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ABSTRACT
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A Correction for Regression Discontinuity 
Designs with Group-Specific 
Mismeasurement of the Running Variable

When the running variable in a regression discontinuity (RD) design is measured with error, 

identification of the local average treatment effect of interest will typically fail. While the 

form of this measurement error varies across applications, in many cases the measurement 

error structure is heterogeneous across different groups of observations. We develop 

a novel measurement error correction procedure capable of addressing heterogeneous 

mismeasurement structures by leveraging auxiliary information. We also provide adjusted 

asymptotic variance and standard errors that take into consideration the variability 

introduced by the estimation of nuisance parameters, and honest confidence intervals that 

account for potential misspecification. Simulations provide evidence that the proposed 

procedure corrects the bias introduced by heterogeneous measurement error and achieves 

empirical coverage closer to nominal test size than “naïve” alternatives. Two empirical 

illustrations demonstrate that correcting for measurement error can either reinforce the 

results of a study or provide a new empirical perspective on the data.
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1 Introduction

Regression Discontinuity (RD) designs have become a mainstay of policy evaluation in many

social science fields. These designs rely on treatment assignment being based on a “running

variable” passing a particular cutoff, which is observed by the researcher. In practice, however,

there are multiple forms of measurement error in the running variable that, when present, will

invalidate this approach.

We consider situations in which a researcher has access to data with the running variable ex-

hibiting group-specific measurement error, where each group faces potentially different measure-

ment error distributions. This encompasses a wide range of situations, as the group’s definition

can be tailored to the specific knowledge/beliefs of the researcher regarding the heterogeneity in

the measurement error. In some cases, the definition of the group structure will follow naturally

from the data available and the setting being studied. In other cases, this definition may be

subject to more discretion on the part of the researcher, but our setup makes it possible to

consider the robustness of the results to plausible, alternative group definitions. Our approach

is best suited for a situation in which the researcher can learn about the mismeasurement us-

ing auxiliary data, but could also be implemented without auxiliary data if the researcher has

knowledge about the measurement error distribution for each group.

One prominent example identified by Barreca et al. (2011) (hereafter, BGLW) is the “heap-

ing” of birth weight measures at particular values due to hospitals using scales with different

resolutions. In this setting, additional care is given to babies born at a birth weight of strictly

below 1500 grams, allowing for an RD analysis of the effect of the additional resources on child

outcomes. However, some hospitals record the weight to the nearest gram while others record

it at ounce or gram multiples— 5g, 10g, and up to 100g multiples. Therefore, the treated units

measured at 1499g are likely to be well measured and accurately reflect the mean outcomes and

unobservables at the true weight of 1499g, but the closest untreated units measured at 1500g

will reflect the mean outcomes and unobservable factors for babies with a true weight up to

50g away. The problem is further complicated by the nearby ounce multiple measure at 1503g

that will have a much different measurement error distribution than babies measured at 1500g.

Depending on the gradient of child outcomes with respect to the true birth weight, this could

generate a spurious discontinuity at the cutoff of the mismeasured running variable.

Another example comes from geographic regression discontinuity (GeoRD) settings, where

the running variable is often measured as the distance from an individual’s residence to a border
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that separates two policy regimes.1 Ideally, researchers would use a precise distance measure

from the residential address to the border. However, due to data limitations it is common to

use the distance from the geographic centroid of a larger region to calculate the distance to the

border. Due to differences in region size and population distribution within each region, units in

different regions— or groups— will face different measurement error distributions. Importantly,

the centroid measure may be closer or farther away from the border than the true distance

for many of the units— again creating the possibility of a discontinuous jump in unobservable

factors at the cutoff in the measured distance. In this case, defining the measurement error

groups by the reported regional location for units is quite natural.

Our procedure leverages auxiliary information about the measurement error distributions for

various groups (see Hausman et al. (1991); Lee and Sepanski (1995); Chen, Hong, and Tamer

(2005) and Davezies and Le Barbanchon (2017) for other approaches using auxiliary information

to address measurement issues). This information is used to transform the observed data, re-

centering the observed running variable around the moments of the underlying latent running

variable distribution for each observation or group. Intuitively, this re-centering procedure

corrects the distortions caused by the measurement error since, on average, some observations

will be closer or farther from the cutoff than the observed running variable would indicate. The

re-centering identifies the parameters on the conditional expectation of the outcome with respect

to the true (unobserved) running variable rather than the mismeasured one.

The measurement error correction procedure’s implementation requires the (potentially non-

parametric) estimation of the moments of the multiple measurement error distributions. Hence,

we develop procedures for valid inference, developing a novel asymptotic distribution approxi-

mation that considers the variability introduced by the multi-sample first stage estimation on

the estimates for the ATE at the cutoff. We also extend the recent developments in Armstrong

and Kolesár (2018) to provide honest confidence intervals (CIs) in the presence of measure-

ment error in the running variable. The honest CIs allow for inference that is robust to certain

mispecifications of the conditional mean function.

Importantly, the main contribution of our procedure is to address a new class of problems

in which different types of measurement error affect groups of the population — such as our

motivating examples above— not previously covered by the literature. Furthermore, we study

both the case in which treatment is determined by the unobserved running variable, which has

1See Keele and Titiunik (2014) for a general discussion of GeoRD and for examples see Black (1999); Lavy (2006);
Bayer, Ferreira, and McMillan (2007); Lalive (2008); Dell (2010); Eugster et al. (2011); Gibbons, Machin, and Silva
(2013); Falk, Gold, and Heblich (2014).
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been the focus of the majority of the existing literature, and the case in which treatment is de-

termined based on the mismeasured running variable, which is common in relevant applications

such as the very low birth weight example from Almond et al. (2010) (hereafter, ADKW) and

BGLW discussed in Section 4.

These results complement the growing literature on measurement error in RD designs by

considering both sharp and fuzzy designs while allowing for non-classical and heterogeneous

group-specific measurement error (Lee and Card, 2008; Pei and Shen, 2017; Yu, 2012; Dong,

2015; Davezies and Le Barbanchon, 2017; Dong, 2017; Barreca, Lindo, and Waddell, 2016). For

example, Pei and Shen (2017) provide sufficient conditions for identification without the need

for auxiliary data in the case of discrete running variables (and under additional assumptions

for continuous running variables), but only in the case with classical measurement error that is

discrete and bounded, rather than more general forms.

Similar to our procedure, Dong (2015) and Davezies and Le Barbanchon (2017) both allow

for non-classical measurement error. Dong (2015) focuses on the rounding case in which the

measurement error distribution is homogeneous across individuals and known to the researcher,

using this knowledge of the measurement error distribution to identify the ATE at the cutoff.

Under homogeneous and known measurement error, such as the age rounding case studied by

Dong (2015), our approach is conceptually very similar to the proposed correction from that

paper. Davezies and Le Barbanchon (2017) exploit auxiliary data on the treated individuals

to recover identification of the effect of interest and propose a nonparametric estimator for the

continuous running variable case. Their approach has the benefit of not requiring auxiliary data

for the untreated group and does not rely on local parametric assumptions for identification,

but can only be used in “two-sided fuzzy designs.” Our procedure can also be applied to cases

where the measurement error can be characterized as discrete measurement of a continuous

true measure, similar to Lee and Card (2008) who consider the more restrictive case where

measurement error can be cast as random specification error.

Simulation results provide evidence that our procedure performs well, successfully mitigating

the measurement error induced bias and obtaining adequate test coverage in contrast to naive

approaches. Most relevant to practitioners, the proposed correction improves markedly over

naive alternatives even when the polynomial order is unknown and chosen using a data-driven

algorithm. Moreover, our novel honest CIs provide inference that is robust to misspecification

of the conditional mean function in the simulations.

In the context of the low birth weight example in ADKW and BGLW, we find that correcting
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for measurement error yields estimates consistent with the original results in ADKW, suggesting

a large effect of very low birth weight classification. Further, estimates using our correction are

much less sensitive to the exclusion of observations at “heaped” measures near the cutoff —

the “Donut RD” proposed by BGLW— than the uncorrected estimates. We also apply our

procedure to examine the effect of Unemployment Insurance (UI) benefit extensions during the

Great Recession on unemployment studied by Dieterle, Bartalotti, and Brummet (Forthcoming).

In this paper we focus on the single case of the Minnesota-North Dakota border during 2010

to highlight the intuition for our approach in the geographic setting. Here, we find that the

uncorrected estimates are 18 times larger than the corresponding estimates using the moment-

based correction, implying a sizable bias due to the measurement error.

The paper proceeds as follows: Section 2 presents the setup and derives the measurement

error-corrected RD approach; Section 3 presents Monte Carlo evidence about the performance

of the proposed method; Section 4 applies our procedure to the very low birth weight example;

Section 5 applies our procedure in the GeoRD context; and Section 6 concludes.

2 Running Variable Measurement Error Correction

2.1 Setup and Motivation

Consider a basic RD setup. The interest lies in estimating the average treatment effect of

a program or policy in which treatment status (D = {0, 1}) is determined by a score, usually

referred to as “running variable” (X), crossing an arbitrary cutoff (c). Let Y1 ≡ y1(X) represent

the potential outcome of interest if an observation receives treatment and Y0 ≡ y0(X) the

potential outcome if it does not. The researcher’s intent is usually to estimate E[Y1−Y0|X = c],

the average treatment effect at the threshold. If observable and unobservable factors influencing

the outcome evolve continuously at the cutoff then the average treatment effect at the cutoff is

identified nonparametrically by comparing the conditional expectation of Y = DY1 + (1−D)Y0

on either side of the cutoff:

τ = lim
a↓0

E [Y |X = c+ a]− lim
a↑0

E [Y |X = c+ a] . (2.1)

Now, consider the case in which instead of the running variable, X, we observe a mismeasured

version, X̃ = X − e, where e is the measurement error. This measurement error can be quite

general including non-classical forms and can be dependent on either X or X̃.

The effect this measurement error has in the RD setup depends in part on whether treatment
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is assigned based on the true unobserved running variable or the observed mismeasured variable.

As shown by Pei and Shen (2017) and Davezies and Le Barbanchon (2017), measurement error

could lead to loss of identification at the cutoff in the case that treatment is defined based on

the true unobserved running variable — so that D = 1(x < c). Interestingly, if the treatment

is determined based on the mismeasured running variable — implying D = 1(x̃ < c), then the

traditional RD design estimates a weighted average of the treatment effect for the subpopulation

for which X + e = X̃ = c, with weights directly proportional to the ex ante likelihood that an

individual’s value of X̃ will be close to the threshold. This is similar to the situation described in

Lee (2008) and Lee and Lemieux (2010) where individuals can manipulate the running variable

with imperfect control.

Identification of the ATE is further complicated by the averaging across groups with hetero-

geneous measurement errors on both sides of the cutoff. Discontinuous changes in the share of

groups at the cutoff introduce bias to treatment effect estimates. Measurement error correction

approaches that ignore the group heterogeneity might fail to identify the intended ATE. We

provide further discussion of these identification issues in Appendix A.

2.2 Assumptions

Assume that the researcher observes the treatment status D, and let E [Y |x,D = 0] = f0(x) +

R0, E [Y |x,D = 1] = f1(x) + R1, E [Y |x̃, D = 0] = h0(x̃) and E [Y |x̃, D = 1] = h1(x̃); where

ft(x) are polynomial approximations to E [Y |x,D = t] of (potentially) unknown order J with

approximation error terms given by Rt for t = 0, 1. For simplicity, we assume that such a

polynomial is capable of capturing all relevant features in the pertinent neighborhood of the

unobservable X, denoted by S.2 We revisit this assumption in Section 2.5. Finally, let G denote

the groups defining the measurement error heterogeneity, so that x̃ig = xi−eig, where eig is the

measurement error of “type” g.

We then impose the following assumptions, which follow closely Dong (2015):

A1 f1(x) and f0(x) are continuous at x = c.

A2 f1(x) and f0(x) are polynomials of possibly unknown degree J , and R1 and R0 are negli-

gible asymptotically in S.

2More precisely, let X̃ = g(X) = X−e, then note that for a given measurement error distribution we can map any
value of X̃ into the support of X. Let that set be G−1(X̃) ≡ {X : X + e = X̃ with probability greater than zero}.
Specifically, let an arbitrary neighborhood around X̃ = c be given by B = [c−h, c+h]. Then, let A =

⋃
X̃∈B G

−1(x̃)
be the relevant support of X and define S = [inf A, supA].
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A3 Polynomial approximations of order J for h1(x̃) and h0(x̃) are identified above and below

the cutoff.

A4 The treatment status is observed by the researcher.

A5 (a) For all integers k ≤ J , E(ek|x̃, G = g) = µ
(k)
g (x̃), these moments exist and are identified

in the support of X̃. (b) The conditional distribution of the measurement error for each

group in the primary (p) and auxiliary (a) samples is the same, i.e., fp(e|x̃, G) = fa(e|x̃, G).

(c) The known group affiliation, denoted by G is redundant if there is no measurement

error, that is, E [Y |x,D = t, G] = E [Y |x,D = t] .

A6 x̃ is redundant conditional on the true x and treatment status, i.e., E [Y |x, x̃,D = t] =

E [Y |x,D = t] = ft(x) for t = 0, 1.

The first assumption is the usual RD identifying assumption that the potential outcomes

are continuous at the threshold, so that the observed “jump” at the threshold can be associated

with the causal effect of the treatment. A2 is a parametric functional form approximation,

since local methods to eliminate the approximation error will no longer be appropriate due to

the measurement error in the running variable. This assumption is flexible in the sense that it

allows for a variety of approaches to approximate the conditional expectation of the outcome.

For simplicity one could simply assume that ft(x) are correctly specified, implying Rt = 0

(Dong, 2015), or that the approximation error is mean independent so that E [Rt|x,D = t] = 0

(Lee and Card, 2008).

If instead one is concerned that the use of a polynomial of order J to approximate ft(x) for

t = {0, 1} will lead to misspecification bias, we show in Section 2.5 how to obtain uniformly valid

inference that is robust to misspecification of the conditional mean function within a class of

functions by adapting the“honest CIs” approach in Armstrong and Kolesár (2018); Armstrong

and Kolesár (2018b) to the case with measurement error. Importantly, the honest CIs provide

us with an inference procedure that is consistent with recent advancements in non-parametric

RD estimation allowing for misspecification, even though identification is based on a parametric

assumption.

A3 states that we can identify a polynomial of order J that describes the mean outcome

as a function of the mismeasured X̃. This requires X̃ to have sufficient variation to identify

ht(X̃). Our approach will exploit the mapping between ht(·) and ft(·) implied by separability

and additivity of the measurement error to recover the treatment effect parameters. This aspect

of the procedure is closely related to the approach proposed by Hausman et al. (1991) and Dong

(2015), while Assumption A3 serves a similar purpose to the completeness condition required
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by Davezies and Le Barbanchon (2017). This assumption is more likely to hold in practice

when the mismeasured running variable is continuous, and in the discrete case requires that the

researcher has access to several points in the support of X̃ that have positive density.

Assumption A4 implies different data requirements depending on the context being studied.

In a sharp design, if X̃ is always on the same side of the cutoff as X, as in the geographic

RD case analyzed in Section 5, or if treatment is determined by X̃, this is not restrictive

at all. However, if the measurement error causes the observed running variable to cross the

threshold, Assumption A4 requires the researcher to observe the treatment status coupled with

the mismeasured running variable— perhaps in survey data where participants are asked about

participation in a means tested program determined by true income falling below a certain

threshold, but income (X) is only reported in discrete bins in the survey. Finally, in the fuzzy

RDD context, Assumption A4 needs to be strengthened so that the researcher observes not

only the true treatment status but also 1[x > c], which indicates which side of the threshold

each observation lies based on the unobserved X. In the absence of the information required in

Assumption A4 the procedure proposed here will not be feasible. In that case, the approaches

of Davezies and Le Barbanchon (2017) and Pei and Shen (2017) may provide potential solutions

to the measurement error problem under alternative assumptions regarding the auxiliary data

available or the measurement error distributions, respectively.

Assumption A5 is central to our approach, and requires that the k ≤ J uncentered moments

of the measurement error distribution conditional on the observed mismeasured running variable

are identified based on the information in the auxiliary data for each group. This assumption

allows these moments to depend on the observed running variable and to differ for each group.

Hence, it complements the existing literature on measurement error by permitting dependence

in the true and mismeasured running variables, and measurement error that is not identically

distributed across groups. This encompasses a large number of empirical applications, as ex-

emplified in Sections 4 and 5. In the very low birth weight example, different hospitals have

measurements of varying precision, while in the geographic case regions may be of different size

and have different population densities relative to the border.

Intuitively, Assumption A6 states that the measurement error does not provide additional

information about the conditional mean of the outcome for both treatment regimes.
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2.3 Identification and Estimation

Researchers are faced with two potential identification problems when implementing RD designs

in the presence of measurement error. The first source, common to all RD designs, is the

potential for local misspecification of the conditional mean function for the outcome. The

second is the measurement error itself, which can distort the estimates of the jump at the cutoff.

Crucially, the introduction of measurement error renders infeasible the usual local nonparametric

approach to deal with the original misspecification problem.

With measurement error a local approach based on shrinking bandwidths (h→ 0) around the

cutoff is ineffective since the researcher can only observe x̃ and would not be able to guarantee

that the true value of the running variable falls within a neighborhood of the cutoff. In other

words, even observations that seem close enough to the threshold for treatment might in reality

be far away and be a poor comparison to observations just on the other side of the cutoff.

Identification of τ can be obtained through the combination of a polynomial approximation

of the conditional mean of the outcome and information about the group specific measurement

error distributions.

Theorem 2.1. Let assumptions A1-A6 hold. Then τ can be identified even if x is not observed.

See Appendix C for the proof of Theorem 2.1.

To illustrate the problem and the proposed correction, consider the simple case where

µ
(k)
g (x̃) = µ

(k)
g and the (local) quadratic approximations for ft(xig) for t = 0, 1 with param-

eters bp,t are used:

ft(xig) = b0,t + b1,t(xig) + b2,tx
2
ig

= b0,t + b1,t(x̃ig + eig) + b2,t(x̃ig + eig)
2

= b0,t + b1,t (x̃ig + eig) + b2,t
[
x̃2ig + 2eigx̃ig + e2ig

]
Note that, conditional on the group affiliation, we have

E[Y |x̃, D = t, G] = E [ft(xig)|x̃, G]

=
(
b0,t + b1,tµ

(1)
g + b2,tµ

(2)
g

)
+
(
b1,t + 2µ(1)

g

)
x̃ig + b2,tx̃

2
ig (2.2)

= b0,t + b1,t

(
x̃ig + µ(1)

g

)
+ b2,t

(
x̃2ig + 2µ(1)

g x̃ig + µ(2)
g

)
(2.3)

Equation (2.2) highlights the problems with using the mismeasured running variable. Specif-

ically, when regressing the observed Y on the mismeasured x̃, the mean outcome for each group
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evaluated at x̃ig = 0 will be b0,t + b1,tµ
(1)
g + b2,tµ

(2)
g , rather than b0,t.

3 Following from equa-

tion (A.7), the RD estimate will integrate (2.2) over the distribution of groups on each side

of the cutoff giving biased estimates of the intercepts b̃0,t = b0,t + b1,tµ
(1)
t + b2,tµ

(2)
t where

µ
(k)
t = E[µ

(k)
g,t ] =

∑
g P (G = g)µ

(k)
g,t are the expected values of measurement error moments

across the groups over the support of X̃ used in estimation on each side of the cutoff . Taking

the difference gives an estimate of the treatment effect τ∗ = b0,1− b0,0 + bias = τ + bias: where

bias =
(
b1,1µ

(1)
1 + b2,1µ

(2)
1

)
−
(
b1,0µ

(1)
0 + b2,0µ

(2)
0

)
=
(
b1,1µ

(1)
1 + b2,1µ

(2)
1

)
−
(
b1,0µ

(1)
0 + b2,0µ

(2)
0

)
+
(
b1,0µ

(1)
1 − b1,0µ

(1)
1 + b2,0µ

(2)
1 − b2,0µ

(2)
1

)
= b1,0

(
µ
(1)
1 − µ

(1)
0

)
+ µ

(1)
1 (b1,1 − b1,0) + b2,0

(
µ
(2)
1 − µ

(2)
0

)
+ µ

(2)
1 (b2,1 − b2,0) (2.4)

Equation (2.4) emphasizes the two potential sources of bias from the group-specific measure-

ment error — from differences across the cutoff in either the distribution of groups or the true

conditional expectation function. First, if there is a discontinuous change in the distribution

of measurement error group types at the cutoff, as in both of our empirical applications, then(
µ
(1)
1 − µ

(1)
0

)
6= 0 and

(
µ
(2)
1 − µ

(2)
0

)
6= 0, which will introduce bias terms that are proportional

to the parameters of the true conditional expectation. Intuitively, the bias from a change in

group types at the cutoff is larger when the slope is steeper (b1,0 larger) or there is more curva-

ture (b2,0 larger) as this magnifies the importance of differences in the measurement error. That

is, if the conditional expectations where completely flat with respect to x, then mismeasuring

the running variable would not affect our ability to estimate the mean on either side. Even

if the distribution of group types is continuous at the cutoff, so that
(
µ
(1)
1 − µ

(1)
0

)
= 0 and(

µ
(2)
1 − µ

(2)
0

)
= 0, there is an additional bias if there are differences in the conditional expecta-

tion functions so that (b1,1 − b1,0) 6= 0 and (b2,1 − b2,0) 6= 0. Intuitively the same measurement

error can generate different biases on each side due to how it interacts with changes in the true

underlying function.

Equation (2.3) is helpful for understanding the intuition behind our correction procedure.

It provides a representation of the mean of the outcome conditional on the variable of interest,

the unobserved x, in terms of the observed x̃ and the first J moments of the group-specific

measurement error distribution. In other words, one can interpret equation 2.3 as saying that the

coefficients of interest can be recovered by fitting y on the “corrected” regressors x∗1 = x̃ig+µ
(1)
g ,

x∗2 = x̃2ig + 2µ
(1)
g x̃ig + µ

(2)
g and a constant. In general for any J , the vector of the mismeasured

3Under a single homogeneous type of measurement error and known µ
(p)
g Dong (2015) shows that you could correct

the estimate for the intercept after the estimation.
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running variable X̃ ′ = [1, x̃, x̃2, . . . , x̃J ], is replaced by the vector of the “corrected” running

variable of same dimensions X∗′ = [1, x∗1, x
∗
2, . . . , x

∗
J ], where x∗j =

∑j
k=0

(
j
k

)
µ
(j−k)
g x̃k. The

uncentered moments for the measurement error can be replaced by consistent estimates.

Take a simplified geographic RD example where J = 1. If an individual lives in a county in

which the geographic centroid is 25 miles from the state border, but the average individual in

that county resides 40 miles from the border, then the mismeasured running variable is x̃ig = 25

and the first uncentered moment of the measurement error distribution for residents of the

county is µ
(1)
g = 15 — reflecting the fact that the centroid measure is on average wrong by 15

miles. Rather than controlling for distance to the border by the centroid measure, our correction

simplifies to the intuitively appealing approach of controlling for the mean distance from the

border for residents of that county i.e. our corrected regressor is x∗ = x̃ig +µ
(1)
g = 25 + 15 = 40.

Also note that the centroid measure would only be appropriate if the population distribution is

symmetric around the centroid — a condition that will obviously not hold in practice across all

counties. Equation (2.3) extends this example to the case of J = 2, and our procedure can be

extended to an arbitrary J — which for the geographic case corresponds to controlling for the

higher order moments of the underlying population distribution relative to the border, rather

than higher powers of the (mismeasured) centroid distance.

More generally, our strategy estimates a regression of order J for treated and untreated

observations as described below:

τ̂ = β̂+ − β̂− (2.5)

(β̂+, β̂
(1)
+ , . . . , β̂

(J)
+ )′ = argminb0,b1,...,bJ

Np∑
i=1

(Yi − b0 − b1x̂∗1,i − · · · − bJ x̂∗J,i)2 (2.6)

(β̂−, β̂
(1)
− , . . . , β̂

(J)
− )′ = argminb0,b1,...,bJ

Np∑
i=1

(Yi − b0 − b1x̂∗1,i − · · · − bJ x̂∗J,i)2. (2.7)

Where Np is the size of our primary sample on which we observe the outcome and mismeasured

running variable. Also, let x̂∗j =
∑j
k=0

(
j
k

)
µ̂
(j−k)
g (x̃)x̃k and µ̂

(j)
g (x̃) be a consistent estimator of

µ
(j)
g (x̃).

Since E(ek|x̃, G = g) = µ
(k)
g (x̃), it is natural to use a local kernel estimator,

µ̂(j)
g (x̃) = N−1a,g

Na,g∑
i=1

Kh(x̃)eji,g (2.8)

Where the Na,g is the size of the auxiliary sample for group g on which we observe the measure-
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ment error, hg the group-specific smoothing parameter, and Kh(x̃) = K
(
x̃i−x̃
hg

)
is a bounded

kernel with usual properties. Alternatively, one could use the intercept from a local linear kernel

estimator which has better small sample properties for µ̂
(j)
g (x̃) (Fan and Gijbels, 1996).

From the applied researcher’s perspective, it is useful to keep in mind that this approach

requires information about the measurement error distribution moments for each group. As de-

scribed in Assumption A5, if this information is being acquired from auxiliary data this requires

it to represent the same population as the main data, or at least have the same measurement

error distribution. Note that it is not necessary that the auxiliary data match specific observa-

tions, nor does it need to be nested within the main sample. Furthermore, the auxiliary data

needs to contain information about X and X̃ for each group but could omit the outcome Y .

These requirements are similar to assumption 3 in Davezies and Le Barbanchon (2017), with

the addition that information is available to each group for both treated and untreated obser-

vations. The auxiliary datasets could be different for each group as mentioned above. While

these are important assumptions, this highlights the flexibility and transparency of the proposed

procedure to accommodate different structures of measurement error by the researcher. This

approach also allows for straightforward robustness checks on the importance of assumptions

such as independence of the measurement error and X̃, or that the measurement error distribu-

tions do not depend on a covariate observed on both the main and auxiliary data (e.g., mother’s

education in our low birth weight example).

2.4 Large Sample Properties

To perform inference about the parameters of interest, we propose a novel studentized test which

incorporates the uncertainty associated with estimation for each group of the several moments

of the measurement error conditional distributions, µ
(j)
g (x̃), using auxiliary information. We

assume that the auxiliary data are independent from each other and the primary data. Define

Np and Na,g to be the sample sizes for the primary dataset and auxiliary dataset for group g,

respectively. Additionally, let λg = limNp→∞
Np

Na,ghg
for all g, which essentially requires both Np

and Na,ghg to go to infinity at the same rate so that the asymptotic approximation captures the

effect of estimating µ̂g. This is a group-level analogue of the asymptotic conditions in Davezies

and Le Barbanchon (2017), and would not be needed if identification was not based in auxiliary

data (Pei and Shen, 2017; Dong, 2015). Also define e′ as the conformable row vector of zeros

except for the first entry equal to one.

Theorem 2.2. Let assumptions A1-A6 hold, and λg be a finite constant for every group g.
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Define, X∗′i = [1, x∗i,1, . . . , x
∗
i,J ], µ′g(x̃) = [1, µ

(1)
g (x̃), . . . , µ

(J)
g (x̃)], B′+ = [β+, β

(1)
+ , . . . , β

(J)
+ ] and

equivalently for B−, and Γi = LJ+1 ◦ Q is the Hadamard product of the lower diagonal Pascal

matrix, LJ+1, and the matrix Qi, where Q(b,c) = x̃c−bi . Also, ε = Y − E [Y |x̃, D,G]. Finally,

assume that hg → 0, Na,ghg → ∞ as the sample sizes increase for all g, and that a CLT

holds for the vector of measurement error moment estimators using the auxiliary data such

that (Na,ghg)
1
2 (µ̂g(x̃)− µg(x̃)) → N(0, Vg(x̃)) for all relevant points of the support of X̃. As

Np →∞, then

√
Np(τ̂ − τ)→d N(0,Ω) (2.9)

where,

Ω = e′ [Ω+ + Ω−] e (2.10)

Ω+ = A−1E [X∗′εiε
′
iX
∗]A−1 +A−1

[
G∑
g=1

λgF
′
+,gVg(x̃)F+,g

]
A−1 (2.11)

F+,g = E
[(
x∗′lg ⊗B′+Γlg

)]
(2.12)

A = E [X∗′X∗] (2.13)

and similarly for Ω− on the other side of the cutoff.

See Appendix C for the proof of Theorem 2.2.

Theorem 2.2 provides the asymptotic approximation to the distribution of τ̂ , which we can

use for hypothesis testing and creating valid CIs. The asymptotic variance approximation,

Ω, incorporates the uncertainty introduced due to the estimation of the parameters µg using

auxiliary datasets/information for each group-specific measurement error, and can be estimated

by a direct plug-in estimator, Ω̂. The explicit adjustment in the variance formula takes into

account the amount of information available for estimation of µg in each auxiliary dataset in

order to obtain CIs with correct coverage when testing hypotheses. The results are related to

the auxiliary data/two-sample results in the literature (Chen, Hong, and Tamer, 2005; Lee and

Sepanski, 1995) and extend their conclusions to the case in which heterogeneous measurement

error is present for groups in the context of RD designs.

We summarize the proposed procedure in the following steps:

Step 1. Determine the appropriate measurement error group definitions for the context.

Step 2. Estimate µ
(k)
g (x̃) for each group in the auxiliary dataset. This could be done by local
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linear fit on the relevant support of x̃ as described above (Fan and Gijbels, 1996).4

Step 3. Match the µ̂
(k)
g (x̃i) from the auxiliary data to the appropriate values of x̃i observed in

the primary dataset.

Step 4. Generate the “corrected” running variable x̂∗j,i =
∑j
k=0

(
j
k

)
µ̂
(j−k)
g (x̃i)x̃

k
i for j = 0, 1, ..., J

for all observations in the primary dataset.

Step 5. Estimate the RD treatment effect by the following steps:

1. Choose the polynomial order Jt for t = 0, 1 using a cross-validation procedure by

estimating equations (2.6) and (2.7) for different potential values of J .

2. Estimate equation (2.5) using the chosen J from the previous step.

Step 6. Conduct appropriate inference on τ̂ by obtaining the corrected standard error as the

square root of the first element of Ω̂ and calculate the usual CIs based on the asymptotic

normality results in Theorem 2.2.

If concerned about misspecification due to the choice of polynomial order, the researcher could

consider obtaining honest CIs as described in Section 2.5.

2.5 Honest Confidence Intervals

If the polynomial order chosen,“J ,” does not fully capture the relevant features of the conditional

mean of the outcome, ft(·), some misspecification bias may arise, potentially invalidating infer-

ence based on the approximations discussed in the previous section. We address this concern by

proposing novel honest CIs that build upon the insights and techniques developed by Armstrong

and Kolesár (2018); Armstrong and Kolesár (2018b). Honest CIs cover the true parameter at

the nominal level uniformly over all possible functions (in a family) for the conditional mean of

the outcome, ft(·). Here we focus on the class of functions that place bounds on the derivatives

of ft, with M denoting the smoothness of the functions being considered, which is chosen by

the researcher. These honest CIs are built by considering the non-random worst-case bias of the

estimator τ̂ for functions that respect the bounds on its derivatives.5 Intuitively, the researcher

considers what would be the worst possible misspecification bias that could arise in the estima-

tion of τ if we use a polynomial of order “J” to approximate ft, under the assumption that the

(J+1)− th derivative of the true function is bounded by a constant and adjusts the CIs used for

inference accordingly. Our approach approximates ft(·) with a polynomial of order J that can

4However, as discussed in our empirical applications, the appropriate way to estimate these moments may differ
depending on the nature of the auxiliary data used.

5For more details, see Armstrong and Kolesár (2018); Armstrong and Kolesár (2018b).
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be recovered from the mismeasured observed data following the procedures described in Section

2.3. It then obtains an approximation to the worst-case bias that can be used to generate the

honest CIs. In this setting, misspecification errors can be rewritten as:

ft(x) =

J∑
j=0

xjβj +Rt(x),where |Rt(x)| ≤ R̄t(x), (2.14)

where R̄t(x) is a bound on the misspecification error that is chosen by the researcher.

By the same arguments used in Theorem 2.1 to map from x to the corrected x∗, we can then

sum across the individuals in each group to show that

N−1g

Ng∑
i=1

f(xi) = N−1g

Ng∑
i=1

J∑
j=0

x∗j,iβj +N−1g

Ng∑
i=1

Rt(xi) + op(1). (2.15)

Hence we can obtain the worst-case bias by focusing on N−1g
∑Ng

i=1Rt(xi) = Rt,g. The bounds for

|Rt,g| will be directly obtained from the conditions and class function adopted for the original

ft(x). Note that these bounds are defined in terms of the original conditional means of the

outcome, considering the model with no measurement error on the running variable. This

property is attractive since the researcher is likely to have better guidance from economic theory

in terms of the true running variable.

We focus on the Taylor and Hölder classes of functions in our proposed honest CIs since,

as indicated by Armstrong and Kolesár (2018) and Armstrong and Kolesár (2018b), those are

natural function families to consider in the RDD setting. For example, assume ft is such that it

can be approximated by polynomial of order “J” and is a member of the following Taylor class

of functions: f :

∣∣∣∣∣∣f(x)−
J∑
j=0

f (j)(0)
xj
j!

∣∣∣∣∣∣ ≤ M

p!
|xJ+1|, for all x ∈ X

 (2.16)

Intuitively, if we were to approximate the true conditional mean of the outcome by a Taylor

polynomial of order J , the misspecification errors at each value of X will be bounded by the

(J + 1)-th derivative of the function, which we assume is at most equal to “M” chosen by the

researcher based on his beliefs about the smoothness of the conditional mean. Then, by similar

arguments to the ones used in Equation 2.15, we can rewrite the bounds on misspecification in
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terms of the observed transformed data.

|Rt(x)| ≤ M

p!
|xJ+1| (2.17)

|Rt,g| ≤
M

p!
N−1g

Ng∑
i=1

|x∗J+1,i|+ op(1) (2.18)

Hence, we can rely on the results in Armstrong and Kolesár (2018) and Armstrong and

Kolesár (2018b) to obtain honest CIs in the presence of measurement error as described above.

In particular, the worst case bias could be written as

biasM (τ̂) =
M

p!

n∑
i=1

|wn+(x∗i ) + wn−(x∗i )||x∗J+1,i|. (2.19)

where wn+(x∗i ) and wn−(x∗i ) are the first elements of the usual (X∗′X∗)−1X∗′ separately for each

treatment group — reflecting the relative weight put on each observation when estimating the

mean outcome at x = 0. One can think of Equation (2.19) as the worst possible distortion

that would be introduced to the estimate of τ by leaving the (J + 1)-th order of the polynomial

in the error term if the (J + 1)-th derivative of ft(x) was as steep as possible, for a choice of

smoothness (M). The honest CIs can then be obtained as

τ̂ ± cvα

(
b̂iasM (τ̂)

ŝen

)
· ŝen. (2.20)

where b̂iasM (τ̂) replaces X∗ with its feasible counterparts, ŝen = Ω̂
1
2 , the variance matrix Ω and

its estimators are those described in Theorem 2.2, and cvα(t) is the 1−α quantile of the absolute

value of a N(t, 1) distribution. Note that the critical values are from a normal distribution re-

centered around the worst case bias, and will differ from the usual critical values (e.g., ±1.96)

used when we assume the correct specification. Nicely enough, we can apply this approach

directly to the estimators discussed in Section 2.3 regardless of how we choose the polynomial

order “J .” Additional details of this honest CI approach, including a discussion of choice of M

and implementation, are available in Appendix B.

3 Simulation Evidence

This section presents simulation evidence on the performance of the RD measurement error

correction.
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3.1 Data Generating Process

For ease of comparison with the previous literature, we focus on a DGP similar to Calonico,

Cattaneo, and Titiunik (2014) except that the running variable may be measured with error.

Throughout we still define X to be the true running variable and X̃ to be the mismeasured

running variable observed by the researcher. The simulated data are generated as follows:

X̃i ∼ U(−1, 1),

Xi = X̃i + εi,

Yi = mj(Xi) + vi,

where vi ∼ i.i.d. N(0, 0.12952). The expectation of the outcome conditional on X, is given by:

m(x) =


0.52 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 if D = 1

0.48 + 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 otherwise,

The model is based on a modified fifth-order polynomial fitted to the data in Lee (2008) in

his analysis of incumbency effects on electoral races to the U.S. House of Representatives. We

then introduce seven different types of measurement error, εi, with the following distributions:

1. U(0, a): “rounding down” with uniform distribution,

2. U(−a, 0): “rounding up” with uniform distribution,

3. U(−a, a): “rounding to midpoint” with uniform distribution,

4. N(µ, σ2) truncated by (0, a): “rounding down” with truncated normal distribution,

5. N(µ, σ2) truncated by (−a, 0): “rounding up” with truncated normal distribution,

6. N(µ, σ2) truncated by (−a, a): “rounding to midpoint” with truncated normal distribu-

tion,

7. No measurement error.

where a = 0.1, µ = 0.05, σ = 0.05. Each observation i is randomly assigned to one of these

seven groups from which the measurement error will be drawn, and these “group” assignments

are observed by the researcher.

We run eight separate simulation scenarios that differ across three dimensions. We consider

two treatment determination mechanisms – one in which treatment is determined by the true,

unobserved running variable (D = 1[x < 0]) and one in which the treatment is determined by
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the mismeasured, observed running variable (D = 1[x̃ < 0]). The former is consistent with the

settings typically considered in the RD measurement error literature, while the latter reflects

relevant empirical cases, including the very low birth weight analysis covered in our empirical

applications. We also differentiate between cases in which the polynomial order is correctly

specified (“Known J”), in this case J = 5, and the case in which we must select J in some way

(“Select J”). The first case is useful for isolating the performance of our correction in the absence

of misspecification of the polynomial order, while the latter encompasses any bias from using a

potentially misspecified polynomial. Importantly, this second case matches the situation faced

in many applications. In the current simulations, we pick J by using the Akaike Information

Criteria (AIC). Finally, we consider different sample sizes with a “small” sample of 500 primary

and 1000 auxiliary observations and “large” sample with 5000 primary and 10000 auxiliary

observations.

Across our eight simulation scenarios we present the empirical bias and coverage rates based

on a 5% nominal size test for the null hypothesis that τ equals its true value for a set of estimators

and inference procedures. For the Known J case, we consider the following three estimates:

1. “Naive” - Mismeasured running variable without a measurement error correction.

2. “Corrected” - Mismeasured running variable with a measurement error correction using

estimated error moments and adjusted standard errors.

3. “No Error” - Infeasible case using the true running variable.

In the Select J case which introduces the possibility of mispecifying the polynomial order, we

also present the empirical coverage from applying the honest confidence intervals from Section

2.5 to our adjusted estimator, which we label as “Adjusted with HCI”.

Panel A of Table 3.1 displays the results for the Known J case. Starting with the small

sample size with treatment determined by the true unobserved running variable, the adjusted

estimator reduces the bias relative to the naive estimator by over half, from 0.1165 to 0.0441,

while significantly improving the coverage from 13.80% to 90.40%, achieving coverages close to

the infeasible “no measurement error in the running variable” case. Similarly, we see a greater

reduction in the bias from -0.172 to -0.0069 in the case with treatment determined by the

mismeasured running variable, while the empirical coverage of the adjusted estimator closely

matches that for the “no error” estimate in this case as well. Note that the bias for the naive

estimator stays stable when increasing the sample size, while the relative performance of the

adjusted estimates further improves with smaller bias and coverage rates very close to 95% in

both treatment determination cases.
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Table 3.1: Simulation Evidence

Panel A: Known J
Treatment: D = 1[x < 0] D = 1[x̃ < 0]

Sample Size Estimator Bias Coverage Bias Coverage

Small Naive 0.1165 0.1380 -0.1272 0.7335
Adjusted 0.0441 0.9040 -0.0069 0.9280
No Error 0.0001 0.9325 -0.0009 0.9290

Large Naive 0.1155 0.0000 -0.1239 0.0160
Adjusted 0.0075 0.9440 -0.0009 0.9410
No Error 0.0004 0.9510 -0.0001 0.9410

Panel B: Select J
Treatment: D = 1[x < 0] D = 1[x̃ < 0]

Sample Size Estimator Bias Coverage Bias Coverage

Small Naive 0.1061 0.1170 -0.0985 0.6725
Adjusted 0.0608 0.6915 -0.0163 0.8515
Adjusted with HCI 0.9850 0.9555
No Error 0.0244 0.7450 -0.0029 0.8910

Large Naive 0.1090 0.0000 -0.1178 0.0575
Adjusted 0.0201 0.8625 -0.0040 0.8805
Adjusted with HCI 0.9820 0.9670
No Error -0.0001 0.9135 -0.0002 0.9505

Simulation results based on 2000 replications with a small sample of 500 primary and
1000 auxiliary observations and a large sample of 5000 primary and 10000 auxiliary
observations.

In Panel B, we no longer assume the researcher knows the correct order of the polynomial

and include a data driven choice of J into the estimation procedure as described above. For

small samples, the potential misspecification can be seen by the slightly larger bias and worse

coverage for the “no error” and adjusted estimators. Nonetheless, both still outperform the

naive estimator. Importantly, when we apply the honest CI to the adjusted estimator we see

the coverage improve to 98.50% and 95.55%, respectively, when treatment is determined based on

the correctly and mismeasured running variables. Finally, increasing the primary and auxiliary

sample sizes results in similar bias for the naive estimate while the adjusted and “no error”

estimators improve in both bias and coverage by being able to better approximate the true

conditional mean function. Once again, the honest CI perform well in this setting and provide

coverage rates close to 95%.
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4 Application I: Very Low Birth Weight

Here we apply our approach to the case studied by ADKW looking at the effect on infant

mortality of additional care received by newborns classified as Very Low Birth Weight (VLBW).

They take advantage of the fact that VLBW is classified based on having a measured birth

weight of strictly less than 1500 grams. This setup lends itself to estimating the effect of these

additional resources and services by RD where the measured birth weight is the running variable

and treatment is switched on when passing 1500g from above.

ADKW focus on a window of measured birth weights from 1415g-1585g and estimate the

treatment effect controlling for a linear function in birth weight on each side of the cutoff. Doing

so, they estimate fairly large effects of additional care. Their baseline estimates with no controls

suggest a 0.95 percentage point decline in the one-year mortality rate from crossing the 1500g

threshold and receiving additional care, a fairly large effect given a mean mortality rate of 5.53

percent for the untreated just above the cutoff.6

BGLW suggest caution in interpreting these results by noting that the observed distribution

of birth weights shows large “heaps” at ounce multiples and at multiples of 100g as well as

smaller heaps at other points (multiples of 50g, 25g, etc.). BGLW focus on the fact that some of

the heaped measures tend to have higher mortality rates than neighboring unheaped measures.

In particular, they emphasize that the observations measured at 1500g have “substantially

higher mortality rates than surrounding observations on either side of the VLBW threshold.”

BGLW view this as evidence of potential non-random sorting into a 1500g birth weight measure

and propose a simple sensitivity check called the Donut RD. They test the robustness of the

estimated treatment effect to dropping the heaped observations very near the cutoff, creating a

“donut hole” with no data around the cutoff. They start by dropping the 1500g observations

and then progressively increase the size of the donut hole until they exclude observations with

measured birth weights between 1497g-1503g. Importantly, 1503g corresponds to a large heap

at 53 ounces. BGLW find that the estimated treatment effect falls substantially when omitting

observations near the cutoff.

6ADKW’s main results include additional control variables, but here we focus on the RD results without controls.
See Frölich and Huber (2018) for a discussion of RD with and without covariates.
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4.1 Data

The main data on birth weight and infant mortality are drawn from the National Center for

Health Statistics linked birth/infant death files.7 The data are discussed in detail in ADKW

and BGLW. Briefly, the data include information from birth certificates for all births in the US

between 1983-1991 and 1995-2002 and are linked to death certificates for infants up to one year

after birth. For the main analysis sample used here this yields 202,078 separate births with an

overall one year mortality rate of 5.8 percent. The histogram in Figure 4.1 shows the distribution

of measured birth weights for the main sample used with the largest heaps occurring at the six

ounce multiples within the 1415g-1585g window used by ADKW and BGLW.

Figure 4.1
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Source: National Center For Health Statistics Linked Birth-Infant Death Files. N=202,078.

4.2 Measurement Error Correction

The analysis in BGLW highlights the potential importance of heaping in running variables.

Here, we extend their analysis by addressing the underlying measurement problem that leads

7Raw data files available at https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. We thank Alan
Barreca for providing the data files from BGLW.
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to heaping.8 Heaping at ounce and gram multiples is likely due to rounding errors. Specifically,

BGLW note that the scales used by hospitals to weigh newborns differ in their precision and

there may be a human tendency to round numbers when recording the birth weight. Ideally, we

would like to know the precision of the scales used to measure the birth weight of each baby in

order to determine the measurement error groups, since the resolution of the scale determines

the range of latent birth weights for a given observed weight. However, such information on

the scales used is not available, so instead we approximate this group structure under plausible

scenarios given the data available. Here we explore the importance of the differential rounding

error by using our measurement error correction, and assume that measured birth weights at

ounce, 100g, 50g, 25g, 10g, or 5g multiples reflect true birth weights that were rounded to

that nearest multiple. All other observed measures— those not at one of the multiples— are

assumed to be correctly measured. For instance, it is assumed that the true birth weight for

those measured at 1500g will range from 1450g to 1549g and were simply rounded to the nearest

100g multiple. Similarly, those measured at 1503g (53oz) had true birth weights between half

an ounce above and below (from 1489g-1517g).

This sort of differential rounding leads to an interesting pattern of potential measurement

errors. In Figure 4.2, we plot the observed birth weight measure on the vertical axis and the

range of potential true birth weights on the horizontal distinguishing between observed measures

that receive treatment (observed measure less than 1500g) and those that do not. First note that

among those with a measured birth weight just to the right of the cutoff, many may have true

birth weights well below the cutoff. This provides a potential explanation for why the mortality

rate at 1500g is noticeably higher— namely, these children do not receive the additional care,

but many will have similar birth weights and associated unobservable factors to children at much

lower birth weights who do receive additional treatment. Also note that this “misclassification”

only occurs for untreated units as none of the true weight ranges for treated units cross the

threshold. Finally, note that the 1500g measure exhibits the largest potential measurement

error range in the described rounding error scenario.

Figure 4.2 also suggests that this setting fits well with our correction procedure: there are

groups of observations that face different measurement error distributions and these groups

are — in part — related to the measured birth weight. To apply our procedure we need

to approximate the true birth weight distributions within each measurement group. For our

baseline estimates, we use all births with observed birth weights between 1000g-2000g that are

8Note that while our correction accounts for potential discontinuities in measurement error near the cutoff, it does
not address potential endogeneity in hospital measuring systems, similarly to the previous literature.
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not at one of the heaped values and use a kernel density estimate of the distribution for the

unheaped observations.9 The estimated density is then used to calculate the moments of the

birth weight distribution in each measurement group, where the measurement groups are defined

by the observed measure (X̃).

Figure 4.2
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Ranges refer to the range of potential true birth weights for a given measured birth weight.

In Table 4.1, we present the corrected and uncorrected estimates for different samples. As

suggested by Lee and Lemieux (2010), we use a cross validation procedure, the Akaike Informa-

tion Criteria (AIC), to choose the polynomial’s order on either side of the VLBW cutoff. To do

so, we first estimate the first eight uncentered moments of the measurment error distributions

and generate the eight corresponding corrected running variable terms — allowing us to test

the fit of up to an eighth order polynomial. We then estimate each side separately using our

corrected running variables with J = 1 and add higher order terms until the AIC no longer

suggests an improvement in fit. In this case, the procedure gave J = 4 for the untreated and

J = 1 for the treated. Starting in the first row, using the same sample as BGLW, we see a

9Nearly identical results were obtained including all births— both heaped and unheaped— when estimating the
density while using a wide bandwidth in order to smooth out the heaps. This suggests that in terms of estimating
the true birth weight distribution our choice to focus on unheaped measures only does not lead to a problematic
selection issue.

23



large difference between the uncorrected and corrected estimates in Columns (a) and (b), re-

spectively. The uncorrected estimates suggest a 3.1 percentage point drop in the mortality rate

when receiving additional care, while the corrected estimate is a drop of only 0.67 percentage

points. Importantly, when we calculate an honest CI using the procedure in Appendix B for our

corrected estimate, the upper bound of the 95% honest CI still does not overlap zero. This sug-

gests that the estimated reduction in mortality is robust to misspecification of the conditional

mean function.

Table 4.1

RD VLBW Estimates: Naive and Corrected
Estimator: Naive Corrected

(a) (b)

Panel A: Main Estimates
BGLW Sample -0.0311 -0.0067

Np = 202, 078 (0.0037) (0.0025)
Honest CI [-0.0121, -0.0013]

Panel B: Measurement Error Group Sensitivity

X̃ by Education -0.0311 -0.0067
Np = 202, 078 (0.0037) (0.0031)

Panel C: Donut RD Sensitivity
(1) Omitting 1500g -0.0139 -0.0067

Np = 198, 530 (0.0043) (0.0025)
(2) Omitting 1499-1501g -0.0149 -0.0069

Np = 198, 334 (0.0043) (0.0025)
(3) Omitting 1498-1502g -0.0156 -0.0069

Np = 197, 135 (0.0045) (0.0025)
(4) Omitting 1497-1503g -0.0038 0.0102

Np = 175, 108 (0.0147) (0.0110)

Source: National Center For Health Statistics Linked Birth-Infant Death Files. X̃
Groups: Na = 27, 846; min(Na,g) = 10, 145; max(Na,g) = 12, 279. X̃ by Mother’s
Education Groups: Na = 27, 846; min(Na,g) = 1, 033; max(Na,g) = 5, 067. Np is the
primary sample size, Na is the total auxiliary sample size, and Na,g is the auxiliary
sample size for group g. Standard errors in parentheses with adjusted standard errors
for the corrected estimates. Honest CIs in square brackets.

To provide some intuition for the difference in the two estimates, Figure 4.3 depicts the

estimated functions on either side of the cutoff along with mean mortality rates within five

gram bins of the observed birth weight measure. First, we see that the two approaches yield

similar estimates of the conditional mean function to the left of the cutoff. However, we see very

different fitted functions to the right of the cutoff. Intuitively, the uncorrected function gets
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very steep near the cutoff because it treats the observations at a measured weight of 1500g that

have a higher mean mortality rate as being precisely measured at 1500g and tries to fit that

point. In contrast, our correction recognizes that many of those with a measured birth weight

of 1500g may have a true birth weight away from 1500g and the regression function above the

cutoff is not influenced as much by these observations.

Figure 4.3
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Source: National Center For Health Statistics Linked Birth-Infant Death Files. Np = 202, 078;Na =
27, 846; min(Na,g) = 10, 145; max(Na,g) = 12, 279. Np is the primary sample size, Na is the total
auxiliary sample size, and Na,g is the auxiliary sample size for group g. Lines represent local
polynomial regressions with order chosen using AICc.

An additional issue raised by BGLW is that the measurement technology available may dif-

fer by hospitals that serve women with different backgrounds. In particular, hospitals in higher

poverty areas may have less precise scales (more likely to have a rounded birth weight). If

the true birth weight distribution differs across different maternal backgrounds— for example,

more mass at lower birth weights for disadvantaged mothers— this could lead to differences

in the measurement error distributions for babies at the same observed measure. To address

this possibility, we allow the measurement error distributions to differ by mother’s education

level (less than high school, high school, some college, college and above, and missing education

data). Specifically, we simply redefine our measurement error groups to be based on the ob-
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served measure and mother’s education. We then re-estimate the birth weight density for each

education level to generate a new set of corrected moments. Panel B of Table 4.1 displays the

results using the mother’s education specific measurement groups. The results are very similar

to those in Panel A, with an estimated treatment effect of 0.0067 with adjusted standard errors

that are slightly larger due to the fact that moment correction terms are estimated using smaller

samples.

We also revisit the donut RD from BGLW here, holding the order of the polynomial fixed

as in BGLW. In Panel C, Row (2) of Table 4.1, we see that the corrected estimate is unaffected

by dropping the 1500g heap, while the uncorrected falls by over half as in BGLW. The fact that

the corrected estimate is robust to dropping the 1500g heap is encouraging that our correction

is helping to control for the underlying measurement problem that led to the heap. Intuitively,

since the uncorrected estimator treats every observation measured at 1500g as precisely measured

and this group has a relatively high mortality rate, omitting these observations removes a large

mass with a high mortality rate from a single point right at the cutoff. Instead, the corrected

procedure accounts for the fact that most observations measured at 1500g actually have true

birth weights above or below the threshold. Not only has our correction “smoothed out” the

heap at 1500g, it also accounts for the fact that the true birth weights for observations measured

at 1503g includes the 1500g cutoff. Therefore, dropping observations at the observed heap of

1500g is similar to randomly dropping some of the observations from a range of true X while

keeping the cutoff in the support of the data — an adjustment that would not lead to large

differences in estimates in any case.

While dropping observations with measured birth weights up to 3g away from the cutoff alters

the corrected estimate in Row (4), the corrected estimate otherwise appears remarkably stable

across the different size donut holes. In contrast, uncorrected estimates are quite sensitive to

the different size donut holes used. Importantly, 1503g corresponds to 53oz and ounce measures

seem to be the most common type in the data. As ADKW note in their reply to BGLW, this

actually removes about 20 percent of the data to the right of the cutoff while barely dropping

any to the left (Almond et al., 2011). This is because the closest ounce measure from below is

at 1474g. In justifying their approach, BGLW note that dropping those within 3g and at the

cutoff represents an incremental difference in birth weights since the implied gap in birth weights

between the observations to the left and right of the cutoff is roughly equivalent in weight to

seven paper clips (7g). However, when viewed from the perspective that those measured at

ounce multiples are rounded to the nearest ounce, this implies that the gap between most true
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birth weights when dropping 1503g is actually between 29g-85g since the largest ounce measure

below the cutoff is 1474g with a true range from 1460-1488g and the first ounce measure above

1503g is at 1531g with a true range of 1517-1545g. In particular, now most the data on the

untreated side are for babies with much higher birth weights who have much lower mortality

rates regardless of treatment. This suggests some caution considering the basic RD identification

argument when dropping the 1503g heap as the babies on either side of the threshold may no

longer be comparable along unobservables.

5 Application II: UI Benefit Effects using Geographic RD

In this section, we apply our correction procedure to the problem of estimating the effect of

Unemployment Insurance (UI) extensions on unemployment during the Great Recession using a

GeoRD. During the Great Recession, the duration of UI benefits was extended from 26 weeks to

as many as 99 weeks. The realized benefit duration varied at the state level and was determined

by state-level labor market aggregates passing pre-specified trigger levels.10 In theory, such

extensions may lead to increased unemployment through reduced job search effort by workers

and a contraction of vacancies by firms. The main econometric challenge in estimating the effect

on unemployment is to isolate the differences due to the policy from the differences due to the

factors driving adoption of the policy.

Hagedorn et al. (2015) and Dieterle, Bartalotti, and Brummet (Forthcoming) both study

this case in detail, attempting to exploit differences in UI extensions at state boundaries in

estimation.11 Here, the goal is to compare the preferred RD estimates using the measurement

error correction proposed in Section 2 to those using a mismeasured, centroid-based, distance

to the state borders. During the recession, there were many instances in which neighboring

states faced different UI regimes due to the fact that the extensions were triggered by state

level aggregate unemployment. To focus our discussion on the correction procedure, we will

consider one such case: the Minnesota-North Dakota boundary in the second quarter of 2010.

The average available UI benefit duration over the entire quarter in Minnesota was 62 weeks

while it was only 43 weeks in North Dakota.

10See Hagedorn et al. (2015) and Rothstein (2011) for a more detailed discussion of the institutional details of
Unemployment Insurance benefit extensions.

11Dieterle, Bartalotti, and Brummet (Forthcoming) implements the measurement error correction procedure as
proposed in this paper for the whole U.S. Note that the focus of that paper is very different and, in particular, it does
not discuss how the centroid and corrected estimators differ — the key focus of our current empirical investigation.
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5.1 Data

We use county-level data on the unemployment rate from the Bureau of Labor Statistics’ (BLS)

Local Area Unemployment Statistics (LAUS), and the duration of UI benefits provided by US

Department of Labor.12 Our sample includes all counties located in either state for which the

MN-ND boundary is the closest state boundary.

5.2 Measurement Error

The main issue with implementing the RD strategy in this case is that geographic location

is reported at the county level, but the underlying running variable is a continuous measure

of distance to the border. Researchers often calculate the distance to the border based on

the geographic center of the county. This geographic centroid based distance measure is the

mismeasured running variable in this context. To implement the measurement error correction

in this example, we require information on the geographic location of counties and the within

county population distribution relative to a state boundary to calculate the moments of the

measurement error present on the data. We use the TIGER geographic shapefiles that contain

population counts by census block from the 2010 Census. The geographic information gives

precise location of census block, county, and state borders. For the centroid-based distance we

can therefore calculate the distance from the geographic center of a county to the state border.

We can also calculate the distance from the center of each census block to the state boundary.

Since census blocks are typically very small, we can use this to approximate a continuous measure

of the population weighted distance to the border needed for our measurement error correction.

To calculate the population moments and the centroid-based distance from the TIGER

shapefiles, we use the nearstat package in Stata (Jeanty, 2010). Since particular areas within a

county may have a different nearest neighbor, we determine the modal nearest state boundary

among the census blocks in a county and then calculate distances and moments based on the

modal neighbor. This gives us the population by distance from the border in each county which

we use to calculate the corrected running variable as the population weighted moments of the

distance measure — i.e. x∗k,g is the population weighted mean of xkig in the TIGER shapefiles.

Figure 5.1 depicts box plots of the population distribution within each county in our sample.

Here, the population distributions are directly linked to the measurement error distributions. We

have ordered the plots by the centroid measure, starting at the county farthest from the border

12See http://ows.doleta.gov/unemploy/trigger/ and http://ows.doleta.gov/unemploy/euc_trigger/. Here,
we use the county-level unemployment rate as given. See Dieterle, Bartalotti, and Brummet (Forthcoming) for a
discussion of potential issues with using an aggregate outcome measure in this setting.
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in North Dakota 208 km away up to the farthest in Minnesota at 161 km away. Several features

of the measurement error are worth highlighting. First, the measurement error distributions

do not cross the cutoff, so the treatment is identically defined by the true and mismeasured

running variables. In many cases, when comparing two counties the one that is measured to be

closer by the centroid based measure actually has most of the population mass farther away.

For many of the counties the population distributions are far from symmetric and, importantly,

they vary substantially across each group (county) at the border. Together this suggests that

the group-specific measurement error correction may be particularly important in this setting.

Figure 5.1
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5.3 Results

We estimate the effect of the difference in available UI duration at the Minnesota-North Dakota

border in the second quarter of 2010 on log unemployment by GeoRD using both the uncorrected

centroid based measure and our moments based correction. We first generate the first eight

corrected running variable terms using the auxiliary shapefile data and then choose J for each

side using our corrected estimator with different choices of J on each side comparing the small
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sample version of the Akaike Information Criteria (AICc) due to the relatively small sample size

on both sides of the border.

Table 5.1 presents the uncorrected and corrected estimates for the ATE at the boundary.

The uncorrected estimate is large and negative, but imprecise. The point estimate for the

uncorrected case would suggest a 25 percent reduction in unemployment from the 19 extra

weeks of UI available in Minnesota. The corrected estimate is much smaller in magnitude—

nearly zero— and more precisely estimated. However, the honest confidence interval shown

in brackets indicate much less precision when accounting for potential misspecification in this

setting. The fact that the honest CI is wide here is consistent with the simulation evidence

suggesting larger potential misspecification bias in smaller samples. The lack of an estimated

effect when using our correction is consistent with the evidence of UI policy spillovers discussed

in Dieterle, Bartalotti, and Brummet (Forthcoming).

Table 5.1

Geographic RD: Corrected and Uncorrected Estimates
(1) (2)

Naive Corrected

-0.2855 -0.0155
(0.1943) (0.1548)

[-1.0936, 1.0626]
Source: LAUS and TIGER Geographic Shapefiles. Np = 38;Na =
93, 530; min(Na,g) = 845; max(Na,g) = 7, 921. Np is the primary sample
size, Na is the total auxiliary sample size, and Na,g is the auxiliary sample
size for group g. Standard errors in parentheses with adjusted standard
errors for the corrected estimates. Honest CIs in square brackets.

To provide more intuition for the correction procedure, Figure 5.2 depicts the corrected and

uncorrected estimated polynomials along with the centroid measures. We also overlay the range,

twenty-fifth to seventy-fifth percentile range, and the median of the population distribution to

provide some sense of how the population distribution differs from the centroid measure. On the

North Dakota side of the border (distance less than zero), we see the uncorrected polynomial

is influenced by a few counties that have a centroid distance roughly 10-40km away from the

border, but have households living right up to the border. The corrected estimates take into

account the fact that the population distribution is skewed toward the state border for many of

these counties lowering the estimated intercept on the North Dakota side. On the Minnesota

side, the effect is the opposite, raising the estimated intercept. Combined, this reduces the

estimated treatment effect.
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Figure 5.2
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6 Conclusion

RD designs have become increasingly popular in empirical studies, but researchers often face

situations where there are several types of group-specific measurement errors in the forcing

variable. In order to accommodate these situations, we propose a new procedure that utilizes

auxiliary information to correct for the bias induced by group-specific measurement error. We

develop a valid estimator of the RD treatment effect and derive asymptotic variance formulas

that take into account both the variability introduced by the measurement error correction

and the use of multiple data sets in estimation. This method complements previous work on

measurement error in RD designs by allowing more flexible forms of the measurement error,

including measurement error that is potentially non-classical and discontinuous at the cutoff.

Furthermore, the approach is effective regardless of whether treatment is assigned based on the

“true” or mismeasured running variable. Finally, we also provide honest CIs that allow for valid

inference even under certain forms of misspecification in the conditional mean function.

Simulation evidence supports the theoretical results proposed on the paper and its superior
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performance relative to “naive” estimators. In two empirical illustrations, we demonstrate that

correcting for measurement error can provide a new empirical perspective on the data.
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A Naive Estimators’ Identification with Heterogeneous Mea-

surement Error

A.1 Intuition

To gain some intuition about the problems introduced by mismeasurement, consider the special

case in which the conditional distribution of the measurement error is continuous. In that case,

a researcher that ignores the measurement error and implements standard RD techniques will

estimate:

τ∗ = lim
a↓0

E
[
Y |X̃ = c+ a

]
− lim

a↑0
E
[
Y |X̃ = c+ a

]
(A.1)

=

∫ ∞
−∞

(y1(c+ e)p1(c+ e) + y0(c+ e)p0(c+ e))fe|X̃(e|X̃ = c+)de

−
∫ ∞
−∞

(y1(c+ e)p1(c+ e) + y0(c+ e)p0(c+ e))fe|X̃(e|X̃ = c−)de (A.2)

where p0(X) and p1(X) are the probabilities of receiving and not receiving treatment conditional

on the unobserved X and fZ|W (·|W = c+) and fZ|W (·|W = c−) denote a conditional density of

the variable Z evaluated as W approaches c from above and below, respectively. By looking at

the neighborhood of X̃ = c we are effectively analyzing the (weighted) average of the potential

outcomes over the values of X for which X̃ = c. This quantity in Equation (A.1) will take

different forms based on whether treatment is assigned on the observed or unobserved running

variable.

If treatment is sharply assigned based on the true unobserved running variable, standard

RD techniques will estimate:

τ∗ =

∫
X≥c

y1(x)(fx|X̃(x|X̃ = c+)− fx|X̃(x|X̃ = c−))dx

+

∫
X<c

y0(x)(fx|X̃(x|X̃ = c+)− fx|X̃(x|X̃ = c−))dx (A.3)

which equals zero in the absence of a discontinuity in fx|X̃(x|X̃ = c) (or equivalently fe|X̃(e|X̃ =

c)). This is an example of the loss identification induced by the presence of continuous mea-

surement error in the running variable described in Pei and Shen (2017) and Davezies and

Le Barbanchon (2017) in which the measurement error smooths out the conditional expecta-

tion of the outcome close to the observed “cutoff” in X̃. Intuitively, this occurs because the

measurement error induces the misclassification of treatment to some observations.
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If instead treatment is determined by the mismeasured running variable and is therefore ob-

served, a researcher that ignores the measurement error and implements standard RD techniques

will estimate:

τ∗ = lim
a↓0

E
[
Y |X̃ = c+ a

]
− lim

a↑0
E
[
Y |X̃ = c+ a

]
(A.4)

= lim
a↓0

∫ ∞
−∞

y1(x)fx|X̃(x|X̃ = c+ a)dx− lim
a↑0

∫ ∞
−∞

y0(x)fx|X̃(x|X̃ = c+ a)dx

=

∫ ∞
−∞

y1(c+ e)fe|X̃(e|X̃ = c+)de−
∫ ∞
−∞

y0(c+ e)fe|X̃(e|X̃ = c−)de. (A.5)

If the measurement error distribution conditional on X is continuous at the policy cutoff, then:

τ∗ =

∫ ∞
−∞

(y1(x)− y0(x))
fX̃|X(c|x)

fX̃(c)
dFX(x) (A.6)

Hence, instead of estimating the ATE at the cutoff, the researcher recovers a weighted

average treatment effect for the population in the support of X for which X + e = X̃ = c.

The weights are directly proportional to the ex ante likelihood that an individual’s value of X̃

will be close to the threshold. This case is similar to the situation described in Lee (2008) and

Lee and Lemieux (2010) where individuals can manipulate the running variable with imperfect

control. Our approach will recover E[Y1−Y0|X = c] in this setting as well. Note that while this

case includes both the geographic RD and birth weight examples discussed in the main body

of the paper, our procedure also applies to the case where treatment is assigned based on the

unobserved running variable provided that the researcher observes true treatment status.

A.2 Group-specific Measurement Error Distribution

A central contribution of this paper is to allow for heterogeneity of the measurement error

distribution across groups of observations. Let x̃ig = xi − eig, where eig is the measurement

error of “type” g. This notation allows each unit to have a measurement error drawn from a

separate, group-specific distribution. It also encompasses the case where individuals in the same

group share the same observed value of X̃, such that x̃ig = x̃g for all individuals in group g.

This is the situation where, for example, residents in a county have their location reported as

the county’s centroid or birth weights being rounded to nearest 50 grams or ounce multiples.

Once we allow for different measurement error “types,” the identification of the ATE is

further complicated by the averaging across groups on both sides of the cutoff. Discontinuous

changes in the share of groups at the cutoff introduce bias to estimates of the treatment effect.
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For example, if all individuals follow the same processes y1(x) and y0(x) but suffer from different

types of measurement error in the running variable and treatment is assigned based on X̃, then

τ∗ =
∑
g

P (G = g|X̃ = c+)

∫ ∞
−∞

y1(x)fx|X̃,G(x|X̃ = c+, G = g)dx (A.7)

− P (G = g|X̃ = c−)

∫ ∞
−∞

y0(x)fx|X̃,G(x|X̃ = c−, G = g)dx.

Hence, changes in the share of each group at the cutoff could introduce bias and measurement er-

ror correction approaches that ignore the group heterogeneity might fail to identify the intended

ATE.

To illustrate the problem, consider the very low birth weight example. For now, assume there

are two types of measures— those correctly measured at the individual gram level (G = 1) and

those rounded to a gram multiple (G = 2), where this could be any of the gram-multiple heaps

observed in the data (5g, 10g, 25g, 50g, or 100g). Further assume for exposition that treatment

has no effect on outcomes so that y0(x) = y1(x) = y(x) and τ = 0. Here, treatment is turned on

by passing the threshold from above, so we adjust notation so that c− denotes treated and c+

denotes the untreated side. In the limit, the conditional expectation for treated units just below

the cutoff will come from the children measured at 1499g— all of which are correctly measured

(i.e. P (G = 1|X̃ = c−) = 1). Meanwhile the untreated units at 1500g will be a mixture of

correctly measured and mismeasured units. This implies the following RD estimand:

τ∗ = y(c−)−
[
P (G = 1|X̃ = c+)y(c+) + P (G = 2|X̃ = c+)

∫ ∞
−∞

y(x)fx|X̃,G(x|X̃ = c+, G = 2)dx

]

If the probability of being a rounded measure close to the cutoff is quite high relative to

precise measures, that is if P (G = 2|X̃ = c+) is large, the estimate of the conditional expectation

for untreated units will be driven by the mismeasured group. In the very low birth weight data

used in Section 4, the observations at exactly 1500g make up 1.75 percent of the overall sample

while the adjacent unrounded measure of 1501g only makes up 0.05 percent of the sample,

implying P (G = 2|X̃ = c+) ≈ 0.97. Given evidence of rounding to 100g multiples in some

cases,
∫∞
−∞ y(x)fx|X̃,G(x|X̃ = c+, G = 2)dx may average the outcome (mortality) over a range

of true x between 50 grams below to 50 grams above the cutoff. How much that averaging will

impact the estimated outcome for the untreated at the cutoff depends on the shape of y(x).

If, for instance, the mortality rate decreases with birth weight, but at a decreasing rate as we

approach the natural lower bound of zero (y′(x) < 0 and y′′(x) < 0), as is likely the case in the
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low birth weight example, this may lead to a very poor estimate of the intended estimand of

lima↓0E [Y |X = c+ a]. We will likely overestimate the conditional expectation at the cutoff for

the untreated units since
∫∞
−∞ y(x)fx|X̃,G(x|X̃ = c+, G = 2)dx > y0(c+) by Jensen’s Inequality.

This is depicted in Figure A.1.13 Our proposed approach will be able to recover identification

of the ATE in these settings.

Figure A.1

xc+

E
[
y(x)|X̃ = c+, G = 2

]

y(x)

y(c−) = y(c+)

Birthweight1500

Mortality

xc+

c+c−

}
τ∗

B Honest CIs under Measurement Error: Further Details

As discussed in Section 2.5, if the polynomial order chosen,“J ,” does not fully capture the

relevant features of the conditional mean of the outcome, ft(·), some misspecification bias may

arise, potentially invalidating inference based on the approximations discussed in Section 2.4. We

address this concern by proposing novel honest CIs that build upon the insights and techniques

developed by Armstrong and Kolesár (2018); Armstrong and Kolesár (2018b). Honest CIs

cover the true parameter at the nominal level uniformly over the possible parameter space for

F(M) for ft(·). Here we focus on the class of functions that place bounds on the derivatives

of ft, with M denoting the smoothness of the functions being considered, which is chosen by

the researcher. These honest CIs are built by considering the non-random worst-case bias of

13Let the range of true birth weights associated with a measured weight of c be denoted by [xc, xc]. Then, for
simplicity, the true birth weight is assumed to be uniformly distributed for units with measured weight equal to
1500g, i.e. fx|X̃,G(x|X̃ = c+, G = 2) is uniform in [x1500, x1500] = [1450, 1550].
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the estimator τ̂ for functions in F(M). For more details, see (Armstrong and Kolesár, 2018;

Armstrong and Kolesár, 2018b). Intuitively, the researcher considers what would be the worst

possible misspecification bias that could arise in the estimation of τ under the assumption that

the true conditional mean of the outcome is part of a class of functions (which typically places

bounds on higher derivatives of ft(·)) and adjusts the CIs used for inference accordingly.

By applying the insights about identification and inference in the main body of the text

we can extend the honest CIs approach in Armstrong and Kolesár (2018) to the measurement-

error-corrected RD setting. Intuitively we will approximate ft(·) by a polynomial of order J

which can be recovered from the observed data following the procedures described in Section

2.3 and obtain an approximation to the worst-case bias that can be used to generate the honest

CIs.

In this setting, misspecification errors in ft(·) can be rewritten as:

ft(x) =

J∑
j=0

xjβj +Rt(x), |Rt(x)| ≤ R̄t(x) (B.1)

ft(x) =

J∑
j=0

x∗jβj +R∗t (x) (B.2)

where

R∗t (x) =

J∑
j=0

[
j∑

k=0

(
j

k

)(
e(j−k) − µ(j−k)

g

)
x̃k

]
βj +Rt(x) (B.3)

Note that we can sum across the individuals on each group,

N−1g

Ng∑
i=1

f(xi) = N−1g

Ng∑
i=1

J∑
j=0

x∗j,iβj +N−1g

Ng∑
i=1

R∗t (xi) (B.4)

N−1g

Ng∑
i=1

R∗t (xi) = N−1g

Ng∑
i=1

Rt(xi) + op(1) (B.5)

Hence we can obtain the worst-case bias by focusing on N−1g
∑Ng

i=1Rt(xi) = Rt,g. The bounds

for |Rt,g| will be directly obtained from the conditions and class function adopted for the original

ft(x). It is worth noting that these are defined in terms of the original conditional means of the

outcome, considering the model with no measurement error on the running variable. That is

positive since the properties and constraints the researcher imposes on the DGP are more natural

in that setting for which the researcher has a better intuition and guidance from economic theory.

We focus on the Taylor and Hölder class of functions in our proposed honest CIs since, as

40



indicated by Armstrong and Kolesár (2018); Armstrong and Kolesár (2018b) those are natural

function families to consider in the RDD setting. For concreteness, consider the Taylor class of

functions defined as

ft ∈ FJ(M) =

f :

∣∣∣∣∣∣f(x)−
J∑
j=0

f (j)(0)
xj
j!

∣∣∣∣∣∣ ≤ M

p!
|xJ+1|, for all x ∈ X

 . (B.6)

Then, by similar arguments we can rewrite the bounds on misspecification in terms of the

observed transformed data.

|Rt(x)| ≤ M

p!
|xJ+1| (B.7)

|Rt,g| ≤
M

p!
N−1g

Ng∑
i=1

|xJ+1
i | ≤ M

p!
N−1g

Ng∑
i=1

|x∗J+1,i|+ op(1) (B.8)

Hence, we can rely on the results in Armstrong and Kolesár (2018); Armstrong and Kolesár

(2018b) to obtain honest CIs in the presence of measurement error as described above.

In particular, the estimator proposed in Section 2.3 can be rewritten to match more closely

the notation in those papers

τ̂ =

n∑
i=1

wn(x∗i )yi, (B.9)

wn(x∗) = wn+(x∗)− wn−(x∗) (B.10)

wn+(x∗) = e′1Q
−1
n,+X

∗D (B.11)

Qn,+ =

n∑
i=1

DiX
∗′
i X

∗
i (B.12)

And similarly for Qn,− and weights wn−(x∗). Note that when we replace wn(x∗) by ŵn(x̂∗) an

additional term will be added to the estimator’s residuals. This analysis fits within the frame-

work developed by Armstrong and Kolesár (2018) Theorem F.1. with the following adjustments

in notation:

L̂ = τ̂ =

n∑
i=1

ŵn(x̂∗i )yi (B.13)

ui = x̂∗′i [(x∗i − x̂∗i )B+ + εi] (B.14)

with sn,Q = Ω
1
2 , and ŝen = Ω̂

1
2 where the variance matrix Ω and its estimators are those

described in Theorem 2.2. Then, coupling the bias bounds derived above with the results in
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Armstrong and Kolesár (2018), the largest possible bias of the estimator over the parameter

space FJ(M) is asymptotically given by

biasFJ (M)(L̂) =
M

p!

n∑
i=1

|wn+(x∗i ) + wn−(x∗i )||x∗J+1,i|. (B.15)

and the honest CIs can be obtained as

L̂± cvα

 b̂iasFJ (M)(L̂)

ŝen

 · ŝen. (B.16)

where cvα(t) is the 1−α quantile of the absolute value of a N(t, 1) distribution, and b̂iasFJ (M)(L̂)

replaces wn(x∗) by ŵn(x̂∗).

B.1 Honest Confidence Interval Implementation

In order to implement the honest CI procedure, we need to estimate the bias term in equation

(B.16). To do so we need to first determine the class of functions and the smoothness, M . In our

simulations and applications, we follow Armstrong and Kolesár (2018b) in assuming ft belongs

to the Hölder class which assumes smoothness globally:

ft ∈ FJ(M) =
{
f :
∣∣fJ(x)− fJ(x′)

∣∣ ≤M |x− x′| , for all x ∈ X
}
. (B.17)

Under the Hölder class assumption, it is convenient to rewrite the bias term as in Appendix C.2

of Armstrong and Kolesár (2018b):

bias = M

∫
|wJ+1(s)| ds (B.18)

wJ+1(s) =
1

nh

n∑
i=1

w̃n(x∗) (xi − s)J

J !
1(xi ≥ s) (B.19)

where

w̃n(x∗) = wn(x∗)(nh) (B.20)

Where we have used the fact that our polynomial approximation is equivalent to using a rectan-

gular kernel over the whole support of x with the implied bandwidth denoted by h. Importantly,

wJ+1(s) is written in terms of the weights used in estimation (rescaled to sum to the product

nh) and the distribution of the true x which we observe in the auxiliary data. Therefore, we

can promptly estimate wJ+1(s) using the weights from our main estimation combined with the
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auxiliary data. In our simulations, we first calculate Qn,+ and Qn,− from the primary data set

as in equation (B.12), but then create our kernel weights by replacing X∗ in equation (B.11)

with the adjusted X∗ from the auxiliary data — effectively determining the weight that each

auxiliary observation would have received if it had been in the primary sample. We then rescale

the resulting weight to sum to the auxiliary sample size times the implied bandwidth — which

is simply the range of x associated with each treatment status. With this estimate of w̃n(x∗) in

hand, we then calculate wJ+1(s) for all potential values of s.

In our empirical applications, the estimation of wJ+1(s) differs slightly due to the nature of

the data used. In both cases, the measurement error groups are uniquely defined by a distinct,

discrete observed x̃ so that we can apply the exact weights used in our primary sample estimation

to the auxiliary sample. For example, in the geographic case all observations in the same county

have the same observed centroid measure. We simply need to match the implied weight to

the underlying true running variable distribution. To implement this, we use our estimated

population densities from the census block level data and rescale the weights to sum to the total

of the density at each distance times h, instead of nh, and multiply the expression in equation

(B.19) by the estimated density.

In order to calculate the bias term in (B.18), we also need to choose the smoothness of the

functions to be considered, M . Armstrong and Kolesár (2018b) propose a rule of thumb choice of

M that we follow in our empirical applications. Specifically, they suggest setting M equal to the

largest, in absolute value, J+1-th derivative from a global J+3 order polynomial approximation

to the conditional mean function. Importantly, in our setting this requires estimating the J + 3

approximation using our measurement error correction.

In our simulations, we alter the Armstrong and Kolesár (2018b) rule of thumb since prelimi-

nary simulations suggested that a direct application of their rule of thumb led to incorrectly large

confidence intervals. Specifically, their setting focused on providing honest CI for an estimator

that relies on an arbitrarily chosen and fixed local polynomial order — typically local linear —

while using the bandwidth as the main tuning parameter to improve the fit. In our setting, since

the measurement error makes the bandwidth an inappropriate tool to improve fit, we fix the

bandwidth and use the polynomial order as the key tuning parameter. Therefore, when we have

chosen a higher J to better approximate the conditional expectation function globally we run

the risk that the J + 3 approximation will severely overfit the relationship leading to unreliable

estimates of the J + 1-th derivatives.

To overcome this, we reduce the number of additional terms added to the approximation
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and estimate it so that additional terms receive weight related to the extra information they

provide. Specifically, we estimate the parameters of a J + 1 order polynomial, denoted b̃J+1 as

a weighted average of our main estimates for the J order polynomial— augmented with a zero

for the J + 1-th term — b̂J,0 and the J + 1 order estimates b̂J+1 using our correction where the

weights are proportional to the relative variances of the adjusted X∗ used in each case. This is

equivalent to a Bayesian regression using our main estimates as the prior for the first J terms

of bJ+1 and an uninformative prior on the J + 1 term — effectively estimating the final term

based on the additional information provided by the added higher order term (Koop, 2003).

More formally, we set M equal to the maximum J+1-th derivative using the following Bayesian

regression estimates based on the discussion in Koop (2003):

b̃J+1 = (VJ,0 + VJ+1)
−1
(
VJ,0b̂J,0 + VJ+1b̂J+1

)
(B.21)

VJ+1 = X∗′J+1X
∗
J+1

VJ,0 =

X∗′J X∗J 0′J

0J 0


where 0J is a 1 × J vector of zeros and X∗J and X∗J+1 include the first J and J + 1 adjusted

regressors. In practice, this approach works well in our simulations. In our applications we

maintain the more conservative approach based on the Armstrong and Kolesár (2018b) rule of

thumb — leaving the optimal choice of M when using a global polynomial approximation for

future research.

C Proofs

Proof of Theorem 2.1

Proof. First note that, under Assumption A2, we can rewrite the conditional expectation ft(x)

using a polynomial of order J for t = 0, 1 with unknown coefficients bjt.

E [Y |x,D = t] = ft(x) =

J∑
j=0

bjtx
j (C.1)

Let these coefficients be collected in the column vector B′t = [b0t, b1t, . . . , bJt]. Then, since for
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each observation x = x̃+ e,

ft(x) =

J∑
j=0

bjt(x̃+ e)j =

J∑
k=0

J∑
j=k

(
j

k

)
bjte

j−kx̃k (C.2)

where
(
j
k

)
is the binomial coefficient j!

k!(j−k!) . Then,

E [Y |x̃, D = t, G] =E [E [Y |x,D = t] |x̃, D = t, G] = E [ft(x)|x̃, G] (C.3)

=E

 J∑
k=0

J∑
j=k

(
j

k

)
bjte

j−kx̃k|x̃, G

 (C.4)

=

J∑
k=0

J∑
j=k

(
j

k

)
bjtE

[
ej−k|x̃, G

]
x̃k (C.5)

=

J∑
k=0

J∑
j=k

(
j

k

)
bjtµ

(j−k)
g (x̃)x̃k (C.6)

=

J∑
j=0

bjt

[
j∑

k=0

(
j

k

)
µ(j−k)
g (x̃)x̃k

]
(C.7)

By Assumption A5, the first J uncentered moments of the measurement error distribution for

each group, µ
(j−k)
g (x̃), are known or estimable. The last equality is simply rewriting the sum

for convenience. Let x∗j =
∑j
k=0

(
j
k

)
µ
(j−k)
g (x̃)x̃k and X∗′ = [1, x∗1, . . . , x

∗
J ], then the expectation

of the outcome Y conditional on the observed x̃ and treatment status can be written as

E [Y |x̃, D = t, G] =

J∑
j=0

bjtx
∗
j = X∗′Bt (C.8)

For which Bt is identified under the conditions imposed. Hence, f0(0) and f1(0) can be identified

through b0t for t = 0, 1 and τ = f1(0)− f0(0).

Proof of Theorem 2.2

Proof. To establish the asymptotic properties of the proposed estimator, it is useful to write

the vector of transformed running variable used in the estimation. For unit i, associated with a

measurement error group g, let:

X∗i = µg(x̃i)Γ
′
i (C.9)

where, X∗i = [1, x∗i,1, . . . , x
∗
i,J ], µg(x̃i) = [1, µ

(1)
g (x̃i), . . . , µ

(J)
g (x̃i)] and Γi = LJ+1 ◦ Q is the

Hadamard product of the lower diagonal Pascal matrix, LJ+1, and the matrix Qi, where Q(b.c) =
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x̃c−bi . For concreteness, if J = 3,

Γi =


1 0 0 0

1x̃i 1 0 0

1x̃2i 2x̃i 1 0

1x̃3i 3x̃2i 3x̃i 1


(C.10)

Since µg(x̃) is not observed, but can be consistently estimated from the auxiliary data, let

the feasible transformed running variable used in estimation be given by X̂∗i = µ̂g(x̃i)Γ
′
i Then

the feasible estimator for the vector B′+ = [β+, β
(1)
+ , . . . , β

(J)
+ ] (and equivalently for B−), is given

by

B̂+ =
[
X̂∗′X̂∗

]−1
X̂∗′Y (C.11)

and

√
Np(B̂+ −B+) = Â−1N

− 1
2

p

Np∑
i=1

x̂∗′i [(x∗i − x̂∗i )B+ + εi] (C.12)

= Â−1N
− 1

2
p

Np∑
i=1

x̂∗′i [(µg(x̃i)− µ̂g(x̃i)) Γ′iB+ + εi] (C.13)

with Â = N−1p
∑Np

i=1 x̂
∗′
i x̂
∗
i and ε = Y − E [Y |x̃, D,G] Then we can rewrite

√
Np(B̂+ −B+) = Â−1N

− 1
2

p

Np∑
i=1

x̂∗′i εi + Â−1

N−1p Np∑
i=1

x̂∗′i

[
N

1
2
p (µg(x̃i)− µ̂g(x̃i))

]
Γ′iB+


(C.14)

Then,

√
Np(B̂+ −B+) = Â−1N

− 1
2

p

Np∑
i=1

x̂∗′i εi − Â−1
N−1p Np∑

i=1

(Γ′iB+ ⊗ x̂∗i )
′
[
N

1
2
p (µ̂g(x̃i)− µg(x̃i))

]
(C.15)

√
Np(B̂+ −B+) = Â−1N

− 1
2

p

Np∑
i=1

x̂∗′i εi − Â−1
N−1p Np∑

i=1

(
x̂∗′i ⊗B′+Γi

) [
N

1
2
p (µ̂g(x̃i)− µg(x̃i))

]
(C.16)
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Let hg be the tuning parameter of a kernel based nonparametric estimator of µg(x̃j) such

that hg → 0 and Na,ghg → ∞ as the sample sizes increase for all g. Finally, let λg =

limNp→∞

(
Np

Na,ghg

)
, for all g.

√
Np(B̂+ −B+) = Â−1N

− 1
2

p

Np∑
i=1

x̂∗′i εi − Â−1
N−1p Np∑

i=1

(
x̂∗′i ⊗B′+Γi

)
λ

1
2
g

[
(Na,ghg)

1
2 (µ̂g(x̃i)− µg(x̃i))

]
(C.17)

.

In a mild abuse of notation, let the units that are part of a group g be indexed by a “group

unit” denomination l such that Np =
∑Np

i=1 wi =
∑G
g=1

∑Ng

l=1 wlg for any variable w, with Ng

the number of observations in group g in our primary sample.

√
N̄p(B̂+ −B+) = Â−1N

− 1
2

p

Np∑
i=1

x̂∗′i εi − Â−1
N−1p G∑

g=1

Ng∑
l=1

(
x̂∗′lg ⊗B′+Γlg

)
λ

1
2
g

[
(Na,ghg)

1
2 (µ̂g(x̃l)− µg(x̃l))

]
(C.18)

Let F+,g = E
[(
x∗′lg ⊗B′+Γlg

)]
. Also, assume that a CLT holds for the measurement error

moment estimator using the auxiliary data such that
√
Na,ghg (µ̂g(x̃)− µg(x̃))→ N(0, Vg(x̃)).

Then the asymptotic variance of
√
Np(B̂+ −B+) is given by:

Ω+ = A−1E [X∗′εiε
′
iX
∗]A−1 +A−1

[
G∑
g=1

λgF
′
+,gVg(x̃)F+,g

]
A−1 (C.19)

Asymptotic normality is achieved by combining the assumption of independence between auxil-

iary and primary datasets, the asymptotoc normality ofN
− 1

2
p
∑Np

i=1 x̂
∗′
i εi and (Na,ghg)

1
2 (µ̂g(x̃j)− µg(x̃j)),

and the definitions of λg for every g = 1, ..., G. Similarly for the left side of the cutoff with Ω−.

Combining the results for both sides of the cutoff, under random sampling gives the result.
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