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ABSTRACT
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Accounting for Skewed or One-Sided 
Measurement Error in the Dependent 
Variable

While classical measurement error in the dependent variable in a linear regression framework 

results only in a loss of precision, non-classical measurement error can lead to estimates 

which are biased and inference which lacks power. Here, we consider a particular type of 

non-classical measurement error: skewed errors. Unfortunately, skewed measurement error 

is likely to be a relatively common feature of many outcomes of interest in political science 

research. This study highlights the bias that can result even from relatively “small” amounts 

of skewed measurement error, particularly if the measurement error is heteroskedastic. We 

also assess potential solutions to this problem, focusing on the stochastic frontier model 

and nonlinear least squares. Simulations and three replications highlight the importance of 

thinking carefully about skewed measurement error, as well as appropriate solutions.
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Introduction

Confronting measurement error in statistical research in political science and other disciplines

has a lengthy history. Hausman (2001, p. 57) states, “The effect of mismeasured variables

in statistical and econometric analysis is one of the oldest known problems.” Asher (1974, p.

469) argues that “a more subtle problem of secondary analysis is that the investigator often

has little feel for the quality of the data, for the extent and nature of the measurement error

in the data.” Nonetheless, the issue is often ignored by researchers. When it is not ignored,

the focus is almost exclusively on classical measurement error. Here, “classical” refers to

mean zero errors that are independent of covariates and the stochastic disturbance in the

model; Asher (1974) refers to this as the case of “random” measurement error. Imai and

Yamamoto (2010, p. 543) conclude that “existing research has either completely ignored the

problem or exclusively focused on classical measurement error in linear regression models

where the error is assumed to arise completely at random.”

The focus on classical measurement error is particularly true in the case of mismeasure-

ment of a continuous dependent variable in a linear regression framework. Here, classical

measurement error reduces precision, but does not bias estimates. However, the assumption

of classical measurement error is often invoked without any formal justification. In practice, a

frequently encountered situation of nonclassical measurement error in the dependent variable

occurs when the outcome is systematically over- or under-reported, resulting in measurement

error that is skewed with non-zero mean; termed “nonrandom” in Asher (1974).

Skewed measurement errors, of which one-sided measurement errors are a special case, are

likely to be a feature of many outcome variables used in political science research. Consider

measures of the severity of civil conflict as an example. Measures of conflict intensity (e.g.,

casualties) are derived from either government reports, media accounts, or third-parties such

1



as humanitarian groups. Each data source has its own unique challenges. Official government

statistics face deficiencies related to insufficient resources and political manipulation. For

example, Krueger and Laitin (2004, p. 8) state that “terrorism reports produced by the

U.S. government do not have nearly as much credibility as its economic statistics, because

there are no safeguards to ensure that the data are as accurate as possible and free from

political manipulation.” Media accounts risk missing data from remote areas (Wiedmann

2016). Third-parties face tension between providing accurate data and other objectives. For

instance, Lacina and Gleditsch (2012, p. 1118) state that the PRIO battle deaths data

may overstate the true death toll due to a “blurring between expertise and advocacy” as

“experts may overestimate deaths because they seek to draw attention to ongoing conflicts

or to underline the importance of the conflict on which they specialize.”

Similarly, official death tolls from natural disasters may suffer from skewed measurement

error. Consider the recent crisis in Puerto Rico arising from Hurricane Maria. Kishore et

al. (2018) claim that the official death toll may severely understate the true loss of life.

The authors state: “Accurate estimates of deaths, injuries, illness, and displacement in

the aftermath of a disaster such as Hurricane Maria are critical. . . However, public health

surveillance is extremely challenging when infrastructure and health systems are severely

damaged. In early December 2017, the official death count in Puerto Rico stood at 64,

but several independent investigations concluded that additional deaths attributable to the

hurricane were in excess of 1,000 in the months of September and October.” Kishore et al.

(2018) estimate the death toll at 4,645.

Other examples of outcomes that may suffer from skewed measurement error abound.

Katz and Katz (2010) discuss measurement error in self-reported voting behavior. Using

validation data for elections over the period 1964 to 1990, the authors find that between

13% and 25% of self-reported voters did not vote; at most 4% of self-reported non-voters
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did vote. The highly skewed errors at the individual level mean that aggregate measures of

self-reported voter turnout will suffer from one-sided measurement error. Measurement of

corruption, or criminal activity more generally, may also suffer from one-sided measurement

error. Goel and Nelson (1998) and subsequent research on corruption in the United States

utilize data on the number of public officials convicted for abuse of office. This measure only

captures illegal activities that are discovered and prosecuted. Measurement of local pollution,

necessary for analyses of environmental justice or other determinants of local environmental

conditions, may also suffer from one-sided measurement error. For example, Daniels and

Friedman (1999) and others rely on self-reported emissions by establishments in the United

States obtained from the Toxic Release Inventory. The self-reported and public nature of

the data make systematic under-reporting likely. Finally, survey data on actions or attitudes

that may lead to social judgement may suffer from skewed measurement error, including

data on political or charitable contributions, attitudes concerning racial or ethnic issues, etc.

With skewed measurement error in the dependent variable in a linear regression frame-

work, the consequences extend beyond a loss in precision. Ordinary Least Squares (OLS)

will no longer provide an unbiased estimate of the intercept (due to the non-zero mean of the

composite error term) and may no longer provide unbiased estimates of the slope parameters

if the skewed measurement error is heteroskedastic. Moreover, Instrumental Variable (IV)

estimation, the traditional solution to measurement error when it is addressed econometri-

cally, is not a viable solution as any potential instruments will necessarily be invalid. As

a result, the typical response in political science and elsewhere is to ignore the issue. For

example, Weidmann (2016, p. 206-7) states: “Thus, for scholars trying to explain the occur-

rence of political violence, this means that their dependent variable may be measured with

error. This alone would not be a problem if this error was random; however, as is well known,

systematic measurement error that is correlated with an independent variable can introduce
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statistical bias and lead to erroneous conclusions. Both conceptually and methodologically,

the new wave of event-level analysis has not taken this issue serious enough.”

However, solutions are available, but have rarely been used by researchers; never in

political science to our knowledge. Our objective is to draw attention to these solutions and

assess their performance via simulations and three replications.

The first solution entails directly modeling the measurement error assuming it stems from

a particular parametric distribution.1 Techniques to accomplish this are well-developed

in the literature on efficiency modeling (Aigner et al. 1977; Parmeter and Kumbhakar

2014). Specifically, stochastic frontier analysis (SFA) allows for the composite error term to

include a one-sided component (which can either be non-negative or non-positive) and a two-

sided idiosyncratic component. While the one-sided error component is traditionally viewed

as capturing inefficiency, one may instead interpret it as skewed measurement error; this

stems from the statistics literature on closure properties related to many common skewed

distributions. Moreover, heteroskedasticity in the skewed error may be accommodated in

the estimation. SFA is now quite common; it is available in software packages such as Stata,

SAS, and R. The second solution is similar to SFA, but involves Nonlinear Least Squares

(NLLS) rather than maximum likelihood. NLLS replaces the distributional assumptions in

SFA with an assumption referred to as the scaling property. Again, NLLS is available in

software packages such as Stata, SAS, and R.

To our knowledge, the first paper to utilize SFA to address one-sided measurement error

in the dependent variable is Hofler and List (2004). Subsequent research using SFA to

address one-sided measurement error in the dependent variable has remained confined to

the analysis of auction data where systematic over- or under-bidding may be common (e.g.,

Kumbhakar et al. 2012) or population and mortality data (Anthopolos and Becker 2010).

We make several contributions to this literature. First, we consider the case of skewed
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measurement error in the outcome variable. Prior applications focus exclusively on one-

sided measurement error. As illustrated in Katz and Katz (2010) with regards to self-

reported voting behavior, often the outcome variable suffers from skewed, rather than strictly

one-sided, measurement error. Second, whereas prior papers using SF models to address

one-sided measurement error use the methodology for a specific application, we provide a

rigorous analysis of the issue. This entails quantifying the impact on parameter estimates

via simulations, as well as offering recommendations for researchers when confronting skewed

measurement error. Finally, as the existing literature does not discuss the potential for

NLLS under the scaling property to circumvent the need for distributional assumptions

when confronting skewed or one-sided measurement error, we fill this gap.

Our results are striking. First, the simulations document that even a small amount of

systematic, one-sided measurement error can lead to severe bias. Second, while correctly

specified SFA and NLLS offer a solution, misspecification of the error components can have

dire consequences. Third, the simulations confirm the superiority of SFA and particularly

NLLS (in large samples) over ignoring measurement error when the errors are skewed instead

of strictly one-sided. Finally, our three replications demonstrate that accounting for one-

sided measurement error is important when evidence of heteroskedasticity is present.

Measurement Error in The Dependent Variable

To begin, we discuss one-sided measurement error as it illustrates the main empirical

challenges. After, we consider the general case of skewed measurement error.
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The Impact of One-Sided Measurement Error

Consider the following linear in parameters model

y∗i = xiβ + vi, (1)

where y∗i is the true measure of interest, such as the number of deaths during conflict i,

xi is the set of covariates, and vi is a classical error term. In this setting, Ordinary Least

Squares (OLS) will produce unbiased and consistent estimates of β. Moreover, xiβ can be

interpreted as the conditional expectation of y∗ given x, E[y∗|x].

Suppose one has access to a random sample, {yi, xi}Ni=1, where yi is the observed value

of y∗. In the absence of measurement error, these measures coincide and y∗i = yi. However,

with either over- or under-reporting, we have

yi = y∗i + sui, (2)

where ui ≥ 0 for all i and s ∈ {−1, 1}. When s = −1 (s = 1) values of y∗ are systematically

under- (over-)reported. The estimating equation is

yi = xiβ + vi + sui = xiβ + εi. (3)

The consequences of one-sided measurement error exceed those arising from classical

measurement error. Whereas classical measurement error leads to a loss in precision, one-

sided measurement error can potentially lead to substantial bias in the coefficient estimates.

To see this, note that due to the one-sided nature of the measurement error, E[ui] 6= 0.

Thus, OLS applied to (3) will estimate the conditional mean E[y|x] = E[y∗|x] + E[u|x].

For practitioners, the source of the bias does not matter, but it likely does have an impact
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on whether there exists an expectation of bias. For instance, even a näıve researcher might

realize that there are known issues with corruption data, but not necessarily with voter

turnout data. While there is a difference in skewness arising from missingness due to case

censoring (e.g., corruption data) versus respondent misreporting (e.g., voter turnout data),

the issue may be handled directly by modeling the skewness in both settings.2

To assess the impact of this one-sided error, recall that OLS produces estimates that

ensure the residuals are mean zero. Thus, the model that is estimated is

yi = β0 + xiβ + εi = (β0 + sE[u]) + xiβ + (εi − sE[u]) , (4)

where we now explicitly include the intercept, β0, and re-define x to include only the model

covariates with associated parameter vector, β. Here, the main impact of one-sided mea-

surement error is on the intercept. However, this assumes that the one-sided error is not

systematic. If, alternatively, the level of over- or under-reporting depends on observable

characteristics, the impact can be far more damaging.

Assume the level of over- or under-reporting depends on x. For example, in conflict

research, the under-reporting of deaths may be a function of communication technology, and

such technology may also be a direct determinant of conflict (Wiedmann 2016). In such

a situation, the variance of the one-sided measurement error will depend on x. However,

heteroskedasticity affects not only the variance of ui, but also its conditional mean. Formally,

with one-sided, heteroskedastic measurement error, E[u|x] 6= E[u] 6= 0.3 Moreover, the

nature of the problem ensures that any potential instrument (i.e., a variable w  x such

that Cov(w, x) 6= 0) will be invalid. Finally, Wang and Schmidt (2002) show that the OLS

estimates of β will also be biased if the variance of u depends on some other covariates z,

where z  x, unless z and x are independent.
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In sum, in the presence of one-sided, heteroskedastic measurement error, the estimating

equation becomes

yi = β0 + xiβ + sE[u|x] + (εi − sE[u|x]) . (5)

Thus, estimation of the conditional mean results in an omitted variable problem that will

yield biased coefficients except under specific assumptions that are unlikely to hold in prac-

tice. Moreover, this bias will not diminish even as the sample size increases.

Skewed Versus One-Sided Measurement Error

The assumption of one-sided measurement error may be too rigid in many applications.

Instead, the assumption of measurement errors highly skewed in one direction may be more

realistic. With skewed measurement error, it is likely that many of the issues that arise with

one-sided measurement error continue to do so. Again consider the linear in parameters

model in (1) and data that represent a random sample, {yi, xi}Ni=1, where yi is the observed

value of y∗i . However, now suppose that both over- and under-reporting simultaneously exist

but in vastly different proportions. In this case,

yi = y∗i + ui, (6)

where ui comes from a skewed distribution and can take both negative and positive values. As

in the case of one-sided measurement error, skewed errors can potentially lead to substantial

bias in the coefficient estimates.

To see this, consider a simple parametric example. The estimating equation is

yi = xiβ + vi + ui = xiβ + εi. (7)
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Suppose that ε is distributed as skew normal, which has pdf f(ε) = 2
ω
φ (A) Φ (αA), where

A = ε−ξ
ω

, ω is the variance of ε, α controls the skewness of ε, and ξ is the location (not

to be conflated with the mean) of ε. The mean of ε is ξ +
√

2
π
ωδ, where δ = α√

1+α2

(Azzalini 1985). Note, even if ξ = 0, the mean of ε is non-zero as long as there is skewness

(i.e., α 6= 0). Moreover, the conditional mean of ε depends on the variance parameter,

ω. Thus, with skewed and heterokedastic measurement error, the conditional mean of ε

is no longer constant. Thus, OLS applied to (7) estimates the conditional mean E[y|x] =

E[y∗|x] + E[ε|x] 6= E[y∗|x].

The use of the skew normal assumption is only for illustrative purposes. Nearly all

members of the class of skewed distributions (skew normal, skew t, skew Laplace, etc.)

possess these same features.4 In addition, even with the assumption that v is distributed

symmetrically, the distribution of v + u will be asymmetric provided that u is distributed

asymmetrically (whether u is one-sided or not). It is this asymmetry, and not one-sided

measurement error, coupled with heteroskedasticity in the measurement error that leads to

the bias and inconsistency of the OLS estimator as the conditional mean of the error term

now depends on covariates, leading to the usual omitted variable bias. Consequently, skew-

ness of the residuals provides a potential metric researchers can explore. Finally, note that

with heteroskedastic but symmetric measurement error, the mismeasurement only affects

efficiency and inference.

Confronting Skewed Measurement Error

Estimating models with one-sided errors has a long history in the analysis of productive

efficiency (Kumbhakar and Lovell 2001; Parmeter and Kumbhakar 2014). This literature

offers an array of methods to capture the one-sided nature of ui. Thus, accounting for

one-sided measurement error can be addressed with application of these methods.
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The most common approach is SFA, which begins by making distributional assumptions

on both errors in (3). Typically, vi ∼ N (0, σ2
v) and the one-sided error is assumed to be

distributed half-normal, ui ∼ N+
(
0, σ2

ui

)
.5 If the observed outcome suffers from one-sided,

heteroskedastic measurement error, a (correctly specified) SF model provides consistent es-

timates of the parameters.

It is noteworthy that while SFA typically uses the half-normal assumption for u, a nearly

identical result holds if u is instead distributed as skew normal. The reason for this is that,

as demonstrated in González-Faŕıas et al. (2004), the sum of a normal random variable

and a skew normal random variable is distributed as skew normal. More formally, the skew

normal family is closed under addition; just as the sum of two normal random variables is

distributed normal, the sum of two skew normal random variables is distributed skew normal

(and a normal random variable is skew normal, with parameter α = 0).

Maintaining the previous distributional assumptions on the errors and assuming that the

errors are independent, the model is estimated via maximum likelihood with the following

log-likelihood function

lnL =
n∑
i=1

− lnσε + ln Φ

−sεi
(
σui
σv

)
σεi

− ε2i
2σ2

εi

 , (8)

where Φ(·) is the standard normal cumulative distribution function and σ2
εi

= σ2
v + σ2

ui

(Parmeter and Kumbhakar 2014). If u is heteroskedastic, the variance is commonly modeled

as

σ2
ui

= exp(ziγ),

where typically zi = xi (e.g., Caudill et al. 1995).

Alternative methods exist for researchers hesitant to make such distributional assump-

tions. One approach is to assume that ui satisfies the scaling property (Simar et al. 1994;
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Wang and Schmidt 2002). Under the scaling property, ui has the following form

ui ∼ g(zi; δ)u
∗
i , (9)

where g(·) ≥ 0 is a function of exogenous variables while u∗i is a random variable whose

distribution does not depend on zi.
6

The scaling property captures the idea that the shape of the distribution of the asym-

metric measurement error is the same for all observations. However, the scaling function

collapses or expands the random variable so that the scale of ui changes without changing

the underlying shape (Parmeter and Kumbhakar 2014). In addition, the scaling property

permits estimation without specifying a distribution for v or u∗. Combining (3), the scaling

property, and placing structure on g(·) yields the following regression model

yi = xiβ + vi ± exp(ziδ)u
∗
i , (10)

where the conditional mean of y given x and z is

E[y|x, z] = xβ ± exp(zδ)µ∗ (11)

with µ∗ = E(u∗). We use the ± here to capture asymmetric measurement error that may

either have a negative or positive mean. The regression model with mean zero error term is

yi = xiβ ± exp(ziδ)µ
∗ + vi ∓ exp(ziδ)(u

∗
i − µ∗) = xiβ ± exp(ziδ)µ

∗ + ε∗i , (12)
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which can be estimated using Nonlinear Least Squares (NLLS) as

(
β̂, δ̂, µ̂∗

)
= min

β,δ,µ∗
n−1

n∑
i=1

[yi − xiβ ± µ∗ exp(ziδ)]
2 . (13)

The need for NLLS stems from the fact that the scaling function is positive. If one

erroneously specifies it as linear, then two problems arise. First, the scaling function would

not satisfy positivity everywhere, invalidating the function estimates. Second, the model

would suffer from perfect multicollinearity if x and z overlap. In terms of implementation,

note that the presence of µ∗ implies that one cannot include a constant in z, as this leads

to identification issues. Given that the error term from the model in (12) is heteroskedastic

by definition, either a generalized NLLS algorithm is required7 or heteroskedastic robust

standard errors are needed for valid inference (White 1980).

SFA and NLLS methods have benefits and shortcomings. SFA will produce consistent

and efficient estimates if the distributional assumptions and functional form for the skedastic

function are correct. NLLS requires proper specification of the scaling function as well as

the scaling property more generally. Other approaches are available that allow one to avoid

parametric specification in general, but these typically require more advanced methods and

also have shortcomings (Parmeter et al. 2017; Simar et al. 2017).

Assessing the (Likely) Presence of Skewed Measurement Error

While ignoring skewed, heteroskedastic measurement error is likely to cause significant

estimation issues, applying the proposed solutions when such errors are not present is apt

to be highly inefficient. Thus, testing for the likely presence of skewed, heteroskedastic mea-

surement error seems wise. Fortunately, methods of testing for such properties of residuals

are commonplace. In terms of testing skewness, several tests exist. For example, Stata im-
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plements the test of D’Agostino et al. (1990) with the empirical correction developed in

Royston (1991). For heteroskedasticity, again several tests are available. Stata implements

tests developed in Pagan and Hall (1983), Bruesch and Pagan (1979), and others.

Monte Carlo Study

We undertake two small-scale Monte Carlo studies. The first considers the case of one-sided

measurement error. The second examines skewed measurement error. The objectives are

threefold. First, to assess the sensitivity of OLS to different degrees of one-sided or skewed

measurement error in the dependent variable. Second, to assess the viability of correctly

specified SFA and NLLS in such cases. Finally, to assess the sensitivity of the estimators to

limited departures from the correct specification.

One-Sided Measurement Error

Design

Data are simulated from variants of the following DGP8:

y∗i = β0 + β1x1i + β2x2i + vi

yi = y∗i − ui

x1i, x2i
iid∼ N(0, 1)

vi
iid∼ N(0, 1)

ui ∼
∣∣N(0, σ2

ui
)
∣∣

σ2
ui

= exp(γ0 + γ1x1i + γ2x2i + γ3x
2
1i + γ4x

2
2i + γ5x1ix2i)
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In all designs, we set β0 = β1 = β2 = 1. In Design 1, we set γ1 = γ2 = γ3 = γ4 = γ5 = 0. In

Design 2, we set γ1 = 0.7, γ2 = −0.5, and γ3 = γ4 = γ5 = 0. In Design 3, we set γ1 = 0.7,

γ2 = −0.5, γ3 = 0.25, γ4 = −0.25, and γ5 = 0.5. Thus, the one-sided measurement error, u,

is homoskedastic in Design 1 and heteroskedastic in Designs 2 and 3. Finally, γ0 is varied

in order to assess the sensitivity of different estimators to the extent of the measurement

error. Specifically, we vary γ0 such that E[σ2
v ]/E[σ2

ui
] = {1, 2, 5, 10}. Since E[σ2

v ] = 1, this is

equivalent to E[σ2
ui

] = {1, 0.5, 0.2, 0.1}.

For each experimental design, we conduct 1,000 simulations for two sample sizes, N = 100

and N = 10, 000. We compare the bias, mean absolute error (MAE), mean squared error

(MSE), and coverage rate of four estimators: OLS, homoskedastic SF, heteroskedastic SF,

and NLLS. In the homoskedastic SF model, σui is assumed to be a constant for all i. In the

heteroskedastic SF and NLLS models, σ2
ui

is parameterized as exp(γ0 + γ1x1i + γ2x2i).
9 As

such, in Design 1 the skedastic function is over-specified. In Design 2 the skedastic function

is correctly specified. In Design 3 the skedastic function is under-specified.

Results

The results are presented in Figures A1-A3 and Tables A1-A5 in the Supplemental Appendix.

Tables A1-A4 report the bias, MAE, MSE, and coverage rate based on 95% confidence in-

tervals. Each table is identical except for the value of γ0 which then yields differences in

E[σ2
v ]/E[σ2

ui
] (i.e., the relative importance of the idiosyncratic error). For ease of presenta-

tion, Figures A1 and A2 present the median squared error of our estimators relative to the

median squared error of OLS for Designs 2 and 3. Figure A1 is based on the simulations

with N = 100, while Figure A2 is based on the simulations with N = 10, 000.

Several findings emerge. First, with one-sided, homoskedastic measurement error (Design

1), OLS performs well in terms of estimating the slope coefficients, but not the intercept.
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This is consistent with expectations as one-sided, homoskedastic measurement error only

effects the intercept. In Design 1 the performance of the homoskedastic SF model in terms

of estimating the slope parameters is nearly indistinguishable from OLS (except the coverage

rates are a bit lower in small samples); estimation of the intercept and coverage rates across

all parameters are very good in large samples. In Design 1 the heteroskedastic SF model

is over-specified. As such, it is inefficient and the coverage rates are low, but the loss in

precision is negligible in large samples if the measurement error is severe enough. Thus, with

little measurement error, over-specifying the skedastic function leads to higher imprecision

of all estimates, even in large samples, particularly for the intercept.

Second, with one-sided, heteroskedastic measurement error (Design 2 or 3), OLS performs

poorly for all of the parameters of the model, even when the sample size is large and the

measurement error is relatively small (Table A4). The homoskedastic SF model fares a bit

better than OLS, but the improvement is marginal. Particularly salient is the fact that the

coverage rates of the slope parameters for both OLS and the homoskedastic SF are less than

10% even when the expected variance of the measurement error is 10% of the variance of

the idiosyncratic error (Table A4). Thus, even small heteroskedastic measurement error has

important consequences; one should be wary of ignoring measurement error as a “minor”

issue.

Third, the heteroskedastic SF model performs quite well when the heteroskedasticity

function is correctly specified (Design 2), but the results are somewhat mixed when it is

under-specified (Design 3). The performance of the heteroskedastic SF is increasing in the

sample size and decreasing in the variance of the measurement error. However, even in Table

A1 where the variance of the measurement and idiosyncratic errors are equal in expectation,

the heteroskedastic SF performs very well with large samples and reasonably well in small

samples. As such, a correctly specified SF model does offer a viable solution to researchers.
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Fourth, the NLLS models performs quite poorly in small samples. Even when the model

is correctly specified (Design 2), the median squared errors are higher than OLS and the

correctly specified heteroskedastic SF model (Figure A1). With larger samples, the perfor-

mance of the NLLS estimator does improve substantially, showing the consistency of the

estimator. Nonetheless, the heteroskedastic SF model typically dominates the NLLS estima-

tor when each is either correctly specified (Design 2) or over-specified (Design 1). Strikingly,

though, the NLLS model appears to be more robust to misspecification. When the models

are under-specified (Design 3), NLLS performs similarly to the heteroskedastic SF model

when the measurement error is relatively small (Figure A2 and Tables A3 and A4) and

exhibits some signs of superior performance when the measurement error is relatively large

(Figure A2 and Tables A1 and A2).

The final set of results are presented in Table A5. In certain cases, one might be interested

in the total number of occurrences of the dependent variable in the sample; formally, Y ∗ ≡
n∑
i=1

y∗i . For instance, with civil conflicts, one may be interested in the “true” death toll.

The sample provides Y ≡
n∑
i=1

yi. Alternatively, estimates can be obtained based on different

estimators of the model as Ŷ ∗ ≡
n∑
i=1

ŷ∗i =
n∑
i=1

(β̂0+β̂1x1i+β̂2x2i+ûi), where ûi is the estimated

measurement error (equal to zero in the case of OLS). Note, OLS yields Ŷ ∗ = Y . Utilizing

the four estimators, the bias and mean absolute percentage error (MAPE) are reported in

Table A5. The results indicate that OLS performs poorly across all experimental designs.

The homoskedastic and heteroskedastic SF models, on the other hand, perform well as long

the heteroskedastic function is correctly specified or over-specified. If the SF model is under-

specified, it performs better than OLS, but perhaps still not well. The NLLS model continues

to perform extremely poorly in small samples, and much worse than the heteroskedastic

SF model in large samples if the skedastic function is correctly specified or over-specified.

However, NLLS continues to be more robust to misspecification. Finally, Figure A3 plots
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kernel density estimates of the distribution of y∗i and ŷ∗i for one simulated data set with

N = 10, 000 under Design 2. The results indicate that the observed density is shifted to the

left, even in Panel D where the variance of the measurement error is low. The homoskedastic

and heteroskedastic SF densities are fairly close to the truth, although the tails are a bit

thinner. In contrast, the NLLS densities are over-corrected, lying to the right of the truth,

when the measurement error is relatively small (Panels C and D). When the measurement

error is relatively large (Panels A and B), the NLLS densities are fairly close to the truth,

although the tails are a bit thicker.

Skewed Measurement Error

Design

Data are now simulated from variants of the following DGP:

y∗i = β0 + β1x1i + β2x2i + vi

yi = y∗i − ui

x1i, x2i
iid∼ N(0, 1)

vi
iid∼ N(0, 1)

ũi ∼
(σui

20

)
χ2
20

ui = ũi − 0.2

σ2
ui

= exp(γ0 + γ1x1i + γ2x2i + γ3x
2
1i + γ4x

2
2i + γ5x1ix2i)

We set β0 = β1 = β2 = 1 and consider three designs. In Design 1, we set γ1 = γ2 = γ3 =

γ4 = γ5 = 0. In Design 2, we set γ1 = 0.7, γ2 = −0.5, and γ3 = γ4 = γ5 = 0. In Design

3, we set γ1 = 0.7, γ2 = −0.5, γ3 = 0.25, γ4 = −0.25, and γ5 = 0.5. Thus, the skewed
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measurement error, u, is homoskedastic in Design 1 and heteroskedastic in Designs 2 and

3. Finally, γ0 is varied in order to assess the sensitivity of different estimators to the extent

of the measurement error. Again, we vary γ0 such that E[σ2
v ]/E[σ2

ui
] = {1, 2, 5, 10}. Since

E[σ2
v ] = 1, this is equivalent to E[σ2

ui
] = {1, 0.5, 0.2, 0.1}.

To understand the properties of the skewed measurement error, u, define the rth central

moments of ui as

mr =
1

N

n∑
i=1

(ui − u)r .

The coefficient of skewness is m3m
−3/2
2 . In Designs 1 and 2, the expected coefficients of

skewness are approximately 0.6 and 1.8, respectively. In Design 3, it is at least 14. Finally,

the expected fraction of observations with ui < 0 varies across all designs parameter configu-

rations. In Design 1, the expected fraction is less than 1%. In Designs 2 and 3, the expected

fractions become as high as about 5% and 13%, respectively.

For each experimental design, we conduct 1,000 simulations with N = 100 and N =

10, 000 and report the same metrics as in the prior section. However, there is one important

distinction between this set of simulations and the prior set. In Design 3 we now specify the

heteroskedasticity error term variance, σ2
ui

, as exp(γ0+γ1x1i+γ2x2i+γ3x
2
1i+γ4x

2
2i+γ5x1ix2i)

during estimation. Thus, the heteroskedastic variance is no longer under-specified during

estimation in Design 3. As stated above, the degree of skewness is much higher in Design

3 than Design 2. By making this change, we are not confounding the effects of raising the

degree of skewness and the effects of under-specifying the heteroskedastic variance.10

Results

The results are presented in Figures A4-A5 and Tables A6-A9 in the Supplemental Ap-

pendix. Several findings emerge. First, with skewed, homoskedastic measurement error
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(Design 1), OLS performs well in terms of estimating the slope coefficients but not the in-

tercept. Moreover, the performance of the homoskedastic SF model continues to be nearly

indistinguishable from OLS, with the exception that the estimation of the intercept is much

improved. This is noteworthy because, with skewed measurement error, the distributional

assumption pertaining to the one-sided measurement error is not correct. In Design 1, the

heteroskedastic SF and NLLS models are over-specified. As such, both are inefficient and,

hence, less precise, particularly in small samples. Second, with skewed, heteroskedastic mea-

surement error (Design 2 or 3), OLS and the homoskedastic SF model perform quite poorly.

Furthermore, the coverage rates of the slope parameters for both OLS and the homoskedastic

SF are close to zero even with relatively little measurement error.

Third, the heteroskedastic SF model performs quite well with skewed, heteroskedastic

measurement error (Design 2 or 3) in terms of estimating the individual parameters. How-

ever, despite this performance, the coverage rates are not good, particularly with the larger

sample size. This is not surprising. It is important to remember that the heteroskedastic

SF model is misspecified, despite specifying the variance as a function of the correct covari-

ates, since the distributional assumptions of the model are incompatible with those used to

develop the likelihood function. However, despite this misspecification, the heteroskedastic

SF model offers an improvement over ignoring the measurement error.

Finally, NLLS performs poorly in small samples. While the coverage rates are better

than the heteroskedastic SF model, this reflects the imprecision in the estimates. With

larger samples, NLLS performs substantially better, particularly in Design 3 with a high

degree of skewness. Moreover, the coverage rates of NLLS in large samples continues to be

much better than the heteroskedastic SF model. Thus, with large samples, NLLS can still be

a bit imprecise, but the lack of distributional assumptions is a major advantage, particularly

with a high degree of skewness.
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Applications

Civil Conflict

To investigate the importance of addressing possible measurement error, we first revisit

some of the analysis in Nepal et al. (2011).11 The study investigates the role of inequality on

conflict, analyzing killings by Nepalese Maoists in the People’s War against their government.

The conflict lasted from February 13, 1996 until the signing of the Comprehensive Peace

Accord on November 21, 2006.

The main estimating equation in Nepal et al. (2011) is

ln(y∗ij) = xijβ + αj + vij (14)

where y∗ij is the number of killings by Nepalese Maoists in village i in district j over the

period 1996-2003, xij is a vector of village-level covariates, αj are district fixed effects, and

vij is a well-behaved error term. The observed variable, yij, comes from annual reports by

the Informal Sector Services Center (INSEC). Because of the possibility of some violence

being undocumented, the true number of killings is likely to exceed those reported. Thus,

y∗ij ≥ yij which implies that s = 1 in (2). The SF model is given by

ln(yij) = xijβ + αj − uij + vij. (15)

Measurement error in the death toll during the Nepalese civil war is indicated by the

variation in fatalities reported across sources. Do and Iyer (2010) put the death toll at

over 13,000; ReliefWeb (2009) puts it at under 17,000. Reliance on INSEC’s subnational

data by researchers analyzing the Maoist conflict is common. Joshi and Pyakurel (2015,

p. 604) state: “INSEC is highly respected among national and international human rights
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communities for their monitoring of human rights issues in Nepal. . . For their commitment

to human rights and to unbiased reporting, they are respected by the rank-and-file members

of the Maoist party as well as by government officials.” At the same time, the authors also

note (p. 605) that “While it is possible that the INSEC data collection processes are biased

for their focus on human rights issues, which could be used by domestic and international

organizations as leverage to monitor the human rights situation in Nepal, the data are

verifiable and correctable.” Lastly, we note that the Nepalese government raised the official

death toll in 2009 to 16,278 (BBC News 2009), higher than that contained in the INSEC

database analysed in Joshi and Pyakurel (2015), which contains records for 15,021 deaths.

Thus, the assumption that the INSEC suffers from strictly one-sided measurement error

seems likely.

The set of village-level covariates include a measure of inequality (either the Gini coeffi-

cient or a polarization index), the percent below the poverty line, average years of education,

mean months of employment in 2001, the percent of farmers, the percent speaking Nepali

as their primary language, a rural dummy, and log population. The sample includes 3,857

villages across 75 districts. The variance of the error term is modeled as

σ2
uij

= exp(zijγ), (16)

where zij includes an intercept only (homoskedastic SF) or a linear or quadratic function of

all variables in xij (heteroskedastic SF and NLLS).

Finally, the authors are concerned about the possible endogeneity of their primary regres-

sor of interest, inequality. As such, they instrument for inequality using three village-level

instruments: percent of households operating agricultural land, percent of households with

female ownership of land, and the average number of big head livestock owned by women.
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For the SF and NLLS models, we address endogeneity via a control function approach with

bootstrap standard errors (see, e.g., Amsler et al. 2016). Specifically, (15) is augmented

with the first-stage residual, becoming

ln(yij) = xijβ + αj + η̂ij − uij + vij, (17)

where η̂ij is the estimated residual from the first-stage model given by

x1ij = wijπ + αj + ηij. (18)

In (18), x1ij represents the element of x corresponding to the inequality covariate and wij

denotes the vector of excluded instruments and remaining (exogenous) elements of x.12

Coefficient estimates are presented in Tables 1 and 2.13 The tables are identical except

that the Gini coefficient is used to measure inequality in Table 1, whereas a polarization index

is used in Table 2. The OLS and IV estimates (estimated using Two-Stage Least Squares) are

identical to the extended model results in Tables 2 and 3 in Nepal et al. (2011).14 Pagan and

Hall (1983) tests of heteroskedasticity always reject the null of homoskedasticity (p < 0.01 in

all cases) in the original models. Similarly, we easily reject the null that the error term in the

original models are not skewed (p < 0.01 in all cases). While not shown, in our models, we

find the variance of the one-sided error component depends on the poverty rate, population,

share speaking Nepali as their primary language, and rural status. Moreover, the extent of

measurement error is modest. Across the eight SF models, the ratio of the average variance

of the idiosyncratic error to the one-sided error term varies from 4.3 to 4.7.

When inequality is treated as exogenous, the OLS estimates differ in three important

ways from those addressing measurement error. First, poverty becomes a statistically signif-

icant determinant of violence in the various SF models. A one standard deviation increase
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Table 1.  Determinants of Killings by Nepalese Maoists: 1996-2003.

Exogenous Endogenous

Gini Coefficient -0.2773 4.0288 -0.0394 -0.0129 3.9192 4.7353 0.8554 6.9770
(0.281) (1.582) (0.335) (0.359) (1.656) (1.742) (0.933) (5.973)

Poverty Rate (%) -0.0055 0.4338 0.3624 0.2622 0.7741 0.7409 -0.1989 0.4665
(0.105) (0.191) (0.115) (0.118) (0.194) (0.189) (0.282) (1.266)

Ln(Population) 0.2118 0.0108 0.2264 0.2600 0.0408 0.0423 0.1993 -0.0902
(0.023) (0.076) (0.027) (0.029) (0.083) (0.086) (0.053) (0.751)

Education (in Years) 0.0130 0.0077 0.0159 0.0168 0.0117 0.0110 0.0338 0.0215
(0.011) (0.012) (0.014) (0.015) (0.015) (0.016) (0.029) (0.146)

Employment (Months) -0.0041 -0.0048 -0.0045 -0.0070 -0.0052 -0.0077 0.0006 -0.0016
(0.006) (0.006) (0.007) (0.008) (0.008) (0.009) (0.015) (0.080)

Farmers (%) -0.0761 0.1520 -0.0570 -0.0459 0.1657 0.2053 -0.4745 -0.2969
(0.096) (0.128) (0.120) (0.121) (0.149) (0.147) (0.325) (1.166)

Nelapi (%) 0.1089 0.0918 0.2765 0.2593 0.2576 0.2366 -0.1268 -0.0806
(0.040) (0.041) (0.047) (0.047) (0.061) (0.060) (0.143) (1.243)

Rural (1 = Yes) -0.5696 -0.7166 -1.6501 -1.4743 -1.7876 -1.621 -1.2797 -1.4780
(0.075) (0.093) (0.191) (0.181) (0.449) (0.384) (0.440) (12.423)

Constant -0.7908 -0.0984 0.0019 -0.3936 0.6396 0.3274 0.2996 1.2533
(0.221) (0.337) (0.319) (0.318) (0.628) (0.579) (0.781) (22.125)

Control Function -4.2104 -4.9916 -6.2559
(1.761) (1.845) (1.988)

Heteroskedasticity Function Linear Quadratic Linear Quadratic Quadratic Quadratic

Heteroskedastic Stochastic Frontier NLLS
Endogenous

Variable OLS IV
Exogenous

Notes: OLS = Ordinary Least Squares.  IV = Instrumental Variable.  NLLS = Nonlinear Least Squares.  Standard errors in parentheses; 
obtained from 500 bootstrap repetitions for the endogenous stochastic frontier and NLLS models.  Number of observations = 3,857 
villages.  Killings is the number killed by Maoists from 1996-2003.  75 district fixed effects are also included. The Gini coefficient is 
instrumented for using the percent of households operating agricultural land, percent of households with women ownership of land, and 
average number of big head livestock owned by women. Heteroskedasticity refers to the variance of the one-sided error and depends on 
all covariates except the district fixed effects in the exogenous models and all covariates except the district fixed effects and inequality in 
the endogenous models.

in the village-level poverty rate is associated with a 4.7% increase in the expected number

of killings (using the results from the quadratic specification). Second, the impact of the

percent speaking Nepali as their primary language, while statistically significant at conven-

tional levels in the OLS and SF models, more than doubles in magnitude in the SF models

(roughly 0.11 in OLS models to 0.26 in the heteroskedastic SF models). Third, rural villages

experience significantly fewer killings according to the SF and NLLS models. According to

the OLS estimates, rural villages experienced 43% fewer killings in expectation. This in-

creases to more than 60% according to the heteroskedastic SF and NLLS estimates. Finally,

it is worth noting that the NLLS estimates tend to be much more imprecise.

When inequality is treated as endogenous, the NLLS estimates are extremely imprecise;

consistent with the much larger MSEs found in the simulations when the sample size is

not overly large. However, both the SF and NLLS models reject the null of exogeneity;

the coefficients on the control function are statistically significant at conventional levels in
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Table 2.  Determinants of Killings by Nepalese Maoists: 1996-2003.

Exogenous Endogenous

Polarization Index 1.202 12.9682 2.0526 2.3932 12.3418 15.7388 4.2649 21.6319
(0.726) (5.929) (0.957) (0.995) (5.796) (6.062) (1.568) (23.976)

Poverty Rate (%) 0.0246 0.0430 0.3673 0.259 0.3919 0.2863 0.0537 0.0580
(0.101) (0.104) (0.111) (0.112) (0.147) (0.141) (0.120) (0.779)

Ln(Population) 0.1949 0.1561 0.2188 0.2532 0.1823 0.2106 0.1949 0.1425
(0.019) (0.027) (0.023) (0.024) (0.034) (0.036) (0.025) (0.441)

Education (in Years) 0.0123 0.0090 0.0147 0.0149 0.0127 0.0123 0.0278 0.0284
(0.011) (0.012) (0.014) (0.015) (0.016) (0.016) (0.014) (0.120)

Employment (Months) -0.0046 -0.0084 -0.0048 -0.0071 -0.0084 -0.0121 0.0011 -0.0057
(0.006) (0.006) (0.007) (0.008) (0.008) (0.009) (0.007) (0.033)

Farmers (%) -0.0442 0.1234 -0.0200 -0.0075 0.1337 0.1792 0.0091 0.2328
(0.096) (0.129) (0.121) (0.121) (0.156) (0.152) (0.112) (0.550)

Nelapi (%) 0.1073 0.1022 0.2836 0.2658 0.2717 0.2517 0.0678 0.0461
(0.040) (0.041) (0.047) (0.047) (0.059) (0.060) (0.051) (0.655)

Rural (1 = Yes) -0.5762 -0.5477 -1.6374 -1.4678 -1.6282 -1.4247 -1.0122 -1.0160
(0.075) (0.078) (0.189) (0.180) (0.427) (0.379) (0.262) (17.401)

Constant -0.8974 -2.3773 -0.2713 -0.7087 -1.5337 -2.4064 -0.9893 -3.1420
(0.235) (0.778) (0.343) (0.337) (0.953) (0.964) (0.438) (19.805)

Control Function -11.2448 -14.8098 -17.9706
(5.781) (6.038) (6.598)

Heteroskedasticity Function Linear Quadratic Linear Quadratic Quadratic Quadratic

Endogenous

Notes: See Table 1.

Variable OLS IV
Exogenous
Heteroskedastic Stochastic Frontier NLLS

all cases. Comparing the IV and SF estimates, two important differences arise. First, the

positive effects of the poverty rate and share speaking Nepali as their primary language

and the negative effects of being rural continue to be of much greater magnitude in the

SF models. The effects of these covariates are significantly attenuated when one-sided,

heteroskedastic measurement error is ignored. In fact, the effect of poverty is close to zero

and not statistically significant according to traditional IV when polarization is used to

measure inequality (Table 2). When the Gini coefficient is used to measure inequality (Table

1), a one standard deviation increase in the poverty rate is associated with a 7.9% increase in

expected killings according to the IV estimates. The corresponding value is 13.8% according

to the quadratic heteroskedastic SF model.

Second, while the IV results indicate a statistically significant impact of inequality on

killings using both measures of inequality, the impact is also greater in magnitude in the

heteroskedastic SF models. According to the traditional IV estimates, a one standard devia-
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tion increase in the Gini coefficient (polarization index) leads to a 19% (14%) increase in the

expected number of killings. The quadratic heteroskedastic SF model yields a corresponding

estimate of 23% (17%). The NLLS estimates also suggest a larger effect of inequality, but

the estimates are quite imprecise as noted above.

Table 3.  Reported and Predicted Killings by Nepalese Maoists: 1996-2003.

Exogenous Endogenous

I.  Measure of Inequality: Gini
Aggregate 2629 7826 7782 7823 7780 9776 9062
  Killings (425) (413) (426) (404) (8e36) (5e35)

II.  Measure of Inequality: Polarization Index
Aggregate 2629 7843 7796 7832 7785 7049 7179
  Killings (402) (382) (408) (395) (7e36) (2e35)

Heteroskedasticity Function Linear Quadratic Linear Quadratic Quadratic Quadratic

Notes: NLLS = Nonlinear Least Squares.  Standard errors in parentheses; obtained from 500 bootstrap repetitions for the endogenous 
stochastic frontier models.  Number of observations = 3,857 villages.  Aggregate killings is the number killed by Maoists from 1996-
2003 across all villages.  Results based on estimates in Tables 1 and 2.  See text for further details.

Observed
Exogenous Endogenous
Heteroskedastic Stochastic Frontier NLLS

Finally, Table 3 and Figure 1 compare the observed total number of killings – in ag-

gregate (Table 3) or across villages and districts (Figure 1) – with estimates based on the

heteroskedastic SF and NLLS models. Table 3 reveals that the observed number of killings

is only about one-third the estimated number of killings obtained from the heteroskedastic

SF models. The NLLS models point to even more killings, but the standard errors are enor-

mous.15 Figure 1 reveals that the modal number of reported killings experienced by village

or district level is also about one-third to one-fourth the estimated number of killings.

In sum, while the qualitative findings in Nepal et al. (2011) remain after accounting

for one-sided heteroskedastic measurement error using a SF model, the quantitative impor-
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(A)                                                                                            (B) 

 
(C)                                                                                            (D) 

 
Figure 1.  Distribution of Observed and Predicted Killings. 
Notes: Predictions in (A) and (C) based on estimates in columns 5 and 6 in Table 6, with predicted killings aggregated at the village or district level.  Predictions 
in (B) and (D) based on estimates in columns 5 and 6 in Table 7, with predicted killings aggregated at the village or district level.  Kernel densities obtained using 
an Epanechnikov kernel and Silverman’s (1986) rule-of-thumb bandwidth.  See text for further details. 
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tance of economic variables – inequality and poverty – is found to be much larger. Thus,

the authors conclusion that local economic conditions are salient determinants of internal

conflict is enhanced. Moreover, our estimates reveal that the reported number of killings

may significantly under count the actual death toll.

Criminal Activity

Next, we revisit some of the analysis in Galiani et al. (2011).16 The study investigates the

causal effect of peace time military service on subsequent criminal behavior using data from

Argentina. The study is motivated by the numerous calls around the globe for conscription
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as a tool to combat youth criminal activity. The main estimating equation in Galiani et al.

(2011) is

y∗ij = xijβ + αj + vij (19)

where y∗ij is the crime rate of individuals in cohort i (i = 1958, . . . , 1962) with a national

identification number containing the last three digits j (j = 000, 001, . . . , 999), xij is a

vector of covariates, αj are cohort fixed effects, and vij is a well-behaved error term. The

observed variable, yij, comes from individual-level administrative records. Specifically, any

individual ever prosecuted for or convicted of a crime is recorded in the data. The fraction of

individuals in each cohort-identification number cell with a criminal record constitutes the

observed crime rate. Because of the possibility of some criminal activity going undiscovered,

the true crime rate is likely to exceed the observed crime rate. Thus, y∗ij ≥ yij which implies

that s = 1 in (2). The SF model is given by

yij = xijβ + αj − uij + vij. (20)

The set of covariates includes the fraction of each cohort-identification number cell that

served in the military, the percent of Argentine-born indigenous individuals, the percent of

naturalized citizens, and the percent from each of 24 districts. The sample size is 5000 (five

cohorts times 1000 three digit endings on national identification numbers). The variance of

the error term is modeled as

σ2
uij

= exp(zijγ), (21)

where zij includes an intercept, the percent of Argentine-born indigenous individuals, the

percent of naturalized citizens, and cohort fixed effects. The NLLS model is similar except

that controls for district are omitted, as are the cohort fixed effects in the variance of the
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error term. These omissions are needed as otherwise the NLLS model does not converge.

Finally, the authors are concerned about the possible endogeneity of their primary re-

gressor of interest, conscription. As such, they instrument for military service using a single

instrument: whether the individuals with a particular combination of the final three digits

of their national identification number in a particular cohort were randomly chosen, via lot-

tery, to be draft eligible. The authors also estimate reduced form specifications, where an

indicator for being draft eligible replaces the conscription variable.

Again, we address endogeneity via a control function approach with bootstrap standard

errors. Specifically, (20) is augmented with the first-stage residual, becoming

yij = xijβ + αj + η̂ij − uij + vij, (22)

where η̂ij is the estimated residual from the first-stage model given by

x1ij = wijπ + αj + ηij. (23)

In (20), x1ij represents the element of x corresponding to the conscription covariate and wij

is a vector including the excluded instrument and remaining (exogenous) elements of x.

Coefficient estimates are presented in Table 4. The OLS and IV estimates are identical

to columns 2 and 4 in Table 4 in Galiani et al. (2011). While not shown, the variance of

the one-sided error component is found to be, at best, marginally related to the covariates

included in (21). This is consistent with the results from Pagan and Hall (1983) tests

of heteroskedasticity applied to the original models in Galiani et al. (2011); the null of

homoskedasticity is never rejected (p ≈ 0.70 in all cases). However, we easily reject the null

that the error term in the original models are not skewed (p < 0.01 in all cases). Moreover,

as shown in Galiani et al. (2011), the reduced form effect of being draft eligible or the
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causal effect of conscription does not change when covariates are included in the model.

Together, this suggests that we do not expect the reduced form effect of being draft eligible

or the causal effect of conscription to change when allowing for the possibility of one-sided

measurement error. Indeed, this is what we find. This is comforting in that allowing for the

possibility of one-sided, heteroskedastic measurement error does not alter the findings when,

in fact, heteroskedasticity is not present or at least not believed to be problematic.

Table 4.  Determinants of Crime Rates in Argentina: 1958-1962 Cohorts.

Exogenous Endogenous Exogenous Endogenous

Draft Eligible 0.0018 0.0018 0.0027
(0.0006) (0.0006) (0.0006)

(0.0004)
Conscription 0.0027 0.0027 0.0027

(0.0008) (0.0008) (0.0003)

Indigenous -0.0594 -0.0588 -0.1110 -0.1203 -13.9970 -11.8457
(0.1283) (0.1284) (0.1669) (0.3367) (9120) (5.1464)

(6.4731)
Naturalized 0.1099 0.1114 0.1240 0.1146 37.2224 31.4631

(0.1758) (0.1760) (0.1928) (0.4110) (24647) (4.4234)
(4.2287)

Constant 0.0132 0.0131 0.0156 0.0165 9.8336 7.1076
(0.0664) (0.0664) (0.0662) (0.0668) (13190) (0.9882)

(1.0243)
Control Function -0.0215 -0.0200

(0.0057) (0.0020)

Notes: OLS = Ordinary Least Squares.  IV = Instrumental Variable.  NLLS = Nonlinear Least Squares.  All regressions also 
include controls for cohort. All regressions except for those estimated via NLLS also include controls for district. Robust standard 
errors in parentheses for the OLS, IV, and exogenous stochastic frontier models. Standard errors obtained from 500 bootstrap 
repetitions for the endogenous stochastic frontier and NLLS models.  Robust standard errors computed as in Davidson and 
MacKinnon (2004) are in parentheses immediately under the point estimates for the exogenous NLLS model; standard errors from 
500 bootstrap repetitions are provided beneath these for comparison. Number of observations = 5,000. Heteroskedasticity refers to 
the variance of the one-sided error and depends on cohort, indigenous, and naturalized in the stochastic frontier models; 
heteroskedasticity of the measurement error depends on indigenous and naturalized in the NLLS models. 

Variable OLS IV
Heteroskedastic Stochastic Frontier NLLS

Specifically, the SF estimates of the reduced form effect of being draft eligible and the

causal effect of conscription are identical to those in Galiani et al. (2011). Coefficient

estimates on the remaining controls are also qualitatively unchanged. The NLLS estimate of

the causal effect of conscription is also identical to Galiani et al. (2011). However, the NLLS

estimate of the reduced form effect of being draft eligible is larger (and identical to causal

effect of conscription). Finally, the NLLS estimates of other covariates in the model are

vastly different from the other models. As in the previous application, this results from the
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more tenuous identification in the NLLS model relative to the SF model that incorporates

distributional assumptions which aid identification.

Pollution

Lastly, we revisit some of the analysis in Kono (2017).17 The study investigates the causal

effect of country-level tariff reductions on per capita carbon dioxide (CO2) emissions. The

main estimating equation in Kono (2017) is

ln(y∗it) = xitβ + αi + vit (24)

where y∗it captures per capita CO2 emissions in country i in period t (t = 1988, . . . , 2013), xij

is a vector of covariates, αi are country fixed effects, and vit is a well-behaved error term. The

observed variable, yij, comes from the World Banks’s World Development Indicators. The

World Bank states that the measure is derived from data on country-level fossil fuel consump-

tion obtained from the United Nations Statistics Division’s World Energy Data Set, along

with data from the U.S. Department of Interior’s Geological Survey on the global cement

manufacturing.18 In turn, the United Nations states that data on country-level fossil fuel

consumption comes from annual questionnaires administered to “national statistical offices,

ministries of energy or other authorities responsible for energy statistics in the country.”19

In addition to the potential for countries to under-report their fossil fuel consumption for

political reasons, particularly for counties that are parties to the Kyoto Protocol, the World

Bank notes that the measure of CO2 emissions “excludes emissions from land use such as

deforestation.”20 Thus, y∗ij ≥ yij which implies that s = 1 in (2). The SF model is given by

ln(yit) = xitβ + αi − uit + vit. (25)
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The set of covariates includes the the average applied tariff on manufacturing goods, an

indicator for being a party to the Kyoto Protocol, log per capita gross domestic product

(GDP), lagged log per capita CO2 emissions, and a quartic time trend. The sample is an

unbalanced panel of 1906 observations across 152 countries. The variance of the error term

is modeled as

σ2
uit

= exp(zitγ), (26)

where zit includes an intercept, log per capita GDP and its quadratic, lagged log per capita

CO2 emissions and its quadratic, an indicator for being a party to the Kyoto Protocol, and

three pairwise interactions between log per capita GDP, lagged log per capita CO2 emissions,

and the binary measure of the Kyoto Protocol. The NLLS model is identical.

Finally, the author is concerned about the possible endogeneity of their primary regressor

of interest, manufacturing tariffs.21 As such, this variable is instrumented for using two

instruments: years since the conclusion of the Uruguay Round interacted with an indicator

for whether country i is a World Trade Organization (WTO) member and the average tariff

rate in country i’s contiguous neighbors. The sample size is 1608 in the models allowing for

endogeneity.

Again, we address endogeneity via a control function approach with bootstrap standard

errors. Specifically, (25) is augmented with the first-stage residual, becoming

ln(yit) = xitβ + αi + η̂it − uit + vit, (27)

where η̂it is the estimated residual from the first-stage model given by

x1it = witπ + αi + ηit. (28)
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In (25), x1it represents the element of x corresponding to the tariff covariate and wit is a vector

including the excluded instruments and remaining (exogenous) elements of x. Note, in the

model treating manufacturing tariffs as endogenous, zit in (26) includes all the covariates

from the model assuming exogeneity plus the two instruments, their quadratics, and all

pairwise interactions between the covariates.

Coefficient estimates are presented in Table 5. The OLS and IV estimates are identical to

columns 1 and 2 in Table 4 in Kono (2017). Pagan and Hall (1983) tests of heteroskedasticity

always reject the null of homoskedasticity (p < 0.01 in all cases) in the original models.

Similarly, we easily reject the null that the error term in the original models are not skewed

(p < 0.01 in all cases). While not shown, the variance of the one-sided error component is

found to be at least marginally related to the covariates included in (26). That said, the

SF estimates are mostly in agreement with Kono (2017). The sole exception relates to the

impact of being a member of the Kyoto Protocol. Whereas Kono (2017) finds that members

have about 3% lower per capita CO2 emissions on average, the SF models indicate an 8%

reduction. In contrast, while the NLLS estimates under endogeneity are similar to the IV

estimates in Kono (2017), the NLLS estimates under exogeneity differ (although the signs

of the coefficients are in agreement). As in the previous applications, this appears to arise

from the more tenuous identification in the NLLS model as suggested by the larger standard

errors.

Conclusion

Nonclassical measurement error in the dependent variable can be problematic in a linear

regression framework, especially if it is heteroskedastic. This holds even if the measurement

error is “small.” This article draws researchers’ attention to potential solutions. While it is

not a panacea, the usage of SF and NLLS models should be a part of the researcher’s tool box
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Table 5.  Determinants of Per Capita Carbon Dioxide Emissions.

Exogenous Endogenous Exogenous Endogenous

Manufacturing -0.0009 -0.0014 -0.0007 0.0007 -0.0005 -0.0038
    Tariff (0.0004) (0.0035) (0.0004) (0.0044) (0.0004) (0.0035)
ln(Per Capita 0.1351 0.1477 0.1534 0.1586 0.3271 0.1506
    GDP) (0.0345) (0.0361) (0.0221) (0.0335) (0.2140) (0.0359)
Kyoto Protocol -0.0317 -0.0297 -0.0871 -0.0712 -0.1486 -0.0247

(0.0110) (0.0158) (0.0183) (0.0219) (0.1059) (0.0152)
Time 0.0012 0.0016 0.0000 -0.0007 0.0022 0.0002

(0.0015) (0.0032) (0.0017) (0.0042) (0.0013) (0.0036)
Time2 -0.0001 -0.0002 -0.0001 -0.0001 -0.0002 -0.0001

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
ln(Lagged 0.7405 0.7419 0.7227 0.7389 0.4109 0.7083
    Per Capita CO2) (0.0403) (0.0462) (0.0465) (0.0505) (0.3821) (0.0371)
Control Function -0.0014 0.0027

(0.0044) (0.0035)

Notes: OLS = Ordinary Least Squares.  IV = Instrumental Variable.  NLLS = Nonlinear Least Squares.  All regressions also 
include controls for cohort. All regressions except for those estimated via NLLS also include controls for district. Clustered 
standard errors in parentheses for the OLS, IV, and exogenous stochastic frontier and NLLS models. Standard errors obtained from 
500 bootstrap repetitions for the endogenous stochastic frontier and NLLS models.  Number of observations = 1,906 in models 
under exogeneity and 1,608 in models under endogeneity. Heteroskedasticity refers to the variance of the one-sided error and 
depends on in the models under exogeneity;  in the models under endogeneity. 

Variable OLS IV
Heteroskedastic Stochastic Frontier NLLS

when there is concern of asymmetric, heteroskedastic measurement error. Moreover, recent

developments in the SF literature allow for semiparametric specifications of the model, as

well as an assessment of the determinants of the measurement error. Future research ought

to explore alternative methods of addressing skewed, systematic measurement error. In

particular, research is needed to address this problem in situations where the outcome is not

continuous, but rather a limited dependent variable such as a binary, multinomial, or count

random variable, as these frequently appear in empirical research.

Finally, concerning recommendations for best practice, our results here point to, at a

minimum, practitioners checking their residuals for both heteroskedasticity and skewness. If

there is evidence of both and there is suspicion that measurement error in the dependent

variable exists, then it is likely that some of the initial estimates are biased.
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Notes

1Semi- and nonparametric stochastic frontier approaches also exist (Parmeter and

Kumbhakar 2014). We do not consider such models here.

2We thank an anonymous referee for raising this issue.

3See Santos Silva and Tenreyro (2006) for a similar argument in the context of

log-linearizing a regression model.

4To see this, consider a quite general setup for skewed measurement error, known as the

skewed generalized t distribution, which has density

f(ε;µ, σ, λ, p, q) =
p

2vq1/pB (p−1, q)
(

|ν|p
q(vσ)p(λsign(ν)+1)p

+ 1
)p−1+q

, (29)

where ν = ε− µ+m, m = 2vσλqp
−1
B(2p−1,q−p−1)

B(p−1,q)
,

v =
q−p

−1√
(3λ2 + 1)B(3p−1,q−2p−1)

B(p−1,q)
− 4λ2B(2p−1,q−p−1)2

B(p−1,q)2

,

and B(·, ·) is the beta function (Theodossiou 1998). Here µ captures the location, σ the

scale, and λ the skewness, with p and q controlling kurtosis together. The skewed

generalized t distribution contains many popular skewed densities as special cases,

including the skewed t (p = 2), skewed Laplace (p = 1, q →∞), and skewed normal (p = 2,

q →∞) distributions.

One common simplification of this density is to set m = 0 and v = 1. In this case, a

random variable with skewed generalized t has a mean of µ+ 2σλqp
−1
B(2p−1,q−p−1)
B(p−1,q)

provided

pq > 1. Again, even if µ = 0, so long as λ 6= 0 the skewed generalized t random variate will

no longer be mean zero. Even more problematic, the mean is no longer constant if
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heteroskedasticity is present.

5Other distributions for u are common in the SF literature, such as the exponential and

truncated normal. The half-normal and exponential have modes at zero, whereas the mode

of truncated normal depends on the estimated mean. This has implications for the nature

of the measurement error. For brevity, we focus on the half-normal, implying that the

modal value of the measurement error is zero. In some applications, it may make sense to

relax this restriction with the truncated normal distribution.

6Distributional assumptions (such as half-normal or truncated-normal) can be imposed

on u∗i , but unlike the setting just described, they are not necessary for consistent

estimation. In the stochastic frontier literature u∗i is assumed to be one-sided. However,

this is not a necessary requirement.

7The downside of this approach is that distributional assumptions are required to

properly disentangle σ2
v and σ2∗

u which undermines the use of NLLS in the first place.

8See Wang and Schmidt (2002) for a similar MC study motivated by traditional

efficiency analysis.

9Given the inclusion of γ0 in the NLLS model, µ∗ is normalized to one.

10We also conduct Design 3 when continuing to under-specify the heteroskedastic

variance. These results are available upon request.

11We are grateful to the authors for making the data available at

http://kishoregawande.net/.

12When inequality is treated as endogenous, it is excluded from σ2
ui

in (16). If the

variance of u depends on inequality, then its expectation does as well and any instrument

for inequality will not be independent of u. It appears that the variance of u, however, does

not depend on inequality and therefore this choice matters little in practice.

13NLLS with a linear skedastic function is omitted as the models had difficulty
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converging.

14While the point estimates are identical, the IV standard errors differ. Nepal et al.

(2011) use heteroskedasticity-robust standard errors in their IV regressions, but not in the

OLS regressions. We use non-robust throughout for the SF models;

heteroskedasticity-robust standard errors for the NLLS models.

15 The imprecise NLLS estimates result from the more tenuous identification in the

NLLS model relative to the SF model that also incorporates distributional assumptions.

However, examining the individual bootstrap estimates reveals that the large standard

errors are driven by replications in which the NLLS model is poorly identified and, as a

result, produce unreasonable estimates. If we use the estimated total killings reported in

Table 3, eliminate bootstrap replications which produce the top quartile of estimated death

tolls in the exogenous or endogenous NLLS models, and obtain standard errors using the

remaining bootstrap estimates, then the NLLS standard errors are much more in line with

those in the heteroskedastic SF models (ranging from about equal to about 30% larger,

with a few still about twice as large). This suggests that the NLLS is a potentially viable

model, but researchers need to be wary of weakly identified models.

16The data are available at

https://www.aeaweb.org/articles?id=10.1257/app.3.2.119.

17The data are available at https:

//dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SJN8ZE.

18See http://wdi.worldbank.org/table/3.8. Accessed on 21 June 2019.

19See https://unstats.un.org/unsd/energy/. Accessed on 21 June 2019.

20See http://wdi.worldbank.org/table/3.8. Accessed on 21 June 2019.

21The author also is concerned about the endogeneity of lagged per capita CO2 emissions

due to the inclusion of country fixed effects. We do not pursue this here.
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Figure A1.  Monte Carlo Results (One-Sided Measurement Error): Median Squared Error Relative to Ordinary Least Squares. 
Notes:  Results based on 1,000 simulations with N=100. See text for further details.  
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Figure A2.  Monte Carlo Results (One-Sided Measurement Error): Median Squared Error Relative to Ordinary Least Squares. 
Notes:  Results based on 1,000 simulations with N=10,000. See text for further details.  
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Figure A3.  Monte Carlo Results (One-Sided Measurement Error): Distribution of Observed and Predicted Dependent Variable. 
Notes:  Results based on a single repetition of DGP2 with N=10,000.  Kernel densities obtained using an Epanechnikov kernel and Silverman’s (1986) rule-of-
thumb bandwidth.  See text for further details.  
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Figure A4.  Monte Carlo Results (Skewed Measurement Error): Median Squared Error Relative to Ordinary Least Squares. 
Notes:  Results based on 1,000 simulations with N=100. See text for further details.  
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Figure A5.  Monte Carlo Results (Skewed Measurement Error): Median Squared Error Relative to Ordinary Least Squares. 
Notes:  Results based on 1,000 simulations with N=10,000. See text for further details.  
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Table A1.  Monte Carlo Results (One-Sided Measurement Error): 

OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS
I.  One-Sided Homoskedastic Errors (N=100)

β0 -1.327 -0.104 -0.282 35.610 1.327 0.363 0.492 37.206 1.783 0.261 0.424 5377.428 0.000 0.921 0.719 0.117
β1 -0.002 0.000 -0.015 0.885 0.113 0.113 0.177 1.164 0.020 0.020 0.050 5.702 0.949 0.934 0.898 0.879
β2 -0.003 -0.004 -0.019 0.816 0.119 0.119 0.177 1.167 0.022 0.022 0.051 5.786 0.950 0.929 0.902 0.884

II.  One-Sided Heteroskedastic Errors (N=100)
β0 -1.209 0.073 -0.151 47.615 1.209 0.376 0.398 48.917 1.485 0.241 0.270 9024.858 0.000 0.834 0.749 0.169
β1 -0.422 -0.335 -0.092 0.082 0.422 0.336 0.195 1.638 0.204 0.135 0.069 8.905 0.188 0.357 0.832 0.594
β2 0.299 0.238 0.050 1.404 0.302 0.245 0.174 1.900 0.114 0.081 0.049 13.327 0.485 0.601 0.876 0.618

III.  One-Sided Heteroskedastic Errors (N=100)
β0 -1.098 0.416 -0.478 1.832 1.098 0.528 0.606 3.091 1.246 0.378 0.480 245.908 0.002 0.525 0.406 0.432
β1 -0.483 -0.320 -0.210 0.292 0.484 0.324 0.390 0.515 0.279 0.130 0.245 1.461 0.172 0.438 0.539 0.894
β2 0.119 0.114 0.131 0.354 0.162 0.149 0.178 0.365 0.040 0.035 0.049 0.435 0.874 0.827 0.839 0.776

I.  One-Sided Homoskedastic Errors (N=10,000)
β0 -1.324 -0.001 -0.002 -0.285 1.324 0.029 0.029 1.830 1.754 0.001 0.001 6.403 0.000 0.950 0.950 0.068
β1 0.000 0.000 0.000 0.028 0.011 0.011 0.017 0.041 0.000 0.000 0.000 0.008 0.944 0.953 0.952 0.962
β2 0.000 -0.001 -0.001 0.029 0.012 0.011 0.018 0.043 0.000 0.000 0.000 0.008 0.944 0.941 0.949 0.957

II.  One-Sided Heteroskedastic Errors (N=10,000)
β0 -1.207 0.186 -0.017 1.352 1.207 0.186 0.042 2.056 1.458 0.036 0.017 27.239 0.000 0.000 0.935 0.738
β1 -0.423 -0.339 -0.005 0.068 0.423 0.339 0.020 0.234 0.179 0.115 0.003 0.138 0.000 0.000 0.942 0.793
β2 0.302 0.242 0.005 -0.039 0.302 0.242 0.019 0.166 0.092 0.059 0.002 0.067 0.000 0.000 0.936 0.804

III.  One-Sided Heteroskedastic Errors (N=10,000)
β0 -1.030 0.600 -0.619 -0.541 1.030 0.600 0.619 0.589 1.067 0.373 0.430 0.415 0.000 0.000 0.000 0.261
β1 -0.441 -0.294 -0.246 0.072 0.441 0.294 0.420 0.156 0.195 0.087 0.238 0.041 0.000 0.000 0.001 0.610
β2 0.118 0.101 0.136 0.251 0.118 0.101 0.136 0.251 0.014 0.010 0.030 0.067 0.003 0.000 0.293 0.000

Coverage Rate

Notes:  Results based on 1000 repetitions.  OLS = Ordinary Least Squares.  SF1 = Homoskedastic Stochastic Frontier.  SF2 = Heteroskedastic Stochastic Frontier.  NLLS = 
Nonlinear Least Squares.  Coverage rates based on 95% confidence interval.  In Design 1, the one-sided measurement error is homoskedastic.  In Designs 2 and 3, the one-sided 
measurement error is heteroskedastic.  In Design 2, the heteroskedasticity function is linear in the covariates and the SF2 and NLLS models use the correct functional form for the 
heteroskedasticity.  In Design 3, the heteroskedasticity function is nonlinear in the covariates and the SF2 and NLLS models use a linear functional form for the heteroskedasticity.  
See text for further details.

Design
Bias Mean Absolute Error Mean Squared Error

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏.



Table A2.  Monte Carlo Results (One-Sided Measurement Error): 

OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS
I.  One-Sided Homoskedastic Errors (N=100)

β0 -0.938 -0.116 -0.241 30.704 0.938 0.403 0.459 31.821 0.895 0.261 0.314 4074.036 0.000 0.913 0.638 0.129
β1 -0.002 -0.001 -0.011 0.756 0.098 0.099 0.159 0.990 0.015 0.016 0.040 4.114 0.959 0.943 0.897 0.890
β2 0.001 0.000 -0.006 0.744 0.102 0.104 0.157 0.994 0.016 0.017 0.040 4.186 0.954 0.938 0.909 0.884

II.  One-Sided Heteroskedastic Errors (N=100)
β0 -0.859 0.027 -0.155 41.005 0.859 0.411 0.404 41.902 0.754 0.245 0.239 6495.392 0.000 0.841 0.647 0.173
β1 -0.300 -0.263 -0.104 0.292 0.301 0.265 0.192 1.399 0.108 0.087 0.061 6.685 0.336 0.454 0.785 0.679
β2 0.216 0.190 0.069 1.100 0.221 0.198 0.165 1.529 0.065 0.054 0.042 8.514 0.610 0.661 0.872 0.681

III.  One-Sided Heteroskedastic Errors (N=100)
β0 -0.777 0.334 -0.353 1.260 0.777 0.503 0.471 2.173 0.628 0.334 0.283 90.887 0.004 0.586 0.437 0.426
β1 -0.341 -0.259 -0.220 0.206 0.343 0.264 0.335 0.389 0.144 0.089 0.182 0.697 0.277 0.478 0.555 0.904
β2 0.083 0.085 0.090 0.254 0.127 0.126 0.149 0.274 0.025 0.025 0.035 0.218 0.897 0.870 0.869 0.843

I.  One-Sided Homoskedastic Errors (N=10,000)
β0 -0.937 -0.003 -0.004 0.106 0.937 0.035 0.035 1.559 0.878 0.002 0.002 5.783 0.000 0.954 0.954 0.076
β1 0.000 0.000 0.000 0.027 0.010 0.010 0.018 0.038 0.000 0.000 0.001 0.006 0.956 0.952 0.941 0.962
β2 0.000 0.000 -0.002 0.029 0.010 0.010 0.018 0.041 0.000 0.000 0.001 0.007 0.951 0.945 0.947 0.959

II.  One-Sided Heteroskedastic Errors (N=10,000)
β0 -0.854 0.174 -0.003 1.650 0.854 0.174 0.032 2.146 0.729 0.032 0.002 39.082 0.000 0.011 0.952 0.754
β1 -0.300 -0.267 0.001 0.080 0.300 0.267 0.013 0.203 0.090 0.072 0.000 0.125 0.000 0.000 0.955 0.795
β2 0.213 0.190 0.001 -0.049 0.213 0.190 0.014 0.144 0.046 0.036 0.000 0.061 0.000 0.000 0.954 0.803

III.  One-Sided Heteroskedastic Errors (N=10,000)
β0 -0.730 0.562 -0.510 -0.377 0.730 0.562 0.510 0.412 0.535 0.327 0.274 0.204 0.000 0.000 0.000 0.278
β1 -0.312 -0.237 -0.371 0.055 0.312 0.237 0.418 0.111 0.098 0.057 0.197 0.021 0.000 0.000 0.003 0.641
β2 0.083 0.079 0.047 0.179 0.083 0.079 0.049 0.179 0.007 0.006 0.007 0.034 0.006 0.001 0.638 0.001

Coverage Rate
Design

Bias Mean Absolute Error Mean Squared Error

Notes:  See Table A1 and text for further details.

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟐𝟐.



Table A3.  Monte Carlo Results (One-Sided Measurement Error): 

OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS
I.  One-Sided Homoskedastic Errors (N=100)

β0 -0.595 -0.067 -0.125 26.717 0.595 0.415 0.382 27.397 0.367 0.220 0.193 3199.117 0.000 0.885 0.555 0.159
β1 -0.003 -0.002 -0.003 0.684 0.089 0.090 0.143 0.892 0.013 0.013 0.033 3.375 0.955 0.939 0.897 0.879
β2 0.003 0.002 -0.005 0.611 0.093 0.096 0.140 0.862 0.014 0.014 0.032 3.265 0.948 0.938 0.907 0.890

II.  One-Sided Heteroskedastic Errors (N=100)
β0 -0.544 0.017 -0.103 32.335 0.544 0.425 0.367 32.918 0.309 0.225 0.174 4436.361 0.001 0.832 0.557 0.194
β1 -0.190 -0.179 -0.103 0.499 0.195 0.186 0.176 1.136 0.050 0.046 0.048 4.889 0.623 0.639 0.798 0.736
β2 0.137 0.128 0.082 0.751 0.152 0.146 0.156 1.124 0.033 0.031 0.038 4.909 0.761 0.771 0.857 0.756

III.  One-Sided Heteroskedastic Errors (N=100)
β0 -0.495 0.231 -0.159 1.205 0.495 0.482 0.333 1.785 0.261 0.291 0.146 93.919 0.015 0.681 0.540 0.477
β1 -0.212 -0.181 -0.100 0.176 0.217 0.189 0.212 0.316 0.062 0.048 0.075 0.522 0.569 0.649 0.733 0.929
β2 0.058 0.060 0.075 0.198 0.105 0.106 0.130 0.227 0.017 0.018 0.027 0.176 0.909 0.892 0.894 0.896

I.  One-Sided Homoskedastic Errors (N=10,000)
β0 -0.592 -0.012 -0.021 0.405 0.592 0.064 0.071 1.318 0.351 0.007 0.011 6.121 0.000 0.952 0.934 0.083
β1 0.000 0.000 0.000 0.028 0.008 0.008 0.021 0.037 0.000 0.000 0.001 0.007 0.949 0.951 0.939 0.961
β2 0.000 0.000 -0.001 0.028 0.009 0.009 0.022 0.038 0.000 0.000 0.001 0.007 0.944 0.940 0.935 0.960

II.  One-Sided Heteroskedastic Errors (N=10,000)
β0 -0.540 0.141 -0.005 0.980 0.540 0.142 0.043 1.360 0.292 0.024 0.004 17.734 0.000 0.316 0.939 0.682
β1 -0.190 -0.183 -0.001 0.039 0.190 0.183 0.015 0.139 0.036 0.034 0.001 0.057 0.000 0.000 0.954 0.755
β2 0.135 0.130 0.003 -0.014 0.135 0.130 0.015 0.095 0.018 0.017 0.000 0.023 0.000 0.000 0.952 0.743

III.  One-Sided Heteroskedastic Errors (N=10,000)
β0 -0.461 0.503 -0.211 -0.230 0.461 0.503 0.211 0.263 0.214 0.264 0.048 0.088 0.000 0.000 0.000 0.287
β1 -0.198 -0.171 0.026 0.037 0.198 0.171 0.101 0.073 0.039 0.030 0.018 0.010 0.000 0.000 0.055 0.698
β2 0.052 0.053 0.103 0.114 0.052 0.053 0.104 0.114 0.003 0.003 0.012 0.014 0.019 0.015 0.106 0.003

Mean Absolute Error Mean Squared Error

Notes:  See Table A1 and text for further details.

Coverage Rate
Design

Bias
𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊

𝟐𝟐 = 𝟓𝟓.



Table A4.  Monte Carlo Results (One-Sided Measurement Error): 

OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS
I.  One-Sided Homoskedastic Errors (N=100)

β0 -0.422 0.018 -0.041 24.594 0.422 0.387 0.333 25.066 0.189 0.188 0.152 2753.755 0.024 0.866 0.560 0.211
β1 0.000 0.001 0.009 0.618 0.085 0.086 0.130 0.828 0.011 0.012 0.028 2.837 0.953 0.944 0.916 0.876
β2 0.004 0.003 0.009 0.585 0.089 0.091 0.133 0.820 0.012 0.013 0.029 3.008 0.950 0.939 0.913 0.885

II.  One-Sided Heteroskedastic Errors (N=100)
β0 -0.384 0.068 -0.045 28.864 0.384 0.393 0.316 29.266 0.159 0.196 0.134 3503.779 0.045 0.834 0.562 0.259
β1 -0.134 -0.129 -0.091 0.521 0.146 0.143 0.164 1.012 0.030 0.029 0.041 3.889 0.753 0.748 0.823 0.792
β2 0.100 0.096 0.081 0.690 0.124 0.123 0.148 0.998 0.023 0.023 0.035 3.971 0.830 0.824 0.858 0.795

III.  One-Sided Heteroskedastic Errors (N=100)
β0 -0.353 0.200 -0.054 0.922 0.353 0.448 0.286 1.344 0.137 0.259 0.117 50.474 0.115 0.733 0.604 0.555
β1 -0.153 -0.138 -0.068 0.146 0.162 0.150 0.175 0.267 0.036 0.032 0.050 0.337 0.705 0.740 0.801 0.939
β2 0.040 0.042 0.060 0.155 0.095 0.097 0.125 0.195 0.014 0.015 0.026 0.126 0.925 0.910 0.889 0.924

I.  One-Sided Homoskedastic Errors (N=10,000)
β0 -0.419 -0.044 -0.085 0.564 0.419 0.127 0.153 1.195 0.176 0.031 0.041 4.974 0.000 0.923 0.743 0.083
β1 0.000 0.000 0.002 0.025 0.008 0.008 0.024 0.035 0.000 0.000 0.001 0.006 0.945 0.946 0.926 0.957
β2 0.000 0.000 -0.002 0.026 0.009 0.009 0.024 0.036 0.000 0.000 0.001 0.006 0.946 0.945 0.927 0.958

II.  One-Sided Heteroskedastic Errors (N=10,000)
β0 -0.382 0.083 -0.089 0.822 0.382 0.134 0.123 1.163 0.146 0.025 0.031 15.910 0.000 0.676 0.695 0.600
β1 -0.134 -0.132 -0.047 0.013 0.134 0.132 0.057 0.117 0.018 0.018 0.008 0.043 0.000 0.000 0.694 0.665
β2 0.095 0.094 0.035 0.004 0.095 0.094 0.044 0.082 0.009 0.009 0.004 0.020 0.000 0.000 0.696 0.660

III.  One-Sided Heteroskedastic Errors (N=10,000)
β0 -0.326 0.448 -0.150 -0.160 0.326 0.448 0.150 0.190 0.107 0.211 0.024 0.049 0.000 0.001 0.031 0.312
β1 -0.139 -0.128 0.022 0.027 0.139 0.128 0.066 0.055 0.020 0.017 0.008 0.006 0.000 0.000 0.290 0.767
β2 0.037 0.038 0.076 0.081 0.037 0.038 0.077 0.081 0.002 0.002 0.006 0.007 0.074 0.058 0.086 0.005

Notes:  See Table A1 and text for further details.

Design
Bias Mean Absolute Error Mean Squared Error Coverage Rate

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏𝟏𝟏.



Table A5.  Monte Carlo Results: Total Outcomes.

Observed SF1 SF2 NLLS Observed SF1 SF2 NLLS
I.  One-Sided Homoskedastic Errors (N=100)

-132.43 -10.13 -27.88 3560.78 137.28 36.32 49.36 3813.06
-93.63 -11.43 -23.98 3069.75 96.89 40.68 46.31 3277.86
-59.31 -6.41 -12.34 2671.26 61.23 42.42 38.74 2826.62
-41.92 2.11 -3.84 2459.25 43.37 39.98 34.48 2595.19

II.  One-Sided Heteroskedastic Errors (N=100)
-120.87 7.29 -15.46 4760.20 125.10 37.89 40.01 4958.92

-85.46 3.09 -15.21 4100.62 88.53 41.61 40.51 4237.35
-54.11 2.01 -10.28 3233.49 55.96 43.62 37.42 3350.74
-38.27 6.98 -4.55 2885.97 39.58 40.74 32.47 3014.80

III.  One-Sided Heteroskedastic Errors (N=100)
-109.76 41.77 -47.67 183.10 113.89 53.92 62.12 318.56

-77.38 33.75 -34.86 125.87 80.59 51.58 48.18 229.25
-49.19 23.45 -15.47 120.33 51.28 50.02 33.99 186.74
-34.93 20.42 -4.96 92.11 36.59 46.61 29.07 134.46

I.  One-Sided Homoskedastic Errors (N=10,000)
-13240.66 -13.08 -17.19 -2852.40 132.44 2.81 2.82 183.03

-9365.27 -27.53 -35.91 1065.03 93.68 3.46 3.48 155.95
-5922.19 -121.57 -206.41 4054.10 59.25 6.34 7.01 132.01
-4188.02 -441.64 -847.72 5646.30 41.90 12.63 15.31 119.72

II.  One-Sided Heteroskedastic Errors (N=10,000)
-12071.91 1864.77 -171.44 13525.38 120.81 18.66 4.12 205.97

-8538.05 1746.84 -27.79 16500.19 85.42 17.48 3.15 214.42
-5399.33 1405.70 -54.84 9801.80 54.02 14.18 4.19 135.71
-3818.28 826.39 -887.41 8219.59 38.18 13.40 12.28 116.32

III.  One-Sided Heteroskedastic Errors (N=10,000)
-10301.51 6003.24 -6189.49 -5408.91 103.10 60.07 61.93 58.89

-7296.29 5623.96 -5103.19 -3770.71 73.01 56.27 51.07 41.17
-4607.49 5036.01 -2111.80 -2294.14 46.09 50.37 21.12 26.28
-3261.51 4482.90 -1504.50 -1597.75 32.64 44.86 15.06 19.03

Notes:  OLS = Ordinary Least Squares.  SF1 = Homoskedastic Stochastic Frontier.  SF2 = Heteroskedastic Stochastic Frontier.  
NLLS = Nonlinear Least Squares.  Values represent the bias and mean absolute percentage error of the sum of the observed 
and predicted dependent variables relative to the sum of the actual dependent variable, where the sum is computed over the 
observations in the simulated data.  See Table A1 and text for further details.
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Bias Mean Absolute Percentage Error

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟐𝟐

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟓𝟓

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏𝟏𝟏
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𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟐𝟐

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟐𝟐

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟐𝟐

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟓𝟓

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟓𝟓

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟓𝟓

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟓𝟓

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟓𝟓

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏𝟏𝟏

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏𝟏𝟏

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏𝟏𝟏

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏𝟏𝟏

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏𝟏𝟏



Table A6.  Monte Carlo Results (Skewed Measurement Error): 

OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS
I.  Skewed Homoskedastic Errors (N=100)

β0 -1.719 -1.121 -1.116 -1.233 1.719 1.123 1.118 1.853 2.969 1.493 1.444 13.847 0.000 0.748 0.277 0.125
β1 -0.003 -0.002 -0.012 0.056 0.095 0.097 0.150 0.147 0.014 0.015 0.036 0.057 0.952 0.938 0.917 0.972
β2 0.003 0.004 -0.009 0.092 0.087 0.088 0.149 0.159 0.012 0.012 0.034 0.125 0.963 0.949 0.929 0.965

II.  Skewed Heteroskedastic Errors (N=100)
β0 -1.556 -0.835 -1.011 0.610 1.556 0.840 1.013 3.013 2.442 0.963 1.189 104.460 0.000 0.875 0.242 0.262
β1 -0.618 -0.590 -0.391 -0.300 0.618 0.590 0.393 0.608 0.399 0.365 0.203 0.757 0.002 0.002 0.444 0.360
β2 0.441 0.424 0.282 0.390 0.441 0.424 0.291 0.515 0.207 0.193 0.115 0.510 0.035 0.053 0.574 0.336

III.  Skewed Heteroskedastic Errors (N=100)
β0 -1.380 -0.071 -0.717 2.246 1.380 0.429 0.727 3.163 1.956 0.344 0.640 177.730 0.003 0.814 0.301 0.652
β1 -0.657 -0.535 -0.304 0.090 0.657 0.535 0.325 0.510 0.472 0.314 0.153 1.089 0.019 0.073 0.578 0.771
β2 0.191 0.191 0.165 -0.224 0.216 0.208 0.201 0.553 0.065 0.059 0.061 2.872 0.676 0.620 0.725 0.855

I.  Skewed Homoskedastic Errors (N=10,000)
β0 -1.716 -1.034 -1.050 -0.575 1.716 1.034 1.050 2.095 2.944 1.075 1.117 5.750 0.000 0.000 0.000 0.071
β1 0.000 0.000 -0.003 0.032 0.010 0.010 0.022 0.041 0.000 0.000 0.001 0.008 0.949 0.946 0.938 0.959
β2 0.000 0.000 -0.002 0.030 0.009 0.009 0.023 0.041 0.000 0.000 0.001 0.007 0.949 0.949 0.935 0.966

II.  Skewed Heteroskedastic Errors (N=10,000)
β0 -1.547 -0.654 -1.010 0.648 1.547 0.654 1.010 1.063 2.392 0.429 1.022 3.314 0.000 0.000 0.000 0.832
β1 -0.611 -0.591 -0.297 0.035 0.611 0.591 0.297 0.161 0.374 0.349 0.088 0.049 0.000 0.000 0.000 0.827
β2 0.437 0.422 0.211 -0.026 0.437 0.422 0.211 0.115 0.191 0.178 0.045 0.026 0.000 0.000 0.000 0.826

III.  Skewed Heteroskedastic Errors (N=10,000)
β0 -1.289 0.269 -0.584 0.218 1.289 0.269 0.584 0.294 1.673 0.102 0.347 0.144 0.000 0.020 0.000 0.227
β1 -0.637 -0.502 -0.235 0.007 0.637 0.502 0.235 0.075 0.407 0.253 0.059 0.010 0.000 0.000 0.007 0.506
β2 0.170 0.164 0.126 -0.002 0.170 0.164 0.126 0.045 0.030 0.027 0.017 0.003 0.000 0.000 0.003 0.644

Design
Bias Mean Absolute Error Mean Squared Error Coverage Rate

Notes:  Results based on 1000 repetitions.  OLS = Ordinary Least Squares.  SF1 = Homoskedastic Stochastic Frontier.  SF2 = Heteroskedastic Stochastic Frontier.  NLLS = 
Nonlinear Least Squares.  Coverage rates based on 95% confidence interval.  In Design 1, the skewed measurement error is homoskedastic.  In Designs 2 and 3, the skewed 
measurement error is heteroskedastic.  In Design 2, the heteroskedasticity function is linear in the covariates and the SF2 and NLLS models use the correct functional form for the 
heteroskedasticity.  In Design 3, the heteroskedasticity function is nonlinear in the covariates and the SF2 and NLLS models use a linear functional form for the heteroskedasticity.  
See text for further details.

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏.



Table A7.  Monte Carlo Results (Skewed Measurement Error): 

OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS
I.  Skewed Homoskedastic Errors (N=100)

β0 -1.157 -0.669 -0.629 -0.530 1.157 0.688 0.647 1.490 1.351 0.648 0.568 21.045 0.000 0.996 0.603 0.155
β1 -0.002 -0.002 -0.007 0.073 0.087 0.088 0.145 0.153 0.012 0.012 0.032 0.077 0.964 0.955 0.907 0.968
β2 0.003 0.003 -0.001 0.096 0.083 0.084 0.149 0.160 0.011 0.011 0.034 0.119 0.958 0.934 0.902 0.962

II.  Skewed Heteroskedastic Errors (N=100)
β0 -1.035 -0.504 -0.621 0.438 1.035 0.556 0.644 2.087 1.088 0.468 0.520 63.113 0.000 0.988 0.438 0.239
β1 -0.438 -0.426 -0.320 -0.234 0.438 0.426 0.327 0.443 0.205 0.195 0.150 0.419 0.026 0.036 0.498 0.382
β2 0.312 0.305 0.228 0.352 0.312 0.305 0.247 0.392 0.108 0.104 0.084 0.297 0.175 0.183 0.600 0.404

III.  Skewed Heteroskedastic Errors (N=100)
β0 -0.914 0.063 -0.477 2.338 0.914 0.451 0.509 2.972 0.867 0.320 0.327 161.489 0.010 0.764 0.393 0.657
β1 -0.464 -0.403 -0.289 0.083 0.464 0.403 0.308 0.462 0.240 0.182 0.146 1.075 0.065 0.139 0.554 0.773
β2 0.136 0.140 0.116 -0.228 0.162 0.160 0.165 0.533 0.038 0.037 0.042 2.918 0.768 0.740 0.780 0.886

I.  Skewed Homoskedastic Errors (N=10,000)
β0 -1.154 -0.699 -0.711 -0.016 1.154 0.699 0.711 1.742 1.333 0.510 0.528 5.327 0.000 0.022 0.006 0.081
β1 0.000 0.000 -0.002 0.032 0.009 0.009 0.026 0.042 0.000 0.000 0.001 0.008 0.944 0.941 0.913 0.954
β2 0.000 0.000 -0.001 0.028 0.009 0.009 0.026 0.040 0.000 0.000 0.001 0.007 0.950 0.950 0.918 0.959

II.  Skewed Heteroskedastic Errors (N=10,000)
β0 -1.035 -0.373 -0.675 0.873 1.035 0.373 0.675 1.151 1.072 0.143 0.457 10.797 0.000 0.000 0.000 0.869
β1 -0.432 -0.426 -0.218 0.048 0.432 0.426 0.218 0.148 0.187 0.182 0.048 0.057 0.000 0.000 0.000 0.847
β2 0.309 0.304 0.155 -0.036 0.309 0.304 0.155 0.107 0.095 0.093 0.024 0.031 0.000 0.000 0.000 0.852

III.  Skewed Heteroskedastic Errors (N=10,000)
β0 -0.853 0.414 -0.338 0.213 0.853 0.414 0.338 0.245 0.733 0.194 0.120 0.096 0.000 0.000 0.001 0.239
β1 -0.451 -0.379 -0.174 0.005 0.451 0.379 0.174 0.056 0.204 0.145 0.034 0.005 0.000 0.000 0.028 0.586
β2 0.121 0.121 0.086 0.000 0.121 0.121 0.086 0.036 0.015 0.015 0.008 0.002 0.000 0.000 0.010 0.731

Design
Bias Mean Absolute Error Mean Squared Error Coverage Rate

Notes:  See Table A6 and text for further details.

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟐𝟐.



Table A8.  Monte Carlo Results (Skewed Measurement Error): 

OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS
I.  Skewed Homoskedastic Errors (N=100)

β0 -0.657 -0.237 -0.245 -0.249 0.657 0.417 0.390 0.852 0.443 0.233 0.207 5.341 0.000 0.948 0.575 0.206
β1 -0.003 -0.003 -0.007 0.066 0.082 0.083 0.130 0.133 0.010 0.011 0.026 0.061 0.953 0.944 0.919 0.968
β2 0.003 0.003 0.004 0.076 0.081 0.082 0.134 0.144 0.011 0.011 0.029 0.065 0.951 0.938 0.910 0.968

II.  Skewed Heteroskedastic Errors (N=100)
β0 -0.577 -0.158 -0.252 0.306 0.577 0.389 0.374 1.202 0.345 0.195 0.178 23.351 0.004 0.940 0.514 0.267
β1 -0.278 -0.274 -0.243 -0.142 0.278 0.275 0.257 0.296 0.088 0.087 0.091 0.232 0.258 0.264 0.545 0.578
β2 0.204 0.202 0.181 0.262 0.205 0.204 0.206 0.287 0.052 0.051 0.061 0.163 0.554 0.541 0.680 0.626

III.  Skewed Heteroskedastic Errors (N=100)
β0 -0.502 0.173 -0.201 1.927 0.503 0.479 0.295 2.280 0.270 0.294 0.114 172.351 0.037 0.732 0.550 0.704
β1 -0.293 -0.269 -0.222 0.099 0.294 0.271 0.252 0.398 0.102 0.087 0.100 1.406 0.272 0.348 0.600 0.818
β2 0.087 0.089 0.075 -0.176 0.119 0.120 0.139 0.412 0.022 0.022 0.030 1.932 0.860 0.835 0.853 0.922

I.  Skewed Homoskedastic Errors (N=10,000)
β0 -0.657 -0.396 -0.357 0.456 0.657 0.396 0.357 1.440 0.431 0.190 0.149 6.005 0.000 0.728 0.373 0.090
β1 0.000 0.000 0.000 0.029 0.009 0.009 0.028 0.039 0.000 0.000 0.001 0.007 0.950 0.950 0.890 0.948
β2 0.000 0.000 0.000 0.029 0.008 0.008 0.027 0.039 0.000 0.000 0.001 0.008 0.950 0.948 0.900 0.962

II.  Skewed Heteroskedastic Errors (N=10,000)
β0 -0.581 -0.191 -0.363 1.179 0.581 0.193 0.363 1.351 0.338 0.063 0.134 17.760 0.000 0.960 0.000 0.879
β1 -0.274 -0.273 -0.144 0.061 0.274 0.273 0.144 0.141 0.075 0.075 0.022 0.064 0.000 0.000 0.000 0.853
β2 0.195 0.195 0.103 -0.041 0.195 0.195 0.103 0.100 0.038 0.038 0.011 0.032 0.000 0.000 0.000 0.855

III.  Skewed Heteroskedastic Errors (N=10,000)
β0 -0.466 0.506 -0.116 0.205 0.466 0.506 0.117 0.212 0.220 0.271 0.017 0.064 0.000 0.000 0.153 0.189
β1 -0.285 -0.258 -0.115 0.002 0.285 0.258 0.115 0.039 0.082 0.067 0.017 0.002 0.000 0.000 0.040 0.731
β2 0.076 0.078 0.049 0.001 0.076 0.078 0.050 0.027 0.006 0.006 0.003 0.001 0.007 0.000 0.210 0.835

Coverage Rate

Notes:  See Table A6 and text for further details.

Design
Bias Mean Absolute Error Mean Squared Error

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟓𝟓.



Table A9.  Monte Carlo Results (Skewed Measurement Error): 

OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS OLS SF1 SF2 NLLS
I.  Skewed Homoskedastic Errors (N=100)

β0 -0.401 -0.008 -0.052 0.132 0.401 0.359 0.317 0.786 0.171 0.160 0.129 16.752 0.022 0.896 0.541 0.259
β1 0.000 0.000 0.005 0.067 0.082 0.083 0.120 0.136 0.010 0.011 0.024 0.065 0.957 0.940 0.925 0.970
β2 0.002 0.002 0.012 0.082 0.079 0.080 0.123 0.146 0.010 0.010 0.024 0.101 0.955 0.944 0.925 0.961

II.  Skewed Heteroskedastic Errors (N=100)
β0 -0.350 0.040 -0.039 0.444 0.350 0.356 0.296 0.965 0.134 0.161 0.119 27.017 0.085 0.883 0.612 0.398
β1 -0.196 -0.194 -0.170 -0.100 0.198 0.197 0.199 0.234 0.049 0.049 0.058 0.187 0.534 0.534 0.701 0.733
β2 0.141 0.140 0.145 0.214 0.148 0.148 0.180 0.236 0.030 0.030 0.047 0.134 0.739 0.739 0.767 0.763

III.  Skewed Heteroskedastic Errors (N=100)
β0 -0.295 0.236 -0.055 0.971 0.297 0.452 0.193 1.167 0.101 0.275 0.060 37.066 0.210 0.737 0.739 0.817
β1 -0.211 -0.200 -0.184 0.040 0.214 0.203 0.218 0.297 0.059 0.053 0.074 0.498 0.503 0.541 0.631 0.843
β2 0.060 0.061 0.054 -0.093 0.101 0.101 0.128 0.296 0.016 0.016 0.025 0.681 0.909 0.888 0.858 0.938

I.  Skewed Homoskedastic Errors (N=10,000)
β0 -0.406 -0.195 -0.203 0.605 0.406 0.216 0.218 1.205 0.165 0.070 0.068 5.154 0.000 0.984 0.618 0.116
β1 -0.001 -0.001 0.001 0.025 0.008 0.008 0.024 0.036 0.000 0.000 0.001 0.006 0.949 0.949 0.903 0.957
β2 0.000 0.000 0.001 0.031 0.008 0.008 0.023 0.039 0.000 0.000 0.001 0.007 0.950 0.950 0.906 0.963

II.  Skewed Heteroskedastic Errors (N=10,000)
β0 -0.352 -0.097 -0.220 1.182 0.352 0.163 0.220 1.301 0.124 0.042 0.050 18.572 0.000 0.952 0.053 0.867
β1 -0.194 -0.194 -0.172 0.051 0.194 0.194 0.172 0.127 0.038 0.038 0.036 0.053 0.000 0.000 0.000 0.834
β2 0.138 0.138 0.123 -0.030 0.138 0.138 0.123 0.089 0.019 0.019 0.018 0.026 0.000 0.000 0.015 0.825

III.  Skewed Heteroskedastic Errors (N=10,000)
β0 -0.272 0.520 -0.027 0.207 0.272 0.520 0.051 0.208 0.075 0.284 0.005 0.056 0.000 0.000 0.694 0.117
β1 -0.202 -0.190 -0.118 0.002 0.202 0.190 0.118 0.032 0.041 0.036 0.027 0.002 0.000 0.000 0.113 0.807
β2 0.054 0.056 0.031 0.000 0.054 0.056 0.035 0.023 0.003 0.003 0.002 0.001 0.009 0.004 0.583 0.882

Notes:  See Table A6 and text for further details.

Design
Bias Mean Absolute Error Mean Squared Error Coverage Rate

𝑬𝑬 𝝈𝝈𝒗𝒗𝟐𝟐 /𝑬𝑬 𝝈𝝈𝒖𝒖𝒊𝒊
𝟐𝟐 = 𝟏𝟏𝟏𝟏.
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