

Initiated by Deutsche Post Foundation

## DISCUSSION PAPER SERIES

IZA DP No. 12328

The Effects of Conflict on Fertility: Evidence from the Genocide in Rwanda

Kati Kraehnert Tilman Brück Michele Di Maio Roberto Nisticò

MAY 2019



Initiated by Deutsche Post Foundation

## DISCUSSION PAPER SERIES

IZA DP No. 12328

## The Effects of Conflict on Fertility: Evidence from the Genocide in Rwanda

#### Kati Kraehnert DIW Berlin

#### Tilman Brück ISDC, IGZ and IZA

Michele Di Maio University of Naples Parthenope

#### Roberto Nisticò University of Naples Federico II, CSEF and IZA

MAY 2019

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793

IZA – Institute of Labor Economics

| Schaumburg-Lippe-Straße 5–9 | Phone: +49-228-3894-0       |             |
|-----------------------------|-----------------------------|-------------|
| 53113 Bonn, Germany         | Email: publications@iza.org | www.iza.org |

## ABSTRACT

## The Effects of Conflict on Fertility: Evidence from the Genocide in Rwanda\*

This paper analyzes the fertility effects of the 1994 genocide in Rwanda. We study the effects of violence on both the hazard of having a child in the early post-genocide period and on the total number of post-genocide births up to 15 years following the conflict. We use individual-level data from Demographic and Health Surveys to estimate survival and count data models. The paper contributes to the literature on the demographic effects of violent conflict by testing two channels through which conflict influences fertility. First, the type of violence exposure as measured by the death of a woman's child or sibling. Second, the conflict-induced change in local demographic conditions as captured by the change in the district-level sex ratio. Results indicate that the genocide had heterogeneous effects on fertility, depending on the type of violence experienced by the woman, her age cohort, parity, and the time horizon (5, 10 and 15 years after the genocide). There is strong evidence of a replacement effect. Having experienced the death of a child during the genocide increases both the hazard of having a child in the five years following the genocide and the total number of post-genocide births. Experiencing sibling death during the genocide significantly lowers post-genocide fertility in both the short run and the long run. Finally, a reduction in the local sex ratio negatively impacts the hazard of having a child in the five years following the genocide, particularly for older women.

| JEL Classification: | J13, N47, O12                                                      |
|---------------------|--------------------------------------------------------------------|
| Keywords:           | child death, fertility, genocide, Rwanda, sex ratio, sibling death |

#### **Corresponding author:**

Kati Kraehnert DIW Berlin Mohrenstr. 58 10117 Berlin Germany E-mail: kkraehnert@diw.de

<sup>\*</sup> We are grateful for helpful comments from Damien de Walque, Quy-Toan Do, Paul Francis, Kathleen Jennings, Adam Lederer, Marinela Leone, Malte Lierl, Tony Muhumuza, Amber Peterman, Susan Steiner, Håvard Strand, Marijke Verpoorten, Philip Verwimp, and Marc Vothknecht. Uuriintuya Batsaikhan provided excellent research assistance. We are indebted to the National Institute of Statistics Rwanda and, in particular, Augustin Twagirumukiza for providing access to and help with the data. The study was funded by the World Bank, with generous support from the Government of Norway. All errors are our own.

#### Introduction

Does violent conflict affect fertility? Various studies address this important issue, finding that violent conflict influences fertility during and after a conflict. Effects are shown to vary across empirical contexts (for instance, Agadjanian and Prata 2002; Heuveline and Poch 2007; Lindstrom and Berhanu 1999; Woldemicael 2008). Yet, little evidence is available on the mechanisms through which violent events may affect individual fertility, possibly explaining the differences in the direction of the effect identified in previous studies.

This paper uses individual-level microdata to provide empirical evidence on various mechanisms linking conflict to fertility. We focus on the effects of the 1994 genocide in Rwanda, one of the most devastating violent conflicts since World War II, during which at least 500,000 individuals died within just 100 days. There are two main reasons why the Rwandan genocide provides a suitable setting for exploring this question empirically. First, data on fertility histories for Rwandan women are available from multiple post-genocide surveys that are representative at the national level and of high quality, which is rare for conflict-affected countries. Second, the fact that the Rwandan genocide was extremely violent and of exceptionally short duration reduces the possibility that other events may confound the causal identification of the fertility effects of the conflict.

In our analysis, we use survival and count data models to study the effect of violent conflict on the hazard of having a child in the early post-genocide period and on the total number of post-genocide births up to 15 years after the conflict. We focus on two main channels through which conflict may affect fertility. First, we study the effect of different types of individual exposure to violence. In particular, we consider the effect of experiencing the death of a child or sibling during the genocide on a woman's fertility outcomes. Second, we consider the role of local demographic conditions. We focus on the genocide-induced change in the *commune*-level<sup>1</sup> sex ratio – with a severe imbalance of men to women in the post-conflict period – and test its effects on fertility outcomes.

Our main source of data consists of three cross-sectional waves of Demographic and Health Surveys (DHS) collected in Rwanda in 2000, 2005, and 2010, which are representative of all households in Rwanda. This allows us to disaggregate the effects of the genocide on fertility

<sup>&</sup>lt;sup>1</sup> A "commune" in Rwanda in 1991 denoted a local administrative unit akin to a district.

over time, distinguishing between the short- (1995-2000), medium- (2000-2005), and long-term (2005-2010) post-genocide periods. Thereby, we provide a comprehensive perspective on the conflict-induced adjustments in fertility.

This paper presents three main findings. First, there is strong evidence of a replacement effect. Experiencing the death of a child during the genocide increases both the hazard of having a child in the five years following the genocide and the total number of births in the post-genocide period. Second, experiencing the death of a sibling during the genocide significantly lowers post-genocide fertility. The effect is the strongest if a woman loses a younger sibling, which suggests a psychological mechanism at work. Finally, the genocide-induced reduction in the local sex ratio has a negative impact on the hazard of having a child in the five years following the genocide. The effect is particularly strong for older women.

#### Literature

#### Literature on the Effects of Conflict on Fertility

Traditionally, researchers look at the impact of violent conflict on fertility using aggregate measures of fertility as the outcome variable. Most studies find a decline in fertility during conflict, followed by an increase in the early post-war period, as well as a gradual decline in fertility in the longer term for most, but not all, conflicts (Hill 2004). Yet, evidence is mixed. For instance, Iqbal (2010), examining cross-country data, finds no significant effects of war on aggregate fertility. Urdal and Che (2013), using time-series cross-country data for the 1970-2005 period, show that armed conflicts are associated with higher overall fertility in low-income countries.

Some studies investigate the impact of violent conflict on fertility outcomes at the micro level. Some studies find that conflict tends to increase fertility, e.g. in Cambodia (Islam et al. 2016), the Occupied Palestinian Territories (Khawaja 2000), and Tajikistan (Shemyakina 2011). In the context of Rwanda, Verwimp and van Bavel (2005) show that female refugees have higher fertility rates than their non-refugee counterparts, while Rogall and Yanagizawa-Drott (2014) only find an increase in post-genocide fertility among young women. In contrast, there is also evidence that exposure to conflict or periods of political instability may result in a decline in fertility.<sup>2</sup> Studies find this for Bangladesh (Curlin et al. 1976), Kazakhstan (Agadjanian et al. 2008), Angola (Agadjanian and Prata 2002), Cambodia (Heuveline and Poch 2007), Eritrea (Woldemicael 2008), Ethiopia (Lindstrom and Berhanu 1999), the Occupied Palestinian Territories (Khawaja et al. 2009), and Tajikistan (Clifford et al. 2010). Interestingly, several of these studies also find a rebound of fertility once the crisis ends (for instance, Agadjanian and Prata 2002; Heuveline and Poch 2007; Lindstrom and Berhanu 1999).

#### Literature on the Genocide in Rwanda

The Rwandan genocide is one of the most violent conflicts in the history of humanity. The genocide broke out on April 6, 1994, after the plane of President Habyarimana was shot down while approaching Kigali airport, killing all passengers.<sup>3</sup> An extremist Hutu militia known as Interahamwe, the Rwandan Armed Forces (FAR), and Rwandan police forces organized massacres against the Tutsi minority and, to a lesser degree, moderate Hutu intellectuals who were opposed to the regime. Death toll estimates range between 500,000 deaths to over 1 million deaths; about 10 % of the 1994 population (Desforges 1999; Verpoorten 2005). Most of these individuals were Tutsi, killed in one-sided violence, resulting in the death of an estimated 75 % of the Tutsi population (Desforges 1999). A smaller number of soldiers died in combat between the FAR and the Rwandan Patriotic Front (RPF), a rebel army of exiled Tutsi invading Rwanda from Uganda. The RPF eventually stopped the genocide in July 1994 and took power.

The Rwandan genocide is well studied. There is a very large literature on both its determinants and consequences (e.g., Akresh and de Walque 2008; Akresh et al. 2011; André and Platteau 1998; de Walque and Verwimp 2010; Justino and Verwimp 2013; La Mattina 2017; Lopez and Wodon 2005; Schindler and Verpoorten 2013; Verpoorten 2009, 2012; Yanagizawa-Drott 2014). Results show that the genocide severely impacted household income, poverty, education outcomes, health, and the incidence of domestic violence. The genocide also had a large impact on factors affecting demographic dynamics and fertility, such as sexual behavior (Elveborg Lindskog 2016) and refugee status (Verwimp and Van

<sup>&</sup>lt;sup>2</sup> Caldwell (2004) notes that economic shocks generally have negative short-term effects on fertility.

<sup>&</sup>lt;sup>3</sup> For a detailed account of the historical evolution of the tensions between Hutu and Tutsi, see Prunier (1999), Newbury (1988), Mamdani (2001), and Desforges (1999).

Bavel 2005). Rogall and Yanagizawa-Drott (2014) find evidence of a positive effect of the reception of radio waves – their proxy for exposure to violence – on total fertility for their young cohort, while they do not find significant effects for their two older cohorts. Yet, they only focus on the effect of violence on total fertility and do not explore the mechanisms explaining these effects at the micro level.

#### **Conceptual Framework**

Conflict may affect fertility through different demand and supply channels (Brück and Schindler 2009; Verwimp et al. 2009; Williams et al. 2012). On the one hand, conflict may reduce fertility by delaying childbirth because of the possibility that women are exposed to violence and harm. On the other hand, demand for children may increase because of the parents' desire to replace lost children as a risk-insurance strategy (Agadjanian and Prata 2002). Since children are a potential source of economic support for parents at old age (Caldwell et al. 1986), conflict may increase fertility because the value of the insurance role of children increases under conditions of economic insecurity (Cain 1983; Nugent 1985). At the same time, deteriorating economic conditions may instead reduce fertility because couples respond to a sudden decline in income by delaying marriage and birth in order to smooth consumption (Lee 1990; Rindfuss et al. 1978). Finally, conflict may affect the demand for children by decreasing a woman's education attainment, whereby encouraging early female marriage (La Mattina 2017).

On the supply side, fertility depends on the local sex ratio and the marriage market (Buvinic et al. 2013). In particular, if large numbers of young men are mobilized for warfare, this leads to both delayed marriages and a decline in marital fertility (Urdal and Che 2013). Moreover, conflict may influence fertility through its impact on reproductive health services (Verwimp and Van Bavel 2005). Finally, psychological stress and the decline in nutritional status associated with conflict may reduce fecundity and the frequency of intercourse (Kidane 1989).

The heterogeneous empirical evidence discussed above and the various possible mechanisms linking conflict to fertility we described here suggest that the effects and mechanisms are likely to vary with the specific conflict. In particular, the literature suggests that what matters is the type and duration of the conflict, the type of violence experienced by the population, and the induced changes in the local economic and social conditions (including the local sex ratio) (Nobles et al. 2015; Urdal and Che 2013; Verwimp et al. 2017). In our analysis, we capture the specific characteristics of the Rwandan genocide by focusing on two channels. The first is the type and intensity of individual exposure to violence, as measured by either child mortality or by a woman's sibling's death. The second is the conflict-induced change in local demographic conditions, as measured by the *commune*-level sex ratio. The theoretical predictions we derive below regarding the expected impact of those forms of exposure to the genocide on fertility guide our empirical analysis.

#### Type and Intensity of Individual Exposure to Violence

#### Child Mortality

In general, household demand theory has no clear prediction as to the effect of child mortality on fertility (Schultz 1997). The target fertility model provides the intuitive basis for the mechanisms that predict a positive correlation between child mortality and fertility. The literature focuses on two main mechanisms leading to a positive correlation between child mortality and fertility: replacement (child replacement hypothesis) and insurance (child survival hypothesis) (Hossain et al. 2007; Preston 1978; Schultz 1969; Wolpin 1997). Instead, price theory yields ambiguous predictions regarding fertility. The basic model indicates that parents respond to child mortality by increasing the number of births they demand (Ben-Porath 1976; Sah 1991). Moreover, the positive effect of child mortality on subsequent fertility is reinforced by reduced expected returns on investments in child education, which induces a substitution of quantity for quality of children. Yet, once the fact that children are costly is considered in the optimization problem, the optimal response to higher mortality varies with the properties of the utility function (Ben-Porath 1976). In this more general setting, the sign of the effect of a child's death depends on the relative strength of the replacement motive (which tends to increase fertility) and the income effect (which tends to reduce fertility). This implies that the sign of the effect of child mortality on fertility is theoretically ambiguous and needs to be determined empirically.

#### Women's Sibling Mortality

The effect of a sibling's death on the surviving sibling is also theoretically ambiguous. On the one hand, experiencing the death of a sibling could influence other siblings' outcomes because of the loss of positive (monetary and non-monetary) inputs or through bereavement (Stroebe et al. 2006). On the other hand, the death of a sibling reduces competition for

parental inputs among surviving siblings (Yi et al. 2015). Finally, a sibling's death may also reduce parental inputs because of grief. Fletcher et al. (2013) find that experiencing the death of a sibling during childhood influences various adult outcomes and that the cause of the sibling's death matters. Interestingly, surviving brothers and sisters seem to be differentially affected, with the effect stronger for surviving females. This result is in line with the fact that women usually report greater intimacy in sibling relationships than men (Kim et al. 2006). Finally, Fletcher et al. (2017) show that the effects are larger if the surviving sibling is older, suggesting sensitive periods of exposure, while the negative effects decline over time.

#### **Changes in Local Demographic Conditions**

Conflict may affect fertility by changing the local demographic conditions. In particular, it may influence the marriage market by changing the sex ratio (defined as the relative number of men to women).<sup>4</sup> In fact, a conflict-induced imbalance in the sex ratio is expected to negatively affect the marriage market and reduce fertility (Brainerd 2016). For instance, Bethmann and Kvasnicka (2013) show that in Bavaria, Germany, the decline in the sex ratio induced by WWII increased the proportion of out-of-wedlock childbearing but reduced overall fertility. As for Rwanda, there is robust evidence that the genocide reduced the sex ratio, that the effect was stronger in *communes* with a higher genocide intensity, and that this affected marital outcomes, domestic violence, and time use (La Mattina 2017; Schindler 2010; Schindler and Verpoorten 2013; Verpoorten 2005).

#### Data

Our analysis builds on three cross-sectional waves of the Rwandan DHS, collected by ORC Macro and the National Institute of Statistics of Rwanda in 2000, 2005, and 2010. The data in each survey is representative of households in Rwanda, based on a stratified survey design selected in two stages. In the following, all analyses account for the survey design and population weights are used as recommended by the data providers. In each selected household, all women aged 15-49 who were either usual household members or present in the household on the night before the interview were eligible for interviewing. The questionnaire design remained broadly similar across the survey waves. The sample size increased over

<sup>&</sup>lt;sup>4</sup> Conflict may affect the marriage market in ways that go beyond the decline in the sex ratio (La Mattina 2017). First, conflict may decrease women's utility of being unmarried because of deteriorating economic conditions and increased risk of becoming a victim of sexual violence, thus increasing fertility. Second, the genocide may delay the age of first marriage, which would decrease fertility.

time with 10,421, 11,183, and 13,671 women included in the 2000, 2005, and 2010 survey waves, respectively. Our sample of analysis is restricted to women who were 10-45 years old at the time of the genocide.<sup>5</sup> Table 1 reports summary statistics for the main variables we use in the analysis.

#### [Table 1 about here]

The DHS provide detailed information on women's birth histories, maternal health, child health, marital status, and socio-economic characteristics, including educational attainment, main occupation, and place of living. The DHS also collects some information on respondents' partners, including age, education, and occupation. Income and consumption expenditures are not recorded. Therefore, we construct a wealth index based on household assets.<sup>6</sup>

We employ three alternative proxies for exposure to the genocide, which are described in the following.

**Child mortality**. The DHS questionnaire records child mortality in detail. For each sample woman who has ever lost a child, the month of death, gender, and age of the deceased child is recorded (while the cause of death is not asked for). This allows us to create a dummy variable *CH1LD<sub>ict</sub>* that takes the value one if a woman *i*, living in *commune c*, interviewed in wave *t*, lost one or more children between April and July 1994 (the period of the genocide); and zero otherwise. Figure 1 shows the percentage of child deaths relative to the total number of living children reported by sample women for each year during the 1985-2010 period, separately for each DHS wave. The percentage of child deaths peaked during the genocide (increasing by more than twofold relative to the pre-genocide period), returned to pre-genocide levels in 1995, and then started decreasing further. Even though the percentage of child deaths is not low in the pre-genocide period (as is expected for a low-income country, such as Rwanda), the figure reassuringly shows that there is no evidence of a positive trend in child mortality pre-genocide.

<sup>&</sup>lt;sup>5</sup> We only keep women in the sample for whom fertility information is available for at least five years during the post-genocide period. This implies that the age of the women included in our sample is slightly different for each wave. For instance, consider the 2010 wave that interviews women aged 15-49 in 2010. By restricting the sample to women aged 10-45 years in 1994, the regression sample consists of women who are 25-49 years in 2010.

<sup>&</sup>lt;sup>6</sup> Components of the wealth index include durables and housing characteristics. This wealth index provides a proxy for long-term economic well-being as many durables and housing characteristics are typically held by households for many years and are not frequently replaced (Sahn and Stifel 2000).

#### [Fig. 1 about here]

Women's sibling mortality. The DHS questionnaire also records detailed information on each woman's siblings born to the same mother. For every sibling, information is available on the gender, date of birth, whether the sibling is still alive, year of death, and whether the death is related to pregnancy or childbirth.<sup>7</sup> This allows us to create the dummy variable *SIBLING<sub>ict</sub>* taking the value one if a woman experienced the death of one or more siblings during the genocide; and zero otherwise. To ensure that this variable only captures deaths related to the genocide, we exclude all deaths related to pregnancy and childbirth for female siblings. Figure 2 shows the percentage of sibling deaths relative to the total number of living siblings reported by sample women for each year during the 1985-2010 period, calculated separately for all three DHS waves. The graph exhibits a single peak, which coincides with the 1994 genocide.

#### [Fig. 2 about here]

Genocide-induced change in the *commune*-level sex ratios. The third conflict proxy is a continuous variable capturing the change in the *commune*-level demographic conditions caused by the genocide. We construct the variable  $\Delta Sex ratio_{c,1991-2002}$  as the difference between the pre-genocide and post-genocide sex ratios at the *commune* level. Data on sex ratios comes from two secondary sources: the 1991 Census (the most recent population data available from before the genocide) and the 2002 Census (the first population census collected after the genocide).<sup>8</sup> For each *commune*, the sex ratio – the ratio of males to females – is calculated for the population aged 15-60. We exclude individuals living in institutions, such as prisons, convents, and military camps. As shown in Fig. 3, the change in the *commune*-level sex ratio exhibits plenty of spatial variation across the 145 *communes* included in the analysis. On average, the sex ratio decreased by 15 percentage points, from 0.98 males per female in 1991 to 0.83 males per female in 2002. The sex ratio decreased in all 145 *communes*, with the value of this reduction ranging from a minimum of 0.002 to a maximum of 0.32. Note that  $\Delta Sex ratio_{c,1991-2002}$  takes only positive values, meaning that larger values reflect larger reductions in the sex ratio.

[Fig. 3 about here]

<sup>&</sup>lt;sup>7</sup> Accuracy tests on the sibling mortality module in the DHS are discussed in de Walque and Verwimp (2010).

<sup>&</sup>lt;sup>8</sup> For comparability, our analysis applies the administrative structure in place in 1991 to all DHS waves, when Rwanda's administrative structure consisted of 11 *préfectures* and 145 *communes*.

#### **Estimation Strategy**

We employ various estimation strategies to explore the impact of the genocide on fertility. The first is a survival model in which we investigate the effects of conflict on the hazard of having a birth after the genocide. We estimate the following Cox regression model:

$$h_{ict}(t) = h_0(t) \exp(\beta \operatorname{Conflict}_{ict} + X'_{ict} \gamma + \delta_c + \theta_t)$$
(1)

where  $h_{ict}(t)$  is the hazard rate for woman *i*, living in *commune c*, interviewed in wave *t*. The variable  $h_0(t)$  is the baseline hazard function that is assumed to be unknown and is unparameterized.<sup>9</sup> The duration time is defined as the number of months between June 1995<sup>10</sup> and the first birth, if any, occurring up to and including May 2000. Note that we use data on births occurring during the same time window – June 1995 to May 2000 – in each DHS wave. Our focus here is on the effects of the genocide on fertility in the short run, i.e. during the five years immediately following the genocide. Women having their first post-genocide birth after May 2000 are treated as right-censored observations. Conflict<sub>ict</sub> is a dummy variable capturing a woman's exposure to violence during the genocide. As a proxy for the type and intensity of exposure to conflict, we use two different measures: a dummy taking the value one if the woman experienced the death of a child during the genocide, and zero otherwise (CHILD<sub>ict</sub>); and a dummy variable taking the value one if the woman experienced sibling death during the genocide, and zero otherwise (SIBLING<sub>ict</sub>).  $X'_{ict}$  is a matrix of covariates including i) woman-specific characteristics (age, age squared, marital status at the time of the genocide, education level, and previous fertility<sup>11</sup>); ii) household-specific characteristics (wealth index and an indicator for urban residence); and iii) commune-specific characteristics (mortality of children under age 5 during the five years preceding the genocide and the sex ratio before the genocide). Finally,  $\delta_c$  is a vector of *commune* dummies, capturing all timeinvariant factors at the *commune* level (*commune* fixed effects) and  $\theta_t$  is a vector of dummies for the survey waves (time fixed effects). Standard errors are clustered at the primary sampling unit (PSU) level.

<sup>&</sup>lt;sup>9</sup> Note that the duration time is parameterized in terms of the set of covariates, including the conflict proxy, but the particular distributional form of the duration time is not parameterized. Also note that there is no constant term; the latter is absorbed in  $h_0(t)$ , which is not directly estimated in the model.

<sup>&</sup>lt;sup>10</sup> Using June 1995 as a starting point allows us to exclude children conceived during the genocide, potentially through rape, from our analysis.

<sup>&</sup>lt;sup>11</sup> Number of children born before June 1995 and percentage of children ever lost before the genocide.

Next, we perform a survival analysis, using the genocide-induced change in the *commune*-level sex ratio as conflict measure. We estimate the following Cox regression model:

$$h_{ict}(t) = h_0(t) \exp(\beta \Delta Sex \, ratio_{c,1991-2002} + \pi \, Sex \, ratio_{c,1991} + X'_{ict} \, \gamma + \delta_p + \theta_t) \, (2)$$

where  $h_{ict}(t)$  is the hazard rate for woman *i*, living in *commune c*, interviewed in wave *t*, as defined in Eq. 1. The variable  $\Delta Sex ratio_{c,1991-2002}$  measures the change in the sex ratio from the pre-genocide period to the post-genocide period in *commune c*. This measures the genocide-induced reduction in the relative number of men in the *commune* and serves as proxy for a woman's chance of getting into a relationship. The variable *Sex ratio<sub>c,1991</sub>* accounts for the pre-genocide level of the sex ratio in the *commune*.  $X'_{ict}$  is the same matrix of individual, household, and *commune*-specific covariates as in Eq. 1. Finally,  $\delta_p$  is a vector of *préfecture* fixed effects.<sup>12</sup> Standard errors are again clustered at the PSU level.

The second estimation strategy is a count data model to determine the effect of the conflict on the total number of post-genocide births. To account for both censoring at zero and the nonnegative integer nature of the outcome values, we estimate the following Poisson regression model:

$$Y_{ict} = \alpha + \beta \ Conflict_{ict} + X'_{ict} \ \gamma + \delta_c + \ \theta_t + u_{ict}$$
(3)

where  $Y_{ict}$  denotes the post-genocide fertility of woman *i*, living in *commune c*, and interviewed at time *t*. More specifically, the outcome variable contains the number of births a woman had between June 1995 and the date of each survey interview. Note that pooling all three DHS waves (2000, 2005, and 2010) here means that a different period for when births can occur is considered in each wave. This period is 5 years, 10 years, and 15 years long for the 2000, 2005, and 2010 waves, respectively. *Conflict<sub>ict</sub>* is a dummy variable indicating a woman's exposure to conflict during the genocide, as measured by the two different conflict proxies outlined above, *CHILD<sub>ict</sub>* and *SIBLING<sub>ict</sub>*.  $X'_{ict}$  is a matrix of covariates including the same individual, household, and *commune*-specific characteristics as in Eq. 1. Finally,  $\delta_c$ represents *commune* fixed effects, capturing all time-invariant factors at the *commune* level.  $\theta_t$  is a vector of dummies for survey waves (time fixed effects).  $u_{ict}$  is the error term. Standard errors are clustered at the PSU level.

<sup>&</sup>lt;sup>12</sup> Note that in Eq. 2 we use *préfecture* fixed effects (instead of *commune* fixed effects as in Eq. 1) because the sex ratio varies at the *commune* level.

Finally, we explore the effects of conflict on the total number of children born after the genocide, using the genocide-induced change in the *commune*-level sex ratio as proxy. To this end, we estimate the following Poisson regression model:

$$Y_{ict} = \alpha + \beta \Delta Sex \ ratio_{c,1991-2002} + \pi \ Sex \ ratio_{c,1991} + X'_{ict} \ \gamma \ + \delta_p + \ \theta_t + u_{ict}$$
(4)

where  $Y_{ict}$  denotes the number of children born between June 1995 and the date of interview to woman *i*, living in *commune c*, interviewed at time *t*. As in Eq. 2,  $\Delta Sex ratio_{c,1991-2002}$ measures the change in the *commune*-level sex ratio from the pre-genocide period to the postgenocide period. The variable *Sex ratio*<sub>c,1991</sub> measures the pre-genocide level of the sex ratio in each *commune*.  $X'_{ict}$  is the same matrix of individual, household, and *commune*-specific covariates as in Eq 1. Finally,  $\delta_p$  is a vector of *préfecture* fixed effects.

#### Results

#### The Effects of the Genocide on the Hazard of Having a Birth after the Genocide

As a first step, we investigate the effects of genocide exposure on the hazard of having a birth in the five years following the genocide. Our sample includes all women aged 10-45 at the time of the genocide. As a refinement, we also estimate the hazard of having a birth after the genocide separately by age cohort, based on a woman's age at the time of the genocide, and by parity, based on the number of children a woman had before June 1995.

Table 2 reports results obtained from estimating Eq. 1 with a Cox regression model when we use, as measure of conflict exposure,  $CHILD_{ict}$ , a dummy taking the value one if a woman experienced the death of a child during the genocide; and zero otherwise. Column 1 reports results from the baseline regression specification in which we only include the conflict proxy, the age (and age squared) of the woman, *commune* fixed effects, and time fixed effects. Results show that for women exposed to child death during the genocide, the hazard of having a birth within the five years following the genocide is higher than for women not exposed to child death, i.e. the survival time until the first birth after the genocide is shorter. This is consistent with a replacement effect at work. As shown in column 2, this result is robust to the inclusion of control variables. The estimated coefficient of the conflict variable (0.27) implies that the hazard of having a birth within five years after the genocide is 31% higher for women

who lost a child during the genocide than for women who did not experience child death.<sup>13</sup> Interestingly, when we look at the results by women's age cohort (columns 3-5), we find the effect to be highly statistically significant and large in magnitude for older women (aged 20-45 at the time of the genocide), while it is not significant for the young cohort (i.e. aged 10-19 at the time of the genocide). Finally, we look at the effects of child death on the hazard of having a birth by parity. The estimates reported in columns 6-8 confirm that there is a significant effect for all parity groups, though the effect is stronger for lower parities. Interestingly, additional regressions (Table A1, columns 1-2 in the supplementary online Appendix) show that the effect of child death is significant and positive for both the death of a son and the death of a daughter. This indicates that the replacement effect is at work independent of the lost child's gender.

#### [Table 2 about here]

Next, we consider the effect of a woman's exposure to sibling death during the genocide on the hazard of having a birth in the five years after the genocide. Results are displayed in Table 3. As before, we report results for the baseline and main specifications (the one with all controls), and by age cohort and parity. The variable of interest, SIBLING<sub>ict</sub>, has a negative coefficient in all specifications. This indicates that the hazard of having a birth is smaller, i.e. the survival time is longer, for women exposed to a sibling death. Yet, the estimated coefficient is only statistically significant in the specification including all controls (column 2) and for the youngest cohort (column 3). We interpret these results as suggesting that the possible negative psychological effect of sibling loss due to the genocide is more likely to affect fertility if the violent event occurs when the woman is young. Interestingly, when disaggregating the effects of sibling death by a sibling's age relative to each sample woman (Table A1, columns 3-8 in the supplementary online Appendix), we find that the effect is stronger (i.e. the survival time is longer) for the death of a younger sibling, although it is only significant in the case of the death of a younger brother. This finding is in line with the theoretical predictions suggesting a stronger effect for the death of a younger sibling. Since the death of a younger brother is likely to have occurred while the woman was still living with her parents, this variable may capture the trauma effect of having witnessed violence committed against close family members or stigmatization due to belonging to a victimized household.

<sup>&</sup>lt;sup>13</sup> The magnitude of the effect is computed as:  $100 * [(e^{(0.27*1)} - e^{(0.27*0)})/e^{(0.27*0)}].$ 

#### [Table 3 about here]

As a final step in our survival analysis, Table 4 reports results obtained when using the genocide-induced change in the *commune*-level sex ratio to measure conflict exposure (Eq. 2). Results show that the coefficient of interest is negative in all specifications. This suggests that women exposed to a more severe local shortage of men because of the genocide have a lower hazard of having a birth in the five years after the genocide. Moreover, reading across columns 3-5, our results show that – not surprisingly – the negative effect of the decline in the sex ratio on the hazard of having a birth is strongest for the oldest cohort.

#### [Table 4 about here]

Lastly, we comment on the covariates that turn out to be statistically significant across specifications (Tables 2, 3, and 4). The first is the household wealth index that – in line with results from previous studies – is significant and negative. This suggests that, under the assumption that current wealth is predicted by past wealth, the hazard of having a birth is smaller for women from relatively wealthier households. The second variable is the number of children born before June 1995. Its negative sign indicates that the hazard of having a birth after the genocide declines with the number of children conceived before the genocide. Finally, we find that the percentage of children ever lost before the genocide is significant and negatively correlated with the hazard of having a birth after the genocide. Yet, for the youngest cohort the correlation is positive. This is not surprising because these are those women for whom the replacement effect is more likely.

#### The Effects of the Genocide on the Total Number of Post-Genocide Births

All results discussed until now explore the effects of the genocide on the hazard of having a birth within five years following the genocide. To complement the previous analyses, we now examine the effects of the conflict on the total number of post-genocide births, looking again at the effects of each of the three measures of conflict exposure. As in the survival analysis, our sample includes all women aged 10-45 at the time of the genocide. Again, we also estimate the model for the total number of births after the genocide separately by age cohort, based on a woman's age at the time of the genocide, and by parity. In addition, we analyze the effects of the genocide on fertility in the short (1995-2000), medium (2000-2005), and long terms (2005-2010).

Table 5 reports results obtained from estimating Eq. 3 with a Poisson regression model and when using  $CHILD_{ict}$  as proxy for a woman's exposure to the genocide. Column 1 displays results for the baseline specification. Results show a strong and positive effect of  $CHILD_{ict}$  on the number of births after the genocide. This again indicates a replacement effect at work. Women who lost at least one child during the genocide have significantly more births in the post-genocide period. This result is robust to the inclusion of the full set of control variables (column 2, the main specification). As regards the magnitude of the estimated coefficient, we find that having experienced the death of a child during the genocide increases the predicted number of children born after the genocide by 10%. Column 9 shows that the replacement effect is strong and significant in the short run, i.e. in the five years after the genocide, while the effect is reversed in the long-run. Interestingly, we find that the effect of child death is positive for both son and daughter death, but it is significant only for a deceased male child (Table A2, columns 1-2 in the supplementary online Appendix).

#### [Table 5 about here]

Next, we look at the effect of an exposure to sibling death during the genocide on the total number of births in the post-genocide period. To this end, we estimate Eq. 3 using the variable SIBLING<sub>ict</sub> as a measure of genocide exposure. Table 6 shows the results. Columns 1 and 2 report the estimates for the baseline and main specifications. The negative coefficients for SIBLING<sub>ict</sub> indicate that women who experienced the death of a sibling during the genocide have significantly lower fertility in the post-genocide period than women who did not lose a sibling. The magnitude of the estimated coefficient in column 2 indicates that being exposed to sibling death during the genocide decreases the predicted number of children by 5%. The analysis by parity (columns 6-9) indicates that, while the effect is significant and decreases with an increase in parity, it is not significant for women who did not have children or had three or more at the end of the genocide). Finally, the analysis of the effect by time horizon (columns 10-12) indicates that, while the effect of the death of a sibling is always negative, it is larger in the long run. Interestingly, we find a significant and negative effect for the death of a sibling, irrespective of the sibling's gender (Table A2, columns 3 and 6 in the supplementary online Appendix). When we disaggregate sibling death by the age of the sibling relative to the sample women, we find the strongest effect for the death of a younger brother. This finding confirms results from the survival analysis and is in line with theoretical predictions suggesting a stronger effect for the death of younger (rather than older) sibling.

#### [Table 6 about here]

Finally, we examine the effect of the conflict-induced change in the *commune*-level sex ratio on the number of children born after the genocide. Results for Eq. 4 are reported in Table 7. In the baseline (column 1) and main specifications (column 2), the estimated coefficients for  $\Delta Sex ratio_{c,1991-2002}$  are negative, with the latter being significant at 5%. This indicates that a genocide-induced decrease in the local sex ratio (a relative reduction in the number of men with respect to the number of women in the *commune*) lowers the total number of births a woman had after the genocide. In particular, the effect is significant for the oldest cohort and for women with higher parity. Moreover, the effect is significant if we restrict the analysis to the short run, i.e. the five years following the genocide. This confirms the results obtained with survival analysis. Taken together, these results suggest that the genocide has affected fertility in the short run by decreasing the possibility of marital matching due to the conflictinduced reduction in the local sex ratio.

#### [Table 7 about here]

As regards other covariates, we find some to be significant across results in Tables 5, 6, and 7. Having secondary (or higher) education and the number of children born before June 1995 both tend to decrease fertility. The coefficient for household wealth is always negative and significant. Again, the percentage of children lost before the genocide is negatively correlated with the number of total post-genocide births for the full sample, but not for the youngest cohort.

#### **Robustness Tests**

We conduct several tests on the robustness of results. First, we re-estimate the survival and count data models, this time including all three proxies for conflict exposure simultaneously. Results are reported in Tables A3 and A4, respectively, in the supplementary online Appendix. Interestingly, results are virtually unchanged for both models compared to those obtained with separate regressions, both in terms of significance levels and effect size. This suggests that the mechanisms captured by the three measures of genocide intensity are not substitutes, but it appears that they affect fertility decisions independently from each other instead.

Second, we explore if our results capture the specific effect of the genocide on fertility or if our analysis simply picks up an effect that would materialize any time a woman loses a child or a sibling. Recall that in our main analysis, we already control for the percentage of children ever lost before the genocide. We re-estimate Eq. 3 with CHILD<sub>ict</sub> as genocide measure, but now adding a placebo dummy variable taking the value one if a woman experienced the death of a child shortly before the genocide period (1990-1993), and zero otherwise, while accounting for the full set of control variables. Results in Table A5, column 1 in the supplementary online Appendix show that the replacement effect for child death during the genocide rather than in another period is significantly larger,<sup>14</sup> thus suggesting that exposure to the genocide does have a differential effect on fertility outcomes. Next, we conduct a similar test on the effect of sibling death on fertility in the post-genocide period. To this end, we construct a placebo dummy variable taking the value one if the sibling death occurred in the 1990-1993 period (i.e. before the genocide); and zero otherwise. Again, we re-estimate Eq. 3 with  $SIBLING_{ict}$  as genocide measure, adding the placebo dummy to the full set of controls. Results in column 2 show that the placebo variable for sibling death is not statistically different from zero. This evidence confirms that our analysis captures fertility effects that are specific to a woman's sibling mortality during the 1994 genocide. Comparable results are obtained when carrying out this test with a count data model (Table A6 in the supplementary online Appendix).

Third, we explore if results are driven by the choice of the regression sample. Recall that all regressions discussed so far are carried out on the full sample of women aged 10-45 years at the time of the genocide. Instead, we now re-estimate all regressions based on different samples that are tailored to each conflict proxy. For the analysis of the effects of child death, we restrict the sample to those women who had at least one child before the genocide began. For the analysis of the effects of sibling death, we restrict the sample to those women who had at least one sibling before the genocide. For the analysis of the genocide-induced change in the sex ratio, we restrict the sample to women who had their first marriage after the genocide. Results for the survival model (Table A7 in the supplementary online Appendix) and for the count data model (Table A8) show that using these restricted samples yields qualitatively similar results to those using the full sample, thus providing confidence in the robustness of our findings.

<sup>&</sup>lt;sup>14</sup> An F-test rejects the null hypothesis that the coefficients are equal, with the p-value being 0.06.

Fourth, since our analysis builds on retrospective data, we check whether recall bias is a serious concern. To test for this, we re-estimate the main specification in Table 2 (column 2) separately for each DHS wave. Results reported in Table A9 in the supplementary online Appendix show that the effect of child death on fertility is similar across the different DHS waves. We interpret this as supporting evidence that the recall bias is not a major concern for our analysis.

Fifth, we re-estimate all main regression specifications with the addition of location-specific linear time trends to capture all time-varying characteristics at the *commune* and *préfecture* level. Results in Table A10 (for the survival analysis) and Table A11 (for the count data model) in the supplementary online Appendix show that all main results for the effects of conflict – as proxied by  $CHILD_{ict}$ ,  $SIBLING_{ict}$  and  $\Delta Sex \ ratio_{c,1991-2002}$  – are unchanged.

Finally, we explore the possibility that fertility differs across Hutu and Tutsi and how this difference may bias our results. Ideally, one would control for ethnicity in all models. Unfortunately, this is not possible because Rwandan law since the genocide prohibits the collecting of information on the ethnicity of respondents. Thus, to shed light on the possibility that fertility outcomes differ between the two main ethnic groups, we turn to information included in the pre-genocide survey, namely the 1992 DHS. Of the nationally representative sample of women surveyed in the 1992 DHS, 8.6% reported being Tutsi. Descriptive statistics suggest the existence of some differences across ethnic groups. On average, Tutsi women had 0.6 fewer living children, married 1.7 years later, and gave birth to their first child 1.7 years later than Hutu women in 1992 (all three figures are significantly different in means across Hutu and Tutsi). Other socio-economic characteristics differing between Hutu and Tutsi are education, place of living, and wealth. As a first step, we test the effect of being Tutsi on fertility in the pre-genocide period. We do this separately for the five years preceding the survey (1987-1992), the 10 years preceding the survey (1982-1992), and the 15 years preceding the survey (1977-1992), using the same set of covariates from our main specification as controls. We find that – *ceteris paribus* – being Tutsi has no effect on fertility in the 1987-1992 period, while it has a negative and significant effect on fertility in both the 1982-1992 and 1977-1992 periods (Table A12 in the supplementary online Appendix). This finding implies that because we cannot control for ethnicity, our results may be biased. Yet, the direction of the bias potentially introduced by the omitted Tutsi variable depends on the conflict proxy we use. When we use  $SIBLING_{ict}$  or  $\Delta Sex \ ratio_{c,1991-2002}$ , we expect both measures to be negatively associated with fertility and positively associated with the Tutsi indicator (as discussed above, most people killed during the genocide were Tutsi). It follows that, if anything, the estimates obtained when using  $SIBLING_{ict}$  or  $\Delta Sex ratio_{c,1991-2002}$  are likely to be biased downwards. In other words, the estimated effect of conflict on fertility obtained in these two cases is likely to reflect the lower bound of the true effect of conflict, making our results conservative. Instead, in the case of  $CHILD_{ict}$ , the direction of the bias is ambiguous. While child death is positively associated with fertility, being Tutsi is negatively associated with fertility, and the two measures are positively correlated to each other (i.e. it is more likely that children from Tutsi households were killed during the genocide). Thus, the sign of the bias depends on which effect dominates, i.e. the positive effect of  $CHILD_{ict}$  or the negative effect of being Tutsi. Yet, by reading our main results for this mechanism (Tables 2 and 5) together with those of the effect of being Tutsi on fertility in the short run, it is very unlikely that one of our main results – that there is a replacement effect in the five years after the genocide (Table 5, column 9) – is driven by the different fertility propensity between Tutsi and Hutu.

#### Conclusions

In this paper, we study the effects of the 1994 genocide in Rwanda on fertility, using detailed individual-level data and various measures of individual exposure to violence. Using both survival analysis and count data models, we investigate the effects of exposure to violence on both the hazard of having a child within the first five years after the genocide and the total number of births in the post-genocide period.

We find evidence that both channels impact genocide to post-genocide fertility outcomes. On the one hand, the death of a mother's child during the genocide increases both the hazard of having a child within five years and the total number of births within 15 years following the genocide. This is strong evidence for a replacement effect. At the same time, sibling death during the genocide significantly lowers the hazard of having a child in the five years following the genocide as well as total post-genocide fertility, especially if a woman lost a younger sibling. This suggests the existence of a psychological mechanism. On the other hand, the genocide-induced reduction in the local sex ratio has a strong negative impact on both the hazard of having a child in the five years after the genocide and on total fertility, with the effect being highly significant in the short run and for older women. Taken together, these results suggest that both the type of violence experienced and the genocide-induced changes in the local demographic conditions matter for fertility outcomes. Our analysis also highlights differential effects of the genocide in terms of age cohorts, parity and time horizon (short, medium, and long runs). In particular, our results by age group are informative. The genocide has no effect on post-genocide total number of children for the youngest age group, while all measures of genocide violence have an effect for the older age groups. At the same time, looking at the hazard of having a child during the five years following the genocide, the youngest and oldest age groups are those more affected in their fertility decisions. This heterogeneity in the effects of violent events on fertility suggests the importance of better understanding the precise mechanisms behind the aggregate effects of conflict on demographic changes.

#### References

- Agadjanian, V., P. Dommaraju, & J.E. Glick (2008). Reproduction in upheaval: Ethnicspecific fertility responses to societal turbulence in Kazakhstan. Population Studies 62(2), 211-233.
- Agadjanian, V. & N. Prata (2002). War, Peace, and Fertility in Angola. Demography 39(2), 215-231.
- Akresh, R. & D. de Walque (2008). Armed Conflict and Schooling: Evidence from the 1994 Rwandan Genocide. World Bank Policy Research Working Paper 4606.
- Akresh, R., P. Verwimp, & T. Bundervoet (2011). Civil War, Crop Failure, and Child Stunting in Rwanda. Economic Development and Cultural Change 59(4), 777-810.
- André, C. & J.P. Platteau (1998). Land relations under unbearable stress: Rwanda caught in the Malthusian trap. Journal of Economic Behavior and Organization 34(1), 1-47.
- Ben-Porath, Y. (1976). Fertility Response to Child Mortality: Micro Data from Israel. Journal of Political Economy 84(4), S163-S178.
- Bethmann, D. & M. Kvasnicka (2013). World War II, Missing Men and Out of Wedlock Childbearing. The Economic Journal 123(567), 162-194.
- Brainerd, E. (2016). The Lasting Effect of Sex Ratio Imbalance on Marriage and Family: Evidence from World War II in Russia. IZA Discussion Papers 10130.
- Brück, T. & K. Schindler (2009). The Impact of Violent Conflicts on Households: What Do We Know and What Should We Know about War Widows? Oxford Development Studies 37(3), 289-309.
- Buvinic, M., M. Das Gupta, U. Casabonne, & P. Verwimp (2013). Violent Conflict and Gender Inequality: An Overview. The World Bank Research Observer 28(1), 110-138.
- Cain, M. (1983). Fertility as an Adjustment to Risk. Population and Development Review 9(4), 688-702.
- Caldwell, J.C. (2004). Social Upheaval and Fertility Decline. Journal of Family History 29(4), 382-406.
- Caldwell, J.C., P.H. Reddy, & P. Caldwell (1986). Periodic High Risk as a Cause of Fertility Decline in a Changing Rural Environment: Survival Strategies in the 1980-1983 South Indian Drought. Economic Development and Cultural Change 34(4), 677-701.
- Clifford, D., J. Falkingham, & A. Hinde (2010). Through Civil War, Food Crisis and Drought: Trends in Fertility and Nuptiality in Post-Soviet Tajikistan. European Journal of Population 26(3), 325-350.
- Curlin, G.T., L.C. Chen, & S.B. Hussain (1976). Demographic Crisis: The Impact of the Bangladesh Civil War (1971) on Births and Deaths in a Rural Area of Bangladesh. Population Studies 30(1), 87-105.

- de Walque, D. & P. Verwimp (2010). The Demographic and Socio-economic Distribution of Excess Mortality during the 1994 Genocide in Rwanda. Journal of African Economies 19(2), 141-162.
- Desforges, A. (1999). Leave None to Tell the Story: Genocide in Rwanda. New York: Human Right Watch.
- Elveborg Lindskog, E. (2016). Violent Conflict and Sexual Behavior in Rwanda. Population, Space and Place 22(3), 241-254.
- Fletcher, J., M. Mailick, J. Song, & B. Wolfe (2013). A Sibling Death in the Family: Common and Consequential. Demography 50(3), 803-826.
- Fletcher, J., M. Vidal-Fernandez, & B. Wolfe (2017). Dynamic and Heterogeneous Effects of Sibling Death on Children's Outcomes. Unpublished manuscript.
- Heuveline, P. & B. Poch (2007). The Phoenix Population: Demographic Crisis and Rebound in Cambodia. Demography 44(2), 405-426.
- Hill, K. (2004). War, Humanitarian Crises, Population Displacement, and Fertility: A Review of Evidence. Washington, DC: National Academies Press.
- Hossain, M.B., J.F. Phillips, & T.K. Legrand (2007). The Impact of Childhood Mortality on Fertility in Six Rural Thanas of Bangladesh. Demography 44(4), 771-784.
- Iqbal, Z. (2010). War and the Health of Nations. Standford, CA: Stanford University Press.
- Islam, A., C. Ouch, R. Smyth, & L.C. Wang (2016). The long-term effects of civil conflicts on education, earnings, and fertility: Evidence from Cambodia. Journal of Comparative Economics 44(3), 800-820.
- Justino, P. & P. Verwimp (2013). Poverty Dynamics, Violent Conflict, and Convergence in Rwanda. Review of Income and Wealth 59(1), 66-90.
- Khawaja, M. (2000). The Recent Rise in Palestinian Fertility: Permanent or Transient? Population Studies 54(3), 331-346.
- Khawaja, M., S. Assaf, & Y. Jarallah (2009). The transition to lower fertility in the West Bank and Gaza Strip: evidence from recent surveys. Journal of Population Research 26(2), 153-174.
- Kidane, A. (1989). Demographic Consequences of the 1984-1985 Ethiopian Famine. Demography 26(3), 515-522.
- Kim, J.-Y., S.M. McHale, D. Wayne Osgood, & A.C. Crouter (2006). Longitudinal Course and Family Correlates of Sibling Relationships From Childhood Through Adolescence. Child Development 77(6), 1746-1761.
- La Mattina, G. (2017). Civil conflict, domestic violence and intra-household bargaining in post-genocide Rwanda. Journal of Development Economics 124, 168-198.
- Lee, R. (1990). The Demographic Response to Economic Crisis in Historical and Contemporary Populations. Population Bulletin of the United Nations 29, 1-15.

- Lindstrom, D.P. & B. Berhanu (1999). The Impact of War, Famine, and Economic Decline on Marital Fertility in Ethiopia. Demography 36(2), 247-261.
- Lopez, H. & Q. Wodon (2005). The economic impact of armed conflict in Rwanda. Journal of African Economies 14(4), 586-602.
- Mamdani, M. (2001). When Victims Become Killers: Colonialism, Nativism, and the Genocide in Rwanda. Princeton: Princeton University Press.
- Newbury, C. (1988). The cohesion of oppression: Clientship and ethnicity in Rwanda 1860-1960. New York: Columbia University Press.
- Nobles, J., E. Frankenberg, & D. Thomas (2015). The Effects of Mortality on Fertility: Population Dynamics After a Natural Disaster. Demography 52(1), 15-38.
- Nugent, J.B. (1985). The Old-Age Security Motive for Fertility. Population and Development Review 11(1), 75-97.
- Preston, S.H. (1978). The Effects of Infant and Child Mortality on Fertility. New York: Academic Press.
- Prunier, G. (1999). Rwanda: le génocide. Paris: Éditions Dagorno.
- Rindfuss, R.R., J.S. Reed, & C. St. John (1978). A Fertility Reaction to a Historical Event: Southern White Birthrates and the 1954 Desegregation Ruling. Science 201(4351), 178-180.
- Rogall, T. & D. Yanagizawa-Drott (2014). The Legacy of Political Mass Killings: Evidence from the Rwandan Genocide. Unpublished manuscript.
- Sah, R.K. (1991). The Effects of Child Mortality Changes on Fertility Choice and Parental Welfare. Journal of Political Economy 99(3), 582-606.
- Sahn, D.E. & D.C. Stifel (2000). Poverty Comparisons Over Time and Across Countries in Africa. World Development 28(12), 2123-2155.
- Schindler, K. (2010). Who does what in a household after genocide? Evidence from Rwanda. DIW Discussion Paper 1072.
- Schindler, K. & M. Verpoorten (2013). Armed conflict, sex ratios and marital outcomes: Evidence from Rwanda. Unpublished manuscript.
- Schultz, T.P. (1969). An Economic Model of Family Planning and Fertility. Journal of Political Economy 77(2), 153-180.
- Schultz, T.P. (1997). Chapter 8 Demand for children in low income countries. Handbook of Population and Family Economics 1, 349-430.
- Shemyakina, O. (2011). The Effect of Armed Conflict on Accumulation of Education: Results from Tajikistan. Journal of Development Economics 95(2), 186–200.

- Stroebe, M.S., S. Folkman, R.O. Hansson, & H. Schut (2006). The prediction of bereavement outcome: Development of an integrative risk factor framework. Social Science & Medicine 63(9), 2440-2451.
- Urdal, H. & C.P. Che (2013). War and Gender Inequalities in Health: The Impact of Armed Conflict on Fertility and Maternal Mortality. International Interactions 39(4), 489-510.
- Verpoorten, M. (2005). The death toll of the Rwandan genocide: a detailed analysis for Gikongoro Province. Population 60(4), 331-367.
- Verpoorten, M. (2009). Household coping in war- and peacetime: Cattle sales in Rwanda, 1991-2001. Journal of Development Economics 88(1), 67-86.
- Verpoorten, M. (2012). Leave none to claim the land: A Malthusian catastrophe in Rwanda? Journal of Peace Research 49(4), 547-563.
- Verwimp, P., P. Justino, & T. Brück (2009). The Analysis of Conflict: A Micro-Level Perspective. Journal of Peace Research 46(3), 307-314.
- Verwimp, P., D. Osti, & G. Østby (2017). Migration, Forced Displacement and Fertility during Civil War: A Survival Analysis. CEB Working Paper 17/016.
- Verwimp, P. & J. Van Bavel (2005). Child Survival and Fertility of Refugees in Rwanda. European Journal of Population 21, 271-290.
- Williams, N.E., D.J. Ghimire, W.G. Axinn, E.A. Jennings, & M.S. Pradhan (2012). A Micro-Level Event-Centered Approach to Investigating Armed Conflict and Population Responses. Demography 49(4), 1521-1546.
- Woldemicael, G. (2008). Recent fertility decline in Eritrea: Is it a conflict-led transition? Demographic Research 18(2), 27-58.
- Wolpin, K.I. (1997). Chapter 10 Determinants and consequences of the mortality and health of infants and children. Handbook of Population and Family Economics 1, 483-557.
- Yanagizawa-Drott, D. (2014). Propaganda and Conflict: Evidence from the Rwandan Genocide. The Quarterly Journal of Economics 129(4), 1947-1994.
- Yi, J., J.J. Heckman, J. Zhang, & G. Conti (2015). Early Health Shocks, Intra-household Resource Allocation and Child Outcomes. The Economic Journal 125(588), F347-F371.

### Tables

| Table 1: | Summary | statistics |
|----------|---------|------------|
| Table 1. | Summary | statistics |

|                                                                                                   | Observations | Mean   | Std. dev. | Min    | Max    |
|---------------------------------------------------------------------------------------------------|--------------|--------|-----------|--------|--------|
| Dependent variables                                                                               |              |        |           |        |        |
| No. of children born after June 1995                                                              | 25,770       | 1.832  | 1.728     | 0      | 10     |
| No. of children born between June 1995 and May 2000 (short run)                                   | 25,770       | 0.870  | 0.979     | 0      | 6      |
| No. of children born between June 2000 and May 2005 (medium run)                                  | 25,770       | 0.662  | 0.905     | 0      | 5      |
| No. of children born between June 2005 and May 2010 (long run)                                    | 25,770       | 0.280  | 0.635     | 0      | 4      |
| Conflict proxies                                                                                  |              |        |           |        |        |
| Exposure to child death during genocide (CHILD <sub>ict</sub> )                                   | 25,770       | 0.030  | 0.170     | 0      | 1      |
| Exposure to sibling death during genocide (SIBLING <sub>ict</sub> )                               | 25,770       | 0.278  | 0.448     | 0      | 1      |
| Genocide-induced change in <i>commune</i> -level sex ratio ( $\Delta Sex \ ratio_{c,1991-2002}$ ) | 25,770       | 0.147  | 0.061     | 0.002  | 0.318  |
| Women's characteristics                                                                           |              |        |           |        |        |
| Age                                                                                               | 25,770       | 31.648 | 8.995     | 15     | 49     |
| Cohort 1: women aged 10-19 during genocide                                                        | 25,770       | 0.488  | 0.500     | 0      | 1      |
| Cohort 2: women aged 20-29 during genocide                                                        | 25,770       | 0.301  | 0.459     | 0      | 1      |
| Cohort 3: women aged 30-45 during genocide                                                        | 25,770       | 0.211  | 0.408     | 0      | 1      |
| Never married at the time of the genocide                                                         | 25,770       | 0.581  | 0.493     | 0      | 1      |
| No education                                                                                      | 25,770       | 0.262  | 0.440     | 0      | 1      |
| Primary education                                                                                 | 25,770       | 0.612  | 0.487     | 0      | 1      |
| Secondary or higher education                                                                     | 25,770       | 0.126  | 0.331     | 0      | 1      |
| No. of children born before June 1995                                                             | 25,770       | 1.554  | 2.328     | 0      | 15     |
| Parity 0: women with no children born before June 1995                                            | 25,770       | 0.568  | 0.495     | 0      | 1      |
| Parity 1: women with one child born before June 1995                                              | 25,770       | 0.095  | 0.293     | 0      | 1      |
| Parity 2: women with two children born before June 1995                                           | 25,770       | 0.076  | 0.264     | 0      | 1      |
| Parity 3+: women with three or more children born before June 1995                                | 25,770       | 0.261  | 0.440     | 0      | 1      |
| Percentage of children ever lost before genocide                                                  | 25,770       | 0.058  | 0.168     | 0      | 1      |
| Household characteristics                                                                         |              |        |           |        |        |
| Household wealth index                                                                            | 25,770       | -0.035 | 1.697     | -2.375 | 13.579 |
| Place of residence is urban                                                                       | 25,770       | 0.220  | 0.414     | 0      | 1      |
| Commune characteristics                                                                           |              |        |           |        |        |
| Under-five mortality during 5 years before the genocide                                           | 25,770       | 0.166  | 0.089     | 0.015  | 0.522  |
| Sex ratio before genocide                                                                         | 25,770       | 0.980  | 0.154     | 0.771  | 1.392  |
| DHS wave                                                                                          |              |        |           |        |        |
| Wave 2000                                                                                         | 25,770       | 0.388  | 0.487     | 0      | 1      |
| Wave 2005                                                                                         | 25,770       | 0.323  | 0.468     | 0      | 1      |
| Wave 2010                                                                                         | 25,770       | 0.289  | 0.453     | 0      | 1      |

Data source: DHS 2000, 2005, and 2005.

|                                                            |                      | Dependent v          | ariable: Haza       | ard of having        | a birth betwe       | en June 1995         | and May 200         | 00                  |
|------------------------------------------------------------|----------------------|----------------------|---------------------|----------------------|---------------------|----------------------|---------------------|---------------------|
|                                                            | All                  | All                  | Aged<br>10-19       | Aged<br>20-29        | Aged<br>30-45       | Parity 1             | Parity 2            | Parity 3+           |
|                                                            | (1)                  | (2)                  | (3)                 | (4)                  | (5)                 | (6)                  | (7)                 | (8)                 |
| Child death during genocide ( <i>CHILD<sub>ict</sub></i> ) | 0.28<br>(5.67)***    | 0.27<br>(5.45)***    | -0.11<br>(-0.35)    | 0.27<br>(4.08)***    | 0.24<br>(3.77)***   | 0.30<br>(1.98)**     | 0.35<br>(3.11)***   | 0.22<br>(4.17)***   |
| Age                                                        | 0.55<br>(55.35)***   | 0.46<br>(45.52)***   | 0.70<br>(16.64)***  | 0.06<br>(1.74)*      | 0.09<br>(0.91)      | 0.15<br>(3.53)***    | 0.20<br>(3.49)***   | 0.12<br>(3.46)***   |
| Age squared                                                | -0.01<br>(-49.31)*** | -0.01<br>(-41.63)*** | -0.01<br>(-6.45)*** | -0.00<br>(-2.41)**   | -0.00<br>(-2.29)**  | -0.00<br>(-4.79)***  | -0.00<br>(-4.29)*** | -0.00<br>(-5.24)*** |
| Never married at the time of the genocide                  |                      | -0.81<br>(-25.96)*** | -0.68<br>(-6.44)*** | -0.49<br>(-13.94)*** | -0.51<br>(-4.05)*** | -0.56<br>(-10.02)*** | -0.57<br>(-4.67)*** | -0.42<br>(-3.04)*** |
| Primary education                                          |                      | 0.03<br>(1.68)*      | -0.16<br>(-3.32)*** | 0.05<br>(1.68)*      | 0.06<br>(1.83)*     | 0.05<br>(0.96)       | 0.06<br>(0.97)      | 0.05<br>(1.59)      |
| Secondary or higher education                              |                      | -0.02<br>(-0.62)     | -0.45<br>(-5.81)*** | -0.01<br>(-0.17)     | -0.11<br>(-1.21)    | 0.06<br>(0.70)       | -0.06<br>(-0.54)    | -0.22<br>(-2.81)*** |
| No. of children born before June 1995                      |                      | -0.08<br>(-10.31)*** | -0.17<br>(-2.15)**  | -0.02<br>(-1.75)*    | 0.10<br>(10.56)***  |                      |                     |                     |
| Percentage of children ever lost<br>before the genocide    |                      | -0.19<br>(-3.39)***  | 0.38<br>(1.98)**    | -0.16<br>(-2.70)***  | -0.33<br>(-4.02)*** | -0.29<br>(-2.12)**   | -0.05<br>(-0.61)    | -0.28<br>(-4.29)*** |
| Household wealth index                                     |                      | -0.03<br>(-3.31)***  | -0.10<br>(-6.18)*** | -0.00<br>(-0.35)     | 0.01<br>(0.36)      | 0.01<br>(0.26)       | 0.00<br>(0.18)      | 0.02<br>(0.95)      |
| Place of residence is urban                                |                      | -0.01<br>(-0.25)     | 0.12<br>(1.48)      | -0.05<br>(-0.86)     | -0.11<br>(-1.31)    | -0.09<br>(-0.88)     | -0.18<br>(-1.60)    | -0.08<br>(-1.11)    |
| Under-five mortality during 5 years before the genocide    |                      | -0.14<br>(-1.03)     | -0.06<br>(-0.21)    | -0.47<br>(-2.26)**   | 0.11<br>(0.40)      | -0.27<br>(-0.72)     | -0.67<br>(-1.66)*   | -0.09<br>(-0.40)    |
| Commune fixed effects                                      | Yes                  | Yes                  | Yes                 | Yes                  | Yes                 | Yes                  | Yes                 | Yes                 |
| Wave fixed effects                                         | Yes                  | Yes                  | Yes                 | Yes                  | Yes                 | Yes                  | Yes                 | Yes                 |
| Sample                                                     | All waves            | All waves            | All waves           | All waves            | All waves           | All waves            | All waves           | All waves           |
| Observations                                               | 25,770               | 25,754               | 12,570              | 7,759                | 5,425               | 2,442                | 1,948               | 6,741               |

**Table 2:** Survival analysis of post-genocide fertility with child death as conflict proxy

*Note*: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. Parity is defined based on a woman's number of children as of May 1995. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                                                            | Dependent variable: Hazard of having a birth between June 1995 and May 2000 |                      |                     |                      |                     |                      |                      |                     |                     |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------|---------------------|----------------------|---------------------|----------------------|----------------------|---------------------|---------------------|--|
|                                                            | All                                                                         | All                  | Aged<br>10-19       | Aged 20-29           | Aged 30-45          | Parity 0             | Parity 1             | Parity 2            | Parity 3+           |  |
|                                                            | (1)                                                                         | (2)                  | (3)                 | (4)                  | (5)                 | (6)                  | (7)                  | (8)                 | (9)                 |  |
| Sibling death during genocide<br>(SIBLING <sub>ict</sub> ) | -0.03<br>(-1.58)                                                            | -0.04<br>(-1.87)*    | -0.08<br>(-1.79)*   | -0.02<br>(-0.78)     | -0.01<br>(-0.28)    | -0.03<br>(-0.69)     | -0.07<br>(-1.35)     | -0.08<br>(-1.35)    | -0.03<br>(-0.99)    |  |
| Age                                                        | 0.55<br>(55.50)***                                                          | 0.46<br>(45.59)***   | 0.70<br>(16.70)***  | 0.06<br>(1.75)*      | 0.09<br>(0.90)      | 0.77<br>(33.06)***   | 0.15<br>(3.46)***    | 0.20<br>(3.32)***   | 0.12<br>(3.36)***   |  |
| Age squared                                                | -0.01<br>(-49.38)***                                                        | -0.01<br>(-41.76)*** | -0.01<br>(-6.45)*** | -0.00<br>(-2.43)**   | -0.00<br>(-2.29)**  | -0.01<br>(-26.39)*** | -0.00<br>(-4.73)***  | -0.00<br>(-4.13)*** | -0.00<br>(-5.15)*** |  |
| Never married at the time of the genocide                  |                                                                             | -0.82<br>(-26.08)*** | -0.67<br>(-6.38)*** | -0.50<br>(-14.01)*** | -0.51<br>(-4.05)*** | 0.31<br>(2.83)***    | -0.56<br>(-10.08)*** | -0.57<br>(-4.67)*** | -0.43<br>(-3.09)*** |  |
| Primary education                                          |                                                                             | 0.03<br>(1.70)*      | -0.15<br>(-3.26)*** | 0.04<br>(1.54)       | 0.07<br>(1.88)*     | 0.03<br>(0.71)       | 0.05<br>(0.92)       | 0.05<br>(0.77)      | 0.05<br>(1.58)      |  |
| Secondary or higher education                              |                                                                             | -0.03<br>(-0.65)     | -0.44<br>(-5.76)*** | -0.01<br>(-0.29)     | -0.11<br>(-1.22)    | -0.04<br>(-0.64)     | 0.06<br>(0.71)       | -0.07<br>(-0.67)    | -0.23<br>(-2.84)*** |  |
| No. of children born before<br>June 1995                   |                                                                             | -0.07<br>(-9.80)***  | -0.17<br>(-2.30)**  | -0.02<br>(-1.37)     | 0.10<br>(11.00)***  |                      |                      |                     |                     |  |
| Percentage of children ever los<br>before the genocide     | t                                                                           | -0.19<br>(-3.37)***  | 0.38<br>(1.96)**    | -0.16<br>(-2.69)***  | -0.34<br>(-4.03)*** |                      | -0.30<br>(-2.18)**   | -0.05<br>(-0.59)    | -0.27<br>(-4.22)*** |  |
| Household wealth index                                     |                                                                             | -0.03<br>(-3.41)***  | -0.10<br>(-6.18)*** | -0.00<br>(-0.38)     | 0.00<br>(0.23)      | -0.08<br>(-5.90)***  | 0.00<br>(0.19)       | 0.00<br>(0.10)      | 0.01<br>(0.85)      |  |
| Place of residence is urban                                |                                                                             | -0.01<br>(-0.18)     | 0.12<br>(1.47)      | 0.05<br>(-0.87)      | -0.10<br>(-1.23)    | 0.06<br>(0.75)       | -0.09<br>(-0.92)     | -0.18<br>(-1.54)    | -0.08<br>(-1.10)    |  |
| Under-five mortality during 5 years before the genocide    |                                                                             | -0.14<br>(-0.99)     | -0.06<br>(-0.20)    | -0.47<br>(-2.26)**   | 0.11<br>(0.37)      | -0.34<br>(-1.44)     | -0.26<br>(-0.70)     | -0.65<br>(-1.62)    | -0.09<br>(-0.41)    |  |
| Commune fixed effects                                      | Yes                                                                         | Yes                  | Yes                 | Yes                  | Yes                 | Yes                  | Yes                  | Yes                 | Yes                 |  |
| Wave fixed effects                                         | Yes                                                                         | Yes                  | Yes                 | Yes                  | Yes                 | Yes                  | Yes                  | Yes                 | Yes                 |  |
| Sample                                                     | All waves                                                                   | All waves            | All waves           | All waves            | All waves           | All waves            | All waves            | All waves           | All waves           |  |
| Observations                                               | 25,770                                                                      | 25,754               | 12,570              | 7,759                | 5,425               | 14,623               | 2,442                | 1,948               | 6,741               |  |

| <b>Table 3:</b> Survival analysis of post-genocide fertility with sibling death as conflic |
|--------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------|

*Note*: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. Parity is defined based on a woman's number of children as of May 1995. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                                                               | Dependent variable: Hazard of having a birth between June 1995 and May 2000 |                      |                     |                      |                     |                      |                      |                     |                     |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------|---------------------|----------------------|---------------------|----------------------|----------------------|---------------------|---------------------|--|--|
|                                                               | All                                                                         | All                  | Aged<br>10-19       | Aged 20-29           | Aged 30-45          | Parity 0             | Parity 1             | Parity 2            | Parity 3+           |  |  |
|                                                               | (1)                                                                         | (2)                  | (3)                 | (4)                  | (5)                 | (6)                  | (7)                  | (8)                 | (9)                 |  |  |
| Change in sex ratio<br>( $\Delta Sex \ ratio_{c,1991-2002}$ ) | -0.57<br>(-2.49)**                                                          | -0.65<br>(-2.95)***  | -0.75<br>(-1.79)*   | -0.38<br>(-1.27)     | -0.86<br>(-2.00)**  | -0.47<br>(-1.24)     | -0.38<br>(-0.70)     | -1.09<br>(-1.92)*   | -0.50<br>(-1.44)    |  |  |
| Sex ratio before the genocide                                 | 0.47<br>(1.99)**                                                            | 0.67<br>(2.88)***    | 1.17<br>(2.60)***   | 0.17<br>(0.55)       | 0.48<br>(1.07)      | 0.66<br>(1.63)       | 0.51<br>(0.90)       | 0.71<br>(1.25)      | 0.30<br>(0.82)      |  |  |
| Age                                                           | 0.54<br>(55.44)***                                                          | 0.46<br>(45.55)***   | 0.69<br>(17.14)***  | 0.05<br>(1.57)       | 0.06<br>(0.62)      | 0.75<br>(33.60)***   | 0.12<br>(3.13)***    | 0.14<br>(2.74)***   | 0.12<br>(3.44)***   |  |  |
| Age squared                                                   | -0.01<br>(-49.30)***                                                        | -0.01<br>(-41.75)*** | -0.01<br>(-6.76)*** | -0.00<br>(-2.26)**   | -0.00<br>(-2.00)**  | -0.01<br>(-26.78)*** | -0.00<br>(-4.45)***  | -0.00<br>(-3.55)*** | -0.00<br>(-5.20)*** |  |  |
| Never married at the time of the genocide                     |                                                                             | -0.83<br>(-26.22)*** | -0.65<br>(-6.37)*** | -0.51<br>(-14.27)*** | -0.50<br>(-4.01)*** | 0.29<br>(2.70)***    | -0.54<br>(-10.24)*** | -0.53<br>(-4.95)*** | -0.41<br>(-2.91)*** |  |  |
| Primary education                                             |                                                                             | 0.02<br>(0.98)       | -0.17<br>(-3.58)*** | 0.04<br>(1.26)       | 0.06<br>(1.61)      | 0.02<br>(0.41)       | 0.04<br>(0.75)       | 0.01<br>(0.25)      | 0.03<br>(1.08)      |  |  |
| Secondary or higher education                                 |                                                                             | -0.04<br>(-1.13)     | -0.45<br>(-5.91)*** | -0.03<br>(-0.58)     | -0.13<br>(-1.41)    | -0.06<br>(-0.85)     | 0.06<br>(0.73)       | -0.11<br>(-1.10)    | -0.24<br>(-3.00)*** |  |  |
| No. of children born before<br>June 1995                      |                                                                             | -0.07<br>(-9.39)***  | -0.12<br>(-1.63)    | -0.01<br>(-1.13)     | 0.10<br>(10.61)***  |                      |                      |                     |                     |  |  |
| Percentage of children ever lost<br>before the genocide       |                                                                             | -0.19<br>(-3.40)***  | 0.19<br>(0.69)      | -0.16<br>(-2.63)***  | -0.37<br>(-4.41)*** |                      | -0.34<br>(-2.60)***  | -0.06<br>(-0.70)    | -0.26<br>(-4.17)*** |  |  |
| Household wealth index                                        |                                                                             | -0.04<br>(-3.88)***  | -0.09<br>(-6.15)*** | -0.01<br>(-0.90)     | -0.01<br>(-0.40)    | -0.08<br>(-5.94)***  | -0.01<br>(-0.27)     | 0.00<br>(0.11)      | -0.00<br>(-0.10)    |  |  |
| Place of residence is urban                                   |                                                                             | -0.06<br>(-1.62)     | 0.10<br>(1.60)      | -0.09<br>(-2.11)**   | -0.17<br>(-2.52)**  | 0.01<br>(0.09)       | -0.17<br>(-2.12)**   | -0.17<br>(-1.78)*   | -0.13<br>(-2.32)**  |  |  |
| Under-five mortality during 5 years before the genocide       |                                                                             | 0.07<br>(0.67)       | 0.10<br>(0.41)      | -0.05<br>(-0.31)     | 0.26<br>(1.15)      | 0.09<br>(0.47)       | 0.22<br>(0.87)       | -0.42<br>(-1.37)    | 0.07<br>(0.37)      |  |  |
| Préfecture fixed effects                                      | Yes                                                                         | Yes                  | Yes                 | Yes                  | Yes                 | Yes                  | Yes                  | Yes                 | Yes                 |  |  |
| Wave fixed effects                                            | Yes                                                                         | Yes                  | Yes                 | Yes                  | Yes                 | Yes                  | Yes                  | Yes                 | Yes                 |  |  |
| Sample                                                        | All waves                                                                   | All waves            | All waves           | All waves            | All waves           | All waves            | All waves            | All waves           | All waves           |  |  |
| Observations                                                  | 25,770                                                                      | 25,754               | 12,570              | 7,759                | 5,425               | 14,623               | 2,442                | 1,948               | 6,741               |  |  |

# **Table 4:**Survival analysis of post-genocide fertility with change in the *commune*-level sex<br/>ratio as conflict proxy

*Note*: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. Parity is defined based on a woman's number of children as of May 1995. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

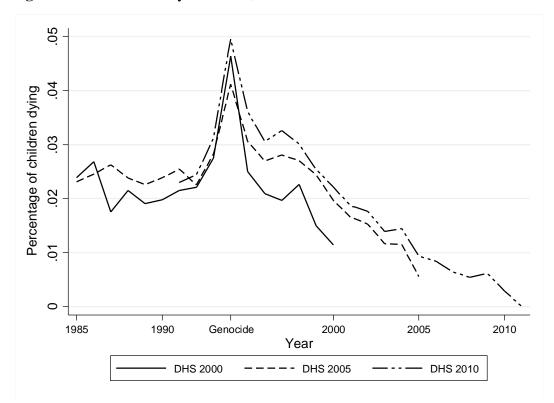
|                                                         | Dependent variable: No. of children born after June 1995 |                      |                      |                     |                     |                     |                     |                     |                      |                      |                      |
|---------------------------------------------------------|----------------------------------------------------------|----------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|
|                                                         | All                                                      | All                  | Aged<br>10-19        | Aged<br>20-29       | Aged 30-45          | Parity 1            | Parity 2            | Parity 3+           | Short<br>run         | Medium<br>run        | Long<br>run          |
|                                                         | (1)                                                      | (2)                  | (3)                  | (4)                 | (5)                 | (6)                 | (7)                 | (8)                 | (9)                  | (10)                 | (11)                 |
| Child death during genocide<br>(CHILD <sub>ict</sub> )  | 0.11<br>(2.83)***                                        | 0.10<br>(2.51)**     | 0.02<br>(0.17)       | 0.10<br>(1.32)      | 0.06<br>(1.14)      | 0.02<br>(0.17)      | 0.37<br>(3.32)***   | 0.04<br>(0.89)      | 0.10<br>(4.74)***    | 0.01<br>(0.14)       | -0.17<br>(-1.78)*    |
| Age                                                     | 0.44<br>(54.27)***                                       | 0.42<br>(48.41)***   | 0.64<br>(36.81)***   | -0.02<br>(-0.31)    | 0.10<br>(1.18)      | -0.04<br>(-0.67)    | 0.11<br>(1.74)*     | 0.10<br>(2.92)***   | 0.19<br>(33.76)***   | 0.22<br>(18.78)***   | 0.18<br>(9.02)***    |
| Age squared                                             | -0.01<br>(-60.51)***                                     | -0.01<br>(-54.95)*** | -0.01<br>(-31.64)*** | -0.00<br>(-3.60)*** | -0.00<br>(-3.41)*** | -0.00<br>(-3.34)*** | -0.00<br>(-4.96)*** | -0.00<br>(-7.53)*** | -0.00<br>(-35.76)*** | -0.00<br>(-22.81)*** | -0.00<br>(-12.84)*** |
| Never-married at the time of the genocide               |                                                          | -0.28<br>(-11.63)*** | -0.10<br>(-3.02)***  | -0.29<br>(-6.44)*** | -0.30<br>(-2.31)**  | -0.52<br>(-7.57)*** | -0.64<br>(-3.75)*** | -0.32<br>(-2.45)**  | -0.36<br>(-21.33)*** | -0.06<br>(-2.43)**   | -0.06<br>(-1.81)*    |
| Primary education                                       |                                                          | 0.02<br>(1.33)       | -0.06<br>(-3.27)***  | 0.11<br>(3.01)***   | 0.03<br>(1.04)      | 0.01<br>(0.20)      | 0.12<br>(1.85)*     | 0.06<br>(2.08)**    | 0.02<br>(1.69)*      | 0.01<br>(0.28)       | 0.01<br>(0.51)       |
| Secondary or higher education                           |                                                          | -0.19<br>(-6.01)***  | -0.33<br>(-10.14)*** | -0.06<br>(-0.96)    | -0.16<br>(-2.08)**  | -0.10<br>(-1.01)    | -0.04<br>(-0.35)    | -0.23<br>(-3.14)*** | -0.04<br>(-1.92)*    | -0.20<br>(-5.77)***  | -0.15<br>(-3.68)***  |
| No. of children born before June<br>1995                |                                                          | -0.04<br>(-6.80)***  | -0.03<br>(-1.00)     | 0.05<br>(2.99)***   | 0.08<br>(10.56)***  |                     |                     |                     | -0.06<br>(-14.93)*** | -0.04<br>(-5.41)***  | -0.01<br>(-0.47)     |
| Percentage of children ever lost<br>before the genocide |                                                          | -0.12<br>(-2.60)***  | 0.12<br>(1.70)*      | -0.15<br>(-2.02)**  | -0.27<br>(-3.84)*** | -0.59<br>(-3.43)*** | 0.07<br>(0.80)      | -0.19<br>(-3.45)*** | -0.06<br>(-2.07)**   | -0.04<br>(-0.86)     | 0.07<br>(0.87)       |
| Household wealth index                                  |                                                          | -0.02<br>(-2.90)***  | -0.05<br>(-7.02)***  | 0.03<br>(2.05)**    | 0.01<br>(0.75)      | 0.03<br>(1.26)      | -0.02<br>(-0.54)    | 0.02<br>(1.48)      | -0.01<br>(-1.37)     | -0.02<br>(-2.23)**   | -0.03<br>(-2.85)***  |
| Place of residence is urban                             |                                                          | -0.06<br>(-1.55)     | -0.02<br>(-0.46)     | -0.07<br>(-0.93)    | -0.14<br>(-2.01)**  | -0.05<br>(-0.43)    | -0.29<br>(-2.13)**  | -0.10<br>(-1.48)    | 0.00<br>(0.03)       | -0.06<br>(-1.48)     | -0.14<br>(-2.70)***  |
| Under-five mortality during 5 years before the genocide |                                                          | -0.09<br>(-0.76)     | -0.03<br>(-0.23)     | -0.27<br>(-1.12)    | 0.01<br>(0.03)      | -0.08<br>(-0.25)    | -0.34<br>(-0.84)    | -0.15<br>(-0.68)    | -0.09<br>(-1.09)     | -0.01<br>(-0.07)     | 6.29<br>(3.65)***    |
| Commune fixed effects                                   | Yes                                                      | Yes                  | Yes                  | Yes                 | Yes                 | Yes                 | Yes                 | Yes                 | Yes                  | Yes                  | Yes                  |
| Wave fixed effects                                      | Yes                                                      | Yes                  | Yes                  | Yes                 | Yes                 | Yes                 | Yes                 | Yes                 | Yes                  | Yes                  | No                   |
| Sample                                                  | All waves                                                | All waves            | All waves            | All waves           | All waves           | All waves           | All waves           | All waves           | All waves            | 2005 & 2010          | 2010 only            |
| Observations                                            | 25,770                                                   | 25,754               | 12,570               | 7,759               | 5,425               | 2,442               | 1,948               | 6,741               | 25,754               | 15,747               | 7,422                |

| Table 5: | Count data analysis | s of post-genocide | fertility with child de | eath as conflict proxy |
|----------|---------------------|--------------------|-------------------------|------------------------|
|          |                     |                    |                         |                        |

*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The dependent variable measures the number of children born between June 1995 and the time of each survey wave (columns 1-8), the number of children born between June 1995 and May 2000 (column 9), the number of children born between June 2000 and May 2005 (column 10), and the number of children born between June 2000 and May 2005 (column 10), and the number of children as of May 1995. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

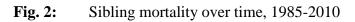
|                                                            | Dependent variable: No. of children born after June 1995 |                      |                      |                     |                     |                      |                     |                     |                     |                      |                      |                      |
|------------------------------------------------------------|----------------------------------------------------------|----------------------|----------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|
|                                                            | All                                                      | All                  | Aged<br>10-19        | Aged<br>20-29       | Aged 30-45          | Parity 0             | Parity 1            | Parity 2            | Parity 3+           | Short<br>run         | Medium<br>run        | Long<br>run          |
|                                                            | (1)                                                      | (2)                  | (3)                  | (4)                 | (5)                 | (6)                  | (7)                 | (8)                 | (9)                 | (10)                 | (11)                 | (12)                 |
| Sibling death during genocide<br>(SIBLING <sub>ict</sub> ) | -0.05<br>(-3.05)***                                      | -0.05<br>(-2.85)***  | -0.02<br>(-0.94)     | -0.09<br>(-2.50)**  | -0.04<br>(-1.21)    | -0.02<br>(-0.96)     | -0.17<br>(-2.63)*** | -0.12<br>(-1.90)*   | -0.05<br>(-1.55)    | -0.03<br>(-2.32)**   | -0.02<br>(-1.26)     | -0.05<br>(-2.36)**   |
| Age                                                        | 0.44<br>(54.48)***                                       | 0.42<br>(48.57)***   | 0.64<br>(36.77)***   | -0.01<br>(-0.26)    | 0.10<br>(1.18)      | 0.51<br>(38.90)***   | -0.03<br>(-0.61)    | 0.11<br>(1.67)*     | 0.10<br>(2.95)***   | 0.19<br>(33.85)***   | 0.22<br>(18.80)***   | 0.18<br>(9.01)***    |
| Age squared                                                | -0.01<br>(-60.51)***                                     | -0.01<br>(-55.09)*** | -0.01<br>(-31.60)*** | -0.00<br>(-3.63)*** | -0.00<br>(-3.41)*** | -0.01<br>(-35.65)*** | -0.00<br>(-3.37)*** | -0.00<br>(-4.86)*** | -0.00<br>(-7.58)*** | -0.00<br>(-35.86)*** | -0.00<br>(-22.84)*** | -0.00<br>(-12.82)*** |
| Never-married at the time of the genocide                  |                                                          | -0.28<br>(-11.72)*** | -0.10<br>(-2.98)***  | -0.29<br>(-6.44)*** | -0.30<br>(-2.31)**  | 0.18<br>(3.52)***    | -0.51<br>(-7.47)*** | -0.64<br>(-3.73)*** | -0.32<br>(-2.45)**  | -0.36<br>(-21.45)*** | -0.06<br>(-2.43)**   | -0.06<br>(-1.71)*    |
| Primary education                                          |                                                          | 0.02<br>(1.43)       | -0.06<br>(-3.23)***  | 0.11<br>(3.07)***   | 0.03<br>(1.12)      | -0.01<br>(-0.64)     | 0.02<br>(0.25)      | 0.11<br>(1.67)*     | 0.06<br>(2.17)**    | 0.02<br>(1.79)*      | 0.01<br>(0.33)       | 0.01<br>(0.62)       |
| Secondary or higher education                              |                                                          | -0.19<br>(-5.94)***  | -0.33<br>(-10.12)*** | -0.06<br>(-0.90)    | -0.16<br>(-2.05)**  | -0.23<br>(-6.84)***  | -0.09<br>(-0.90)    | -0.06<br>(-0.47)    | -0.23<br>(-3.11)*** | -0.04<br>(-1.89)*    | -0.20<br>(-5.75)***  | -0.14<br>(-3.52)***  |
| No. of children born before<br>June 1995                   |                                                          | -0.04<br>(-6.60)***  | -0.03<br>(-0.98)     | 0.05<br>(3.09)***   | 0.08<br>(10.63)***  |                      |                     |                     |                     | -0.06<br>(-14.53)*** | -0.04<br>(-5.45)***  | -0.01<br>(-0.62)     |
| Percentage of children ever los<br>before the genocide     | t                                                        | -0.12<br>(-2.60)***  | 0.12<br>(1.70)*      | -0.16<br>(-2.05)**  | -0.27<br>(-3.83)*** |                      | -0.58<br>(-3.44)*** | 0.07<br>(0.75)      | -0.19<br>(-3.42)*** | -0.06<br>(-2.08)**   | -0.04<br>(-0.85)     | 0.07<br>(0.91)       |
| Household wealth index                                     |                                                          | -0.02<br>(-2.91)***  | -0.05<br>(-7.03)***  | 0.03<br>(2.07)**    | 0.01<br>(0.75)      | -0.04<br>(-5.19)***  | 0.03<br>(1.22)      | -0.02<br>(-0.51)    | 0.02<br>(1.49)      | -0.01<br>(-1.40)     | -0.02<br>(-2.22)**   | -0.03<br>(-2.88)***  |
| Place of residence is urban                                |                                                          | -0.06<br>(-1.54)     | -0.02<br>(-0.46)     | -0.07<br>(-0.92)    | -0.14<br>(-2.00)**  | -0.04<br>(-0.90)     | -0.05<br>(-0.42)    | -0.28<br>(-2.07)**  | -0.10<br>(-1.49)    | 0.00<br>(0.05)       | -0.06<br>(-1.47)     | -0.14<br>(-2.66)***  |
| Under-five mortality during 5 years before the genocide    |                                                          | -0.09<br>(-0.75)     | -0.03<br>(-0.22)     | -0.27<br>(-1.11)    | 0.00<br>(0.01)      | -0.07<br>(-0.59)     | -0.05<br>(-0.15)    | -0.36<br>(-0.88)    | -0.15<br>(-0.68)    | -0.09<br>(-1.11)     | -0.01<br>(-0.05)     | 6.55<br>(3.89)***    |
| Commune fixed effects                                      | Yes                                                      | Yes                  | Yes                  | Yes                 | Yes                 | Yes                  | Yes                 | Yes                 | Yes                 | Yes                  | Yes                  | Yes                  |
| Wave fixed effects                                         | Yes                                                      | Yes                  | Yes                  | Yes                 | Yes                 | Yes                  | Yes                 | Yes                 | Yes                 | Yes                  | Yes                  | No                   |
| Sample                                                     | All waves                                                | All waves            | All waves            | All waves           | All waves           | All waves            | All waves           | All waves           | All waves           | All waves            | 2005 & 2010          | ) 2010 only          |
| Observations                                               | 25,770                                                   | 25,754               | 12,570               | 7,759               | 5,425               | 14,623               | 2,442               | 1,948               | 6,741               | 25,754               | 15,747               | 7,422                |

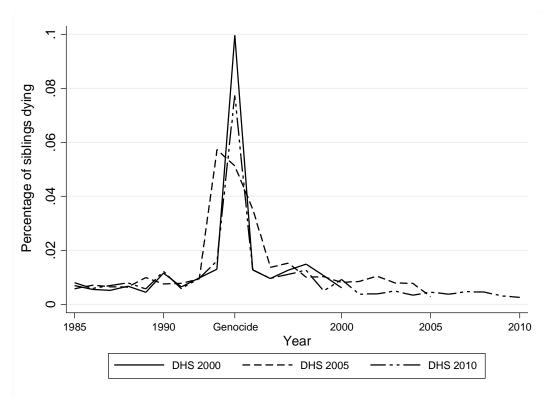
| Table 6: | Count data analys | is of post-genocid | le fertility with s | sibling death as | conflict proxy |
|----------|-------------------|--------------------|---------------------|------------------|----------------|
|          |                   |                    |                     |                  |                |


*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The dependent variable measures the number of children born between June 1995 and the time of each survey wave (columns 1-8), the number of children born between June 1995 and May 2000 (column 9), the number of children born between June 2000 and May 2005 (column 10), and the number of children born between June 2005 and May 2010 (column 11). Parity is defined based on a woman's number of children as of May 1995. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

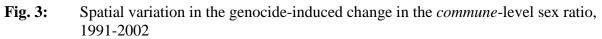
|                                                          | Dependent variable: No. of children born after June 1995 |                      |                      |                     |                     |                      |                     |                     |                     |                      |                      |                      |
|----------------------------------------------------------|----------------------------------------------------------|----------------------|----------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|
|                                                          | All                                                      | All                  | Aged<br>10-19        | Aged 20-29          | Aged<br>30-45       | Parity 0             | Parity 1            | Parity 2            | Parity 3+           | Short<br>run         | Medium<br>run        | Long<br>run          |
|                                                          | (1)                                                      | (2)                  | (3)                  | (4)                 | (5)                 | (6)                  | (7)                 | (8)                 | (9)                 | (10)                 | (11)                 | (12)                 |
| Change in sex ratio $(\Delta Sex \ ratio_{c,1991-2002})$ | -0.33<br>(-1.49)                                         | -0.46<br>(-2.30)**   | -0.23<br>(-1.14)     | -0.19<br>(-0.45)    | -1.06<br>(-2.84)*** | -0.22<br>(-1.02)     | -0.41<br>(-0.53)    | -0.71<br>(-1.04)    | -0.75<br>(-2.19)**  | -0.41<br>(-3.13)***  | -0.15<br>(-0.69)     | -0.25<br>(-0.97)     |
| Sex ratio before the genocide                            | 0.56<br>(2.65)***                                        | 0.83<br>(4.13)***    | 0.68<br>(3.49)***    | 0.43<br>(1.01)      | 0.76<br>(2.02)**    | 0.61<br>(2.78)***    | 1.34<br>(1.83)*     | 1.30<br>(1.88)*     | 0.50<br>(1.41)      | 0.52<br>(4.04)***    | 0.50<br>(2.38)**     | 0.65<br>(2.32)**     |
| Age                                                      | 0.44<br>(53.89)***                                       | 0.42<br>(48.32)***   | 0.63<br>(36.18)***   | -0.01<br>(-0.29)    | 0.10<br>(1.23)      | 0.51<br>(38.38)***   | -0.05<br>(-0.96)    | 0.08<br>(1.19)      | 0.10<br>(3.02)***   | 0.19<br>(33.67)***   | 0.22<br>(18.82)***   | 0.19<br>(9.20)***    |
| Age squared                                              | -0.01<br>(-59.60)***                                     | -0.01<br>(-54.98)*** | -0.01<br>(-31.19)*** | -0.00<br>(-3.61)*** | -0.00<br>(-3.47)*** | -0.01<br>(-35.31)*** | -0.00<br>(-2.90)*** | -0.00<br>(-4.31)*** | -0.00<br>(-7.62)*** | -0.00<br>(-35.84)*** | -0.00<br>(-22.97)*** | -0.00<br>(-12.98)*** |
| Never-married at the time of the genocide                |                                                          | -0.30<br>(-12.44)*** | -0.13<br>(-3.62)***  | -0.31<br>(-6.85)*** | -0.30<br>(-2.31)**  | 0.17<br>(3.38)***    | -0.56<br>(-8.12)*** | -0.65<br>(-3.72)*** | -0.35<br>(-2.71)*** | -0.37<br>(-21.77)*** | -0.08<br>(-3.12)***  | -0.06<br>(-1.89)*    |
| Primary education                                        |                                                          | 0.01<br>(0.44)       | -0.07<br>(-3.86)***  | 0.09<br>(2.56)**    | 0.01<br>(0.44)      | -0.03<br>(-1.27)     | 0.03<br>(0.40)      | 0.06<br>(0.82)      | 0.04<br>(1.42)      | 0.01<br>(1.02)       | -0.01<br>(-0.40)     | 0.01<br>(0.26)       |
| Secondary or higher education                            |                                                          | -0.21<br>(-6.62)***  | -0.34<br>(-10.47)*** | -0.08<br>(-1.28)    | -0.18<br>(-2.30)**  | -0.24<br>(-7.20)***  | -0.09<br>(-0.84)    | -0.12<br>(-1.00)    | -0.25<br>(-3.25)*** | -0.05<br>(-2.39)**   | -0.22<br>(-6.30)***  | -0.15<br>(-3.72)***  |
| No. of children born before<br>June 1995                 |                                                          | -0.04<br>(-6.11)***  | -0.02<br>(-0.57)     | 0.05<br>(3.19)***   | 0.09<br>(10.84)***  |                      |                     |                     |                     | -0.06<br>(-14.08)*** | -0.04<br>(-5.08)***  | -0.01<br>(-0.77)     |
| Percentage of children ever los<br>before the genocide   | st                                                       | -0.12<br>(-2.65)***  | 0.12<br>(1.80)*      | -0.14<br>(-1.86)*   | -0.29<br>(-3.90)*** |                      | -0.59<br>(-3.38)*** | 0.05<br>(0.60)      | -0.18<br>(-3.20)*** | -0.06<br>(-2.14)**   | -0.04<br>(-0.84)     | 0.08<br>(1.09)       |
| Household wealth index                                   |                                                          | -0.03<br>(-3.43)***  | -0.05<br>(-6.96)***  | 0.02<br>(1.13)      | 0.00<br>(0.18)      | -0.04<br>(-5.44)***  | 0.02<br>(0.76)      | -0.02<br>(-0.72)    | 0.01<br>(0.65)      | -0.01<br>(-1.85)*    | -0.02<br>(-2.59)***  | -0.03<br>(-2.90)***  |
| Place of residence is urban                              |                                                          | -0.10<br>(-3.26)***  | -0.04<br>(-1.24)     | -0.17<br>(-2.66)*** | -0.16<br>(-2.74)*** | -0.06<br>(-1.90)*    | -0.22<br>(-2.28)**  | -0.29<br>(-2.56)**  | -0.13<br>(-2.39)**  | -0.02<br>(-1.23)     | -0.07<br>(-2.11)**   | -0.18<br>(-4.22)***  |
| Under-five mortality during 5 years before the genocide  |                                                          | 0.19<br>(2.15)**     | 0.11<br>(1.07)       | 0.46<br>(2.39)**    | 0.10<br>(0.56)      | 0.19<br>(2.02)**     | 0.38<br>(1.38)      | 0.20<br>(0.56)      | 0.06<br>(0.32)      | 0.06<br>(0.90)       | 0.20<br>(2.10)**     | 0.15<br>(1.61)       |
| Préfecture fixed effects                                 | Yes                                                      | Yes                  | Yes                  | Yes                 | Yes                 | Yes                  | Yes                 | Yes                 | Yes                 | Yes                  | Yes                  | Yes                  |
| Wave fixed effects                                       | Yes                                                      | Yes                  | Yes                  | Yes                 | Yes                 | Yes                  | Yes                 | Yes                 | Yes                 | Yes                  | Yes                  | No                   |
| Sample                                                   | All waves                                                | All waves            | All waves            | All waves           | All waves           | All waves            | All waves           | All waves           | All waves           | All waves            | 2005 & 201           | 0 2010 only          |
| Observations                                             | 25,770                                                   | 25,754               | 12,570               | 7,759               | 5,425               | 14,623               | 2,442               | 1,948               | 6,741               | 25,754               | 15,747               | 7,422                |

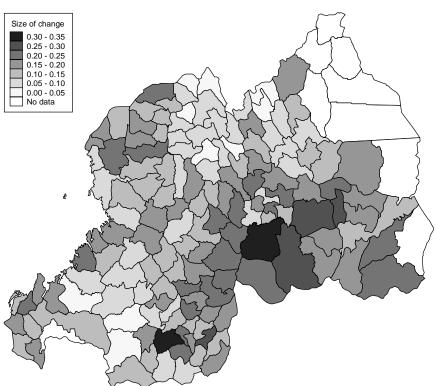
# **Table 7:** Count data analysis of post-genocide fertility with change in the *commune*-level sex ratio as conflict proxy


*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The dependent variable measures the number of children born between June 1995 and the time of each survey wave (columns 1-8), the number of children born between June 1995 and May 2000 (column 9), the number of children born between June 2000 and May 2005 (column 10), and the number of children born between June 2000 and May 2005 (column 10), and the number of children as of May 1995. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.


### Figures




**Fig. 1:** Child mortality over time, 1985-2010


*Note*: The figure shows the percentage of child deaths relative to the total number of living children reported by sample women for each year during the 1985-2010 period. Data source: DHS 2000, 2005, and 2010.





*Note*: The figure shows the percentage of sibling deaths relative to the total number of living siblings reported by sample women for each year during the 1985-2010 period. Data source: DHS 2000, 2005, and 2010.





Data source: Census 1991 and 2002.

### **Supplementary Online Appendix**

### **Table A1:** Survival analysis of post-genocide fertility with son/daughter death and brother/sister death as conflict proxy

|                                       | Dependent variable: Hazard of having a birth between June 1995 and May 2000 |                   |                   |                |                     |                  | 000              |                  |
|---------------------------------------|-----------------------------------------------------------------------------|-------------------|-------------------|----------------|---------------------|------------------|------------------|------------------|
|                                       | (1)                                                                         | (2)               | (3)               | (4)            | (5)                 | (6)              | (7)              | (8)              |
| Son death during genocide             | 0.20<br>(3.25)***                                                           |                   |                   |                |                     |                  |                  |                  |
| Daughter death during genocide        |                                                                             | 0.29<br>(4.28)*** |                   |                |                     |                  |                  |                  |
| Brother death during genocide         |                                                                             |                   | -0.04<br>(-1.89)* |                |                     |                  |                  |                  |
| Older brother death during genocide   |                                                                             |                   |                   | 0.03<br>(1.39) |                     |                  |                  |                  |
| Younger brother death during genocide |                                                                             |                   |                   |                | -0.09<br>(-3.07)*** |                  |                  |                  |
| Sister death during genocide          |                                                                             |                   |                   |                |                     | -0.04<br>(-1.37) |                  |                  |
| Older sister death during genocide    |                                                                             |                   |                   |                |                     |                  | -0.03<br>(-0.96) |                  |
| Younger sister death during genocide  |                                                                             |                   |                   |                |                     |                  |                  | -0.04<br>(-1.23) |
| All controls                          | Yes                                                                         | Yes               | Yes               | Yes            | Yes                 | Yes              | Yes              | Yes              |
| Commune fixed effects                 | Yes                                                                         | Yes               | Yes               | Yes            | Yes                 | Yes              | Yes              | Yes              |
| Wave fixed effects                    | Yes                                                                         | Yes               | Yes               | Yes            | Yes                 | Yes              | Yes              | Yes              |
| Sample                                | All waves                                                                   | All waves         | All waves         | All waves      | All waves           | All waves        | All waves        | All waves        |
| Observations                          | 25,754                                                                      | 25,754            | 25,754            | 25,754         | 25,754              | 25,754           | 25,754           | 25,754           |

*Note*: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                                       |                  | E              | ependent var       | iable: No. of    | children bor       | n after June       | 1995             |                  |
|---------------------------------------|------------------|----------------|--------------------|------------------|--------------------|--------------------|------------------|------------------|
|                                       | (1)              | (2)            | (3)                | (4)              | (5)                | (6)                | (7)              | (8)              |
| Son death during genocide             | 0.11<br>(2.13)** |                |                    |                  |                    |                    |                  |                  |
| Daughter death during genocide        |                  | 0.07<br>(1.32) |                    |                  |                    |                    |                  |                  |
| Brother death during genocide         |                  |                | -0.04<br>(-2.22)** |                  |                    |                    |                  |                  |
| Older brother death during genocide   |                  |                |                    | -0.01<br>(-0.47) |                    |                    |                  |                  |
| Younger brother death during genocide |                  |                |                    |                  | -0.06<br>(-2.45)** |                    |                  |                  |
| Sister death during genocide          |                  |                |                    |                  |                    | -0.05<br>(-2.34)** |                  |                  |
| Older sister death during genocide    |                  |                |                    |                  |                    |                    | -0.03<br>(-1.25) |                  |
| Younger sister death during genocide  |                  |                |                    |                  |                    |                    |                  | -0.04<br>(-1.36) |
| All controls                          | Yes              | Yes            | Yes                | Yes              | Yes                | Yes                | Yes              | Yes              |
| Commune fixed effects                 | Yes              | Yes            | Yes                | Yes              | Yes                | Yes                | Yes              | Yes              |
| Wave fixed effects                    | Yes              | Yes            | Yes                | Yes              | Yes                | Yes                | Yes              | Yes              |
| Sample                                | All waves        | All waves      | All waves          | All waves        | All waves          | All waves          | All waves        | All waves        |
| Observations                          | 25,754           | 25,754         | 25,754             | 25,754           | 25,754             | 25,754             | 25,754           | 25,754           |

# **Table A2:** Count data analysis of post-genocide fertility with son/daughter death and brother/sister death as conflict proxy

*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                                                            | Dependent variable: Hazard of having a birth between June 1995 and May 2000 |                   |                   |                    |                    |                   |                   |
|------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|
|                                                            | All                                                                         | Aged<br>10-19     | Aged<br>20-29     | Aged 30-45         | Parity 1           | Parity 2          | Parity 3+         |
|                                                            | (1)                                                                         | (2)               | (3)               | (4)                | (5)                | (6)               | (7)               |
| Child death during genocide (CHILD <sub>ict</sub> )        | 0.26<br>(5.41)***                                                           | -0.04<br>(-0.12)  | 0.25<br>(3.78)*** | 0.24<br>(4.00)***  | 0.29<br>(2.02)**   | 0.35<br>(3.58)*** | 0.22<br>(4.06)*** |
| Sibling death during genocide $(SIBLING_{ict})$            | -0.05<br>(-2.54)**                                                          | -0.08<br>(-1.93)* | -0.04<br>(-1.30)  | -0.04<br>(-1.04)   | -0.11<br>(-2.06)** | -0.08<br>(-1.45)  | -0.05<br>(-1.59)  |
| Change in sex ratio ( $\Delta Sex \ ratio_{c,1991-2002}$ ) | -0.63<br>(-2.86)***                                                         | -0.72<br>(-1.72)* | -0.35<br>(-1.15)  | -0.88<br>(-2.07)** | -0.27<br>(-0.50)   | -1.10<br>(-1.94)* | -0.49<br>(-1.39)  |
| All controls                                               | Yes                                                                         | Yes               | Yes               | Yes                | Yes                | Yes               | Yes               |
| Préfecture fixed effects                                   | Yes                                                                         | Yes               | Yes               | Yes                | Yes                | Yes               | Yes               |
| Wave fixed effects                                         | Yes                                                                         | Yes               | Yes               | Yes                | Yes                | Yes               | Yes               |
| Sample                                                     | All waves                                                                   | All waves         | All waves         | All waves          | All waves          | All waves         | All waves         |
| Observations                                               | 25,754                                                                      | 12,570            | 7,759             | 5,425              | 2,442              | 1,948             | 6,741             |

# **Table A3:**Survival analysis of post-genocide fertility with simultaneous inclusion of all<br/>three conflict proxies

*Note*: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. Parity is defined based on a woman's number of children as of May 1995. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                                                          |                     | Dependent variable: No. of children born after June 1995 |                     |                     |                     |                    |                    |                     |                  |                    |
|----------------------------------------------------------|---------------------|----------------------------------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|---------------------|------------------|--------------------|
|                                                          | All                 | Aged<br>10-19                                            | Aged 20-29          | Aged<br>30-45       | Parity<br>1         | Parity<br>2        | Parity<br>3+       | Short<br>run        | Medium<br>run    | Long<br>run        |
|                                                          | (1)                 | (2)                                                      | (3)                 | (4)                 | (5)                 | (6)                | (7)                | (8)                 | (9)              | (10)               |
| Child death during genocide (CHILD <sub>ict</sub> )      | 0.10<br>(2.47)**    | 0.03<br>(0.25)                                           | 0.11<br>(1.39)      | 0.07<br>(1.54)      | 0.08<br>(0.58)      | 0.34<br>(3.13)***  | 0.05<br>(1.08)     | 0.10<br>(4.71)***   | 0.00<br>(0.08)   | -0.16<br>(-1.68)*  |
| Sibling death during genocide (SIBLING <sub>ict</sub> )  | -0.06<br>(-3.24)*** | -0.01<br>(-0.86)                                         | -0.10<br>(-2.85)*** | -0.05<br>(-1.63)    | -0.19<br>(-3.05)*** | -0.14<br>(-2.14)** | -0.06<br>(-1.86)*  | -0.03<br>(-2.95)*** | -0.03<br>(-1.45) | -0.05<br>(-2.16)** |
| Change in sex ratio $(\Delta Sex \ ratio_{c,1991-2002})$ | -0.44<br>(-2.20)**  | -0.23<br>(-1.12)                                         | -0.14<br>(-0.33)    | -1.05<br>(-2.81)*** | -0.27<br>(-0.35)    | -0.68<br>(-1.02)   | -0.71<br>(-2.07)** | -0.39<br>(-3.03)*** | -0.14<br>(-0.65) | -0.25<br>(-0.96)   |
| All controls                                             | Yes                 | Yes                                                      | Yes                 | Yes                 | Yes                 | Yes                | Yes                | Yes                 | Yes              | Yes                |
| Préfecture fixed effects                                 | Yes                 | Yes                                                      | Yes                 | Yes                 | Yes                 | Yes                | Yes                | Yes                 | Yes              | Yes                |
| Wave fixed effects                                       | Yes                 | Yes                                                      | Yes                 | Yes                 | Yes                 | Yes                | Yes                | Yes                 | Yes              | Yes                |
| Sample                                                   | All waves           | All waves                                                | All waves           | All waves           | All waves           | All waves          | All waves          | All waves           | 2005 &<br>2010   | 2010<br>only       |
| Observations                                             | 25,754              | 12,570                                                   | 7,759               | 5,425               | 2,442               | 1,948              | 6,741              | 25,754              | 15,747           | 7,422              |

# **Table A4:**Count data analysis of post-genocide fertility with simultaneous inclusion of all<br/>three conflict proxies

*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The dependent variable measures the number of children born between June 1995 and the time of each survey wave (columns 1-8), the number of children born between June 1995 and May 2000 (column 9), the number of children born between June 2000 and May 2005 (column 10) and the number of children born between June 2005 and May 2010 (column 11). Parity is defined based on a woman's number of children as of May 1995. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

# **Table A5:** Survival analysis of post-genocide fertility with placebo child/sibling death as conflict proxy

|                                                         | Dependent variable:<br>Hazard of having a birth between June 1995 and Ma |                   |  |
|---------------------------------------------------------|--------------------------------------------------------------------------|-------------------|--|
|                                                         | (1)                                                                      | (2)               |  |
| Child death during genocide (CHILD <sub>ict</sub> )     | 0.27<br>(5.40)***                                                        |                   |  |
| Child death during 1990-1993                            | 0.03<br>(1.01)                                                           |                   |  |
| Sibling death during genocide (SIBLING <sub>ict</sub> ) |                                                                          | -0.04<br>(-1.86)* |  |
| Sibling death during 1990-1993                          |                                                                          | 0.00<br>(0.08)    |  |
| All controls                                            | Yes                                                                      | Yes               |  |
| Commune fixed effects                                   | Yes                                                                      | Yes               |  |
| Wave fixed effects                                      | Yes                                                                      | Yes               |  |
| Sample                                                  | All waves                                                                | All waves         |  |
| Observations                                            | 25,754                                                                   | 25,754            |  |

*Note*: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

## **Table A6:** Count data analysis of post-genocide fertility with placebo child/sibling death as conflict proxy

|                                                         |                  | Dependent variable:<br>No. of children born after June 1995 |
|---------------------------------------------------------|------------------|-------------------------------------------------------------|
|                                                         | (1)              | (2)                                                         |
| Child death during genocide (CHILD <sub>ict</sub> )     | 0.10<br>(2.48)** |                                                             |
| Child death during 1990-1993                            | 0.05<br>(1.94)*  |                                                             |
| Sibling death during genocide (SIBLING <sub>ict</sub> ) |                  | -0.05<br>(-2.78)***                                         |
| Sibling death during 1990-1993                          |                  | -0.00<br>(-0.22)                                            |
| All controls                                            | Yes              | Yes                                                         |
| Commune fixed effects                                   | Yes              | Yes                                                         |
| Wave fixed effects                                      | Yes              | Yes                                                         |
| Sample                                                  | All waves        | All waves                                                   |
| Observations                                            | 25,754           | 25,754                                                      |

*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                                                          | Dependent variable:<br>Hazard of having a birth between June 1995 and May 2000 |                   |                   |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|-------------------|-------------------|--|--|
|                                                          | All                                                                            | All               | All               |  |  |
|                                                          | (1)                                                                            | (2)               | (3)               |  |  |
| Child death during genocide (CHILD <sub>ict</sub> )      | 0.25<br>(5.49)***                                                              |                   |                   |  |  |
| Sibling death during genocide ( $SIBLING_{ict}$ )        |                                                                                | -0.04<br>(-1.88)* |                   |  |  |
| Change in sex ratio ( $\Delta Sex \ ratio_{c,1991-2002}$ |                                                                                |                   | -0.54<br>(-1.67)* |  |  |
| All controls                                             | Yes                                                                            | Yes               | Yes               |  |  |
| Commune fixed effects                                    | Yes                                                                            | Yes               | No                |  |  |
| Préfecture fixed effects                                 | No                                                                             | No                | Yes               |  |  |
| Wave fixed effects                                       | Yes                                                                            | Yes               | Yes               |  |  |
| Sample                                                   | All waves                                                                      | All waves         | All waves         |  |  |
| Observations                                             | 10,143                                                                         | 25,422            | 14,965            |  |  |

#### Table A7: Survival analysis of post-genocide fertility with restricted samples

*Note*: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. Parity is defined based on a woman's number of children as of May 1995. All controls include: age; age squared; never married at the time of the genocide (except in column 3); primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide and who had children before the genocide (column 1), who had siblings before the genocide (column 2), and who were never married at the time of the genocide (column 3). Data source: DHS 2000, 2005, and 2010.

|                                                            | Dependent variable:<br>No. of children born after June 1995 |                     |                  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------|---------------------|------------------|--|--|
|                                                            | All                                                         | All                 | All              |  |  |
|                                                            | (1)                                                         | (2)                 | (3)              |  |  |
| Child death during genocide ( <i>CHILD<sub>ict</sub></i> ) | 0.09<br>(2.19)**                                            |                     |                  |  |  |
| Sibling death during genocide $(SIBLING_{ict})$            |                                                             | -0.05<br>(-2.86)*** |                  |  |  |
| Change in sex ratio ( $\Delta Sex \ ratio_{c,1991-2002}$ ) |                                                             |                     | -0.29<br>(-1.29) |  |  |
| All controls                                               | Yes                                                         | Yes                 | Yes              |  |  |
| Commune fixed effects                                      | Yes                                                         | Yes                 | No               |  |  |
| Préfecture fixed effects                                   | No                                                          | No                  | Yes              |  |  |
| Wave fixed effects                                         | Yes                                                         | Yes                 | Yes              |  |  |
| Sample                                                     | All waves                                                   | All waves           | All waves        |  |  |
| Observations                                               | 10,143                                                      | 25,422              | 14,965           |  |  |

#### Table A8: Count data analysis of post-genocide fertility with restricted samples

*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The dependent variable measures the number of children born between June 1995 and the time of each survey wave. All controls include: age; age squared; never married at the time of the genocide (except in column 3); primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide and who had children before the genocide (column 1), who had siblings before the genocide (column 2), and who were never married at the time of the genocide (column 3). Data source: DHS 2000, 2005, and 2010.

|                                                     | Dependent variable:<br>Hazard of having a birth between June 1995 and May 2000 |                  |                   |                  |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------|------------------|-------------------|------------------|--|--|
|                                                     | (1)                                                                            | (2)              | (3)               | (4)              |  |  |
| Child death during genocide (CHILD <sub>ict</sub> ) | 0.27<br>(5.45)***                                                              | 0.15<br>(2.09)** | 0.37<br>(4.31)*** | 0.25<br>(2.43)** |  |  |
| All controls                                        | Yes                                                                            | Yes              | Yes               | Yes              |  |  |
| Commune fixed effects                               | Yes                                                                            | Yes              | Yes               | Yes              |  |  |
| Wave fixed effects                                  | Yes                                                                            | No               | No                | No               |  |  |
| Sample                                              | All waves                                                                      | 2000 only        | 2005 only         | 2010 only        |  |  |
| Observations                                        | 25,754                                                                         | 10,007           | 8,325             | 7,422            |  |  |

#### **Table A9:** Survival analysis of post-genocide fertility, exploring recall bias death

Note: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                                                            | Dependent variable:<br>Hazard of having a birth between June 1995 and May 2000 |                   |                     |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------|---------------------|--|--|
|                                                            | (1)                                                                            | (2)               | (3)                 |  |  |
| Child death during genocide (CHILD <sub>ict</sub> )        | 0.27<br>(5.39)***                                                              |                   |                     |  |  |
| Sibling death during genocide (SIBLING <sub>ict</sub> )    |                                                                                | -0.04<br>(-1.88)* |                     |  |  |
| Change in sex ratio ( $\Delta Sex \ ratio_{c,1991-2002}$ ) |                                                                                |                   | -0.67<br>(-2.97)*** |  |  |
| All controls                                               | Yes                                                                            | Yes               | Yes                 |  |  |
| Commune fixed effects                                      | Yes                                                                            | Yes               | No                  |  |  |
| Commune-specific time trends                               | Yes                                                                            | Yes               | No                  |  |  |
| Préfecture fixed effects                                   | No                                                                             | No                | Yes                 |  |  |
| Préfecture-specific time trends                            | No                                                                             | No                | Yes                 |  |  |
| Wave fixed effects                                         | Yes                                                                            | Yes               | Yes                 |  |  |
| Sample                                                     | All waves                                                                      | All waves         | All waves           |  |  |
| Observations                                               | 25,754                                                                         | 25,754            | 25,754              |  |  |

### **Table A10:** Survival analysis of post-genocide fertility with time trends

*Note*: Displayed are coefficients obtained from Cox regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. The right-censored indicator takes the value one if the child birth has not occurred by May 2000; and zero otherwise. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                                                            | Dependent variable:<br>No. of children born after June 1995 |                     |                    |  |  |
|------------------------------------------------------------|-------------------------------------------------------------|---------------------|--------------------|--|--|
|                                                            | (1)                                                         | (2)                 | (3)                |  |  |
| Child death during genocide (CHILD <sub>ict</sub> )        | 0.10<br>(2.54)**                                            |                     |                    |  |  |
| Sibling death during genocide (SIBLING <sub>ict</sub> )    |                                                             | -0.05<br>(-2.66)*** |                    |  |  |
| Change in sex ratio ( $\Delta Sex \ ratio_{c,1991-2002}$ ) |                                                             |                     | -0.47<br>(-2.36)** |  |  |
| All controls                                               | Yes                                                         | Yes                 | Yes                |  |  |
| Commune fixed effects                                      | Yes                                                         | Yes                 | No                 |  |  |
| Commune-specific time trends                               | Yes                                                         | Yes                 | No                 |  |  |
| Préfecture fixed effects                                   | No                                                          | No                  | Yes                |  |  |
| Préfecture-specific time trends                            | No                                                          | No                  | Yes                |  |  |
| Wave fixed effects                                         | Yes                                                         | Yes                 | Yes                |  |  |
| Sample                                                     | All waves                                                   | All waves           | All waves          |  |  |
| Observations                                               | 25,754                                                      | 25,754              | 25,754             |  |  |

### **Table A11:** Count data analysis of post-genocide fertility with time trends

*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. All controls include: age; age squared; never married at the time of the genocide; primary education; secondary or higher education; number of children born before June 1995; percentage of children ever lost before the genocide; household wealth index; place of residence is urban; and under-five mortality in the five years before the genocide. Sample: women aged 10-45 during the genocide. Data source: DHS 2000, 2005, and 2010.

|                       | Dependent variable: No. of children born in the period |                     |                     |  |  |  |
|-----------------------|--------------------------------------------------------|---------------------|---------------------|--|--|--|
|                       | 1987-1992                                              | 1982-1992           | 1977-1992           |  |  |  |
|                       | (1)                                                    | (2)                 | (3)                 |  |  |  |
| Tutsi                 | -0.03<br>(-1.05)                                       | -0.11<br>(-2.70)*** | -0.15<br>(-3.60)*** |  |  |  |
| All controls          | Yes                                                    | Yes                 | Yes                 |  |  |  |
| Commune fixed effects | Yes                                                    | Yes                 | Yes                 |  |  |  |
| Sample                | 1992                                                   | 1992                | 1992                |  |  |  |
| Observations          | 6,509                                                  | 6,509               | 6,509               |  |  |  |

### **Table A12:** Exploring differences in pre-genocide fertility across ethnic groups

*Note*: Displayed are marginal effects at the mean obtained from Poisson regressions and robust t-statistics, clustered at the PSU level, in brackets with \* p<0.1, \*\* p<0.05, \*\*\* p<0.01. All controls include: age; age squared; primary education; secondary or higher education; household wealth index; place of residence is urban. Data source: DHS 1992.