show 

the same test on behavioral incidents or absence rate, as the test-week fluctuations should not 

change these annual measures.22  

 As in the main analysis, we use the 2010 data as a proxy for all years; that is, the annual 

exposure for a given school is the same across all years and variation comes from students moving 

across schools. We proxy testing week exposure using the 2010 wind data by creating a downwind 

measure based only on the specific two-week period of testing for each year.23 Here, variation 

comes from both student moves and changes in the testing time. Not every school has wind data 

available to create this testing-year-specific downwind measure, so the N in this analysis is smaller 

than the main results.  

 Table 3 displays the results. Column 1 repeats the main specification on the subsample 

limited to schools with wind data available during the testing week. Column 2 instead only includes 

 

that differential trends between students who move downwind (or upwind) and those who do not 

change treatment status are not driving our results. 
22 We have examined these measures, and we find that test-week wind variation does not affect 

these outcomes after conditioning on annual variation, as would be expected. Results are available 

on request. 
23 While we get similar results using the annual data on wind patterns during testing weeks we are 

concerned about selection in where the wind monitors are set up over time, so we instrument one 

year of data over other years.  
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a measure of downwind status at the testing-week level. Finally, Column 3 includes both measures 

to test whether annual or testing week variation in pollution exposure more strongly predicts FCAT 

scores. We repeat this exercise for downwind status defined by being downwind 60% or more of 

the time (Panel A) and by our wind intensity measure (Panel B).  

 Focusing on Panel A, we replicate our finding that students in schools downwind 60% or 

more of the time over the course of the year have 0.04 standard deviations lower scores, relative 

to when they are in upwind schools. Moving to column 2, we find that attending a school that is 

downwind 60% or more during the testing week specifically leads to 0.02 standard deviations 

lower test scores, relative to testing weeks in other years when the student was not downwind. 

When we include both of these measures together, we find that the annual variation best predicts 

test score outcomes. Being downwind 60% or more of the time during the school year is associated 

with a 0.03 standard deviation decrease in test scores, while the testing-week-specific coefficient 

is small and statistically insignificant. In the intensity measure, the annual measure is almost twice 

the size of the test-week-specific measure of exposure. This suggests that continual exposure while 

students are learning has an impact that is two to four times greater than exposure on the day of 

the test.  

C. Effects by Subgroup   

 We next examine several potential subgroups of interest. Different socioeconomic groups 

may have different access to resources to ameliorate the effects of pollution exposure such as 

academic help for more affluent students. Conversely, advantaged students are less likely to be 

exposed to pollutants at home, potentially leading to a larger marginal impact of attending a 

polluted school. Table 4 examines our preferred estimation for several subgroups: by race/ethnicity 

(White, non-Hispanic, Panel A; Black students, Panel B; Hispanic students, Panel C); by frequency 
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that students identify as on free- or reduced-price lunch (always on FRL, Panel D; sometimes on 

FRL, Panel E; never on FRL, Panel F), and by gender (Panels G and H).  

White, non-Hispanic students and Hispanic students have larger FCAT and absence 

responses to pollution, whereas Black students have larger behavioral incident results. The largest 

test score effects are for the never-FRL students, with lower effects for the always-FRL students. 

The sometimes-FRL students fall between these groups. There is no statistical effect on behavioral 

incidents for the never-FRL students. The behavioral effects are large and statistically about the 

same between the sometimes- and always-FRL students, though the sometimes-FRL estimate does 

not differ from zero. The absence rate effect is driven by the sometimes-FRL students.  

There is no clear pattern of differences between boys and girls. Overall, these patterns 

suggest that the more-advantaged students are the most academically harmed by pollution 

exposure, while the less-advantaged are more likely to have behavioral incidents. While it is 

difficult to say for certain, this may be because disadvantaged students are already exposed to other 

sources of pollution. 

D. Testing for Sorting into Schools 

To test for sorting into schools, we first demonstrate that wind direction does not 

systematically predict school or student demographic characteristics. Figure 4 plots the 

relationship in raw means between the time a school spends downwind and several key school 

level characteristics. These figures show that spending more time downwind is not consistently 

associated with being negatively selected on observable socioeconomic demographic 

characteristics. If anything, being downwind a large amount of the time is associated with more 

students in married families and fewer black students, though the means are not typically 

statistically different from zero.  
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Table 5 shows a balancing test where we estimate equation 1 with various demographic 

characteristics as the outcome variable of interest regressed on our measures of downwind status. 

If within zip code sorting between schools is a problem after controlling for student fixed effects, 

we would expect it to be more of a problem in specifications where we leverage “any” move 

between schools rather than just the “policy generated” move to middle/high school. Therefore, 

we also show the balancing test in our supplementary specification where the coefficient on 

downwind status is identified off of “any” within student change. Overall the coefficients on 

downwind status in Table 5 are largely statistically insignificant, except for a few cases. This 

pattern is consistent with type 1 error. The coefficients are also of mixed signs relative to being 

associated with lower socioeconomic status characteristics. We also see no effect of wind status 

on the accountability grade Florida assigns the school (column 9). While attending a downwind 

school lowers test scores, the effects are not large enough to drive changes in high-stakes 

accountability tests: one of the key signals of school quality that families use. Finally, the 

coefficient on many of the most important covariates related to socioeconomic status are small and 

relatively precisely estimated. For example, in the “maternal education” regression the coefficient 

on being “downwind” is only .02 out of an average of around 12 years of mother’s education. The 

lower bound of the 95% confidence interval suggests that at most being downwind decreases 

mother’s education by a 0.1 of a year of education.24 

The above test is consistent with sorting based on pollution being less of an issue with 

sorting into schools than residential sorting into neighborhoods. Selecting into schools based on 

 
24 Another key indicator of socioeconomic characteristics if the fraction of FRL students. Here 

the coefficient suggests that being downwind causes the percent of FRL students to decline by  

1% (out of a mean of 67%). The standard errors are such that we can rule out that being 

downwind increases the percent of FRL students by more than 0.8%.  
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traffic pollution is also less likely than some other forms of pollution because small pollutants such 

as CO, UFP, and nitrogen oxides are not perceptible by human senses and are only detectable with 

scientific equipment. Larger, more perceptible particles do not disperse as far from highways. 

Finally, due to the coastal wind patterns and the peninsular shape of the state, prevailing winds 

tend to shift during the school day relative to the evening. Thus, even if a school is downwind over 

the course of a school day it does not necessarily mean the neighborhood it is located in itself is 

systematically downwind.  

Zip code fixed effects help account for student sorting between zip codes. Our balancing 

test shows that within zip codes schools are similar based on observable demographic and quality 

characteristics, and the event study shows that treatment and control students are on comparable 

trajectories. That being said, we recognize that it is still possible that students could be sorting into 

schools or that prevailing wind direction could otherwise be endogenous, and we perform a number 

of tests to address this concern.  

One serious remaining concern is that our results could be driven by within zip code 

sorting. We can formally test this by dropping all zip codes in which there are choices between 

elementary/middle/high schools in terms of being downwind 60% or more of the time. We begin 

by dropping all the control zip codes without at least one downwind school. Of the remaining we 

drop all those in which there are choices between elementary/middle/high schools that are both 

upwind and downwind. This limits the geographic coverage of our sample such that external 

validity is a concern, but an advantage of this approach is that now our results are exclusively 

identified off of cases where there is no room, within our observed sample, for within zip code 

sorting. Table 6 shows these results. The negative effects of attending a downwind school are 

larger than our baseline results and statistically significant, with a -0.08 standard devation impact 
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on test scores. There are also larger effects on behavioral incidences and absences. However, the 

standard also errors are roughly double, making it unclear if the estimates are substantially 

different from our core results. Importantly, if within zip code sorting was driving our results we 

would expect to see smaller effects in this sample with few attendance choices.  

In a related test, we drop all zip codes without at least one downwind school to address 

concerns that the “downwind more than 60% of the time” variable is comparing a large number of 

control schools to a small number of treated schools.25 Results are in appendix Table 3 and are 

largely similar to our core results using downwind status. We also show our results are robust to 

dropping the most mobile students who we observe transitioning to schools between zip codes in 

Column 4 of Table 7, which we discuss in additional detail below.  

E. Additional Robustness Checks 

If our results are driven by traffic pollution, we would expect students to do worse if they 

are downwind of more heavily-trafficked roads. We operationalize this by examining the impact 

of being downwind of the road nearest to the school (r=1) in order to categorize schools by traffic 

volume. We then estimate our main model replacing the “downwind more than 60%” indicator 

with interactions between this indicator and three different AADT bins. We also include the un-

interacted bins as controls.26 Figure 5 plots the coefficients on these interactions. The estimates 

indicate that being downwind of the lower-traffic-volume roads has no statistical effect on FCAT 

scores: the point estimate is positive but statistically insignificant. The coefficient for being 

downwind of middle-traffic road is close to zero. There is a large effect of being downwind of the 

 
25 Once we drop these zip codes roughly 25% of the schools in the sample are downwind.  
26 The AADT bins we use are <50,000 average cars per day, 50,000-75,000 average cars per days, 

and >75,000 average cars per day.  
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highest-volume roads, and this effect statistically differs from the lowest-volume estimate (p-value 

of interaction=0.011). Overall, the main effects appear to be driven by the highest-trafficked roads.  

 We next perform a series of placebo tests to provide additional evidence that our results 

are not spurious. These placebo tests also guard against a related concern that, in spite of employing 

difference-in-differences, our estimates are somehow capturing the negative effects of changing 

schools.27 Here we keep a students’ timing of school changes the same but randomly assign 

downwind sixty percent of the time status and wind intensity at the school level.28 We then re-run 

our primary specification with these placebo treatments. The results of this specification are 

presented in Table A3, and we find no statistically significant placebo effects. 

 Table 7 runs a number of additional robustness tests across our models using the average 

FCAT outcome to address a variety of concerns. The first column of Table 7 is a replication of the 

results from Table 2. The second column tests that noise or other highway related contaminants 

(such as kicked up dust) that travel short distances from highways due to wind direction are not 

driving the results. We do this by dropping schools within 0.3 miles of the highway. The results 

do not substantially change after dropping these schools. Column 3 presents results from a placebo 

test where we replace our “downwind” measure with an indicator variable equal to one if the wind 

is blowing parallel along the road segment sixty percent or more of the time. This should capture 

if there any effects related to strong prevailing winds in a location that is not directly associated 

with increased pollution exposure; however, the coefficient on test scores is small and not 

statistically significant.  

 
27 As another test against this concern we also tried controlling for “moving school” dummies up 

to three years out. Our results were robust to this specification.  
28 For wind intensity we draw from a uniform distribution. For downwind status we draw percent 

of time downwind from a uniform distribution and create an indicator for being downwind more 

than 60% of the time.  
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 One worry with the analysis is that parents are moving their children in ways systematically 

related to achievement, even within the same school district. Though we do not know where 

students live, we know their school address, and in Column 4 we limit the sample to only students 

who stay in the same zip code in our observed data. Here, any differences cannot be driven by 

differential effects on cross-zip movers at any point through the end of high school. Here, we have 

lower power due to a lower N. The estimate for being downwind more than 60% of the time is 

larger in magnitude, while the estimate for the intensity measure is smaller.  

  Another concern with our analysis is that the long-run equilibrium of downwind schools 

is worse than in upwind schools, such that the downwind effect is actually a combination of 

pollution effects and negative peer effects. Although this would not change the policy implication 

that downwind schools are bad, it would be an important caveat in interpreting our results. We test 

this, as best as we can, by controlling for peer test scores as a “bad control”. Specifically, when we 

add the average FCAT results for each school-year as a control in Column 5, the results do not 

change from the main specification, suggesting that it is pollution and not peer test scores that are 

driving our results.29 Another point of evidence in support of this interpretation is that our estimates 

are roughly similar to estimates to pollution on test scores in other contexts (Marcotte, 2017; 

Persico & Venator, 2018).   

As a final robustness check we examine different ways of clustering our standard errors. 

While we cluster our baseline results on school as the level of treatment, correlations in the error 

term across geography or over time could result in our estimated standard errors being too small. 

Appendix table A5 shows that our core results are robust to a range of different clustering schemes 

 
29 We recognize that average school-year FCAT is arguably an endogenous control, but felt reassured that including 

it here did not change our results.  
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for average FCAT. We have tried different types of clustering on the other outcomes, and they 

follow a similar pattern (results available upon request). 

F. Pollution Estimates 

So far we have focused on the reduced form effects of being downwind of a major highway. 

We can also approximately examine the first stage of pollution. We cannot directly apply our 

model to estimate pollution exposure because we cannot track changes in student-level exposure 

over time. Instead, we use hourly EPA pollution monitor and hourly MADIS wind data to examine 

how much pollution increases when the monitor is downwind of a highway in 2010. Our preferred 

specification uses month and site fixed effects, such that the effect is interpreted as the level of 

pollution for times when a monitor is downwind of a major highway, relative to times when the 

wind blows such that the same monitor is upwind. In appendix B we provide more details on this 

pollution data and on our exact estimating equation.  

 We do not have measures for ultrafine pollutants which are known to both affect cognition, 

health, and travel farther distances than heavier particles based on wind direction. However, we 

have data on several heavier particles (PM10, CO, and NO2) that we would expect to exhibit similar 

patterns with a smaller distance traveled (Karner et al., 2010). We take logs of these three 

pollutants so we can interpret the coefficient as percent changes.30 We expect PM10 and CO to 

travel a maximum of about 0.12 miles, while NO2 might travel up to 0.34 miles on the wind 

(Karner et al., 2010). We also examine a pollution index that normalizes each of these individual 

pollutants to have a mean of zero and a standard deviation of one over all pollution monitors, and 

then takes the simple average for each site-hour observation. 

 
30 We get similar results when we use levels instead of logs.  
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Table 8 presents the results. We include pollution monitors within 0.4 miles of a highway 

(Column 1) to match our main specification and pollution monitors within 0.1 miles (Column 2) 

to focus on the likely distance traveled of the particular pollutants we have available in the data. 

While Column 1 has more observations, we expect Column 2 to more consistently estimate these 

pollutants. The rows of the various pollution types include results of both being downwind (at a 

given site in a given hour), and by the downwind intensity measure (based on the difference in 

degrees in wind direction and monitor location in a given site and hour).  

Broadly, across most measures, the table confirms the general pattern that being downwind 

increases pollution exposure. For instance, in the preferred 0.1 mile range, when a site is downwind 

of a major highway the pollution index increases by 0.187 standard deviations, relative to the hours 

of the day the site is not downwind. Moving from the wind blowing directly away from the monitor 

to directly at it in the wind intensity estimate increases pollution by 0.43 standard deviations. For 

the specific pollutants, PM10 increases by 11.2% when monitor is downwind of a major highway, 

CO increases by 8.9%, and NO2 increases by a statistically insignificant 7.8%. The results are in 

the same direction but smaller when we expand the radius to 0.4 miles.  

Very roughly, we approximate that downwind schools experience a 25% higher level of 

ambient traffic pollution in a day, relative to upwind schools.31 We can combine our reduced form 

student achievement estimates with the estimated impacts of being downwind on pollution to 

derive a “two stage least squares” type of parameter. Scaling our preferred estimate of a policy-

 
31 Students attending schools that are downwind 60% or more of the time are downwind on average 

76% of the time or 6.08 hours of the school day, whereas other students are only downwind 2.16 

hours (27% of the time). Therefore, “treated” students are downwind an average of 3.92 hours 

more than control students. Taking the pollution index measure of a 0.187 standard deviation 

increase in pollution, we calculate 0.187*3.92 = 0.73 standard deviations, or 25% of the pollution 

distribution applying the properties of a standard normal distribution. 
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induced move to a downwind school that has a 25% higher level of pollution, implies that 

increasing the ambient traffic pollution exposure of a school by 10%  per day over the course of a 

school year causes students who attend this school to experience a 0.016 standard deviation 

decrease in test scores.32 Similarly, a 10% increase in traffic pollution causes a 3.13 percentage 

point increase in behavioral incidents, corresponding to 14% of the mean. We can also 

approximate the additional exposure to ultrafine particulate matter using the atmospheric sciences 

literature. Based on estimates from the Karner et al. meta-analysis, schools downwind within 0.207 

miles of a highway (the average for our sample) would experience an increase in ultrafine 

particulate matters that is 2.5 times the background levels.  

VI. Conclusion 

 This is the first study, to our knowledge, to show negative academic effects of pollution 

related to traffic exposure during the school day. We leverage the microclimates that exist within 

zip codes and the policy-induced changes in school attendance for middle and high school to study 

how localized pollution exposure can harm school children. Using within-child variation in 

exposure, we show that children who move to a school downwind of a major highway have lower 

test scores and a higher likelihood of behavioral incidents and missing school than when those 

same children attended schools with similar characteristics that were not downwind of a major 

highway. The effects are larger for more heavily-trafficked roads, and the effects appear to last 

even after the child moves away from a downwind school. This suggests that once damage from 

pollution is done, even during middle childhood, it might persist, potentially affecting outcomes 

far into the future.  

 
32 Calculated by dividing a 0.040 standard deviation decrease in test scores and a 25 percent 

increase in pollution and then multiplying by 0.10.  
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 In addition, the magnitude of these effects are substantively important, especially when 

one considers that 6.4 million children (or about 12.6 percent of public and secondary school 

students) attend school within 250 meters of a major roadway. To put this in context, Chetty, 

Friedman and Rockoff (2014) find that a one standard deviation improvement in teacher quality 

increased test scores by 0.1 standard deviations. This suggests that removing exposure to local 

highway pollution would increase test scores as much as increasing teacher quality by 40 percent 

of a standard deviation. Our findings are about one fifth of the magnitude of the Tennessee STAR 

experiment (Krueger, 1999), which found that reducing class sizes from 22 to 15 students 

increased test scores by about 0.2 standard deviations.  

We can also use our estimates to evaluate the academic impact of environmental 

regulations that have decreased traffic emissions by applying our estimate that a 10% decrease in 

traffic pollution leads to a 0.016 standard deviation increase in scores. The EPA estimates 

increased auto and truck regulations as part of the Clean Air Act reduced traffic emissions by 70% 

between 1970 and 2015 (EPA, 2015), which implies a large 0.11 standard deviation increase in 

test scores.33 These estimates would suggest that the reductions in traffic pollution over the past 

three decades are on par with major education interventions in a way that has not been catalogued 

by EPA welfare estimates.  

There is reason to believe that our estimates are a lower bound on the true effects of 

highway pollution. For instance, our study’s findings are identified from children who attended 

school within 0.4 miles of a major road for at least two school years. While that includes about 

 
33 See https://www.epa.gov/clean-air-act-overview, last accessed on 7/23/2018. While we believe 

this provides one application for understanding our estimates, there are some caveats to 

interpreting our results in this way. Our parameter is estimated off of our specific natural 

experiment and more research would be needed to understand how to apply this more broadly.  

https://www.epa.gov/clean-air-act-overview


34 

 

36% of our study population in Florida, we do not include effects for children who move from 

schools very far from a major highway to being downwind of such a road. Conceivably, such 

children are exposed to less ambient pollution when they are farther away from roads, so the 

change in pollution exposure may be related to even larger effect sizes for them. However, 

selection issues prevent us from exploring this possibility further. We note, however, that our 

estimates show negative effects for all students. In addition, our results will be biased towards zero 

if the effects of pollution exposure are long-lasting. Then, even after a student moves from a 

downwind school to an unexposed upwind school, the student might continue to have lower 

academic performance. 

Our results also imply several important policy lessons. First, districts may want to consider 

the benefits of placing schools away from major highways. Districts may be unable to move 

already-existing schools, but compensatory measures such as air filtration systems may reduce the 

amount of in-school pollution exposure for schools located near highways (South Coast Air 

Quality Management District, 2013). Schools downwind of a major highway are not the only ones 

exposed to pollution, so these measures may be beneficial for schools in polluted areas more 

broadly. Finally, recent work by Chetty et al. (2014) suggests that there is a massive amount of 

heterogeneity across cities in intergenerational mobility. However, there is reason to consider that 

even within zip codes there are forces that create unequal outcomes due to, for example, the 

placement of schools. More broadly, pollution exposure is not evenly distributed across the 

socioeconomic spectrum. Given that low-income and minority students are more likely to be 

exposed to pollution and live near major roads, our demonstrated relationship between pollution 

and academic achievement may provide insight into why academic achievement gaps persist in 

the United States.  
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Tables 

Table 1: Characteristics of children within 0.4 miles of a highway  

  

(1)  

All children 

born in Florida 

(2) 

All children 

attending school 

within 0.4 miles 

of a highway  

(3) 

Children who change 

downwind status as they 

switch schools in 6th or 

9th grade within 0.4 

miles of a highway 

School size (in 100s) 9.59   8.79 9.53 
    

Percent of teachers with  0.315 0.314  0.308 

  an MA degree    

Percent of time free  0.517 0.590 0.604 

  or reduced price lunch    

Stability rate 0.940 0.935 0.931 

    

Percent black 0.224 0.330 0.360  
   

Percent Hispanic 0.240 0.206 0.252 

    

Average maternal education  12.37 12.15 12.20 

 
   

Percent mothers who are  0.643 0.549 0.536 

   married    

N Students 1,682,489 628,356 8,908 
Notes: Observations are at the student-school-grade level. Column 1 are the means for children who moved from a 

school upwind to downwind at least once; column 2 shows means for children attending school within 0.4 miles of a 

highway; and column 3 shows means for children who switch downwind status as they change schools in 6th or 9th 

grade (downwind status changes) within 0.4 miles of a highway. Standard deviations are below means in 

parenthesis.  
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Table 2: Impact of attending school downwind 

 (1) 

Average FCAT 

(2) 

Behavioral 

incident (0/1) 

(3) 

Rate of absence  

Panel A: Downwind more than 60% of the time 

 

Downwind more than 

60%  

-0.0400** 

(0.0167) 

0.0410** 

(0.0184) 

0.0054* 

(0.0028) 

    

Observations 273,592 237,987 234,907 

N students 107,635 94,464 93,385 

Mean of outcome 0.0189 0.143 0.056 

    

Panel B: Wind intensity 

 

Mean intensity, 0.1=10% 

from upwind 

-0.1368*** 

(0.0491) 

-0.0015 

(0.0549) 

0.0110 

(0.0082) 

    

Observations 234,323 203,425 200,995 

N students 92,788 81,264 80,388 

Mean of outcome 0.0189 0.143 0.056 
Notes: Each row and column shows results from a different regression. All models include grade fixed effects, zip 

code fixed effects, student fixed effects, year fixed effects, a grade-moved indicator, the number of highways within 

a mile, distance from nearest highway dummies, school demographic characteristics, other school-level 

characteristics (percent of teachers with a master’s degree, size, and stability rate), and whether the student was on 

FRL that year. Standard errors clustered on school are in parentheses. Coefficients of interest are an indicator 

variable for whether a student’s school was downwind 60% or more of the time or an intensity variable that 

increases by 0.1 if the wind blows 10 percentage points more directly at the school, on average. All models are 
estimated using only the “policy-induced” moves to middle/high school by dropping “K through 12” schools and 

limiting the sample only to students who change schools from fifth to sixth or eighth to ninth grade. 
*p < 0.1 ** p < 0.05, *** p < 0.01
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Table 3: Annual versus testing week variation on average FCAT 

 (1) 

Annual variation 

(2) 

Test-week variation 

(3) 

Annual and test-

week variation 

Panel A: Downwind more than 60% of the time 

 

Annual  -0.0408** 

(0.0183) 

NA 

 

-0.0348* 

(0.0194) 

    

Testing week  NA 

 

-0.0157* 

(0.0087) 

-0.0116 

(0.0092) 

Observations 218,397 218,397 218,397 

N Students 87,009 87,009 87,009 

    

Panel B: Wind intensity 

  

Annual  -0.1549** 

(0.0569) 

NA 

 

-0.1164* 

(0.0586) 

    

Testing week  NA 

 

-0.0720** 

(0.0229) 

-0.0572* 

(0.0235) 

Observations 190,444 190,444 190,444 

N Students 75,965 75,965 75,965 
Notes: Each row within a panel shows results from a different regression where average FCAT is the dependent 

variable. All models include grade fixed effects, zip code fixed effects, student fixed effects, year fixed effects, a 

grade-moved indicator, the number of highways within a mile, distance from nearest highway dummies, school 

demographic characteristics, other school-level characteristics (percent of teachers with a master’s degree, size, and 

stability rate), and whether the student was on FRL that year. Standard errors clustered on school are in parentheses. 

Panel A examines pollution exposed using the 60% or more definition of downwind; Panel B uses the wind intensity 

measure. Column (1) runs the main specification on the subsample with wind data available during the testing week, 

but defines downwind at the annual level. Column (2) defines downwind at the testing-week level. Column (3) 

includes both measures to test whether annual or testing week variation in pollution exposure more strongly predicts 

FCAT scores. All models are estimated using only the “policy-induced” moves to middle/high school by dropping 
“K through 12” schools and limiting the sample only to students who change schools from fifth to sixth or eighth to 

ninth grade.  
*p < 0.1 ** p < 0.05, *** p < 0.01
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Table 4: Effects by demographic subgroups 

 (1) 

Average FCAT 

(2) 

Behavioral incident 

(0/1) 

(3) 

Rate of absence 

Panel A: White, non-Hispanic students 

Downwind more than 60%  -0.0838*** 

(0.0267) 

0.0434* 

(0.0242) 

0.0237*** 

(0.0061) 

    

Panel B: Black non-Hispanic students 

Downwind more than 60%  -0.0030 

(0.0184) 

0.0567** 

(0.0260) 

0.0007 

(0.0112) 

    

Panel C: Hispanic students 

Downwind more than 60%  -0.0492** 

(0.0229) 

0.0248 

(0.0235) 

0.0110** 

(0.0049) 

    

Panel D: Always FRL students 

Downwind more than 60%  -0.0237 

(0.0166) 

0.0422** 

(0.0197) 

0.0094 

(0.0062) 

    

Panel E: Sometimes FRL students 

Downwind more than 60%  -0.0384 

(0.0237) 

0.0481 

(0.0309) 

0.0225*** 

(0.0082) 

    

Panel F: Never FRL students 

Downwind more than 60%  -0.0777** 

(0.0306) 

0.0163 

(0.0122) 

0.0030 

(0.0042) 

 

Panel G: Girls 

Downwind more than 60%  -0.0356** 

(0.0160) 

0.0491** 

(0.0214) 

0.0141*** 

(0.0045) 

    

Panel H: Boys 

Downwind more than 60%  -0.0449*** 

(0.0171) 

0.0341** 

(0.0164) 

0.0126* 

(0.0069) 
Notes: The panel indicates the subgroup stratified on. All models are estimated using only the “policy-induced” 

moves to middle/high school by dropping “K through 12” schools and limiting the sample only to students who 

change schools from fifth to sixth or eighth to ninth grade. All models include grade fixed effects, zip code fixed 

effects, student fixed effects, year fixed effects, distance from nearest highway dummies, a grade-moved indicator, 

the number of highways within a mile, school demographic characteristics, other school-level characteristics 

(percent of teachers with a master’s degree, size, and stability rate), and whether the student was on FRL that year. 
Standard errors clustered on school are in parentheses. *p < 0.1 ** p < 0.05, *** p < 0.01 
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Table 5: Balancing test 

 (1) 

School size 

(in 100s) 

(2) 

School 

stability 

(3) 

Fraction 

teachers 

with 

master’s 

degree 

(4) 

Fraction 

FRL 

students 

(5) 

Mean years 

of mothers’ 

education 

by school 

(6) 

Fraction 

black by 

school 

(7)  

Fraction 

mothers 

married at 

birth by 

school 

(8)  

Fraction Hispanic 

by school 

(9) 

School 

Accountability 

Grade 

Panel A: Main Specification Movers to Middle/High School 
          

Downwind 

more than 60% 

-0.1332 

(0.7228) 

-0.0013 

(0.0052) 

-0.0096 

(0.0164) 

-0.0115 

(0.0098) 

0.0278 

(0.0743) 

0.0070 

(0.0107) 

-0.0041 

(0.0048) 

0.0101 

(0.0181) 

0.0438 

(0.1327) 

Observations 284,508 284,508 284,508 284,508 284,508 284,508 284,508 284,508 273,294 

N students 111,623 111,623 111,623 111,623 111,623 111,623 111,623 111,623 107,727 

          

Downwind 

intensity 

4.9441* 

(2.6077) 

-0.0025 

(0.0285) 

-0.0920* 

(0.0486) 

-0.0261 

(0.0344) 

0.1248 

(0.1690) 

-0.0167 

(0.0334) 

-0.0118 

(0.0201) 

-0.0139 

(0.0357) 

-0.4799 

(0.5462) 

Observations 243,694 243,694 243,694 243,694 243,694 243,694 243,694 243,694 233,485 

N students 96,287 96,287 96,287 96,287 96,287 96,287 96,287 96,287 92,584 

 
Panel B: Balancing Test on “All Moves”  

          

Downwind 

more than 60% 

-0.3528 

(0.6003) 

0.0006 

(0.0051) 

-0.0119 

(0.0166) 

-0.0100 

(0.0088) 

0.0373 

(0.0596) 

0.0105 

(0.0096) 

-0.0037 

(0.0047) 

0.0053 

(0.0142) 

0.0447 

(0.1090) 

Observations 1,141,297 1,141,297 1,141,297 1,141,297 1,141,297 1,141,297 1,141,297 1,141,297 1,107,536 

N students 337,228 337,228 337,228 337,228 337,228 337,228 337,228 337,228 330,034 

          

Downwind 

intensity 

4.0820* 

(2.3678) 

-0.0014 

(0.0274) 

-0.0596 

(0.0410) 

-0.0427 

(0.0288) 

0.0875 

(0.1580) 

-0.0266 

(0.0272) 

-0.0127 

(0.0184) 

-0.0026 

(0.0312) 

-0.2385 

(0.4117) 

Observations 1,012,079 1,012,079 1,012,079 1,012,079 1,012,079 1,012,079 1,012,079 1,012,079 978,578 

N students 304,375 304,375 304,375 304,375 304,375 304,375 304,375 304,375 296,584 

Notes: Each row and column shows results from a different regression. Rows include downwind defined as an indicator variable for whether a student is in a 

school that is downwind of a major highway at least 60% of the time and the downwind intensity measure where an increase of 0.1 indicates a school is 10 
percentage points more downwind. Each column uses a different variable as an outcome to verify that treatment status is not related to observable characteristics. 

All models include grade fixed effects, zip code fixed effects, student fixed effects, year fixed effects, a grade-moved indicator, the number of highways within a 

mile, and distance from nearest highway dummies. The models also include the school-level characteristics, whether the student was on FRL that year, and 

school demographic characteristics, except when that variable is the outcome. Standard errors clustered on school are in parentheses. Panel A uses only the 

“policy-induced” moves to middle/high school by dropping “K through 12” schools and limiting the sample only to students who change schools from fifth to 

sixth or eighth to ninth grade. Panel B includes all students and moves. 
*p < 0.1 ** p < 0.05, *** p < 0.01  
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Table 6: Test for school sorting: including only zip codes without school choices near a 

highway 

 (1) 

Average FCAT 

(2) 

Behavioral incident 

(0/1) 

(3) 

Rate of absence 

Panel A: Downwind more than 60% of the time 

 

Downwind more than 60%  -0.0822** 

(0.0346) 

0.1629*** 

(0.0288) 

0.0156** 

(0.0052) 

Observations 8,335 7,497 7,412 

N Students 5,922 5,440 5,383 

    

Panel B: Downwind intensity 

 

Mean intensity, 0.1=10% 

from upwind 

-0.8553** 

(0.3390) 

1.5993*** 

(0.3036) 

0.1498** 

(0.0529) 

Observations 8,335 7,497 7,412 

N Students 5,922 5,440 5,383 
Notes: Each row and column shows results from a different regression. All models include grade fixed effects, zip 

code fixed effects, student fixed effects, year fixed effects, a grade-moved indicator, the number of highways within 

a mile, distance from nearest highway dummies, school demographic characteristics, other school-level 

characteristics (percent of teachers with a master’s degree, size, and stability rate), and whether the student was on 

FRL that year. Standard errors clustered on school are in parentheses. Coefficients of interest are an indicator 

variable for whether a student’s school was downwind 60% or more of the time or an intensity variable that 

increases by 0.1 if the wind blows 10 percentage points more directly at the school, on average. All models are 

estimated using only the “policy-induced” moves to middle/high school by dropping “K through 12” schools and 

limiting the sample only to students who change schools from fifth to sixth or eighth to ninth grade, only in zips 

where there is no “choice” on which type of school (upwind/downwind) a student attends in a given grade.  
*p < 0.1 ** p < 0.05, *** p < 0.01  
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Table 7: Additional robustness and validity tests for average FCAT 

 (1) 

Baseline 

model  

(2) 

Drop schools 

<0.3 miles from 

highways 

(3) 

Parallel 

wind 

placebo 

(4) 

Drop 

students 

changing 

school-

zips, grades 
5-10 

(5) 

Controlling 

for average 

FCAT by 

school 

Panel A: Downwind more than 60% of the time  

 
Downwind more than 60% of the 

time 

-0.0400** 

(0.0167) 

-0.0359** 

(0.0167) 

NA -0.0782*** 

(0.0245) 

-0.0387** 

(0.0163) 

Observations 273,592 230,653  53,662 273,592 

N Students 107,635 92,965  20,614 107,635 
       

Panel B: Downwind intensity 

 

Mean intensity, 0.1=10% from 

upwind 

-0.1368*** 

(0.0491) 

-0.1499*** 

(0.0527) 

NA 

 

-0.1149 

(0.0712) 

-0.1396*** 

(0.0486) 

Observations 234,323 196,027  48,392 234,323 

N Students 92,788 79,524  18,552 92,788 

      

Panel C: Winds blow parallel 60% of the time 

 
Winds blow parallel 60% of the 

time 
 

NA NA -0.0012 

(0.0134) 

NA NA 

Observations   230,653   

N Students   929,65   

Baseline model Yes No No No No 

Drop schools <0.3 miles from 

highways 

No Yes No No No 

Parallel wind placebo No No Yes No No 

Drop students changing school-

zips, grades 5-10 

No No No Yes No 

Controls for school-level FCATs No No No No Yes 

Notes: Each column and row represents results from a different regression with average FCAT as the dependent 

variable. Column 1 replicates our results from table 2. Column 2 drops schools within 0.3 miles of a road. Column 3 

is a placebo test replacing our wind exposure measure with winds blowing parallel to the highway 60% of the time 
or more as the variable of interest. Column 4 drops any student whose school changes zip codes in grades 5 through 

10. Column 5 adds controls for school-level FCATs. Otherwise, the regression includes all of the controls in our 

baseline models. Standard errors clustered on school in parentheses. *p < 0.1 ** p < 0.05, *** p < 0.01 
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Table 8: Pollution and Wind Direction 

 (1) 

Monitors within 0.4 

miles of road 

 (2) 

Monitors within 0.1 

miles of road 

Outcome 1: Pollution index  

Downwind  0.043** 

(0.022) 

 0.187*** 

(0.039) 

    

Mean intensity, 0.1=10% from upwind 0.060 

(0.038) 

 0.433*** 

(0.060) 

# of Observations 36,979  11,505 

    

Outcome 2: Log PM10  

Downwind  0.023 

(0.019) 

 0.112***   

(0.031) 

    

Mean intensity, 0.1=10% from upwind 0.034 

(0.034) 

 0.270*** 

(0.045) 

# of Observations 13,244  5,520 

    

Outcome 3: Log CO 

Downwind  0.049** 

(0.021) 

 0.089** 

(0.035) 

    

Mean intensity, 0.1=10% from upwind 0.083** 

(0.034) 

 0.175*** 

(0.066) 

# of Observations 13,966  2,777 

 

Outcome 4: Log NO2 

Downwind  0.047 

(0.035) 

 0.078 

(0.089) 

    

Mean intensity, 0.1=10% from upwind 0.106* 

(0.063) 

 0.641*** 

(0.169) 

# of Observations 5,805  590 

Month FE Yes  Yes 

Site FE Yes  Yes 

Total # of monitors 15  5 
Notes:  The data used in this table is 2010 hourly MADIS wind monitor data merged with hourly pollution monitor data for 

all monitors within 0.4 miles of a highway. Each row and column shows results from a different regression. Downwind is 

an indicator for the pollution monitor being downwind in that hour. Intensity is the direction the wind is blowing in that 

hour normalized to be 1 when blowing directly at the monitor and zero when blowing directly away. Within 0.4 miles there 

are five PM10 monitors, three NO2 monitors, and seven CO monitors. Within 0.1 miles there are two PM10 monitors, two 

CO monitors, and one NO2 monitors. Standard errors (in parentheses) are clustered at the site-date level.  
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Figures 

Figure 1: Identification of upwind and downwind schools 

Panel A Panel B 

 

 

Notes: Panel A is an anonymized map of a portion of Florida that shows the relationship of some of the schools in 

our sample (the blue dots) relative to a major highway (the solid grey lines). Panel B is a map created from the 

Florida Department of Transportation shape files showing the interstates (in black) and US highways (in gray) in 

Florida, which we define as “major highways” for the purpose of our research design.  
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Figure 2: Effects by percent of time downwind 

 

Notes: This figure shows the effect of percent of time downwind relative to a major highway on average FCAT for 

those moves generated by a “policy-induced” move to middle or high school. Each point plots the coefficient on a 

dummy for that bin of percent of time downwind. All models include grade fixed effects, zip code fixed effects, 

student fixed effects, year fixed effects, distance from nearest highway dummies, a grade-moved indicator, the 

number of highways within a mile, school demographic characteristics, other school-level characteristics (percent of 

teachers with a master’s degree, size, and stability rate), and whether the student was on FRL that year. 
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Figure 3: Sixth grade move event study by mover type 

 
 
Note:  This figure shows the effect of a “policy-induced” move out of fifth grade of a student transitioning either to 

or from a school that is downwind more than 60% of the time. The Y-axis plots interactions between being in a given 

grade and the type of mover. Being a student who does not switch wind status is the excluded group to avoid 

collinearity with the student fixed effects. All models include grade fixed effects, zip code fixed effects, student fixed 

effects, year fixed effects, distance from nearest highway dummies, a year-mover indicator, the number of highways 

within a mile, school demographic characteristics, other school-level characteristics (percent of teachers with a 

master’s degree, size, and stability rate), and whether the student was on FRL that year. See the text for more details. 
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Figure 4: School demographics over percent of time downwind 

  
Notes: This figure plots mean demographic characteristic for each school in our sample relative to its percent of time 

the school spent downwind of nearby highways. We fit a line to the data (the red lines), and plot its associated 

standard errors. Percent time spent downwind is based on 2010 wind monitor data matched with school location 

relative to the five nearest major highways.  
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Figure 5: Effects of being downwind 60% of the time by traffic 

 

Notes: This figure shows how our estimates vary based on the effect of being downwind of the closest road segment 

with varying levels of average annual daily traffic (AADT) counts. AADT data comes from 2010 FDOT traffic 

monitor data. The Y-axis plots the coefficients on the interaction between being downwind of a road segment with 

the stated AADT bin. This model include AADT bin dummies, grade fixed effects, zip code fixed effects, student 

fixed effects, year fixed effects, distance from nearest highway dummies, a grade-moved indicator, the number of 

highways within a mile, school demographic characteristics, other school-level characteristics (percent of teachers 

with a master’s degree, size, and stability rate), and whether the student was on FRL that year. All models are 

estimated using only the “policy-induced” moves to middle/high school by dropping “K through 12” schools and 

limiting the sample only to students who change schools from fifth to sixth or eighth to ninth grade.
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APPENDIX: FOR ONLINE PUBLICATION 

A: Additional Tables and Figures 

Table A1: Impact of attending school downwind, all students 

 (1) 

Average FCAT 

(2) 

Behavioral incident 

(0/1) 

(3) 

Rate of absence 

Panel A: Downwind more than 60% of the time 

 

Downwind more than 60%  -0.0168 

(0.0143) 

0.0384** 

(0.0188) 

0.0092*** 

(0.0035) 

Observations 1,094,430 961,448 953,242 

N Students 325,737 291,499 289,507 

    

Panel B: Mean intensity 

 

Mean intensity, 0.1=10% from 

upwind 

-0.0874* 

(0.0499) 

0.0673 

(0.0489) 

0.0011 

(0.0076) 

Observations 970,244 853,134 846,304 

N Students 293,916 263,163 261,380 
 

Notes: Each row and column shows results from a different regression. All models include grade fixed effects, zip 

code fixed effects, student fixed effects, year fixed effects, a grade-moved indicator, the number of highways within 

a mile, distance from nearest highway dummies, school demographic characteristics, other school-level 

characteristics (percent of teachers with a master’s degree, size, and stability rate), and whether the student was on 

FRL that year. Standard errors clustered on school are in parentheses. Coefficients of interest are an indicator 

variable for whether a student’s school was downwind 60% or more of the time or an intensity variable that 

increases by 0.1 if the wind blows 10 percentage points more directly at the school, on average. Sample includes all 
students in all years.  
*p < 0.1 ** p < 0.05, *** p < 0.01 
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Table A2: Effects under various models 

 (1) 

Controlling for 

only distance, 

number of roads 

and changing 

schools 

(2) 

Controlling for 

only distance, 

number of roads, 

changing schools, 

and school 

quality measures 

(3) 

Main specification  

Panel A: Average FCAT 

 

Downwind more than 

60% 

 

  

-0.0371** 

(0.0166) 

-0.0370** 

(0.0174) 

-0.0400** 

(0.0167) 

Observations 274,148 273,592 273,592 

N students 107,841 107,635 107,635 

    

Panel B: Behavioral incident (0/1) 

 

Downwind more than 

60%  

 

 

0.0413** 

(0.0184) 

0.0424** 

(0.0189) 

0.0410** 

(0.0184) 

Observations 238,546 237,987 237,987 

N students 94,655 94,464 94,464 

    

Panel C: Rate of absence 

 

Downwind more than 

60% 

 

  

0.0053* 

(0.0028) 

0.0053** 

(0.0027) 

0.0054* 

(0.0028) 

Observations 235,454 234907 234907 

N students 94,464 93,573 93,573 
Notes: Each row and column shows results from a different regression. All models include grade fixed effects, zip 

code fixed effects, student fixed effects, year fixed effects, a grade-moved indicator, the number of highways within 

a mile, distance from nearest highway dummies. Column 2 additionally controls for other school-level 

characteristics (percent of teachers with a master’s degree, size, and stability rate), and whether the student was on 

FRL that year. The final column is our primary specification and additionally controls for school demographic 

characteristics. Standard errors clustered on school are in parentheses. Coefficients of interest are an indicator 

variable for whether a student’s school was downwind 60% or more of the time. Sample includes only students in 

the years of policy-induced moves in grades 5, 6, 8, and 9. 
*p < 0.1 ** p < 0.05, *** p < 0.01 
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Table A3: Robustness to dropping zip codes without at least one downwind school 

 (1) 

Average FCAT 

(2) 

Behavioral incident 

(0/1) 

(3) 

Rate of absence 

Downwind more than 60%  -0.0460** 

(0.0172) 

0.0385** 

(0.0186) 

0.051 

(0.0034) 

Observations 16829 14912 14687 

N Students 7050 6293         6216 

Notes: Each row and column shows results from a different regression. All models include grade fixed effects, zip 

code fixed effects, student fixed effects, year fixed effects, a grade-moved indicator, the number of highways within 

a mile, distance from nearest highway dummies, school demographic characteristics, other school-level 

characteristics (percent of teachers with a master’s degree, size, and stability rate), and whether the student was on 

FRL that year. Standard errors clustered on school are in parentheses. Coefficients of interest are an indicator 

variable for whether a student’s school was downwind 60% or more of the time. All models are estimated using only 

the “policy-induced” moves to middle/high school by dropping “K through 12” schools and limiting the sample only 

to students who change schools from fifth to sixth or eighth to ninth grade. 
*p < 0.1 ** p < 0.05, *** p < 0.01 
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Table A4: Placebo test – random assignment of wind direction 

 (1) 

Average FCAT 

(2) 

Behavioral incident 

(0/1) 

(3) 

Rate of absence 

Panel A: Downwind more than 60% of the time 

 

Downwind more than 60%  0.0016 

(0.0020) 

-0.0012 

(0.0020) 

0.0005 

(0.0003) 

Observations 276,905 240,951 237,845 

N Students 108,686 95,439 94,352 

    

Panel B: Mean intensity 

 

Mean intensity, 0.1=10% 

from upwind 

0.0039 

(0.0033) 

-0.0006 

(0.0032) 

0.0005 

(0.0005) 

Observations 276905 240,951 237,845 

N Students 108,686 95,439 94,352 
Notes:  Each column and row represent results from a different regression. All random variables are assigned using a 

uniform distribution. For the “Downwind more than 60%” rows we randomly assign % of time downwind between 

zero and one, and then create an indicator for being downwind more than 60% of the time. For “intensity” we 

randomly assign each school an average wind intensity level. All models include grade fixed effects, zip code fixed 

effects, student fixed effects, year fixed effects, distance from nearest highway dummies, a year-mover indicator, the 

number of highways within a mile, school demographic characteristics, other school-level characteristics (percent of 

teachers with a master’s degree, size, and stability rate), and whether the student was on FRL that year. Standard 

errors clustered on school are in parentheses. *p < 0.1 ** p < 0.05, *** p < 0.01 
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Table A5: Robustness to Clustering: Average FCAT 

 

Clustering Scheme: 

(1) 

School 

(2) 

Student  

(3) 

School & 

Student 

(4) 

Zip code & 

Student 

Panel A: Downwind more than 60% of the time 

 

Downwind more than 

60%  

-0.0400** 

(0.0167) 

-0.0400*** 

(0.0086) 

-0.0400*** 

(0.0141) 

-0.0400* 

(0.0207) 

     

Panel B: Mean intensity 

 

Mean intensity, 

0.1=10% from upwind 

-0.1368*** 

(0.0491) 

-0.1368*** 

(0.0195) 

-0.1368*** 

(0.0402) 

-0.1368*** 

(0.0455) 
Cluster on School Yes No No No 

Cluster on Student No Yes No No 

Cluster on School and 

Student 

No No Yes No 

Cluster on Student and Zip 

code 

No No No Yes 

Notes: Each row and column shows results from a different regression. All models include grade fixed effects, zip 

code fixed effects, student fixed effects, year fixed effects, a grade-moved indicator, the number of highways within 
a mile, distance from nearest highway dummies, school demographic characteristics, other school-level 

characteristics (percent of teachers with a master’s degree, size, and stability rate), and whether the student was on 

FRL that year. Standard errors clustered on school are in parentheses. Coefficients of interest are an indicator 

variable for whether a student’s school was downwind 60% or more of the time or an intensity variable that 

increases by 0.1 if the wind blows 10 percentage points more directly at the school, on average. All models are 

estimated using only the “policy-induced” moves to middle/high school by dropping “K through 12” schools and 

limiting the sample only to students who change schools from fifth to sixth or eighth to ninth grade. 
*p < 0.1 ** p < 0.05, *** p < 0.01 
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Figure A1. Wind direction across Florida 

 
 Note: This figure depicts a series of box plots representing the distribution of wind directions throughout the day 

over a year for wind monitors in different geographic locations in Florida. The x-axes are hours in the day and the y-

axes are wind direction in degrees from north for the direction the wind is blowing at each hour. The grey dots 

represents outliers. This figure is constructed from NOAA (MADIS) wind data from 2010.  
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Figure A2: Event student for all students, relative to year of the move 

 

Notes: This figure plots coefficients from an event study where the event is any move to a school that is downwind 

more than 60% of the time. The X-axis charts “event time” in grades relative to the move. The Y-axis plots 

coefficients of the effect of being in the given event year on the given outcome. All models include grade fixed 

effects, zip code fixed effects, student fixed effects, year fixed effects, distance from nearest highway dummies, a 

grade-moved indicator, the number of highways within a mile, school demographic characteristics, other school-

level characteristics (percent of teachers with a master’s degree, size, and stability rate), and whether the student was 

on FRL that year. 
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B: Data Appendix: 

FCAT scores are standardized by year and grade at the state level for each test, with a 

mean of zero and a standard deviation of one, and we average the math and reading scores by 

year to create one summary measure of academic performance. We decided to average reading 

and math to create an aggregate measure of student achievement that reduces noise and the 

likelihood of type 1 error due to multiple hypothesis testing. That being said, we have also 

looked at these scores independently and find that they follow a similar pattern.  

We construct the rate of absences variable by dividing the number of days absent by the 

number of days in the school year. 

The longitudinally-linked data follow students over time so long as they remain in the 

Florida public school system. The FDOE conducts the longitudinal matching process. About 

90% of students are matched year-to-year by social security number, and any remaining students 

are matched by name and birthday. This matching process contains a small number of errors 

likely caused by multiple students with similar names or birthdays. To account for this, we ran 

a specification in which we exclude students who move backwards more than two grades, 

fail and then skip a grade, have a change in birthday, or change gender from year-to-year. In total, 

these deletions amount to about 5% of the original dataset. We lose few students in the 

longitudinal analysis; among students who took the third grade FCAT before 2009, we observe 

90% taking an FCAT the following year and over 80% taking an FCAT five years later. 

 

School Characteristics 

 School location data come from the 2010 National Center for Education Statistics data, 

which provides the latitude and longitude of every school in the United States. We use 2010 as a 

standard year due to slight variations in the reported locations of schools over time. Data on 

school characteristics comes from the Florida School Indicators Report (FSIR), which is released 

annually by the Florida Department of Education. This data includes percent of teachers with a 

master’s degree, school size, school stability rate, school racial demographics and a variety of 

other school characteristics. Maternal education by school and percent of married mothers by 

school were calculated based on Florida vital statistics data that was aggregated at the school 

level. 

 

Event Study Methodology 

 The event study regressions include all the same variables as in our primary specification 

(equation 1). However, when estimating event studies we need to take into account two specific 

issues that arise in our context: 1) many students move multiple times such that there is not 

always one treatment occurrence per student. 2)  treatment comes from both moving to upwind 

and moving to downwind: while these estimates are averaged together in our regression model 

we need to estimate them separately to show distinct patterns in the event study. Students who 

never change treatment status are left in the reference group in both event study models.  

 The “move to middle school” event study design (figure 3) resolves these issues by only 

focusing on moves from fifth to sixth grade. We only include those student who we observe 

continuously between third and sixth grade, dropping students who attended K through 12 

schools, and who moved between an upwind and downwind school before 6th grade. Because of 

missing data, sample sizes become much smaller if we try to extend the event study beyond 7th 

grade. We simplify the “All mover” event study (Appendix Figure A4) by just looking at 
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downwind moves. Here we define a qualifying event as a student who we observe for five years, 

and who we observe for at least three years before and three years after a move. We include all 

students with a qualifying event in the sample as well as students who never change downwind 

status. We drop students who changed to downwind status without meeting the standard for a 

“qualifying event” or who had more than one qualifying event (in practice very few students had 

more than one qualifying event). 

 

Wind Direction, and Traffic Pollution Model 

To estimate the relationship between pollution and wind direction we use high frequency 2010 

MADIS and EPA data at the hourly level. We limit our sample to all monitors within 0.4 miles 

of a major highway (or 0.1 miles in some specifications). As with measuring downwind status, 

we only use wind and pollution data during the school day. We then estimate the following 

regression: 

 

𝑃𝑖𝑑ℎ = 𝛾0 + 𝛾1𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑑ℎ +  𝜑𝑖 +  𝜀𝑖𝑑ℎ    

 

Where 𝑃𝑖𝑑ℎ  is a measure of pollution for monitor 𝑖 during day 𝑑 and in hour ℎ. 𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑑ℎ, is 

one of two measures of wind direction within that day and hour. First we use an indicator for the 

wind blowing within 45 degrees of a ray running from the nearest point on the highway to the 

pollution monitor. The second measure is the difference in degrees between bearing from the 

monitor to the highway and the direction of the wind at which the wind is blowing at a school: 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑑ℎ = |𝑟𝑎𝑦𝑖𝑑ℎ − 𝑤𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑑ℎ |, normalized to be 1 when blowing directly at the 

monitor and zero when blowing directly away. Both of these measures are hourly level 

analogues of our two measures of downwind status discussed in section III of the main text. 

 𝜑𝑖   is a vector of monitor specific fixed effects. We control for month fixed effects in order to 

account for seasonal differences in pollution and wind direction. Within 0.4 miles there are five 

PM10 monitors, three NO2 monitors, and seven CO monitors. Within 0.1 miles there are two 

PM10 monitors, two CO monitors, and one NO2 monitors. We cluster all models at the monitor 

site-day level (we do not have enough monitors to cluster at the monitor level). The majority of 

wind monitors do not measure the same pollutant. One of the 15 total wind monitors measures 

both PM10 and N02, and another measures both PM10 and CO.   

 




