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1 Introduction

In this article, we present the command eqregsel for estimation and inference of endoge-

nous sample selection models that implements the procedures developed in recent work by

D’Haultfœuille et al. (2018).1 Prior methods proposed in the econometric literature to esti-

mate endogenous sample selection models rely on instruments and/or large support regres-

sors. For the former, see, among others, Heckman (1974, 1979, 1990), Ahn and Powell (1993),

Donald (1995), Buchinsky (1998), Chen and Khan (2003), Das et al. (2003), Newey (2009)

and Vella (1998) for a survey. Chamberlain (1986) and Lewbel (2007) develop identification

strategies for sample selection models in the absence of an instrument for selection. These

alternative methods rely on the existence of a large support regressor. However, in practice,

valid instruments, as well as large support regressors are often difficult, if not impossible to

find.

Instead, the method implemented in eqregsel does not require the presence of instruments

or large support regressors.2 Identification relies instead on the strategy initially proposed by

D’Haultfoeuille and Maurel (2013), which is based on the idea that, provided that selection

is endogenous, one can expect the effect of the outcome on selection to dominate those of

the covariates, for large values of the outcome. eqregsel builds on the estimation method

proposed by D’Haultfœuille et al. (2018) and implements a series of quantile regressions in

the tails of the outcome distribution (extremal quantile regressions).3 The command outputs

estimates for a set of user-specified coefficients of interest, their standard errors (estimated via

bootstrap), and a p-value for the specification test described in D’Haultfœuille et al. (2018).

Our command complements the existing Stata command heckman for the estimation of sample

selection models. In terms of underlying assumptions, eqregsel has at least three distinctive

features compared to heckman. First, it does not require normality of the error term in the

selection equation, nor linearity of the conditional expectation of the error term in the outcome

equations. Second, it does not restrict the selection process, apart from an independence at

infinity condition. Third, it allows for heterogeneous distributional effects of other control

variables.

1The Stata command eqregsel can be downloaded from the following webpage:
http://www.amaurel.net/Packages.

2See Honoré and Hu (2018) for a related recent work, also motivated by the difficulty of finding instruments
for sample selection. As is the case here, they do not require exclusion restrictions nor large support regressors.
However, their approach is based on a different set of assumptions and, in contrast to our framework, delivers
set- rather than point-identification.

3See Chernozhukov et al. (2017) for an overview of extremal quantile regression methods and recent appli-
cations.
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The remainder of the paper is organized as follows. In Section 2, we recall the setup of the

semiparametric endogenous sample selection model considered in D’Haultfœuille et al. (2018),

and describe the data-driven procedure used to choose the quantile index for the extremal

quantile regression. Section 3 describes how to implement the method in practice. Section 4

presents the eqregsel command. Section 5 illustrates the use of our command by estimating

the black-white wage gap on US young males of the 1979 and 1997 National Longitudinal

Surveys of Youth. Section 6 concludes.

2 The framework and estimation method

2.1 Model and estimation

We consider the following outcome equation:

Y ∗ = X ′1β1 + ε

where Y ∗ ∈ R and X1 ∈ Rd1 are the outcome and covariates of interest, respectively. In

the following, we seek to identify and estimate β1. For that purpose, we rely on two key

conditions. The first is that for any τ ∈ (0, 1), the τ -th conditional quantile of ε satisfies

Qε|X(τ |X) = β0(τ) +X ′2β2(τ), (2.1)

where X = (X ′1, X
′
2)
′ and X2 denotes other covariates. Then

QY ∗|X(τ) = X ′1β1 + β0 +X ′2β2(τ). (2.2)

The effect of X1 is thus assumed to be homogenous across different quantile indices, while the

effect of the other covariates X2 is allowed to be heterogeneous across the distribution of Y ∗.

Y ∗ is not directly observed. Instead, and denoting by D the selection dummy, the econo-

metrician only observes D, Y = DY ∗ and X. The second key condition is that conditional

on having “large” outcomes, selection is independent of the covariates. More precisely, we

assume that there exists a constant h ∈ (0, 1] such that for all x ∈ Supp(X),

lim
y→∞

P (D = 1|X = x, Y ∗ = y) = h. (2.3)

Combining (2.2) and (2.3), D’Haultfœuille et al. (2018, Theorem 1) shows that, under some
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regularity conditions on the upper tail of ε, as τ → 0,

Q−Y |X(τ |X) = Q−Y ∗|X(τ/h|X) + o(1)

= −X ′1β1 − β0(1− τ/h)−X ′2β2(1− τ/h) + o(1). (2.4)

Therefore, (2.4) suggests that we can estimate β1 by running a quantile regression of −Y on

−X with a sufficiently small quantile index τ , i.e.,

(
β̂′1, β̂0(1− τ/h), β̂′2(1− τ/h)

)′
= arg min

β

n∑
i=1

ρτ (−Yi +X
′
iβ), (2.5)

where ρτ (u) = (τ − 1{u < 0})u is the check function used in quantile regressions and Xi =

(X ′1i, 1, X
′
2i)
′. Intuitively, for β̂1 to be consistent, τ should depend on n and tend to 0 as

n tends to infinity. However, it should not tend too quickly to 0, otherwise the extremal

quantile regression would be unstable. Formally, and letting τn denote the quantile index,

D’Haultfœuille et al. (2018) establish that if τn → 0 and nτn → ∞,4, and under additional

technical restrictions, β̂1 is consistent and asymptotically normal.

As is standard with extremal quantile regressions (see Chernozhukov et al., 2017), the rate of

convergence is not the usual parametric root-n rate. Moreover, in this case, this rate depends

on unknown features of the distribution of (D,Y ∗, X).5 Importantly, D’Haultfœuille et al.

(2018) show that the bootstrap is consistent for inference, and does not require the knowledge

of the rate of convergence. To illustrate this, let q∗γ denote the quantile of order γ of the

bootstrap estimator β̂∗1 , assuming for simplicity that X1 is a scalar (d1 = 1). Then, Theorem

2 in D’Haultfœuille et al. (2018) implies that the percentile bootstrap confidence interval

[q∗α/2, q
∗
1−α/2] of β1 has an asymptotic coverage of 1−α. Such an interval does not require the

knowledge of the rate of convergence.

The results above rely on two main conditions, namely (2.1) and (2.3). Importantly, we can

develop a specification test of these conditions, based on the implication that the coefficient

β1 in Q−Y |X(τn|X) is the same across different extremal quantile indices τn (see (2.4)). Then,

if the model is correctly specified, the two estimators β̂1(`τn) (with 0 < ` < 1) and β̂1(τn)

of β1, obtained respectively with τ = `τn and τ = τn, should be close. Following this idea,

consider the following J-test statistic:

TJ(`) = [(1/`)− 1]2(β̂1(τn)− β̂1(`τn))′Ω̂−1(β̂1(τn)− β̂1(`τn)), (2.6)

4This corresponds to the so-called “intermediate order case” in extreme value theory, in contrast to “extreme
order cases” where one would have nτn → k for some k > 0.

5We refer to the definition of the rate above Theorem 2.2 in D’Haultfœuille et al. (2018) for more details.

4



where Ω̂ is a (bootstrap) estimator of the asymptotic covariance of β̂1(τn), properly normalized

by the rate of convergence in view of the discussion above. Then we reject the test at the

nominal level α whenever TJ(`) > qd1(1− α), where qd1(1− α) is the quantile of order 1− α
of a χ2 distribution with d1 degrees of freedom. Theorem 2.3 in D’Haultfœuille et al. (2018)

establishes that for any 0 < ` < 1 the test has an asymptotic level of α. It also proves that

under some local alternatives, the local power is maximized at `∗ = arg max`∈[0,1] `[ln(l)]2/(1−
`) ' 0.2.

2.2 Choice of the quantile index

The performance of extremal quantile estimators depends on a trade-off between bias and

variance, which is governed by the quantile index τn used in the extremal quantile regression.

We present in the following the algorithm outlined in D’Haultfœuille et al. (2018), which

selects a suitable quantile index based on estimators of the bias and the variance of β̂1.

Specifically, consider the same test statistic as in (2.6), but where (`τn, τn) are replaced by

(`1τn, `2τn), with `1 < 1 < `2:

TJ(τ) = [1/`1 − 1/`2]
2(β̂1(`2τ)− β̂1(`1τ))′Ω̂−1(β̂1(`2τ)− β̂1(`1τ)).

D’Haultfœuille et al. (2018) shows that the difference between the median of TJ(τ) and the

median of a chi-squared distribution with d1 degrees of freedom can serve as a proxy for the

bias of the estimator.

The idea, then, is to estimate this difference using subsampling.6 For each subsample and

each quantile index τ within a grid G, one can compute TJ(τ). Let Msub(τ) denote the median

of these test statistics over different subsamples for a given τ , and let Md1 denote the median

of the chi-squared distribution with d1 degrees of freedom. Then, the proxy of the bias is

defined as

d̂iffn(τ) =
|Msub(τ)−Md1 |√

bnτ
,

where bn denotes the subsample size.

Similarly, the asymptotic covariance matrix is estimated by the covariance matrix of the

subsampling estimator of β1, multiplied by the normalizing factor bn/n. Denote by V̂arn(τ)

the sum of the diagonal elements of this covariance matrix. The quantile index is selected to

6We recall that subsampling corresponds to a bootstrap without replacement of size bn < n. Though often
less accurate than the standard bootstrap, subsampling has the advantage of being consistent under much
weaker conditions. See Politis et al. (1999) for an introduction.
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optimize the bias-variance trade-off:

τ̂n = arg min
τ∈G

V̂arn(τ) + d̂iffn(τ),

where G denotes a finite grid within (0, 1). This procedure results in undersmoothing in

comparison with a more standard trade-off between variance and squared bias. Similarly

to the case of nonparametric regressions, this is needed to control the asymptotic bias that

would otherwise affect the limiting distribution of the estimator. We refer to D’Haultfœuille

et al. (2018) for simulation-based evidence that this choice leads to estimators that are both

accurate and only very mildly biased, thus leading to reliable inference on β1.

3 Implementation

We summarize how we implement the method described above in eqregsel.

1. Draw B bootstrap samples and B subsamples of size bn.

2. For each τ ∈ G:

(a) Compute the estimator of β(τ) = (β′1, β0(1− τ/h), β′2(1− τ/h))′:

β̂(τ) = arg min
β

n∑
i=1

ρτ (−Yi +X
′
iβ).

Let β̂1(τ) denote the vector comprising the first d1 components of β̂(τ).

(b) Compute

Ω̂(τ) =
1

B

B∑
b=1

(β̂b1(τ)− β̂1(τ))(β̂b1(τ)− β̂1(τ))′,

with β̂b1(τ) the bootstrap estimator of β1 on the b-th bootstrap sample.

(c) Compute, for each subsample s = 1 . . . B, the estimator of β1 (β̂s1(τ)), and the

J-test statistic:7

T sJ (τ) = (bn/n)[1/`1 − 1/`2]
2(β̂s1(`2τ)− β̂s1(`1τ))′Ω̂−1(τ)(β̂s1(`2τ)− β̂s1(`1τ)).

(d) Compute d̂iffn(τ) =
|Msub(τ)−Md1 |√

bnτ
whereMsub(τ) denotes the median of (T 1

J (τ), ..., TBJ (τ)).

7The term bn/n accounts for the fact that the rate of convergence of the J statistic on the subsample is
bn/n times the rate of convergence on the whole sample.
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(e) Compute V̂arn(τ) = (bn/n)
∑d1

k=1 Σ̂(τ)kk, where Σ̂(τ)kk is the k-th diagonal term

of

Σ̂(τ) =
1

B

B∑
s=1

(β̂s1(τ)− β1(τ))(β̂s1(τ)− β1(τ))′ with β1(τ) =
1

B

B∑
s=1

β̂s1(τ).

3. Compute τ̂n = arg minτ∈G V̂arn(τ) + d̂iffn(τ).

4. Define β̂1 = β̂1(τ̂n) and Ω̂ = Ω̂(τ̂n). Confidence intervals CI1−α(β1k) of level 1 − α on

the k-th component of β1 are then equal to

CI1−α(β1k) =

[
β̂1k − z1−α/2

√
Ω̂kk, β̂1k + z1−α/2

√
Ω̂kk

]
,

where Ω̂kk is the k-th diagonal term of Ω̂ and z1−α/2 is the quantile of order 1− α/2 of

a standard normal variable.

5. Compute β̂1(0.2τ̂n) and then TJ(0.2), as defined in (2.6), to perform the specification

test of the model.

In practice, we consider an equally-spaced grid G with lower bound min(0.1, 80/bn), upper

bound 0.3 and a number of points equal to nG . The lower bound is motivated by the fact that if

the effective subsampling size τbn becomes too small, then the intermediate order asymptotic

theory is likely to be a poor approximation (see Chernozhukov and Fernandez-Val, 2011 for

a related discussion). To compute T sJ (τ) in Step 2.(c) above, we use (`1, `2) = (0.9, 1.1).

4 The eqregsel command

We describe below the syntax, options and saved results associated with the eqregsel com-

mand. Note that it relies on the moremata Stata package. If the latter is not already installed,

one must type ssc install moremata in Stata command line. The eqregsel command is

compatible with Stata 14 and later versions.

4.1 Syntax

The syntax of eqregsel is as follows:

eqregsel Y X1 X2
[
if
] [

in
] [

, hom(#) subs(#) grid(#) rep(#)
]
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4.2 Description

eqregsel computes β̂1 in(2.2) based on the data-driven τn detailed in Section 2.2 above. It

also reports its standard errors and 95% confidence intervals. Finally, it computes the p-value

of this specification test using ` = 0.2.

X1 is the list of variable entering in X1 in Model (2.2).

X2 is the list of variable entering in X2 in Model (2.2).

4.3 Options

hom(#) specifies d1, the number of variables in X1. The code then returns their estimated

effects and standard errors. The default value is 1.

subs(#) specifies the subsample size bn. Following D’Haultfœuille et al. (2018), and letting

x+ = max(0, x), the default value is set to

bn = 0.6n− 0.2(n− 500)+ − 0.2(n− 1000)+ − 0.2

[
1− ln(2000)

ln(n)

]
(n− 2000)+.

grid(#) specifies nG , the number of grid points. The default value is 40.

rep(#) specifies B, the number of bootstrap and subsampling replications. The default value

is 150.

4.4 Saved results

The eqregsel command saves the following in e():

1. e(tau0), a scalar containing the quantile index τ̂n.

2. e(specificationtest), a scalar containing the p-value of the specification test.

3. e(subs), a scalar containing the subsample size bn.

4. e(homvar), a scalar containing d1, the number of variable(s) with homogenous effect(s)

on the outcome.

5. e(beta hom), a d1 × 1 matrix containing the estimated coefficient(s) of interest.

6. e(std b), a d1 × 1 matrix containing the standard error of the estimator(s).
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5 Example

We use the command eqregsel to estimate the black-white wage gap among young males

from the National Longitudinal Surveys of Youth 1979 and 1997 (NLSY79 and NLSY97),

revisiting the work of D’Haultfœuille et al. (2018) on this question. We are in particular

interested in the evolution of the gap between these two cohorts. We use the same samples

and definitions of variables as in D’Haultfœuille et al. (2018). In particular, we consider that

an individual in the NLSY79 is a nonparticipant if he did not work in 1990 nor in 1991. The

outcome of interest is the (potential) log-wage, which is defined as the log of the mean real

wages in 1990 and 1991 for workers who worked both years, and the log of the real wage in

the year of employment for those who worked only one year. We apply the same rules with

the years 2007 and 2008 for individuals in the NLSY97.

In our specification, we estimate for the two samples the effect of the Black dummy on the log

of wages (log wage), controlling for Hispanic dummy (hispanic), age (age), AFQT (Armed

Forces Qualification Test score) and AFQT squared (afqt and afqt2). The AFQT scores

cannot be directly compared across both NLSY cohorts, in part because of changes in how

the test was administered. To handle this issue, we use a modified version of the AFQT

constructed using the equipercentile mapping proposed by Altonji et al. (2012). We also

restrict the samples to the respondents who took the test when they were 16 or 17, to address

the issue that the rank within the AFQT distribution may vary with the age of the respondent

at the time of the test. The final sample sizes are equal to 1, 077 and 1, 123 for the NLSY79

and NLSY97 cohorts, respectively. The overall labor force participation rates for the two

corresponding samples are equal to 95.1% and 89.7%. They only reach 90.6% and 81.4% for

Black males, however.

We report below the output of the eqregsel procedure applied to the NLSY79 and NLSY97

samples, respectively. We use the default parameters. We can see from the estimation output

that the default subsample sizes used in bootstrapping are 515 and 524, given the total sample

size of 1,077 and 1,123. The procedure also displays the estimated computing time, along with

a progress bar. Although in this example estimation is performed at a limited computational

cost, this feature makes it possible for the user to stop the execution of the command. If

needed, one can then save on execution time by setting a lower number of bootstrap and

subsampling replications, or a lower number of grid points.8

8The computation times reported in these examples are obtained on an Intel Xeon CPU 2.40 GHz processor
with 128 GB of RAM, using Stata MP 14.2.
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. use "bw_nlsy7997.dta",clear

.

. gen afqt2= afqt^2

.

. eqregsel log_wage black hispanic age afqt afqt2 if cohort79

The estimation will take about 5.333333 minutes.

|---------------|---------------|---------------|---------------|--------------|

0 20 40 60 80 100

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of observations = 1077

Optimal quantile index = .245

J test(p-value) = .81287468

Subsampling size used in bootstrapping = 515

Number of variables of interest = 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

black -.1185019 .0431142 -2.75 0.006 -.2030043 -.0339996
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. eqregsel log_wage black hispanic age afqt afqt2 if cohort97

The estimation will take about 5.333333 minutes.

|---------------|---------------|---------------|---------------|--------------|

0 20 40 60 80 100

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of observations = 1123

Optimal quantile index = .29

J test(p-value) = .77565885

Subsampling size used in bootstrapping = 524

Number of variables of interest = 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

black -.1588783 .0406563 -3.91 0.000 -.2385632 -.0791935

The estimation results point to statistically as well as economically significant black-white

wage gaps for the two cohorts. We also observe a wider black-white wage gap for the 1997

cohort relative to the 1979 cohort, with an increase in the estimated gap from about 11.9% to

15.9%. Note, however, that the difference is not significant at usual levels (p-value=0.51). In-

terestingly, the p-values of the specification tests imply that one cannot reject our specification

for either cohort at any standard statistical level.

It is interesting to compare the estimated black-white wage gap with the results of a simple

OLS regression of the log of hourly wages on a black dummy and the same set of controls.

The estimated black-white wage gap drops from 11.9% and 15.9%, for our specifications, to

8.1% and 9.7% (with standard errors equal to 0.035 and 0.041), for the OLS specification

that ignores selection. That the estimated wage gap is larger in magnitude when we use our

method is consistent with the underlying sample selection issue. Indeed, among males, blacks

are significantly more likely to dropout from the labor market (Juhn, 2003). Since dropouts

tend to have lower potential wages, one can expect that not controlling for endogenous labor

market participation will result in underestimating the black-white wage differential.9

6 Conclusion

In this paper we have discussed how to use the eqregsel command to estimate and conduct

inference on sample selection models, following D’Haultfœuille et al. (2018). Unlike alternative

9We also estimate the wage gap using the Heckman two-step estimator, without any instrument. We obtain
very imprecisely estimated gaps of 24.2% and -21.2%, with standard errors of 0.48 and 0.68. This could be
expected: in the absence of instrument, this estimator strongly relies on functional form restrictions and is
often unstable.
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estimation methods that have been proposed in the literature, the method does not require

the presence of instruments or large support regressors. The estimator is simply based on a

quantile regression in the tail, but with a quantile index chosen in a data-driven fashion. The

Stata command eqregsel makes it possible to easily use this procedure.
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