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Abstract

Recently, skyrmions attracted huge attention due to their topological character which ensures
surprisingly stable, particle-like magnetic excitations on small scales with distinctive dynamical
properties. Their characteristic transport signature—the topological Hall effect—has become
an established tool for detection of topologically non-trivial ferromagnetic textures. However,
this attribute vanishes when considering degenerate antiferromagnetic structures as the
associated emergent magnetic field is spin-dependent. This thesis demonstrates the emergence
of an alternative transport signature in case of antiferromagnetic skyrmion textures—the
topological spin Hall effect.

Firstly, a computational scheme is developed which estimates the topological spin Hall effect
based on semiclassical wave-packet dynamics. In the adiabatic limit, their equations of motion
allow to treat large-scale magnetic textures on top of locally collinear, small-scale Hamiltonians,
here based on density functional theory. Transport expressions are extracted by combination
of the equations of motion and the Boltzmann formalism. While the analogous procedure
is straightforward for ferromagnetic materials, the wave-packet’s SU(2)-nature, caused by
degenerate bands, results in additional spin dynamics and non-abelian Berry curvatures which
inhibit direct transport evaluation. While the reciprocal-space dynamics are treated on the
Boltzmann level, the spin and real-space dynamics are solved iteratively starting from multiple
initial positions. Evaluation of the traversed paths results in integrated expressions for the
topological spin Hall effect.
Sizable topological spin Hall responses are predicted in simulations for the exemplary

Fe/Cu/Fe-trilayers and thin chromium layers when artificially imprinting synthetic and intrinsic
antiferromagnetic skyrmions, respectively. The importance of the non-abelian dynamics is
demonstrated by large differences relative to comparative calculations of decoupled antipar-
allel ferromagnets. While the spin evolution results in surprisingly homogeneous transport
modifications, the k-resolved intra-band overlap has a particularly unpredictable distribution
requiring precise density functional theory calculations. Further numerical thoroughness is
required because of extreme sensitivity with respect to small reciprocal-space modifications
such as slight Fermi energy changes. Furthermore, the evolution of the k-dependent transport
and overlap properties is shown with respect to thickness variations demonstrating rich
tuning potential. Conversely, multiple calculations modifying the skyrmion-radius, -shape,
and -density demonstrate the topological invariance of the topological spin Hall effect.

Overall, the topological spin Hall effect is an interesting phenomenon with rich application
possibilities. Foremost, it facilitates the discovery of the so far undetected antiferromagnetic
skyrmions, but also might provide efficient spin-current generation as required in spintronic
applications. Alternatively, it could serve as read-out mechanism of more complex devices
like antiferromagnetic, skyrmion-based racetrack memory. Hence, the developed versatile
and readily applicable computational scheme is a great addition for future antiferromagnetic
skyrmion studies.





Kurzfassung

Seit ihrer Entdeckung haben Skyrmionen viel Aufmerksamkeit aufgrund ihrer topologischen
Eigenschaften, wie beispielsweise Stabilität auf kleinen Skalen und teilchenähnlichem dy-
namischen Verhalten, erhalten. Die charakteristische Transportsignatur – der topologische
Hall-Effekt – ist ein etabliertes Werkzeug zur Detektierung topologisch nicht-trivialer ferro-
magnetischer Strukturen. Allerdings verschwindet dieses Phänomän in antiferromagnetischen
Strukturen, da das assoziierte emergente magnetische Feld spinabhängig ist. Diese Arbeit
demonstriert das Auftreten einer alternative Transportsignatur im Falle antiferromagnetischer
Skyrmionen – den topologischen Spin Hall-Effekt.

Zunächst wird ein Verfahren zur Berechnung des topologischen Spin Hall-Effekts entwickelt,
welches auf der Dynamik semiklassischer Wellenpakete basiert. Deren Bewegungsgleichungen
erlauben, im adiabatischen Limit, die Verknüpfung von großskalige magnetische Texturen mit
kleinskaligen, lokal kollinearen, hier dichtefunktional-basierten Hamiltonians. Anschließend
werden Transportausdrücke aus der Kombination dieser Bewegungsgleichungen mit den Boltz-
manngleichungen extrahiert. Im ferromagnetischen Fall können die resultierenden Gleichungen
direkt ausgewertet werden, allerdings haben die Wellenpakete entarteter Bänder aufgrund
ihres SU(2)-Charakters zusätzliche Spindynamik und nichtabelsche Berry-Krümmungen,
welche eine direkte Berechnung verhindern. Während die Dynamik im reziproken Raum
weiterhin im Boltzmann-Formalismus behandelt werden kann, müssen die Spin- und Realraum-
Bewegungsgleichungen von mehreren Anfangszuständen aus iterativ gelöst werden. Die
Auswertung dieser Trajektorien erlaubt die Berechnung des topologische Spin Hall-Effekt aus
aufintegrierten Größen.
Die anschließende Anwendung ergibt erherbliche topologische Spin Hall Signale in den

exemplarischen Fe/Cu/Fe- und Chrom-Dünnschichtsystemen mit aufgeprägten synthetischen
beziehungsweise intrinsischen antiferromagnetischen Skyrmionen. Die Berücksichtigung der
nichtabelschen Dynamik ist notwendig, wie durch Vergleich mit entkoppelten, antiparallelen
Ferromagneten demonstriert wird. Die zusätzliche Spindynamik resultiert in überraschend
homogenen Modifikationen, allerdings ist die k-abhängige Intraband-Kopplung unvorherseh-
bar, was genaue Dichtefunktionalberechnungen voraussetzt. Weiterhin sind genaue Modelle
notwendig, da selbst kleinen Änderungen im reziproken Raum, wie etwa Fermi-Energie
Variationen, zu großen Transportmodifikationen führen. Dies wird auch durch die k-anhängigen
Transport- und Kopplungseigenschaften demonstriert, deren Schichtdickeabhängigkeit viel
Optimierungspotential bietet. Andererseits wird die Invarianz des topologischen Spin Hall-
Effekt anhand von Skyrmion Radius-, Form-, und Dichtevariationen verifiziert.
Ingesamt gesehen ist der topologische Spin Hall-Effekt ein interessantes Phänomen mit

vielfältigen Anwendungsmöglichkeiten. Zunächst ermöglicht es die experimentelle Verifizierung
der bislang unentdeckten antiferromagnetischen Skyrmionen, könnte aber auch zur effizienten
Generierung von Spinströmen dienen, welche in spintronischen Anwendungen benötigt werden.
Alternativ könnte die Signatur auch als Auslesemechanismus in komplizierteren Bauteilen
dienen, wie etwa im Fall von antiferromagnetischem, skyrmion-basiertem Racetrack-Speicher.
Dementsprechend ist das hier entwickelte, vielseitige und direkt anwendbare Berechnungsver-
fahren eine sinnvolle Ergänzung für zukünftige Studien über antiferromagnetische Skyrmionen.
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1

Introduction

Since the beginning of the computer age, magnetic structures have played an important role
as information carrier of which the non-volatile version as in hard disk drives and magnetic
tape has prevailed to date. With the ensuing miniaturization enforced by increasing demand
for computational resources and power efficiency, the utilized structures have shrunken
significantly due to tremendous fabrication advancements as well as new ground-breaking
concepts enhancing writing and reading procedures [1]. While the magnetic control of a
single holmium atom as ultimate goal of this quest has already been achieved [2], reasonable
technological implementations are impossible since the required tools and environment
conditions are only attainable in laboratories.
An alternative venue to control of increasingly small magnetic domains are skyrmions.

These particle-like excitations of the magnetic texture have topological protection which allows
surprisingly stable small-scale objects with clear distinction from the trivial background state [3,
4]. While the smallest skyrmions require similar prerequisites as the holmium device, skyrmions
were also observed at room temperature demonstrating technological realizability [5]. A further
advantage from the electronic point of view is that all necessary procedures can be executed
by electric fields only. Creation, destruction [6], and controlled motion [7] of skyrmions has
been demonstrated by application of electric fields. Furthermore, the topological Hall effect [8,
9] as transversal transport characteristic of skyrmions enables efficient detection and thus
information extraction.
A popular proposal for technological utilization of these exciting properties are race-track

memory applications where skyrmions replace domain-walls as basic information carriers [10].
Advantages include the particle-like behavior with repulsion from edges and impurities as well
as the tremendously increased energy-efficiency due to the ultra-low current requirements
necessary to generate motion [11]. As the hypothetical switching times are compatible to
those of conventional random-access memory, skyrmion-based devices provide an opportunity
to reintroduce competitive non-volatile random-access or even universal memory. Alternatively,
logic gates based on skyrmions have been devised [12] and neuromorphic devices utilizing
skyrmion characteristics were proposed [13].

Another promising branch of spintronics are antiferromagnets which have several advantages
over their ferromagnetic relatives, mainly the relative indifference to external magnetic fields,
absence of stray fields, significantly faster dynamics [14], and general abundance in nature [15].
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1 Introduction

Recently, significant progress towards electronic control of antiferromagnetic states was
achieved both on the theoretical level accurately predicting spin torques and by improved
experimental configurations allowing controlled switching between distinct antiferromagnetic
states [16]. Furthermore, spin currents can be generated efficiently in antiferromagnetic
materials which is a cornerstone of energy-efficient spintronics.
Antiferromagnetic skyrmions were proposed to combine the best of both worlds [17–20].

While the topological properties provide stability, localization, and distinct transport features,
the antiferromagnetic character supplies even faster magnetization dynamics, independence
of perturbing fields, and vanishing of the skyrmion Hall effect otherwise causing unwanted
transversal motion. Unfortunately, no experimental realizations of skyrmions have been
reported so far despite their promising features, possibly due to already extraordinary results
in ferromagnets, difficulties resolving antiferromagnetic textures, and complications stabilizing
skyrmions without support of magnetic fields. Moreover, the topological Hall effect vanishes
in compensated antiferromagnetic skyrmions which prevents a frequently used measurement
method and, more importantly, inhibits the common electronic read-out mechanism in the
proposed technological applications.
Fortunately, the topological spin Hall effect emerges as alternative signature of such

antiferromagnetic skyrmions and thus could be analogously used as method for experimental
verification or even read-out mechanism in devices. Hence, it is a key feature both in search
and application of antiferromagnetic skyrmions, however its theoretical estimation is severely
complicated by the degenerate nature of many antiferromagnetic materials and thus relatively
unexplored.
This thesis addresses that issue by developing a computational scheme which allows the

evaluation of the topological spin Hall effect based on realistic reciprocal-space models with
assumed skyrmion texture in the adiabatic limit. More precisely, the approach of this thesis
estimates the transport characteristics from semiclassical equations of motion describing the
dynamics of degenerate electron wave-packets traversing antiferromagnetic textures. Material
parameters are obtained from accurate and versatile ab-initio calculations using collinear
density functional theory while the texture’s real-space dependence is considered as a parameter
in the equations of motion only. The cumulative transport properties are obtained through the
Boltzmann formalism. Within the constant relaxation time approximation, the reciprocal-space
dynamics is directly included into the transport expressions while the wave-packet’s real- and
spin-dependence are treated iteratively employing the Runge-Kutta formalism. Integration
over the Fermi surface, initial real-space positions, and iteration-time of the wave-packet
trajectories subsequently allows to evaluate the topological spin Hall effect expressions.

The above procedure is applied to two common synthetic or intrinsic antiferromagnetic thin
films with imprinted skyrmionic texture. Sizeable topological spin Hall effects are predicted,
the effect of thickness variations is studied, and the dependence with respect to coupling
and reciprocal-space features is scrutinized. Furthermore, the topological character is verified
through extensive skyrmion texture distortions and type variations. Hence, the functionality
of this general method predicting the topological spin Hall effect is demonstrated so that
immediate application to suspected antiferromagnetic skyrmion structures is possible.
This thesis is segmented into the following parts. The second chapter starts with an

introduction to the general properties characterizing the multifaceted skyrmions. After-
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wards, theoretical means are discussed which allow realistic description of magnetic textures.
These methods are complemented by experimental techniques verifying skyrmions in different
materials and promising propositions for skyrmion utilizations. Then, the concept of antiferro-
magnetic skyrmions and their established properties are described. The chapter is concluded
by definition of the two interpolation possibilities used in this thesis to describe such textures.

The third chapter covers the dynamics of electron wave-packets when traversing magnetic
textures with applied fields. First, the ferromagnetic non-degenerate case is reviewed as an
introduction to the ensuing dynamics of twofold-degenerate states which are complicated by
the non-abelicity of the Berry curvatures. The equations of motion are specified for the cases
of collinear and non-collinear antiferromagnets leading to significant simplifications necessary
for the transport expressions of the fourth chapter. There, the degenerate and non-degenerate
wave-packet dynamics are applied to the Boltzmann formalism after brief overview of the
electron and spin Hall effects. The computational details of these transport calculations are
covered in the fifth chapter where implementation schemes and convergence with respect to
numerical parameters are scrutinized.
In the sixth chapter the previous transport formalism is tested with a simplistic, nearest

neighbor tight-binding model of an antiferromagnetic bilayer with imprinted skyrmion texture.
Several transport contributions vanish due to the simplistic setup which allows detailed k-
and energy-resolved investigations of the basic transport effects.
The seventh chapter concisely reviews density function theory from which detailed and

accurate material descriptions are obtained. Furthermore, the principles of Wannier functions
are outlined which are subsequently used as a basis to an efficient model Hamiltonian.
Afterwards, the computational procedures and employed codes implementing the previous
methods are summarized and the numerical expressions to extract all necessary reciprocal-space
properties for the transport calculations are given.

The eighth chapter covers the FeCuFe-trilayer as an example for synthetic antiferromagnetic
skyrmions using a density functional theory based model. First, the topological spin Hall effect
of one example thickness is investigated in great detail with variation of the Fermi energy
and consideration of spin-orbit coupling on the density functional theory level. Furthermore,
the influence of different thicknesses and the evaluations of coupling between the states is
studied.

The alternative setup of intrinsic antiferromagnetic skyrmions imprinted on thin chromium
layers is considered in the ninth chapter. The topological spin Hall effects are calculated
for mono- and triple-layers with focus on the k-resolved distributions and dependences on
material parameters. Most importantly, the topological character of the skyrmion-associated
Hall effect is verified by examination of various different textures that reveals only slight
systematical variations.
Finally, the last chapter draws conclusions and summarizes the results.
Parts of this thesis have already been published in Refs. [21, 22]. This includes a brief

description of the developed computational procedure, covered in Secs. 4 and 5, as well as
the study of the FeCuFe-trilayer (Sec. 8).
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2

Skyrmion overview

While many transport mechanisms exists, this thesis investigates one particular subset—the
topological (spin) Hall effect. The essential ingredient for its emergence is the existence of
skyrmions, special localized magnetic structures. This section briefly summarizes the research
and properties of skyrmions, additional information can be obtained from the many reviews
as for example Ref. [3].

The term “skyrmion” is relatively old and originates from Tony Skyrme who found several
quantized solution in a classical field theory [23]. Back then, they were used to describe
mesons and baryons in the field of high-energy physics. More recently, Skyrme’s model
attracted substantial interest since a similar problem exists in solid state physics when
describing magnetic textures. Consequently, the name “skyrmion” was coined when Bogdanov
and Hubert found a set of magnetic interactions and parameters which indeed allow for
the formation of such “vortex-like structure” [24, 25]. With the experimental discovery of
skyrmion lattices [26] they finally entered the solid-state physics mainstream eliciting numerous
theoretical and experimental studies scrutinizing their exciting properties in search for useful
applications.
First, the defining topological features of skyrmions are described which is followed by

possibilities for theoretical descriptions, experimental realizations and their potent properties.
Subsequently, their peculiarities in antiferromagnetic materials are summarized after which
this chapter is concluded with a description of the skyrmion-interpolations utilized in later
parts of this thesis.

2.1 Skyrmion properties

Skyrmions are usually characterized as topologically non-trivial, particle-like excitations in the
magnetic texture. This first section describes these characteristic properties starting with the
notion of magnetic textures.
In general, textures describe the large-scale variation of a basic order parameter. In case

of magnetic textures this basic parameter is the magnetic order parameter. In magnetism
several basic phases exist: dia-, para-, ferro-, ferri-, and antiferromagnetism. The latter three
can serve as basis for the subsequent considerations as they include long-range order even in

5



2 Skyrmion overview

absence of applied field. The concept of a magnetic order parameter is naturally included in
the intuitive picture of having spins within the unit cell pointing in a distinguished direction.
In the ferromagnetic case, where all spins in the unit cell point into one direction, the order
parameter is chosen as those spin’s direction. Similarly, the order parameter of collinear
ferrimagnets and antiferromagnets can be defined by the direction of the spin, the only
difference is that a consistent choice of either direction is necessary due to their antiparallel
aligned spins. For non-collinear magnets, i.e. systems including spins within the unit cell
that are neither parallel nor antiparallel, the order parameter can be chosen by selecting one
arbitrary superposition of the spins as a reference state. Afterwards, different spin directions
can be expressed as solid rotations from the reference state.
With the notion of a distinct magnetic order parameter it is to imagine its variation over

scales much larger than atomic unit cell. Mathematically, such variations can be understood
as a vector field defining the local spin orientation in real space. One of the simplest possible
long-scale variations is the rotation of the order parameter along one direction which results
in a spin wave in case of ferromagnets. In general, a multitude of different phases or textures
exists such as large domain walls, helical and conical spin spirals, bubbles, and skyrmions.

2.1.1 Topological character

The essential question addressed in this section is what distinguishes a skyrmion from other
possible structures. The answer to that question is the topological non-triviality of skyrmions
which is described in this section and which causes the exotic properties outlined in the
following sections. In simple words, the topological non-triviality means that it is impossible
to deform a skyrmion by smooth transformations, instead drastic changes are necessary to
transform the skyrmion into the background state.
An instructive analogue is a double domain wall in a one-dimensional spin-chain. For

example, such a system could be constructed with the outer spins pointing into the up-
direction while the middle spins point downwards. The vector field describing the spin
orientations has to be smooth to allow sensible topological classifications so that the spin
directions of neighboring spin may only differ slightly. Consequently, 180◦ flips are forbidden
as they are drastic changes, instead smooth spin rotations may constitute the domains walls.
Two distinct possibilities for such structures exist, either both domain walls rotate into the
same or into opposite direction. The difference becomes obvious when moving the domain
walls towards each other. If the domain walls have opposite rotational sense, the approaching
wall can be smoothly rotated until reaching the up-direction since no large angles appear
between them. Thus, such domain walls can be trivially annihilated or created by topologically
allowed operations. In the other case with the same rotational sense large relative spin angles
appear when trying to push the domain walls into each other. Accordingly, the domain walls
can only be annihilated by drastic measure such as a spin-flips which distinguishes such
structures from the previous trivial ferromagnetic groundstate.
Skyrmions are analogues of the above, non-trivial type of domain wall in 2 dimensions

meaning that that no transformations exist that smoothly transform the skyrmion structure
into the ferromagnetic background state. Example skyrmion textures are shown in Fig. 2.2.
Defining features are spins in the skyrmion core pointing opposite to the background direction
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and spin spirals in slices intersecting the skyrmion. If such a one-dimensional intersection
crosses the skyrmion core a full rotation is obtained in analogy to the previous paragraph’s
structure. However, crossing slices into opposite directions both express this characteristic
so that the structure is now two-dimensional. As smooth deformations are allowed the
overall shape of a skyrmion can change drastically from this idealized picture for example by
elongation, however the opposite core and the spiraling property remain.

Skyrmions can be distinguished from the trivial structure using the stereographic projection.
This projection is well-suited to map an isolated magnetic structure onto a sphere. Choosing
the projection point in the particle’s core, the core’s spin direction is mapped onto the sphere’s
lowest point while the background state is mapped to the topmost point. In between, the
texture specifics determine the spin directions. Whether a texture is a skyrmion is then
determined by checking if this spin map covers the whole sphere or not. If the spins wrap the
sphere more than once, the magnetic texture describes a skyrmion of higher number with
similar properties.

A more rigorous distinctions between skyrmions and other textures is possible using topology.
It provides a framework to distinguish functions through their homotopy classes [27]. In general,
all maps from a base manifold to a given domain can be discriminated into different homotopy
groups. Now each homotopy group discerns the functions in disjoint homotopy classes
which are distinguished by their corresponding topological invariant of integer value. If two
functions are homotopic to each other, their topological invariants are identical and they can
be transformed into each other by smooth transformations.
The connection to skyrmions is given by treating the magnetic texture as a function

mapping from R2 ∪ {∞} to S2 where Sn denotes the n’th unit sphere [28]. Topologically
different textures can now be distinguished by the mapping degree. This quantity is the
integral over the topological charge density for all such smooth functions mapping Sn to Sn.
In the one-dimensional case (n = 1) the degree coincides with the classical winding number,
in the skyrmion case (n = 2) it is the skyrmion number

Q(m) =
1

4ı

Z
R2
dr m ·

 
@m

@r1
× @m

@r2

!
: (2.1)

While the n = 1 winding number measures how often a curve winds around the origin,
the skyrmion number Q, often called (S2) winding number or skyrmion charge, measures
how often the spin wraps the sphere as required from the initial considerations with the
stereographic projection. Q can take integer values, i.e. Q ∈ Z, and is the topological
invariant used to discern the different magnetic texture’s homotopy classes. We call all
textures with Q(m) = 0 topologically trivial, as they can be smoothly transformed into
the magnetic background state. Conversely, all states with Q(m) 6= 0 are called skyrmion
although further kinds can be distinguished.
The defining topological invariant also causes the iconic properties of skyrmions. The

most direct characteristic is the inferred stability. Since smooth deformations can not change
the homotopy class and as drastic magnetization changes involve larger energy scales, real
systems’ skyrmions are expected to remain stable as long as the topological requirements
are satisfied. This means that the order parameter field has to be a valid approximation on
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2 Skyrmion overview

Figure 2.1: Sketch of physical phenomena causing skyrmion and topological Hall
effect. Picture taken from Ref. [3]

the atomic scale so that the texture variation is much smaller than the inter-atomic spacing
of the constituting magnetic atoms. Otherwise, the skyrmions might vanish which one can
imagine as further shrinking until the skyrmion is no longer resolved by the atomic grid and
hence has effectively vanished. Alternatively, random noise as introduced by temperature
might supply the energy to overcome, or tunnel, through the energy barrier to the trivial
state. Other possibilities for skyrmion destruction include merging with the edges of magnetic
domains, collision with huge impurities significantly changing the underlying energy parameter
set, or annihilation with skyrmions of opposite charge. However, in most cases repelling forces
prevent such annihilations, impurities can be prevented by improved production processes,
and few systems allow for simultaneous existence of skyrmions with opposite charge.
Further effects caused by the skyrmion number are the skyrmionic Hall effect and the

topological (spin) Hall effect (Fig. 2.1), the main subject of this thesis which is described in
Secs. 4.1.1, 4.2.1 and calculated in the final chapters of this thesis.

2.1.2 Skyrmion types

From the previous chapter it is clear that skyrmions are textures with non-zero skyrmion
number, yet more differentiations exist within this large subset of possible textures. A first
distinction can be made with respect to their rotational direction. While it is required that
the spin textures wrap the whole sphere in the stereographic projection, no rotational sense
is enforced leaving freedom for further characterizations. Analogously to domain walls of
Bloch- and Néel-type, skyrmions can be differentiated into Bloch- and Néel-type depending
on their rotational direction. An archetypical Néel-skyrmion’s spin rotates exactly in or against
the direction of the skyrmion core when following a straight path through the skyrmion.
Conversely, Bloch-skyrmion rotate in one of the perpendicular directions. Both possibilities
are depicted in Fig. 2.2.
Another, more impacting distinction originates in the skyrmion number’s sign. Two

possibilities exist for switching sgn(Q) which naturally requires drastic modifications. The
trivial alternative is inversion of all spin as in the case of the time-reversal operator. Since the
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2.1 Skyrmion properties

Figure 2.2: Magnetization visualization of different skyrmion types.

skyrmion number (Eq. 2.1) consists of an odd number of magnetization direction occurrences,
time-reversal results in a skyrmion number sign change. As the background state is inverted
as well, no pair of such Q = ±1 skyrmions is feasible in one magnetic domain. The other,
more interesting possibility is the differentiation between skyrmions and antiskyrmions. Their
background state magnetization is equivalent, but their S1 winding number enclosing the
skyrmion core has opposite signs which causes a skyrmion number sign-change [29]. The
descriptive difference between an antiskyrmion and a skyrmion is the direction of spin rotation
(Fig. 2.2). While for some radial directions the antiskyrmion appears as a Néel-skyrmion,
in other directions it has the rotational sense of a Bloch-skyrmion. If the in-plane spin-
orientations constitute a different winding number than in case of a Bloch-skyrmion, the
magnetic texture is an antiskyrmion with correspondingly inverted skyrmion number. Which
types of skyrmions a system exhibits is determined by the DMI tensor and hence severely
restricted by the systems symmetries [29].

Since the skyrmion charge is an integer number also higher order skyrmions with e.g. Q = 2
are possible. Such skyrmions’ magnetizations wrap the unit sphere several times but retain
the general skyrmion properties as topological “protection”. Skyrmions with Q = 2 have
to be distinguished from two independent Q = 1 skyrmions, which also have Q = 2 when
integrating over the whole texture but behave as 2 independent particle-like excitations instead
of 1 excitations that can not be separated by small forces. As many skyrmion properties are
proportional to the skyrmion number, such systems for example exhibit a larger topological
spin Hall effect. However, the material requirements for their existence are more restrictive so
that few skyrmions of higher numbers have been found experimentally and applications are
less likely.

While the previous considerations treated isolated skyrmions, skyrmion lattices have similar
properties. They arise when creating more and more skyrmions in a system until it is
energetically disadvantageous to spawn additional ones. These skyrmions then tend to from a
regular lattice due to the skyrmion’s mainly repulsive and only slightly attractive interactions.
Such lattices are used in this thesis as basic magnetic texture whose topological spin Hall
effect is investigated. The used interpolations are described in Sec. 2.4. Experimentally,
a perfect, infinite domain is never created, instead several domains appear bordered by
lattice imperfections caused by vacancies, step boundaries, or temperature. Typically, several
skyrmions are found within a domain grain several but in some systems skyrmion lattice can
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also fill large portions of domains.
Since the topological motivation (Sec. 2.1.1) heavily relies on the two-dimensionality of

the base manifold, the three-dimensionality of real materials attenuates the previous strong
arguments. In fact, several different magnetic structures in close resemblance of the 2D-
skyrmion are possible. The most natural extension are skyrmion tubes, structures in which the
2-dimensional skyrmion texture does not change in the third dimension. This is a reasonable
assumption for thin films, but they are expected to occur in thick materials as well although
their phase-space extend is often reduced relative to their 2D counterpart. Yet, their energetic
stability can be enhanced by slight deformed along the third direction especially in case of
multilayers. Even attractive potentials may arise from such deformations keeping the tubes
together [30]. Other related textures include chiral bobbers [31], skyrmion tubes connected
to a surface that shrink down to a Bloch point with increasing depth, or even textures
characterized by higher dimension nontrivial topology such as Hopfions [28]. Since this thesis
restricts itself to very thin films, no such elaborate structures are taken into consideration.
Instead, rigid skyrmion tubes analogous to the 2D skyrmion texture are assumed.

2.2 Skyrmions in practice

Given the previous theoretical prerequisites and characteristics of skyrmions, this chapter
covers the theoretical means of describing skyrmion textures in realistic systems. Furthermore,
experimental measurement methods and results demonstrating the existence of skyrmion are
summarized after which propositions for their utilization are touched.

2.2.1 Theoreticaldescriptions

Many theoretical possibilities to describe magnetic textures exist. In this section they are
shortly summarized demonstrating the requirements and realization possibilities of skyrmion
textures. A more extensive overview over the described frameworks with further references is
given in Ref. [32].

Since the basic constituents of magnetic textures, the magnetic moments, are quantum ob-
jects, the most precise descriptions require full quantum mechanical treatment. Consequently,
the quantum Heisenberg model is a most accurate description. However, skyrmions require
a smooth texture containing many atomic sites so that the necessary system sizes are not
treatable on this level of accuracy.
Therefore, an approximation is necessary to obtain a numerically solvable description. A

natural approximation is the classical limit which yields the atomistic Heisenberg model. There,
the spins are considered as classical vectors arranged on a lattice. Instead of a complicated
quantum Hamiltonian, the energy of a spin configuration is determined by an energy expression
containing a multitude of magnetic interactions acting on vectorial spins. Typically, those
interactions include the Heisenberg exchange, the Dzyaloshinsky-Moriya interaction (DMI) [33,
34], magneto-crystalline anisotropy, dipole-dipole interactions, and the Zeeman effect. For
further calculations a choice of interaction parameters is necessary. While some calculations
simply assume some interactions and scan large parameter spaces, other studies try to extract
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effective parameters from experimental measurements or from detailed simulations of the
system’s Hamiltonian, for example by employing density functional theory (Sec. 7.1.1). Either
way, approximations to the multiple-spin interactions, that sometimes fall off very slowly
with increasing distance, are necessary. Different methods for obtaining its energetically
preferable spin configurations exist. Either the spin dynamics can be tracked by solving the
Landau-Lifshitz-Gilbert equations [35] or the energy can be directly minimized though several
different procedures. Furthermore, the minimal energy path between spin configurations can
be mapped by the geometric nudged elastic band method [36]. Thus, the energetic preference
of skyrmions can be demonstrated for a multitude of interaction parameter sets and even
their dynamics can be investigated with great precision.
While the previous framework allows precise calculations with atomic resolution, its appli-

cability is limited to small-scale textures. However, skyrmions exist on different length scales
even approaching radii of 300 nm [37] which is not reasonably resolvable within the atomistic
Heisenberg model. Instead, the micromagnetic model is employed for such systems.
The further approximation of the micromagnetic model is that the microscopic details

are averaged out so that the spin are no longer treated as vectors on a lattice but instead
as a continuous magnetization field. Accordingly, the previous atomic interactions are
combined into effective micromagnetic interactions that define the energy as a functional of
the magnetization vector field. Subsequently, minimization methods can be used to determine
the magnetic groundstate while the Landau-Lifshitz equations describe the magnetization
dynamics .

The huge conceptional advantage of this approach is that the skyrmions are described by
a continuous field analogous to the definition of skyrmions in Sec. 2.1.1. Since a multitude
of micromagnetic energy functionals exist, describing various physical phenomena, a simple
model is desirable to study skyrmion formation. Historically, the first theoretical description of
magnetic skyrmions was done by Bogdanov and Hubert [24] with a relatively simple functional.
There, the importance of the DMI for the formation of skyrmions was recognized. This
antisymmetric interaction, originating in spin-orbit coupling, prefers orthogonal spin orientation
with a distinct rotational sense introducing chirality. A most simple model can be formulated
by adding exchange and Zeeman interaction. For this model it can be analytically proven
that a single skyrmion of charge Q = −1 is energetically preferable over the topologically
trivial state for a finite range of interaction parameters [38].

While the exhibition of skyrmions in such a simple system demonstrates their commonness,
the necessity for DMI reduces the number of potential candidate materials. DMI is strongly
dependent on symmetries which often restricts its original tensor property to vector or
even scalar character and requires inversion symmetry breaking. Still, various inversion-
symmetry broken bulk materials such as the B20 compounds [26] or thin multilayers with
ideally constructive interfacial DMI were found to exhibit skyrmions. Especially the multilayer
setup provides rich tuning potential allowing alterations the phase space of skyrmions and
their shape [39].
A last theoretical aspect worth mentioning is the Thiele equation [40]. It describes the

effective motion of rigid skyrmions and can be derived from the Landau-Lifshitz-Gilbert
equation. Most notably, it includes a component which causes a transversal acceleration
proportional to the skyrmion number. This intrinsic property similar to the Magnus effect
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prevents skyrmions from moving along applied currents and is accordingly the source of the
skyrmion Hall effect.

2.2.2 Experiments

This chapter shortly outlines experimental measurements of skyrmions to demonstrate that
those structures are not theoretical physicist’s phantasms but physical phenomena realized
in various materials. A plethora of methods exist to experimentally verify the formation of
skyrmions, some of which are described in the following.
The method most related to this thesis’ topic is measurement of the topological Hall

effect (Sec. 4.1.1). This indirect method relies on the transversal transport signal proportional
to the skyrmion number. The simplicity of electron transport measurements requiring Hall
bar geometry with attached leads makes it a convenient choice. However, the ordinary and
anomalous Hall effects conceal the topological Hall effect due to their similar response. Involved
procedures have to be undertaken to disentangle the different contributions. The ordinary Hall
effect can be estimated by high temperature measurements in the paramagnetic phase and is
subsequently subtracted using its linear dependence on the magnetic field. The anomalous Hall
effect is more tricky but can be estimated by simultaneous measurements of the magnetization.
Then, clear bumps in the Hall signals are observed when entering the skyrmion phase after
subtraction of the alternative sources. This procedure has been successfully employed in case
of Mn1−xFexSi where the Hall signals were verified by supporting simulations reproducing
the skyrmion transport characteristics [41]. The agreement between the measured signals
and the theoretical estimations validate the applicability of the semiclassical approximations
in combination with Boltzmann equations to estimate the topological Hall effect. This
validation is important for further sections as the application of this method on degenerate
antiferromagnetic skyrmions is the main topic of this thesis.

Alternatively, skyrmions can be verified by more direct experimental techniques summarized
in the following.
The historically first method demonstrating the exhibition of skyrmion lattices is small

angle neutron scattering [26]. It is based on elastic scattering of polarized or unpolarized
neutrons from which the magnetic form factor is extracted. Then, it is possible to recover
the magnetic texture by mathematical means with resolutions from nm to —m scales [42].
The initial experimental skyrmion study [26] investigating MnSi found an interference pattern
indicating a magnetic texture consisting of a superposition of 3 spin spirals relatively tilted
by 120◦. This magnetic texture is interpreted as skyrmion lattice and called 3q-texture
(Sec. 2.4.1) in the following.

Alternatively, magnetic textures of thin films can be measured by Lorentz transition electron
microscopy [43]. There, highly accelerated and focused electrons transverse thin sample
while being slightly deflected by the sample’s magnetic field. Afterwards, the texture can be
reconstructed from tiny phase differences through numerical inversion. Its high resolution
allows detection and characterization of small skyrmions [44].

Even smaller surface magnetic structures can be resolved by scanning tunneling microscopy.
This method measures the tunneling currents between a probing tip and the sample thereby
extracting information about the electronic structure at an atomic level. One possibility to
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accurately resolve the magnetic texture is spin polarized scanning tunneling microscopy. It
additionally uses a magnetic coating on the tip so that a spin projected signal is measured.
The entire direction of the sample’s spin can be naturally obtained by rotation of the tip’s
spin orientation. However, the magnetic texture can be resolved without magnetic coating
as well. This is possible due to the non-collinear magnetoresistance which modifies the
bandstructure in case of tilted neighboring spins so that tunneling signals depend on the local
spin orientations [45]. Scanning tunneling microscopy provides extremely high resolution thus
allowing the measurement of very small skyrmions at the surface of thin films [46]. Furthermore,
the great resolution allows even direct measurement of antiferromagnetic alignments.
Using these experiments a multitude of materials were confirmed to exhibit skyrmions

in bulk systems [26, 41, 47] such as the prominent B20-compounds as well as in various
thin films [44, 48, 49]. Moreover, skyrmions were discovered in numerous multilayers [49–53]
with large optimization potential due to stacking and thickness variations. Skyrmions are
exhibited in a wide temperature range, from few degrees [48] to room temperature [5], and
were even found in insulators [54]. Moreover, severely distorted skyrmions were created [55,
56], the relation to highly confined domains was investigated [57], and even the existence
of antiskyrmions was verified [58]. Even the dynamics of skyrmion with respect to applied
fields were assessed [7, 59]. Hence, skyrmions are under well experimental control so that
their implementation into devices becomes conceivable.

2.2.3 Interesting properties

In recent times topological properties in reciprocal-space attracted great interest due to
the exhibition of surface states and topological protection. While the spin-polarized surface
states may be utilized in many experiments and applications, memory realizations are not as
promising. Although the topological phases can be tuned by strain or magnetic fields [60–62],
or by electric fields as in case of interfacial phase change materials [63], switching between the
states requires relatively large energies. Hence, memory applications simply distinguishing the
reciprocal-space topological characters benefit from long life-times in relatively small material
structure-sizes, but switching of their global topological characters requires relatively large
energies.
Skyrmions do not have this disadvantage due to their localization in real-space. Further

advantages include the possibility to create and move skyrmions applying easily-implementable
electric fields. Hence, memory-states can be switched efficiently by motion of skyrmions so
that neither creation or annihilation of skyrmions are necessary. A popular proposition to
harness these properties is the utilization as racetrack memory [10]. The use of skyrmions has
several advantages over previous racetrack propositions utilizing domain walls [64]. Motion
through corners and bends is easier due the skyrmions locality and repulsion from walls and
other obstacles. Additionally, skyrmion implementations requires much smaller currents for
similar accelerations of the information-carries compared to the domain-wall case. Hence,
skyrmions have excellent prospects with respect to low-energy devices. Their 0-dimensionality,
in contrast to the 1-dimensional domain walls, allows interesting concepts like multi-lane
tracks [65]. Further propositions exist where the second state is not topologically trivial but
the antiskyrmions state thus preventing memory faults due to different accelerations or pinning
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in a chain of bits [29].
But skyrmions application propositions are not restricted to racetrack applications. Al-

ternatively, they might be utilized as a multi-level memory due to their integer character.
Furthermore, skyrmions ensembles can be considered whose statistical behavior allows for
several computation tasks based on thermally driven dynamics [66]. Skyrmion-based transi-
tions have been proposed paving the road towards hybrid skyrmionic-electronic devices [67].
Even direct computation with skyrmions is feasible since logical AND and OR gates, basic
building blocks of electronic devices, are possible [12]. Another prospect of skyrmion applica-
tions are realizations in neuromorphic computing. Skyrmionic devices can naturally include
properties necessary for artificial synapses such as “short-term plasticity long-term potential
functionalities” which provides definite advantages over alternative electronic devices [13].

In conclusion, skyrmions provide various promising vistas for devices with distinct advantages
over existing solutions. Realizations become increasingly probable due to the quickly increasing
experimental expertise in many groups all over the world which necessitate numerous theoretical
studies supporting existent experiments and devising new applications.

2.3 Antiferromagnetic skyrmions

So far, all skyrmionic system have been constructed from a ferromagnetic building block.
Alternatively, one can construct skyrmionic textures whose bases have antiparallel coupling
resulting in ferrimagnetic or antiferromagnetic skyrmions. The latter exhibit fundamentally
different properties than their ferromagnetic counterpart. One origin of these differences are
the doubly degenerate bands of antiferromagnetic systems in case of highly symmetric crystals,
or time-reversal symmetry in general, causing entirely different electron dynamics (Sec. 3.2).
This thesis considers the symmetric case so that notion of antiferromagnetic skyrmions is
restricted in the following to skyrmion textures in such systems only.
Disappointingly, no natural antiferromagnetic skyrmion system has been discovered ex-

perimentally until now so that all antiferromagnetic skyrmion calculations performed in this
thesis are based on hypothetical systems. A reason for this disparity might be the enhanced
difficulty to observe textures in antiferromagnetic systems, also the groundbreaking discovery
of skyrmions in ferromagnetic materials has attracted more attention to that variant. Still,
antiferromagnetic systems with large DMI, an important ingredient for skyrmions formation,
have been theoretically predicted [68], but the difficulty to stabilize skyrmions via external
magnetic fields may further inhibit their discovery. However, ferromagnetic skyrmion were
measured without external field [69] so that this constraint is a minor obstacle only. The
general abundance of antiferromagnetic materials far exceeding the number of ferromagnetic
systems makes the existence of antiferromagnetic skyrmion probable. Thus, soon discovery
of real systems is likely so that methods for the theoretical estimation of their properties are
in demand to verify measurements as in the case of ferromagnetic skyrmions [41].

In general, one can discern two distinct kinds of antiferromagnetic skyrmions depending on
the kind of antiferromagnetic coupling, the synthetic and the intrinsic one (Fig. 2.3). The
synthetic case can by understood as skyrmions in two ferromagnetic layers whose coupling is
antiferromagnetic. Alternatively, the intra-layer coupling can be antiferromagnetic so that
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Figure 2.3: Schematic visualizations of synthetic (a) and intrinsic (b) antiferro-
magnetic skyrmions. The figures are takes from Ref. [19] and Ref. [18], respectively.

each layer’s skyrmions contain both sublattices defining the case of intrinsic antiferromagnetic
skyrmions. Both cases can be initially understood as a superpositions of 2 antiparallel
ferromagnetic skyrmions, however new properties emerge due to coupling.
Considering skyrmion dynamics, the most significant difference is the absence of the

skyrmionic Hall effect. Intuitively, this property is directly understandable within the picture
of 2 coupled, time-reversed sublattices. As the skyrmionic Hall effect is proportional to the
time-reversal odd skyrmion number (Eq. 2.1), the skyrmions of both sublattices have opposing
transversal accelerations which cancel each other given sufficient magnetic coupling and
equivalent magnetic parameters. This cancellation has been verified by several theoretical
studies for synthetic and intrinsic skyrmions utilizing the Landau-Lifshitz-Gilbert formalism to
describe the dynamics of matching micromagnetic models [17–20, 70, 71]. There, straight
movement has been observed which is evoked by either directly applied fields or spin currents
utilizing the spin Hall effect, i.e. by devices with currents in and perpendicular to the plane.
Skyrmion velocities exceeding the terminal velocity of ferromagnetic skyrmions by orders
of magnitude are observed, an advantage originating not only in the skyrmion Hall effect
absence preventing annihilation at the boundary, but furthermore due to the generally faster
antiferromagnetic dynamics owing to the absence of the Walker breakdown also present in
domain wall motion [14]. Hence, antiferromagnetic skyrmions have several advantages over
their ferromagnetic relatives especially with respect to racetrack applications which far exceed
the general advantage of antiferromagnet materials such as their indifference to alien magnetic
fields.
One problem when considering antiferromagnetic skyrmions for racetrack applications is

that the topological Hall effect, usually proposed as read-mechanism, is also proportional to
the skyrmion number and vanishes accordingly. Fortunately, another Hall effect emerges in
antiferromagnetic skyrmions, the topological spin Hall effect (TSHE). In the simplistic picture
of decoupled skyrmions the transversal spin currents are not canceled as the spin part causes
another flip under time-reversal resulting in constructive addition. Interestingly, the TSHE
has an intricate relation with the texture resulting in an enhancement of the longitudinal
skyrmion acceleration [72].
The detailed investigation of the TSHE is the main topic of this thesis. Its origin and

properties are described in further detail in Sec. 4.2.1, calculation methods and material
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estimations are given in the ensuing chapters.

2.4 Skyrmion interpolations

This thesis investigates the influence of an imprinted skyrmion texture on traversing electron
wave-packets numerically, hence an accurate and efficient approximation of skyrmion structures
is necessary. This section describes the two models providing such textures which are used in
this thesis. For simplicity, the antiferromagnetic texture is expressed through ferromagnetic
interpolations treating the magnetization direction as staggered order parameter.
Several different skyrmion-texture parameterizations have been proposed in recent times.

A popular approximation for the radial component of single skyrmions is a 360◦ domain-
wall profile including arcsin- and tanh-functions. Model parameters have been extracted
from spin polarized scanning tunneling microscopy measurements of single skyrmions in
PdFe/Ir(111) for which the model shape agrees very well with the measured skyrmion
shape [48]. Different possibilities exist to smoothly combine such single skyrmions to a
skyrmion-lattice parameterization as required for the following transport calculations.
Instead, two alternative possibilities are used to obtain skyrmion textures in this thesis.

The first is the analytic 3q-texture (Sec. 2.4.1), the second is the more general approach of
numerically solving atomistic spin models with simple interactions that yield skyrmion lattices
(Sec. 2.4.2). Implementation details further enhancing the efficiently of texture evaluations
are described in Sec. 5.2.3.

2.4.1 3q-texture

The first and more simple utilized parametrization of a skyrmion lattice is the so-called
3q-texture. Initially motivated by the small angle neutron scattering results showing 6-fold
scattering intensities [26], a skyrmion lattice can be approximated as the Fourier transform of 3
reciprocal-space vectors of equal magnitude and relative 120◦-angles. The simple construction
from sines and cosines allows easy evaluation and ensures smoothness of the texture. This
parameterization has been successfully used to investigate the DMI by means of semiclassical
methods [73] so that this parameterization is a good initial choice for describing the skyrmionic
texture.
The order parameter is the normalized expression of:

N(r) = B0êz + B1

2X
n=0

[(êz × ‰n) sin (q0‰n ·R) + êz cos (q0‰n ·R)] ; (2.2)

with ‰n = cos(2ın=3)êx + sin(2ın=3)êy , B0 = 1, B1 = −1:5, and q0 = 2ı=(190Å) as
taken from Ref. [73]. The ‰n define the skyrmion lattice orientation and the 190Å give the
lattice periodicity as measured for MnSi. The corresponding magnetic unit cell contains
one skyrmion, as can be verified through calculation of the skyrmion number. The texture
direction is visualized in Fig. 2.4 showing well localized skyrmions with clearly defined clockwise
Bloch-type rotational sense. The background magnetization is pointing in êz direction, but
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Figure 2.4: 3q-state skyrmion texture: a) shows the magnetization direction
N̂ using the hsv colormap. The hue visualizes the polar angle of the in-plane
magnetization while the brightness encodes the N̂z component. The saturation is
linear between 0 and 1 for N̂z ≥ 0 and 1 otherwise, the value is linear between 0
and 1 for N̂z ≤ 0 and 1 otherwise ( e.g. white corresponds to +êz and black to
−êz). b) Corresponding emergent magnetic field (Eq. 3.16). Each magnetic unit
cell contributes one magnetic flux quantum. aB denotes the Bohr radius.

the skyrmions are so large that the average N̂z component 〈N̂z〉 ≈ 0:38. The averaged
emergent magnetic field is 〈Bz〉 ≈ −9:92 T as can be calculated from the magnetic unit cell
size and the skyrmion number Q = −1. This is verified by numerical calculations of the
emergent magnetic field shown in Fig. 2.4. Furthermore, the figure glaringly visualizes the
inhomogeneity of Bz with extrema of approximately −19:7 T and 4:3 T.
The easy implementation and evaluation makes this parameterization a perfect initial

approximation which is used throughout the results parts of this thesis (Secs. 6, 8, 9). It is
possible to modify the magnetic texture by changing q0 which results in variations of the
Bz -magnitude, alternatively increase and decrease of the |B1|=|B0|-ratio can be used to grow
and shrink the skyrmion, respectively. Nevertheless, more tuning potential with enhanced
control over the texture is highly desirable, properties found in the more general following
model.

2.4.2 Atomistic model

The atomistic framework (Sec. 2.2.1) allows a more realistic description of magnetic systems
whose parameters can be extracted from experiments or theoretical descriptions such as
density functional theory (Sec. 7.1.1). So far, it is not sensible to extract real parameters from
realistic material descriptions as no antiferromagnetic system exhibiting a skyrmion texture
has been found yet. Hence, simulations are unlikely to result in skyrmion lattices. While such
a search for antiferromagnetic skyrmions is definitively possible, it is out of the scope of this
thesis. Instead, simple, conveniently chosen magnetic-interaction model parameters are used
to describe a more realistic texture with more tuning potential than in case of the 3q-state.
The model employed here is an atomistic spin lattice Heisenberg model (Sec. 2.2.1)
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including nearest neighbor exchange J, anisotropy K, external magnetic field B, and DMI
Di j . Consequently, the Hamiltonian can be expressed as:

H = −
X
<ij>

JŜi · Ŝj −
X
<ij>

Di j · (Ŝi × Ŝj)−
X
i¸

K¸(K̂¸ · Ŝi)2 −
X
i

—iB · Ŝi ; (2.3)

where Ŝi is the normalized spin at lattice site i . For simplicity, the model is restricted to
isotropic nearest-neighbor exchange J and the magnetic moments are always assumed as
— = 2—B. Since the DMI is only considered for neighboring spins on a rectangular grid, Di j

is expressed as D¸˛ in the following where ˛ labels the real-space direction from lattice site i
to j and ¸ denotes the vector component of Di j . Exemplary values are supplied in Tab. 2.1.

A subset of the functionality of the SPIRIT code [74] is used to find the magnetic ground
state properties through iteration of the Landau-Lifshitz-Gilbert equation. Starting from a
random distribution, the magnetization dynamics are followed until a ground state is found.
Alternatively, an approximate skyrmion lattice distribution is chosen as initial state either by
inverting the spin of spherical sections at suspected skyrmion positions in a ferromagnetic
background or by reusing the final state of a previous calculation with the wanted skyrmion
number. Both possibilities results in faster, more reliable convergence than starting from
a random configuration. The removal and addition of skyrmions is occasionally necessary
to achieve the most favorable skyrmion density in the computations cell and to allow the
formation of a well-fitting skyrmion lattice. Stability can be checked by energetic comparison
with different textures such as the ferromagnetic state and simulation cells including more
or less skyrmions. Any existing skyrmion would effectively describe a skyrmionic lattice due
to periodic boundary conditions, however in most considered systems several skyrmions are
contained in the computational cell. As long as an adequate number of skyrmions is in the
simulation cell, the skyrmions arrange themselves in a triangular lattice after long enough
convergence so that the final structure is comparable to the 3q-texture and experimentally
measured skyrmion lattices. Small changes of the magnetic texture are easily accessible
by slight modifications of the magnetic parameters and subsequent energy minimization of
the previous ground-state which allows systematic studies of the shape variation impact on
transport properties (Sec. 9.4.3).

As transport properties are investigated in the limit of smooth textures, the lattice spacings
are scaled to unphysical large values in order to effectively describe a skyrmion lattice of
the wanted size without excessive computational demand. This is reasonable as the SPIRIT
textures do not describe the actual systems parameters but are only used as realistic example
shape. Yet, it is probable that magnetic parameters exist exhibiting a similar texture to the
rescale lattice.

An example texture utilizing the atomistic model is shown in Fig. 2.5. The lattice constant
is chosen to match the averaged emergent magnetic field of the previously plotted 3q-
state skyrmion lattice (〈Bz〉 ≈ −9:92T) and the external magnetic field is chosen so that
〈N̂z〉 ≈ 0:38 in agreement to the texture of Fig. 2.4. The signs and directions of the DMI are
selected to yield a Bloch-skyrmion with the same rotational sense as in case of the 3q-texture.
Hence, this example is constructed to have close resemblance to the previous texture to
allow direct comparison. Still, the chosen parameters do not reproduce the 3q-texture ideally
as for example the radial change is more abrupt here. Furthermore, the lattice is rotated
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2.4 Skyrmion interpolations

Figure 2.5: Example SPIRIT texture with 14 skyrmions forming a lattice in a
200× 200 square lattice using the parameters of Tab. 2.1. The lattice-spacing was
scaled to ∼ 7:47 aB in order to have the same average emergent magnetic field as
the 3q-state in Fig. 2.4. a) shows the magnetic texture with the same colormap as
in Fig. 2.4 and b) is the corresponding emergent magnetic field.

as determined by the number of skyrmions and the computational unit’s shape and size.
While the magnetization-distributions seem very similar, significant differences appear in
the emergent magnetic field. The extrema are quite different with −21:64 T < Bz < 1:9 T
(SPIRIT) and −19:69 T < Bz < 4:32 T (3q-texture) where especially the significantly larger
latter Bz are noticeable. The maxima arise from the distinct positive, spherical contributions
between 3 neighboring skyrmions. The circular property is not recovered in the atomistic
texture and might be an artifact of the 3q-texture, however with increasing skyrmion size
Bz reaches increasingly large positive contributions at those positions so that the previous
texture is still a reasonable approximation. Comparison of the evoked transport between both
textures is given in Sec. 9.4.

J[meV] Dxx [meV] Dyy [meV] Kz [meV] Bz [T]
15 −2 −2 0:05 0:7

Table 2.1: SPIRIT-parameters corresponding to the texture displayed in Fig. 2.5.

Tuning of the parameters drastically alters the textures which includes diverse skyrmion-
setups but also entirely different phases such as spin spirals. The huge variability is utilized in
Sec. 9.4 where the transport effects caused by different skyrmion-types and shape variations
are investigated.
In conclusion, the atomistic model is a suitable method to efficiently describe periodic

magnetic structures with great tunability so that its inclusion into the computational procedure
of this thesis allows the study of arbitrary but smooth periodic textures.
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3

Wave-packet dynamics

This chapter covers a very intuitive method of describing electron dynamics under applied fields
and in magnetic textures—the semiclassical wave-packet dynamics. Its main feature are the
“equations of motion” which describe the evolution of a wave-packet’s center through phase
space. One of its salient properties is the possibility to include various general perturbations
such as lattice distortions or magnetic textures. The principles of the electron motion in
degenerate and non-degenerate systems is described in this chapter, the ensuing procedure to
calculate transport properties within the Boltzmann formalism follows in Sec. 4.3.
This chapter primarily compiles established results from multiple sources (Refs. [75–77])

focused on the subject of this thesis and rephrases them in an uniform notation. A more
general review of wave-packet dynamics and associated Berry phase effect with intuitive
explanations of basic physical phenomena is given in Ref. [78].
First, the well-established equations of motion of non-degenerate systems are derived

considering applied fields and magnetic textures. They were already employed to calculate
the transport responses in ferromagnetic skyrmions analogous to this thesis’s investigation
of antiferromagnetic skyrmions and thus serve as comparison to the ensuing derivation in
degenerate systems. The second part of this chapter starts with an overview of the differences
that emerge when considering twofold-degenerate states. Most importantly, the isospin enters
as a dynamical quantity which describes the sublattice localization. Afterwards, possibilities
to simplify the equation of motions are discussed uncovering the relation between spin and
isospin for collinear and non-collinear degenerate antiferromagnets.

3.1 Non-degenerate systems

In this section the dynamics of non-degenerate electrons are investigated considering magnetic
textures and applied electric fields. While the electric field is understood as an external
perturbation to the Hamiltonian, the magnetic texture is incorporated through system rotations
keeping the spin quantization axis aligned with the texture. The later concept was successfully
employed to describe the influence of textures as mediated by real-space dependent sd-
exchange [8]. The goal of this section is to attain a framework which describes electron
motion through phase-space in such environments.
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3 Wave-packet dynamics

A basic obstacle for such a description is the basic quantum mechanical principle which
forbids simultaneous knowledge of the electron’s precise position and velocity. Fortunately,
the wave-packet formalism has been developed which allows to circumvent this problem by
consideration of wave-packets with small but finite extend in real- and reciprocal-space [79].
In this section, the derivation of the wave-packet’s equations of motion is demonstrated for
the non-degenerate case loosely following the general Ref. [75].

3.1.1 General formalism

The theory as laid out in Ref. [75] starts from a general Hamiltonian Ĥ dependent on r̂ , p̂,
and small modulation functions ˛i(~̂r; t). The local Hamiltonian of a wave-packet localized at
rc in real-space is approximated as

Ĥ = Ĥc +
X
i

(r̂ − rc)∇rc˛i(rc ; t); (3.1)

where Ĥc = H(r̂ ; p̂;˛i(rc ; t)) is the Hamiltonian with its linearized perturbations evaluated at
rc . Since Hc is lattice periodic, the crystal momenta q can be used to define the Bloch-wave
eigenstates | q(rc ; t)〉 valid around rc . Thus, the local Hamiltonian is a good choice describing
the immediate vicinity of rc . The conceptional trick of this formalism is the construction of
a wave-packet with small spread in both real and reciprocal space. Hence, only the local
texture and environment matter when a bunch of electrons with slightly smeared real- and
reciprocal-space localization is conflated to a wave-packet. As long as the smearing is small
enough on the scale of the real-space texture, all constituting electrons are well described using
Hc ’s Bloch vectors | q(rc ; t)〉. The second necessity of sufficient localization in reciprocal
space becomes important when following the electron trajectories. If the wave-packet’s spread
is too large, the constituent electrons will soon move into different directions as their group
velocities differ. Accordingly, the wave-packet would quickly loose its coherence so the Hc
is not longer applicable for all constituent states. However, if the wave-packet diffusion
is prevented by sufficient localization in both real and reciprocal space, the wave-packet
center-of-motion effectively describes the dynamics of the entire wave-packet. Accordingly,
the wave-packet is defined as:

|W 〉 =
Z
dq w(q; t) | q(rc ; t)〉 ; (3.2)

where w(q; t) is a normalized enveloping function enforcing reciprocal-space localization.
This distribution determines the crystal momentum average of the wave-packet qc which
specifies the wave-packet position in phase space together with rc . The localization in real and
reciprocal space are connected by the Heisenberg principle. As w(q; t) has to be very localized
on the scale of the reciprocal-space lattice vectors in order to ensure similar reciprocal-space
properties, the minimal real-space localization has to include several unit cells. Hence the
scale of the magnetic textures has to be much larger than the unit cell so that it is reasonable
to describe the wave-packet by its center’s properties.

In the following all effects caused by the “non-center” properties and the wave-packet shape
are neglected so that the wave-packet’s dynamics are governed entirely by the dynamics of
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3.1 Non-degenerate systems

the wave-packet averages rc and qc . In general, other wave-packet properties apart from
the center have been shown to contribute to important phenomena and provide further
corrections [80, 81].
The wave-packet dynamics are derived using the variational principle formulated in terms

of the Lagrangian L = 〈W |i d
dt
− Ĥ|W 〉. The relevant parts of the Lagrangian are:

L = −EW + qc · ṙc + q̇c ·
*
u

˛̨̨̨
˛ i @u@qc

+
+ ṙc ·

*
u

˛̨̨̨
˛ i @u@rc

+
+

*
u

˛̨̨̨
˛ i@u@t

+
: (3.3)

In this equation |u〉 denotes the periodic part of the Bloch-wave

|u(rc ;qc ; t)〉 = e−iqc ·rc | qc (rc ; t)〉 : (3.4)

The wave-packet energy EW includes terms of the additional gradient function

EW ≈ 〈Ψ|Ĥc |Ψ〉+ 〈Ψ|∆Ĥ|Ψ〉 : (3.5)

The 〈Ψ|∆Ĥ|Ψ〉-term describes further corrections such as the effect of orbital magnetization,
but ∆Ĥ is neglected for simplicity in the following so that EW is the band energy only. The
other parts originate in the total time derivative. The latter 3 terms include the different
Berry connections

Ar = i

*
u

˛̨̨̨
˛ @u@rc

+
; Aq = i

*
u

˛̨̨̨
˛ @u@qc

+
; At = i

*
u

˛̨̨̨
˛ @u@t

+
; (3.6)

which are constructed from the periodic part of the Bloch-waves. Alternatively, they can be
cast into the single term 〈u|idu=dt〉 which is the “net rate of change of Berry phase” [75].
Notice that the real- and reciprocal-space Berry connections are vectors in the respective
space as indicated by the boldface indices. The “A” is not bold to keep consistency with the
degenerate case (Sec. 3.2).
Henceforth, the index c , denoting the wave-packet center, is omitted as the following

derivations consider the center-of-motion real- and reciprocal-space dynamics only. The
Euler-Lagrange equations,

@L
@ri
− d

dt

@L
@ṙi

= 0;

@L
@qi
− d

dt

@L
@q̇i

= 0;

(3.7)

are used to obtain the wave-packet’s general equations of motion [75, 78]:

ṙ— =
@EW
@q—

− Ωq—r� ṙ� − Ωq—q� q̇� − Ωq—t ; (3.8a)

q̇— = −@EW
@r—

+ Ωr—r� ṙ� + Ωr—q� q̇� + Ωr—t : (3.8b)
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3 Wave-packet dynamics

Ωxy denotes the different Berry curvatures:

Ωxy =
@

@x
Ay −

@

@y
Ax ; (3.9)

with {x ; y} ∈ {r ;q; t}. Ωr r , Ωrk , and Ωkk are matrices in their respective space and are
called real-space, mixed, and reciprocal-space Berry curvature, respectively. For convenience
and due to their antisymmetry, the pure Berry curvatures, i.e. Ωr r and Ωkk , can be expressed
through a vector form: Ωxx · ẏ = ẏ × Ωx with Ωxi = 1=2"i j lΩxjxl . The dot product denotes
multiplication with the latter index of Ωxx as commonly encountered in the equations of
motion. The latter quantities of Eq. 3.8, Ωtx , are different from the other curvatures since
t in not a vector and their presence requires time dependent perturbations. The merit
of Eq. 3.8 is that it supplies a general scheme of wave-packet dynamics where all system-
dependent properties are encoded in the different Berry curvatures. Various physical effects
can be recovered from these equations providing an intuitive picture with iteratively solvable
equations[75, 78].

3.1.2 Electromagnetic fields

Having established the general formalism, it is necessary to treat the influence of an external
electromagnetic field [82]. It may be understood as general perturbations of the form
Ĥ = Ĥ0[q + eA(xc ; t)]− effi(x̂ ; t) expressed by its gauge potential. Such perturbations are
perfectly suited for this formalism, hence equations of motion can be derived either directly
from the equations of motion (Eq. 3.8) or via re-evaluating the Lagrangian (Eq. 3.3) [75]. It is
instructive to look at the electromagnetic field’s influence without texture, i.e. when only
xc -dependence arises from the applied fields. In that case the equations of motion simplify to

ṙ =
@EM
@k
− k̇ ×Ωk ; (3.10a)

k̇ = −E − ṙ ×B: (3.10b)

The crystal momentum is now expressed as k = q + eA and the wave-packet energy includes
the orbital magnetization EM = EW −M · B. The reciprocal-space Berry curvature Ωkk

depends on the initial Hamiltonian Ĥ0 only and is thus unaffected by the applied fields.
Originating in the real-space and time-dependent gauge field, the electromagnetic fields
E = −∇rffi− @A=@t and B = ∇r × A enter the equations via the @E

@r
+ Ωr r · ṙ + Ωrt parts

of Eq. 3.8 [75, 78]. The negative sign arises from the electron charge which is −1 in chosen
unit system.

3.1.3 Magnetic texture

The remaining necessary ingredient is the influence of a magnetic texture whose spins are
assumed to be of constant magnitude. When excluding spin-orbit coupling, all Berry curvatures
containing k vanish despite the introduction of the texture. Hence, the texture’s impact on
the wave-packet dynamics is described by Ωr r and Ωrt only. Those quantities acquire intuitive
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3.1 Non-degenerate systems

analytic expressions derived in the following. Initial descriptions of this effect were given in
Refs. [8, 83], this section’s derivations loosely follow Ref. [76].

Rotating the Bloch basis state in real space to have its spin axis aligned with the texture,
the Bloch-wave can separated in an orbital and a spin-dependent part: |u(r ; k ; t)〉 =
|”(k)〉 |↑ (r ; t)〉. The k-dependent orbital part |”(k)〉 describes the solutions of the original
Hamiltonian while |↑ (r ; t)〉 encodes the direction of the texture accounting for the entire
r -dependence under the given assumptions (especially neglecting spin-orbit coupling). As the
local spin direction describing the texture is of constant magnitude, it can be conveniently
described by its azimuthal „ and polar ffi angles. Accordingly, its direction is given by

n =

264sin(„) cos(ffi)
sin(„) sin(ffi)

cos(„)

375 : (3.11)

The Bloch-wave’s real-space part thus takes the form:

|↑〉 =

24e−iffi
2 cos( „

2
)

eiffi
2 sin( „

2
)

35 : (3.12)

Explicit calculations for that state show that the real-space Berry connection becomes

Ar =
cos „

2

@ffi

@r
: (3.13)

Utilizing Eq. 3.9, the real-space Berry curvature can be expressed as

Ωr—r� = −sin(„)

2

 
@„

@r—

@ffi

@r�
− @„

@r�

@ffi

@r—

!
(3.14)

for the spin-up state of Eq. 3.12. Reformulating Ωr—r� in terms of n yields the convenient
form:

Ωr—r� = −1

2
n ·

 
@n

@r—
× @n

@r�

!
: (3.15)

This equations demonstrates the distinct relationship between this wave-packet dynamics effect
and skyrmion textures as −Ωr—r�=ı corresponds to the skyrmion number density (Eq. 2.1).
Similar to its electromagnetic relative—the magnetic field—the impact of the real-space

Berry curvature originating in the magnetic texture can be interpreted as consequence of a
field owing to the cross-product with ṙ . This field is commonly called the emergent magnetic
field and is defined in this thesis as:

Bi = −1

2
"i j lΩrj rl =

1

4
›i j ln ·

 
@n

@rj
× @n

@rl

!
: (3.16)

›i j l is the Levi-Civita symbol whose antisymmetry causes the additional 1=2-factor relative
to Eq. 3.15. The impact of B is illustrated in Fig. 3.1. The −1 is introduced so that the
emergent field enters the equations of motion with the same sign as the external fields.

25



3 Wave-packet dynamics

Analogous to external magnetic fields, the emergent magnetic field causes a transversal
transport effect—the topological Hall effect. It is described in further detail in Secs. 4.1.1, 4.4.1.
A distinct difference with respect to the electromagnetic fields exists. As Eqs. 3.13-3.15 have
been derived from the spin-up state (Eq. 3.12), slight modifications are necessary for the spin
down state. When replacing n → −n in order to effectively describe the down state, Ωr r

(Eq. 3.15) reverses sign. Thus, the impact of the emergent magnetic field is spin-dependent.
As B is constructed to be spin-independent, the spin-dependence has to be included in the
equations of motion (Eq. 3.18) through the (s · n)-term. This artificial spin-dependence
transfer from B into the equation of motion enables better analogies with the later treatment
of antiferromagnetic textures (Sec. 3.2).

In addition to the emergent magnetic field, the emergent electric field E describes the
effect of time-dependent variations of the texture. It originates in the general equation’s
Ωrt-term (Eq. 3.8) which is exactly like Eq. 3.14 with the replacement r� → t:

Ei =
1

2
n ·

 
@n

@ri
× @n

@t

!
: (3.17)

Naturally, it is also spin-dependent and has a potential to invoke interesting transport effects
in time-dependent systems. However, this thesis is constricted to the effect of static textures
so that E is neglected in the following sections.

The mixed Berry curvatures vanish when assuming that the previously used decomposition
|u〉 = |”(k)〉 |↑ (r ; t)〉 into orbital- and spin-parts is possible since that implies that Ar and Ak
are k- and r -independent, respectively. Hence, features of a texture-independent Hamiltonian
not breaking the above requirement may enter the equations of motion through Ωkk only.
For systems without even such reciprocal-space features, which are commonly caused by

Figure 3.1: Schematic picture of spin alignment and influence of the emergent
magnetic field on electrons caused by skyrmions. The figure is taken from Ref. [84].
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3.1 Non-degenerate systems

spin-orbit-coupling or intra-cell non-collinearity, the equations of motion are:

ṙ =
@›

@k
; (3.18a)

k̇ = −(s · n) (E + ṙ × B) : (3.18b)

3.1.4 Combined equation of motion

Next Eqs. 3.10 and 3.18 have to be combined since the dynamics of electrons will be studied
that are influenced by static magnetic skyrmion textures and applied electric fields. Further
effects caused by non-trivial reciprocal-space characteristics, in general manifested through Ωkk

or Ωrk , are neglected here. For analogy with the degenerate case (Sec. 3.2), the wave-packet’s
spin in the global frame is explicitly included into the equations of motion. As non-degenerate
wave-packets consist of localized states of one band only, and since the construction assumes
that its spin always stays aligned with the texture (Fig. 3.1), the “spin-up” or “spin-down”
wave-packet character in the local frame is respectively expressed by n and −n in the global
frame [76]. Accordingly, the following equations of motion are obtained:

ṡ = (s · n)ṅ; (3.19a)

ṙ =
@›

@k
; (3.19b)

k̇ = −E − (s · n)ṙ × B: (3.19c)

It is important to consider the bounds of their validity in the ensuing interpretations.
Throughout the derivation only one band is considered while the influence of other bands may
only enter through the mixed or reciprocal-space Berry curvature since explicit transitions to
other bands are impossible in this formalism. This rough approximation excludes all scattering
to other states. Hence, this framework breaks down when the states approach each other.
These equations are especially inapplicable at points of band degeneracy owing to their U(1)
nature and corresponding curvatures describing single bands only. Still, general corrections
including horizontal mixing are possible within the semiclassical formalism [81]. A special
case including a second band is described in the following section where degenerate bands of
antiferromagnetic textures are considered.

Another restriction is the imperative alignment of the spin with the texture which limits this
framework’s applicability especially in the presence of spin-orbit coupling and spin scattering.
It impedes the consideration of spin dephasing and corresponding torques. Moreover, within
this branch of the formalism back-action on the texture is not included although resulting
charge and spin currents could certainly modify the magnetic texture. Another simplification
is the fundamental assumption that the decomposition |u〉 = |”(k)〉 |↑ (r ; t)〉 is possible, i.e.
the texture’s impact on the Hamiltonian can be described by a simple coupling term like
−Jn ·ff [78] which has no further influence on other Hamiltonian parts. In general, the energy
levels can change significantly depending on the magnetization direction, an effect visible
via the non-collinear magnetoresistance when measuring skyrmions via scanning tunneling
microscopy [46]. In principle, this effect is included in the most general equations of motion
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3 Wave-packet dynamics

(Eq. 3.8) through the @EW
@r

part, but it is neglected in employed Eq. 3.19 as its treatment
would be difficult especially from an ab-initio perspective. Furthermore, the possibility that
the wave-packet smears out due to its spread in real- and reciprocal-space (Sec. 3.1.1) is a
perpetual restriction to this formalism’s applicability.
Despite all these inaccuracies, the wave-packet’s equations of motion are an intuitive

method to describe physical effects and obtain insights into their origin. Given the right
circumstances, this method provides good estimates and is readily expandable to include
further phenomena. Eq. 3.19 fulfills this section’s aim of describing the impact of applied
electric fields and magnetic textures on the motion of electrons, its application to study the
topological Hall effect is continued in Sec. 4.4.1.

3.2 Twofold-degenerate systems

In contrast to the previous ferromagnetic systems, antiferromagnets most often have twofold-
degenerate states due to combined time-reversal and crystal symmetries. Since the aim of
this thesis is the description of antiferromagnetic skyrmion systems with degenerate bands
canceling the topological Hall effect, the previously derived wave-packet dynamics have to
be generalized. Several references have studied how the wave-packet formalism has to be
modified for degenerate states [76, 77, 85–87]. This section describes the derivation of general
twofold-degenerate wave-packets dynamics following Ref. [76].
The basic components of this derivation are Hamiltonian Ĥ, its degenerate band ›i , and

the corresponding eigenstates | i〉. For simplicity, the derivation is restricted to a single band
which allows to drop the index i . The wave functions corresponding to › are denoted as
| 1;2〉 = eik·r |u1;2〉 using the Bloch-waves |u1;2〉. Since the states are degenerate, a sensible
choice of eigenstates has to be made. For example, the states of collinear antiferromagnets
are distinguished by their spin so that |u1〉 and |u2〉 correspond to spin-up and -down,
respectively. Analogous to the non-degenerate case (Eq. 3.2), a wave-packet localized in real-
and reciprocal-space is constructed:

|W 〉 =
Z
dk w(k ; t) [c1 | 1〉+ c2 | 2〉] : (3.20)

Again, the enveloping function w is chosen so that kc =
R
dk k |w |2 while rc is the real-space

wave-packet center as described in Sec. 3.1.1. Consequently, kc and rc are the wave-packet’s
center-of-motion coordinates in phase space. The major difference to the ferromagnetic case
is that the wave-packet is constructed as a superposition of two states. Contrary to the U(1)
character of the ferromagnetic wave-packets, where a general phase factor to the wave-packet
will not affect the equation of motion, the variables c1;2 encode the SU(2) character whose
evolution has to be included into the equations of motion. At this point the initial choice
of the basis vectors becomes important as it can simplify further transformations. In case
of collinear magnets, the basis states are ideally defined so that the c1;2 trivially determine
the wave-packet weight on the respective magnetic sublattice. Consequently, a relation
exists between the expectation values of c1;2 and the spin of the wave-packet. The complex
variables c1;2 are of SU(2) character due to the general phase freedom and the wave-packet
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3.2 Twofold-degenerate systems

normalization, i.e. |c1|2 + |c2|2 = 1. Using the isomorphism between SU(2) and O(3), a
convenient notation of the c1;2 is the isospin C:

C =

264 2<(c1c
∗
2 )

−2=(c1c
∗
2 )

|c1|2 − |c2|2

375 : (3.21)

In principle, C can be understood as the expectation values of the Pauli matrices in c1;2 space
which leads to a convenient notation as the Pauli matrices are generators of the SU(2) group.
Thus, the evolution of the relative wave-packet weight on the sublattices can be conveniently
included into the equation of motion through the dynamics of C.
The general equations of motion are again deduced from the Lagrangian [76] (compare

Eq. 3.3)
L = −EW + kc · ṙc + ic†c + c†

“
Accr · ṙ + Acck · k̇

”
c : (3.22)

The wave-packet energy EW is approximated by the band energy › and the explicitly time-
dependent corrections like 〈u|i@u

@t
〉 are neglected. The major difference to the non-degenerate

case is the appearance of the isospinor c = [c1; c2]T . The originally U(1) Berry connections
have become 2 × 2 matrices in isospinor space since the derivatives of both |u1〉 and |u2〉
enter the equations. Hence, the Berry connections in the Lagrangian expression are:

Accx— = i
"
〈u1|@x—|u1〉 〈u1|@x—|u2〉
〈u2|@x—|u1〉 〈u2|@x—|u2〉

#
: (3.23)

The equations of motion have been derived meticulously in appendix A of Ref. [76] using
the variational principle. These general derivations finally provide the following equations of
motion valid in twofold-degenerate systems:

Ċ = 2 C ×
h
Ar— ṙ— + Ak— k̇—

i
; (3.24a)

k̇— = − @›
@r—

+ C ·
h
Ωr—r� ṙ� + Ωr—k� k̇�

i
; (3.24b)

ṙ— =
@›

@k—
− C ·

h
Ωk—r� ṙ� + Ωk—k� k̇�

i
: (3.24c)

Here, the Berry connections and curvatures are vectors in isospin space so that the explicit
cross and scalar product with C are meant in isospin space with the respective connections
and curvatures. This is possible since the isospin matrices Accx— , like c1;2, can be naturally
expressed as vector in the basis of the generators of SU(2) since both quantities exist in
that space. Analogously, all SU(2)-matrices can be handily written as Xccx = Xx · ffcc . The
curvatures Ωxx ′ obey the same rules which demonstrates the convenience of the previous
construction of C. Using the explicit properties of ff, the vectorial form of an SU(2) matrix
Xcc can be constructed via:

Xx =

264<(Xc2c1x)
=(Xc2c1x)
Xc1c1x

375 : (3.25)
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3 Wave-packet dynamics

Hence, C · Ax— yields the correct Berry connection experienced by a wavepacket whose
sublattice localization is expressed via C. Therefore, the impact of the matrix connections
and curvatures on the wave-packet can be conveniently expressed as the scalar product of
the isospin with the corresponding vectorial form as used in Eq. 3.24.

Eq. 3.9 is no longer applicable to calculate the Berry curvatures since the Berry connections
are matrices in the c-space due to the degeneracy and are thus non-abelian. In general the
Berry curvatures are defined as:

Ωccxy =
@

@x
Accy −

@

@y
Accx − i [Accx ; Accy ] ; (3.26)

which in case of connections with SU(2)-character can be recast into the vectorial form

Ωxy =
@

@x
Ay −

@

@y
Ax + 2Ax × Ay : (3.27)

A significant difference to the U(1)-case is that the Berry curvatures in the degenerate case
are gauge dependent. Only the product C ·Ωxy is gauge independent. This property arises
from the general freedom of choice for the degenerate eigenstates | 1;2〉. Changes in the basic
eigenstates are compensated by the product C ·Ωxy so that the general formalism is valid
irrespective of | 1;2〉-variations throughout the wave-packet evolution. For actual numerical
or analytical solutions of the dynamics a smooth choice is nevertheless highly advantageous
with respect to computational cost or analytic solvability.

Note that all terms containing At have been neglected in the “general” equation of motion
(Eq. 3.24) and that the wave-packet energy might be different from ›. In the following @r—› is
omitted as well, nevertheless the general equations provide rich enough physics to describe
the phenomena under investigation here.
Alternative references contain differences in the derivations. For example, in Ref. [85] the

Hamiltonian is allowed to have a further non-degenerate perturbation and the evolution of
the c1;2 in presented in a slightly different form. A notation in terms of gauge covariant
derivatives is given as well. In Ref. [86] a different derivation of the equations of motion
for an arbitrary-fold degeneracy is described. There, the equations of motion are derived in
through the Ehrenfest theorem as the derivatives of observables. Ref. [87] derives the similar
dynamics from an action without explicitly referring to wave-packets, the resulting equations
are presented in a very general scheme of generalized coordinates in a compact notation.

The influence of electromagnetic field can still be treated on the general level irrespective
of the kind of degeneracy covered here. With the restriction to constant uniform magnetic
fields, the derivation of the equations of motion has been performed [85]. There, the orbital
dynamics simplify to:

k̇ = −(E + ṙ ×B): (3.28)

Obviously, further Hamiltonian modifications yielding additional non-vanishing Berry curvatures
have been neglected so that exactly the same equations arise as in Eq. 3.10. Their impact in
degenerate and non-degenerate systems is equivalent since external fields do not distinguish
between the degenerate states of different sublattices.
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3.2 Twofold-degenerate systems

3.2.1 Collinear Antiferromagnets

Having established the general wave-packet dynamics of degenerate systems, practical equa-
tions of motion have to be derived for concrete systems. The major part of this thesis
treats the effect of electron motion through locally collinear antiferromagnets with imprinted
skyrmionic texture. In this section all antiferromagnets are locally collinear which means
that the k-dependent part of the Hamiltonian stems indeed from a collinear system while
the texture is included via the wave-packet formalism. Hence, antiferromagnetic systems are
implicitly assumed to be of collinear type in this section. This is different from later consider-
ations (Sec. 3.2.2) where the basic constituents are already non-collinear. Hence, this section
derives the equations of motion in twofold degenerate, locally collinear antiferromagnetic
systems considering impact of skyrmion textures. This sections follows closely the derivations
of Ref. [76].
Culcer et al. [85] stated that one cannot “assume” that the “local spin quantization axes

are parallel” due to interaction with “neighboring bands”, meaning that the decomposition
into spin and orbital part is not applicable especially in the case of spin-orbit coupling. Later
however, Cheng, Culcer, et al. [76] further investigated wave-packet dynamics including this
assumption as it leads to great insight into the influence of magnetic textures while being
analogous to the treatment of ferromagnetic textures. Hence, expressing the eigenstates
| 1;2〉 = eik·r |u1;2〉 through the Bloch-waves |u1;2〉 and decomposing them into orbital- and
spin-part is a necessary approximation for the following derivations:

|u1〉 = |”1(k)〉 |↑ (r ; t)〉 ; (3.29a)
|u2〉 = |”2(k)〉 |↓ (r ; t)〉 : (3.29b)

Without SOC, a clear distinction into spin-up and -down is possible. The collinearity of the
states furthermore allows to construct the Bloch-wave |u1〉 so that it contain spin-up states
only. Analogously, |u2〉 covers the spin-down states. This exhausts the ambiguity of choosing
the eigenstates and supplies a practical, smooth basis which ultimately allows a simple relation
between the isospin and the spin.

In order to obtain the equations, it is necessary to explicitly calculate the Berry connections
and curvatures of the general case (Eq. 3.24). Assuming the absence of spin-orbit coupling,
the reciprocal-space Berry connection and curvature vanish. Since only the spin parts of the
Bloch-waves are spin-dependent, solely their real-space derivatives encode the texture into
Ar . When expressing the spin part’s r -dependence through the spherical coordinates „ and ffi
analogous to Eq. 3.12,

|↑〉 =

24e−iffi
2 cos( „

2
)

eiffi
2 sin( „

2
)

35 |↓〉 =

24−e−iffi
2 sin( „

2
)

eiffi
2 cos( „

2
)

35; (3.30)

the derivatives necessary for calculating the real-space Berry connection can be expressed as:"
〈↑ |@r | ↑〉 〈↑ |@r | ↓〉
〈↓ |@r | ↑〉 〈↓ |@r | ↓〉

#
=

1

2

"
−i cos(„)@ffi

@r
−@„
@r

+ i sin(„)@ffi
@r

@„
@r

+ i sin(„)@ffi
@r

i cos(„)@ffi
@r

#
: (3.31)
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3 Wave-packet dynamics

Since the off-diagonal parts do no vanish, the orbital overlap 〈u1|u2〉 enters Accr— . 〈”x |”x〉 = 1
holds by construction as | i〉 and the spin parts are orthonormal. Conversely, the overlap
parameter

‰(k) = 〈”1|”2〉 = 〈”2|”1〉 (3.32)

is not fixed and depends on the collinear system’s orbital properties. All terms in Eq. 3.31 are
expressible in the basis of the Pauli matrices due to its SU(2) character so that the Berry
connection, originally defined through Eq. 3.23, can be expressed in the isospin space as:

Ar =
1

2

264−‰ sin(„)@ffi
@r

‰ @„
@r

cos(„)@ffi
@r

375 : (3.33)

Using Eq. 3.26, the real-space Berry curvature is:

Ωr—r� = −(1− ‰2)
sin(„)

2

 
@„

@r—

@ffi

@r�
− @„

@r�

@ffi

@r—

!
[fî ]z : (3.34)

Only the z-component is non-vanishing due to the convenient choice of |u1;2〉 distinguishing
spin-up and -down. Moreover, the z-component is very similar to the ferromagnetic Ωr r

expression (Eq. 3.14). The only difference is the additional factor (1 − ‰2) caused by the
coupling between the states. While the description of misaligned states is impossible in the
ferromagnetic case, in the antiferromagnetic case the real-space Berry curvature exerts force
only on the C3 components of the wave-packet. Therefore, the C3-component is understood
as a measure for spin alignment with the texture. For intuitive comparison with the emergent
magnetic field, and to demonstrate the previously mentioned relation to skyrmion textures, it
is instructive to finally express Ωr r ’s texture-dependence through n instead of „ and ffi:

Ωr—r� = −(1− ‰2)
1

2
n ·

 
@n

@r—
× @n

@r�

!
[fî ]z : (3.35)

Hence, the real-space Berry curvature’s effect is again expressed in terms of the emergent
magnetic field (Eq. 3.16) similar to the ferromagnetic case.

The presence of ‰(k) in Ar has a further effect. Although the orbital part is assumed to be
trivial (meaning Ak = 0), the mixed Berry curvature does not vanish since ‰ is k-dependent
so that @kAr leads to:

Ωrk = −Ωkr =
1

2

@‰

@k

264sin(„)@ffi
@r

−@„
@r

0

375 : (3.36)

Neglecting again all time-dependent changes which might enter through Ωxt , the above
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3.2 Twofold-degenerate systems

simplifications result in the following general equations of motion:

Ċ =C ×

2664
−‰ sin(„) @ffi

@r—

‰ @„
@r—

cos(„) @ffi
@r—

3775 ṙ—; (3.37a)

k̇— =− (1− ‰2)C3[ṙ ×B]—; (3.37b)

ṙ— =
@›

@k—
− 1

2

@‰

@k—

 
sin(„)

@ffi

@r�
C1 −

@„

@r�
C2

!
ṙ�: (3.37c)

The Ωrk contribution to k̇— vanishes as Ωrk� k̇� ∝ @k�‰@tk� = @t‰ = 0 so that the k̇
evolution is determined entirely by the emergent magnetic field with the isospin component
corresponding to spin-z in the local frame for the collinear case. In addition to the group
velocity, the mixed Berry curvature gives rise to an additional term proportional to the
k-derivative of the overlap ‰ and determined by texture derivatives and the isospin expectation
value. The evolution of the isospin has a convoluted form determined by the texture and
velocity.

In principle, Eq. 3.37 is sufficient to track the wave-packet evolution numerically. However,
more insight with respect to the isospin equation of motion part and the additional velocity
term can be acquired by replacing the isospin with the wave-packet’s spin expectation value
s = 〈W |ff|W 〉 in the “laboratory frame”. This derivation is explained in great detail in
appendix B of Ref. [76] and shall not be repeated here. Still, it is instructive to remark
that the previous C3 component appearing with the emergent magnetic field is indeed the
wave-packet’s spin component along the local texture, i.e. C3 = s · n. Furthermore, the
explicit ṙ can be included into the general texture time derivative ṅ = @tn + (ṙ · @r )n.
The orbital dynamics can be compactly expressed as k̇— = −n · (@r—n × ṡ)=2. A better
comparison with the non-degenerate case is possible when expressing k̇ as function of s and
the emergent fields. Excluding Ωrk , only the previously obtained (1− ‰2) factor discerns the
resulting antiferromagnetic equations from the ferromagnetic ones (Eq. 3.18). However, the
equations of motion are significantly more complicated in the antiferromagnetic case due
to the non-trivial spin evolution (Fig. 3.2). The anomalous velocity part in the real-space
dynamics can be expressed by a function of s and ṅ and the anomalous velocity’s @k‰-term
becomes @k ln(‰) when replacing C by s. Since this diverges for ‰ = 0, the following equations
of motion can treat finite ‰ only. This problem does not appear in the original equations
of motion (Eq. 3.37) but is a consequence of the ill-defined transformation from C to s in
case of ‰ → 0. Hence, special care is necessary when evaluating Eq. 3.38 with small ‰ as the
vanishing of the the anomalous term in case of ‰ = 0 has to considered. The final equations
of motion of Ref. [76] for collinear antiferromagnetic textures in terms of s instead of C are:

ṡ = (1− ‰2)(s · n)ṅ; (3.38a)

k̇ = −(1− ‰2)(s · n)(E + ṙ × B); (3.38b)

ṙ =
@›

@k
− 1

2
((s × n) · ṅ)

@ ln ‰

@k
: (3.38c)

These equations allow further interpretation of the wave-packet dynamics.
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3 Wave-packet dynamics

Figure 3.2: Exemplary spin evolutions in the local frame for ‰ ≈ 0:53 (left) and
‰ = 0:2 (right).

At first, it is sensible to consider the limits ‰ = 0 and ‰ = 1. As ‰ (Eq. 3.32) encodes the
overlap of the Bloch function’s orbital parts of different magnetic sublattices, it determines
how easily the wave-packet’s localization can shift between the sublattices. In case of ‰ = 0
it is impossible to change the sublattice so that a wave-packet localized on one sublattice
will remain there. The equations simplify to the non-degenerate analogue (Eq. 3.19) as
the spins always follow the texture, the additional anomalous velocity vanishes, and the
emergent magnetic field has the maximal effect always. Hence, such systems can be seen as
2 independent non-degenerate equations of motion with opposite spin. The other limit is
‰ = 1 which corresponds to a perfectly coupled system. The spin of the wave-packet does
not change anymore when traversing the texture, instead it simply changes the magnetic
sublattice to keep its initial spin direction. Since such wave-packets ignore the texture entirely,
no emergent fields act on the wave-packets and ṙ is determined solely by the group velocity.
The ‰ ∈ (0; 1) region describes an intermediate wave-packet evolution with the additional
anomalous velocity. A spin initially aligned with n appears to follow the texture but lags
behind so that at some point (s · n) changes the sign (Fig. 3.2). If so, the wave-packet will
act as anti-aligned with the texture and consequently experience opposite effects from the
emergent fields. Interestingly, the wave-packet spin’s codomain is not the unit sphere but a
prolate spheroid whose major axis points into the direction of n with unit length while the
semi-major axis’ length is ‰. In other words, s obeys

s̃2
3 +

s̃2
1 + s̃2

2

‰2
= (s · n)2 +

(s × n)2

‰2
= 1; (3.39)

where s̃ is the spin in the local frame so that the general expression for s in the laboratory
frame requires n explicitly. Example spin evolutions are shown in Fig. 3.2 demonstrating the
restriction to the prolate spheroid. Notably, the spin evaluation is purely geometric and can
be associated with a t’Hooft-Polyakov monopole which generates the SU(2) Berry phase [76].
As the impact of the emergent field is proportional to s · n, its impact on k̇ varies

tremendously in addition to the real-space dependent change of B. The additional anomalous
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3.2 Twofold-degenerate systems

velocity only appears when the spin is misaligned with the texture and is maximal if the spin is
perpendicular to n. Hence, the spin character of a wave-packet in collinear antiferromagnets
changes from aligned to anti-aligned respective to n throughout a long evolution which results
in dynamics much more complicated than those of their non-degenerate counterparts solely
caused by their non-abelian nature. In the ferromagnetic case similar deviations between spin
and texture would require non-adiabatic corrections but here this feature arises in entirely
adiabatic dynamics. Ultimately, the wave-packet equation of motion with applied external
electric field and static magnetic texture:

ṡ = (1− ‰2)(s · n)ṅ; (3.40a)

k̇ = −E − (1− ‰2)(s · n)(ṙ × B); (3.40b)

ṙ =
@›

@k
− 1

2
((s × n) · ṅ)

@ ln ‰

@k
; (3.40c)

are studied in the following transport calculations.

3.2.2 Noncollinear Antiferromagnets

The wave-packet formalism can been applied to non-collinear antiferromagnets with twofold
degenerate states analogously to the previous dynamics considering collinear antiferromagnets.
In this section the basic derivations leading to the corresponding equations of motion are
presented following Ref. [77]. While the part about the magnetic texture description adheres
very closely to the reference, the latter section, which covers the terms appearing in the
equations of motion, describes generalized expressions of the Berry connections and curvatures
which are applied to a particular Hamiltonian in the source material [77].

Texture parametrization

A non-collinear antiferromagnet requires at least 3 atoms in the unit cell to fulfill the
requirements of vanishing net magnetization and noncollinear magnetization angles. In
contrast to the collinear case it is no longer sufficient to supply the magnetization direction
of the unit cell and to define which atoms are of spin-up or -down character, instead the
atoms and their corresponding spins form a two- or three-dimensional object. Hence, textures
have to be described as solid angle rotations from a definite initial state instead of the simple
definition of the staggered order parameter n. A multitude of methods for describing such
rotations exist. Here a vectorial parametrization is used where a vector ffi describes the solid
rotation entirely, its direction determines the rotation axis while its magnitude encodes the
rotation angle. In general, arbitrary parameterizations connecting the ffis with the rotation
axis and angle exist and have different advantages [88], here the Caylay-Gibbs-Rodrigues
parameterization is used [77]. In this case the rotation angle „ is defined via |ffi| = tan(„=2)
and the matrix R can be parametrized as:

Sj = RS
(0)
j =

1− ffi2

1 + ffi2
S

(0)
j +

2

1 + ffi2

h
ffi× S(0)

j + (ffi · S(0)
j )ffi

i
; (3.41)

35



3 Wave-packet dynamics

where j labels the atoms in the unit cell. Accordingly, all calculation steps to yield the
solidly rotated spins Sj can be expressed as vector operations based on the chosen initial spin
configuration S(0)

j . The symmetric terms of the rotation are expressed as scalar products while
the skew part is denoted via cross products. The huge advantage of this parameterization is
the simple form of the rotation matrix derivative

@R

@x
= !x ×R; (3.42)

where a possible second symmetric part of the “space” angular velocity [77] !x vanishes:

!x = 2
@ffi
@x

+ ffi× @ffi
@x

1 + ffi2
: (3.43)

In other parameterizations it is generally impossible to express the derivative in this vector
form with a cross product. Hence, the Caylay-Gibbs-Rodrigues parameterization is especially
suited for this formalism since !x appears in the real-space Berry curvature where the
vector form allows similarities to the emergent magnetic field expression of the collinear
case. R and ! replace n and @rn and are sufficient to describe the influence of the texture.
R−1(ffi) = R(−ffi) and R−1(ffi)!(ffi) = −!(−ffi) hold as R is a rotation matrix. Another
extremely useful property is:

@!r�
@r—
−
@!r—
@r�

= !r— × !r� ; (3.44)

which allows to avoid higher order derivatives of ffi in antisymmetric setups and later proves
to be helpful when calculating the antisymmetric Ωr r .

Equations of motion

Although the wave-packet is constructed in the usual degenerate way (Eq. 3.20), several
simplifications used in the collinear case are not applicable which ultimately leads to more
general wave-packet dynamics expressions. The major difference is that the basis Bloch-waves
|u1;2〉 cannot be chosen as corresponding to a particular sublattice. Instead, basis states with
weight on both spin parts will appear due to the noncollinearity even when choosing the
quantization axis along one atom’s spin direction. Hence, the Bloch states can no longer be
decomposed into orbital- and spin-part as in Eq. 3.29 but take the form:

|u1(k ; r ; t)〉 = |”1↑(k)〉 |↑ (r ; t)〉+ |”1↓(k)〉 |↓ (r ; t)〉 ; (3.45a)
|u2(k ; r ; t)〉 = |”2↑(k)〉 |↑ (r ; t)〉+ |”2↓(k)〉 |↓ (r ; t)〉 : (3.45b)

Accordingly, the overlaps 〈u|u〉 become more complicated and the orbital overlaps 〈”|”〉 are
no longer 1 and ‰ as in the collinear case, instead they depend on the actual system and vary
with the choice of initial Bloch-waves. ” contains the orbital parts of all sublattice and spin
direction. 〈”|”′〉 is a hermitian 4× 4 matrix and as such has 6 independent complex and 4
real diagonal components in general. Several simplifications are possible depending on the
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3.2 Twofold-degenerate systems

choice of basis vectors and the symmetry of the system. For example, choosing the basis so
that 〈u|ffz |u〉 is diagonal makes the 4 diagonal components real and causes 2 off-diagonal
components and their hermitian partners to vanish. In the example systems of Ref. [77] even
more parts cancel out leaving only 3 different real k-dependent overlaps which are functions
of a single parameter similar to ‰. These simplifications are made possible by |”a↓〉 = |”b↑〉,
in general cases without that equality more complicated overlaps will appear.

Next, the Berry curvatures have to be expressed in terms of the magnetization parametriza-
tion and the overlaps 〈”|”′〉 in order to simplify and specify the general equations of motion
(Eq. 3.24). The Berry connection terms can be simplified similarly to the collinear case as
the initial Bloch functions are assumed to be separable into r -independent orbital-parts and
k-independent spin-part.

In the following it is convenient to rotate the Bloch states back into the reference magnetic
configuration |u0〉 via |u〉 = Uc |u0〉 so that the Berry connections take the form:

Accx = i
*
u0

˛̨̨̨
˛U† @@x U

˛̨̨̨
˛u0

+
: (3.46)

Thereby it is possible to restrict the orbital-dependence onto the reference states |u0〉 while
all texture related real-space dependence is encoded into the U parts. In contrast to the
collinear case, the Berry connections add not only a complex phase but can mix |u0

1〉 and |u0
2〉

into |u1;2〉.
The Λccr = U†c@rUc part of Eq. 3.46 requires scrutiny to arrive at convenient expressions

for the real-space Berry connection SU(2)-matrix Accr . In Ref. [77] only model-dependent
simplifications are given whereas the generalized expressions are given in the following. First,
Λccr can be expressed as Λccr = −i=2!r (−ffi)ffcc . The ffcc-term mixes the different |u0

1;2〉
in |u1;2〉 according to !r (−ffi) which describes the derivative of the inverse rotation. Due to
the arising ffcc -term, several r -independent overlaps encoded through 〈u0|ffcc |u0〉 enter the
final expression for the Berry connection:

Accr =
1

2
〈u0|!r (−ffi) · ffcc |u0〉 : (3.47)

The isospin parameters c denote the two-dimensional matrix spanned by 〈u0| and |u0〉. Since
the Pauli matrices as generators of the SU(2) group appear in Accr , it is obvious that Accr
can be expressed in the vectorial form of the Berry connection Ar . Accr can obviously be
expressed in the vectorial form of the Berry connection Ar as the Pauli matrices, generators
of the SU(2) group, appear explicitly. Using Eq. 3.25, Ar is expressed as:

Ar =
1

2

264< 〈u2|!r (−ffi) · ffcc |u1〉
= 〈u2|!r (−ffi) · ffcc |u1〉
〈u1|!r (−ffi) · ffcc |u1〉

375 : (3.48)

It is instructive to introduce Si ;cc = 〈u0|fficc |u0〉 and its SU(2) vector form

Σi =

264<(Si ;c2c1)
=(Si ;c2c1)
Si ;c1c1

375 : (3.49)
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All of Σi ’s components are r -independent so that the expression

Ar =
1

2

X
i

!ir (−ffi)Σi (3.50)

is particularly convenient as all r -dependence is in the !r term while Σ contains all k-
dependent parts. Explicitly resolving the Pauli matrices, Si ;cc can be expressed in terms of
the overlaps 〈”|”〉 so that only simple calculations based on the eigenstates are necessary.
Omitting ” as an abbreviation, |1 ↑〉 := |”1↑〉, Scc can be expressed as:

Scc =

2666666664

264 2< 〈1 ↑ |1 ↓〉
2= 〈1 ↑ |1 ↓〉

〈1 ↑ |1 ↑〉 − 〈1 ↓ |1 ↓〉

375
264 〈1 ↓ |2 ↑〉+ 〈1 ↑ |2 ↓〉
i 〈1 ↓ |2 ↑〉 − i 〈1 ↑ |2 ↓〉
〈1 ↑ |2 ↑〉 − 〈1 ↓ |2 ↓〉

375
264 〈2 ↑ |1 ↓〉+ 〈2 ↓ |1 ↑〉
i 〈2 ↑ |1 ↓〉 − i 〈2 ↓ |1 ↑〉
〈2 ↑ |1 ↑〉 − 〈2 ↓ |1 ↓〉

375
264 2< 〈2 ↑ |2 ↓〉

2= 〈2 ↑ |2 ↓〉
〈2 ↑ |2 ↑〉 − 〈2 ↓ |2 ↓〉

375

3777777775
: (3.51)

Using the definitions for Scc , Σi , and Ar , the overlaps 〈”|”〉 contain the only model-dependent
parameters while the texture-dependence is encoded entirely in !r (−ffi) which itself solely
depends on the orientation defining ffi and its real-space derivatives @rffi (Eq. 3.43). Accordingly,
the numerical implementation and calculation Ar is straightforward and computationally
affordable as the r - and k-dependent parts are separated and since only few basis model
parameters enter the expression.
The simplification of the orbital Berry connection Acck starts from Eq. 3.46 as well. The

U’s cancel each other since U is k-independent so that the reciprocal-space Berry connection
is Acck = 〈u0|@k |u0〉. Hence, all components depend only on the spin-diagonal sum of
〈”|@k |”〉 by construction. All texture-dependence has dropped out so that the tensor itself
is entirely independent of r . Nevertheless, the actual influence of Acck on the wave-packet
dynamics changes throughout the evolution according to the isospin evolution which picks
out differently-weighted tensor components. |”1;2〉-vectors span the isospinor matrix so that
the k-space Berry connection can be expressed as:

Acck = i
"
〈”1↑|@k |”1↑〉+ 〈”1↓|@k |”1↓〉 〈”1↑|@k |”2↑〉+ 〈”1↓|@k |”2↓〉
〈”2↑|@k |”1↑〉+ 〈”2↓|@k |”1↓〉 〈”2↑|@k |”2↑〉+ 〈”2↓|@k |”2↓〉

#
: (3.52)

Contrary to the collinear case, the mere presence of non-collinear magnetic structures causes
non-vanishing Acck even neglecting spin-orbit coupling. Thus, the non-collinearity takes over
parts of the role which spin-orbit coupling plays in the collinear case [89].
A general property of Berry connections is their gauge-dependence present even in the

non-degenerate case. There, non-vanishing Berry connections vary drastically when changing
the initial gauge of the Bloch function | 〉 constituting the wave-packet (Eq. 3.2). In the
degenerate noncollinear case we thus have the gauge freedom of choosing a complex phase to
the | 1;2〉 in addition to the usual SU(2) gauge of determining relative choice of the | 1;2〉 in
the wave-function, although finally this is of course only one SU(2) gauge freedom. This U(1)
choice can influence the final connection due to the k-derivative in Acck and may conceal
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3.2 Twofold-degenerate systems

convenient choices for the relative | 1;2〉 gauge. Contrary to Accr , no reason is immediately
apparent which allows to express Acck as an SU(2) vector. On the contrary, example systems
demonstrated that some gauges cause Acck to break the SU(2)-symmetry. In principle, this
presents no fundamental problem but complicates the general equations of motion since the
weight between the | 1;2〉 are no longer expressible by the isospin vector C. Instead, the
complex variables c1;2 would have to be track. In the interest of staying consistent with the
collinear equations only cases where Acck can indeed be expressed as

Ak =

264 = (〈”2↑|@k |”1↑〉+ 〈”2↓|@k |”1↓〉)
−< (〈”2↑|@k |”1↑〉+ 〈”2↓|@k |”1↓〉)
= (〈”1↑|@k |”1↑〉+ 〈”1↓|@k |”1↓〉)

375 (3.53)

are considered in the following. This form differs from Eq. 3.25 due to the imaginary unit
prefactor of Eq. 3.52. In the system of Ref. [77] Acck vanishes for degenerate states as can be
shown explicitly by differentiating the highly symmetric eigenstates | 1;2〉 constituting the
wave-packet. That calculation is simple, as the | 〉’s have only one k dependent parameter
and since many components cancel out due to the symmetric structure of the eigenstates. An
alternative set of  1;2 which results in non-vanishing Acck should be possible in that system,
however the dynamical differences arising from that modification in the other terms would be
canceled by the emerging Acck .
Furthermore, the non-abelian Berry curvatures enter the equations of motion. Their

calculation is based on the general Eq. 3.27. As the curvatures are obtained via the derivatives
of the connections, the separation into r - and k-dependent parts simplifies the curvature
expressions again. For construction of Ωr r the real-space derivative of Ar is required.
Fortunately, the only real-space dependent component of Ar is !(−ffi) whose derivative can
be simply expressed using Eq. 3.44 and Ωr r ’s antisymmetric properties. Hence, the real-space
Berry curvature simplifies to:

Ωr—r� = −1

2

X
i

“
!r—(−ffi)× !r� (−ffi)

”
i
Σi + 2Ar— × Ar� : (3.54)

This equation can be easily implemented in numerical schemes and is related to the simpler
real-space Berry curvatures in that its r -dependence is covered by the texture defining
parameter and its first derivative, expressed through !r (Eq. 3.42), only. A topological charge
related to the Ω—� exists [77] similar to the collinear, and especially the non-degenerate,
case. The k-dependence is much more complicated than in the collinear case as several
Σi arise in contrast to the simple (1− ‰2)-dependence of collinear antiferromagnets. Thus,
noncollinearity adds another layer of complexity concealing the transports’ topological origin.
Both real- and reciprocal-space Berry connections are necessary for the mixed Berry

curvature. Since Ak is r -independent and as the orbital derivatives of Ar act only on Σi , the
mixed Berry curvatures can be expressed as:

Ωr—k� =
1

2

X
i

!i r—(−ffi)
@Σi

@k�
+ 2Ar— × Ak� ; (3.55a)

Ωk—r� = −1

2

X
i

!i r� (−ffi)
@Σi

@k—
+ 2Ak— × Ar� : (3.55b)
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3 Wave-packet dynamics

Here, @kΣi appears which solely depends on the derivatives of the overlaps 〈”|”〉 (Eqs. 3.49,
3.51). Since 〈”|”〉 and their derivatives appear prominently in the Berry curvatures, a
convenient choice for the eigenstates  1;2 aiming for smoothness even in the overlap derivatives
is advantageous. Finding such a basis state gauge is not trivial and very system dependent,
but it is necessary as the equations of motion are most probably practically unsolvable due
to numerical restrictions for unsuitable gauges although the equations are valid in general.
Notice furthermore that Eq. 3.55 is only applicable if Acck can be expressed as SU(2) vector.
Otherwise, the more general Eq. 3.26 has to be used where the latter cross product is replaced
by a commutator.
The reciprocal-space Berry curvature can be calculated using the reciprocal-space Berry

connection Acck (Eq. 3.52) and the general Eq. 3.26. Since all components of Acck contain only
〈”|@k |”′〉-terms, the first 2 terms of Eq. 3.26 can be expressed through sums of 〈@ki”|@kj”′〉
terms using the relation:

@ki 〈”|@kj |”′〉 − @kj 〈”|@ki |”′〉 = 〈@ki”|@kj”′〉 − 〈@kj”|@ki”′〉 : (3.56)

Again, |@k”〉 has to be evaluated which leads to the same problems as in case of Acck . A
smooth gauge of the basis is necessary to define meaningful derivatives. Still, no significant
further effort is necessary to compute Ωcicjkk ′ after having obtained Acck so that the reciprocal-
space Berry curvature can be directly evaluated using:

Ωcicjkk ′ =
X

s={↑;↓}
i (〈@k”is |@k ′”js〉 − 〈@k ′”is |@k”js〉)− i [Acck ; Acck ′]

˛̨̨̨
˛
i j

: (3.57)

In conclusion, the noncollinear antiferromagnetic equations are similar to the collinear ones.
The more involved 3-dimensional magnetic texture can be effectively described in the adequate
Caylay-Gibbs-Rodrigues parameterization from which the respective Berry connection and
curvatures can be obtained. The reciprocal-space structure is more problematic. While the
relevant components vanish in the collinear case without SOC, the overlaps 〈”|”〉 and even
@k |”〉 are necessary to describe all components in noncollinear systems. Hence, straight
forward application of the equations of motion is only possible when treating simple systems
with smooth basis states. Otherwise, it is necessary to find smart expressions to describe
Acck and Ωcckk .
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Transport

Electron transport is a very broad topic in physics with an enormous number of applications. A
multitude of physical effects, of classical and quantum mechanical origin, varyingly pronounced
in different materials, measured by different experimental techniques, and described by different
theoretical theories, exist. Examples include the general distinction based of the band theory
in metals, semiconductors, and insulators, as well as more involved phenomena such as
superconductivity and Mott-insulators. One of the earliest heuristically understood transport
phenomena is the Hall effect. This thesis’ aim is to calculate a specific kind of Hall effects
in skyrmionic textures. As its discussion requires a general understanding of Hall effects, an
brief overview of different Hall effects is given in the following sections.

The main method of this thesis is based on the combination of the semiclassical equations of
motion, thereby incorporating the magnetic texture, with the Boltzmann formalism to describe
the cumulative transport properties. Sec. 4.3 introduces different methods giving access to
transport information which is followed by detailed descriptions of the main procedure used
to obtain the transport properties.
In general, the multitude of linear and non-linear transport effects in response to applied

electric fields or temperature gradients exist and might be described in similar frameworks.
Since this thesis is restricted to the topological (spin) Hall effect causes by magnetic textures
under applied external electric fields, only the lowest order longitudinal and the Hall transversal
components are considered here.

With the exception of Secs. 4.2.1 and 4.4.2, which cover the physical origin and formalism
of the here-discussed effect, this chapter summarizes established transport phenomena and
methods that are necessary to assess and understand the advancements of this thesis.

4.1 Hall effects

Already in 1879 the emergence of additional currents caused by an applied external magnetic
field was experimentally measured [90]. These transversal currents are perpendicular to both
the original current caused by an applied electric field, i.e. potential difference, and the
magnetic field. This phenomenon is called the ordinary Hall effect (OHE) in the following.
Shortly afterwards the related anomalous Hall effect (AHE) was discovered [91]. There, the
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magnetization of the specimen phenomenologically takes the role of the external magnetic
field and causes the transversal currents. Consequently, the term “Hall effect” describes a
family of phenomena with transversal current in case of applied electric fields inducing the
initial currents.
Similar phenomena exist for currents caused by thermal gradients replacing the electric

potential gradients. There, the descriptor “Hall” is replaced by “Nernst”. The extensive
similarities with the Hall effects are covered by the Onsager relations. Hence, the same
formalism as used in the following could be applied to the Nernst analogue [92].

Phenomenologically, the Hall effects are conveniently described as the off-diagonal compo-
nents of the conductivity tensor ff which describe the linear transport response of the electric
field E to the charge currents j :

j = ff · E =

264ffxx ffxy ffxz
ffyx ffyy ffyz
ffzx ffzy ffzz

375 ·
264ExEy
Ez

375 : (4.1)

Some components of ff describing distinctive effects are computational accessible for example
through Eqs. 4.34 and 4.35. In experiments resistivities  are measured instead of conductivities.
Both quantities are related through  = ff−1 so that restriction of the non-vanishing Hall
components to the xy -plane

 =

2664
ffyy

ffxxffyy−ffxyffyx
−ffxy

ffxxffyy−ffxyffyx 0
−ffyx

ffxxffyy−ffxyffyx
ffxx

ffxxffyy−ffxyffyx 0

0 0 1
ffzz

3775 ≈
2664

1
ffxx

− ffxy
ffxxffyy

0

− ffyx
ffxxffyy

1
ffyy

0

0 0 1
ffzz

3775 (4.2)

is a reasonable approximation as long as the Hall conductivity magnitudes are much smaller
than the longitudinal ones.
Experimentally, the ordinary and anomalous Hall effects are commonly described as:

xy = OHExy + AHExy = ROB + RAM; (4.3)

with the ordinary and anomalous Hall constants RO and RA, while B and M are the external
magnetic field and the magnetization, respectively. The ordinary Hall constant RO can be
expressed through the conductivities as:

RO = −
ffOHExy

ffxxffyyB
: (4.4)

While the origin of the OHE was readily understood as a consequence of the general laws of
electromagnetism, i.e. Lorentz force exerted on traversing electrons, the AHE initially eluded
concise theoretical description. Later, 3 main contributions to the AHE were identified. Two
of them are scattering related and thus called extrinsic: the side-jump and skew-scattering
terms. The other source is a direct consequence of the bandstructure and called the intrinsic
contribution.
The first description of the AHE’s intrinsic part was given in 1954 [93]. There, the

AHE was attributed to inter-band matrix elements of the applied electric field mediated by
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spin-orbit coupling. Its linear scaling with respect to the magnetization originates in the
proportionality between the spin-orbit interaction and the electron spin polarization. Later,
the intrinsic contribution was rewritten in term of the Berry curvature formalism [94]. Using
the semiclassical wave-packet equations (Eq. 3.10), a transversal conductivity component
was uncovered which is the integral of Ωkk weighted by the distribution function over the
whole Brillouin zone (Eq. 4.29). The magnetization results in spin-split bands whose Berry
curvature integrals do not cancel each other due to the shifted Fermi energy and respective
different occupations.
The scattering-dependent AHE contributions require spin-orbit coupling as well. Skew-

scattering was theoretically described in 1955 as anisotropy of the scattering rates [95, 96].
Hence, electrons are more readily scattered into one direction than the other, so that a net
current is obtained. Spin-orbit coupling causes a transversal wave-packet polarization which,
with off-center scattering, leads to a Hall current. The side-jump term was first recognized as
significant contribution in 1964 [97]. It can be effectively described as real-space shift which
naturally arises when evolving a wave-packet explicitly through a sufficiently smooth impurity
potential. It depends on in- and outgoing k and its Hall impact can be understood as a further
distortion of the electron distribution which, in case of applied E fields, causes transversal
conductivities through the usual group velocities [98]. These contributions do no exhaust the
anomalous Hall phenomena, also anomalous distribution and intrinsic skew scattering can
play a role. For the ultimate evaluation of the AHE, all conductivity contributions have to be
added [98].
The OHE and AHE also have quantized versions. Fortunately, the prerequisites of their

exhibition are seldom fulfilled in systems where the main subject of this thesis, the topological
(spin) Hall effect, is realized. Hence, only a short overview is given due to their similarities.
The quantum Hall effect occurs in two-dimensional materials with low electron density
under very strong applied magnetic fields. There, the bands form Landau levels which each
contribute a transversal resistivity quantum. Depending on the Landau level occupation, their
summed resistivity quanta replace the OHE. The exact quantization of this effect is a very
remarkable property [99] whose discovery was awarded with a Nobel price. A fractional version
of the quantum Hall effect caused by quasi-particle emergence exists as well. The quantum
anomalous Hall effect is a special case of the intrinsic AHE [100]. The Ωkk Brillouin zone
integral has to be quantized for thin, insulating films. This integral is called Chern number
and can take any integer number in principle. Only perturbations closing the energy gap
can change the Chern number rendering it a topological invariant. If the Chern number is
not zero, chiral edge states at the boundary with materials of different Chern numbers, e.g.
the vacuum, are formed and transversal charge currents proportional to the Chern number
emerge. Since this special case of the anomalous Hall effect requires insulating systems and
since the investigated topological Hall effect contains a Fermi surface integral, confusion of
those effects is improbable.
As the Hall effects are of such diverse origin, yet appear as the same signal type, it is

important to discern these different phenomena. One possibility is investigating the scaling
relation between the transversal and longitudinal conductivities. For example, no direct relation
should exist in the intrinsic case while skew-scattering has a linear relation in super-clean
metals. Further insight can be gained by modifying the impurity density as the side-jump
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contribution becomes increasingly important in the strong scattering case dominating the
skew scattering impact. In contrast, the intrinsic contribution does not depend on the carrier
lifetimes at all since it is independent of scattering. Another fundamental difference of the
intrinsic term is its dependence on all occupied states in contrast to the usual Fermi surface
integrals.

4.1.1 Topological Hall effect

The topological Hall effect (THE) causes another distinctively different Hall current whose
origin is the formation of skyrmions [9, 41, 101]. Due to its similarity to the main topic of
this thesis—the topological spin Hall effect—this section describes its origin and properties in
more detail.

A sensible first definition of the THE is that it is the remaining Hall effect after deducing
the OHE and AHE from a skyrmion system. Thus, another THE term is added to Eq. 4.3:

xy = Oxy + Axy + Txy : (4.5)

A rough approximation of the THE term is Txy = PROBef f closely related to the ordinary
Hall effect. Indeed, the OHE constant RO is retained while the emergent replaces the external
magnetic field and the spin polarization P is added [3, 102]. This expression is particularly
popular among experimentalists, as RO has to be measured anyways when deducting the OHE
from the transversal resistivity. By approximating P and the averaged emergent magnetic
field as Bef f , an estimate for the THE is readily accessible. Through this effect the formation
of skyrmions can be validated whose density is subsequently estimated experimentally by
relation to the emergent magnetic field magnitude.
Theoretically, the THE is a charge Hall response caused by the topological properties of

skyrmions. Intuitively, the impact of skyrmions on traversing electrons can be understood by
2 effects: Firstly, the spins stay aligned with the magnetic texture, i.e. the spin follows the
skyrmion shape, and, secondly, the electrons get redirected as if influenced by a magnetic field.
These effects are mathematically described in the magnetic texture wave-packet equations
of motion (Eq. 3.18). As the dynamics are equivalent to those of applied fields (Eq. 3.10),
the consideration of the THE as analogue to the OHE caused by the applied magnetic
field is reasonable. The only difference is the spin-dependence of the emergent magnetic
field in contrast to the external magnetic field’s spin-independent. Using the Boltzmann
formalism in combination with the ferromagnetic wave-packet equations of motion, the
resulting conductivities are expressible through Eq. 4.35. The difference to the ordinary Hall
effect is the (s · n)-term describing the spin-dependence of the emergent magnetic field which
is explicitly included on the level of the equation of motion. Hence, the Hall constants of the
OHE and THE are similar, but their respective spin-resolved contributions have to be added or
subtracted respectively. Yet, their similarity in derivation and approximately similar magnitude
explains the usage of PRO as RT at the beginning of the section. The Hall constants even
become equivalent in case of fully polarized Fermi surface states with only one spin character,
but such a setup is rare in reality. Similar to the equation for the ordinary Hall constant RO
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(Eq. 4.4), the THE’s Hall constant RT can be calculated according to

RT = −
ffTxy

ffxxffyyB
; (4.6)

where the transversal and longitudinal conductivities from Sec. 4.4.1 and the spatially averaged
emergent magnetic field B is used. The additional resistivity is thus:

Txy = RTB: (4.7)

While the magnetic field causing the OHE is usually assumed to be homogeneous, the
emergent magnetic field is inhomogeneous and given by the skyrmion shape (eg. Fig. 2.5).
As the emergent magnetic field (Eq. 3.16) is the integrand of the real-space integral defining
the skyrmion number (Eq. 2.1), the emergent magnetic field, and hence the magnitude of the
THE, scales with the skyrmion (area) density. Most concurrence with the OHE should be
found in skyrmion lattices where B is repeated periodically which thus effectively mimics an
homogeneous field on larger scales.
The topological aspect of the THE comes from the topological distinction of skyrmions

from trivial magnetic structures. In an usual sample several skyrmions are probed which all
give a contribution so that the THE transport signal does not verify or negate the presence of
a single skyrmion but probes their density. Usually, it is difficult to see quantized differences
due to the large number of skyrmions in common samples. This is a profound difference to
the phases associated to reciprocal-space topological invariants where only a small number of
distinct states exists whose classification extend over the entire domain. Most comparable
are probably Chern insulators (QAHE) which also have a Z topological class so that many
edge states could constitute the final transport response. However, the QAHE’s quantization
levels are independent of small bandstructure details which is not the case for the THE.
Instead, many variable prefactors vary the magnitude of the THE due to its Fermi surface
property and lifetime-dependence (Eq. 4.35). It should be noted that the emergent magnetic
field scales quadratically with skyrmion lattice constant as the emergent magnetic field is
proportional to the number of skyrmion per area. As skyrmion sizes can vary over orders of
magnitude depending on the magnetic parameters, extremely different emergent magnetic
field magnitudes can be obtained.
The THE has been successfully used to validate the existence of skyrmion lattice phases.

At first, the phase space extent of the skyrmion lattice was measured successfully in MnSi [9,
103]. Subsequently, great agreement between experiments and theoretical predictions for the
THE was shown for Mn1−xFexSi and Mn1−xCoxSi alloys. There, the transversal resistivity
and magnetization were measured crossing the skyrmion lattice phase whose formation is
indicated by large changes of xy at the boundary. In order to quantify the THE, the other
Hall effects have to be approximated. The OHE is estimated from the high temperature limit
and the AHE is captured by interpolation from the field-polarized state to the zero-field state.
Thereby, a rough disentanglement of the THE from the general signal is possible.

Transport calculations based on the semiclassical formalism (Sec. 4.4.1) utilized in this
thesis were done in Ref. [41]. Comparison of the theoretical predictions with the measurements
show great agreement for a skyrmion lattice with a wave-length of about 120Å. Further
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examined materials include Mn1−xFexGe [104] and Fe1−xCoxGe [105]. In the last case the
agreement between the semiclassical formalism and the experimental measurements is not
convincing although the adiabatic requirement of having large scale skyrmions is supposedly
fulfilled.
In this thesis the THE is understood as being caused by the real-space topology, but a

method exists in which the magnetic texture is transfered into reciprocal space so that the whole
magnetic unit cell has to be considered in the Hamiltonian diagonalization (Sec. 4.3) [106].
In that case the real-space topology is necessarily trivial. This procedure requires mean free
paths larger than the magnetic lattice size and is accordingly valid and applicable only for
small magnetic unit cells. In that interpretation the THE is very similar to the intrinsic AHE
with the difference that SOC is not required on the bandstructure level, the spin chirality
causes non-vanishing contributions instead. Hence, SOC is only required to obtain magnetic
interactions exhibiting skyrmions as described in Sec. 2.2.1. Furthermore, the Boltzmann
lifetime fi does not enter the Hall conductivities due to their similarity to the AHE which is a
huge difference to the fi2-dependent ffxy of the semiclassical wave-packet approach.
When considering the AHE as being proportional to the magnetization, the presence of

skyrmions has to change the AHE response as they decrease the overall magnetization. This
effect should be distinguished from the THE but makes experimental distinction relying on
the presence or absence of skyrmions difficult.

The most solid experimental demonstration of the THE would be a resistivity measurement
with simultaneous magnetic imaging tracking the skyrmions. In Ref. [107] the skyrmions of
multilayer systems are simultaneously imaged via magnetic force microscopy which reveals a
distinct Hall signal proportional to the number of measured skyrmions. But as the skyrmions
are on the order of 100 nm, the corresponding emergent magnetic field is too small to
have significant impact on the transport measurement. Hence, the transversal transport
effect of the skyrmions is dominated by the AHE. Additionally, the magnetic texture was
imaged through scanning transmission x-ray microscopy using the x-ray magnetic circular
dichroism to track skyrmions of similar size in Ref. [102]. Again, a distinct dependence on the
number of skyrmions is found, but the THE is orders of magnitude too small to explain the
strong Hall response. In Refs. [52] and [108] Ir/Fe/Co/Pt-multilayers skyrmion structures are
measured by X-ray microscopy or magnetic force microscopy and compared to consecutive
transport measurement. As skyrmions are exhibited in a large temperature range up to room
temperature, it is possible to relate the Hall signals to the skyrmion density of the strongly
disordered and dilute skyrmion phase with radii down to 60 nm. When treating apparent
line domains as queues of skyrmions separated on the imaging resolution scale, quantitative
agreement between transport and imaging is found, but the THE signal is still 2 orders of
magnitude too small.
A magnetic imaging technique on much smaller scales than previously employed with

concurrent Hall measurements would be necessary to find convincing evidence through such
an experiment, although even there the distinction into AHE and THE would be difficult as
evident from the AHE dominance in large skyrmions. Still, from the technological point of
view those experiments clearly show the possibility to measure skyrmions through their Hall
response so that electronic detection as necessary for racetrack applications are feasible even
with vanishing THE.
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While parts of this systematic theoretical underestimation of the THE can be attributed to
the experimentalist’s usage of RO instead of RT and the strong impact of the AHE subtraction
with relatively small remainders, this mismatch between theory and experiment indicates
that the adiabatic formalism with its clear emergent magnetic field may be inapplicable to
the considered systems, especially with large SOC as above. Instead, further corrections or
other methods including the SOC’s impact differently might have to be applied for respective
systems. Nevertheless the established understanding of the THE in the semiclassical picture
is valid in other systems so that its evaluation and that of the topological Spin Hall effect in
antiferromagnetic skyrmions (Sec. 4.2.1) still provide important theoretical predictions.

4.2 Spin Hall effect

Some 20 years ago, the spin Hall effect (SHE) was proposed as a relative of the anomalous
Hall effect in paramagnetic materials [109]. Instead of charge currents j , spin currents

j s =
〈s · v + v · s〉

2
(4.8)

are generated. The bracket denotes the expectation value of the symmetrized spin-velocity
product. In contrast to the charge current, j s is a tensorial quantity since it depends on
the current and the spin direction. In cubic systems the SHE generates such spin currents
perpendicular to charge currents:

j s = ¸SHj × s: (4.9)

¸SH is the spin Hall angle which denotes the charge to spin conversion and thus the SHE
“strength”. As the charge currents may be described through the longitudinal conductivity and
applied electric fields, this effect is classified as a Hall effect. Additional to the usual creation
of transversal currents, another feature arises due to having different physical quantities as
cause and result. Namely, the very same mechanism inversely converts spin current into
transversal charge currents. This phenomenon is called inverse spin Hall effect (ISHE).
The SHE has been measured in non-magnetic materials where the anomalous Hall effect

vanishes. One source of the SHE are the spin-dependent scattering rates of the extrinsic
AHE which persist despite the cancellation of the charge currents. Analogously, the charge
currents caused by the intrinsic AHE vanish but the corresponding spin currents add up due
to the additional sign change. In principle, the same effect appears in materials exhibiting the
anomalous Hall effect, but there the up- and down-states do no cancel each other so that
spin-polarized charge currents are expressed instead of a pure spin currents. Thus, the physical
mechanisms creating the spin and anomalous Hall effect are identical [110]. In general, the
SHE is much less studied than its charge counterpart, mostly due to its much more recent
discovery, yet with respect to recent developments in spintronics further understanding is
necessary [15].
One further well-understood contribution is the quantum spin Hall effect (QSHE) related

to the quantum anomalous Hall effect [111]. Instead of spin split bands, the QSHE is present
in spin-degenerate systems with a band gap at the Fermi energy. The Chern number is not
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well-defined any more for the degenerate case, but analogous topological quantities can be
defined such as the spin Chern number or the equivalent Z2 invariants in case of time-reversal
symmetry. As deducible from its name, the Z2 invariant allows only 2 topologically distinct
phases, the trivial and the nontrivial. In the non-trivial phase helical (i.e. polarized with
opposite spin at opposite k) edge states emerge and a transverse quantized spin conductivity
is exhibited. Three-dimensional versions of this effect exists where different high-symmetry
planes in the Brillouin zone carry topological invariants leading to a classification into weak
and strong topological insulators [112]. Furthermore, the crystalline topological insulators
exist where the classification according to time-reversal symmetry is replace by crystalline
symmetries [113]. In contrast to the charge analogue, the topological classification does not
only depend on the band-structure topology but also on the additional symmetries constituting
the invariant. Hence perturbations changing that symmetries may also change the topological
invariants or render them meaningless without band-gap closure.

A reason for the long delay between the discovery of the Hall and the spin Hall effect is the
relative difficulty in measuring spin currents in contrast to conventional Hall measurements.
Nowadays, several measuring possibilities exist: The spin accumulation can be directly
measured by Kerr microscopy while the spin torques exhibited by the spin currents on
the magnetization of adjacent ferromagnets provide indirect means of detection. Another
possibility is the usage of the inverse spin Hall effect of well characterized materials so that
induced spin currents can be measured by electric means [110].

4.2.1 Topological Spin Hall effect

The cancellation of the THE leads to the topological Spin Hall effect (TSHE) which is similar
to the cancellation of the charge currents of the AHE that leads to the SHE [21, 114]. As the
THE is a Fermi surface property, it is very unlikely to have a non-degenerate bandstructure
where all the spin-up and -down, electron- and hole-like contributions cancel each other in
the vicinity of the Fermi energy—or any other small energy domain. Instead, spin-degenerate
states provide a feasible method to cancel the transversal charge currents. In that case each
states’ charge contributions immediately cancel with its spin reversed pair due to the spin-
dependence of the emergent magnetic field. Such twofold degenerate states with well-defined
spins are common in antiferromagnets (depending on the crystalline symmetries). Hence,
the THE of ferromagnetic skyrmions is expected to become the TSHE when investigating
degenerate antiferromagnetic skyrmions [21]. Note that having an antiferromagnet does
not enforce those twofold degenerate states per se, hence antiferromagnetic skyrmions can
exhibit the THE in general, especially if the sublattice symmetry is broken [115]. In this thesis
antiferromagnetic skyrmions are always considered to be twofold degenerate unless specified
otherwise.
Naively, the TSHE’s spin current can be estimated as twice the ferromagnetic skyrmion’s

charge Hall current with an additional ~=e-prefactor as the antiferromagnetic skyrmions can
be understood as 2 copies of a ferromagnetic skyrmion of which one is spin reversed [Buhl].
Since the ferromagnetic THE has been calculated using the wave-packet equations of motions,
the degenerate wave-packet formalism of Sec. 3.2.1 has to be applied in case of collinear
antiferromagnets for more rigorous estimations. The derivation of the resulting Boltzmann
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conductivities with these dynamics is given in Sec. 4.4.2. Nevertheless, the interpretation as
two spin-reversed, independent quantities is still instructive as it corresponds to the limit with
vanishing coupling (‰ → 0) in which case Eq. 4.38 is applicable.

Analogous to the ferromagnetic case, the topological Hall constant RT and the topological
spin Hall constant RTS are suitable to quantify the transport properties. In the ‰ = 0 and
the singly degenerate case, it is possible to dividing the usual THE term (Eq. 4.6) into the
spin-up and -down contributions [41]:

RT = −
ffT;↑xy + ffT;↓xy
ffxxffyyB

: (4.10)

For degenerate antiferromagnetic materials the THE vanishes as the parameters comprising
the conductivity, such as group velocity and effective masses, are the same for degenerate
states while the emergent magnetic field’s spin-dependence changes the sign, ffT;↑xy = −ffT;↓xy .
On the contrary, in the topological spin Hall constant defined as:

RTS = −
ffT;↑xy − ffT;↓xy
ffxxffyyB

: (4.11)

Hence, both spin bands contribute constructively and thereby constitute the TSHE.
This relation is not applicable if ‰ 6= 0 as the spin character of each wave-packet changes

throughout the iteration (Eq. 3.38a) so that a clear distinction into spin-up and -down states
is impossible. Thus, the wave-packet spin dynamics have to be directly included into the
transport calculations obstructing the simple picture with 2 states of opposite spin. Hence,
Eq. 4.44 has to be employed so that the topological spin Hall constant becomes:

RTS = −
ff(2;sz )
xy

ffxxffyyB
; (4.12)

where ff(2;sz )
xy describes the time- and space-averaged spin Hall conductivity including the

momentary spin direction in the local frame during iterations from initial spin-up and -down
states [21]. Explicit expressions for ff(2;sz )

xy are derived in Sec. 4.4 and numerical details for its
calculations are covered in Sec. 5.

4.3 Transport formalism

A multitude of methods exists that are suitable for estimating transport properties such as the
Hall effects described above [116]. Depending on the physical setup, they can be more or less
applicable. Three major methods exist for theoretically calculating the anomalous Hall effect:
the Boltzmann [98], the Kubo [117] and the Keldysh formalism [118]. In the remainder of this
thesis the Boltzmann formalism is used to estimate the T(S)HE, hence the Boltzmann case is
this section’s main topic. But firstly the latter 2 frameworks are shortly summarized followed
by detailed derivations of the former method used to calculate the T(S)HE in this thesis

One major disadvantage of the Boltzmann formalism is that it is not quantum-mechanical
but semi-classical. In order to include full quantum mechanics, the Kubo formalism can
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be used for calculating linear responses [119]. There, the conductivities are related to the
current-current correlation function so that the different Hall effects can be calculated via the
Kubo-Streda formula expressed in terms of advanced and retarded Greens functions. This
formalism is greatly suited for the disorder driven components, i.e. extrinsic AHE, as it is
based on Greens functions which can readily include disorder through diagrammatic expansions
and solution of the Dyson equation. Yet, the intrinsic AHE is automatically included as well
through the zeroth order diagrams. The THE enters the Kubo-Streda equation similarly. The
Keldysh formalism is a further generalization where non-equilibrium quantum states are used.
Hence, more Greens functions are necessary and the diagrammatic technique becomes more
complicated [118].

Specifically the transport fingerprint of skyrmions, and magnetic structures in general, can
be calculated using the Landauer-Büttiker formalism [120]. Semi-infinite leads are attached
in Hall bar geometry to a tight-binding system modeling skyrmionic textures. Via Greens
functions the transmission coefficients between the leads are obtained that directly relate to
the topological Hall angles and thus to the THE [114]. This method shows the emergence
of the THE even without adiabaticity which is required when using wave-packet dynamics
and allows to study its stability with respect to disorder effects [121]. This method has been
applied to antiferromagnetic skyrmions exhibiting the TSHE and used to study the feedback of
the spin currents to the texture via the non-adiabatic torque [72]. So far however, this method
is restricted to simple Hamiltonians characterizing the underlying material thus preventing its
application to realistic systems.

Another method for calculating the THE utilizes the Kubo equation directly [106, 122].
By treating the magnetic unit cell as unit cell for the entire Hamiltonian, all real-space
topology and skyrmion characteristics are transformed into the reciprocal space. Thereby, the
THE is effectively described as the intrinsic part of the AHE. Those Hamiltonians and the
corresponding Berry curvature can be numerically solved for small system sizes and simple
models. Since the Brillouin zones is small and many bands are folded back, a complicated
Berry curvatures emerges which results in large cumulative conductivities. Ribbons of such
structures exhibit edge states as expected for Chern insulators [106], but those edge states
are seldom the only states at the Fermi energy which obstructs a quantized versions of the
THE. Instead, many bands can contribute and many partially filled bands will influence the
intrinsic contributions especially in the case of metals. This method was applied to the case
of antiferromagnetic skyrmions as well [115]. In that study the bands are split since the
antiferromagnetic pairs have slightly different spin directions due to the consideration of
intrinsic antiferromagnetic skyrmions and the computational restriction to small skyrmions.
Hence, the U(1) Berry curvatures can be applied similar to the ferromagnetic case. Using the
Kubo equation, the expected emergence of the THSE for symmetric and THE for asymmetric
AFM skyrmions is validated thus providing a reasonable computational scheme for the limit
of small skyrmions [115].

Since the Boltzmann formalism is a well-established method several introductions can be
found in the scientific literature [98, 123, 124]. This section reviews the basic properties to
provide a basis for the Hall effect equations of Sec. 4.4.
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4.3 Transport formalism

4.3.1 Boltzmann formalism

The method used in this thesis, the Boltzmann formalism, is described in the following. In
general, it is applied in various branches of physics and describes the evolution of distributions
under external forces, diffusion, and scattering. Originally, it was developed to describe the
progression of thermodynamic systems but since has been applied to a multitude of different
physical problems. Here, it is used to extract the electronic transport properties from the
evolution of the electron distributions in case of applied fields and scattering.
The Boltzmann equation is a so-called “semi-classical” equation which means that it

combines classical with quantum-mechanical concepts. The classical part comprises the
evolution between scattering which itself is treated quantum-mechanically in general. This
necessity of intermediate classical validity defines this formalism’s range of applicability as
k has to be a sensible quantity for describing the evolution between the scattering events.
Hence, the product of the material’s Fermi wave vector with the mean free path l should
be much larger than 1, i.e. kF l � 1. Here, the evolution between scattering is described
by the wave-packet equations of motion (Sec. 3) while the scattering is treated in constant
relaxation time approximation—a most simplistic choice.

The huge advantage of the Boltzmann formalism is the straightforward procedure to obtain
expressions compared to the previously mentioned alternatives. Usually, the different terms
can be interpreted immediately with respect to their physical origin. Furthermore, multiple
drastic simplifications are possible so that the formalism can be applied to more complicated
basic systems than other computational approaches.

The main quantity in the Boltzmann formalism is the distribution function f (r ; k ; t) which,
in this case, describes the electron occupation in real and reciprocal space. The following
derivations of applicable simplifications of the Boltzmann equation loosely follow Ref. [125].
In general, the electron distribution is susceptible to a multitude of physical quantities such
as applied electromagnetic fields, scattering, thermal gradients, or even variations in the
chemical potential. The Boltzmann equation states that the change of f with respect to
all those possible sources is implicitly described through their spatial, orbital, and temporal
dependence:

df

dt
=
@f

@r

dr

dt
+
@f

@k

dk

dt
+
@f

@t
: (4.13)

All different causes of disturbance have to be modeled after which a solution of the nonlinear
integro-differential equation for f has to be found. Several simplification have been proposed
over the years due to the complicated structure of the general Boltzmann equation. In the
following, the most blunt approximations are used to reach a basic understanding of the
emerging transport phenomena caused by magnetic structures.
The goal is to yield a new equilibrium distribution incorporating perturbations caused by

the external fields. Due to the equilibrium condition, the last term of Eq. 4.13 vanishes.
Afterwards the Boltzmann distribution function is expanded around the original Fermi-Dirac
distribution f0:

f = f0 + ‹f : (4.14)

‹f is the perturbation of f caused by external fields and has to be approximated in the
following. Since we have a homogeneous system, the first term of the Boltzmann equation
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describing diffusion due to spatial inhomogeneities is neglected.
Hence, the Boltzmann equations simplifies to 

d(f0 + ‹f )

dt

!
scatter

=
@(f0 + ‹f )

@k

dk

dt
; (4.15)

when restricting the perturbations from f0 to scattering terms and the k̇ part. The term
on the right describes the influence of the applied external electric field via the k̇-term as
appearing in the equation of motion (e.g. Eq. 3.19). The left term covers the scattering
via momentum transfer which counteracts the constant acceleration of the E field resulting
in the new equilibrium. Many mechanisms could be included into the scattering term as
for example the AHE, caused by scattering effects such as skew-scattering and side-jump,
which would complicate the transport calculation significantly [98]. In general, the scattering
term is described via scattering rates from occupied to unoccupied states and vice versa as
determined by the distribution f . When using the relaxation time approximation, all those
scattering rates are approximated as: 

d(f0 + ‹f )

dt

!
scatter

= −‹f
fi
; (4.16)

where fi is the k-dependent, averaged relaxation time. Hence, only scattering terms are
included that result in a relaxation towards the Fermi-Dirac distribution. As the scattering
rates depend on the initial and final k , already the assumption of fi(k) is an approximation.
In the remainder of this thesis the even rougher constant relaxation time approximation is
used which neglects fi ’s k-dependence altogether. When instead keeping the k-dependence,
the following equations are modified slightly as fi appears only as linear and quadratic
prefactor in the following derivations leading to the (spin) conductivities. Yet, a further term
would arise from the k-derivatives leading to Eq. 4.19 which would give corrections to the
T(S)HE. Accurate predictions for fi including its k-dependence, and furthermore kin- and
kout-dependent scattering rates, can be obtained for example from Korringa–Kohn–Rostoker
ab-initio calculations for specific defects in the studied materials. Those have the potential to
significantly increase the accuracy of the (spin) conductivity prediction. In order to minimize
the dependence on fi , and thus the impact of possible k-dependent modifications, the fi
independent topological (spin) Hall constants (Eq. 4.6) are ultimately used to characterize
the T(S)HE.
The distribution perturbation can thus be expressed as

‹f = −fi @(f0 + ‹f )

@k
· dk
dt
; (4.17)

when assuming the constant relaxation time approximation in the expanded Boltzmann
equations and keeping only k̇ and scattering parts. As ‹f is assumed to be small compared
to f0, it can be iteratively solved using this above equation expanded in orders of fi . The
first-order term is conveniently expressed as

‹f (1) = −fi @f0
@k
· dk
dt

= −fi @f0
@›

@›

@k
· dk
dt
: (4.18)
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4.3 Transport formalism

Notably, the first correction to f0 is a Fermi surface property due to the partial k-derivative
of the distribution function originating in the Boltzmann equations. This agrees nicely with
the assumption that the distribution function changes only marginally away from f0. The
distribution function correction in second order in fi is obtained by inserting ‹f (1) into the
right side of Eq. 4.17:

‹f (2) = −fi ‹f
(1)

@k
· dk
dt

= fi2@f0
@›

@
“
@›
@k
· dk
dt

”
@k

· dk
dt
: (4.19)

A @kfi term arises in general but vanishes here due to the constant relaxation time ap-
proximation. Therefore, the equilibrated electron distribution caused by simplest scattering
counteracting an applied E field can be approximated by:

f ≈ f0 − fi
@f0
@›

@›

@k
· dk
dt

+ fi2@f0
@›

@
“
@›
@k
· dk
dt

”
@k

· dk
dt
: (4.20)

After a short consideration about means of obtaining observables with this description, the
above distributions function is used in combination with the equations of motion to calculate
charge and spin currents (Sec. 4.4).

The expansion of f in second order of fi and the following direct application of the equations
of motion (Seq. 4.4) is not the only possibility to describe the transport impact of skyrmions
through the Boltzmann equation. In fact, one disadvantage of the following derivations
is the necessity for adiabaticity. The wave-packet’s strict alignment with the magnetic
texture requires strong exchange coupling especially in the ferromagnetic case. An alternative
approach valid for weak exchange interactions still utilizing the Boltzmann equation has been
developed to describe dilute magnetic semiconductors [126]. There, the explicit scattering
from skyrmions in combination with non-magnetic impurities is investigated in the limit
of impurity densities much larger than the skyrmion density. Then, the skyrmions cause
asymmetric differential cross sections so that the asymmetric scattering creates the THE even
for non-polarized electrons. Accordingly, the effect of the topological non-triviality is included
in left side of Eq. 4.16 and not explicitly in the evolution of ṙ . This method even uncovers
oscillatory behavior between charge and spin responses relative to exchange-interaction and
skyrmion size variations [127].

4.3.2 Obtaining observables

While the Boltzmann distribution function will be used to obtain observables, it is instructive
to first consider evaluation of observables based only of the wave-packet formalism. In case
of Bloch waves an observable O is calculated according to

O =
X
nk

fnkO(k); (4.21)

where the k-sum becomes a simple k-integral over the Brillouin zone divided by its volume [78].
The phase-space is larger in case of wave-packet dynamics as the real space has to be included
as well. The semiclassical limit for calculating a general observable becomes:

O(R) =
Z
dkdr D(r ; k)f (r ; k)O(k ; r)‹(r −R); (4.22)
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when neglecting finite wave-packet size contributions. D is the density of states replacing the
previous Brillouin zone volume division. As k and r are not a canonical set in general, the
density of states gets modified so that the covered phase-space volume remains conserved,
i.e. the Liouville theorem is satisfied. This correction is expressed as:

D =
1

(2ı)d

r
det

“←→
Ω −

←→
I
”

(4.23)

with
←→
Ω =

"
Ωr r Ωrk

Ωkr Ωkk

#
;
←→
I =

"
0 1
−1 0

#
; (4.24)

and is a necessary modification when treating full wave-packet dynamics. As long as either
Ωr r = 0 or Ωkk = 0, the diagonal components of

←→
Ω do not enter D so that the usual

D = (2ı)−d is recovered in case of Ωrk = 0. More general, the curvature dependent parts
are usually smaller than 1, hence the square root of Eq. 4.23 can be expanded as 1 + c · x + :::
so that D = (2ı)−d is a sensible, albeit rough, approximation.

Several physical effects have been derived directly using this approach [78, 128] and direct
calculation of the currents using that formalism is possible in principle. Starting from an
initial distribution, the wave-packet’s phase-space evolution would have to be tracked directly
using the equations of motion including the applied fields and the modified density of states.
Scattering would have to be included in the evolution as well, hence direct application is
impracticable.
The Boltzmann equation provides a more feasible approach where the reciprocal-space

variation is directly included on the Boltzmann level so that the phase-space of the actual
evolution is reduced to the real space only. Using the approximate equilibrium distribution of
the Boltzmann equation (Eq. 4.20), a general observable is given as:

O =
V

(2ı)d

Z
Bz:
dk (f0(k) + ‹f (1)(k) + ‹f (2)(k))O(k): (4.25)

V is the real-space unit-cell volume which usually cancels with the 1=V -factor from the real-
space integral. Charge currents are calculated as the expectation value of the wave-packet
velocity

j = 〈ṙ〉 (4.26)

similar to its spin current analogue (Eq. 4.8). Note that the units are chosen so that e = ~ = 1
throughout this thesis unless otherwise stated so that different e- and ~- dependent prefactors
for charge and spin currents appear only in different atomistic units for the transport quantities.
As velocity and spin commute in this semiclassical treatment using the equations of motion,
the currents take the form:

j =
V

(2ı)d

Z
Bz:
dk (f0(k) + ‹f (1)(k) + ‹f (2)(k))ṙ ; (4.27a)

j s¸ =
V

(2ı)d

Z
Bz:
dk (f0(k) + ‹f (1)(k) + ‹f (2)(k))s¸ṙ : (4.27b)

54
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As the skyrmion lattice introduces a spatial inhomogeneity, it is furthermore necessary to
average over the magnetic unit cell. Hence, the observables still depend on the remaining
wave-packet equations of motion (ṡ and ṙ) while k̇ is already included in the static k-
distribution. Inserting the expression for ‹f (Eq. 4.20) and the respective equations of motion,
more explicit expressions for the currents can be obtained. Expanding those expressions in E
the (spin) Hall conductivities are obtained through

ff
(s)
lm =

1

V

Z
dr

0@@j (s)l

@Em

1A
E=0

; (4.28)

which includes only linear E term in accordance with Eq. 4.1. The next section derives the
conductivities caused by ‹f using the ferromagnetic and the antiferromagnetic equations of
motion.
Still, the Fermi-Dirac distribution part of the current equations gives rise to scattering-

independent transport phenomena. When including a nonzero reciprocal-space topology,
corresponding to the intrinsic AHE, non-vanishing transport contributions arise from Ωk

through ṙ even without magnetic fields of topological or external origin:

j =
V

(2ı)d

Z
Bz:
dk f0(k)E ×Ωk : (4.29)

The Berry curvature vanishes in the collinear case without SOC, hence this contributions
vanishes for most cases covered here. Further scattering independent transport effects caused
by the magnetic texture arise from those terms if Ωk and Ωr do not vanish. Since those term
vanish for most considered systems, the f0 parts of Eq. 4.27 are omitted in the following to
focus on the ‹f terms.
All lower order changes will occur near the Fermi energy since the distribution function

starting point is of Fermi-Dirac type. Indeed, both ‹f (1) and ‹f (2) are proportional to @›f0
(Eqs. 4.18-4.19) which restricts the Brillouin zone integral to the Fermi surface. In the limit of
vanishing broadening temperature, @›f0 can be replaced by a Dirac distribution which results
in the transformation to a surface integral:

Z
Bz
dk

@f0
@›

=
Z
Bz
dk ‹(EF − ›(k))

=
Z
Bz
dk

‹(k − kF )

|@k›|

=
Z
S(EF )

dsk
1

|@k›|
:

(4.30)

Here, S(EF ) denotes the iso-energy surfaces at the Fermi energy and dsk is the corresponding
differential for the Fermi surface integral. The Fermi surfaces are actually 1-dimensional lines
as thin films with 2-dimensional Brillouin zones are considered in this thesis. The procedure
to numerically evaluate the above integrals by interpolation of the Fermi iso-energy lines is
described in Sec. 5.2.1.
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4.4 Hall conductivity

In this section the Hall conductivities are extracted from the current expectation values using
the distribution corrections (Eq. 4.20) and the equations of motion of the underlying systems.
Explicit expressions are derived for the ferromagnetic and the collinear antiferromagnetic case
keeping the linear terms in E in accordance with Eq. 4.28.
While the ferromagnetic case can be derived analogously to the ordinary Hall effect [8,

41], the related degenerate antiferromagnetic case is new and the evaluation of the resultant
equations is the main effort of this thesis [21].

4.4.1 Ferromagnetic case

First, the wave-packet equations of motion of non-degenerate ferromagnets are considered
assuming trivial reciprocal-space topology (Eq. 3.19). Their k̇-term is included into the ‹f
parts which become:

‹f (1) = fi
@f0
@›

X
i

@›

@ki
Ei ; (4.31a)

‹f (2) = fi2@f0
@›

X
i j

@2›

@ki@kj
Ei (Ej + (s · n)(ṙ × B)j) : (4.31b)

The B-term vanishes in the first correction as:

@›

@k
· (ṙ × B) =

@›

@k
·
 
@›

@k
× B

!
= 0: (4.32)

Since only linear terms in E are sought, the second correction simplifies to :

‹f (2) = fi2@f0
@›

(s · n)
X
i j

@2›

@ki@kj
Ei
X
lm

"lmj ṙlBm: (4.33)

Inserting the first-order correction ‹f (1) into the conductivity expression (Eq. 4.27) yields:

ff
(1)
i j =

fi

(2ı)d

Z
dk

Z
dr
@f

@E

@›

@kj
ṙi : (4.34)

This is the normal current contribution which does not create a Hall effect due to its i ↔ j-
symmetry. It describes the lowest order longitudinal conductivity which is used as denominator
in the topological Hall constant expression (Eq. 4.4). The topological Hall effect appears in
the second-order term:

ff
(2)
i j =

fi2

(2ı)d

Z
Bz:
dk

Z
dr

@f0
@›

(s · n)
@›

@ki

X
lmn

"lmn
@2›

@kj@kn

@›

@kl
Bm: (4.35)

When assuming E = Eê2 and B = Bê3, the antisymmetric tensor "lmi can be evaluated
explicitly so that the transversal conductivity becomes:

ff12 =
fi2

(2ı)d

Z
Bz:
dk

Z
dr
@f0
@›

(s · n)B @›
@k1

 
@2›

@k2@k1

@›

@k2

− @2›

@k2@k2

@›

@k1

!
: (4.36)
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Since neither of the constituents depends on both k and r , the integrals can be separated
into:

ff
(2)
i j =

fi2

(2ı)d
X
lmn

"lmn

 Z
dk

@f0
@›

@›

@ki

@›

@kl

@2›

@kj@kn

!„
±
Z
dr Bm

«
: (4.37)

The k-integral includes the group velocities and effective masses at the Fermi surface which
are easily accessible even for complicated Hamiltonians. The r -integral is simply the emergent
magnetic field’s flux. The (s · n)-term has become ±1, depending on whether the band is
of spin-up or -down character, since the spin stays aligned with the magnetic texture in the
ferromagnetic equations of motion.

The spin conductivity is calculated analogously by adding the spin in the local frame. Due
to the permanent alignment, a further ±-sign is obtained so that the final conductivity has
exactly the same form as the charge conductivity caused by the ordinary Hall effect:

ffszi j =
fi2

(2ı)d
X
lmn

"lmn

 Z
dk

@f0
@›

@›

@ki

@›

@kl

@2›

@kj@kn
Ps

!„Z
dr Bm

«
: (4.38)

Furthermore the spin polarization Ps is included which decreases the magnitude of the
transport in case of SOC relative to Ps = 1 without SOC. The alternative ffsxi j and ffsyi j vanish
due to the spin’s alignment with the z-axis.

4.4.2 Collinear antiferromagnetic case

Analogous to the previous ferromagnetic case, the transport properties of the TSHE of
antiferromagnetic skyrmions is obtained by inserting the respective equations of motion
(Eq. 3.40) into ‹f and ff. The first Boltzmann distribution correction is:

‹f (1) = fi
@f0
@›

X
i

@›

@ki
(Ei +

X
lm

(1− ‰2)(s · n)"i lm ṙlBm): (4.39)

ṙ has an additional velocity term which is collinear to @k› in simple models (e.g. Sec. 6 and
Ref. [76]) but that does not vanish in the general ‹f (1) expression:

‹f (1) = fi
@f0
@›

X
i

@›

@ki

 
Ei +

1

2

X
lm

(1− ‰2)(s · n)"i lm((s × n) · ṅ)
@ ln ‰

@kl
Bm
!
: (4.40)

While the first component proportional to E is exactly analogous to the ferromagnetic case
(Eq. 4.31), the SU(2)-term complicates the calculation of the second distribution function
correction term which causes the TSHE:

‹f (2) = fi2@f0
@›

X
i j

@
“
@›
@kj

(Ej + (1− ‰2)(s · n) (
P
lm "j lm ṙlBm))

”
@ki

×

×
 
Ei + (1− ‰2)(s · n)

 X
lm

"i lm ṙlBm
!!

:

(4.41)
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For convenience, the expression can be split into 2 parts, ‹f (2) = ‹f (2;1) + ‹f (2;2), since
only terms proportional to E · B are considered. ‹f (2;1) contains the electric field part to
the derivative term multiplied with the B-part of latter expression and ‹f (2;2) vice versa.
Accordingly, ‹f (2;1) corresponds to the ferromagnetic expression (Eq. 4.33) while ‹f (2;2) is a
correction only arising in the band-degenerate case. ‹f (2;1) still contains corrections due to
the SU(2) character:

‹f (2;1) = fi2@f0
@›

X
i j

(1− ‰2)(s · n)
@2›

@kj@ki
Ej
X
lm

"i lm ṙlBm: (4.42)

Analogously to the ferromagnetic case, this distribution correction yields the following Hall
conductivity:

ff
(2;1)
i j ≈ fi2

(2ı)d

Z
Bz:
dk

Z
dr

@f0
@›

(1− ‰2)(s · n)ṙi
X
lmn

"lmn
@2›

@kj@kn
ṙlBm: (4.43)

The only differences compared to Eq. 4.35 are the replacement of the group velocity by
ṙ and the additional (1 − ‰2)-term decreasing the impact of the emergent magnetic field.
Nevertheless, the evaluation of the Hall conductivity is significantly more complicated in the
antiferromagnetic case as the wave-packet evolution in real space results in spin misalignment.
Contrary to the ferromagnetic case, ṙ is real-space dependent and the spin deviates from
the texture so that evaluation of the transport expression requires explicit solution of the
remaining equations of motion. Yet, the ferromagnetic equations are recovered in the limit
‰ → 0 where the wave-packet equations of motion become identical. Since all states are
degenerate and start with initially aligned and anti-aligned spins, the THE vanishes due to
the spin-dependence of the emergent magnetic field’s impact on the wave-packets dynamics
as explained in Sec. 4.2.1.
The spin Hall conductivity

ff
(2;1;s¸)
i j ≈ fi2

(2ı)d

Z
Bz:
dk

Z
dr

@f0
@›

(1− ‰2)(s · n)ṙis¸;n
X
lmn

"lmn
@2›

@kj@kn
ṙlBm (4.44)

contains a further spin term, s¸;n, so that the corresponding TSHE survives. sn is the spin
in the local frame as considered in the TSHE. ff(2;1;s¸)

i j also includes the spin polarization Ps
which decreases the magnitude in case of SOC. This equation is the main contribution of
the TSHE and thus the main quantity calculated in this thesis. The actual computational
procedure for approximating ff(s¸)

i j is described in Sec. 5.
The second distribution correction complementary to Eq. 4.42 is

‹f (2;2) = fi2@f0
@›

X
i j

@
“
@›
@kj

(1− ‰2)(s · n) (
P
lm "j lm ṙlBm)

”
@ki

Ei

= −fi
2

2

@f0
@›

(s · n)
X
i j

X
lm

"j lm
@
“
@›
@kj

(1− ‰2) ((s × n) · ṅ) @ ln ‰
@kl

”
@ki

EiBm:

(4.45)
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As ṅ = @tn + (ṙ · ∇)n includes ṙ , its k derivate does not vanish so that the product of 4
k-dependent terms has to be differentiated. Due to the Levi-Civita symbol and @k‰ · k̇ = 0,
several terms vanish so that only 2 terms remain:

‹f (2;2;1) = fi2@f0
@›

X
i j

(1− ‰2)(s · n)
@2›

@kj@ki
Ei×

×
X
lm

"j lm

"
−1

2
((s × n) · ṅ)

@ ln ‰

@kl

#
Bm

(4.46)

and

‹f (2;2;2) = −1

2
fi2@f0
@›

X
i j

(1− ‰2)(s · n)
@›

@ki
Ej
X
lm

"i lmBm
@ ln ‰

@kl
×

×
X
¸

(s × n) · @n
@r¸

@2›

@kj@k¸
+ O

0@ @‰
@k

!2

;
@2‰

@k2

1A : (4.47)

The first correction is very similar to ‹f (2;1), just the ṙl -term has been replaced by its anomalous
velocity part. Hence, the impact of the non-abelian correction is enhanced. ‹f (2;2;2) contains
an infinite series with increasing order of ‰ k-derivatives in principle. Only the first order
of the k-derivative of ‰ is explicitly states here which is similar to the previous terms but
contains an additional group velocity term and has different derivative indices in the mass
term connected to the ṅ expression.
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5

T(S)HE calculation scheme

This chapter describes the computational procedures employed to calculate the topological
(spin) Hall constant (Eqs. 4.6 and 4.12), i.e. the diagonal currents ffi i (Eq. 4.34) and the
(spin) Hall currents (Eqs. 4.37, 4.38, 4.43, and 4.44). Furthermore, this chapter scrutinizes
the dependence on numerical parameters necessary for the transport calculations.

5.1 Calculation method

The general procedure to obtain transport properties relies on 3 basic ingredients: the
wave-packet dynamics (Sec. 3), the Boltzmann formalism (Sec. 4.3), and the description of
materials parameters. The latter relies on 2 independent parts, the skyrmionic real-space
texture (Sec. 2.4) and the reciprocal-space Hamiltonian encoding the material properties
(Secs. 6, 7). The wave-packet equations of motion combine both system descriptions from
which transport expressions are obtained using the Boltzmann formalism. Here, the skyrmion
texture and the material parameters are strictly separated as spin-orientation dependent
Hamiltonian modification are neglected and since the skyrmion texture is artificially imprinted
without considering magnetic parameters deduced from the material description. The former
could arise due to variation of the quantization axis caused by SOC or the slight tilting of the
magnetization of neighboring atoms, i.e. non-collinearity. While such effects could generally
be included into the formalism, they would require significantly more preliminary calculations
to extract the dependence of the reciprocal-space properties on the spin orientation and, more
importantly, would render the separation into r , s on the one side and k on the other side
impossible since the dispersion would depend on r . Hence, the reciprocal-space Hamiltonian
as in the bilayer model or obtained from density-function theory contains only collinear,
spin-direction agnostic information.
When including the wave-packet equations into the Boltzmann formalism, the above

difference between r , s and k is used extensively. The k̇-part is already included in Sec. 4.4
on the level of the Boltzmann equations to determine the deviation from the Fermi-Dirac
equation. Hence, only the r - and s-dynamics still have to be included as described in this
section.
All transport quantities related to the T(S)HE require a Fermi surface integral whose
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computational implementation is described in Sec. 5.2.1. Here, it is sufficient to know that
a sum over k is obtained with respective weights li . The r - and s-dependent parts of the
integrand have to be calculated for each of those k-points obeying the remaining dynamics
given by ṙ and ṡ. This has the conceptual and computational advantage that the k-dependent
parameters are evaluated only once.
The s- and r -dependent quantities are evaluated by considering several wave-packets

initialized on a real-space grid whose initial spin is aligned or anti-aligned with the magnetic
texture according to the corresponding Bloch state’s spin. Subsequently, all wave-packets are
iterated using to the remaining ṙ and ṡ differential equations for all given Fermi surface k .
The r - and s-dependent quantities of the transport expressions are continuously integrated
over time during this iteration, i.e. finally averaged. A fourth-order Runge-Kutta scheme
is used to iterate the wave-packets as described in Sec. 5.2.2. For further reference, this
iteration, time-integration scheme is denoted by angle brackets. In the actual computational
procedure it can be written as:

〈Xs;r 〉i t =
1

ti tNsNR2

N2
RX

rinit

NsX
sinit

titX
i

∆tiXs;r (ti): (5.1)

The initial denominators normalize the iteration-time differences ∆ti , the starting from several
initial spin states, and the initialization of a real-space grid. In case of the twofold-degenerate
antiferromagnetic bands starting with spin-up and spin-down states Ns is still 1 to account
for their degeneracy.

Convergence is usually reached after system-dependent iteration-times ti t (Sec. 5.3.3). As
the traversed space necessary for convergence far exceeds the magnetic unit cell and because
the convergence time is much larger than the Boltzmann relaxation time, this approach for
calculating the Hall conductivities is only applicable when the spin scattering time is much
larger that the momentum scattering. If the limit of extremely long spin scattering times is
not sensible, these calculations still give insight into the THSE magnitude as those cases
would correspond to the non-converged values after the respective spin-scattering associated
time. Usually, very large spin scattering times are assumed in the following so that only the
converged values are given unless stated otherwise.

A general problem when comparing 2D and 3D materials are dimensional differences. Here,
conductances G [S] are obtained instead of conductivities ff [S=m] when applying the transport
equations of Sec. 4. Since transport properties are usually given in conductivities or resistivities,
it is helpful to introduce the material thickness dz which allows to switch between these
physical quantities. Hence, all 2D ff-expressions are divided by dz to obtain conductivities.
Throughout this thesis, it is occasionally convenient to directly calculate the different

conductivity contributions. This is particularly necessary when displaying the conductivity’s
k-dependence (e.g. Fig. 6.3). In those cases fi does not cancel out as in case of the topological
Hall constant but instead is assumed to be fi = 4000 ~=Eh ≈ 9:7 fs unless otherwise stated.

Taking the numerical procedures into account, the transport expressions from Sec. 4 can be
recast into forms more closely related to the actual computation scheme. Eq. 4.34 becomes

ff
(1)(s¸)
i j =

fi

(2ı)2dz

X
ki∈FS

li
1

|@ki ›|
@›

@kj
〈(s¸;n)ṙi〉it ; (5.2)
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while Eqs. 4.35 and 4.43 take the form

ff
(2)(s¸)
i j =

fi2

(2ı)2dz

X
ki∈FS

li
1

|@ki ›|
(1− ‰2)

X
lmn

"lmn
@2›

@kj@kn
〈(s¸;n)(s · n)ṙi ṙlBm〉it : (5.3)

(s¸) is included into both expression, but the analogue charge currents can be obtained by
simply leaving out s¸. If some terms within the angle brackets are iteration independent, as
is the case in simple equations of motion, further simplification are possible decreasing the
computational effort. The following 2 sections cover the application of the predominantly
used equations of motion.

5.1.1 Ferromagnet

In the ferromagnetic case, the conductivities can be evaluated without explicit wave-packet
iterations since the equation of motion are extremely simple.

Starting from Eq. 4.37, the orbital and the real-space part of the (spin) Hall conductivities
have already been separated while the spin does not appear explicitly at all. The orbital term
can be calculated directly from the Hamiltonian at the Fermi surface which is similar to the
necessary evaluation of k-dependent quantities before starting the wave-packet iterations of
the more general approach. Only the real-space integral over the emergent magnetic field,
i.e. its flux, remains to be calculated. As described in Secs. 2.1.1 and 3.1.3, the emergent
magnetic field’s flux is quantized in skyrmionic textures to the skyrmion number. Hence, the
real-space term of Eq. 4.37 is immediately given by the skyrmion density. The longitudinal
conductivities depend only on trivial Fermi surface integrals (Eq. 4.34) where the ṙ are simply
the group velocities. Accordingly, the THE and TSHE can be calculated without resorting to
explicitly solving the wave-packet dynamics by following this paragraph’s considerations and
using Eqs. 4.10 and 4.11 .

Still, it is informative to apply the general scheme as that allows instructive comparison with
the more complicated evaluation of degenerate systems. At first, the remaining wave-packet
dynamics for ṙ and ṡ (Eq. 3.19) have to be combined with the conductivity expressions of
Sec. 4.4.1. Only few term appear in the resulting expression which possibly depend on s or r :
(s · n), ṙ , and Bz . The former 2 terms are independent of the wave-packet’s position and
spin as the equations of motion already state that ṙ is the group velocity depending only on
k and since the spin dynamics identically follows the magnetic texture so that (s · n) = ±1.
Hence, Bz is the only appearing quantity which actually depends on the real-space position.
Its contribution is evaluated by integrating Bz along the trajectories of wave-packets starting
from a real-space grid for each k . Since the wave-packet’s velocity vector does not change,
each k ’s states move on straight, parallel lines through the magnetic texture. In the limit
of a dense initial real-space grid, at least dense in one direction not parallel to @k›, this is
exactly the same as calculating the average emergent magnetic field. Hence, the flux of the
emergent magnetic field is obtained as in the direct calculation above.
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5.1.2 Collinear Antiferromagnet

Such tremendous simplifications are impossible in case of collinear antiferromagnets, instead
the remaining equations of motion (compare Eq. 3.40)

ṡ = (1− ‰2)(s · n)ṅ (5.4a)

ṙ =
@›

@k
− 1

2
((s × n) · ṅ)

@ ln ‰

@k
(5.4b)

have to be solved for each k-point of the Fermi surface integral. ṙ , (s · n), and Bz are the
only s- or r -dependent terms in the conductivities of Sec. 4.4.2. Since ṡ = ṡ(s; r ; ṙ) and
ṙ = ṙ(s; r), the wave-packet dynamics are a coupled set of equations which prevents a direct
separation of the integrated Bz . This is intuitively clear as the wave-packets deviate from the
straight trajectories of the ferromagnetic case. Hence, n, @rn and Bz have to be calculated
at each momentary position throughout the wave-packet evolution in order to evaluate ṙ
taking the s-dependence into account. Even when excluding the spin-trajectory dependence
of ṙ , corresponding to @k‰ = 0, it is impossible to simplify the evaluation of the Bz-term.
While the straight trajectory in real space is directly known as in the ferromagnetic case,
the texture-dependent spin-trajectory modifies the impact of Bz through the (s · n)-term.
Hence the whole mechanism as described in the beginning of this chapter (Sec. 5.1) has to
be employed with above remaining wave-packet dynamics. This is the numerical procedure
which is used in the majority of the calculations in this thesis.

5.2 Implementation details

While the computational scheme for estimating the transport is demonstrated in the previous
section, further implementation details are necessary to characterize the ensuing calculations
unambiguously. This section covers the majority of the implementation details, only the
Hamiltonian setup and evaluation is summarized separately (Secs. 6, 7).
First, the implemented Fermi surface interpolation scheme is established which provides

the k-points and their respective weights to accurately approximate the k-integral. Thus, the
computational effort is reduced as less k-points have to be investigated in the wave-packet
iteration part. Next, the 4th-order Runge-Kutta iteration scheme is described considering
the evaluation of the equations of motion. Throughout that wave-packet evolution, the
magnetic texture has to be evaluated very often which can result in significant slowdown even
with relatively simply texture descriptions. Hence, very efficient but accurate methods are
required which are covered in Sec. 5.2.3. Finally, the employed parallelization procedures are
summarized which, provided sufficient computational resources, enable timely evaluation of
the transport expression despite their huge numerical effort.

5.2.1 Fermi-surface integral

In this section the implemented scheme for interpolating the Fermi surface is described.
Since only 2-dimensional systems are treated in this thesis, the Fermi surface consists of
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Figure 5.1: Example Fermi line interpolations of (a) BiAg2 including SOC as
published in Ref. [130], (b) FeCu5Fe as considered in Sec. 8.3, and (c) Fe/W(001)
as plotted in Fig. 9.1c.

1D lines in the 2D Brillouin zone that are called Fermi lines henceforth. In principle, this
implementation follows the 2-dimensional version of the tetrahedron method as described
in Ref. [129]. ›(k) is evaluated very often during the interpolation, so that an efficient
method is necessary to obtain the band energies. Ideally, simple model Hamiltonians are
used whose diagonalization is simple and quick. Accordingly, the construction of a small,
yet accurate, Wannier Hamiltonian is extremely advantageous when considering DFT-based
system descriptions. Only this possibility is implemented to avoid direct interfacing with the
DFT code. Example Fermi lines obtained through this method are shown in Fig. 5.1.
If the Fermi energy EF is not externally chosen or taken from the DFT calculations, it

has to be calculated for a given occupation before proceeding to the actual interpolation.
Most often the DFT-based EF is used in the following, alternatively the most simplistic
implementation of a regular grid with counting of the occupied states is employable.
The utilized procedure to interpolate the Fermi lines for a given EF is described in the

remainder of this section. At first, the energies are calculated on a regular grid spanning the
entire Brillouin zone. A reasonably large grid, depending on the number of bands near the
Fermi energy, should be used to get a rough initial estimate of the Fermi lines’ shape. Next,
it is checked which bands cross the Fermi energy by comparing the indices of the bands with
energies above and below EF∓‹E, respectively. ‹E is a small numerical parameter accounting
for possible crossings not resolved by the grid. All bands not crossing EF ∓ ‹E are excluded
from the following calculations in order to save memory, interprocessor communication, and
CPU-cycles. Only one index of each degenerate pair is kept to similarly reduce computational
effort. Their spin-reversed partners are reintroduced at the very end of this interpolation
procedure.

Next, the number of occupied states is determined at each grid point in order to determine
the path of Fermi lines with respect to the initial grid. If neighboring grid points have
differing occupation numbers, a Fermi line has to cross the line connecting them (Fig. 5.2a).
Non-overlapping triangles are formed to construct Fermi lines from that information. Here,
the grid rectangles and the line between the lower left and the upper right corner of each
rectangle are used (see Fig. 5.2a). If the occupations of the connected grid points differ, at
least that many Fermi lines cross their connection. The occupation difference is not always
equal to the number of crossed Fermi lines as two additional Fermi lines crossing a grid line
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do not change the occupation numbers if their group velocities along the grid line direction
have opposing signs. This effect is especially prominent near band crossing (Fig. 5.2b) where
the 2 intersecting Fermi lines cancel the occupation difference so that the algorithm assumes
that no crossing bands are between the corresponding grid points. Knowing which grid lines
are crossed by Fermi lines, their intersections can be used to obtain an interpolation. Since
the lines are all edges of triangles, the connections can be easily traces using that geometry.
Each line entering a triangle has to leave it as well so that it is clear within the triangle
which edge’s crossing points have to be connected. After completing this procedure for each
triangle, the Fermi line can be traced through the entire space (Figs. 5.2a,b) as the edges
connect neighboring triangles. Obeying the symmetry boundary conditions, i.e. remaining in
the first Brillouin zone, the whole line can be followed until returning to the first triangle.
Hence, the path of each Fermi line can be traced and each crossing can be attributed to a
numbered, closed Fermi line.

If a grid line is crossed by more than one Fermi line, the described algorithm may assume
that there is no Fermi line crossing but that the other edges of the grid’s triangle are connected
instead (Fig. 5.2b). This can result in severe deviations from the true Fermi line especially
in case of parallel lines. The obvious method to tackle that problem is to increase the grid
density. Simply decreasing the grid spacing everywhere results in many more grid-points at
positions without nearby Fermi lines and thus unnecessary waste of computational resources.
Instead, it is more efficient to increase the grid spacing only at small areas of importance.
Hence, additional grids with much finer spacings are computed at small areas where such
problems may arise. The additional grids are also of rectangular shape in order to keep the
connection to the triangles of the initial grid simple. The problematic regions that require
further refinement are determined by judging the distance between distinct bands. Therefore,
the indices of each Fermi line within a certain number of grid spacings (by default 3) are
calculated for each grid point. It is advisable to increase that default value in case of sparse
initial grids. Grid points are chosen to require further accuracy if they are associated with
several Fermi-line indices and are connected to a Fermi lines. The mechanism of choosing
areas of higher importance is depicted schematically in Fig. 5.2c with only 2 grid spacings in
each direction and no additional enlargement while Fig. 5.2d shows the number of distinct
neighboring Fermi lines for grid points connected to Fermi line intersections of a realistic
FeCu6Fe DFT example system.
The refined areas are determined by rectangles which are laid around the grid points

requiring enhanced accuracy. They are widened by 2 grid spacing in each direction to ensure
enclosure of critical points. If rectangles overlap, they are divided into non-overlapping
smaller rectangles of which only the ones containing grid points with occupation differences
to neighbors are kept.
Within those rectangles, adaptive grids with a grid-spacing which are by default 10-times

smaller than the initial grid are calculated following the above procedure to obtain the
connections of the Fermi lines. Subsequently, the triangles of the adaptive grids are connected
to the initial grid or neighboring adaptive grids so that it is possible to trace each Fermi lines
through the entire Brillouin zone when following the triangles.

The intersections of the Fermi lines with the grid are obtained by successive bisection of the
grid lines with occupation difference until the respective ›(k) corresponds to the Fermi energy
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within a chosen accuracy. The resulting Fermi line interpolation for the previous FeCu6Fe
example is shown in Fig. 5.2e. In principle, all necessary ingredients to define a Fermi-line
interpolation have been obtained since many Fermi-line points are known whose connection
is given by the triangles. The integral weights can be trivially obtained by calculating the
distance of neighboring Fermi-line k-point. Unfortunately, the distances between these points
are vastly different, either due to crossings nearer or farther away from the grid points or,
more extremely, due to the usage of the adaptive grid. Hence, direct integration of Fermi

Figure 5.2: a,b) Schematic picture showing the interpolation procedure. Different
blue colors denote different occupations at the grid points, the green line shows
the true Fermi lines and the red line is the resulting interpolation. b) visualizes
the problem of wrongly connected interpolation lines due to multiple crossings.
c) Schematic choice of adaptive grid where red/blue grid points are within 2
lattice spacings of the red/blue Fermi line. Green grid points have both Fermi
lines nearby, so that the dark green rectangle enclosing the green grid points with
directly connected Fermi line intersections can be chosen as fine-grained adaptive
grid. d-f) AFM degenerate FeCu6Fe example Fermi surface without SOC: d) shows
the number of neighboring grid points (1: turquoise, 2: yellow) and the chosen
adaptive grids as white rectangles. e) shows again the areas of refined grid usage
and the Fermi line intersections with the initial and refined grid. f) displays the
final integration grid with approximately equal weights for 1024 k-points in each
spin channel.
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surface properties from this set is inefficient and a better interpolation is sought.
An equidistant interpolation is a sensible goal without further knowledge of the quantity

that is to be calculated. As a good approximation for the length of each Fermi line is given
by the previous interpolation, each line is alloted with the respective number of interpolation
points so that their sum over all bands is a chosen number of k-points while approximately
similar spacings is ensured for all lines. The interpolation-algorithm starts from an arbitrary
Fermi line point. At first, the target length to the next point is calculated. The former
interpolation is followed until the target length minus the already traversed spacing is less
than the length to the next intersection. Subsequently, the Fermi line is sought on a line at
the target distance perpendicular to the difference vector. If this fails, the previously described
grid mechanism is used to obtain a suitable Fermi line intersection with the aimed distance
to the last intersection point. This procedure is repeated until the Fermi line is closed and
the distances between connected points of the new interpolation mesh are known.

If more threads than Fermi lines are supplied, the usage of several initial positions in each
Fermi lines provides a significant speedup since each line has to be tracked to the next thread’s
initial position only. Still, the threads are first distributed on the different Fermi lines since
interpolations of single lines with many starting positions are prone to increased distance
fluctuations. Accordingly, only excessive threads are distributed among the longest lines. The
final interpolation of the example FeCu6Fe system with approximately equidistant spacings is
shown in Fig. 5.2f. Overall, 2048 k-points are used in that mesh but only 1024 k-points are
depicted since each state is twofold degenerate. An advantage of this setup is the possibility
to simply change of the number of interpolation points by repetition of the last step as long
as the grid- and the intersections-points of the refined grid are stored.

With the above information, the Fermi surface integral (Eq. 4.30) is conveniently expressed
as the sum over all Fermi-line points with half the sum of the distances to the neighboring
points as weight li : Z

Bz
dk
@f0
@›
X(k) =

X
ki∈FS

li
1

|@ki ›|
X(ki): (5.5)

The additional 1=|@ki ›| originates in the transfer from ‹(›− ›F ) to ‹(k − kF ) as described in
Eq. 4.30.

Since a positive correlation between the effective masses and the (1− ‰2)-prefactor exists,
the spacing of the interpolation mesh could alternatively be construction to optimize with
respect to those measures instead of the distance. Accordingly, the interpolation points
would no longer be equidistant but more concentrated around high effective masses in
combination with small ‰. Disadvantages include the fact that the new interpolation grid
might be inefficient for other quantities such as the longitudinal conductivities and that the
interpolation calculation would require additional information increasing the computational
demand. Such different interpolation weights have not been implemented although they
promise an auspicious, easy-to-implement possibility to decrease the computational demand
of the actual transport calculation.
Other unimplemented possibilities to decrease the computational demand include the

consideration of symmetries, i.e. calculating only the Fermi lines of the irreducible Brillouin
zone, or improving the adaptive grid mechanism. The Delaunay triangulation provides an
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interesting opportunity in the latter case: The greatest difficulty in the implementation of
adaptive grids is the connection between the initial or other adaptive grids. This task can
be passed to easily accessible, external libraries [131, 132] already interfaced in other parts
of the code (adaptive grid for Brillouin zone integration of Berry curvatures). Thereby, the
restrictive adherence to rectangular grids could be abolished allowing more efficient sampling
directly around grid points with more than one nearby Fermi line. Moreover, it would be
possible to implement a more systematical search for Fermi lines at the aimed distance and
to enhance the grid resolution by including the numerous intermediary calculations.
Alternatively to this section’s procedure of explicitly calculating the Fermi lines, the k-

integral can also be evaluated by summing over a regular grid spanning the entire Brillouin
zone. Then, the Fermi surface character of the integral is implemented via the Fermi-Dirac
distribution with a small, non-vanishing temperature regulating the impact of states relative
to the Fermi energy. An advantage of that approach is the possibility to avoid extensive
recalculations when computing small variations of the Fermi energy by simply modifying the
Fermi-Dirac weights. Accordingly, the TSHE appears smoother when varying EF , provided
appropriate temperature broadening. On the downside, many k-points will have vanishing
impact on the sought physical quantity due to the lack of states near the Fermi level. In
principle, those k-points could be excluded from consideration, though the extreme of that
approach yields the utilized implementation. This paragraph’s method is well suited for
the singly-degenerate case where no actual wave-packet iteration is needed so that the
transport quantities are simply defined by easily obtainable group velocities and effective
masses. Contrarily, the chosen method with direct Fermi surface interpolations is far better
suited to tackle the TSHE calculation in AFM skyrmions as the computation effort required to
obtain the k-dependent transport part exceeds the computational power necessary to perform
the Fermi-line interpolation by far.

5.2.2 Iteration scheme

This section describes the method and implementation details concerning the evolution of the
remaining wave-packet dynamics such as Eq. 5.4. Mathematically speaking, the solution of a
initial value problem of a coupled first-order differential equation in s and r is sought. An
popular numerical procedure to tackle such tasks is the classical Runge-Kutta formalism [133].
This method discretizes the time into several steps which have to be solved consecutively.
Here the 4th order Runge-Kutta formalism is used which requires 4 intermediate steps for
each full iteration. The prefactors for summing the different contributions are chosen to
cancel the errors in a Taylor-expansion scheme up to the 4th order.

Before performing the Runge-Kutta iteration, the differential equations have to be converted
into the right form. It is necessary to express the time-derivative ẋ of a general variable x as
a function fx(t; x) and to define the initial state x(t0) = x0. Then, the iteration from the
i-th time-step to the (i + 1)-th time-step can then be obtained using the equation [133]:

xi+1 = xi + h
„

1

6
F1 +

1

3
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1
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«
; (5.6)
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where h is the time step size and Fi are the intermediate step derivatives:

F1 = fx(ti ; xi)

F2 = fx(ti +
h

2
; xi +

h

2
k1)

F3 = fx(ti +
h

2
; xi +

h

2
k2)

F4 = fx(ti + h; xi + hk3):

(5.7)

Following these equation from the initial state x0, the evolution can be tracked according
to the differential equation. The issue of choosing an adequate step-size h is addressed in
Sec. 5.3.1.
In all considered cases no explicitly time-dependent quantities are included so that the

explicit time-dependence can be dropped: ẋ = fx(x). This could change when including e.g.
breathing modes of the skyrmions, but such cases are not considered here. The next task
is to bring the remaining equations of motion into the required form where the derivative
depends only on x which corresponds to s and r in the considered equations of motion.
As the equations of motion are coupled in general, they are often given in an implicit

form ẋ = fx(x ; ẋ) which violates the requirement ẋ = fx(x) initially. Simple transformations
rearranging the equation system to satisfy the required dependences are possible since all
covered equations of motion are linear in ẋ . For example, the DGESV routine of the LAPACK
library directly performs such transformations. As the Runge-Kutta iteration is at the core
of the numerical procedure, a more efficient calculation of f can save significant amounts
of the computational time. While the usage of LAPACK routines is most efficient when
computing few large matrices, their application is inefficient when treating many small matrices.
Fortunately, only simply 4-dimensional sets of equations have to be solved when considering
2-dimensional structures. Hence, several direct solutions of studied equations of motion have
been implemented avoiding LAPACK calls.

In the ferromagnetic case the reformulation is trivial as Eq. 3.19b only depends on k . Hence,
this equation already satisfies the required dependencies, especially since k is treated as an
external parameter. According to Eq. 3.19a, ṡ depends on s, r , and ṙ though the implicit
dependences of n and ṅ. But since an expression for ṙ independent of ṡ and ṙ is already
obtained, ṡ is readily expressible through s, r , and the external k so that it obeys the above
requirements for fx . Hence

f FMs = (s · n)

 
@›

@k
· ∇

!
n; (5.8a)

f FMr =
@›

@k
(5.8b)

(5.8c)

allows evaluation of the Runge-Kutta formalism F1::4 (Eq. 5.7). Actual calculations with these
equations are not interesting as the transport properties can be directly deduced without
iterations (Sec. 5.1.1). However, an interesting aspect is the verification of the iterative
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solution and the necessary step-size, since it is clear from the wave-packet dynamics that the
spin has to remain aligned with the magnetic texture. This is an easy measure to check if the
Runge-Kutta step-size is sufficient (Sec. 5.3.1).
In the antiferromagnetic case Eq. 5.4 has the be considered. If @k‰ = 0, as in the case of

the model Hamiltonian (Sec. 6), the rearrangement of the equations of motion is similar to the
ferromagnetic case. The only difference is the misalignment from the magnetic texture, but,
as there is no backtalk to ṙ , it is only necessary to treat ṡ within the Runge-Kutta scheme.
Again replacing ṙ by the group velocity, the equation obeys the necessary form ṡ = fs(s; r).

In the general case (@k‰ 6= 0), ṙ = fr (r ; s; ṙ) holds according to Eq. 5.4. Fortunately, ṙ
is still independent of ṡ so that the ṙ equation can be solved independently before being
inserted into ṡ. Hence, ṙx and ṙy have to be obtained first when assuming a 2-dimensional
system. Since the components ṙ are mixed in the equation of motion:

ṙi +
1

2

X
j l

(s × n)l
@nl
@rj

@ ln ‰

@ki
ṙj =

@›

@ki
; (5.9)

the 2× 2-matrix in {ṙx ,ṙy}-space has to be inverted and multiplied with the equation’s right
side. As all components are known and depend only on r , s, and the external k , the analytic
inversion of the matrix can be readily performed. Afterwards, the solution of ṙ is inserted
into ṡ obtaining the set of equations required for the Runge-Kutta iteration.
The same procedure is also applicable for the general equations of motion (including k̇).

Extracting transport properties out of those equations is more complicated, nevertheless
numerical access to the motion of electron wave-packets in magnetic textures is physically
interesting and allows to visualize e.g. their deflection in skyrmions. In the ferromagnet
(Eq. 3.19) and the antiferromagnetic (Eq. 3.40) cases without SOC the solution is extremely
similar as the calculated ṙ term just has to be included in k̇ as well. In the most general cases
as Eq. 3.8 or Eq. 3.24 all equations are connected so that either an analytic or a numerical
matrix inversion is necessary. While the latter requires more complicated implementations, it
would speed up the code execution significantly.

5.2.3 Texture interpolation

The texture order parameter n has to be evaluated very often throughout the wave-packet
iteration and the corresponding transport evaluation. In order to accelerate its computation,
n is initially calculated on a grid from which the texture at the wave-packet position is
interpolated. This is necessary in case of the atomistic model as the texture is given only on a
grid anyways, yet this interpolation proved to be favorable in case of the analytic 3q-texture
as well due to a significant computational speedup.
Since @rn and B, and other texture related quantities in case of non-collinear textures,

have to be evaluated almost as often, they are analogously interpolated from the same
grid. Although the derivatives and the emergent magnetic field are directly accessible in
simple parameterizations, the texture derivatives are calculated by numerical means preferably
from the analytic n-expression. The 8th order central finite difference method is used with
a grid spacing either given by the atomistic lattice parameter or chosen as 0:1% of the
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magnetic lattice parameters of analytic models. Accordingly, the interpolation parameters of
the emergent magnetic field are obtained according to Eq. 3.16 from n and @rn on the grid.
The texture interpolation requires special care as small errors may tremendously change

the results when tracking the wave-packets over very long distances. The most important
requirements of the parameterization are continuity and smoothness. This is especially critical
in case of degenerate antiferromagnetic wave-packets in which the spin deviates from the
magnetic texture. The worst case in those iterations would be a discontinuity in the texture
which breaks the adiabaticity requirement and thus would render the equations of motions
inapplicable (n changes but s does not).

The most obvious applicable procedure is a bilinear interpolation between neighboring grid
point which is easily implemented and very fast to evaluate. However, the derivatives of
n are not smooth at the grid lines so that the previously described problems arise. Such

Figure 5.3: Emergent magnetic fields and differences to the analytic result for
5 nm × 5 nm (a-c) and 30 nm × 30 nm (d-e) texture sections. The green square
of d) indicates the position of the smaller section. a) and d) show the emergent
magnetic field Ban of the 3q-structure numerically calculated from the analytic
expression. In a) to c) the interpolation points (NL = 30) are displayed which
are used to obtain the interpolations. The absolute differences to Ban of a) are
plotted for the bilinear and bicubic spline interpolation in b) and c), respectively.
Analogously, the interpolation difference respective to d) are depicted in e). The
upper plots show several NL with the bilinear interpolation, while the lower displays
the spline interpolation. Notice the different NL in each line and the logarithmic
scale.
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discontinuities can lead to further numerical complications for example when using a ‹nmax
to adaptively determine the Runge-Kutta step size h (Sec. 5.3.1). The difference between
the analytic and the interpolated emergent magnetic fields is displayed in Fig. 5.3b for a
very small NL = 30, where NL denotes the number of interpolation points in each magnetic
lattice direction. Deviations of 3% are apparent in this rough approximation so that the
interpolation is acceptable only in the direct vicinity of the interpolation grid. A straightforward
enhancement can be achieved by increasing NL as shown in the upper frames of Fig. 5.3e.
Some orders of magnitude in accuracy can be gained when increasing NL, yet the memory
requirements for calculations with large NL (e.g. NL = 2000) become large. Moiré patterns
are formed in the respective figure due to the extreme size of NL and the smaller number
of plotting points. While the slope of the kinks can be mitigated by enhanced NL, their
existence can not be entirely avoided when using the bilinear interpolation.
An alternative, slightly more complicated method is the bicubic spline interpolation. It

still reproduces the interpolation points perfectly while the intermediate sections are much
smoother than the bilinear ones. The differences in the analytic emergent magnetic field are
plotted in Fig. 5.3c for NL = 30 as comparison to the bilinear interpolation (Fig. 5.3b). The
deviations are smaller by 2 orders of magnitude and the area with small errors extends farther
around the interpolation points. The errors even vanish in some sections on the depicted
range. The dependence of |B − Ban| on NL is again shown in Fig. 5.3e. Already the NL = 50
calculation is better than the NL = 2000 case of the bilinear interpolation. The deviation
becomes very small on the scale of B itself already for NL = 200, yet systemic changes are
still visible. They become more erratic including noise of smaller deviations for NL = 400
and even vanish in sections of the texture for NL = 800. There, the emergent magnetic field
is 9 orders of magnitude larger than the differences so that the limit of computer accuracy
is approached when calculating the differences. This explains the vanishing of |B − Ban| in
several regions where both fields are represented by identical numbers.
In practice, the spline parameters are calculated prior to the main calculations using the

external NAG libraries’ E01DAF subroutine. Then, the spline interpolation can be efficiently
evaluated in the main calculations with only slightly more effort than in case of the bilinear
interpolation. For computers without the NAG library, and to save time when doing many
small calculations, the spline coefficients can also be supplied through an automatically
generated input file.
In conclusion, the spline interpolation is more accurate than the bilinear interpolation by

orders of magnitude in case of the 3q-structure and supplies a much smoother interpolation
which enhances the numerically stability of the wave-packet iterations and resembles the
skyrmion texture better. Hence, it is reasonable to assume that the spline interpolation
is much better when interpolating the SPIRIT textures. Furthermore, the difference in
computational effort between both interpolation methods is negligible, an example calculation
of n, @rn, and B on a grid with 2:5 · 107 points took 6:6 s and 6:9 s for bilinear and spline
interpolation, respectively. The same calculation takes 815:2 s when using the analytic
expressions and numerical derivatives of the 3q-texture, hence the spline interpolation is used
for all transport calculations in the following. NL = 800 is used by default to interpolate the
3q-texture as it provides excellent reproduction with acceptable computational effort, in case
of SPIRIT-textures Nl is necessarily given by the atomistic grid size.
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5.2.4 Parallelization

The computationally expensive part of this thesis are the actual transport calculations.
Fortunately, most required parameters can be separated easily from the bulk of the transport
calculations. A huge part of this simplification originates in the fact, that the k-part of the
equations of motion has been separated into the Boltzmann part so that the evaluation of
reciprocal-space properties is not necessary during the transport calculations. Instead, only
the initial parameters depending of the Fermi-line k-points have to be supplied at the start of
the calculation. Although that part is also trivially parallelized in k , the parameters can be
calculated on a smaller machine and then supplied via an input file to the main calculation on
a strongly parallelized machine. Similarly, the spline interpolation parameters describing the
magnetic texture can be calculated in advance of the main calculations on a smaller machine
that support the used NAG library.

The remaining steps necessary to estimate the transport properties are the evaluation of
the magnetic texture using the spline interpolation, the solution of the Runge-Kutta scheme,
and the merging of those parameters to the actual transport properties during the iteration.
All of these steps are computationally simple and do no require further external libraries so
that parallelization of those parts is easily possible. Since the transport calculations require a
Fermi surface integral with independent k-points, parallelization over this loop is possible in a
simple way. Furthermore, each k requires a loop over initial real-space points which is used as
a further parallelization level. Additional care is necessary for the k-point parallelization since
the computational effort of each k is different (Sec. 5.2.2) and as the computation times
can only be estimated roughly based on the group velocities. Hence, each thread is initially
allotted with only one k instead of distributing all k to the MPI-thread in the beginning. A
new k-point is only supplied by the master if the previous calculation is finished. While this
creates communication overhead, this setup is advantageous as otherwise a single thread
might be occupied with many long calculations while other threads with shorter tasks are idle
most of the time.

Still, the parallelization causes idling as soon as no further k are available so that it is
advantageous to introduction a second layer of parallelization. In that case less threads will
be used in the k loop on the same machine so that idle time is reduced and less k points have
to be calculated while others are finished already. The real-space initial-state grid, having the
same form for all k-points, is used as second layer of parallelization utilizing OpenMP. The
only large arrays used within that loop are the spline interpolation parameters of the magnetic
texture which are accordingly shared on the second layer. Hence, memory is saved as only
one copy per MPI thread is necessary. This procedure allows the usage of highly parallelized
computers for this thesis’s computations..

Additional to the important parallelization of the transport properties, further parallelizations
have been included at non-critical parts of the code aiming at smaller machines. These
includes parallelizations in the interpolation of the Fermi lines (Sec. 5.2.1), calculation of the
orbital parameters as effective masses and overlaps ‰, and evaluation of the magnetic texture.
Most often explicit MPI routines, but also smaller openMP parallelizations, are used.
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5.3 Convergence

From the previous sections it is clear that additional numerical parameters have to be chosen
in order to apply the transport formalism or to solve the wave-packet iterations. These
parameters include the iteration-time, the step sizes, the Fermi-line interpolation, and the real-
space initial grid which are described in the previous parts of Sec. 5.1. All will be determined
by successive calculations increasing the particular parameter until the transport is sufficiently
converged.

5.3.1 Runge-Kutta step size

The choice of the time-step size h is an integral part of the Runge-Kutta iterations. If it is
chosen too large, the numerical solution quickly deviated from the true path in phase space
so that the solution becomes erroneous, if it is too small excessive computational effort will
only provide meager results so that in principle solvable problems become inaccessible. A
first upper bound is given by the necessity to resolve the scale of the investigated real-space
texture. When requiring at least 100 intermediary steps to resolve the magnetic texture with
lattice vectors of 190Å (Sec. 2.4.1), h = 3:8 · 10−16 s is a sensible first approximation which
corresponds to typical group velocities of 500 km=s. In the following the step size is given in
atomic units, [h] = 2:418884326505 · 10−17 s so that the above preliminary approximation
becomes h ≈ 16[h].
The transversal transport components of the TSHE investigated in this thesis converge

approximately after iterations for about 1 ns. Using the above group velocity, this corresponds
to 500—m which is about 26000-times the magnetic lattice unit vector length. For these
very long iteration times it is not clear how many steps are necessary to resolve the magnetic
structure while retaining numerical stability, hence the above considerations are insufficient to
select h. A better estimation on the necessary h can be obtained by solving the equations of
motion with varying h. The simple structure of the ferromagnetic spin dynamics allows for
an intuitive check of the accuracy. The analytic solution s = n is known since the spin is
supposed to follow the texture, and since the real-space path is a straight line whose evaluation
is independent from h. Therefore, the deviation of s from n can be evaluated immediately.
In Fig. 5.4a the deviation, expressed as ||s − n||2, is shown for an arbitrarily state with
@k› = 500 km=s over the iteration-time of 1 ns in the 3q-state texture. Since many evolutions
are plotted over each other, the averaged deviation throughout the evaluation are depicted
again in Fig. 5.4d (blue). As expected, the spin deviates very much from the converged
evaluation in case of h & 100 so that those calculations should be discarded immediately. For
h & 10 oscillating deviations are still visible so that the resulting conductivities are ultimately
not reliable but will give a good approximation. The lower limit of this range corresponds to
the previous estimation of the step size validating these considerations. For smaller h down to
h = 0:01 no systematical differences are visible, so that h = 10 seems to be a sensible choice.
The fact that the spin is constricted to a prolate spheroid in the antiferromagnetic case

can be used to further enhance the accuracy by rescaling the spin length to fulfill the analytic
requirement. The corresponding iterations with spins forced onto their analytic codomain
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are shown in Fig. 5.4b and d. Less oscillations are visible in the time evolution of ||s − n||2
compared to the previous case. Furthermore, h ≈ 1 has even better accuracy than smaller h
within the first 0:25 ns. This counterintuitive behavior most probably originated in the fact
that fewer numerical steps are necessary to reach that iteration-time so that the accrued
computer accuracy errors have lesser impact. Comparing the averaged deviations (Fig. 5.4d),
the enforced unit sphere calculations show higher accuracy below h ≈ 20 and decreasing h
down to h = 1 seem to be advantageous.
Wave-packet trajectories with vastly different k-dependent group velocities have to be

evaluated in the TSHE-calculations of realistic materials. In the ferromagnetic case the spin
evolution is geometrical and hence independent of the wave-packet velocity. Hence, k-points
with group velocity that are 10-times larger require 10-times smaller h and vice versa. Of
course, 10-times larger or smaller distances have be traversed, but the spin iteration accuracy
with respect to the texture changes. An obvious improvement of the computational velocity
is the use of different h for each k-point chosen according to their group velocity. However,
velocity terms with changing magnitude appear in more complicated equations of motion so
that the maximal velocity of a wave-packet is unknown at the beginning of the iterations.
This problem is circumvented by defining a maximal real-space step-size ‹rmax which rejects
iteration steps if the restriction is violated. h is adjusted after each accepted or rejected state

Figure 5.4: a-e) Ferromagnetic wave-packet evolution spin-alignment check for
single iterations. a,b,d) are calculations performed with a constant time-step h,
c,e) are calculated with a ‹nmax. a-c) show full time dependent alignment, while
d,e) display the averaged spin difference from the magnetic texture. f) shows the
TSHE transport convergence of the model in Sec. 6.2.1 with varying ‹nmax using
48 k-points on an 3× 3 real-space grid after 1 ns
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to aim at a real-space change of 0:7‹rmax per iteration to minimize the number of rejected
calculations. This procedure proved to be a stable and efficient approach for the 3q-texture
whose spin state is constantly changing. However, much computational time is still wasted in
the collinear background when investigating more localized skyrmion textures.
Since the required accuracy is dominated by the spin structure changes, it is sensible to

tune h with respect to the local change of n. Hence, ‹nmax is defined and h is adjust after
each step to aim for

||n(ri+1)− n(ri)||2 !
= 0:7‹nmax (5.10)

while restricting the spin to the iso-surface. Fig. 5.4c shows the corresponding time-dependent
deviations for various ‹nmax . The time evolution reveals a systematic enhancement similar
to the constant h with enforced iso-surface. Judging from the computational times tc on
one example computer, the smallest constant h calculation with tc(h = 0:01) ≈ 3500 s is
comparable to the smallest ‹nmax calculation with tc(‹nmax = 10−4) ≈ 1600 s. In Fig. 5.4e
the averaged deviations are shown for varying ‹nmax demonstrating that for ‹nmax . 0:03
good accuracy is reached that is comparable to the constant time step h = 1 calculations.
Comparison of the computation times of the wave-packet iteration, tc(‹nmax = 0:03) ≈ 6 s
and tc(h = 1) ≈ 18 s, demonstrates the extremely advantage of enforcing a ‹nmax instead of
using a constant h when aiming for similar accuracies, even in case of the 3q-texture. For
actual transport calculation

‹nmax = 0:01 (5.11)

is chosen in the following to be on the save side with respect to the wave-packet iteration
accuracy. This is an affordable safety measure since tc(‹nmax = 0:01) ≈ 16 s is analogous to
above calculations.

The question arises whether the previous convergence criteria of the ferromagnetic case are
also sensible in the antiferromagnetic case. In the latter case the spin dynamics are slower and
lag behind the magnetic texture changes due to the overlap ‰. Hence, the numerical accuracy
necessary for tracking the ferromagnetic spin dynamics should be more than sufficient. The
changes of the emergent magnetic field are determined by the changes of n which are very
accurately resolved during the iterations so that its impact on the transport properties is
sufficiently resolved. The additional velocity term should also be adequately resolved as
it mainly depends on the nicely resolved spin evolution. Therefore, at least the reduced
wave-packet dynamics solved in the transport calculations should be described sufficiently
with the above choice of ‹nmax = 0:01.

Direct numerical convergence checks are more difficult in the antiferromagnetic case as no
analytic solution is known. One possibility is comparison with a calculation employing much
smaller numeric parameters but that result would still be less definite than in the ferromagnetic
case. Instead, several small example TSHE-calculation with otherwise insufficient numerical
parameters are performed with varying ‹nmax . The model system of Sec. 6.2.1 is described
by only 48 k-points, 24 of each spin channel, and only a 3× 3 initial real-space grid is used.
The resulting RTSxy after iterations for 1 ns are plotted in Fig. 5.4f. On the scale of this plot
no variations are visible for 0:001 ≤ ‹nmax ≤ 0:04 so that even ‹nmax = 0:04 seem reliable
enough for antiferromagnetic transport calculations. This confirms the assumption that the
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ferromagnetic accuracy level is sufficient for the antiferromagnetic transport calculations and
that ‹nmax = 0:01 is a valid choice for the remaining transport calculations.

Finally, it should be noted that the k-point’s transport calculations can require very different
iteration times as the group velocities differ while the wave-packets are iterated for a fixed
time.

5.3.2 k-interpolation

The number of k-points Nk is a further numerical quantity which has to be chosen appropriately.
Naturally, a good choice for Nk is very system-dependent changing drastically between simple
systems with few Fermi lines and large systems with many Fermi-lines or fine features
which require many more k-points to reach convergence. Nevertheless, it is instructive
to study the k-point convergence of the TSHE in simple example systems. The following
calculations are done with ‰ = 0 to reduce the influence of other numerical parameters and
to lessen the computational effort (Sec. 5.1.1). Fig. 5.5a shows the Nk-convergence for the
antiferromagnetic bilayer model of Sec. 6.2 choosing ‰ = 0. The FeCu2Fe trilayer with ‰ = 0
is chosen as second test system and its TSHE Nk-dependence is shown in Fig. 5.5b. Since
‰ = 0, only short iteration-times (ti t ≈ 2:5 ps) and small real-space grids (4×4) are necessary
to obtain converged and reliable results.

In case of the model convergence is already reached with Nk & 60 while Nk & 1000 seems
necessary for the trilayer. Large, albeit a bit smaller, differences between the systems are to
be expected since the model has only 1 simple Fermi loop while the trilayer has 7 distinct
Fermi lines. The more than linear increase with the number of Fermi lines can be attributed
to the complicated shape of the trilayer’s Fermi lines which have more bends and drastically
changing effective masses. Hence, the equidistant choice of the Fermi line interpolation
(Sec. 5.2.1) is suitable for the model calculation while another doubling of the resolution is
necessary in case of the trilayer.
In conclusion, Nk has to be chosen with regard to the complexity of the Fermi lines and

can easily exceed 1000. A small example variation of Nk with ‰ = 0 is appropriate in order to
validate the choice of Nk ..

Figure 5.5: TSHE convergence with respect to the number of k-points Nk . a)
model system (Sec. 6.2.1) b) FeCu2Fe (Sec. 8.2) with ‰ = 0 for simple convergence.
The insets show the respective Fermi lines.
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5.3.3 Iteration time

The iteration time ti t is another important numerical parameters. It has tremendous impact
on the TSHE due to the iterative character of the transport procedure which starts from
aligned and anti-aligned spins that have to be equilibrated. This section scrutinizes the impact
of ti t to obtain a reasonable default choice.

It is sensible to first consider the limit of very small ti t . Intuitively, it is clear that calculations
with very small ti t will not show the full features of the degenerate structures as long as the
traversed space is small on the scale of the magnetic texture. This arises from the fact that
the spin has not had the chance to misalign with the texture which otherwise would decrease
the wave-packet’s spin transport impact. If the initial R-grid and the short iterations are
sufficient to resolve the magnetic texture, the transport result is similar to the decoupled
antiparallel ferromagnetic case as the spins are initially chosen to be aligned and antialigned
with the magnetic texture. The only difference of this setup to the true ferromagnetic case is
the (1− ‰2) prefactor (Eq. 4.43) of the TSHE.
For typical group velocities of 500 km=s, this behavior is to be expected for ti t ≤ 10−15 s

corresponding to traversed spaces of less or equal 5Å which is much smaller than conventional
magnetic lattice parameters of 190Å. Indeed, the transport impact remains constant up
to 10−15 s as shown in Fig. 5.6a-b, in case of ‰ ≤ 0:5 no significant ti t-dependent transport
alteration appear even up to ti t = 10−14 s. Yet, it is still possible to approximate the TSHE
with reasonable accuracy from large ‰ in case of ti t = 10−14 s using the (1− ‰2)- relation as
depicted by the red line in Fig. 5.7.
For larger iteration times the spin misalignment starts to modify the THSE until the

transport converges eventually. The intermediate behavior is similar for all calculations with
constant ‰’s irrespective of the underlying Hamiltonian. Increasing ti t , the RTS reacts with a
relatively continuous decrease until it approaches the converged value with small fluctuations
only. These fluctuations are slightly stronger in case of the FeCu2Fe system which most
probably originates in the more complicated reciprocal-space structure with a wider range
of group velocities. The faster convergence of the systems with larger ‰s can be attributed
to the faster spin misalignment with increasing ‰ as determined by the equations of motion
(Eq. 3.38). Accordingly, the transport decreases more rapidly as the spin equilibrates faster
with respect to the texture. This property is clearly visible in the different slopes of Fig. 5.6a-b
as well as when comparing the shapes of the ti t = {10−13; 10−12} s calculations to the
spin-polarized ti t = 10−14 s line of Fig. 5.7. There, the problem of approaching ‰ = 0 is
especially apparent since the convergence becomes slower and slower until the spin no longer
deviates from the texture for ‰ = 0 so that no transport modification caused by spin variation
can appear. This is a problem for real calculations as very small ‰ can definitively appear
near the Brillouin zone boundary. Still, infinitely long iterations are neither computationally
feasible nor physically sensible so that the iteration has to be terminated at some point with
fairly converged transport properties. Hence, those states with very small ‰ are effectively
treated similar to 2 antiparallel ferromagnetic states which physically makes sense as small ‰
correspond to weakly coupled states.

Furthermore, the FeCu2Fe ti t-convergence with the true k-dependent ‰ is given in Fig. 5.6b.
Two glaring differences arise when comparing to the previous calculations with constant ‰.
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Firstly, the convergence is much slower than in the other depicted example systems and,
secondly, |RTS| does no longer decrease monotonously but has intermediate increases. The
first feature can be readily attributed to the Fermi line parts with ‰ � 0:1 (Fig. 8.4d) due to
the increased convergence time with decreasing ‰ as explained in the previous paragraph. The
second feature originates in the varying ‰-distribution on the Fermi surface which results in a
much faster transport contribution decrease of sections with larger ‰ compared to the sections
with small ‰. Since different parts of the Fermi lines contribute to the overall transport with
different signs (Fig. 8.5c), the overall transport increases if the decrease of the destructive
sections supersedes its constructive counterpart.

The last regime of ti t is the converged part with only small variations oscillating around the
converged values. The ti t of the systems with constant ‰ can be clearly extracted from Fig. 5.6,
for example the system with ‰ = 0:1 requires approximately 10−11 s while the ‰ = 0:75-system
converges already after about 10−13 s. A remarkable relation is revealed by the ti t-converged
values for ‰ ≥ 0:1 in Fig. 5.7: the dependence of the converged RTSH on ‰ can be described
by a c · (1 − ‰2)-function analogous to the non-converged ti t = 10−14 s calculation. This
means that the sz;n real-space averaged product with the emergent magnetic field B decreases
the TSHE by a constant factor c relative to the spin-fixed calculations since a (1− ‰2)-factor
directly appears in the TSHE expressions (Eq. 4.44). It is very plausible that this constant
decrease demonstrates that sz;n equilibrates to the same fraction of initially-chosen maximal
sz;n irrespective of ‰. Alternatively, this relation could still be influences by the correlation
between the spin evolution and the real-space dependence of the emergent magnetic field.

Figure 5.6: TSHE convergence with respect to the iteration-time ti t . a) and
b) are small example calculations resolving several ti t orders of magnitude for
(a) the model system (Sec. 6.2.1) and (b) FeCu2Fe (Sec. 8.2). In both cases
constant ‰ = {0:1; 0:25; 0:5; 0:75} is enforced, while the inherent ‰ of FeCu2Fe is
included as well. Only few k-points resolving the Fermi lines, Nk;model = 64 and
Nk;FeCu2Fe = 300, and an initial R-grid of NR = 8 are used, since these calculations
only demonstrate the general mechanism. In c) the THSE convergence of several
FeCunFe-trilayers (Sec. 8.3) with different thicknesses and their inherent ‰ are
displayed in the relevant timescale of 1ns. The calculations otherwise are well
converged with Nk = 32786 and NR = 10.
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Figure 5.7: TSHE convergence with respect to ‰ for various color-coded ti t . a)
shows calculations for the model system (Sec. 6.2.1) and b) is the FeCu2Fe (Sec. 8.2)
analogue with enforced ‰. To reduce the computational demand only rough Fermi
line interpolations, Nk = 64 for the model and Nk = 300 for FeCu2Fe, with an
8×8 initial R-grid are used. The functions a(1− ‰2) are depicted, where a is either
chosen to match the mean RTS(‰ = 0) over all iteration-times (red) or obtained
from fitting the function to the 1 ns line excluding ‰ = 0 (blue).

Still, it is more probable that the effect of the emergent magnetic field averages out so that
the first interpretation is true. This conjecture could be checked assuming an homogeneous
emergent magnetic field while retaining the previous spin dynamics.

Fitting the c · (1− ‰2) function to the converged values (blue line) results in c · ≈ 0:343c0

and c · ≈ 0:340c0 for the model and the FeCu2Fe calculation, respectively. c is the prefactor
of the converged RTS while c0 is the prefactor of the initial red line. This similarity indicates
that the uncovered relation is independent of bandstructure details (e.g. group velocities)
as expected due to the geometrical properties of the spin equations of motion [76]. This
simple relation might be broken in case of @k‰ 6= 0 as the anomalous velocity correction in
the equations of motion (Eq. 3.38) modify the real-space path. However, TSHE-calculations
of FeCu2Fe in- and excluding @k‰ with the inherent ‰ (Fig. 5.6b) reveal only minor differences
so that the relation still holds. At this point the decrease to almost 1=3 could depend on
specific features of the 3q-texture but later calculation (Sec. 9.4) demonstrate the TSHE’s
topological independence on the skyrmion texture eliminating this possibility, too. Overall,
this additional reduction to 1=3 gives a simple rule of thumb for estimating the impact of the
non-collinear properties.
In realistic systems ‰ is k-dependent so that the previous systematical decrease is not

as apparent as in the previous example calculations with constant ‰. Instead, the different
decreasing factors are well hidden in the k-integral so that further scrutiny is necessary to obtain
analogous results. As previously stated, it is difficult to obtain converged transport values
for k with very small ‰. In Fig. 5.6c otherwise converged ti t-dependent TSHE calculations
for FeCuFe trilayers with different Cu thicknesses are shown. Large changes are occurring
up to 1 ns which is much larger than the 0:01 ns of the ‰ = 0:1 example calculations and
therefore indicates Fermi line sections with much smaller ‰’s. Still, RTSH is sufficiently
converged after ti t = 1 ns which is used as default value in the following. Much larger ti t
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are computationally very demanding when choosing the other computational parameters
reasonably large. Nevertheless, few calculations up to 10 ns reaffirm the default ti t choice for
realistic example systems.

Lastly, it is worthwhile to note a problem arising from the strict periodicity of the magnetic
texture which emerges if the group velocity is parallel to a high-symmetry line of the magnetic
texture. In that case the wave-packet is restricted to a 1-dimensional slice of the texture
spanned by the group velocity and the initial real-space position unless significant spin- or
texture-dependent transversal velocity components arise. The anomalous velocity term of the
collinear antiferromagnetic case proportional to @k‰ causes such modification and is often,
but not always, of sufficient magnitude. Otherwise, and for equations of motion without such
terms, the restriction of the trajectory results in very large ti t-requirements or even prevents
reasonable convergence entirely if the setup is not ergodic. The likelihood for group velocities
parallel to the magnetic lattice vectors is increased by the Fermi surface construction starting
with the outmost k-point along a unit direction as their group velocities often point along
the high symmetry lines. Hence, the probability of restricted phase-spaces can be reduced by
rotation of the magnetic texture so that the high-symmetry lines of the reciprocal space and
the texture are tilted with respect to each other. Nevertheless, it is still likely that the group
velocities of some k-points are almost aligned to the rotated texture lattice-vectors increasing
their ti t-requirements significantly. A reasonable approach to circumvent this problem is the
combination of calculation with differently rotated textures excluding the few unconverged k .

5.3.4 Initial real-space grid

The last remaining numerical parameter is the number of initial R-grid points from which
the iterations are started. The initial grid is spanned by the magnetic lattice vectors divided
by NR starting at R = 0 as defined by the chosen texture. Hence, NR denotes the number
of inequivalent points along each lattice direction so that for NR = 8 actually 64 initial
wave-packet positions are used.

Physically, transport calculations are started from wave-packets with texture-aligned spins
due to previous spin-scattering, the TSHE is then obtained from the ensuing wave-packet
dynamics. Since a homogeneous electron distribution function is assumed, @r f = 0 (Sec. 4.3.1),
all positions within the unit cell are equally probable as starting points. Accordingly, the use
of a large initial grid covering the whole magnetic texture is strongly motivated from this
physical picture.

On the other hand, the spin will go through the entire texture following a complicated spin
evolution which results in alignment with the texture at other positions in the magnetic unit
cell throughout the iteration. Hence, the remainder after each alignment can be interpreted as
a calculation started at that position with a respective shorter ti t . Hence, in this interpretation
only small NR seem necessary since the previous chapter’s convergence requires very large ti t
which anyways results in the passage through many magnetic unit cells. Thus, it is likely that
the spin equilibration is more important than a large NR. Yet, large NR are still advantageous
as they certainly help resolving the magnetic texture and accordingly the emergent magnetic
field, but, as the main convergence originates in spin equilibration and since all states start
from aligned positions, large NR will not enhance that convergence significantly. In principle
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Figure 5.8: Impact of varying NR. a) shows the convergence of RTS over several
orders of magnitude of ti t for NR = 1 and NR = 8 in case of the FeCu2Fe system
with Nk = 300 and DFT-based ‰ analogue to Fig. 5.6. In b) the convergence of
RTS of the model of Sec. 6.2.1 (‰ = 0:25) with Nk = 64 is displayed. Intermediate
results with ti t between 50 ps and 100 ps are included through the color scale.

even an iteration from only one position should still reach a converged result equivalent to
large NR-calculations if iterated for an infinite time. Since the previous consideration provide
no clear criterion for a good NR-choice, the NR-dependence of TSHE-calculations is tested
from example systems in the following.

The ti t-dependence using different NR is depicted in Fig. 5.8a where significant differences
between NR = 1 and NR = 8 are apparent. For very small ti t the RTS necessarily differ
tremendously as the NR = 1 calculations contains only the emergent magnetic field of its
initial position and accordingly assumes a constant B everywhere in contrast to the average of
the 8×8 texture grid of the second calculation. Since the initial RTS of the NR = 1 calculation
is much larger, it has to start at a position with large B. When approaching a ti t for which
the magnetic unit cell is traversed, the NR = 1 calculation has very strong oscillations while
the other behaves very smooth on the shown scale. At ti t ≈ 10−13 the overall transport effect
becomes comparable which corresponds to the crossing of few magnetic unit cells judging
from the average group velocity. Yet, oscillations around the RTS of the NR = 8-calculation
appear until the end of the iteration at ti t = 1 ns. The final difference at ti t = 1 ns is very
small with approximately 0:3% which verifies the previous prediction that the texture details
are sufficiently resolved due to the long iteration-times alone. Still, medium sized NRs should
be used as their smoother ti t-dependence allows better judgment of the convergence.
A more systematic investigation of the RTS’s convergence with respect to NR is given in

Fig. 5.8b. There, the RTS NR-dependence is shown for model calculations including the rough
ti t-dependence. The transport seems converged on the chosen scale for NR ≥ 18 yet only
the NR ≤ 3 show really large changes. In between, i.e. 3 < Nr < 18, the final RTS differ by
less than 0:4%. Since the iteration-times from 50 ps to 100 ps are depicted, the smoothness
of the convergence can furthermore deduced. For NR > 8, RTS is increasing less and less
with increasing ti t which indicates a smooth, slowly convergent behavior. On the other side,
the ti t-dependence becomes increasingly erratic with decreasing NR. The behavior of NR = 2
is especially dangerous as it coincidentally appears to be ti t-converged although it is a severe
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outlier with respect to the other NR.
In conclusion, ti t is a more important convergence parameter than NR, yet the usage

of intermediate values is definitively advantageous. Large NR, such as NR = 30, result in
excessive computational demand due to the quadratic scaling originating in the definition of
NR as the number of points in each lattice direction. However, very small NR such as NR = 2
can lead to an unstable convergence or even wrong, pseudo-converged values. Accordingly,
NR = 8 or NR = 10 are often chosen in the following which are neither excessive nor risky.
In principle, the grid sizes could be chosen inequivalent along different directions but only
equal spacings are used in this thesis since skyrmions are usually rather symmetric.
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Antiferromagnetic bilayer model

This chapter introduces a simple antiferromagnetic bilayer model Hamiltonian and investigates
its transport properties. Although this rough model is a poor approximation of realistic
systems, it is a great starting point due to its transparency and tunability. Hence, it is
mainly used to estimate the necessary size of numerical parameters in Sec. 5.3 . Furthermore,
the detailed investigation of its transport properties, described in Sec. 6.2, allows a basic
understanding of the TSHE.

6.1 Model setup

This section introduces an antiferromagnetically-coupled bilayer square-lattice model (Fig. 6.1a)
which is based on the model initially used to investigate the degenerate wave-packet dynamics
in Ref. [76]. It contains 3 principal parameters, the s-d exchange J and the intra- and inter-
plane nearest-neighbor couplings T and t. Each atom, respectively denoted by A and B for the
upper and lower layer, has one state for each spin. In the basis {|A ↑〉 ; |A ↓〉 ; |B; ↑〉 ; |B; ↓〉}
the Hamiltonian is expressed as the following matrix:

H(k) =

26664
J +H0(k) 0 t 0

0 −J +H0(k) 0 t
t 0 −J +H0(k) 0
0 t 0 J +H0(k)

37775 : (6.1)

Hence, the antiferromagnetic character is included through the s-d exchange with spins along
the z-axis where the spin of atom A is of down character and vice versa. The Hamiltonian’s
entire k-dependence comes from the in-plane nearest neighbor hopping via H0, which is a
sum of cosines due to the square lattice structure:

H0 = T
X
‹

eik·‹ = 2T (cos(kxa) + cos(kya)) : (6.2)

Here, a denotes the lattice constant so that the in-plane nearest neighbor vectors are
‹ = (±a; 0; 0) and (0;±a; 0).
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6 Antiferromagnetic bilayer model

Figure 6.1: a) Schematic structure of the model system with colored interaction
directions. b) Bandstructure corresponding to the parameters of Tab. 6.1 with the
green line denoting the Fermi energy chosen in Sec. 6.2.1.

The bandstructure (Fig. 6.1) is given by 2 twofold-degenerate, non-crossing bands which
have the dispersion:

›± = 2T (cos(kxa) + cos(kya))±
√
J2 + t2; (6.3)

where ›+ and ›− denote the upper and lower band, respectively. The energy branches are sep-
arated by 2

√
J2 + t2 irrespective of k . The eigenstates, obtained from direct diagonalization,

are:

|u−↑〉 =

 
t√

J2 + t2 − J
|A ↑〉+ |B ↑〉

!
=N1;

|u−↓〉 =

 
t√

J2 + t2 + J
|A ↓〉+ |B ↓〉

!
=N2;

|u+↑〉 =

 
−t√

J2 + t2 + J
|A ↑〉+ |B ↑〉

!
=N2;

|u+↓〉 =

 
−t√

J2 + t2 − J
|A ↓〉+ |B ↓〉

!
=N1:

The ± denotes the different energy branches and Ni is the respective normalization factor.
Subsequently, ‰ can be calculated by evaluating 〈”1|”2〉 for each band as required by

Eq. 3.32. Utilizing the explicit form of the eigenstates (Eq. 6.4), the expression of the lower
band becomes

‰1 =
1√
N1N2

·
s

t√
J2 + t2 − J

· t√
J2 + t2 + J

+ 1:

This equation can be severely simplified by explicitly evaluating the normalization factor which
results in

‰ =
|t|√
t2 + J2

(6.6)

for both bands. As the eigenstates are k-independent, ‰ is k-independent as well. Hence its
k-derivatives vanish, i.e. @k ln(‰) = 0, so that the equations of motion are severely simplified
as the additional velocity term (Eq. 3.38c) vanishes.
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6.2 Transport

The in-plane hopping parameter T only determines the width of the bands which is given
by 8T . Band crossings are impossible as the bands are k-independently split by

√
J2 + t2.

Still, both bands can have states at the same energy although not at the same k . As the
bands differ only by a constant offset, each band’s energy-adjusted transport contributions are
the same. Consequently, and to keep the calculation simple, the parameters are subsequently
chosen so that the band splitting is larger than the band’s width. Hence, only one Fermi
surface has to be considered, in the following the lower band is chosen.
The parameters J and t determine the overlap ‰ and the band separation. At least one

of them has to be non-zero to avoid fourfold degenerate states. That case would leave
the scope of this thesis as the wave-packet dynamics of Sec. 3.2.1 would be inapplicable.
When setting t = 0, both layers are totally decoupled resulting in ‰ = 0, so that the
antiferromagnetic transport equations become equivalent to two ferromagnetic transports
expression with antiparallel spins. For J = 0 the opposite limit of ‰ = 1 is obtained. In that
limit no spin evolution occurs any more in the global frame and the effect of the emergent
magnetic field vanishes together with the TSHE. This is understandable as the distinction
between spin-up and -down states vanishes with the exchange coupling. For a given J, the
overlap ‰ can be selected by choosing t according to:

t =
J‰√

1− ‰2
: (6.7)

Due to the relation between t and ‰, the interpretation of the overlap ‰ as the coupling
between the both magnetic sublattices, i.e. the interlayer coupling, is validated. Since
t(‰) ∝ J, strong exchange decreases ‰ counteracting the direct coupling. This relation is to
be expected as stronger exchange increases the tendency of the wave-packet’s spin to follow
the texture, i.e. the wave-packet’s weight is impeded from shifting to the other magnetic
sublattice.

6.2 Transport

This model allows for a simple calculation of the transport properties and intuitive interpreta-
tions of the relation to the bandstructure. Thereby, a basic understanding of the transport’s
dependence on the reciprocal-space structure is obtained before investigating more compli-
cated, DFT-based systems as in Sec. 8. In the following, the k-dependence of the different
transport components is investigated for a constant Fermi energy to demonstrate the direct
dependence on the k-resolved group velocities and effective masses. This is followed by the
Fermi energy dependence of the TSHE which allows to investigate the transport impact of
varying Fermi surface averaged reciprocal-space properties.

In principle, the transport responses to modifications of the Hamiltonian parameters could
be studied, but, since the only modification to the dispersion are constant shifts or band
width variations, the transport impact is trivially predicable. The only interesting effect when
varying the parameters is the variation of ‰ which is already depicted in Fig. 5.7a and explained
in the corresponding Sec. 5.3.3. Hence, this section is primarily focused to the parameters of
Tab. 6.1. As the exchange J dominates the Hamiltonian, the bands are well separated with
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6 Antiferromagnetic bilayer model

J [eV] T [eV] t [eV] a [aB]
3 0:5 ∼ 0:77 4

Table 6.1: Model-Hamiltonian parameters used in this section. t is chosen such
that ‰ = 0:25 according to Eq. 6.7.

an indirect band gap of approximately 2:2 eV (see Fig. 6.2a). dz = 10ab is chosen as layer
thickness necessary for the calculation of conductivities. Due to the simplistic structure of
the dispersion, the same bandstructure with ‰ = 0 can be achieved by setting t = 0 and
J ≈ 3:1 eV.

6.2.1 Constant Fermi energy

The Fermi surface at half filling consists of straight lines crossing in right angles at the
Brillouin zone boundary due to the cosine structure of the energy dispersion (Eq. 6.3). Hence,
EF = −3:5 eV with a more typical Fermi surface is arbitrarily chosen for the following in-depth
investigation of the k-dependent dispersion and transport properties.

The group velocity and effective masses at the Fermi surface are depicted in Fig. 6.2. The
group velocity is highly symmetrical and everywhere of comparable magnitude. While the
off-diagonal effective masses vanish as is obvious from the dispersion (Eq. 6.3), the remaining
diagonal masses are dominated by negative values although positive sections appear as well.

Assuming the 3q-texture (Sec. 2.4.1), the transport properties are calculated according to
Sec. 5 in which the dependences on various numerical parameters for this system are described
and depicted (e.g. Fig. 5.5a, Fig. 5.8a). Here, Nk = 400, NR = 8, and ti t = 1 ns are used
which ensures sufficient convergence. This setup results in RTS ≈ −5:47·10−11 ~

e
Ωm
T

which is a
realistic magnitude for such effects as the analogous THE of ferromagnetic skyrmion structures
is of surprisingly similar magnitude (experimentally MnSi RT = −4:5 · 10−11 Ωm

T
[41]).

Figure 6.2: This figure shows the Fermi surface properties for EF = −3:5 eV
using the parameters of Tab. 6.1. a) displays the group velocity @k›. b) and c)
visualize the diagonal effective masses @2

k›. The off-diagonal masses @kx@ky › vanish
due to the simple structure of the dispersion (Eq. 6.3).
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6.2 Transport

Due to the Fermi surface integration in the calculation scheme, it is possible to associate
each Fermi line point with a transport contribution using the definition

ff =
X
i

liff(ki); (6.8)

with the weights li from Eq. 5.5. Hence, different k-resolved conductivity terms can be
calculated independently and subsequently related to bandstructure properties.
The first component to the conductivity, ff1(k), is displayed in the first row of Fig. 6.3.

The Fermi integrals of the transversal components ff1
xy and ff1

yx vanish due to very symmetric
structure where each quadrant is canceled by its neighbor in either direction due to its relative
minus sign. The diagonal elements describe the usual longitudinal conductivity determining
the scale to quantify the effect of the following non-vanishing transversal conductivities.
Accordingly, they do not vanish as expected from the ṙi ṙj term in ff(1)

i due to the absence of a
sign change. Likewise, the overall shape of ff1 can be easily deduced from the group velocities
in Fig. 6.2a. For example, ff1

xx(k) is minimal on the ΓY line while ff1
yy (k) is maximal along

that line since ṙ is pointing in y -direction. In case of ‰ = 0 the first component of the spin
conductivity, ff1;sz (k), has almost the same behavior as ff1(k). The only differences are an
additional 0:5~=e-prefactor for each initial spin alignment and reversed signs for one of the
spins. The latter difference has tremendous impact as it leads to a cancellation of ff1sz when
finally summing over the spin states. Conversely, ff1sz (k) vanishes already at each point on
the Fermi line in case of non-zero ‰. This originates in the fact, that the wave-packet’s spin
varies tremendously during the iteration which destroys the clear picture of initial spin-up and
-down states resulting in a spin average already on that level. As the canceling sum of the

Figure 6.3: k-resolved conductivities using parameters of Tab. 6.1 at EF = −3:5 eV
with fi = 4000 [~=Eh]. The columns denote the tensor elements in the 2D plane.
The rows correspond to the conductivity components ff1 (Eq. 4.34), ff2;sz with
‰ = 0, and ff2;sz with the “inherent” ‰ = 0:25 (Eq. 4.44).
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6 Antiferromagnetic bilayer model

different initial spin state calculations with ‰ = 0 corresponds to such a spin average, the
above direct cancellation for ‰ 6= 0 is apprehensible.

The ff2;sz (k) spin conductivity causing the TSHE is displayed in the second and third row of
Fig. 6.3 for ‰ = 0 and ‰ = 0:25, respectively. Since ‰ is k-independent, only the conductivity
magnitude changes between both rows. The charge conductivity contributions ff2(k) for each
initial spin alignment would differ when comparing ‰ = 0 and ‰ = 0:25, but in the end they
integrate to zero exactly analogous to the above case of ff1;sz (k). Hence, the THE vanishes
as expected. The Fermi surface integrated diagonal ff2;sz xx- and yy -components vanish due
to the kx = 0 and ky = 0 mirror planes, respectively. One symmetry less than in case of
ff1 enforces the cancellation of the Fermi surface integral owing to the dependence on the
effective masses (Fig. 6.3b,c) which each have one mirror symmetry each in contrast to the
two mirror symmetries of the group velocity. Since the off-diagonal effective masses vanish due
to the simple construction of this model, the origin of the off-diagonal ff2;sz (k) components
is very transparent. According to Eq. 4.44 ff2

i j(k) ∝ ṙimj j"l3j ṙl with m as the effective mass
tensor. Hence, the diagonal conductivity terms vanish along the unit-direction high-symmetry
lines as group velocity projections in both unit directions appear in the transport expression
while the group velocities are parallel to the unit-directions. Furthermore, their Fermi surface
integral vanishes due to high symmetry of the group velocity which results in an overall sign
change when executing m’s symmetry operation. Conversely, the transversal components
ff2;sz
i j (k) are proportional to ṙ 2

i which prevents a respective sign change when applying the
symmetry of mj j so that their Fermi surface integral does not vanish. The net ff2;sz

i j is
decreased by small sections with opposite sign, yet the simple structure permits a straight
forward interpretation of the integrated transport for the k-resolved case allowing predictions
for parameter variations. Furthermore one should note that the ratio of ff1 and ff2, which
have the same units and could be used to calculate the spin Hall angle, is not very realistic
due to their different scaling with respect to the fairly arbitrarily chosen fi .

6.2.2 Varying Fermi energy

Variation of EF has a very systematic impact on the transport properties due to the simple
bandstructure evolution. Fig. 6.4a depicts the different iso-energy lines which allows simple
association of EF -dependent transport variations to bandstructure changes. When going
through the whole band width from bottom to top, the bands first appear circular around Γ,
then increase their radius and become more square-like until forming a square with corners at
±X and ±Y . This is followed by a reversed symmetric repetition from the square back to
the circle now centered at M where the Fermi line ultimately vanishes.
In order to interpret the transport effects, it is convenient to first describe the evolution

of the reciprocal-space properties. Each k ’s group velocity has an inverse partner pointing
into the opposite direction at −k and the group velocities along the high symmetry lines
always point antiparallel to that direction (Fig. 6.2). |@k›| vanishes at the edges of the band,
i.e. EF ≈ {−5:1;−1:1}, and is maximal at half filling, yet for the majority of the covered
energies the maximal values are of similar magnitude. While the group velocity is maximal
for some k at half filling, it is actually vanishing for other k . Since the group-velocity Fermi
surface integral vanishes due to aboves inversion relation, it is sensible to directly look at the
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6.2 Transport

Fermi surface average of (@kx ›)
2=|@k›|. This quantity is directly related to ff(1)

xx (Eq. 5.2) and
accordingly lies directly above the numerical results of Fig. 6.4b. In that plot all quantities
are rescaled to have visually the same maximal value, hence the different prefactors to finally
obtain the conductivity have no impact. When comparing the depicted Fermi surface length
to the group velocity, differences are directly apparent. The overall group velocity is very
small near the edges since the FS-length is larger, then the group velocity magnitude increases
significantly enhancing the relative impact of the group velocity integral. Afterwards the
FS-length drastically increases when forming the square in the Brillouin zone, yet many
k-sections have decreasing group velocity magnitude so that the diagonal transport increases
only slightly near half filling. The upper half in energy is the exact mirror image of the lower
half so that their interpretation is analogous.
The other necessary, non-vanishing quantity is the diagonal effective mass. Its Fermi

surface integral dependence on EF is shown in Fig. 6.4c. Its glaring properties are the fast
initial increase despite the small FS-length and the zero crossing at half filling followed by a
sign-reversed, mirror-symmetric upper half. When investigating the effective mass k-resolved,
this behavior can be readily understood. At the lowest EF the effective masses are maximal
and quickly decrease with increasing EF . At first its Fermi surface integral is large despite
the very small Fermi lengths as the k-resolved masses are very large and uniform due to the
band’s approximately parabolic behavior near Γ and M (Eq. 6.3). After ∼ 1 eV some k-points
start to have negative contributions and m starts to decrease. Although the integration
weight is rapidly increasing, the overall mass integral is ever decreasing until the negative and

Figure 6.4: a) demonstrates the evolution of the Fermi surface from EF = −5 eV
to EF = −1:5 eV in steps of 0:5 eV.b-d) show the EF -dependence of the transport
properties and related Fermi-surface integrated bandstructure quantities. The
longitudinal conductivity ff1

xx is displayed together with its k-dependent parameters
as described in Eq. 5.2. Correspondingly, the transversal conductivities ff2

xy for
‰ = 0 and ‰ = 0:25 are displayed with the k-dependent parameters from Eq. 5.3
and the diagonal effective mass mxx . Notice that all quantities displayed in b)
and c) are scaled to fill the same range of the x-axis despite differences in their
units. Especially ff2

xy is of different magnitude for the different ‰. Finally, d) shows
the EF -dependence of the topological spin Hall constant RTS. The transport
calculations are done with Nk = 400, NR = 8, and ti t = 1 ns for ‰ = 0:25.
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6 Antiferromagnetic bilayer model

positive contributions finally cancel each other at half filling. Afterwards, the negative parts
of the Fermi surface are increasing even more ensuring the overall negative contributions of
the upper half as they behave analogous to the previously positive sections.

As the final transport quantity is proportional to masses and velocities, ff2;sz
i j (k) ∝ ṙimj j"l3j ṙl

(Eq. 5.3), the EF -dependences of the Fermi surface averaged mxx ṙ
2
y and ff2;sz

i j are expected to
be similar (Fig. 6.4c). As ‰ is constant, the numerical transport calculations with ‰ = 0 and
‰ = 0:25 match the Fermi surface average of mxx ṙ

2
y perfectly when neglecting the different

prefactors. Hence, in this model it is possible to deduce the transport characteristics from
group velocity and effective masses only. The main features of the transport’s EF -dependence
are determined by m, yet the group velocities prominently shift the transport maxima towards
the band’s edges. Hence, the initial ff2;sz

i j -rise is less drastic, but the sign change has a
significantly more dramatic effect due to the large group velocity impact near half filling.

The topological spin Hall constant RTS, shown in Fig. 6.4d, quantifies the TSHE. It exhibits
the usual decrease when increasing ‰, yet their overall shape is the same as both conductivity
contributions are equivalent neglecting prefactors.

More remarkable is the large increase of RTS (Eq. 4.12) near the band edges. There, RTS ∝
ff2;sz
xy =(ff1

xx)2 is exceptionally enhanced due to the relative smallness of the group velocities
and the relatively large magnitude of the effective masses. This strong effect at the band
boundary has already been demonstrated for similarly simple models, even antiferromagnetic
skyrmions, through different means of computation [72]. Yet, such exceptional enhancement
is only to be expected very near energy gaps so insulating EF -ranges are required where
the TSHE vanishes altogether. In the conventionally considered, more applicable metallic
systems usually several bands appear at each EF . In that case the ff1

xx contribution caused
by one band still decreases significantly when EF approaches that band’s edge, but the
overall 1=(ff1

xx)2 variation is significantly less drastic since several other bands still supply
non-vanishing longitudinal contributions. ff2;sz

xy can still be relatively large so that the edges
of bands are clearly visible in the data, yet increases by more than an order of magnitude
as in this model are unlikely. One slight variation of this effect is the impact of Dirac cones
where, in contrast to the usual vanishing below the band edge, the reversed Hall effects are
observed when crossing the cone. Hence, although their effective masses are decreasing near
the crossing energy, potentially twice as large transport responses occur when crossing a Dirac
point. This is further investigated in Sec. 8.2.2 where a Dirac cone with the above transport
signature is found in a realistic system.

Another interesting feature of the RTS plot is the relatively small impact of ff2;sz ’s drastic
sign change at half filling. This extreme variation is only possible due to the large size of the
Fermi line and the total compensation of the k-resolved masses at half filling. Even small
changes in the mass distribution result in massive modifications of ff2;sz due to the large
overall weight, yet the group velocities and accordingly the longitudinal conductivities scale
with the Fermi length as well so that the net effect onto RTS is rather diminishing. This gives
a foretaste of the large possible variations to come in more complicated systems (e.g. Sec. 8)
where several k-dependent ff2;sz of the same and different bands keep each other in check yet
offer the potential for drastic variations.
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Description of realistic systems

After examination of the TSHE in the simplistic bilayer model, naturally interest of its behavior
in more realistic systems arises. In principle, one could develop new models or utilize existing
ones, yet these approaches require implementation effort for each possible setup which is
neither time-efficient nor versatile. Instead, it is advisable to utilize existing methods to
efficiently describe the reciprocal-space structure of thin films.

A very general, albeit computationally expensive, tool to describe the electronic structure is
density function theory (DFT). It enables ab-initio calculations and as such is not restricted to
the verification of experiments but can also make successful predictions of unknown materials.
Here, DFT is used to obtain the reciprocal-space properties of complicated, collinear systems
as required in Sec. 5.1. In principle, the predictive power of DFT could be harnessed to directly
estimate all necessary parameters for the transport calculations, but an intermediate step is
preferable since direct interfacing to DFT codes is a hurdle and evaluation of many k-points
(e.g. Sec. 5.2.1) is computationally very expensive. Therefore, maximally localized Wannier
functions are constructed to obtain an effective model that accurately describes the vicinity
of the Fermi level while allowing numerically efficient evaluation. From this interpolation the
Hamiltonian and spin operators in the Wannier function basis are finally attained which allows
to employ the usual, already implemented, and transparent diagonalization schemes. Hence,
this procedure allows to transform relatively arbitrary, extremely complicated initial systems
to manageable effective models whose THE and TSHE can be readily calculated using this
thesis’ method.
In the following, the theoretical background of DFT and Wannier interpolation is very

briefly described, followed by a short overview of the practical application.

7.1 Theory

7.1.1 DFT

The holy grail of solid state physics is the precise prediction of electron and nuclei behavior
in atomic systems. Considering the kinetic energy T and the Coulomb interaction V , the
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Hamiltonian of such a system is

H = Te + Tn + Vee + Ven + Vnn; (7.1)

where e and n denote the terms with electrons and nuclei, respectively. The next step would
be the solution of the Schödinger equation for a given atomic configuration. In order to have
a chance at solving this problem, the corresponding full-particle wave-functions have to be
representable at least. Yet, even for relatively small systems the memory requirement easily
exceeds the number of atoms in the galaxy so that an universal approach to the general
problem is impossible. Instead, a series of sensible approximations has to be applied to yield
a calculable problem.
The first straightforward simplification is the Born-Oppenheimer approximation which

decouples the motion of the electrons from the nuclei motion. This is justified as the nuclei
mass is orders of magnitude larger than the mass of electrons. Hence, the electron Hamiltonian
can be expressed as:

He = Te + Vee + Ven; (7.2)

where the nuclei positions enter as an external parameter only. Accordingly, the latter
calculations demand either the atomic positions as input or require sampling of several
arrangements to find the energy minimum.

Still, the above Hamiltonian requires an inconceivable amount of computational power to
describe more than the simplest systems due to the 2-particle interaction and the expression in
terms of many-particle wave-functions. DFT can circumvent both problems by considering an
effective single-particle interaction in terms of the electron density instead of the wave-functions
as described in the following.

The Hohenberg-Kohn theorem allows to describe the system in terms of the electron density
n. It consists of 2 statements. Firstly, it states that the ground-state wave-function is a
unique functional of the ground-state electron density n0 and, secondly, that n0 is unique
and minimizes the energy functional. Hence, all information is contained in n0 which can be
obtained by minimizing the energy. Thus, the many-particle wave-functions are no longer
strictly necessary to obtain the observables, but the Hamiltonian still contains 2-particle
interaction terms which makes its evaluation difficult.

This second problem is circumvented by considering the Kohn-Sham system. Its Hamiltonian

Hs = Ts + vs (7.3)

contains only a single-particle kinetic term Ts and an effective single-particle potential vs , the
Kohn-Sham potential, which has to be constructed so that the system’s n0 is exactly the
same as the ground-state density of the full Hamiltonian. This Kohn-Sham Hamiltonian is
much simpler to solve while its solution still contains all ground-state information of the fully
interacting system.

This raises the question how to obtain the Kohn-Sham potential corresponding to a given
interacting system. When expressing the total energy of the Kohn-Sham system as

E[n] = Ts [n] + Eext [n] + EH[n] + Exc [n]; (7.4)
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the Kohn-Sham potential is the functional derivative of the latter terms:

vs =
‹ (Eext [n] + EH[n] + Exc [n])

‹n
: (7.5)

Here, Eext is the external energy containing the atomic positions. As it has become a single-
particle expression, its functional derivative is the corresponding external potential vext giving
rise to the Ven of Eq. 7.2. EH is the Hartree energy and as such a classical approximation of
the Coulomb exchange. Its functional derivative results in the simple potential term

vH =
Z
dr ′

n(r ′)

|r − r ′| : (7.6)

The final term, Exc , is the exchange-correlation energy which contains all remaining corrections
such as the correlation terms appearing in the general many-particle expressions and the
missing Coulomb interaction terms not covered by the simplistic Hartree term. The functional
derivative of Exc [n] is the exchange-correlation potential vxc , so that the whole Kohn-Sham
potential take the form

vs = vext + vH + vxc : (7.7)

In principle, the last procedures have only transfered the inability of describing vs over to
vxc . Yet, this rearrangement has several advantages. vxc no longer contains information of
the actual physical system as those have been split of into vext , hence the unknown potential
has become a system-independent quantity. Furthermore, an approximation of vxc has been
made more feasible since a major part of the Coulomb exchange has been split off in form of
the Hartree term. Until now, all modifications after the Born-Oppenheimer approximation
have been exact, even the transition from the interacting to the non-interacting systems.
Unfortunately, this exactness is no longer maintainable as no exact form of Exc is known.
Instead, one has to resort to one of the multiple approximations that have been developed
over the recent decades.

The plethora of approximations can be divided into different classes. The simplest kind is
the local density approximation (LDA) [134]. The term “local” refers to the assumed locality
of the exchange-correlation functional, i.e. vxc at a position r depends only on n(r). Hence,
a locally homogeneous electron gas is always assumes from which an expression for vxc is
extracted. A natural extension of this approach is the inclusion of n’s spatial gradients into
the functional expression of Exc . This approach is called general gradient approximation
(GGA) [135]. In that case the surrounding densities are no longer constant so that several
possibilities, and accordingly various different approximations, for constructing Exc exist.
Some aim at satisfying certain analytical requirements, others are constructed to agree with
empirical measurements. Both kinds, and LDA, have advantages and disadvantages so that
often an educated choice is necessary to ideally describe the investigated system. Other
classes of Exc approximations, not utilized in this thesis, are LDA+U [136], meta-GGA [137],
and hybrid functionals [138]. LDA+U adds an explicit Coulomb repulsion to selected bands
in order to improve the description of strongly-correlated materials, meta-GGAs include the
second derivate of n thus often describing a kinetic energy density, and hybrid functionals
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mix Hartree-Fock exchange energies with e.g. LDA Exc to enhance the Coulomb exchange
accuracy.

With the above, n-dependent approximations for Exc , and through its functional derivative
vxc , the Hamiltonian of the Kohn-Sham system (Eq. 7.3) has an explicit form. The next step
is solving the Kohn-Sham equations associated to Hs :“

T̂s + v̂s
”
|ffii〉 = ›i |ffii〉 : (7.8)

Since |ffii〉 are single-electron wave-functions instead of the previous, memory-intensive many-
particle wave-functions, the above equation can be solved with a reasonable effort. The
ultimate goal is to find the ground-state density that minimizes Hs . From the eigenvectors
|ffi〉 the electron-density can calculate according to:

n =
X
i

〈ffii |ffii〉 : (7.9)

As vs of Eq. 7.8 is again dependent on n, the Eqs. 7.8 and 7.9 form a coupled set that has to
be solved self-consistently. In practice, one has to start from a guessed initial n which then
defines vs so that one can calculate | 〉 (Eq. 7.8). From those vs one updates n (Eq. 7.9)
and the whole procedure is repeated until n is converged. The final electron density is the
ground-state density n0 of the Kohn-Sham system which accordingly contains information of
the fully interacting system.

A further, general problem is the choice of adequate basis functions to efficiently describe
the Hamiltonian. In principle, very localized core electrons can also be described in the DFT
framework so that huge variations of the wave function are to be expected near the nuclei
positions. Such features are difficult to describe within a plane-wave basis commonly used in
simple, effective models. Two distinct possibilities exist circumventing this problem, either vs
is smoothened near the nuclei or a different basis is introduced. The first case introduces
the so-called “pseudopotentials”. The huge advantage of that approach is its computational
simplicity, while the mandatory creation or selection of these not necessarily transferable
potentials is a severe disadvantage as it includes further external parameters. Prominent
examples for alternative basis sets are atomic orbitals or the FLAPW method. The latter
uses augmented plane waves (APW). In that basis set the system is divided into “muffin-tins”,
spherical sections enclosing the nuclei positions, and the interstitial area where spherical
harmonics and plane-waves are used as basis functions, respectively. The further “F” and “L”
stand for “full potential” and “linearized” where the former tackles the energy-dependence of
the radial part in the muffin-tins and the latter includes non-spherical parts of vs within the
muffin-tins. This procedure has the advantage that all electrons are included in the calculation
so that less external parameters are necessary. Furthermore, FLAPW results are usually
considered to be more reliable than pseudopotential calculations, yet the implementation is
more complicated and the calculation are more demanding.

Over the times DFT in various forms and implemented in multiple codes has been used to
describe many different material properties. Here, it is only used to construct an effective
model in combination with Wannier interpolation that extracts basic quantities. The practical
application of DFT is further described in Sec. 7.2.
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7.1.2 Wannier interpolation

Large scale evaluations of the previous DFT calculations are computationally expensive, thus
an efficient interpolation method is sought for quick and accurate evaluation at arbitrary k .
Wannier interpolation as described in this section fulfills these requirements and is hence
utilized in thesis’ Secs. 8 and 9.

In order to outline the interpolation procedure, it is necessary to first describe the properties
and definitions of the underlying Wannier functions. The fundamental reason for their
applicability is their mathematical equivalence to Bloch functions with respect to the description
of electronic structure. The main difference between Wannier- and Bloch functions is their
real-space localization and delocalization originating in their respective Fourier transformation
relation. This relation is most obvious for a single, isolated band described by a Bloch function
|ffiik〉. In that case, the corresponding Wannier functions can be constructed as

|wiR〉 =
1

N

X
k

e−ik·R |ffiik〉 ; (7.10)

labeled by the Bravais lattice vectors R denoting the respective Wannier functions’ localization.
In case of an equidistant k-grid with a set number of grid points in one lattice direction, the
Wannier functions are periodically repeated after said number of unit cells in the corresponding
direction. Furthermore, the real-space dependence of the Wannier functions at different R
are related to each other through translational symmetry.
The most important property of the Wannier functions is their non-uniqueness. While

change of a Bloch function’s phase has no physical impact, the Wannier functions obtained
through Eq. 7.10 can vary drastically depending on the chosen Bloch function’s gauge. This
property allows sampling for very localized basis states for which the interpolation of the system
parameters is much simpler since most information is contained in the directly neighboring
shells.
In case of multiple, entangled bands the situation complicates. Then, the NW Wannier

functions are constructed as a superposition of NB Bloch states according to

|wiR〉 =
1

N

X
k

e−ik·R
NBX
j=1

Ui j(k) |ffijk〉 ; (7.11)

where Ui j(k) is a NW × NB transformation matrix mixing the Bloch functions into the
Wannier functions. While those Wannier functions are no longer necessarily eigenstates of
the Hamiltonian, they still provide an excellent basis to obtain a localized model of the
Hamiltonian. A requirement is NW ≤ NB where Ui j(k) is a unitary matrix in case of equality.
The Wannier function’s localization can be tuned through the gauge of the Bloch functions,
now given through Ui j(k), analogous to the single-band case.

The next step is finding an Ui j(k) for which the Wannier functions are localized. Fortunately,
a general scheme was devised and implemented which allows a minimization procedure to
iterate towards maximally localized Wannier functions [139]. Broadly speaking, this method
works by minimizing the quadratic spread functionals around the Wannier function center
which serves as a localization measure. The procedure is relatively quick as the explicit
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calculation of Wannier functions is not necessary, instead it is sufficient to evaluate numerical
derivatives on a regular grid. If NW < NB, the “disentanglement” procedure [140] is first
applied to obtain a connected subset of the Bloch functions thereby enforcing NW = NB and
minimizing the part of the spread functional contingent on the subset choice. Afterwards,
unitary transformations are applied to Ui j(k) in order to minimize the remaining spread
functional by a steepest-descent or conjugate-gradient minimization algorithm [139].

After attaining the optimal gauge choice for the Bloch functions, the Hamiltonian interpo-
lation is straightforward. At first the initial, k-dependent Hamiltonian has to be projected
onto the Bloch states chosen in the disentanglement procedure. Afterwards, the Ui j(k)
obtained from the minimization procedure are applied which yields the Hamiltonian Hrot in
the accordingly rotated Bloch basis. Subsequently, the Hamiltonian H(R) in the basis of the
Wannier functions can be calculated by a simple Fourier transformation

〈i |H(R)|j〉 =
1

N

X
k

e−ik·R 〈i |Hrot(k)|j〉 : (7.12)

〈i |H(R)|j〉 are the Hamiltonian matrix elements between Wannier functions |i〉 and |j〉
whose unit cells containing the centers are separated by R. Since the Wannier functions
are constructed to be maximally localized, the magnitudes of the 〈i |H(R)|j〉-components
decrease quickly with increasing R. Therefore, even a rough approximation of 〈i |H(R)|j〉 with
only few R still describes the entire system reasonably well. Accordingly, a good interpolation
of 〈i |H(k)|j〉 at arbitrary k is given through the inverse transformation

〈i |H(k)|j〉 =
X
R

eik·R 〈i |H(R)|j〉 : (7.13)

Efficient interpolations of other operators initially described in the Bloch basis can be
analogously obtained by following the same steps starting from the converged Ui j(k) as
obtained from the Hamiltonian treatment.

7.2 Application

In this thesis the FLEUR code [141] is used as implementation of DFT. It is an FLAPW code
especially tuned towards magnetic properties and allows native two-dimensional calculations.
A huge advantage is the already existing, versatile interface to the wannier90 code [139] that
implements the construction of Wannier functions.
Here, the main use cases for FLEUR are the construction of the ground state density,

the subsequent preparation of the input files for the Wannier function generation, and the
final expression of the Hamiltonian and the spin operator in terms of the Wannier functions.
Moreover, FLEUR is used to evaluate the bandstructure with DFT accuracy to verify the
quality of the Hamiltonian interpolation. In between, wannier90 is used to obtain the Ui j(k)
(Eq. 7.11) which results in maximally localized Wannier functions. Finally, the attained
operators in the Wannier basis are imported into this thesis’ main code from which several
parameters are deduced. In the following, this overall procedure is described in more detail.
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At first a system has to be chosen whose TSHE is calculated. Since no antiferromagnetic
skyrmions are known experimentally, this thesis investigates only example systems to study
the general mechanism. Having chosen a particular atomic configuration, the lattice structure
has to be ascertained. In many cases structural properties are known reasonably well so that
they can be taken from literature, alternatively relaxation calculations could performed where
the lattice parameters and atomic positions are adjusted according to calculated forces while
comparing the total energies. The latter procedure requires a multitude of self-consistent
DFT calculations and accordingly necessitates significant computational resources.
Before proceeding with the self-consistent solution of the Kohn-Sham equations, the

exchange-correlation potential has to be chosen. In this thesis either LDA (Sec. 9) or Perdew-
Burke-Ernzerhof GGA [135] (Sec. 8) is used. SOC can be handily included through second
variation during the primary iteration or based on previously converged densities without SOC.
While the derivations of the THSE neglects SOC corrections expressed through the Berry
curvatures, it is interesting to consider its corrections on the bandstructure level (Sec. 8.2.3).
Throughout the self-consistent calculation the magnetic moments should converge toward
the ground-state configuration. Yet, it is possible to flip magnetic moments switching
between ferro- or antiferromagnetic orientations. In the subsequent iterations the system
often converges towards an at least local minimum keeping the chosen magnetic configuration.
In case of more than one converged density, the preferred configuration is identified by
comparison of the total energies. Still, the alternative minima allow to study the impact
of magnetic structures that are not the true magnetic ground states. Since neither of the
investigated structures are really expected to exhibit skyrmions, it is reasonable to consider
densities corresponding to antiferromagnetic configurations that are only local minima in
order to achieve a more systematic study (Sec. 8.3).
The next step is the construction of maximally localized Wannier functions. At first, a

reasonable set of bands has to be selected from the DFT calculation to lessen the computation
effort of the ensuing interpolation by excluding states very far from the investigated energy
range. Since the TSHE calculation depends on the Fermi surface properties, only bands in
the extended vicinity of the Fermi energy are included. Ideally, all states of an isolated set
should be included, but in metals a clear distinctions is often impossible. Hence, for optimal
accuracy it is advisable to include many states relatively far away from the finally interpolated
bands. Their impact will be small, but it is advantageous to have many states as that ensures
sufficient degrees of freedom in the disentanglement procedure. Afterwards, the number of
Wannier functions has to be chosen. Considering that the outermost Wannier functions will
only loosely reproduce the bandstructure, the choice depends highly on the number of bands in
the extended energy range of interest. Two possibilities exist as initial choice for the Wannier
functions, either random phases or trial functions obtained from angular-moment dependent
projection on the Bloch states can be used. Here, the latter is always chosen. Afterwards,
the trial projections and the overlap between the different Bloch functions are constructed by
FLEUR on a regular k-mesh. As described in Sec. 7.1.2, the size of the mesh corresponds
to the unit cell extend of the resulting Hamiltonian so that the mesh has to be sufficiently
large. In this thesis usually a 12× 12 mesh is used. Next, a “frozen window” is generously
chosen around the investigated energy range which ensured that bands within are entirely
included after disentanglement. With these prerequisites the disentanglement procedure of
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the wannier90 code can be employed. After convergence of the associated spread functional,
the Wannier functions are iteratively localized until sufficient convergence is reached. Then,
the interpolated bandstructure constructed from the wannier90 code is compared to the DFT
results (Fig. 8.2). If the dispersions agree well, the spin operator in the basis of maximally
localized Wannier functions is extracted by using the respective FLEUR routines.
When aiming for accurate maximally localized Wannier functions, a common tuning

parameter is the choice of the initial projections. While it should not matter in principle,
severe differences are common with respect to the localization functional and the interpolated
bandstructure. Especially when investigating symmetry-related band-structure features, it is
advantageous to start from initial projections obeying that symmetries. Hence, it is advisable
to try several initial projections from which the most localized result is selected.
After performing the previous procedures applying the FLEUR and wannier90 codes, the

Hamiltonian 〈i |H(R)|j〉 and the spin operator 〈i |S(R)|j〉 are attained fully describing the
system in the Wannier basis. Then, the Hamiltonian is interpolated according to Eq. 7.13
at arbitrary k . The subsequent diagonalization employing LAPACK routines allows direct
access to the energies and eigenvectors. Since doubly-degenerate systems are investigated, the
eigenvector choice is not unique. As long as SOC is neglected, the different spin channels do
not mix so that each eigenstate contains only states of one spin channel directly identifiable
when calculating the eigenstates’ spin. For convenience and continuity, the eigenstates are
reordered so that the eigenstate with negative spin always precedes its degenerate complement
while keeping the ordering by energy. In case of SOC the eigenstates are not spin-diagonal
states so that the eigenstates are first recombined by diagonalization the spin-z component.
For the transport calculations the evaluation of the derivatives of the bandstructure and

‰ is necessary, which can be extracted using the interpolation scheme. Due to the Fourier
transformation structure of the interpolation, it is straightforward to calculate the k-derivatives
of an operator 〈i |O(R)|i〉 in the Wannier basis. The n-th derivative is:*

i

˛̨̨̨
˛ @nO(k)

@kn

˛̨̨̨
˛ j
+

=
X
R

(iR)neik·R 〈i |H(R) | j〉 : (7.14)

For the evaluation of the relevant quantities it is necessary to evaluate the operators in basis
of the Hamiltonian eigenstates | 〉. Computationally, this basis change requires only left and
right multiplication of the eigenstate matrices as provided from the diagonalization:D

 i
˛̨̨
Ô
˛̨̨
 j
E

=
X
lm

〈 i | l〉
D
l
˛̨̨
Ô
˛̨̨
m
E
〈m | i〉 : (7.15)

Using the above relations, the group velocity can be computed as the diagonal elements of
the Hamiltonian derivative:

@›i
@kj

=

*
 i

˛̨̨̨
˛ @H(k)

@kj

˛̨̨̨
˛ i

+
: (7.16)

In case of the second derivative further terms arise due to derivatives of the eigenstates [142]:
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100



7.2 Application

The spin operator 〈i |S(r)|j〉 is used to obtain spin-polarized eigenstates as described above,
to estimate the spin polarization Ps as used in sn, and to calculate the overlap ‰. The former
quantities can be trivially obtained from the diagonal components of the spin operator in the
| 〉-basis. Conversely, ‰ is calculated from the off-diagonal spin components. The ffx and ffy
spin matrices contain the overlaps between the spin-up and -down parts, hence ‰ of band i
can be constructed as:

‰i =
1

2
(〈 i |Sx(k)| j〉+ i 〈 i |Sy (k)| j〉) ; (7.18)

where j is the degenerate partner of i . While it is in principle possible to obtain @k‰ through
analogous equations, in practice numerical derivatives proved to be more stable so that this
approach is used.
In conclusion, the above expressions allow to efficiently calculate all reciprocal-space

dependent quantities necessary for the transport calculation scheme of Sec. 5. This procedure
is employed in the following chapters to predict the TSHE in different materials based on
accurate, collinear DFT.
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8

FeCuFe-trilayer

After calculating the TSHE for a model system (Sec. 6), the next step is the investigation
of more realistic systems using the DFT- and Wannier-based approach described in Sec. 7.
Copper layers of varying thickness sandwiched between 2 antiferromagnetically coupled iron
layers are chosen as an example system. Accordingly, this chapter investigates synthetic
antiferromagnets including a more complicated reciprocal-space structure than the analogous
bilayer model while keeping its imprinted real-space texture. The alternative approach of an
intrinsic antiferromagnet is investigated in Sec. 9. Many results of this chapter have already
been published in Refs. [21, 22].
First, this chapter describes the general structural and electronic properties, followed by

an in-depth investigation of the TSHE for fixed thickness, and concluded by the TSHE’s
dependence on the layer thickness.

8.1 General structure

Layered systems with magnetic films separated by e.g. a paramagnetic spacer have been
investigated for a long time and proven to exhibit interesting physics. Most prominently, the
giant magnetoresistance effect [1, 143] was even awarded with a Nobel price. It describes
the dependence of the electron transport through the multilayer on the relative alignment or
anti-alignment of the outer spins. Here however, we are interested in transport within the
multilayer.

An interesting feature of such multilayer systems is an often observed oscillatory behavior
between ferromagnetic and antiferromagnetic coupling depending on the spacer thickness.
Physically, this is explained by the RKKY interaction [144]. Many different material com-
positions exhibiting these properties have been discovered [145–149], yet none has been
verified to exhibit a skyrmion texture. Hence, in order to study the TSHE with realistic
electronic properties it is only possible to investigate hypothetical systems with artificially
imprinted skyrmion textures until a material exhibiting synthetic antiferromagnetic skyrmions
is discovered.

In this chapter, body-centered cubic FeCunFe(001) is chosen as example system. In 1990,
antiferromagnetic coupling was experimentally demonstrated in case of 3 Fe-monolayers on
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8 FeCuFe-trilayer

Figure 8.1: a) shows the FeCu2Fe structure as an example of the (001) bcc
trilayer setup. b) displays the energy difference between the in z-direction relaxed
ferro- and antiferromagnetic setups. In c) the rounded z-distances between the
neighboring atoms are denoted left and right for the ferro- and antiferromagnetic
structures, respectively.

each side using Kerr rotation [150]. Five years later, theoretical calculations with semi-infinite
Fe crystals and varying Cu thickness examined the coupling in detail [151]. These early
calculations utilize self-consistent Green’s functions and the linear muffin-tin orbital method.
One result of that early study is that the exchange coupling varies strongly with many sign
changes even for very thick Cu thicknesses and that its magnitude decreases up to about 10
layers after which it increases again in agreement with RKKY model calculations.
Here, the freestanding trilayer with only 1 Fe-monolayer on each side is investigated. A

schematic picture of the structure in case of 2 Cu-layers is given in Fig. 8.1a. In the following,
copper thicknesses from 0, i.e. an iron double-layer, to 6 monolayers are considered. After
preliminary calculations, the FeCu2Fe structure is identified as most promising with respect
to antiferromagnetic coupling. The atomic positions are calculated starting from the iron
bcc lattice-structure. By alternately varying the in-plane lattice constant and the atomic
z-positions, the ground state structure is found to be antiferromagnetically coupled with a
lattice parameter of a ≈ 4:59 aB significantly smaller than the bulk lattice structure. The
calculations of the other layers use the same in-plane lattice parameter while the atomic
z-positions are relaxed in both the antiferromagnetic and ferromagnetic case. The symmetric
atom positions and the inter-atom z-distances are shown in Fig. 8.1c. Only the n = 2
configuration exhibits antiferromagnetic coupling as demonstrated in Fig. 8.1b. This is
in contrast to the previous FeCuFe calculations, but some differences are to be expected
since semi-infinite Fe layers were considered back then. One possible venue to obtain more
antiferromagnetically coupled systems is the symmetric inclusion of further Fe layers. Instead,
in the following the antiferromagnetic configurations are considered despite their energetic
disadvantage for most thicknesses as investigation of the general feature evolution is sufficient.

The Wannier functions are constructed using s; p; d-states for the iron and copper atoms
as initial projections. A 12 × 12 k-grid is used to describe the Wannier functions with a
frozen window from the lowest bands up to 2 eV above the Fermi level. Overall, the model
Hamiltonian in the basis of the Wannier functions reproduces the DFT-bandstructure very
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well. Within the frozen-energy window no deviations from the FLEUR bandstructure are
visible on the resolved scale of Figs. 8.2a-c. Contrarily, the bands differ strongly above the
frozen window. The great accuracy of the interpolation at the Fermi surface is visualized in
Fig. 8.2d. Only deviations of ∼ 3 meV from the model Fermi energy appear when calculating
the DFT energies at the model Fermi energy k-points. Hence, the Wannier-based model is
well-suited to describe the reciprocal structure of the studied systems.

8.2 FeCu2Fe

Having established the general setup of the FeCuFe trilayer system, this section investigates
one selected thickness in detail. The FeCu2Fe structure is chosen as an example system since
it is the only found structure energetically preferring the antiferromagnetic configuration. The
dispersion and the Fermi surface are shown in Fig. 8.2b,d from which many dispersive and
non-dispersive bands near the Fermi energy are apparent. Overall, the Fermi surface contains
8 distinct lines that are relatively separated from each other and will be referenced in this
section by using the enumeration of Fig. 8.2d.

When comparing the bandstructure of FeCu2Fe with those of FeFe and FeCu6Fe (Fig. 8.2a-
c), the impact of increasing copper thickness is relatively straightforward. Especially along

Figure 8.2: a-c) show the DFT (black) and Wannier (red) dispersions of FeCunFe
for the thicknesses n = [0; 2; 6] in ascending order. The upper boundary of the
Wannier interpolation frozen window is marked as green line. d) displays the Fermi-
surface as obtained from the Wannier interpolation for the FeCu2Fe structure. The
color encodes the energy difference between the DFT calculation and the Wannier
interpolation. Furthermore, an enumeration is defined for further references to
specific bands.
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the ΓM and ΓX high-symmetry lines many copper-based electron states appear at the Fermi
energy, while the immediate vicinity of M remains relatively unmodified. These considerations
allow preliminary understanding of the origin of the respective states, yet more insight can be
gained by employing the DFT-formalism which allows direct evaluation of the band character.

8.2.1 Properties at the Fermi energy

First, DFT is utilized to study the band-characters at the Fermi surface as plotted in Fig. 8.3.
A glaring property is the large weight within the Fe muffin-tins that barely drops below 0:4
for all states at the Fermi energy. Contrarily, the weights in the copper muffin-tins only reach
∼ 0:33 at few positions on the Fermi lines. Hence, the states at the Fermi surface are of
significant iron-character so that the assumption of having spin-polarized states is reasonable.
Numerically, this is enforced anyways due to negligence of SOC, yet the strong iron-character
justifies that assumption even when including SOC on the DFT-level. The band-character
attributions based on DFT calculations are in good agreement with the previous predictions
based on the thickness-dependent bandstructure differences, as e.g. attributing the bands in
the vicinity of M to iron. Accordingly, the overall band modifications are foreseeable in such
a system. However, almost all bands have significant portions of non-iron muffin-tin character
so that a more complicated structure than the simply synthetic antiferromagnetic model
system is realized. Particular differences appear when considering the spin-up and -down
character of the upper iron atom (Fig. 8.3). Especially the 8th band is almost exclusively
of spin-up character while most other band are mainly of spin-down character. Of course,

Figure 8.3: State composition of the FeCu2Fe structure at the Fermi surface as
calculated from DFT. “Fe ↑” and “Cu ↑” denote the sum of the spin-up state-
contributions within all muffin tins of the respective atoms. Analogously, “Fe(1) ↑”
and “Fe(1) ↓” show the spin-up and -down weights of the upper Fe-atom only. The
spin-resolved weights for the lower Fe-atom are exactly the reversed of the upper
Fe-atom. Lastly, the remaining spin-up weights distinguished into interstitial and
vacuum are plotted.
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this distribution is reversed for the lower iron atom conserving the spin degeneracy, yet this
property is different from the simple model approximation of having one spin state on one
atom and reversed. Still, the collinear wave-packet mechanism as described in Sec. 3.2.1
is straightforwardly applicable due to the negligence of SOC which automatically results in
Wannier-states whose spin-polarization is independent of their DFT origin.

Figure 8.4: Collinear properties of FeCu2Fe at the Fermi surface. a) shows
the group velocity with color-coded magnitude and indicated direction through
arrows. b) and c) display the diagonal and off-diagonal second energy derivatives
corresponding to the effective masses. Due to the symmetries of the structure
@ky@ky › is exactly the same @kx@kx › rotated by 90◦. d) shows the overlap ‰. In
e) @k log ‰ is plotted where the color denotes the magnitude logarithmically and
densely plotted arrows indicate the direction.

Next, all necessary k-dependent, collinear properties are calculated by employing the well-
working Wannier-based model Hamiltonian as described in Sec. 7.2 and visualized in Fig. 8.4.
While the dispersion derivatives can be easily understood from the overall bandstructure,
so that their behavior is only interesting with respect to their transport impact, the origin
of ‰’s k-dependent structure is not clear. Intuitively, one could suspect a relation to the
atomic-characters of Fig. 8.3, yet no clear analogy can be drawn between the plots. Sections
with relatively large ‰ are exhibited in the 2nd and 6th Fermi line but neither has well correlated
state-composition behavior. While the Fe ↑-composition of the 6th band has similar maxima
as ‰, the Fe ↑-maxima of line 8 are certainly not reproduced in ‰ and the ‰-maxima of
the 3rd, 4th, and 5th lines correspond to minima of the iron-composition. Conversely, the
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correspondence between the small maxima of the 2nd band’s interstitial contribution with
the ‰ is rendered unimportant when considering the composition maxima of the 3rd band
and the ‰ maxima of the 6th band. Hence, ‰ proves to be an intricate quantity that can
not be understood from the band-character alone but requires explicit calculation, at least
when considering the structure with 2 copper atoms. The @k log(‰)-distribution is similarly
unpredictable. Its norm varies over several order of magnitude even within the same Fermi
line. For some lines the direction is equally unstable, while some lines such as the 1st, 2nd,
and 8th mainly point to either the inside or the outside. Comparison of transport calculations
including and excluding the @k log(‰)-terms reveals no significant difference so that further
scrutiny of @k log(‰) would be superfluous.

Having obtained values for the collinear reciprocal-space properties, the TSHE is calculated
assuming the 3q skyrmion texture (Sec. 2.4.1) and using the formalism as described in Sec. 5.
Different transport aspects are visualized in Fig. 8.5. Fig. 8.5a displays the iteration-time
dependence of the topological spin Hall constant RTS (Eq. 4.12). Overall, the calculation
with generously chosen numerical parameters shows that sufficient convergence to RTS ≈
−2:6 ·10−11 ~

e
Ωm
T

is reached after ∼ 1 ns. This result is of similar magnitude as the topological
Hall constant of the 3q-state exhibited by Mn1−xFexSi [41] neglecting the ~

e
-prefactor due to

the different nature of the transport.
As RTS depends mainly on the longitudinal charge and transversal spin current, more

insight can be gained by investigation of their k-resolved distribution shown in Fig. 8.5b,c.
The other transport contributions not plotted here vanish due to the same reasons as in the
bilayer model calculations (Sec. 6.2.1). Due to the simple computational structure of ff1

xx

(Eq. 4.34), its distribution can be directly correlated with the respective x-component of the
group velocity (Fig. 8.4a) analogous to the model calculation. Furthermore, it is interesting
to note that all bands have significant contributions to the integrated ff1

xx .
More important for the TSHE is the transversal spin conductivity plotted k-resolved in

Figure 8.5: TSHE of FeCu2Fe as calculated with Nk = 32772, NR = 10, and
h = 10 [a:u:] (compare Sec. 5.3). a) shows the ti t-dependence of the topological spin
Hall constant RTS. b,c) show converged (ti t ≈ 1:16 ns), k-resolved conductivity
contributions necessary to calculate the TSHE. The longitudinal conductivity is
displayed in b) and the transversal spin conductivity is plotted in c).
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Fig. 8.5c. Here, its attribution to reciprocal-space properties is more difficult than in case of
the bilayer model (Sec. 6.2.1) due to the non-vanishing off-diagonal effective masses. Overall,
ff2;sz
xy (k) varies a lot in sign and magnitude, but still most bands, except for the 1st and the

7th band, have relevant k-dependent contributions either due to their large magnitudes or
because of the huge length of the underlying Fermi lines. Furthermore, most lines contain
sections with positive and negative sign so that the integrated spin conductivity is highly
compensated allowing for large modifications caused by small differences. While lines with
neither large group velocities nor large effective masses indeed result in small ff2;sz

xy (k) (line 1),
lines exist which have large magnitudes in the effective masses but overall small ff2;sz

xy (k) due
to small group velocities and large ‰ (line 6). In general, the spin conductivity’s k-dependence
has become a complicated property depending on 4 reciprocal-space parameters and the spin
evolution.

8.2.2 Fermi energy dependence

A natural extension to the TSHE study at the DFT-based Fermi energy is the variation of the
Fermi energy as carried out in this section. For convenience, all energies are given relative to
the DFT Fermi energy EF;DFT. While the Wannier-interpolation describes all bands up to 2 eV
accurately, in this section the range from −1 to 0:5 eV is investigated only. This reduces the
computation effort significantly and disregards only states so far from EF;DFT that they are
inaccessible in realistic application anyways. The calculations are performed with Nk = 8192,
ti t ≈≈ 1 ns, h = 10 [a:u:], and NR = 5 which, though less than the EF;DFT-calculation, yields
sufficiently well-converged results.
The bandstructure and energy dependence of the TSHE are shown in Fig. 8.6. The first

Figure 8.6: Comparison between bandstructure and TSHE energy-dependence of
FeCu2Fe. a) shows the bandstructure (compare to Fig. 8.2b) in the [−1 eV; 0:5 eV]
energy range around the DFT Fermi energy. b) displays the RTS in the corresponding
energy-range for ‰ = 0 (blue) and ‰(k) (red). The green circle indicates the Dirac
cone investigated in Fig. 8.7, the horizontal lines correspond to the energy-planes
in the cone-visualizations of that figure.
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eye-catching property of RTS is the dissimilarity between the full ‰-dependent calculation
and the ‰ = 0 case. While the ‰ = 0-calculations yields larger magnitudes for most energies,
in some cases near a RTS sign-change this behavior can be reversed. For example, at
EF ≈ 0:31 eV the ‰(k)-result (RTS‰(k) ≈ 2:17 · 10−11 ~

e
Ωm
T
) is more than three times as large

as the ‰ = 0 calculation (RTS‰=0 ≈ 0:63 · 10−11 ~
e

Ωm
T
). Similarly, it is possible that the sign of

RTS‰=0 has already changed while the sign of RTS‰(k) has not (e.g. at EF ≈ 0:33 eV). Hence, the
inclusion of ‰ can change even the direction of the TSHE.
In principle, the energy could be tuned so that RTS‰=0 vanishes while RTS‰(k) retains non-

vanishing contributions so that arbitrarily large enhancements relative to the naive approach
are possible. Of course, the reverse is possible as well by tuning to RTS‰(k) = 0. While these
considerations serve no physical purpose as only RTS‰(k) can be measured, they emphasize the
importance of including the full non-abelian wave-packet dynamic.

While the effect of the spin-evolution has been shown to yield a factor of 1=3 (Sec. 5.3.3),
the degenerate properties still have major impact through the k-dependence of ‰ through the
(1− ‰2)-prefactor (Eq. 5.3), which can significantly decrease ff2;sz

xy (k) at Fermi-line sections
with large ‰. Therefore, the many different relative magnitudes of RTS in Fig. 8.6 point towards
strongly changing ‰ distributions. Hence, the transport signal can be severely misjudged if no
‰-distribution is supplied.

As the TSHE is a Fermi-surface property, strong variations are to be expected with respect
to the Fermi energy. Indeed, in the small energy window of 1:5 eV the RTS-sign changes
several times. Fortunately, in case of FeCu2Fe the behavior near EF;DFT is relatively smooth
so that transport predictions are stable. However, strong RTS-variations around the Fermi
energy are very likely for different materials in general. Therefore, further investigations of
the origin of those variations are beneficial.
Since RTS is constructed from quantities that strongly dependent on dispersion details,

comparison of the TSHE transport with the bandstructure allows to uncover the origin of the
strong variations (Fig. 8.6). Of course, more dispersive bands result in more rapid variations
as their group velocities are larger and since the overall length of the Fermi lines is more
sensitive to changing energies. Furthermore, band edges tend to have a strong influence as
the rapid changes of RTS usually coincide with band edges and crossings. An example is the
strong variation near EF = −0:3 eV which coincides with a crossing on XM and a band edge
at M. The most drastic variations appear between −0:7 eV and −0:6 eV where several band
edges and crossings are exhibited. Yet, not all crossings result in as drastic variations, for
example the band edges on XM and MΓ around the Fermi energy result in relatively small
magnitude changes.

In the following, this behavior is scrutinized for the exemplary Dirac cone between M and
Γ near 0:19 eV which is indicated in Fig. 8.6a. When crossing the Dirac energy, RTS‰=0 drops
by ∼ 13 · 10−11 ~

e
Ωm
T

corresponding to a decrease by 66% within only 0:04 eV. In contrast,
RTS‰(k) drops by only ∼ 3 · 10−11 ~

e
Ωm
T
, although this still corresponds to a decrease by 43% due

to overall smaller magnitudes. Judging from the bandstructure only, this strong change can
be attributed to the Dirac cone since the other bands do not vary much, at least along the
high-symmetry lines.

For confirmation, the energy-dependence of the transversal spin-conductivity (for ‰ = 0) is
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8.2 FeCu2Fe

compared using either the full Fermi surface or a line originating from one Dirac line only
(Fig. 8.7a). In both curves a significant drop is observed when crossing the Dirac energy.
Since 4 symmetry-related Dirac points exist in the Brillouin zone, a drop by the 4-fold of the
Dirac-only calculation difference is expected when including all Fermi lines. This expectations
is approximately fulfilled as the full ff2;sz

xy drops by the 3:5-fold of the decrease including
one Dirac cone only. This comparison validates the previous attribution to the Dirac cones
convincingly when considering the relatively decreased k-accuracy of the full calculation and
the possibility of small variations in other bands.

Remarkably, ff2;sz
xy of the Dirac Fermi-line remains relatively constant when approaching the

Dirac point despite the line’s drastically decreasing length. This behavior can be understood
from the ff2;sz

xy (k)-visualization at different Fermi lines around the Dirac point (Fig. 8.7b). Fore-
most, this plot shows predominately positive contributions below and negative contributions
above the Dirac energy. The sign-change of ff2;sz

xy originates in the odd number of occurrences
of group velocities and effective masses (Eq. 5.3) which change their sign when crossing a
Dirac point. The decrease in length, which usually causes diminishing overall contribution, is
counteracted by a very large increase in magnitude when approaching the Dirac energy. The
largest ffszxy(k)-magnitude of Fig. 8.7b is more than 60-fold the maximal ffszxy(k) at the Fermi
surface shown in Fig. 8.5c (7284 ~

e
—S to 116 ~

e
—S). Therefore, the overall impact remains

significant even in the immediate vicinity of the Dirac point due to the increasing effective
mass contributions. Additionally, ff2;sz

xy (k) appear to be symmetric up to a sign change around
the Dirac energy when inverting k relative to the Dirac point positions and changing the
sign of the energy relative to the Dirac point energy. This feature, arising from the large
symmetry of the atomic structure, is not necessary for such drastic transport signatures, yet
an overall sign-change is expected everywhere due to the above 3-fold occurrence.

Figure 8.7: TSHE response to the Dirac cone indicated in Fig. 8.6a. a) shows the
energy dependence of ff2;sz

xy in the immediate vicinity of the Dirac cone energy with
‰ = 0 for the full Fermi-surface (red) and including the Fermi line of one Dirac
cone only (green). b) and c) visualize ff2;sz

xy (k) (‰ = 0) and ‰(k) for the Fermi lines
with EF = 0:16::0:23 eV (in (b) EF = 0:19 eV is excluded) so that the third from
the bottom and second from top correspond to the green lines of Fig. 8.6a.
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8 FeCuFe-trilayer

This rapid change in transport is apparently contradicted by the RTS‰=0 data-point between
the green lines in Fig. 8.6. It is approximately at half the difference so that one could
assume that a continuous albeit steep connection exists which would be at variance with the
previously worked out abrupt sign-change at the Dirac point. However, this data-point can
be reconciled with above consideration as the Dirac-cones are excluded for this calculation
due to insufficiencies in the Fermi line interpolation algorithm. Hence, this plot does not
contradict a binary jump when passing the Dirac energy but rather enforces it by being in the
middle including neither the positive nor the negative contribution.

The transport changes are much smaller in case of ‰(k) compared to the ‰ = 0 calculations
as shown in Fig. 8.6. Since the majority of the modification originates from only 1 particular
(or 4 considering the symmetric partners), small Fermi line, large ‰-contributions suppressing
ff2;sz
xy are to be expected there. For larger Fermi lines one often has compensated contributions

so that overall the decrease is not necessarily as large, yet here only small, insignificant
sections of opposite sign appear at each energy. Hence, even relatively moderate ‰ will
straightforwardly cause significant transport decreases. The k-resolved distribution of ‰
(Fig. 8.7c) shows very large ‰ directly at the positions of maximal ff2;sz

xy -magnitude. Hence,
these large ‰ cause the strong attenuation relative to the drastic ‰ = 0 transport changes.
Furthermore, Fig. 8.7c reveals that ‰ varies strongly in this small k-domain so that special
numerical care is necessary for such bandstructure sections. In general, it should be possible to
have Dirac cones where large ‰ do not coincide with large ff2;sz

xy so that very strong variations
are realized in the ‰(k)-case as well. Also, the transport variations near most band edges are
still large relative to their scale.

Alternatively to the Dirac cones, similar features can appear at band edges. However, such
band, and even crossings as exemplified at M near −0:3 eV, exhibit a parabolic bandstructure.
While such features can still result in sign-changes of the transport, on similar energy scales
they happen less abruptly as the group velocities vanish at the outmost energy. Yet, very
large masses and associated small energy ranges with large Fermi-line shrinking can result in
similar, or even more extreme, transport-variations despite the group-velocity vanishing and
the absence of the sign-reversed cone in case of band edges.
In conclusion, this section has uncovered the extreme Fermi-energy dependence of the

THSE. While such behavior is to be expected due to its Fermi surface character, different
mechanisms in the transport expression are discussed that result in increased sensitivity
with respect to Dirac cones or alternative band edges. Furthermore, ‰ is shown to exhibit
drastic signatures, which overall emphasizes the necessity for extreme numerical care in such
calculations.

8.2.3 Influence of SOC

Although SOC has been neglected on the wave-packet level and is accordingly not included in
the transport considerations, a small grasp of its effect can be obtained by including SOC
on the DFT level (Sec. 7.2). Since neither iron (Z = 26) nor copper (Z = 29) are heavy
atoms, the influence of SOC is expected to be very small. Indeed, the properties of the
collinear calculation barely change as for example the magnetic moments change by less then
0:005—B. Consequently, the bandstructure does not change much and noticeable differences
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8.2 FeCu2Fe

occur only at −3 eV relative to the Fermi energy. In the previously investigated energy range
near the Fermi energy ([−1 eV; 0:5 eV] as in Fig. 8.6a) only minor modifications appear as
shown in Fig. 8.8a. The only visible differences are the expected gap openings at the band
crossings of which the previously investigated Dirac cone is the most unaffected. From these
considerations, only minimal modifications to the TSHE are to be expected when including
SOC which mainly lessen the abruptness of the energy-dependent variations near crossings.

As the Fermi energy is far from band crossings, the Fermi surface changes only minimally.
This is shown in Fig. 8.8b, where the black lines denoting the states without SOC are barely
visible as boundary of some SOC-states. Since the dispersion at the Fermi energy is that
similar to the previous calculations, the properties depending on the k-derivatives are almost
identical to the ones displayed in Fig. 8.4a-c. Hence, one does not expect many differences to
the calculations without SOC. Indeed, the iteration-time dependence of RTS is only sightly
affected by the inclusion of SOC (Fig. 8.8c). The final value including SOC is only 4% smaller
than the result without SOC. A further difference is the faster convergence of the SOC
calculations, at least its initial decline is visibly steeper.

One reason for this difference is the decrease of the spin polarization when including SOC
due to state-mixing in the DFT calculations. It results in a straightforward decrease of the
transport impact (Sec. 4.4.1), but fortunately most states at the Fermi surface are unaffected
as demonstrated in Fig. 8.8. Only the 8th line has sz as low as 0:9 while the 7th band as
second smallest band has minimal contributions of sz ≈ 0:97, the other bands are virtually
unaffected. As the 8th line is small and has only moderate k-dependent contributions to the
TSHE (Fig. 8.5c), this effect has minor overall impact.

Still, the overlap ‰ might change despite the unchanged bandstructure details. Hence, ‰ and
@k‰ are plotted in Fig. 8.9 as comparison to Fig. 8.4d,e. In case of ‰ no differences are visible,
both the magnitudes and the distribution are extremely similar although the Fermi-lines are
slightly shifted. When comparing the ‰ of the SOC calculation to ‰ without SOC, but using
the same k and band indices as in the SOC case, the difference is within ±0:015 and averages
to less than 0:001 so that the overall impact of the ‰-variation is negligible. Yet, these minor

Figure 8.8: Modifications due to inclusion of SOC in FeCu2Fe. a) and b) show
the bandstructure and Fermi surface including (red) SOC on top of bands without
(black) SOC so that black lines denote differences. c) displays the time-dependence
of RTS with SOC calculated with Nk = 8192, NR = 10, and h = 10 [a:u:] relative
to the case without SOC as shown in Fig. 8.5a.
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8 FeCuFe-trilayer

Figure 8.9: Collinear properties of FeCu2Fe at the Fermi surface including SOC.
a) shows the magnitude of the spin-expectation value as obtained from the Wannier
model. b) and c) display ‰ and @k‰ corresponding to Figs. 8.4d,e here including
SOC.

differences between the cases with and without SOC are visible as small variations of @k‰.
Overall its distribution is very similar and the magnitude changes rarely. Different directions
appear for example at the 1st band, but only at irrelevant magnitudes, and at the Brillouin
zone edges as in the case of the 8th band. However, since no systematic transport effect
caused by @k‰ has been found, it is unlikely that these small change of @k‰ can explain the
minimal TSHE variations.
Hence, in the case of FeCu2Fe only minor variations of the spin polarization and even

smaller modifications of the dispersion and overlap are found as possible sources for TSHE
modification when including SOC. Since RTS is only very slightly effected by SOC this result
is consistent and demonstrates the negligibility of SOC for FeCu2Fe at the Fermi surface.
Furthermore, the general applicability of SOC on the DFT level for the TSHE calculations is
demonstrated which in different energy ranges or different materials certainly has dramatic
impact.

8.3 FeCuFe thickness dependence

After having investigated the case with 2 copper layers in detail, this section treats the
dependence of the THSE on the Cu-thickness of the Fe/Cu/Fe-trilayer. The THSE can be
calculated straightforwardly using the Wannier-basis Hamiltonian as constructed from the
atomic structures shown in Fig. 8.1. It should be noted that the topological spin constant
RTS is based on conductivities instead of conductances, which would be the more natural
transport characteristic in 2D materials. Hence, all conductivities are divided by the thickness
dz as described in Sec. 5.1. Thereby, RTS is kept comparable and conceptually less dependent
on the number of Cu layers, yet the decrease of ffszxy(k) with increasing thickness has to be
considered. dz is taken as the sum of the distance between the outmost atomic positions
(Fig. 8.1c) and their muffin-tin radii (here 2:18 aB). The resulting dz are noted in Tab. 8.1.

Including these prefactors, the dependence of RTS is shown in Fig. 8.10a. The maximal
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8.3 FeCuFe thickness dependence

#Cu layers 0 1 2 3 4 5 6
dz [ab] 7:78 11:78 15:43 19:16 22:84 26:52 30:30

Table 8.1: Thickness of FeCunFe layers as obtained from Fig. 8.1
.

magnitude is obtained in case of the Fe double-layer with a negative sign, then RTS becomes
very small for n = 3 and has smaller positive RTS for thicker systems . This increase is not
monotonous as RTS decreases between n = [1; 2] and n = [5; 6] and might be coincidental.

The ‰(k) calculations show a systematic decrease in magnitude relative to the ‰ = 0-case
as expected due to the decrease to 1=3 originating in the spin equilibration on the prolate
spheroid (Sec. 5.3.3). Further variations occur due to the k-dependent (1− ‰2)-factor. Since
the (1 − ‰2)-factor reduces the Hall-conductivity contributions k-dependently, in general
a decrease to even less than 1=3 is expected. As shown in Fig. 8.10b, this is the case for
the thicknesses n = 0; 1; 2; 6 while for n = 4; 5 the ratio is larger than 1=3. Hence, the
(1− ‰2)-distribution causes the TSHE to shrink in the former case while it increases in the
latter case. A further decrease is generally more probable as even the limit of an isotropic
‰-distribution would result in less than 1=3 remaining magnitude. Conversely, in the latter case
it is necessary to have a ‰-distributions which reduces the minority ff2;sz

xy (k) (state at k which
decrease the magnitude of ff2;sz

xy ) more strongly than the majority ff2;sz
xy (k). Since by definition

the integral over the majority ff2;sz
xy (k) is larger than that of the minority conductivities, this

requires a ‰-distribution strongly preferring the minority k .
A necessary condition for such relative enhancements is a strong compensation of ff2;sz

xy (k)
at the Fermi surface. Otherwise, it would be impossible to sufficiently decrease the few
minority ff2;sz

xy (k) in order to counter the decrease of the majority conductivity. Such behavior
has already been demonstrated in case of FeCu2Fe (Sec. 8.2.1) and is summarized in Fig. 8.10c

Figure 8.10: Thickness dependent transport properties of the Fe/Cu/Fe-trilayer
using ti t ≈ 1:16 ns, Nk = 32786, and NR = 10 convergence parameters. a) displays
RTS in case of ‰ = 0 and the inherent ‰(k). b) clarifies the decrease due to ‰(k)
through the percentaged difference compared to the ‰ = 0 (not shown: FeCu3Fe
with −4%). c) shows ff2;sz

xy for the inherent ‰ calculations in green in comparison
to the ff2;sz

xy including only the positive and the negative ff2;sz
xy (k).
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8 FeCuFe-trilayer

for the investigated thicknesses. That figure shows the positive and the negative ff2;sz
xy (k)

integrated separately as well as their sum which allows direct judgment of the cancellations.
Strong compensations are immediately apparent since the positive integral does not change
much, while the previously described RTS-increase originates in a strong magnitude-increase
of the negative integral starting from very small magnitudes in the Fe double-layer case. Since
the positive contributions are relatively constant, that behavior might be naively attributed
to the Fe-dominated bands. However, ff2;sz

xy scales with 1=dz so that the newly appearing
bands, originating in additional copper atoms, have to contribute substantially to the majority
ff2;sz
xy (k).
An overall increase due to the ‰-distribution is very unlikely as the compensation is small

for small thicknesses. Accordingly, all RTS-fractions of the thinner systems are smaller than
1=3. Furthermore, Fig. 8.10c demonstrates a strong sensitivity with respect to small changes
for the thicker systems as relatively small alterations of one integral can yield large-percentage
changes in the net TSHE. Indeed, the thicker systems experience more drastic variations
than a small decrease in the RTS-fraction from 1=3. Instead, enhancements up to 40:3%
(FeCu4Fe) and decreases down to 21:5% (FeCu6Fe) are observed.

An extremal case of these considerations is FeCu3Fe. There, already RTS‰=0 is very small due
to cancellation of ff2;sz

xy (k). In principle, this could allow large percentage enhancements of
RTS‰(k) over R

TS
‰=0 in case of unbalanced ‰-distributions. Instead, the ‰-distributions results in

an even greater cancellation which remarkably culminates in a sign change and is accordingly
the opposite of greatly diminished minority contributions. While of no practical use due to its
small magnitude, this sign change demonstrates the huge potential impact of the overlap ‰.

Figure 8.11: ‰-distribution for each
thickness as a bar where each horizon-
tal slice represent Fermi points with
the color-coded ‰ and height-encoded
Fermi-line weight.

Comparison of the previous conclusions with the
overall ‰-distribution (Fig. 8.11) demonstrates the in-
tricate nature of the relation between RTS and ‰ as
well as the necessity for detailed investigation. For ex-
ample, the ‰-distributions of FeCu5Fe and FeCu6Fe are
very similar, however their RTS-fractions caused by the
k-resolved ‰ are very different. In contrast, FeCu0Fe
and FeCu2Fe have very similar RTS-fractions while
their ‰-distributions are extremely different. Further-
more, large RTS-fraction changes do not necessitate
many large ‰ as could be a naively expected, instead
the extreme cases FeCu3Fe and FeCu4Fe even have
the least large ‰. Hence, reliable conclusions can only
be drawn from k-resolved distributions of both ‰ and
ff2;sz
xy (k) as done at the end of this chapter.
The inability to estimate TSHE properties purely

from the k-independent ‰-distribution is further demonstrated by comparison to the iteration-
time dependence (Fig. 5.6c). There, very slow convergences are found for n = {3; 4; 5}
while n = {0; 1} converge very quickly. In general, longer iteration-times ti t are necessary to
converge k with small ‰ as shown in Fig. 5.6a-b. Here however, this relation is violated most
prominently in the case of the iron double-layer. There, the Fermi lines have many intermediate
‰, yet the overall convergence is relatively fast. Furthermore, the quickly converged FeCu1Fe
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8.3 FeCuFe thickness dependence

system has similarly many ‰ ∈ [0; 0:2] as the slowly convergent FeCu4Fe system. Hence,
the ‰-distribution is insufficient to infer information about the iteration-time dependence,
instead detailed knowledge of the k-dependence of included parameters is necessary for
sensible predictions. Still, it is clear from the ti t-dependence that thicker systems require
larger ti t which originates from the ever increasing number of sections with relevant ff2;sz

xy (k)-
contributions that will have slightly different ti t-dependences due to different group velocities
and overlaps.
More details of the thickness dependence can be uncovered by plotting the k-resolved

ff2;sz
xy (k) for all investigated systems (Fig. 8.12). In case of the Fe double-layer, most k

yield positive ff2;sz
xy (k)-contributions while the few negative contributions originate mainly

in the near-crossings of Fermi-lines where large TSHE-magnitudes appear due to strong
dispersion variations. When increasing the Cu-thickness, more and more Fermi lines emerge
in the outer Brillouin-zone parts naturally resulting in an increasingly dense Fermi surface.

Figure 8.12: ff2;sz
xy (k)-distribution for different thicknesses of FeCunFe at the

respective Fermi surface with ‰ = 0 (upper, a) and including ‰(k) (lower, b).
Notice the change to logarithmic scales at ±100 ~

e
—S.
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Although many of those lines are parallel, more crossings appear and constitute the majority
of the transport contributions. As line-crossing can cause ff2;sz

xy (k)-increases by orders of
magnitude (Sec. 8.2.2), the computational demand increases strongly with increasing thickness.
Furthermore, Fermi lines with unusual shape appear due to hybridization with the numerous,
densely-packet Fermi-lines as for example for FeCu4Fe near X. In general, SOC can lessen
the computational demand as energy-gaps increase so that the Fermi lines become more
separated (Sec. 8.2.3), yet only small modifications are to be expected due to the lightness of
the constituting atoms.
The cumulated contribution of long, well-separated Fermi lines decreases with increasing

thickness due to the 1=dz prefactor which is only partially countered by the increasing number
of Fermi lines. This decrease is clearly expressed in the Fermi line directly enclosing M whose
shape is relatively unaffected from n = 2 to n = 6 but whose magnitude is ever decreasing.
Conversely, the line enclosing Γ has a very erratic behavior with respect to the thickness.
While this line foreseeably yields relatively large magnitudes in case of n = 0 (only for ‰ = 0),
visible contributions are also appearing for FeCu5Fe where the innermost bands are in close
proximity. In contrast, the transport contributions for the systems with neighboring thickness
are negligible. Although these central bands are long, their ff2;sz

xy (k)-magnitudes are minor
which demonstrates the advantage of an alternative criteria for the Fermi line interpolation
instead of constant length (Sec. 5.2.1).

One further merit of the systematic investigation of the thickness dependence is the ability
to study the evolution of the enigmatic overlap ‰. The naive expectation is that ‰ will
decrease with increasing thickness as the iron states become increasingly separated in real
space. However, such a decrease is not observed as the states at the Fermi surface include
significant contributions from the Cu-atoms as well. Instead, even larger ‰ are expressed
with increasing thickness as summarized in Fig. 8.11. This effect could be studied better by
intercalating an insulator instead of copper thereby preventing the emergence of new Fermi
lines when increasing the spacer thickness. Still, antiferromagnetic coupling would have to
be ensured and the overall transport would decrease with dz -increases as the insulator layers
would not supply any transport contributions while the ‰-decreases only have limited potential
for increasing the transport signal. Hence, the here-investigated trilayer setup results in more
interesting properties.

In more detail, this evolution is visualized in Fig. 8.13 k-dependently. The previous simple
picture is violated already in case of the Fe double-layer where small ‰ appear even without
intercalated Cu-layers. Still, the line enclosing Γ consists of relatively large ‰ which decrease
drastically when including even one copper layer. As this Fermi line is separated from the
other bands, its evolution with increasing thickness can be tracked until it is approached by a
second line at n = 4, the prevalent Fe-character is further supported by Fig. 8.3. The line
retains a very small ‰ throughout the investigated thicknesses so that the bands in its vicinity
still have ‰ < 0:2 even at n = 6. The Fermi line’s TSHE contribution is diminishing (Fig. 8.12)
despite its small ‰ due to the small effective masses and group velocities. The other kept
characteristic Fe double-layer feature is the bend of the second line going from Γ to M. For
n = 2, its Fe-character is verified by Fig. 8.3 (5th line Fig. 8.2) and its supposed monotonous
decrease of ‰ is not violated since the small initial ‰ is retained for all thicknesses. The
remaining double-layer Fermi lines are not that easily tracked and might even disappear due
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8.3 FeCuFe thickness dependence

to shifts in the Fermi energy and band bending effects from the appearing copper states. Yet,
small remainders of the initial Fe double-layer with small ‰ are identifiable for all thicknesses.
The ‰-evolution of the newly appearing states is not as comprehensible since Fermi lines

with small, large, and even strongly fluctuating ‰ appear. Although ‰ is relatively constant for
some of the long Fermi lines, for others it changes drastically despite absence of other nearby
Fermi lines. The ‰-behavior is relatively comprehensible at Fermi line crossings as it mainly
exhibits large variations only if the crossing bands have different ‰. However, such crossings
become more numerous with increasing thickness due to the correspondingly increasing
number of bands. Moreover, drastic ‰ variations are to be expected in the immediate vicinity
of Dirac cones, as shown in Fig. 8.7c, that are not resolved on the scale of Fig. 8.13 and
might require different Fermi energies. Since hitherto long Fermi lines traversing the whole
Brillouin zone start to form smaller lines from n = 5 onwards, more extreme ‰-changes on
short reciprocal-space length scales appear in these newly formed lines. A further property of
‰ is its decrease to 0 at the Brillouin zone boundary [76]. Since lines with large ‰ appear for
n ≥ 4 at the Brillouin zone boundary, localized sections with large ‰ variations appear in its
vicinity.

Having k-resolved information about ‰ (Fig. 8.13) and ff2;sz
xy (k) for both ‰ = 0 and ‰(k)

(Fig. 8.12) for all investigated thicknesses, it is interesting to study their relations and search
for validations of previous findings. Foremost, the large difference in magnitude of ff2;sz

xy (k)
between ‰ = 0 and ‰(k) is immediately apparent. The first, obvious relation between all 3
plots is the (1−‰2)-decrease in addition to the 1=3 decrease due to the spin expectation value.
However, direct comparison is difficult since ff2;sz

xy (k) varies on several orders of magnitude
so that many positions of large ‰ vanish already in case of ‰ = 0. Still, in some cases the
expected relation are directly visible as for example in case of the Γ-encircling state of the
iron double-layer. The opposite case with large remaining ff2;sz

xy (k) due to small ‰ is more
apparent as for example in case of the Fe-dominated state encircling M. Another property
is the attenuation of large magnitude sign-changes of ff2;sz

xy (k) within one Fermi line due to

Figure 8.13: ‰-distribution for different thicknesses of FeCunFe at the respective
Fermi surface.
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‰-peaks as for example near M in case of FeCu5Fe and FeCu6Fe. While some ff2;sz
xy (k)-peaks

at avoided Fermi-line crossings are lessened by these ‰-spikes, others do no coincide at all
with ‰-maxima resulting in relatively strong transport impact when considering the inherent
‰(k).

One further interesting case is FeCu4Fe which experiences the lowest TSHE-decrease when
going from ‰ = 0 to the inherent ‰(k) (Fig. 8.10b). Despite having a final RTS-percentage
much larger than 1=3, comparison between ‰ and ffszxy is surprisingly inconclusive. The overall
ffszxy is negative since RTS is positive and as B is negative so that the positive ffszxy(k)-sections
have to be affected more strongly by ‰. However, many line sections with large ‰ do not have
large Hall contributions and other major ‰-features, such as the 3rd band from M, decrease
minority- and majority-ffszxy (k) symmetrically. Only few of the significant ‰ directly coincide
with positive ffszxy(k) (e.g. near Y ) while some occur at k with clearly negative ffszxy(k). This
demonstrates the huge compensation and intricacy of the TSHE while pointing towards the
possibility of much more significant enhancements in case of more selective ‰-distributions.

In conclusion, it is shown that the chosen method is well-suited to describe thicker systems
although the TSHE-calculation becomes more involved as even small Fermi-lines and small
avoided crossings have to be resolved. The relation between the thickness, ‰, and ff2;sz

xy (k) is
investigated which invalidates naive assumptions and exposes the complicated structure of the
relevant parameters. Moreover, the sensitivity with respect to small bandstructure-changes is
reinforced which demonstrates the necessity for precise calculations.
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Chromium thin films

As described in Sec. 2.3, two distinct kinds of antiferromagnetic skyrmions are viable. The
first kind, the synthetic AFM skyrmion, has already been investigated extensively in the bilayer
model (Sec. 6) and the Fe/Cu/Fe-trilayer (Sec. 8). In contrast, this section examines the
alternative possibility—the intrinsic AFM skyrmion.
Initially, we aimed to study this possibility in an iron monolayer on W(001). This is a

sensible choice since its checkerboard antiferromagnetic structure is well established from
theoretical and experimental studies also utilizing the here-used DFT code [152]. Moreover,
small-scale domain-walls were discovered in this system through spin-polarized scanning
tunneling microscopy [153], which, though oriented along high-symmetry lines, is a first step
towards skyrmionic textures. Even the expression of a ferromagnetic anti-skyrmion phase was
theoretically predicted for the related Fe double-layer on W(110) [29] for which the exhibition
of domain walls was already shown experimentally [154].
Consequently, DFT calculations were performed based on previous structures [152]. The

Figure 9.1: Band properties of antiferromagnetic Fe/W(001) with 6 W-layers. a)
shows good agreement between the DFT (black) and Wannier-Hamiltonian (red)
bandstructure without SOC up to the boundary of the “frozen” window (green). b)
displays ‰ at the Fermi surface without SOC while c) visualizes the spin magnitude
|s| including SOC in z-direction.
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9 Chromium thin films

FLEUR code was employed to describe an iron-monolayer on 6 tungsten layers using the
PBE-functional. Energetic comparison of the ferro- and antiferromagnetic structure verified
the antiferromagnetic preference. Afterwards, Wannier functions were constructed based on
initial projections on s-,p-, and d-orbitals in case of Fe and s-, and d-orbitals in case of W
(in sum 180 states). The resulting model Hamiltonian reproduces the DFT-bandstructure
very well (Fig. 9.1a). From the corresponding Fermi-surface, which shows a huge ‰-variety
(Fig. 9.1b), the TSHE can be straightforwardly calculated using this thesis’ method. However,
the previously degenerate bands split up when introducing SOC (Fig. 9.1c) which ultimately
results in the emergence of the THE when considering a skyrmion texture. While the
treatment of such systems is easier in this thesis’ approximations due to the simplification to
non-degenerate wave-packet equations of motion (Secs. 3.1, 5.1.1), such studies are not the
main focus of this thesis and are hence not pursued.
Instead, this chapter investigates the TSHE of intrinsic antiferromagnetic skyrmions in

thin chromium films. Similarly to the last chapter, at first the reciprocal-space properties
and TSHE-characteristics are depicted for different thicknesses with and without SOC on the
DFT-level. Afterwards, the dependence of the obtained TSHE on the spin-texture is explored.

9.1 General structure

While antiferromagnets are abundant in nature, only few elemental antiferromagnets exist.
Bulk chromium is a well-studied, appealing realization due to its metallic phase and simple,
body-centered cubic structure. Furthermore, thin Cr(001)-films were shown to exhibit
antiferromagnetic behavior as overlayer on metals [155] and directly as mono- and trilayers [156].
However, layers along (001)-direction are not suitable for our purpose since each layer contains
either spin-up or spin-down atoms, never both. Accordingly, depending on the number of
layers, either the top- and bottom-layer have opposite, pure spin character or an overall
spin moment remains. Neither of these possibilities complies with the intended intrinsic
antiferromagnetic setup, thus the (110)-surface is chosen instead. That orientation results in
a centered rectangular unit cell whose longer edge has the

√
2-fold length of the shorter edge.

Previous studies of Cr(001) as monolayer on Cu(111) demonstrated an energetic preference
of an 120◦ noncollinear antiferromagnetic over the row-wise antiferromagnet [157]. Here
however, we investigate free-standing Cr-layers and assume the row-wise, collinear antiferro-
magnetic setup (Fig. 9.2a). For simplicity, the bulk lattice parameters (291 pm) are used so
that a ≈ 5:50 ab and b ≈ 7:78 ab. The centered and the corner atoms have opposite spins
and the neighboring layers are translated relative to each other by half the longer lattice unit
vector. Accordingly, each layer has compensated spin and the system is PT -symmetric.

In the following, both the monolayer and the trilayer are investigated based on a DFT-
description using LDA. As expected, both cases prefer the antiferromagnetic order energetically
and the bandstructures remain doubly-degenerate (Fig. 9.2b,c) irrespective of the inclusion of
SOC. Wannier functions are constructed using s-,p-, and d-orbitals as initial guesses on a
12× 12-grid which reproduce the bandstructure well.
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9.2 Monolayer

Figure 9.2: a) visualizes the structure of trilayer (110)-chromium with color-
coded spin directions. b,c) show the bandstructure without SOC for monolayer
(110)-chromium (b) and trilayer (110)-chromium (c) which demonstrates excellent
agreement up to the boundary of the “frozen” window (green) between the DFT
(black) and Wannier-Hamiltonian (red) bandstructure.

9.2 Monolayer

The most simple system with the (110)-structure is a monolayer consisting of just one spin-up
and one spin-down atom arranged in the rectangular structure. The bandstructure (Fig. 9.2a) is
relatively simplistic so that the Fermi-surface of the DFT Fermi-level consists of only 2 distinct
lines respectively enclosing the Y - and M-point. Consequently, the bandstructure derivatives
(Fig. 9.3a-c) are simple as well so that only few sign-changes appear in the effective masses.
Likewise, the ‰-distribution has very few features, however the overall very small magnitude
with ‰ < 0:15 and ‰’s even smaller than 10−4 demonstrates good separation between the
degenerate bands. This is a major difference to the synthetic antiferromagnetic Fe double-layer
(Fig. 8.13) were some bands even reach ‰ ≈ 0:69 though parts with comparably small ‰ exist.
Hence, judging from these 2 data points only, the very thin intrinsic antiferromagnets are
more decoupled than their synthetic counterparts which should result in a smaller difference in
RTS compared to 1=3 of the decoupled ‰ = 0 calculations. One disadvantage of the overall
small ‰ is that |@k ln(‰)| is very large in parts due to the 1=‰-denominator. Hence, rapid
changes of @k ln(‰) occur especially at the positions of minimal ‰ on the line enclosing the
Y -point despite the overall simple Fermi-surface structure.
Next, the TSHE is calculated assuming the 3q-skyrmion texture and using the previous

reciprocal-space description. The resulting iteration-time dependence of RTS is shown in
Fig. 9.4a. After iteration for 1 ns, the transport expressions converge to RTSxy ≈ 2:45·10−11 ~

e
Ωm
T

and RTSyx ≈ −2:41 · 10−11 ~
e

Ωm
T
. While crystal symmetries enforced equality between RTSxy

and −RTSyx in the previous systems, in case of the Cr(110) no such symmetry is directly
apparent. Nevertheless, in case of the monolayer RTSyx ≈ −RTSxy holds within the accuracy of
the k-interpolation despite entirely different ff2;sz (k)-distributions and accordingly different
ti t-convergence paths. Surprisingly, this relation holds at different Fermi energies as well.
Since only 2 well-separated Fermi-lines exist at the DFT Fermi-energy, the k-resolved

conductivities are relatively smooth with significant contributions arising from both bands
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9 Chromium thin films

Figure 9.3: Collinear properties of Cr(110) monolayer at the Fermi surface without
SOC. a) shows the group velocity with color-coded magnitude and indicated direction
through arrows. b) and c) display the diagonal and off-diagonal second energy
derivatives corresponding to the effective masses. d) shows the overlap ‰. In
e) @k log ‰ is plotted where the color denotes the magnitude logarithmically and
densely plotted arrows indicate the direction.

(Fig. 9.4b,c). Their magnitudes are large in comparison to those of the FeCuFe-trilayer
(Figs. 8.5, 8.12b). Since the dispersion derivatives are of similar magnitude, this mainly
originates in the small magnitude of dz = 4:52 aB. Contributions with positive and negative
ff2;sz (k) appear in both directions so that the RTS is more compensated than in case of very
thin FeCunFe-layers but significantly less than in case of thicker systems. Here, ff2;sz is 46%
(xy) and 40% (yx) of the majority sum compared to 79% in case of the iron double-layer
(Fig. 8.10b).

The RTS are quite near to 1=3 of the ‰ = 0 calculations with 35:6% and 35:0%. However,
since the (1 − ‰2)-prefactor with the maximal ‰ only yields an overall reduction to 97:8%
the previous interpretation of preferred attenuation of the minority ff2;sz (k) is insufficient to
describe that deviation. Furthermore, the k of maximal ‰ have small ff2;sz (k)-magnitudes
so that this explanation is even less convincing. Alternatively, this effect could be caused
by the large @k‰. However, comparing calculation with @k‰ = 0 yielded even slightly larger
RTS with reductions to 35:7% and 35:1% which eliminates this possible explanation. Since
the percentages are still quite near to 1=3, a systematical modification due to the different
setup (intrinsic skyrmions) is unlikely so that insufficient ti t-convergence is the most probable
cause. As many k have very small ‰, this explanation is also convincing as small ‰ increase
the necessary ti t significantly (Fig. 5.6) due to increased tracking of the texture changes
(Eq. 3.38a).
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9.3 Trilayer

Figure 9.4: TSHE of Cr(001) monolayer as calculated with Nk = 1024, NR = 10,
and ‹nmax = 0:01 (compare to Sec. 5.3). a) shows the ti t-dependence of the
topological spin Hall constant RTS. b,c) show exemplary, converged (ti t = 1 ns),
k-resolved conductivity contributions. The longitudinal conductivity in x-direction
is displayed in b) and the transversal spin conductivity corresponding to RTSyx is
plotted in c).

In conclusion, the Cr(110) monolayer intrinsic AFM skyrmion is a simple system without
huge differences to the previous synthetic AFM skyrmions. A remarkable property is the
extreme smallness of ‰, but the overall decrease due to the SU(2)-character is surprisingly
similar to previous calculations so that all computations can be performed analogously, though
larger ti t are necessary. This setup could be used to further investigate the properties of
intrinsic AFM skyrmions, instead the Cr(110) trilayer is chosen for further investigations due
to the monolayer’s extreme Fermi-surface simplicity and smallness of ‰.

9.3 Trilayer

Since the chromium monolayer is relatively simplistic, the main emphasis of this chapter is
laid onto the trilayer (Fig. 9.2a) as investigated in this section. Here, its TSHE is studied
assuming the 3q skyrmion texture which demonstrates huge similarities with the synthetic
AFM-skyrmion. The extension to different textures is covered in the next section.

9.3.1 TSHE at the Fermi surface

Analogous to the previous chapter, the TSHE is investigated first without SOC and assuming
the 3q-texture.

The main reciprocal-space properties are displayed in Fig. 9.5. Many new Fermi lines emerge
compared to the monolayer. As the number of atoms is tripled, the tripling of the bands
around M is self-evident. The other monolayer line encircling Y is quadrupled which is not
surprising as the monolayer has another flat band almost reaching the Fermi energy at Y
(Fig. 9.2b,c). Furthermore, 3 bands emerge near the X-point so that overall 3 separate sets
of Fermi lines are exhibited. While the set encircling M is relatively simple, the other set
has crossings which complicate the interpolation and result in localized enhancement of the
effective masses and large |@k‰|. Excluding these sections, the magnitudes of the group
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9 Chromium thin films

Figure 9.5: Collinear properties of Cr(110) trilayer at the Fermi surface without
SOC. a) shows the group velocity with color-coded magnitude and indicated
direction through arrows. b) and c) display the diagonal and off-diagonal second
energy derivatives corresponding to the effective masses. d) shows the overlap ‰.
In e) @k log ‰ is plotted where the color denotes the magnitude logarithmically and
densely plotted arrows indicate the direction.

velocities and effective masses are relatively comparable and do not include extreme variations.
The most significant modification is the largely increased variation of ‰. Here, ‰ reaches
almost 0:8 which is a drastic difference to the monolayer with ‰ < 0:15. Some bands still
have small ‰, but the overall distribution is similar to that of the FeCuFe-trilayer. Hence,
more features are expected due to the SU(2)-character and smaller @k ln(‰) are expressed.

The TSH-properties at the Fermi surface are displayed in Fig. 9.6. The RTS-convergence is
slower than in case of the monolayer which, at first glance, is surprising due to the decreased
average ‰. Still, many Fermi line sections also have small ‰ which explains this behavior in
combination with the significantly decreased group-velocity magnitudes. RTSxy and −RTSyx are
surprisingly equal despite the absence of enforcing symmetries similar to the monolayer. At
different EF this relation is approximately satisfied for a surprisingly large range, yet many
EF show clear violation so that without further study this property has to be regarded as
accidental. Compared to the ‰ = 0-case, RTS is reduced to approximately 31:5% which is
slightly below 1=3 so that the k-dependence of ‰ has no surprising effects. Considering the
slow convergence, the percentage might even decrease further which would still be within
expectable ranges but is different from the monolayer case with percentages slightly above
1=3.

The Fermi line sets have relatively different characteristics (Fig. 9.6b,c). The longitudinal
component has relevant contributions from the M- and Y -set while the X-set is of small
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9.3 Trilayer

Figure 9.6: TSHE of Cr(110) trilayer as calculated with Nk = 8196, NR = 10, and
‹nmax = 0:01 (compare Sec. 5.3). a) shows the ti t-dependence of the topological
spin Hall constant RTS. b,c) show exemplary, converged (ti t = 1 ns), k-resolved
conductivity contributions. The longitudinal conductivity in x-direction is displayed
in b) and the transversal spin conductivity corresponding to RTSyx is plotted in c).

integrated magnitude. The transversal components are even more diverse due to the small,
negative contributions from the X-set, strongly alternating and compensating contributions
from the Y -set, and dominating monotonously positive contributions from the M-set. Com-
pared to the monolayer, the compensation of the ff2;sz

xy (k) has decreased so that the ff2;sz are
∼ 61% of the majority ff2;sz

xy (k)-integral (monolayer on average ∼ 43%). This change can be
mainly attributed to the remaining large contributions of the M-lines in combination to the
emergence of small positive contributions near X so that the small integrals of the X-sets
become irrelevant.
Overall, the total TSHE-magnitude is slightly larger than that of most FeCuFe-trilayers.

The magnitudes of ff2;sz (k) vary less which, in combination with fewer line-intersections,
allows the usage of less Nk . Furthermore, the decreased symmetry allows differences between
RTSxy and RTSyx which results in more volatility with respect to texture variations. Hence, the
Cr(110) trilayer supplies a great platform for further examination of the intrinsic AFM-setup.

9.3.2 Influence of SOC

Figure 9.7: Cr(110) Fermi surface
including (red) and excluding (black)
SOC.

While the previous trilayer setup has many useful prop-
erties, line crossings at the Fermi energy still compli-
cated the TSHE evaluation. SOC generally adds level
repulsion through symmetry breaking so that crossings
are often avoided (as in case of the FeCuFe-trilayer in
Sec. 8.2.3). Since Cr is a light atom (Z = 24), only
few modifications are to be expected near the intersec-
tions. Still, SOC results in significant modifications of
the Fermi surface as shown in Fig. 9.7. The extreme
splitting of the bands near Y is most noticeable, but
also intersections of the lines near X are lifted. Un-
fortunately, 4 symmetry-related crossings within the
Brillouin zone are split very weakly so that some numerical intersection problem remains.
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9 Chromium thin films

Figure 9.8: Collinear properties of Cr(110) trilayer at the Fermi surface including
SOC. a) shows the group velocity with color-coded magnitude and indicated
direction through arrows. b) and c) display the diagonal and off-diagonal second
energy derivatives corresponding to the effective masses. d) shows the magnitude
of the spin-expectation value as obtained from the Wannier model. e) visualizes
the overlap ‰. In f) @k log ‰ is plotted where the color denotes the magnitude
logarithmically and densely plotted arrows indicate the direction.

The reciprocal-space Fermi surface properties are displayed in Fig. 9.8. Consideration of
SOC barely affects the band properties as can be seen by comparison to the analogous
plot without SOC (Fig. 9.5). The group velocities are barely affected while the maximal
magnitudes of the 2nd derivatives grow to more than the twofold of the previous maxima.
These spikes at the edges linearly affecting the TSHE could severely complicate the necessary
k-interpolation which would counteract the previous intention of simplification through
opening the intersections. Fortunately, SOC diminishes the spin-polarizations |sz | significantly
around those k reaching almost 0 so that ff2;sz

xy (k) has small minima instead of spiky maxima
(Fig. 9.9c). ‰ decreases slightly around the avoided crossing in principle enhancing the TSHE
contributions again, but this effect is entirely superseded by the |sz |-decrease. Since the
affected line-sections ultimately have minor contributions, the effect of ‰ increasing the
necessary ti t for convergence is negligible as well. The enhanced variations of ‰ increase the
variability of the directions of @k‰ as well, but no systematic effect on the transport is found.

The TSHE is calculated and displayed analogously to the case without SOC (Fig. 9.6) in
Fig. 9.9. Few modifications caused by the consideration of SOC have a huge impact on the
TSHE, most notably the clear lifting of the RTSxy = −RTSyx -relation. While RTSyx decreases by
5:3% relative to the calculation without SOC, the magnitude of RTSyx increases by 10:3% to
−6:35 · 10−11 ~

e
Ωm
T
. Similar differences are found at different Fermi energies. Furthermore,
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9.3 Trilayer

the ti t-convergence is accelerated as no trend is visible from at least 0:5 ns onwards, whereas
RTS is still slightly decreasing for larger times when excluding SOC (Fig. 9.6a).
The modification of RTS has its origins in the modifications of both ff1 and ff2;sz . The

adjustments of the former is straightforward. The group-velocities have relatively small
magnitudes in the vicinity of the crossing so that the initial ff1(k) have only minor contributions
(Fig. 9.6b). This does not change with the introduction of SOC so that some positive
sections are effectively removed from the Fermi surface thereby shrinking the integrated value
(Fig. 9.6b).
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without SOC 5:16 4:43 1:31 −1:31
including SOC 4:86 4:14 1:27 −1:63

Table 9.1: Effect of SOC on relevant (spin) conductivities for RTS-calculation.

The modifications of ff2;sz (k) are different. Only few differences are apparent when
comparing the xy -case with (Fig. 9.9c) and without (Fig. 9.6c) SOC. Of course, contributions
from the lines around Y disappear, but this change has minor overall impact since those
bands had positive and negative contributions of similar magnitude. The modifications
near X have even less impact as only very localized and minor modifications are visible.
Consequently, ff2;sz

xy changes only insignificantly with a minor decrease in magnitude (Tab. 9.1).
ff2;sz
yx behaves differently. The initial positively dominated Y -states are replace by a smaller

but more concentrated positive contributions around the edges. More importantly, negative
ff2;sz
yx (k) appear in the X-states counteracting the previously positive sections. Accordingly,
ff2;sz
yx decreases significantly enhancing the Ryx -magnitude.
In conclusion, SOC has a strong impact on the TSHE though considering its effect on the

collinear-DFT level only. As the computation after construction of the Wannier-functions is
identical, its inclusion allows major accuracy improvements with only minor computational

Figure 9.9: TSHE of Cr(110) trilayer as calculated with Nk = 8196, NR = 10, and
‹nmax = 0:01 (compare Sec. 5.3). a) shows the ti t-dependence of the topological
spin Hall constant RTS. b,c) show exemplary, converged (ti t = 1 ns), k-resolved
conductivity contributions. The longitudinal conductivity in x-direction is displayed
in b) and the transversal spin conductivity corresponding to RTSyx is plotted in c).
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effort. In case of the chromium trilayer, SOC simplifies the Fermi surface properties and
results in better converged and direction-dependent RTS. Hence, the following investigation
of texture modifications is based on the calculations including SOC.

9.4 Variation of the skyrmion texture

After detailed study of the transport properties evoked by the 3q-texture, the question arises
whether the obtained TSHE is indeed a topological quantity, meaning that it is independent
of the skyrmion shape but depends only on the skyrmion number. While the few parameters
of the 3q-texture could be varied to obtain slight modifications, the more viable option is the
employment of the SPIRIT-code as described in Sec. 2.4.2. This section accordingly considers
the TSHE of various different textures.

9.4.1 3q-state versus similar SPIRIT texture

First, it is sensible to investigate the similarity between the previously used 3q-texture and
the atomistic parameterization. Fortunately, an alternative texture with great similarity to
the 3q-texture is already described in Sec. 2.4.2.

Figure 9.10: TSHE comparison be-
tween 3q-texture (Fig. 2.4) and similar
SPIRIT texture (Fig. 2.5)

Consequently, the TSHE is calculated with the
atomistic parameters from Tab. 2.1 in order to com-
pare the resulting TSHE with that of similar 3q-state
calculations in Fig. 9.9. The differences between both
calculations, encoded in the ti t-dependence of RTS,
are shown in Fig. 9.10. Only minimal differences
between the converged results are to be expected
due to the topological nature of the TSHE and the
similarity of the textures. Indeed, for RTSxy this equal-
ity is well satisfied with differences of only 0:13%,
however for RTSyx the final values are visibly different
with 0:78%. Comparing the overall ti t-dependence
their similarity is most convincing. RTSxy converges
quicker than RTSyx in both cases and the shape of the
convergence is relatively texture-independent. While
the differences between the textures decrease in case of RTSxy , it is relatively constant for RTSyx .
The slower convergence of the SPIRIT-texture in case of RTSxy might originate in the more
abrupt radial change of the skyrmions which can delay the |sz |-convergence, however this
explanation is weak considering the similar convergence of RTSyx . The reason for that difference
most probably lies hidden in the transport weights and corresponding ‰-distributions.

Nevertheless, the applicability of the SPIRIT-textures is demonstrated and a first confirma-
tion of the topological character is obtained as the final RTS-differences are quite small. In
the following, the topological property is challenged by more drastic variations of the skyrmion
lattice.
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9.4.2 Isolated Skyrmions

The most trivially achievable skyrmionic texture in the atomistic setup are isolated skyrmions.
Starting from a small spherical section with reversed spins, the magnetization quickly converges
to a skyrmion groundstate given suitable parameters. While such isolated skyrmions are
disadvantageous from the viewpoint of the TSHE iterative solution, they allow great variability
and easy modification of the skyrmion types. Here, Bloch-, Néel-, and anti-skyrmions as most
basic skyrmion types (Sec. 2.1.2) are investigated in square-lattices with very far separated
skyrmions.
The skyrmion type can be easily tuned by changing the DMI-direction. The here-used

parameters and chosen DMI-tensors are denotes in Tab. 9.2.

type J[meV] Dxx Dxy Dyx Dyy Kz [meV] Bz [T]

Bloch 15 2 0 0 2 0:4 1
Neel 15 0 −2 2 0 0:4 1
Anti 15 0 2 2 0 0:4 1

Table 9.2: SPIRIT-parameters corresponding to the texture displayed in Fig. 9.15.
The DMI is given in meV.

The corresponding textures are shown in Fig. 9.11. The size of the magnetic lattice-spacing
is scaled to match the averaged emergent magnetic field of the 3q-texture. Due to the
increased B and K (Tab. 2.1) the skyrmion radius (∼ 30 aB) got much smaller than in the
previous case (∼ 115 aB). Furthermore, the long distances between neighboring skyrmions
enhances the Bz-magnitude. Hence, the emergent fields become very large and localized
with up to −380 T (Fig. 9.12b) in comparison to the −19:7 T of the 3q-texture (Fig. 2.4b).
A further difference is that almost no positive Bz -contributions appear in the isolated case
(Bz < 0:01 T) while in the 3q-case positive contributions emerged with more than 20%
magnitude of the maximal negative Bz . Since the different types of the isolated skyrmions are
very similar except for their defining differences, the emergent magnetic fields are equivalent
except for the sign-reversal in case of the anti-skyrmion.
The evoked TSHE of the isolated skyrmion lattice is surprisingly independent of the

skyrmion type (Fig. 9.12a). While the topological character suggests equivalent final values,

Figure 9.11: Skyrmion textures of the 3 investigated types as given in Tab. 9.2.
The colormap is chosen analogously to Fig. 2.4
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the intermediate values might vary due to the different spin-evolution. Yet, their RTS have
only very minor differences at very small ti t and become almost identical for intermediate ti t .
The final RTSxy are virtually indistinguishable as their difference is less than 0:04%, the RTSyx -
differences are even smaller. Note that the anti-skyrmion is distinguishable due to the reversed
ff2;sz
xy -sign, the previous equivalence originates from the division by the averaged emergent

magnetic field B which also changes sign (Eq. 4.12). Comparison to the previous 3q-texture
verifies the expected behavior. The RTS are very different for small ti t as the 3q-calculation
starts with larger magnitudes while the isolated textures start with smaller magnitudes. This
difference is easily understandable as the 3q-texture has skyrmionic behavior everywhere
so that all initial states with perfect spin polarization describe the maximal contributions.
Conversely, the initial-state real-space grid resolves the isolated skyrmion texture very poorly
in the isolated skyrmion case as many states are in the antiferromagnetic background.
Coincidentally, the initial grid is skewed towards the background so that RTS starts from a
significantly smaller magnitude. After sufficient ti t the previous inaccuracies are resolved and
the RTS converge towards similar values. Ultimately, the RTS differ by less than 0:8% despite
their entirely different shape. As this difference is only marginally larger than the difference
to the atomistic texture of Sec. 9.4.1, the topological character of the TSHE is confirmed for
drastically different magnetic textures.

9.4.3 Skyrmion lattice variation

After demonstrating RTS’s independence with respect to the skyrmion type and drastic
skyrmion-size changes, this section explores a more systematical approach to variations of the
skyrmion’s size and shape in a lattice.
At first, it is necessary to obtain a convenient skyrmion lattice description within SPIRIT.

In principle, it is possible to start again from the 3q-alike texture of Sec. 2.4.2. However,
one disadvantage of that texture is that the skyrmion lattice does not perfectly fit into
the 200 × 200 unit-cell which results in unexpected distortions and lattice rearrangement

Figure 9.12: a) Comparison of RTS between the different type isolated skyrmions
types and the 3q-lattice texture. b) Emergent magnetic field corresponding to the
isolated Néel-type skyrmion (Fig. 9.11b).
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Figure 9.13: Magnetic texture (a) and emergent magnetic field (b) of this section’s
skyrmion lattice model. The atomistic parameters are given in Tab. 2.1 . The gray
lines denote the possible minimal unit-cells. The unit-cell of this texture contains 4
of the minimal ones.

despite systematically changing parameters. Furthermore a large number of skyrmions (14) is
necessary to arrange the skyrmions in a lattice through energy minimizations. Obviously, this
reduces the accuracy of the ensuing spline-interpolation (Sec. 5.2.3) as less atomistic sites
constitute one skyrmion.

This problem can be circumvented by adjusting the SPIRIT-grid to the expected lattice-
symmetry. Since the SPIRIT-description requires a rectangular lattice while the skyrmions
form a triangular lattice, the most simplistic congruent choice is a rectangle whose lattice-ratio
is a = (2=

√
3)b. Under these conditions a perfect triangular structure could be constructed by

skyrmions centered on the corners and in the center. However, it is impossible to exactly satisfy
the ratio with equidistant lattice-spacing as the fraction is an irrational number. Nevertheless,
a 153 × 265-grid satisfies the relation sufficiently well with an error of 0:38% which is a
definite improvement over the 200 × 200 grid with only minor increase of computational
demand.

For convenience, the same parameters as for the isolated skyrmions are used (Tab. 9.2).
Based on an arbitrary choice, the bulk of the ensuing calculations is only done for the
antiskyrmion texture since the TSHE is independent of the skyrmion type. Indeed, calculations
of the basic texture simply switching to Bloch- and Néel-type show RTS-differences of less
than 0:03%. The small skyrmion size determined by the chosen parameter set requires the
inclusion of 4 minimal triangular unit cells into the used unit cell. Although this decreases
the accuracy of each skyrmion (8 instead of 2), still significantly more sites describe each
skyrmion and the lattice-ratio condition remains satisfied. The magnetic order parameter and
the corresponding emergent magnetic field is visualized in Fig. 9.13. At the given parameters,
the skyrmions are well separated so that their shape closely resembles that of the isolated
case (Fig. 9.11). Analogous to the isolated case, the emergent magnetic field contains very
small negative contributions only (positive in Fig. 9.12b), but due to the lattice arrangement
the magnitudes do not differ much from those of the 3q-texture.
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J[meV] Dxy [meV] Dyx [meV] Kz [meV] Bz [T]

15 2 2 0:4 1

Table 9.3: SPIRIT-parameters corresponding to the texture displayed in Fig. 9.13

Figure 9.14: TSHE comparison of anti-
skyrmion lattice (Fig. 9.13) with 3q-texture
and isolated anti-skyrmion (Fig. 9.12)

The TSHE’s ti t-evolution of this texture is
shown in Fig. 9.14. As expected, the RTS con-
verge on similar time-frames and the final values
are very near to those of the previous calcula-
tions based on the 3q-texture and the isolated
skyrmions. Incidentally, the converged RTS are
between those of the comparative calculations.
This section’s lattice has a smoother convergence
as it starts from a more suitable initial-grid and
has a smoother Bz than the 3q-texture.
Hence, this setup is nicely suited for TSHE

calculations following this thesis’s method so
that it can be conveniently used in the following
to study the dependence on size- and shape-
variations.

Variation of radius

Firstly, the TSH-response to variations of the skyrmion radius is investigated. One simple
possibility to achieve such systematical changes is the variation of the applied B-field within
the atomistic model. Larger B correspond to an increased energetic preference of the
background state so that the skyrmions shrink and vice versa. Example emergent magnetic
fields demonstrating growth and shrinking of the skyrmions depending on B are shown in
Fig. 9.15. The relation between the applied field B and the skyrmion radius rsky is visualized
in Fig. 9.16a. rsky is defined as the distance between the skyrmion core with maximal nz-
magnitude and the surrounding positions where nz = 0. This distance can depend on the
direction as skyrmions are not necessarily spherical . Hence, minimal and maximal distances
are displayed. From the atomistic input parameters, this sections’ skyrmion texture should
be spherical which is accurately confirmed by the vanishing difference between minimal
and maximal radii. Hence, the great numerical accuracy of the skyrmion lattice on this
interpolation grid is reaffirmed. The monotonous, non-linear relation between B and rsky
demonstrates the expected tuning applicability.

With the same numerical parameters as in previous calculations, the TSHE is calculated for
B = 0:6::1:6 T in steps of 0:1 T. The final RTS after ti t = 1 ns are shown in Fig. 9.16b. Most
remarkably, a clear, almost linear dependence between B and RTS is observed. When changing
rsky from 60 aB to 114 aB, i.e. almost quadrupling the skyrmion size, RTSxy and −RTSyx increase
by 1:1% and 3:3%, respectively. Although this size change is much smaller than the previous
comparison of isolated skyrmions and the 3q-state (Sec. 9.4.2), this sections’ RTS-variation is
much more drastic than the previous section’s 0:8%. One possible explanation is insufficient
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Figure 9.15: Anti-skyrmion lattice with changing applied B-field. The other
parameters are shown in Tab. 9.3.

ti t-convergence, however Fig. 9.16c demonstrates similar behavior with relatively flat but
offset curves for different B. This possibility can be excluded as RTSyx has an significantly
flatter ti t-dependence though having a stronger B-dependence. Furthermore, the differences
between the RTS(B) slopes in the xy - and yx-case excludes simple reasons such as wrongly
calculated B or direct changes of |sz |.

Hence, the topological character of the TSHE is unexpectedly violated with respect to
the skyrmion-radius variations. Overall, this effect is not overly severe with at most 3:3%
in the here-investigated, quite large range, but it is definitively an interesting result entirely
impossible in the trivial ferromagnetic formalism.

Figure 9.16: THSE properties of Cr(110) trilayer with varying skyrmion radii. a)
shows the skyrmion radii rsky depending on the applied field B with the remaining
parameters from Tab. 9.3. b) demonstrates the dependence of RTS on B. In c)
the iteration-time ti t-dependence for RTSxy is shown for several B in units of T.
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9.4.4 Variation of shape

Alternatively, the shape of the skyrmions can be changed through variation of the DMI.
Choosing D’s with different magnitudes distorts the skyrmions away from the spherical shape
and thus allows systematic investigation.
Again, the basic texture of the previous section (Tab. 9.3) is used. Severe distortions are

introduced by varying Dyx from 1:9 meV to 2:1 meV, thus investigating the vicinity of the
previously chosen Dyx = 2:0 meV. Exemplary emergent magnetic fields of this series are
visualized in Fig. 9.17. Strong distortions are immediately visible especially in y -direction
for larger Dyx . Further increase results in the formation of stripe domains. Conversely, the
skyrmions enlarge in x-direction but shrink in y -direction for smaller Dyx . Yet, the overall
skyrmion shape remains well distinguishable and the B-magnitudes do not change drastically.
The skyrmion radii are plotted in Fig. 9.18a reaffirming the previous observations. For the
largest Dyx , the maximal radius exceeds its counterpart from the B-variations while the
minimal radius becomes relatively small. Hence, strong skyrmion-distortions are observed in
the chosen range of parameters, although smaller Dyx could be chosen to further enlarge the
range investigated distortions.
The TSHE-dependence on this texture variations is shown in Fig. 9.18b. Contrary to the

variation of B, no strong dependences are expressed. While −RTSyx decreases with decreasing
D in most cases, the overall change is only 0:88% instead of the previous 3:3%. Considering
the change of the skyrmion size with variations of D, this minimal trend could be a further
manifestation of the previously discovered dependence on the radius. However, for the
RTSxy calculations no dependence is visible anymore, instead the previous trend of increasing
magnitudes is entirely replaced by small, unsystematic variations. The ti t-dependence of RTSyx
(Fig. 9.18c) shows the previous behavior where most contributions are horizontally shifted
and not converging towards a similar value. In comparison, the ti t-dependent variations are
less systematical than in case of RTSxy analogous to the variation of B.
In conclusion, this calculation confirms the topological independence on the shape, only

Figure 9.17: Anti-skyrmion lattice with changing Dyx . The other parameters are
shown in Tab. 9.3
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Figure 9.18: THSE properties of Cr(110) trilayer with varying skyrmion shape.
a) shows the minimal and maximal skyrmion radii rsky depending on Dyx with the
remaining parameters from Tab. 9.3. b) demonstrates the dependence of RTS on
Dyx . In c) the iteration-time ti t-dependence for RTSxy is shown for several Dyx in
meV.

remnants of the previous, unexpected dependence of the size are recovered.
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Conclusion

In summary, a computational method has been developed which allows the estimation of the
topological spin Hall effect in the adiabatic limit as exhibited by degenerate antiferromagnetic
skyrmions, based on collinear density functional theory.

It is demonstrated that the arising spin-dynamics of the wave-packet equations of motion,
caused by the non-abelicity of the Berry curvatures and connections, have tremendous impact
on the resulting topological spin Hall effect.
A main part of this thesis is the development and implementation of a computational

scheme for calculating transport effects based on semiclassical equations of motions and
the Boltzmann formalism, as well as embedding of this procedure into existing numerical
frameworks. Practically, the spin- and real-space dynamics of wave-packets in magnetic
textures are solved iteratively using the Runge-Kutta method while transport characteristics
are extracted using simple approximations of the Boltzmann equations. Convergence with
respect to numerical parameters is carefully examined and several procedures are employed to
balance numerical accuracy and computational effort. While the majority of the performed
calculations use a basic skyrmion lattice approximation, various periodic magnetic textures can
be imported from an atomistic spin dynamics code. Smoothness between the sites, as required
from the semiclassical equations of motion, is ensured by spline interpolation which also
accelerates the computational evaluation of analytical skyrmion-models. Simple and versatile
application to various materials is guaranteed by an interface to well-established density
functional theory utilizing Wannier functions from which all necessary collinear reciprocal-
space properties are obtained accurately and efficiently.

Realistic estimations of the topological spin Hall effect are attained for FeCuFe(001)-trilayers
and thin Cr(110)-layers demonstrating the universality of the calculation procedure irrespective
of the distinction into synthetic and intrinsic antiferromagnets. Sizeable magnitudes of the
topological spin Hall effect are predicted similar to previous studies of the topological Hall effect.
Furthermore, extreme sensitivity with respect to reciprocal-space properties is uncovered
which promises great tuning potential especially in the presence of Dirac cones. Consideration
of spin-orbit coupling on the DFT-level has lead to minor corrections only, yet entwining
with topologically non-trivial reciprocal definitively possible in the chosen framework provides
interesting vistas for further studies.
Contrary to the sensitivity with respect to reciprocal-space changes, the topological char-
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10 Conclusion

acter of the arising transport is verified by study of diverse skyrmion textures. Only minor
systematic variations are discovered when slightly modifying an example skyrmion structure
while consideration of vastly different textures resulted in almost identical responses.

A great advantage of the employed method is the great adaptability on the level of the
semiclassical equations of motion and ensuing approximations in the Boltzmann formalism.
While further corrections of the studied transport effects could be systematically included, a
particular interesting possibility is the consideration of textures in degenerate non-collinear
antiferromagnets whose rich dynamics promise exciting phenomena.
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