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ABSTRACT

IZA DP No. 12331 MAY 2019

The Pure Effect of Social Preferences on 
Regional Location  Choices: The Evolving 
Dynamics of Convergence to a Steady 
State Population Distribution

This paper tracks the consequences of individuals’ desire to align their location with 

their social preferences. The social preference studied in the paper is distaste for relative 

deprivation, measured in a cardinal manner. Location is conceived as social space, with 

individuals choosing to relocate if, as a result, their relative deprivation will be reduced, 

holding their incomes constant. Conditions are provided under which the associated 

dynamics reaches a spatial steady state, the number of periods it takes to reach a steady 

state is specified, and light is shed on the robustness of the steady state outcome. By way of 

simulation it is shown that for large populations, a steady state of the relocation dynamics 

is almost always reached, typically in one period, and that cycles are more likely to occur 

when the populations’ income distributions are more equal.
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1. INTRODUCTION 

By now there is widespread recognition, based on mounting evidence, that comparisons 

with others impinge significantly on wellbeing, and elicit substantial behavioral 

responses. The received literature reveals that the comparisons which matter for an 

individual’s sense of wellbeing are those made by looking “up” the income hierarchy, 

rather than by looking “down.” A large literature that supports the “upward comparison” 

hypothesis is reviewed in Frey and Stutzer (2002), Walker and Smith (2002), and Stark 

(2013), for example. Engaging in interpersonal comparisons affects the individuals’ sense 

of wellbeing and influences their behavior, including in relation to where to locate. Yet 

there has been no systematic inquiry into how the pure effect of social comparisons 

determines locational outcomes. This paper takes a step towards filling this lacuna. 

The paper characterizes the steady state distribution of a population of n 

individuals who are homogeneous in preferences and heterogeneous in incomes. The 

individuals who to begin with are in region A can relocate at no cost to themselves 

between region A and region B. We make two main assumptions: that the individuals 

exhibit strong social preferences, and that their incomes are held constant. The reason for 

making the first assumption is given in the preceding paragraph. The reason for making 

the second assumption is to allow us to concentrate on essentials, namely to facilitate a 

study of the pure effect of location-specific dissatisfaction that arises from falling behind 

others in the income distribution. Social preferences take the form of distaste for falling 

behind others with respect to income; in other words, social preferences represent the 

negative influence of unfavorable income comparisons on the individuals’ sense of 

wellbeing.  
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We model social preferences as distaste for relative deprivation (defined later on 

in this paragraph). Because incomes are held constant, the wellbeing of an individual is 

solely a function of the extent to which that individual’s location aligns with his social 

preferences. To begin with we assume that across the income hierarchy, the income 

differences between any two adjacent individuals are the same. We obtain three 

interesting results. First, the process of relocation reaches a spatial steady state (namely 

the movement between locations ceases, with no individual being able to improve his 

wellbeing by engaging in further movement). Second, under relative deprivation, the 

steady state outcome is a sharp bifurcation, with the individual whose income is the 

highest staying in region A, and all the other individuals relocating to and staying in 

region B. Third, regardless of how relative deprivation is measured, whether as the 

aggregate of the income excesses divided by the size of the population or as the distance 

from below the mean income, the result is a spatial steady state. However, when incomes 

differ but are not equally spaced, a spatial steady state distribution may or may not be 

achieved. We show that for 3n   (and trivially for 2n  ) a spatial steady state 

distribution will always be achieved. When 4n   and 5n  , we specify conditions under 

which a spatial steady state will not be reached, and complementary conditions under 

which the process of relocation reaches a spatial steady state. We comment on the 

difficulty of obtaining predictions for the case of 6n  , and we then resort to a 

simulation procedure that enables us to gain insights from analyzing this case. Quite 

remarkably, we find that the outcome to which the simplified model (where the income 

differences between any two adjacent individuals are the same) gives rise is a generic 

outcome of the dynamics of locational choices for a large number of individuals with an 
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arbitrary distribution of incomes. When the size of the population increases, the 

probability of reaching a spatial steady state, as well as the average number of periods 

needed to reach that state, tend to 1. We also find that regardless of the size of the 

population, a spatial steady state is more likely to be reached in the case of populations 

with less equal income distributions. 

Considerable empirical evidence finds that relative deprivation is a statistically 

significant explanatory variable of a notable case of locational moves, namely of 

migration behavior. Stark and Taylor (1991) show that relative deprivation increases the 

probability that the labor time of household members will migrate from rural Mexico to 

the US to work. The significance of relative deprivation as an explanatory variable of 

labor migration received additional support in several more recent studies. Quinn (2006) 

reports that relative deprivation is a significant motivating factor in domestic migration 

decisions in Mexico. Stark et al. (2009) explore the relationship between aggregate 

relative poverty, which is functionally related to aggregate relative deprivation, and 

migration. Drawing on Polish regional data, they demonstrate that migration from a 

region is positively correlated with the aggregate relative deprivation in the region. 

Czaika (2012) finds that, in India, relative deprivation is an important factor in deciding 

whether a household member should migrate, especially for migration over a short 

distance. Basarir (2012) observes that people in Indonesia are willing to bear a loss of 

absolute wealth if there is a relative wealth gain from migration. Jagger et al. (2012) 

report that relative deprivation is a significant explanatory variable of circular migration 

in Uganda. Vernazza (2013) concludes that, even though interstate migration in the US 

confers substantial increases in absolute income, the trigger for migration is relative 
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deprivation (low relative income), not low absolute income. Drawing on data from the 

2000 US census, Flippen (2013) shows that both blacks and whites who migrate from the 

North to the South generally have average lower absolute incomes than their stationary 

northern peers, yet enjoy significantly lower relative deprivation, and that the relative 

deprivation gains for blacks are substantially larger than those for whites. Hyll and 

Schneider (2014) use a data set collected in the German Democratic Republic in 1990 to 

show that aversion to relative deprivation enhanced the propensity to migrate to western 

Germany. Kafle et al. (2018) use comparable longitudinal data from integrated household 

and agriculture surveys from Tanzania, Ethiopia, Malawi, Nigeria, and Uganda, and find 

that wealth relative deprivation is positively associated with migration.  

The remainder of this paper is organized as follows. In Section 2 we present the 

assumptions of our analytical framework. In Section 3 we analyze a model of choice of 

location between two regions under the assumption that the income differences between 

any two adjacent individuals are equal to 1. In Sections 4 and 5 we analyze the 

consequences of relaxing several of the model’s assumptions: in Section 4 we relax the 

assumptions about the number of individuals of each income, and about the size of the 

equal income difference between adjacent individuals being equal to 1. We find that the 

results of Section 3 are not contingent on these assumptions. In Section 5 we revoke the 

assumption that the income differences between two adjacent individuals are the same. 

We establish conditions for the existence of a spatial steady state of the location 

dynamics in this case. We accomplish this analytically for populations of size 5n  , and 

for larger populations - by means of simulation. Proofs of the claims made in Section 5 

are in Appendix A. In Section 6 we comment on an adjustment of the models to the 
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possibility that incomes can change. In Section 7 we discuss the possibilities that to begin 

with not all the individuals might be in region A, and that there might be more than one 

new region available for the individuals to move to. In Section 8 we conclude.  

 

2. CHARACTERIZING THE INDIVIDUALS 

Let there be a population of n individuals, where n is a natural number. The income of 

individual i is i, 1, 2,...,i n  (namely the individual’s income is the individual’s name). 

To begin with all the individuals are in region A. Let (empty) region B come into being 

or become accessible such that moving between the two regions is possible, and is cost 

free. In all relevant respects, the two regions are identical. This implies that there is no 

reason, arising from a difference in the regions’ amenities, for an individual to prefer one 

region to the other. The individuals want to be in the region that better aligns with their 

social preferences. When, in terms of the outcome of social comparisons, the regions are 

equally attractive (a tie), the individuals do not relocate. Once the individuals are in a 

region, the region becomes instantaneously their exclusive sphere of comparison. 

However, in response to the actual distribution of people between the two regions, the 

individuals can relocate as many times as they wish, at no cost to themselves. Put 

differently, the individuals base their location decisions on the observed current state, 

without simultaneously forming expectations how other individuals will behave. For ease 

of exposition, we refer to the steps in the process of selecting location as periods, with the 

initial period being referred to as zero. 
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3. MEASURES OF SOCIAL PREFERENCES   

3.1 Indices of relative deprivation (RD) 

3.1.1 Relative deprivation measured as the aggregate of the income excesses divided by 

the size of the population  

Let 1 2, , , )( nxx x  be an ordered vector of incomes of a given population of n  

individuals, namely ix  is the income of individual i , and 1 2 nx xx   . Then, we 

measure the relative deprivation of individual i  as follows.  

Definition 1: 
1

1
( ) max{ ,0}

n

k
k i

iRD i x x
n  

   for 1,2,..., 1i n  ; ( ) 0RD n  . 

A rationale underlying this measure is provided in Appendix B. Under the assumption of 

Section 2 that ix i , we obtain that 

Definition 2: 
1

1
( ) max{ ,0}

n

k i

RD i k i
n  

   for 1,2,..., 1i n  ; ( ) 0RD n  . 

To begin with in period zero the n individuals are in region A. In the subsequent 

period, all the individuals who experience relative deprivation and believe that they will 

experience none upon relocating to region B move to region B. Namely:  

 

A B 
n

 

 

 
1

2
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1

n

n
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
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Claim 1: Under relative deprivation measured as per Definition 2, the division in which n 

is in region A and the remainder of the population is in region B constitutes the spatial 

steady state distribution.  

Proof: We consider individual k , 1,2,..., 1k n   who in period 1 weighs whether to stay 

in region B or whether to move back to region A. If he stays in region B:  

1 1
( ) [( 1) ( 2) ... ( 1) ]

1 2 1k B

n k n k
RD k k k k k n k

n n

  
           

 
. 

If he were to return to region A:  

( ) .
2k A

n k
RD k




  

Because 
1

1
1

n k

n

 



, individual k  will prefer to stay in region B. And because this holds 

true for any 1,2,..., 1k n  , none of the n individuals will have an incentive to relocate 

and, thus, the observed state, as depicted in the box diagram above, is the spatial steady 

state. Q.E.D. 

3.1.2 Relative deprivation measured as the distance from below the mean income 

The relative deprivation of an individual can also be measured by how much the 

individual needs to increase his income in order to obtain the average income of the 

region in which he is located. 

Definition 3: ( ) max{ ,0}iRD i x x   where x  is the average income in the region in 

which individual i is located.  

Under the assumption of Section 2 that ix i , we formulate the following 

definition.  

Definition 4: ( ) max{x ,0}RD i i  . 
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We show that the dynamics of movement between the two regions driven by relative 

deprivation, measured as per Definition 3, differs only slightly from the dynamics of 

movement driven by relative deprivation measured as per Definition 1.  

Claim 2: Under relative deprivation measured as per Definition 4, the division in which n 

is in region A and the remainder of the population is in region B constitutes the spatial 

steady state distribution.  

Proof: To begin with in period zero the n individuals are in region A. In the subsequent 

period, all the individuals who are relatively deprived - in this case, the individuals whose 

incomes are lower than the average income in region A - will move to region B, while the 

other individuals will remain in region A. Thus, individuals , 1,...,n n m  where 

1
2

n
m    if n is even, and individuals , 1,...,n n m  where 

1

2

n
m


  if n is odd, will 

remain in region A, whereas individuals 1,...,2,1m   will move to region B. But now the 

average income in region A becomes higher, so in the subsequent period the individuals 

whose income is below the average income of those remaining in region A become 

relatively deprived and they will, thus, be better off moving to region B. This process will 

continue until only individual n remains in region A.  

We note that none of the individuals who have relocated to region B will find it 

attractive to return to region A even after the subsequent arrivals in region B of the higher 

income individuals. Thus, again, a spatial distribution such that individual n is in region 

A while individuals 1,2, ..  ., 1n   are in region B constitutes the steady state spatial 

distribution. To see this, consider individual k , 1,2,..., 1k n  . The average income in 

region B in the “alleged” steady state distribution is 
2

n
, and this is lower than 

2

n k
, the 
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average income that individual k  will experience if he were to return to region A. Thus, 

if 
2

n
k  , then individual k  does not have an incentive to move back to region A because 

he is not relatively deprived in region B. And if 
2

k
n

 , namely if individual k is relatively 

deprived in region B, then his relative deprivation there is 
2

n
k , and this is lower than 

his relative deprivation will be in region A, which is 
2

n k
k


 . Hence, no further 

movement between the regions will occur. Q.E.D. 

Comment: in this case, reaching the spatial steady state will take 2 1log ( 1)n     

periods, where the symbol  x  denotes the biggest integer that is not greater than x. For 

example, when 8n  , the number of periods it takes to reach the steady state will be 

2 1 2 1 3.log (8 1)         

From now on, unless explicitly stated otherwise, we use Definition 1 as our 

“default” measure of the relative deprivation of individual i .  

 

4. ROBUSTNESS 

Claim 3: Having more than one individual of each income does not change the spatial 

steady state distribution. 

Proof: We assume that there are l individuals of each income (where l is a natural 

number). This means that the income of individuals 1, 2, , l  is 1, the income of 

individuals 1, 2, , 2l l l    is 2  and, in general, the income of individuals 

( 1) 1, ( 1) 2 ,,k l k l kl     is k  for 1, 2,...,k n . Take the case of Section 3.1.1. We 
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have l individuals whose income is n staying in region A, and the rest of the individuals 

moving to region B. It is easy to verify that for 1,2,..., 1k n   and any k  such that  

( 1) k kk l l    (meaning that we consider individual k  whose income is k ), 

1
( )

2 1k B
k

n k n k
RD

n

  
 


 , namely that the relative deprivation experienced by any 

individual whose income is k, 1,2,..., 1k n  , is the same as the relative deprivation 

already calculated in Section 3.1.1. If one of the l individuals whose income is k (namely 

individual k  such that ( 1) k kk l l   ) were to move back to region A, then his relative 

deprivation there will be: 

( ) ( )
1k A

l
RD kk n

l
 


 . 

Because l is a natural number, 
1

( )
1 2 2 1

l n k n k n k
n k

l n

   
  

 
, so staying in region 

B will be preferable to returning to region A. By similar reasoning it follows that having l 

individuals of each income does not change the results obtained for different indices of 

social preferences: the mean income defined in Section 3.1.2 does not change in such a 

setting and, therefore, the location decisions of the individuals will be the same. Q.E.D. 

Claim 4: Affine transformation of the vector of incomes does not change the spatial 

steady state distribution. 

Proof: Instead of the vector of incomes (1,2, , )n  we consider the vector 

1 2 , , )( , n            , with 0   and    . Relative deprivation can be 

viewed as a function of the incomes of all the individuals.1 Then, we can see that the 

relative deprivation function is homogeneous of degree one, namely that the relative 

deprivation of individual k, which here and only here we now denote as kRD , observes 
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   1 , 2 , , 1,2, ,k kRD n RD n              . Therefore, when comparing the 

relative deprivation for a given individual between the two regions, we note that an affine 

transformation of all the incomes results in rescaling relative deprivation by the same 

factor in both regions which, thus, does not change the obtained results. Q.E.D. 

 

5. GENERALIZATION: THE CASE OF ARBITRARY INCOME DIFFERENCES 

We now ask about the consequences of revoking the assumption that the income 

differences between all pairs of adjacent individuals are the same. When incomes are not 

equally spaced, the process of selection of location may or may not reach a spatial steady 

state.  

Consider the following two examples. First, suppose that there are four 

individuals with incomes 12, 11, 8, and 5 who to begin with are all in region A. Let 

empty region B come into being or become accessible. The evolving dynamics is 

depicted by the following sequence: 

 

A B A B 
12

11

8

5

 

 

  

12  

11

8

5

 

 

Because none of the individuals now has an incentive to move, we conclude that a spatial 

steady state is reached in just one period, with individual 12 in region A, and individuals 

11, 8, and 5 in region B.   
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Second, suppose that the income of the poorest individual is 1 rather than 5, so 

that we now have four individuals with incomes 12, 11, 8, and 1. Such a change alters the 

calculus as reported above of the lowest income individual and influences his region of 

choice which, in turn, affects the calculus of individual 8 and his location decision; the 

change in the income of the lowest income individual inflicts a “location externality” on 

the second lowest income individual. To see this, let all four individuals again begin in 

region A. Now empty region B comes into being. The evolving dynamics is depicted by 

the following sequence: 

 

A B A B A B 
12

11

8

1

  

 

   

12   

11

8

1

     

12

1

  
11

8
  

 
 

A B A B 

  

12

8

1

 
11

   

12

8
 

11

1

   

 
 

A B A B 
12   

11

8

1

     

12

1

  
11

8
     . . . 

 

We see that in this case the process repeats itself ad infinitum, and a steady state is not 

reached. The perpetual movement in this example (in which individual 8 will always 
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want to be located where individual 1 is located, and individual 1 will always want to be 

located where individual 8 is absent) emanates from the fact that the behavior of 

individual 8 is “tied” to the presence of individual 1 in that this presence reduces the 

agony from looking up at individual 11 or at individual 12. 

This second example can be generalized. We formulate conditions under which 

the process of selecting a location will reach or fail to reach a spatial steady state by 

stating and proving three Lemmas.    

Let the income of individual i  be ix , 1,2,...,i n , and let 1 2 nx xx   . 

Assume that the social preferences of the individuals are measured by their relative 

deprivation defined as the aggregate of income excesses divided by the size of the 

population. Because an analysis based on relative deprivation defined as the distance 

from below the mean income is analogous, it will be skipped.2 Then: 

Lemma 1. When 3n  , a spatial steady state will always be reached: individual 3 

will be in region A, and individuals 2 and 1 will be in region B. 

Lemma 2. When 4n  , the distribution of the individuals between the two 

regions will perpetually change and a spatial steady state will not be reached iff 

4 2 32 3x x x   and 4 1 3 23 2( )x xx x  . Otherwise, a spatial steady state will be reached.  

Lemma 3. When 5n  , the distribution of the individuals between the two 

regions will perpetually change and a steady state will not be obtained iff 

5 1 4 232x xx x x    and 5 2 4 3x xx x    and 5 3 42x xx   . Otherwise, a spatial steady 

state will be reached.  

The proofs of the lemmas are tedious, and are thus relegated to Appendix A. 
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Although it would be possible to construct similar criteria for any 5n  , the 

respective formulas become increasingly longer and more complicated when n  increases 

beyond 5. In particular, as shown in Appendix A, the three lemmas are proved by 

considering the step-by-step behavior of the individuals in each period. For 5n  , we 

establish that individuals move in only one direction in a period. This may not be the 

case, however, when 6n  . Then, we can have two individuals moving in opposite 

directions in the very same period. To see this, consider an example of six individuals 

with incomes 5.3, 5.2, 5.1, 5, 4, and 1. In period one, as usual, everyone except the 

highest income individual 5.3 will migrate to region B. Then, in period two, as can be 

easily checked, only the two individuals with the lowest incomes will have an incentive 

to move back to region A, which they do. Hence, in period three, individuals 5.3, 4, and 1 

are in region A, and the other individuals, namely individuals 5.2, 5.1, and 5 are in region 

B. In this setting, only individual 5 will want to move in period three, which leads to the 

following distribution of the individuals: 

 

A B 
5.3

5

4

1

  

5.2

5.1
 

 

Now both individuals 1 and 5.1 will want to change their location: the relative 

deprivation of individual 1 is 
11.3 33.9

4 12
  in region A, which is higher than 

8.3 33.2

3 12
 , 
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his relative deprivation if he were to locate to region B. (For ease of reference, we mix 

decimal notation with fraction notation, the non-elegance of such a blending 

notwithstanding.) Analogously, the relative deprivation of individual 5.1 is 
0.1 0.5

2 10
  in 

region B, which is higher than 
0.2 0.4

5 10
 , his relative deprivation if he were to locate in 

region A. Because both these individuals will indeed move, we have a simultaneous two-

way movement.  

In sum, in order to determine the outcome of the relocation dynamics for 6n  , 

we will need to distinguish in each period not only between reaching a steady state and a 

move of exactly one individual, but also between patterns of behavior that involve either 

a one-way or a simultaneous two-way movement of many individuals. For 5n  , this 

distinction could be obtained by means of a single inequality, whereas for 6n  , more 

than one inequality will be needed.  

Given this difficulty, we investigated the case of 6n   by means of simulations. 

We proceeded as follows. First, for a given population size taking one of eight particular 

values  6, 10,15,25,40,60,80,100 ,n  chosen so as to allow analysis of population sizes 

ranging from quite small to fairly large, we drew the incomes of the members of the 

population from a normal distribution characterized by a mean equal to 10 and a standard 

deviation equal to 3. We then allowed the individuals to move between region A and 

region B (incorporating the relative deprivation measure defined in section 3.1.1) until 

either a steady state distribution was reached, or a loop was encountered. This procedure 

was repeated 10,000 times with different incomes drawn from the same normal 

distribution. In Figure 1 we present the rate at which infinite loop cases were encountered 
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during the 10,000 simulations for each chosen value of the eight population sizes. 

Although for small populations the rate of infinite loops was relatively low, an increase 

of population size yielded an increase in the rate of occurrence of infinite loops. For large 

populations this rate was close to 0.5. We revisited this observation later on (consult 

Claim 5). Similar results were obtained for other non-skewed distributions such as, for 

example, a uniform distribution, but for the sake of brevity we do not report them here.  

 

FIGURE 1: The rate of occurrence of infinite loops: A normal distribution of incomes 

 

 

A review of the case of a normal distribution of incomes leaves the impression 

that the dynamics of the movements between the two regions is more complicated than 

what appears to be in the case of the model presented in Section 3.1, in that a significant 

share of the initial income distributions does not lead to steady state at all. However, a 

normal distribution of incomes is not typical for real-world populations: real-world 
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income distributions typically have positive skewness with long tails (Neal and Rosen, 

2000). Intriguingly, for such distributions we obtain simple population dynamics: when 

the population is large, a steady state is typically reached after a single period (just as in 

the model of Section 3.1). To this end, we conducted simulations similar to the one for 

the normal distribution, employing instead the gamma distribution. We have chosen the 

gamma distribution partly because it has been frequently used for parametric analysis of 

income data (consult, for example, Salem and Mount, 1974), and partly because doing so 

enables us to ascertain simply and clearly what drives our results.3 We considered again 

cases with  6, 10,15,25,40,60,80,100 ,n  and with parameters of the gamma 

distribution such that the expected value was always equal to 2, and the variance took the 

values of 4, 2, 1, 0.5, and 0.1. Keeping the expected value constant made it possible for 

us to investigate the pure effect of increased (or decreased) dispersion of incomes on the 

pattern of location choices. We obtained several illuminating results. In Figure 2 we 

present the rate at which infinite loop cases were encountered during the 10,000 

simulations for each chosen value of population size and for each distribution variance. 

We see, first, that although initially an increase in the size of the population leads to an 

increase in the number of loop cases, after some threshold of population size is reached, 

the incidence of loop cases starts to decline, and it converges to zero. Second, in all cases 

loops are more likely to occur when the variance of the income distribution from which 

incomes are drawn is lower.  
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FIGURE 2: The rate of occurrence of infinite loop cases: A gamma distribution of 

incomes 

 

 

That infinite loops occur more frequently when the incomes of a population are 

drawn from a gamma distribution with a lower variance suggests that it might be the case 

that loops are more likely in populations characterized by higher income equality. To 

further investigate this possibility, we compared the degree of income inequality in cases 

of steady states with the degree of income inequality in cases of infinite loops. To this 

end, we used the Gini index.4 Specifically, we calculated the Gini index for each of the 

10,000 simulations, and for all the analyzed population sizes and distribution variances. 

Then, the values of the index were averaged over the simulations in which a steady state 

distribution was achieved, and separately over the simulations in which an infinite loop 

was encountered. The results are summed up in Table 1.  
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TABLE 1: Averaged Gini indices for loop cases, and for steady state cases 

Variance = 4 6 10 15 25 40 60 80 100 

Steady state 0.4206 0.4510 0.4682 0.4805 0.4877 0.4917 0.4935 0.4954 
Loop 
 

0.2635 0.2932 0.2981 0.2950 - - - - 

Variance = 2 6 10 15 25 40 60 80 100 

Steady state 0.3152 0.3404 0.3506 0.3606 0.3661 0.3689 0.3700 0.3718 
Loop 
 

0.2243 0.2448 0.2592 0.2738 0.2718 - - - 

Variance = 1 6 10 15 25 40 60 80 100 

Steady state 0.2303 0.2499 0.2573 0.2636 0.2669 0.2686 0.2700 0.2708 
Loop 
 

0.1798 0.1966 0.2077 0.2203 0.2278 0.2374 0.2335 - 

Variance = 
0.5 

6 10 15 25 40 60 80 100 

Steady state 0.1650 0.1789 0.1856 0.1900 0.1922 0.1933 0.1943 0.1946 
Loop 
 

0.1385 0.1536 0.1618 0.1682 0.1753 0.1791 0.1787 0.1794 

Variance = 
0.1 

6 10 15 25 40 60 80 100 

Steady state 0.0742 0.0808 0.0837 0.0862 0.0872 0.0877 0.0880 0.0883 
Loop 0.0681 0.0747 0.0795 0.0826 0.0846 0.0857 0.0866 0.0866 

  

Note: For some infinite loop cases, no average Gini indices are displayed. This is so 

because for large populations, loops were not encountered at all (consult Figure 2).   

 

From Table 1 we can infer that, indeed, on average cases in which infinite loops 

occur are characterized by smaller Gini indices than cases in which a steady state is 

reached. This is particularly visible for cases of a higher variance of the gamma 

distribution. 

 Looking at the average number of periods it takes to reach a steady state 

distribution (obviously in the cases in which a steady state is indeed reached) presented in 

Figure 3, we ask how much this number diverges from the result obtained in Section 

3.1.1, namely convergence to a spatial steady state distribution in just one period. As can 

be seen in Figure 3, the lower the variance of the distribution, the higher the average 
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number of periods it takes to reach a steady state, yet in all cases this number is not much 

greater than 1. Moreover, with a large population size, the average number of periods 

converges to 1. This finding is particularly revealing because in conjunction with the 

conclusions derived from Figure 2, it suggests that the results obtained from the highly 

simplified model of Section 3.1.1, namely that there always exists a steady state 

distribution of incomes which is achieved after one period of movement, are not too far 

removed from what happens in more complicated or more elaborate cases. 

 

FIGURE 3: The average number of periods required to reach a steady state distribution: 

A gamma distribution of incomes 

 

 

In addition, we have simulated distributions with properties that are similar to 

those of the gamma distribution, such as log-normal and inverse-Gaussian. These 

simulations yielded results that are nearly identical to the ones delivered by simulating 
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the gamma distribution. We hasten to add that given Claim 5 below, this congruence is 

not surprising. 

Why do the simulations yield the result that in large populations the number of 

periods it takes to reach a spatial steady state converges to 1, and no infinite loops occur?  

Claim 5: Let X  be a random variable with support over [0, ) , such that its expected 

value ( )E X  exists and is finite, and such that ( 2 ( )) 0P X E X  . Let 1 2, , , )( nxx x  be 

an ordered vector of incomes drawn from a probability distribution characterizing X . If 

we denote the outcome of reaching spatial steady state in one period by C , then ( )P C  

tends to 1 when n  tends to infinity: namely for any 0   there exists 0 0n   such that if 

0n n , then ( ) 1P C   .  

Proof: Consider a population of n  individuals with different incomes. As always, in the 

first period of moving we will have the following distribution of the individuals between 

the two regions: 

 

A B 
n

  1

1

n 


 

 

Movement between the regions will cease if the relative deprivation of individual 1 (as he 

is the most relatively deprived individual) when in region B is lower than his possible 

relative deprivation in region A. When the income of individual i is ix , this condition can 

be written as 
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The right hand side of this inequality can be rewritten as 

 
 

2 1

1 1
1 0 1 1

1 1

2 2

1 1 1 1 1 1

n n n

n i n i n i
i i i n

x x x x x x
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.  

Inserting this result into the inequality above and conducting several transformations 

leads to the inequality 

1 11
1( .)

1

2
n

n

n

i
ix x x

x
n n

x
x

n


   
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Therefore: 

1 1
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2
) .

n

i

n
inx x x
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n n

P C x
n

x
P 

 
    
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 

 




  

Let 0   be fixed. There exists 0   such that ( 2 ( ) 0)P X E X   . Let 

( 2 ( ) ) 0P X E X     . Then, for any 1log
3

n 


 , 

( 2 ( ) (1 ))
3

n
nP x E X

    . Consequently, as 1 0x  , 

1

1
( ( ) ( ) )
2 2 3nP x x E X

 
    .  
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Simultaneously, following the weak law of large numbers, there exists 1n  such 

that for 1n n  1

4
( )

3

n

i
iP E X

n

x
 

 
 
   
 
 
 


. Additionally, let 2n   be where for 2n n  

1 )(
32

x

n
P

 
   (such 2n  always exists because ( )E X  is finite and 1 ( )( ) 0E XP x   ).  

If 1

4

x

n
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
, and 1

1
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If the conditions assumed in Claim 5 are satisfied, then for large populations, moving will 

almost always cease after the first period, and there will be no (infinite) loops. These 

conditions are clearly not satisfied for every possible distribution. Nevertheless, they are 

satisfied for the gamma distribution that we have chosen, as well as for other distributions 

that share similar properties and characterize typical distribution of incomes in real-world 

populations, namely distributions having a long right tail. In particular, the condition 

( 2 ( )) 0P X E X   is not unrealistic as it states that there is a positive share of 

individuals who are more than twice as rich as the average individual.  

From this discussion we can conclude that in large populations, the number of 

periods it takes to reach a steady state converges to one, because then the highest income 

in the population will be large, which will render it appealing for the lowest income 

individual to stay in region B. In region B, the distance between the second highest 

income and the lowest income will also be substantial, but the relative deprivation of the 

lowest income individual will be mitigated by the presence of many other individuals 

whose incomes are closer to his, albeit higher. Small populations are more likely to be 

more equal (consult Table 1), because with distributions such as gamma, the probability 

that there are no individuals whose income is twice the average income decreases with 

the size of the population. Therefore, it is more likely that individual 1 will move again 

after the first period, which will trigger a complex pattern of moves, leading possibly to 

an infinite loop.  
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6. ALLOWING INCOMES TO CHANGE 

Up to now we have not allowed for the possibility that incomes, as such, can change. 

This has enabled us to concentrate on analyzing the pure effect of relative deprivation on 

the choice of location. When incomes can change, incorporating in the individuals’ utility 

functions concern for low relative income together with a preference for (absolute) 

income can yield results that, in the absence of a preference for a better stance in social 

comparisons, could be considered somewhat counterintuitive. Consider the following 

example. An individual whose income is y , where 2y  , is in region A, where the 

income of the only other individual is 3y . The individual can, alternatively, move to 

region B where the income awaiting him there will be 2y  , and where no one has 

income higher than 2y  . (Similarly, we can assume that moving to region B entails a 

cost of two units of income.) As assumed throughout this paper, the region where an 

individual is located constitutes the individual’s region of social comparison. The 

individual likes absolute income and dislikes relative deprivation (which, again, we 

measure by the aggregate of income excesses divided by the size of the population), and 

assigns to these two terms in his utility function the weights of   and (1 )  , 

respectively, where (0,1)  .  

Definition 5: ( ) ), (1xu x R DD R   .  

In this setting x  denotes the individual’s income, and RD  denotes his relative 

deprivation, as per Definition 1. Then, if 
2

y

y
 


, the individual will prefer to move to 

region B.  

Claim 6: For y   the individual will always prefer to move to region B. 
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Proof: Defining 02

y

y



, it follows that 0 0

d

dy


 : as incomes rise, the constraint on   

( 0  ) for the individual’s preference to move to region B becomes weaker. Because 

0

1
22 1

y

y
y

  
 

 we have that 0lim 1
y




 , so it follows that when incomes are fairly 

high, the constraint is not binding anymore. Q.E.D. 

 This result is intuitive because the higher is y, the less meaningful the difference 

between y and 2y  , so leaving region A for region B involves an increasingly smaller 

relative loss of income, along with a significant (complete) reduction in relative 

deprivation.  

The result reported above is robust to an alternative measure of relative 

deprivation. Suppose that instead of measuring RD  as the sum of the income excesses 

divided by the size of the population, that it is measured as max{ ,0}x x , namely as the 

distance from below the mean. When the incomes in region A are y and 3y , the mean 

income in the region is 2y, and the income distance of the region A’s individual whose 

income is y from this mean income is y. This is the same RD as the RD obtained when 

measured by the income excesses divided by the size of the population: 
1

(3 )
2

y y y  . 

Finally in this section, and as an informative example, we show how the model 

presented in Section 3 can be adjusted when moving from region A to region B involves 

a cost, 0c  . We retain the assumption that the individuals base their location decisions 

on the observed current state, without simultaneously forming expectations how other 

individuals will behave, and we follow the utility specification of Definition 5. In the 
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general case in which to begin with (meaning in period 0) the individuals are in region A, 

an individual will move to region B only if the condition 
RD

RD c
 


 is satisfied. This 

condition follows from comparison of the utilities in the two regions 

    ( ) 1 ( ) .
i A i B

U i i RD i c U i  
 

        

Thus, and aligned with intuition, from an inspection of the condition we infer that 

an individual is more likely to move if he assigns a relatively low weight to income, if his 

relative deprivation in region A is high, and if the cost of moving is relatively low. If the 

cost of moving is relatively high, then some individuals from the bottom of the income 

hierarchy will not be able to afford to move, their high relative deprivation 

notwithstanding. We consider an example in which there are six individuals, 0.25  , 

and 1c  . The general case of n  individuals, (0,1)  , and 0c   happens to be too 

complex to yield analytical solutions, although later on we comment on how different 

parameters impact on the results.  

The sequence of movements leading to the steady state is depicted below. In 

period 0, the six individuals are in region A. It is clear that individual 6 has nothing to 

gain from moving to region B. With regard to individual 5, we calculate and compare his 

utilities in the two regions: 

 
5 5

1 3 1 9 1
(5) 5 4 1 (5) .

4 4 6 8 4A B
U U

 
           

We infer that because the utility of individual 5 when in region A is higher than his utility 

would be if he were to move to region B, he will stay in region A. However, individuals 

1, 2, 3, and 4 will move to region B. The reason is that for each of them, the relative 
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deprivation experienced in region A burdens more than bearing the cost of moving to 

region B where the consequent relative deprivation relief counts heavily.  

After the first period, no individual who is in region B has an incentive to move 

back to region A: individual 4 has nothing to gain from moving back; individuals 3 and 2 

will not only have to bear a cost of moving back, but will also have their relative 

deprivation increasing, so they will stay; and individual 1 cannot afford to move. On the 

other hand, now that individuals 1, 2, 3, and 4 left region A, individual 5 is more 

relatively deprived staying there. The condition 
RD

RD c
 


 is satisfied for him and, 

therefore, he will elect to move. In period 2 we reach then the same distribution as in the 

main model of Section 3, with one individual staying in region A, and the rest of the 

individuals in region B. This distribution constitutes a steady state: with individual 6 in 

region A and the remainder of the population in region B, no individual in region B has 

an incentive to move back, because if any of them were to do so, the resulting relative 

deprivation will be higher. Thus, in this example the result of a steady state outcome with 

a sharp bifurcation continues to hold, although the number of periods it takes to reach the 

steady state is bigger than one. Here it is two periods: because of the positive cost of 

moving, relocating is less attractive to individual 5 who is initially not much relatively 

deprived. However, in the wake of the departure of individuals 1, 2, 3, and 4, the 

increased relative deprivation of individual 5 overrides the cost of moving, so he ends up 

moving too. We hasten to add that in the general case, the outcome can differ from the 

one reported here, especially so if the cost of movement is higher and / or if the 

individuals attach a higher weight to income in their utility function. 
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7. DISCUSSION 

7.1 An alternative initial distribution 

Until now we have assumed that to begin with all the individuals are in region A, and that 

region B is empty. It is tempting to inquire what happens if, instead, we assume that the 

initial distribution between the two regions of individuals 1, 2, ,n  with, 

correspondingly, incomes ix , 1,2,...,i n , such that 1 2 nx xx   , is arbitrary. In 

particular, does Claim 5 still hold? As it turns out, it does not. In the case of a larger set 

of income vectors 1 2, , ,( )nx xx x , the dynamics is more complicated than in the case 

in which to begin with all the individuals are in region A, with the outcome depending on 

the initial distribution of the individuals, not only on their incomes.  

From the proof of Claim 5 we know that movement between the regions will 

cease after just one period and will stabilize at a steady state in which all the individuals 

but n are in region B, and that this outcome obtains when to begin with all the individuals 

are in region A and 1 1
1

1)
1

(
2

n
n

n

i
ix x x

x x
n n

x
x

n


    


, in particular when 2nx x , 

which is essential for Claim 5 to hold (the assumption ( 2 ( )) 0P X E X   practically 
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guarantees that for sufficiently large n , 2nx x ). Thus, we know that if, for example, 

4n  , 1 1x  , 2 2x  , 3 15x  , and 4 20x  , and to begin with these four individuals are 

in region A, then 4

38
20 2 2

4
x x    , and the evolving dynamics is depicted by the 

sequence: 

A B A B 
20

15

2

1

 

 

  

20  

15

2

1

 

 

However, this is not the only possibility. For example, when to begin with 

individual 3 ( 3 15x  ) is in region B, the evolving dynamics results in a different steady 

state: 

A B 
20

2

1

 
15

 

 

In addition, it is possible that the dynamics for the same vector of incomes will 

not converge to a steady state at all. If to begin with individuals 4 and 3 are in different 

regions and individuals 2 and 1 are in different regions, then the process repeats itself ad 

infinitum, and a steady state is not reached: 
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A B A B A B 
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1
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1

 
15

2
    

20

2
 

15

1

 

 
 

A B 

  

20

1

 
15

2
      

 

This example reveals that, when to begin with not all the individuals are in the 

same region, the condition 2nx x  no longer guarantees convergence of the evolving 

dynamics, and even if convergence obtains, there can be multiple steady states. Thus, the 

potential sufficient condition for convergence to obtain will need to take into account not 

only the income vectors, but also the initial distribution of the individuals between the 

two regions. 

When the income differences between all pairs of adjacent individuals are the 

same, sometimes it is not difficult to accommodate a constellation in which not all the 

individuals are initially in region A, but sometimes it can lead to different outcomes than 

the one presented in Claims 1 and 2. For example, suppose that there are two regions, A 

and B, and that to begin with individuals 5, 4, and 3 are in region A, and individuals 2 

and 1 are in region B. Once movement between the regions is allowed, individuals 4 and 

3 will move to region B, and the steady state distribution will be for individual 5 to be in 

region A, with the remainder of the individuals in region B. This outcome obtains 

because there was no incentive for individuals 2 and 1 to move, neither when individuals 
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4 and 3 were in region A, nor after individuals 4 and 3 moved to region B. However, if to 

begin with individuals 5, 2, and 1 are in region A, and individuals 4 and 3 are in region B, 

then no individual has an incentive to move, and this distribution in and by itself 

constitutes a steady state. This steady state differs from the steady state in which 

individual 5 is in region A, and the other individuals are in region B. Thus, Claim 1 also 

need not hold for arbitrary initial distributions of the individuals between the regions. 

These examples help informing us as follows. For 4,n   we will always obtain a steady 

state as per Claims 1 and 2. For 5,n   we will always obtain a steady state, but the steady 

state may not be as per Claims 1 and 2. For 6,n   we can obtain a steady state as per 

Claims 1 and 2, or we may not obtain a steady state at all as when, for example, to begin 

with individuals 6, 4, 3, and 1 are in region A, and individuals 5 and 2 are in region B. An 

analysis for 20n   of all possible initial distributions of the individuals between the two 

regions reveals that only for 5n   there is one initial distribution which leads to a 

different steady state than the steady state obtained as per Claims 1 and 2. For 6 12n  , 

there are initial distributions that do not lead to a steady state at all. For 13 20n  , all 

the initial distributions lead to the same steady state as per Claims 1 and 2.  

While it is beyond the scope of this paper, a more thorough analysis of the 

dynamics of movement for any initial distribution of the individuals between the two 

regions would be an intriguing topic for follow-up research. 

 

7.2 More than two regions 

Hitherto we have studied a setting in which there are two regions. What happens if there 

are more than two regions? 
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Consider again the case of n  individuals. Let the income of individual i  be ix , 

1,2,...,i n , and let 1 2 nx xx   . Let there be k  regions: 1 2, , , kAA A  and to begin 

with let all the individuals be in a region 1A . It is quite obvious that if there are at least as 

many (identical) regions as there are individuals, then each individual will be able to 

experience zero relative deprivation, occupying his own region all by himself. Therefore, 

we assume next that 2 k n  .  

 To understand the dynamics of movement between k  regions, we need to 

establish how individuals choose to move to one of a number of equally attractive 

regions. During the first period of movement we only know that individual n  stays in 1A , 

and that the other individuals move, but we do not know where to because from their 

point of view, regions 2 3, , , nAA A  are identical. 

 If the individuals choose randomly between moving to equally attractive regions, 

then we cannot determine the outcome of such dynamics. As an example, we consider the 

case of three regions: A, B, and C, and of 5n   individuals such that 1 1x  , 2 2x  , 

3 15x  , 4 20x  , and 5 100x  . In the first period, individual 5 stays in region A, and 

individuals 1, 2, 3, and 4 randomly move to region B or to region C. In the subsequent 

periods, individual 5 always remains in region A, no other individual ever goes back to 

region A (because the relative deprivation arising from a comparison with 5 is too high), 

and the dynamics of movement of individuals 1 to 4 between regions B and C is exactly 

the same as the one considered in Subsection 7.1 where the random allocation in period 1 

generates the initial condition. In particular, if in the first period individuals 1, 2, 3, and 4 

move to region B, then the dynamics converges to the steady state:  
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A B C 
100

 
20

 

15

2

1

 

 

and if in the first period individuals 1, 2, and 4 move to region B while individual 3 

moves to region C, then the system stays in the steady state: 

 

A B C 
100

 
20

2

1

 15  

 

Finally, if in the first period individuals 2 and 4 move to region B and individuals 1 and 3 

move to region C, then a steady state is never reached. 

 Thus, a deterministic rule is needed in order to decide between equally attractive 

destinations. However, there are many possible rules, and each of them leads to dynamics 

which yields an outcome that is at least as complex as the one presented in Section 5. 

Therefore, we consider only a simple generalization of the dynamics of Section 3. 

 Assume that for every i , ix i , and that when choosing between two equally 

attractive regions lA  and mA  the individuals choose the one with the lowest index, 

namely lA  if l m  and mA  otherwise. This assumption is reasonable when regions with 

lower indices are more accessible than regions with higher indices, for example when for 



 

35 
 

,l m  such that 1 l m   an individual needs to go through region lA  when moving from 

1A  to mA . Then, the dynamics is analogous to the one portrayed in Subsection 3.1.1: in 

the first period individual n  stays in region 1A  and the other individuals move to region 

2A . In the second period, individual n  stays in region 1A , individual 1n   stays in region 

2A , and the other of individuals move to region 3A . Repeating the procedure, after 1k   

periods, the dynamics converges to a steady state where for j k  only individual 

1n j   stays in region jA , and the other individuals stay in region kA . The reasoning 

behind this process is analogous to that of the proof of Claim 1. For example, when 5n   

and 3k  , then after two periods the following steady state is reached: 

 

1A   2A   3A   

5
 

4
 

3

2

1

 

 

8. CONCLUSION 

We have shown how dissatisfaction arising from having low relative income can 

influence the choice of location. The ensuing dynamics can take a variety of forms. For 

any n when incomes are equally spaced, a steady state spatial distribution will be reached 

under alternative indices of cardinally measured relative deprivation, with the end 

distribution being the same, even though the dynamic paths leading to the end 

distribution differ. When incomes are not equally spaced, we formulated conditions such 

that, under relative deprivation, a steady state spatial distribution will be reached for any 
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5.n   Given the difficulty in analyzing directly cases of 6,n   we resorted to 

simulations. We obtained several results: first, the probability of reaching a steady state 

spatial distribution approaches 1 as the size of the population increases. Second, the 

average number of periods it takes to reach a steady state also converges to 1. Third, the 

incidence of cyclical moves (with a steady state not reached) is more likely in populations 

with lower income inequality, as measured by both the Gini index and by the variance of 

the distribution of incomes.5 This result suggests a particular testable hypothesis: a more 

stable pattern of movement between regions exists when the interregional income 

variation is larger.  
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FOOTNOTES 

1 Hitherto, in order to simplify the notation, we did not represent the relative deprivation 

function as a function of the incomes of all the individuals. 

2 By “analogous” we mean that the equivalent of Lemmas 1, 2, and 3, as well as the 

analysis for any natural number n for the case of relative deprivation defined as the 

income distance from below the mean income, are also of the form: “For any natural 
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number 3n  , if some set of inequalities is satisfied then the distribution of the 

individuals between the two regions will perpetually change. Otherwise, a spatial steady 

state will be reached.” The proofs of the equivalent lemmas are also similar. Naturally, 

the number and the exact form of the inequalities may differ between the two definitions 

of relative deprivation. 

3 More sophisticated distributions were proposed, inter alia, by McDonald (1984), and 

more recently by Chatterjee et al. (2007). 

4 Mathematically, the Gini index is equivalent to total relative deprivation divided by total 

income. This forges a link with the measure of the distaste for low relative income. 

5 This implication is valid for distributions similar to the gamma distribution, namely for 

distributions that have positive skewness with long tail. It does not hold for other 

distributions such as the uniform distribution. 
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APPENDIX A: PROOFS 

Lemma 1. When 3n  , a spatial steady state with individual 3 in region A, and 

individuals 1 and 2 in region B will always be reached. 

Proof.   

1st period: Individual 1 (whose income is 1x ) and individual 2 (whose income is 2x ) 

move to region B so as to shed off their relative deprivation, while individual 3 (whose 

income is 3x ) remains in region A: 

 

A B 
3  
 

 
2

1
 

 

2nd period: Because individuals 2 and 3 are not relatively deprived, they will not have an 

incentive to move, and they are thus of no further “interest” to us. The only individual to 

consider then is individual 1. For this individual when he is in region B: 

1 2 1

1
(1) ( )

2B
RD x x


  . 

If individual 1 were to return to region A:  

1 3 1

1
(1) ( )

2A
xRD x


 . 

Because 2 3x x , individual 1 will prefer to stay in region B. Thus, after the first period 

no individual has an incentive to move, so the distribution reached in the first period is 

the spatial steady state distribution. Q.E.D. 
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Lemma 2. When 4n  , the distribution of the individuals between the two regions will 

perpetually change and a spatial steady state will not be reached iff 4 2 32 3x x x   and 

4 1 3 23 2( )x xx x  . 

Proof.   

1st period: Individuals 1, 2, and 3 move to region B to get rid of their relative 

deprivation, and individual 4 remains in region A: 

 

A B 
4    

3

2

1

 

 

2nd period: Individuals 3 and 4 are not relatively deprived, and therefore they will not 

relocate. For individual 1 when he is in region B: 

3 11 2

1
(1) ( 2 )

3B
RD x x x


   . 

If individual 1 were to return to region A:  

1 4 1

1
(1) ( )

2A
xRD x


 . 

We have that 1 34 21 1
(1) (1) 3 2( )

A B
RD RD x x x x

 
    . Therefore, if the 

inequality 1 24 33 2( )xx x x    is satisfied, individual 1 will prefer to stay in region B.  

For individual 2 when he is in region B: 

2 23

1
(2) ( )

3B
RD x x


  . 

If individual 2 were to return to region A:  
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22 4

1
(2) ( )

2A
xRD x


 . 

Because 3 4x x , individual 2 will prefer to stay in region B. 

Therefore, if 1 24 33 2( )xx x x    the spatial distribution reached after the first 

period is a steady state distribution, as no individual has an incentive to move. However, 

if the condition 1 24 33 2( )xx x x    does not hold, then the dynamics of locational 

choices is not brought to a halt because individual 1 has an incentive to move to region A. 

Thus, assuming that 1 24 33 2( )xx x x   , the distribution of the individuals between the 

two regions in the second period is 

 

A B 
4

1

  

 
3

2
 

 

3rd period: From now on, we assume that 1 24 33 2( )xx x x    because when the 

individuals’ incomes do not observe this inequality, period three will not occur at all, and 

the location dynamics will come to a halt after the first period.   

Individuals 3 and 4 are not relatively deprived, so they will not move. From the 

calculations in the preceding step we know that individual 1 prefers his current location 

in region A over returning to region B. Then the only possible mover in this period is 

individual 2. If individual 2 remains in region B: 

2 23

1
(2) ( )

2B
RD x x


  . 
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If individual 2 were to return to region A:  

22 4

1
(2) ( )

3A
xRD x


 . 

We have that 4 2 32 2
(2) (2) 2 3

A B
RD RD x x x

 
   . Therefore, if the inequality 

4 2 32 3x x x   is satisfied, individual 2 will prefer to stay in his current location, namely 

in region B. Then, the distribution reached in the second period (with individuals 1 and 4 

in region A, and individuals 2 and 3 in region B) constitutes a steady state.  

However, if 4 2 32 3x x x  , individual 2 will prefer to move to region A, and the 

individuals will be distributed between the two regions as follows: 

 

A B 
4

2

1

  

 
3  

 

4th period: From now on, we assume that 4 2 32 3x x x   and that 4 1 3 23 2( )x xx x  . 

Otherwise, the dynamics of moves between locations will come to a halt earlier, and the 

fourth period will not occur at all. Analogically to the preceding steps, we can infer that 

the only possible mover in this period is individual 1. If individual 1 remains in region A: 

4 2 11

1
(1) ( 2 )

3A
RD x x x


   . 

If individual 1 were to return to region B:  

3 11

1
(1) ( )

2B
xRD x


 . 
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We have that 4 1 3 23 2( )x xx x  , thus 4 1 3 22 3 2x x xx     (because 4 3x x ) which 

can be rearranged as 3 1 4 2 13 2 2 43x xx x x   , and finally as 

3 1 2 14

1 1
( ) ( 2 )

2 3
x x xx x   . This last inequality implies that 

1 1
(1) (1)

B A
RD RD

 
 . 

Therefore, individual 1 moves again to region B, and the distribution of the individuals 

between the two regions is: 

 

A B 
4

2

  

 
3

1

 

 

5th period: Analogically to the preceding steps, we can infer that the only possible mover 

in this period is individual 2. If individual 2 remains in region A: 

22 4

1
(2) ( )

2A
RD x x


  . 

If individual 2 were to return to region B:  

3 22

1
(2) ( )

3B
xRD x


 . 

Because 3 4x x , individual 2 will prefer to move to region B. Now, the process reverts 

back to the configuration that prevailed after the relocation moves in the first period. If 

4 2 32 3x x x   and 4 1 3 23 2( )x xx x  , this loop repeats itself ad infinitum. As we 

concluded at the end of the analysis of the 2nd and 3rd periods, if any of these 

inequalities is not satisfied, the system reaches a spatial steady state. Q.E.D. 
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Lemma 3. When 5n  , the distribution of the individuals between the two regions will 

perpetually change and a spatial steady state will not obtain iff 5 1 4 232x xx x x    and 

5 2 4 3x xx x    and 5 3 42x xx   . 

Proof.   

1st period: Individuals 1, 2, 3, and 4 move to region B to get rid of their relative 

deprivation, and individual 5 remains in region A. 

 

A B 
5    

4

3

2

1

 

 

2nd period: Individuals 5 and 4 are not relatively deprived. Therefore, they will not 

move. For individual 3 when he is in region B: 

33 4

1
(3) ( )

4B
RD x x


  . 

If individual 3 were to return to region A:  

33 5

1
(3) ( )

2A
xRD x


 . 

Because 4 5x x , individual 3 will prefer to stay in region B.  

For individual 2 when he is in region B: 

4 232

1
(2) ( 2 )

4B
RD x x x


   . 

If individual 2 were to return to region A:  
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5 22

1
(2) ( )

2A
xRD x


 . 

Because 3 4 52x x x  , we have that 3 4 2 5 22 2 2x x x x x     or that 

24 3 5 2

1 1
( 2 ) ( )

4 2
x x x x x   . Therefore, individual 2 will prefer to stay in region B.  

For individual 1 when he is in region B: 

4 2 131

1
(1) ( 3 )

4B
RD x x x x


    . 

If individual 1 were to return to region A:  

1 5 1

1
(1) ( )

2A
xRD x


 . 

We have that 1 4 351 1 2(1) (1) 2
A B

RD RD x x xx x
 
     . Therefore, if the inequality 

1 25 4 32 xx x xx    is satisfied, individual 1 will prefer to stay in region B, and then the 

distribution reached after period one is a steady state distribution because no individual 

has an incentive to move.  

However, when 1 25 4 32 xx x xx   , individual 1 moves to region A, and the 

distribution of the individuals between the two regions is: 

 

A B 
5

1

  

 
4

3

2

 

 

3rd period: From now on, we assume that 1 25 4 32 xx x xx   . Individuals 5 and 4 will 

not move. From the calculations in the preceding step we know that individual 1 prefers 
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his current location in region A over returning to region B. The only possible movers in 

this period are individuals 2 and 3. If individual 3 remains in region B: 

3 34

1
(3) ( )

3B
RD x x


  . 

If individual 3 were to return to region A:  

5 33

1
(3) ( )

3A
xRD x


 . 

Because 4 5x x , individual 3 will prefer to stay in region B. If individual 2 remains in 

region B: 

4 232

1
(2) ( 2 )

3B
RD x x x


  . 

If individual 2 were to return to region A:  

5 22

1
(2) ( )

3A
xRD x


 . 

We have that 4 3 52 2 2(2) (2)
B A

RD RD x x x x
 

   . Therefore, if the inequality 

4 5 23x x x x   is satisfied, individual 2 will prefer to stay in region B. Then, the 

distribution reached in the second period (with individuals 1 and 5 in region A, and 

individuals 2, 3, and 4 in region B) constitutes a steady state distribution.  

However, if 4 5 23x x x x  , individual 2 moves to region A, and we obtain the 

following distribution of the individuals between the two regions: 
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A B 
5

2

1

  

 
4

3
 

 

4th period: From now on, we assume that 1 25 4 32 xx x xx    and that 

4 5 23x x x x  . Individuals 5 and 4 will not move. From the calculations in the 

preceding step we know that individual 2 prefers his current location in region A over 

returning to region B. The only possible movers in this period are individuals 1 and 3. If 

individual 1 remains in region A: 

5 11 2

1
(1) ( 2 )

3A
RD x x x


   . 

If individual 1 were to move to region B:  

4 3 11

1
(1) ( 2 )

3B
RD x x x


   . 

Because 4 5 23x x x x  , individual 1 will prefer to stay in region A.  

If individual 3 remains in region B: 

3 34

1
(3) ( )

2B
RD x x


  . 

If individual 3 were to return to region A:  

5 33

1
(3) ( )

4A
xRD x


 . 

We have that 5 33 3 4(3) (3) 2
A B

RD RD x x x
 

   . Therefore, if the inequality 

5 3 42x x x   is satisfied, individual 3 will prefer to stay in region B. Then, the 
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distribution reached in period 3 (with individuals 1, 2, and 5 in region A, and individuals 

3 and 4 in region B) constitutes a steady state distribution.  

However, when the opposite holds, namely when 5 3 42x x x  , individual 3 

moves to region A. In this case, the distribution of the individuals between the two 

regions is: 

 

A B 
5

3

2

1

  

 
4  

 

5th period: From now on, we assume that 1 25 4 32 xx x xx   , that 4 5 23x x x x  , 

and that 5 3 42x x x  . Individuals 5 and 4 will not move. From the calculations in the 

preceding step we know that individual 3 prefers his current location in region A over 

returning to region B. The only possible movers in this period are individuals 1 and 2. 

If individual 2 remains in region A: 

5 22 3

1
(2) ( 2 )

4A
RD x x x


  . 

If individual 2 were to move to region B:  

4 22

1
(2) ( )

2B
RD x x


  . 
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We have that 5 3 42x x x  , thus 2 4 25 3 2 2 2x x x x x    and finally 

5 3 2 4 2

1 1
(

4
2 ) ( )

2
x x x x x   . This last inequality implies that 

2 2
(2) (2)

A B
RD RD

 
 , so 

individual 2 will prefer to stay in region A. 

If individual 1 remains in region A: 

15 31 2

1
(1) ( 3 )

4A
RD x x x x


   . 

If individual 1 were to move to region B:  

4 11

1
(1) ( )

2B
RD x x


  . 

We have that 1 25 4 32 xx x xx    and 5 4x x , thus 1 24 352 xx x xx   . After 

subtracting 13x  from both sides of the last inequality, we get that 

2 14 3512 2 3xx x x xx    , and finally 4 5 3 21 1

1 1
( ) ( 3 )

2 4
x x x x x x    . This last 

condition implies that 
1 1

(1) (1)
B A

RD RD
 

 , so individual 1 will prefer to move to region 

B. Consequently, the distribution of the individuals between the regions becomes: 

 

A B 
5

3

2

  

 
4

1

 

 

6th period: Individuals 5 and 4 will not move. From the calculations in the preceding step 

we know that individual 1 prefers his current location in region B over returning to region 

A. The only possible movers in this period are individuals 3 and 2.  
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If individual 3 remains in region A: 

3 5 3

1
(3) ( )

3A
RD x x


  . 

If individual 3 were to move to region B:  

4 33

1
(3) ( )

3B
RD x x


  . 

Because 4 5x x , individual 3 will prefer to move to region B.  

If individual 2 remains in region A: 

5 22 3

1
(2) ( 2 )

3A
RD x x x


  . 

If individual 2 were to move to region B:  

4 22

1
(2) ( )

3B
RD x x


  . 

We have that 4 5x x  and 2 3x x , thus 4 5 32x x xx  . Upon subtracting 22x  from both 

sides of the last inequality, we get that 4 2 5 3 22x x xx x  , implying that 

2 2
(2) (2)

B A
RD RD

 
 , so individual 2 will prefer to move to region B. 

 With both individuals 3 and 2 moving to region B, the distribution of the 

individuals between the two regions in this period is given by: 

 

A B 
5    

4

3

2

1
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This distribution replicates the distribution reached in period 1. And the loop repeats 

itself ad infinitum, assuming that the individuals’ incomes are such that the three 

following conditions hold: 1 25 4 32 xx x xx   , 4 5 23x x x x  , and 5 3 42x x x  . If 

any of these conditions is not satisfied, the spatial distribution of the individuals between 

the two regions will reach a steady state. Q.E.D.  
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APPENDIX B: CONSTRUCTION OF THE MEASURE OF RELATIVE 

DEPRIVATION PRESENTED IN DEFINITION 1 

For the purpose of constructing a measure, a natural starting point is the work of 

Runciman (1966), who argued that an individual has an unpleasant sense of being 

relatively deprived when he lacks a desired good and perceives that others with whom he 

naturally compares himself possess that good. Runciman (1966, p. 19) writes as follows: 

“The more people a man sees promoted when he is not promoted himself, the more 

people he may compare himself with in a situation where the comparison will make him 

feel deprived,” implying that the deprivation from not having, say, income y is an 

increasing function of the fraction of people in the individual’s reference group who have 

y. To aid intuition and for the sake of concreteness, we resort to income-based 

comparisons, meaning that an individual feels relatively deprived when others in his 

reference group earn more than he does. It is assumed implicitly here that the earnings of 

others are publicly known. Alternatively, we can think of consumption, which might be 

more publicly visible than income, although these two variables can reasonably be 

assumed to be closely related.  

As an illustration of the relationship between the fraction of people possessing 

income y and the deprivation of an individual lacking y, consider a population (reference 

group) of six individuals with incomes {1,2,6,6,6,8}. Imagine a furniture store that in 

three distinct departments sells chairs, armchairs, and sofas. An income of 2 allows you 

to buy a chair. To be able to buy an armchair, you need an income that is a little bit 

higher than 2. To buy any sofa, you need an income that is a little bit higher than 6. Thus, 

when you go to the store and your income is 2, what are you “deprived of?” The answer 



 

52 
 

is “of armchairs” and “of sofas.” Mathematically, this deprivation can be represented by 

( 2)(6 2) ( 6)(8 6)P Y P Y     , where ( )iP Y y  stands for the fraction of those in the 

population whose income is higher than iy , for 2,6iy  . The reason for this 

representation is that when you have an income of 2, you cannot afford anything in the 

department that sells armchairs, and you cannot afford anything in the department that 

sells sofas. Because not all those who are to your right in the ascendingly ordered income 

distribution can afford to buy a sofa, but they can all afford to buy armchairs, a 

breakdown into the two (weighted) terms ( 2)(6 2)P Y    and ( 6)(8 6)P Y    is needed. 

This way, we get to the very essence of the measure of RD presented in this paper: we 

take into account the fraction of the reference group (population) who possess some good 

which you do not, and we weigh this fraction by the “excess value” of that good. Because 

income enables an individual to afford the consumption of certain goods, we refer to 

comparisons based on income. 

Formally, let 1( ,..., )my y y  be the vector of incomes in population N of size n 

with relative incidences ( )p y   1( ),..., ( )mp y p y , where m n  is the number of distinct 

income levels in y, where n and m are natural numbers. The RD of an individual earning 

iy  is defined as the weighted sum of the excesses of incomes higher than iy  such that 

each excess is weighted by its relative incidence, namely  

                                             ( ) ( )( )
k i

N i k k i
y y

RD y p y y y


  .                                         (B1) 

In the example given above with income distribution {1,2,6,6,6,8}, we have that the 

vector of incomes is (1, 2,6,8)y  , and that the corresponding relative incidences are 

( )p y  (1/ 6,1/ 6, 3 / 6,1/ 6) . Therefore, the RD of the individual earning 2 is 
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( )( ) (6)(6 2) (8)(8 2)
k i

k k i
y y

p y y y p p


     3 1
4 6 3

6 6
     . By similar calculations, 

we have that the RD of the individual earning 1 is higher at 
5

3
6

, and that the RD of each 

of the individuals earning 6 is lower at 
1

3
. 

We expand the vector y  to include incomes with their possible respective 

repetitions, that is, we include each iy  as many times as its incidence dictates, and we 

assume that the incomes are ordered, that is, 1( ,..., )ny y y  such that 1 2 ... nyy y   . In 

this case, the relative incidence of each iy , ( )ip y , is 1 / n , and (B1), defined for 

1,..., 1i n  , becomes   

                                                  
1

1
( ) .

n

N i k
k i

iRD y y y
n  

                                              (B2) 

This (B2) expression is the basis of Definition 1. 
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