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ABSTRACT 

Terrestrial ecosystems constantly exchange momentum, energy, and mass (e.g., water vapor, 
CO2) with the atmosphere above. This exchange is commonly measured with a 
micrometeorological technique, the eddy covariance (EC) method. Various components of the 
measured net fluxes, such as transpiration, evaporation, gross primary production, and soil 
respiration, cannot be depicted separately by the EC approach. Thus, so-called source 
partitioning approaches have to be applied to CO2 and water vapor EC data to gain a better 
understanding of the prevailing processes and their interrelations in terrestrial ecosystems. A 
large variety of partitioning procedures with diverse model approaches have been developed, 
including various driving variables, necessity of different input data and parameterizations. 
The most robust and commonly used source partitioning tools for CO2 flux components, often 
primarily developed to fill gaps in EC measurements, are based on the notion that during night 
respiration fluxes prevail. They use non-linear regressed relationships of these nighttime 
observations and physical drivers (e.g., temperature in the approach after Reichstein et al. 
2005). Here, the challenge lies within extrapolating the nighttime relationship to daytime 
conditions, and analogous methods for water fluxes are lacking. In this thesis, next to the 
approach after Reichstein et al. (2005) various data-driven source partitioning approaches for 
H2O and CO2 fluxes were applied, compared, modified, and evaluated for multiple ecosystems 
to get a better understanding of the methods’ functionality, dependencies, uncertainties, 
advantages, and shortcomings. 
We first describe the coupling and extension of the complex terrestrial ecosystem model 
AgroC. Further, we conducted a comprehensive model-data fusion study to clarify the CO2 
exchange in agroecosystems and estimate their annual carbon balance. For three test sites in 
Western Germany, AgroC was calibrated based on soil water content, soil temperature, 
biometric, and soil respiration measurements for each site, and validated sufficiently in terms 
of hourly net ecosystem exchange (NEE) measured with the EC technique. Moreover, AgroC 
reproduced the flux dynamics very effectively after sudden changes in the grassland canopy 
due to mowing. In a second step, AgroC was optimized with the EC measurements to examine 
the effect of various objective functions, constraints, and data-transformations on the estimated 
carbon balance and to compare the results to the established gap-filling approach after 
Reichstein et al. (2005). It was found that modeled NEE showed a distinct sensitivity to the 
choice of objective function and the inclusion of soil respiration data in the optimization 
process. Even though the model performance of the selected optimization strategies did not 
diverge substantially, the resulting cumulative NEE over simulation time period differed 
extensively. Therefore, it is concluded that data-transformations, definitions of objective 
functions, and data sources have to be considered cautiously when a terrestrial ecosystem 
model is used to determine NEE by means of EC measurements. 
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Second, we applied the source partitioning approaches after Scanlon and Kustas (2010; SK10) 
and after Thomas et al. (2008; TH08) to high frequency EC measurements estimating 
transpiration, evaporation, net primary production, and soil respiration, of various ecosystems 
(croplands, grasslands, and forests). Both partitioning methods are based on higher-order 
statistics of the H2O and CO2 fluctuations, but proceed differently. SK10 had the tendency to 
overestimate and TH08 to underestimate soil flux components, where the partitioning of CO2 
fluxes was more irregular than of H2O fluxes. Results derived with SK10 showed relatively 
large dependencies on estimated water use efficiency (WUE) on leaf-level, which is needed as 
an input. Measurements of outgoing longwave radiation used for the estimation of foliage 
temperature and WUE could slightly increase the quality of the partitioning results. A 
modification of the TH08 approach, by applying a cluster analysis for the conditional 
sampling of respiration/evaporation events, performed sufficiently, but did not result in 
significant advantages compared to the other method versions. The performance of each 
partitioning approach was dependent on meteorological conditions, plant development, canopy 
height, canopy density, and measurement height. Foremost, the performance of SK10 
correlated negatively with the ratio between measurement and canopy height. The 
performance of TH08 was more dependent on canopy height and leaf area index. It was found, 
that all site characteristics which increase dissimilarities between scalars enhance partitioning 
performance for SK10 and TH08. 
Also, we conducted large eddy simulations (LES), simulating the turbulent transport of H2O 
and CO2. SK10 was applied to the synthetic high frequency data generated by LES, and the 
effects of canopy type, measurement height, given scalar sink-source-distributions, and 
estimated WUE input were tested regarding the partitioning performance. The LES-based 
analysis revealed that for a satisfying performance of SK10, a certain degree of decorrelation 
of the H2O and CO2 fluctuations was needed and a correct WUE estimation was favorable. 
Furthermore, another possible error source, which was so far not yet discussed in the literature, 
could be detected for the partitioning approach. In the special case of the LES experiments, 
validity of an essential assumption about the prevailing transport efficiencies of the scalars in 
the method’s derivation was found to be a crucial point for a correct application of SK10. 
The application of different source partitioning methods including their various involved 
assumptions, required input data and work effort showed that still uncertainties and unknowns 
prevail for the source partitioning of water vapor and CO2 fluxes. An assessment and 
evaluation of the partitioning results can only be conducted with additional measurements of 
flux components on differing spatial and temporal scales independent of the EC 
measurements. Further, the application of multiple partitioning methods (usage of an 
ensemble) to the same data can give a better idea about uncertainties in the results.  



 

III 

ZUSAMMENFASSUNG 

Terrestrische Ökosysteme tauschen ständig Impuls, Energie und Masse (z.B. Wasserdampf, 
CO2) mit der darüber liegenden Atmosphäre aus. Dieser Austausch wird üblicherweise mit 
einer mikrometeorologischen Methode, der Eddy-Kovarianz-Methode (EC), gemessen. Die 
einzelnen Komponenten der gemessenen Nettoflüsse, wie Transpiration, Evaporation, 
Bruttoprimärproduktion und Bodenatmung, können durch die EC-Methode nicht erfasst 
werden. Daher müssen sogenannte Quellpartitionierungsmethoden (engl. „source partitioning 
methods“) auf CO2- und Wasserdampf-EC-Daten angewendet werden, um die 
vorherrschenden Prozesse und deren Wechselwirkungen in terrestrischen Ökosystemen besser 
zu verstehen. Eine Vielzahl von Partitionierungsverfahren mit unterschiedlichen 
Modellansätzen unter Berücksichtigung verschiedener Einflussfaktoren wurde entwickelt. Die 
am häufigsten verwendeten Partitionierungsmethoden, die nur auf CO2-Flussmessungen 
anwendbar sind und oft in erster Linie zum Füllen von Lücken in den EC-Messungen 
entwickelt wurden, basieren auf der Vorstellung, dass in der Nacht nur Respirationsflüsse 
vorherrschen. Sie nutzen nichtlineare Regressionen zwischen diesen nächtlichen Messungen 
und Umweltfaktoren (z.B. Temperatur in der Methode nach Reichstein et al. 2005). Hier liegt 
die Herausforderung in der Extrapolation der nächtlichen Verhältnisse zu den 
Tagesbedingungen und zudem fehlt es an analogen Methoden für Wasserflüsse. In dieser 
Arbeit wurden neben der Methode nach Reichstein et al. (2005) verschiedene analytische 
Ansätze zur Quellpartitionierung von Wasser- und CO2-Flüssen angewandt, verglichen, 
modifiziert und für mehrere Ökosysteme ausgewertet, um ein besseres Verständnis der 
Funktionalität, ihrer Abhängigkeiten, Unsicherheiten, Vor- und Nachteile zu erhalten. 
Zunächst beschreiben wir die Entwicklung und Erweiterung des komplexen terrestrischen 
Ökosystemmodells AgroC, mit dem wir dann eine umfassende Modell-Daten-Fusionsstudie 
durchführten, um den CO2-Austausch in Agrarökosystemen zu klären und deren jährliche 
Kohlenstoffbilanz abzuschätzen. Für drei Messstandorte in Westdeutschland wurde AgroC auf 
Basis von Messungen des Bodenwassergehalts, der Bodentemperatur, des Pflanzenwachstums 
und der Bodenatmung für jeden Standort kalibriert und im Hinblick auf den stündlichen, mit 
der EC-Methode gemessenem Nettoökosystemaustausch (NEE) erfolgreich validiert. Zudem 
reproduzierte AgroC die CO2-Flüsse eines Graslands effektiv nach plötzlichen Änderungen 
der Vegetation durch Mahd. In einem zweiten Schritt wurde AgroC mit den EC-Messungen 
optimiert, um die Auswirkungen verschiedener Zielfunktionen, Restriktionen und 
Datentransformationen auf die simulierte Kohlenstoffbilanz zu untersuchen und die 
Ergebnisse mit der etablierten Partitionierungsmethode nach Reichstein et al. (2005) zu 
vergleichen. Es wurde festgestellt, dass die Wahl der Zielfunktion und die Einbeziehung von 
Bodenatmungsmessungen in den Optimierungsprozess die Simulation von NEE deutlich 
beeinflussten. Auch wenn die Modellperformance der verschiedenen Optimierungsstrategien 
nicht wesentlich voneinander abwich, war die resultierende, über den Simulationszeitraum 
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kumulierte NEE sehr unterschiedlich. Somit sollte die Anwendung von verschiedenen 
Datentransformationen, Zielfunktionen und Datenquellen gut bedacht sein, wenn ein 
terrestrisches Ökosystemmodell zur Bestimmung von NEE mittels EC-Messungen verwendet 
werden soll. 
Des Weiteren haben wir die Quellpartitionierungsmethoden nach Scanlon und Kustas (2010; 
SK10) und nach Thomas et al. (2008; TH08) auf hochfrequente EC-Messungen verschiedener 
Ökosysteme (Ackerland, Grasland und Wald) angewandt, die die Transpiration, Evaporation, 
Nettoprimärproduktion und Bodenatmung schätzen. Beide Partitionierungsmethoden basieren 
auf einer statistischen Analyse der H2O- und CO2-Fluktuationen, unterscheiden sich jedoch in 
der Vorgehensweise. SK10 tendierte zur Überschätzung und TH08 zur Unterschätzung der 
Bodenflusskomponenten, wobei die Partitionierung der CO2-Flüsse unregelmäßiger war als 
die der H2O-Flüsse. Die mit SK10 gewonnenen Ergebnisse zeigten relativ große 
Abhängigkeiten von der geschätzten Wassernutzungseffizienz (WUE) auf Blattebene, die als 
Input benötigt wird. Messungen der langwelligen Ausstrahlung zur Abschätzung der 
Blatttemperatur zur WUE-Schätzung konnten die Plausibilität der Partitionierungsergebnisse 
leicht erhöhen. Eine Modifikation der TH08-Methode durch die Anwendung einer 
Clusteranalyse für die Erfassung von Atmungs-/Verdunstungsereignissen ergab 
zufriedenstellende Ergebnisse, brachte aber keine signifikanten Vorteile gegenüber den 
anderen Methodenversionen. Die Güte der Partitionierungsergebnisse beider Methoden war 
abhängig von den meteorologischen Bedingungen, der Vegetationshöhe und -dichte, der 
Pflanzenentwicklung und der Messhöhe. In erster Linie korrelierte die Güte der 
Partitionierung durch SK10 negativ mit dem Verhältnis zwischen Mess- und Vegetationshöhe. 
Die Partitionierungsperformance durch TH08 war stärker abhängig vom Blattflächenindex und 
der Vegetationshöhe. Es wurde festgestellt, dass alle Standortmerkmale, die die 
Wahrscheinlichkeit einer Mischung der Skalarsignale vor Erreichen der EC-Station erhöhen, 
die Partitionierungsgüte für SK10 und TH08 verschlechtern.  
Außerdem haben wir Large Eddy Simulationen (LES) durchgeführt, die den turbulenten 
Transport von H2O und CO2 simulieren. SK10 wurde auf die von LES generierten, 
hochfrequenten Daten angewendet und die Auswirkungen von Vegetationsstruktur, Messhöhe, 
Senken- und Quellenverteilung der Skalare und unterschiedliche WUE Inputs wurden 
hinsichtlich der Partitionierungsgüte getestet. Die LES-basierte Analyse ergab, dass für ein 
zufriedenstellendes Ergebnis von SK10 eine gewisse Dekorrelation der H2O- und CO2-
Fluktuationen erforderlich und eine korrekte WUE-Schätzung förderlich war. Darüber hinaus 
konnte eine weitere mögliche Fehlerquelle, die bisher in der Literatur noch nicht diskutiert 
wurde, für den Partitionierungsansatz entdeckt werden. Im speziellen Fall der LES-
Experimente wurde die Validität einer wesentlichen Annahme über die vorherrschenden 
Transporteffizienzen der Skalare in der Methodenherleitung als entscheidender Punkt für eine 
korrekte Anwendung von SK10 ermittelt. 
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Die Anwendung verschiedener Partitionierungsmethoden mit ihren unterschiedlichen 
Ansätzen, den damit verbundenen Annahmen, den erforderlichen Eingangsdaten und dem 
Arbeitsaufwand hat gezeigt, dass für die Quellenaufteilung von Wasserdampf- und CO2-
Flüssen noch Unsicherheiten und Ungewissheiten bestehen. Eine Beurteilung und Auswertung 
der Partitionierungsergebnisse kann nur mit zusätzlichen Messungen von Flusskomponenten 
auf unterschiedlichen räumlichen und zeitlichen Skalen unabhängig von den EC-Messungen 
erfolgen. Weiterhin kann die Anwendung mehrerer Partitionierungsmethoden (Verwendung 
eines Ensembles) auf die gleichen Daten eine bessere Vorstellung von den Unsicherheiten in 
den Ergebnissen geben.  
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1.1. LAND-ATMOSPHERE EXCHANGE OF CARBON DIOXIDE 
AND WATER VAPOR 

Terrestrial ecosystems constantly exchange momentum, energy, and mass with the atmosphere 
above. These land-atmosphere interactions are mainly driven by incoming solar radiation and 
they play essential roles in both local and global climatology. Complex interrelations exist 
between atmosphere and land surface influencing physical, biogeochemical, and biological 
properties and conditions, and can be observed and contemplated on differing temporal and 
spatial scales (Dickinson 2002; Moene and van Dam 2014). 
During a typical daylight situation, the incoming solar energy is absorbed by the land surface, 
which heats up and thereby adjusts its properties to balance the received energy. Further, the 
solar energy drives photosynthesis and the evaporation of water from soil and water surfaces. 
When atmospheric water vapor condenses in a certain height, clouds are formed, which can 
have a cooling effect by reducing the incoming solar radiation (via reflection) and a warming 
effect by increasing downward thermal radiation. Moreover, clouds are a source of fluid and 
solid precipitation, which supplies water to the terrestrial ecosystem filling the soil water 
storage, ground water, rivers, and above-ground reservoirs. Plants take up soil water through 
roots to maintain their growth and release water by transpiration for the assimilation of CO2. 
Next to the radiative and hydrological input, the energy balance of the land surface further 
depends on wind, temperature, and humidity of the atmosphere, which in turn is also affected 
by the land surface. The main pathway for the energy exchange from the land surface to the 
atmosphere is turbulence motion (eddies) in the surface layer, the lowest layer of the 
atmosphere. The intensity of turbulence is determined by convection (surface heating) and 
mechanical mixing. The latter is imposed by wind strength and surface roughness (Dickinson 
2002; Jones and Rotenberg 2001; Moene and van Dam 2014). 
The focus in this study lies on the mass exchange of water vapor and CO2 within the soil-
vegetation-atmosphere continuum. 

1.1.1. Water Cycle and Water Vapor Fluxes 

In regard of terrestrial ecosystems as part of the global water cycle, precipitation (P) on the 
land surface can be lost to surface runoff towards the oceans, lateral flow through soil towards 
rivers and lakes, percolation and subsequent groundwater recharge, and evapotranspiration 
(ET) to the atmosphere (Fig. 1.1). ET consists of two components: the physical evaporation 
(E) from soil, surface water and wet canopies, and the biological transpiration (T) via soil
water uptake by roots and loss of water vapor through plant stomata, which is typically 
accompanied by photosynthesis (Bales 2002; Eamus 2001; Moene and van Dam 2014; 
Schlesinger and Jasechko 2014; Reichstein et al. 2012). E is controlled by atmospheric 
conditions, such as solar radiation, air temperature, humidity, and wind speed, as well as by 
the actual water supply. Next to the micrometeorological conditions in the canopy, T is 
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determined additionally by stomatal conductance, and more general by plant type and 
ecological conditioning. T locally exerts a cooling effect in canopies, and accounts for 60-80% 
of ET of terrestrial ecosystems, thus being a dominant part of the global water cycle. A portion 
of precipitation can be temporarily stored on vegetation surfaces (interception), and 
subsequently evaporate or reach the ground as throughfall (Bales 2002; Dickinson 2002; 
Moene and van Dam 2014; Reichstein et al. 2012; Schlesinger and Jasechko 2014). 
Net radiation, the sum of incoming solar shortwave radiation and thermal longwave radiation 
minus radiation reflected or emitted upward, is the main energy source for water and land 
surfaces. Depending on physical and ecological conditions of the surface, this energy is 
partitioned mainly between the soil heat flux, the sensible, and the latent (LE) heat flux to the 
atmosphere. A minor part goes into chemical energy during photosynthesis. The sensible heat 
flux describes the heat transfer from an area of higher temperature to one of lower temperature 
by conduction (between adjacent molecules without mass transfer) and convection (transfer of 
molecules themselves and their kinetic energy). The latent heat can only be extracted by a 
phase change. Sensible heat is transferred to latent heat when it leads to the evaporation of 
formerly liquid water to the atmospheric water vapor. When the water molecules condense 
(e.g., during cloud formation), the latent heat is gained again. Water vapor can be transported 
in air parcels over large vertical and horizontal distances, enabling an effective latent heat 
exchange in the soil-vegetation-atmosphere continuum (Moene and van Dam 2014; Jones and 
Rotenberg 2001). 
Due to its involvement in both the water and energy budget, evapotranspiration can be 
quantified by using a water balance estimation, using an energy balance to determine the 
amount of latent heat, or directly by assessing water vapor fluxes (Kool et al. 2014). 

1.1.2. Carbon Cycle and Carbon Dioxide Fluxes 

The global carbon cycle includes five large carbon storages: oceans, atmosphere, vegetation 
and soil of terrestrial ecosystems, and fossil fuel deposits. The amount of carbon currently 
stored in the terrestrial vegetation is estimated to be as large as the amount stored in the 
complete atmosphere. The amount stored in the soil is uncertain but estimated to be at least 
twofold larger. The oceans hold most of the carbon (about 50 times more than the 
atmosphere), mostly dissolved as bicarbonates and carbonates in sea water (Dickinson 2002; 
Houghton 2014). 
Carbon can be exchanged between the various storages very fast in a few seconds (e.g., 
fixation due to photosynthesis, fire) or over millennia (e.g., accumulation of fossil carbon), 
where the exchange between terrestrial ecosystems and atmosphere is relatively rapid. Plants 
(and other autotrophic organisms) transform radiative energy into chemical energy during 
photosynthesis (Fig. 1.1). CO2 is assimilated through the stomata and converted to glucose, 
cellulose, carbohydrates, proteins, and fats, all forms of organic matter, which, whether in 
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living organisms or in dead organic material, support food chains in natural ecosystems. 
Organic Carbon of terrestrial ecosystems can exist in form of living plant tissue, such as 
leaves, wood or roots, animals, microbes, decaying material, and as soil humus. In soil 
ecosystems, dead organic matter is decomposed by heterotrophic organisms, mostly bacteria 
and fungi, to access the stored chemical energy, and CO2 is respired back to the atmosphere 
(respiration by heterotrophs Rh). Also, plants respire. At a cellular level, the synthesized 
carbohydrates are metabolized (oxidized) by mitochondria into energy and CO2 (dark 
respiration). The energy is used to maintain growth and to convert carbohydrates to more 
complex molecules, which can be stored (Dickinson 2002; Houghton 2014; Kirschbaum et al. 
2001; Moene and van Dam 2014; Reichstein et al. 2012). CO2 is released by above-ground 
plant organs and below-ground by roots (respiration by autotrophs Ra; Fig. 1.1). The sum of Rh 
and Ra compose the so-called total ecosystem respiration (TER). Soil respiration (Rsoil) 
consists of the below-ground CO2 sources, Rh and root respiration. Furthermore, microbial 

Fig. 1.1: Exchange of CO2/carbon (orange) and water vapor/water (blue) in the soil-vegetation-
atmosphere continuum. Arrows represent fluxes for typical daytime conditions. Boxes represent 
storages or sinks. Dashed lines refer to transport or storage of matter in gas phase and non-dashed lines 
to transport or storage of fluid or solid matter (for abbreviations see text). 
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respiration of root exudates and rhizodeposition is considered as an additional CO2 source in 
soils. In this study, we refer to the autotrophic source of direct root respiration and the 
heterotrophic decomposition of root deposits, both occurring in the root zone, as “rhizosphere 
respiration” (Rrhizo; Kirschbaum et al. 2001; Kuzyakov 2006; Reichstein et al. 2012; Suleau et 
al. 2011; Subke et al. 2006). The counterpart (and ultimate source) of all these respiration 
fluxes is the removal of CO2 from the atmosphere by photosynthesis, also termed as gross 
primary production (GPP, true photosynthesis minus photorespiration), and the net flux of 
GPP and TER is the net ecosystem exchange (NEE). The term net primary production (NPP) 
describes the difference between GPP and Ra, i.e. the part of GPP leading to biomass growth. 
All described flux components are sensitive to changes in the soil-vegetation-atmosphere 
continuum. They strongly depend on the physical environment, biological factors, the 
overlying atmosphere, and the supply of energy and heat by the sun (Dickinson 2002; Eamus 
2001; Houghton 2014; Kirschbaum et al. 2001; Kuzyakov 2006; Moene and van Dam 2014). 
The natural fluxes of carbon between oceans, atmosphere, and land are considered to have 
been almost balanced, with the land approximately taking up as much carbon via CO2 
assimilation as it releases via respiration. Currently, this terrestrial balance is shifted, because 
the CO2 content of the atmosphere is increased by the human combustion of fossil fuels, 
making CO2 assimilation by plants more efficient (CO2 ‘fertilization effect’). The magnitude 
of transpiration is decreased and the ecosystem water use efficiency (ratio between CO2 
assimilation and water vapor loss) is increased. The additional removal and storage of 
atmospheric CO2 by the terrestrial ecosystems is an ecosystem service decelerating climate 
change, but we cannot foresee when and under what conditions this removal would cease or 
even be reversed (Baldocchi et al. 2001; Dickinson 2002). Changes in the amount of carbon in 
terrestrial ecosystems are difficult to measure and more difficult to model and predict, because 
the land surface is not as well-mixed as the atmosphere or the oceans and thus more spatially 
heterogeneous, background levels are relatively high, and consequently upscaling of local 
measurements to global sums is very challenging. Thus, changes in storage and fluxes of 
terrestrial carbon are usually estimated by taking the differences from global carbon mass and 
the other three big reservoirs. The uncertainty of these estimations is still relatively high, and a 
deeper understanding, accurate observations, and better model predictions of the prevailing 
processes regarding carbon in terrestrial ecosystems are necessary (Houghton 2014). 

1.2. EDDY COVARIANCE FLUX MEASUREMENTS 

Atmospheric turbulence in the surface layer effectively exchanges momentum, heat, water 
vapor, and CO2 between land surface and atmosphere. A direct way to observe this flux 
exchange is the so-called eddy covariance (EC) technique. The concentration of H2O and/or 
CO2 in air parcels and the wind speed in three orthogonal directions can be obtained in high 
temporal resolution (usually in 10 or 20 Hz) via a gas analyzer and a sonic anemometer 
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(Fig. 1.2a). These instruments can be installed on a tower, causing only a minimal disturbance 
to the ecosystem. The calculation of the covariance between the measured vertical wind and 
one of the concentrations (after corrections and quality tests on the applicability of underlying 
assumptions) yield the net flux (LE or NEE, respectively) between ecosystem and atmosphere 
(Baldocchi et al. 2001; Baldocchi 2003; Foken 2006; Houghton 2014; Moene and van Dam 
2014). In this calculation the Reynolds decomposition is used, which separates the mean and 
the fluctuating part of a variable. Individual eddies in the turbulent atmosphere are 
characterized by a temperature, scalar concentrations, and a wind velocity vector different 
from the mean air flow. For the calculation of the covariance between vertical wind and scalar 
fluctuations, a time interval of usually one or one half hour of high frequency data is used. 
This time interval should be long enough to capture the most important eddy scales (up to a 
certain size), and short enough to exclude large-scale fluctuations. Ideally, the average vertical 
wind over that time interval is zero and conditions are stationary (Baldocchi 2003; Foken 
2006; Moene and van Dam 2014). The EC technique is a direct method to measure water 
vapor and CO2 exchange, but in the derivation of the algorithm several assumptions are made, 
making instrument- and data-related corrections and quality tests necessary. Due to these 
quality assessments, inadequate meteorological conditions, and required instrument 
maintenance gaps in the data record of EC measurements are to be expected and frequent. The 
number of gaps and the quality of EC measurements mainly depend on the atmospheric 
conditions, the homogeneity of the surface, and the correct application of data corrections and 
quality assessment tools. Furthermore, the spatial source of the measured fluxes has to be 
taken into account. An EC station can receive signals from a mostly upwind lying footprint 
area of over several 100 m2 (Baldocchi et al. 2001; Baldocchi 2003; Foken 2006). 
In micrometeorology so-called similarity theories were developed to understand and estimate 
the relationship between surface fluxes, vertical gradients, and fluxes in the atmospheric 
surface layer, which starts at a distance above the plant canopy, can reach various heights and 
is characterized by approximately height-constant vertical fluxes. Similarity theories assume 
that two flows behave similar if certain dimensionless characteristics are identical in these 
situations. The so-called Monin-Obukhov Similarity Theory (MOST) is commonly used to 
describe flow behavior in the surface layer based on dimensional analysis. The theory relates 
turbulence properties (velocity and scalar gradients, variances, and covariances) with surface 
fluxes of mass and energy. Derived relations between atmospheric variables and surface 
properties for certain situations can be applied to all similar situations with the universal 
functions derived from MOST. The theory assumes a flat, homogeneous surface and 
stationarity (Foken 2006; Moene and van Dam 2014; Patton and Finnigan 2012; van de Boer 
et al. 2014; Williams et al. 2007). In the so-called roughness sublayer, where a more direct and 
extreme influence of the canopy on the turbulence is observed, MOST requires adjustment. 
Within a canopy MOST is no longer applicable (Patton and Finnigan 2012). 
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The so-called flux-variance similarity theory leads to a second approach to estimate fluxes 
from measured variances and a known functional dependency of turbulent characteristics, 
expecting a similar transport for passive scalars (Foken 2006; Williams et al. 2007). The 
correlation coefficient between two passive scalars gives insight to which degree these two 
scalars conform these similarity assumptions. Dissimilarities between scalars can be provoked 
by turbulent structures and processes, horizontal heterogeneity of the canopy, its vertical 
structure, the sink-source-distribution of the scalars, their transport efficiencies, and source 
strength (Huang et al. 2013; Moene and Schüttemeyer 2008). 

1.3. SOURCE PARTITIONING APPROACHES 

With the EC technique the net exchange of H2O and CO2 between ecosystem and atmosphere 
is obtained. LE and NEE give valuable measures of ecosystem water availability and carbon 
sequestration, but the various flux components responsible for the net balance cannot be 
depicted separately by the EC approach. Quantifications of T, E, GPP, TER, Rh, Ra, Rsoil, their 
dynamics, variabilities, and feedbacks with environmental drivers give a better insight of the 
biosphere’s sensitivity towards global change. Thus, so-called source partitioning approaches 
have to be applied to EC data to estimate these flux components. Applicable to both LE and 
NEE measurements, or to each separately, a large variety of procedures with diverse model 
approaches including various driving variables, necessity of different input data, and different 
parameterization including the cost function have been developed (Desai et al. 2008; 
Reichstein et al. 2012; Stoy et al. 2006). 

Fig. 1.2: Instrumentation to measure heat, water vapor, and CO2 exchange between land surface and 
atmosphere at a cropland in Selhausen (a-d, f-h) and a spruce forest in Wüstebach (e) in Western 
Germany: a) eddy covariance station and b) profile lift (Patrizia Ney) for high frequency scalar 
measurements, c)-d) instrumentation for stable water isotope measurements (Maria Quade), e)-f) 
survey and longterm soil respiration chambers (Patrizia Ney), and g)-h) microlysimeters for soil 
evaporation. 
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Source partitioning methods can be classified as data-driven or instrumental approaches. 
Instrumental approaches require next to the EC instrumentation additional measurements in 
different parts of ecosystems and with different methods and instruments, e.g. chamber 
measurements (for soil surface and at leaf-level), profile measurements (Ney and Graf 2018), 
sub-canopy EC measurements, or tracer measurements (isotopes; Quade et al. 2019) (Fig. 1.2). 
The latter are very promising for flux partitioning, but because of their high costs, elaborated 
technical setups, and maintenance requirements they are usually not used for spatially 
widespread and longterm measurements. With flux chambers, sap flux sensors, and 
microlysimeters, sources and sinks of CO2 or H2O, respectively, can be derived in an 
ecosystem, but they are associated with scaling issues in comparison to the EC footprint (Kool 
et al. 2014; Reichstein et al. 2012; Schlesinger and Jasechko 2014). 
Data-driven approaches use existing (raw or processed) data of typical EC stations. The most 
popular source partitioning tools for CO2 flux components, often primarily developed to fill 
gaps in EC measurements of NEE, belong to such approaches, which are often based on the 
notion that during night respiration fluxes prevail. They use regressed relationships of EC 
measurements and physical drivers, e.g., between nighttime (respiration) fluxes and air 
temperature (e.g., approach after Reichstein et al. 2005). Here, the challenge lies within 
extrapolating the nighttime relationship to daytime conditions. The approach after Lasslop et 
al. (2010), for instance, deduces additionally the rate of photosynthesis with light response 
curves from daytime flux measurements to consider additionally the effects of radiation and 
vapor pressure deficit. The various non-linear regression gap-filling methods differ in choice 
of functional form, parameter fitting and time dependencies, time window size, and use of 
nighttime, daytime, or all NEE data (Desai et al. 2008; Falge et al. 2001; Moffat et al. 2007; 
Reichstein et al. 2012; Stoy et al. 2006). Several comparison studies concerning these data-
driven approaches have been conducted presenting discrepancies and uncertainties (e.g., Desai 
et al. 2008; Falge et al. 2001; Moffat et al. 2007). Similar to the CO2 gap-filling models, LE 
can be partitioned via time intervals without any T, such as for croplands shortly after harvest 
or in deciduous forests after leaf fall. However, most of the data-driven approaches are well 
developed for the partitioning of carbon fluxes, but analogous methods for water fluxes are 
lacking (Kool et al. 2014; Reichstein et al. 2012; Schlesinger and Jasechko 2014). 
Considering the coupling between the water and carbon cycle in the process of photosynthesis, 
new source partitioning approaches have been developed in the last decade to partition H2O 
and CO2 fluxes simultaneously using high frequency EC data. Scanlon and Sahu (2008) and 
Scanlon and Kustas (2010) suggest that air parcels originating from stomatal and non-stomatal 
(soil surface) processes have specific compositions of the two scalars and can be detected and 
quantified with the additional information about the water use efficiency (WUE) on leaf-level. 
Thomas et al. (2008) applied conditional sampling methods to identify turbulent events 
originating from the sub-canopy. These two different approaches proceed without any 
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assumptions about dependencies of the flux components on physical drivers, which makes 
them very interesting. 
Complex process-based ecosystem models can also be used for source partitioning 
applications and to get a better insight of interrelations and flux contributions of included 
processes, e.g., the response of photosynthesis and respiration to temperature fluctuations. 
Especially, model-data fusion frameworks allow an estimation of uncertainty in the 
measurements and model formulation. Furthermore, multiple driving variables can be included 
or chosen in such model simulations, such as rapid, seasonal, or annual changes in canopy 
characteristics, soil moisture, nutrient levels, and management strategies (Desai et al. 2008; 
Reichstein et al. 2012). 

1.4. MOTIVATION AND OBJECTIVE 

The main goal of this thesis was to apply, evaluate, and improve various data-driven source 
partitioning approaches using EC measurements of LE and NEE, and to get a better 
understanding of their functionality, dependencies, uncertainties, advantages, and 
shortcomings. Therefore, the transport of momentum and matter (water vapor, CO2) in the 
soil-vegetation-atmosphere continuum were especially of interest. Here, ecosystem processes 
and source partitioning results are usually contemplated in a half-hourly or hourly time step 
making diurnal dynamics apparent. 
First, we describe the coupling and extension of the complex terrestrial ecosystem model 
AgroC. Further, we conducted a comprehensive model-data fusion study to clarify the CO2 
exchange in agroecosystems and estimate their annual carbon balance (Chapter 2). AgroC 
contains detailed process descriptions of CO2 and carbon exchange between soil and crop. The 
model is calibrated using several measurements of heat, water, and CO2 fluxes at three test 
sites in Germany, and then validated with hourly NEE measured with the EC technique. In a 
second step, AgroC is optimized with these EC measurements to examine the effect of various 
objective functions and data-transformations on the simulated carbon balance. Also, the effect 
of including Rsoil measurements as an additional constraint to the fitting procedure is 
investigated. 
Second, we applied the source partitioning approaches after Scanlon and Kustas (2010) and 
after Thomas et al. (2008) to EC measurements of several study sites including forests, 
croplands, grasslands, and to synthetic data (Chapter 3, 4). Applying higher-order statistics, 
these methods focus on the correlation of water vapor and CO2 fluctuations to estimate the 
contributions of T, E, NPP, and Rsoil. Thus, these methods can be used for the partitioning of 
water and CO2 fluxes, and they (only) require high frequency raw data of common EC 
stations. The partitioning results are compared among each other and to the commonly used 
source partitioning approach after Reichstein et al. (2005), and are evaluated on the basis of 
additional measurements (Chapter 3, 4). In Chapter 3 the partitioning approach after Scanlon 
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and Kustas (2010) is applied to high frequency data synthesized by large eddy simulations 
(LES) to validate and further understand the functioning of the approach. In Chapter 4 
conditions and site characteristics for a high performance of both methods are identified via a 
site comparison study involving multiple sites in different ecosystems, and usage of a 
conceptual model. 
Chapter 2 of this thesis was published, Chapter 3 has been under review in a scientific journal, 
and Chapter 4 has been in preparation for submission, when this thesis was finalized (since 
2019, all three Chapters are published in scientific journals). The individual chapters are 
presented as published/submitted and each contains an introduction, a methodology 
description, results, discussion, and conclusions. Therefore, some contents, especially 
methodology descriptions, slightly overlap. Concluding remarks and an outlook are given in 
Chapter 5. 



 
 
 
 
 

2 

MULTI-SITE CALIBRATION AND VALIDATION OF A 
NET ECOSYSTEM CARBON EXCHANGE MODEL 
FOR CROPLANDS 

 

This chapter is based on a journal article published as: 
Klosterhalfen, A., Herbst, M., Weihermüller, L., Graf, A., Schmidt, M., Stadler, A., Schneider, K., 
Subke, J.-A., Huisman, J.A., Vereecken, H., 2017. Multi-site calibration and validation of a net 
ecosystem carbon exchange model for croplands. Ecological Modelling 363, 137-156, 
https://doi.org/10.1016/j.ecolmodel.2017.07.028. 
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2.1. INTRODUCTION 

Terrestrial ecosystems play an important role in the global carbon cycle. Photosynthesis by 
vegetation and respiration from autotrophic and heterotrophic organisms represent the two 
major carbon fluxes between atmosphere and terrestrial biosphere. Terrestrial ecosystems store 
large amounts of carbon, and especially soils contain about twice as much carbon as the 
atmosphere (Rustad et al. 2000). Over 37% of the world’s landmass is agricultural land (FAO 
Statistical Yearbook 2014). Thus, carbon fluxes in agroecosystems constitute a significant part 
of the global carbon cycle. The quantification and prediction of terrestrial carbon sinks and 
sources and their dynamics, variabilities, and controls are of major importance for climate 
change research and the optimization of management strategies affecting the ecosystem’s 
carbon budget (e.g., Baldocchi 2003; Kuzyakov 2006; Subke et al. 2006). The net ecosystem 
exchange (NEE) of carbon dioxide and its two components, gross primary production (GPP) 
and terrestrial ecosystem respiration (TER), are of particular interest (Suleau et al. 2011; Sus 
et al. 2010). The total CO2 efflux from soils, one of the major compartments of TER 
(Moureaux et al. 2008; Suleau et al. 2011), derives from decomposition of soil organic matter 
and dead plant material by microorganisms, from direct root respiration, and from microbial 
respiration of root exudates and rhizodepositions (Kuzyakov 2006; Kuzyakov and Domanski 
2000). In this study, we consider the last two CO2 sources as one sum, and refer to it as 
“rhizosphere respiration”. 
NEE is increasingly being monitored using the eddy covariance (EC) technique, which 
provides information on net carbon fluxes for a relatively large area with a high temporal 
resolution (Baldocchi 2003). This allows to investigate the relation between CO2 efflux and 
weather conditions or crop development stages (Sus et al. 2010). Due to methodological and 
technical constraints, significant gaps occur in high-quality EC data, which prohibits direct 
computation of annual NEE. Gap-filling methods (e.g., Reichstein et al. 2005) and their 
application with meteorological and EC data overcome this limitation, but e.g., they cannot be 
used for predictive modeling of carbon balances addressing climate change effects. 
Alternatively, terrestrial ecosystem models that provide a physical description of processes in 
the agroecosystem can be used to assess annual NEE sums. An additional advantage of such 
models is that they allow to quantify interrelations and feedbacks in biogeochemical processes 
and fluxes of agricultural systems. Mechanistic models like ORCHIDEE-STICS (de 
Noblet-Ducoudré et al. 2004), DNDC (Li et al. 2005), or SPAc (Sus et al. 2010) were 
developed for this purpose and have been successfully applied in a number of studies (e.g., 
Sus et al. 2010; Wattenbach et al. 2010; Wu et al. 2009; Yuan et al. 2012). In most of these 
studies, the carbon assimilation by plants was captured well by the models, but a significant 
bias in the simulation of the respiratory fluxes was observed. This inevitably causes systematic 
errors in the estimation of the overall carbon balance. An improved representation of processes 
linked to respiration may help to decrease systematic errors and in combination with soil 
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respiration (Rsoil) measurements, it may help to reduce the uncertainty in the estimation of 
annual NEE. For this purpose, we coupled a one-dimensional soil water, heat, and CO2 flux 
model (SOILCO2; Šimůnek and Suarez 1993), a pool concept of soil carbon turnover (RothC; 
Coleman and Jenkinson 2008), and a crop growth module (SUCROS; Spitters et al. 1989). In 
addition, the coupled model, further referred to as AgroC, was extended with routines for root 
exudation, root decay, as well as for a managed grassland system. The main motivation for the 
coupling was a more detailed representation of sources and locations of CO2 production, the 
gas transport in the soil, and the fluxes in the ecosystem. 
Various sources of measured data are available for validation, calibration, evaluation, and 
structural improvement of terrestrial ecosystem models. In the last decade, substantial progress 
has been made in implementing model-data fusion techniques to make optimal use of available 
measurements (e.g., Richardson et al. 2010; Sus et al. 2010; Trudinger et al. 2007; Wu et al. 
2009; Yuan et al. 2012). Such model-data fusion techniques, including calibration techniques, 
require the formulation and minimization of an objective function that quantifies the mismatch 
between model predictions and observations (Evans 2003; Herbst et al. 2008; Wang et al. 
2009). Detailed measurements of biotic and abiotic processes and fluxes allow to improve 
process models on various spatiotemporal scales, and to verify model assumptions, 
parameters, and performance (Richardson et al. 2010; Williams et al. 2009; Yuan et al. 2012). 
However, the use of multiple objective functions or constraints in model calibration may be 
challenging because of the need to combine measurements with variable spatial scale, 
temporal scale, magnitude, and uncertainty. For example, optimizing the simulation regarding 
one data source (e.g., NEE) can lead to a low model performance (trade-off) regarding another 
data source (e.g., heterotrophic soil respiration) (Richardson et al. 2010). Other important 
decisions to be made before model calibration include the selection and appropriate weighting 
of observations, the choice of an optimization algorithm (Trudinger et al. 2007), and the 
selection of model parameters being altered during calibration (Wu et al. 2009). These 
decisions differ between model studies, which will influence the results of NEE predictions 
(Evans 2003; Trudinger et al. 2007). 
The main goal of this study is to present the mechanistic model AgroC and to evaluate its 
model performance simulating biophysical processes and interactions in agroecosystems. In a 
first step, AgroC was calibrated with soil moisture, soil temperature, biometric, and soil CO2 
flux measurements of three test sites in Germany cropped with winter wheat, barley, or grass. 
After calibration, it was evaluated how well AgroC simulates the hourly NEE through 
comparison with EC measurements. In the next step, we optimized the AgroC model using EC 
measurements by estimating plant and Rsoil parameters. In addition, we evaluated how joint 
use of EC and Rsoil measurements in the calibration affected the estimated cumulative NEE 
and model performance. Finally, we evaluated the effect of data-transformation (e.g., 
log-transformation) on the model results with a focus on estimated NEE. 
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2.2. MATERIAL AND METHODS 

2.2.1. The AgroC Model 

AgroC is a coupled model developed from the SOILCO2/RothC model (Herbst et al. 2008) 
and the SUCROS model for crop growth (Spitters et al. 1989). The SOILCO2/RothC model 
simulates vertical water, heat, and CO2 fluxes in a soil column, and the source term of 
heterotrophic respiration over soil depth and time, which is given by the turnover of depth-
specific carbon pools (Coleman and Jenkinson 2008; Šimůnek and Suarez 1993; Šimůnek et 
al. 1996). The carbon turnover rates depend on the soil water content and temperature. The 
SOILCO2/RothC model was validated in several laboratory and field studies (Bauer et al. 
2008, 2012; Herbst et al. 2008; Palosuo et al. 2012; Weihermüller et al. 2009). The coupling 
with SUCROS is expected to allow for an improved simulation of the soil autotrophic 
respiration source term, since temporal development of root growth and related growth and 
maintenance respiration is simulated by SUCROS in a mechanistic way. In addition, AgroC 
was extended with routines for the simulation of root exudation, root decay, and managed 
grassland. The latter routine follows the sink/source approach suggested by Schapendonk et al. 
(1998) for the grassland productivity model LINGRA. The final coupled model allows closing 
the one-dimensional carbon balance and to estimate NEE, since carbon assimilation as well as 
organ-specific growth and maintenance respiration are now included. Figure 2.1 provides a 
summary of the carbon cycling in AgroC. 

 
Fig. 2.1: Carbon fluxes and partitioning in 
AgroC. Gross primary production (GPP) is 
partitioned to the different plant organs, leaves 
(subscript lv), stems (st), storage organs (so), and 
roots (rt). CO2 is lost due to growth (Rgr) and 
maintenance respiration (Rm). The sum of these 
autotrophic CO2 source terms by the shoot organs 
account for the above-ground respiration (RABG). 
Carbon and CO2 is added to the soil profile by 
autotrophic root respiration, root exudates, and 
dead roots. The latter two are transferred to the 
decom-posable and resistant plant material pool 
(DPM, RPM) of the RothC model and 
decomposed. The hetero-trophic CO2 source term 
consists of microbial decom-position of those and 
further soil organic matter pools (humified 
organic matter HUM, microbial biomass BIO). 
The root respiration and the heterotrophic 
components are part of the below-ground 
respiration (RBG). 
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The coupled SOILCO2/RothC model allows the use of user-specified length and time units, 
whereas the SUCROS module uses fixed units. For the coupled AgroC model, we preserved 
the flexibility in terms of length ([L]) and time units ([T]), but we kept the fixed mass and area 
units (kg, ha) of the original SUCROS code. Also, the final coupled AgroC model works with 
an hourly time step. Further information about the coupling and the modifications to the 
original models regarding the hourly time step, the water fluxes, the carbon fluxes, and the 
grassland routines are given in Appendix A. 

2.2.2. Study Sites and Data Availability 

AgroC was applied to three experimental sites in the western part of Germany: Selhausen and 
Merzenhausen, both located in the southern part of the Lower Rhine Embayment (Schmidt et 
al. 2012; Stadler et al. 2015), and Rollesbroich, located in the low mountain range Eifel 
(Gebler et al. 2015). The dominant land use at the first two test sites is cropland. Rollesbroich 
is a managed grassland site, which is mown three times per year (Borchard et al. 2015). All 
three study sites are included in the Terrestrial Environmental Observatories (TERENO) 
network of highly instrumented field sites (Zacharias et al. 2011). An overview of soil 
properties, meteorological conditions, and crop management is given in Tables 2.1 and A.1 for 
all three sites. 
At the two cropland sites, EC and ancillary environmental measurements were conducted in 
the center of the agricultural fields. Measurements of NEE, latent heat, wind components, 
global radiation, air temperature, soil (surface) temperature at a depth of -1 cm, precipitation, 
and relative humidity were collected. A detailed description of the sites, measurement setup, 
EC post-processing, and footprint modelling is given by Schmidt et al. (2012), Graf et al. 
(2013), Post et al. (2015), Mauder et al. (2013) and Kormann and Meixner (2001). Soil water 
content and soil temperature were measured in various depths at several soil profiles per site. 
Biometric measurements were carried out bi-weekly to monitor crop development, and Rsoil 
data were obtained with closed-chamber measurements during summer (Prolingheuer et al. 
2014; Schmidt et al. 2012; Stadler et al. 2015). Prolingheuer et al. (2014) also measured the 
heterotrophic contribution to the CO2 flux by root exclusion experiments at 61 sample points 
at the Selhausen test site. 
In Rollesbroich, the EC tower was placed between two neighboring grasslands (A and B) with 
different management in terms of mowing dates. Thus, measured fluxes were dominated by 
one of the two grasslands depending on the wind direction and the resulting flux footprint 
distribution. Data processing was similar to the two agricultural fields. Borchard et al. (2015) 
conducted detailed surveys of the Rollesbroich site. At 21 sample points in grassland A, soil 
samples were taken, and the total leaf area index (LAI) and harvested dry matter were also 
determined during the growing season. Eleven of the sampling points were mown following 
the management of grassland A, and the remaining 10 points were sampled following the 
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management of grassland B. Rsoil was again determined from closed-chamber measurements 
during summer. Soil moisture, soil temperature, and CO2 concentration in several depths were 
observed at three profiles near the EC tower. 
 
Tab. 2.1: Site-specific characteristics, meteorological conditions, and crop management (WW: winter 
wheat; WB: winter barley; GL: grassland) (Borchard et al. 2015; Gebler et al. 2015; Prolingheuer et al. 
2014; Schmidt et al. 2012; Séquaris et al. 2013; Stadler et al. 2015). 

 

2.2.3. Model Setup and Initialization 

AgroC requires gap-filled meteorological data (air temperature, soil surface temperature, 
precipitation, solar radiation, and potential grass reference evapotranspiration), plant-specific 
parameters, and soil characteristics. Potential grass reference evapotranspiration was estimated 
with the Penman-Monteith approach according to the FAO guidelines (Allen et al. 1998). 
Plant-specific parameters for cereals and grass were mainly taken from literature (e.g., 
Boons-Prins et al. 1993; Gonzales et al. 1989; Goudriaan et al. 1997; Kuzyakov and Domanski 
2000; Parsons 1988; Parsons and Robson 1981; Prud’homme et al. 1992; Schapendonk et al. 
1998; Spitters et al. 1989; Swinnen et al. 1995; Vanclooster et al. 1995; van Keulen et al. 
1997). These plant parameters have been extensively used in other simulation studies with the 
models SUCROS and LINGRA. Root biomass measurements were not available, thus the 
proportion of the root system (root/shoot ratio) was also derived from literature (e.g., Bolinder 
et al. 1997, 2002; López et al. 2013). 
In AgroC, appropriate boundary conditions have to be specified for CO2, water, and heat flow 
at the top and bottom of the simulation domain. The upper boundary condition for CO2 flow 
was the atmospheric concentration of 0.038%. Meteorological measurements were used to 
describe the upper boundary for water and heat flux. Soil profile characteristics were available 

 Selhausen Merzenhausen Rollesbroich 
    

Site characteristics    

coordinates 50°52’14’’N, 
6°26’59’’E 

50°55’47’’N, 
6°17’49’’E 

50°37’19’’N, 
6°18’15’’E 

elevation (m a.s.l.) 103 93 515 
soil type* Luvisol Luvisol Cambisol 
soil texture silt loam silt loam silty clay 
    

Climate conditions    
mean annual temperature (°C) 9.9 9.9 7.7 
annual precipitation (mm) 698 698 1033 
    

Simulation period Oct 2008 - Dec 2009 Oct 2011 - Dec 2014 Jan 2013 - Dec 2013 
    

Land management    
crop sequence WW WW - WW - WB GL 
 tilled every autumn tilled every autumn mowed 3x annually 
    

*according to soil taxonomy of the FAO (I.U.S.S. Working Group WRB 2006) 
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from Séquaris et al. (2013), Herbst et al. (2005), and Borchard et al. (2015) for Selhausen, 
Merzenhausen, and Rollesbroich, respectively (Tab. A.1 in Appendix A). The simulated 
profile depths varied from 1.0 to 1.2 m. A no-flow boundary was used at the bottom of the soil 
profile for heat and CO2. For water, a prescribed pressure head following a sine wave over the 
course of the year with a minimum in autumn was used as a Dirichlet boundary condition at 
the bottom of the simulation domain (Bauer et al. 2008; Scharnagl et al. 2011). 
Initial carbon pool sizes were derived from measured soil organic carbon contents for each soil 
horizon. In Selhausen and Rollesbroich, measured soil carbon fractions were available from 
previous studies (Bauer et al. 2012; Séquaris et al. 2013; Nils Borchard and Henning 
Schiedung, personal communication). For these two sites, initial pool sizes were calculated 
following Falloon et al. (1998), Skjemstad et al. (2004), and Zimmermann et al. (2007). For 
Merzenhausen, initial pool sizes were determined with pedotransfer functions according to 
Weihermüller et al. (2013), assuming a state of equilibrium. The reference temperature 
required for the estimation of the soil heterotrophic CO2 source term was set to the mean 
annual temperature at each site. 

2.2.4. Model Calibration 

In a first step, AgroC was calibrated with the downhill Nelder-Mead Simplex algorithm 
(Nelder and Mead 1965), since only a small number of parameters were considered. The root 
mean square error (RMSE) between measurements and simulations was minimized. In 
addition, the Pearson product-moment correlation coefficient (r) and the model efficiency 
(ME; Nash and Sutcliffe 1970) were calculated as model quality criteria. A ME close to 1 
indicates that the simulation describes the observations well without systematic bias. If ME is 
lower than 0, the mean of the observations is a better predictor than the simulation. 
First, the soil hydraulic parameters were calibrated. Then, plant development and growth were 
adjusted. Here, mainly the plant development rate depending on temperature, the effectiveness 
of CO2 assimilation, the partitioning factors of assimilates between the different plant organs, 
especially between shoot and root system, and the specific leaf area (conversion factor 
between plant dry matter and LAI) were modified (Tab. A.2 in Appendix A). 
CO2 production in the soil profile was estimated in dependence of several physical processes 
and conditions. For soil temperature, we used the default reduction function of the SOILCO2 
model, which is a modified form of the Arrhenius relationship (Šimůnek and Suarez 1993; 
Šimůnek et al. 1996). To describe the soil moisture dependency of respiration, we applied a 
bell-shaped curve as suggested by Bauer et al. (2012), Moyano et al. (2012), and Skopp et al. 
(1990). The simulation of Rsoil was improved by calibrating the reference temperature used in 
the temperature scaling function, the turnover rate of the resistant plant material (RPM) pool, 
and the parameters of the water reduction function. For Rollesbroich, soil CO2 concentration 
measurements in different depths were available, so the gaseous diffusion through the soil 
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matrix could also be adjusted. Here, we implemented the gas diffusivity and transport model 
of Kristensen et al. (2010), which accounts for preferential diffusion through fractures and 
macropores in the soil matrix. Appendant parameters, the fracture porosity, the fracture 
tortuosity factor, and the matrix tortuosity factor, were adjusted. 

Tab. 2.2: Applied optimization strategies and their objective functions, used data streams and data 
transformation (obsN: NEE observation; simN: NEE simulation; obsR: Rsoil observation; simR: Rsoil 
simulation). 

label objective function data 
streams 

data 
trans-
formation 

obs or sim 

NEEinst 

RMSE 

𝐸 =  √
1

𝑛
∑(𝑜𝑏𝑠𝑁𝑖

−  𝑠𝑖𝑚𝑁𝑖
)

2
𝑛

𝑖=1

NEE 

instan- 
taneous 

with 
𝑥𝑖

NEECum cumulative 𝑥𝑖 =  ∑ 𝑥𝑗

𝑖

𝑗=1

NEELog 
log-trans-
formed 𝑥𝑖 = ln(𝑥𝑖 + |min| +1) 

NEEinst + Rsoil 

𝐸 =  
√1

𝑛
∑ (𝑜𝑏𝑠𝑁𝑖

− 𝑠𝑖𝑚𝑁𝑖
)

2𝑛
𝑖=1

1
𝑛

∑ 𝑜𝑏𝑠𝑁𝑖
𝑛
𝑖=1

+  
√ 1

𝑚
∑ (𝑜𝑏𝑠𝑅𝑗

− 𝑠𝑖𝑚𝑅𝑗
)

2
𝑚
𝑗=1

1
𝑚

 ∑ 𝑜𝑏𝑠𝑅𝑗
𝑚
𝑗=1

NEE 
and Rsoil 

instan- 
taneous 𝑥𝑖

NEECum + Rsoil cumulative 𝑥𝑖 =  ∑ 𝑥𝑗

𝑖

𝑗=1

*

NEELog + Rsoil 
log-trans-
formed 𝑥𝑖 = ln(𝑥𝑖 + |min| +1) 

NEEBSc 

RMSE 
+ Bias

𝐸 =  √
1

𝑛
∑(𝑜𝑏𝑠𝑁𝑖

−  𝑠𝑖𝑚𝑁𝑖
)

2
𝑛

𝑖=1

+ |
1

𝑛
∑(𝑜𝑏𝑠𝑁𝑖

−  𝑠𝑖𝑚𝑁𝑖
)

𝑛

𝑖=1

| 

NEE instan- 
taneous 𝑥𝑖

NEEBSc + Rsoil 

𝐸 =  √
1

𝑛
∑(𝑜𝑏𝑠𝑁𝑖

−  𝑠𝑖𝑚𝑁𝑖
)

2
𝑛

𝑖=1

+ |
1

𝑛
∑(𝑜𝑏𝑠𝑁𝑖

−  𝑠𝑖𝑚𝑁𝑖
)

𝑛

𝑖=1

|

+ √
1

𝑚
∑ (𝑜𝑏𝑠𝑅𝑗

− 𝑠𝑖𝑚𝑅𝑗
)

2
𝑚

𝑗=1

NEE 
and Rsoil 

instan-
taneous 𝑥𝑖

* only applied to NEE data, Rsoil data was used instantaneous.
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After soil water, soil heat, and CO2 flux, as well as plant development were calibrated, we 
compared the NEE estimates with the EC measurements at each test site. NEE measurements 
were handled according to the quality assessment strategy suggested by Mauder et al. (2013), 
and only data with high quality was used for validation purposes (28% of data in Selhausen, 
55% of data in Merzenhausen, 33% of data in Rollesbroich). 
In a second step, several model runs were conducted where simulated NEE was optimized 
with EC measurements by estimating plant parameters (regarding the light use efficiency, the 
potential CO2 assimilation rate, their dependence on crop development stage and air 
temperature, and the biomass partitioning factors between shoot and root), and model 
parameters affecting Rsoil (as above: reference temperature, turnover rate of RPM, and 
parameters of the water reduction function). Here, parameter calibration was conducted with 
the Shuffled Complex Evolution (SCE) algorithm (Duan et al. 1993), which is a global 
optimization strategy that was shown to be effective for a wide range of non-linear 
optimization problems. Two different objective functions were considered: (i) the RMSE and 
(ii) the sum of the RMSE and the Bias. The former was calculated on the basis of various data 
expressions (instantaneous data, cumulative data, or instantaneous log-transformed data). 
Additional calibrations were conducted that not only considered NEE data for the 
optimization, but also measurements of Rsoil. Therefore, we considered a total of eight 
different calibration strategies (see Tab. 2.2). Because of the different magnitude of NEE and 
Rsoil (and resulting misfits), the error was transformed by division with the respective observed 
mean flux (with the exception of NEEBSc approach). For each test site, these eight calibrations 
were conducted to examine the sensitivity of estimated cumulative NEE to the different 
objective functions and to the inclusion of Rsoil measurements. Estimated cumulative NEE 
based on each optimization strategy was compared to the well-established gap-filling method 
by Reichstein et al. (2005), which is based on linear regressions between EC measurements 
and physical drivers. 

2.3. RESULTS AND DISCUSSION 

2.3.1. Calibration and Validation of AgroC 

Soil Temperature and Water Content 

All simulations described measured soil temperature very well using the default settings. The 
RMSE was below 1.0°C and the ME larger than 0.93 when measurements for all depths and 
sites were considered (see Fig. 2.2). 
After calibration, the soil moisture dynamics were reproduced well by the AgroC model 
(Fig. 2.3). Estimated soil hydraulic parameters are summarized in Table A.1 in Appendix A. 
The RMSE was below 0.020 cm3 cm-3, the ME above 0.74 and the r above 0.86 for all sites 
and profile depths. For Merzenhausen, the model was calibrated for 2012 and the following 
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two years were used for validation. The performance of the model decreased for the validation 
period, but overall dynamics were still reproduced well (Fig. 2.3). Some near-surface peaks in 
soil moisture were not captured by the model, which is probably related to inaccuracies in the 
meteorological data used for the upper boundary condition. Furthermore, static hydraulic 
properties were assumed for the AgroC simulations, which is a simplification because 
hydraulic properties of managed topsoils are typically variable due to ploughing, seedbed 
preparation, and subsequent re-compaction. For the Rollesbroich site, soil moisture 
simulations at -5 cm differed from the observations during winter. This is partly related to the 
presence of a snow cover, which results in delayed infiltration not represented in the model, 
and frozen soil, which affects soil water content measurements with the dielectric sensors used 
in this study. 

Crop Development and Growth 

Without calibration, simulated crop development and dry matter accumulation over time were 
already close to the observations (not shown). For further improvement, plant-specific 
parameters were manually adjusted (Fig. 2.4, 2.5). In general, the assimilation rate, the 

Fig. 2.2: Observed (dots; orange area: standard deviation) and simulated (lines) soil temperature (Tsoil) 
in several depths in Selhausen (left), Merzenhausen (middle), and Rollesbroich (right). Root mean 
square error (RMSE) and model efficiency (ME) (in this order) are given for each soil depth and 
location. 
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fraction of the root biomass, and the specific leaf area were increased for all crops at all test 
sites. In Table A.2 in Appendix A, the most relevant plant parameters are summarized. For 
total LAI, the lowest ME was 0.63, RMSE was lower than 0.82 ha ha-1, and r was larger than 
0.93 for all sites. Site-specific errors for green and brown LAI are provided in Figure 2.4. As 
can be seen, green LAI was well reproduced over the growing season, while the course of 
brown LAI was simulated less well. As indicated by the ME in Figure 2.5, the simulation of 
dry matter was adequate too, especially for winter wheat in Selhausen. However, the 
simulations progressively diverged from the measurements towards crop maturity. For cereals, 
this might be due to the fact that reallocation of assimilates from leaves and stem to storage 
organs was not implemented in AgroC (Spitters et al. 1989). 
In Merzenhausen, LAI and biomass measurements were only conducted at harvest in 2012 and 
during the entire growing season in 2013 (both winter wheat). For model calibration over the 
complete simulation period, measurements of plant height were therefore considered. A 
relation between LAI and plant height was determined for 2013. Plant height showed distinct 
differences between 2012 and 2013. In 2013, a smaller height and consequently a lower LAI 
and dry matter allocation were observed. This could not be reproduced by the model when 
only differences in meteorological conditions between the two years were considered. Winter 

Fig. 2.3: Observed (dots; orange area: standard deviation) and simulated (lines) soil water content (θ) 
at various depths in Selhausen (left), Merzenhausen (middle), and Rollesbroich (right). Root mean 
square error (RMSE) and model efficiency (ME) (in this order) are given for each soil depth and 
location. In Merzenhausen, RMSE and ME are given for the calibration (until end of 2012) and the 
validation period. 
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wheat varieties and management differed between the two cultivation periods, and according 
to Spitters et al. (1989), plant parameters can vary substantially between species. In addition, it 
needs to be considered that the spring of 2013 was much drier than usual. Even though water 
stress was explicitly accounted for in AgroC, irreversible damages (e.g., by heat stress) of 
plant tissue might have caused a reduced growth beyond the water stress period. Furthermore, 
the root system may have preferably been expanded relative to the shoots due to the water 
deficit. These effects were not directly considered in AgroC, and could only be captured by 
different parameterizations. Therefore, we ran AgroC with crop parameter sets for winter 
wheat that differed between the two cultivation periods. 
The Rollesbroich grassland site was covered by snow until the beginning of April 2013, thus 
plant growth was delayed. The model was fitted to the plant development and growth on 
parcel A. For the simulation of parcel B, only the dates of mowing were adjusted. This 
resulted in an adequate simulation for LAI and dry matter allocation of both grassland parcels 
(Fig. 2.4, 2.5). 

Fig. 2.5: Observed (dots; error bars: standard deviation) and simulated (lines) dry matter (DM) in 
Selhausen (left), Merzenhausen (middle), and Rollesbroich (right; AGB: above-ground biomass). Root 
mean square error (RMSE) and model efficiency (ME) (in this order) are given for each quantity and 
location. 
 

Fig. 2.4: Observed (dots; error bars: standard deviation) and simulated (lines) leaf area index (LAI) in 
Selhausen (left), Merzenhausen (middle), and Rollesbroich (right). For the two cropped fields green 
and brown LAI were measured and simulated. Root mean square error (RMSE) and model efficiency 
(ME) (in this order) are given for each quantity and location. 
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At the day of harvest, the simulations for Selhausen and Merzenhausen resulted in mean 
root/shoot dry matter ratios of 0.08 and 0.16, respectively. Bolinder et al. (1997, 2002) 
determined root/shoot ratios between 0.13 and 0.20 for winter wheat. Compared to this, the 
simulated root/shoot ratio for Selhausen was rather low. However, observations of 
rhizospheric respiration at this test site (Fig. 2.6) confirmed the estimated partitioning of 
assimilates between shoot and roots. For the Rollesbroich grassland site, the mean root/shoot 
ratio was 0.58. This corresponds well with López et al. (2013), who reported a root/shoot ratio 
of 0.56 for Lolium perenne. 

Soil Respiration 

Magnitude and dynamics of soil CO2 efflux were captured adequately by AgroC, as shown by 
ME values larger than 0.58, RMSE values lower than 45.4 mol ha-1 h-1, and an r larger than 
0.77 across all sites. For the Selhausen site, observations of efflux due to heterotrophic 
respiration were available separately (Prolingheuer et al. 2014). Therefore, Figure 2.6 not only 
shows modeled total respiration, but also the simulated partitioning in root and rhizosphere 
respiration and heterotrophic respiration. Since this partitioning is available only for the 
production terms but not for efflux at the surface, the errors reported in Figure 2.6 differ 
slightly from those presented above. Parameters of the reduction functions for heterotrophic 
CO2 production in the soil profile were also calibrated. The start parameter for the reference 
temperature was set to the annual mean temperature at each site as suggested by Coleman and 
Jenkinson (2008). In the optimization process, all reference temperatures were decreased, thus 
CO2 production was increased at any temperature. As reported by Bauer et al. (2012) and 
Moyano et al. (2012), the approach after Skopp et al. (1990) provided the best results for the 
response of CO2 production to soil moisture. Therefore, the two control parameters of this 
response function were calibrated. The estimated optimal water content (maximum of 
reduction function curve) was 0.41, 0.29, and 0.28 cm3 cm-3 in Selhausen, Merzenhausen, and 
Rollesbroich, respectively. The optimum water contents were very close to the mean soil water 

Fig. 2.6: Observed (dots; error bars: standard deviation) CO2 efflux at soil surface and simulated 
stacked CO2 production in soil profile (areas) for several source terms (green: growth and maintenance 
respiration by roots (Rgr,rt, Rm,rt); orange: respiration in rhizosphere (Rrhizo) due to root exudates and 
root decay; yellow: respiration by heterotrophs (Rh)) in Selhausen (left), Merzenhausen (middle), and 
Rollesbroich (parcel A, right). Root mean square error (RMSE) and model efficiency (ME) (in this 
order) are given for each location. 
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content of each simulation (0.38, 0.29, and 
0.32 cm3 cm-3, respectively). 
As shown in Figure 2.6, CO2 production at 
the grassland site was higher than at the 
cropped sites, which is attributed to the higher 
soil organic carbon content (Tab. A.1 in 
Appendix A) and an extensive perennial root 
system. However, the magnitude of the 
simulated rhizospheric respiration turned out 
to be quite similar for all sites, even though 
the grassland accumulates root biomass over 
the years. The root/shoot ratios reported 
above showed that the below-ground 
translocation of assimilated carbon was much 
higher for grassland than for cereal crops. 
Hence, the relative fraction of assimilates 
partitioned to the root system is larger in 
grasslands (Kuzyakov and Domanski 2000). 
Considering the same growth period, the 
absolute translocation of carbon is the same 
for both ecosystems; whilst cereals have a 
higher productivity per unit area and time, 
their carbon assimilation is restricted to a shorter growth period compared to grasslands. 
Further, grasslands are not ploughed, so they are potentially a larger sink for atmospheric 
carbon (Kuzyakov and Domanski 2000). 
An extensive peak of soil CO2 emission was simulated right after harvest of the cereals, 
because a large amount of fresh plant material was added to the carbon pools of the soil. 
Unfortunately, no chamber-based Rsoil observations were available for those critical time 
periods to validate these model predictions. 
The estimated mean annual ratio between rhizospheric respiration and total Rsoil was 0.12 for 
Selhausen, 0.21 for Merzenhausen, and 0.34 for Rollesbroich. Wang and Fang (2009) 
analyzed 36 grassland sites and reported a corresponding average ratio of 0.36, which agrees 
well with results for our grassland site in Rollesbroich. For winter wheat, Moureaux et al. 
(2008) obtained a ratio between below-ground respiration by autotrophs and total Rsoil of 0.56 
for the vegetation period only. Suleau et al. (2011) found ratios between 0.40 and 0.48 using 
root exclusion experiments. The simulated ratios for the vegetation period were 0.18 for 
Selhausen and between 0.33 and 0.38 for Merzenhausen. It seems that the simulated fraction 
of rhizospheric respiration in Selhausen is too low compared to previous studies. However, 
these values were confirmed by measurements from root exclusion experiments at this site 

Fig. 2.7: Observed (dots; orange area: standard 
deviation) and simulated (lines) soil CO2 
concentration at various depths in Rollesbroich. 
Root mean square error (RMSE) and model 
efficiency (ME) (in this order) are given for each 
soil depth. 



2.3. Results and Discussion 

25 

(Prolingheuer et al. 2014). Subke et al. (2006) compared numerous respiration ratios derived 
by various methods from several studies, and report that the heterotrophic source term may be 
overestimated by root exclusion, because of increased dead root biomass (for experiments 
conducted within perennial vegetation), a change of irradiation, and a decreased water uptake 
by roots. In our study, those error sources were mostly excluded, due to installation of the 
exclusion rings before cereal growth, a small ring size that enables representative growth and 
shading around/above the measurement points, and the correction for the soil moisture effects 
(Prolingheuer et al. 2014). 
For Rollesbroich, measurements of soil CO2 concentration in different depths were available, 
which allowed calibration of the CO2 flux through the soil. The approach after Kristensen et 
al. (2010), which additionally accounts for diffusion through fractures and macropores, 
provided the best results with a ME of 0.44 (Fig. 2.7). 

Net Ecosystem Exchange 

After calibrating soil water flux, plant development, and CO2 flux, we compared the NEE 
simulations to the EC measurements at each test site. At this point, NEE measurements were 
not used to calibrate the model. Figure 2.8 and 2.9 show the AgroC estimates in comparison to 
the NEE flux measurements. With a RMSE between 113 and 128 mol ha-1 h-1, a ME between 
0.78 and 0.83, and an r between 0.91 and 0.96, AgroC performed reasonably well at all three 
test sites. However, some discrepancies could also be observed. As already discussed for Rsoil, 
the estimated peaks of Rsoil and corresponding NEE after harvest were also not observed in the 
EC measurements (Fig. 2.8). Fluxes from adjacent and cropped fields could have distorted the 
measurements of the area of interest (e.g., Massman and Lee 2002). In Merzenhausen in 
autumn 2012, negative CO2 fluxes were measured even though the crop was harvested. This 
was not captured by the AgroC model, because it was assumed that the field was bare fallow. 
In reality, weeds and wheat emerged again during this post-harvest period and assimilated CO2 
until ploughing (cf., Sus et al. 2010). 
At the Rollesbroich site, the EC tower was located at the border between two differently 
managed grassland parcels, so that the contribution of CO2 fluxes originating from each of the 
two parcels varied according to the flux footprint (Kormann and Meixner 2001; Mauder et al. 
2013; Post et al. 2015). For validation, two AgroC model runs were made for grassland 
parcels A and B. The two NEE estimates were weighted according to the relative fraction of 
the footprint within each parcel, and subsequently compared to the observations. 
Consequently, simulated fluxes could only be attained for time steps at which measurements 
and thus information about the footprint distribution were available. The consideration of the 
footprint distribution improved the performance of the NEE simulations significantly 
compared to a single model run. This was especially true for time periods between two 
mowing events, since parcel B was always mown a few days later than parcel A. Generally, 



CHAPTER 2 

26 

AgroC reproduced the dynamics of the grassland NEE including the effect of mowing and 
regrowth. At the time of mowing, leaf area was reduced substantially, canopy photosynthesis 
decreased, and the site temporarily turned from a CO2 sink to a CO2 source. From the first to 
the third mowing, peak assimilation declined consistently. This has previously also been 
reported for other grassland sites (Schmitt et al. 2010; Wohlfahrt et al. 2008).  
The ratios between the annual sum of TER and GPP were 0.79 for Selhausen, between 0.67 
and 0.75 for Merzenhausen, and 1.06 for Rollesbroich. The ratios for the growing period only 
were 0.64 for Selhausen and between 0.52 and 0.62 for Merzenhausen. The value higher than 
1 for Rollesbroich indicates that this site was a CO2 source in 2013. The annual ratios between 
respiration by heterotrophs and TER varied between 0.51 and 0.58 (ratios for growing period: 
0.35 - 0.48). Moureaux et al. (2008) and Suleau et al. (2011) report TER/GPP ratios between 
0.49 and 0.66 for cereals, and Rh/TER ratios between 0.2 and 0.24, again only considering the 
plant growth phase. Our simulations generally agree well with these values, although the 
heterotrophic component appears to be larger in this study. Again, this reflects the lower 

Fig. 2.8: Observed (dots) and simulated (lines) net ecosystem exchange (NEE) in Selhausen (left; EC: 
eddy covariance), Merzenhausen (middle), and Rollesbroich (right). In Rollesbroich NEE was 
simulated for each grassland (parcel A and B) and then allocated with the relative fraction of the 
footprint on each grassland. Arrows indicate dates of harvest or mowing (black: parcel A; grey: parcel 
B), respectively. Root mean square error (RMSE) and model efficiency (ME) (in this order) are given 
for each location. 
 

Fig. 2.9: Observed and simulated net ecosystem exchange (NEE) with reduced major axis regression 
(black line) in Selhausen (left), Merzenhausen (middle), and Rollesbroich (right). In Rollesbroich NEE 
was simulated for each grassland (parcel A and B) and then weighted according to the relative fraction 
of the footprint. A potential NEE gap of up to 20% in the measurements is indicated by the grey area. 
Coefficient of determination (R2) is given for each location. 
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contribution of rhizospheric respiration as already discussed above.  
The 1:1 plots between observed and simulated NEE (Fig. 2.9) show that on average AgroC 
overestimated the CO2 fluxes by less than 20%, since the regression lines fall within the grey 
area. Turbulence fluxes can be systematically underestimated by EC measurements, and 
energy balance closure gaps of this magnitude have previously been reported (Eder et al. 2015; 
Schmidt et al. 2012; Twine et al. 2000). Therefore, underestimation of CO2 fluxes can be 
expected (Ingwersen et al. 2015; Massman and Lee 2002; Mauder et al. 2013). This inability 
to close the surface energy balance, the various approaches to correct for the balance gaps, 
uncertainties due to instrumentation, and differing data-processing strategies complicate cross-
site and longterm comparisons of NEE (Massman and Lee 2002; Mauder et al. 2013; Schmidt 
et al. 2012; Twine et al. 2000). 
Wattenbach et al. (2010) compared the efficiency of four models to simulate NEE, and 
reported ME values between -0.15 and 0.87. The ME values for AgroC for the three sites 
compare favorably with this wide range (0.78 - 0.83). Wattenbach et al. (2010) also reported 
more substantial discrepancies between observations and simulations for positive NEE fluxes. 
Such an underestimation of positive NEE fluxes was also observed in this study, but to a much 
smaller extent, which is very likely a result of our more advanced approach towards the 
simulation of CO2 fluxes and the calibration of Rsoil with chamber measurements.  

2.3.2. Calibration with NEE Data 

After calibration to NEE measurements, the RMSE was reduced by up to 43%, and Bias also 
decreased strongly (Fig. 2.10). Depending on the optimization strategy, the cumulative NEE 
over the simulation period differed strongly (Fig. 2.10, A.3 in Appendix A). The calibration 
based on the instantaneous NEE data (NEEinst) yielded the best results in terms of RMSE, ME, 
and r at all sites, because the reduction of the squared residual error between NEE prediction 
and measurements was the only criterion. Bias was the lowest in the NEEBSc approach with 
and without inclusion of Rsoil data because the Bias was now part of the objective function. 
Apart from that, model performance and NEE prediction by the NEEBSc (+ Rsoil) approach 
were very similar to NEEinst (+ Rsoil). The NEECum and NEELog + Rsoil approaches resulted in 
the poorest model performances at each study site. In almost all cases, model performance for 
NEE slightly deteriorated when Rsoil measurements were included in the optimization process 
due to trade-offs between fitting multiple objective functions, with the exception of the 
approach that considered NEECum + Rsoil (Fig. 2.10). 
Figure 2.11 shows reduced major axis regression (Webster 1997) for measured and simulated 
day- and nighttime (nighttime hours with global radiation < 20 W m-2 after Reichstein et al. 
2005) NEE fluxes for the test site Selhausen. The corresponding figures for Merzenhausen and 
Rollesbroich are given in Appendix A (Fig. A.1, A.2). Compared to the NEE predictions 
obtained without calibration (Fig. 2.9), the calibrated daytime fluxes were generally closer to 
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the 1:1 line and tended to only slightly underestimate daytime NEE fluxes as indicated by 
regression slopes slightly lower than 1. In general, nighttime NEE fluxes (dominated by 
respiratory fluxes) were better captured by the approaches that used an objective function 
including Rsoil data, irrespective of the error weighting in the objective function or the 
transformation of the raw NEE data. Including Rsoil data in the calibration clearly improved the 
simulation of diurnal and annual dynamics of the measured Rsoil. The approaches only 
considering NEE measurements did not reproduce those dynamics (not shown). Even with the 
inclusion of Rsoil data, nighttime NEE was still underestimated as indicated by regression 
slopes between 0.75 and 0.85 (Fig. 2.11, A.1, A.2).  

Fig. 2.10: Root mean square error (RMSE), model efficiency (ME), Pearson product-moment 
correlation coefficient (r), Bias, and cumulated net ecosystem exchange (cum NEE) over simulation 
time period, calculated in “gap-filling mode”, for each optimization strategy, for the simulation without 
calibration to NEE (‘original’), and for the gap-filling method after Reichstein et al. (2005) (gap-filling 
method) at all three study sites (S: Selhausen; M: Merzenhausen; R: Rollesbroich). For description of 
optimization strategies see text. 
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In Figure 2.10 (bottom right panel) and A.3 in Appendix A, cumulative NEE over the 
corresponding simulation period (referred to as “cumulative NEE” in the following) is shown 
for all optimization strategies, for the simulations without calibration, and for the gap-filling 
method by Reichstein et al. (2005). For this comparison, cumulative NEE estimated with 
AgroC was also calculated in a “gap-filling mode”, keeping the EC measurements and only 
filling the gaps with AgroC results. The cumulative NEE varied between -462 
and -243 g C m-2 in Selhausen, -1429 and -1180 g C m-2 in Merzenhausen, and -541 
and -5 g C m-2 in Rollesbroich. Cumulative NEE was mostly lower for the calibrated model 
runs than for the uncalibrated simulation. For all sites, the NEECum or NEELog approach with 
and without Rsoil measurements resulted in the lowest cumulative NEE. The NEEinst + Rsoil 
approach resulted in the highest NEE, except for the Rollesbroich site. Generally, cumulative 
NEE of approaches including Rsoil data in the objective function showed better agreement with 
the gap-filling method after Reichstein et al. (2005) than the approaches that did not consider 
Rsoil measurements (Fig. 2.10).  
Neglecting carbon removal due to harvest, the simulations suggest that all sites are CO2 sinks, 
except for the simulation without calibration to NEE in Rollesbroich, which showed a very 
small positive annual NEE. Pastures are usually considered to be sinks for atmospheric CO2 
(Kuzyakov and Domanski 2000). Soussana et al. (2007) estimated an average annual carbon 
budget of -247 ± 67 g C m-2 and a net biome productivity (= NEE minus carbon loss due to 
disturbances, such as harvest) of -104 ± 73 g C m-2 for nine grasslands in Europe. Wohlfahrt et 
al. (2008) reported alternating positive and negative annual NEE for one grassland (gap-filled 
EC measurements), varying between -42 g C m-2 a-1 and 69 g C m-2 a-1, and concluded that 
meteorological variations or differing biotic responses could easily lead to a positive carbon 
balance in some years. Also, the large amount of carbon stored in grassland soils (Tab. A.1 in 
Appendix A) can easily cause large respiratory fluxes that exceed plant carbon uptake. For 
Selhausen, estimated NEE matches cumulative values reported by Schmidt et al. (2012) and 
Wattenbach et al. (2010). Anthoni et al. (2004) found annual NEE in a range from -185 
to -245 g C m-2 for a winter wheat field in Germany in 2001, which is in good agreement with 
our findings.  
Since the true cumulative NEE is unknown due to measurement gaps, modelling can provide 
valuable information about the carbon balance. The best calibration approach that provides the 
‘true’ cumulative NEE cannot be determined at this point. However, our results suggest that 
the cumulative NEE obtained from the calibrated model runs is more realistic than the 
cumulative NEE obtained with a model run not calibrated to NEE. The well-established gap-
filling method after Reichstein et al. (2005) and AgroC produced somewhat different carbon 
balances, although NEE was derived from the same weather data. Especially after harvest or 
mowing, AgroC provided more reasonable predictions because it considers the changes in 
crop characteristics that directly influence GPP. Nevertheless, a better representation of 
respiration processes is still required, because even after calibration with EC and chamber 
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measurements the respiration by heterotrophs and autotrophs was still underestimated. This 
bias between measured and modelled respiration may indicate a wrong process representation 

Fig. 2.11: Correlations between observed and simulated net ecosystem exchange (NEE) for all 
optimization strategies at test site Selhausen. Reduced major axis regression was derived for each 
strategy distinguished between day- (d) and nighttime (n) CO2 fluxes, whereat nighttime was 
designated to a measured global radiation lower than 20 W m-2. For description of optimization 
strategies see text. 
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in the model, errors in model parameterization, or may also be related to a disparity in the 
measurement footprint between chamber and EC measurements (Richardson et al. 2010). 
Obviously, an underestimation of respiratory fluxes will shift NEE to more negative values, as 
observed for the simulation results in Figure 2.10.  
The cumulative NEE obtained after calibration with EC measurements was sensitive to the 
definition of the objective function and the data-transformation. As expected, explicit 
consideration of Bias in the objective function reduced it substantially (Fig. 2.10), with the 
NEEBSc approach being most effective. The NEECum approach often led to overestimation of 
negative and underestimation of positive fluxes (Fig. 2.10, 2.11, A.1, A.2). The use of 
cumulative data is known to enhance systematic errors and reduce noise (Hess and Schmidt 
1995; Mandel 1957), and might not provide statistically valid information about associated 
errors and results if non-random auto-correlated residuals prevail. Compared to using the Bias 
as a criterion, it gives more weight to early observations that affect all succeeding cumulative 
values in the simulation period. 
High-quality (hourly) EC measurements obtained after data processing usually consist of a 
large number of large negative fluxes during daytime and a smaller number of small positive 
nighttime fluxes, the latter being underrepresented. During calibration, the negative fluxes will 
on average have a higher weight, since they are more frequent and larger than positive fluxes. 
Therefore, a log-transformation of the NEE data could partly compensate for this, and provide 
more equal weighting. However, our results suggest the effect of this transformation on the 
performance of the calibration was weak. The slope of the regression between observed and 
simulated positive NEE was just slightly closer to 1 for the NEELog (+ Rsoil) approach 
(Fig. 2.11, A.1, A.2). 
The model performance for small positive fluxes improved strongly when considering Rsoil 
measurements as an additional data source (Fig. 2.11, A.1, A.2). Similar findings were 
reported by Richardson et al. (2010), Wang et al. (2009), and Yuan et al. (2012). Williams et 
al. (2009) stated that the use of multiple data streams in calibration reduces the sensitivity to 
biases and internal inconsistencies in each data stream. Including Rsoil measurements in the 
optimization process notably reduced the bias in the simulated nighttime NEE more than any 
of the modifications of the objective function or the use of data-transformation. 
The NEEinst + Rsoil approach provided the best results regarding both day- and nighttime fluxes 
at all three test sites. On average, model bias was one of the lowest for this optimization 
strategy at all sites. Even though overall model performance of the eight calibration 
approaches differed only marginally, it was found that resulting cumulative NEE diverged 
strongly. Considering additional data sources such as biomass measurements should help to 
further decrease the uncertainty of the cumulative NEE estimation (Richardson et al. 2010). 
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2.4. CONCLUSIONS 

The present study demonstrates that a crop growth module coupled to a model of soil CO2 
production, soil water and heat flux can be used to simulate hourly NEE in agricultural 
systems. After calibrating the model for soil moisture, crop development, and Rsoil, the 
simulation of hourly NEE agreed well to EC measurements. For further validation, the 
application of AgroC to cropping systems in different European climate regions would be 
interesting. 
An additional calibration based on EC measurements further improved the model in terms of 
the performance criteria. Even more importantly, systematic errors between EC data and 
model were reduced. However, the various calibration approaches reveal that particularly the 
cumulative NEE over the entire simulation period is rather strongly affected by the choice of 
the objective criterion. Based on the evaluation of different optimization strategies, we 
recommend the use of the RMSE and non-transformed instantaneous EC-derived fluxes in 
combination with Rsoil measurements (if available) by equally weighted errors. Our results 
indicate that cumulative NEE obtained using calibration and gap-filling methods is associated 
with considerable uncertainty, which can be decreased when Rsoil measurements are included 
in the optimization process. At the same time, inclusion of Rsoil also provided a substantial 
reduction of bias in the simulation of the respiratory fluxes. 
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3.1. INTRODUCTION 

The eddy covariance (EC) method is a convenient measurement technique for energy, water 
vapor, and carbon dioxide exchange between atmosphere and biosphere. It is routinely used 
for a better understanding of the exchange of greenhouse gases, providing, among others, 
fluxes of H2O and CO2 based on high-resolution (10 - 20 Hz) raw data of the concentrations of 
these gases and the vertical wind velocity. The method yields net fluxes; to gain deeper insight 
into the underlying biophysical processes, source partitioning methods have to be applied to 
the data to distinguish between the fluxes from the various compartments of the biosphere. 
Measured net ecosystem exchange (NEE) of CO2 and its two components gross primary 
production (GPP) and total ecosystem respiration (TER) are of particular interest (Reichstein 
et al. 2012; Stoy et al. 2006). In addition, elements of the water cycle, their dynamics, and 
magnitudes have to be considered to comprehend the interrelation between atmosphere and 
terrestrial systems more completely. Particularly the study of evapotranspiration (ET), with its 
two components evaporation (E) and transpiration (T), and its feedbacks with the carbon cycle 
should be incorporated in environmental studies (Scanlon and Kustas 2010). 
A large variety of source partitioning procedures with diverse approaches and necessity of 
different input data have been developed (Kool et al. 2014; Reichstein et al. 2012; Stoy et al. 
2006). The most popular partitioning tools use regressed relationships of EC measurements 
(typically averaged over half-hourly periods) and physical drivers, in particular temperature 
(e.g., approach after Reichstein et al. 2005). The approach after Lasslop et al. (2010) 
additionally constrains the rate of photosynthesis with light response curves from daytime flux 
measurements. These approaches are well developed for the partitioning of carbon fluxes, but 
analogous methods for water fluxes are lacking yet (Reichstein et al. 2012; Stoy et al. 2006). 
Instrumental approaches of source partitioning require, next to EC data, additional 
measurements at different parts of ecosystems and with different methods, e.g., soil-flux 
chamber measurements, profile measurements (Ney and Graf 2018), or tracer measurements 
(isotopes). The latter are promising for flux partitioning, but associated with high costs, 
elaborate technical setups, and maintenance requirements that are usually not possible at most 
stations (Kool et al. 2014; Reichstein et al. 2012). With flux chambers, sap flux sensors, and 
microlysimeters sources and sinks of H2O and/or CO2 can be derived in an ecosystem, but are 
associated with scaling issues in comparison to the EC footprint. 
As a data-driven method only requiring existing data from a typical EC station, Scanlon and 
Sahu (2008) and Scanlon and Kustas (2010) proposed a method to estimate the contributions 
of T, E, photosynthesis, and soil respiration (Rsoil, autotrophic and heterotrophic sources) using 
measured high frequency time series of water vapor and CO2 concentrations. This method 
(further called SK10) is based on the dissimilarities of sources and sinks of water vapor and 
CO2 among sub-canopy, canopy, and atmosphere, which lead to unique “signals” in EC 
measurements for air transported from differing locations. The flux-variance similarity theory 
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is separately applied to the stomatal and non-stomatal components of the regarded scalars. The 
discrepancy between the perfect correlation between H2O and CO2 at leaf-level (via the water 
use efficiency WUE) and the imperfect correlation between H2O and CO2 fluctuations above 
the canopy is used to determine the relative strength of each flux component. SK10 requires 
that the correlation coefficient between stomatal and non-stomatal scalar fluctuations is 
determined by the ratio of the transfer efficiencies of these scalar components, an assumption 
(transfer assumption in the following) made by Scanlon and Sahu (2008) in the method’s 
derivation. 
Scanlon and Kustas (2012) applied SK10 to a corn field (eastern USA) and showed that the 
performance of ET partitioning is consistent, can give insights for calculation of canopy 
conductance, and therefore, has the potential to improve land surface models. A comparison 
between isotopic H2O flux partitioning and SK10 was conducted by Good et al. (2014). Wang 
et al. (2016) analyzed H2O flux partitioning by SK10 at a suburban grassland site (western 
USA), that yielded similar diurnal and seasonal dynamics compared to simulations with the 
Noah Land Surface Model. Sulman et al. (2016) compared SK10 with other partitioning 
methods (sub-canopy EC measurements, non-linear regression method, and potential 
evapotranspiration) and evaluated its performance in a forest site in a decadal time scale. 
Considering ten day moving averages the multiple methods showed a good agreement for T 
and GPP and a higher variability in E and TER. 
Sulman et al. (2016) suggested further investigation of SK10 via large eddy simulation (LES) 
studies identifying potential sources of errors in the application of the partitioning method. 
Various LES studies including a canopy have been conducted studying the influence of 
canopy properties and canopy edges on airflow above and in the canopy (e.g., Cassiani et al. 
2008; Dupont and Brunet 2008; Finnigan et al. 2009). Huang et al. (2013) studied the 
influence of coherent structures on the scalar dissimilarity in the air space just above the 
canopy via LES. They investigated the scalar-scalar-correlation in forest canopies with 
differing densities. Edburg et al. (2012) simulated the transport of passive scalars for a forest 
canopy and concluded that scalar concentration profiles, fluxes, correlation coefficients, and 
scalar segregation are affected by the sink-source-distribution of the scalars. We assumed that 
these differing characteristics also influence the performance of SK10. 
In spite of the partly successful applications of SK10 (see above), the method is still not 
widely used and robustness issues have been reported (mostly personal communication). We 
aim to identify the key assumptions behind the method that, if not properly met, can lead to its 
failure. To this end, we applied the partitioning method to data of two contrasting field sites 
with various WUE assumptions derivable from meteorological measurements. Furthermore, 
we applied SK10 to data obtained on synthetic high frequency data by LES, checked scalar 
statistics, the validity of the transfer assumption, and evaluated the partitioning method. 
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3.2. MATERIAL AND METHODS 

3.2.1. Study Sites 

The measurements were obtained at Selhausen (50°51’N, 6°26’E, 103 m a.s.l., ICOS code 
DE-RuS) and Wüstebach (50°30’N, 6°19’E, 610 m a.s.l., ICOS code DE-RuW) in western 
Germany. These study sites are included in the Terrestrial Environmental Observatories 
(TERENO) network of highly instrumented field sites. 
Selhausen is located in the southern part of the Lower Rhine Embayment. The underlying 
sediments are Quaternary fluvial deposits from the Rhine/Meuse and Rur river system, and 
were covered by floodplain sediments and loess in the Pleistocene and Holocene. The major 
soil type was classified as a Luvisol according to the soil taxonomy of the FAO (I.U.S.S. 
Working Group WRB 2006). The soil texture is a silt loam and fairly homogeneous in the area 
(Weihermüller et al. 2007). The climate conditions are temperate maritime with a mean annual 
temperature of 9.9 °C and an annual precipitation of 698 mm (1961-2009; Graf et al. 2012). 
The dominant land use in the region is cropland and in 2015 winter wheat (Triticum aestivum 
L.) was cultivated in Selhausen. The crop height was between 0.57 and 0.81 m and the leaf 
area index (LAI) between 5.7 and 6.8 m2 m-2 on the considered days. EC measurements 
(measurement height 2.43 m) and ancillary environmental measurements were conducted in 
the center of the field. Measurements of H2O, CO2, wind components, sensible heat, global 
radiation, air temperature, precipitation, and relative humidity were available for the regarded 
time periods. A detailed description of the measurement setups is given by Ney and Graf 
(2018). All observations were averaged in half-hourly time steps, while the measurement 
frequency of the EC method was 20 Hz. Here, we use the micrometeorological convention, 
where downward fluxes from atmosphere to biosphere are negative and upward fluxes positive 
(Stoy et al. 2006). 
The Wüstebach catchment is part of the low mountain range Eifel and covers an area of 
~38.5 ha; the altitude ranges from 595 m to 628 m a.s.l. The underlying bedrock consists of 
fractured Devonian slate with sporadic sandstone inclusions. Soil types vary from Cambisols 
and Planosols to Gleysols and Histosols depending on the average groundwater level. Soil 
texture is a silty clay loam (Bogena et al. 2015). The mean annual temperature is 7.5 °C and 
the annual precipitation is 1220 mm (1979-1999; Bogena et al. 2015; Ney et al. in press). The 
dominant vegetation type is Norway spruce (Picea abis L.). EC and ancillary environmental 
measurements (same as in Selhausen) were taken in a height of 38 m above ground, over a 
spruce canopy of 25 m height and a LAI of about 3.9 m2 m-2. 
SK10 is applied to half-hourly time series of pre-processed high frequency EC data of vertical 
wind velocity, total H2O, and CO2 concentrations. Beforehand, physically not possible values 
and spikes were excluded in the high frequency data, the time delay was corrected, missing 
raw data in one 30 minutes period was gap-filled by linear interpolation and a planar-fit 
rotation was conducted. 
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For the application of the source partitioning method, days with a high productive state of the 
vegetation and fair-weather conditions (sunny, almost no precipitation, clear diurnal dynamics 
of all meteorological variables) were chosen to ensure that all flux components contributed to 
the measured total fluxes and to exclude processes and factors further disturbing the 
stationarity of turbulence and the expected behavior of the stomata (e.g., cloud cover). Also, 
the method was only applied to time periods, where the quality assessment scheme during EC 
processing (after Mauder et al. 2013) assigned the highest or intermediate out of three quality 
flag levels. Furthermore, for Selhausen half-hour periods have been excluded, if the relative 
contribution of the target field to the footprint (after Kormann and Meixner 2001) was smaller 
than 80%. For Wüstebach time periods with wind directions between 70° and 162° were 
excluded to receive only flux measurements of the desired target area. Furthermore, the source 
partitioning method was merely applied to daytime data because the SK10 method requires the 
presence of photosynthesis. Here, sunrise and sunset times were calculated by means of local 
time, and in addition, daytime was designated to a measured global radiation higher than 
20 W m-2 after Reichstein et al. (2005). 
For validation purposes, Rsoil data were obtained with closed-chamber measurements at both 
sites. In Selhausen, half-hourly measurements of four longterm-chambers were available for 
the considered time periods. In Wüstebach, Rsoil was measured with survey-chambers at 
several measurement points in the forest on June 10th, 2015 (9 a.m. - 1 p.m.), so a spatial and 
temporal average for that day could be calculated. Furthermore, soil evaporation Esoil was 
estimated as a fraction of measured ET based on Beer’s law depending on LAI (Esoil = ET 
exp(-0.6 LAI); Campbell and Norman 1998; Denmead et al. 1996; Kool et al. 2014) to 
compare to the partitioned H2O components by SK10 at both study sites. 

3.2.2. Source Partitioning Based on High Frequency Data - SK10 

The source partitioning method after Scanlon and Sahu (2008) and Scanlon and Kustas (2010) 
is based, among others, on the Monin-Obukhov similarity theory (MOST). In the atmospheric 
surface layer above a horizontally homogenous surface, scalar statistics in a particular height 
are expected to depend on the surface fluxes, surface shear stress, and buoyancy determined 
by sensible and latent heat flux (Scanlon and Kustas 2010; Scanlon and Sahu 2008). Strictly, 
MOST implies that scalar time series measured at the same position in the atmospheric surface 
layer should correlate perfectly, which is consistent with the concept of flux-variance 
similarity (Hill 1989). These expectations are not always met under field conditions because of 
a non-steadiness of time series, the influence of entrainment, and heterogeneous distribution of 
sinks and sources (Scanlon and Kustas 2010; Scanlon and Sahu 2008). 
With the EC method high frequency measurements of water vapor and CO2 concentrations are 
collected and their turbulence-driven dynamics are monitored. During the day T and 
photosynthesis are usually the main contributors to measured H2O and CO2 fluxes, and both 
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derive from stomatal exchange. In the absence of non-stationarity and entrainment, the 
correlation coefficient ρqt’cp’, between the two stomatal scalars is equal to -1 according to the 
flux-variance similarity theory (subscripts qt and cp indicate moisture and CO2 concentrations 
related to T and photosynthesis; likewise, subscripts qe and cr indicate moisture and CO2 
concentrations related to E and Rsoil, respectively). This relationship between H2O loss and 
CO2 uptake on leaf-level by vegetation is described by the WUE. When in a hypothetical case 
the fluctuations of H2O and CO2 (Rsoil and direct E disregarded) are plotted against each other, 
they would correlate perfectly and the linear slope would be equivalent to the WUE (WUE is 
defined to be negative, see Eq. 3.4; Scanlon and Kustas 2010; Scanlon and Sahu 2008), from 
which follows: 
 

𝑐𝑝
′ = WUE ∙  𝑞𝑡

′         (3.1) 
 

The non-stomatal processes, direct E and Rsoil, are expected to also adhere to flux-variance 
similarity. These fluxes originate primarily from the sub-canopy, are enriched in both H2O and 
CO2, and it is assumed that they are transported similarly with one another, but different from 
the stomatal components. Since both fluxes are positive during daytime, they correlate 
positively and ρqe’cr’ would be equal to +1 (Scanlon and Kustas 2010; Scanlon and Sahu 2008). 
For the natural case in which both stomatal and non-stomatal processes contribute to the 
fluxes, the correlation between water vapor fluctuations (q’) and CO2 fluctuations (c’) is 
reduced. The slope of the q’ versus c’ relationship becomes less than WUE, such that the 
magnitude of the ecosystem-level WUE is smaller (less negative) than WUE at leaf-level 
(Palatella et al. 2014). The reduced correlation and deviation from WUE at leaf-level provides 
information about the composition and magnitudes of the measured fluxes (Scanlon and 
Kustas 2010; Scanlon and Sahu 2008). Scanlon and Sahu (2008) state that, to obtain accurate 
source partitioning from this extra information, the vegetation has to be distributed 
homogeneously in a horizontal sense and the vertical heterogeneity and spatial distribution of 
stomatal and non-stomatal sinks and sources have to be significant to reduce the degree of 
correlation. 
Figure 8 in Scanlon and Sahu (2008, page 10) shows an overview of the main analysis steps of 
SK10. The first step in this time series analysis is the correction for density fluctuations in the 
raw data of H2O and CO2 fluxes. Such fluctuations can arise due to external factors such as 
changes in air temperature or water vapor density. Scanlon and Kustas (2010) use the 
approach after Detto and Katul (2007). As mentioned before, the correlation between q’ and c’ 
is very sensitive to advection, entrainment, and large-scale weather effects. Therefore, large-
scale fluctuations should be eliminated from measurements, in this case, by orthonormal 
wavelet transform using the discrete Haar wavelet. For 20 Hz data sets of 30 minutes (36000 
data points) 15 wavelet levels can be derived (215 data points in the first 27.3 min; Scanlon and 
Albertson 2001). In this study, the first two wavelet levels representing the low frequency 
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eddies have always been removed by default to reduce the influence of large-scale processes 
as suggested by Scanlon and Kustas (2010). In the process of finding a valid solution, 
additional wavelet levels can be excluded progressively, if necessary (see below). The 
application of wavelet transform gives an insight, how ρq’c’, ecosystem-level WUE, and scalar 
transport efficiencies vary across scales of turbulent eddies. The derived eddy frequencies 
could be converted to eddy diameters using Taylor’s frozen turbulence hypothesis (Scanlon 
and Kustas 2010). 
To compute the exact combination of flux contributions, Scanlon and Sahu (2008) derived a 
system of equations for this approach, in which most parameters (w'q'̅̅ ̅̅ ̅, w'c'̅̅ ̅̅ ̅, ρq’c’, ρw’q’, ρw’c’, 
σq’

2, σc’
2) are known from measurements. To further reduce the number of unknowns, the 

following equations are assumed to be reasonable approximations (transfer assumption; Bink 
and Meesters 1997; Katul et al. 1995; Scanlon and Kustas 2010; Scanlon and Sahu 2008): 
 

𝜌𝑞𝑡
′𝑞𝑒

′  ≈  
𝜌

𝑤′𝑞𝑒
′

𝜌
𝑤′𝑞𝑡

′
          (3.2) 

𝜌𝑐𝑝
′ 𝑐𝑟

′  ≈  
𝜌

𝑤′𝑐𝑟
′

𝜌
𝑤′𝑐𝑝

′
          (3.3) 

 

where w’ is the vertical wind fluctuation. These equations imply that transport efficiencies of 
qe’ and cr’ coming from the soil surface are smaller than the efficiencies of qt’ and cp’ from the 
canopy airspace, respectively, because |ρqt’qe’| and |ρcp’cr’| should be smaller than 1 (Bink and 
Meesters 1997). This is consistent with the results of Lamaud and Irvine (2006) and Moene 
and Schüttemeyer (2008) who found that for the scalar pair temperature-humidity the relative 
transport efficiency ρw’θ’/ρw’q’ is equal to ρθ’q’ for well-watered conditions (small heat flux) and 
1/ρθ’q’ for dry conditions (small moisture flux). They also show that in general ρw’θ’/ρw’q’ can be 
described as (ρθ’q’)k with k ranging between -1 and 1. 
Besides, WUE can be estimated (see below), such that only two parameters in the essential 
equation of the approach (Scanlon and Sahu 2008, Equation 15, page 5; Eq. B.1 in 
Appendix B) are unknown: the correlation coefficient of the CO2 concentrations related to 
photosynthesis and Rsoil (ρcp’cr’) and the variance of photosynthesis-related CO2 (σcp’

2). The 
equation can be further manipulated to solve for σcp’

2 = f(ρcp’cr’) (Eq. B.2). To obtain results for 
σcp’

2 and the corresponding magnitudes of each flux component, values of ρcp’cr’ in a physically 
meaningful range of -1 ≤ ρcp’cr’ ≤ 0 are inserted into the function. To obtain the exact 
partitioning solution, ρq’c’ is derived as a function of ρcp’cr’ and the other variables. If this 
calculated ρq’c’ matches the observed ρq’c’, (misfit is less than 0.005), then actual values for 
ρcp’cr’, σcp’

2 and the partitioning factors are found (Scanlon and Kustas 2010; Scanlon and Sahu 
2008). As a further check, WUE is calculated again as a function of the derived partitioning 
factors and compared to the input WUE. If those ‘input’ and ‘control’ WUEs differ too much 
(misfit larger than 1%), the solution is disregarded. If no solution for ρcp’cr’ and σcp’

2 is attained, 
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the next wavelet level is removed progressively to further reduce the influence of large-scale 
processes until a valid solution is reached or none at all. The estimated partitioning factors are 
then applied to the post-processed half-hourly EC data. 
For a detailed analytical description of SK10 see Palatella et al. (2014), Scanlon and Albertson 
(2001), Scanlon and Kustas (2010, 2012), and Scanlon and Sahu (2008). Our implementation 
deviates from the procedure of Palatella et al. (2014) and Scanlon and Kustas (2010) in terms 
of finding valid solutions with a minimal error in ρq’c’ and WUE. Because we converted 
Equation 15 in Scanlon and Sahu (2008) solving for σcp’

2 directly (see Appendix B), we were 
left with only one unknown variable: ρcp’cr’. By insisting upon very low errors in ρq’c’ and WUE 
we found almost always the same solutions as the approach after Palatella et al. (2014), even 
though we passed on the implementation of the globally convergent Newton’s method. Aside 
from this, Skaggs et al. (2018) developed an algebraic solution simplifying the source 
partitioning procedure and implemented SK10 in the open source Python 3 module Fluxpart. 
Using the analytical approach would not significantly change our results, but it might improve 
the rate of convergence to a solution. 
One disadvantage of SK10 is that the autotrophic CO2 source term (growth and maintenance 
respiration by plants) cannot be quantified. Thus, not GPP but the above-ground net primary 
production (NPP; GPP minus above-ground respiration by autotrophs) is result of this 
approach. Furthermore, SK10 can only be applied to daytime fluxes, because it is based on the 
assumptions that photosynthesis is active and E positive. Also, no evaporation of intercepted 
rain water in the plant canopy should be present, because the method cannot discriminate 
between T and E from water at leaf-level. 

Water Use Efficiency 

A key element of the source partitioning method after Scanlon and Kustas (2010) is the WUE 
at leaf-scale, which describes the relation between the amount of CO2 uptake through stomata 
(photosynthesis) and the corresponding amount of H2O loss (T) (not to be confused with the 
ecosystem WUE, the ratio between NEE and ET). 
One way to derive WUE is to relate the difference in mean CO2 concentration between air 
(just outside the leaf) and stomata to the difference in mean humidity concentration between 
air and stomata: 
 

WUE =  0.7 ∙  
𝑐𝑠− 𝑐𝑖

𝑞𝑠− 𝑞𝑖
         (3.4) 

 

where the subscripts “s” and “i” indicate the external (within canopy) and internal (intra-
stomatal) concentration of H2O (q) and CO2 (c) averaged over the regarded time period. The 
factor 0.7 (mg g-1) accounts for the difference in diffusion and convection between H2O and 
CO2 through the stomatal aperture (Campbell and Norman 1998). ci should be lower than cs to 
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maintain CO2 uptake and qi larger (saturated) than qs, leading to a negative fraction (Scanlon 
and Kustas 2010, 2012; Scanlon and Sahu 2008). 
As mentioned before, WUE should be evaluated for the leaf-level, where the exchange 
between plants and atmosphere takes place. cs and qs at displacement height can be inferred 
from EC measurements by considering logarithmic mean concentration profiles implementing 
MOST (Scanlon and Kustas 2010, 2012; Scanlon and Sahu 2008). For ci a constant value of 
270 ppm was presumed, a typical value for C3 plants (Špunda et al. 2005; Williams et al. 
1996; Xue et al. 2004). Values for qi were estimated based on 100% relative humidity at 
foliage temperature (Tf). Measurements of Tf were not available at our study sites, so for the 
source partitioning Tf was set equal to measured air temperature (Scanlon and Sahu 2008). 
Additionally, to investigate the sensitivity of WUE, Tf was derived by different strategies: it 
was assumed to be 2 K lower or higher than air temperature (WUEmeanT-2K or WUEmeanT+2K, 
respectively) as suggested by Scanlon and Sahu (2008), as well as calculated by means of 
measured outgoing longwave radiation (WUEOLR; with a surface emissivity of 0.98), or 
calculated similar to cs and qs by considering a logarithmic mean profile implementing MOST 
(WUEMOST). 
Because the chosen inputs of ci and Tf comprise an uncertainty, we conducted two additional 
runs with quantities of ci and Tf on the outer margins of their reasonable ranges for a very low 
or very high WUE, respectively. Following Equation 3.4, if ci and/or Tf (and with it qi) 
increases, the magnitude of WUE decreases (WUE gets less negative), and the plant is 
assumed to be less efficient. For Norway spruce Špunda et al. (2005) calculated values of ci 
between 180 and 400 ppm based on measured air CO2, assimilation rate and stomatal 
conductance in a diurnal cycle. Xue et al. (2004) measured ci for four different winter wheat 
cultivars under differing conditions and obtained a range between 120 and 300 ppm. Thus 
here, 200 and 300 ppm were chosen for a minimal or maximal magnitude of ci, respectively. 
The calculated Tf by means of measured outgoing longwave radiation was during the day 
about 3 K or 6 K higher at the forest or crop site, respectively, than the mean air temperature. 
Thus, for a minimal value, qi was calculated based on the mean air temperature minus 2 K and 
for a maximal value, based on air temperature plus 5 K. For the two additional applications of 
SK10 to the study sites, on the one hand the small values of ci and Tf were chosen for a 
maximal magnitude of WUE (WUEMAX) and on the other hand the larger values for a minimal 
magnitude of WUE (WUEMIN) (Tab. 3.1). Note that tentatively choosing even more extreme 
values for ci or Tf mostly led to no valid solutions of the SK10 procedure. 

3.2.3. Large Eddy Simulations 

LES were undertaken to study the impact of different canopy types on the vertical exchange of 
scalars. The effect of the vertical scalar sink-source-distribution and of the relative importance 
of canopy and soil source on correlation coefficients were of interest. The simulations have 
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been performed with the Dutch Atmospheric Large-Eddy Simulation (DALES) model (Heus 
et al. 2010; Ouwersloot et al. 2016). The default version was extended to enable closer control 
of the source distribution in the canopy. 
We conducted experiments with neutral flow conditions (i.e., all scalars are passive with 
respect to buoyancy). A frictionless rigid lid (zero-gradient boundary conditions for horizontal 
velocity components and all scalars, and w = 0) was applied as upper boundary condition. A 
periodic boundary condition was set in each horizontal direction for both velocity and all 
scalars. The external forcing was a constant horizontal pressure gradient. This setup was 
slightly different from the variable momentum forcing (targeting a constant mean velocity) 
used in the studies conducted by Ouwersloot et al. (2016) and Edburg et al. (2012). 
A domain size of 72 hc x 36 hc x 32 hc with 720 x 360 x 144 nodes in the x-, y-, and z-
directions with a grid resolution of 0.1 canopy heights (hc) was used for the numerical 
experiments. In the vertical direction the grid cells were equally spaced up to a height of five 
times the hc and above stretched progressively to a total domain height of 32 times the hc. 
The total simulation runtime for each experiment was 720 hc u*

-1 (u* is the friction velocity at 
the canopy top), of which the last 120 hc u*

-1 were sampled. For the statistics of turbulence 
profiles, quantities were sampled every 1 hc u*

-1 and averaged over 120 hc u*
-1, respectively. 

Fields of momentum and scalars were sampled every 6 hc u*
-1. The Courant-Friedrichs-Lewy 

(CFL) number was smaller than 0.5 for all runs. The time steps and the maximum horizontal 
velocity in x-direction were variable in these simulations, but were in average about 
0.0042 hc u*

-1 and 0.46 hc u*
-1, respectively1. 

The plant area density (PAD) profile was prescribed, with a smooth transition at the top of the 
canopy over four grid points, and the canopy was resolved vertically by 10 grid points, both as 
recommended by Ouwersloot et al. (2016). The drag coefficient Cd was set to 0.5 describing 
the drag on the flow induced by canopy elements, and we prescribed the roughness length of 
the underlying soil as z0 = 0.005 m. The canopy was homogeneous in the horizontal direction. 
Two LES experiments with contrasting PAD profiles were conducted: on the one hand with a 
canopy similar to a crop (winter wheat) and on the other hand with a canopy similar to a 
coniferous forest (Fig. 3.1, B.5 in Appendix B). These canopy profiles were taken from 
measurements at our study sites and literature (Edburg et al. 2012; Gspaltl et al. 2013; 
Weiskittel et al. 2009). The LAI was set to 2 m2 m-2 in both cases, which is a typical 
magnitude for forests, while winter wheat usually has a considerably denser canopy. In the 
following, only results of the experiment with the crop-like canopy are shown. The 
corresponding figures of the experiments with forest-like canopy can be found in Appendix B 
(Fig. B.5-B.11). 

                                                 
1 In dimensional terms, the various simulation characteristics are: hc = 1 m, u* = 0.2 m s-1, total simulation run 
time 3600 s, of which the last 600 s were sampled; time steps and the maximum horizontal velocity in x-direction 
were in average about 0.021 s and 2.3 m s-1, respectively. 
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In the simulations passive scalars were emitted homogeneously from the soil surface and from 
ten canopy sources (one for each grid cell in vertical direction). So, in total eleven fields of 
arbitrary scalars were simulated. Each of these fields can be scaled with a desired source 
strength for the respective source level. A scalar with sources at multiple levels can be 
constructed by adding these fluctuation fields, each scaled with a height-specific source 
strength derived from a desired vertical source strength distribution. This could be repeated for 
an arbitrary number of scalars and vertical source distributions after the actual LES runs. Thus, 
fields for both H2O and CO2 were created, assuming a water vapor source and a carbon sink in 
the canopy and a source for both scalars at the soil surface. Two different variations of 
distributions were applied: on the one hand a v-shaped distribution taken from Sellers et al. 
(1992) (ModelV, Fig. 3.1 left) and on the other hand a beta-function-shaped distribution 
inferred from profile measurements in winter barley on June 9th, 2016 (Ney et al. 2017; Ney 
and Graf 2018) (ModelB, Fig. 3.1 right). Finally, the relative strength of the CO2 soil source 
was varied: the soil sources were set to 1 mmol m-2 s-1 for H2O and to 3 or 9 μmol m-2 s-1, 
respectively, for CO2. The total flux at canopy top was for each distribution the same and 
matched EC measurements of the same day in June 2016 (ET = 9.2 mmol m-2 s-1, NEE = -
27.26 μmol m-2 s-1). So, in total we had for each canopy type four different combinations of 
sink-source-distributions: ModelV with low or higher CO2 soil source and ModelB with low 
or higher CO2 soil source. This setup was chosen to study the influence of the separation 
between soil sources and canopy sink/source and of their relative magnitudes on scalar-scalar-
correlations and flux profiles. Also, the impact of differing magnitudes of ecosystem- and 

Fig. 3.1: Vertical profiles of the crop plant area density (PAD), cumulative plant area index (PAI), and 
variations of sink-source-distributions for H2O and CO2 used to scale the LES scalar fields (left: 
ModelV, after Sellers et al. 1992; right: ModelB, after Ney et al. 2017), each with ten canopy 
sinks/sources (bars) and one soil source (circle). For CO2, two different soil sources and accordingly 
differing canopy sinks were used, in which the flux at canopy top for each distribution is the same. 
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canopy-level WUE could be studied. Ecosystem WUE was for all LES experiments identical, 
and the WUE on canopy-level did not differ between ModelV and ModelB under identical soil 
source strength. Furthermore, the setup allowed to separately study and compare the effect of 
the different PADs and the resulting turbulence on the one hand, and of differing scalar sink-
source-distributions on the other hand. 
After scaling the scalar fields with the chosen sink-source-distributions, variances and 
covariances could be sampled from the LES experiments in any chosen virtual measurement 
height. To calculate the required fluxes, simulation data of vertical wind and scalar 
concentrations were sampled from each field (fields collected every 6 hc u*

-1 in the last 
120 hc u*

-1 of runtime) for every tenth grid point in x- and y-direction in each corresponding 
height, so data for one virtual measurement height consisted of 51840 data points. After 
calculating the necessary H2O and CO2 fluxes, the variances and correlation of q’ and c’, and 
WUE, the SK10 approach could be applied to this ‘virtual EC data’. SK10 was only applied to 
the resolved scale statistics, assuming any correlation structure found in the resolved scale 
would be valid for the subgrid scale as well. The source partitioning results could then be 
validated to the known fluxes and statistics of the components qt, qe, cp, and cr from the LES 
experiments. 

3.3. RESULTS AND DISCUSSION 

The first objective of our study was the application of SK10 to data of our study sites and the 
analysis of the partitioning results depending of the WUE input. The second objective was the 
application of SK10 to synthetic high frequency data generated by LES and the analysis of the 
partitioning performance depending on canopy type, measurement height, and given sink-
source-distribution. Also here, dependence of the partitioning result to the WUE input was 
analyzed. Of particular interest was the assessment of the transfer assumption involved in 
SK10 (Eq. 3.2, 3.3), which was only possible with the LES experiments. 

3.3.1 Source Partitioning of Field Data 

The selected time period for the forest site included 247 daytime hours and the three periods 
for the cropland 359 daytime hours in total. After checking the data quality (excluding periods 
with precipitation events, worst quality flag, and insufficient fraction of footprint on target 
area) SK10 could be applied to 70% and 86% of these daytime hours for the forest and 
cropland site, respectively. Subsequently, SK10 found valid partitioning solutions for 75% and 
58% of these high-quality daytime periods for the forest and cropland site. 
Figures 3.2 and 3.3 show source partitioning results of SK10 for H2O and CO2 fluxes at the 
two study sites for certain time periods. The partitioned H2O fluxes were compared to 
estimated Esoil computed as a fraction of measured ET based on Beer’s law depending on LAI 
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(Fig. 3.2; Campbell and Norman 1998; Denmead et al. 1996; Kool et al. 2014). The 
partitioned CO2 fluxes were compared to results of the approach after Reichstein et al. (2005) 
and to Rsoil chamber measurements (Fig. 3.3). The root mean square error (RMSE) and the bias 
between measured and SK10-based Rsoil are given in Table 3.1. For the calculation of the error 
quantities, outliers were excluded which deviated from the mean by more than ten times the 
standard deviation. Concerning the different chamber measurement setups, one area average 
from four chamber measurements was given per considered half-hour at the crop site, while at 
the forest site only one space-time average from 36 consecutive manual chamber 
measurements in different locations was assumed to be approximately applicable for June 10th, 
2015 from 9 a.m. till 1 p.m. 
SK10 reasonably partitioned water vapor fluxes into larger fractions of T than E (Fig. 3.2). 
The comparison between E and estimated Esoil based on Beer’s law showed a good agreement 
for the forest and larger discrepancies for the cropland. For the latter, SK10 seemed to 
overestimate E up to the tenfold in most time periods and matched the magnitude of Esoil 
perfectly in only a few time periods, keeping in mind that Esoil was also just an approximation. 
The large variations in E decreased with maturity of the crop. The median of the partitioning 
fraction E/ET was 0.16 for the forest and between 0.09 and 0.23 for the cropland in the three 
time periods. At the forest site E/ET increased to a median of 0.29 on the two days after the 
precipitation events during the night from June 12th to June 13th. Thereby, T was reduced due 
to an increased qs and a decreased humidity gradient at leaf-level. This effect was also 
observed by Scanlon and Kustas (2012). Kool et al. (2014) reviewed 52 studies about ET 
partitioning and found values of E/ET between 0.05 and 0.53 for forests and between 0.1 and 

Fig. 3.2: Source partitioning results of the approach after Scanlon and Kustas (2010) for H2O fluxes at 
the two study sites Wüstebach (forest; top) and Selhausen (cropland; bottom) for varying time periods 
(LE: latent heat flux; T: transpiration; E: evaporation; Esoil: soil evaporation calculated based on Beer’s 
law depending on LAI; LAI: leaf area index; hc: canopy height; blue bars: precipitation events). 
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0.9 for winter wheat depending on the crop cover, in which our findings belonged to the lower 
ranges. 
Results of the CO2 partitioning showed more scatter at both study sites (Fig. 3.3). While the 
partitioning model after Reichstein et al. (2005) has different target flux components than 
SK10 (see 3.1. Introduction), its respiration (TER) can be used as an upper limit for the 
validation of the SK10-based Rsoil. Here, Rsoil often exceeded TER (correspondingly NPP 
exceeded GPP) and chamber measurements, and peaked in implausible magnitudes, especially 
in the cropland for the two chosen time periods earlier in the year. In the latter time period, 
when the winter wheat matured, NEE measurements decreased and SK10 results appeared 
more reasonable. Compared to Rsoil chamber measurements, the estimated soil source by SK10 
matched measurements very well on June 30th, but was often underestimated in early July. 
Weather conditions were similar in the three considered time periods, thus, the ecosystem 
WUE differing between the time periods seemed to have an effect on the partitioning 
performance. T and NPP results particularly differed between the last two time periods, which 
were similar in plant height and LAI, but differed in maturity of the crop. A direct relationship 
of T and NPP to plant height or LAI could not be observed, also because these canopy 
properties only varied slightly between the considered time periods (Fig. 3.2, 3.3). At the 
forest site, the obtained CO2 flux components had a reasonable magnitude, except after the 
precipitation events. The significant increase of the flux components could be caused by the 
presence of interception, so the SK10 procedure could not differentiate between T and 
evaporation of interception water, thus, overestimating T and NPP with an unchanged WUE. 

Fig. 3.3: Comparison of source partitioning results of the approaches after Reichstein et al. (2005; 
RE05) and after Scanlon and Kustas (2010; SK10) for CO2 fluxes at the two study sites Wüstebach 
(forest; top) and Selhausen (cropland; bottom) for varying time periods (GPP: gross primary 
production; NPP: net primary production; TER: total ecosystem respiration; Rsoil: soil respiration; LAI: 
leaf area index; hc: canopy height; blue bars: precipitation events). Light blue bar in Wüstebach on 
June 10th, 2015 shows time-space-average of Rsoil chamber measurements. 
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The median of the partitioning fraction Rsoil/NEE was -0.29 for the forest and between -0.74 
and -0.14 for the cropland. 
Reasons for the relatively poor performance of SK10 at our study sites could include a wrong 
functioning of the partitioning method, such as finding a wrong solution for ρcp’cr’, excluding 
not enough/too many levels of large-scale fluctuations, or a falsified WUE estimation. Also, 
inapplicable micrometeorological and environmental conditions, such as a non-identical sink-
source-distribution of H2O and CO2 fluxes, horizontal canopy heterogeneity, insufficient 
vertical spacing between stomatal and non-stomatal processes, and deviations of these 
processes from flux-variance similarity theory, could cause the improbable results. Also, not 
all processes could be incorporated in the method, e.g., such as respiratory fluxes of a forest 
understory or woody tissue and refixation of respiratory CO2 in the canopy. 
The correct exclusion of large-scale fluctuations was checked with a modified SK10 method 
by searching for the best solution in all eddy scales and not stopping at the first valid solution. 
This did not improve partitioning results significantly (not shown). Thus, we assumed that the 
application of the wavelet transform and the exclusion of low frequency processes were 
efficient. By removing large-scale fluctuations it was assumed that the removed part had a 
composition of H2O and CO2 that was proportional to the remaining data (Scanlon and Sahu 
2008). At our cropland site, the fraction of the H2O and CO2 fluxes transported by large-scale 
eddies was very small and very similar between water vapor and CO2. The number of removed 
wavelet levels for each time step decreased on average with maturity of the crop. At our forest 
site, the proportions of the fluxes were larger for low frequency processes and some 
differences between H2O and CO2 fractions were observed, but the partitioning performance 
did not seem to be dependent. But the spikes in the CO2 components observed before the 
precipitation events at the forest site were provoked by the removal of more than ten wavelet 

Tf ci (ppm)      Selhausen, cropland    Wüstebach, forest 
RMSE bias N* RMSE bias N* 

WUEmean T meanT 270 16.77 6.810 184 1.39 -0.255 7 
WUEmean T -2 K meanT – 2 K 270 27.69 5.459 215 1.55 0.510 8 
WUEmean T +2 K meanT + 2 K 270 19.70 0.052 215 9.81 -7.806 8 
WUEMOST via MOST 270 14.37 5.909 174 1.07 -0.876 5 
WUEOLR via OLR 270 18.56 5.068 142 0.87 -0.866 3 
WUEMAX meanT – 2 K 200 36.62 14.895 163 NaN NaN 0 
WUEMIN meanT + 5 K 300 26.76 3.460 114 NaN NaN 0 
* number of time steps with available chamber measurements: 280 in Selhausen, 8 in Wüstebach.

Tab. 3.1: Root mean square error (RMSE), bias in μmol m-2 s-1, and number of found solutions (N) of 
the source partitioning results for soil respiration after the approach of Scanlon and Kustas (2010) with 
various water use efficiencies (WUE; including input parameters for WUE estimation: Tf: foliage 
temperature; ci: internal CO2 concentration; meanT: measured mean air temperature; MOST: Monin-
Obukhov similarity theory; OLR: outgoing longwave radiation; see text for description) compared to 
chamber measurements at the two study sites Selhausen (cropland) and Wüstebach (forest). Outliers 
were excluded which deviated from the mean by more than ten times the standard deviation. 
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levels in these time steps, so flux fractions were not represented realistically anymore and the 
partitioning method could not work properly. 
As observed by Scanlon and Albertson (2001), at our forest site the largest proportions of the 

Fig. 3.4: Comparison of source partitioning results of the approach after Scanlon and Kustas (2010) 
depending on different water use efficiency (WUE) inputs for both study sites (see text for description; 
Tf: foliage temperature; ET: evapotranspiration; T: transpiration; NEE: net ecosystem exchange; NPP: 
net primary production). 
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vertical H2O and CO2 fluxes were also mostly transported by eddies in the order of four times 
the canopy height. At the cropland site, the eddies transporting the largest flux fractions were 
up to ten or even more times larger than the canopy. This and the very small distance between 
canopy and soil surface sink/sources (relative to the measurement height) could cause the 
unsatisfactory performance of SK10 for the cropland. Besides, EC measurements were 
obtained at between 3 and 4.3 hc at the crop site on the considered days and at 1.52 hc at the 
forest site. Assuming the roughness sublayer ranges up to 1.5 to 3 hc (Williams et al. 2007), 
measurements at the latter site were more likely obtained within or close to the roughness 
sublayer, resulting in a lower scalar-scalar-correlation ρq’c’ and more information for SK10. At 
both study sites degraded ρq’c’ were observed for the excluded large-scale eddies, e.g., due to 
entrainment, and for eddy scales smaller than the canopy height, so ρq’c’ was possibly 
influenced by the sink-source-distribution (Huang et al. 2013; Scanlon and Sahu 2008; 
Williams et al. 2007). The signals were well correlated at the intermediate scales. 
A crucial issue of SK10 is currently ascribed to the input of the WUE estimation (Anderson et 
al. 2018; Palatella et al. 2014; Sulman et al. 2016). To investigate the sensitivity of the 
partitioning approach to WUE input, differing Tf were used for the calculation. Figures 3.4a 
and 3.4b show how these modified temperatures and the corresponding WUEs deviated from 
mean air temperature and WUEmeanT. Tf calculated by considering a logarithmic mean profile 
implementing MOST varied in the range of mean air temperature ± 2 K (this certain range of 
temperature was suggested by Scanlon and Sahu 2008). Tf calculated by means of measured 
outgoing longwave radiation was mostly higher than mean air temperatures during the day (up 
to 3 K at forest and 6 K at crop site). The magnitudes of corresponding WUEs 
decreased/increased (were less/more negative) with higher/lower temperature as stated before. 
WUEMOST and WUEOLR were within the range of WUEmeanT-2K and WUEmeanT+2K, WUEOLR 
usually being less negative. Also shown are WUEMIN and WUEMAX not only differing in used 
temperature, but also in ci, which represented the outer reasonable margins for WUE input. 
With WUEMIN, SK10 found valid solutions less often for both study sites – on many days only 
in the morning or evening hours (see Fig. B.1, B.2 in Appendix B). Also, the morning and 
evening hours usually produced WUEs of large magnitudes. Figures 3.4c and 3.4d show the 
median of the partitioning fractions for H2O and CO2 fluxes in relation to the measured net 
fluxes (T/ET, NPP/NEE) grouped into classes of 25 W m-2 or 5 μmol m-2 s-1, respectively, of 
the total fluxes. With larger measured ET the medians of T/ET increased slightly and 
converged towards 1. Such a clear trend was not observed for the medians of NPP/NEE in 
dependence on the magnitude of NEE. Furthermore, partitioning fractions for H2O and CO2 
were closer to unity with a less negative WUE. With a more negative WUE, as e.g. WUEMAX, 
the medians of the partitioning fractions decreased for H2O, so estimated T and E converged, 
and increased for CO2, such that both Rsoil and the magnitude of NPP increased. Sulman et al. 
(2016) have made the same observations. Figures 3.4e and 3.4f show all half-hourly 
partitioning fractions for both scalars as a function of the WUE obtained with the different Tf 
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estimations. While single values scatter widely due to varying factors affecting partitioning in 
each half-hour, the median over WUE classes of 5 mg g-1 revealed a general trend in the 
partitioning result. With increasing magnitude of WUE the fraction of T in ET decreased, and 
both CO2 flux components became larger. For our sites and chosen time periods, the medians 
of the partitioning fractions ranged between 0.6 and 1 for T/ET, and between 1.1 and 2 for 
NPP/NEE. Thus, T usually represented the larger fraction of the total water vapor flux. 
Further, the large range of NPP/NEE indicates a larger impact of uncertain WUE in the CO2 
partitioning than for H2O, as also reported by Scanlon and Sahu (2008). Furthermore, the 
differing WUE inputs caused a bigger difference for the cropland than for the forest (Fig. B.1, 
B.2 in Appendix B). In general, usage of WUEMOST or WUEOLR improved the estimation of 
Rsoil compared to the chamber measurements regarding the RMSE and bias (Tab. 3.1). 
However, these error quantities were highly sensitive towards outliers.  

3.3.2 Large Eddy Simulations  

The vertical profiles of wind velocity, momentum flux, second-order moments, and skewness 
produced by the LES are shown in Figure 3.5, and they compared qualitatively well with 
profiles shown by Edburg et al. (2012) and Ouwersloot et al. (2016). Here, no oscillations 
between canopy and free air above could be observed in the velocity components due to the 
smooth transition of the PAD at canopy top, as prescribed by Ouwersloot et al. (2016). We 
also conducted short test runs on the one hand with higher resolution (grid size of 
0.05 hc x 0.05 hc x 0.05 hc) and on the other hand with a larger domain size (doubled in x-, y-, 

Fig. 3.5: Mean vertical profiles of streamwise and crosswise velocity (u, v), vertical momentum flux 
(u'w'̅̅ ̅̅ ̅), variances of u, v, and vertical wind velocity (w), and skewness of vertical wind (Skw), scaled by 
friction velocity (u*) at canopy top. Shown are profiles of the simulations with the crop and forest 
canopy. 
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and z-direction) to test if our main LES experiments described the turbulence and scalar 
transport sufficiently, especially near the surface. Even though the costly test runs had a short 
runtime during which they did not converge, a clear independence of the domain size could be 
observed. Small discrepancies between the original LES and the one with higher resolution 
could be found, in which flux profiles adjusted quicker in the latter. The proportion of the 
resolved scale of the second-order moments was well below 15% in the original LES except in 
the region below 1.5 hc. Thus, we assumed that the conducted LES simulated canopy flows 
and scalar transport reasonably well. Because the simulated turbulences and the associated 
calculated fluxes did not show large differences between the two canopy types, only results of 
the crop canopy are shown in the following (corresponding results of the forest canopy in 
Fig. B.5-B.11 in Appendix B). Thus, differences in scalar-scalar-correlations and flux profiles 
between the various cases were caused solely by the differing sink-source-distributions (shape 
and relative strength of the soil source) and not by differences in the turbulence. Examples of 
the sampled synthetic high frequency data of q’ and c’ are shown in Appendix B for different 
‘measurement’ heights and for the two sink-source-distributions ModelV and ModelB each 
with the strong soil source (Fig. B.3).  
The vertical profiles of the total fluxes of H2O and CO2 were very similar and did not show 
large differences above the canopy between the different sink-source-distributions (ModelV or 
ModelB) and soil CO2 source strengths (Fig. 3.6a, d). The profiles showed differences of 
typically less than 1% above 1.5 hc. For CO2 the varying soil surface sources could be 
distinguished in the flux profiles of the components originating from the canopy or soil surface 
(Fig. 3.6b, c). Vertical profiles of the correlation between q’ and c’ showed only larger 
discrepancies (larger than 1%) between the various experiments up to a measurement height of 
3.2 hc (Fig. 3.7a). The correlation between fluctuations of H2O components (ρqt’qe’) or of CO2 
components (ρcp’cr’) and the transport efficiencies ρw’qt’ and ρw’cp’ were dependent on the sink-
source-distribution (Fig. 3.7b, d, e), in which discrepancies vanished above a height of 8 hc 
(not shown). The transport efficiencies of the soil sources ρw’qe’ and ρw’cr’ were naturally 
independent of the sink-source-distribution in the canopy and of the source strength. When 
comparing ρw’qt’, ρw’qe’, ρw’cp’, and ρw’cr’ with each other for each sink-source-distribution, 
differences (larger than 1%) between these transport efficiencies disappeared above 7 hc.  
SK10 was applied to the sampled data at every virtual measurement height. SK10 generally 
underestimated the magnitudes of CO2 fluxes originating from the soil surface and the canopy 
(Fig. 3.6b, c). Accordingly, the canopy H2O flux source was underestimated, and the soil 
source overestimated. Above a height of 1.5 hc for the low CO2 soil source and above 2.5 hc 
for the strong source, almost no differences between ModelV and ModelB were visible, such 
that in Figures 3.6b, 3.6c, 3.6e, and 3.6f data points of ModelB are hidden under data points of 
ModelV. Above a height of 5 hc larger discrepancies between the various experiments 
emerged again (not shown), probably related to the fact that ρq’c’ converged to -1 with 
increasing height. Below these heights, partitioning results of ModelV converged towards the 
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known input fluxes of the scaled LES. These better results seemed to be connected with the 
stronger decorrelation between q’ and c’ observed in the corresponding heights (|ρq’c’| < 0.975; 
Fig. 3.7a). Furthermore, the height-dependence of the SK10-estimated flux components was 
very similar for all four sink-source-distributions (with exception of the lower few hc of 
ModelV). Differences between soil source strengths were not detected. However, SK10 
produced a difference in the H2O flux profiles depending on soil source strength, contradicting 
the differences in the scaling input. This can also be seen in the scatter plots of Figure 3.8 
showing partitioning results for the height of 2.5 hc. Also, the SK10-based ρcp’cr’, and σcp’

2 

Fig. 3.6: Vertical profiles of H2O and CO2 flux, and their components resulting from LES scaled with 
the four variations of sink-source-distributions (ModelV or ModelB; low or high soil source) for the 
crop canopy. Also shown are the partitioning results of the approach after Scanlon and Kustas (2010; 
SK10) for each grid height. 
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deviated from the known input (Fig. 3.7b, c, 3.8d, e). The permitted error between the known 
ρq’c’ of the synthetic high frequency data and the by SK10 calculated ρq’c’ was set to a 
maximum of 0.1 (Fig. 3.7a, 3.8c).  
Up to this point we can conclude that SK10 was not able to infer the correct partitioning, even 
if the correct leaf-level WUE was used. The magnitude of the difference between 
ecosystem- and canopy-level WUE did not seem to affect the partitioning performance, 
otherwise both experiments of ModelV and ModelB with the stronger soil source would have 
yielded better results than the sink-source-distributions with the lower soil source. A certain 
degree of decorrelation between q’ and c’ is needed for the method to work: ρq’c’ converged 
slower to -1 with increasing height for ModelV than for ModelB caused by a larger separation 
of soil source and canopy sink/source. The impact of the WUE input could also have been 
compensated by the impact of the decorrelation. In the next paragraph we inquire an additional 
influencing factor for the partitioning performance of SK10.  
For the LES analysis, the falsified partitioning by SK10 could not be caused by an uncertain 
WUE input, as was assumed for our field data, because the correct WUE from the scaled LES 
experiments was used. As seen in Figures 3.7d and 3.7e, the approximations made in 
Equations 3.2 and 3.3 (transfer assumption) were invalid for our synthetic experiments, 

Fig. 3.7: a)-c) Vertical profiles of ρq’c’, ρcp’cr’, and σcp’
2 resulting from LES scaled with the four 

variations of sink-source-distributions (ModelV or ModelB; low or high soil source) for the crop 
canopy (lines), compared to results of the approach after Scanlon and Kustas (2010; SK10) (dots). d)-
e) Comparison of the two sides of Equations 3.2 and 3.3 checking the transfer assumption and 
corresponding correction factors (factq, factc, defined in Equation 3.5 and 3.6). 
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possibly causing the erroneous partitioning results. In the next step, we conducted the source 
partitioning with SK10 again, including correction factors factq and factc in Equations 3.2 and 
3.3, which were known from the scaled LES experiments (Fig. 3.7d, e). 
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Thus, we made sure that the approximations were valid. These correction factors had to be 
included in the complete system of equations of the SK10 method, because all equations are 
derived based on these approximations. For ModelB the correction factors had to be larger 
than for ModelV, which could explain the better results for the latter (Fig. 3.7d, e). Figures 3.8 
and 3.9 show updated source partitioning results by SK10 including these correction factors. 
In this case, SK10 almost perfectly matched the known input of the scaled LES experiments. 
Small discrepancies were observed above a height of 2 hc especially for ModelB. For the 
forest-like canopy, the correction of the transfer assumption brought perfect partitioning 
results up to a height of 4 hc (Fig. B.9 in Appendix B) This was due to the fact that the 
necessary decorrelation between q’ and c’ reached higher in the simulation with the forest 
canopy than with the crop canopy.  

Fig. 3.8: Comparison of H2O and CO2 flux components, ρq’c’, ρcp’cr’, and σcp’
2 resulting from LES scaled 

with the four variations of sink-source-distributions (ModelV or ModelB; low or high soil source) and 
the partitioning results of the approach after Scanlon and Kustas (2010; SK10) at a ‘measurement’ 
height of 2.5 canopy heights for the crop canopy. Shown are results of the partitioning procedure 
without and with correction of the transfer assumption. 
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To transfer these results from the LES experiments to study sites, the SK10 method would 
benefit from an EC measurement height in the lower roughness sublayer to ensure a certain 
degree of decorrelation of the scalars (which is not a measurement height usually chosen for 
high-quality net flux measurements). At the same time, however, a larger measurement height 
would ensure more likely the validity of the transfer assumption. A comparison of Figures 3.6, 
3.7d, and 3.7e indicates that the latter factor compensates the former to some degree, such that 
without known correction factors for the transfer assumption, no measurement height is ideal. 
However, the better performance of ModelV close to the canopy in Figure 3.6 indicates that 
the net effect of both factors leads to better results with measurements low above the canopy.  

Fig. 3.9: Vertical profiles of H2O and CO2 flux components, ρq’c’, ρcp’cr’, and σcp’
2 resulting from LES 

scaled with the four variations of sink-source-distributions (ModelV or ModelB; low or high soil 
source) for the crop canopy. Also, the partitioning results of the approach after Scanlon and Kustas 
(2010; SK10) including the correction of the transfer assumption are shown for each grid height. 
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To further investigate the influence of the turbulence and the canopy on the partitioning 
performance, additional LES runs with e.g., larger LAI would be necessary. With changed 
turbulence the transport efficiencies and scalar-scalar-correlations would differ. Huang et al. 
(2013) stated that the correlation between q’ and c’ increased with increasing canopy density 
in their LES studies. LAI might therefore have a similarly ambiguous effect on SK10’s 
performance as measurement height. This conundrum could only be solved if a way was found 
to estimate correction factors for ρcp’cr’ and ρqt’qe’ in field studies. 
At our cropland and forest study sites, WUE inputs varied between one third of and three 
times of WUEmeanT depending on the calculation of Tf and the magnitude of ci (Fig. 3.4). In 
order to put the sensitivity to WUE input in context to the possible error in the transfer 
assumption discussed above, we repeated the SK10-based analysis of the LES data with 
corrected transfer assumption and with the variability of WUE input as seen in the field data 
analysis. However, no valid solutions could be found by the algorithm below a height of 4 hc. 
Instead, WUE input could only be changed by up to minus 90% or plus 24% while still 
obtaining an effectual amount of partitioning solutions. In Figure 3.10 partitioning fractions of 
the H2O and CO2 fluxes are shown as a function of WUE input for each sink-source-
distribution at a virtual measurement height of 2.5 hc. Other than at our study sites (Fig. 3.4e, 
f), in this case the true WUE and partitioning fractions were known. The transfer assumption 
was applied in its original form (Eqs. 3.2, 3.3; filled markers in Fig. 3.10) and with correction 
factors (Eqs. 3.5, 3.6; non-filled markers), such that the combined effect of both sources of 
error (wrong WUE input and invalid transfer assumption) on the partitioning result could be 
seen (also see Fig. B.4, B.11 in Appendix B). Both sink-source-distributions, ModelV and 
ModelB, show the same trends in the relation of T/ET and NPP/NEE with WUE. With the 
correct WUE and including the correction factors, small discrepancies between true and 
estimated partitioning factors were observed for ModelB, as described above (Fig. 3.8, 3.9). 
For H2O, the range of T/ET for varying WUEs was smaller with a corrected transfer 
assumption than without. Thus, the potential error made with wrong WUE inputs was smaller. 
An overestimation of the magnitude of WUE (more negative) led to an overestimation of T 
with corrected, and an underestimation with uncorrected transfer assumption. Figure 3.10 also 
indicates that without correction of the transfer assumption, typically a slightly underestimated 
magnitude of WUE will lead to a partitioning fraction close to the truth. For CO2, the 
variability in NPP/NEE was larger for the applications with corrected transfer assumption than 
without (note the logarithmic y-axes), which is contrary to the behavior of T/ET. NPP/NEE 
was very small with the incorrect transfer assumption. At our study sites we often observed an 
overestimation of the CO2 components (Fig. 3.3). In contrast, in the LES-based analysis 
NPP/NEE was underestimated without correction factors, even with the correct WUE. With a 
correct WUE input the errors made by an invalid transfer assumption were mostly smaller for 
the low soil source than for the high soil source. 
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Considering the medians in Figure 3.4e and 3.4f, E, Rsoil, and |NPP| increased and T decreased 
by increasing the magnitude of WUE (more negative) at our study sites, thus, describing a 

Fig. 3.10: Results of partitioning fractions for H2O (T/ET, left) and CO2 (NPP/NEE, right) fluxes in 
relation to the input water use efficiency (WUE). The source partitioning approach after Scanlon and 
Kustas (2010) was applied to synthetic high frequency data from LES scaled with the four variations of 
sink-source-distributions (ModelV or ModelB; low or high soil source) at a ‘measurement’ height of 
2.5 canopy heights for the crop canopy with corrected and uncorrected transfer assumption. The true 
known partitioning factors and WUE input are indicated by the dashed lines. 
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similar behavior as the partitioning factors derived by SK10 with an incorrect transfer 
assumption in the LES-based analysis. But the range of the varying WUE was larger at our 
study sites than the possible range in the LES-based analysis, and at the study sites differing 
WUEs of multiple half-hours on various days with varying weather conditions and different 
canopies were compared. 
Sulman et al. (2016) reported a higher sensitivity of E and Rsoil to the WUE input than of T 
and NPP. By varying WUE, the absolute change of stomatal and non-stomatal processes of 
H2O or CO2 were identical, because they were summing up to the unchanged, measured net 
fluxes. But the relative change differed because of the much smaller magnitude of non-
stomatal processes than of stomatal processes (Sulman et al. 2016). We also observed that the 
differing input of WUE had a larger relative effect on soil source fluxes than on fluxes 
originating from the canopy (relative residuals in Fig. B.4, B.11 in Appendix B). The errors in 
the final flux partitioning obtained when not using the true known WUE input, were on the 
same order of magnitude as those obtained when ignoring the correction of the transfer 
assumption (Fig. 3.10). 

3.4. SUMMARY AND CONCLUSIONS 

In this study, we applied the source partitioning method SK10 to data of our study sites and 
analyzed how the partitioning results depend on the WUE input. Compared to Rsoil chamber 
measurements and to Esoil calculated based on Beer’s law depending on LAI, the partitioning 
results for the forest site in Wüstebach were more satisfying than for the cropland in Selhausen 
for the respective study periods. The partitioning method’s performance was sensitive to 
precipitation events and to the maturity of the crop, connected to the photosynthetic activity 
and the relation between stomatal and non-stomatal processes in the crop canopy. With a less 
active canopy, relative stronger soil sources, or with a higher distance between canopy and soil 
sink/sources, SK10 performed better at our study sites. The estimation of WUE input based on 
Tf derived with measurements of outgoing longwave radiation (WUEOLR) or by considering a 
logarithmic mean profile implementing MOST (WUEMOST) improved the partitioning 
performance compared to Rsoil measurements. Inclusion of direct measurements of WUE on 
leaf-level would improve the method’s performance (Anderson et al. 2018; Sulman et al. 
2016), but such measurements are not available at most study sites. 
In a next step, we applied SK10 to synthetic high frequency data generated by LES and 
analyzed the partitioning performance depending on canopy type, measurement height, and 
given sink-source-distributions. Primarily, approximations involved in SK10 (Eqs. 3.2, 3.3; 
transfer assumption) were checked in the LES. Furthermore, for the synthetic data the 
dependence of the partitioning result to WUE input was analyzed as well. Because simulated 
turbulence did not differ much between PAD types, also SK10’s performance did not differ 
significantly. The performance was sensitive to the virtual ‘measurement’ height and to the 
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corresponding decorrelation between q’ and c’. The decorrelation above the canopy was 
stronger and reached higher for the forest canopy, for the v-shaped sink-source-distribution 
(and thus for a higher separation between soil sources and canopy sink/source), and/or for the 
distributions with high soil sources, resulting in slightly lower residuals between known input 
and SK10 output. To further investigate the influence of the canopy architecture and resulting 
turbulence on the partitioning performance, additional LES runs with e.g., larger LAI would 
be necessary. Similar behavior of SK10’s performance depending on differing input of WUE 
could be reproduced with the synthetic experiments as observed at the study sites. Primarily, 
our LES study indicated that next to a precise WUE estimation, the validity of the transfer 
assumption was a crucial point for a correct application of SK10. Therefore, a thorough 
assessment of the conditions at study sites affecting the validity of the transfer assumption 
would be necessary. These conditions could include measurement height above the canopy, 
separation between soil sources and canopy sink/source, and the corresponding transport 
efficiencies. 
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4.1. INTRODUCTION 

The eddy covariance (EC) method is a micrometeorological technique commonly used to 
measure the energy, water vapor, and carbon dioxide exchange between biosphere and 
atmosphere across a large spectrum in time and space (Baldocchi et al. 2001; Reichstein et al. 
2012). The measurements help to understand the temporal and spatial variations of these 
fluxes at the land-atmosphere interface. For a better consideration, assessment, and prediction 
of climate change by scientists, policy-makers, and citizens, a further understanding of the soil 
and vegetation flux components of H2O and CO2 and their interaction with physical conditions 
and physiological functioning of plants and ecosystems is necessary (Baldocchi et al. 2001). 
To obtain magnitudes of transpiration (T), evaporation (E), photosynthesis, and respiration by 
soil and vegetation, certain measurements with additional instrumentation independent of the 
EC technique can be conducted. Alternatively or additionally, so-called source partitioning 
approaches can be applied to the net fluxes obtained with the EC method: the 
evapotranspiration (ET) and net ecosystem exchange (NEE). For instance, with the notion that 
during night no CO2 is assimilated by plants, respiratory fluxes are often estimated based on 
semi-empirical models describing the relationship between a physical driver (e.g., 
temperature) and respiration (Lloyd and Taylor 1994; Reichstein et al. 2005, 2012). To 
estimate soil surface fluxes of both H2O and CO2 directly from high frequency EC data 
without assumptions on such drivers, two new partitioning approaches were developed by 
Scanlon and Sahu (2008), Scanlon and Kustas (2010), and Thomas et al. (2008). Both 
approaches imply that the high frequency scalar concentrations available in the framework of 
EC measurements contain information about the strength of sinks and sources in and below 
the canopy, which can be quantified by applying the flux-variance similarity theory or 
conditional sampling strategies. Thus, scalar dissimilarities have to be apparent above the 
canopy. The scalar-scalar-correlations of H2O and CO2, their concentration profiles, and fluxes 
are dependent on height (atmospheric surface layer, roughness sublayer), surface 
heterogeneity (Williams et al. 2007), canopy density, sink-source-distributions, and coherent 
structures (Edburg et al. 2012; Huang et al. 2013). 
The source partitioning approach after Scanlon and Sahu (2008) and Scanlon and Kustas 
(2010) was applied to data of a corn field (eastern USA; Scanlon and Kustas 2012), compared 
to isotopic H2O flux partitioning (Good et al. 2014) and to the Noah Land Surface Model 
(Wang et al. 2016) both for grasslands, and evaluated on a forest site in a decadal time scale 
(Sulman et al. 2016). Zeeman et al. (2013) further investigated the partitioning approach after 
Thomas et al. (2008) in association with coherent structures. To better assess these two 
approaches and their theoretical background, an intercomparison at a variety of study sites is 
necessary (Anderson et al. 2018). 
The objective of this study was to compare and evaluate the source partitioning approaches 
after Scanlon and Kustas (2010) and after Thomas et al. (2008) by applying them to high 
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frequency flux measurements of various study sites in different ecosystems. Next to testing 
slight modifications of these partitioning methods, conditions and characteristics of study sites 
are identified under which the methods perform best. Based on findings of the above-
mentioned authors and the large eddy simulation (LES) study in Chapter 3, we hypothesize 
that the methods’ performance is dependent on the canopy height (hc), which should represent 
the vertical separation of sinks and sources of H2O and CO2 between canopy top and soil 
surface, on the canopy density (LAI, LAI hc

-1), and on the ratio between measurement height 
(z) and hc. All these factors affect the degree of mixing of the scalars when they reach the EC 
sensors. With a high (low) and sparse (dense) canopy and a low (high) z hc

-1, we assume a 
larger dissimilarity between scalar fluctuations and a more precise (less sufficient) partitioning 
result of both source partitioning approaches. To summarize, goals of this study are: 
- The comparison and evaluation of the partitioning results obtained with the approaches after 
Scanlon and Kustas (2010) and after Thomas et al. (2008) for various ecosystems, and testing 
slight modifications of the approaches 
- An analysis of the two approaches with respect to their dependence on their underlying 
assumptions 
- The description of the interrelations between turbulence characteristics, site characteristics 
(such as canopy type, hc, z hc

-1, LAI, and LAI hc
-1), and performance of the partitioning 

methods 
- The identification of characteristics of a data set (i.e. of study site and period properties), 
which lead to a sufficient performance of the partitioning methods, if such characteristics 
exist. 

4.2. MATERIAL AND METHODS 

4.2.1. Source Partitioning after Scanlon and Kustas (2010) - SK10 

To estimate the contributions of T, E, photosynthesis, and soil respiration (Rsoil, autotrophic 
and heterotrophic sources) to the measured total fluxes, Scanlon and Sahu (2008) and Scanlon 
and Kustas (2010) proposed a source partitioning method using high frequency time series 
from a typical EC station. This method (SK10 in the following) is based on the spatial 
separation and relative strength of sinks and sources of water vapor and CO2 among the sub-
canopy, canopy, and atmosphere. Assuming that air from those sinks and sources is not yet 
perfectly mixed before reaching EC sensors, partitioning is estimated based on the separate 
application of the flux-variance similarity theory to the stomatal and non-stomatal components 
of the regarded scalars, as well as on additional assumptions on stomatal water use efficiency 
(WUE). The correlation between the two scalars (ρq’c’) usually deviates from -1 during 
daytime. This reduction of correlation and its deviation from WUE at leaf-level is used to 
estimate the composition and magnitudes of the measured fluxes (Scanlon and Kustas 2010; 
Scanlon and Sahu 2008). For a detailed analytical description of SK10 see Palatella et al. 
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(2014), Scanlon and Albertson (2001), Scanlon and Kustas (2010, 2012), and Scanlon and 
Sahu (2008). SK10 was applied to high frequency EC data and the flux components were 
estimated as prescribed in Chapter 3. 
As mentioned before, the WUE at leaf-level has to be estimated for the application of SK10. 
WUE at leaf-level describes the relation between the amount of CO2 uptake through stomata 
(photosynthesis) and the corresponding amount of H2O loss (T). One way to derive WUE 
(without additional measurements at leaf-level) is to relate the difference in mean CO2 
concentration between air outside the leaf and stomata to the difference in mean humidity 
concentration between air and stomata including a factor that accounts for the difference in 
diffusion between H2O and CO2 through the stomatal aperture (see Eq. 3.4; Campbell and 
Norman 1998). The mean H2O and CO2 concentrations just outside the leaf can be inferred 
from EC measurements by considering logarithmic mean concentration profiles implementing 
Monin-Obukhov similarity theory (MOST; Scanlon and Kustas 2010, 2012; Scanlon and Sahu 
2008). For the internal CO2 concentration a constant value of 270 or 130 ppm was presumed, 
typical for C3 or C4 plants, respectively (Campbell and Norman 1998; Špunda et al. 2005; 
Williams et al. 1996; Xue et al. 2004). Values for the internal water vapor concentration were 
estimated based on 100% relative humidity at foliage temperature (Tf). Measurements of Tf 
were not available at the study sites, so for the source partitioning Tf was set equal to 
measured air temperature (WUEmeanT; Scanlon and Sahu 2008). Additionally, to investigate 
the sensitivity of WUE, Tf was also derived by means of measured outgoing longwave 
radiation (WUEOLR; with a surface emissivity of 0.98), or calculated similar to the external 
concentrations by considering a logarithmic mean profile implementing MOST (WUEMOST). 
Thus, three different approaches of SK10 with differing inputs for WUE were applied to all 
study sites. 

4.2.2. Source Partitioning after Thomas et al. (2008) - TH08 

Thomas et al. (2008) presented a new method (TH08 in the following) to estimate daytime 
sub-canopy respiration of forests directly from EC raw data by conditional sampling. At the 
same time, evaporation can be quantified by exchanging c’ with q’ in the equations given by 
Thomas et al. (2008, equations 1-11, pages 1212-1215). The method assumes that occasionally 
air parcels moving upward (vertical wind fluctuations w’ > 0) carry unaltered H2O/CO2 
concentration combinations of the sub-canopy. Looking at the fluctuations q’ and c’, both 
normalized over the corresponding standard deviation, respiration/evaporation signals should 
occur within the plane, where q’ and c’ are both positive, i.e. in the first quadrant in the q’-c’ 
plane. Additionally, Thomas et al. (2008) introduced a hyperbolic threshold criterion within 
quadrant 1, thus sampling all data points above this hyperbola. Thomas et al. (2008) found 
realistic respiration estimates with a hyperbolic threshold of 0.25, which was also applied here. 
To estimate daytime evaporation and respiration from the sampled w’, q’, and c’ time series 
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the conditional average of the covariance between w’ and corresponding scalar can be 
calculated. Furthermore, the turbulent H2O and CO2 flux can be represented by the relaxed 
eddy accumulation (REA) technique (Businger and Oncley 1990). Therefore, Thomas et al. 
(2008) applied four different conditional sampling approaches, sampling the 
respiration/evaporation ‘cloud’ in quadrant 1 (Q1) or using the hyperbola threshold criterion 
(H), and then calculating the fluxes for each case by the covariances (CV) or the REA 
technique. 
For some averaging periods in our data, a potential respiration/evaporation ‘cloud’ was evident 
but did not occur within quadrant 1 (Fig. 4.1). As a modification of the conditional sampling 
strategy and a more tolerant detection of respiration/evaporation events, a distribution-based 
cluster analysis was conducted (fifth approach, GMM). With the Gaussian Mixture Model 
using the Expectation-Maximization Algorithm, two clusters or components, respectively, 
were defined for each averaging period: the respiration/evaporation ‘cloud’ and all further 
points associated to T and photosynthesis independent of the sign of w’. The GMM method is 
based on taking random samples from each component and fitting a certain number of 
Gaussian distributions to the samples, optimizing their parameters iteratively to model the data 
(Canty 2010). Soil surface fluxes were calculated by CV, where the deviations from the 
averages of all sampled cluster data points were used for w’, q’, and c’. Because the sampled 
respiration/evaporation ‘cloud’ by GMM would not always lie within quadrant 1 (often in 
quadrant 1 and 4, or in 1 and 2), and q’ and/or c’ of the defined ‘cloud’ could correlate 
negatively with w’, the corresponding surface flux would often be of negative magnitude 
(Fig. 4.1). If this was the case for H2O and/or CO2 soil fluxes, the corresponding flux was 
recalculated considering the deviations from the averages of all data points for w’, q’, and c’, 
and only including data points within quadrant 1 of the original q’-c’ plane and with w’ > 0. 

Fig. 4.1: Exemplary scatterplots of w’, q’, and c’ from WU_FR, May 18th, 2015, 12:00-12:30 p.m. 
including results of the cluster analysis by Gaussian Mixture Model (orange data points) for the 
conditional sampling. Also shown are the hyperbolic threshold (H = 0.25, green line) after Thomas et 
al. (2008), the averages of w, q, and c only considering data points of the respiration/evaporation 
‘cloud’ (red lines), and reduced major axis regression lines after Webster (1997) for all data points 
(blue dashed lines) and only ‘cloud’ data points (red dashed lines). 
In this example, calculating the covariance for w and c considering the averages of the ‘cloud’ yielded 
a negative soil flux (negative correlation). Thus, only ‘cloud’ data points within quadrant 1 in the 
original q’-c’ plane were considered for flux calculation using averages of all data points. 
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This recalculated flux represented only a minimal fraction of the corresponding flux 
component. Also, as a result of this procedure the number of data points could differ between 
H2O and CO2 for TH08 CV GMM depending on the used calculation step. 

4.2.3. Study Sites and Data Processing 

For the application and evaluation of the source partitioning methods, various study sites with 
differing canopy types, canopy densities (regarding the leaf area index LAI), and measurement 
heights were chosen (Tab. 4.1). Almost all study sites are part of the FLUXNET network 
(Baldocchi et al. 2001). Detailed site and measurement descriptions can be found in the listed 
references. Next to coniferous and deciduous forests, grasslands, and croplands, some sites 
represent special canopy types: in SC_FR (for site abbreviations see Tab. 4.1) EC 
measurements have been conducted above an Mediterranean oak savanna (dehesa; Andreu et 
al. 2018); in Wüstebach an area of about 9 ha was deforested in 2013 and so measurements 
were obtained above the still present spruce forest (WU_FR) and the deforested area 
(WU_GL), where grass, shrubs, and young deciduous trees are regrowing swiftly; and in 
LA_FR a coniferous forest is regrowing gradually after a non-cleared windthrow in 2007 
(Matiu et al. 2017). These three study sites represent the most heterogeneous landcover types 
in this study. 
For each study site, measurements from days with a high-productive state of the vegetation 
and fair-weather conditions were selected to exclude factors interfering with the performance 
of the partitioning. Time periods with precipitation events were excluded. Furthermore, the 
quality assessment scheme after Mauder et al. (2013) was applied to each data set and source 
partitioning was only conducted for time periods with the highest or intermediate quality flag 
levels assigned by this scheme. We only considered partitioning results of daytime data, 
because both methods require the presence of photosynthesis. Here, daytime was determined 
by calculating sunrise and sunset times by means of local time. Additionally, the TH08 
method was only applied to time periods with a negative ρq’c’, and if less than 1% of the total 
data points in one half-hour time period were sampled as the respiration/evaporation ‘event’, 
the partitioning result was disregarded. 
The high frequency H2O and CO2 time series of all study sites were pre-processed and 
prepared for the application of the source partitioning approaches as prescribed in Chapter 3. 
For each study site, physically impossible values and spikes were excluded in the high 
frequency EC data of vertical wind, total H2O and CO2 concentrations, the time delay was 
corrected, missing raw data in one half-hour period was gap-filled by linear interpolation, and 
a planar-fit rotation was conducted. Then, the source partitioning approaches were applied to 
half-hourly time series of these pre-processed high frequency data, partitioning factors (E/ET 
or Rsoil/NEE, respectively) were calculated, and applied to the post-processed half-hourly EC 
data. 
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4.2.4 Evaluation of Source Partitioning Results 

The evaluation of the source partitioning performance was preceded in multiple ways for the 
various study sites depending on data-availability (Fig. 4.6). At some study sites, Rsoil was 
measured additionally with closed-chamber measurements independently of the EC 
measurements. In RO_GL and SE_CL, continuous measurements of multiple longterm-
chambers were available for the considered time periods (half-hourly at SE_CL and hourly 
interpolated to half-hourly at RO_GL). In DI_CL, WU_FR, and WU_GL, Rsoil was measured 
with survey-chambers at several measurement points on one day during the considered time 
periods, so spatial and temporal averages for the hours in question could be calculated. For all 
study sites (except for LA_FR), soil evaporation Esoil was estimated as a fraction of measured 
ET based on Beer’s law depending on LAI (Esoil = ET exp(-0.6 LAI); Campbell and Norman 
1998; Denmead et al. 1996). Thus, the root mean square error (RMSE) and the bias could be 
calculated between the partitioning results for E or Rsoil and the estimated Esoil or chamber 
measurements, respectively. RMSE was sensitive to outliers and the distribution of errors was 
prone to be asymmetric. A method overestimating the magnitude of a flux component may 
earn a larger RMSE than an underestimating one. Therefore, we also calculated a version of 
the RMSE based on log-transformed data (RMSEln; data transformed with ln(x +1)) before 
computing differences between estimated and reference E or Rsoil. One has to keep in mind 
that the measurements of Rsoil and LAI can also contain errors and that Esoil is only a rough 
model approximation. 
Furthermore, partitioned CO2 fluxes were compared to results of the established partitioning 
approach after Reichstein et al. (2005) if available; even though this approach targets other 
flux components (total ecosystem respiration TER and gross primary production GPP). Here, 
the estimated NPP and Rsoil for every time step were classified as reasonable if their 
magnitudes were smaller than the calculated GPP or TER, respectively. Since all data sets 
were from the main growing season and weather conditions favorable of high respiration, Rsoil 
should additionally be larger than 1 μmol m-2 s-1. In the following, NPP and Rsoil estimates 
meeting these criteria (“hits in range”) will be counted as HiR GPP and HiR TER. Again, 
within this evaluation step two models including their different assumptions and uncertainties 
were examined and compared, and the results have to be handled with care. An evaluation of 
the estimated flux magnitudes was also possible for some study sites by means of former 
publications. 

4.2.5 Analysis of Source Partitioning Approaches 

To compare SK10 and TH08 and to gain a better insight in their functionality and 
dependencies on turbulence and site characteristics, a correlation analysis was conducted 
between HiR GPP or HiR TER and the variables z, hc, z hc

-1, LAI, or LAI hc
-1. All study sites, 
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only forest sites, or only cropland and grassland sites were considered to calculate the 
correlations. 
Furthermore, we developed a conceptual model to generate simple, synthetic data sets of w’, 
q’, and c’ with different degrees of mixing between scalar sinks and sources from the soil, 
canopy, and boundary layer (Fig. 4.7 upper panels). We considered no mixing, complete 
mixing, and partial mixing between scalars originating from soil and canopy (with positive 
w’), all three sets excluding mixing with scalars originating from boundary layer (with 
negative w’). Averages of fluctuations were all specified as zero, and each scalar sink/source 
strength was determined such that the net H2O flux equates to 1 mmol m-2 s-1 and the net CO2 
flux to -1 μmol m-2 s-1. Each generated data point of q’ and c’ was scaled with a random 
number to simulate additional sources of variance not related to the degree of mixing. TH08 
was applied to these synthetic data sets and could be validated with the true known 
partitioning factors, while SK10 was already thoroughly analyzed and validated by means of 
the synthetic high frequency data derived by LES in Chapter 3. 

4.3. RESULTS AND DISCUSSION 

For each study site, the number of half-hourly time steps during daylight per considered time 
period is shown in Table C.1 in Appendix C. Also, the relative fraction of daylight time steps 
of high-quality (HQ) which were used in the application of SK10 and TH08 are shown, where 
for SK10 only a good or intermediate quality flag (after Mauder et al. 2013) and no 
precipitation, and for TH08 additionally a negative ρq’c’ had to be given. Furthermore, the 
relative fraction of these HQ-time steps, for which partitioning solutions were found, is shown 
for each method version. With TH08 by sampling in the first quadrant (Q1) a partitioning 
result could be obtained for almost every time step (minimum of 98.2%). With the hyperbolic 
threshold criteria and with GMM fewer solutions could be found, because quite often the 
number of sampled data points was less than 1% of the total number in one half-hour time 
period. SK10 sometimes could not find a partitioning solution, when the measured and 
estimated ρq’c’ were not equal and removing large-scale processes by Wavelet-transform could 
not help either to solve the system of equations. The most solutions were found for MMP_FR 
and the least for RO_GL. For DI_CL_MA and SE_CL_SB the number of solutions with SK10 
increased with development stage of the maize or sugar beet, respectively, while the ratio 
between measurement height and hc decreased. At the same time the number of solutions for 
TH08 with hyperbolic threshold and GMM decreased or in case of the conditional sampling in 
Q1 was not affected. Generally, for the grasslands and the lower crop canopies more solutions 
were obtained with TH08 than SK10. An exception was the low intercrop in Selhausen 
(SE_CL_IC). 



CHAPTER 4 

70 

Fig. 4.2: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Loobos study site (forest) in The Netherlands and for every method version (see text for 
description). CO2 flux estimates by Reichstein et al. (2005; RE05) are also included (LE: latent heat 
flux; E: evaporation; Esoil: estimated evaporation based on Beer’s law; GPP: gross primary production; 
NPP: net primary production; TER: total ecosystem respiration; Rsoil: soil respiration; z: measurement 
height; hc: canopy height; LAI: leaf area index). 
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4.3.1. Evaluation of Source Partitioning Results 

In Figure 4.2 the source partitioning results for H2O and CO2 fluxes for LO_FR are shown in 
half-hourly time steps as an example. The partitioning results for all sites and all method 
versions are shown in Appendix C (Fig. C.1-C.12) including Esoil estimations based on Beer’s 
law, Rsoil chamber measurements, and partitioning results after Reichstein et al. (2005). The 
diurnal dynamics of H2O and CO2 fluxes, their components, and WUE for WA_FR and all 
method versions are shown in Figure 4.3, and for every study site and just the method 
application SK10 with WUEOLR and TH08 with REA H in Figure 4.4. In Figure 4.5 the total 
average of the flux components of each considered time period is shown on the one hand for 
MMP_FR and for every method version (top panel), and on the other hand for every site and 
for SK10 with WUEOLR and TH08 with REA H (lower panels). For the calculation of these 
diurnal dynamics and averages large spikes in the estimated flux components (deviation from 
the mean by more than ten times of the standard deviation) were excluded. Figure 4.6 shows 
the error quantities, RMSEln and bias regarding Rsoil chamber measurements, HiR GPP, 
HiR TER, and RMSEln and bias regarding Esoil estimation, for each site and method version. 
Timestamps in all following figures are in local time. 
In general, SK10 and TH08 gave differing results for each study site and performed 
disparately between method versions. In Figures 4.2-4.5 it is apparent that TH08 mostly 
resulted in lower magnitudes of the flux components originating from the soil surface or sub-
canopy, than SK10. The source partitioning results of LO_FR (Fig. 4.2) were a small 
exception to this rule. For this study site the partitioning fractions of SK10 and TH08 were 
very similar and thus entail a very low uncertainty for the results. For the other study sites 
larger discrepancies could be observed between SK10 and TH08. 
Considering the equations of the various TH08 approaches, more data points are sampled in 
Q1 than with the hyperbolic threshold, which might suggest that the magnitudes of the flux 
components should be larger (fluxes due to CV Q1 > CV H, and REA Q1 > REA H). 
However, with less sampled data points the calculation of the fluxes via REA yielded larger 
fluxes than via CV, thus the largest magnitudes were obtained by using REA with the 
hyperbolic threshold (REA H) and the smallest by using CV H. In some time steps, no 
respiration/evaporation ‘cloud’ was apparent in the q’-c’ plane, thus, the applied conditional 
sampling strategies could not be effective as intended and an assessment of a correct sampling 
was not possible. Compared to the magnitude of GPP and TER estimated by the gap-filling 
model after Reichstein et al. (2005), components estimated by TH08 almost always were 
within this prescribed range because of their small resulting fluxes, whereby Rsoil was often 
below the defined minimal threshold of 1 μmol m-2 s-1 and thus underestimated (Fig. 4.6, 
C.1-C.12 in Appendix C). Regarding the error quantities in Figure 4.6, TH08 REA H 
performed best. Partitioning results obtained by TH08 CV GMM were not systematically 
different from the other method versions but showed no extreme spikes in the soil flux 
components. 
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The SK10 approach had the tendency to produce very high magnitudes of the soil flux 
components. Considering the diurnal dynamics and averages (Fig. 4.3-4.5), results of SK10 
were more reasonable and satisfactory. For most of the study sites, the magnitudes and 
variances of the soil flux components were decreased by using WUEMOST or WUEOLR instead 
of WUEmeanT. The differing WUE inputs had a larger effect on the CO2 flux components than 

Fig. 4.3: Diurnal dynamics of source partitioning results of H2O (left) and CO2 (middle) fluxes and 
water use efficiency (WUE, right) for the Waldstein study site (forest) in Germany for 4-10 July, 2016 
and for every method version (see text for description; LE: latent heat flux; E: evaporation; NPP: net 
primary production; Rsoil: soil respiration; z: measurement height; hc: canopy height; LAI: leaf area 
index). Error bars indicate the 95% confidence intervals of the mean values. 
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on H2O. Considering the error quantities in Figure 4.6, SK10 with WUEOLR very often gave 
the best results. 
 

 

 

 

Fig. 4.4: Diurnal dynamics of source partitioning results of H2O (upper panels) and CO2 (lower 
panels) fluxes for all study sites and for the approach after Scanlon and Kustas (2010; SK10) with 
WUEOLR and after Thomas et al. (2008; TH08) with REA H (see text for description; LE: latent heat 
flux; E: evaporation; NPP: net primary production; Rsoil: soil respiration). Error bars indicate the 95% 
confidence intervals of the mean values. 
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The partitioned CO2 fluxes generally showed a higher variability and more spikes than the 
partitioned H2O fluxes for all sites. Jans et al. (2010) reported a mean Rsoil measurement of 
3.16 μmol m-2 s-1 and a peak event of 23 μmol m-2 s-1 for DI_CL_MA in 2007. Rsoil estimates 
by SK10 were often as large as this peak, but the maximum observed by Jans et al. (2010) was 
triggered by precipitation, which does not apply for our considered time periods (Fig. C.10 in 
Appendix C). For LO_FR in 1997, Dolman et al. (2002) reported a peak respiration 
measurement of 12 μmol m-2 s-1, Falge et al. (2002) a seasonal maximum GPP 
of -24 μmol m-2 s-1 and seasonal maximum TER of 5.3 μmol m-2 s-1, and chamber 
measurements from June 2003 had a magnitude of 17.3 μmol m-2 s-1. All these quantities 
support our partitioning results for LO_FR based on SK10, TH08, and the approach after 
Reichstein et al. (2005) (Fig. 4.2). For MMP_FR, Thomas et al.  (2009) derived from sap flux 

Fig. 4.5: Averages of source partitioning results of H2O and CO2 fluxes, a) for the Metolius Mature 
Pine study site (forest) in US and for every method version, b) for all study sites and for the approach 
after Scanlon and Kustas (2010; SK10) with WUEOLR, and c) after Thomas et al. (2008; TH08) with 
REA H (see text for description; LE: latent heat flux; E: evaporation; NPP: net primary production; 
Rsoil: soil respiration; z: measurement height; hc: canopy height; LAI: leaf area index). Error bars 
indicate the 95% confidence intervals of the mean values. 
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measurements a T/ET ratio of 50%, which agrees well with the partitioning results by SK10 
(Fig. C.5 in Appendix C). Results by TH08 and estimated Esoil imply a larger fraction of T. For 
WU_GL, TH08 yielded results matching comparatively well to the modeled estimate Esoil and 
the gap-filling approach after Reichstein et al. (2005) (Fig. C.8 in Appendix C). As mentioned 
before, WU_GL is a very heterogeneous site with regrowing vegetation of grasses, shrubs, and 
trees on dry and wet areas. Thus, the measured signals could display fluxes coming from 
different sinks and sources distributed horizontally rather than vertically. The present variety 
of plant types increased the uncertainty in the estimation of WUE, where the usage of 
WUEOLR improved the partitioning by SK10 significantly, but the overestimation of Rsoil 
(compared to chamber measurements and TER) was not averted. For LA_FR we observed the 
similar behavior as for WU_GL. Here too, a forest is regrowing, but trees are already more 
frequent and larger. At SC_FR the impact of water stress on the application of source 
partitioning methods could be observed. For a very dry period in August 2016 both 
partitioning approaches were not applicable, because transpiration and photosynthesis almost 
ceased due to water stress and the correlations between H2O and CO2 fluxes were almost 
always positive (not shown). For a period in April 2017 partitioning results could be obtained, 
where an increase in SK10 estimated Rsoil and a decrease in estimated E was evident during 
the regarded time period (Fig. C.6 in Appendix C). Spring in 2017 was considered as 
relatively dry in this region and the last precipitation event was five days before the regarded 
time period, such that it can be assumed that water stress increased steadily in April. TH08 
underestimated soil fluxes substantially, because no respiration/evaporation events were 
apparent, which could be caused by the sub-canopy of the oak savanna. For WA_FR, SK10-
derived E and Rsoil were relatively large but for one day (July 8th, 2016) with smaller 
magnitudes of the CO2 flux components (Fig. C.3 in Appendix C). On this day no significant 
differences in weather conditions or scalar statistics were apparent compared to the other days. 
The only noticeable difference was that SK10 found partitioning results for less negative ρcp’cr’ 
than on the other days. In RO_GL the continuous Rsoil chamber measurements and TER 
estimated with the approach after Reichstein et al. (2005) did not agree well, where the latter 
decreased steadily over the seven days and was mostly lower than measured Rsoil. Compared 
to both quantities, SK10 still overestimated and TH08 underestimated Rsoil fluxes. 
A clear pattern in the performance of the source partitioning depending on method version or 
on study site characteristics could not be identified in the error quantities (Fig. 4.6). The 
following statements can be made: the RMSE in Rsoil was usually larger for SK10 than for 
TH08 (not shown). Considering RMSEln in Rsoil, SK10 performed better at forest sites than 
TH08, and slightly worse at crop- and grasslands (Fig. 4.6). The bias in Rsoil was always 
positive for SK10 (except for WU_FR) and often negative for TH08 (except for 
TH08 REA H). Therefore, SK10 has the tendency to overestimate and TH08 to underestimate 
Rsoil compared to respiration chamber measurements. The lowest RMSE, RMSEln, and bias 
were found for the SK10 method versions in WU_FR and for TH08 in WU_FR, WU_GL, and 
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SE_CL_SB_09. In comparison to the gap-filling model after Reichstein et al. (2005), 

Fig. 4.6: Error quantities of source partitioning results for each study site and method version (see text 
for description). a)-b) Root mean square error in log-transformed data (RMSEln) and bias considering 
soil respiration chamber measurements, c)-d) relative fraction of time steps with partitioning results in 
range (HiR) of estimated gross primary production (GPP) and total ecosystem respiration (TER) by the 
approach after Reichstein et al. (2005), e)-f) RMSEln and bias considering Esoil estimated based on 
Beer’s law. 
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HiR GPP were relatively frequent for TH08 with a minimum of 66.7% for SE_CL_SB_06, 
and HiR GPP for SK10 were usually rarer. For HiR TER both methods converged. While 
SK10 mostly overestimated TER, TH08 often estimated soil fluxes smaller than the minimal 
Rsoil threshold of 1 μmol m-2 s-1. TH08 REA H gave usually the best results for HiR TER and 
the worst for HiR GPP within the method versions of TH08. Also, the performance of SK10 
improved for CO2 in DI_CL_MA with increasing crop height and lower LAI (Fig. 4.4, 4.6). 
The RMSE (not shown), RMSEln, and bias in E (compared to the modeled estimate Esoil after 
Beer’s law) were mostly similar or slightly larger for SK10 than for TH08 except for the short 
crop canopies, LO_FR, MMP_FR, and SC_FR. These sites also have a relatively low LAI. 
Both quantities were low in WU_FR and WU_GL for SK10 and TH08 (Fig. 4.6). The worst 
performance regarding E could be found in HH_FR for SK10, and in SC_FR, DI_CL_MA_06, 
and SE_CL_IC for TH08. The bias indicated that SK10 underestimated E for all canopies with 
a LAI lower than 2.3 (LO_FR, SC_FR, DI_CL_MA_06, SE_CL_SB_06, SE_CL_IC, the latter 
three have relatively short canopies). This could also be explained by the larger Esoil estimates 
based on Beer’s law due to the smaller LAIs, thus preventing an overestimation by SK10. 

4.3.2. Analysis of Source Partitioning Approaches 

With a correlation analysis we studied the interrelations between partitioning performance 
(regarding HiR GPP and HiR TER) and site characteristics such as canopy height hc, LAI and 

variable SK10 
WUEmeanT 

SK10 
WUEMOST 

SK10 
WUEOLR 

TH08 
CV Q1 

TH08 
CV H 

TH08 
REA Q1 

TH08 
REA H 

TH08 
CV GMM 

all 
hc 0.52 0.56 0.44 0.21 0.27 0.28 0.45 0.22 

LAI 0.15 0.12 0.02 0.43 0.21 0.43 0.12 0.22 
z 0.48 0.52 0.40 0.23 0.27 0.31 0.48 0.26 

z hc
-1 -0.51 -0.60 -0.45 -0.11 -0.15 -0.13 -0.15 0.04 

LAI hc
-1 -0.44 -0.53 -0.47 0.19 0.05 0.11 -0.11 0.15 

forests 
hc 0.64 0.63 0.56 0.20 0.21 0.21 0.27 0.11 

LAI 0.35 0.32 0.26 0.61 0.74 0.68 0.70 0.64 
z 0.62 0.60 0.55 0.37 0.31 0.36 0.41 0.26 

z hc
-1 -0.74 -0.75 -0.68 0.27 0.25 0.28 0.20 0.38 

LAI hc
-1 0.35 0.33 0.34 0.77 0.78 0.81 0.83 0.78 

croplands, grasslands 
hc 0.54 0.64 0.33 0.07 0.23 0.12 0.31 0.02 

LAI 0.07 0.05 -0.10 0.40 0.10 0.37 -0.03 0.10 
z 0.02 0.07 -0.29 -0.44 -0.11 -0.17 0.37 -0.17

z hc
-1 -0.58 -0.71 -0.51 -0.01 -0.01 0.03 0.17 0.24

LAI hc
-1 -0.37 -0.49 -0.46 0.37 0.21 0.32 0.16 0.33

Tab. 4.2: Correlation coefficients between partitioning performance of each method version regarding 
HiR GPP (see text for description) and study site characteristics (hc: canopy height; LAI: leaf area 
index; z: measurement height) considering all, only forest, or only crop- and grassland sites. Green 
(blue) lettering indicate highest positive (negative) correlation, and green (red) cell filling highest 
(lowest) magnitude of correlation. 
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LAI hc
-1 as proxy for canopy density, measurement height z, and z hc

-1 (Tab. 4.2, 4.3). 
hc should represent the vertical separation of sinks and sources of passive scalars between 
canopy top and soil surface. LAI can correlate with hc of a study site, thus to distinguish 
between their impacts on partitioning performance separately, LAI hc

-1 was also considered. z 
was constant for each cropland, DI_CL_MA or SE_CL, for all considered time periods, thus 
the correlation coefficients with z have to be handled with care. All these site characteristics 
also affect the degree of mixing of the scalars, when they reach the EC sensor, where we 
assume that with increasing LAI, LAI hc

-1, and z hc
-1 and decreasing hc the dissimilarity 

between q’ and c’ decreases and EC measurements contain less information for the 
partitioning approaches (Edburg et al. 2012;  Huang et al. 2013;  Williams et al. 2007). Results 
in Chapter 3 suggest a decreasing performance of SK10 with increasing z hc

-1. Correlation 
coefficients were calculated for all sites at once, for only forests, or for only crop- and 
grasslands, respectively. 
For the SK10 method versions, the correlation coefficients showed similar relations between 
variables and partitioning results for both HiR GPP and HiR TER, because SK10 had the 
tendency to overestimate both NPP and Rsoil. For the TH08 method versions, relations slightly 
differ between HiR GPP and HiR TER, because TH08 had the tendency to underestimate Rsoil 
fluxes, thus HiR TER were smaller than HiR GPP. Only considering forest sites, the 
correlations were relatively high between variables and partitioning performance. The 
performance of all SK10 method versions correlated negatively with z hc

-1 and positively with 

variable SK10 
WUEmeanT 

SK10 
WUEMOST 

SK10 
WUEOLR 

TH08 
CV Q1 

TH08 
CV H 

TH08 
REA Q1 

TH08 
REA H 

TH08 
CV GMM 

all 
hc 0.52 0.52 0.47 -0.12 -0.18 0.17 0.01 -0.24

LAI 0.11 0.16 0.07 -0.17 0.13 -0.02 0.33 -0.05
z 0.48 0.47 0.44 -0.17 -0.24 0.12 -0.06 -0.29

z hc
-1 -0.47 -0.57 -0.42 0.08 -0.01 -0.14 -0.15 0.29

LAI hc
-1 -0.42 -0.50 -0.47 -0.08 0.03 -0.21 -0.06 0.15

forests 
hc 0.63 0.63 0.63 0.59 0.68 0.56 0.76 0.40 

LAI 0.34 0.38 0.41 0.53 0.51 0.65 0.82 0.34 
z 0.60 0.59 0.64 0.46 0.60 0.41 0.72 0.26 

z hc
-1 -0.72 -0.73 -0.66 -0.48 -0.52 -0.39 -0.47 -0.33

LAI hc
-1 0.32 0.36 0.46 0.19 0.10 0.33 0.61 -0.05

croplands, grasslands 
hc 0.54 0.59 0.34 0.42 0.61 0.50 0.85 -0.31

LAI 0.01 0.06 -0.13 -0.49 -0.04 -0.33 0.03 -0.28
z 0.04 0.01 -0.23 0.64 0.59 0.70 0.48 -0.09

z hc
-1 -0.48 -0.66 -0.47 -0.16 -0.45 -0.20 -0.59 0.09

LAI hc
-1 -0.34 -0.47 -0.47 -0.36 -0.30 -0.31 -0.37 -0.10

Tab. 4.3: Correlation coefficients between partitioning performance of each method version regarding 
HiR TER (see text for description) and study site characteristics (hc: canopy height; LAI: leaf area 
index; z: measurement height) considering all, only forest, or only crop- and grassland sites. Green 
(blue) lettering indicate highest positive (negative) correlation, and green (red) cell filling highest 
(lowest) magnitude of correlation. 
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hc and z. The correlation coefficients regarding LAI, also positive, were the weakest, where for 
the forest sites LAI was more important than for the remaining sites. LAI hc

-1 correlated 
always negatively with performance of SK10 except for the forest sites, where the coefficients 
of LAI and LAI hc

-1 were similar. For the TH08 method versions LAI had larger, and hc, z hc
-1, 

and LAI hc
-1 smaller effects on partitioning performance than for SK10 method versions, and a 

few signs changed. For HiR TER and only forests or only crop- and grasslands, hc was more 
important again in TH08 method versions (especially while neglecting the correlation with z). 
Correlation coefficients of LAI and LAI hc

-1 were mostly positive with a few exceptions (e.g., 
regarding HiR TER for crop- and grasslands). For forest sites and TH08, only positive 
correlations were evident except for the relationship between HiR TER and z hc

-1. Also, the 
impacts of hc and LAI hc

-1 were reversed between HiR GPP and HiR TER. Apparently, a 
dense forest canopy yielded too low sub-canopy fluxes derived by TH08, and a high canopy 
less reasonable canopy fluxes. 
The variable LAI usually correlated positively for SK10 and TH08 method versions and all 
canopies, making it the sole variable which clearly contradicted our initial hypotheses. Also, 
the correlation between partitioning performance and LAI hc

-1 at forest sites was contradictory. 
Next to canopy density, LAI could also be connected to larger sinks and sources of canopy 
fluxes (T and photosynthesis) relative to soil surface fluxes due to larger biomass, and to the 
appearance and frequency of coherent structures. A dense canopy prevents frequent ejections 
of air parcels from the sub-canopy, but provokes higher scalar concentrations in such air 
parcels because of a longer accumulation under the canopy. Respiration/evaporation events 
could occur less frequent but be of higher magnitude. Also, small gaps in an otherwise dense 
canopy can play an important role regarding ejection events. Thus, how canopy density affects 
scalar-scalar-correlation measured above the canopy (and connected to that the partitioning 
performance), cannot be assessed easily. In this study, canopy density and partitioning 
performance correlated negatively at crop- and grassland sites and positively at the forest sites. 
Assuming gaps in the canopy can be more expected in forests than in crop- or grasslands, 
these results support the above-mentioned aspects. For further assessments, an estimate about 
the (large-scale) heterogeneity and density of the study sites’ vegetation has to be made and 
included in this analysis. 
SK10 was already thoroughly analyzed and validated by means of the synthetic high 
frequency data derived by LES in Chapter 3. Here, TH08 was applied to various synthetic w’-, 
q’-, and c’-data sets including soil, canopy, and boundary layer scalar sink/sources derived by 
a simple conceptual model as described above (Fig. 4.7 top panel). For each data set, different 
degrees of mixing of the soil and canopy sink/source were implied (no, complete, and partial 
mixing), where the resulting net fluxes for each set was specified to 1 mmol m-2 s-1 for H2O 
and to -1 μmol m-2 s-1 for CO2. Defined by the conditional sampling concept, we hypothesized 
that TH08 would work perfectly with no mixing of the scalars from the three different origins, 
would not obtain any partitioning factors in case of the complete mixing, and would 
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underestimate the soil fluxes in case of partial mixing. TH08 behaved as assumed except for 
TH08 REA H (see below; Fig. 4.7 bottom panel). For the partial mixing a small difference in 
TH08-derived partitioning factors (especially for H2O) was observed between the sampling in 
Q1 and with H, because one data point was not sampled with the hyperbolic threshold, but laid 
within Q1. TH08 REA H did not yield any partitioning results in case of no or partial mixing. 
This is due to the different definitions of β in the application of REA with the sampling in Q1 
or with H (Thomas et al. 2008, equation 4, page 1213 and statement page 1215). β is an 
empirical constant and can be approximated by the ratio between the standard deviation of w’ 
(σw’) and the difference between the mean vertical velocities in updrafts and downdrafts 
(w+̅̅ ̅̅ - w-̅). For the conditional sampling approach within Q1, β is derived including all data 
points (disregarding the sign of q’ or c’). For the approach including the hyperbolic threshold 
criterion, β is derived from w’ data points which satisfy the hyperbolic threshold criterion for 
positive q’ and c’. In case of our conceptual model for the partial mixing, no data point with 
negative w’ satisfied this criterion, so without w-̅ β and a partitioning factor could not be 
calculated. Figure 4.7 shows the partitioning factors for TH08 REA H while applying β as 
calculated in TH08 REA Q1 (non-filled markers). TH08 CV GMM performed similar to the 
other method versions, sampled the correct respiration/evaporation ‘cloud’ in case of no 
mixing, no ‘cloud’ in case of complete mixing, but all data points with q’ > 0 in case of partial 

Fig. 4.7: a)-c) Setup of conceptual model for synthetic fluctuations (q’ and c’) originating from soil, 
canopy, or boundary layer with differing degrees of mixing (no, complete, or partial mixing between 
soil and canopy sink/source) including water use efficiency (mg g-1; blue line), reduced major axis 
regression (red line) after Webster (1997), hyperbolic threshold criteria after Thomas et al. (2008; 
TH08) (H = 0.25; green dashed line) and correlation coefficient between q’ and c’ (ρq’c’). d)-e) True 
known partitioning ratios (dashed line) and source partitioning results of all TH08 method versions 
(see text for description) for each degree of mixing. 
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mixing. For the latter, the covariances using the averages of w, q, or c of the sampled cluster, 
and considering only data points with w’ > 0, was very small for CO2 (Fig. 4.7) and negative 
for E (not shown). Thus, E was recalculated with the covariances using the averages of w and 
q considering all data points, and including only data points with w’ > 0, within quadrant 1, 
and within the sampled cluster, which resulted in a similar partitioning fraction as the other 
method versions.  

4.4. CONCLUSIONS 

The partitioning approaches after Scanlon and Kustas (2010; SK10) and after Thomas et al. 
(2008; TH08) gave differing results for each study site and performed disparately between 
method versions. TH08 mostly resulted in lower magnitudes of the flux components 
originating from the soil surface than SK10, and had the tendency to underestimate these flux 
components compared to soil respiration flux measurements and estimates of Esoil based on 
Beer’s law. SK10 usually had the tendency to overestimate soil flux components and yielded 
larger error quantities, because the distribution of errors was prone to be asymmetric. A 
method overestimating the magnitude of a flux component may earn a larger RMSE than an 
underestimating one. Decreasing the weight of outliers by log-transforming Rsoil chamber 
observations and partitioning estimations revealed a lower RMSEln for SK10 at forest sites 
than for TH08. Also, estimating input WUE based on foliage temperature derived by means of 
measured outgoing longwave radiation often enhanced the partitioning performance of SK10. 
Applying a Gaussian Mixture Model for the conditional sampling approach in TH08 did not 
improve partitioning performance significantly, because to obtain a positive and correct flux 
estimation was difficult from data points not within quadrant 1 in the q’-c’ plane. For TH08, 
conditional sampling including a hyperbolic threshold and calculating flux components based 
on the relaxed eddy accumulation technique yielded the best partitioning results. The 
partitioned CO2 fluxes generally showed a higher variability and more spikes than the 
partitioned H2O fluxes for all sites and both methods. Also, mean diurnal cycles averaged over 
each site’s regarded time period yielded more satisfactory results for both approaches. 
The dependencies of the partitioning performance on turbulence and site characteristics were 
analyzed based on a correlation analysis and the application of TH08 to synthetic, conceptual 
data sets of scalar fluctuations. Foremost, the performance of SK10 correlated negatively with 
the ratio between measurement and canopy height. The performance of TH08 was more 
dependent on canopy height and leaf area index. Canopy density and partitioning performance 
of both methods correlated negatively at crop- and grassland sites and positively at the forest 
sites. All site characteristics which increase dissimilarities between scalars enhance 
partitioning performance for SK10 and TH08. For the forest site Loobos in The Netherlands, 
SK10 and TH08 obtained similar partitioning results and sufficient error quantities indicating 
a low uncertainty. At this site with a relatively low LAI, high canopy, and low ratio between 
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measurement and canopy height, conditions for both partitioning approaches seemed to be 
appropriate. 
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In Chapter 2 we introduced the process-based model AgroC and demonstrated that it can be 
used to simulate the CO2 exchange in agroecosystems. After optimizing the model for soil 
moisture, crop development, and soil respiration (Rsoil), the simulation of hourly net ecosystem 
exchange (NEE) agreed well with eddy covariance (EC) measurements at three crop sites in 
Western Germany. Further, AgroC reproduced the flux dynamics very effectively after sudden 
changes in the grassland canopy due to mowing. An additional calibration of AgroC based on 
EC measurements further improved model performance and reduced the systematic error 
between observations and simulations. The combination of EC data and Rsoil chamber 
measurements as constraints for the calibration procedure gave the best results regarding 
model performance criteria. But we also showed, that particularly the cumulative NEE over 
the entire simulation period (carbon balance) was strongly affected by the choice of 
optimization strategy, even though the model performance regarding error quantities between 
optimization strategies did not diverge substantially. Thus, carbon balances obtained via 
calibration and gap-filling methods are associated with considerable uncertainty, which can be 
decreased by including additional information/measurements about flux components. 
Gaps in the data record of EC measurements often occur systematically during certain 
atmospheric conditions, especially during nighttime. Commonly used gap-filling and source 
partitioning approaches use regressed relationships between nighttime flux measurements and 
physical drivers, and extrapolate these relationships to daytime conditions making certain 
assumptions necessary (e.g., approach after Reichstein et al. 2005). The various non-linear 
regression gap-filling methods differ in choice of functional form, parameter fitting, and time 
window size, and usually do not include additional drivers, such as nutrient levels or sudden 
changes in the canopy due to harvest or cutting. For gap-filling and source partitioning 
purposes, AgroC describes multiple carbon flux components precisely for each crop organ and 
respiration source (Rsoil, terrestrial ecosystem respiration TER, respiration by heterotrophs Rh, 
respiration by autotrophs Ra, rhizosphere respiration Rrhizo, root respiration Rroot) including the 
desired interrelations with various environmental drivers, physical conditions, and biological 
factors. Various (empirical) functional relationships and parameters can be chosen for this 
description, so simulations can differ substantially. In general, the usage of process-based 
models for source partitioning is very time-consuming. Several assumptions have to be made, 
and various site-specific measurements and parameters are necessary for calibration and 
evaluation. The assessment of structural errors in models (wrong or missing description of 
processes), or the risk of over-parameterization and equifinality stay a challenge for model 
users. 
In Chapter 3 and 4 we applied the source partitioning approaches after Scanlon and Kustas 
(2010) and after Thomas et al. (2008) to high frequency EC measurements of various 
ecosystems (croplands, grasslands, and forests) to estimate the flux components transpiration 
(T), evaporation (E), net primary production (NPP), and Rsoil. Partitioning results could be 
evaluated based on individual measurements or estimates of flux components and on the 
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comparison to the commonly used partitioning approach after Reichstein et al. (2005). 
Furthermore, we tested the partitioning approach after Scanlon and Kustas (2010) by applying 
it to synthetic high frequency data generated by large eddy simulations (LES; Chapter 3). The 
dependency of the partitioning performance on canopy type, measurement height, and given 
sink-source-distributions of the scalars was analyzed. The partitioning approach needed a 
certain degree of decorrelation of H2O and CO2 fluctuations, which was enhanced for 
observations within the roughness sublayer, as well as by a larger separation between soil 
sources and canopy sink/sources. Also, the expected dependence of the partitioning results on 
the water use efficiency (WUE) input was observed. Furthermore, another possible error 
source, which was so far not yet discussed in the literature, could be detected for the 
partitioning approach. The method assumes that the correlation coefficient between stomatal 
and non-stomatal scalar fluctuations can be estimated by the ratio of the transport efficiencies 
of these scalar components (transfer assumption). The LES-based analysis revealed a violation 
of this assumption in the simulations, yielding an incorrect partitioning by the approach. The 
known true partitioning could only be attained after introducing a correction factor for the 
transfer assumption, which was known however only in the special case of the LES 
experiments. While applying the approach after Scanlon and Kustas (2010) to the field data, it 
can only be assumed that the transfer assumption is approximately correct for the given 
meteorological conditions. As also suggested by Anderson et al. (2018) and Sulman et al. 
(2016), the method’s performance would improve by including direct measurements of WUE 
on leaf-level, but such measurements are usually not available at most study sites. 
In Chapter 4 the source partitioning approaches after Scanlon and Kustas (2010) and after 
Thomas et al. (2008) including slight modifications were compared and evaluated for various 
study sites. The methods are both based on joint higher-order statistics of the H2O and CO2 
fluctuations in EC measurements, while the approaches and procedures differ. The partitioning 
results were analyzed considering their half-hourly and diurnal dynamics, and the variations of 
the averaged flux ratios between ecosystems. The approach after Scanlon and Kustas (2010) 
tended to overestimate half-hourly soil fluxes, while the approach after Thomas et al. (2008) 
tended to underestimate. The differences were more apparent in the partitioning of CO2 fluxes 
than for H2O. For the approach after Scanlon and Kustas (2010), the estimation of WUE input 
based on foliage temperature (Tf) derived with measurements of outgoing longwave radiation 
(compared to just using the air temperature) improved the partitioning performance at most 
study sites. An implemented modification of the approach after Thomas et al. (2008), by 
applying a cluster analysis for the conditional sampling of respiration/evaporation events, 
performed sufficiently, but did not result in significant advantages compared to the other 
method versions. Both partitioning approaches yielded sufficient diurnal dynamics and 
averaged partitioning ratios. 
Conditions and characteristics of common EC study sites were identified under which both 
source partitioning methods perform best. Under additional consideration of the findings in 
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Chapter 3, the source partitioning was affected by canopy density (leaf area index LAI), 
canopy height (which represents the vertical separation of sinks and sources between canopy 
and soil surface), and the ratio between measurement and canopy height. All these factors 
affect the degree of mixing of the scalars when they reach the EC sensors. From a correlation 
analysis and application of the partitioning approach after Thomas et al. (2008) to synthetic 
data derived with a conceptual model, we could conclude that the source partitioning 
performance of both approaches improved with a larger dissimilarity between the passive 
scalars (less mixing). A sufficient partitioning would be obtained for study sites with a high 
canopy (especially for the application of the approach after Thomas et al. (2008) on crop- and 
grasslands and for the approach after Scanlon and Kustas (2010) on all canopies) and a low 
ratio between measurement and canopy height (especially for the application of the approach 
after Scanlon and Kustas 2010). A high canopy density would be of advantage for forests and 
a low density for crop- and grasslands. 
In this study, the application of various source partitioning methods including their various 
approaches, involved assumptions, required input data and work effort showed that still 
uncertainties and unknowns prevail for the source partitioning of water vapor and CO2 fluxes. 
Modifications and improvements have been described and tested. An assessment and 
evaluation of a partitioning’s sufficiency was conducted with additional measurements of flux 
components on differing spatial and temporal scales independent of the EC measurements. 
Furthermore, the source partitioning methods using high frequency data were tested and 
validated based on synthetic data generated by large eddy simulations and a conceptual model. 
The performance of a complex agroecosystem model was thoroughly analyzed by various 
calibration exercises. The application of multiple partitioning methods (usage of an ensemble) 
to the same data can give an idea about uncertainties in the results. For a more precise 
partitioning, a mixture between the approaches used in this study, the complex agroecosystem 
model AgroC and the data-driven methods after Scanlon and Kustas (2010), Thomas et al. 
(2008), and Reichstein et al. (2005), is preferable. Flux estimations from a data-driven 
approach combined with the simplest physiological model is desirable, that relies on as few 
assumptions as possible. This approach should be able to describe the interrelations between 
flux components and the biogeochemical and physical environment (e.g., temperature, soil 
moisture, nutrient level) sufficiently. Varying parameters should be included to allow for 
rapid, seasonal, or interannual changes in canopy structure. Also, easily obtainable input data 
and a minimal effort should be required for its application across global EC station networks. 
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APPENDIX A 

A. The AgroC Model 

Hourly Time Step 

The SOILCO2/RothC model has a flexible time stepping scheme, however the original 
SUCROS model explicitly runs at a daily time step. Since net ecosystem exchange (NEE) 
typically shows distinct diurnal variations, the SUCROS code was adapted to work with an 
hourly time step. Only the calculation of development stage DVS (-) still relies on the original 
approach based on the effective temperature sum. In the SUCROS model, daily total gross 
assimilation is obtained by three-point Gauss integration of the instantaneous assimilation 
rates per unit leaf area over the daylight period. This integration was omitted in the AgroC 
model with an hourly time step. Hourly gross assimilation is computed from the hourly 
average inputs of global radiation and mean temperature using the same approach that was 
used for the instantaneous assimilation rate in the original code. Major changes were required 
for the estimation of the photosynthetic active radiation (PAR) flux at the top of the canopy. In 
SUCROS, instantaneous PAR (J [L]-2 [T]-1) is estimated from the sine of solar inclination sinB 
(-) and the daily integral of sinB including a correction of lower atmospheric transmittance at 
lower solar elevation dsinBE (s d-1). The integral daily value dsinBE is approximated and sinB 
is estimated for the day of the year in dependence of the geographic position. In AgroC, the 
hourly integral of the sine of solar inclination dsinB (s h-1) is now calculated using the 
trapezoidal rule according to: 
 

𝑑𝑠𝑖𝑛𝐵 = 0.5 (𝑠𝑖𝑛𝐵𝑡−1 + (sin(𝛿) sin(𝜑) + cos(𝛿) cos(𝜔) cos(𝜑))) 𝑡𝑠  (A.1) 

 

where instantaneous sinBt-1 (= sin(δ) sin(φ) + cos(δ) cos(ω) cos(φ)) is the sine of solar 
elevation of the previous hour, δ (°) is the sun declination angle, φ (°) is the geographic 
latitude, ω (°) is the hour angle, and ts (s) is the number of seconds with astronomically 
possible solar radiation within one hour (3600 during day, 0 during night, and a value in 
between for the two hours that include sunrise and sunset). The value of dsinBE is then 
estimated as: 
 

𝑑𝑠𝑖𝑛𝐵𝐸 = sin (arcsin(0.5 (𝑠𝑖𝑛𝐵𝑡−1 + 𝑠𝑖𝑛𝐵)) + 0.4 (0.5 (𝑠𝑖𝑛𝐵𝑡−1 + 𝑠𝑖𝑛𝐵))) 𝑡𝑠 (A.2) 
 

where 0.4 is the regression coefficient between transmission and solar angle (Supit et al. 
1994). 
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Water Fluxes 

The coupling between SOILCO2 and SUCROS involves two hydrological processes: rainfall 
interception and root water uptake. Interception loss is estimated according to the single-big-
leaf concept (Rutter et al. 1971). The canopy interception storage capacity Si ([L]) was 
assumed to be proportional to the total leaf area index LAI ([L2 L-2]). Water is removed from 
the interception storage by evaporation Ei ([L T-1]): 
 

𝐸𝑖 = (𝐸𝑇𝑝,𝑐𝑟𝑜𝑝 − 𝐸𝑝)
𝐶𝑖

𝑆𝑖
         (A.3) 

 

where Ci ([L]) represents the interception storage at a certain time step, ETp,crop ([L T-1]) is the 
potential crop evapotranspiration, and Ep ([L T-1]) is the potential soil evaporation. The 
amount of interception Ni ([L T-1]) is then estimated according to: 
 

𝑁𝑖 = {

0  𝑁0 = 0          
  𝑆𝑖 − 𝐶𝑖           for 𝑆𝑖 − 𝐶𝑖 < 𝑁0
𝑁0  𝑆𝑖 − 𝐶𝑖 > 𝑁0

      (A.4) 

 

where N0 ([L T-1]) represents precipitation. The amount of precipitation entering the soil Np 
([L T-1]) is calculated as the difference between N0 and Ni. 
In SUCROS, ETp,crop is computed by scaling the potential grass reference evapotranspiration 
(Penman-Monteith approach; Allen et al. 1998) with the dimensionless crop conversion factor 
Kc. On the basis of Beer’s law, ETp,crop is split into potential soil evaporation Ep ([L T-1]) and 
potential transpiration Tp ([L T-1]) in dependence of LAI: 
 

𝐸𝑝 = 𝐸𝑇𝑝,𝑐𝑟𝑜𝑝 exp (−0.6 ∙ 𝐿𝐴𝐼)       (A.5) 
𝑇𝑝 = 𝐸𝑇𝑝,𝑐𝑟𝑜𝑝 − 𝐸𝑝 − 𝐸𝑖        (A.6) 
 

The potential soil evaporation is passed to SOILCO2, where it is used to prescribe the 
potential upward water flux as upper boundary condition. Potential transpiration is distributed 
over soil depth according to the relative root density distribution to provide the potential sink 
term for root water uptake. The depth-specific actual root water uptake is computed by scaling 
the potential root water uptake with reduction factor α (-) in dependence of soil pressure head 
h ([L]) following the approach of Feddes et al. (1978): 
 

𝛼(ℎ) =  

{
 

 

  

ℎ0−ℎ

ℎ0−ℎ1
 ℎ0 ≤ ℎ ≤ ℎ1

1           for ℎ1 ≤ ℎ ≤ ℎ2

10
ℎ2−ℎ

ℎ3  ℎ2 ≤ ℎ ≤ ℎ3

      (A.7) 

 

where h0, h1, h2, and h3 ([L]) are prescribed threshold pressure heads (Vanclooster et al. 1995), 
which are plant dependent (Tab. A.2). Integration of the actual root water uptake over depth 
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provides the actual transpiration Ta ([L T-1]). The reduction of stomatal conductance due to 
water stress was assumed to correspond to the ratio between actual and potential transpiration 
Ta/Tp. 

Carbon Fluxes 

In this study, carbon fluxes from the atmosphere to the ecosystem (downward) are defined as 
negative fluxes, and upward fluxes are defined as positive. The water stress ratio (Ta/Tp) is 
used to scale gross carbon assimilation and to account for the effect of limited soil water 
availability on crop activity in terms of gross primary productivity GPP (mol CO2 [L]-2 [T]-1): 
 

𝐺𝑃𝑃 = −
𝐺𝑝ℎ𝑜𝑡

𝑀𝑜𝑙𝐶𝐻2𝑂
 ∙  

𝑇𝑎

𝑇𝑝
          (A.8) 

 

where Gphot (kg CH2O [L]-2 [T]-1) is the glucose equivalent of the total gross assimilation per 
time step (Spitters et al. 1989), and MolCH2O is the molar mass of CH2O (= 0.030 kg mol-1). 

The net primary productivity NPP (mol CO2 [L]-2 [T]-1) is defined as: 
 

𝑁𝑃𝑃 = 𝐺𝑃𝑃 + 𝑅𝑔𝑟 + 𝑅𝑚        (A.9) 
 

where Rgr (mol CO2 [L]-2 [T]-1) is the total growth respiration, and Rm (mol CO2 [L]-2 [T]-1) is 
the maintenance respiration. Net ecosystem exchange NEE (mol CO2 [L]-2 [T]-1) is computed 
as: 
 

𝑁𝐸𝐸 = 𝑁𝑃𝑃 + 𝑅ℎ         (A.10) 
 

where Rh (mol CO2 [L]-2 [T]-1) is the depth-integral of the heterotrophic CO2 source term 
provided by the RothC module. 

Maintenance and Growth Respiration 

In a first step, the total maintenance respiration demand at 25°C Rm,r (kg CH2O [L]-2 [T]-1) is 
computed as a glucose equivalent according to: 
 

𝑅𝑚,𝑟 =∑𝑓𝑚,𝑜

4

𝑜=1

𝑊𝑜 𝑓𝑡                                                                                                                           (A.11) 

 

where fm,o (kg CH2O kg-1 DM [T]-1) is the maintenance coefficient with index o looping over 
the four plant organs leaves, stems, roots, and storage organs with coefficients of 0.03, 0.015, 
0.015, and 0.01, respectively (Spitters et al. 1989), Wo (kg DM [L]-2) is the respective organ 
dry weight, and ft (-) is a time conversion factor accounting for the use of an hourly or daily 
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time step. In a second step, Rm,r is corrected for temperature to estimate total maintenance 
respiration Rm,c (kg CH2O [L]-2 [T]-1) as described by Spitters et al. (1989) and converted to 
CO2 equivalent maintenance respiration Rm (mol CO2 [L]-2 [T]-1) by dividing with MolCH2O. 

Total growth respiration Rgtot (kg CH2O [L]-2 [T]-1) in glucose equivalents is estimated as: 
 

𝑅𝑔𝑡𝑜𝑡 = (𝐺𝑝ℎ𝑜𝑡 ∙  
𝑇𝑎

𝑇𝑝
 − 𝑅𝑚,𝑐) − 𝛥𝑊 ∙ 𝐶𝑐𝑜𝑛𝑡 ∙

𝑀𝑜𝑙𝐶𝐻2𝑂

𝑀𝑜𝑙𝐶
     (A.12) 

 

where ΔW (kg DM [L]-2 [T]-1) is the overall dry matter growth rate, Ccont (g C g-1 DM) is the 
conversion factor between carbon and biomass dry matter weight, and MolC is the molar mass 
of C (= 0.012 kg mol-1). Growth respiration for each plant organ Rgr,o (mol CO2 [L]-2 [T]-1) is 
computed from Rgtot according to: 
 

𝑅𝑔𝑟,𝑜 =
𝑅𝑔𝑡𝑜𝑡 ∙ 𝑓𝑜

𝑀𝑜𝑙𝐶𝐻2𝑂
          (A.13) 

 

where index o loops over the four plant organs, and fo (-) is the organ-specific partitioning 
factor. Total growth respiration Rgr (mol CO2 [L]-2 [T]-1) is finally computed as the sum of all 
Rgr,o. The sum of maintenance and growth respiration of the roots represents the autotrophic 
source term of soil CO2 and is distributed over the soil profile according to the time-variable 
relative root density distribution. 

Root Exudation and Root Decay 

In SUCROS, the daily or hourly glucose assimilation rate Gphot (kg CH2O [L]-2 [T]-1) is 
partitioned in dependence of the DVS into the fraction for the shoot and for the root system to 
build up biomass. According to labelling experiments performed by Swinnen et al. (1995) for 
winter wheat, 18.2% of net assimilation is transferred to the roots, 7.1% are used to build up 
root biomass, and 5.3% are released as young photosynthetate rhizodeposition. This translates 
into fractions of 0.39 and 0.29 for root biomass build-up and exudates, respectively, relative to 
net assimilation transferred to the roots. The remaining fraction consists of root respiration and 
root decay. The relative root exudation factor fexu (-) thus equals 0.43 (= 0.29 / (0.39 + 0.29)). 
In AgroC, the root exudation rate Rtexu (kg C [L]-2 [T]-1) is computed according to this 
partitioning factor from the dry matter root growth rate ΔWrt (kg DM [L]-2 [T]-1): 
 

𝑅𝑡𝑒𝑥𝑢 = Δ𝑊𝑟𝑡 ∙ 𝑓𝑟𝑡 ∙ 𝑓𝑒𝑥𝑢 ∙ 0.467       (A.14) 
 

where frt is the dimensionless partitioning factor for roots, and 0.467 kg C kg-1 DM is the root-
specific dry matter carbon content (Goudriaan et al. 1997). Using this approach, the simulated 
root exudation shows diurnal variations due to the dependence on the assimilation rate, as 
suggested by Hopkins et al. (2013) and Kuzyakov (2006) amongst others. 
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Swinnen et al. (1995) reported that 3.1% of the net assimilation ends up as dead roots. In 
relation to the 18.2% transferred to the roots, this equals a relative fraction of 0.17. In order to 
account for this, a root death factor fdea (-) was introduced. It was assumed that fdea is lower 
during the crop juvenile stages than at flowering: 
 

𝑓𝑑𝑒𝑎 = {  

0  𝐷𝑉𝑆 < 0.2              
𝑓𝑑𝑒𝑎𝑚𝑎𝑥(𝐷𝑉𝑆−0.2)

0.5−0.2
          for 0.2 ≤ 𝐷𝑉𝑆 ≤ 0.5

𝑓𝑑𝑒𝑎𝑚𝑎𝑥  𝐷𝑉𝑆 > 0.5             

    (A.15) 

 

where fdea is the root death factor in relation to the total amount of roots, and fdeamax (-) is the 
maximum value of the root death factor. For winter wheat, a fdeamax of 0.43 was used, which 
approximately reproduced the cumulative fraction of dead roots of 0.17 of net assimilation 
determined by Swinnen et al. (1995). The rate of root death in orders of carbon release Rtdea 
(kg C [L]-2 [T]-1) is computed as: 
 

𝑅𝑡𝑑𝑒𝑎 = Δ𝑊𝑟𝑡 ∙ 𝑓𝑟𝑡 ∙ 𝑓𝑑𝑒𝑎 ∙ 0.467       (A.16) 
 

ΔWrt is reduced according to the loss of root exudates and dead roots. The total amount of root 
exudates and dead roots is again distributed over depth according to the relative root density 
profile. The carbon equivalent of the root exudates is transferred to the depth-specific 
decomposable plant material pool (DPM) of the RothC subroutine because of the expected 
rapid decomposition of these labile substances by rhizosphere microorganisms. The carbon 
equivalent of the dead roots is split into the DPM and the resistant plant material (RPM) pool 
according to the original RothC partitioning factor for incoming plant material of 0.59 and 
0.41 (Coleman and Jenkinson 2008), respectively. 
For winter wheat and barley, harvest residues are also considered. At the time of harvest, root 
biomass and 25% of stem biomass is added to the DPM and RPM pool up to a user-specified 
soil depth (i.e. ploughing depth). Figure 2.1 provides a summary of the carbon cycling in 
AgroC. 

Grassland 

The original SUCROS code is not capable of simulating managed grassland, which are 
characterized by multiple mowing events over the season. Mowing is associated with the 
transfer of glucose from roots and stubble to the leaves, which allows for a faster 
compensation of defoliation. The routines implemented in AgroC for the simulation of the 
above-mentioned processes follow the sink/source approach suggested by Schapendonk et al. 
(1998) for the grassland productivity model LINGRA. 
At prescribed mowing dates, the current green leaf area index LAIg is set to a fixed post-
mowing leaf area index LAIpost (in this study we set LAIpost = 0.35 based on LAI 
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measurements). The ratio between pre-mowing LAI and post-mowing LAIpost is used to 
compute the respective loss of dry matter biomass: 
 

𝑓𝑙𝑎𝑖 = 
𝐿𝐴𝐼𝑔

𝐿𝐴𝐼𝑝𝑜𝑠𝑡
          (A.17) 

𝑤𝑝𝑜𝑠𝑡,𝑖 = 
𝑤𝑝𝑟𝑒,𝑖

𝑓𝑙𝑎𝑖
          (A.18) 

 

where flai (-) is the pre-/post-mowing LAI ratio, wpre (kg DM [L]-2) is the biomass prior to 
mowing, and wpost (kg DM [L]-2) is the respective biomass after mowing. The index i loops 
over leaves, stems, and storage organs/inflorescence. At each mowing event, DVS is also reset 
to a prescribed value of DVSreset = 0.5. In order to simulate the transfer of glucose after 
defoliation, we implemented a glucose storage that is filled between a DVSlo of 0.6 and a 
DVShi of 1.0. The rate of glucose storage increase λs+ (kg CH2O [L]-2 [T]-1) is computed as a 
fraction fstor (-) of global net glucose production: 
 

𝜆𝑠+ = (𝐺𝑝ℎ𝑜𝑡  ∙  
𝑇𝑎

𝑇𝑝
 − 𝑅𝑚,𝑐) ∙ 𝑓𝑠𝑡𝑜𝑟       (A.19) 

 

The part of global net glucose production (= Gphot  Ta/Tp – Rm,c) available for biomass growth 
and respiration is reduced accordingly by λs+. The storage fraction is computed in dependence 
of DVS: 
 

𝑓𝑠𝑡𝑜𝑟 = {  

0  𝐷𝑉𝑆 ≤ 𝐷𝑉𝑆𝑙𝑜                 
𝑓𝑠𝑡𝑜𝑟𝑚𝑎𝑥(𝐷𝑉𝑆−𝐷𝑉𝑆𝑙𝑜)

(𝐷𝑉𝑆ℎ𝑖−𝐷𝑉𝑆𝑙𝑜)
          for 𝐷𝑉𝑆𝑙𝑜 < 𝐷𝑉𝑆 < 𝐷𝑉𝑆ℎ𝑖

𝑓𝑠𝑡𝑜𝑟𝑚𝑎𝑥  𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆ℎ𝑖                 

   (A.20) 

 

where fstormax (-) is the user-specified maximum storage fraction. Thus, the glucose storage 
Sstor,t (kg CH2O [L]-2) increases by λs+ until a user-defined maximum value of Sstormax 
(kg CH2O [L]-2) is reached. After that, Sstor,t remains constant. After mowing, the dry matter 
transfer rate λs- ([T-1]) from Sstor,t to the shoot is estimated as: 
 

𝜆𝑠− = 
log (100)

𝑡𝑠𝑡𝑜𝑟
           (A.21) 

 

where tstor ([T]) is a user-specified time required to reach a value of 1% of the storage at the 
time of mowing. According to Gonzales et al. (1989) and Prud’homme et al. (1992), the 
mobilization of carbohydrates in ryegrass is highest during the first 6 days after defoliation 
and levels out in a second phase that lasts until 29 days after defoliation. In this study, tstor was 
set to 15 days, which results in a λs- of 0.31 d-1. Correspondingly, Sstor,t is reduced down to a 
limiting value of zero according to: 
 

𝑆𝑠𝑡𝑜𝑟,𝑡+1 = 𝑆𝑠𝑡𝑜𝑟,𝑡 (1 − 𝜆𝑠−)        (A.22) 
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The additional dry matter growth rate ΔWstor (kg DM [L]-2 [T]-1) resulting from the declining 
Sstor,t is added to the dry matter growth rate of the shoot ΔWsh (kg DM [L]-2 [T]-1), which is the 
outcome of the photosynthetic activity of the plant. The additional shoot growth rate ΔWstor is 
computed as: 
 

Δ𝑊𝑠𝑡𝑜𝑟 =
𝑆𝑠𝑡𝑜𝑟,𝑡  𝜆𝑠−

𝑓𝑠ℎ (1.46 𝑓𝑙𝑣 + 1.51 𝑓𝑠𝑡)
        (A.23) 

 

where fsh, flv, and fst are the dimensionless partitioning factors for shoot, leaves, and stems, 
respectively. The assimilate requirement coefficients of 1.46 and 1.51 in Equation A.23 have a 
unit of kg CH2O kg-1 DM (Spitters et al. 1989). 
As suggested by Schapendonk et al. (1998), a mechanism was implemented by which the 
specific leaf area (ha leaf kg-1 DM) varies over the season as a function of DVS. Furthermore, 
a mechanism to distinguish between vegetative and reproductive development of grass was 
introduced as suggested by Barrett et al. (2004). These two stages of development differ in the 
productivity of grass and in several major physiological processes that alter the response of the 
plant to environmental drivers (e.g., Anslow and Green 1967; Leafe et al. 1974; Parsons 1988; 
Robson et al. 1988). 
 

Tab. A.1: Site-specific soil properties (Corg: organic carbon content) and calibrated hydraulic 
parameters (θr: residual water content; θs: saturated water content; α: inverse of the bubbling pressure; 
n: shape parameter; Ks: saturated hydraulic conductivity; van Genuchten 1980). 

 
 

 

 soil profile 
horizons 

sand 
(%) 

silt 
(%) 

clay 
(%) 

Corg 
(%) 

 θr 

(cm3 cm-3) 
θs 

(cm3 cm-3) 
α 

(cm-1) 
n 

(-) 
Ks 

(cm h-1) 
            

Se
lh

au
se

n 0-15 cm 15.4 67.5 17.1 1.03  0.069 0.504 0.0056 1.68 0.01 
15-33 cm 15.6 67.7 16.6 0.96  0.109 0.504 0.0059 1.92 0.05 
33-57 cm 16.2 63.1 23.1 0.34  0.000 0.463 0.0061 1.28 0.35 

57-120 cm 12.3 64.0 23.7 0.24  0.044 0.441 0.0013 1.69 0.05 
           

M
er

ze
n-

ha
us

en
 

      
     

0-12 cm 6.4 78.2 15.4 1.0  0.001 0.462 0.0031 1.69 0.30 
12-40 cm 6.4 78.2 15.4 1.0  0.001 0.571 0.0039 1.63 0.41 
40-60 cm 1.0 77.1 21.9 0.4  0.057 0.418 0.0034 1.21 0.64 

60-110 cm 0.5 73.4 26.1 0.3  0.103 0.367 0.0017 1.88 0.13 
           

 

      
     

R
ol

le
sb

ro
ic

h 0-5 cm 22.0 60.8 17.2 4.82  0.034 0.443 0.0082 2.83 2.16 
5-14 cm 22.0 60.8 17.2 4.82  0.056 0.380 0.0077 2.84 2.04 

14-34 cm 23.1 59.1 17.8 2.49  0.039 0.379 0.0109 1.68 1.75 
34-60 cm 23.2 59.3 17.5 0.81  0.038 0.340 0.0160 1.33 0.84 

60-100 cm 23.2 59.3 17.5 0.0  0.037 0.375 0.0131 1.06 0.71 
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Tab. A.2: Selection of most important fitted plant parameters for the calibration of the plant growth 
module of AgroC. (WW: winter wheat; WB: winter barley; GL: grassland; DVS: development stage; 
DM: dry matter). 

 

 

 

  

  Selhausen  Merzenhausen  Rollesbroich 
  WW 2009  WW 2012 WW 2013 WB 2014  GL 2013 
         

prescribed threshold pressure 
heads h0, h1, h2, and h3 for scaling 
the root water uptake (cm) 

 -10, 
-100, 
-300, 
-800 

 -100, 
-400, 
-1000, 
-10000 

-100, 
-400, 
-1000, 
-10000 

-100, 
-400, 
-1000, 
-10000 

 -5, 
-70, 
-150, 
-800 

specific leaf area of new leaves 
(ha leaf  kg-1 DM) 

 0.0024  0.0024 0.0023 0.0033  0.003 

potential CO2 assimilation rate of 
a unit leaf area for light saturation 
(kg CO2  ha-1 leaf  h-1) 

 47.0  60.0 53.0 48.0  75.0 

initial light use efficiency 
((kg CO2  ha-1 leaf  h-1)(J  m-2  s-1)-1) 

 0.5  0.5 0.5 0.45  0.36 

DVS against reduction factor of 
the maximal light assimilation rate 

 0.0 1.0  0.0 1.0 0.0 1.0 0.0 1.0  0.0 1.0 
 1.0 1.0  1.0 1.0 1.0 1.0 1.0 1.0  0.4 1.0 
 2.0 0.4  2.0 0.5 2.0 0.4 2.0 0.3  1.0 0.9 
           1.2 0.9 
           1.5 0.9 
           1.8 0.9 

daily average daytime temperature 
against reduction factor of the 
maximal light assimilation rate 

 0.0 0.05  0.0 0.01 0.0 0.05 0.0 0.6  0.0 0.4 
 4.0 0.3  6.0 0.3 6.0 0.1 5.0 0.7  5.0 0.6 
 10.0 0.6  10.0 0.7 10.0 0.5 15.0 0.9  10.0 1.0 
 15.0 0.8  17.0 1.0 20.0 1.0 18.0 1.0  15.0 1.0 
 20.0 1.0  25.0 0.5 25.0 0.7 25.0 0.6  20.0 0.8 
 30.0 0.0  35.0 0.4 35.0 0.6 40.0 0.3  35.0 0.2 

DVS against fraction of dry 
matter allocated to the shoot 

 0.0 0.33  0.0 0.24 0.0 0.24 0.0 0.34  0.0 0.62 
 0.1 0.33  0.1 0.24 0.1 0.24 0.51 0.44  0.2 0.52 
 0.2 0.42  0.2 0.33 0.2 0.33 0.72 0.84  0.4 0.49 
 0.4 0.67  0.4 0.58 0.4 0.58 1.7 0.99  0.7 0.57 
 0.5 0.78  0.5 0.64 0.5 0.64 2.0 1.00  1.0 0.64 
 0.7 0.85  0.7 0.72 0.7 0.72    1.3 0.47 
 0.9 0.92  0.9 0.80 0.9 0.80    2.0 0.55 
 1.2 1.0  1.5 0.91 1.5 0.91      
 2.0 1.0  2.0 1.0 2.0 1.0      
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Fig. A.1: Correlations between observed and simulated net ecosystem exchange (NEE) for all 
optimization strategies at test site Merzenhausen. Reduced major axis regression was derived for each 
strategy distinguished between day- (d) and nighttime (n) CO2 fluxes, whereat nighttime was 
designated to a measured global radiation lower than 20 W m-2. For description of optimization 
strategies see Chapter 2.  
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Fig. A.2: Correlations between observed and simulated net ecosystem exchange (NEE) for all 
optimization strategies at test site Rollesbroich. Reduced major axis regression was derived for each 
strategy distinguished between day- (d) and nighttime (n) CO2 fluxes, whereat nighttime was 
designated to a measured global radiation lower than 20 W m-2. For description of optimization 
strategies see Chapter 2.  



APPENDIX A 

97 

Fig. A.3: Cumulated net ecosystem exchange (cum NEE) over simulation time period, calculated in 
“gap-filling mode”, for each optimization strategy, for the simulation without calibration to NEE 
(‘original’), and for the gap-filling method after Reichstein et al. (2005) (gap-filling method) in 
Selhausen (top), Merzenhausen (middle), and Rollesbroich (bottom). For description of optimization 
strategies see Chapter 2. 
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APPENDIX B 

B. Source Partitioning Based on High Frequency Data

Scanlon and Sahu (2008) and Scanlon and Kustas (2010) provided a system of equations for 
the source partitioning of H2O and CO2 fluxes including following essential equation, which 
was further modified and reported by Palatella et al. (2014, Equation 29, page 331) as follows: 

WUE =  
𝑤′𝑐′̅̅ ̅̅ ̅̅ ̅

𝑤′𝑞′̅̅ ̅̅ ̅̅ ̅

1− 𝜌
𝑐𝑝
′ 𝑐𝑟
′

2  + √𝜌
𝑐𝑝
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′

2  (𝜌
𝑐𝑝
′ 𝑐𝑟
′

2 −1+
WUE2 𝜎

𝑞′
2

𝜎
𝑐𝑝
′
2 )

1− 𝜌
𝑐𝑝
′ 𝑐𝑟
′

2  ± √𝜌
𝑐𝑝
′ 𝑐𝑟
′

2  (𝜌
𝑐𝑝
′ 𝑐𝑟
′

2 −1+
𝜎
𝑐′
2

𝜎
𝑐𝑝
′
2 )

(B.1) 

where WUE is the water use efficiency on leaf-level (defined as negative), which can be 
estimated with Equation 3.4, w'q'̅̅ ̅̅ ̅ and w'c'̅̅ ̅̅ ̅ are the measured H2O and CO2 flux of the regarded
time period, ρ and σ2 are the correlation and variance of the indicated scalars (subscribes q, c, 
cp, cr represent H2O, CO2, photosynthesis, and Rsoil, respectively). The two parameters ρcp’cr’ 
and σcp’

2 in the equation are the only unknowns and the denominator implies two possible
solutions, for what Palatella et al. (2014) implemented a globally convergent Newton’s 
method searching for plausible solutions. As follows, we manipulated Equation B.1 further to 
solve for σcp’

2 = f(ρcp’cr’), leaving only ρcp’cr’ as unknown parameter, so that we could do without
the numerical routine. 

A = WUE2 (
𝑤′𝑞′̅̅ ̅̅ ̅̅

𝑤′𝑐′̅̅ ̅̅ ̅̅
)

2

(2 𝜌𝑐𝑝′ 𝑐𝑟′
4 − 3 𝜌𝑐𝑝′ 𝑐𝑟′

2 + 1) −WUE (
𝑤′𝑞′̅̅ ̅̅ ̅̅

𝑤′𝑐′̅̅ ̅̅ ̅̅
) (2 𝜌𝑐𝑝′ 𝑐𝑟′

4 − 4 𝜌𝑐𝑝′ 𝑐𝑟′
2 + 2) − 𝜌𝑐𝑝′ 𝑐𝑟′

2 + 1

B = 2 WUE (
𝑤′𝑞′̅̅ ̅̅ ̅̅

𝑤′𝑐′̅̅ ̅̅ ̅̅
) (∓ WUE (

𝑤′𝑞′̅̅ ̅̅ ̅̅

𝑤′𝑐′̅̅ ̅̅ ̅̅
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2  ∓ 1)

Only one branch of this equation is necessary, because B is always squared in the following 
equations. Both branches give the same solution for B2. 

C =  WUE2 𝜌𝑐𝑝′ 𝑐𝑟′
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Fig. B.1: Source partitioning results of the approach after Scanlon and Kustas (2010) for H2O fluxes 
with various water use efficiency (WUE) inputs (see Chapter 3 for description) at the two study sites 
Wüstebach (forest; top) and Selhausen (cropland; bottom) for varying time periods (LE: latent heat 
flux; ET: evapotranspiration; T: transpiration; E: evaporation; LAI: leaf area index; hc: canopy height; 
blue bars: precipitation events). 
 

 
Fig. B.2: Source partitioning results of the approach after Scanlon and Kustas (2010) for CO2 fluxes 
with various water use efficiency (WUE) inputs (see Chapter 3 for description) at the two study sites 
Wüstebach (forest; top) and Selhausen (cropland; bottom) for varying time periods (NEE: net 
ecosystem exchange; NPP: net primary production; Rsoil: soil respiration; LAI: leaf area index; hc: 
canopy height; blue bars: precipitation events).  
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Fig. B.3: Examples of sampled synthetic high frequency data of H2O (q’) and CO2 fluctuations (c’) for 
the crop canopy in different ‘measurement’ heights and for the two sink-source-distributions ModelV 
(left) and ModelB (right) each with the strong soil source. In the LES-derived data it could be 
differentiated between scalars originating from stomatal (green dots) and non-stomatal (yellow dots) 
processes. The blue line presents the water use efficiency (WUE) and the red line the reduced major 
axis regression between total q’ and c’ (hc: canopy height; z: height above soil surface).  
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Fig. B.4: Absolute (top) and relative (bottom) residuals between H2O and CO2 flux components, ρq’c’, 
ρcp’cr’, and σcp’

2 resulting from LES scaled with the four variations of sink-source-distributions (ModelV 
or ModelB; low or high soil source) and the partitioning results of the approach after Scanlon and 
Kustas (2010; SK10) at a ‘measurement’ height of 2.5 canopy heights for the crop canopy. Shown are 
results of the partitioning procedure i) including correct water use efficiency (WUE) input known from 
LES, but without the correction of the transfer assumption (filled markers), ii) including correct WUE 
and corrected transfer assumption (non-filled markers), and iii) with corrected transfer assumption, but 
with a changed WUE of ±24% (plus and minus signs). 
 

 
Fig. B.5: Vertical profiles of the forest plant area density (PAD), cumulative plant area index (PAI), 
and variations of sink-source-distributions for H2O and CO2 used to scale the LES scalar fields (left: 
ModelV, after Sellers et al. 1992; right: ModelB, after Ney et al. 2017), each with ten canopy 
sinks/sources (bars) and one soil source (circle). For CO2, two different soil sources and accordingly 
differing canopy sinks were used, in which the flux at canopy top for each distribution is the same.  
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Fig. B.6: Vertical profiles of H2O and CO2 flux, and their components resulting from LES scaled with 
the four variations of sink-source-distributions (ModelV or ModelB; low or high soil source) for the 
forest canopy. Also shown are the partitioning results of the approach after Scanlon and Kustas (2010; 
SK10) for each grid height.  
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Fig. B.7: a)-c) Vertical profiles of ρq’c’, ρcp’cr’, and σcp’
2 resulting from LES scaled with the four 

variations of sink-source-distributions (ModelV or ModelB; low or high soil source) for the forest 
canopy (lines), compared to results of the approach after Scanlon and Kustas (2010; SK10) (dots). d)-e) 
Comparison of the two sides of Equation 3.2 and 3.3 checking the transfer assumption and 
corresponding correction factors (factq, factc, defined in Equation 3.5 and 3.6). 
 

 
Fig. B.8: Comparison of H2O and CO2 flux components, ρq’c’, ρcp’cr’, and σcp’

2 resulting from LES scaled 
with the four variations of sink-source-distributions (ModelV or ModelB; low or high soil source) and 
the partitioning results of the approach after Scanlon and Kustas (2010; SK10) at a ‘measurement’ 
height of 2.5 canopy heights for the forest canopy. Shown are results of the partitioning procedure 
without and with correction of the transfer assumption.  
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Fig. B.9: Vertical profiles of H2O and CO2 flux components, ρq’c’, ρcp’cr’, and σcp’

2 resulting from LES 
scaled with the four variations of sink-source-distributions (ModelV or ModelB; low or high soil 
source) for the forest canopy. Also, the partitioning results of the approach after Scanlon and Kustas 
(2010; SK10) including the correction of the transfer assumption are shown for each grid height.  
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Fig. B.10: Results of partitioning fractions for H2O (T/ET, left) and CO2 (NPP/NEE, right) fluxes in 
relation to the input water use efficiency (WUE). The source partitioning approach after Scanlon and 
Kustas (2010) was applied to synthetic high frequency data from LES scaled with the four variations of 
sink-source-distributions (ModelV or ModelB; low or high soil source) at a ‘measurement’ height of 
2.5 canopy heights for the forest canopy with corrected and uncorrected transfer assumption. The true 
known partitioning factors and WUE input are indicated by the dashed lines.  
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Fig. B.11: Absolute (top) and relative (bottom) residuals between H2O and CO2 flux components, ρq’c’, 
ρcp’cr’, and σcp’

2 resulting from LES scaled with the four variations of sink-source-distributions (ModelV 
or ModelB; low or high soil source) and the partitioning results of the approach after Scanlon and 
Kustas (2010; SK10) at a ‘measurement’ height of 2.5 canopy heights for the forest canopy. Shown are 
results of the partitioning procedure i) including correct water use efficiency (WUE) input known from 
LES, but without the correction of the transfer assumption (filled markers), ii) including correct WUE 
and corrected transfer assumption (non-filled markers), and iii) with corrected transfer assumption, but 
with a changed WUE of ±24% (plus and minus signs).  
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APPENDIX C 

C. Study Sites Comparison

Tab. C.1: Count of half-hourly time steps during daylight (CoD) per considered time period for each 
study site, corresponding relative fractions of CoD of high-quality (HQ) and relative fractions of these 
HQ-time steps with a partitioning solution for each method version. Green (red) lettering indicates the 
highest (lowest) fraction of solutions for each site. Green (red) cell filling indicates the highest (lowest) 
fraction for each method version. 
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SK10 WUEmeanT 
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91.8 
84.4 

99 

84.8 
26.2 

SK10 WUEMOST 82.1 34.5 
SK10 WUEOLR LO_FR 65.6  DI_CL_MA_06 23.8 
TH08 CV Q1, REA Q1 08.-14.07.2003 

68.0 
99.4 14.-16.06.2007 

63.6 
98.4 

TH08 CV H, REA H 86.0 82.5 
TH08 CV GMM 57.3 55.6 

SK10 WUEmeanT 

231 

89.2 
75.7 

96 

97.9 
90.4 

SK10 WUEMOST 76.2 88.3 
SK10 WUEOLR HH_FR 74.8  DI_CL_MA_07 77.7 
TH08 CV Q1, REA Q1 03.-09.07.2016 

59.7 
100.0 14.-16.07.2007 

78.1 
98.7 

TH08 CV H, REA H 55.8 50.7 
TH08 CV GMM 48.6 48.0 

SK10 WUEmeanT 

218 

78.0 
80.6 

91 

94.5 
95.3 

SK10 WUEMOST 78.8 94.2 
SK10 WUEOLR WU_FR 70.6  DI_CL_MA_08 89.5 
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55.5 
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100.0 
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TH08 CV GMM 48.8 49.3 
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92.8 
88.3 

96 

92.7 
57.3 

SK10 WUEMOST 91.7 57.3 
SK10 WUEOLR WA_FR 89.3  SE_CL_SB_06 52.8 
TH08 CV Q1, REA Q1 04.-10.07.2016 

75.2 
100.0 20.-22.06.2017 

76.0 
98.6 

TH08 CV H, REA H 65.9 58.9 
TH08 CV GMM 46.7 49.3 

SK10 WUEmeanT 
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84.1 
33.3 

90 

77.8 
72.9 

SK10 WUEMOST 38.4 71.4 
SK10 WUEOLR LA_FR 56.5  SE_CL_SB_08 72.9 
TH08 CV Q1, REA Q1 24.-30.09.2017 

54.9 
100.0 02.-04.08.2017 

62.2 
100.0 

TH08 CV H, REA H 93.3 37.5 
TH08 CV GMM 57.8 48.2 

SK10 WUEmeanT 
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84.8 
95.0 

78 

92.3 
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SK10 WUEMOST 95.0 81.9 
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TH08 CV Q1, REA Q1 06.-12.06.2014 

73.0 
100.0 04.-06.09.2017 
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TH08 CV H, REA H 70.8 25.0 
TH08 CV GMM 60.4 20.0 
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Tab. C.1 continued: 
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56.7 
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77.7 
99.3  03.-05.06.2015 

77.1 
98.6 

TH08 CV H, REA H  47.1   25.7 
TH08 CV GMM  39.7   27.0 
          

SK10 WUEmeanT  
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91.7 
21.1   

96 

82.3 
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SK10 WUEOLR FE_GR 39.9      
TH08 CV Q1, REA Q1 11.-17.07.2015 

58.5 
100.0      

TH08 CV H, REA H  46.5      
TH08 CV GMM  60.6      
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Fig. C.1: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Hohes Holz study site (forest) in Germany and for every method version (see Chapter 4 for 
description). CO2 flux estimates by Reichstein et al. (2005; RE05) are also included (LE: latent heat 
flux; E: evaporation; Esoil: estimated evaporation based on Beer’s law; GPP: gross primary production; 
NPP: net primary production; TER: total ecosystem respiration; Rsoil: soil respiration; z: measurement 
height; hc: canopy height; LAI: leaf area index). 
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Fig. C.2: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Wüstebach study site (forest) in Germany and for every method version (see Chapter 4 for 
description). CO2 flux estimates by Reichstein et al. (2005; RE05) and Rsoil chamber measurements are 
also included (LE: latent heat flux; E: evaporation; Esoil: estimated evaporation based on Beer’s law; 
GPP: gross primary production; NPP: net primary production; TER: total ecosystem respiration; Rsoil: 
soil respiration; z: measurement height; hc: canopy height; LAI: leaf area index; blue bars: 
precipitation events). 
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Fig. C.3: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Waldstein study site (forest) in Germany and for every method version (see Chapter 4 for 
description; LE: latent heat flux; E: evaporation; Esoil: estimated evaporation based on Beer’s law; NPP: 
net primary production; Rsoil: soil respiration; z: measurement height; hc: canopy height; LAI: leaf area 
index). 
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Fig. C.4: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Lackenberg study site (forest) in Germany and for every method version (see Chapter 4 for 
description). CO2 flux estimates by Reichstein et al. (2005; RE05) are also included (LE: latent heat 
flux; E: evaporation; GPP: gross primary production; NPP: net primary production; TER: total 
ecosystem respiration; Rsoil: soil respiration; z: measurement height; hc: canopy height; LAI: leaf area 
index; blue bars: precipitation events). 
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Fig. C.5: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Metolius Mature Pine study site (forest) in United States and for every method version (see 
Chapter 4 for description; LE: latent heat flux; E: evaporation; Esoil: estimated evaporation based on 
Beer’s law; NPP: net primary production; Rsoil: soil respiration; z: measurement height; hc: canopy 
height; LAI: leaf area index; blue bars: precipitation events). 
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Fig. C.6: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Sta. Clotilde study site (forest) in Spain and for every method version (see Chapter 4 for 
description). CO2 flux estimates by Reichstein et al. (2005; RE05) are also included (LE: latent heat 
flux; E: evaporation; Esoil: estimated evaporation based on Beer’s law; GPP: gross primary production; 
NPP: net primary production; TER: total ecosystem respiration; Rsoil: soil respiration; z: measurement 
height; hc: canopy height; LAI: leaf area index). 
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Fig. C.7: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Rollesbroich study site (grassland) in Germany and for every method version (see Chapter 4 for 
description). CO2 flux estimates by Reichstein et al. (2005; RE05) and Rsoil chamber measurements are 
also included (LE: latent heat flux; E: evaporation; Esoil: estimated evaporation based on Beer’s law; 
GPP: gross primary production; NPP: net primary production; TER: total ecosystem respiration; Rsoil: 
soil respiration; z: measurement height; hc: canopy height; LAI: leaf area index). 
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Fig. C.8: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Wüstebach study site (clear cut) in Germany and for every method version (see Chapter 4 for 
description). CO2 flux estimates by Reichstein et al. (2005; RE05) and Rsoil chamber measurements are 
also included (LE: latent heat flux; E: evaporation; Esoil: estimated evaporation based on Beer’s law; 
GPP: gross primary production; NPP: net primary production; TER: total ecosystem respiration; Rsoil: 
soil respiration; z: measurement height; hc: canopy height; LAI: leaf area index; blue bars: 
precipitation events). 
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Fig. C.9: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Fendt study site (grassland) in Germany and for every method version (see Chapter 4 for 
description). CO2 flux estimates by Reichstein et al. (2005; RE05) are also included (LE: latent heat 
flux; E: evaporation; Esoil: estimated evaporation based on Beer’s law; GPP: gross primary production; 
NPP: net primary production; TER: total ecosystem respiration; Rsoil: soil respiration; z: measurement 
height; hc: canopy height; LAI: leaf area index; blue bars: precipitation events). 
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Fig. C.10: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Dijkgraaf study site (cropland, maize) in The Netherlands and for every method version (see 
Chapter 4 for description). CO2 flux estimates by Reichstein et al. (2005; RE05) and Rsoil chamber 
measurements are also included (LE: latent heat flux; E: evaporation; Esoil: estimated evaporation based 
on Beer’s law; GPP: gross primary production; NPP: net primary production; TER: total ecosystem 
respiration; Rsoil: soil respiration; z: measurement height; hc: canopy height; LAI: leaf area index; blue 
bars: precipitation events). 
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Fig. C.11: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Selhausen study site (cropland, sugar beet) in Germany and for every method version (see 
Chapter 4 for description). CO2 flux estimates by Reichstein et al. (2005; RE05) and Rsoil chamber 
measurements are also included (LE: latent heat flux; E: evaporation; Esoil: estimated evaporation based 
on Beer’s law; GPP: gross primary production; NPP: net primary production; TER: total ecosystem 
respiration; Rsoil: soil respiration; z: measurement height; hc: canopy height; LAI: leaf area index; blue 
bars: precipitation events). 
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 Fig. C.12: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for 
the Selhausen study site (cropland, 06/2015: winter wheat, 05/2016: barley, 09/2016: intercrop) in 
Germany and for every method version (see Chapter 4 for description). CO2 flux estimates by 
Reichstein et al. (2005; RE05) and Rsoil chamber measurements are also included (LE: latent heat flux; 
E: evaporation; Esoil: estimated evaporation based on Beer’s law; GPP: gross primary production; NPP: 
net primary production; TER: total ecosystem respiration; Rsoil: soil respiration; z: measurement height; 
hc: canopy height; LAI: leaf area index; blue bars: precipitation events). 
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