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Abstract—We report on a two-day workshop in September 
2018 which brought together scientists from different 
disciplines, computer engineers, and hardware vendors to 
discuss the challenges of data handling in the upcoming exascale 
era. Several aspects of extreme data management were brought 
up in the participants’ presentations, and some common 
expectations and issues were identified in a plenary discussion. 
This paper summarizes the workshop presentations and 
discussions and reflects on likely and necessary developments in 
HPC infrastructures and services for meeting the domain 
sciences demands in the future. The paradigm change from 
compute centric to data centric HPC applications and the 
increasing complexity of HPC systems will also require much 
greater efforts in training next generation scientists and 
computer engineers. 

Keywords—exascale computing, large-scale data 
infrastructures, big data storage, fast data staging 

I. INTRODUCTION 

Science relies on complex numerical simulations on high 
performance computers (HPC) and is becoming increasingly 
data-driven. Advancing compute capabilities and capacities 
from current petascale systems to the exascale poses new 
challenges, because existing system architectures cannot 
simply be scaled up but instead require new concepts resulting 
in systems of higher complexity and different compute and 
storage layers. This in turn calls for a radical re-engineering of 
software and workflows. The staging of data, i.e. ensuring that 
the right data are at the right location at the right time and 
without undue delays, will therefore be a very important 
aspect of the design of future HPC systems. 

Exascale computing will require exascale data handling. 
Various application areas (e.g. Earth system sciences, 
astrophysics, genomics, photon science) are facing rapidly 
growing challenges due to the fact that observing systems and 
advanced numerical models will produce data of 
unprecedented volumes and at unprecedented rates. For 
example, weather and climate models will run at much finer 
resolution, include more physical and chemical processes and 
as ensembles to also predict forecast uncertainty. Specialised 
observatories such as new telescopes, medical imagers, and 
satellites, but also other instruments in mobile phones and cars 
will produce data at finer resolutions, higher frequencies with 
increasing numbers. Scientific progress and the development 
of services based on modelling and observation (e.g. 
environmental prediction) hinge on the ability of the next-
generation compute and data infrastructures to cope with these 
data streams without compromising service quality and 
delivery schedules. Present workflows often decouple 
data 

generation, data processing, downstream service data usage, 
and data archiving and curation. The anticipated dimension of 
extreme data will require the development of new hardware 
architectures, new workflows and services, and a better 
integration across various storage systems. 

In recognition of these ongoing developments, a 2-day 
workshop was organized at the Jülich Supercomputing Centre 
in September 2018 to discuss extreme data demands, 
technologies, and services across different scientific 
disciplines. The workshop was attended by 25 participants 
from several European countries, who represented four natural 
science disciplines, computer scientists, and two 
representatives of major storage system vendors (Figure 1). 
Three sessions with 17 oral presentations aimed at identifying 
common demands across research fields and at developing 
prospects how future extreme data systems may unfold.  

Fig. 1. Group photograph of the Extreme Data workshop participants (not 
all participants took part of the photo shooting) 

The workshop focussed primarily on HPC-related extreme 
data generation and handling. However, topics such as data 
integration and sharing between HPC and cloud systems, and 
big data analytics concepts were also covered.  

II. WORKSHOP PROGRAMME

The three workshop sessions were grouped according to 
the three aspects, which the workshop aimed to address, i.e. 
demands, technologies, and services. Due to varying 
responses from the different communities who were invited to 
participate, the overall focus was somewhat skewed towards 
extreme data demands in Earth system science. Nevertheless, 
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as shown below, participation from other science disciplines 
and from technology and service providers was large enough 
to allow the identification of interdisciplinary challenges and 
potential solutions. 

The following subsections provide brief summaries of the 
workshop presentations. The subsection titles refer to the 
session in which the talks were presented. However, there is 
considerable overlap between the three workshop topics and 
therefore the session titles are merely indicative. Thirteen 
workshop invitees also provided extended abstracts after the 
workshop. These are published in this report. 

A. Extreme data demands
The opening presentation was given by Markus Reichstein 

(Max Planck Institute for Biogeochemistry, Jena, Germany) 
on “Challenges and perspectives of data-driven Earth system 
science”. He presented examples of how machine learning is 
transforming the field of Earth system science and expects that 
this trend will continue.  

Steve Aplin (DESY, Hamburg, Germany) reflected on 
“Data challenges in serial femtosecond crystallography”, 
which represent one of the greatest data processing tasks in 
photon science. Several thousand frames are generated each 
second from the experimental facility, thus requiring 
supercomputing infrastructure that is usually dedicated to 
numerical simulations for analysing experimental data. 

A perspective from the material science community was 
given by Giovanni Pizzi (EPFL Lausanne, Switzerland). His 
presentation was titled “Extreme-data demands in materials 
science: Dealing with high-throughput calculations towards 
the exascale”. Unlike in other scientific disciplines, material 
simulations are usually relatively small but large in numbers. 
The total data volume reaches petabyte scale. Challenges are 
primarily related to management of the huge number of files 
and the efficient throughput for data sharing within the 
international community. 

Dörte Handorf (Alfred Wegener Institute, Bremen, 
Germany) gave a presentation on “Current approaches and 
future challenges for analysing atmospheric circulation from 
climate model big data” [1]. Analyzing output from multi-
decadal ensemble simulations of large community 
intercomparison projects and reanalysis datasets from 
numerical weather prediction centers requires careful 
planning of the data management. Due to increasing model 
resolution, retrieving, storing, and processing of such data 
from distributed sources will become more difficult in the 
future. 

Jan Erik Sundermann (KIT, Karlsruhe, Germany) 
explained the “The challenge of the data demands of the high 
luminosity LHC experiments for the GridKa WLCG tier-1 
center at KIT” [2]. The Large Hadron Collider at CERN 
produces more than 50 PBytes per year of data from four 
dedicated experiments. These data are managed in a 
distributed infrastructure consisting of about 170 sites in 42 
countries. An essential element of this infrastructure is the 
integration of storage and compute services. 

B. Extreme data technologies
Guido Juckeland (HZDR, Dresden, Germany) described

real life experiences of generating and evaluating extreme data 
sets around the world [3]. He noticed in particular that modern 

experimental systems are now achieving data rates similar to 
advanced numerical simulations, so that it becomes 
impossible to store all raw data and some post-processing 
needs to take place in or near the instrument. They explore 
compression and in-situ visualisation techniques and advocate 
interactive access to simulations and data to help the selection 
of the data that shall be preserved. 

Sadaf Alam (CSCS, Lugano, Switzerland) gave an 
overview of the hybrid cloud and HPC services for extreme 
data workflows [4]. She discussed the challenges of managing 
the enormous data amounts from the Swiss free electron laser 
and the particle accelerators and detectors at CERN, and 
weighed the pros and cons of providing extreme scale data 
services on shared HPC facilities. A hybrid HPC and cloud 
environment was proposed, which however requires further 
standardisation of interfaces so that community platform 
services can be built and maintained regardless of the 
underlying system architecture changes. 

Stephan Kindermann (DKRZ, Hamburg, Germany) made 
a claim for dedicated large scale data infrastructures for the 
climate research community who already operate a global 
federated data infrastructure (Earth System Grid Federation, 
ESGF) [5]. Data handling challenges mainly arise from the 
geospatial and organizational separation of simulation centers 
and data centers conflicting with the user needs to co-locate 
data or perform complex data-intensive data analysis at 
several sites. He emphasized the importance of linking basic 
data management services (e.g. data identification, citation, 
and replication) with high performance data processing 
capabilities. 

Tiago Quintino (ECMWF, Reading, UK) discussed the 
extreme data challenges on the HPC and cloud systems of a 
major operational weather prediction center [6]. Currently, 
more than 100 GByte/day of observational data from ca. 80 
satellites and countless other sources and 130 TByte/day of 
model output need to be ingested, processed, managed, and 
stored at ECMWF. These data volumes are expected to grow 
by a factor of 100 by 2025. The weather centre responds to 
these challenges by rigorously controlling data workflows and 
developing object store facilities, which introduce flexibility 
to varying patterns of data access and allow configuration of 
hardware to minimize data latency and maximize throughput. 

Bryan Lawrence (University of Reading, UK) observed 
that current workflows are often inadequate to solve large 
analysis tasks in climate science [7]. He pointed out that “user 
education, smarter compression, better use of tiered storage, 
and smarter workflows are all necessary – but far from 
sufficient.” Dedicated HPC/cloud data analysis facilities 
together with smarter data storage software may levitate some 
problems of exascale data management, but without 
fundamental rethinking of the scientific analysis concepts 
there is a great risk of losing momentum in the discovery of 
fundamental mechanisms driving climate dynamics and the 
assessment of climate change and its impacts. 

Dirk Pleiter (Forschungszentrum Jülich, Germany) 
provided an overview of technology roadmaps for future HPC 
infrastructures [8] and noted that both storage capacity and 
storage performance need to be increased. While HPC centers 
need to adopt more open policies with respect to data use from 
distributed sources, the different user communities need to 
develop better ways for estimating data storage and staging 
demands. His proposal is to make use of annotated use case 
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diagrams which characterize the data workloads at the 
different workflow stages. 

At the end of the second session, Oliver Oberst (IBM, 
Zürich, Switzerland) and Jean-Thomas Acquaviva (DDN, 
Paris, France) presented some insights into new technological 
developments on the vendor side and emphasized the 
increasing need to monitor the performance of all storage tiers 
and use this information for the definition of scientific 
workflows. 

C. Extreme data services
Peter Bauer (ECMWF, Reading, UK) complemented

Tiago Quintino’s description of ECMWF’s data management 
strategy by explaining the upcoming developments of the 
weather prediction model and data assimilation system and the 
ensuing challenges for next-generation storage tiers [6]. He 
anticipated that next generation models will be run at scales 
that are fine enough that many of the current physical 
parameterisations can be replaced by the explicit simulation 
of physical laws, thereby alleviating a great part of current 
model biases. However, the necessary resolution increase will 
lead to enormously increased demands on the computational 
power and storage capacity of next generation HPC systems. 

Jeannot Trampert (University Utrecht, The Netherlands) 
explained the “Data flow and assimilation in computational 
seismology”. Although this application also requires large 
realtime data acquisition capability when it is employed 
operationally, the current challenges lie more on the 
computational side and the need to adapt codes to the more 
complex next generation HPC architectures. 

Stefan Kollet (Forschungszentrum Jülich, Germany) 
presented the ongoing research at Jülich and its partner 
universities “Towards big data-enabled terrestrial systems 
modelling at HPSC TerrSys” [11]. He highlighted the need for 
large-scale and performant data services of researchers who 
may not always be directly involved in large community 
projects, but can contribute and wish to publish relevant data 
from their simulations. Future data solutions should therefore 
be developed with a view of being accessible to every 
scientist. 

Jens Bröder (Forschungszentrum Jülich, Germany) talked 
about “the AiiDA framework for data generation and 
processing in materials science” [9] and made a point that 
there are various frameworks in the electron structure 
community, which are designed to manage large numbers of 
simulation jobs together with heterogeneous data. The 
community currently faces major challenges with regard to 
data sharing, because this requires petascale bandwidth 
solutions between distributed centers. 

Ugur Cayoglu (Karlsruhe Institute for Technology, 
Germany): presented a “Flexible toolkit for climate data 
applications: Compression and tensor frameworks” [10], thus 
highlighting an example for an important technology for 
managing large simulation output, which is however only 
slowly adopted by the climate modelling community. 

The final presentation was given by Kai Krajsek 
(Forschungszentrum Jülich, Germany) who described “The 
Helmholtz Analytics Toolkit (HeAT) - A scientific big data 
library for HPC” [12]. This initiative develops a software 
package that will reduce the complexity of scaling complex 
data analysis tasks on multi-node HPC systems. Through 

coding of a parallelized tensor and by offering a numpy-like 
interface to users, their applications can be ported almost 
effortlessly. 

The proceedings volume contains an additional paper from 
Matthias Becker (University of Bonn, Germany), who 
unfortunately could not attend in person, on “Personalized 
medicine: the need for exascale data handling” [13]. Here, 
large genomic datasets and high resolution images need to be 
processed at high speed to enable computer-aided decision 
making in future hospitals. Special challenges in this field are 
the strict data privacy rules that must be securely implemented 
without jeopardizing the data handling efficiency. 

III. CONCLUDING DISCUSSION 

The participants of the Extreme Data workshop agreed that 
it was very productive to assemble scientists with different 
backgrounds and from different fields for exploring 
commonalities between domain-specific challenges of 
exascale data handling. A number of issues were identified 
which appear in more or less all scientific communities, and 
some common solutions could also be discussed. 

Data throughput may be more problematic than storage 
capacity: from current experiences with handling large 
datasets it appears that bandwidth is more of a bottleneck than 
storage capacity, and this problem will likely exacerbate in the 
future. Bandwidth limitations occur at all levels of data 
storage hierarchies from storing simulation data during 
production to delivery of data to external users. As a rule of 
thumb various data centers observe that the amount of data 
moved across storage systems is about ten times the amount 
of data produced. 

Future data storage will be hierarchical and use object 
stores: there is a clear recognition by computer engineers and 
vendors that the days of POSIX file systems for large scale 
data centers are counted and that the only viable option to 
achieve optimal performance and flexibility is the transition to 
hierarchical storage tiers and object store technologies. 
However, this implies a severe disruption of most scientific 
workflows operated today. Therefore, this transition needs to 
be accompanied by training and the development of tools, 
which should ideally make the underlying storage technology 
completely transparent to users. At least for some time, users 
will still want to retrieve for example a netCDF file instead of 
some objects when they request data. It needs to be 
investigated if such transformations can still be performed on 
the fly and efficiently.  

Data services will be distributed: data production and data 
use are often spatially separated. The classical workflow of 
downloading data from data centers to local storage for 
analysis becomes infeasible. This implies that data centers 
must provide increased capacities for analysing data on their 
systems and adopt usage models which allow scientists to be 
involved. It is considered crucial to understand that data 
services are not only about technology, but also concern use 
policies, a business model and sustainability. 

There is a chasm between large data and complex data: 
Extreme data is not only about huge data volumes, but must 
appreciate data complexity. While in some applications 
extreme data volumes originate from a relatively small 
amount of data sources, e.g. a numerical model, there are 
several use cases where these huge data sets are accompanied 
by many small and heterogeneous data sets, or where the 

- 5 -



entire collection consists of many different data sets (“long-
tail data”). Standardisation of the data model (for example 
expression of different types of weather and climate data as 
subsets or slices of a multi-dimensional data cube) can help 
managing the data complexity. However, current hardware 
and software stacks are either built for user-friendly and FAIR 
management of relatively small data amounts, or for the 
efficient handling of large, but more or less homogeneous data 
with limited support in terms of data documentation, data 
publication, data sharing, and user-driven complex analyses. 
The demand for better integration of HPC and cloud services 
is expected to have implications on the achievable 
performance increases in the future. A transition from the 
current file-based data organisation to object stores promises 
a more flexible management of different data needs and the 
more efficient merging of data from different sources. 
Performant data staging procedures could possibly be 
developed largely independent of the science application 
(“separation of concerns”). It remains to be seen to what extent 
storage system complexity can and should be hidden from the 
users. 

Users demand more flexible access to data on HPC 
systems: In various disciplines ongoing initiatives explore the 
use of Jupyter notebooks or other collaborative tools for 
accessing data and running analyses on HPC systems. These 
tools greatly facilitate the usage of large data, but they require 
changes in the usage model of HPC installations and make it 
more difficult to achieve sufficient performance with full 
workloads on the machines. New technologies are needed to 
allow resource sharing and efficient data staging. 

Large datasets should carry more metadata: traditionally, 
large (simulation) datasets are often poorly documented, or 
documentation is provided externally and not in machine-
readable form. Enhanced metadata would allow users to make 
better decisions about which data they need [14]. Through 
provenance tracking it may become possible to identify 
simulation output that is rarely or never used so that the output 
strategies of models can be optimized. It can already be 
observed that moving simulation output around can be slower 
and more expensive than re-running a simulation. However, 
in practice these pathways for reproducing a simulation result 
are rarely at the choice of the user. Besides technical issues of 
integrating these two different workflows into a coherent 
framework they might involve different usage policies and 
accounting procedures, which might prevent access to either 
data or software for some users. 

Extreme data requires collaboration and training: 
scientists are trained to do science, software engineers are 
trained to write good software. However, exascale computing 
and data handling urgently require people with different 
backgrounds working together so that data needs can be 
clearly expressed and data infrastructures can be designed to 
meet the requirements within and across the different science 
domains. More frequently than in the past it will be necessary 
to compromise on the data precision or completeness and 
adapt the analysis goals or analysis strategies in order to make 
scientific problems tractable. Collaboration between software 
engineers and scientists is required to find the best procedures 
and define the most efficient workflows. For example, it is 
often necessary to balance accuracy and performance, while 
traditionally scientists are concerned about accuracy and 
computer scientists worry about performance. There is an 
evident lack of people with adequate training to address such 

issues both in general, but even more so with respect to 
extreme data applications. 

Machine learning will influence data patterns and 
production rates in the future: classical simulations and 
machine learning are brought together to replace 
parameterisations, expand the search space, or simply save 
computing resources when understanding the causality 
between inputs and outputs is not the most important 
requirement. This has important consequences for the design 
of future HPC systems. Many machine learning applications 
lack data locality and thus need to be able to read the data fast 
enough to cope with the speed of data processing. With GPUs 
becoming faster and faster also bandwidth requirements go 
up. Furthermore, training of neural networks typically 
involves repeated use of the same data, so that high-
performance “cache” storage can be of great value. Some HPC 
centers are now employing SSD devices for this purpose. 
However, the ideal layout of hierarchical exascale storage 
systems still needs to be found and one must investigate 
whether capacity and throughput can be scaled from current 
systems or if new storage layouts will be needed for the 
exascale. In any case it is very likely that first generation 
exascale systems will be equipped with rather heterogeneous 
and complex data storage architectures. It will be important to 
educate users about these architectures and to work with the 
users on the development of performant workflows for their 
specific application on these architectures. 

All in all the workshop participants observed a paradigm 
change occurring in almost all scientific disciplines with 
emphasis shifting from primarily computational problems to 
primarily data analysis problems. This has significant 
consequences for the planning of exascale HPC facilities in 
the future. Further discussions are needed to fully understand 
the implications of these changes and top prepare software and 
hardware technology implementation roadmaps that evolve at 
the same pace as the application requirements. 
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Abstract— A large part of low-frequency variability in the 
climate system on sub-seasonal to decadal timescales can be 
described in terms of so-called atmospheric teleconnection 
patterns. To provide reliable climate predictions and 
projections it is necessary to advance the understanding of past, 
recent and future changes in the spatial/temporal structure of 
atmospheric teleconnections and to assess the impact of internal 
climate dynamics versus external forcing. To tackle these 
questions we exploit large global, gridded data sets, either from 
different reanalysis data sets or from model simulations with 
state of the art climate models mostly performed in the 
framework of CMIP (Coupled model intercomparison project) 
initiatives. The current and next generation climate models will 
produce unprecedented volumes of data. We will identify 
specific questions to deal with the challenge of climate big data. 

Keywords—atmospheric teleconnections, climate models, 
analysis of big data 

I. INTRODUCTION

The extra-tropical atmospheric flow is characterized by 
large-scale spatial patterns of correlated anomalies of the 
climate fields (e.g. pressure, temperature and precipitation) 
with time-varying amplitude and phase. These patterns are 
called atmospheric teleconnection patterns and represent a 
considerable portion of the low-frequency atmospheric 
variability on sub-seasonal to decadal time-scales.  

Atmospheric teleconnections influence the long-term 
weather prediction. A prominent example is the North 
Atlantic Oscillation (NAO) representing the dominant 
teleconnection pattern for the North Atlantic-European 
region. It is mainly constituted by a seesaw between Iceland 
and the Azores [1] and most pronounced during winter. The 
NAO-index measures the phase and strength of the NAO and 
indicates the strength of the westerlies over the North Atlantic 
and Western Europe, which determines the winter climate in 
Europe. Fig 1 shows the mean sea-level pressure anomalies 
during the NAO in its positive phase which results in 
anomalous stronger north-south pressure gradient over the 
North-Atlantic. This leads to stronger westerly winds in 
general and stronger and more frequent storms across the 
Atlantic in particular. The positive NAO phase supports mild, 
stormy and wet winter conditions in northern and central  

Fig. 1. The pattern of the North Atlantic Oscillation in terms of sea-level 
pressure anomalies (in hPa), showing the deviation from mean pressure 
distribution during the positive NAO phase. 

Europe and eastern US, whereas northern Canada, Greenland 
and southern Europe experience cold and dry winter 
conditions. 

II. DATA AND METHODS

A. Data
This study uses data from the Coupled Model

Intercomparison Project phase 3 (CMIP3) [2] and phase 5 
(CMIP5) [3] multi-model data sets. We have used a suite of 
23 CMIP3 and 46 CMIP5 models. We analysed coupled 
atmosphere-ocean simulations of the climate of the 20th 
century with observed anthropogenic and natural forcing from 
1958 to 1999 (CMIP3 and CMIP5). For comparison, gridded 
data fields for the period 1958-1999 from three re-analysis 
data sets have been analysed. These datasets comprise the 40-
yr re-analysis ERA-40 provided by the European Centre for 
Medium-Range Weather Forecast [4] and its precessor ERA-
Interim [5] and the re-analysis of the National Center for 
Environmental Prediction/National Center for Atmospheric 
Research (NCEP/NCAR) [6]. 
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We start by searching for statistical relationships between 
large-scale patterns of September sea ice concentration and 
atmospheric circulation structures in the following February 
by applying a MCA. Fig. 3 displays the first pair of coupled 
MCA patterns of Arctic sea ice concentration in September 
and fields of sea level pressure (SLP) in February for the 
period 1979–2015. The coupled patterns describe diminishing 
sea ice over the northern edge of the Barents Sea, Kara Sea, 
Laptev Sea, Chukchi Sea, and Beaufort Sea co-varying with a 
pressure anomaly pattern resembling the negative phase of the 
NAO. 

V. STUDY OF UNDERLYING MECHANISMS BY EXPLOITING 
NEW SPECIFIC MODEL EXPERIMENTS

For these simulations, the atmospheric component of the
GCM is constrained by realistic sea surface temperature (SST) 
and sea-ice distributions. Thus, the AMIP experiments allow 
us to focus on the atmospheric model without the added 
complexity and freedoms of ocean-atmosphere feedbacks. 

In order to study the impact of Arctic sea ice reduction on 
the atmospheric circulation, in particular on the excitation of 
the NAO- pattern, respective sensitivity experiments with an 
atmospheric general circulation model (AGCM) have been 
carried out. The used model is the AGCM for Earth Simulator 
(AFES) version 4.1 with a spectral resolution of T79, 56 
vertical levels, and a model top of about 60 km. Two perpetual 
model integrations labelled CNTL and NICE with 60 years 
each have been performed, where only the prescribed sea ice 
conditions in the Arctic are different [13]. High-ice conditions 
in the CNTL experiment are obtained from the observed 1979 
to 1983 average of sea ice concentration, whereas low-ice 
conditions in the NICE experiment are obtained from the 2005 
to 2009 period. Sea surface temperature (SST) data are kept 
constant to its 1979 to 1983 mean value in both model runs.  

This design of the model experiment allows for a 
dedicated analysis of the impact of Arctic sea ice 
concentration anomalies on the atmosphere. The studies of 
[13] and [14] have shown that in winter the negative phase of
the NAO appears more frequently following low Arctic sea
ice conditions in ERA-Interim and AFES. As a possible
mechanism, [13], [15], and [16] suggested a stratospheric
pathway, in which vertically propagating planetary waves in
early winter interact with the stratospheric polar vortex and
weaken it. This leads to positive temperature and negative
zonal wind anomalies in the vortex. These anomalous signals
propagate downward into the troposphere and favor a negative
phase of the NAO in February and March.

The good agreement in Arctic regions between the model 
experiment and reanalysis in terms of vertical planetary wave 
propagation in the troposphere and stratosphere provides 
strong evidence that the more frequent occurrence of a 
negative phase of the NAO in winter can be associated with 
changes in Arctic sea ice via a stratospheric pathway. 

VI. FUTURE CHALLENGES

Here we presented a three-step hypothesis-driven 
approach to get improved understanding, how Arctic sea-ice 
retreat can impact atmospheric teleconnections, in particular 
the dominant teleconnection pattern for the North Atlantic-
European region, the NAO.  

To apply such hypothesis-driven research based on 
scientific theory in the field of climate research also in future, 
challenges will arise due to the availability of climate big data. 
The current and next generation climate models will produce 
unprecedented volumes of data mainly due to higher spatial 
resolution and the performance of ensemble simulations (to 
allow for robust signal detection against the background of 
strong atmospheric internal variability). It is expected that our 
current technological and data-analytical approaches will 
probably be not applicable in future. To adequately deal with 
the challenges of climate big data the following specific 
problems have to be tackled: (i) the analytical bottleneck in 
scientific data analysis has to be reduced, (ii) new approaches 
for the visualization of the results from large ensembles of 
model simulations have to be developed, (iii) big data 
analytics has to be integrated into hypothesis-driven climate 
research. 
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Abstract—In this article we discuss the WLCG computing
model, the role of GridKa as a WLCG Tier-1 center, and plans
for the envisaged evolution of WLCG and GridKa towards the
future HL-LHC computing.

I. INTRODUCTION

The Large Hadron Collider (LHC) at CERN is one of the
largest machines ever built. It enables physicists to study the
basic constituents forming matter and their interactions at
highest energies. The LHC consists of two large rings with a
circumference of 27 km located in an underground tunnel near
Geneva, 100m below the border of Switzerland and France.
The rings consist of a number of structures to accelerate
two beams of protons or heavy ions to highest energies and
more than 1200 super-conducting dipole magnets to bend the
beams. Along the accelerator ring the beams are colliding
with a center-of-mass energy of 13TeV at four locations
corresponding to the positions of the four LHC experiments
ATLAS, CMS, ALICE and LHCb. About 1 billion protons
collide every second inside each of the particle detectors.
These detectors measure and record detailed information of
particles and their decay products produced in the proton
collisions. After filtering the most interesting collisions, events
are recorded in each experiment with a rate of 200Hz to
permanent storage. This corresponds to data rates between
800MB/s and 10GB/s per experiment or 25GB/s for all
four experiments in total. Since 2009 the LHC experiments at
CERN have been producing data volumes of more than 50PB
per year.

II. THE LHC COMPUTING MODEL

Today LHC data is being processed and analyzed in a
relatively uniform distributed computing infrastructure. The
Worldwide LHC Computing Grid (WLCG) is a global collab-
oration of computing centers composed of more than 170 sites
in 42 countries. The WLCG integrates compute and storage
resources of those centers to store, distribute and analyze the
LHC data. The data is distributed by the experiments to the
participating sites and jobs are usually run where the data
is located. In 2017 WLCG sites provided more than 350PB

of online (or disk) storage and peak computing capacities of
more than 750000 CPU cores. In addition, the experiments are
using 450PB of offline storage on magnetic tape. Compute
and storage resources are typically connected with dedicated
Ethernet links with speeds ranging from 10Gbit/s up to
100Gbit/s to the other WLCG sites.

The WLCG is following a tiered approach. Computing sites
are organized in four different layers. Sites of each layer
provide a specific set of services to the LHC experiments. The
Tier-0, distributed between CERN and the Wigner Research
Center for Physics in Budapest, is responsible for the initial
data recording, the first pass reconstruction and the distribution
of raw and reconstructed data to the Tier-1 sites. The WLCG
has 13 large Tier-1 data centers providing storage (disk and
tape) and compute resources for data reprocessing, simulation
production, data analysis as well as the distribution of data
to the smaller Tier-2 sites. Tier-2 sites are typically smaller
university centers providing resources for data analysis and
simulation production. There are currently 160 Tier-2 sites
worldwide. Tier-3 sites provide local resources to the com-
munity without formal engagement in WLCG. From 2021
onwards, GridKa will serve as raw data center for the BELLE-
II experiment.

III. THE GRID COMPUTING CENTRE KARLSRUHE

The Grid Computing Centre Karlsruhe (GridKa) is a data
and computing center for particle and astroparticle physics
experiments. It is operated by the Steinbuch Centre for Com-
puting (SCC) at the Karlsruhe Institute of Technology (KIT) in
Germany. It was founded in 2002 initially supporting the four
particle physics experiments BaBar, D0, CDF and COMPASS.
Since 2006 GridKa is providing resources for the Pierre
Auger Observatory. In 2008 GridKa started its full production
service with 24/7 coverage before the anticipated start of LHC
supporting all four LHC experiments as the German Tier-1
centre. At the moment GridKa is responsible for about 14%
of raw LHC data. It is the largest of the 13 Tier-1 centers
in terms of CPU and storage resources pledged to the LHC
experiments.
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Fig. 1: Average utilization of the GridKa compute farm per day

and per virtual organization between March 2018 and October

2018. The used cores per VO are stacked on top of each other.

They are compared to the total number of available cores

(magenta line). Fluctuations in the total number of available

cores appear due to maintenance periods in which security

updates are applied to the worker node installations.

Fig. 2: Number of running jobs per number of requested

CPU cores between March 2018 and October 2018. Jobs are

typically single core or multi-core on the same CPU but do not

require fast network interconnects between the worker nodes.

GridKa consists of a high-throughput compute farm, large

installations of disk and tape (offline) storage as well as

a dedicated network infrastructure. The compute farm con-

sists of 1000 worker nodes with 18000 cores in a classical

high-throughput setup. GridKa uses cost-efficient and reliable

hardware in terms of power consumption, rack occupancy,

and network infrastructure usage. The typical analysis and

simulation production workload requires one disk spindle per

10 jobs and 10Gbit/s Ethernet connections from the worker

node server. The GridKa farm has 29000 job slots which

were utilized on average by 98% (see figure 1). Jobs are

typically single core or multi-core on the same CPU (see figure

2) but do not require fast network interconnects between the

worker nodes. During the past 12 months, 24 Million jobs

were running in GridKa corresponding to 176 Million CPU

hours.

In 2016 a new disk storage system was put into operation

in GridKa. The new system is a GxFS storage appliance from

NEC. The design of the system allows for a flexible scaling of

the storage infrastructure both in size and performance. The

system uses IBM Spectrum Scale as software defined storage

layer. The storage is partitioned into few very large file systems

which enable the operator to manage the storage efficiently

(a) Data volume read

(b) Data volume write

Fig. 3: Data volume read (a) and written (b) to the GridKa

online storage system per month and per experiment in 2017.

and make it possible to optimize for different scenarios,

e.g. different experiments or workloads such as tape buffers.

The online storage system currently has a usable capacity

of 34PB with a combined maximum read-write performance

measured to be 100GB/s. The storage system is connected

redundantly with 8 100Gbit/s Ethernet lines to the GridKa

network backbone and subsequently to the high-throughput

compute farm. In 2017 7.5PB and 4.2PB of data were read

on average per month from the GridKa compute farm and from

remote sites, respectively (see figure 3a). In the same time

period 1.1PB and 3.0PB of data were written on average per

month from the GridKa compute farm and from remote sites,

respectively (see figure 3b).

The tape storage system of GridKa is actively used by

the experiments as distributed backup of LHC data. Data

is frequently recalled from tape for the reprocessing of the

raw data. Tape operations are initiated from the GridKa disk

storage system. At the moment 49PB of experiment data is

stored on tape in two libraries.

In order to serve as a data distribution hub in WLCG,

GridKa is connected with dedicated 100Gbit/s network con-

nections to CERN, the German research network and private

high-energy physics networks. Upgrades of those networks to

200Gbit/s will be done once required and financially viable.

In the upcoming years, resource increases of 20% per year

are envisaged. The available storage capacity of the disk

storage system is expected to grow till 2021 to 50PB.

The design of the storage infrastructure already proved to be

transparently expandable both in size and performance.
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IV. TOWARDS THE HIGH-LUMINOSITY LHC

The data taking rates are expected to increase only mod-
erately with the current experimental setup till the end of
2023 when the LHC accelerator and detectors will be shut
down for two years to allow for a fundamental upgrade of
the equipment with the objective to increase the data rates by
a factor of up to 10 corresponding to a factor of up to 30
of data required to be collected, stored and distributed. The
so called High-Luminosity Large Hadron Collider (HL-LHC)
is expected to get in operation in 2025 with a dramatically
increased discovery potential posing new unique challenges
also for software, data analytics and computing.

Considering the expected technology and price evolution,
the shortfall between requirements of the experiments and
bare technology gains is significant: in the case of the ATLAS
experiment a factor 4 in CPU and a factor 7 in online storage
in 2027 can be expected. Also the event complexity and size
will increase dramatically. With HL-LHC conditions more than
200 interactions are expected to happen simultaneously posing
new challenges for the reconstruction of such complex event
structures. HEP software is traditionally, until today, mostly
single-threaded. Since single core CPU performance has been
stalling already for several years, HEP software needs to
evolve to utilize many cores or even specialized hardware like
GPUs. Both, experiments and resource providers, considerably
need to improve software and efficiency of resource usage to
cover this gap in order to minimize the additional funding
requirements [1], [2].

Especially online storage will be the relevant cost factor to
consider when designing a new computing model for the HL-
LHC era. This means in particular that HL-LHC computing
will make extensive use of faster network connections between
few very large and storage heavy sites and compute providers.
The whole system will behave like a single large data lake.
Data will either be accessed directly via the network, or will
be pre-placed in dedicated caches to enable the use of inho-
mogeneous computing resources comprising existing WLCG
sites, HPC centers, commercial or private clouds and other
opportunistic resources. Users will access the “HEP cloud”
remotely with a transparent view on the data. In addition,
new software enabled to use specialized hardware, for instance
GPUs, will improve the efficiency of compute resource usage
by the experiments.

V. R&D ACTIVITIES

In the following some selected examples for research and
development activities undertaken in the proximity of GridKa
or elsewhere towards the HL-LHC will be discussed.

A. Opportunistic Tier 1 for a Day

The on-demand usage of additional opportunistic compute
resources, i.e. resources that are available only temporarily,
does allow to satisfy short term compute requirement of users.
The software package Responsive On-Demand Cloud Enabled
Deployment (ROCED) [3]–[6] developed at the Institute of
Experimental Particle Physics (ETP) at the KIT is able to

monitor compute demands of an existing batch system and
to dynamically provision additional cloud compute resources
to fulfill those demands. Resources are transparently added
and removed by starting and stopping virtual machines on
supported resource providers. ROCED is suitable for CPU
intense work flows. It was tested intensively by dynamically
extending the Tier-3 cluster of the KIT CMS group with
resources provided by the remote HPC centre at the University
of Freiburg. During testing the system has demonstrated the
ability to provision and manage resources on the same scale as
those provided by the GridKa Tier-1 center. Further research
on the dynamic usage of opportunistic resources and caching
strategies to improve and speed up analysis work flows in
the context of HEP and GridKa is performed in a number of
different other projects [7]–[10].

B. Helix Nebula Science Cloud
One possible future provider of compute resources could

be commercial cloud providers. The Helix Nebula Science
Cloud (HNSciCloud) project is a pre-commercial procurement
tender co-funded by the H2020 Programme (2016-18) for the
establishment of a European hybrid cloud platform to support
the deployment of high-performance computing and big-data
capabilities for scientific research [11]. In the currently running
second phase, the pilot phase, the HNSciCloud public-private
partnership project has 10 procurers (CERN, CNRS, DESY,
EMBL-EBI, ESRF, IFAE, INFN, KIT, STFC, SURFSara) and
two contractor consortia (T-Systems/Huawei/Cyfronet/Divia
and RHEA Group/Exoscale/SixSq). The HNSciCloud projects
aims to develop IaaS level cloud services for scientific work
loads and provide solutions in the areas of compute and
storage, network connectivity, and service payment models.

C. Machine Learning
Different Machine learning techniques like neural networks

or boosted decision trees have been used in HEP analyses
already for a while. Main fields of applications have been
primarily the identification of particles or the separation of sig-
nal and background events. Towards the HL-HLC additional
use cases might prove value to increase the efficiency of the
then limited compute and storage resources [12]. Research
and development activities focus on topics like improved
fast detector simulations using e.g. generative models, real-
time analytics and triggering, object or track reconstruction,
anomaly detection in detector operations or the reduction of
the data footprint (event size).

VI. SUMMARY

Over the previous decades computing models have been
proven to be very successful for the global HEP community,
collaborations and experiments. Nevertheless, new challenges
with the upcoming HL-LHC require significant improvements
wrt. software and computing models. HL-LHC will not be
alone facing these new challenges as with the start of the
project other communities like the upcoming FAIR or SKA
will have to solve similar problems toward a successful future
computing model.
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INTRODUCTION

Large scale simulations have always been able to produce
data at enormous rates to record the simulation progress.
The current state of practice is to select a tiny subset of
the simulation data prior to running the simulation and have
only this subset written to disk for post-mortem analysis,
since the I/O bandwidth per node even in the most advanced
supercomputers today is limited to about the speed of a USB
2.0 thumbdrive. The same practice has long been established
with the output of scientific experiments as well, albeit, in this
case the subset of data to store is much larger, in most cases
even the complete set. Most interestingly, the latest detectors
and sensors have improved to a point where they can flood
the file system in a similar fashion as simulations. As a result,
storing all raw data is just not possible for continuous data
streams, but at the same time lessons learned from dealing
with the I/O of large simulations can also be applied to these
experiment data.

This extended abstract first provides a detailed look at the
actual numbers behind this data reduction challenge. Next it
presents solutions that the authors successfully employed to
(partially) solve these problems.

PUTTING THE CHALLENGES INTO NUMBERS

The background of our extreme data sets stems from
particle-in-cell simulations run at various HPC sites around
the world. The code has proven to scale to to the largest
supercomputers available while maintaining an unprecedented
performance [1]. The application is used to explore and/or
verify phenomena that are observed in experiments as well as
to prepare experiment setups. As such it is very difficult to
determine the data structures to be stored for offline analysis
beforehand. In this regard the challenges faced by PIConGPU
are similar to those of novel, highly-dynamic high-bandwidth
experiments enabled by the latest generation of detectors.

As a result both our simulations and upcoming experiments
face multiple data challenges: First, the raw data from the
simulation/experiment needs to be transferred into main mem-
ory. PIConGPU produces on Titan per GPU about 60 GByte/s
while the PCIe bandwidth into main memory is limited to
about 6 GByte/s. Even individual detectors in today’s experi-
ments or individual high-rate cameras in self-driving cars can
produce raw data at more than 30 GByte/s with a similar

TABLE I
COMPARISON OF THREE HPC SITES WRT. STORAGE CAPACITY AND

SPEED

Site A Site B Site C
Capacity (PByte) 250 6 3
Capacity per Node (TByte) 50 1 25
Capacity per FLOP (Byte/FLOP/s) 2 0.3 10
Bandwidth (GB/s) 2500 100 (estd.) 40
Bandwith per Node (MB/s) 42 1.7 33
Bandwidth per FLOP (µByte/FLOP) 20 5 133
Retention Time (days) 90 30 ∞

+ archive

transfer bandwidth limitation into main memory. Classical in-
transit evaluation or visualization methods are already facing
an order-of-magnitude data loss in this first step.

Second, the traditional offline analysis of simulation or
experiment data needs to transfer the data to a permanent
storage location. The actual bandwidth available per node even
for the fastest parallel file systems today is below that of a local
disk, as shown in Table I. As such there is another data loss of
multiple orders of magnitude for this storage process. To put
these numbers into perspective, no leadership class HPC site
(Site A and Site B) can even store the output of one single
floating-point operation of all its compute units. Hence, disks
can only be involved with already reduced primary data.

An even more dramatic problem with file I/O is the
achievable performance depending on the file format. The
numbers presented in Table I actually reflect peak performance
using raw binary I/O with mutliple I/O streams. When using
standardized file formats, such as the widely used HDF5,
the actual performance is much lower and does not even
scale to the whole HPC system as shown in Figure 1. HDF5
output stalls slightly about 10 GByte/s bandwidth, storing one
snapshot of 15 TByte in this case takes 25 minutes. The
ADIOS1 library is able to overcome these limitations and to
provide an overall performance increase for scaling up to the
whole of Titan with an I/O bandwidth of about 50% of peak
bandwidth.

The rather limited retention times at some compute facilities
make it necessary to move the primary data off site for later
evaluation. A typical PIConGPU primary data set is of 1.5
PBytes in size, thus, creating a race against the retention clock.

1https://www.olcf.ornl.gov/center-projects/adios/
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Fig. 1. PIConGPU I/O weak scaling on Titan from 1 to 16384 K20x GPUs
(nodes). Zlib was only supported serially with compression mode fast. MPI
Info hints for parallel HDF5 set via T3PIO (v2.3). For ADIOS, labels denote
number of OSTs—aggregators, resulting for N 32 in a striping of each
aggregated process group over four OSTs. Lustre filesystem limits enforced
160 OSTs for (single-file) parallel HDF5 writes. [2]
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Fig. 2. Weak scaling of PIConGPU with implemented I/O methods on Hypnos
from 4 to 64 K20m GPUs (16 nodes). In contrast to Titan and Summit nodes,
on Hypnos only two physical CPU cores are available per GPU, resulting in
I/O performance with zlib and zstd [3] below the untransformed output. [2]

Transferring such a large data set at line speed to a site with

“only” a 10Gbit/s internet connection still requires over 17

days of transfer time at line speed. As a result, one is forced

to start the download of the data set almost immediately after

its generation. The need for transfers might not be relevant

for every use case. However, when using simulations to verify

experiment results or when using multiple supercomputing

sites, it becomes necessary to transfer all data sets to one site

for comparative analysis, thus, raising the transfer challenges

again.

POTENTIAL SOLUTIONS

With all these challenges making an efficient usage of

the raw data difficult, what options are available to lessen

the implications of those limitations. It turns out that this

is not a general solution. The compression/decompression of

the data also takes time—usually a higher compression takes

longer to compute. As a result, the achievable benefit is highly

dependent on the choosen compression scheme and in some

cases even the number of CPU threads used for compression

(as shown in Figure 2).

Every I/O problem can be treated as a data reduction

problem with a specific data reduction ratio and correspondig

data throughput [2]. Viable alternatives to plain compression

are in-situ visualization/analysis with very high reduction

(e.g. from 3D data sets to 1D graphs or rendered images).

ISAAC [4] enables direct in-memory visualization without

any data transfers. The visualization kernels use the same

data structures as the simulation directly on the GPU, also

using the GPUs rendering capabilities for remote visualization.

Combined with a mechanism to control the actual simulation

(pause, rewind, restart), a user can explore and modify the

simulation parameters interactively and, thus, acually find the

0.1-1% of data they want to store for later analysis. The

actual finding process might even involve rewriting simu-

lation/evaluation kernels. This will in the future be more

convienient by deploying e.g. JIT CUDA cling to replace

whole analysis kernels on the fly. [5].
The data transfer challenge between multiple sites has led

to a rediscovery of well established grid computing tools.

GridFTP and as a larger framework Globus Online2 provide

the best option for transferring large data sets asynchronously

and without human supervision.

SUMMARY AND OUTLOOK

Explorative simulations and experiments using novel high

bandwidth data sources present a number of large challenges

for traditional data analysis workflows. Offline analysis of raw

data is simple impossible and even highly reduced sets of

primary data can easily exceed one PByte in size. Only very

few HPC sites are ready to enable scientists the evaluation of

such large data sets over a longer period of time. As such, the

sizing of I/O capabilities of a tier 0 and 1 site needs to be en-

par with the actual compute capabilities. Interactive access to

even large scale simulations helps mitigate the data reduction

problem and enables a seclection of the “right” data. Sufficient

retention times and off-site transfer capabilities complete the

list of requirements towards a modern supercomputing center.
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Abstract— Large scale experimental facilities such as the 
Swiss Light Source and the free-electron X-ray laser SwissFEL 
at the Paul Scherrer Institute, and the particle accelerators and 
detectors at CERN are experiencing unprecedented data 
generation growth rates.  Consequently, management, 
processing and storage requirements of data are increasing 
rapidly.  The Swiss National Supercomputing Centre, CSCS, 
provides computing and storage capabilities, specifically 
related to a dedicated archiving system for scientific data, for 
the Paul Scherrer Institute.  Moreover, CSCS operates for the 
Swiss Institute of Particle Physics the Swiss portion of the 
Worldwide LHC Computing Grid, which has recently been 
provisioned on a shared supercomputing environment (Piz 
Daint) for the first time.  While successful and cost-effective, 
porting of custom middleware in a shared environment is not a 
sustainable and scalable solution for diverse communities with 
their unique requirements for data management and 
computing services.  We present and discuss a hybrid service 
provisioning approach by leveraging cloud and HPC services 
for addressing data and workflow management challenges at 
scale.  One of the goals is to develop standard interfaces for the 
developers of community platform services for accessing HPC 
and cloud infrastructure in a transparent manner.   

Keywords—Supercomputing, cloud technologies, containers, 
storage, authentication and authorization. 

I. INTRODUCTION

Due to ongoing and future progress in accelerator and 
detector technologies, large-scale experimental facilities such 
as the Swiss Light Source (SLS) and the free-electron X-ray 
laser SwissFEL at the Paul Scherrer Institute (PSI) [1], and 
the particle accelerators and detectors at CERN, the Large 
Hadron Collider (LHC), have been projecting unprecedented 
increases in performance.    These developments are leading 
to rapid growth of data generated during experiments that 
will be difficult, if not impossible to manage with traditional 
IT infrastructures. For instance, until recently PSI operated 
alongside its large-scale experimental research facilities 
mostly workstation and HPC cluster-based computing and 
storage systems that were attached to individual experiments. 
Increasing data rates of new experiments are expected to 
substantially outgrow these IT systems.  Hence, innovative 
solutions are needed to store and to process data that are 
beyond the capabilities and capacities of these individual 
large-scale experimental IT infrastructures. 

An obvious solution strategy is to systematically couple 
the IT infrastructure of these large experiments with scalable 
compute and data systems of large academic data centers 
such as the Swiss National Supercomputing Centre (CSCS). 
For more than 25 years, CSCS developed and operates 

cutting-edge high-performance computing (HPC) systems as 
an essential service facility for Swiss and international 
researchers and contractual partners such as PSI. These 
computing and storage systems are used by scientists for a 
diverse range of purposes – from high-resolution simulations 
to the analysis of complex data.  CSCS supercomputing and 
storage services are versatile to accommodate diverse needs 
of scientific simulation workflows while leverage economy 
of scale of high-end computing and storage environments. 
Examples of services provided by CSCS include the 
traditional HPC user program with allocations via a 
transparent peer review process of the Swiss (Tier 1) User 
Lab and the Tier 0 allocation process of the Partnership for 
Advanced Computing in Europe (PRACE), as well as 
dedicated HPC services for Universities and other public 
research facilities and organizations such as MeteoSwiss; or 
the analysis of data from LHC at CERN by the Swiss 
Institute for Particle Physics (CHIPP); and data archives for 
Climate scientists as well as data from PSI.  In recent years 
addition CSCS has begun to provision more generic 
infrastructure services for the platforms of the Human Brain 
Project (HBP) [2], the MaterialsCloud of the MARVEL 
project [3], and the Swiss Data Science Centre (SDSC) [4]. 

Cloud technologies and public cloud service providers 
have successfully introduced a service-driven, on-demand 
model where customers have flexibility to configure 
infrastructure as well as platform services, namely 
Infrastructure-as-a-service (IaaS) and Platform-as-a-service 
(PaaS), respectively.  It is unclear though whether public 
cloud provisioned services are cost-effective for scientific 
workflows and whether they can yield cost-to-performance 
ratios for large-scale computing and storage needs 
comparable to a large academic HPC data center 
environment.  A hybrid solution leveraging cloud 
technologies can potentially transform service delivery at 
HPC data centers by introducing key features such as 
interactivity, on-demand provisioning and service federation 
between experimental IT facilities and HPC data centers. 
Hybrid cloud solutions rely on transparent transferability of 
workloads between different IT infrastructure, for high 
availability, load balancing and elasticity need.  In short, a 
hybrid solution can address needs for different operating 
modes at scale without a need to resort to custom 
middleware implementation for individual community 
platforms and workflows.  

II. BACKGROUND

Until 2012 CSCS, like many other supercomputing 
centers, provided each institutional customer with a 
dedicated service along with dedicated IT infrastructure, in 
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Abstract—There is a strong requirement to evaluate and 
compare climate model data originating from modeling centers 
around the world in international coordinated inter-
comparison projects (e.g. the CMIP efforts coordinated by the 
WCRP-WGCM). Additionally climate model data is 
increasingly used in interdisciplinary studies. Dedicated data 
infrastructure as well as data services are necessary to support 
climate scientists in data analysis activities involving data from 
this distributed Multi-PByte climate data archive hosted in the 
Earth System Grid Federation (ESGF). In this paper we 
summarize the infrastructural challenges the Earth System 
Science community is confronted with when preparing for 
future large climate model data inter-comparison projects 
from the perspective of a large climate data center. We 
describe specific solution approaches taken to be able to adapt 
to future technological and infrastructural changes (e.g. object 
based data management) as well as future climate data 
volumes. The fundamental underlying data handling problems 
are related to the geospatial and organizational separation of 
data centers on the one hand and the need to co-locate data 
and move computation to the data to be able to efficiently 
perform large data analysis experiments on the other hand. 
Data centers are in charge to establish coordinated 
infrastructural services to hide the related complexities from 
end users. A set of such services supporting data identification, 
citation, replication and data processing are introduced.  

Keywords—distributed data infrastructure, data 
management, climate science 

I. INTRODUCTION 

The climate model data life cycle starts with the HPC 
based generation of high volumes of “raw” climate model 
simulation data. Portions of this data which are subject to 
large international coordinated model inter-comparison 
projects (e.g. the WCRP Coupled Model Inter-comparison 
Project [1]) are standardized according to a set of well 
defined (project) rules and conventions (see e.g. [15]) and 
stored at larger national climate research related facilities. 
These nodes are interconnected in an international peer-to-
peer network based on a software stack developed as part of 
the Earth System Grid Federation [1] providing a consistent 
set of data search and download services to end users. Some 
data nodes also take over federation wide responsibilities e.g. 
by acting as data replication centres. Besides acting as a 
replication node the German Climate Computing Centre 
(DKRZ) also provides federation wide long term data storage 
services as well as data citation and identification services 
e.g. by integrating the World Data Centre for Climate
(WDCC) hosted at DKRZ with ESGF. The long term
archival of data e.g. as part of the Reference Data Archive
for climate model output of the IPCC DDC

(Intergovernmental Panel on Climate Change Data 
Distribution Centre [21]) is additionally associated to 
metadata curation steps integrating ancillary metadata 
information like model related metadata provided by ES-
DOC [26]. 

 Providing this large data repository DKRZ is now 
confronted with the growing end user requirements to 
support data centre near evaluation experiments by providing 
access to compute resources co-located to the archive. As 
also other ESGF data centres are faced with this challenge 
coordinated efforts are currently starting to be able to jointly 
respond to these end user needs. An ESGF compute working 
team started to define an interface to basic functionalities like 
data sub-setting and re-gridding to be provided by large 
ESGF (replica) nodes [16]. In Europe the currently starting 
IS-ENES3 project establishes a service activity with respect 
to data near processing at centres in Germany (DKRZ), 
France (IPSL), England (CEDA), Italy (CMCC) as well as 
Netherlands (KNMI). Yet to enable consistent federation 
wide data processing services involving existing Petabyte 
archives and future exascale archives new distributed data 
management infrastructure and services need to be 
developed and established.  

In this paper we start with these core data handling 
components currently being established operationally to hide 
the complexity of high volume distributed climate data 
handling from end-users. These include data replication 
(section II), data identification and versioning (section III) as 
well as data citation (section IV). After this (section V) the 
integration of these components to support end-to-end 
climate data analysis workflows is presented.  

II. DATA REPLICATON 

A. Data access load and failover
Based on overall ESGF experiences from CMIP5 the

current estimate for the data access volume to data storage 
volume ratio is about 10. Thus ~50PBytes from the overall 
~5 PByte distributed CMIP5 archive were downloaded and 
accessed. With an estimation of ~50 PByte for CMIP6 (20 
PByte originals + older versions + replicas) we expect ~500 
PBbyte download volume to support CMIP6, To be able to 
handle this load ESGF sites organized themselves in two 
tiers: Tier 1 nodes act as replication centres, replicating data 
collections from each other and are thus sharing the data 
access traffic and are also acting as failover nodes. Tier2 
sites are providing original data from modelling centres 
around the world. Tier1 sites invest in optimizing their 
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B2Drop, B2Share and B2Find services). This enables 
scientists to add external data sources to their (e.g. 
interdisciplinary) climate analysis experiment and export 
and share generated results. At the web interface level 
Jupyter hub notebooks support the integrated interaction 
with different workflow steps and documentation of end-to-
end workflows. 
This newly provided service platform is also useful for 
many user groups which are currently not supported by 
national service providers. They have to be supported e.g. as 
part of international collaborations providing shared 
resources to scientists. Current examples are the IS-ENES3 
H2020 project where processing resources hosted at 
Germany (DKRZ), France (IPSL), England (CEDA) and 
Italy (CMCC) are offered to users as part of a new service 
activity. As part of this e.g. IPCC authors are supported to 
generate derived data products needed for the next IPCC 
Assessment report.  
As part of the EOSC-Hub project the ENES climate 
analytics service (ECAS) hosted at DKRZ as well as CMCC 
is promoted to users. At an international level large ESGF 
data nodes are preparing the provisioning of OGC WPS 
based processing services, providing basic data reduction 
functionalities and thus reducing the need to directly access 
large data volumes as a first pre-processing step for larger 
data analysis activities.  
The efforts above are described from the perspective of one 
large climate data centre (DKRZ), yet they are in line with 
the efforts taken by other climate data centre to support 
future usage scenarios: Thus the JASMIN analysis platform 
hosted at STFC Rutherford Appleton Laboratory supports 
the provisioning of VMs with pre-installed climate software 
packages and access to the data centre archive to user 
groups. At NCAR (Boulder, Colorado) a dedicated CMIP 
analysis platform is provided to US user groups providing 
access to a large climate data replica pool as well as high 
performance data analysis servers.  NCAR also initiated an 
(Earthcube program related) effort which evolved to the 
Pangeo community platform initiative to collaboratively 
develop software and infrastructure to enable Big Data 
geoscience research [23].   Also the national computational 
infrastructure (NCI) located in Canberra, Australia is 
working towards the provisioning of a consistent climate 
model data storage and processing environment integrated 
with existing observational data archives.  

VI. SUMMARY AND CONCLUSION

The before described components of data ingest/replication, 
persistent identification/citation, data processing and result 
data sharing have to be integrated in the future at data 
centres and across data centres to provide climate scientists 
with seamless services to support their workflow. A core 
requirement here is to establish an integrated provenance 
service layer enabling the automatic provisioning of 
provenance records for data analysis results which were 
generated using the data centre processing layer. These 
provenance records have to be based on standards like W3C 

PROV [13], PROV Templates [14], and should be 
harmonized across climate data centres. 
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Abstract—This paper describes extreme-scale data 
challenges in numerical weather prediction for both 
observational input as well as model output data. At ECMWF, 
significant steps towards much enhanced data processing 
capabilities at both ends have been achieved and are currently 
being prepared for operational implementation. Keys to success 
have been (i) optimized workflows that treat and stream data 
through the production chain as early as they become available 
and (ii) the use of object-based datastore solutions that 
introduce flexibility to varying patterns of data access and 
flexibility to different hardware options which can be 
configured to minimize data latency and maximize throughput. 

Keywords—numerical weather prediction, high-performance 
computing, big data handling 

I. INTRODUCTION

Numerical weather forecasts are based on tens of millions 
of observations made every day around the globe and on 
physically based numerical models that represent processes 
acting on scales from hundreds of metres to thousands of 
kilometres in the atmosphere, the ocean, the land surface and 
the cryosphere. Forecast production and product 
dissemination to users is always time critical. Forecasting 
systems are run on O(1000) CPU node allocations and 
forecast output data volumes already reach petabytes per week 
today. 

For achieving a qualitative change of models, Earth-
system simulations need to represent significantly finer scales 
than today, and – with a focus on enhanced prediction of 
environmental extremes – with much larger ensembles. Data 
assimilation methods need to follow this trend to provide 
accurate initial conditions at such scales [1]. 

Meeting these requirements translates into at least 1000 
times larger high-performance computing and data 
management resources than today. Achieving a simulation 
throughput of 1 simulated year per wall-clock day for a single 
1-km resolution simulation of the atmosphere already
produces a short-fall factor of 100 with present-day models
and on present-day computing architectures [2].

The required simulation upgrades immediately translate 
into similarly enhanced data handling footprints that affect the 
entire workflow between observational data collection, model 
output data handling and post-processing, and data archiving 
and dissemination to users. As shown in Table I, while model 
output volumes will grow faster than the observational input 

data volumes, both streams need to efficiently and resiliently 
operate along tight schedules. 

This paper summarizes recent progress of accelerating 
data handling at the European Centre for Medium-Range 
Weather Forecasts (ECMWF) exploring new workflow 
elements and new technologies. These developments will be 
crucial for achieving ECMWF’s strategic goal of operating 5-
km global ensemble simulations by 2025. 

TABLE I. PRESENT AND FUTURE DATA VOLUMES 

Data source 
Observation input Model output 

2018 

3 x 108 (2 x 107[PL1]) 
observations received 
(assimilated) daily from ca. 
80 satellites and 
conventional sources; >100 
GByte / day  

1 x 1011 degrees of 
freedom (15 km model = 
5 million grid points x 
100 vertical levels x 10 
prognostic variables) x 50 
ensemble members; 130 
TByte / day 

2030 

1 x 1010[PL2] observations 
received daily from O(100) 
satellites with more complex 
instrumentation, and 
commodity devices (phones, 
cars); 10 TByte / day 

1 x 1015 degrees of 
freedom (1 km model = 
500 million grid points x 
200 vertical levels x 100 
prognostic variables) x 
100 ensemble members; 1 
EByte / day 

Expected 
growth 
factor 

O(102) / day O(104) / day 

II. OBSERVATIONAL DATA

A. Data pre-processing and screening

Fig. 1. Time series of observations received by ECMWF within 12 hours. 
Total number (blue), used number after screening (green) and total number 
in ERA-Interim reanalysis prior to 2001 [4]. Note volume boosts produced 
by spectrometer-type instruments such as the Atmospheric Infrared Sounder 
(AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), the 
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Cross-track Infrared Sounder (CrIS), and those expected from the Meteosat 
Third Generation (MTG) Infrared Sounder (IRS) and the IASI-Next 
Generation (NG). 

Observational data is received from a wide range of 
instruments onboard satellites (98% of total volume), from 
ground-based stations, balloons, ships aircraft and buoys. The 
data quality varies between instruments and over time, which 
requires an effective quality control (screening) mechanism 
and a methodology that assigns uncertainties to observations 
in the data assimilation framework [3].  

Increasingly, satellite instruments become more complex 
and provide high data volumes. Only in the recent decade, so-
called spectrometers with thousands of spectral channels have 
contributed to a significant growth in data volumes as well as 
complexity to extract information for model initialisation (see 
Fig. 1). The latter requires running compute intensive 
operators that translate model fields (temperature, moisture 
etc.) into observed quantities (radiances, reflectivities etc.).  

B. Performance enhancements
As the largest challenges for observational data handling

are data latency (the time spent between reception at 
instrument and availability at the forecasting centre) and data 
diversity rather than data volume (see Table I), the largest 
efficiency gains can be obtained from optimising the pre-
processing chain. Apart from operational forecasting, this 
requirement also applies to research experimentation because 
numerical experiments rerun data processing, which greatly 
affects computing capacity. 

Optimising the pre-processing targets the workflow by 
removing static quality checks and reformatting from the 
time-critical path and by using object-based data stores that 
allow fast and flexible access to large volumes of data. The 
data assimilation process itself will access the same database, 
but additional efficiency gains can be achieved from efficient 
load balancing as data is heterogeneously distributed over the 
globe. 

Fig. 2. Scalability of the 4D-Var trajectory (traj) calculation and 
minimisation (minim) across MPI tasks before (a) and after (b) optimisation. 
‘41r2’ refers and grey-shaded area refer to performance at operational nodel 
allocation. More details are in the text. 

Fig. 2 shows the combined results of several optimisations 
that have been applied to the data assimilation process which 
produces the initial conditions for the forecasts. This so-called 
four-dimensional variational assimilation (4D-Var, [5]) 
compares a model forecast with observations (=trajectory) and 
then performs an iterative optimisation that computes 
corrections to the trajectory forecast.  

The optimisations mostly comprised the refactoring of 
message passing and I/O loops to minimize time spent at 
barriers. The redistribution of active observations across MPI 
tasks aiming to counter-balance sub-optimal load balancing 

following the data screening proved to be too communication 
intensive. However, an overall speed-up of a factor of 2 was 
achieved when running on 1000 MPI tasks. As Fig. 2 
indicates, both efficiency and scalability for the trajectory 
calculations have been significantly enhanced. Optimal load 
balancing is key to further improvements as model grid points 
and observations are not co-located. This can be achieved by 
better domain decomposition so that data transfers become 
shorter.  

In the future, the main remaining scalability bottlenecks in 
data assimilation and observational data handling will be the 
minimisation algorithm itself, because 4D-Var is a sequential 
method, and the forecast model. Observational data volumes 
per se will not be a limiting factor for the efficiency of 
forecasting systems. 

III. MODEL DATA OUTPUT AND POST-PROCESSING

ECMWF forecasts are produced in two one-hour time
windows on the critical production path per day. 
Meteorological output data is generated as a stack of two-
dimensional slices of the atmosphere surrounding the globe, 
known as fields and their size grows quadratically as spatial 
resolution increases. In bursts of one-hour time-critical 
windows, the forecast system currently generates around 130 
TiB of output per day (22M fields). 

The data is stored in byte streams in the GRIB format. This 
format is intricate, requiring specialised tools to decode and 
interpret but self-describing, such that metadata can be 
extracted from a field. This metadata takes the form of a 
structured set of key-value pairs. Globally, the available 
metadata space is extremely sparsely occupied, but also 
includes very dense regions. 

The Fields Database (FDB) is the main tool for model 
output data management. The FDB is a software library and 
an internally provided service used as part of the weather 
forecasting software stack. It operates as a domain-specific 
object store for byte streams of meteorological data such that 
the output from ECMWF's Integrated Forecasting System 
(IFS) is written into the FDB, from where it is retrieved by the 
various post-processing and archival tasks. In this capacity, 
the FDB also operates as the highest layer within an 
application controlled hierarchical storage manager. 

The Meteorological Archival and Retrieval System 
(MARS) is a primary service offered by ECMWF that makes 
many decades of meteorological observations and forecasts 
available to a wide range of end users and operational systems. 
At the base of the stack is the tape archive presently built on 
the IBM High Performance Storage System (HPSS) which is 
supported by the MARS disk-based cache. The FDB sits 
between the HPC systems and the rest of the MARS 
infrastructure, absorbing the forecast output and making it 
available throughout the post-processing pipeline and 
elsewhere, efficiently working as a first line cache within the 
workflow of the HPC. 

In practice, operational weather forecasts decay in value 
very rapidly after they are made (being superseded by 
forecasts made on later occasions). The FDB exists to make 
this data quickly and cheaply available while it is broadly 
useful and thus accessed frequently. Operational data in the 
FDB has a lifetime of between 3 and 5 days. Because the data 
flows through this system are predictable, they are application 
controlled and thus can be optimised for performance. 
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IV. CONCLUSION
ECMWF is well aware of the extreme-scale data handling 

needs in the wake of the anticipated exascale HPC 
capabilities. The increasing diversity and volume of data and 
the need to access, manage, compute and distribute data by/to 
a growing user community for scientific research, service 
provision and private sectors create unprecedented 
requirements for workflow management and hardware. 

On the observational data input side, ECMWF has created 
a much leaner workflow that allows data pre-processing at a 
much earlier stage in the data assimilation process. Previous 
bottlenecks in the critical processing path have been 
eliminated and data pre-processing has been parallelised such 
that the expected growth of O(100) in data volume introduced 
my more and enhanced satellite instruments will not severely 
affect the analysis and forecast production efficiency any 
more. Introducing an object-store data management has been 
instrumental for reaching this goal. 

On the model output data handling side the challenges are 
actually bigger as data volumes are expected to increase by 
O(10,000) and data diversity will grow alongside because of 
more complex Earth-system models, advanced ensemble 
products and more user communities wanting to access and 
post-process data closer to the native model output generation. 
ECMWF has implemented a flexible data handling software - 
largely supported by the European Commission funded 
project NextGenIO - that allows a much more flexible 
handling of data both on the what-to-do-with-which-data at 
the front-end as well as the where-and-how-to-process back-
end. Again, this software is based on an object-store type data 
management. The software is being tested with new NVRAM-
based hardware at present and initial results indicate 
substantial efficiency gains.  

Both developments will support ECMWF’s forecast 
production in the future but also serve as key components for 
data handling in selected Copernicus services such as the 
Copernicus Climate Change and the Copernicus Atmospheric 
Monitoring Service. 
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Abstract—The data volumes produced by simulation and
observation are large, and growing rapidly. In the case of simula-
tion, plans for future modelling programmes require complicated
orchestration of data, and anticipate large user communities.
“Download and work at home” is no longer practical for many
use-cases. In the case of simulation, these issues are exacerbated
by users who want simulation data at grid point resolution
instead of at the resolution resolved by the mathematics, and/or
who design numerical experiments without knowledge of the
storage costs.

There is no simple solution to these problems: user education,
smarter compression, and better use of tiered storage and smarter
workflows are all necessary – but far from sufficient. In this
paper, we introduce two approaches to addressing (some) of these
data bottlenecks: dedicated data analysis platforms, and smarter
storage software. We provide a brief introduction to the JASMIN
data storage and analysis facility, and some of the storage tools
and approaches being developed by the ESiWACE project. In
doing so, we describe some of our observations of real world data
handling problems at scale, from the generic performance of file
systems to the difficulty of optimising both volume stored and
performance of workflows. We use these examples to motivate
the two-pronged approach of smarter hardware and smarter
software – but recognise that data bottlenecks may yet limit the
aspirations of our science.

Index Terms—HPC, exascale, big data, extreme data, POSIX,
object store, NetCDF

I. INTRODUCTION

Weather and climate science exploit vast amounts of ob-

servational data and generate vast amounts of simulation

data. Data volumes and velocity are increasing rapidly. This

growth in data is driven by computing capacity – both within

instruments and in supercomputing. Major weather centres will

approach an exabyte of data in the near future, years before

they have access to exascale computing, and so we believe the

first exascale challenge for the scientific community is a data

challenge, and the computing challenge [1] will follow! In this

paper, we concentrate on the bottlenecks introduced into the

relevant workflows by the volume and velocity of that data,

and describe some existing and proposed solutions.

II. CONTEXT

The growth in data volumes arises from the inexorable

exploitation of computing in instruments and simulation. In

particular, both the weather and climate communities seek to

develop ever higher resolution models of the earth system,

and run them in ensembles (e.g. see Figure 4 in [2]) Such

extra resolution leads directly to larger volume output, and

handling that in a timely manner brings velocity issues – can

the input/output, storage, and workflow systems deal with the

data in a timely manner?
An immediate question when faced with such issue is

“Do we really need all that data?”. The answer is almost

certainly not, insofar as some of the data being written out

has little meaningful information content — being beyond

the meaningful resolution [3] — yet it is written because

people think it might be useful in the future. Similarly, perhaps

not all ensemble members need to be fully written out,

and both temporal resolution, and opportunities for online

analysis before writing data out should all be considered.

However, in many cases where the eventual analysis is not

yet determined, the full resolution data may be needed since

re-running models may be too expensive, or even impossible.

In any event, reductions in output from “one-off” decisions

will only postpone bottlenecks being introduced by the drive

to higher resolution, they will need to be addressed.

Fig. 1. Heterogeneity in the workflow platforms and requirements: from tra-
ditional HPC platforms, to dedicated analysis facilities, and data management
and distribution systems, all with different requirements, serving users with a
multitude or roles.

The workflow environment involved is complicated. Tra-

ditional HPC platforms have been augmented by dedicated
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Fig. 2. Data Gravity: the JASMIN concept of a data commons is predicated on
providing a large managed archive of data from ground based observations,
satellites, as well as simulations from major modelling campaigns such as
Model Intercomparison Projects (MIPs). That provides an incentive for users
to bring and share their own project data.

data analysis facilities, and complicated systems for data

distribution such as the Earth System Grid Federation [4] are

in use (figure 1). The storage capacity, types, and performance

requirements are very different, and each has a different

class of storage bottleneck to consider. On HPC platforms

the main issue is often performance — reaching sustained

I/O performance from and to disk. On analysis platforms

there is I/O performance and storage to consider, and in data

distribution systems, network [5] and software issues dominate

to the point where most groups rely on dedicated local archives

rather than personal downloading (e.g. see [6], in particular

their figure 2).

III. CUSTOMISED HARDWARE

In the UK academic community, large weather and climate

simulations are primarily carried out on one of two national su-

percomputers: ARCHER (in Edinburgh) or NEXCS (a portion

of the Met Office supercomputer, in Exeter). Neither have large

storage and/or analysis systems, and data output is migrated

to JASMIN, a data analysis supercomputer for environmental

supercomputing (near Didcot, in Oxfordshire). Dedicated high

bandwidth network links are available to supplement backbone

networks for data transfer.

JASMIN has been designed for environmental data analysis.

As of September 2018 it has over 40 PB of storage, and

over 10,000 cores distributed between a batch cluster and

a community cloud. JASMIN implements a data commons

(fig. 2) utilising the managed archive from the Centre for

Environmental Data Analysis (CEDA,https://ceda.ac.uk) to

underpin the services provided by JASMIN (fig. 3).

JASMIN is configured with a high performance storage

environment [7], which is heavily used – data read rates exceed

1 PB/day for multi-day periods (fig. 4). However, despite the

heavy use, there is considerable performance “left-on-the-

floor”, as not all user codes can make effective use of the

input/output performance available.

As of early 2018, the storage was divided into five classes:

home, user scratch, group work space (GWS), and archive;

with most of the space allocated to the archive (5 PB) and

GWSs (>12PB). Users are generally assigned access to one

Fig. 3. JASMIN provides a range of services which exploit the CEDA
archives and the customised hardware, the most important of which are the
LOTUS batch cluster, the Community Cloud, and the CEDA data services,
which together provide “Platform-as-a-Service”, “Infrastructure-as-a-Service”
and “Software-as-a-Service”.
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Fig. 4. Network traffic from storage into LOTUS showing data movement
over several years. The blue line is the three day sustained average, the orange
line, the monthly mean.

or more GWS, and the GWS allocations are constrained within

consortium allocations controlled by an external board.

During most of the previous years, growth on disk was

almost linear (fig 5, top panel1). However that linear growth

did not represent user demand, which was heavily constrained:

the middle panel of fig 5 shows the archive on disk, and

how it has been constrained by the allocation cap, despite

the higher underlying growth in most of the archive – one

example of which is the Sentinel data, shown in the bottom

panel of figure 5. The group workspaces were also constrained:

Figure 6 shows that much of the user growth was within GWS

1Note that the early 2018 increase was due to data replication associated
with an upcoming upgrade.
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Fig. 5. Three aspects of storage volume growth: the total disk usage by storage
pool (see text); total archive volume on disk, and total of the Sentinel data
held in the archive (on tape and disk). Key points to note are that the overall
linear growth (as opposed to exponential growth) is because of constraints on
the archive and group work spaces sizes on disk (see text).

Fig. 6. Usage and fill factor on selected Group Work Spaces over 18 months
to October 2017. Lines show change during this period, from beginning to
end (denoted with the icons, which indicate the consortium). The top panel
shows how the number of users has grown with most workspaces, while the
bottom shows how the group work spaces have filled up to their allocations.
In both cases, some GWS have also changed in size over that period.

and that users were constraining themselves to fit within their

GWS allocations.

The split between archive and GWS, and the constraints

which are applied to both, provide key mechanisms used by

JASMIN to turn what would have otherwise been exponential

data growth into relatively manageable linear growth (although

even linear growth will not be affordable on disk if it exceeds

the Kryder rate [8]).

IV. CUSTOMISED SOFTWARE

Some of the solutions to volume and velocity need to be

addressed in both hardware and software.

Where volume and velocity combine, performance becomes

an issue. As already noted, not all existing workflows make

good use of parallel file systems, and may be more suitable for

other storage media. However, even where workflows are well

suited for parallel file systems, the file sytems themselves bring

limitations which arise from the failure of POSIX at scale to

handle high volume concurrent metadata look-ups and very

large numbers of processes attempting to access a handful of

files. Solutions generally involve application level tuning to

local systems, resulting in poor performance portability.
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Fig. 7. The Earth System Data Middleware, ESDM, lies between the HDF5
library and storage volumes.

Migrating to object stores is one possible solution [9], but
only as part of a plan which addresses higher performance at
write time using traditional interfaces. However, object stores
are subject to a declining Kryder rate too, so tape is an integral
part of planning at most sites, including JASMIN, providing
lower performance (and cheaper) storage where the “coldest”
data can still be accessed quickly.

Object stores and tape bring another set of issues in that
there is little available portable software in the weather and
climate community which can easily exploit such storage in
workflows. Data placement and appropriate metadata are key,
but hierarchical namespaces are limiting, users generally do
not have control over data placement, and system controls
are often blind to expected usage and workflow requirements.
While sophisticated solutions for tape usage exist at major
sites (e.g. the ECMWF MARS system [10]), they do not yet
incorporate object stores, or if they can (or will soon), they
do not deliver portable solutions.

The Centre of Excellence in Simulation of Weather and Cli-
mate in Europe (ESiWACE, https://esiwace.eu) is addressing
these issues in a focused attempt to develop portable software.
Currently there are two strands of activity:

1) The Earth System Data Middleware (ESDM), which
provides a library which sits between traditional HDF
and NetCDF interfaces and storage to deliver perfor-
mance portability; and

2) The Semantic Storage Tools which are aimed at pro-
viding suitable portable interfaces to both tape and
object storege and providing users the ability to manage
their own placement on tiered storage, without losing
visibility of their metadata.

A. Earth System Data Middleware

The ESDM targets performance portability by providing
software that can be linked into existing applications, but
take advantage of knowledge of the local storage environment.
Design goals include: (1) Ease of use and deployment; (2) Ex-
ploiting knowledge of data structures and scientific metadata
to provide efficiency, (3) Supporting multiple read-patterns

ESDM Backend

ESDM

(HDF5 Plugin)

ESD interface

Import/Export

Tools

Management

Services

Site confguration

- storage types

- performance models

Layout

Component

Metadata backend Storage backend

ObjectsFiles
RDBMS or

NOSQL

Fig. 8. Core architecture of the ESDM. The HDF plugin and external tools
interface to the layout component which is configured with information about
available storage types and their expected performance. Metadata and storage
backends can use whatever is available.

efficiently, and; (4) Reducing the penalties of shared file access
(i.e. deliver “lock-free” writes in parallel applications).

Ease of use is delivered by providing a library which can
be linked into existing applications using HDF or NetCDF
(figure 7 along with configuration which involved site-specific
optimised data layout schema, figure 8). Administration and
user tools will provide import export and monitoring.

Performance is delivered by exploiting knowledge of the
scientific structures to deliver the necessary lock-free writes
by handling data as atomic fragments.

The current status of the ESDM software is that prototypes
have been built on a number of systems, and it has been
demonstrated to perform signficantly better on Lustre file
systems than the native HDF5 writing to Lustre. Details of
that performance, and results on other systems will appear
elsewhere. User management tools are not yet available.

Future plans include exploiting internal ESD backend dae-
mons to rearrange data for multiple different access patterns
requested by “usage hints” delivered at write-time, or via
the user-tools interface. These daemons will also be able
to rearrange data on the fly for export to remote sites (for
example, via Globus).

B. Semantic Storage Tools

The semantic storage tools target direct use of object stores
by user software, as well as user-controlled data management
in a tiered storage environment.

Currently it is not easy to exploit object stores directly
in normal user workflows, most software is predicated on
systems and libraries which expect to be working with POSIX
filesystems. S3NetCDF (fig 9) addresses this for Python
users by providing a drop-in-replacement for NetCDF-python.
NetCDF datasets are fragmented using the Climate Forecast
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Fig. 9. S3NetCDF involves a splitter which utilises the CF conventions to
split a multi-field NetCDF file into a mater file and smaller fragments, which
are all stored separately (on tape, or on disk in an object store or file system).

Aggregation conventions [11] resulting in a set of individual

NetCDF files which can be stored as objects or files, along

with a master array describing how they are aggregated. Users

can keep the master array on normal disk, and S3NetCDF

simply opens that file, and reads/writes the fragments into/from

memory from/into storage.

S3NetCDF exists as a functional prototype, but it accesses

fragments in serial, and performance is relatively poor. It is

currently being rewritten to exploit the available parallelism

to delivery what is hoped to be even better performance than

is available using normal POSIX disk access.

Even without direct access to object stores from user codes,

object stores can be treated like tape, and used for stashing

“colder” data for later use. However, where users are managing

this process, the major problem is maintaining information

about what is on such storage. Lists of filenames are inad-

equate, and local bespoke solutions do not allow users to

mange their data across multiple sites. These issues are being

addressed by the development of cache facing software that

(1) manages data migrations, and (2) allow users to manage

their own metadata about what is where.

This software, currently known as CacheFace, depends on

three key internal components: a data migration utility, a cache

management utility, and a metadata system. Development on

each is underway, with the data migration tool reaching a

sufficient level of maturity so as to be deployed on JASMIN

(as the JASMIN Data Migration App) in the final quarter of

calendar year 2018. The other two only have rudimentary

prototypes, but have the same fundamental requirements as

the ESDM and S3NetCDF, so development is expected to be

relatively swift. Exploiting these underlying similarities will

be one of the goals of the ESiWACE2 project beginning in

2019, with long-term maintenance of the tools being picked

up by institutional partners.

V. RELATED WORK

A number of sites are developing hybrid HPC/cloud solu-

tions, and some are at a similar scale in terms of compute,

e.g [12]. However, we believe JASMIN is unique in terms of

the co-location with a managed archive crossing a wide range

of environmental data, although the Polish Innovation Testbed

Fig. 10. CacheFace will provide a POSIX front end which manages and
migrates data between storage tiers while exposing NetCDF and other
metadata to the user regardless of where the data is stored, whether on tape,
or disk.

hosts a range of earth observation data [13], and a number

of sites are providing computational facilities alongside ESGF

climate data.

The ESDM is built on a middleware heritage that some may

argue began with ADIOS [14], and has many characteristics in

common with sophisticated solutions for buffering data flow

in tiered disk storage (e.g. [15], [16] and managing scientific

workflows [17]. The ESDM differs from these more generic

solutions, by attempting to make use of our domain specific

knowledge about the contents of NetCDF data.

There are broadly two current approaches to exploiting

object stores: attempts to use middleware to unify I/O stacks

(as we are doing with the ESDM) or providing “POSIX-like”

or “POSIX-light” file system interfaces that drop some of the

full POSIX requirements in order to exploit object stores effi-

ciently. Differing examples from the research and commercial

sphere include MarFS [18] and QuoByte2. Our approach is

somewhat different, by again using our domain specific knowl-

edge (specifically, the Climate Forecast conventions [19]) and

the ability to split metadata and data to effectively exploit

object stores. The same domain specific knowledge provides

the key point of difference for our CacheFace development

from other data migration and caching systems (of which there

are too many to reference here).

VI. SUMMARY

Modern weather and climate workflows demand customised

data analysis environments with specialised hardware and user

configurable software environments (virtualisation, container-

isation etc). These requirements are met in the UK by the

JASMIN facility which co-locates a “community cloud” with

a managed archive, a large batch cluster, and a sophisticated

tiered storage system. Over the last few years, most user

workflows have been able to be accommodated on JASMIN

disk, with tape used only for backup and long-term archive,

however, projections of future demand suggest that “disk-only”

2https://www.quobyte.com
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workflows will need to be supplanted by workflows which
include more tiers of storage, including tape.

Within those workflows more parallelism will be necessary
to avoid unreasonable wall clock times, but such parallelism
will not eventuate without both new algorithms and approaches
by users and the widespread availability of more efficient and
smarter storage middleware and data management software.
The European ESiWACE project is addressing these middle-
ware and data management software requirements by devel-
oping two families of products: high performance middleware
to lie beneath commonly used software libraries like HDF
and NetCDF4 (the “Earth System Data Middleware, ESDM”),
and user deployable portable tools to manage data in a tiered
storage environment.

These two approaches to beating data bottlenecks, smarter
hardware and software, will not be enough on their own.
The reality of storage economics coupled with feasible data
production volumes and velocity mean that despite technology
innovations, the most important approach to these data bottle-
necks will be avoiding the problem in the first place by writing
less data! This means that experimental design and analysis
workflows will need radical rethinking — a process that will
inevitably involve the entire scientific community, not just the
technical experts.
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Abstract—Future supercomputing infrastructures have to ac-
commodate the needs of scientific applications and workflows that
have in common that they involve large data volumes as well as
the need for scalable compute resources. Based on the roadmaps
of the underlying technologies new approaches are needed to
satisfy both the requirements for storage capacity as well as
storage performance capabilities. Furthermore, supercomputing
centres need to become more open in order to facilitate external
data injection and access to different, geographically dispersed
data sources. One of the challenges of designing future supercom-
puting infrastructures that meet the needs of the aforementioned
class of applications is the lacking ability of defining their
needs. We will advocate one method for capturing these needs
mainly focussing on data transport and storage requirements.
We will furthermore report in this talk about results from
different projects aiming on realising new I/O architectures and
supercomputing infrastructures. This includes in particular the
EC-funded projects SAGE and ICEI.

Index Terms—I/O, workload characterisation, e-
infrastructures

I. INTRODUCTION

At centres like the Jülich Supercomputing Centre we ob-
serve an increasing number of scientific workloads1 which
have in common that they need scalable compute resources
and involve large amounts of data. We use the term “data-
intensive HPC workloads” for these type of workloads. The
characteristics of these workloads and their needs often deviate
significantly from the more traditional simulation-based HPC
workloads. Data-intensive HPC workloads include workloads
that consume large amounts of experimental data and process
this data using scalable compute resources or simulations
that produce large amounts of results that may need to be
processed while data is still in transit.2 These work flows
may furthermore include steps that require different kind of
architectures, e.g. simulation and deep learning steps.

One of the challenges in this field is the lack of established
approach to characterise these applications. Many of the simu-
lations applications can be categorised in terms of the Berkeley
dwarfs [2]. For any of these dwarfs a significant amount of
knowledge is widely available on the relation of application

1We use the term “workloads” instead of “applications” to include cases
where only single applications are executed as well as more complex work
flows. We furthermore assume a workload definition to also include the
specification of a problem size.

2We use the term “in transit” as defined in [1].

characteristics and system architecture characteristics. Also for
data-intensive applications categorisation schemes have been
proposed (see, e.g., [3]), but the take-up of these schemes is so
far limited. Unlike the Berkeley dwarfs they are not yet a good
instrument for designing future systems and infrastructures.

Giving the key features of the workloads, namely the use
of scalable HPC systems with a high throughput of arithmetic
operations and the extreme size of the consumed and/or
produced data sets, providing sufficient data store and data
transport capabilities are the obvious challenges for future
infrastructures for data-intensive HPC workloads. Emerging
technologies, like new memory hardware technologies or
data store software technologies, will help to address these
challenges. However, significant efforts are needed to integrate
these into future infrastructures and to enable applications to
efficiently exploit these.

The remaining part of this paper is organised as follows:
In section II we explore different approaches to characterising
the needs of data-intensive HPC workloads. We then look in
section III into a selected choice of future technologies and
architectures, which we consider particularly interesting in this
context. In section IV we present the architecture of a federated
e-infrastructure, which is in the process of being realised and
will be optimised for extreme-scale data analysics workloads,
before presenting summary and conclusions in section V.

II. APPLICATION CHARACTERISATION AND
REQUIREMENTS

In this section we explore different strategies for charac-
terising data-intensive applications and to derive requirements
for designing future I/O architectures and infrastructures for
extreme scale data analytics.

a) Annotated use case diagrams: Annotated use case
diagrams are obtained by mapping the different steps of the
workload onto an abstracted machine architecture. The ab-
stracted machine architecture is defined as a graph comprising
the following components:

• Data ingest nodes
• Data repository nodes
• Data processing nodes
• Data transport edges
As an example we consider the processing of brain im-

ages within a deep learning workflow [4] for which the
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Workshop at Forschungszentrum Jülich, Germany, 18-19 September 2018
Proceedings, IAS series, volume 40, March 2019
ISBN: 978-3-95806-392-1, urn:nbn:de:0001-2019032102

- 37 -



Data
Acquisition

Site local 
storage

Permanent
HPC storage

Fast HPC 
storage

HPC/HPDA 
system

Fig. 1. Example for an annotated use case diagram for processing brain
image data.

corresponding use case diagram is shown in Fig. 1. Data,
which is produced by high-performance microscopes at one
site, is first buffered in a site local storage before being
transferred to a large-capacity archive. From there the data
is staged into a fast HPC storage tier such that data can be
read at a sufficiently high rate by a high-performance data
analytics (HPDA) system. After creating the diagram, an in-
depth analysis of the workload is required, which involves,
e.g., analysis of the rate at which data is produced by the
microscopes or consumed by the HPDA system. Based on this
information, the components of the diagrams can be annotated
with capability and capacity requirements. The analysis for the
specific use case considered here goes beyond the scope of this
paper.

b) Retention time analysis: Another dimension to work-
load characterisation can be added by identifying the retention
time of the involved data objects. This has been proposed for
HPC jobs [5], for which taking job duration as reference time
scale is a natural choice. In this case data objects used within
a work flow can be classified as follows:

• Transient: Data discarded on HPC job completion or
when later processing steps are concluded;

• Short-term: Data used throughout the execution of the
work flow;

• Permanent: Data outliving the system producing it.
For other workloads the choice of another reference time scale
may be more appropriate.

Retention time analysis is useful in the context of hier-
archical storage architectures comprising a high-performance
tier, which will typically be smaller in capacity, and a large-
capacity tier, which will provide lower performance. Perma-
nent data objects within will accumulate over time and thus
need to be stored in a large-capacity tier. To save limited
bandwidth to the large-capacity tier and to ensure rather fast
access, only the high-performance tier should be used for
transient data objects. As an illustrative example we show a
brain simulation work flow in Fig. 2 as it might be realised
using the NEST simulator [6]. During an initial stage this
application creates a network, which might be re-used for
other simulations, i.e. it is retained after the life of the job
that produced this data object. During the simulation stage
other data objects are produced, which need partially be kept

Fig. 2. Example for an retention time analysis for a brain simulation work
flow.

permanently and that are partially analysed or visualised while
the simulation is running, i.e. these data objects are both
permanent and transient.

c) Functional requirements: Workloads do not only
come with performance requirements, also functional require-
ments need to be met. In this contribution we would only
highlight some selected requirements, which are expected to
have a significant impact on the way HPC systems are operated
in the future:

• Enable use of various data sources: HPC systems today
tend to be designed with limited capabilities for trans-
ferring data into or out of the data centre. Workloads
as described before, involving, e.g., processing of vast
amounts of experimental data, require the boundaries
between HPC systems and the outside world becoming
more permeable.

• Facilitate data sharing following the FAIR principles [7]
and collaborative data processing: With costs for creating
data assets increasing, the need for exploiting its value as
much as possible becomes even more important. Data
sharing and collaborative data processing capabilities
enable exploitation of data assets by a larger number of
scientists. More value is created by connecting different
data assets. This may require federation of services to
support data localisation, data access and data transport
when data is distributed over different sites. As access to
such data assets is typically protected, this furthermore
requires the ability to manage access rights to data objects
through different control domains.

• Provide interactive access to data and compute resources:
Today HPC systems are predominantly used in batch
mode, i.e. a central resource manager schedules jobs
without any user involvement. For various steps within
the scientific discovery process and data analytics work
flows interactive frameworks, like Jupyter notebooks,
have become popular. Interactivity may also be needed
for analysing and visualising data of running HPC ap-
plications, possibly combined with steering of these ap-
plications. All these cases require changes in access and
operation of HPC infrastructures, including changes of
allocation mechanisms.
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III. FUTURE TECHNOLOGIES AND ARCHITECTURES

A key technology for improving support of data-intensive
HPC workloads are memory technologies. The size of the
data sets typically results in a need for large memory capacity
Cmem, while the speed at which data is processed, e.g. using
modern GPUs, results in a need for high performance, e.g.
large bandwidth Bmem. Different memory technologies differ
significantly in terms of ∆τ = Cmem/Bmem, which indicates
that high bandwidth comes with smaller capacity and vice
versa. For high-performance memory technologies like HBM,
which are used for current high-end GPUs, we observe ∆τ '
20 . . . 40 ms. For high-end SSD we have ∆τ = O(103 s), i.e.
an orders of magnitude larger value.

Despite the necessary compromises in terms of bandwidth,
non-volatile memory devices like SSDs are interesting because
of their high memory capacity within a small footprint and
the much higher performance compared to spinning disks.
An interesting open question: What is the best interface for
accessing such non-volatile memory (NVM) devices? The
options can be categorised as follows:

• POSIX file system interface: NVM devices are in the
context of HPC most often used as a block device
with a (near) POSIX compliant file system on top. The
main advantage is the use of an interface that is still
most popular within the relevant user communities. The
disadvantage is that in most cases the capabilities of the
underlying hardware cannot be fully exploited, e.g. the
ability to perform a very large number of small write and
read operations using random addresses. Furthermore,
such a setup may suffer from limitations of POSIX due to
slow metadata operations and consistency requirements.

• Object store interface: Object stores allow to overcome
this limitation of POSIX as updates of a namespace are
avoided. Individual objects are rather addressed through
unique keys avoiding the need for updating a shared
metadata structure. While object stores would in principle
allow for a better exploitation of the underlying hardware
capabilities, currently available solutions like Ceph still
come with too much overhead.

• Memory interface: Due to the underlying technology
being an addressable memory, using a memory interface
would be a natural choice. Indeed, such solutions have
been explored and compared to the other interfaces best
use of the underlying hardware for the case of small,
random transfers could be demonstrated. Lacking good
solutions for managing this memory and the need for
users to adapt their applications are currently probably
the most important factors preventing wider uptake.

At Jülich Supercomputing Centre we used the JURON
cluster for exploring some of the outlined interface options.
The cluster comprises 18 IBM S822LC servers (also known
as Minsky), each comprising 2 IBM POWER8 processors,
4 NVIDIA P100 GPUs, 1 HGST Ultrastar SN100 Series
NVMe SSD and 1 Infiniband EDR card. We configured
the system such that the SSDs were accessible as a shared

storage resource, i.e. each node could access the SSD mounted
at another node via the network. Two solutions providing
such a setup have been tested: BeeGFS [8], a parallel file
system, and Distributed Shared Storage (DSS) [9]. DSS is an
interface developed by IBM Research, which allows accessing
SSDs available within a RMDA-capable network using an
RDMA CM managed communication. Benchmark results on
this system are publicly available [9], [10]. We observed
that for large transfer sizes of 4 MiByte both solutions allow
to transfer at maximum bandwidth using 16 nodes, where
maximum bandwidth is defined as 16 times the maximum
bandwidth measured for the single devices using the ezFIO
benchmark [11]. The latter slightly exceeds the specifications
of the vendor. For small transfer sizes of 8 kiByte only using
DSS the same performance level can be maintained, while for
the parallel file system solution the effective bandwidth is at
least 3× below maximum performance. This is an indication
that a memory interface towards the non-volatile memory
is interesting for cases where small random read and write
operations are the dominating access pattern.

In this context we would like to highlight that there are
various emerging solutions for integrating non-volatile mem-
ory into the I/O architecture of modern supercomputers in
such a way that the performance of the underlying memory
technology can be efficiently exploited. One of the first solu-
tions that reached product level was DDN’s Infinite Memory
Engine (IME), which is a kind of burst buffer [12]. (See, e.g.,
[13] for an early evaluation using brain simulations as a use
case.) Another approach is taken in the SAGE project [14],
which has in recent years been developing an hierarchical
storage architecture based on Seagate’s object store technology
Mero. It’s native support for hierarchical storage architectures
allow for integration of fast storage technologies based on
non-volatile memory. It furthermore provides a native object
store interface designed for high performance. Due to the
limited capabilities of the so far available prototype system,
a performance evaluation for data-intensive HPC workloads
would be premature.

IV. FENIX: INFRASTRUCTURES FOR EXTREME SCALE
DATA ANALYTICS

Recently, in the context of the Human Brain Project3, a new
initiative has been started to establish a federated infrastructure
involving several European supercomputing centres, which is
called Fenix and is initially realised by the ICEI project. This
infrastructure is among others committed to be co-designed for
data-intensive HPC workloads from brain research, like those
described in section II.

The architecture is based on the concept that different
sites provide similar class of compute and data services in
a way that they can be federated and made accessible to
the users as a single infrastructure. This means, e.g., that
a common Authentication and Authorisation Infrastructure

3http://humanbrainproject.eu/
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Fig. 3. Fenix storage architecture.

(AAI) is created. Among others the following services are

foreseen:

• Scalable compute services

• Interactive compute services

• Virtual machine services

• Active data repositories

• Archival data repositories

• Data mover, location and transport services

To enable within the Fenix infrastructure both, sharing of

large-scale data volumes as well as fast access to the data, two

classes of data repositories are being introduced:

• Archival Data Repositories: Data stores optimised for

capacity, reliability and availability, which is used for

storing large data products permanently that cannot be

easily regenerated. To facilitate federation of the Archival

Data Repositories, these will all be accessible via a

SWIFT interface.

• Active Data Repositories: Data repositories optimised

for performance that are localised close to systems that

consume or produce this data, e.g. HPC or visualisation

systems. They are meant to be used for storing temporary

slave replica of data objects. No specific interface for

accessing these repositories are mandated as they are

expected to be optimised for the system from which

this data is being accessed. For HPC systems this will

typically mean that a parallel file system is used.

In Fig. 3 we show a schematic overview of this architecture.

To simplify staging of data from archival to active data

repositories or migration of data from active to archival data

repositories data mover services will be deployed that facilitate

asynchronous data transport.

Scalable compute resources,which will become available

within Fenix, will in parts be optimised for data analytics

workloads. Furthermore, interactive compute services are be-

coming available such that users can access large-scale data

volumes, e.g., for interactive data analytics steps.

V. SUMMARY AND CONCLUSIONS

Supercomputing centres are facing the need of providing

resources to an increasing number of data-intensive HPC

workloads and thus have to take this into account for the design

of future I/O architectures and infrastructures suitable for

extreme-scale data analytics. Realisation of such architectures

and infrastructures need to take the key characteristics of data-

intensive HPC workloads into account. In this contribution we

outlined a few methodologies for this purpose.

New technologies, in particular in the area of memory,

help us to address the challenges created by these data-

intensive HPC workloads. While the best way of integrating

these technologies into our future architectures remain to be

explored, performance results are very encouraging.

Experience with emerging data-intensive HPC workloads

have been used to design the initial architecture of the Fenix

infrastructure. This infrastructure is being co-designed pri-

marily with scientists from brain research. It is important to

have guidance from the science domains that are supposed to

benefit from this future infrastructure to exploit new technical

opportunities efficiently.
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Abstract—Materials informatics tools [1] for tackling the data
and computing challenges of materials design are rapidly evolving
in the electronic structure community. Frameworks like AFLOW
[2], AiiDA [3], ASE [4], Fireworks [5] and others are capable of
managing thousands to millions of differently sized simulation
jobs together with their heterogeneous data. If the computing
infrastructure permits it, this is performed in a high-throughput
fashion. Making high quality ab initio data and services
from different data sources available inside and outside the
scientific community is a challenge. Initiatives prepare for data
sharing services scaling to petabyte [6]. While high-throughput
studies [7] are not new in the electronic structure community,
reference all-electron methods studies and data are rare. We
present the open source AiiDA-FLEUR python package, enabling
the management of many simulations with FLEUR [8], an all-
electron code, through the Automated Interactive Infrastructure
and Database for Computational Science (AiiDA) framework.
AiiDA-FLEUR provides the user with FLEUR specific workflows,
property calculators and tools to ease, and automatize everyday
scientific work. Through AiiDA the connection to community data
structure formats, databases, interactions with other community
codes, and full provenance tracking of queryable curated data
and logic is ensured.

Index Terms—high-throughput; materials informatics; scien-
tific workflows; materials science; ab initio; all-electron; elec-
tronic structure; density functional theory; AiiDA; FLAPW

I. INTRODUCTION

Data challenges in materials science arise not in a local
single large petabyte data producing facility, but in a large dis-
tributed community of terabyte producers with heterogenous
data, data quality, services and sharing. In ab initio com-
putational materials science the amount of data accumulates
due to the number of calculations needed to accomplish a cer-
tain task. As the material properties one needs to simulate arise
from the underlying QMA-complete [9] problem of solving the
Schroedinger equation, two different aspects are of particular
interest. On the one hand, the structural configuration space
itself is enormous [10] and hence screening type tasks through

We acknowledge partial support from the EU Centre of Excellence ”MaX
Materials Design at the Exascale” (Grant No. 676598).

material property space are fit for high-throughput computing
(HTC). On the other hand, simulations of large systems with
many atoms require computational effort at the frontiers of
high-performance computing (HPC). Both of these aspects
lead to specific challenges for the simulation codes used as
well as for the job and data handling framework. At the
core of future research will be the tools created to manage
simulations, workflows, data processing and to ensure data to
be reproducible, searchable, reliable, shareable, curated and
provenance tracked along the principles of FAIR [11] and the
open provenance model [12].

While many methods in materials science rely on exper-
imental or empirical parameters, ab initio methods aim
at a description of materials properties from first principles.
Hence, they are of particular value in materials design by the
direct calculation of properties of interest and by providing
input for other applications e.g. for multi scale models. A
sufficiently large database of high quality ab initio data
can accelerate materials design, through machine learning
and other tools. The most successful of these methods is
Density Functional Theory (DFT) in its various incarnations
and numerical implementations. In this paper we will focus on
the FLEUR code, an implementation of the all-electron full-
potential linearized augmented plane waves (FLAPW) method
[13] known for its universality and high accuracy.

Among the tool sets used in computational materials design
in the field of material informatics the AiiDA framework
stands out as a dedicated tool for DFT calculations with
interfaces to a wide variety of codes and a strong focus on
data provenance. In this paper we will present and discuss the
AiiDA-FLEUR package that allows to deploy the FLEUR code
productively through the AiiDA framework.

II. THE AIIDA-FLEUR PACKAGE

The AiiDA framework features a flexible design in which a
plug-in system enables the use of different DFT codes. Such a
plug-in must take care of the basic tasks of providing interfaces
translating the data structures, of handling the calculation
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setup and resources, of parsing results, and of enabling the

construction of code specific workflows.

The open source AiiDA-FLEUR python package1 provides

such plug-ins and utility for the FLEUR [8] code. The AiiDA-

FLEUR package contains AiiDA plug-ins for FLEUR itself,

its input generator (inpgen) and a data structure representing

the FLEUR input. Further, it contains workflows, property

calculator protocols and utility to create a high-level work

environment. The package is open source under MIT license,

released on github and the python package index (PyPI). The

visualization function plot_fleur allows for quick default

visualizations of any database node(s) produced by FLEUR
calculations or workflows.

A. Calculation plug-ins

AiiDA calculation plug-ins, as fundamental building blocks,

contain instructions how to create valid input from information

in the database and what information to parse from output files

and store in the database. For FLEUR we have implemented

two calculation plug-ins. The input for an input genera-

tor calculation plug-in (FleurinputgenCalculation)

consists of up to three database nodes. A crystal structure

is provided via an AiiDA StructureData node. The

executable of the code is known through a Code node.

Further FLAPW parameters can be specified optionally in

an additional ParameterData node. An input generator

calculation returns a FleurinpData node representing the

input files for a FLEUR calculation. Other calculation out-

put nodes represent files in the repository (Folder) or on

a remote machine (RemoteData). Fig. 1 shows a node

graph of a FleurCalculation. Input nodes are a Code,

a FleurinpData node plus an optional RemoteData
node from a previous parent FleurCalculation to con-

tinue from the its output results. In the output node of a

FleurCalculation basic calculation results are stored,

for example the total energy, Fermi energy, band gap, charge

distance and meta data information of the run.

Fig. 1. Database input and output nodes in the directed acyclic provenance
graph for a single run of the FLEUR code.

1Code: https://github.com/JuDFTteam/aiida-fleur,
Documentation: https://aiida-fleur.readthedocs.io

B. Data structure plug-in

As a typical FLEUR calculation needs a significant amount

of additional parameters beyond the crystal structure repre-

sented in AiiDA plus functionality to efficiently manage and

manipulate these, we used the possibility to extend AiiDA

by new data structures [3]. We implemented a new data

structure, FleurinpData, to represent the FLEUR input files

and to provide user friendly methods for processing input or

extracting information from it. The input files are stored in

the file repository while in the database a footprint of the

full inp.xml file is stored. The FleurinpModifier class

ensures that provenance is kept through all input modifications

and allows for previews and undo of changes.

C. Workflows

A powerful feature of the AiiDA framework is the ability to

develop, run and share workflows [3]. AiiDA workflows are

a way to automatically launch time consuming calculations

that logically depend on each other without the user having

to wait for each of them. The workflow developer encodes

expert knowledge and ensures the provenance of data and logic

while having access to the python universe. Workflows are

powerful property calculator protocols with complex series of

calculations able to be launched with a small snippet of python

code. In workflows additional logic can be encoded like how to

best run and converge calculations, fining reasonable param-

eter sets, determine optimal computing resources, automatic

error treatment and restarts.

AiiDA-FLEUR comes with a set of workflows. The basic

ones converge a FLEUR calculation, calculate a density of

states, electronic band structure or an equation of state. AiiDA-

FLEUR contains additional workflows to manage core-hole

simulations and calculate core-level electron energy shifts.

Workflows to perform structure relaxation or calculate mag-

netic properties are under development. A typical run of the

basic FLEUR self-consistent field workflow creates about 20

database nodes and around 10 files of different size to be long-

term stored. Advanced workflows spawn a few to hundreds of

self-consistent field subworkflows.

A rather naive high-throughput example of a python launch

code piece is shown in Fig. 2 as demonstration. Beforehand

we have imported all structures (more than 800000 entries)

from the OQMD [14] into an AiiDA database. Then for each

structure we prepared a node with some specific FLAPW

parameters we like to adjust beyond the FLEUR defaults.

The python code snippet would load the structures and their

parameter nodes from their two groups in our database and

launch a self-consistent field workflow for each of them.

The launched workflow could be interchanged with any other

workflow with a similar interface. Further we have to specify

the code and the machine to run on plus optionally specify

some maximum resources per job among other options. While

this code piece will run quickly through in minutes to hours,

it will command the AiiDA daemon to manage all these

workflows resulting in over 1.6 million jobs to be calculated.

For an infrastructure with a throughput of 2000 jobs per day

- 44 -



this would take well over 2 years to complete. It is obvious

that this naive demonstrative example will probably result in

a very high failure rate. A realistic high-throughput project

has to be handled more carefully and more verbosely while

slowly scaling up if the error rate of the infrastructure is suffi-

ciently low. Also splitting the project in smaller similar parts,

predicting and controlling the work load and understanding if

the quantum engine together with the workflows are robust

enough for your project is necessary.

Fig. 2. Minimal Python code to launch certain FLEUR workflows for a
set of crystal structures. This naive code example spawns a self-consistent
field workflow for each structure in the Open Quantum Materials Database
(OQMD) resulting in over 1.6 million diverse jobs to be managed.

Besides the robustness of the underlying quantum engine

the robustness of the workflow is important. The log-log

plot in Fig. 3 shows the convergence result of the charge

density and the total energy for over 1700 different bulk

binary crystal structures (from the Materials Project [15] and

Inorganic Crystal Structure Database (ICSD) [16]) run with

the self-consistent field AiiDA workflow for FLEUR with spin

orbit coupling. For over 86 % of the systems the workflow

managed to achieve convergence in charge density and total

energy. While 7 % did not converge at all for different reasons

and another 7 % converged partially. Magnetic systems (red)

are harder to converge then non-magnetic (blue) systems.

Code interoperability allows to exploit individual strengths

of different electronic structure methods. It is convenient to

chain different workflows and different electronic structure

calculations through the reuse of common AiiDA data struc-

tures in various databases, workflows, plug-ins for electronic

structure codes and utilities. We designed all FLEUR specific

workflows to have a similar interface. For example one can

import a crystal structure through AiiDA from any common

database source, or file format. On this crystal structure one

could run a structure relaxation workflow with FLEUR or any

other code. The output structure can again become an input for

any further workflow one wants to run. This interoperability

of FLEUR specific workflows is shown in Fig. 4. Also each

workflow comes with its quick default visualization. A single

plot function allows for a visualization of any single database

node or of a list of nodes.

Fig. 3. Small example of the charge density and total energy convergence
result of 1718 different binary crystal systems managed by the FLEUR
self-consistent field workflow. The workflow succeed in over 86 % of the
simulations to fully converge the systems.

Fig. 4. Common AiiDA data structures (i.e StructureData) enable
chaining of different electronic structure codes (example Quantum Espresso
(QE), ...) and workflows profiting from their individual strengths. Also each
AiiDA data structure and FLEUR specific workflow comes with its own quick
default visualizations.

III. DATA HANDLING

AiiDA tracks the data and logic provenance in form of a

directed acyclic graph in a queryable database. Files for long

term storage are stored in a file repository or object store

[3]. When running many complex workflows or a material

screening task one ends up with millions of files on disk and

databases with easily tens of millions of nodes. A database

with one million nodes is about three gigabyte and more in

size. To get an impression in Fig. 5 the full database prove-

nance graph/network of a small AiiDA database is shown. The

graph depicts about 4000 self-consistent field workflows with

different codes, versions and computing resources, resulting

in about 130000 nodes (black dots). The graph is layouted

with a parallel multi force atlas graph layout algorithm us-

ing Gephi [17]. Clusters of nodes evolve around different

highly connected FLEUR code nodes on divers computing
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resources. Crystallographic Information File (CIF) data nodes

from which crystal structures have been extracted dangle

loosely connected around the edges.

Fig. 5. A directed acyclic provenance graph of a small SQL database
containing over 4000 self-consistent field cycles of different codes resulting in
around 130000 nodes (black dots) to provide a brief impression on complexity
and scalability. (Produced with Gephi [17], Multi force-directed graph layout)

A. Data services

Besides the predictive power of ab initio results them-

selves, access to ab initio data is of interest to other

experiments, other communities and industry [18]. Every use

case may have different demands, expectations, data quality,

or accuracy requirements. Example one: For the evaluation or

comparison of a certain experiment the user is only interested

in a small subset of physical quantities, their accuracy, and

some meta data information. Example two: A larger subset of

data and meta data is required for training a machine learning

application [19]. Not only successes but also in some respect

failures are of interest for a good training set. For the first

example a notebook or app with a very specialized query and

data access tailored to the specific use case of the community

is a good solution. Whereas for the second example a general

access interface for the data might suffice. Therefore, data

hosting platforms are needed which allow for deployment of

special apps and services on data sets. A beginning along these

lines is seen on Materialscloud [20], the Materials Project [15],

AFLOWlib [21], OQMD [14], the NOMAD analytic toolkit

[22] and EPS [23]. Given that structure configuration space is

so vast, we can only accumulate data on a small fraction of

it leading to the need of on demand computational services

through the deployment of robust automated workflows.

IV. CONCLUSION

We have presented the AiiDA-FLEUR package, providing

an automated high-level work environment for users of the

FLEUR code. This is accomplished through specific imple-

mentations of workflows which can be run and managed

thousand- to millionfold with the AiiDA framework. All data is

provenance tracked in a directed acyclic graph along the open

provenance model [12]. We pointed out that in computational

materials science we have data challenges due to distributed

heterogenous data producers with a wide range of possible

applications. Materials informatics is evolving to progress on

these challenges. Tailored data services, apps and on demand

property calculations may be essential to provide data access

to communities with certain use cases.
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Abstract—Among the scientific communities that generate the
largest amount of data today are the climate sciences. New
climate models enable model integrations at unprecedented reso-
lution and can simulate centuries of climate change that include
many complex interactions in the Earth system. Previously, the
numerical integrations used to be the bottleneck. Nowadays,
limited storage space and data analysis are becoming the main
bottlenecks, because of ever increasing simulation output data.
To tackle this challenge, we propose a prediction-based lossless
compression framework.

The framework supports: (1) the creation of individual pre-
dictors, which can be adjusted to the available data, (2) strict
interfaces and customisable components, which are building
blocks of the compression modules that are optimised for
particular applications as well as (3) the execution of benchmarks
and validity tests for sequential and parallel processing of
compression algorithms.

Index Terms—Compression, floating-point, finite-context.

I. INTRODUCTION

Through the introduction of next-generation models the

climate sciences have experienced a breakthrough in high-

resolution simulations, which calculate global simulations with

a resolution of five kilometres (e.g. ICON-ART [1]). The new

models produce an unprecedented volume of data in climate

research, so that future studies are limited by the storage

capacity rather than numerical calculations.

These models are validated with, for example, reanalysis

datasets. One of them, the current European ReAnalysis

(ERA5) dataset outputs hourly data starting from 1979 to the

present on a 1440 × 721 (about 31 km) horizontal and 137

level vertical (up to 0.01 hPa = 80 km) grid1. If we assume

16-Bit Integer values for each variable this amounts to 2.26

TiB p.a. per variable with support for 120 variables2. One way

to tackle the storage problem is to use compression [2].

We propose a modular lossless compression framework

(LSCF) for the development of customized prediction-based

compression algorithms for structured spatio-temporal data.

The framework helps with the development of a prediction-

based compression method by providing a strictly defined

1European Centre for Medium-Range Weather Forecasts (ECMWF)
Newsletter No. 147 – Spring 2016 (p.7)

2While some of these variables are simulated, others can be deduced from
simulated variables. For reference http://apps.ecmwf.int/codes/grib/param-db

interface, concurrent compression support for fast testing,

implementation of already established prediction models, the

possibility to generate ensemble predictors, and fast iteration

via multi-dimensional subsetting of datasets.
In the next section we will give a brief overview of

prediction-based compression. Afterwards we will introduce

LSCF and take a closer look at the implementation. In the

concluding section, we will outline how the community can

contribute to the framework and give recommendations for

future work.

II. PREDICTION-BASED COMPRESSION

Compression algorithms can be classified in two categories:

lossless and lossy compression. A lossless compression algo-

rithm creates a reconstruction that is identical to the source

data on bit level. A lossy compression algorithm is not able to

do this. The reconstruction generated by the lossy algorithm

is an approximation of the source data.
Both types of algorithms work by first decorrelating and

then encoding the data. A lossy compression algorithm has

additionally an approximation step in between. The correlation

steps reduces redundancy in the data being it autocorrelated or

cross correlated information. The approximation step reduces

the complexity of the data by using e.g. methods of quantized

representation of data values. In the encoding step the actual

compression happens and the data is written on disk in a

compact form.
The last couple of years the development of compression

algorithms for scientific data experienced a renaissance [3]–

[8]. Although these methods are based on the same principle

of prediction-based compression, there is currently no easy

way to test and adapt them to different datasets.

Fig. 1. Stencil of neighbouring data points being used by the predictor. The
green data point is being predicted by the predictor using information from
the encircled neighbouring data points
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Fig. 2. Steps of a prediction-based compression algorithm.

Fig. 3. Temperature as an example why to use prediction-based compression
in climate research.

A prediction-based compression algorithm consists of the
following steps: First the data is being read into memory. In
case the data is floating-point data they are mapped to integers
to avoid floating-point operations. Floating-point operations
might cause numerical inaccuracies and prevent successful
reconstruction of the compressed data. This concludes the
preprocessing steps and the decorrelation starts. In the next
steps a traversal sequence through the spatio-temporal data is
chosen so that each point is visited once. The predictor then
moves along this traversal path and uses the points which have
been already visited in the past to predict the new data. Each
predictor defines a stencil like the one in Figure 1 to chose
which points to use. Finally the residual between predicted
and the true values is calculated.

The better the prediction is, the more leading zeros has
the residual. This is called the leading zero count (LZC) of
the data. If lossless compression is used, the LZC and the
residual are encoded and stored on disk. If lossy compression
is used, the deviation from the true value is compared with an
error tolerance determined in advance and a decision is made
whether or not the residual should be stored [2]. The true
value can then be reconstructed using the prediction model
and residual. These steps are depicted in Figure 2.

Figure 3 gives an illustrative example for why prediction-
based compression can be successfully used with climate
data. The figure depicts surface temperature across the globe.
While on global level there might be spots where neighbouring
values are quite different (especially mountainous regions like
the Himalayas or coasts) most of the data has a smooth
gradient. This is especially true for the oceans and the equator.
Prediction-based compression uses these regularities to im-
prove the prediction and with this the compression rate.

In the next section we will introduce LSCF and explain
how each step of the prediction-based compression algorithm
is mapped to its components.

III. FRAMEWORK

In this section we will first describe the two core compo-
nents of LSCF. Afterwards we will present several features
of LSCF which help the scientist during the design and
validation process of a compression algorithms. For an in-
depth explanation of the framework please refer to [2].

A. Core components

LSCF has two core components: objects and modifiers (Fig.
4).

a) Objects: Objects represent the current state of the data
to be compressed. Each result of the steps given in Fig. 2 is
represented by an object. They are immutable and may include
metadata information about previous states. There are three
main object classes: array objects, data objects and unique ob-
jects. The array objects are floatarray,integerarray,
predictionarray and residualarray. The data ob-
jects are the input and output files. The unique objects
classify objects which do not share similarities with any
other object. These are the sequence object and the
coded object. An overview of these objects are depicted
in Fig. 4.

b) Modifier: Modifiers execute the steps of the compres-
sion algorithm depicted in Fig. 2. There are five types of
modifiers [2]:

• Mapper Mapping floating-point values to integers
• Sequencer Transforms an array into a data stream
• Predictor Predicts next datum on the data stream, based

on past values
• Subtractor Calculates the residual between prediction

and true value
• Encoder Prepares residuals to be written on disk

They operate on objects and generate new objects. Each
modifier is only allowed to operate on a specific kind of object
(see Table I) and has a strict interface (see Table II. These
properties are guarantee interoperability and modularity of the
framework. A list of possible modifiers provided by LSCF is
given in Fig. 5.

B. Additional features

The framework provides several additional methods for the
design of a compression algorithm:

• Ensemble predictors
• Quality assessment
• Parallel processing
• Multidimensional random subsetting
• Strict interface

- 50 -



3

Fig. 4. Implementation of the steps described in Fig. 2. The modifier are depicted with dotted lines and the objects with through lines. The colouring of the
objects emphasizes their class: yellow for file objects, green for array object and white for unique objects.

TABLE I
INPUT UND OUTPUT OBJECTS OF THE MODIFIERS

modifier input output
mapper floatarray integerarray

sequencer integerarray sequence object

predictor integerarray predictionarray

sequence object

subtractor integerarray residualarray

predictionarray

encoder residualarray encoded object

TABLE II
INTERFACE OF THE MODIFIERS

modifier function inv. function
mapper map() rev_map()

sequencer flatten() -

predictor predict() -

subtractor subtract() -

encoder encode() decode()

1) Ensemble predictors: An ensemble predictor is defined

by a group of predictors, a cost function and a consolidation

method. The predictors are run in parallel during compression.

The cost function determines the rank of these predictors. The

consolidation method defines how each single prediction from

the group members should be consolidated and merged into a

single prediction. The goal of using an ensemble predictor is

to combine the knowledge of several predictors and generate

a superior prediction.

2) Quality assessment: The quality assessment provides

information about the achievable compression rate of the

dataset. The framework calculates the information theoretical

lower bound of the dataset provided by the Shannon Entropy

(SE) [9]. The SE quantifies the average amount of information

represented by a random datum of the dataset. The SE, denoted

H(X), is defined by

H(X) = −
∑

i

P (xi) · logb P (xi)

with X = {x0, x1, . . . , xn − 1, xn} representing all possible

values of the dataset, P the probability mass function and

b the base of the logarithm. Since we are interested in the

information content in bits, we will use b = 2.

3) Parallel processing: LSCF provides further the possibil-

ity for parallel processing of compression algorithms. There

are two possible ways of parallel processing: The data can

be chunked into several blocks and compressed in parallel

using a single compression algorithm or several compression

algorithms are run in parallel to compress a single dataset.

4) Multidimensional random subsetting: The framework

supports random subsetting of multidimensional data. The

subsetting is defined by its size, error margin and dimension

constraints. This feature is necessary for parameter fine-tuning.

5) Strict interface: The interoperability between the modi-

fiers and objects can only be guaranteed if the interfaces are

standardized. These interfaces are the function calls of the

modifiers and attributes of the objects. The interfaces to the

modifiers are given in Table II and the input and output objects

are given in Table I.

C. Implementation

An implementation of the framework is available at [10].

The provided framework is implemented in Python 3 and

uses as backend modules scipy [11], pandas [12] and

xarray [13]. It has been tested with files in NetCDF format

with Climate and Forecast Metadata Conventions. The use of

established open source software provides a good basis for

future co-operations and possible extensions of the framework.

IV. SUMMARY

Higher resolutioned simulation output provides a more

accurate representation of the simulation run. This in turn

depicts a better picture of the underlying model and enables

more fine-granular model improvements than before. Our

proposed lossless compression framework (LSCF) is a first

step in this direction and provides the necessary tools for the

development of a compression algorithm. LSCF provides an

easy understanding of prediction-based compression through

the usage of a modular architecture and supports concurrent

testing and rapid development of custom methods. The usage

of strictly defined interfaces provides a reusable framework

and a clearly defined structure for future additions.

We hope the open source nature of the framework helps us

to gather an active user base and enable collaboration in the

field of compression for scientific datasets.

CODE AVAILABILITY

An implementation of the framework described above will

be made available under GNU GPLv3 license at [10].
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Fig. 5. Diagram of possible modifiers in the design of a prediction-based compression algorithms with LSCF. The label on the arrows define transitions
applied to the previous object. Emphasised are the transitions which are implemented and part of the framework. The colouring of the objects emphasise the
similarity of the states. Data objects are yellow, array objects are green and unique objects are white [2].
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52425 Jülich, Germany 
k.goergen@fz-juelich.de

Bibi Naz 
Agrosphere (IBG-3) 

Research Centre Jülich 
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Abstract—This manuscript to the proceedings of the Extreme
Data – Demands, Technologies, and Services – Workshop1,
gives an overview on the characteristics, components, steps and
methods of a complex data flow path around a fully coupled
regional Earth system model and highlights the challenges we
face working with very large data, as well as the concepts and
strategies towards a big data-enabled modeling chain.

Index Terms—Big Data, HPC, Geoscience, Integrated Model,
Terrestrial Systems Modeling Platform, TSMP, Terrestrial Water
Cycle

I. INTRODUCTION

Enabled by the steady increase of computational capacity
through HPC developments towards massively parallel, in-
creasingly heterogeneous supercomputers [1], Earth system
modeling (ESM), including terrestrial systems modeling, is
used to understand processes and feedbacks between the com-
partments of the geo-ecosystem, that are impacted by global
environmental change, climate change and anthropogenic use
of ecosystem services.

ESM in general is currently characterized by (i) a resolution
increase to convection permitting simulations below 4 km grid
spacing [2], (ii) multiphysics, fully coupled (regional) model
systems [3], (iii) enlarged, high-resolution model domains
[4], and (iv) long integration times and/or many ensemble
members in either climate change [5] or (v) data assimilation
experiments [6].

A consequence are unprecedented data volumes that have
been a point of concern in [7] already. In a more recent opinion
paper on the future of climate system modeling, [8] calls for
a Flagship European Programme on Extreme Computing and
Climate, which promotes exascale climate modeling at 1 km
global resolution and also emphasizes the need for dedicated
tools and strategies to cope with the associated big data
volumes. A demonstrator of the feasibility of such simulations

1Held at Jülich Supercomputing Centre in Germany on 18 and 19 Septem-
ber 2018

using the MPAS model is [9]; continental to global hydrology
and land surface models are also advanced towards hyper-
resolution [10]; [11] show, e.g., the added value of such
simulations for water resources modeling.

The Centre for High-Performance Scientific Computing
in Terrestrial Systems2 (HPSC TerrSys) ultimately wants to
provide predictions (including uncertainty estimates) of the
hydrologic, energy, and biogeochemical cycles of the terres-
trial system at scales that are relevant for science, stakeholders,
and society (i.e., neighborhoods to continents). As terrestrial
systems exhibit heterogeneity and non-linear exchange pro-
cesses at all scales, high resolution models over large space
and time scales are required. This is why HPSC TerrSys takes
part in the above developments, that confront us with big data
challenges along the complete modeling chain.

Included under the term “modeling” is the complete data
flow path or data life cycle, from data acquisition (e.g., as
model input data), over pre-processing, the model simulation
itself, post-processing, analysis, visualization, storage, archival
to dissemination. In this manuscript we present the status
and plans from a purely user driven perspective within HPSC
TerrSys to make our modeling chain big data-capable using
off-the-shelf technical solutions. We do not report on the big
data capabilities of the model systems themselves, e.g., to
simulate larger problem sizes by using accelerators, novel
solvers, or Deep or Machine Learning techniques.

II. ORIGIN OF BIG DATA CHALLENGE

HPSC TerrSys’ big data challenge is driven to a lesser
extend by “data variety” (e.g., through integration of sensor
networks) or “data velocity” (e.g., incorporating near real-
time measurements in simulations), but rather the increase
in – primarily numerical model – “data volumes”. The data
volumes, e.g., from observational data, used for data validation

2http://www.hpsc-terrsys.de/hpsc-terrsys/EN/

Extreme Data: Demands, Technologies, and Services
Workshop at Forschungszentrum Jülich, Germany, 18-19 September 2018
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or in data assimilation, also steadily increase, but are not
covered here.

A. Terrestrial Systems Modelling Platform, TSMP

One of the model systems most extensively used within
HPSC TerrSys is the massively parallel, scale-consistent, fully
coupled multiphysics Terrestrial Systems Modelling Platform
(TSMP) [3], [12], a modular multiple program, multiple data
(MPMD) code. Component models in TSMP v1.1.0 are: the
hydrologic model ParFlow, the CLM land model [13], and
the COSMO numerical weather prediction (NWP) model [14],
alternatively the ICON atmospheric model may be used, each
in multiple versions; TSMP uses the OASIS3-MCT coupler
[15]. The Parallel Data Assimilation Framework (PDAF) [16]
is also implemented and used so far primarily to assimilate soil
moisture [6]. Fig. 1 illustrates some variables of the terrestrial
water cycle as simulated by TSMP.

Fig. 1. Snapshot of fully coupled simulations with TSMP of 3D groundwater
and soil moisture (orange: dry; blue: wet) and liquid/ice cloud water content
(gray) in the summer of 2013 over the widely used European CORDEX
domain at 12 km lateral resolution.

B. Typical Data Volumes for Common Experiments

Common numerical experiments conducted with TSMP or
one of its component models, or a combination thereof, range
from individual catchments to high resolution continental
model domains and target, e.g., process- and sensitivity studies
[17], hindcasts [11], forecasts [18], or climate change simu-
lations [19]. To a much lesser extent, within the Coordinated
Regional Downscaling Experiment (CORDEX) initiative, the
WRF regional climate model is used to simulate time slices
at 3 km convection permitting resolution, as a contribution
to climate change assessments [20], [21]. Tab. I gives an
overview of some typical raw model output data volumes of
past and ongoing HPSC TerrSys experiments.

Data volumes as listed in Tab. I render conventional data
handling, data movements, I/O operations, analysis and storage
with respect to the temporal effort already very inefficient;
for example post-processing wall clock times may eventually
approach simulation times. As model resolution steadily in-
creases, we are clearly expecting that large experiments, such

TABLE I
EXAMPLES OF TYPICAL RAW MODEL OUTPUT DATA VOLUMES PER

EXPERIMENT.

Experi- Model Domain Resolution Length Volume
ment (km) (TB)
[19] TSMP EUe 12 30yrs 84

Planneda TSMP EU 12 141yrs 924
[18]b TSMP EU, NRW 12, 1/0.5 daily 66, 28
[22]c CLM EU 3 20x7 21
[11]d ParFlow CONUS 1 n.a. 0.5
[21] WRF EU, Rhine 12, 3 48yrs 288

aClimate change projection, 1961-2100, 3 RCPs
bForecasting simulation, run once per day, two domains
c20 ensemble members, 7 years, daily data
dPer output interval, run until equilibrium is reached
eEuropean model domain, see Fig. 1

as demonstrated for the CONUS domain at 1 km with ParFlow
[11], or with global MPAS simulations at 3 km [9], become the
default; for example, time-slice climate change experiments at
about 2 km resolution for large parts of Europe are feasible
already [23].

III. CURRENT STATUS

This section addresses some important data-related aspects
along our established TSMP workflows within HPSC TerrSys.
The overall goal and requirement is to keep the data volume
low and avoid data movement as much as possible.

A. Data Formats

The netCDF file format is at the core of our big data
strategy (version 4 on top of HDF5). netCDF has estab-
lished itself as the quasi-standard for numerical models in the
Earth sciences. NetCDF data are portable, interoperable, allow
for large file sizes, are suitable for long-term storage, self-
describing through meta data (several standards exist, e.g., CF
convention), and offer lossless compression. Using the lowest
and fastest deflation level usually results in between 25% to
50% data volume reduction. As parallel I/O and compression
exclude each other with shared-sfile netCDF, a trade-off is
usually between I/O performance and data volume. For Eu-
ropean model domain extends at non-convection permitting
resolutions (e.g., 12 km), the I/O overhead is considered as
less relevant than the benefits we gain via compression.

B. Input/Output

To adjust the I/O capabilities of the hydrological model
ParFlow to the overall workflow and enhance its interoper-
ability, a parallel netCDF API has been implemented, aided
by the Jülich Benchmarking Environment tool (JUBE2) and
the Darshan I/O characterization library [24]. ParFlow writes
shared netCDF4 files using ROMIO hints for I/O optimization,
and uses chunking to improve performance for typical later-on
file access patterns, as well as an optional node-level collective
I/O with a nearly linear strong scaling I/O behaviour, see
Fig. 2.
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Fig. 2. Example of synthetic scaling study for fine-tuning netCDF4 parallel
I/O before implementing the API into the ParFlow code.

C. Pre- and Post-Processing

Aside from various online diagnostics (e.g., variables on
pressure levels, CAPE, CIN in COSMO), one of the most
important post-processing steps is the transformation of raw
model outputs into more user-friendly, lower volume, and
better traceable data products. Based on the CMIP output
requirements, as defined through the Climate Model Output
Rewriter (CMOR) library3, and its implementation4 in the
CORDEX project, a defined data structure, with a controlled
vocabulary, a data reference syntax and unambiguous meta
data standards are applied via a separate post-processing to
the TSMP outputs. This “CMORization” complements the use
of the standardized netCDF data format and usually reduces
the data volume further, e.g., by a reduction of vertical levels
and also provides products such as temporally aggregated data.
CMORized model output of large simulations is often still well
usable, even without big data-capable analysis tools.

D. Storage and Archival

The CMORization also allows for an efficient research data
management as it helps to ensure that the FAIR (findable, ac-
cessible, interoperable, reusable) principles are met. In HPSC
TerrSys, data is stored centrally on shared filesystems at Jülich
Supercomputing Centre (JSC); data is collaboratively used
and can remain without data movements. As part of our data
handling and storage strategy, raw model outputs may be
erased and only the restart files are retained for a selected
number of, e.g., monthly restart points. This however requires
a configuration management system to ensure reproducibility.
Archiving of either post-processed and / or raw model outputs,
to have, e.g., the full vertical resolution still available for
subsequent data analysis, is done for some simulations through
dedicated data projects of JSC.

E. Reproducibility

We try to meet reproducibility requirements [25] by com-
bining git-based source code repositories and configuration

3https://cmor.llnl.gov/
4http://is-enes-data.github.io/cordex archive specifications.pdf

management systems (i.e., compilation information, model
configurations, etc.) and workflow engines [24], that allow for
a reproduction of simulations and hence data. This system
also relies on a succession of fully functional, stable software
stages throughout the HPC system’s life time. Yet still, an
exact, bit-wise reproduction of data can seldom be achieved. A
data provenance tracking capability is maintained by assigning
universally unique identifiers (UUIDs) as data tracking IDs to
individual files. Aside from identifiers that reflect experiment
characteristics, UUIDs are also used as numerical model
experiment identifiers and both are part of the netCDF file
meta data and the configuration management system.

F. Dissemination

Open access research data management systems, that pro-
vide cataloging services, such as the Earth System Grid
Federation5 (ESGF) data nodes for global and regional climate
projections, e.g., from CORDEX simulations, or the EUDAT6

research data service, can efficiently be used to publish and
share data for a later re-use. Through standardized APIs web-
processing services can be connected for query and analysis. A
more ad-hoc, long-term research data infrastructure is provided
through a data publication repository infrastructure7, which
sits very close to the JSC filesystem.

IV. NECESSARY NEXT STEPS

Based on existing technical solutions, a number of concrete
further steps are ongoing in HPSC TerrSys to ensure fully big
data-capable modeling chain and analytics frameworks:

1) HPSC TerrSys is participating in the development and
testing of the Helmholtz Analytics Toolkit (HeAT), a
distributed tensor framework for high performance data
analytics; it is planned to use HeAT in future compute
intensive data analysis tasks.

2) Where applicable, code modernization efforts are on-
going to successively parallelize the most relevant pro-
cessing and analysis tools and include parallel I/O (e.g.,
Python netCDF4) throughout.

3) In-situ processing, analysis and visualization avoids
cost-intensive and time-consuming I/O and storage op-
erations, and reduces data volume and post-processing
substantially. In-situ processing (staged vs. on-node,
loosely vs. tightly coupled implementations) may be
used for different tasks, e.g., solver run time analysis,
3D visualization, or large scale water cycle diagnostics,
using, e.g., SENSEI, Catalyst, or Parallel Data Interface
libraries.

V. SUMMARY

We give an overview of relevant aspects on how we are
dealing with increasing data volumes from simulations in
HPSC TerrSys. It is worth noting that basically all neces-
sary methods and software, to make our modeling chains

5https://esgf.llnl.gov/
6https://www.eudat.eu/
7https://www.re3data.org/repository/r3d100012923
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big data capable, exist and are ready to be implemented.
Given the current accelerated development towards exascale
HPC systems and simulation software [26], further substantial
efforts seem needed to not let the computational capacity
outperform our data handling and analysis capabilities. From a
practitioner’s point of view, today’s state-of-the-art numerical
model experiment big data volumes already require a careful
and prudent planning of the entire data life cycle.
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Abstract—We present HeAT, a scientific big data library
supporting transparent computation on HPC systems. HeAT
builds on top of PyTorch, which already provides many required
features like automatic differentiation, CPU and GPU support,
linear algebra operations and basic MPI functionality as well as
an imperative programming paradigm allowing fast prototyping
essential in scientific research. These features are generalized to
a distributed tensor with a NumPy-like interface allowing to port
existing NumPy algorithms to HPC systems nearly effortlessly.

Index Terms—Big Data Analytics, HPC, Machine Learning,
Deep Learning, Data Mining

I. INTRODUCTION

Scientific Big Data Analytics has become an important
instrument for tackling scientific problems characterized by
the greatest data and computational complexity. Scientific
data, e.g. MRI images, satellite data, detectors or numeri-
cal simulations on high-performance computers, are growing
exponentially in nearly all scientific fields [1]–[4] pushing
storage, processing, and analysis of such data to its limits.
Traditional techniques for handling scientific data need to be
replaced by specific solutions taking structure, variability and
size of todays data sets into account. This paper presents
the Helmholtz Analytics Toolkit (HeAT), a scientific big data
analytics library for HPC systems enabling scientists to take
full advantage of parallel high-performance computing with
minimal programming effort on their side.

The large progress in big data analytics in general and
machine learning/deep learning (ML/DL) in particular, has
been considerably spurred by well-designed open source li-
braries like Hadoop, Spark, Storm, Disco, scikit-learn, H2O.ai,
Mahout, TensorFlow, PaddlePaddle, PyTorch, Caffe, Keras,

This work is supported by the Helmholtz Association Initiative and Net-
working Fund under project number ZT-I-0003.

MXNet, CNTK, BigDL, Theano, Neon, Chainer, DyNet, Dask
and Intel DAAL, to mention some of them. Despite the
large number of existing data analytics frameworks, a library
taking the specific needs in scientific big data analytics under
consideration is still missing. For instance, no pre-existing
library operates on heterogeneous hardware like GPU/CPU
systems while allowing transparent computation on distributed
systems. Typical big data analytics frameworks like Spark are
designed for distributed memory systems and consequently do
not fully exploit the shared memory architecture as well as
the network technology of HPC systems. ML/DL frameworks
like Theano or Chainer focus on single node computations or,
when providing mechanisms for distributed computation, as
done by TensorFlow or PyTorch, they impose the details of the
distributed computation to the programmer. Libraries designed
for HPC like Dask and Intel DAAL do not provide any GPU
support. In the following, we will describe the core concepts
of HeAT in order to fill the gap of existing big data libraries,
and demonstrate its usage on a k-means cluster algorithm.

II. CO-DESIGN DEVELOPMENT APPROACH

The library is designed and will be implemented in close
cooperation with domain scientists within a scientific project,
the Helmholtz Analytics Framework1. Eight scientific use
cases from five different scientific fields (see Figure 1), i.e.
earth system modeling, structural biology, aeronautics and
aerospace research, medical imaging and neuroscience, have
been chosen to ensure consideration of actual challenges of
the specific scientific aspects of big data analytics. The use
cases are tackling current research questions in their respective

1 http://www.helmholtz-analytics.de/helmholtz analytics/EN/Home/home
node.html
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fields that come to their limits with traditional data analytics
methods.

Fig. 1. Illustration of use cases from five scientific fields.

The techniques applied in the various use cases span over 20
different methods ranging from relatively light weight machine
learning methods like k-means, or mean shift clustering,
over frequent item set mining methods up to deep learning
methods like convolutional neural networks for regression and
classification tasks.

III. HEAT ARCHITECTURE

HeAT is based on a tensor data object on which basic scalar
functions, linear algebra algorithms, slicing or broadcasting
operations necessary for most data analytics algorithms can be
performed. The tensor data objects reside either on the CPU or
on the GPU and, if needed, are distributed over various nodes.
Operations on tensor objects are transparent to the user, i.e.
they remain the same irrespective of whether the tensor object
resides on a single node or it is distributed over several nodes,
allowing to conveniently port algorithms from single nodes to
multiple nodes or from CPUs to GPUs. HeAT builds on top of
PyTorch [5]. Development started in May 2018 and is, at the
time of writing this paper, in an early pre-alpha phase. It is de-
veloped in the open, hosted on GitHub2 and distributed under
the MIT license. The basic design has been worked out and
basic implementations have been carried out. A role model for

Fig. 2. The basic structure of the NumPy library: a tensor data structure and
operations on top. The operations run transparently on multiple cores of one
CPU.

HeAT is NumPy [6], a popular scientific Python library widely

2https://github.com/helmholtz-analytics/heat

used for data analytics (see Figure 2). NumPy transparently
makes use of all available CPU cores on one processor such
that the user can focus on the algorithmic development without
struggling with parallel programming issues. But NumPy has
no further parallel programming features nor any GPU capa-
bilities. In order to account for GPU computing and automatic
differentiation we decided to rely on a modern tensor library.
Overall, we examined 16 deep learning and big data libraries
with respect to their properties and selected four of them for
a benchmark with respect to memory consumption, CPU as
well as GPU runtime: PyTorch, MXNet [7], TensorFlow [8]
and ArrayFire [9]. As a result of the benchmark, we chose
PyTorch as the backend for our HeAT library. Detailed results
of the benchmark will be published separately. PyTorch is a

Fig. 3. The basic structure of the PyTorch library: A tensor data structure
and operations as well as automatic differentation on top. The operations run
transparently on multiple cores of one CPU or on one GPU.

deep learning library originally developed for neural network
training and inference (see Figure 3). Its core module can be
considered as an extension to NumPy with respect to automatic
differentiation and GPU computation. It supports a subset of
the NumPy operations and provides own operations required
for artificial neural networks. A PyTorch tensor can be labeled
to be differentiable and all subsequent operations are traced
within a dynamical computational graph. The derivative of any
transformed tensor with respect to the differentiable tensor can
then be obtained with just one command due to the involved
automatic differentiation mechanism. Computations on the
GPU are automated, too. The PyTorch tensor is transferred
onto the GPU by a single command or constructed directly
on the GPU. PyTorch operation commands remain the same
as for the CPU. When it comes to distributed computation,
PyTorch supports several frameworks, i.e. TCP, GLOO, MPI
and NCCL. However, details of the distribution of tensors on
different nodes as well as the communication between the
nodes need to be managed by the user.

HeAT builds upon PyTorch, providing an additional layer
for distributed computation on GPUs as well as CPUs based
on MPI (see Figure 4). Operations on tensor objects are
transparent to the user, i.e. they remain the same irrespective
of whether the tensor object resides on a single node or it
is distributed over several nodes, allowing to conveniently
port algorithms from single nodes to multiple nodes or from
CPUs to GPUs. The basis of HeAT is a tensor object, an ND
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Fig. 4. The basic structure of the HeAT library: A tensor data structure
and operations as well as automatic differentation on top. The operations run
transparently on multiple cores of multiple CPUs or on mulptiple GPUs.

array structure of homogeneous numerical values. The tensor
object is, if requested, split into several subsets along one
selected dimension, whereby each subset belongs to one MPI
rank (see Figure 5). The tensor object is directly created on
different MPI ranks and filled with predefined values, e.g.
equal values or random numbers. Alternatively, values are
loaded from disc by parallel I/O via parallel HDF5 or parallel
NetCDF. Operations on the HeAT tensor object can then be
applied transparently, i.e. the user does not need take care
about data transfer between the MPI ranks. The design of
the HeAT operations follows the NumPy convention as far as
possible, i.e. in the ideal case an algorithm implemented in
NumPy can be ported to HeAT by simply exchanging NumPy
operations with their HeAT counterparts. To this end, NumPy
functions and methods are re-implemented using PyTorch
and MPI4Py [10]. As an example, consider the creation of a
one dimensional tensor filled with evenly spaced float values
within a given interval running on three MPI ranks:

import heat as ht
range_data = ht.arange(6, split = 0)

Fig. 5. Illustration of the splitting mechanism of the HeAT library on a two
dimensional tensor. The tensor is equally distributed among the three requested
MPI ranks. The HeAT tensor subset and each rank is realized by a PyTorch
tensor. Splitting is supported in one of the two dimensions.

After importing the HeAT module, a tensor containing the
numbers from 0. up to 5. is created. Internally, a subset
containing values 0. and 1. is attached to rank number zero, the
values 2. and 3. are attached to rank number one and the last
two numbers are attached to rank number three. Subsequent
operations can then be applied to the tensor object without
caring about its distributed nature. For instance, the maximum
of the tensor object can be obtained by the argmax method:

range_data.argmax()
>>>5

Also, computing the sum over all elements correspond to its
NumPy counterpart:

range_data.sum()
>>>15

In order to support deep learning approaches and other ML
methods requiring gradient based optimization, the automatic
differentiation mechanism proposed in [11] will be extended
to distributed computation. In a first step, a corresponding
distributed adjoint operation is implemented for each HeAT
tensor. Note that the PyTorch automatic differentiation mech-
anism can be re-used for all pointwise operations. If an
operation is performed on a HeAT tensor being marked as
differentiable, references to the operation, to its results as
well as to the operation’s arguments are stored in an object
constituting a node in a dynamical computational graph. The
references to the operation arguments are the edges to the
parents of the dynamical graph. In order to perform back-
propagation, we need the topological order of the graph. This
order is obtained by storing a list tracking the order of the
transformations applied to each differentiable tensor, i.e. we
store a history of transformation for each differentiable tensor.
In order to obtain the derivative of any node with respect to
a differentiable tensor, the corresponding lists are traversed in
reverse order. At each position in the list, the derivative of
the output with respect to the input is computed using the
corresponding stored node object.

IV. EXAMPLE: K-MEANS

As a demonstration of the library we describe how to
port a k-means [12] NumPy implementation to its HeAT
counterpart. We sketch the important steps of the algo-
rithm by comparing NumPy and HeAT code snippets.
The full HeAT k-means implementation can be found
at https://github.com/helmholtzanalytics/heat/tree/master/heat/
ml/cluster. K-means is a clustering algorithm that groups a set
of data points with a predefined number of clusters according
to the minimization problem

argmin
C

k∑
i=1

∑
x∈Ci

‖x− µi‖2 (1)

where µi denotes centroid i, Ci denotes cluster i and k denotes
the number of clusters. A local minimum of the optimization
problem (1) can be obtained by the algorithm:

- 59 -

https://github.com/helmholtzanalytics/heat/tree/master/heat/ml/cluster
https://github.com/helmholtzanalytics/heat/tree/master/heat/ml/cluster


1) Choose k centroids
2) For each data point calculate the distance to all centroids
3) Assign each data point to the cluster with the closest

centroid
4) Estimate new centroids as the mean of their correspond-

ing cluster points
5) Go to 2 until convergence

Before one can apply the first step of the k-means algo-
rithm, the data points to be clustered need to be loaded in
the corresponding NumPy arrays as well as HeAT tensors.
Whereas in the NumPy implementation the data are loaded
into the NumPy arrays as a whole data block, in the HeAT
implementation, if HeAT is running in distributed mode, only
the data needed by the corresponding rank are loaded by the
parallel I/O mechanism. All consecutive operations on the
constructed arrays/tensors are equal or differ only with respect
to small details. After choosing k initial centroids we need to
compute the distance (step 2) of each point to the centroids
and determine the index of the smallest distance. With NumPy,
the second step can be realized by

distances = ((data - centroids) **
2).sum(axis=1, keepdims=True)

matching_centroids =
np.expand_dims(distances.argmin(axis=2),
axis=2)

where data is a NumPy array of size (n, m, 1) containing
n m-dimensional data points and centroids is a NumPy
array of size (1, m, k) containing the initially chosen centroids.
The corresponding HeAT implementation reads

distances = ((data - centroids) **
2).sum(axis=1)

matching_centroids = distances.argmin(axis=2)

where the only differences stem from the fact that HeAT keeps
dimensions after sum and argmin operations. Assigning the
data points to their closest centroids (step 3) differs in NumPy

selection = (matching_centroids ==
i).astype(np.int64)

from HeAT

selection = (matching_centroids ==
i).astype(ht.int64)

by the build-in data types. The estimate of the new centroids
(step 4) in NumPy is

new_centroids[:, :, i:i + 1] = ((data *
selection).sum(axis=0. keepdims=True)

selection.sum(axis=0).clip(1.0, sys.maxsize))

and in HeAT

new_centroids[:, :, i:i + 1] = ((data *
selection).sum(axis=0)

selection.sum(axis=0).clip(1.0, sys.maxsize))

The only difference is given by the way dimensions are kept
after the sum operation.

V. SUMMARY

We presented HeAT, a scientific big data library. After
motivating the need for an additional big data analytics li-
brary in the scientific context, we described its core design
principles, i.e. a distributed tensor object with transparent
operations on top, as well as the design of the automatic
differentiation mechanism. We finally illustrated the usage of
the HeAT library by porting the k-means cluster algorithm
from NumPy to HeAT demonstrating the close similarity of
their user interfaces.
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Abstract—The intersection of life and computer sciences is 
of growing importance for the future of personalized medicine. 
To enable such data-driven treatments, large collections of 
data need to be gathered, ranging from genomics to high-
resolution image data. These collections, initially in cohorts, 
will be performed at local physicians, hospitals and specialized 
centers. This results in large amounts of data that require 
near-real-time processing, to be usable as input for medical 
decisions. Handling such data collections and providing the 
required computational resources, either at the edge or in 
cloud solutions is challenging, since population-wide 
applications of precision medicine will reach exascale levels. 
Memory-driven computing with a flexible fabric is one 
approach to face these challenges. 

Keywords—exascale data, exascale computing, precision 
medicine, memory-driven computing, population studies 

I. INTRODUCTION

Neurodegenerative diseases, like Alzheimer’s, are not only a 
burden for those affected but also a growing challenge for 
society. While many of these diseases are not fully 
understood yet, the search for biomarkers, which allow early 
detection, is ongoing. Such research efforts require a 
paradigm shift, where a data-driven approach is used to 
recognize pattern, e.g. using AI, in exascale data collections. 
Besides research questions, insights gained from large data 
sets are being translated to clinical practice, fueling the 
personalized medicine domain by including many data 
sources such as genomics, imaging, laboratory and clinical 
testing data. 

II. MEDICAL DATA SOURCES

There are two scenarios where large-scale data collection is 
performed in medicine. First, population studies follow 
large cohorts and collect data for research purposes (Fig 1). 
Second, acquisitions in clinical practice to apply 
personalized medicine. These acquisitions can be single 
modalities or consist of multiple sources, especially 
population studies aim to collect a large body of 
measurements for analysis. These collections are often made 
available to other researchers or provided in open 
repositories.  
Population studies can be very specialized or rather broad. 
The Human Functional Genomics Project [1] has acquired 
data from over 500 participants to study the effect of genetic 
variation in human DNA, but also epigenetic and 

environmental influences. The UK Biobank [2] on the other 
side has the broad approach to improve the prevention, 
diagnosis and treatment of serious illnesses by studying 
500,00 volunteers. The Rhineland Study [3] aims to study 
neurodegenerative diseases by following 30,000 
participants, but repeatedly over the next 30 years. These 
studies generate large data sets that already play a 
significant role in the study design, since data handling and 
processing remain a major challenge. Results obtained from 
such large studies, but also clinical studies build the 
foundation of future data-driven medicine in daily practice.  
However, once personalized medicine becomes more 
prevalent, medical centers, hospitals and physicians will 
generate an avalanche of data that requires near-real-time 
processing for medical decision support. 

A. Data types
Data falls into two categories, user-generated and clinically 
collected data. Data curation is needed to ensure a consistent 
level of quality. In clinical settings, this can be achieved 
through SOPs (standard operating procedures), for user-
generated input careful checking and filtering is needed. 
Typical data points collected are body measurements 
(including height, weight, body mass index, body 
circumference at different positions, body fat), medical 
history and family background, cognitive tests, 
psychological evaluations, cardiovascular data (blood 
pressure, heart rate), ECGs (electrocardiogram) in rest and 
exercise and data derived from a collection of biopsy 
samples. Blood samples can be used to extract genomic 
data, a source of large data sets. Another modality 
generating large data, is medical imaging. Two-dimensional 
imaging is used for retinal scans and skin measurements. 
Video data is acquired in colonoscopies or bronchoscopy. 
Finally, a large contributor of data is volumetric imaging. 
The two most common modalities are CT (computed 
tomography) and MRI (magnetic resonance imaging). They 
can be used for whole-body imaging or more targeted 
acquisitions of individual organs, e.g. kidneys or the brain to 
understand the morphology or neuro-degenerative 
processes.  

B. Data sizes
The data points acquired in population studies and clinical 
routine ranges over a large scale of sizes. Clinical reports 
and many measurements are either textual or small vectors 
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capabilities required for image analysis. Furthermore, (deep) 
neural networks are often used and optimized for GPUs. 
Large genomics data is processed by a series of 
bioinformatics tools in specialized pipelines. These tools 
exchange data through large intermediate files, generating 
plenty of unnecessary I/O load. This phenomenon is not 
limited to genomics, e.g. radio astronomy needs to process 
ever larger amounts of data. Novel approaches and 
architectures are needed to overcome this bottleneck in data 
processing. 

IV. MEMORY-DRIVEN COMPUTING

Traditionally, computers are based on the von Neumann 
architecture. Scaling such systems is achieved by adding 
more resources, like in clusters or super computers. Scaling 
is limited by the end of Moore’s law [12]. At the same time, 
data sets grow in size and distributing workloads and 
partitioning data becomes more complex. The answer to 
certain questions can simply not be computed fast enough 
today. One of the approaches to overcome these problems is 
memory-driven computing where a pool of devices is 
connected into a single environment (Fig. 2a) using the 
optical Gen-Z fabric. 
Memory-driven computing is a paradigm shift, that puts 
memory at the center of the compute infrastructure to 
support todays data-driven applications. System components 
are connected through a fabric, Gen-Z. Applications have 
access to a shared, persistent pool of fabric attached memory 
(FAM). This eliminates the need for dividing or partitioning 
data for processing reasons. Furthermore, access to remote 
memory, which typically involves system calls and network 
operations, is removed. Remote data access can use up to 
25.000 operations, with MDC and FAM, the same data can 
be accessed in just three operations. The underlying fabric 

allows to set up environments where data can be processed 
at the edge and large data pools can be made available to 
concurrent applications without data movements. Existing 
applications require only few modifications to see first 
benefits from MDC. 

A. Gen-Z Fabric
The Gen-Z consortium was started by 12 core members and 
by now has grown to a large industry consortium with 
currently 64 members. In 2018, the version 1.0, of the Gen-
Z core specification was published [13]. It standardizes the 
protocol, components, connectors and component 
dimensions. Security and authentication have played an 
important role in the specification, making the fabric ideal 
for sensitive data such as medical information.  
In its current version, Gen-Z connects up to 2^24 devices 
(16 million), has a byte-addressable space of 4096 
Yottabytes (allowing to access up to 250,000 times the size 
of all data currently existing) and can connect a processing 
power of up to 270 FLOPs (equaling 1,600 exascale 
computers).  
Components connected by Gen-Z, or Fabric Attached 
Hardware, fall into three categories: processors, memory 
and accelerators. This allows the selection of application-
specific hardware to compose a system. Furthermore, it is 
possible to have gateway components, to connect external 
networks as well as traditional I/O-based system for long-
term and archival storage (Fig. 2). The Gen-Z architecture is 
designed to accommodate even quantum and neuromorphic 
processors, so novel processor designs can be integrated into 
the ecosystem. Novel memory types and specialized 
accelerators can be connected via the fabric as well. This 
allows existing systems to grow and constantly adapt to 
changing requirements. Components connected by the Gen-

Figure 2 (a) Memory-driven computing (MDC) connects a pool of devices into a single environment. (b) The Gen-Z fabric 
connects different types of components. (c) Conventional data access and (d) MDC. (e) Software environment for MDC. 
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Z fabric can be combined to flexibly create virtual systems 
optimized for specific workloads.  

B. Transition path to MDC
From an application perspective, MDC can be used through 
a layered architecture (Fig. 2e). Applications have access to 
data management and programming frameworks, like MPI 
and OpenShmem, as well as general developer tools and 
accelerator-specific compiler. These are on top of an MDC 
optimized version of linux [14]. The OS runs the drivers for 
the accelerator. The fabric attached memory is exposed as 
memory-driven computing file system, based on the 
persistent memory library and the FAM atomics library. The 
final layer is the fabric attached hardware. In parallel, 
management services exist across the layers. 
Memory-driven computing systems are not yet 
commercially available. However, a FAM-Emulation 
environment has been made available [15] which runs on 
existing systems with sufficiently large memory. It 
generates several virtual machines, that share a memory 
pool (FAM). Development tools and libraries are also 
available online. First promising results were shown for 
different domains, including graph processing [16].  
There is a transition path for applications to benefit from 
MDC. The first step is simple: all I/O-operations should be
removed in favor of memory-mapping data input and
output. Having data in memory enables data loading to be
performed in parallel in many cases since performance
penalties from random data access are no concern.
In a second step, the overall memory usage of the
application can be examined. Often internal data structures,
like a reference genome, are optimized to fit into the
memory of smaller systems. However, with MDC, these
structures can be persisted in FAM and be shared between
multiple instances of a tool.
Processing medical and in particular genomic data, often is a
task of serially running tasks that load, modify and finally
store data. A significant part of the overall processing time
is devoted to data loading and sorting. With FAM, data can
be exchanged through memory, removing a major
bottleneck. Such architectures will be important for
effective, energy and cost-efficient processing the data sizes
acquired in research and finally in clinical practice.

V. CONCLUSION

Personalized medicine is the next major change in medicine 
and default inclusion of genomic and other large data will 
play a major role. Large population studies will collect the 
foundational data for the research enabling personalization. 
The resulting data sizes in the exascale dimension do not 
only pose a challenge for data handling, management and 
storage, but also require exascale computing capabilities. 
Traditional architecture struggle to scale with data sizes, 
therefore novel architectures are needed. One such example 
is memory-driven computing, where an abundance of 
persistent memory is combined with a flexibly configurable 
system that supports novel accelerators.   
Transitioning to such a system requires interfacing computer 
science with biological research. This could be realized 
through interdisciplinary researchers that translate between 
the domains and establish a common language. Using 

memory-driven computing is a step towards handling the 
avalanche of data from personalized medicine and provides 
a possibility to shape the future of the computational needs 
in clinical and research environments. 
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