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ABSTRACT
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Inter-City Spillover and Intra-City 
Agglomeration Effects among 
Local Labour Markets in China

We examine how city size affect wage levels of cities (agglomeration externality) and how 

it influence surrounding cities (spill-over effect) in China for the period between 1995 

and 2009. Using spatial fixed-effect panel data models and allowing for endogenous 

and exogenous spatial dependence, we find strong positive city size effect on real wage 

levels, which confirms the existence of agglomeration economy within cities. We also find 

significant differences in both the direct and indirect effect of factors such as FDI between 

more and less population dense areas.
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1 Introduction

China’s fast economic growth has been associated with a rapid productivity increase. According

to the estimates of Feenstra et al. (2015), China’s total Factor Productivity (TFP) measured at

constant national prices increased from 0.59 in 1990 to 1.04 in 2014. It is often believed that this

is at least partly the result of fast urbanisation. As commented by an article in The Economist

(Jan 22, 2015): “Breakneck urban growth has propelled China’s rise in the past three decades”.

Indeed, through massive rural-urban migration and increase in the number of cities and towns, by

2016, Chinese urban population has grown to about 57 percent from only about 23 percent in 1985

(World Bank (2017)). According to the 2010 Census, China’s migrant population was about 221

million or 16.5 percent of the total population NBS (2011). At the same time, the number of cities

at the prefectural level or above increased from 169 in 1986 to 298 in 2017. However, there have

been significant and persistent disparities in development across regions. Of the 185 prefectural

cities that we have data for, the difference in GDP per capita (in constant prices) between the 9th

and 1st decile was about 132 percent in 1994, and became 163 percent in 2009. The dispersion of

real wage levels across regions has also been persistent: the difference in the average real wages

between the 9th and 1st decile cities has been constant at about 64 percent.

In this paper, we wish to shed some light on the reasons behind the unbalanced economic growth

and the persistent gap in real wages across regions from the perspective of agglomeration external-

ities. We study two types of externalities in Chinese cities: how city size affect real wages(we call

it intra-city agglomeration economy) and how cities’ real wages are affected by those of surronding

cities (we call it the inter-city spillover effect). Our focus is on 185 Chinese cities at and above the

prefectural level for the years between 1995 and 2009.

The idea that urbanisation could bring efficiency gain is not new. It could be traced to at

least as early as Marshall (1890) who believed that productivity differences across regions are not

exogenous and could be explained by agglomeration externalities through mechanisms such as thick

labour and intermediate goods markets1, and knowledge spillover (for a review of the literature,

see for example, Johansson and Quigley (2004), Johansson and Forslund Johansson (2008), and

Combes and Gobillon (2015)). These effects are important to quantify because the existence of

these externalities often leads to optimal choices by individuals not in line with collective objectives

that policy makers may have, and has inequality implications. For example, China’s policy makers

are often concerned about the negative effects of repaid growth in the size of cities and excessive

urbanisation (see Jones and Visaria (1997) and Henderson (2003)). Empirically, however, due to its

elusive nature, agglomeration externality is often tricky to detect, and the magnitude depends on

1A thicker market means higher density of agents or their activities.
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factors such as institution settings and environment of specific periods. As discussed in Combes and

Gobillon (2015), agglomeration economies are shaped through many different channels. The effects

of these mechanisms are not identified separately. What has been estimated in the literature (and

also the focus of this paper) is rather the overall impact on local outcomes of spatial concentration.

This is, however, c̀rucial for the understanding of firms’ and workers’ location choices or for the

design of economics policies’.

In this strand of literature, which this paper follows, the hypothesis that productivity in more

agglomerated areas is higher is tested. Typically, population size or density are used to measure

agglomeration, and output per worker, wages, or TFP are used to measure productivity. The

elasticity of productivity with respect to population size or density is used to measure the agglom-

eration economy. These investigations are either conducted at the local level or at the individual

level of firms or workers. For example, Sveikauskas (1975) found a positive correlation between

output per worker and the population size of US cities. Similarly, by estimating a reduced form

labour productivity equation using state-level data of the US, Ciccone and Hall (1996) find that

doubling employment density raises productivity (measured by output per worker) by 6 percent.

A criticism of these early studies is that they lack of ‘solid identification strategy’ (Moretti (2011))

to deal with the endogeneity issues of the agglomeration measures. The sources of the endogeneity

at the local level could come from omitted variables that are correlated with the agglomeration

measures; interdependent across regions, potential reverse-causality between productivity and ag-

glomeration, or errors in the agglomeration measurement. Further, if individual data were used,

further endogeneity issue may arise when workers make location choices according to some unob-

served factors such as unobserved ability, or to the exact individual outcomes that correlate to

local characteristics. Later studies attempt to use various strategies to deal with these issues. For

example, Ciccone (2002) use historical variables as instruments for agglomeration with cross-section

data to deal with the endogeneity issue. Other studies such as Glaeser and Mare (2001), Henderson

(2003), Moretti (2004), and Greenstone et al. (2010) make use of panel data to remove the correla-

tion with unobserved time-invariant factors. Each of these methods by themselves may not be able

to deal with the endogeneity issue satisfactorily (see discussion in Combes and Gobillon (2015)).

Another drawback of these approaches is that agglomeration economy is assumed to be constant

for all cities and they ignore spatial interdependence. In the presence of systematic spatial depen-

dence, the standard fixed effects models will result in an estimate of the average effect but cannot

reflect the pattern of the effect across regions. Thus another branch of the literature employs spatial

econometric technique to model regional correlations explicitly. In spatial econometrics models, the

effect of certain factor is allowed to be a multiple of the direct effect and depends upon proximity

to neighbouring regions. The impact of factors originated from neighbouring regions could also
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be separated out from that of own region. The models are richer than the standard non-spatial

linear models. However, these spatial models still suffer from the same omitted variable problem

and ignore the potential ‘exogenous interaction effects’ among cities (Manski (1993)). In other

words, without controlling for either fixed-effects or instrumenting the endogenous variables, spa-

tial econometric models still suffer from the endogeneity problem (see the discussion in Gibbons

and Overman (2012)). Such examples include Bode (2004), Van Oort (2007), and Ke (2010)) which

all use cross-section data and restrict spatial correlation to spatial lags, but do not deal with the

endogeneity issue.

As mentioned earlier, the magnitudes of agglomeration effects vary from time to time, and

country to country. The estimates also depend upon the measures used. For example, the estimates

for the US are around 0.05, and for European countries, the estimates ragnes from 0.05 to 0.13.2

For China, the estimates have been found to be in a wide range. Chauvin et al. (2017) obtained

a few estimates for the elasticity of wage with respect to population size and population density.

Depending upon the methods and instrument used, the estimates range from 0.03 to 0.32 (for the

elasticity of wage with respect to population size) or from 0.19 to 0.32 (for the elasticity of wage

with respect to population density). Yet, Ke (2010), using a cross-sectional spatial econometric

model, found the elasticity of wage with respect to employment density to be negative. Au and

Henderson (2006), using an IV approach with cross-sectional data, found that ’urban agglomeration

benefits are high’ and are U-shaped: ’real incomes per worker rise sharply with increases in city size

from a low level’, and ’level out nearer the peak and then decline very slowly past the peak’. Xu

(2009), by estimating a non-spatial panel data model, also concluded that the relationship between

population and productivity to be non-linear (U-shaped). These findings may suggest that the

agglomeration externality is not constant in China. None of these studies take the advantages of

spatial econometrics and treating the endogeneity issue at the same time. In this paper, we attempt

to estimate these agglomeration externalities in China using a fixed effect Spatial Durbin panel

data model, which both gives a richer insight of intra-city agglomeration externalities and inter-

city spillover effects, and controls for time-invariant heterogeneity at the local level. We also use

time-lag of population size of city as the explanatory variable to reduce the concern on simultaneity.

Intra-city agglomeration externalities are captured by the effects of city size, while the inter-city

2The estimates for the US seem to be comparable across different studies. For example, Ciccone and Hall (1996)
and Rosenthal and Strange (2008) estimated the elasticity of productivity with respect to population density to be
around 0.04-0.05 for the US. Also for the US, Chauvin et al. (2017) estimated the elasticity of male earning with
respect to metropolitan area population to be 0.054. For other countries, is seems not to be the case. Ciccone (2002)
estimated the productivity elasticity with respect to population density for a few European countries to be 0.05 in
1992. These studies use IV approach on cross-section data to control for the endogeneity issue. However, Brülhart
and Mathys (2008), who use a panel of more European countries for the period between 1980-2003 got a much larger
estimate of around 0.13.
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spillover effects are captured by spatial dependence. We argue that identification is achieved by 1)

the inclusion of fixed effects, which takes account of the endogeneity problem due to omitted time-

invariant variables; 2) using time-lagged (rather than contemporary) variables as regressors, which

reduces the potential simultaneity problem; and 3) by functional form assumptions. Functional

form assumptions may be strong in this approach, but this may be the price worth to pay for

allowing for a richer structure of the model. Since the variables are strongly correlated, it is possible

that using one-year lag is not sufficient to overcome the simultaneity problem. As a robustness

check, we estimate and compare the models using time-lags of different period. Admittedly, the

endogeneity problem may still not be removed completely with this approach, but we believe by

taking into account the spatial independence and controlling for the fixed-effects, our estimates

may be improved compared to previous estimates for China and provide the pattern of the effects

across regions. Han et al. (2018) is a recent example that use similar approach to study spatial

spillover effects of industrial agglomeration on carbon emissions in China.

A drawback for allowing for the effects of the explanatory variables to be varying across ob-

servations in spatial econometrics models is that the effects cannot be expressed directly as the

parameters of the models. Using model estimates, we calculate summary measures of the variable

impacts: the average direct (from own city) and indirect effects (from other cities) of some key

variables on productivity. These effects are calculated for various city groups. We also propose

a new measure of the strength of the spillover effect–the multiplier of the average effect over the

initial shock of a variable. 3

We find a strong positive effect of urban population on the real wage level. This finding confirms

the existence of agglomeration economy within regions. We also find significant differences in

both the direct and indirect effect of factors such as FDI on productivity between areas with

different population densities. This seems to suggest the existence of spillover effects between

cities. Disparity between regions in economic growth and productivity could be explained by

the statistically significant regional variations in the direct and indirect effects of the explanatory

variables. For example, we find that the average direct effect of Foreign direct investment (FDI)

increments is about 1.5 times larger in East China than in Northeast.

The contributions of the paper are: 1) identifying within region agglomeration externality and

inter-region spillover effects on productivity in urban China using a spatial panel data approach; 2)

providing an explanation for the unbalanced economic growth and the persistent gap in productivity

3As discussed in Moretti (2011), another approach has also been used to test for agglomeration economies. It is
based upon the location decision of firms at equilibrium and to make inference out of observed geographic distribution
of employment. For example, by comparing geographic concentration across industries in the US manufacturing
sector, Ellison and Glaeser (1997) find that all industries are localised to some degree and that spillover of location,
natural environment, and even random shocks could all affect agglomeration. Other examples include Rosenthal
and Strange (2003), Duranton and Overman (2005), and Ellison et al. (2010).
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across regions; 3) our model considers both endogenous and exogenous spatial interdependence

explicitly; and 4) proposing a new measure for the strength of the spillover effects.

The rest of the paper is organised as follows. In Section 2 we describe the output and produc-

tivity patterns of the prefectural cities over the period between 1995 and 2009. In Section 3 we

present the model. Estimation results are presented and discussed in Section 4. In Section 5, we

conclude.

2 Data

Our analysis focuses on 185 cities at or above prefectural levels in China for the years between 1995-

2009. A prefectural city4 in China is a city that directly controlled by a provincial government.

According to a 1993 State Council document, they have to be cities that, have a non-agricultural

population over 250,000 in their non-suburban areas; have total output of over 3 billion Chinese

Yuans (at least 80 percent of which is from non-agriculture); have total GDP of over 2.5 billion

Yuans (of which, over 35 percent is from the third (service) sector and more than that from the

first (agriculture) sector); have government revenue of above 0.2 billion Yuans; and are centers to

several other cities or counties in the region. In addition, four cities, Beijing, Shanghai, Tianjin,

and Chongqing, are municipalities directly administrated by the central government.

Data employed in this paper are mainly obtained from China City Statistical Year Books and

are supplemented by China Statistics Year Books. In a small number of cases, missing data for

specific cities/years are obtained from statistical year books of various provinces. As mentioned

in the introduction, the number of cities has been steadily increasing over the years from 206 in

1994 to 298 in 2017. For our analysis, we construct a balanced panel of 185 cities which have

already existed in 1994. The panel excludes a few cities whose administrative areas have changed

significantly during the period and a couple of cities in Tibet (which are isolated from most of the

cities in the country). The location of these cities are shown in Figure 1.

[ Figure 1 is here]

The key variable of interest analysed in this paper is average real wage per worker with urban

Hukou5, which we use to measure productivity.6 The explanatory variables include the (lagged)

4There are three levels of cities in China, municipality under the central government, prefectural cities, and
county level cities.

5The hukou system is the residence registration system in China. Until recently, each citizen was classified in an
agricultural or non-agricultural hukou (commonly referred to as rural or urban) and further categorized by location of
origin. This two-fold organization structure was linked to employment permission and social policy. Local residents
who held non-agricultural (i.e. urban) hukou status received benefits not available to their rural counterparts or
non-residents. As a result, internal migration has been tightly controlled by the system. Only in the past few decades
have these restrictions been gradually loosened.

6Some papers use TFP as the measure of productivity (e.g., Moretti (2004) and Henderson (2003)). The issue
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annal increment in FDI, the stock of total assets (including both fixed and circular assets), the size

of urban population, and the shares of employment and output from the second (slightly broader

than the manufacture sector) and the third sectors. It is important to take into account the large

regional disparity in price levels. Thus, all the variables related to values have been deflated using

a spatial price index (SPI) at the provincial level generated using the method proposed in Brandt

and Holz (2006).7

Table 1 summarises the variables and their descriptive statistics used in this paper. First, the

data confirm that productivity in China has increased rapidly over the sample period of 15 years—

the average real wages have more than quadrupled. This increase is only slightly slower than the

increase in real GDP per capita. Meanwhile, annual FDI inflows (in real terms) have also more

than doubled. Since early 1990s, China has been the largest FDI recipient among the developing

countries, and since 2003 it has become the largest recipient of the whole world. Second, the

average size of cities has increased by about 13 percent over the sample period. Yet, this does not

include rural migrant workers and their families. Thus the actual size of the cities would increase

by a much larger scale. Thus this measure can only be used as a proxy for the size of the labour

force. Due to the Hukou system, China’s urban labour markets are dichotomous. To a large extent,

workers with urban Hukou and migrant workers are often segregated into different sectors. And,

the former are relatively immobile and the latter highly mobile. Admittedly, if the increases in the

size of migrant workers are not in similar proportions, it may affect the estimate of the effect of

city size on wage levels. Third, as a sign of urbanisation, the industry structure of the economy has

also changed dramatically. On average, the proportion of non-agricultural sector has grown from

about 78 percent to about 88 percent. In 2009, the service sector has already employed more than

half of the non-agricultural workforce.

[Table 1 is here.]

To see regional disparity of the development, following the convention, we divide China into

7 regions: East China, North China, Central China, South China, Northeast China, Northwest

China, and Southwest China (also see the map in Figure 1).8 Generally speaking, East and South

China are the most population dense and economically active regions, and the western parts of

with TFP is that it has to be estimated. And it China, statistics did not include migrant workers until 2010, which
means we do not have the correct measure of the total labour input to estimate TFP. Wage does not suffer the same
problem if they are paid at marginal product.

7Various methods, including Engel Curve methods, of creating SPI have been explored. Also see discussions in
Gong and Meng (2008).

8East China includes Shandong, Jiangshu, Zhejiang, Anhui, Jiangxi, Fujian, and Shanghai; North China includes
Hebei, Shanxi, Inner Mongolia, Tianjin, and Beijing; Central China includes Henan, Hubei, and Hunan; South
China includes Guangdong and Guangxi; Northeast China includes Liaoning, Jin Lin, and Heilongjiang; Northwest
China includes Shaanxi, Gansu, Ningxia, Qianghai, and Xinjiang; and Southwest China includes Sichuan, Guaizhou,
Yunnan, Chongqing, and Tebit.
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the country are less developed. In Figures 2 to 4, we present the trends of GDP per capita, wage

levels, and FDI inflows of different parts of China together with the country averages. The figures

illustrate vast and persistent differences among these regions. Figure 2 shows that cities in Central

and Southwest China have the lowest GDP per capita and those in East and North China have the

highest, and the differences of output levels have enlarged in the years post 2000. Figure 3 indicates

that the pattern of wage increases do not follow exactly the output growth. Wages did not increase

until late 1990’s while per capita GDP had a continuous increase over the entire period. The speed

of increases in wage levels is quite similar among different regions, and the differences in wages

have been roughly kept constant (except for South China). This may be a sign of cross dependence

in the labour markets. FDI inflows are extremely uneven among regions (Figure 4). In the early

years, most of FDI ended up in East and South China. In later years, FDI in other areas picked

up, but Northwest is still the region that attracts the least FDI. We also present the average sizes

of the cities in terms of urban population in Table 2—in Northeast and Northwest, which are the

less populated areas, city sizes are significantly smaller than in other regions.

[Table 2 is here.]

[ Figure 2, 3, and 4 are here]

We use highway distances between pairs of cities in kilometers to measure the spatial distances

between cities.9 To show spatial correlation among regions, we calculate and compare in Table

3 the Moran index for log wage per worker. The table shows strong spatial correlations across

cities. These correlations are all significant for cities until they are 1500kms apart. The correla-

tions decrease dramatically with the increase of the distances—after the distances over 300kms the

influences of other cities are still there, but the correlation coefficients become pretty small. The

correlations of cities that are close from each other remain stable over time, but the correlations

among cities over a longer distances became stronger in later years. This may suggest that eco-

nomic links among cities are getting stronger over time, which is in line with the increased levels

of economic activities.

[Table 3 is here.]

9We do not use absolute geographical distances calculated from geographic coordinates because we believe that
highway distances better reflect economic relation between cities. These data are collected using the service provided
by Google Map Services.

8



3 The Approach

The Model

To estimate the agglomeration and spillover effects in productivity, we estimate a fixed effect Spatial

Durbin (SDM) Model:

yt = ρWyt +Xtβ +WXtθ + a+
S∑
s=1

dst ιn + vt, t = (1, . . . , T ), (1)

where yt = (y1t, . . . , ynt)
′ is the (log) average real wage of the cities in year t, Xt = (X1

t , . . . , X
R
t )

(each Xr
t = (Xr

1t, . . . , X
r
nt)
′, r = 1, . . . , R) is a matrix of R explanatory variables, W is a given

spatial matrix for the autoregressive components, a = (a1, . . . , an)′ is the vector of city fixed effect,

dst (s = 1, . . . , S) are the dummy time effects, ιn is a vector of ones, and vt = (v1t, . . . , vnt)
′ is

an i.i.d. normally distributed error term. Included in X are (log) asset, lagged (log) population

size of the city, relative size of each sector in the economy, and lagged (log) FDI. Including lagged

population size and FDI is to reduce the endogeneity issue caused by simultaneity. We specify W

as the inverse of highway distances between cities, standardised by the maximum of its eigenvalues.

In this model, potential intra-city agglomeration externality is captured by the impact of pop-

ulation size. The impacts of demand shock are captured by the coefficients of the lagged FDI. The

inter-city spillover effect is considered to be from two sources. The first is from ρ, the coefficient of

the spatial lag of the dependent variable. It reflects that the productivity of a city varies with that

of its neighbouring cities. The second is from θ, the coefficients of the spatial lag of the explanatory

variables. It reflects the fact that the productivity of a city may vary with the characteristics

of its neighbouring cities. These two sources correspond to what Manski (1993) labelled as the

‘endogenous interaction effects’ and the ‘exogenous interaction effects’ (Elhorst (2014)).

One of the advantages of the SAR or SDM model is that they allow for the impacts of factors

to vary for each city. The price to pay is the loss of straightforward interpretation of the model

parameters. The model coefficients cannot be explained as the marginal effects of the variables. For

example, β’s could be explained as the initial round of direct shock of the corresponding variable

on the dependent variable, and Wθ could be explained as the initial round of exogenous interaction

effects from other cities. The complete effects of the variables include the feedback effects (see next

sub-section for details).

In the standard non-spatial linear models (including Spatial Error models), none of the two

inter-city spillover effect is allowed. In those models, both ρ and θ’s are set to zeros, although

spatial correlation in the error terms can be allowed. In the presence of spatial correlation through
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lagged spatial dependent variables, the OLS or fixed effect estimates would be inconsistent. Al-

though IV or GMM approaches could yield consistent estimates. The consistency of IV or GMM

estimates depends crucially on the validity of instruments. And even if in the rare cases where

valid instruments could be found, the inter-regional impacts are restricted to be constant and it is

difficult to obtain the pattern of the varying effects.

In the Spatial Autoregressive (SAR) Models, which are probably the most popular spatial

econometrics models, only the first (endogenous) spillover effect is allowed. In these models, θ’s are

set to zero. A potential problem is that if there exist exogenous interaction effects, the Maximum

likelihood estimator would be inconsistent. The presence of these effects could be tested using a

simple Likelihood ratio test (there is a large literature discussing various models, see for example,

LeSage and Pace (2009) and Elhorst (2010)).

Marginal effects

Unlike in the non-spatial models, where the coefficients of the explanatory variables measure the

marginal effect of those variables, the marginal impacts of explanatory variables in SAR or SDM

models are more complicated. The effects depend upon the spatial correlation coefficient ρ, the

spatial weighting matrix W , along with the β’s (and θ’s in the case of SDM). They also differ from

units to units.10 For example, the marginal impact of Xr
it, the r-th variable in Xt of city i at time

t on Eyjt, the expected wage level of city j at time t is given by

∂E{yjt|Xt}/∂Xr
it = Sr(W )ji, (i, j = 1, . . . , n; t = 1, . . . , T ) (2)

where Sr(W )ji is the j, i-th element of the matrix

Sr(W ) = (In − ρW )−1(Inβr +Wθr)

(In is a n× n identity matrix).

LeSage and Pace (2014) propose calculating three averages of these varying impacts as summary

measures. The first is the Average Direct Effects (ADE), which is the average impact of changing

the value of the explanatory variable on the real wage of the same city:

ADEr = n−1tr(Sr(W )) (3)

10It is worth pointing out that, many empirical studies wrongly interpret the coefficients as the marginal effects
(as noted by LeSage and Pace (2009)).
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This measure has the similar interpretation as the typical (non-spatial) regression coefficients. Due

to spatial dependence, this effect is different from the initial impact β. From this measure, we

propose to calculate the ratio,

η̄r = ADEr/βr, (4)

which is the average multiplier of the initial direct shock of Xr and reflects the strength of the

feedback or repercussion effects. For example, a multiplier of 1.10 could be interpreted as that

the accumulated effect is about 10 percent larger than the original shock. The further apart the

multiplier from the unity, the stronger is the interdependence across regions and are the repercussion

effects among each other. A larger than unity multiplier means the direct impact is stronger than

the initial shock, while a smaller than unity multiplier means the direct impact is weaker than the

initial shock. In the SDM models, the multipliers are different for each explanatory variable, but

in the SAR models, the multiplier is restricted to be the same for all variables. This is another

advantage of the SDM models over the SAR models.

The second is the Average Total Effect (ATE)11 to (or from) an observation, which is the average

impact of changing the values of the explanatory variables of all observations on a city’s wage level:

ATEr = n−1ι
′

n(Sr(W ))ιn. (5)

The difference of the ATE and the ADE is called the Average Indirect Effects (AIE),

AIEr = ATEr − ADEr (6)

The AIE measures the average effects of changing the values of the explanatory variable of

all except own observation on a city’s wage level. In another words, AIE measures the average

radiation effects originated from all other observations if the values of the corresponding variable

change simultaneously. In our case, it measures the average cross-city effects. It should be noted

AIE and ADE should not be compared directly because ADE measures the effect originated from

one (own city), and AIE measures the sum of the effects from all other cities.

In fact all these measures could be extended to any selection of cities. For example, of a group

of cities s, we can define an ADEs
r as

ADEs
r = n−1s (Sr(W )dιns) (7)

where ns is the number of cities in the group, Sr(W )d = (Sr(W )11, . . . , Sr(W )nn)′ is the row vector

of the diagonal elements of Sr(W ), and ιns is the vector of indicators of city group s.

11For all cities, the ATE’s from and to a city are numerically identical.
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Similarly the average of the total effects from all cities on city group s (ATEs
rf ) could be defined

as

ATEs
rf = n−1s ι

′

ns
(Sr(W ))ιn (8)

The average of the total effects to all cities from city group s (ATEs
rt) could be defined as

ATEs
rt = n−1s ι

′

n(Sr(W ))ιns (9)

ATEs
rt and ATEs

rf may be different if W is asymmetric.

Estimation

The model (Equation 1) is estimated by the (concentrated) maximum likelihood method (ML).

First of all, the fixed effects are removed by demeaning the data:

ỹt = ρWỹt + X̃tβ +WX̃tθ +
S∑
s=1

dst(1− 1/T )ιn + ṽt, t = 1, . . . , T ) (10)

where ỹ and X̃ are demeaned variables. Secondly, for a given ρ, β’s, dt’s, θ’s and the variance of

error terms are estimated by OLS of ỹ − ρWỹ on X̃, WX̃, and the transformed time dummies,

and hence just a function of ρ (denoted as β̂ρ, θ̂ρ, d̂t, and σ̂2
ρ, respectively). Thus, the concentrated

likelihood function to be maximised (against ρ) is

lnL = −nT/2 ∗ (ln(π) + ln(σ2
ρ) + 1) + (T − 1) ∗ ln |In − ρW |, (11)

where |In − ρW | is the determinant of the matrix (In − ρW ), σ2
ρ = e′e/(nT ) ∗ T/(T − 1) is the

variance of the error terms,, and e = ỹ−ρWỹ−X̃β̂ρ−WX̃θ̂ρ−
∑S

s=1 d̂
s
t .
12 We include the correction

factor T/(T − 1) in σ2
ρ following Lee and Yu (2010).

At the maximum, the asymptotic distribution of parameter estimates (ρ̂, β̂, θ̂, d̂t, σ̂
2)′ is normal.

The variance and co-variance matrix of the parameter estimates can be estimated from Hessian

calculated analytically, numerically, or the mixture of the two. We use the mixed analytical and

numerical methods (for details see, LeSage and Pace (2009)).

Using the parameter estimated, the marginal effects could be calculated directly and their

standard errors are calculated by bootstrapping. Given the estimates of the variance-covariance

12If the number of cross-section units is too large, calculating |In−ρW | or (In−ρW )−1 directly could be inefficient,
LeSage and Pace (2009) discuss alternative methods of estimating them. In our case, the number of cross-section
units is 185, which is not very big. The differences in the estimates of these quantities using different methods are
negligible.
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matrix of the parameter estimates, bootstrapping is straightforward: draw B sets of parameter

estimates from its distribution, for each set of estimates calculate the marginal effects described

above, and the standard errors of the marginal distribution are given by the standard deviation of

the empirical distribution of the B estimated marginal effects.

4 Results

Comparison of models

As indicated in Table 3, there are strong spatial correlations in our data. Therefore, estimates from

non-spatial OLS and fixed effects that do not take into account of spatial correlations are likely

to be inconsistent. For comparison purposes, Table 4 presents parameter estimates of 4 models:

non-spatial OLS, non-spatial fixed effects, fixed effect SAR, and fixed effect SDM. It is apparent

that the coefficient estimates from non-spatial OLS and fixed effects models are quite different from

the results of both SAR and SDM models. Meanwhile, the interpretation of the coefficients are not

directly comparable.

The estimates of βs, which measure the initial round direct impact of each variable on own

city, are quite similar from both the SAR and SDM models. However, the null hypothesis of no

exogenous spatial interdependence is strongly rejected by a likelihood ratio test between the SAR

and SDM model, which means that the SAR model is rejected—the test statistics is 156.36.13 Most

of the estimates of the coefficients of WX in the SDM model (the θ’s) are significant. This implies

the existence of both strong endogenous and exogenous interdependence between these cities. In

addition, the estimate of the spatial autoregressive coefficient (ρ) from the SDM model (0.80) is

also different from that from the SAR model (0.53).

[Table 4 is here.]

Marginal effects

In Table 5, the marginal effects of the explanatory variables from these models are presented. The

non-spatial OLS and fixed-effects coefficients are also own marginal effects, which have the same

spirit as the ADE’s of the SAR and SDM models. Again, they are very different from the latter

two models. Most of the ADE estimates from the SAR and the SDM are not too far apart, but

the AIE estimates are very different. Even with much larger standard errors, at least some of the

AIE estimates from the SDM model are still significantly different from those from the SAR model.

Again, the SAR restricts the multiplier to be the same for all variables (estimated to be 1.017) and

13The critical value of the χ2(6) at the 5 percent level is 12.6.
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the SDM allows them to be different for each variable. In the rest of the paper, our interpretation

of the results will be based upon the SDM model.

[Table 5 is here.]

The last three columns of Table 5 reveal some interesting insights of productivity in urban

China. Firstly, the ADEs of all variables are significant. The ADE of urban population on real

wages confirms the existence of intra city agglomeration externality in Chinese cities. The estimate

of 0.542 is an elasticity, which means that on average, if a city’s own population increases by one

percent, the real wage would increase by about 0.54 percent. The multiplier of 1.06 could be

interpreted that the accumulated effect is about 6 percent larger than the original impact, and it

is significantly different from one. This estimate confirms that agglomeration economy in China is

much stronger than those for the US and for Europe. Such a strong agglomeration economy may

provide a good explanation for the rapid urbanisation in China and why policies aim to limit the

size of city growth may not be effective. The estimate from the SDM model is also larger than the

estimates from other studies for China, which either do not take into account spatial dependence

or control for the endogeneity issue. The ADE of FDI implies that every one percent increase

in FDI would push up the local wage by 0.01 percent. A multiplier of 1.5 (which is significantly

different from one) implies that, through repercussions between neighbour cities, it is amplified to

about 1.5 times of the original impact. The impacts of the other variables also have the expected

signs. For example, higher capital stock (measured by total value of the assets) also leads to

higher wage (with an elasticity of 0.11); the larger are the non-agriculture sectors (measured by the

proportion of second and third sector GDP), the higher is the wage; and the larger the second sector

employment relative to the third sector (measured by the proportion of second sector employment

out of the non-agriculture sectors), the lower the wage is. For some of these variables, a somewhat

significantly less than one multiplier suggests that the accumulative impacts are weaker than the

original impacts due to the inter-city spillover effects.

Secondly, it is worth noting that the fact that most of the multipliers are significantly different

from one illustrates strong inter-city spillover. Thirdly, these inter-city spillover effects differ from

factor to factor, where that of FDI is the strongest, and that of city size is probably the weakest.

Fourthly, the inter-city spillover effects are also reflected in the AIE’s. From the estimates of the

AIEs we find that for most factors, the inter-city spillover is very strong, which means that a large

part of productivity increase is due to effects originated from cities other than own. For example, if

the population size of all other cities increases by one percent, on average, a city’s real wage would

be pushed up by 4.8 percent. If FDI of all other cities increases by one percent, on average, a city’s

real wage would be pushed up by 0.53 percent. Similarly, if the size of the second sector out of the

non-agriculture sectors of all other cities increases by one hundred percentage points (which means

14



the whole economy swings away massively from the service sector), the real wage of an average

city would decrease by about 18 percent. Again, these inter-city spillover effects vary from factor

to factor. The multiplier and the AIE of FDI also suggest that the inter-regional spillover effects

of FDI contribute significantly to productivity increase of a much wider scope than where the FDI

locates. This may be due to the transfer of knowledge, management skills, and so on, or due to

that—unlike the State Owned firms who often require workers to have local Hukou—the foreign

firms could draw from the more mobile part of the urban labour force.

Differences across regions

To illustrate the regional differences, we present the measures of the marginal effects for the seven

regions in Table 6.14 From the table, we can see that both the multiplier and the AIE exhibit some

variations across regions. The pattern seems to be that these effects are somewhat larger in more

population dense areas such as East, South, and Central China, but smaller in less population

dense areas such as Northeast and Northwest. To further illustrate the differences across regions,

we further analyse Northeast and East China. Northeast China is an area with a relative low (but

not the least) population density. It is the ‘old’ industrial base where many heavy industries such

as machinery locate. Economic growth in Northeast China has been slow. As a contrast, East

China is an area with a high population density. It is the economic powerhouse in the last few

decades. East China is also the destination of most of the FDI inflow. As the results show, the

multiplier of the FDI impact for Northeast China is about 1.4, but that in East China, it is about

1.6. This means that the impact of FDI on productivity would be 1.6 times of its initial shock in

East China and about 1.4 times in Northeast China. For the AIE, a similar conclusion could be

made. We conduct a formal test for the significance of these differences and present the test results

in Table 7. The results show that the differences of the multipliers and the AIE’s for most of the

variables are significant at least at the 10 percent level.

The disparity in growth and productivity across regions can be explained by the variations in

the effects of these factors. In addition, these variations suggest that the strength of inter-regional

spillover correlates with population (and thus city) density. This can be seen as another form of

agglomeration economy.

[Table 6 is here.]

[Table 7 is here.]

14The results from the SAR model is presented in Table 8.
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Robustness of the results

The reason to use time lagged variable for population size (and FDI) is to reduce the potential

endogeneity of the variables, even though the fixed-effect is controlled for. To check whether using

lagged variable is sufficient to control for this issue, we calculated the correlation between the spatial

lag variable Wy and the estimated residuals. A low correlation between the two can be a sign that

the endogeneity issue is not a serious issue. For the SDM model, the correlation is 0.007, which is

very small.

To further check whether using one-year lag is sufficient, we also estimated a set of alternative

models and compared the results of the benchmark models. In these alternative models, we replace

the population size with lags of various years (up to t− 5). The parameter estimates for the SDM

models are presented in Table 9 (the results for SAR models are presented in Table 11 of the

Appendix). In these alternative models, we restrict the cities to those with five more years of data.

Thus the number of observations used is smaller than in the benchmark models. From the table,

we can see that the results are quite robust to the specifications. The parameter estimates of all

variables except for those of the population size are almost identical for all models, no matter which

lag is used for the population size. The magnitudes of the coefficients of the population size are

somewhat different when different lag is used (which is not surprising), but the difference is not

large and the sign and the significance remain the same. The estimates of the spatial coefficient ρ

are also very close to each other. In addition, the value of the likelihood are also similar.

We also checked the stability of the estimates over time. We partitioned the sample into three

periods (1994–1999, 2000–2004, 2005–2009) and estimated the model for each sub-period. The

estimates of the parameters, the ADEs, and the AIEs for the SDM models are presented in Tables

10 (the results for SAR models are presented in Table 12 in the Appendix). It should be noted

that for the estimates to be consistent, both the number of cross-section units and the number

of time periods need to be large. However, the samples of each sub-period only consists of five

years of data, which is rather small. The magnitudes of the estimates for different periods do

differ and the estimate of the spatial coefficient become smaller in later period. However, the signs

and the significance for most of the parameters are consistent over time. The results may imply

that in a fast evolving economic system like China, the assumption that the economic relationship

remains constant could be restrictive or unrealistic. Time-varying coefficient models, which allow

for changing economic relationships, may be more appropriate for such cases.
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5 Conclusions

In this paper, we analysed the intra-city agglomeration economies and inter-city spillovers in pro-

ductivity of urban China using a spatial econometrics approach. the productivity is measured

with the average real wage of each city, which is adjusted using a spatial price index. We com-

pared various specifications including non-spatial linear models, the fixed-effect SAR model, and

the fixed-effect SDM model. We showed that in presence of a strong spatial interdependence, the

fixed-effect SDM is preferred. The fixed-effect SDM model allows for both the endogenous and

exogenous interdependence, and allows for non-linear spillover effects between cities. The results

are summarised using measures such as ADE and AIE as proposed by LeSage and Pace (2014). We

also proposed a multiplier of the ADE to measure the strength of the inter-city spillover effects.

From the results for the 185 cities at or above the prefectural levels, we could draw the following

conclusions. First, our estimate shows that the average elasticity of wage with respect to population

size of cities was about 0.5 for the period between 1994 and 2009, which means that if the population

size of the city is increased by one percent, productivity would increase by 0.5 percent. This is

much larger than those found for the developed countries, but consistent with findings that for

developing countries such as China, India, and Brazil, agglomeration economy is usually larger.

This could help to explain why rapid urbanisation happens in these countries and could explain

why policies aiming to limit city sizes may not be effective. Secondly, we find that agglomeration

economy may exist as the forms of both intra-city agglomeration and inter-city spillover effects.

A significant positive effect of urban population on the real wage level confirms the existence of

intr-city agglomeration effects, while the significant differences in the multipliers and AIE’s between

more and less population dense areas seem to suggest that the agglomeration economy may also exist

in the form of inter-city spillovers. Thirdly, the disparity between regions in economic growth and

productivity could be explained by the statistically significant regional variations in the multipliers

and AIE’s. For example, we find that the multiplier of the direct effect of FDI is larger in East

China than in Northeast. This is probably why we see the emergence of the fast growing city groups

in areas such as the Yantz River Delta, Pearl River Delta, and so on.

The results are rather robust to alternative specifications in which various time lags are used.

The correlation between the spatial lagged variable and the residuals is very low. These findings

suggest that our identification strategy works well. However, the results are different for various

sub-periods, which may suggest that a more flexible model such as time-varying coefficient model

that allows for evolving economic relationships could be more appropriate. This is a direction for

future research.
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NBS (2011). Communiquèof the National Bureau of Statistics of Peoples Republic of China on Major Figures of the

2010 Population Census (no. 1). Technical report, National Bureau of Statistics of People’s Republic of China.

Rosenthal, S. and Strange, W. (2003). Geography, industrial organization, and agglomeration. The Review of

Economics and Statistics, 85(2):377–393.

Rosenthal, S. and Strange, W. (2008). The attenuation of human capital spillovers. Journal of Urban Economics,

64(2):373–389.

Sveikauskas, L. (1975). The productivity of cities. The Quarterly Journal of Economics, 89(3):393–413.

Van Oort, F. G. (2007). Spatial and sectoral composition effects of agglomeration economies in the Netherlands.

Papers in Regional Science, 86(1):5–30.

World Bank (2017). World bank open data. Available at http://data.worldbank.org/, accessed July 17, 2017.

Xu, Z. (2009). Productivity and agglomeration economies in chinese cities. Comparative Economic Studies,

51(3):284–301.

20



Figures

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

20

30

40

50

80 100 120

Longitude

La
tit

ud
e

Region

Central China
East China
North China
Northeast
Northwest
South China
Southwest

Figure 1: Cities (black dots) included in the analysis.
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Figure 2: Trend of log GDP per capita of different regions
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Tables

Table 1: Variable definition and Sample statistics

Variable Definition Sample statistics

1994 1999 2004 2009

wage wage per worker 4390.28 6071.11 10798.75 18961.0

(1077.7) (1628.93) (3109.5) (4766.5)

fdi FDI (10,000 yuans) 127198.2 130954 236396.8 316040.0

(290713.4) (282552) (486765.7) (614322.8)

gdp GDP per capita (10,000 yuans) 5354.94 7512.80 13079.95 23866.5

(4619.5) (6887.4) (12584.8) (19878.7)

Asset Total asset (million yuans) 22969.68 31521.85 50053.04 118982.80

(31896.7) (44273.05) (72168.94) (158168.5)

pop Population (10,000 persons) 367.81 385.16 397.82 416.29

(232.4) (242.0) (247.1) (260.2)

gdpm The manufactural sector GDP (proportion) .478 .461 .503 .517

(.11) (.10) (.11) (.10)

gdps The services sector GDP (proportion) .300 .351 .349 .368

(.07) (.07) (.07) (.09)

empms Employment in the manufactural sector .545 .498 .484 .487

out of the non-agricultural sector (.10) (.11) (.12) (.13)

Standard errors are in the parentheses. Values are in 1994 prices

Table 2: Average city sizes by region

Regions No of cities 1994 2009

Whole country 185 367.81(232.4) 416.29(260.2)

Northwest 13 201.40(191.1) 246.46(223.1)

Northeast 32 262.29(150.9) 280.65(168.1)

South China 23 295.41(170.4) 369.13(211.4)

East China 57 415.44(252.2) 459.49(271.4)

Southwest 11 423.22(234.3) 483.32(273.3)

North China 21 427.34(291.7) 491.40(332.0)

Central China 28 461.78(194.7) 518.28(223.0)

Populations are in 10 thousands of persons. Standard deviations are in the parentheses.
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Table 3: Moran’s I for log wage per worker

year <200km <300km <500km <1000km <1500km <2000km

1994 .432 (.051) .309 (.035) .179 (.022) 0.102 (.010) 0.071 (.006) 0.036 (.004)

1995 .407 (.051) .304 (.035) .180 (.022) 0.100 (.010) 0.063 (.006) 0.023 (.004)

1996 .388 (.051) .295 (.035) .168 (.022) 0.090 (.010) 0.049 (.006) 0.011 (.004)

1997 .408 (.051) .342 (.035) .195 (.022) 0.098 (.010) 0.054 (.006) 0.011 (.004)

1998 .365 (.051) .280 (.035) .153 (.022) 0.073 (.010) 0.054 (.006) 0.011 (.004)

1999 .378 (.051) .298 (.035) .158 (.022) 0.069 (.010) 0.051 (.006) 0.010 (.004)

2000 .351 (.051) .284 (.035) .148 (.022) 0.050 (.010) 0.035 (.006) 0.003 (.004)

2001 .385 (.051) .324 (.035) .185 (.022) 0.072 (.010) 0.050 (.006) 0.015 (.004)

2002 .410 (.051) .347 (.035) .197 (.022) 0.069 (.010) 0.048 (.006) 0.009 (.004)

2003 .456 (.051) .387 (.035) .224 (.022) 0.080 (.010) 0.053 (.006) 0.010 (.004)

2004 .413 (.051) .377 (.035) .232 (.022) 0.085 (.010) 0.049 (.006) 0.005 (.004)

2005 .401 (.051) .366 (.035) .238 (.022) 0.084 (.010) 0.033 (.006) -0.006 (.004)

2006 .391 (.051) .360 (.035) .243 (.022) 0.094 (.010) 0.033 (.006) -0.008 (.004)

2007 .414 (.051) .381 (.035) .266 (.022) 0.119 (.010) 0.048 (.006) -0.003 (.004)

2008 .414 (.051) .380 (.035) .273 (.022) 0.126 (.010) 0.050 (.006) 0.000 (.004)

2009 .405 (.051) .392 (.035) .297 (.022) 0.142 (.010) 0.055 (.006) -0.003 (.004)

Standard errors are in the parentheses.
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Table 4: Parameter estimates of different models

OLS Fixed-effect Fixed-effect SAR Fixed-effect SDM

Main

ln(fdi) 0.002 0.015** 0.011** 0.008**

[1.22] [6.91] [6.60] [4.92]

ln(asset) 0.211** 0.284** 0.098** 0.109**

[27.61] [25.24] [9.64] [10.61]

ln(pop) -0.158** 0.221** 0.340** 0.510**

[-19.00] [3.24] [6.45] [9.40]

gdpm 0.961** 1.193** 0.732** 0.909**

[13.69] [11.86] [9.33] [11.68]

gdps 0.630** 1.418** 0.838** 1.271**

[8.36] [11.39] [8.63] [12.99]

empms -0.879** -0.953** -0.632** -0.488**

[-19.40] [-17.90] [-15.07] [-11.40]

T00− 04 0.415** 0.338** 0.166** 0.127**

[42.94] [36.79] [19.23] [7.76]

T05− 09 0.816** 0.660** 0.346** -0.144**

[77.01] [48.25] [25.00] [-4.47]

Cons 7.112**

[147.01]

σ2
e 0.012** 0.011**

[4.00] [3.30]

Spatial

ρ 0.527** 0.798**

[34.76] [20.68]

WX

ln(fdi) 0.711**

[2.11]

ln(asset) -5.440**

[-11.00]

ln(pop) -6.242**

[-12.74]

gdpm -1.756**

[-7.41]

gdps 0.178**

[18.65]

empms 0.367**

[27.52]

lnL 2764.86 2906.60

Obs. 2775

t statistic in brackets.

* p < 0.1, ** p < 0.05
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Table 5: Average marginal effects from different models

OLS Fixed-effect Fixed-effect SAR Fixed-effect SDM

ADE AIE ADE AIE η̄#

ln(pop) -0.158** 0.221** 0.342** 0.378** 0.542** 4.791** 1.063**

[-19.00] [3.24] [6.72] [6.37] [10.65] [2.48] [2.25]

ln(fdi) 0.002 0.015*** 0.011** 0.012** 0.011** 0.527** 1.504**

[1.22] [6.91] [6.58] [6.09] [6.52] [4.12] [3.03]

ln(asset) 0.211** 0.284*** 0.098** 0.109** 0.107** -0.140 0.985*

[27.61] [25.24] [9.14] [10.47] [9.84] [-1.00] [-1.74]

gdpm 0.961** 1.193*** 0.737** 0.813** 0.773** -17.767** 0.850**

[13.69] [11.86] [8.88] [8.02] [9.29] [-2.97] [-3.74]

gdps 0.630** 1.418*** 0.843** 0.930** 1.120** -19.488** 0.881**

[8.36] [11.39] [8.78] [8.00] [11.38] [-3.09] [-3.95]

empms -0.879** -0.953*** -0.636** -0.702** -0.550** -8.803** 1.127**

[-19.40] [-17.90] [-14.93] [-11.88] [-11.99] [-4.03] [4.39]

η̄# 1.006**

(12.74)

Obs. 2775

t-statistic in brackets. # t-statistic for Multiplier is for h0 : multiplier = 1.

* p < 0.1, ** p < 0.05
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Table 6: Average marginal effects for regions (Fixed-effect SDM model)

Whole country North China

ADE η̄# AIE ADE η̄# AIE

ln(pop) 0.542** 1.063** 4.791** 0.538** 1.056** 5.045**

ln(fdi) 0.011** 1.504** 0.527** 0.011** 1.443** 0.600**

ln(asset) 0.107** 0.985* -0.140 0.107** 0.987* -0.260*

gdpm 0.773** 0.850** -17.767** 0.789** 0.868** -21.281**

gdps 1.120** 0.881** -19.488** 1.139** 0.896** -23.595**

empms -0.550** 1.127** -8.803** -0.542** 1.111** -9.682**

East China South China

ADE η̄# AIE ADE η̄# AIE

ln(pop) 0.551** 1.080** 6.061** 0.541** 1.061** 4.398**

ln(asset) 0.106** 0.981* -0.313* 0.107** 0.985* -0.227*

ln(fdi) 0.012** 1.641** 0.720** 0.011** 1.486** 0.523**

gdpm 0.736** 0.810** -25.565** 0.777** 0.856** -18.552**

gdps 1.079** 0.849** -28.345** 1.126** 0.886** -20.569**

empms -0.567** 1.161** -11.632** -0.548** 1.122** -8.441**

Central China North East

ADE η̄# AIE ADE η̄# AIE

ln(pop) 0.554** 1.087** 6.180** 0.532** 1.045** 3.829**

ln(asset) 0.106** 0.979* -0.319* 0.107** 0.989* -0.198*

ln(fdi) 0.013** 1.695** 0.734** 0.010** 1.357** 0.455**

gdpm 0.721** 0.794** -26.067** 0.812** 0.894** -16.149**

gdps 1.063** 0.836** -28.902** 1.164** 0.916** -17.905**

empms -0.573** 1.175** -11.860** -0.532** 1.090** -7.347**

North West South West

ADE η̄# AIE ADE η̄# AIE

ln(pop) 0.525** 1.031** 3.220** 0.522** 1.024** 3.110**

ln(asset) 0.108** 0.993* -0.166* 0.108** 0.994* -0.160*

ln(fdi) 0.009** 1.244** 0.383** 0.009** 1.194** 0.370**

gdpm 0.843** 0.927** -13.583** 0.856** 0.942** -13.116**

gdps 1.198** 0.942** -15.060** 1.213** 0.954** -14.542**

empms -0.518** 1.062** -6.180** -0.512** 1.049** -5.968**

* p < 0.1, ** p < 0.05

# t-test for Multiplier is h0 : η̄ = 1.
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Table 7: Equality test of marginal effects for Northeast and East China

Variables H0 : η̄ne = η̄ec H0 : AIEne = AIEec

Diff. t−stat. Diff. t−stat.

ln(pop) -0.036** (1.78) -2.232** [-2.39]

ln(fdi) -0.284** [-1.99] -0.265** [-4.59]

ln(asset) 0.009 [1.56] 0.115* [1.65]

gdpm 0.084** [2.86] 9.416** [3.40]

gdps 0.067** [2.97] 10.440** [3.60]

empms -0.071** [-3.35] 4.284** [4.39]

Table 8: Average marginal effects for regions (Fixed-effect SAR model)

Whole country North China East China South China

ADE AIE ADE AIE ADE AIE ADE AIE

ln(pop) 0.342** 0.378** 0.342** 0.348** 0.342** 0.411** 0.342** 0.312**

ln(fdi) 0.011** 0.012** 0.011** 0.011** 0.011** 0.013** 0.011** 0.010**

ln(asset) 0.098** 0.109** 0.098** 0.100** 0.099** 0.118** 0.099** 0.090**

gdpm 0.737** 0.813** 0.736** 0.749** 0.737** 0.884** 0.737** 0.671**

gdps 0.843** 0.930** 0.842** 0.858** 0.844** 1.012** 0.844** 0.768**

empms -0.636** -0.702** -0.635** -0.647** -0.636** -0.764** -0.636** -0.579**

η̄# 1.006** 1.005** 1.007** 1.006**

Central China North East North West South West

ADE AIE ADE AIE ADE AIE ADE AIE

ln(pop) 0.343** 0.420** 0.342** 0.275** 0.341** 0.227** 0.341** 0.223**

ln(fdi) 0.011** 0.013** 0.011** 0.009** 0.011** 0.007** 0.011** 0.007**

ln(asset) 0.099** 0.121** 0.098** 0.079** 0.098** 0.065** 0.098** 0.064**

gdpm 0.738** 0.905** 0.736** 0.592** 0.735** 0.489** 0.734** 0.481**

gdps 0.845** 1.036** 0.842** 0.678** 0.841** 0.560** 0.840** 0.550**

empms -0.637** -0.781** -0.635** -0.511** -0.634** -0.422** –0.634** -0.415**

η̄# 1.007** 1.005** 1.003** 1.002**

* p < 0.1, ** p < 0.05, *** p < 0.01

# t-test for Multiplier is h0 : multiplier = 1.
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Table 9: Estimates of SDM models using different lags for population

ln(pop)t−1 ln(pop)t−2 ln(pop)t−3 ln(pop)t−4 ln(pop)t−5

Main

ln(pop) 0.381** 0.419** 0.419** 0.488** 0.558**

[5.28] [5.77] [5.77] [6.85] [8.03]

ln(fdi) 0.007** 0.007** 0.007** 0.007** 0.0064**

[3.45] [3.48] [3.48] [3.49] [3.43]

ln(asset) 0.120** 0.120** 0.120** 0.116** 0.112**

[10.23] [10.31] [10.31] [10.08] [9.75]

gdpm 0.733** 0.723** 0.723** 0.694** 0.689**

[7.16] [7.10] [7.10] [6.89] [6.87]

gdps 0.714** 0.704** 0.704** 0.665** 0.634**

[5.80] [5.73] [5.73] [5.46] [5.22]

empms -0.575** -0.565** -0.565** -0.551** -0.543**

[-10.13] [-9.98] [-9.98] [-9.78] [-9.66]

T00− 04 0.064** 0.067** 0.067** 0.064** 0.065**

[5.21] [5.48] [5.48] [5.26] [5.36]

T05− 09 0.216** 0.219** 0.219** 0.212** 0.206**

[13.92] [14.12] [14.12] [13.72] [13.39]

σ2
e 0.009** 0.009** 0.009*** 0.009** 0.008**

[31.79] [31.79] [31.79] [31.79] [31.80]

Spatial

ρ 0.778** 0.776** 0.776** 0.761** 0.757**

[15.52] [15.45] [15.45] [14.58] [14.35]

Wx

ln(pop) 0.915 1.221** 1.221** 1.944** 1.815**

[1.85] [2.51] [2.51] [3.94] [3.72]

ln(fdi) 0.056** 0.060** 0.060** 0.071** 0.076**

[2.89] [3.14] [3.14] [3.69] [3.94]

ln(asset) -0.054 -0.0528 -0.053 -0.019 -0.008

[-1.45] [-1.51] [-1.51] [-0.60] [-0.25]

gdpm -3.764** -4.196** -4.196** -5.435** -5.565**

[-5.51] [-5.99] [-5.99] [-7.07] [-7.16]

gdps -4.542** -5.067** -5.067** -6.203** -6.324**

[-5.67] [-6.13] [-6.13] [-7.06] [-7.08]

empms -2.824** -2.817** -2.817** -2.897** -2.800**

[-9.48] [-9.49] [-9.49] [-9.70] [-9.42]

lnL 1929.13 1935.11 1935.11 1949.48 1957.78

Obs. 2035

t statistic in brackets.

* p < 0.1, ** p < 0.05
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Table 10: Estimates of SDM models for different periods

1995-1999 2000-2004 2005-2009

β ADE AIE β ADE AIE β ADE AIE

ln(pop) 0.534** 0.506 -6.722 0.756** 0.860** 14.25* 0.560** 0.514** -9.714*

[5.57] [0.22] [-0.02] [6.13] [6.73] [1.85] [4.52] [4.24] [-1.93]

ln(fdi) -0.003 -0.002 0.081 0.001 0.003 0.266 -0.001 -0.0001 0.153

[-1.56] [-0.07] [0.02] [0.62] [1.16] [1.40] [-0.45] [-0.02] [1.47]

ln(asset) 0.018 0.011 -0.984 0.035 0.040** 1.009 0.079** 0.081** 0.337

[1.05] [0.04] [-0.02] [1.77]* [2.14] [1.62] [5.94] [6.25] [1.07]

gdpm 0.694** 0.691 -0.253 0.807** 0.688** -18.580* 0.997** 1.086** 14.21

[5.51] [0.43] [-0.00] [4.14] [3.49] [-1.82] [5.39] [5.65] [1.21]

gdps 0.502** 0.693 30.480 0.441** 0.347 -15.21* 0.675** 0.752** 12.54

[3.24] [0.77] [0.21] [2.01] [1.60] [-1.70] [3.12] [3.44] [1.00]

empms -0.071 0.009 12.08 -0.358** -0.374** -3.225 -0.675** -0.756** -14.11

[-1.42] [0.01] [0.08] [-4.49] [-4.74] [-1.60] [-6.70] [-6.18] [-1.24]

ρ 0.935** 0.768** 0.673**

[34.68] [9.96] [6.53]

Obs. 925

t statistic in brackets.

* p < 0.1, ** p < 0.05
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Appendix

Parameter estimates of alternative SAR models.

Table 11: Estimates of SAR models using different lags for population

ln(pop)t−1 ln(pop)t−2 ln(pop)t−3 ln(pop)t−4 ln(pop)t−5

Main

ln(pop) 0.263** 0.306** 0.306** * 0.393** 0.471**

[3.70] [4.31] [4.31] [5.63] [6.91]

ln(fdi) 0.009** 0.009** 0.009** 0.009** 0.009**

[4.63] [4.65] [4.65] [4.59] [4.54]

ln(asset) 0.113** 0.112** 0.112** 0.111** 0.107**

[9.90] [9.95] [9.95] [9.89] [9.62]

gdpm 0.711** 0.705** 0.705** 0.680** 0.665**

[7.01] [6.97] [6.97] [6.75] [6.62]

gdps 0.512** 0.503** 0.503** 0.472** 0.439**

[4.10] [4.03] [4.03] [3.79] [3.54]

empms -0.885** -0.880** -0.880** -0.869** -0.857**

[-16.43] [-16.34] [-16.34] [-16.16] [-15.97]

T00− 04 0.076** 0.0751** 0.075** 0.072** 0.069**

[8.16] [8.10] [8.10] [7.71] [7.48]

T05− 09 0.193** 0.191** 0.191** 0.185** 0.180**

[13.95] [13.85] [13.85] [13.34] [12.95]

σ2
e 0.010** 0.010** 0.010** 0.010** 0.009**

[31.89] [31.89] [31.89] [31.89] [31.89]

Spatial

ρ 0.644** 0.644** 0.644** 0.646** 0.648**

[38.13] [38.14] [38.14] [38.42] [ [38.71]

lnL 1832.12 1834.52 1834.52 1841.03 1848.88

Obs. 2035

t statistic in brackets.

* p < 0.1, ** p < 0.05
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Table 12: Estimates of SAR models for different periods

1995-1999 2000-2004 2005-2009

β ADE AIE β ADE AIE β ADE AIE

ln(pop) 0.526** 0.565** 4.726** 0.757** 0.799** 4.537** 0.429** 0.451** 1.403**

[5.72] [6.18] [3.05] [6.43] [6.91] [4.75] [3.58] [3.85] [3.74]

ln(fdi) -0.002 -0.003 -0.021 0.001 0.001 0.004 0.001 0.001 0.003

[-1.48] [-1.41] [-1.26] [0.26] [0.29] [0.28] [0.39] [0.42] [0.40]

ln(asset) 0.001 0.001 -0.003 0.048** 0.049** 0.269** 0.084** 0.086** 0.265**

[0.08] [0.04] [-0.02] [2.51] [2.57] [2.69] [6.38] [6.65] [7.57]

gdpm 0.643** 0.677** 5.648** 0.682** 0.706** 3.954** - 1.100** 1.122** 3.502**

[5.48] [5.73] [3.05] [3.68] [3.81] [3.89] [ [6.17] [6.37] [5.53]

gdps 0.411** 0.433** 3.470** 0.442** 0.460** 2.558** 0.717** 0.730** 2.270**

[2.99] [3.15] [3.16] [2.17] [2.23] [2.23] [ [3.41] [3.53] [3.48]

empms -0.025 -0.023 -0.172 -0.386** -0.396** -2.242** -0.898** -0.911** -2.858**

[-0.50] [-0.44] [-0.36] [-4.99] [-5.01] [-4.04] [[-9.05] [-9.03] [-5.57]

ρ 0.902** 0.865** 0.778**

[38.92] [39.91] [31.46]

Obs. 925

t statistic in brackets.

* p < 0.1, ** p < 0.05
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