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This paper investigates how high school gender composition affects students’ participation 

in STEM at college. Using Danish administrative data, we exploit idiosyncratic within-school 

variation in gender composition. We find that having a larger proportion of female peers 

reduces women’s probability of enrolling in and graduating from STEM programs. Men’s 

STEM participation increases with more female peers present. In the long run, women 

exposed to more female peers are less likely to work in STEM occupations, earn less, and 

have more children. Our findings show that the school peer environment has lasting effects 

on occupational sorting, the gender wage gap, and fertility.
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I. Introduction 

In most OECD countries, women attain more education than men. Despite this reversal of the 

gender gap in education, large gender differences in the choice of study field persist. Only 28 

percent of college students in Science, Technology, Engineering, and Mathematics (STEM) studies 

are female (OECD, 2016). As gender differences in ability do not seem to explain these differences 

(Kahn and Ginther, 2017), we currently know little about why women remain underrepresented in 

STEM fields. It is important to improve our understanding of the origins of gender differences in 

study choices due to the potential consequences for both the individual and society.  On an 

individual level, women with high math and science ability who do not participate in STEM forfeit 

higher lifetime earnings. On a societal level, when fewer women are part of the STEM workforce, 

society may be less innovative and thereby have worse long-run economic growth.  

 In this paper, we investigate how gender composition in high school affects men's and 

women’s decisions to choose STEM fields in higher education. High school peers represent a 

central aspect of teenagers' social environment given that they interact daily for several years. 

During this time, students face one of their most crucial life choices. Therefore, peers may represent 

an important social force shaping specialization decisions. To investigate whether gender 

composition in high school affects the gender gap in STEM participation, we use Danish register 

data on all students entering the math track in high school between 1980 and 1994. The key 

advantage of this data set, in addition to its rich information on individuals’ education and labor 

market outcomes, is that we can follow the entire student population over a period of 20 years after 

they entered high school. This allows us to identify the direct, delayed, and long-run consequences 

of high school peers.  

Our strategy to identify the causal impact of gender composition on STEM choice builds 

on two empirical approaches that differ in their key identifying assumptions and interpretation of 
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results. The first empirical approach exploits idiosyncratic cohort variation in the proportion of 

female students within schools across cohorts after taking out school fixed effects, cohort fixed 

effects, and school-specific time trends.1 The second empirical approach extends this model by 

including cohort-by-school fixed effects, thereby examining whether the proportion of female peers 

differentially affects men and women within the same school-cohort. This identification strategy 

thus answers whether the gender gap in STEM choice grows or shrinks as the gender composition 

changes.2  

The key identifying assumption for our first strategy is that year-to-year variations in the 

proportion of female students are exogenous to factors affecting STEM choice, conditional on 

school fixed effects, cohort fixed effects, and school-specific time trends. To assess the credibility 

of this identifying assumption, we conduct an extensive set of balancing checks, testing whether 

changes in gender composition are associated with student characteristics. Using a large set of 

student background characteristics from the register data, we show that gender composition does 

not systematically relate to the characteristics of students selecting into the specific school cohort, 

conditional on school and cohort fixed effects.3 While this balancing test provides strong support 

for our key identifying assumption, it remains theoretically possible that students sort into schools 

based on factors correlated with STEM choice that are both time variant and unobservable in the 

register data. Although it is difficult to think of mechanisms that would create these unobservable 

                                                             
1 This identification strategy is similar to Anelli and Peri (2019), Hill (2017), Hoxby (2000), and Lavy and Schlosser 

(2011), who exploit idiosyncratic variation in the proportion of female students within schools. 
2 This identification strategy is used by Merlino, Steinhardt, and Wren-Lewis (forthcoming) to test whether the peer 

composition in high school affects the probability of interracial romantic relationships. Our strategy is analogous to 

the literature that estimates differences between siblings, including sibling fixed effects (instead of cohort-by-school 

fixed effects), by, for instance, considering how sisters (women) and brothers (men) are differentially affected by the 

childhood family environment (high school peer composition) (Brenøe and Lundberg, 2017, Autor et. al, forthcoming). 
3 We also test and reject the possibility that the proportion of female students enrolling in a given school is 

autocorrelated over time. Put differently, we find no evidence that the proportion of female students in year t-1 predicts 

the proportion female peers in year t. 
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time-variant school selection patterns, our second empirical approach addresses this concern. The 

inclusion of fixed effects for each cohort-by-school cell alleviates remaining potential concerns, as 

we can control for the exact level at which selection based on time variant and unobservable 

characteristics would take place.4 Both of our empirical approaches yield qualitatively similar 

results. 

Our results show that women exposed to a higher proportion of female peers become less 

likely to enroll in STEM fields and more likely to enter health-related studies in college. Men are 

overall less affected, but also behave more gender-stereotypically when more female peers are 

present: they become more likely to enroll in STEM studies and less likely to enter health-related 

studies. These peer effects in field of study choice are statistically and economically significant. A 

10 percentage point increase in the proportion of female high school peers lowers women’s 

probability of enrolling in STEM studies by 1.4 percentage points—which is equivalent to a 6.4 

percent decrease from the baseline. For men, a similar change in the gender composition raises 

STEM enrollment by 0.9 percentage points (2.4 percent). These peer effects exacerbate gender 

differences not only in STEM enrollment but also translate into an increased gender gap in STEM- 

degree completion. In our most conservative model, which includes cohort-by-schools fixed 

effects, we find that 10 percentage points more high school female peers increase the gender gap 

in STEM-degree completion by 2 percentage points, corresponding to a 17 percent increase. 

We shed some light on possible mechanisms behind this finding by studying how peer 

gender affects student performance, measured as high school grade point average (GPA). Since 

high-achieving students are generally more likely to enter STEM fields and it has been shown that 

                                                             
4 It is important to note that results from regressions including cohort-by-school fixed effects no longer identify whether 

an increase in the proportion of female peers affects the levels of STEM enrollment for men and women, but instead 

identify gender differences in response to changes of the peer environment.  
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peers affect performance in high school (e.g. Hoxby, 2000; Lavy and Schlosser, 2011), one possible 

mechanism is that the gender composition affects men's and women’s preparedness for STEM 

studies. We find evidence in support of this mechanism: having more female peers alters the gender 

gap in high school GPA in favor of men, which may give women—who consider their comparative 

advantage—reason to believe that they are less prepared for college studies in STEM. When 

considering heterogeneous effects by parental background, we provide two pieces of evidence that 

suggest that information about college in general and STEM studies in particular can counter peer 

influences to some degree. First, students with college-educated parents are less affected by peers. 

Second, and more strikingly, the gender peer composition does not influence women with STEM-

educated mothers, i.e. women who have a salient female role model at home.  

Our long-run results on labor market trajectories show that the peer effects in study choice 

lead women and men to systematically different career paths. Not only are women who are exposed 

to more female high school peers less likely to choose STEM studies, they are also less likely to 

work in STEM occupations, and they have lower earnings at age 36. A 10 percentage point increase 

in the proportion of female high school peers lowers women’s probability of working in STEM 

occupations by 4 percent and increases the gender wage gap by 5 percent. These results imply that 

high school peers and their influence on college major choice have lasting and economically 

significant consequences for occupational segregation and earnings. 

Finally, we study how peers affect individuals’ fertility outcomes and find that women 

exposed to more female peers have more children by age 36. For the interpretation of this effect, it 

is relevant to note that the peer gender composition may affect fertility preferences either directly 

or indirectly. An indirect impact could arise, for instance, if STEM careers are associated with less 

family-friendly work environments. Although we ultimately cannot disentangle whether reduced 

fertility indeed is due to entering STEM fields, it is possible that it might be harder to combine 
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having children with work obligations in STEM occupations. Another important possibility that 

might help explain the increase in the gender wage gap when having more female peers is that 

having (more) children reduces earnings for women (Kleven et al. 2018; Lundborg et al. 2017). In 

such case, lower female earnings should not be attributed to staying out of STEM fields per se, but 

would instead be a consequence of the "career cost of children" (Adda et. al., 2017).5 

 In the existing literature, only a handful of related studies investigate how the gender of 

peers in high school influences educational choices.6  Lavy and Schlosser (2011) find that both 

male and female students perform better and take more science courses in high school when 

exposed to more female peers. In contrast to this, we find that women become less likely to enter 

subsequent STEM studies and that only men perform better in high school with more female peers 

present. While Lavy and Schlosser (2011) provide intriguing evidence on the underlying 

mechanisms, it is not possible to study long-run effects on study choice, occupational sorting, 

fertility, or earnings in their setting. 

 Closely related to our work, Anelli and Peri (2019) show that the gender composition in 

high school has an effect on men’s, but not on women’s, study choice in college. While Anelli and 

Peri leverage random assignment of students to classes for identification, we use idiosyncratic 

cohort variation in female peers within schools. Anelli and Peri find that men attending high school 

classes with over 80 percent male peers are more likely to enroll in predominantly male college 

majors.7 Contrary to our findings, these effects do not persist into actual degree completion or affect 

                                                             
5 Related to this point, if peers shape individuals' preferences for children—even before those children are born—men 

and women may choose more family-friendly careers outside of STEM that can facilitate their family planning. In this 

case, the choice of study field might reflect the changed fertility preferences.  
6 Starting with Hoxby (2000), a different but related strand of literature investigates how gender composition affects 

student performance. For important studies on the impact of peer gender on performance, see Whitmore (2005), Lavy 

and Schlosser (2011), De Giorgi, Pellizzari, and Woolston (2012), Oosterbeek and Ewijk (2014) as well as Hill (2015).   
7 In contrast to Anelli and Peri (2019) who consider enrollment in and graduation from programs in Engineering, 

Economics, and Business, we study whether students choose any STEM field, which also includes Science, 

Technology, and Mathematics, and follow each student for 20 years after high school entry. 
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earnings.8 While Anelli and Peri focus on the effect of being in a very male-dominated environment 

—at least 80 percent male peers—we consider a continuous measure of female peers and thus 

identify effects at a different margin of the gender composition.  

At the college level, Hill (2017) presents suggestive evidence that women exposed to a 

university cohort with more female peers have a lower probability of majoring in STEM fields. 

Similarly, Zölitz and Feld (2019) show that women become less likely to major in male-dominated 

subfields when they are randomly assigned to university sections containing more female peers. 

On the contrary, Schneeweis and Zweimüller (2012)  show that a larger share of female peers in 

lower secondary vocational school increases girls’ propensity to choose male-dominated school 

types. Based on the existing literature, which presents mixed evidence from a variety of different 

settings, it is not clear how gender composition affects specialization decisions.9 Finally, our paper 

also relates to a different strand of the literature studying how the social environment shapes 

fertility decisions (Balbo and Barban, 2014; Ciliberto et al. 2016; Kuziemko, 2006;, and Brenøe 

2018), which previously has not been examined by the gender peer effects literature. 

 This paper contributes to the literature in three important ways. First, we are the first to 

document that gender composition in high school affects STEM participation in college. Second, 

we provide previously undocumented comprehensive evidence on the long-run occupational 

consequences of high school peers.  Our ability to follow students in the Danish administrative data 

over the course of 20 years after high school entry distinguishes this study from existing work that 

mostly studies the short- or medium-run impact of peers. Third, and more broadly, this paper 

                                                             
8 While Anelli and Peri (2019) observe only earnings in the year 2005 for a part of their sample, we utilize panel data 

on earnings and employment and thereby follow the earnings trajectory at an annual level through age 36 for all 

individuals in our sample. 
9 The related literature on the impact of single-sex education also provides mixed results. While Jackson (2016) finds 

that single-sex secondary schools cause girls to take fewer math and science courses, other studies find no impact 

(Sohn, 2016) or a positive effect (Lee et al. (2014) and studies cited therein). 
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contributes to a better understanding of the origins of gender differences in educational choices and 

labor market outcomes. While we do not offer a universal explanation for women’s under-

representation in STEM, we identify one relevant factor that contributes to this gap. To the extent 

that our results for Denmark replicate in other environments, this paper shows that the gender 

composition of high school peers represents an important aspect of the social environment that 

shapes individuals’ preferences for field of study, occupation, and fertility.  

 

 

II. Institutional Background and Data 

In this study, we use Danish administrative data covering the entire population of first-year high 

school students enrolled in the math track from 1980 through 1994. This group of students 

represents the student population for whom the choice of specialization within STEM fields in 

college is highly relevant. The key advantage of our data set is that it contains rich background 

information and allows us to follow individuals over the course of 20 years after high school entry. 

We link the administrative data on high school students to annual data on educational enrollment 

and degree completion, which also contain detailed information on the type, level, and field of 

education, as well as labor market outcomes up to 20 years after entering high school. In the rest 

of this section, we introduce the institutional setting, describe the estimation sample, and present 

summary statistics on the key variables of the analysis. 

 

A. Institutional Background 

Children in Denmark enter primary school the year they turn seven years old and are required to 
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attend school through grade 9.10 Attendance at grade 10, which is a formal continuation of primary 

school, is optional. In their final year of primary school, students apply for secondary school. When 

applying for secondary education, students can choose between academic high schools, which take 

three years, or vocational programs, which typically take four years.11 The general academic high 

school, which represents the most popular type of academic high school, has two tracks: math and 

language.12 The curriculum for the two tracks is significantly different, with the math track 

preparing students for tertiary education within STEM fields or more quantitative-oriented social 

science programs. In contrast, the language track prepares students for tertiary education within 

humanities or less-quantitative oriented social science programs and does not offer students the 

courses required by most university STEM programs. Academic high schools normally offer both 

tracks; approximately two-thirds of the students attend the math track and the remaining one-third 

attend the language track, which is typically female-dominated.13 Students in both tracks share the 

same building and social events, such as Friday bars or sport competitions. The two tracks typically 

will not have any classes together, although it is possible that some students take an elective course 

within the other track, such as a second foreign language. Therefore, students within the same track 

are likely to be the most relevant peer group for subsequent educational decisions.14 

In the high school application process, students specify their first, second, and third choice 

of a combination of specific high schools and track. Students are qualified for high school 

admission if they have completed at least nine years of education with satisfactory results and if 

                                                             
10 For the cohorts we study, it was not mandatory to attend a kindergarten class (grade 0), but most children did so. 
11 Academic high schools fall broadly into three branches: general, commercial (HHX), and technical (HTX).  
12 During the period we study, about 18 percent of each birth cohort enrolled in the math track, and about 45 percent 

of students within the math track are female. Both the share of math-track students and the share of women within the 

math track were relatively constant over the period our estimation sample covers. 
13 Approximately 80 percent of language track students are female. All schools are mixed sex.  
14 Table 6 considers different definitions of the relevant peer group.  
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teachers confirm their qualification.15 All applicants qualified according to these criteria are 

guaranteed admission to a high school in their county of residence, and admission does not depend 

on academic achievement in primary school. If there is insufficient capacity at all three of the 

student’s preferred schools, the allocation committee in their home county admits them to another 

school after considering commuting time.16 Schools experiencing capacity problems are 

concentrated in metropolitan areas. Students submit the application in the winter of their last year 

in primary school and only learn of the gender composition in their actual high school track cohort 

on the first day in high school in August— six months later. 

After high school completion, many students take one or two gap years before entering 

college.17 During the period of study, students chose a specialization within their track at the end 

of the first year in high school. Before high school reforms in 1988, all high schools were required 

to offer the same few specialization packages (for details, see Joensen and Nielsen, 2016). After 

the reforms, high schools were still required to offer certain courses (including courses required for 

all types of university programs) but had more leeway to offer a wider spectrum of courses, and 

students had more options to combine different types of courses. Therefore, a certain gender 

composition within a school would not directly have affected the course availability for students.  

In the college application process, students apply for a specific field of study and a specific 

institution and can indicate up to eight institution-specific study programs.  A diploma from an 

academic high school is required for admission. Admission depends on high school GPA; however, 

most STEM programs have no or very low GPA cutoffs and almost all eligible students who apply 

are admitted. While GPA does not restrict students’ STEM study choice, certain high school 

                                                             
15 If these conditions are not met, students can still qualify for school admission if they pass an entrance exam. 
16 According to conversations with school principals active during our observation period, admission committees did 

not consider the gender of applicants during the admission process. 
17 We define college as professional and academic tertiary education. 
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courses, such as Advanced Mathematics and Intermediate Physics and Chemistry, are prerequisites 

for STEM college majors. In other words, to be eligible to enter STEM college studies, a math 

track high school diploma is almost a necessity.18 Throughout this paper, we therefore focus on 

students within the high school math track—students for whom entering STEM fields in college 

represent a relevant career option. Among students within the math track, 30 percent later decide to 

enroll in a STEM program; students from other high school tracks rarely choose STEM studies.19 

Math track students thus represent the most relevant margin for increasing women’s STEM 

participation.  

 

B. Estimation Sample   

We exclude students with missing values for gender and age (0.8 percent of students) and students 

who were not between 14 and 19 years old when entering the general high school (less than 0.01 

percent). We further restrict the estimation sample to schools in which at least 95 percent of students 

in a given cohort are 14–19 years old and exclude schools with very small cohort sizes of less than 

10 students in a given year (6.1 percent of students). We apply these restrictions to exclude schools 

that mainly offer evening education or single courses; these schools target older part-time students 

who are, in many cases, working at the same time. Finally, we restrict the sample to schools that 

have been in existence and have admitted students for at least four consecutive years (excluding 

0.6 percent of students). None of these data restrictions qualitatively change the results.20  

 

 

                                                             
18 However, it is possible to take extra courses after high school graduation to meet the entry criteria.   
19 For comparison, only 4.6 percent of STEM college graduates attended the high school language track. 
20 Results are available upon request. 
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C. Summary Statistics 

Table 1 provides an overview of the summary statistics. Our estimation sample consists of 182,211 

students attending 127 different schools over a period of 15 years, resulting in a total of 1,877 

school-cohort observations. Forty-five percent of the students are female, and the average cohort 

size in the math track is 108 students.  

[Table 1 here] 

 

Panel A in Table 1 shows the student outcomes we consider in this paper. The primary 

outcomes of interest are indicators for whether the student enrolls in a STEM study field and 

whether their college degree is within STEM fields at the college level or higher.21 To classify 

STEM study programs, we follow the International Standard Classification of Education (ISCED) 

classification system (UNESCO Institute for Statistics, 2012). STEM degrees are thus studies 

within the following ISCED fields: Natural Sciences, Mathematics, and Statistics (ISCED-05), 

Information and Communication Technologies (ISCED-06), and Engineering, Manufacturing, and 

Construction (ISCED-07). To examine which fields within STEM drive the effects, we also split 

STEM into four subfields: 1) Biology, 2) Math and Physics, 3) ICT and Engineering, and 4) 

Manufacturing and Construction. Additionally, we consider the probability of completing the 

highest degree within Health Sciences (ISCED-091), Education (ISCED-01), Arts/Humanities 

(ISCED-02), Social Sciences (ISCED-031), and Business/Law (ISCED-04). 

From the total sample, 79 percent of all students enroll in college after high school. Table 

1 shows that only 21 percent of female and 38 percent of male high school students subsequently 

enroll in STEM studies. This gender gap persists in STEM completion rates: while only 14 percent 

                                                             
21 Throughout the paper, we use the field of the highest obtained degree to construct measures of STEM completion. 

The enrollment variables are indicators for the student's ever having been enrolled in the respective study at the college 

level or higher. If we instead consider the field of first or last enrollment, we find very similar results throughout.  
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of women graduate with a STEM degree, 25 percent of men do so. Labor market outcomes show 

that 20 years after high school entry, 11 percent of women and 26 percent of men work in a STEM 

occupation.22 

Panel B in Table 1 provides an overview of the student demographic and parental 

background characteristics we use in the regression analysis as controls, and Panel C shows school-

level variables. The key peer variable of interest is the proportion of female peers at the time of 

high school entry, which we construct at the cohort-school-track level excluding the individual 

himself or herself. As less than one percent of students change to another high school or track, this 

group of peers represents the social group in which students interact over a three-year period. 

Students are, on average, exposed to 45 percent female peers. A one standard deviation change in 

the proportion of female peers is equivalent to 7.0 percentage points. 

Figure 1 shows the raw correlations between the proportion of female peers and the 

probability of completing a STEM degree. For women, a higher proportion of female peers is 

correlated with a lower probability of obtaining a STEM degree. For men, on the contrary, we 

observe a positive correlation between the proportion of female peers and STEM degree 

completion. These raw associations suggest a fairly linear relationship. Although these correlations 

are purely descriptive, they foreshadow the results of our regression analysis. 

 

[Figure 1 here] 

 

 

                                                             
22 We use the Danish version of the International Standard Classification of Occupations (DISCO) and construct an 

indicator for working in STEM if the individual works in a high-skilled occupation within STEM for at least half the 

years observed, 11–15 and 16—20 years after high school entry, respectively. All results remain qualitatively the same 

when using indicators for whether the mode occupation is within STEM for the considered periods.    
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III. Empirical Strategy 

The fundamental threat to identification of peer effects arises from student sorting at various 

institutional levels. Parents select into neighborhoods, students select into schools, and within 

schools, students may select into classrooms or be assigned to tracks. As students are typically not 

assigned to schools at random, the existing peer effects studies try to overcome this identification 

problem by exploiting natural variation in cohort composition within a given school across time 

(Bifulco, Fletcher, and Ross 2011; Carrell and Hoekstra, 2010; Carrell, Hoekstra, and Kuka 2018; 

Hanushek et al. 2003; Hoxby, 2000; Hoxby and Weingarth, 2005; Lefgren, 2004; Vigdor and 

Nechyba, 2006). Although this identification strategy addresses the issue of endogenous, time-

constant student sorting into schools, it is vulnerable to school-specific (dynamic) time trends that 

may alter both the peer composition and the outcome of interest. More recent peer effects studies  

respond to this concern with the inclusion of school-specific time trends—linear, quadratic, and 

cubic (Hill, 2017; Lavy and Schlosser, 2011; Lavy, Schlosser, and Paserman 2012; Schneeweis 

and Zweimueller, 2012). For identification, these studies exploit the deviation in peer composition 

from its long-term time trend within a school. This approach has the advantage of controlling for 

unobserved factors correlated with time trends in school composition that may confound peer 

effects in schools. 

Our first empirical approach is similar to the approach in the literature discussed in the 

previous paragraph, and shares the key identifying assumption that the variation in the peer 

composition is exogenous after taking out school fixed effects, cohort fixed effects, and school-

specific time trends. In our second empirical approach, we estimate an even more restrictive model 

by including fixed effects for each cohort-by-school cell, thereby alleviating all remaining potential 

concerns regarding selection. In the following, we describe our empirical model, our two 

identification strategies, and the underlying assumptions in more detail. 
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A. Empirical model 

Our main empirical model is: 

 

𝑌𝑖𝑠𝑐 =  𝛽1 𝐹𝑒𝑚𝑎𝑙𝑒𝑖 × 𝑃𝑟𝑜𝑝𝐹𝑒𝑚𝑎𝑙𝑒𝑃𝑒𝑒𝑟𝑠𝑖𝑠𝑐  +  𝛽2 𝑀𝑎𝑙𝑒𝑖 × 𝑃𝑟𝑜𝑝𝐹𝑒𝑚𝑎𝑙𝑒𝑃𝑒𝑒𝑟𝑠𝑖𝑠𝑐   

+ 𝛽3 𝐹𝑒𝑚𝑎𝑙𝑒𝑖 +   𝐶𝑖𝑠𝑐𝛾′  +  𝑒𝑖𝑠𝑐 ,               (1) 

 

where 𝑌𝑖𝑠𝑐  is the outcome of student i attending school s in cohort c. The main outcomes we 

consider are STEM participation, the individuals’ earnings percentile by age and birth cohort, and 

fertility. In our data, each individual represents one observation. The treatment variable of interest 

is 𝑃𝑟𝑜𝑝𝐹𝑒𝑚𝑎𝑙𝑒𝑃𝑒𝑒𝑟𝑠𝑖𝑠𝑐 , which represents the proportion of female peers individual i is exposed 

to in their school s and cohort c. To investigate heterogeneity by gender, we interact the proportion 

of female peers with the indicator variables 𝐹𝑒𝑚𝑎𝑙𝑒𝑖 and 𝑀𝑎𝑙𝑒𝑖 that refer to the students’ own 

gender. 

𝛽1 thus captures to what degree women’s study choices and labor market outcomes are 

affected by the peer gender composition in their high school, and 𝛽2 captures the equivalent impact 

for men. 𝛽3 captures the gender gap in outcomes conditional on controls. 𝐶𝑖𝑠𝑐 represents a vector 

of school and cohort fixed effects as well as individual and peer characteristics that we gradually 

add when estimating Equation (1). The inclusion of high school fixed effects accounts for time-

invariant endogenous sorting into schools, and cohort fixed effects control for confounding factors 

at the national level, affecting all students in a given cohort. In order to account for unobserved 

time-variant school characteristics correlated both with changes in the proportion of female peers 

and educational choices for students within the same schools, we add school-specific linear, 

quadratic, and cubic time trends to the vector 𝐶𝑖𝑠𝑐. 

In our more conservative models, the vector 𝐶𝑖𝑠𝑐  includes the following additional student 
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and peer average characteristics, which do not significantly alter our estimates: six indicator 

variables for mother's and father’s highest educational degree and 18 indicators for their field of 

education;23 indicators for first- and second-generation immigrant; a "traditional family" indicator 

that equals one if the student lives with both parents at age 10; dummies for student age at the time 

of high school start; mother’s age at birth and its squared term; an indicator for having a young 

mother (< 22 years at birth); an indicator for whether the child is firstborn; family size and its 

squared term; and a dummy for whether the individual is adopted.24 Additionally, we control for 

up to third-degree polynomials of cohort size, as peer composition may potentially be correlated 

with cohort size (Epple and Romano, 2011).25 Finally, the vector includes the proportion of female 

students in the language track in the same high school cohort and controls for the high school 

curriculum experiment that took place in Denmark in the 1980s (for more details regarding the 

experiment, see Joensen and Nielsen, 2016). The main purpose of including this large vector of 

control variables is to test how sensitive our results are to the inclusion of these variables. In the 

spirit of Altonji, Elder, and Taber (2005), changes in the coefficients of interest that result from 

including controls may inform us about the degree to which omitted unobservable factors may 

affect our results. To allow students’ outcomes to correlate within their group of peers, we cluster 

the standard errors, 𝑒𝑖𝑠𝑐, at the school-cohort level.26 

                                                             
23 For each parent, we include nine dummies indicating whether their highest education is within ISCED fields 1–9. 
24 As individual controls, we additionally always control for dummies indicating the number of years after high school 

entry the individual was last observed in the education registry for our education models and dummies for the number 

of years observed within the given period for labor market outcomes. The inclusion of these controls reduces 

measurement errors given that the annual data do not record individuals living abroad.   
25 Moreover, we include indicators for whether the school experiences a change of more than 30 students or more than 

50 percent in the cohort size compared to the previous cohort and up to two period lags of these variables.  Given that 

a high school degree takes three years, we include these two-year lags to account for the possibility that a student’s 

outcome was affected despite the fact that the inflow did not happen in their cohort. We furthermore control for the 

number of students from the cohort that are not in the age range of 14–19 years and for the number of students in the 

cohort that have missing gender and age information.  Reasons for missing information on gender or age include that 

the person does not live in Denmark but attends a Danish school (e.g. lives close to the Danish-German border) or that 

the person resides in the country on diplomat visa. None of these included control variables qualitatively change our 

results. 
26 Angrist (2014) shows that with chance variation in peer groups, measurement error can bias peer effects estimates. 
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The key identifying assumption for our first approach to yield causal estimates of  𝛽1 and 

𝛽2 in Equation (1) is that no omitted variable exists that fulfills all of the following four 

requirements: 

  (1) time-variant and school specific; 

  (2) not captured by school-specific time trends;  

  (3) correlated with both the peer composition and the outcome of interest; and 

  (4) not included in the extensive set of individual- and peer-level control variables observed in the 

administrative data sets. 

While it is difficult to think of any plausible mechanism that would create a violation of this type, 

the existence of such factors remains possible. To assess the credibility that such factors do not 

exist, we conduct an extensive set of balancing checks in Section IV in which we test whether the 

peer composition in a school-cohort is systematically related to a large vector of high-quality 

measures of student background characteristics observable in the register data. Although these 

balancing tests strongly support our key identifying assumption, we also provide results from a 

second empirical approach. Our second approach addresses the possibility of identification 

problems arising from unobservable, time-variant, and school-specific omitted variables not 

captured by school-specific time trends that may be correlated with both the peer composition and 

the outcome of interest.   

In our second empirical approach, we extend Equation (1) by including an additional set of 

fixed effects for each cohort-by-school cell. The inclusion of these cohort-by-school fixed effects 

alleviates potential remaining concerns, as we control for the exact level at which selection based 

                                                             
Feld and Zölitz (2017) study this issue in more depth and show that classical measurement error can lead to 

overestimation of peer effects.  Because we observe the students' gender in administrative registries, gender is arguably 

measured without error and our estimates should thus be free from upward bias arising from measurement error. 
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on time variant and unobservable characteristics would take place. Importantly, estimates from this 

type of model no longer identify whether an increase in the proportion of female peers will affect 

the overall number of women and men who choose a STEM program, but instead identify a gender 

difference in the response to changes in the peer environment. These estimates thus answer whether 

the proportion of female high school peers affects gender gaps in STEM participation and earnings. 

 

IV. Balancing tests 

To assess the plausibility of our key identifying assumption that time variant and unobservable 

factors are not driving our results, we test whether we observe systematic selection based on a wide 

range of observable student characteristics. Our key identifying assumption would be violated if 

for example, women select into a specific school based on the expectation of a higher or lower 

proportion of female peers within that school-cohort. In our first balancing test, we test whether 

students’ own gender is correlated with the proportion of female peers, conditional on cohort and 

school fixed effects. This test closely follows the randomization check proposed by Guryan, Kroft, 

and Notowidigdo (2009) and controls for the school-level leave-out mean of the proportion of 

female peers across cohorts within the school to account for the mechanical relationship between 

own gender and peer gender. Table 2 shows that the proportion of female high school peers is not 

systematically related to students’ own gender. The point estimate is precisely estimated and not 

distinguishable from zero. The inclusion of individual and school level controls as well as up to 

cubic time trends in Columns (2)–(5) does not significantly alter the point estimate. 

 

[Table 2 here] 

 

While Table 2 rejects sorting based on gender, it may still be possible that students sort into 
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schools with a high proportion of female peers based on characteristics other than gender. The 

availability of a large set of high-quality measures of student background characteristics in the 

Danish administrative registries—typically not observable in other studies—allows us to rigorously 

test for this possibility. 

In our next balancing test, we determine in how many cases student characteristics are 

significantly correlated with the proportion of female peers. Table 3 summarizes the significance 

of the point estimates from a total of 190 separate bivariate regressions, which test whether the 

proportion of female peers is related to student characteristics conditional on cohort and school 

fixed effects. Each column presents the results for a different set of control variables and school-

specific time trends. Appendix Table A1 shows the full balancing test with all 190 coefficients.  As 

expected when running a large number of regressions testing multiple hypotheses, some 

coefficients are statistically significant. In the absence of systematic sorting, we would expect 10 

percent of coefficients to be statistically significant at the 10 percent significance level, 5 percent 

at the 5 percent level, and 1 percent at the 1 percent level simply due to chance. The share of 

significant coefficients is close to or below the respective expectation for all three significance 

levels. Table 3 shows that 1.1 percent of the estimates are significant at the 1 percent level, 2.1 

percent are significant at the 5 percent level, and 8.9 percent are statistically significant at the 10 

percent level. These balancing tests suggest that the proportion of female peers is as good as random 

and provide strong support for our key identification assumption. Without systematic cohort and 

school-specific sorting on this large set of observables, it appears highly unlikely that unobservable 

time variant factors create unobserved sorting patterns. 

 

[Table 3 here]  
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Next, we test whether the proportion of female peers enrolling at a given school is autocorrelated 

over time. We do this by running 127 separate regressions that separately test, for each individual 

school, whether the proportion of female students at time t is correlated with the proportion of 

female peers that enrolled in t-1. Although such school-level autocorrelation would not impose a 

threat to our identification strategy as it would be captured by the included school-specific time 

trends, the existence of such school-specific time dynamics may point to the existence of other 

unobservable time-variant confounders. Table 4 provides a summary of this exercise and reports 

the proportion of schools for which we find significant autocorrelation in the proportion of female 

students. For all significance levels, the share of schools for which the lag of female peers 

significantly predicts the proportion of female peers is close to what we would expect in the absence 

of autocorrelation. Across all models, 0.98 percent of the school-level regressions are significant 

at the 1 percent level, 3.35 percent are significant at the 5 percent level, and 8.86 percent are 

significant at the 10 percent level. Thus, we find no evidence that the proportion of female students 

enrolling in a given school is autocorrelated over time. 

 

[Table 4 here] 

 

As another randomization check, we inspect whether the variation in the proportion of 

female peers, which we empirically exploit in this paper, is consistent with variation that we would 

expect with natural random fluctuations. Figure 2 plots the proportion of female peers at the school 

level after residualizing on cohort and school fixed effects and school-specific linear time trends. 

Figure 2 shows that these deviations in the proportion of female peers closely follow the normal 

distribution, which we plot for comparison. The shape of the distribution further supports the idea 

that the proportion of female peers is as good as random, conditional on the included controls.  
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[Figure 2 here] 

 

 As a final randomization check, we test whether the proportion of female peers in the math 

track correlates with the proportion of female peers in the language track within a given school. If 

the year-to-year fluctuations are indeed random, we would not expect the share of female peers to 

be correlated across tracks. Table 5 shows estimation results for the correlation between the 

proportion of female peers in the math and language tracks within schools. Reassuringly, we do 

not find any correlation between the female peer shares in the two tracks, independent of the set of 

included control variables.  

 

[Table 5 here] 

 

In sum, the extensive set of balancing checks in this section provides strong support for our 

key identifying assumption. The evidence shown in Table 2, Table 3, Table 4, Table 5, and Figure 

2 suggests that the proportion of female peers is as good as random, conditional on cohort and 

school fixed effects. 

   

 

V. Results 

A. Participation in STEM College Education 

Table 6 shows estimates of how the gender peer composition affects STEM enrollment (Panel A) 

and completion (Panel B). Because it is not obvious how to define the set of students that serve as 

relevant peers, we start by providing estimation results for three different definitions of school 
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peers, while keeping the sample of students fixed to those attending the math track. Column (1) 

considers the gender peer composition in the math track only, Column (2) considers the language 

track only, Column (3) includes both measures simultaneously, and Column (4) considers the 

gender composition in the entire high school cohort regardless of the attended track. Overall, the 

estimates show that a higher proportion of female peers—independent of how we define the 

relevant group of peers—lowers women’s probability of enrolling in and graduating from STEM 

college programs, while the opposite is true for men. Peers in the language track, however, have a 

weaker influence on women’s choices. For the remainder of this paper, we will focus on peers in 

the math track who arguably represent the peer group that math track students interact with the 

most.  

 

[Table 6 here] 

 

Table 7 shows estimates of how the peer composition affects STEM enrollment (Panel A) 

and STEM degree completion (Panel B) with different sets of controls.27 Column (1) shows the 

most basic model, which includes only the proportion of female peers, student gender, and the 

interaction between these variables. In Columns (2)–(6), we gradually include additional fixed 

effects, time trends, and individual level controls. The specification in Column (6) includes school 

fixed effects, cohort fixed effects, a large set of peer- and student-level control variables, as well 

as linear, quadratic, and cubic school-specific time trends. Columns (2)–(6) show that the 

magnitude of the estimates is not particularly sensitive to the exact set of included fixed effects, 

controls, or time trends. Column (7) shows estimates from our most restrictive specification, which 

                                                             
27 We tested whether the gender composition of peers affects the probability of dropping out of high school and the 

probability of enrolling in or completing college. As shown in Appendix Table A2, there is no effect.     
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includes cohort-by-school fixed effects and shows the impact of peers on the gender gap in STEM 

participation. 

 

[Table 7 here] 

 

The results in Table 7 show that women exposed to a higher proportion of female peers 

become less likely to enroll in and graduate from STEM college programs. Men’s choices also 

become more gender-stereotypical: they are more likely to enroll in and complete STEM studies 

when they have a larger share of female high school peers. In our preferred specification in Column 

(4), a 10 percentage point increase in the proportion of female high school peers lowers women’s 

probability of enrolling in STEM by 1.4 percentage points, corresponding to a decrease of 6.4 

percent relative to the baseline. For men, we find that a similar change in the gender composition 

raises STEM enrollment by 0.9 percentage points—a 2.4 percent change from the baseline.28 

 Column (7) shows our most restrictive model, which includes cohort-by-school fixed 

effects. We find that 10 percentage points more female peers in a high school cohort increases the 

gender gap in STEM enrollment by 2.3 percentage points—which is equivalent to a 14 percent 

increase of the gender gap.  Because we include cohort-by-school fixed effects in the model, the 

coefficient in Column (7) identifies a change in the gender gap in STEM completion and not an 

absolute effect. Importantly, the effect size we identify is close to the difference between the 

coefficients of male and female students in the less restrictive models in Columns (1)–(6), which 

increases our confidence in the estimates obtained from the models without cohort-by-school fixed 

                                                             
28 In addition to the linear-in-shares models shown in Table 7, we have also estimated non-linear peer effects using six 

bins for the proportion of female peers. In this analysis, we find relatively linear effects over the range of support that 

we have in the data (Figure A1 and Figure A2). 
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effects.29 Consequently, our estimate identified from within-cohort variation implies that exposure 

to more female peers within a given school cohort substantially increases gender differences in 

STEM choice and leads to more gender-stereotypical enrollment decisions.   

 Do high school peers only affect enrollment decisions or do they have lasting effects on 

study completion as well? The distinction between study enrollment and completion is potentially 

important as Anelli and Peri (2019) find that gender peer effects in high school affect men’s initial 

study enrollment, but have no impact on study completion or labor market outcomes. We therefore 

next shed light on the persistence of effects by considering the impact on the probability of STEM 

graduation. 

Panel B in Table 7 shows that the peer effects in the field of enrollment persist into actual 

degree completion rates. In our setting, peer effects in study enrollment are not offset by changes 

of college major or college dropout. Women exposed to more female peers in high school are 

significantly less likely to graduate with a college STEM major. A 10 percentage point increase in 

the proportion of female peers lowers women’s STEM graduation probability by 1.0 percentage 

points—a 7 percent decrease from the baseline (Column 4). The same change raises men’s 

probability of graduating from a STEM field by 0.9 percentage points, which is equivalent to a 3.6 

percent increase from the baseline. Again, the point estimates of interest in Columns (2)–(6) are 

very similar across models and are insensitive to the exact set of included fixed effects and time 

trends. Column (7) in Panel B confirms that these results hold when including cohort-by-school 

fixed effects. Gender differences also remain present in graduation rates when we exploit whether 

the gender composition among peers differentially affects men and women within the same school-

cohort. Column (7) shows that 10 percentage points more female peers increase the gender gap in 

                                                             
29 To see this, compare the effect size of -0.233 in Column (7) with the estimate of -0.226 (-0.135 -0.091) in Column 

(4). 
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STEM completion by 2 percentage points, corresponding to 17 percent.30 

Given the low baseline rates for women’s STEM enrollment and graduation, the size of the 

peer effects we document in Table 7 are economically significant. Taken together, we find that a 

higher share of female peers makes both men's and women’s initial choice of study field and field 

of graduation more gender-stereotypical. 

How does the size of these peer effects compare to other factors shaping students’ STEM 

choices? A 10 percentage point increase in female peers affects women’s probability of entering 

STEM approximately the same as a 10 percentage point increase in the share of female professors 

for high-math-ability women (Carrell and Hoekstra (2010)). Our effect is approximately half the 

size of the impact of a one standard deviation increase in peer ability documented in Fischer (2017), 

which shows that exposure to high-ability peers lowers women’s probability of completing a STEM 

degree. The magnitude of our effect is also fairly close to Zölitz and Feld (2019), which finds that 

exposure to more female peers in university teaching sections decreases women’s likelihood of 

choosing male-dominated majors.  

To understand which STEM subfields women are less attracted to when more female peers 

are present, we next estimate separate models in which we split STEM into four subgroups, shown 

in Panel A of Table 8: (1) Biology, (2) Math and Physics, (3) ICT and Engineering, and (4)   

Manufacturing and Construction. A comparison of the point estimates in Columns (1)–(4) reveals 

that the coefficients for women are relatively similar across STEM subfields. The point estimate 

                                                             
30 As a robustness check, we also test whether results differ between students who attend a high school that is one of 

several in the municipality and those who attend the only high school in the municipality. If our estimates were driven 

by unobserved, time-variant selection into high schools, we would expect effects to differ substantially based on how 

much choice students have at the local level. Appendix Table A3 reports split sample regressions by the number of 

high schools in the municipality. For women, point estimates are very similar in regions that have only one high school 

in the municipality. For men, we find that the effect of peers seems to be somewhat larger in municipalities with only 

one high school.  Although it is possible that peer effects may differ by the number of high schools in the municipality, 

we think that these results provide additional support for the validity of our peer effects estimates as we find the same 

effects for regions where students had a de facto very limited school choice. 
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for ICT & Engineering is marginally smaller and less precisely estimated, but not significantly 

different, from the other subfields. For men, the effect of having more female peers is stronger for 

entering Math and Physics and ICT and Engineering, which are the most male-dominated, gender-

stereotypical STEM subfields.  

We next ask which other study fields become more attractive to women and less attractive 

to men when having experienced a larger share of female high school peers. In Panel B of Table 8, 

we examine how the peer composition affects graduation from: (1) Health Sciences, (2) Education 

Studies, (3) Arts and Humanities, (4), Social Sciences,  and (5)   Business and Law.  Only Health 

Sciences—a field heavily dominated by women—becomes significantly more popular among 

women who had more female peers in high school (Column 1).31 For men, we also find that more 

female peers make choices more gender-stereotypical: a larger share of female peers in high school 

decreases men’s probability of graduating with a college major within Health and Education 

Sciences. Columns (2)–(5) show that the high school gender composition does not influence 

women’s probability of completing a college degree in Education, Arts and Humanities, Social 

Sciences, or Business and Law. Consequently, our results suggest that women exposed to more 

female peers in high school substitute STEM studies with careers in the health sector. In Subsection 

C, we investigate the potential labor market consequences of these education choices in more detail.  

 

[Table 8 here] 

 

B. Underlying Mechanisms and Heterogeneity 

Why does the gender composition in high school affect students’ decision to enter STEM fields? 

                                                             
31 Of all women who enter health sciences, 50 percent study nursing and midwifery, 20 percent study medicine, and 

13 percent study therapy and rehabilitation.  



 
26  

We shed some light on the underlying mechanism by investigating whether high school gender 

composition affects final high school GPA, which students use to apply for college.  We also split 

the sample based on parental educational level and field of education to learn more about whether 

some groups of students are more sensitive than others to the gender composition at their school.  

Considering heterogeneity in a parent’s field of education might help us understand whether STEM 

role models at home moderate or perpetuate the influence of peers.  

In order to assess the proposed mechanism, we investigate whether gender composition 

directly affects students’ study ability or preparedness to enter STEM studies. This appears 

plausible as the peer effects literature has shown that gender composition can impact students’ 

performance (Hill, 2017; Hoxby, 2000; Lavy and Schlosser, 2011). If the gender composition 

affects student performance differentially depending on the student’s own gender, this effect may 

in part rationalize the effects on the choice of college major. Table 9 provides estimation results 

supporting such a mechanism. Column (1) in Table 9 shows that the gender composition does not 

affect women’s GPAs; the point estimate is tiny and not statistically significant. On the contrary, 

male students achieve a higher GPA when they are exposed to a high school cohort with more 

female peers. Ten percentage points more female peers raises the GPA of male students by 1.3 

percent of a standard deviation.32 Our finding is consistent with Lavy & Schlosser (2011) and Hill 

(2017), which show that men in high school and college achieve better grades when there are more 

female peers in their cohort. Importantly, the majority of STEM college programs in Denmark do 

not have a binding high school GPA threshold for admission. This rules out the possibility that 

gender composition mechanically affects STEM enrollment through the impact on male students’ 

GPA. 

                                                             
32 All results in Table 9 are robust to the inclusion of cohort-by-school fixed effects. 
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The fact that male students achieve a higher GPA when a higher proportion of female peers 

are present may in part explain why fewer women and more men enter STEM studies in cohorts 

with more women. Given their higher GPAs, men might feel better prepared for STEM studies, 

which generally attract students with better high school grades. In contrast, women do not perform 

differently in high school, but might infer from the gender gap in high school GPA that they are 

less prepared or "suited" to enter STEM studies than their male peers. These results are consistent 

with Zölitz and Feld (2019), which also finds evidence of gender-specific performance responses 

that can rationalize students’ specialization choices. 

Table 9 further investigates whether the influence of female peers is similar for students 

with less-educated versus highly educated parents (Columns 3 and 4) and parents with STEM 

educations (Columns 5 and 6). Our motivation for splitting the sample by parental education is that 

students from nonacademic families may have less information about college majors and associated 

occupations and therefore be more sensitive to their peers’ choices. If peers can provide information 

about study fields that is not available to students who have non-college educated parents, we would 

expect students from families with less-educated parents to be more sensitive to the peer 

composition. Similarly, students with a STEM-educated father or mother might have better 

information about STEM studies and careers. If parents serve as strong role models that shape the 

choices of their children, we would expect that students with a (same sex) parent in STEM are less 

sensitive to peer influences. 

Column (3) shows estimates for the subsample of students who have parents without a 

college education, while Column (4) shows the same model for students who have one or two 

parents with a college degree.33 The results show that the influence of peers is twice as strong for 

                                                             
33 To facilitate comparison, Column (2) in Table 9 reports point estimates for the full sample from our preferred 

specification in Column (4) of Table 7. 
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women with parents without college education relative to women with college-educated parents. 

However, effects for men do not vary by parental education. One interpretation of these results is 

that women are more likely to follow the choices of their peers when they lack parents who have a 

greater capacity to help them find information about higher education or share their own college 

experiences. It is also possible that the study choice of parents who attended college provides an 

additional reference point that moderates the impact of peer effects in high school.  

We next investigate whether effects are heterogeneous for students with a father or mother 

with a STEM education. Column (5) shows that the effect of peers on STEM completion is similar 

for women with a father in STEM and somewhat weaker and not statistically significant for men 

with fathers in STEM. These results suggest that men who have a STEM father are less susceptible 

to peer influences. Column (6) shows that these results are mirrored for women with STEM 

mothers. Strikingly, women with STEM mothers are not significantly affected by the peer gender 

composition. The point estimate is in fact positive, which suggests that STEM mothers seem to 

counteract the effect of peers on their daughters’ specialization choice. While the group of 

individuals who have a mother in a STEM field is small, these results show that women who have 

a STEM mother as a role model are unaffected by peers. While these results remain suggestive, 

they could imply that access to a non-stereotypical same sex role model in the family is more 

powerful in shaping women’s STEM interest than the influence of high school peers. 

  

[Table 9 here] 

 

C. Long-Run Effects on Labor Market Outcomes 

Given our finding that high school gender composition affects the probability of enrolling in a 

STEM college major and completing such education, we now want to know whether these gender 
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peer effects also persist into occupational choice and whether they have consequences for labor 

earnings. 

 

[Table 10 here] 

 

Table 10 shows the impact of high school peers on labor market outcomes 15 and 20 years 

after high school entry (Columns 1 and 2). Fifteen years after high school entry, the median age of 

individuals is 29 years and most should have completed higher education and entered the labor 

market.34 Table 10 shows that peers’ influence on STEM field choice are persistent and closely 

mapped into women’s occupational choices. A larger share of female high school peers reduces the 

probability that women work in a STEM-related occupation, while it has no impact on men’s 

occupational choice. A 10 percentage-point increase in the proportion of female peers decreases 

the probability that women work in a STEM occupation 20 years after high school entry by 0.42 

percentage points—a 3.9 percent decrease from the baseline (Column 2). Men’s probability of 

working within STEM fields is similarly affected by the peer composition. This suggests that men 

who have more female peers become both more likely to enroll and graduate from STEM fields 

and are later more likely to end up working in STEM jobs. 

Given these long-run effects on occupational choice, we next test whether individuals’ labor 

earnings are affected. Does the proportion of female high school peers contribute to the gender 

wage gap? Columns (3) and (4) shed light on this question and show estimates for earnings 15 and 

20 years after high school entry. We find that the high school gender composition has lasting effects 

on women’s but not on men’s earnings. A 10 percentage point increase in the proportion of female 

                                                             
34 Brenøe and Lundberg (2017) show that after age 30, the share of a cohort that has completed a college or university 

degree is almost constant, indicating that by age 31 most individuals have completed higher education.  
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peers decreases women’s earnings 15 years after high school entry by 0.4 percentile points—nearly 

a one percent decline from the baseline—and has no impact on men’s earnings. Twenty years after 

high school entry, we still do not find any effect for men but an even larger effect of 0.66 for 

women. This increase in magnitude for women is in line with a similar increase in the effect on 

their STEM occupational participation. The estimate from our second strategy (Panel B), which 

includes cohort-by-school fixed effects, suggests that having a 10-percentage-point-larger share of 

female high school peers increases the gender earnings gap by 0.75 percentile points, corresponding 

to an increase of 5.4 percent (Column 4). Thus, our results show that high school gender 

composition has lasting impacts on the gender wage gap and one potential channel of this effect 

might be through the impact on STEM participation. 

 

D. Long-Run Effects on Fertility 

After having established that high school gender composition affects women’s participation in 

STEM and earnings, we next examine the impact of female peers on fertility. Although fertility is 

an interesting outcome in itself and female peers may directly shape fertility preferences, it is also 

possible that starting a STEM career influences the timing and number of children. A more 

competitive environment, longer working hours, and lower job flexibility might make it harder to 

combine children and work obligations for women in STEM careers. Because of differences in 

work environments in terms of family-friendliness, women in STEM fields may decide to have 

fewer or no children. In this case, changes in fertility could be interpreted as an unintended 

consequence of the high school gender composition that "pushed" some individuals in or out of 

STEM careers. Alternatively, if the high school gender composition directly affects fertility 

preferences, then part of the documented effects on the gender wage gap could be because having 

children reduces earnings for women (Kleven et al. 2018; Lundborg et al. 2017). In such case, 
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lower earnings for women should not be attributed to their lower probability of staying out of 

STEM fields when having more female peers, but  may instead be a consequence of the "career 

cost of children" (Adda et. al., 2017).  

 

[Table 11 here] 

 

 Table 11 documents the medium- and long-run consequences of high school gender 

composition on fertility. Columns (1)–(4) provide a detailed analysis on the timing of fertility 

effects on the extensive margin. While Column (1) shows little effect on fertility during the first 

five years after high school entry, we see a clear impact on the probability of having any children 

within 10 years after high school entry when individuals are around 26 years old and, for the most 

part, have entered the labor market (Column 2). We find that having a larger proportion of female 

high school peers increases women’s and decreases men’s probability of having any children by 

the age of 26. Column (4) shows that 20 years after high school entry, women are no longer less 

likely to have any children, but we still find a persistent effect for men.35 

 In Columns (5)–(8) of Table 11, we estimate effects at the intensive fertility margin by 

testing whether female peers affect the number of children individuals have. We find that women 

who had more female peers and thus were less likely to enter STEM careers, have more children 

by the age of 36. The increased fertility effect becomes visible shortly after the time of college 

completion and doubles within the first couple of years in the labor market (Column 7). By the time 

individuals are 36 years old, women exposed to 10 percentage points more female peers have on 

average 0.02 more children, an increase of about 1.0 percent from the baseline of 1.66 children 

                                                             
35 Restricting the sample to older cohorts reveals very similar effects on fertility through older ages. Therefore, the 

reported effects are close to effects on complete fertility, especially for women.   
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(Column 8). For men, we find that those exposed to more female peers have significantly fewer 

children by age 36.  

Our results show that the proportion of female peers has not only significant impacts on 

study choice, occupational choice, and earnings, but affects fertility as well. Strikingly, women 

have their first child earlier and increase the number of children they have when they have a larger 

share of female high school peers. If high school peers already affect men's and women’s fertility 

preferences before choosing their field of study, women’s shift from STEM to health-related studies 

(and the reverse for men) might partly be explained by changes in the desired number of children.  

These findings on fertility raise the question of whether the negative effect of having more 

female high school peers on women’s earnings documented in Table 10 is driven by women's non-

participation in STEM or by their increased fertility. Although we ultimately cannot distinguish 

between these mechanisms, our results are consistent with Kleven et al. (2018). Using Danish 

administrative data (similar to our data), they document that men and women experience very 

similar trends in labor earnings before the arrival of their first child. They show, however, that 

while women experience a large decline in earnings at the time of their first childbirth and still have 

earnings 20 percent below their initial level ten years later, men do not experience any change in 

their earnings after having children. Given the results of Kleven et al. (2018), our result that women 

who were exposed to more female peers have lower earnings could in part be due to changed 

fertility patterns. 

 Our finding that the peer gender composition causally affects the timing and number of 

children has previously not been documented in the existing literature. More broadly, our paper 

relates to a number of other studies documenting how the social environment shapes fertility 

decisions. Balbo and Barban (2014) use information on friendship networks in Add Health data 

and show that friends’ childbearing is positively related to individuals’ own probability of 
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becoming a parent. Kuziemko (2006) shows that the probability of having a child rises substantially 

in the two years after a niece or nephew is born to an individual’s sister, but finds no impact of 

children born to brothers. In light of these two papers, our finding that having more female peers 

increases women’s probability of having children earlier might, in part, be  because having more 

female peers (and likely more female friends) also implies having a network of people who have 

children sooner than when women have  proportionally more male peers. Moreover, Ciliberto et 

al. (2016) study fertility peer effects in the workplace in Denmark and show that fertility among 

workplace peers of similar age and education groups is positively correlated. Relatedly, Brenøe 

(2018) finds that the sibling sex composition does not affect the timing or number of children.  

 

VI. Conclusion 

Using Danish administrative data, this paper shows that the gender composition of high school 

peers affects students’ decisions to undertake STEM studies in higher education. Our results show 

that a higher proportion of female high school peers makes study choices more gender-

stereotypical. With more female peers present, women become less likely to enter STEM fields and 

more likely to enter Health Studies. Men also behave more gender-stereotypically and become 

more prone to enter STEM studies when exposed to more female peers. For women, these gender 

peer effects in study choice have remarkably persistent long-run effects on occupational choice, 

which remain visible 20 years after high school entry. Women who by chance were exposed to 

more female peers are less likely to work in STEM occupations and have lower earnings 20 years 

after high school entry. Strikingly, the high school gender composition also affects individuals’ 

fertility.    

Although our results are based on one country, our findings are consistent with the evidence 

provided by Hill (2017) as well as Zölitz and Feld (2019), who suggest that gender peer effects 
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shape preferences for study fields and thereby lead students to systematically different career 

trajectories. Our evidence on the underlying mechanisms remains suggestive, but indicates that a 

higher proportion of female peers affects the gender gap in high school GPA and may therefore 

foster the gender gap in STEM preparedness, which gives students reason to believe that they have 

a comparative advantage in a more gender-stereotypical college major. We also find that women 

with STEM-educated mothers are unaffected by the gender composition, which suggests that 

salient female role models may be able to counteract peer pressures in high school. Our findings 

emphasize that the social environment directly affects students’ decisions to specialize within 

STEM fields and educational and occupational choices more generally. Moreover, our results 

suggest that manipulating the gender composition in a given environment through affirmative 

action policies to achieve gender balance may have adverse and unintended consequences for 

fertility, gender segregation in college majors, and the labor market. 
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TABLES 

 

 
Table 1: Descriptive Statistics 

  Women Men 

 N Mean SD N Mean SD 

  (1) (2) (3) (4) (5) (6) 

       
Panel A: Student outcome variables       
Any college enrollment  81820 0.794 0.404 100391 0.784 0.411 

Any STEM enrollment 81820 0.210 0.407 100391 0.378 0.485 

Any Science/Math enrollment 81820 0.118 0.323 100391 0.131 0.338 

Any Technology/Engineering enrollment 81820 0.104 0.306 100391 0.279 0.448 

Any Health enrollment 81820 0.268 0.443 100391 0.063 0.242 

 
      

Any college completion  81820 0.710 0.454 100391 0.650 0.477 

Highest completed degree within STEM 81820 0.135 0.342 100391 0.253 0.435 

Highest completed degree within Science/Math 81820 0.062 0.241 100391 0.056 0.229 

Highest completed degree within 

Technology/Engineering 
81820 0.073 0.260 100391 0.197 0.398 

Highest completed degree within Education 81820 0.075 0.264 100391 0.040 0.197 

Highest completed degree within Arts & Humanities 81820 0.058 0.234 100391 0.045 0.208 

Highest completed degree within Social Sciences 81820 0.049 0.215 100391 0.062 0.242 

Highest completed degree within Business, Admin, 

Law 
81820 0.093 0.290 100391 0.134 0.341 

 
      

STEM occupation 15 years after high school entry 81270 0.103 0.304 99752 0.246 0.431 

STEM occupation 20 years after high school entry 80114 0.109 0.312 98126 0.255 0.436 

Annual labor earnings 15 years after high school entry 81265 241.944 133.320 99747 311.796 187.452 

Annual labor earnings 20 years after high school entry 80108 327.915 167.152 98121 454.849 272.011 

Earnings percentile by cohort 15 years after HS entry 81265 52.2 22.9 99747 62.6 26.3 

Earnings percentile by cohort 20 years after HS entry 80108 56.6 23.7 98121 70.6 26 

 
      

Any children 5 years after HS entry 81820 0.019 0.136 100391 0.007 0.081 

Any children 10 years after HS entry 81820 0.208 0.406 100391 0.108 0.310 

Any children 15 years after HS entry 81820 0.611 0.488 100391 0.444 0.497 

Any children 20 years after HS entry 81820 0.796 0.403 100391 0.683 0.465 

# of children 5 years after HS entry 81820 0.020 0.151 100391 0.007 0.088 

# of children 10 years after HS entry 81820 0.259 0.549 100391 0.127 0.392 

# of children 15 years after HS entry 81820 1.015 0.965 100391 0.670 0.857 

# of children 20 years after HS entry 81820 1.656 1.066 100391 1.317 1.080 
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Table 1: Descriptive Statistics  – continued    

       
Panel B: Student-level background variables       
Mother has tertiary education 81820 0.3557 0.4787 100391 0.3911 0.488 

Mother has upper secondary education 81820 0.3696 0.4827 100391 0.3648 0.4814 

Mother has less than upper secondary education 81820 0.2558 0.4363 100391 0.2208 0.4148 

Mother in STEM field 81820 0.056 0.230 100391 0.054 0.225 

Father has tertiary education 81820 0.3759 0.4844 100391 0.4305 0.4951 

Father has upper secondary education 81820 0.3716 0.4832 100391 0.3526 0.4778 

Father has less than upper secondary education 81820 0.2053 0.404 100391 0.1602 0.3668 

Father in STEM field 81820 0.343 0.475 100391 0.323 0.468 

First-generation immigrant 81820 0.008 0.091 100391 0.012 0.107 

Second-generation immigrant 81820 0.006 0.075 100391 0.008 0.088 

Child is adopted 81820 0.009 0.095 100391 0.007 0.084 

Mother's age at child’s birth 81052 26.429 4.769 99156 26.563 4.752 

Mother <22 years at child’s birth 81052 0.141 0.348 99156 0.133 0.340 

Firstborn 81820 0.505 0.500 100391 0.516 0.500 

Number of siblings 81689 1.472 0.908 100077 1.436 0.901 

Lives with both parents at age 10 81820 0.861 0.346 100391 0.841 0.366 

              

       
Panel C: School-level variables       
Proportion female peers 81820 0.454 0.066 100391 0.447 0.067 

Number of students in cohort 81820 107.878 30.776 100391 108.470 31.053 

Cohort 81820 1987 4.338 100391 1987 4.345 

Number of feeding municipalities 81820 6.330 3.304 100391 6.305 3.215 

2+ high schools in municipality 81820 0.446 0.497 100391 0.459 0.498 

              

 

NOTE: Annual labor earnings are measured in thousand Danish krones (1 USD = 6.6 DKK). Annual labor earnings are adjusted 

for 2015 prices. 
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Table 2: Balancing Test I: Does Student Gender Predict Proportion of Female Peers? 

  Dependent variable:  Proportion female peers in high school cohort 

  (1) (2) (3) (4) (5) (6) (7) (8) 

         
Female  0.0009 0.0014 0.0009 0.0012 0.0008 0.0012 0.0007 0.0011 

 (0.0013) (0.0010) (0.0009) (0.0009) (0.0013) (0.0010) (0.0009) (0.0009) 

         
Observations 182211 182211 182211 182211 182211 182211 182211 182211 

p-value of "Female" coefficient 0.491 0.186 0.344 0.174 0.521 0.237 0.443 0.230 

High school and cohort fixed 

effects 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Individual-level and high 

school-level controls 
- - - - ✓ ✓ ✓ ✓ 

F-test for joined significance of 

individual level variables 
    0.465 0.582 0.270 0.324 

School-specific time trends - linear quadratic cubed - linear quadratic cubed 

 

NOTE: The dependent variable in all columns is the proportion of female peers in the high school cohort of an individual. All 

columns include cohort fixed effects and school fixed effects. Following the Guryan, Kroft, and Notowidigdo (2009) correction 

method, we control for the leave-out mean of the proportion of female peers across cohorts within the school in all columns. School 

level controls included in Columns (5)–(8) include an indicator if any student in the cohort is older than 20 years at high school 

entry, dummies for number of students without information on gender (ranging from 0 to 2), indicators for large changes in cohort 

size compared to previous years, the female share in the language track, an indicator if the high school has no language track, 

indicators for exposure to experiment on course curriculum, and cubed cohort size.  
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Table 3: Balancing Test II 

Does Proportion of Female Peers Predict Student Background Characteristics? 

  (1) (2) (3) (4) (5)   (6) 

  
          

  

 Across all 

models 

        

Number of performed tests 38 38 38 38 38  190 

Number significant at 1 percent level 1 1 0 0 0  2 

Number significant at 5 percent level 1 1 0 1 1  4 

Number significant at 10 percent level 4 5 2 4 2  17 

        
Share significant at 1 percent 0.026 0.026 0.000 0.000 0.000  0.011 

Share significant at 5 percent 0.026 0.026 0.000 0.026 0.026  0.021 

Share significant at 10 percent 0.105 0.132 0.053 0.105 0.053  0.089 

        

School level controls - ✓ ✓ ✓ ✓ 
  

School-specific time trends - - linear quadratic cubed     

 

NOTE: This Table is based on 190 separate OLS regressions shown in Appendix Table A1. All regressions include cohort fixed 

effects and school fixed effects. School level controls included in Columns (2)–(5) include an indicator if any student in the cohort 

is older than 20 years at high school entry, dummies for number of students without information on gender (ranging from 0 to 2), 

indicators for large changes in cohort size compared to previous years, the female share in the language track, an indicator if the 

high school has no language track, indicators for exposure to experiment on course curriculum, and cubed cohort size. Standard 

errors are clustered at the school-cohort level. 
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Table 4: Balancing Test III 

School Level Autocorrelation in the Proportion of Female Students 

For what proportion of schools does the proportion of female students in t-1 significantly predict the proportion female students in t? 

Proportion of school coefficients 

(1) (2) (3) (4) 

  Across all 

models 

       

Significant at 1 percent level 1.57% 0.79% 0.79% 0.79%  0.98% 

Significant at 5 percent level 2.36% 2.36% 3.15% 5.51%  3.35% 

Significant at 10 percent level 6.30% 5.51% 8.66% 14.96%  8.86% 

       

School-specific time trends - linear quadratic cubed     

 

NOTE: This table provides summary statistics of significance for 127 separate bivariate school-level regressions that only include 

the respective school-specific trend variable(s).  
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Table 5: Correlation between Proportion of Female Peers in Math and Language Track 

 Proportion female peers in language track 

 (1) (2) (3) 

    

Proportion female peers in language track -0.015 -0.017 -0.035 

 (0.027) (0.026) (0.026) 

    

N 1866 1866 1866 

Mean 0.449 0.449 0.449 

    

Individual & peer level controls - ✓ ✓ 

School-specific time trends (linear) - - ✓ 

NOTE: The level of observation is cohort-by-school. All regressions include school and cohort fixed effects. In total, 11 school-

cohorts in the sample do not have the language track (corresponding to 727 students). Standard errors clustered at the school level 

are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 

 

  



 
44  

Table 6: Impact of High School Gender Composition  School Track and Cohort on STEM 

Enrollment and STEM Completion 

Panel A: Dependent variable: STEM enrollment  

 (1) (2) (3) (4) 

     

Female * Proportion female peers in math track -0.141***  -0.132***  

 (0.026)  (0.026)  
Male * Proportion female peers in math track 0.089***  0.081***  

 (0.027)  (0.028)  
Female * Proportion female peers in language track  -0.074*** -0.062**  

  (0.026) (0.026)  
Male * Proportion female peers in language track  0.094*** 0.080***  

  (0.027) (0.027)  
Female * Proportion female peers in school cohort    -0.118*** 

    (0.033) 

Male * Proportion female peers in school cohort    0.107*** 

    (0.034) 

Female -0.062*** -0.031 0.044 -0.036 

 (0.016) (0.029) (0.032) (0.025) 

     
     
Observations 181484 181484 181484 181484 

Mean dependent variable women 0.210 0.210 0.210 0.210 

Mean dependent variable men 0.378 0.378 0.378 0.378 

p-values of test for gender equality of  

"Proportion female peers" 
<.0001 <.0001 <.0001 <.0001 

     

Panel B: Dependent Variable: STEM Completion     

     

Female* Proportion female peers in math track -0.100***  -0.093***  

 (0.022)  (0.022)  

Male* Proportion female peers in math track 0.095***  0.089***  

 (0.023)  (0.023)  

Female* Proportion female peers in language track  -0.055** -0.045**  

  (0.022) (0.022)  

Male* Proportion female peers in language track  0.066*** 0.054**  

  (0.024) (0.024)  

Female* Proportion female peers in school cohort    -0.073*** 

    (0.028) 

Male* Proportion female peers in school cohort    0.099*** 

    (0.030) 

Female -0.030** -0.021 0.043 -0.019 

 (0.013) (0.026) (0.028) (0.021) 

     

Observations 181484 181484 181484 181484 

Mean dependent variable women 0.135 0.135 0.135 0.135 

Mean dependent variable men 0.253 0.253 0.253 0.253 

p-values of test for gender equality of  

“Proportion female peers” 
<.0001 <.0001 <.0001 <.0001 

NOTE: The dependent variable in all columns of Panel A is an indicator for whether the student enrolled in a STEM program in 

college within 20 years after high school entry. The dependent variable in all columns of Panel B is an indicator for whether the 

student’s highest completed education is at least at the college level and is within STEM. All models control for cohort fixed effects, 

school fixed effects, cubed cohort size, indicators for large cohort size changes compared to previous years, as well as a large set of 

individual and leave-out-mean peer controls shown in Panel B of Table 1. All results are robust to the inclusion of cohort-by-school 

fixed effects. The sample excludes those students attending a school-cohort without a language track (11 school-cohorts, 

corresponding to 727 students), which explains the difference in sample sizes between this table and Table 7. Standard errors 

clustered at the school-cohort level are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 7: The Impact of Peer Gender on STEM Enrollment and STEM Degree Completion 
Panel A: Dependent Variable: STEM Enrollment 

  (1) (2) (3) (4) (5) (6) (7) 

        
Female * Proportion female peers -0.211*** -0.155*** -0.139*** -0.135*** -0.138*** -0.148*** -0.233*** 

 (0.026) (0.026) (0.026) (0.026) (0.026) (0.027) (0.036) 

Male * Proportion female peers 0.056** 0.104*** 0.086*** 0.091*** 0.092*** 0.081***  

 (0.028) (0.028) (0.027) (0.027) (0.027) (0.028)  
Female -0.047*** -0.049*** -0.064*** -0.063*** -0.062*** -0.062*** -0.061*** 

 (0.017) (0.017) (0.016) (0.016) (0.016) (0.016) (0.016) 

        
Observations 182211 182211 182211 182211 182211 182211 182211 

Mean dependent variable women 0.210 0.210 0.210 0.210 0.210 0.210 0.210 

Mean dependent variable men 0.378 0.378 0.378 0.378 0.378 0.378 0.378 

p-values of test for gender equality of 

"Proportion female peers" 
<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 - 

        

School fixed effects 
- ✓ ✓ ✓ ✓ ✓  

Cohort fixed effects - ✓ ✓ ✓ ✓ ✓  

Cohort controls - ✓ ✓ ✓ ✓ ✓  

Individual & peer level controls - - ✓ ✓ ✓ ✓ ✓ 

School-specific time trends - - - linear quadratic cubed - 

Cohort-by-School fixed effects - - - - - - ✓ 

 

 

       
Panel B: Dependent Variable: STEM Completion 

 

        
Female * Proportion female peers -0.104*** -0.112*** -0.097*** -0.097*** -0.099*** -0.110*** -0.197*** 

 (0.021) (0.022) (0.022) (0.022) (0.022) (0.023) (0.030) 

Male * Proportion female peers 0.122*** 0.106*** 0.093*** 0.092*** 0.093*** 0.082***  

 (0.025) (0.024) (0.023) (0.023) (0.023) (0.024)  
Female -0.016 -0.019 -0.032** -0.033** -0.031** -0.031** -0.030** 

 (0.014) (0.014) (0.013) (0.013) (0.013) (0.013) (0.013) 

        
Observations 182211 182211 182211 182211 182211 182211 182211 

Mean dependent variable women 0.135 0.135 0.135 0.135 0.135 0.135 0.135 

Mean dependent variable men 0.253 0.253 0.253 0.253 0.253 0.253 0.253 

p-values of test for gender equality of 

"Proportion female peers" 
<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 - 

        
School fixed effects - ✓ ✓ ✓ ✓ ✓  

Cohort fixed effects - ✓ ✓ ✓ ✓ ✓  

Cohort controls - ✓ ✓ ✓ ✓ ✓  

Individual & peer level controls - - ✓ ✓ ✓ ✓ ✓ 

School-specific time trends - - - linear quadratic cubed - 

Cohort-by-School fixed effects - - - - - - ✓ 

NOTE: The dependent variable in all columns of Panel A is an indicator for whether the student enrolled in a STEM program in 

college within 20 years after high school entry. The dependent variable in all columns of Panel B is an indicator for whether the 

student’s highest completed education is at least at the college level and is within STEM.  Column (7) does not include peer-level 

variables because these are highly collinear with the cohort-by-high school fixed effects. Standard errors clustered at the school-

cohort level are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 8: Impact of High School Gender Composition on Graduation in Various Fields 

Panel A: STEM Subfields Biology Math / Physics 
ICT / 

Engineering 

Manufacturing / 

Construction 

  (1) (2) (3) (4) 

     
Female * Proportion female peers -0.026** -0.028*** -0.019 -0.024** 

 (0.010) (0.010) (0.014) (0.010) 

Male * Proportion female peers 0.014* 0.027** 0.042** 0.010 

 (0.007) (0.011) (0.019) (0.011) 

Female 0.039*** 0.012** -0.082*** -0.000 

 (0.005) (0.006) (0.010) (0.006) 

     
Observations 182211 182211 182211 182211 

Mean dependent variable women 0.035 0.027 0.044 0.029 

Mean dependent variable men 0.015 0.040 0.153 0.045 

p-values of test for gender equality of 

"Proportion female peers" 

0.001 <.0001 0.006 0.014 

Panel B: Other Fields of Study 
Health 

Sciences 
Education 

Arts / 

Humanities 

Social 

Sciences 

Business / 

Law 

  (1) (2) (3) (4) (5) 

      
Female * Proportion female peers 0.119*** 0.021 -0.005 -0.017 0.003 

 (0.024) (0.016) (0.014) (0.013) (0.018) 

Male * Proportion female peers -0.070*** -0.038*** 0.009 0.007 -0.007 

 (0.015) (0.012) (0.011) (0.013) (0.019) 

Female 0.084*** 0.007 0.020*** -0.001 -0.044*** 

 (0.012) (0.008) (0.007) (0.007) (0.011) 

      
Observations 182211 182211 182211 182211 182211 

Mean dependent variable women 0.217 0.075 0.058 0.049 0.093 

Mean dependent variable men 0.047 0.040 0.045 0.062 0.134 

p-values of test for gender equality of 

"Proportion female peers" 
<.0001 0.001 0.397 0.149 0.650 

 

NOTE: All models control for cohort fixed effects, school fixed effects, cubed cohort size, indicators for large cohort size changes 

compared to previous years as well as a large set of individual and leave-out-mean peer controls shown in Panel B of Table 1. 

Standard errors clustered at the school-cohort level are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 9: Impact of High School Gender Composition on High School GPA and 

Heterogeneity by Parental Background 

Subgroup: Full sample   
No parent has 

college degree 

1+ parent has 

college degree 
  

Father has 

STEM 

education 

Mother has 

STEM 

education 

Dependent variable: 

Std. High 

School 

GPA 

STEM 

completion 
 STEM 

completion 

STEM 

completion 
 STEM 

completion 

STEM 

completion 

  (1) (2)   (3) (4)   (5) (6) 

         
Female * Proportion female peers 0.005 -0.097***  -0.129*** -0.070**  -0.115*** 0.077 

 (0.062) (0.022)  (0.028) (0.030)  (0.037) (0.099) 

Male * Proportion female peers 0.130** 0.093***  0.091*** 0.090***  0.045 0.226** 

 (0.060) (0.023)  (0.032) (0.030)  (0.041) (0.101) 

Female 0.058 -0.032**  -0.018 -0.048***  -0.066*** -0.038 

 (0.038) (0.013)  (0.019) (0.017)  (0.023) (0.057) 

         
Observations 159603 182211  83783 98428  60544 9955 

Mean dependent variable women -0.011 0.135  0.165 0.103  0.158 0.207 

Mean dependent variable men 0.007 0.253  0.280 0.217  0.298 0.307 

p-values of test for gender 

equality of "Proportion female 

peers" 

0.110 <.0001   <.0001 <.0001   0.002 0.241 

 

NOTE: The dependent variable in column (1) is the grade point average (GPA) at the end of high school, standardized with a mean 

of zero and standard deviation of one, and is observed for those students who completed general academic high school. All models 

control for cohort fixed effects, school fixed effects, cubed cohort size, indicators for large cohort size changes compared to previous 

years, as well as a large set of individual and leave-out-mean peer controls shown in Panel B of Table 1. In the sample, 6 percent of 

mothers and 32 percent of fathers hold STEM degrees. Standard errors clustered at the school-cohort level are in parentheses. * p < 

0.1, ** p < 0.05, *** p < 0.01. 
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Table 10: Impact of High School Gender Composition on Labor Market Outcomes 
 

Dependent variable:  Working in STEM occupation Earnings percentile 

Panel A:  

Cohort and School fixed effects 
11–15 years after 

HS entry 

16–20 years after 

HS entry 

11–15 years after 

HS entry 

16–20 years after 

HS entry 
 (1) (2) (3) (4) 

     
Female * Proportion female peers -0.028 -0.042** -4.008*** -6.608*** 

 (0.019) (0.020) (1.379) (1.492) 

Male * Proportion female peers 0.027 0.038* -1.511 -0.126 

 (0.022) (0.023) (1.417) (1.449) 

Female -0.123*** -0.116*** -9.807*** -11.654*** 

 (0.012) (0.013) (0.855) (0.912) 

     
Observations 181022 178240 181012 178229 

Mean dependent variable women 0.103 0.109 52.178 56.633 

Mean dependent variable men 0.246 0.255 62.567 70.615 

p-values of test for gender equality 

of "Proportion female peers" 
0.037 0.004 0.177 0.001 

 

Dependent variable: Working in STEM occupation Earnings percentile 

Panel B:  

Cohort-by-School fixed effects  
11–15 years after 

HS entry 

16–20 years after 

HS entry 

11–15 years after 

HS entry 

16–20 years after 

HS entry 

      

     
Female * Proportion female peers -0.059** -0.088*** -3.239* -7.508*** 

 (0.027) (0.029) (1.892) (2.032) 

Female -0.122*** -0.113*** -9.462*** -11.196*** 

 (0.012) (0.013) (0.864) (0.917) 

     
Observations 181022 178240 181012 178229 

Mean dependent variable women 0.103 0.109 52.178 56.633 

Mean dependent variable men 0.246 0.255 62.567 70.615 

 

NOTE: The dependent variable in columns (1) and (2) is an indicator for working in a STEM occupation; it takes the value of one 

if the individual for at least half the period works in a STEM occupation within the Danish version of ISCO codes 21, 25, 31, or 35 

(Science and Engineering Professionals, Information and Communications Technology Professionals, Science and Engineering 

Associate Professionals, or Information and Communications Technicians). The dependent variable in columns (3) and (4) is the 

average of the individual’s labor earnings percentile during the five-year period, calculated by year of birth and age using the entire 

Danish population as a reference group. All models in Panel A control for school fixed effects, cubed cohort size, indicators for 

large cohort size changes compared to previous years, as well as a large set of individual and leave-out-mean peer controls shown 

in Panel B of Table 1. All models in Panel B control for cohort-by-school fixed effects and individual controls. Standard errors 

clustered at the school-cohort level are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 11: Impact of High School Gender Composition on Fertility 

Panel A:  
Dependent variable: Any children    Dependent variable: Number of children  

Cohort and School fixed effects  5 years 

after HS 

entry 

10 years after 

HS entry 

15 years after 

HS entry 

20 years after 

HS entry 
 5 years after 

HS entry 

10 years after 

HS entry 

15 years after 

HS entry 

20 years after 

HS entry 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

 
         

Female * Proportion female peers 0.009 0.065*** 0.023 0.013  0.011 0.103*** 0.210*** 0.168*** 

 (0.008) (0.022) (0.029) (0.025)  (0.008) (0.030) (0.053) (0.062) 

Male * Proportion female peers -0.009* -0.065*** -0.085*** -0.051**  -0.007 -0.079*** -0.177*** -0.152** 

 (0.005) (0.018) (0.027) (0.025)  (0.005) (0.023) (0.048) (0.060) 

Female 0.004 0.040*** 0.114*** 0.081***  0.005 0.047*** 0.161*** 0.181*** 

 (0.004) (0.012) (0.017) (0.015)  (0.004) (0.016) (0.030) (0.035) 

          
Observations 182211 182211 182211 182211  182211 182211 182211 182211 

Mean dependent variable women 0.019 0.208 0.611 0.796  0.02 0.259 1.015 1.656 

Mean dependent variable men 0.007 0.108 0.444 0.683  0.007 0.127 0.67 1.317 

p-values of test for gender equality 

of "Proportion female peers" 
0.027 <.0001 0.003 0.044  0.042 <.0001 <.0001 <.0001 

Panel B:  
Dependent variable: Any children    Dependent variable: Number of children  

Cohort-by-School fixed effects 5 years after 

HS entry 

10 years after 

HS entry 

15 years after 

HS entry 

20 years after 

HS entry 
 5 years after 

HS entry 

10 years after 

HS entry 

15 years after 

HS entry 

20 years after 

HS entry 

          
Female * Proportion female peers 0.017*** 0.126*** 0.096*** 0.056*  0.017* 0.181*** 0.366*** 0.294*** 

 -0.008 -0.027 -0.037 -0.032  -0.009 -0.035 -0.067 -0.079 

Female 0.004 0.042*** 0.120*** 0.085***  0.005 0.048*** 0.172*** 0.194*** 

 -0.004 -0.012 -0.017 -0.015  -0.004 -0.016 -0.03 -0.035 

 
    

 
    

Observations 182211 182211 182211 182211  182211 182211 182211 182211 

Mean dependent variable women 0.019 0.208 0.611 0.796  0.02 0.259 1.015 1.656 

Mean dependent variable men 0.007 0.108 0.444 0.683   0.007 0.127 0.67 1.317 

 

NOTE: Five years after high school entry, individuals should be at the beginning of their college studies.  Ten years after high school entry, individuals are around 26 years old and 

should have completed college education. Fifteen years after high school, individuals have been in the labor market for approximately five years if they attended college. Twenty years 

after high school, individuals are about 36 years old. All models in Panel A control for cohort fixed effects, school fixed effects, cubed cohort size, indicators for large cohort size changes 

compared to previous years as well as a large set of individual and leave-out-mean peer controls shown in Panel B of Table 1. All models in Panel B include cohort-by-school fixed 

effects and individual controls. Standard errors clustered at the school-cohort level are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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FIGURES 

 
 

 

Figure 1: Correlation between Proportion of Female Peers and STEM Degree Completion 

 
NOTE: The graph shows a bin scatter plot by gender using 30 bins. STEM Degree is measured as highest completed degree at the 

college level or higher 20 years after high school entry. 
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Figure 2: Year-to-Year Variation in the Proportion of Female High School Peers Within 

High Schools 

 

 
NOTE: This figure illustrates the year-to-year variable in the proportion of female high school peers within high schools, plotted 

along with the normal distribution. More precisely, it plots the predicted proportion of female peers at the school-cohort level from 

a regression regressing the proportion of female peers on cohort and school fixed effects and school-specific linear time trends. 

Each high school-cohort represents one observation. 
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APPENDIX 
 

Table A1: Complete Balancing Tests Including All Individual Level Variables 

Based on 190 separate regressions (1) (2) (3) (4) (5) 

      
Age at high school entry -0.001 -0.002 0.002 0.008 0.018 

 (0.032) (0.032) (0.029) (0.029) (0.029) 

Mother has less than upper-secondary education 0.024 0.024 0.004 0.004 -0.011 

 (0.020) (0.020) (0.018) (0.019) (0.019) 

Mother has upper-secondary education -0.005 -0.005 -0.006 0.001 0.003 

 (0.023) (0.023) (0.021) (0.022) (0.022) 

Mother has tertiary education -0.020 -0.019 0.005 -0.002 0.013 

 (0.021) (0.021) (0.021) (0.021) (0.021) 

Mother education unknown 0.001 0.000 -0.003 -0.003 -0.006 

 (0.006) (0.006) (0.006) (0.006) (0.006) 

Father has less than upper secondary education 0.019 0.017 -0.008 -0.013 -0.015 

 (0.017) (0.017) (0.016) (0.016) (0.017) 

Father has upper secondary education 0.014 0.020 0.016 0.020 0.019 

 (0.023) (0.023) (0.022) (0.022) (0.023) 

Father has tertiary education -0.018 -0.021 0.009 0.013 0.014 

 (0.022) (0.022) (0.021) (0.021) (0.022) 

Father education unknown -0.015 -0.015 -0.017* -0.019* -0.018* 

 (0.010) (0.010) (0.010) (0.010) (0.010) 

      
Mother Education field 0.005 0.005 0.013 0.014 0.018 

 (0.012) (0.012) (0.012) (0.012) (0.013) 

Mother Humanities field -0.015* -0.015* -0.011 -0.014* -0.010 

 (0.008) (0.008) (0.008) (0.008) (0.008) 

Mother Social Sciences field 0.001 -0.000 0.004 0.005 0.006 

 (0.005) (0.005) (0.005) (0.005) (0.005) 

Mother Business, Admin, and Law field -0.033* -0.033* -0.028 -0.026 -0.020 

 (0.019) (0.019) (0.018) (0.018) (0.018) 

Mother STEM field -0.003 -0.002 0.002 0.003 0.002 

 (0.009) (0.009) (0.009) (0.009) (0.010) 

Mother Life Sciences field 0.000 0.000 0.000 0.000 0.001 

 (0.002) (0.002) (0.002) (0.002) (0.002) 

Mother Health and Welfare field 0.008 0.011 0.012 0.008 0.007 

 (0.019) (0.019) (0.019) (0.019) (0.019) 

Mother Service field 0.001 0.001 -0.000 0.001 0.002 

 (0.006) (0.006) (0.006) (0.006) (0.006) 

Mother no field 0.034* 0.033 0.012 0.013 0.001 

 (0.020) (0.020) (0.019) (0.019) (0.019) 

      

Individual-level and high school-level controls 
- ✓ ✓ ✓ ✓ 

School-specific time trends - - linear quadratic cubed 
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Table A1— continued  
  (1) (2) (3) (4) (5) 

Father Education field 0.001 0.001 0.007 0.009 0.007 

 (0.011) (0.011) (0.011) (0.011) (0.011) 

Father Humanities field -0.019*** -0.020*** -0.010 -0.009 -0.008 

 (0.007) (0.007) (0.007) (0.007) (0.007) 

Father Social Sciences field -0.008 -0.009* -0.008 -0.009* -0.008 

 (0.005) (0.005) (0.005) (0.005) (0.005) 

Father Business, Admin, and Law field 0.010 0.012 0.022 0.026* 0.023 

 (0.015) (0.015) (0.015) (0.015) (0.016) 

Father STEM field 0.016 0.017 0.011 0.005 0.008 

 (0.021) (0.021) (0.020) (0.020) (0.021) 

Father Life Sciences field 0.004 0.005 0.007 0.014** 0.013* 

 (0.007) (0.007) (0.007) (0.007) (0.007) 

Father Health and Welfare field -0.008 -0.008 -0.004 -0.004 -0.002 

 (0.010) (0.010) (0.010) (0.010) (0.010) 

Father Service field 0.005 0.005 0.004 0.001 -0.003 

 (0.009) (0.009) (0.009) (0.009) (0.009) 

Father No field 0.015 0.015 -0.014 -0.017 -0.017 

 (0.017) (0.018) (0.016) (0.017) (0.017) 

Child is adopted 0.004 0.004 0.003 0.003 0.003 

 (0.004) (0.004) (0.004) (0.004) (0.004) 

Lives with both parents at age 10 0.006 0.010 0.010 0.006 0.005 

 (0.015) (0.015) (0.015) (0.015) (0.014) 

First-generation immigrant 0.001 0.000 -0.004 -0.001 -0.001 

 (0.005) (0.005) (0.005) (0.004) (0.005) 

Second-generation immigrant 0.004 0.003 -0.004 -0.003 -0.004 

 (0.005) (0.005) (0.004) (0.004) (0.004) 

Firstborn -0.039* -0.041* -0.038* -0.024 -0.009 

 (0.022) (0.022) (0.022) (0.022) (0.023) 

Number of siblings 0.007 -0.004 -0.028 -0.038 -0.059 

 (0.039) (0.039) (0.038) (0.039) (0.041) 

Number of siblings squared -0.029 -0.100 -0.345 -0.402 -0.569** 

 (0.267) (0.266) (0.257) (0.265) (0.282) 

Mother's age at birth 0.267 0.308 0.274 0.063 -0.035 

 (0.265) (0.265) (0.250) (0.248) (0.253) 

Mother's age at birth squared 15.921 17.982 14.983 7.406 1.763 

 (13.486) (13.493) (12.545) (12.380) (12.625) 

Mother <22 years at birth -0.013 -0.015 -0.011 -0.001 0.006 

 (0.016) (0.016) (0.016) (0.016) (0.016) 

Mother's age unknown 0.003 0.003 0.001 0.005 0.004 

 (0.005) (0.005) (0.005) (0.005) (0.005) 

School level controls 
- ✓ ✓ ✓ ✓ 

School-specific time trends - - linear quadratic cubed 

NOTE: Each cell in this table is estimated with a separate regression including school and cohort fixed effects. The dependent 

variable in each cell is the proportion of female high school peers. School level controls included in Columns (2)–(5) are an indicator 

if any student in the cohort is older than 20 years at high school entry, dummies for number of students without information on 

gender (ranging from 0 to 2), indicators for large changes in cohort size compared to previous years, the female share in the language 

track, an indicator if the high school has no language track, indicators for exposure to experiment on course curriculum, and cubed 

cohort size. Standard errors in parentheses are clustered at the school-cohort level. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table A2: The Impact of Peer Gender on High School Graduation, College Enrollment, and 

Higher Education Degree Completion 

  (1) (2) (3) 

  

Completed academic 

high school  

Ever enrolled in higher 

education 

Completed higher 

education degree 

Female * Proportion female peers 0.017 -0.010 0.000 

 (0.017) (0.024) (0.027) 

Male * Proportion female peers 0.017 -0.030 -0.035 

 (0.017) (0.022) (0.026) 

Female 0.024** 0.005 0.045*** 

 (0.010) (0.014) (0.016) 

N 182211 182211 182211 

Mean 0.909 0.789 0.677 

p-values of test for gender equality of 

"Proportion female peers" 
0.992 0.523 0.315 

 
NOTE: The dependent variable in Column (1) is equal to one if the student completed academic high school within five years after 

high school entry. The dependent variable in Column (2) is equal to one if the student ever enrolled in college studies and the 

dependent variable in Column (3) is equal to one if the student ever completed any college education. All models control for school-

specific time trends, cohort fixed effects, school fixed effects, cubed cohort size, indicators for large cohort size changes compared 

to previous years as well as a large set of individual and leave-out-mean peer controls shown in Panel B of Table 1. Standard errors 

clustered at the school-cohort level are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 

 

 

 

 

Table A3: Robustness Check—Main Results by Number of Schools in the Municipality 

Subgroup Full sample 
Municipality with only 1 

high school 

Municipality with 2+ 

high schools 

Dependent variable: STEM completion STEM completion STEM completion 

  (1) (2) (3) 

    

Female * Proportion female peers -0.097*** -0.088*** -0.097*** 

 (0.022) (0.030) (0.032) 

Male * Proportion female peers 0.092*** 0.107*** 0.064** 

 (0.023) (0.032) (0.033) 

Female -0.033** -0.036* -0.037** 

 (0.013) (0.019) (0.019) 

    
Observations 182211 99599 82612 

Mean 0.200 0.200 0.199 

p-values of test for gender equality 

of "Proportion female peers" 
<.0001 0.001 0.046 

 
NOTE: All models control for school-specific time trends, cohort fixed effects, school fixed effects, cubed cohort size, 

indicators for large cohort size changes compared to previous years as well as a large set of individual and leave-out-mean 

peer controls shown in Panel B of Table 1. Standard errors clustered at the school-cohort level are in parentheses. * p < 0.1, 

** p < 0.05, *** p < 0.01. 
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Figure A1: High School Gender Composition and STEM Enrollment Non-Linear Effects 

 
NOTE: This figure shows point estimates obtained from OLS regression. Instead of including the continuous measure of the 

proportion of female high school peers interacted with the gender dummy, this regression includes five dummies for the high school 

gender composition interacted with gender. The dependent variable is STEM study enrollment. Vertical lines refer to the 95 percent 

confidence intervals. The model controls for school-specific linear time trends, cohort fixed effects, school fixed effects, cubed 

cohort size, indicators for large cohort size changes compared to previous years, as well as a large set of individual and leave-out-

mean peer controls shown in Panel B of Table 1.     
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Figure A2: High School Gender Composition and STEM Graduation – Non-Linear Effects 

 
NOTE: This figure shows point estimates obtained from OLS regression. Instead of including the continuous measure of the 

proportion of female high school peers interacted with the gender dummy, this regression includes five dummies for the high school 

gender composition interacted with gender. The dependent variable is STEM graduation. Vertical lines refer to the 95 percent 

confidence intervals. The model controls for school-specific linear time trends, cohort fixed effects, school fixed effects, cubed 

cohort size, indicators for large cohort size changes compared to previous years, as well as a large set of individual and leave-out-

mean peer controls shown in Panel B of Table 1.    




