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ABSTRACT

IZA DP No. 12563 AUGUST 2019

Assortative Mating on Education: 
A Genetic Assessment

We investigate assortative mating on education using a sample of couples from the Health 

and Retirement Study. We estimate a reduced-form linear matching function, which links 

wife’s education to husband’s education and both wife’s and husband’s unobservable 

characteristics. Using OLS we find that an additional year in husband’s education is 

associated with an average increase in wife’s education of 0.4 years. To deal with omitted 

variable bias due to unobservable characteristics, we use a measure of genetic propensity 

(polygenic score) for husband’s education as an instrumental variable. Assuming that 

our instrument is valid, our 2SLS estimate suggests that an additional year in husband’s 

education increases wife’s education by about 0.5 years. Since greater genetic propensity 

for educational attainment has been linked to a range of personality and cognitive skills, 

we allow for the possibility that the exclusion restriction is violated using the plausible 

exogenous approach by Conley et al. (2012). ‘True’ assortativeness on education cannot be 

ruled out, as long as one standard deviation increase in husband’s genetic propensity for 

education directly increases wife’s education by less than 0.2 years.
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1 Introduction

Assortative mating on education —that individuals with similar education match with

one another more frequently than would be expected under a random mating pattern or that

partners’ educational attainments are positively correlated— has been studied in economics

since the seminal work by Becker (1973). Many social scientists have documented a strong

and increasing educational homogamy (e.g., Bruze, 2011; Chiappori et al., 2009; Greenwood

et al., 2014; Schwartz and Mare, 2005), while Eika et al. (forthcoming) have shown that

assortative mating has been declining over time among college graduates, whereas the low-

educated have been increasingly sorting into internally homogeneous marriages.

Given that education is correlated with many other characteristics (e.g., cognitive ability,

parental background), assessing whether individuals ‘truly’ match on education —rather

than on other correlated characteristic(s)— and quantifying the extent of ‘real’ educational

assortativeness are relevant empirical challenges. For one thing, assortative mating can play

an important role in the transmission of advantage and disadvantage across generations

(e.g., Fernandez and Rogerson, 2001). In this paper, we estimate a reduced-form linear

matching function —which links education of the wife to education of the husband and the

unobservable characteristics of both spouses— using genetic data.

We use a polygenic score for husband’s educational attainment as an instrumental vari-

able for husband’s education. The polygenic score —a single quantitative measure of genetic

predisposition based on genetic variants present in the entire genome (see Plomin et al.,

2009)— is constructed to predict educational attainment of married individuals using data

from the Health and Retirement Study (HRS), building upon the recent findings from a

large scale GWAS of educational attainment (Lee et al., 2018), and following recent work

in economics (Barth et al., 2018; Papageorge and Thom, 2016).1

1Rather than focusing on a limited number of genetic variants, the polygenic scores (PSs) use the entire
information in the DNA (or a large proportion of it) to construct a measure of genetic predisposition to
higher educational attainment (Conley et al., 2015; Domingue et al., 2014; Plomin et al., 2009; Ward et al.,
2014).
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Our OLS estimates of the matching function show that an additional year in husband’s

education is associated with an average increase of 0.4 years in wife’s education. We also

find that a one standard deviation increase in husband’s educational attainment polygenic

score (EA PGS) increases husband’s education by about 0.6 years and wife’s education

by about half of this magnitude, 0.3. Our IV (2SLS) estimates of the matching function,

using husband’s EA PGS as the (excluded) instrument for wife’s education, suggest that an

additional year in husband’s education increases wife’s education by about 0.5 years.

While the educational attainment polygenic score (EA PGS) is a relevant instrument

for education and is considered to be randomly assigned at conception (Mendelian random-

ization), at least after accounting for population stratification, this is a necessary but not a

sufficient condition to use the EA PGS as a valid instrumental variable.2 Polygenic scores

for spousal education may affect own education above and beyond their effects on spousal

education, that is, polygenic scores for spousal education may affect the unobservable char-

acteristics in the matching function, and hence violate the exclusion restriction.3

Greater polygenic propensity for educational attainment has been linked to higher cog-

nitive aptitude, self-control, and interpersonal skills in childhood (Belsky et al., 2016; Ra-

binowitz et al., 2019), and more recently, to larger brains (Elliott et al., 2018),4 but also

to lower scores on the ADHD (attention deficit hyperactivity disorder) index (de Zeeuw

et al., 2014). Since intelligence and personality, amongst other attributes, are relevant in

the marriage market (Dupuy and Galichon, 2014; Lundberg, 2012), it is important to assess

the consequences of departing from the exclusion restriction.

To allow for the possibility that the exogeneity condition is violated, we relax the ex-

clusion restriction following the approach in Conley et al. (2012) whose implementation is
2As discussed by Beauchamp et al. (2011), the use of genetic markers as instrumental variables was

anticipated by Davey Smith and Ebrahim (2003) and pioneered in economic research by Ding et al. (2009),
who used genes as instrumental variables for health in studying the impact of health on academic outcomes.

3Many researchers argue that it is very unlikely (if not impossible) that any markers satisfying the
exclusion restriction will ever be found in many economic applications (Conley, 2009; Cawley et al., 2011).

4Brain size is positively related with cognitive scores (Elliott et al., 2018).

2



carefully discussed by Clarke and Matta (2018).5 In particular, we allow for the husband’s

EA PGS to have a direct effect on wife’s education. Assuming a positive direct effect smaller

than 0.2 –i.e., a one standard deviation increase in husband’s EA PGS directly increases

wife’s education by less than 0.2 years– we cannot rule out ‘true’ positive assortativeness

on education. In other words, it seems safe to conclude that people actually match on

education.

There is an extensive literature on educational assortative mating which tries to as-

sess the ‘real’ assortativeness, via adjusting for observable characteristics (Oreffice and

Quintana-Domeque, 2010; Chiappori et al., 2016), using within-siblings or within-twins

variation (Huang et al., 2009; Giuntella et al., 2019) or instrumental variables (Lefgren and

McIntyre, 2006).

Larsen et al. (2015) claim that using the variation in male educational attainment in-

duced by the WWII G.I. Bill may provide the most transparent identification strategy to

date: their findings suggest that the additional education received by returning veterans

caused them to “sort” into wives with significantly higher levels of education. While theirs

is an interesting identification strategy, it only exploits cohort variation.

Earlier work had studied the impact of male scarcity on marital assortative mating using

the large shock that WWI caused to the number of French men (Abramitzky et al., 2011),

used quarter of birth as a (weak) instrument for female education (Lefgren and McIntyre,

2006), or data on twins to assess assortative mating and how education is productive in mar-

riage (Huang et al., 2009) or, more recently, on siblings to assess how husband’s education

affects wife’s education (Giuntella et al., 2019).6

Our work is also related to studies on genetic assortativeness.7 These articles use genetic
5plausexog in STATA: https://ideas.repec.org/c/boc/bocode/s457832.html
6More generally an IV approach to instrument for market conditions, such as sex ratios, had been used

by Angrist (2002) and Charles and Luoh (2010), for instance.
7Using data from the HRS, Domingue et al. (2014) find that spouses are more genetically similar than

two people chosen at random. Guo et al. (2014) also find a positive similarity in genomic assortment in
married couples by using the HRS and the Framingham Heart study. Conley et al. (2016), however, show
that the increased level of assortative mating in education observed across birth cohorts from 1920 to 1955
does not correspond to an increase in similarity at the genotypic level.
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information from large scale GWASs that are also the core of our analysis. While they

are instrumental for our analysis, our work departs from them, if only because our focus

is assortative mating on education, and not spousal resemblance at the genotypic level.8

Moreover, we find that genetic assortativeness on education polygenic scores is much smaller

than assortativeness on education, and that it essentially disappears after controlling for

education and population stratification, consistent with recent work by Barth et al. (2018).

Our research also broadly speaks to the increasing “genoeconomics” literature that stud-

ies the genetic determinants of socioeconomic outcomes (Beauchamp et al., 2011; Benjamin

et al., 2007; Conley et al., 2014). While a few studies in economics have used genome-wide

polygenic score as an instrumental variable (see also von Hinke Kessler Scholder et al., 2016;

Böckerman et al., 2019), we are the first to rely on molecular data to exploit potential exoge-

nous variation in educational attainment, allowing for the possibility that our instrument

violates the exogeneity condition using the approach by Conley et al. (2012), in a marriage

market application.

As we shall see, our IV results are valid for a range of small violations of the exclusion

restriction, directly tackling the issue of pleiotropy, which in the context of genome-wide

scores leads to concerns about the number of potential pathways through which the score

could influence the outcome.9 Hence, our work complements and expands the economic

literature using genes (or genetic markers) as instrumental variables (e.g., Cawley et al.,

2011; Fletcher and Lehrer, 2011; Norton and Han, 2008; von Hinke Kessler Scholder et al.,

2011, 2013, 2014, 2016).

The rest of the paper is organized as follows. Section 2 presents the reduced-form linear

matching function and how to identify the coefficient of interest. Section 3 defines the

polygenic score for education and how to handle potential deviations from IV assumptions.

Section 4 describes the data sources, the construction of the polygenic score and presents
8On the genetic similarity of spouses see also Zou et al. (2015).
9Recent work by van Kippersluis and Rietveld (2018a) and van Kippersluis and Rietveld (2018b) expands

the plausible exogenous approach in Conley et al. (2012) in a world with heterogeneous first-stage effects
but with constant reduced-form effects.
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some descriptive statistics. Section 5 contains the OLS estimates of the matching function,

first-stage and reduced-form equations, IV estimates of the matching function, and bounds

based on Conley et al. (2012)’s approach. Section 6 concludes the paper.

2 A Reduced-Form Matching Function

While several studies have used (and estimated) linear matching functions linking spouses

incomes, occupations and/or human capital measures (Lam and Schoeni, 1993, 1994; Er-

misch et al., 2006; Oreffice and Quintana-Domeque, 2010), these were based on implicit

or explicit statistical (linear) decomposition exercises rather than derived from equilibrium

matching models.

Recently, Giuntella et al. (2019) derive a linear matching function from a linear model

where assortative mating takes place on a mate desirability index. In addition, they assume

that the desirability index is the sum of two components —an observable characteristic (e.g.,

education) and an unobservable characteristic (e.g., family background)— which are jointly

normally distributed, and that individuals prefer to marry those with a high desirability

index. These assumptions allow them to obtain the following reduced-form linear matching

function:10

xi = a0 + b0yj + c0vj + d0ui, (1)

which links education of the wife, xi, to education of the husband, yj, and the unobservable

characteristics of both spouses, vj and ui, and where the parameter b0 captures the degree

of assortative mating on education.

Since vj and ui are both unobservable to the econometrician, they get subsumed in the
10The online appendix borrows the derivation of the reduced-form linear matching function from Giuntella

et al. (2019).
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structural error term εij:

xi = a0 + b0yj + εij, (2)

where εij = c0vj + d0ui. The unconditional OLS estimand of b0 is given by

bOLS
0 =

Cov(xi, yj)

V ar(yj)
= b0 +

Cov(εij, yj)

V ar(yj)
= b0 + c0

Cov(vj, yj)

V ar(yj)
+ d0

Cov(ui, yj)

V ar(yj)
6= b0. (3)

Thus, the unconditional OLS estimand differs from b0. Indeed, to identify b0 additional

information is required. This can take three main forms: (1) using proxies for vj and ui, (2)

adding structure on vj and ui, and (3) finding (at least) one instrumental variable zj for yj.

(1) Using proxies for vj and ui. While vj and ui are not observable, one might use

proxies Vj and Ui instead, such that:

vj = Vj + ej, (4)

ui = Ui + fi, (5)

with E[ej] = E[fi] = E[Vjej] = E[Uifi] = E[ejfi] = 0. The regression equation becomes

xi = a0 + b0yj + c0Vj + d0Ui + ηij, (6)

with ηij = c0ej + d0fi. Of course, this approach will be as good as the proxies Vj and Ui

are for the unobservable characteristics vj and ui. This approach is implicitly used in any

empirical analysis using OLS regressions with control variables to assess assortative mating

(e.g., Oreffice and Quintana-Domeque, 2010; Chiappori et al., 2016).

6



(2) Adding structure on vj and ui. Another possibility is to use information on pairs of

same-sex siblings for husbands (i.e., brothers) and wives (i.e., sisters). Then, the matching

equation can be written as

xis = a0 + b0yjs′ + c0vjs′ + d0uis, (7)

where i denotes the woman within the group of sisters s and j denotes the man within the

group of brothers s′. Indeed, Giuntella et al. (2019) assume that the unobservable attribute

for the woman i and the man j can be decomposed as follows:

vjs′ = θs′ + εjs′ , (8)

uis = φs + εis, (9)

with E[θs′εjs′ ] = E[φsεis] = 0, E[yjs′εjs′ ] = E[yjs′εis] = 0 and E[εjs′ ] = E[εis] = 0. This

assumption means that two brothers j and j′ in the group s′ (resp. two sisters i and i′ in

the group s) who have the same level of y = yj = yj′ (resp. x = xi = xi′) are (on average)

perfect substitutes on the marriage market since they share the same θs′ (resp. φs). Under

this assumption, the matching equation becomes

xis = a0 + b0yjs′ + c0θs′ + d0φs + eisjs′ , (10)

where θs′ (resp. φs) is a vector of same-sex sibling fixed effects (FE) for the husbands (resp.

wives) and eisjs′ = c0εjs′ + d0εis. The conditional on same-sex sibling FE OLS estimand of

b0 is given by

bc,OLS
0 =

Cov(xis, ỹjs′)

V ar(ỹjs′)
= b0, (11)
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where ỹjs′ is the residual of an OLS regression of yjs′ on husbands’ (θs′) and wives’ (φs)

same-sex siblings fixed effects, that is:

yjs′ = τ0 + τ1θs′ + τ2φs + ỹjs′ . (12)

Even if the identifying assumption holds in theory, one of the key limitations of this approach,

already acknowledged by Giuntella et al. (2019), is that including both male and female

same-sex sibling fixed effects at the same time is very demanding in practice. Thus, the

researcher ends up including either husband’s or wife’s sibling fixed effects, but not both at

the same time.

(3) Finding (at least) one instrumental variable zj for yj. Suppose that we have

information on a potential valid instrument zj for yj. In particular, suppose that zj is a

measure of genetic predisposition to higher educational attainment (Lee et al., 2018). Then,

the IV estimand of b0 is given by

bIV0 =
Cov(xi, zj)

Cov(yj, zj)
= b0 +

Cov(εij, zj)

Cov(yj, zj)
= b0 + c0

Cov(vj, zj)

Cov(yj, zj)
+ d0

Cov(ui, zj)

Cov(yj, zj)
. (13)

The two well-known conditions for instrument validity are the following:

IV1: Relevance. The instrument zj must be correlated with the endogenous variable yj:

Cov(yj, zj) 6= 0

IV2: Exogeneity. The instrument zj must be uncorrelated with the structural error term

εij:

Cov(εij, zj) = c0
Cov(vj, zj)

Cov(yj, zj)
+ d0

Cov(ui, zj)

Cov(yj, zj)
= 0
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If these two conditions hold, the IV estimand of b0 allows us to recover b0:

bIV0 =
Cov(xi, zj)

Cov(yj, zj)
= b0. (14)

This is the approach we follow to identify b0 in this paper. In the next section we discuss

the construction of a potentially valid genetic IV, its potential violation of the exclusion

restriction and how to relax this last one.

3 Building a Potentially Valid Genetic IV

3.1 Polygenic Scores

Recent advances in molecular genetics have made it possible and relatively inexpensive

to measure millions of genetic variants in a single study. The most common type of genetic

variation among people is called single nucleotide polymorphism (SNP). SNPs are genetic

markers that have two variants called alleles. Since individuals inherit two copies for each

SNP, one from each parent, there are three possible outcomes: 0, 1 or 2 copies of a specific

allele. SNPs occur normally throughout a person’s DNA. Each SNP represents a difference

in a single DNA building block, called a nucleotide. For example, a SNP may indicate that,

in a certain stretch of DNA, a nucleotide cytosine is replaced with the nucleotide thymine

among some individuals.

SNPs are usually indicated by their position in the DNA, their possible nucleotides and

by an identification number. They occur once in every 300 nucleotides on average, which

means there are roughly 10 million SNPs in the human genome. A large part of current

genetic research aims to identify the function of these genetic variants and their relationship

to different diseases. Genome-wide association studies (GWASs) have been used to identify

SNPs associated to particular diseases or traits. A drawback of GWAS is that, given the

polygenic nature of human diseases and traits, most identified variants confer relatively
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small increments in risk, and explain only a small proportion of heritability. A common

solution is to use the results from a GWAS and compile a polygenic score (PGS) for a

phenotype aggregating thousands of SNPs across the genome and weighting them by the

strength of their association.

There are two main reasons to use a PGS to describe the genetic susceptibility to a trait

in social sciences (Belsky and Israel, 2014; Schmitz and Conley, 2017). First, complex health

outcomes or behaviors are usually highly polygenic, i.e., reflect the influence or aggregate

effect of many different genes (Visscher et al., 2008). PGSs assume that individuals fall

somewhere on a continuum of genetic predisposition resulting from small contributions

from many genetic variants. Second, a single genetic variant has too small of an effect

in explaining complex phenotypes, i.e., no single gene produces a symptom or trait at a

detectable level, unless the sample size is extremely large.

A PGS for individual i can be calculated as the sum of the allele counts aij (0, 1 or 2)

for each SNP j = 1, . . .M , multiplied by a weight wj, that is:

PGSi =
M∑
j=1

wjaij,

where weights wj are transformations of GWAS coefficients. A polygenic score is there-

fore a linear combination of the effects of multiple SNPs on the trait of interest. SNPs are

not independent in the genome but their occurrence varies according to a block structure

called linkage disequilibrium (LD). Using unadjusted GWAS coefficients as weights could

reduce the accuracy of PGSs and yield to imprecise estimates (Barth et al., 2018). Different

methods have been proposed to account for linkage disequilibrium in the construction of

polygenic scores.

In this paper, we use a Bayesian method called LDpred (Vilhjálmsson et al., 2015)

to derive the weights wj. Weights are based on the association results from the GWAS on

educational attainment by Lee et al. (2018), where HRS has been removed from the analysis,

10



to avoid overfitting.11 LDpred assumes a point-normal mixture prior for the distribution of

effect sizes and takes into account the correlation structure of SNPs by estimating the LD

patterns from a reference sample of unrelated individuals. The weight for each variant is set

to be equal to the mean of the posterior distribution (approximated via MCMC simulation)

after accounting for LD. LDpred requires an assumption about the fraction of SNPs which

are truly associated with the outcome. A common choice for polygenic traits, followed

in this study, is to assume that all the SNPs are associated with the outcome of interest

(Barcellos et al., 2018; Barth et al., 2018). The scale of PSs depends on the number of SNPs

included in the score. For comparability purposes, we standardize a score by subtracting

its mean and dividing it by its standard deviation.

Using PGSs rather than single genetic markers has several advantages. First, they are

“hypothesis-free” measures that do not require knowledge about the biological processes

involved. This is particularly important when the phenotype of interest is complex, i.e.,

influenced by a large number of genes, or when its biological mechanisms are not yet fully

understood (Belsky and Israel, 2014). Second, using a score, rather than single genes,

is a possible solution to overcome the low predictive power of single genes, especially for

behavioral traits. For example, the top genome-wide significant SNP from the most recent

GWAS on educational attainment (Lee et al., 2018) explains around 0.01% of the variation

in years of schooling. A linear polygenic score from all measured SNPs explains 10.6% of

the same variable in the HRS sample. Third, complete genome-wide association results are

publicly available. PSs can be calculated from consortia data for a range of phenotypes.

The results published by these consortia are based on a meta-analysis of a large number of

cohort studies. The predictive power of a polygenic score is inflated if the samples are not
11An alternative method to estimate weights for a polygenic score consists of selecting independent SNPs

with a statistical procedure called pruning. The selected independent SNPs are then used to calculate
the score, avoiding possible bias due to oversampling DNA regions that are highly genotyped. The range
of possible values that a PGS can take depends on the number of SNPs included, tending to a normal
distribution if the number of independent SNPs included in the score is sufficiently high. Simulation studies
have shown that LDpred leads to more precise estimates for polygenic scores in case of highly polygenic
traits (Vilhjálmsson et al., 2015)
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independent, i.e., the same sample was used in the original calculation of association results.

For this reason, it is common to use genetic association results from independent studies or

to rerun the association results excluding the cohort to which the score is applied, which is

exactly how we proceed.

3.2 Genetic IV

There is a vast literature in statistics and epidemiology that focuses on methodological

aspects related to genetic IV (e.g., Burgess et al., 2015; Davies et al., 2015; Didelez and

Sheehan, 2007; Glymour et al., 2012; Kang et al., 2016; Lawlor et al., 2008; Sheehan et al.,

2008; Davey Smith and Ebrahim, 2003; Windmeijer et al., 2018). von Hinke Kessler Scholder

et al. (2016) and van Kippersluis and Rietveld (2018b) carefully examine the conditions

needed for genetic variants to be used as valid instrumental variables.12

The reduced-form linear matching function clarifies the necessary requirements, rele-

vance and exogeneity, for a valid instrument.13 The relevance assumption (IV1) requires

that the spousal polygenic score for education, zj, is linearly related with spousal education,

yj. While the use of one or few genetic variants can be weakly associated with education

(weak instrument problem), our polygenic score is relevant and has been shown to robustly

affect education (Rietveld et al., 2013; Okbay et al., 2016; Lee et al., 2018). Moreover, the

score predicts education differences between siblings (Rietveld et al., 2014). The exogeneity
12von Hinke Kessler Scholder et al. (2016) and Böckerman et al. (2019) use polygenic scores for body

mass index as IV. Previous studies based on candidate genes have investigated: the effect of obesity or body
fat mass on labor market outcomes (Norton and Han, 2008), on medical costs (Cawley and Meyerhoefer,
2012), or on educational attainment (von Hinke Kessler Scholder et al., 2012); the impact of poor health
on academic performance (Ding et al., 2009; Fletcher and Lehrer, 2011); the effect of cigarette smoking
on BMI (Wehby et al., 2012); the effect of alcohol exposure in utero on child academic achievement (von
Hinke Kessler Scholder et al., 2014); the effects of cigarette quitting during pregnancy on different health
behaviors (Wehby et al., 2013); the effect of child/adolescent height on different health and human capital
outcomes (von Hinke Kessler Scholder et al., 2013). More recently, Cawley et al. (2019) investigate whether
an individual’s BMI is affected by the polygenic risk score for BMI of their full sibling when controlling for
the individual’s own polygenic risk score for BMI. They do not find evidence for such an effect.

13The usual motivation for using a genetic instrumental variable (IV) is the fact that individuals’ genotypes
are randomly allocated at conception: such a quasi-experimental design is called Mendelian randomization
(Davey Smith and Ebrahim, 2003). However, randomization is not a sufficient condition to use genetic data
as valid instrumental variables, as recently emphasized by Davies et al. (2018) and van Kippersluis and
Rietveld (2018b).

12



assumption (IV2) requires that the spousal polygenic score, zj, is uncorrelated with the

structural error term, which as we have seen is a sum of the unobservable attributes for

both the wife, ui, and the husband, vj.14

3.3 Assessing and deviating from IV assumptions

Instrument relevance (IV1) can be assessed by means of F-tests with well-known rules of

thumb (Staiger and Stock, 1997; Stock and Yogo, 2005). The exogeneity assumption (IV2)

has two components: independence and exclusion (Angrist and Pischke, 2014). As recently

emphasized by van Kippersluis and Rietveld (2018a) and van Kippersluis and Rietveld

(2018b) in the context of using polygenic scores as instrumental variables, independence is

naturally satisfied when genetic variants are used as IV due to mendelian randomization

(Davey Smith and Ebrahim, 2003). However, the exclusion restriction is more difficult to

assess. Consider the following equation:

xi = a0 + b0yj + γzj + εij. (15)

The exclusion restriction is satisfied when γ = 0, however, this cannot be directly assessed,

since estimation of γ via OLS will generate biased and inconsistent coefficient estimates.

To allow for the possibility that the exogeneity condition is violated, γ 6= 0, and that, the

husband’s polygenic score for education affects wife’s education above and beyond husband’s

education, we follow Conley et al. (2012) and implement “plausibly exogenous” estimation

as carefully explained by Clarke and Matta (2018). The standard exogeneity assumption

(IV2) requires γ to be zero in equation (15). However, when invoking “plausible exogeneity”
14In common genetic IV studies that investigate the effect of one individual’s treatment on the same

individual’s outcome, by using a genetic variant of his as instrument, the exclusion restriction can be
violated mainly in four situations (von Hinke Kessler Scholder et al., 2016): (i) when parents’ behavior
or preferences are affected by the genotype; (ii) when the mechanisms, through which genetic variants
affect the exposure variable, imply changes in behaviors or preferences that affect directly the outcome;
(iii) when the genetic instrument is correlated with other genetic variants that affect the outcome (Linkage
Disequilibrium); (iv) when disruptive influences of the risk factor on the outcome are limited by foetal or
post-natal development processes (Canalization).
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we replace this assumption with the assumption that γ is close to, but not necessarily equal

to, 0.15 In our context, γ can be different from zero because zj is correlated with ui, vj, or

both.

This deviation from the exogenity assumption can take different forms: either the sup-

port of γ can be assumed or distributional assumptions about γ can be made. We follow

the “union of confidence interval” (UCI) approach, which consists in finding bounds for the

IV when the exclusion restriction is violated by choosing a range of values for γ.

4 Data Description

The data used in this paper come from the Health and Retirement Study (HRS), a

national panel survey representative of Americans over the age of 50 and their spouses,

interviewed every two years since 1992.16 The survey contains detailed socio-demographic

information. It consists of six cohorts: initial HRS cohort, born between 1931 and 1941

(first interviewed in 1992); the Study of Assets and Health Dynamics Among the Oldest

Old (AHEAD) cohort, born before 1924 (first interviewed in 1993); Children of Depression

(CODA) cohort, born between 1924 and 1930 (first interviewed in 1998); War Baby (WB)

cohort, born between 1942 and 1947 (first interviewed in 1998); Early Baby Boomer (EBB)

cohort, born between 1948 and 1953 (first interviewed in 2004) and Mid Baby Boomer

(MBB) cohort, born between 1954 and 1959 (first interviewed in 2010).

Between 2006 and 2012, the HRS genotyped about 20,000 respondents who provided

DNA samples and signed consent. DNA samples were genotyped using the Illumina Human

Omni-2.5 Quad BeadChip, with coverage of approximately 2.5 million single nucleotide
15van Kippersluis and Rietveld (2018a) and van Kippersluis and Rietveld (2018b) suggests finding an

estimate of the direct effect γ based on the reduced-form effect of the instrument for a sample with a zero
first-stage. Their approach allows to exploit Mendelian randomization which is pleiotropy-robust. The
approach consists in using the estimate of γ (if we reject that γ = 0) as an input for the plausibly exogenous
approach. Their ‘beyond plausible exogenous’ approach relies on two assumptions: (1) the coexistence of
heterogeneous first-stage effects with homogeneous direct effects across the zero-first-stage group and the
full sample, and (2) the selection into the zero-first-stage subgroup should not be driven by the husband’s
EA PGS and wife’s education.

16For the non-genetic data, we used the RAND HRS Data files, Version N.
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polymorphisms (SNPs). Current genetic data available for research also include imputation

of approximately 21 million DNA variants from the 1000Genomes Project.17 Following

recommendations of the genotyping center, we removed individuals with a genotyping rate

<95% and SNPs with minor allele frequency (MAF) less than 1%, with p-value less than

1×10−4 on the test for Hardy-Weinberg equilibrium, and with missing call rate greater than

5%. The resulting genetic sample includes 15,445 individuals and information for 8,391,857

genetic variants.

The survey interviews the respondents of eligible birth years repeatedly, as well as their

married spouses or partners regardless of age. Since we are interested in couples rather

than in the longitudinal structure of the data, we build a cross-section. We include any

individual interviewed at least once. The original sample (RAND HRS Data) contains

37,319 individuals: We focus on individuals for which the genetic data are available after

the quality control described above, 15,445 in total, excluding 21,874 respondents from the

original survey. We restrict the sample to only White respondents, also excluding Hispanics.

We consider only heterosexual couples at their first marriage. In particular, we exclude never

married partners, people who are divorced or widowed at the time of the first interview,

and people who have been already married or widowed more than once when entering the

survey. We also drop respondents whose spouse has never been interviewed, couples where

the spousal age gap is ten years or more, couples in which at least one of the two spouses

has zero years of education, and those in which at least one of the two spouses was born

outside the US or born in the US but with missing census division of origin.18 We also

exclude individuals born before 1920 who might have been exposed to the Spanish Flu and

born after 1959 which is the end of the last HRS cohort (Mid Baby Boomer). This yields a

working sample of 1,562 couples (3,124 individuals).
17For details on quality control of the HRS genetic data, please see here. Data are available for research

via the database of Genotypes and Phenotypes.
18Census Divisions are groupings of states and the District of Columbia that are subdivisions of the four

census regions (Northeast, Midwest, South, and West). There are nine Census divisions: New England,
Mid Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South
Central, Mountain, Pacific.
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The main variables used in our empirical analysis are education (measured as the num-

ber of completed years of schooling) and the polygenic scores for education (EA PGSs).

As previously discussed, we generated a polygenic score based on the most recent GWAS

results on educational attainment available (Lee et al., 2018). Since the HRS was part of

the educational attainment consortium, we obtained the list of association results calculated

excluding the HRS from the meta-analysis from the Social Science Genetic Association Con-

sortium.19 Using these summary statistics, we constructed linear polygenic scores weighted

for their effect sizes in the meta-analysis. We constructed the scores using the software

LDpred and PLINK (Vilhjálmsson et al., 2015).20

Table 1 provides the basic descriptive statistics for our sample of husbands and wives.

These individuals were born between 1920 and 1959. On average, husbands –with 13.6

years of education– are more educated than their wives –with 13.3 years of education. If we

compare our sample of husbands and wives with its non-genotyped counterpart (N=2,468),

i.e., where at least one of the spouses has not been genotyped, we find that our sample is

on average about three years younger, and more educated (0.51 years more for wives, 0.79

years more for husbands). This is consistent with Barth et al. (2018). See Tables A1 and

A2 in the online appendix.

[Table 1 about here]

In Table 2, panel A, we present some correlates of years of education and educational

attainment polygenic scores (EA PGSs). The correlates indicate that there is a strong

positive linear relationship between spousal years of education (0.57, p-value<0.0000), con-

sistent with positive assortative mating in education. We also find some evidence, albeit

weaker, of assortative mating on the EA PGS (0.13, p-value<0.0000). The correlation in
19Because of data sharing agreements, results are calculated from association results that exclude also

23andMe from the meta-analysis. Complete genetic association results on educational attainment are avail-
able here, see acknowledgments for data conditions.

20Genetic data are based on best call genotypes imputed to 1000 Genome. LD structure is estimated
from the HRS genotypic data (only individuals with European ancestry) using a LD window of M/3000,
where M is the number of included SNPs. The prior used to construct the score assumes that there is a
probability p = 1 that a SNP has a non-zero association.
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EA PGSs is less than one quarter of the correlation in years of education. Moreover, the

correlation between adjusted EA PGSs, obtained after regressing the spousal EA PGS on

spousal years of education, and the 10 principal components of the spousal genetic data

to account for population stratification (Beauchamp et al., 2011)21, is much smaller (0.05,

p-value=.0496).

In panel B, we present some tabulations to explore assortative mating in both years of

education and EA PGSs, both above and below the median. The tabulations for education

in the first row indicate that the probability of a husband being low educated if the wife

is low educated is 82%, while the probability of a husband being low educated if the wife

is high educated is 18%. The second row reveals that the probability of a husband being

highly educated if the wife is highly educated is 63% while the probability of him being

high educated if the wife is low educated is 37%. This again reveals the presence of positive

assortative mating on education (χ2(1) = 332.1, p-value=0.000). Indeed, the main diagonal

(low-low, high-high) contains 73% of couples, while under random educational matching we

would expect 50% of couples in the main diagonal.

Finally, in Panel C, the tabulations for (unadjusted) EA PGSs reveal some degree of

assortative mating (χ2(1) = 10.2, p-value=0.001), but much lower than that for education.

Indeed, the probability of a husband having a low (high) EA PGS if the wife has a low

(high) EA PGS is 54%, while the probability of a husband having a high (low) EA PGS if

the wife has a low (high) EA PGS is 46%. The main diagonal (low-low, high-high) contains

54% of couples, while under random score matching we would expect 50% of couples in the
21Population stratification refers to the situation in which there is a systematic relationship between the

allele frequency and the outcome of interest in different subgroups of the population. Genetic similarity is
often correlated with geographical proximity. It is possible to control for the non-random distribution of
genes across populations and account for differences in genetic structures within populations in three ways.
First, genome-wide analysis should be based on ethnic homogeneous populations, for example restricting
the analysis to individuals of European ancestry or controlling for geographical origin. Second, only unre-
lated individuals should be included in the analysis to avoid family structure or cryptic relatedness. Last,
population structure can be approximated by running a principal components analysis (PCA) on the entire
genotype and using the principal components as control variables in the analysis (Beauchamp et al., 2011;
Price et al., 2006). PCA is the most common method used to control for population stratification in a
GWAS. In our application, the first ten genetic principal components for each spouse using genome-wide
principal components function as ancestry markers.
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main diagonal. Focusing on the adjusted EA PGSs, the tabulation reveals that the main

diagonal contains 51% of couples, and that we cannot reject that spousal EA PGSs are

independent (χ2(1) = 0.4328, p-value= 0.511). Our findings are consistent with Barth et al.

(2018), who fail to reject the null hypothesis of random sorting in EA PGSs.

[Table 2 about here]

Interestingly, we find similar correlations and contingency tables for education among

the non-genotyped respondents. The correlation is 0.61 (p-value<0.001) and the entries

in the contingency table are also very similar or essentially the same for the conditional

probability of husband’s low education. See Table A3 in the online appendix.

5 OLS and IV estimates

5.1 OLS estimates of the matching equation

We first present our OLS estimates of equation (2) in Table 1, in column 1, and additional

versions of it with control variables, in columns 2-5. Column 1 shows that an additional

year in husband’s education is positively associated with an average increase of 0.46 in

the number of years of wife’s education, and that 32% of the variation in wife’s education

is explained by husband’s education. This positive correlation is consistent with previous

research (e.g., see Table 7 in Chiappori et al., 2018). In column 2 we add demographic

controls (i.e., year of birth of each spouse, and 8 indicators for each spouse region (Census

division) of birth). The estimated coefficient remains very similar, 0.45, and the explanatory

power increases from 32% to 34%.

[Table 3 about here]

From column 3 to column 5 we use genetic information. In column 3 we add the wife’s EA

PGS for education, without any other control variables, and obtain a similar coefficient for

18



husband’s education, 0.43 (instead of 0.46), and a higher explanatory power, 35% (instead

of 32%). A one standard deviation increase in the wife’s EA PGS is associated with an

increase in the wife’s educational attainment of 0.38 years. In column 4 we account for

population stratification adding the wife’s and husband’s ten first principal components of

the principal component analysis to genotypic data: the coefficient on husband’s education

is estimated at 0.42, and the one on the wife’s EA PGS at 0.35. Finally, in column 5, we look

at the relationship between wife’s and husband’s education netting out the influence of the

wife’s EA PGS, population stratification and demographic controls. Our results indicate

that an additional year in husband’s education is associated with an average increase of

0.41 in the number of years of wife’s education.22 The OLS point estimates range from 0.46

(95% CI: 0.42,0.50), in column 1, to 0.41 (95% CI: 0.37,0.45), in column 5.23

5.2 OLS estimates of first-stage and reduced-form equations

Table 4 contains the estimates of the first-stage regression equation, where husband’s

education is regressed against husband’s EA PGS (our plausible exogenous instrument). In

the first three columns, we do not adjust for the wife’s EA PGS. Column 1, which does not

include any controls, shows that a one standard deviation increase in the husband’s PS is

associated with an average increase in husband’s education of 0.67 years. When accounting

for population stratification (column 2), the magnitude decreases to 0.62, and after adding

demographic characteristics to the population stratification controls (column 3), our point

estimate is 0.64.

[Table 4 about here]

When focusing on columns 4-6, which adjust for the wife’s EA PGS, we find that a

one standard deviation increase in the husband’s EA PGS is associated with an average
22Following the procedure in Oster (2019), we find that the estimated assortativeness coefficient is zero if

the relative importance of unobservable controls ui and vj in column 5 is about 72% of that of the observed
controls.

23Similar qualitative results are obtained when using a binary indicator for college education (Table A4).
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increase in husband’s education of 0.61 years (column 4). Assuming that polygenic scores

are as good as randomly assigned, at least after accounting for population stratification,

column 5 shows a substantial causal effect of polygenic scores on educational attainment:

a one standard deviation increase in husband’s EA PGS (resp. wife’s EA PGS) increases

average husband’s education by 0.58 (resp. 0.39) years. Finally, column 6 shows similar

magnitudes, 0.60 (resp. 0.40) netting out the influence of demographic characteristics. The

row on instrument relevance reports Kleibergen-Paap rk Wald F statistics above 90, well

above and beyond the critical values in Stock and Yogo (2005), so that we conclude that

instrument relevance is reasonably satisfied.24

In Table 5 we turn to the reduced form estimates, where wife’s education is regressed

against husband’s EA PGS (our plausible exogenous instrument). As in Table 4, we present

two set of estimates, without adjusting (columns 1-3) and adjusting for the wife’s EA PGS

(columns 4-6). Column 1, which does not include any controls, shows that a one standard

deviation increase in the husband’s EA PGS is associated with an average increase in wife’s

education of 0.38 years. After adding population stratification controls (column 2), our point

estimate decreases to 0.32, and after including demographic characteristics in addition to

the controls for population stratification (column 3), our point estimate becomes 0.34.

[Table 5 about here]

We then shift our attention to reduced-form estimates adjusted for the wife’s EA PGS

(columns 4-6). Column 4 shows that a one standard deviation increase in husband’s EA

PGS (resp. wife’s EA PGS) is associated with an average increase in wife’s education of

0.31 (resp. 0.56) years. In column 5 we assume conditional random assignment of polygenic

scores, after accounting for population stratification, and find that a one standard deviation

increase in husband’s (resp. wife’s) EA PGS increases wife’s education by 0.28 (resp. 0.51)

years. Similar effects are found after netting out the influence of demographic characteristics,
24Similar qualitative results are obtained when using a binary indicator for college education (Table A5).
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0.29 (resp. 0.52).25

5.3 IV estimates of the matching equation

If our instruments are valid (i.e., relevant and exogenous), the causal effect of husband’s

education on wife’s education is given by the reduced-form coefficient on the husband’s EA

PGS inflated (divided) by the first-stage coefficient on the husband’s EA PGS. Looking at

the regression conditional on the wife’s EA PGS estimates in Tables 4 and 5, columns 4-6,

these ratios are 0.509 (column 4 divided by column 1), 0.473 (column 5 divided by column

2) and 0.488 (column 6 divided by column 3), which are well-known to be numerically

equivalent to the IV point estimates using 2SLS displayed in Table 6. An additional year in

husband’s education increases average wife’s educational attainment by about 0.5 years: in

words, and in our matching context, this means that if we take two men, who are observa-

tionally equivalent in the marriage market, and we increase the educational attainment of

one of them by one more year of education, the one with higher education will be expected

to have a wife with about half a year more of education.26

[Table 6 about here]

5.4 Plausible exogenous IV estimates

As discussed in the introduction, polygenic scores for spousal education may affect own

education above and beyond their effects on spousal education, and hence violate the exclu-

sion restriction. In this subsection, we relax the exclusion restriction following the “union of

confidence interval” (UCI) approach developed by Conley et al. (2012). The UCI approach

consists in finding bounds for the IV when the exclusion restriction is violated by choosing

a range of values for γ.
25Similar qualitative results are obtained when using a binary indicator for college education (Table A6).
26Similar qualitative results are obtained when using a binary indicator for college education (Table A7).
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Table 7 compares the 95% CI intervals/bounds for OLS, IV and UCI estimates, for

models that account for the wife’s EA PGS. Both OLS and IV estimates generate a similar

95% lower bound (0.334 for IV, column 2; 0.366 for OLS, column 3). By construction, since

we choose a range of values for γ between 0 and 0.2, the 95% upper bounds in the IV and

the UCI cases are exactly the same. The bite of the UCI approach comes from γ = 0.2. In

that case, we can see that the 95% lower bound ranges from −0.021 (column 2) to 0.044

(column 1).

[Table 7 about here]

Our interpretation of Table 7 is that we need to have a sufficiently large and positive

γ, γ ≥ 0.2, to rule out ‘true’ positive assortative mating on education. In words, a one

standard deviation in husband’s EA PGS must directly increase wife’s education in 0.2 or

more years to nullify the observed educational assortativeness.

Figure 1 below displays the UCI 95% range of lower bounds for column 3 in Table 7.

For completeness, we also present Figure 2, which displays the UCI 95% bounds analysis

for column 3 in Table 7 when γ ∈ [−0.2, 0.2].

[Figure 1 about here]

[Figure 2 about here]

All in all, we interpret our findings as consistent with people actually matching on

education. Indeed, the results are very similar using OLS and IV, and the bounds analysis

suggests that, for mild violations of the exclusion restriction, γ < 0.2, our IV findings are

able to reveal ‘true’ positive assortative matching on education.

5.5 Discussion

The reduced-form linear matching function we estimate is based on Giuntella et al.

(2019), but both the identification strategy and the data used in our analysis differ from

theirs.
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First, as previously discussed, we use an IV strategy while Giuntella et al. (2019) use

a siblings-FE strategy. Both strategies have their pros and cons. While a sibling-FE iden-

tification strategy can be certainly more transparent than an IV, it can only circumvent

omitted variable bias so long as the unobservable characteristics (of both spouses) are con-

stant within pairs of siblings. Of course, the advantage of an IV strategy, namely being able

to deal with omitted variable bias due to any type of unobservable characteristic(s), comes

at a key cost: the reliability of the untestable exclusion restriction. In this paper, we have

relaxed the exclusion restriction using the Conley et al. (2012) approach.

Second, while we use a sample from a nationally representative survey (HRS), Giuntella

et al. (2019) use a sample from the administrative birth records from Florida. Our results

refer to an HRS sample of individuals who are on average 70 years old, still alive, who got

married on average 40 years ago and have been married to each other ever since. Instead,

Giuntella et al. (2019) findings are for a sample of parents born in the state of Florida

whose children were born in Florida and whose brothers (or sisters) were born in Florida

and whose children were born in Florida too.

Given all these differences, both in methods and in samples, it is reassuring that both

studies find evidence on ‘true’ assortativeness on education.

6 Conclusions

This is the first paper to present a genetic-IV strategy to estimate the causal effect

of education in the marriage market. Our IV (2SLS) estimates of the matching function

suggest that an additional year in husband’s education increases wife’s education by about

0.5 years. Even if the husband’s educational attainment polygenic score (EA PGS) has a

direct effect on wife’s education over and above husband’s education, we cannot rule out a

positive causal effect of husband’s on wife’s education, so long as one standard deviation

increase in husband’s EA PGS directly increases wife’s education by less than 0.2 years.
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Future research should try to pin down the exact mechanism behind the causal effect of

husband’s education on wife’s education: Do more educated husbands become more likely

to encounter potential wives that are more educated? And/or do more educated husbands

become more attractive to more educated wives, holding constant the likelihood of meeting

an educated spouse? In other words, is the causal effect of husband’s education on wife’s

education mainly due to search or preferences? (Bruze, 2011).
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Table 1: Descriptive statistics 

 

  Mean SD Min Max 

      

Husband’s Year of Birth  1937.89 9.04 1920 1959 

Husband’s Years of Education  13.62 2.69 2 17 

Husband’s EA PGS  0.19 1.07 3.20 3.83 

Wife’s Year of Birth  1940.12 8.92 1920 1959 

Wife’s Years of Education  13.32 2.19 3 17 

Wife’s EA PGS  0.15 1.05 3.19 3.16 

Note: The number of observations is 1,562. The descriptive statistics are based on white 

non-Hispanic couples in their first marriage, with at most 10 years of age difference and 

born in the US. Individuals born between 1920 and 1959. Both spouses have been 

interviewed at least once and provided DNA sample. 
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Table 2: Correlations and contingency tables for education and educational attainment polygenic scores  

 

 

Panel A. Correlations Husband’s Wife’s Husband’s Wife’s   

 Education Education PS PS   

       

Husband’s Education 1      

 [0.000]      

       

Wife’s Education 0.5647 1     

 [0.000] [0.000]     

       

Husband’s EA PGS   0.2648 0.1867 1    

 [0.000] [0.000] [0.000]    

       

Wife’s EA PGS 0.1986 0.2881 0.1319 1   

 [0.000] [0.000] [0.000] [0.000]   

       

Correlation between Adjusted Wife’s EA PGS and Adjusted Husband’s EA PGS  0.0496 

      [0.0498] 

 

Panel B. Contingency table for education, conditional probability of husband’s education 

 

 

 Wife’s Wife’s     

 

Low 

Education 

High 

Education     

Husband’s Low Education 82.17 17.83     

Husband’s High Education 36.96 63.04     

Pearson test  2(1) = 332.1     

 [0.000]     

       
Panel C. Contingency table for EA PGSs, conditional probability of husband’s EA PGSs 

 

 

 Unadjusted  Adjusted  

 Wife’s Wife’s  Wife’s Wife’s  

 

Low  

EA PGS 

High 

EA PGS  

Low 

EA PGS 

High 

EA PGS  

Husband’s Low EA PGS 54.03 45.97  50.83 49.17  

Husband’s High EA PGS 45.97 54.03  49.17 50.83  

Pearson test 2(1) = 10.2  2(1) = 0.4328  

 [0.001]  [0.511]  

Note: In Panel A adjusted husband’s (wife’s) EA PGS is the residual from a regression of the husband’s (wife’s) 

EA PGS on husband’s (wife’s) years of education and 10 principal components of the husband’s (wife’s) genetic 

data. In Panels B and C: low is defined as below the median and high is defined as above the median; Each cell 

reports the conditional probability of husband’s education (EA PGS) given his wife’s education (EA PGS). The 

row probabilities sum to 100. Adjusted conditional probabilities are based on the residual EA PGSs. p-values 

are reported in brackets.   
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Table 3: OLS estimates of the Matching Function 

      

 

Dependent variable: 

Wife’s Education 

 (1) (2) (3) (4) (5) 

      
Husband’s Education 0.461*** 0.448*** 0.432*** 0.422*** 0.407*** 

 (0.020) (0.021) (0.020) (0.021) (0.021) 

Wife’s EA PGS   0.383*** 0.350*** 0.365*** 

   (0.043) (0.044) (0.044) 

      
PCAs No No No Yes Yes 

Demographics No Yes No No Yes 

Observations 1,562 1,562 1,562 1,562 1,562 

R-squared 0.319 0.337 0.351 0.368 0.387 

Note: Robust standard errors in parentheses. PCAs: 10 first principal components 

of the husband’s (wife’s) genetic data. Demographics: year of birth of the wife, 

year of birth of the husband, 8 indicators of the wife’s region (Census division) of 

birth and 8 indicators of the husband’s region (Census division) of birth. 

*** p<0.01, ** p<0.05, * p<0.1 
 

 

 

Table 4: OLS estimates of the First Stage  

       

 

Dependent variable:  

Husband’s Education 

 (1) (2) (3) (4) (5) (6) 

       

Husband’s EA PGS 0.667*** 0.620*** 0.636*** 0.611*** 0.583*** 0.602*** 

 (0.060) (0.062) (0.061) (0.060) (0.061) (0.060) 

Wife’s EA PGS    0.426*** 0.388*** 0.398*** 

    (0.060) (0.062) (0.061) 

       
PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

R-squared 0.070 0.106 0.144 0.097 0.128 0.166 

Instrument relevance 122.816 100.857 109.241 105.226 91.265 99.920 

Note: Instrument relevance: Kleibergen-Paap rk Wald F statistic. See footer in Table 3. 
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Table 5: OLS estimates of the Reduced Form 

       

 

Dependent variable: 

Wife’s Education 

 (1) (2) (3) (4) (5) (6) 

       

Husband’s EA PGS 0.384*** 0.324*** 0.338*** 0.311*** 0.276*** 0.294*** 

 (0.050) (0.050) (0.049) (0.048) (0.049) (0.048) 

Wife’s EA PGS    0.561*** 0.511*** 0.523*** 

    (0.050) (0.051) (0.050) 

       
PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

R-squared 0.035 0.083 0.127 0.106 0.139 0.185 

Note: See footer in Table 3. 
 

 

 

 

 

Table 6: IV (2SLS) estimates of the Matching Function 

       

 

Dependent variable: 

Wife’s Education 

 (1) (2) (3) (4) (5) (6) 

       
Husband’s Education 0.576*** 0.522*** 0.531*** 0.509*** 0.473*** 0.488*** 

 (0.063) (0.068) (0.066) (0.067) (0.071) (0.069) 

Wife’s EA PGS    0.344*** 0.327*** 0.329*** 

    (0.054) (0.053) (0.053) 

       
PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

Note: (Excluded) instrumental variable: Husband’s EA PGS. See footer in Table 3. 
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Table 7: Comparison of assortativeness estimates  OLS, IV (2SLS) and IV (UCI) bounds  

      

 (1)  (2)  (3) 

      

OLS 95% CI [0.391,0.472]  [0.382,0.463]  [0.366,0.449] 

      
IV (2SLS) 95% CI [0.378, 0.640]  [0.334,0.611]  [0.353,0.622] 

      
IV (UCI) 95% bounds with   [0, 0.2] [0.044,0.640]  [0.021,0.611] [0.014,0.622] 

      

PCAs No  Yes Yes 

Demographics No  No Yes 

Note: All the estimated CI/bounds are based on regressions that adjust for the Wife’s EA PGS. IV 

bounds are based on the approach developed by Conley et al. (2012) and estimated using the 

plausexog STATA command as described by Clarke and Matta (2018): IV (UCI: Union of 

Confidence Interval) approach consists in finding bounds for the IV when the exclusion restriction is 

violated ( ≠ 0) by choosing a range of values for , in our case, with a minimum of 0 and a maximum 

of 0.2. 
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Figure 1: 

 

 

 

Figure 2: 

 

 

 

 



Online Appendix (Not for publication)

Derivation of the matching function

The following derivation is borrowed from Giuntella et al. (2019). They consider two

populations (men and women) of equal size, normalized to 1. Individuals match on mate

desirability: Ii and Jj represent the mate desirability index of female i and male j, respec-

tively.

A1: Additive separability. The mate desirability index is additively separable in two

components:

Ii = γxi + ui (1)

Jj = δyj + vj (2)

where xi (resp. yj) is an attribute observable to the social scientist (e.g., education) and ui

(resp. vj) is an attribute not observable to the social scientist (e.g., family background).

A2: Normality. Observable and unobservable attributes are jointly normally distributed:

xi
ui

 ∼ N


 µx

µu

 ,

 σ2
x σx,u

σx,u σ2
u




and yj
vj

 ∼ N


 µy

µv

 ,

 σ2
y σy,v

σy,v σ2
v


 .
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Hence, the mate desirability indices are normally distributed, Jj ∼ N(µJ , σ
2
J) and Ii ∼

N(µI , σ
2
I ).

A3: Marital surplus function. The marital surplus –the difference in the utility gen-

erated by a couple formed by individuals i and j with desirability indices Ii and Jj and the

utility levels of i and j when single– is produced according to the function h(Ii, Jj). This

function is twice continuously differentiable, strictly increasing in both I and J (i.e., hI > 0

and hJ > 0) and strictly super-modular (i.e., hIJ > 0).

A4: There are no search frictions. The environment is frictionless: each woman (resp.

man) is assumed to have free access to the pool of all potential male (resp. female) spouses,

with perfect knowledge of the characteristics of each other.

Given that there are no search frictions (A4), matching arises due to preferences, and

the assumption on the marital surplus (A3) function guarantees PAM on the desirability

index:1“high desirable men marry high desirable women”. Men with a high value of J will

marry women with a high value of I, i.e., the fraction of men above J will marry the fraction

of women above I. Moreover, given the normality assumption (A2), one can write:

1 − Φ

(
Jj − µJ

σJ

)
= 1 − Φ

(
Ii − µI

σI

)
, (3)

where Φ is the standard normal cumulative distribution function. Hence, they have:

Ii =

{
µI − µJ

(
σI
σJ

)}
+

(
σI
σJ

)
Jj. (4)

1The assumption that marital surplus is increasing in both arguments guarantees PAM in a non-
transferable utility context. The assumption that the cross-derivative is strictly positive gurantees PAM in
a transferable utility context.
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In compact notation, they write:

Ii = α + βJj. (5)

Finally, given additive separability (A1), they can substitute (1) and (2) into (5), and

express xi (female observable characteristic) in terms of yj (male observable characteristic)

and the unobservable characteristics of both, ui and vj:

xi = a0 + b0yj + c0vj + d0ui. (6)

This is the matching function, linking the observable characteristic of the wife, xi, to the

observable characteristic of the husband, yj, and the unobservable characteristics of both

spouses, vj and ui. The parameter b0 captures the degree of assortative mating with respect

to the observable characteristic.

References
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Table A1: Descriptive statistics in the non-genotyped sample 

 

 

  Mean SD Min Max 

      

Husband’s Year of Birth 2,468 1934.88 9.91 1920 1959 

Husband’s Years of Education 2,464 12.83 2.89 1 17 

Wife’s Year of Birth 2,468 1937.24 9.73 1920 1959 

Wife’s Years of Education 2,461 12.81 2.28 1 17 

Note: The descriptive statistics are based on white non-Hispanic couples in their first 

marriage, with at most 10 years of age difference and born in the US. Individuals born 

between 1920 and 1959. Couples in which at least one of the spouses has not been 

genotyped. 
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Table A2: Average differences between genotyped and non-genotyped samples 

 

 

 

Difference  

(Genotyped – Non-

Genotyped) Standardized difference 

      

Husband’s Year of Birth 

 

 

 

3.01*** 

(0.304) 

 

0.311 

 

 

Husband’s Years of Education 

 

 

 

0.792*** 

(0.090) 

 

0.279 

 

 

Wife’s Year of Birth 

 

 

 

2.87*** 

(0.299) 

 

0.302 

 

 

Wife’s Years of Education 

 

 

0.513*** 

(0.072) 

0.227 

 

Note: In the first column, each row displays the coefficient (and robust standard error) of 

an OLS regression of the variable in each row on a constant and an indicator of genotyped 

sample. The second column displays the standardized difference, where the variable in each 

row has been standardized to have mean 0 and standard deviation 1.  

*** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1 
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Table A3: Correlations and contingency tables for education in the non-genotyped sample 

 

 

Panel A. Correlation Husband’s      

 Education      

       

       

Wife’s Education 0.6140      

 [0.000]      

       
 

Panel B. Contingency table for education, conditional probability of husband’s education 

 

 

 Wife’s Wife’s     

 

Low 

Education 

High 

Education     

Husband’s Low Education 82.11 17.89     

Husband’s High Education 33.55 66.45     

Pearson test 2(1) = 599.138      

 [0.000]     

Note: N=2,548. In Panel B: low is defined as below the median and high is defined as above the median; Each 

cell reports the conditional probability of husband’s education given his wife’s education. The row probabilities 

sum to 100. p-values are reported in brackets.   
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Table A4: OLS estimates of the Matching Function 

      

 

Dependent variable: 

Wife’s College  

 (1) (2) (3) (4) (5) 

      
Husband’s College 0.435*** 0.428*** 0.408*** 0.401*** 0.392*** 

 (0.023) (0.023) (0.023) (0.024) (0.024) 

Wife’s EA PGS   0.071*** 0.064*** 0.068*** 

   (0.009) (0.009) (0.009) 

      
PCAs No No No Yes Yes 

Demographics No Yes No No Yes 

Observations 1,562 1,562 1,562 1,562 1,562 

R-squared 0.239 0.262 0.269 0.291 0.313 

Note: Robust standard errors in parentheses. PCAs: 10 first principal components 

of the husband’s (wife’s) genetic data. Demographics: year of birth of the wife, 

year of birth of the husband, 8 indicators of the wife’s region (Census division) of 

birth and 8 indicators of the husband’s region (Census division) of birth. 

*** p<0.01, ** p<0.05, * p<0.1 
 

 

 

Table A5: OLS estimates of the First Stage  

       

 

Dependent variable:  

Husband’s College 

 (1) (2) (3) (4) (5) (6) 

       

Husband’s EA PGS 0.111*** 0.103*** 0.104*** 0.103*** 0.098*** 0.099*** 

 (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 

Wife’s EA PGS    0.064*** 0.059*** 0.062*** 

    (0.011) (0.011) (0.011) 

       
PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

R-squared 0.062 0.094 0.109 0.081 0.110 0.126 

Instrument relevance 109.58 88.367 90.178 93.144 79.340 81.877 

Note: Instrument relevance: Kleibergen-Paap rk Wald F statistic. See footer in Table A4. 
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Table A6: OLS estimates of the Reduced Form 

       

 

Dependent variable: 

Wife’s College 

 (1) (2) (3) (4) (5) (6) 

       

Husband’s EA PGS 0.069*** 0.056*** 0.059*** 0.056*** 0.047*** 0.051*** 

 (0.010) (0.010) (0.010) (0.009) (0.010) (0.009) 

Wife’s EA PGS    0.095*** 0.086*** 0.091*** 

    (0.010) (0.010) (0.010) 

       
PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

R-squared 0.030 0.072 0.104 0.084 0.115 0.150 

Note: See footer in Table A4. 
 

 

 

 

 

Table A7: IV (2SLS) estimates of the Matching Function 

       

 

Dependent variable: 

Wife’s College 

 (1) (2) (3) (4) (5) (6) 

       
Husband’s College 0.617*** 0.539*** 0.563*** 0.547*** 0.486*** 0.516*** 

 (0.078) (0.083) (0.083) (0.083) (0.087) (0.087) 

Wife’s EA PGS    0.060*** 0.058*** 0.059*** 

    (0.011) (0.011) (0.011) 

       
PCAs No Yes Yes No Yes Yes 

Demographics No No Yes No No Yes 

Observations 1,562 1,562 1,562 1,562 1,562 1,562 

Note: (Excluded) instrumental variable: Husband’s EA PGS. See footer in Table A4. 
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