
DISCUSSION PAPER SERIES

IZA DP No. 12628

Alessio Gaggero
Getinet Haile

Does Class Size Matter in Postgraduate 
Education?

SEPTEMBER 2019



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 12628

Does Class Size Matter in Postgraduate 
Education?

SEPTEMBER 2019

Alessio Gaggero
University of Nottingham

Getinet Haile
University of Nottingham and IZA



ABSTRACT

IZA DP No. 12628 SEPTEMBER 2019

Does Class Size Matter in Postgraduate 
Education?*

The paper examines the impact of class size on postgraduate grades using administrative 

data from one of the largest Schools of a Russell Group University in the UK. As well 

as estimating Fixed Effects models on the population of postgraduate candidates in the 

School, we exploit a policy change aimed at reducing class size to implement a regression 

discontinuity design (RDD). We find that class size does impact grades adversely overall; and 

the policy aimed at reducing class size impacts grades favourably. Our findings are robust 

to alternative specifications as well as being supported by the validity tests we conducted. 
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1. Introduction and Motivation 

The issue of class-size and its effect on student learning has been extensively studied in 

primary and secondary school settings. The weight of the evidence to date supports the view 

that smaller classes promote student learning (see Angrist and Lavy 1999 for extensive 

review). In the context of tertiary education, where independent learning is a major part of the 

education landscape, class-size may not be as important. However, this may not mean that the 

question of class-size is altogether unimportant in this context given the resource implications 

of larger class-sizes, including the ease with which students access their professors. Such 

concerns may be particularly valid given two important recent developments in the higher 

education sector in the UK and elsewhere in the OECD. First, there has been a significant rise 

in tertiary education, which is driven by supply side policies in these countries as Bandiera et 

al. (2010) noted. Secondly, there have been changes in the higher education funding 

environment, particularly following the great recession of 2008, with a view to sustainable 

financing of higher education. The Government abolished paying teaching grants to 

universities in September 2012, and the cap on tuition fees has been raised significantly to 

make up for funding shortfalls (Crawford et al. 2014). The changes mean that most 

universities now source a significant part of their funding from tuition fees.1 This has made 

the postgraduate sector, particularly the more lucrative international postgraduate market, a 

lot more attractive to universities generally and, in particular, the Russell Group universities 

given their established international reputation.  

 There is extensive literature linking class-size to test scores in schools (Kruger, 1999; 

Kruger and Whitmore, 2001; Angrist and Lavy, 1999; Browning and Heinesen, 2007; Leuven 

et al., 2008; Hanushek, 1979; Hoxby, 2000; Case and Deaton, 1999). However, there is a 

dearth of evidence relating to tertiary education. De Paola and Scoppa (2011), Monks and 

Schmidt (2011), Bandiera et al. (2010), Kokkelenberg et al. (2008) and De Paola et al. (2013) 

are some of the few recent studies, which found class-size having a negative effect on college 

scholastic outcomes reaffirming earlier findings in Gibbs et al. (1996) in the context of 

tertiary education, which found that students in larger classes perform less well. In a recent 

study Huxley et al. (2018) have reported significant variation in teaching intensity across 

higher education in the UK, which they attribute to variation in class-size. Examining the link 

                                                 
1 Barr and Turner (2013) dwell on these in the context of the US, which they describe as growing conflict 

between expanding enrolments in postsecondary education and contracting public budget support. The 

independent Browne Review also dealt with the issue of sustainable HE funding in the UK with the 

recommendation that more of the burden of funding HE be placed on graduates.  
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between tertiary-level class-size and test score is therefore a worthy exercise particularly 

given the on-going debate on the future of higher education funding and the recent 

recommendation for reducing the cap on tuition fee.2 

In this paper, we provide evidence of the link between class-size and postgraduate grades. 

Similarly to Bandiera et al. (2010), we first estimate this relationship by means of student 

fixed effects regressions. The outcome of this approach, however, may still suffer given the 

possibility that students self-select into modules for reasons that are unobservable to the 

researcher. In an ideal experiment, one would control for such unobservables by randomly 

allocating students into modules of different sizes. The empirical design used in this paper, 

mimics this ideal experiment by exploiting a recent policy change, which is aimed at 

maintaining a high standard of teaching, that envisaged double teaching (double-up, 

hereinafter) on the basis of the specific number of students enrolled to a certain module. 

Specifically, module convenors with enrolment size above a certain level were expected to 

split students into two groups and double teach the module content as a result of the policy. 

Our use of the discontinuous module enrolment function and the policy change to examine 

the link between class-size and postgraduate grades is likely to yield superior instrumental 

variables estimates.3 

We use administrative data of a postgraduate programme of one of the largest Schools of a 

Russell Group public university in the UK to examine the impact of the class-size policy on 

postgraduate grades in a Regression Discontinuity Design (RDD). Our empirical results echo 

earlier research and suggest that indeed class size matter significantly for postgraduate 

education. Specifically, our RDD estimates suggest that students exposed to the double-up 

policy earned significantly higher grades vis-à-vis their counterparts who were not affected 

by the double teaching policy. We find these results to be strongest for British students. 

Moreover, our results suggest that the double-up policy significantly reduced the probability 

of students failing in their module. Importantly, our results are robust to a variety of 

specifications. The RDD estimates are insensitive to the inclusion (or exclusion) of various 

control variables and different functional form specifications of the running variable. More 

importantly, we demonstrate that our results are unlikely to be driven by discontinuities in 

pre-intervention individual characteristics, or endogenous sorting around the threshold. 

                                                 
2 See the May 2019 Auger Review report. 
3 Angrist and Lavy (1999) use a similar approach to study the effect of class size on grades in Israeli elementary 

schools. 
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The question of class-size is not yet well understood in the context of postgraduate 

education, but these developments are likely to lend some prominence to existing concerns 

about increasing student-to-staff ratio and worse student performance in large class settings.4 

The same issues have become increasingly relevant in tertiary education, particularly given 

the current funding climate in higher education institutions. Examining the link between 

postgraduate class-size and postgraduate scholastic outcomes is therefore of significant policy 

interest both for the higher education sector and postgraduate students alike, which this paper 

aims to achieve.  

The remainder paper is organised as follows. Section 2 describes the data used and 

institutional setting. Section 3 outlines the identification strategy used and discusses the 

results. Section 4 presents the sensitivity analysis before the final Section concludes the 

paper. 

2. Data and Institutional Background 

We use administrative data covering the population of all enrolees in the postgraduate 

(PG) programme of one of the largest Schools of a Russell Group public university in the UK 

for the academic year 2017/18. The PG programme has some 16 specialities in total and 

recruitment to the programme depends on applicants’ prior academic achievement at an 

undergraduate level, which is typically a strong 2.1 or equivalent, language proficiency in the 

case of international applicants and candidates’ character references. Candidates join one of 

15 speciality areas once enrolled. The programme requires students to attend a set of core and 

elective modules. A candidate’s performance in modular final examinations leads to the 

award of modular scores that range between 0 and 100.5 The scores obtained are typically 

averaged across programme modules to yield overall postgraduate grade, which gets 

translated into four distinct degree classifications: distinction (>70%), merit/credit (60-70%), 

pass (50-60%) and fail (<50%).  

The school’s success in attracting increasing number of postgraduate applicants in recent 

years and the desire to maintain a high standard of teaching prompted the school to pursue a 

policy of double teaching (double-up hereinafter) since 2008 depending on module enrolment 

size. The policy stipulates that module convenors with enrolment size above a certain level 

                                                 
4 The Dearing’s Review highlights these issues. Also see Figure A. 1 on trends in PG students in the study 

institution. 
5 We expect the modular grade to be largely, if not entirely, objective outcome measure particularly given the 

type of marking arrangements in the school, where exam scripts are marked by the professor concerned before 

they go through two additional layers of checks/moderations by internal and external moderators.  
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split students into two groups and double teach.6 The policy has evolved over the years with 

varying cut-off points for triggering the double-up. Since 2016 the recommended cut-off 

point has been 110 students per module, so that a module with enrolment size in excess of 

110 students become candidate module to double teach by splitting students enrolled on the 

module into two (or more) smaller classes.  

The study sample includes 987 full-time MSc students, who could attend up to 10 different 

modules during the academic year, yielding a total of 7,696 student-module observations. 

The data includes information on students’ modular grades, the number of students enrolled 

in each module and a set of student attributes including age, gender, and nationality. Table 1 

reports basic summary statistics, which indicates the typical postgraduate student being 23 

years of age and 70% of them being females.7 Academically, students in the sample achieve 

an overall mark of 61%, on average, with 20.1%, 42.5% and 34.1% of the students achieving 

a distinction, merit and pass degree classifications, respectively, while 3.4% failed.  

 

[Table 1 about here] 

3. Econometric Methods and Results 

3.1 Baseline Analysis 

The paper first conducts a baseline analysis on the link between class-size and grades 

following Hanushek (1979) and using the following panel data model: 

 

 𝑌𝑖,𝑚 = 𝛼𝑖 + 𝛽𝑆𝑚 + 𝑋𝑖,𝑚
′ 𝛾 + 𝜀𝑖,𝑚, (1) 

 

where 𝑌𝑖,𝑚 represents the standardised module (test) score of student 𝑖 on module 𝑚; 𝛼𝑖 is 

a student-specific fixed effect; 𝑆𝑚 is the number of students enrolled in module 𝑚, and 𝛽 is 

the main parameter of interest, as it measure the effect of class-size on grades; 𝑋𝑖,𝑚
′  is a set of 

control variables that might affect students’ outcomes, which include student characteristics, 

such as age, gender, and country of origin, as well as module characteristics, such as a 

whether the module was core or optional, or whether the module was taught in the spring 

term. Finally, 𝜀𝑖,𝑚 is a random error term.  

                                                 
6 The policy was not compulsory, however, and there are some exceptions to it – for example depending on 

classroom size, where some modules with large-size lecture halls may opt out of the double-up. 
7 These are figures comparable to the national average postgraduate student characteristics in England in 

2016/17 as compiled by the Higher Education Student Statistics (https://www.hesa.ac.uk/news/11-01-

2018/sfr247-higher-education-student-statistics/numbers). 
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[Table 2 about here] 

 

Table 2 reports the descriptive results based on Equation (1). Columns (1) and (2) report 

estimated coefficients from a pooled regression model, while columns (3) and (4) account for 

student-specific fixed effects. Overall, the results confirm previous findings in the literature 

and show a strong and negative effect of class-size on grades, and suggest the presence of 

nonlinear relationship of the concave type.8 This highlights that unobserved student 

characteristics play a role in determining test scores. Moreover, the results in the Table reveal 

that girls and British students tend to achieve better modular scores than their male and 

international counterparts, respectively. The results also suggest that, on average, students 

tend to perform better in spring term and in optional modules, which is intuitive in some 

sense given that students are likely to enrol in optional modules that they expect to perform 

better at. 

In order for the 𝛽 coefficient estimated from Equation (1) to be reliable, it requires the 

assumption 𝐸[𝜀𝑖,𝑚| 𝑆𝑚, 𝑋𝑖,𝑚
′ , 𝛼𝑖] = 0 to be satisfied. This assumption entails that, conditional 

on characteristics, 𝑋𝑖,𝑚
′ , and student-specific fixed effects, 𝛼𝑖, students select into modules of 

different sizes randomly. This may be a strong assumption if students were to sort into 

modules of different sizes according to their preferences and/or their idiosyncratic gains. For 

example, as noted by Bandiera et al. (2010), students may choose modules of smaller sizes to 

maximise their time spent with professors and minimise their effort into a specific subject. 

This type of sorting would lead to a downward bias in the estimated coefficients. In this study 

we tackle this potential issue by exploiting the double-up policy mentioned above in a 

regression discontinuity design framework.  

 

3.2 Regression Discontinuity Design 

We use a Regression Discontinuity Design (RDD) to estimate the effect of the double-up 

on modular grade. The RDD design was first introduced by Thistlethwaite and Campbell 

(1960) and then formalised by Hahn et al. (2001) who derived the necessary conditions for 

identification of causal effects. RDD are becoming increasingly popular in empirical studies 

given that the assumptions needed for identification of causal effects are quite weak. The 

                                                 
8 Notice, the difference in sample size is because in this exercise we exclude students who were exposed to the 

double-up teaching. 
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defining feature of this class of models is that the probability of receiving the treatment 

changes discontinuously as a function of an assignment variable being above or below a 

certain cut-off point. The underlying idea of a RDD is that, as in a randomised experiment, 

for individuals just above and below the pre-identified cut-off point, assignment to treatment 

is as good as random. Drawing from Angrist and Lavy (1999), in this case we exploit the fact 

that the probability of receiving double-up changes discontinuously depending on enrolment 

number in a specific module, which we denote by 𝑆𝑚, being above a certain cut-off point 𝑠0. 

There are two types of RDD: the sharp and the fuzzy design (see Trochim, 1984). In the 

sharp design, treatment status depends deterministically on the running variable being above 

or below the cut-off point 𝑠0. In contrast, in the fuzzy design the probability of receiving the 

treatment is known to be discontinuous in the cut-off point s0, but it is not a deterministic 

function of 𝑆𝑚 and selection on unobservables may therefore still be an issue. As noted 

earlier, the double-up policy might not have been implemented in some cases even when 

𝑆𝑚 ≥ 110. This makes it essential that we implement the fuzzy RDD design.  

 Formally, let 𝑆𝑚 be the (discrete) running variable of enrolment size on a module, 𝑚, and 

the cut-off point of interest is 𝑠0=110, such that for students enrolled in modules with 𝑆𝑚≥𝑠0, 

the probability of being exposed to the double-up jumps from zero to positive. Further, define 

an assignment to double-up rule 𝑍𝑚 = 1(𝑆𝑚 ≥  𝑠0), and let 𝐷𝑚 be the double-up indicator, 

that identify students in modules where double-up took place. Then we can write: 

 

 

𝑃{𝐷𝑚 = 1} = {
𝑓1(𝑆𝑚), 𝑆𝑚 ≥  𝑠0

𝑓0(𝑆𝑚), 𝑆𝑚 <  𝑠0
 

 

 

   (2) 

where, due to the discontinuity at the cut-off point, 𝑓1(𝑆𝑚) ≠  𝑓0(𝑆𝑚).9  In the spirit of 

Hahn et al. (2001), a regression framework for a fuzzy RDD is offered by the instrumental 

variable approach so that: 

 

 𝑌𝑖,𝑚 = 𝛼𝑖 +  𝑔(𝑆𝑚) + 𝛽𝐷𝑚 +  𝑋𝑖,𝑚
′ 𝛾 + 𝜀𝑖,𝑚 (3) 

 

where 𝑔(. ) is a high-order polynomial and the double-up indicator, 𝐷𝑚, is instrumented by 

𝑍𝑚 allowing the implementation of the fuzzy RDD parametrically using all observations in 

the sample in estimating equation (3).10  

                                                 
9 In this particular case 𝑓0(𝑆𝑚) equals zero by definition. 
10 Alternatively, one can implement the local linear estimator – a non-parametric estimator – which estimates 

equation (3) only for a sub-sample of the students in an arbitrarily small neighbourhood around the cut-off, 𝑠0, 
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[Figure 1 about here] 

 

Figure 1 presents a local polynomial smoothing (LPS) based plot of the probability of 

being exposed to double-up as a function of class-size. The figure shows a statistically 

significant discontinuity in the probability of receiving the double-up depending on class-

size. It also reveals that to the left of 𝑠0 the probability of treatment is a deterministic function 

of the running variable as in a sharp design. Battistin and Rettore (2008) define this type of 

design as a partially fuzzy RDD. Accordingly, the population can be divided into three 

groups: eligible participants (those on a module with 𝑆𝑚≥110 and received double-up), 

eligible non-participants (those on a module with 𝑆𝑚≥110 but without doubled-up) and non-

eligible (those on a module with 𝑆𝑚 <110). Such a design is particularly advantageous for 

two reasons. Firstly, while in the case of a conventional fuzzy RDD we would need standard 

instrumental variable assumption, including exclusion restriction and monotonicity, in the 

particular case of the partially fuzzy RDD only the continuity assumption needs to be 

satisfied. Secondly, the partially fuzzy RDD allows estimating the average treatment effect on 

the treated (ATT), rather than the average treatment effect for compliers (LATE).11 Notice, 

however, that the estimated parameters from this type of design are still defined as ‘local’ 

because they can only be informative of the effect of the double-up policy in the 

neighbourhood of the cut-off point.  

 

[Figure 2 about here] 

 

Figure 2 depicts results from a local polynomial smoothing (LPS) regression, which  

examines the effect of the double-up policy on the main outcome of interest (test score) 

graphically. It shows a significant jump in the outcome of interest at the pre-identified cut-off 

point of 110 students per class. Specifically, students who were enrolled in modules of sizes 

just above the threshold and, consequently, exposed to the double-up policy achieved 

significantly higher test scores than their counterparts without the policy. The findings in 

Figure 2 are thus consistent with the hypothesis that class-size does matter for academic 

achievements in postgraduate education.  

                                                                                                                                                        
and without the polynomial term, 𝑔(. ). We chose the parametric approach to preserve sample size, but results 

are robust when performing the non-parametric approach (see next Section).  
11 I.e., as in experimental framework where all subjects who receive treatment are compliers (see Bloom, 1984). 

Here we do not have always takers (see extensive discussion on this in Angrist and Piscke (2008), pp. 161-166).  
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We next test the robustness of these findings in a regression framework, as specified in 

Equation (3), controlling for a number of other confounding factors. Table 3 reports results 

from this exercise, which represent first stage estimates of the effect of class size on the 

probability of being exposed to the double-up policy.  

 

[Table 3 about here] 

 

The results confirm the graphical intuition of Figure one and show that individuals in 

classes of size 110 and above, who were assigned to the double teaching, were significantly 

more likely to have actually been exposed to the policy than their counterparts who were not.  

Table 4 reports RDD estimates of the effect of the double-up policy on grades, using the 

(partially fuzzy) RDD approach. Our preferred specification accounts for student fixed 

effects, thus controlling for predetermined unobservable characteristics such as academic 

ability and family background. Column (1) reports results from the basic specification with a 

second order polynomial term with no additional covariates. Column (2) includes the full set 

of covariates as explained above, while columns (3) and (4) include, respectively, third and 

fourth degree polynomial terms in addition to test the robustness of the results. Also, the 

RDD estimates in Table 4 and below are clustered by the running variable as suggested by 

Lee and Card (2008).12  

The results show a significant and positive effect of the double-up policy on students’ 

academic performances. Specifically, estimated coefficients in column (2) suggest that 

students exposed to the double-up policy achieved, on average, significantly higher modular 

grade than did their counterparts without double-up. These estimates are robust to the 

inclusion of various controls and different functional form choices.13  

 

[Table 4 about here] 

 

To check the robustness of our results, we estimated non-parametric RDD as specified in 

equation (3), but focusing only on the sub-sample of subjects within arbitrarily small 

                                                 
12 Lee and Card (2008)’s clustering approach is the standard approach to date, which involves clustering using 

observations with similar/comparable values in the running variable around the cut-off as members of the same 

cluster. However, in their recent paper Kloesar and Rothe (2018) have recommended against this approach.   
13 In Appendix Table A.2, we also report RDD estimates for a number of falsification tests, which show that no 

significant effect is found for different cut-off points 
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windows around the cut-off point. Results from this analysis are reported in Table 5, which 

broadly confirm that our results are robust.14 

 

[Table 5 about here] 

 

In table 6, we report heterogeneous effects of the double-up policy by disaggregating the 

sample into gender and broad nationality categories. The results reveal hardly any gender-

specific difference in the effects of the double-up policy. On the other hand, the policy 

appears to have a differential effect linked to the broad nationality category. Specifically, the 

students who benefitted from the double-up policy are British students. This may suggest that 

international students with a relative inexperience of the higher education culture and their 

relative lack of fluency in the medium of instruction do not appear to gain from the double-up 

policy as their British counterparts do.  

 

[Table 6 about here] 

 

Finally, in Table 7 we investigate the potential heterogeneous effects of class-size, and 

report RDD estimates of the effects of the double-up policy separately by degree 

classifications. The results indicate that the policy significantly decreased the probability that 

students achieved the bottom degree classifications as can be gleaned from Column 4. 

Overall, the results presented provide compelling evidence that class size does matter, and 

that students who were exposed to the double-up policy achieved significantly higher grades. 

In the section that follows, we present a series of tests and checks to confirm the validity of 

these findings. 

 

[Table 7 about here] 

4. Validity 

The main assumption, which needs to be satisfied for our identification strategy to produce 

unbiased estimates, is the continuity assumption. Borrowing from the jargon of the treatment 

effects literature, let  {𝑌𝑖
1, 𝑌𝑖

0} be the potential outcome for individual 𝑖 in case of treatment 

                                                 
14 Optimal bandwidth was selected using the procedure implemented by Calonico, Cattaneo and Titiunik (2014) 

and by Imbens and Kalyanaraman (2012). 
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and in the absence of treatment, respectively. Then, the continuity assumption that needs to 

be satisfied for the validity of a partially fuzzy RDD can be formally written as follows: 

 

 𝐸[𝑌𝑖
0|𝑆𝑚 = 𝑠0

+] −  𝐸[𝑌𝑖
0|𝑆𝑚 = 𝑠0

−] = 0, (4) 

 

where 𝑠0
+ and 𝑠0

− represent, respectively, students just above and below the cut-off point, 

𝑠0. In our case, this assumption entails that students enrolled in modules just above and just 

below the pre-identified cut-off level are identical in every respect, both in terms of 

observables and unobservables, but only differ in the probability of being exposed to the 

double-up policy. A direct way to assess the validity of this assumption is to examine if pre-

intervention variables do not change discontinuously around the cut-off point. Figure 3 

depicts the results from a set of local polynomial smoothing (LPS) regressions of variables 

such as age, gender, and country of origin that could not have been affected by the policy. 

Accordingly, we do not observe a statistically significant discontinuity at the cut-off point for 

any of these variables. 

 

[Figure 3 about here] 

 

As noted by McCrary (2008), however, the continuity assumption may be invalidated in 

cases where the treatment assignment rule is a public knowledge. Specifically, if people knew 

about the discontinuous nature of the assignment to treatment mechanism, those who expect 

to benefit from the double-up would manipulate the running variable, 𝑆𝑚, in order to receive 

the intervention, and selection bias would still be an issue. Given the nature of the double-up 

policy, it is quite unlikely that this would happen in our setting. However, in order to dispel 

any potential concerns about students sorting around the running variable, we also 

implemented the “donut hole” approach suggested by Barreca et al. (2016).15 The main idea 

behind this approach is that units closest to the cut-off are those most likely to have engaged 

in manipulation. Consequently, excluding such units from the analysis would eliminate any 

potential concern. In Table 8 we report RDD estimates of the double-up policy on test scores, 

excluding students who were enrolled in modules within 1 and 5 enrolment size points 

                                                 
15 Figure A.2 in the Appendix presents the outcome of the McCrary test, obtained through the STATA routine 

DCdensity. 
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around the cut-off. As the results reported in Table 8 confirm, our results remain robust to 

such validation tests. 16  

 

[Table 8 about here] 

 

5. Conclusion 

The paper examined the link between class-size and postgraduate grades using 

administrative data covering the population of candidates in one of the largest Schools of a 

Russell Group public university in the UK. As well as estimating fixed effects regressions we 

exploited a policy change aimed at reducing class-size to construct instrumental variables 

estimates of the impact of class-size on postgraduate grades using regression discontinuity 

design (RDD). We found that class-size impacts modular grades adversely confirming the 

well-established link between class-size and student performance. On the other hand, the 

policy designed to reduce class-size is found to have a significant positive impact on 

postgraduate modular grades. Importantly, we also found that the policy has reduced the 

probability that postgraduate students fail in their programme of study.  

As noted earlier, supply side policies have led to a significant increase in tertiary level 

education overall. On the other hand, the changing funding environment in higher education 

institutions has made student fees a vital part of higher education funding, particularly at the 

PG level.  This has renewed institutions’ drive to recruit more students thus further 

reinforcing the effects of the supply side policies. In turn, this has revived some of the pre-

existing concerns regarding student-to-staff ratio and the quality of tertiary education. 

Against this background, there has been a dearth of evidence on the effect of class-size on 

postgraduate grades, which this paper attempted to contribute to.  

As noted earlier, it is apparent that independent learning is an integral part of the tertiary 

education landscape. However, the current funding climate within the higher education sector 

may make the question of class-size and its impact on student outcomes in that context all the 

more important. The recent Auger Review into post-18 education and funding has, for 

example, recommended reducing the cap on tuition fee. Faced with the prospect of reduction 

in the cap on tuition fee, higher education institutions may increase student intake to make up 

                                                 
16 Additionally, our findings are robust when implementing the treatment effect derivative (TED) of the 

estimated RDD, constructed by Dong and Lewbel (2015), which test for the stability of the RDD estimates 

(Cerulli et al., 2017).   
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for funding shortfalls. If so, this is likely to have implications for class-size and student 

performance in tertiary education. The recent government undertakings (DFE 2018) to 

understand the role of contact hours and class-size highlights such concerns and underscores 

the importance of contact hours and class-size in determining student performance. Given 

these, the findings in this paper regarding double teaching are likely to be informative for 

policy makers, higher education institutions and  students alike. As Huxley et al. (2017) 

noted, however, double teaching may not always be beneficial if doing so were to 

compromise teaching quality in some sense. Future work may usefully examine this issue in a 

wider context than has been done in this paper.  
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Table 1: Summary statistics

Variable Mean Standard Deviation Min. Max. N

Personal Attributes:

Female 0.697 0.46 0 1 987

Age 23.32 2.554 20 42 987

Country of Origin Attributes:

British 0.083 0.276 0 1 987

Chinese 0.605 0.489 0 1 987

Other Countries 0.312 0.464 0 1 987

Academic Performances:

Overall Mark 61.035 11.03 0 94 7696

Distinction 0.201 0.401 0 1 7696

Merit 0.425 0.494 0 1 7696

Pass 0.341 0.474 0 1 7696

Fail 0.034 0.18 0 1 7696

Class Size: 141.309 102.0192 1 396 7696

Note: The table reports summary statistics of the sample of interest.
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Table 2: Baseline Estimates

Pooled Model Fixed E�ects Model

(1) (2) (3) (4)
Overall Mark Overall Mark Overall Mark Overall Mark

Class Size -0.0330*** -0.0262*** -0.0293*** -0.0197**
(0.0071) (0.0079) (0.0082) (0.0086)

Class Size2 0.0010*** 0.0009*** 0.0010*** 0.0010***
(0.0002) (0.0002) (0.0002) (0.0002)

Covariates:
Core Module [0,1] -0.0461 -0.1644***

(0.0325) (0.0323)
Spring Term Module [0,1] 0.0717** 0.0749***

(0.0341) (0.0277)
10 Credits -0.6232*** -0.6059***

(0.1367) (0.2187)
15 Credits -0.5055*** -0.4365***

(0.0984) (0.1060)
20 Credits -0.4075** -0.9239***

(0.1687) (0.1941)
Female [0,1] 0.1157*** -

(0.0360) (-)
Years of Age 0.0073 -

(0.0059) (-)
British [0,1] 0.1811*** -

(0.0632) (-)
Chinese [0,1] -0.1117*** -

(0.0376) (-)
Constant 0.2014*** 0.4403** 0.1569*** 0.5876***

(0.0432) (0.1910) (0.0518) (0.1287)
Observations 5383 5383 5382 5382

Note: The table presents baseline estimates of the e�ect of class size on student overall mark. The di�er-
ence in sample size is due to the fact that for this exercise we exclude students who were exposed to the
double-up teaching. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 1: Graphical Analysis - First Stage

Note: The �gure shows local polynomial estimates of the probability of being exposed to

the double-up teaching as a function of module enrolment size.

Figure 2: Graphical Analysis - Local Polynomial Estimates

Note: The �gure shows local polynomial estimates of the e�ect of the double-up on stu-

dents overall mark.

3



Table 3: First Stage Estimates

Pooled Estiamtes Student Fixed E�ects

(1) (2) (3) (4)
Actual

Double-up
Actual

Double-up
Actual

Double-up
Actual

Double-up
Assigned Double-up [0,1] 0.4944*** 0.4944*** 0.7163*** 0.7110***

(0.0150) (0.0150) (0.0182) (0.0190)
Running Variable
Class Size 0.0045*** 0.0045*** -0.0111*** -0.0106***

(0.0017) (0.0017) (0.0023) (0.0024)
Class Size2 0.0001*** 0.0001*** 0.0004*** 0.0004***

(0.0000) (0.0000) (0.0000) (0.0000)
Covariates:
Core Module [0,1] -0.0148* -0.0148* -0.0201*

(0.0088) (0.0088) (0.0105)
Spring Term Module [0,1] 0.0142* 0.0142* 0.0043

(0.0086) (0.0086) (0.0089)
10 Credits 0.0263* 0.0263* -0.0749***

(0.0154) (0.0154) (0.0166)
15 Credits 0.0070 0.0070 -0.0309**

(0.0079) (0.0079) (0.0123)
20 Credits 0.0246** 0.0246** -0.0742***

(0.0116) (0.0116) (0.0187)
Female [0,1] 0.0206** 0.0206** -

(0.0090) (0.0090) (-)
Years of Age 0.0005 0.0005 -

(0.0013) (0.0013) (-)
British [0,1] 0.0148 0.0148 -

(0.0130) (0.0130) (-)
Chinese [0,1] -0.0286*** -0.0286*** -

(0.0090) (0.0090) (.)
Constant -0.0534 -0.0534 -0.0040 0.0352

(0.0374) (0.0374) (0.0140) (0.0257)
Observations 7696 7696 7696 7696

Note: The table presents �rst stage estimates of the e�ect of class size on the probability of being exposed
to the double-up teaching. Robust standard errors in parentheses are clustered by unique values of the
running variable. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4: RDD Estimates with Student Fixed Effects

(1) (2) (3) (4)
Overall Mark Overall Mark Overall Mark Overall Mark

Double-up [0,1] 0.3314** 0.3237** 0.3250** 0.9117***
(0.1289) (0.1284) (0.1301) (0.2519)

Running variable:
Class Size -0.0376*** -0.0395*** -0.0197 0.3665***

(0.0095) (0.0101) (0.0230) (0.1120)
Class Size2 0.0006*** 0.0007*** -0.0004 -0.0457***

(0.0002) (0.0002) (0.0014) (0.0140)
Class Size3 0.0000 0.0018***

(0.0000) (0.0006)
Class Size4 -0.0000***

(0.0000)
Covariates: X X X X
Observations 7696 7696 7696 7696

Note: The table presents RDD estimates of the impact of the double-up policy on student overall mark.
Results are conditional on a vector of covariates as shown in table 3. Robust standard errors in paren-
theses are clustered by unique values of the running variable. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 5: RDD Estimates, at an Arbitrarily small window around the cut-off

Non-Parametric RDD

(1) (2) (3)
Overall Mark

Window [80, 140]
Overall Mark

Window [50, 170]
Overall Mark

Window [20, 200]
Double-up [0,1] 0.4344* 0.2733* 0.3947***

(0.2276) (0.1504) (0.1399)
Running variable:
Class Size -0.0066 -0.0076 -0.0210**

(0.0405) (0.0226) (0.0084)
Covariates: X X X
Observations 3242 4712 5721

Note: The table presents RDD estimates of the impact of the double-up policy on student overall mark.
Results are conditional on a vector of covariates as shown in table 3. Robust standard errors in paren-
theses are clustered by unique values of the running variable. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 6: RDD Estimates, Disaggregated by Gender and Country of Origin

(1) (2) (3) (4)
Overall Mark

Boys
Overall Mark

Girls
Overall Mark

British
Overall Mark

Chinese
Double-up [0,1] 0.3155** 0.3215** 0.4737** 0.2295

(0.1487) (0.1535) (0.1890) (0.1534)
Running variable:
Class Size -0.0414*** -0.0380*** -0.0166 -0.0284**

(0.0148) (0.0119) (0.0261) (0.0121)
Class Size2 0.0005* 0.0008*** -0.0005 0.0006***

(0.0003) (0.0002) (0.0007) (0.0002)
Covariates: X X X X
Observations 2292 5404 618 4743

Note: The table presents RDD estimates of the impact of the double-up policy on student overall mark.
Results are conditional on a vector of covariates as shown in table 3. Robust standard errors in paren-
theses are clustered by unique values of the running variable. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 7: RDD Estimates, Disaggregated by Degree Classification

(1) (2) (3) (4)
Distinction Merit Pass Fail

Double-up [0,1] 0.0146 0.0504 0.0168 -0.0818***
(0.0516) (0.0497) (0.0444) (0.0298)

Running variable:
Class Size 0.0004 -0.0212*** 0.0114** 0.0095***

(0.0046) (0.0048) (0.0048) (0.0036)
Class Size2 0.0000 0.0004*** -0.0003*** -0.0002**

(0.0001) (0.0001) (0.0001) (0.0001)
Covariates: X X X X
Observations 7696 7696 7696 7696

Note: The table presents RDD estimates of the impact of the double-up policy on student overall mark.
Results are conditional on a vector of covariates as shown in table 3. Robust standard errors in paren-
theses are clustered by unique values of the running variable. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 3: RDD Continuity Test.

Note: The �gure shows local polynomial estimates of pre-treatment variables as a function

of enrolment size.
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Table 8: RDD Estimates, Donut-Hole Approach

Outcome: Overall Mark

(1) (2)
Excluded [+1, -1]
Around the Cut-o�

Excluded [+5, -5]
Around the Cut-o�

Double-up [0,1] 0.2851** 0.3237**
(0.1340) (0.1284)

Running variable:
Class Size -0.0367*** -0.0395***

(0.0105) (0.0101)
Class Size2 0.0006*** 0.0007***

(0.0002) (0.0002)
Covariates: X X

Observations 7270 7696

Note: The table presents RDD estimates of the impact of the double-up policy on student overall mark.
Results are conditional on a vector of covariates as shown in table 3. Robust standard errors in paren-
theses are clustered by unique values of the running variable. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Appendix

Figure A.1: Student Registration over the last five years.

Note: The �gure shows number of student registered at the University over the last �ve

years.

Figure A.2: Manipulation of Running Variable

Note: The �gure reports evidence of no manipulation around the cut-o�.

9



Table A.1: RDD Estimates, Falsification Test

(1) (2) (3)
Overall Mark
Cuto�=20

Overall Mark
Cuto�=135

Overall Mark
Cuto�=160

Double-up [0,1] -0.0291 -1.5868 -0.9451
(0.3583) (2.7737) (1.1601)

Running variable:
Class Size -0.0172 0.0811 0.0406

(0.0226) (0.1673) (0.0668)
Class Size2 0.0004 -0.0009 -0.0004

(0.0003) (0.0023) (0.0009)
Covariates: X X X
Observations 7696 7696 7696

Note: The table presents RDD estimates of the impact of the double-up policy on student overall mark.
Results are conditional on a vector of covariates as shown in table 3. Robust standard errors in paren-
theses are clustered by unique values of the running variable. * p < 0.1, ** p < 0.05, *** p < 0.01.
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