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at the Research Center Jülich, you all made my time worthwhile.
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Abstract

The evaluation of life safety in buildings in case of fire is often based on
smoke spread calculations. However, recent simulation models – in gen-
eral, based on computational fluid dynamics – often require long execution
times or high-performance computers to achieve simulation results in or
faster than real-time.

Therefore, the objective of this study is the development of a concept
for the real-time and prognosis simulation of smoke propagation in com-
partments using a graphics processing unit (GPU). The developed con-
cept is summarized in an expandable open source software basis, called
JuROr (Jülich’s Real-time simulation within ORPHEUS). JuROr simu-
lates buoyancy-driven, turbulent smoke spread based on a reduced model-
ing approach using finite differences and a Large Eddy Simulation turbu-
lence model to solve the incompressible Navier-Stokes and energy equa-
tions. This reduced model is fully adapted to match the target hardware
of highly parallel computer architectures. Thereby, the code is written
in the object-oriented programming language C++ and the pragma-based
programming model OpenACC. This model ensures to maintain a sin-
gle source code, which can be executed in serial and parallel on various
architectures.

Further, the study provides a proof of JuROr’s concept to balance suffi-
cient accuracy and practicality. First, the code was successfully verified
using unit and (semi-) analytical tests. Then, the underlying model was
validated by comparing the numerical results to the experimental results
of scenarios relevant for fire protection. Thereby, verification and vali-
dation showed acceptable accuracy for JuROr’s application. Lastly, the
performance criteria of JuROr – being real-time and prognosis capable
with comparable performance across various architectures – was success-
fully evaluated. Here, JuROr also showed high speedup results on a GPU
and faster time-to-solution compared to the established Fire Dynamics
Simulator. These results show JuROr’s practicality.





Kurzfassung

Die Bewertung der Personensicherheit bei Feuer in Gebäuden basiert häu-
fig auf Berechnungen zur Rauchausbreitung. Bisherige Simulationsmo-
delle – im Allgemeinen basierend auf numerischer Strömungsdynamik –
erfordern jedoch lange Ausführungszeiten oder Hochleistungsrechner, um
Simulationsergebnisse in und schneller als Echtzeit liefern zu können.

Daher ist das Ziel dieser Arbeit die Entwicklung eines Konzeptes für
die Echtzeit- und Prognosesimulation der Rauchausbreitung in Gebäuden
mit Hilfe eines Grafikprozessors (GPU). Zusammengefasst ist das ent-
wickelte Konzept in einer erweiterbaren Open-Source-Software, genannt
JuROr (Jülich’s Real-time Simulation in ORPHEUS). JuROr simuliert
die Ausbreitung von auftriebsgetriebenem, turbulentem Rauch basierend
auf einem reduzierten Modellierungsansatz mit finiten Differenzen und
einem Large Eddy Simulation Turbulenzmodell, um inkompressible Navier-
Stokes und Energiegleichungen zu lösen. Das reduzierte Modell ist voll-
ständig angepasst an hochparallele Computerarchitekturen. Dabei ist der
Code implementiert mit C++ und OpenACC. Dies hat den Vorteil mit
nur einem Quellcode verschiedenste serielle und parallele Ausführungen
des Programms für unterschiedliche Architekturen erstellen zu können.

Die Studie liefert weiterhin einen Konzeptnachweis dafür, ausreichende
Genauigkeit und Praktikabilität im Gleichgewicht zu halten. Zunächst
wurde der Code erfolgreich mit Modul- und (semi-) analytischen Tests ver-
ifiziert. Dann wurde das zugrundeliegende Modell durch einen Vergleich
der numerischen mit den experimentellen Ergebnissen für den Brand-
schutz relevanter Szenarien validiert. Die Verifizierung und Validierung
zeigten dabei ausreichende Genauigkeit für JuROr. Zuletzt, wurden die
Kriterien von JuROr – echtzeit- und prognosefähig zu sein mit vergleich-
barer Leistung auf unterschiedlichsten Architekturen – erfolgreich geprüft.
Zudem zeigte JuROr hohe Beschleunigungseffekte auf einer GPU und
schnellere Lösungszeiten im Vergleich zum etablierten Fire Dynamics Sim-
ulator. Diese Ergebnisse zeigen JuROr’s Praktikabilität.
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Chapter 1

Introduction

“Yesterday is gone.
Tomorrow has not yet come.

We have only today.
Let us begin.”

Mother Teresa

1.1 Motivation

Time is precious. Consequently, there exists a high desire for real-time and prognosis
software in almost every field of application – be it in computer gaming, weather
prediction, industrial applications in automotive, traffic or health management as
well as civil safety for crowd-management or in cases of smoke and fire hazards.

In civil engineering, the consideration and evaluation of life safety in buildings in
case of fire usually occur during planning, restoration or extension of buildings and
building structures and are often based on smoke spread calculations. Thereby, com-
plex buildings and building structures, like underground metro stations or modern
architectures with new building materials, need individual evaluation, since existing
descriptive requirements ensuring life safety (such as the German Model Building
Code enabling escape, rescue and effective fire fighting measures) mostly cannot be
consistently applied for such buildings. In these cases, real-time and prognosis sim-
ulations of smoke propagation in compartments could not only support engineers in
the planning phase of a building but might also assist decision-makers responsible for
direct emergency response. However, recent simulation models – in general, based on

1
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computational fluid dynamics (CFD) – require long execution times.
Further, developments in fire safety such as legal requirements, building construc-

tions, and technical specifications continuously advance. Additionally, modern com-
puting architectures in High Performance Computing (HPC) and numerical methods,
drive simulations utilized by designers and architectures to be state of the art with
a fast time-to-solution. These developments are acknowledged and reconciled in the
ORPHEUS (2018) project funded from 2015 to 2018 by the German Federal Ministry
of Education and Research (BMBF) Program on ’Research for Civil Security - Pro-
tection and Rescue in complex Disaster Situations’ (funding code 13N13266). The
main objective was to optimize concepts for smoke control and evacuation based on
experiments and simulations – especially for existing, complex infrastructures such
as the underground station ‘Osloer Straße’ in Berlin, which was used as a target
for real-scale experiments (cf. Fig. 1.1). The main objective was achieved in three
steps. First, experiments of large-scale fires were conducted to assess the status-quo
and to serve as a basis for concepts and the validation of simulations. Secondly, in-
novative, active and customized smoke extraction systems were conceptualized, and
thirdly, communication strategies and state of the art CFD simulations capturing the
status-quo were designed to support fire fighters and operators.

Figure 1.1: Model of the ‘Osloer Straße’ underground station in Berlin:
the concourse 35m above sea level (in gray) and the platforms U9 31m
above sea level (in red) and the U8 27m above sea level (in blue), each
roughly 110m long and 20m wide, ranging over three floors connected
by staircases



Chapter 1 Introduction 3

Incidents such as the Jungangno Station fire in Daegu, South Korea in 2003 or, more
recently, the fire at Grenfell Tower, in North Kensington, London, England in 20171,
show the importance of a short reaction time and rescue measures of fire fighters
and operators. Thereby, real-time or even faster than real-time executions of CFD
models could capture the high-risk situation as status-quo and support effective fire
fighting measures by a scenario-based adoption of fire fighting tactics. Additionally,
(faster than) real-time simulations would allow for further application fields, where the
predicted data may be used to steer technical systems like smoke extractions systems
for danger prevention or dynamic escape routing for the benefit of self- and external
rescue. Here, the decision-makers, such as the operational leadership of a fire brigade
or police responsible for direct emergency response measures, and the fire fighters at
site, would require practicable resources. This resource should be financially feasible
and space-saving for the usage at site, while being able to calculate highly parallel
computations in or faster than real-time as well as visualize the results.

These aspects motivate the study at hand to take up the challenge developing a
concept for the real-time and prognosis simulation of smoke propagation in compart-
ments, where the propagation of smoke is complex and hard to predict. Thereby, the
developed concept is summarized in an expandable open-source software basis, called
JuROr (Jülich’s Real-time simulation within ORPHEUS). The focus of this study
lies in providing a proof of JuROr’s concept while handling the challenge of balancing
practicality with sufficient accuracy.

1.2 Challenges

The balance of practicality and accuracy is the major challenge in this study.
Practicality ensures the real-time capability of JuROr and is regarded in terms of

computational cost, performance portability and also acquisition costs of the compu-
tational architecture as well as its mobility. For the benefit of runtime, the modeling
approach needs to be reduced in order to fully adapt the CFD model to highly parallel
computer architectures. This design concept includes finite differences and highly par-
allelizable numerical models to match the target hardware. The choice of a suitable
programming model, thereby, ensures performance portability, meaning to obtain a

1After the fire in the apartment of the Grenfell Tower was under control, the outside forces
noticed that the fire was spreading across the facade. This spread was, so far, not considered with
its speed. The flammable building’s exterior cladding was an unknown uncertainty factor. The
lack of knowledge about this possible course caused that the approached tactic, to stay inside the
apartments, was not changed during the rescue. In total 72 people died.
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comparable performance of the parallel computation across various architectures.
At the same time, sufficient accuracy is essential. In this study, sufficient accuracy

is always regarded from the perspective of JuROr’s purpose – creating a real-time
system for smoke spread prediction to support fire fighters in cases of emergencies in
complex infrastructures – where decisions are not based on simulation results with
a resolution in terms of millimeters but rather multiple centimeters. To accurately
predict smoke movement in buildings of any design, field modeling such as CFD
is increasingly used in fire safety engineering. Field modeling allows for complex
geometries, where traditional zone models are inaccurate. Nevertheless, complex
geometries pose a challenge in computational fluid dynamics. Hence, the underlying
computational grid (besides the temporal resolution) needs to be resolved with care
ensuring sufficient accuracy for the application. Additionally, the accuracy needs to
be continuously tested by verification and validation. To further increase the accuracy
in future developments, a coupling layer for data assimilation from sensors could be
added to the base code.

In order to find the appropriate balance between practicality and accuracy, sev-
eral (research) projects have already been conducted using various computational
resources.

1.3 State of the Art

1.3.1 Computational Resources

The increasing challenges and demands for computational power are driven by com-
plex scientific simulations, such as CFD simulations, and lead to a performance growth
of HPC systems (cf. Top500 (2017)). HPC thereby includes parallel computations
over multiple compute elements, such as central processing units (CPUs) or graph-
ics processing units (GPUs), with a fast network connecting the compute elements.
Therefore, suitable programming models or interfaces such as Message Passing Inter-
face (MPI) or Open Multi-Processing (OpenMP) are used on CPUs and, for instance,
CUDA or OpenACC (for open accelerators) respectively on GPUs. To translate the
code into an executable application, an appropriate compiler (e.g., from Intel, GNU,
Cray or PGI) is needed. The application can then be executed on CPUs or accelera-
tors such as GPUs.
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Figure 1.2: Theoretical peak performance comparison (top: floating-point opera-
tions, bottom: memory bandwidth) of NVIDIA and AMD GPUs as well
as Intel CPUs and Phis over time, based on Rupp (2016)

The theoretical performance of such architectures in terms of floating-point operations
per second (in Flop/s) and memory bandwidth (in GB/s) steadily increased over the
last decade (cf. Rupp (2016)). Figure 1.2 shows the historical development of the
theoretical peak performance of NVIDIA Tesla and AMD Radeon GPUs compared
with Intel Xeon CPUs and Phis (top: in Flop/s, bottom: in GB/s). The Flop/s
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development demonstrates a performance gap between GPUs and CPUs from 2010
to 2014. From 2014 on, the decision between CPU and GPU is however driven
by the application’s purpose, acquisition costs, ease of implementation, maintenance
and mobility. Besides that GPUs are ideal for floating-point intensive applications,
also memory-bound applications can nowadays be run on GPUs as the theoretical
peak memory bandwidth at the bottom of Figure 1.2 shows. Here, a significant
improvement of the GPU bandwidth performance can be observed in 2016.

On-demand resources such as clouds can overcome the necessity of the resource
being mobile and space-saving. For instance, the recently developed tool, SparkCloud
(cf. Garg et al. (2018)), simulates bush fires on a cloud on a first-come-first-serve basis,
whereby the execution time of the simulation (in parallel on CPUs) is estimated and
the request is completed within a given deadline. Nevertheless, cloud computing still
reveals insurmountable challenges for High Performance Computing combined with
the emergency character of the application at hand.

Thus for this study, the resource of a GPU is used for parallel computing, since
GPUs are highly performant, affordable and mobile as well as space-saving. In detail,
an NVIDIA Pascal P100 GPU (cf. Harris (2016)) was acquired with funding from the
ORPHEUS (2018) project to develop, test and benchmark the real-time and prognosis
capable CFD software JuROr predicting the smoke propagation in compartments.

1.3.2 Integrated Tools in Fire Safety Engineering

Since the desire for real-time simulation is high, there already exist tools for modeling
fire and smoke and utilizing highly parallel computer architectures. Thereby, com-
mercial and open source tools can be differentiated, which are already fully integrated
into the fire safety community.

Commercial tools often are intended for general purpose computational fluid dy-
namics that can also be used for fire modeling applications. Examples thereof are
ANSYS’ CFX (cf. ANSYS (2013)) and FLUENT (cf. ANSYS (2015)) software, which
are based on the finite volume method and include turbulence modeling, heat transfer,
radiation and combustion modeling (and many more features). These products are
parallelized for CPUs and (solely) NVIDIA GPUs (cf. NVIDIA Corporation (2018a)).
Since explicitly NVIDIA products are utilized, CFX and FLUENT do not allow for the
flexibility in computational architectures and therefore, do not assure the performance
portability the study aims for. The same holds for CD-adapco’s finite volume solver
STAR-CCM+ (cf. Siemens PLM software (2017)), CHAM’s PHOENICS software of
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finite-volume type (cf. Ludwig (2011)), the finite element analysis software Autodesk
CFD (cf. Autodesk Inc. (2017); Schnipke (1986)) and Solidworks’ Flow Simulation
applying the finite volume method (cf. Sobachkin and Dumnov (2013)). Regarding
fire modelling, the FLACS (FLame ACcelerator Simulator)-Fire from Gexcon solving
the compressible conservation equations for mass, momentum, enthalpy and mixture
fraction using the finite volume method (cf. Gant and Hoyes (2010); Gexcon (2015))
and AVL-Fire, a thermo-fluid simulation software with implicit time and finite volume
discretization (cf. AVL LIST GmbH (2014); RCPE (2018)) also lack the flexibility in
using various computational architectures. All of these general purpose CFD tools
are parallelized for CPUs, whereby GPUs are used for visualization instead of general
purpose computation.

Specific for fire modeling is SOFIE (Simulation of Fires in Enclosures) developed
by Cranfield University with the support of the Fire Research Station in England. It
includes a finite volume procedure to solve the governing Navier-Stokes equations in a
non-orthogonal coordinate system (cf. Melaaen (1990)). Further, SMARTFIRE, de-
veloped by the Fire Safety Engineering Group of the University of Greenwich (cf. Ewer
et al. (2008, 2013)), is a finite volume CFD code which runs in parallel on CPUs using
MPI and is additionally coupled to the free two-zone fire model CFAST of NIST to
save computational time (cf. Ewer et al. (2010)). Again, these fire specific tools do
not allow for the architectural flexibility and mobility the study intends. Being trans-
parent regarding applied models and implemented methods as well as being of no
cost, open source software is often used.

Open source examples are the widely applied Fire Dynamics Simulator (FDS)
developed by NIST, which is based on the numerical model of finite differences with
turbulence modeling. Conversely to JuROr, it uses methods yielding stability condi-
tions on the time stepping size. Further, FDS runs in parallel on CPUs with the help
of domain decomposition and MPI as well as OpenMP but does not run on GPU.
Nonetheless, FDS’ verification and validation cases (cf. McGrattan et al. (2017a,c))
and their results are (partly) used as a reference to verify, validate and compare
JuROr’s results with. Another example is FireFOAM, a package of the open source
CFD software OpenFOAM (cf. The OpenFOAM Foundation (2017); Husted et al.
(2017)). FireFOAM is a finite volume solver for unstructured grids with turbulence
modeling running in parallel on CPUs with the interface OpenMP. Also based on finite
volumes is Code Saturne (cf. EDF Group (2017); Anzt et al. (2017)), which runs only
partly on GPUs (status of 2017), but full GPU support is intended using libraries.
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NIOSH’s mine fire simulation program, MFIRE, has also been used in tunnel fire
modeling (cf. NIOSH (2016); Zhou et al. (2016)) and describes a 1D empirical model
based on observations and experiments in contrary to more accurate CFD models
based on physical laws.

None of the above mentioned commercial and open source tools are eligible for
achieving the study’s objectives due to the lack of performance portability across
various architectures and missing mobility.

1.3.3 Research Projects

Also, several research projects are concerned with the issue of real-time simulation of
fire or smoke propagation, accuracy improvement by sensor coupling and performance
portability.

Fire and smoke propagation modeling in real-time is also handled in civil safety
research. For instance, Glimberg (2009) studied the real-time simulation of CFD
models describing smoke propagation. In the joined work of Glimberg et al. (2009),
GPUs were employed to solve the governing equations in simplified geometries using
a fractional step method. This approach resulted in a solution within less than a
minute of runtime for ten seconds of simulation time. For comparison, the simulation
took more than one hour on a CPU. Hejn and Rosenkvist (2009) continued the work
by employing multiple GPUs. Nevertheless, the applied programming model CUDA
exclusively runs on NVIDIA GPUs and therefore does not allow for the architectural
flexibility this study is interested in. The same holds for the second-order finite
volume code by Cohen and Molemaker (2009) with an eight-time speedup of the
CUDA-accelerated code versus the Fortran code on an eight-core CPU. Limiting the
architectural flexibility is also the approach of Liu et al. (2004), who implemented the
code (including obstacles and complex boundary conditions) with assembly language
which is specific to a particular computer architecture. Other projects also show
interest in producing real-time predictions, like those investigated in the FireGrid
project by Han et al. (2010). However, the utilized fire simulation model in FireGrid
is a zone model, which splits the domain of interest into very few zones (cf. Koo
(2010)). Properties like temperature or smoke density are computed via a set of
coupled ordinary differential equations and thus only allow for very crude approxi-
mations in contrary to CFD models. Further, zone modeling limits the applications
to simple geometries.
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A different approach to saving computational time is adaptive mesh refinement. The
CFD software JuFIRE, developed by Drzycimski and Arnold (2015) and refined by
Fehling et al. (2017) within the ORPHEUS (2018) project, simulates the smoke prop-
agation based on the finite element method and assures fast calculation by adaptive
mesh refinement in parallel on CPUs using MPI. Thereby, the adaptive mesh refine-
ment allows for a flexible determination of the local grid resolution using refinement
criteria and therefore fewer grid cells need to be updated compared to a fixed resolu-
tion resulting in speeding up the calculation. At the same time of writing this thesis,
JuFIRE was still under development and needed to be validated.

Although achieving flexibility in computing architectures by providing a linear
algebra framework on GPUs using OpenCL (, yet not in one source code), Krüger
(2006) lacks the integration of Navier-Stokes based smoke, fire and fluid effects in
his software. The same holds for the CFD-based Zonal Flow Solver ZFS developed
by the Institute of Aerodynamics at RWTH Aachen (cf. Lintermann and Schröder
(2018)) featuring (besides others) a Lattice Boltzmann and finite volume solver with
MPI and OpenMP parallelization as well as GPU portation via OpenACC (cf. Kraus
and Schlottke (2014)). Nonetheless, the coupling to buoyancy forces due to natural
convection is again missing.

In conclusion, the existing research projects can only build a methodological basis
for the development of JuROr, since none of them provides architectural flexibility,
mobility or the accuracy the study’s purpose requests.

Performance Portability across various computational architectures is the main
driver for implementing JuROr with OpenACC. Although the architecture-specific
assembler optimization by OpenACC compilers eases the maintenance of a single
code base (e.g., over using OpenCL, Pennycook et al. (2013)), the performance porta-
bility of OpenACC implementations as analyzed in Küsters et al. (2017) have been
scarcely studied so far. While OpenACC performance comparisons across different
architectures have been targeted in research, they have mostly been conducted by
analyzing absolute numbers such as the application’s runtime, floating point opera-
tions per second or speedup over CPU runs. For example, Lopez et al. (2016) show
memory bandwidth or speedup numbers for a Jacobi and n-body kernel for different
OpenACC implementations (PGI, Cray) on NVIDIA Kepler GPUs. They failed to
use OpenACC on multicore CPUs. Sabne et al. (2014) evaluated the performance
by showing speedup numbers based on OpenARC’s OpenACC implementation on
NVIDIA GPUs, AMD GPUs and Intel Xeon Phi coprocessors using 12 kernels. The
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hydrodynamic mini-app CloverLeaf by Herdman et al. (2014) has been tested on
NVIDIA GPUs, Intel Xeon Phi Coprocessors, one AMD APP and different CPUs
using the vendor OpenACC implementations from CAPS, PGI and Cray. For real-
world codes, Nicolini et al. (2016) present runtimes of an aeroacoustic simulation soft-
ware package using PGI’s OpenACC implementation for NVIDIA Kepler GPUs and
Intel CPUs. Calore et al. (2016) investigate a lattice Boltzmann application also us-
ing PGI’s OpenACC implementation on NVIDIA GPUs, AMD GPU, and Intel CPU.
However, performance portability investigations should not only consider absolute
numbers but need to account for the hardware’s and application’s characteristics. For
that, studies of Sabne et al. (2014); Herdman et al. (2014); Calore et al. (2016) com-
pare their gained OpenACC performance to hand-tuned low-level implementations
written in CUDA or OpenCL, or to libraries like MKL or CUBLAS. As a percentage
of peak performance, Lopez et al. (2016) present their DAXPY and DGEMV kernels.
For two non-trivial kernels, Calore et al. (2016) show an OpenACC efficiency of 54 %
to 70 % of peak across different architectures for memory-bound code, while compute-
bound code achieves 14 % to 24 % efficiency.Modeling OpenACC performance using
a roofline model has only been conducted by Wang et al. (2013), who base their
model on STREAM and Flop/s measurements and apply CAPS’ OpenACC imple-
mentation to NVIDIA GPUs and Intel Xeon Phi coprocessors. However, they only
examine basic kernels from the EPCC OpenACC Benchmark Suite. There, they get
up to 82 % of sustained performance compared to peak performance of specific bench-
marks, whereas more benchmarks only achieve about 10 % performance on average.
In contrast, the performance portability analysis in this study does not only focus on
absolute performance but especially applies the roofline model to the real-world code
JuROr.

In summary, JuROr distinguishes itself from the named projects, tools and ap-
proaches by predicting the smoke propagation in compartments, deploying computa-
tional fluid dynamics while focusing on the real-time simulation, being performance
portable on a wide range of computational architectures and measuring its perfor-
mance relative to the hardware’s characteristics via a roofline model.

Data assimilation is recently applied in the field of fire modeling, where data is
coupled to an underlying fire model to improve accuracy. For instance, FirstCast3.0
by Hamins et al. (2014, 2015) is based on creating, storing, exchanging, analyzing,
and integrating information from a wide range of databases and sensor networks
to assign every building the New York City Fire Department inspects with a fire
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risk score. Their integration of computer-based fire modeling with sensor technology
uses existing approaches such as inverse zone modeling of enclosure fire dynamics
by Cowlard et al. (2010); Jahn et al. (2009); Jahn (2010); Jahn et al. (2012); Jahn
(2017) and ensemble-based data assimilation to predict wildfire spread of Rochoux
et al. (2013a,b, 2014, 2015).

Daniel and Rein (2016) implemented the FireNavigator forecasting the spread
of building fires. Using the techniques of a cellular automata building fire model
(instead of CFD), they employed sensor data assimilation, inverse modeling, and
genetic algorithm techniques. With this approach, the governing parameters of a fire,
such as the flame spread rate, the smoke ceiling jet velocity and the outbreak location
and time, can be indirectly uncovered and then used to produce real-time as well
as forecast maps of the flame spread and smoke propagation. Therewith, the Fire
Navigator achieves positive lead times of several minutes meaning the predictions
are actual forecasts (without the usage of GPUs). Nonetheless, cellular automata
simulations simplify the problem and do not produce results as accurate as CFD
models.

Beata et al. (2018) provide a computing framework for the integration of real-
time fire data with computation and visualization. Components of the real-time
fire monitoring system include a sensor simulator, the main program coordinating
data to sub-models, and a real-time sub-model for event-detection evaluating the
progression of fire events (in the post-ignition state of a building). The event-detection
is deterministically modeled from sensor data using thresholds based on literature
and experimental data as opposed to simulating or forecasting the fire or to applying
empirical methods. If a threshold has been reached, a warning level is assigned for
each hazard. Visualization of an aggregated threat level (in color coding) is then
performed using the Building Information Model (BIM) as a post-processing feature.

Data coupling is also applied in other fields, such as crowd-management. For
instance, the aim of the HERMES project (cf. Kemloh et al. (2013)) was to improve
the life safety in large buildings and at big events by applying an evacuation assistant.
This assistant uses available data about the distribution of people and the availability
of escape routes. Based on these data, a parallel computer program will then predict
the movement of all people present, thereby providing immediate simulation results
for crowd management. For future developments of JuROr, a potential approach to
add a coupling layer would be based on these existing approaches for data assimilation
from sensors.

In line with the discussed research findings, motivation and challenges, the study’s
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objectives and the strategic approach for reaching these are defined below.

1.4 Objectives, Limitations and Approach

The main objective of this thesis is to design and implement a CFD code base, called
JuROr, simulating turbulent smoke spread thermodynamically driven by buoyancy in
compartments making use of a GPU to be real-time and prognosis capable. A proof
of concept thereof shall be given, first, by successfully verifying the code using unit,
analytical and semi-analytical tests, secondly, by validating the underlying physical
model with scenarios relevant for fire protection, and lastly, by showing its real-
time and prognosis capability. Further, JuROr’s speedup using a GPU should be
benchmarked against its serial and multicore execution on CPUs as well as against
the performance of the commonly used fire modeling software FDS. Motivated by the
use of JuROr as a decision tool to support fire fighters with a prognosis of smoke
propagation, JuROr must be performance portable on CPU and GPU as well as
contained in a single, open source code.

Various aspects could not be integrated and are left to future development. First
and foremost, a comprehensive test suite for the verification and validation of JuROr
to evaluate and quantify its accuracy cannot be build up in the shortage of time.
Further, the sensitivity and uncertainty of applied parameters cannot be assessed in
detail. For the same reason, JuROr’s real-time and prognosis capability cannot be
thoroughly tested. Therefore, the suggested test suite could be reused for a com-
prehensive evaluation of JuROr’s performance regarding its real-time and prognosis
capability. Additionally, the mentioned coupling layer in order to assimilate data from
sensors using JuROr as prediction software lies not within the scope of this study.
Since JuROr is intended to serve as a fresh code base, the scope of the application is
limited. To widen its scope, static data such as the geometry with openings and ob-
stacles or initial conditions should be automatically imported in the future. Finally,
in order to serve as a support tool, a graphical user interface must be added in future
allowing for dynamically steering the simulation and simultaneously visualizing its
results whilst the simulation is running.

Based on the specified objectives, challenges and limitations discussed throughout
this chapter, the following work packages (cf. Fig. 1.3) are pursued:

• WP 1: Specification of physical processes relevant for smoke propagation, the
mathematical modeling and numerical discretization thereof matched to the
target hardware of a GPU
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• WP 2: CPU implementation of the solver and visualization of results for sim-
ple 2D geometries using the object-oriented programming language C++ and
providing a (one source) code structure, which can be further developed by
easily adding or interchanging numerical methods and models

• WP 3: Extension to more complex 3D rooms or buildings with inner boundaries
and appropriate boundary conditions

• WP 4: Verification of the code using 2D unit, analytical and semi-analytical
tests (throughout the implementation) as well as validation of the underlying
model with 3D scenarios relevant for fire protection to show sufficient accuracy
of the software

• WP 5: Porting of the solver to GPU using the pragma-based programming
model OpenACC and analysis thereof regarding its performance portability
across various architectures in 2D

• WP 6: Analysis of the software’s performance regarding speedup of the GPU
version compared to its serial and multicore performance on CPUs (in 2D) as
well as against FDS’ runtime performance and assessment of JuROr’s real-time
and prognosis capability based on a scenario relevant for fire protection (in 3D)
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Figure 1.3: Various work packages based on the objectives, challenges and limita-
tions of this study

Basically following the outlined approach, the thesis is structured as follows.
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1.5 Thesis Outline

The thesis is divided into seven chapters. Chapter 1 already addressed the motivation,
challenges, and limitations of this study and reviewed the current state of the art
regarding integrated tools and research projects in fire modeling, performance porta-
bility analysis, and data assimilation. On this basis, the study’s objectives and the
approach to achieving those were outlined.

Chapter 2 sets up the methodological frame of the resulting concept of JuROr.
First, the processes relevant for smoke propagation are physically and mathematically
modeled. In the next instance, the numerical discretization of these models is chosen
to be fully adapted to highly parallel computer architectures with the deliberate choice
of a reduced modeling approach.

Based on this modeling approach, the software design concept for CPUs as well as
its implementation is described in Chapter 3. The design concept integrates interfaces
to ensure an abstract, single purpose and expandable code base. Further, the exten-
sion from 2D to 3D domains including obstacles as well as inner and outer boundary
handling are presented. Constructing the obstacles, the adaption to highly parallel
computer architectures is already kept in mind. During the implementation using the
approach of fractional steps for the numerical solver, unit testing is applied.

The intermediate and continuous verification of the code as well as the validation
of the underlying model are summarized in Chapter 4. Here, the code is verified
using (semi-) analytical test cases and the model is validated by comparing JuROr’s
numerical results with experimental outcomes as well as the results of the fire simu-
lation software FDS based on two scenarios relevant for fire protection.

Porting of the successfully verified and validated CPU code to a GPU-accelerated
code is addressed in Chapter 5. The transfer includes a step-by-step parallelization
of the CPU code using the pragma-based programming model OpenACC to maintain
a single source code and the optimization of the arising GPU version. The perfor-
mance portability across various computational architectures using a roofline model
is thereafter analyzed based on the 2D GPU implementation of JuROr.

In Chapter 6 further analyses of the GPU-ported software are conducted. First,
JuROr’s speedup is evaluated by comparing the cell updates per second achieved
when deploying a GPU against a serial and parallel (multicore) CPU execution of a
verification test case. Then, the validation test cases are revisited to assess JuROr’s
runtime performance while maintaining sufficient accuracy. Additionally, its runtime
is compared with FDS’ time-to-solution. Lastly, JuROr’s real-time and prognosis
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capability is demonstrated on another scenario relevant for fire protection.
To conclude this thesis, Chapter 7 provides summarizing remarks on the contri-

butions and limitations of this study and proposes improvements and developments
for future research.

Now to begin, the methodology, on which the CFD simulation of smoke propaga-
tion is based, is presented in detail in the following chapter.





Chapter 2

Methodology

In order to simulate smoke propagation, first, the physical processes thereof are distin-
guished leading to governing mathematical equations. Then, the solution of these gov-
erning equations is numerically approximated by methods suitable for parallelization
on GPUs in order to achieve real-time and prognosis capability for JuROr. Within
this approach, from defining physical processes over deriving mathematical equations
to solving them via numerical approximation, uncertainties and errors of different
sorts can arise and are therefore introduced.

2.1 Physical Processes of Smoke Propagation

In physics, the transport of a fluid can be derived from the conservation laws of mass,
momentum, and energy:

i Mass is neither created nor destroyed.

ii The rate of change of momentum of a body is directly proportional to the force
applied to it.

iii Energy is neither created nor destroyed.

Therefore, let x = (x, y, z)> be a point in a region filled with fluid, and let u(x, t)
be the velocity of an element of fluid moving through x at time t. Assume that the
fluid has a well-defined mass density ρ(x, t) for each time t and space x.

17
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i Continuity equation
The conservation of mass can then be more precisely described as follows: The
rate of increase of mass in a region equals the rate at which the mass is passing
the region’s boundary, i.e.,

∫
W
∂tρ+∇ · (ρu) dV = 0 (2.1)

⇐⇒ ∂tρ+∇ · (ρu) = 0 , for any region W . (2.2)

ii Momentum conservation
By Newton’s second law, mass× acceleration = force, it holds that

ρ(∂tu + (u · ∇)u) = −∇p+∇ · (σ + τ) + ρg , (2.3)

where the forces consist of gravitational volumetric body forces fB = ρg as
well as surface forces fsurf (per area). The surface forces are due to fluid
pressure, p, and viscous stresses resolved into normal stresses, σ = −2

3µ(∇·u)I,
and (parallel) shear stresses, τ = µ(∇u + ∇u>) for a Newtonian fluid with
viscosity µ.

iii Energy conservation
The temperature field T (x, t) inside the fluid is obtained by applying the First
Law of Thermodynamics,

rate of increase
of energy
inside a region

 =

net rate of energy flow
into the region by
bulk fluid motion

 +

flow of heat through
the surface by
conduction


+
(

rate of work done by
body & surface forces

)
+

(
energy generated
inside the region

)
,

yielding

ρcp(∂tT + (u · ∇)T ) = ∇(k∇T ) + (∂tp+ (u · ∇)p) + Φ . (2.4)

Here, cp describes the specific heat capacity at constant pressure, k denotes
thermal conductivity and Φ = 2µ((∂xu)2 + (∂yv)2 + (∂zw)2) + µ((∂xv+ ∂yu)2 +
(∂yw + ∂zv)2 + (∂zu+ ∂xw)2)− 2/3µ(∇ · u)2 is called viscous dissipation.
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Detailed mathematical derivations and further insights can be found in Chorin and
Marsden (1979); Ferziger and Peric (2002); McDonough (2007) for fluid flow in general
and in Yeoh and Yuen (2009); Quintiere (2006); Drysdale (1999); Hurley et al. (2016)
within the specific context of fire-related flow.

Simplifying Assumptions: In order to solve the above set of coupled nonlinear
partial differential equations (2.2) - (2.4), several simplifying assumptions are applied:

1. Low velocity: The flow velocity is assumed to be low i.e., Ma ..= u/c < 1/3,
whereby the dimensionless Mach number relates the local flow velocity u to
the local speed of sound c. This assumption yields several approximations for
incompressible flow:

2. Incompressible flow: Fluid mass density ρ(x, t) = ρ0 is assumed to be constant
– resulting in incompressibility ∇ · u = 0, and, therefore, σ = 0 and τ = µ∇2u
– except in the buoyancy force fB = ρ(T )g (called Boussinesq approximation).
For simplicity reasons, the reference density ρ0 is set to unity.

3. Small changes of density: For the buoyancy force it is assumed that the changes
of density, ∆ρ = ρ− ρ0, as a function of temperature are small, |∆ρ| � ρ0, and
are linearly dependent on temperature, ∆ρ = −ρ0β∆T , with thermal expansion
coefficient β of an ideal gas with pM = ρRT , where R ≈ 8.134 J/(mol K)
denotes the universal gas constant and M the molar mass of the gas.1

4. Constant properties: The specific heat capacity cp, thermal conductivity k and
the viscosity µ are constant.

5. Isobaric condition: The pressure in the thermodynamic process is assumed to
be constant (∆p = 0).

6. Zero viscous dissipation: Since the viscous dissipation is of second-order in terms
of the Mach number, the contribution of viscous dissipation can be ignored in
the energy equation, i.e., Φ = 0 (cf. Hurley et al. (2016)).

1The assumption of an ideal gas also allows to write the energy equation in terms of temperature
derived from the thermodynamic definition of specific enthalpy h ..= e + p/ρ with specific internal
energy e and dh = cpdT for an infinitesimal process with d(·) denoting infinitesimal change.
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These assumptions lead to the following simplified equations of conservation

∇ · u = 0 (2.5)

∂tu + (u · ∇) u− ν∇2u + 1
ρ0
∇p = 1

ρ0
fB(T ) (2.6)

∂tT + (u · ∇)T − α∇2T = ST , (2.7)

where ν = µ
ρ0

describes the kinematic viscosity, α = k
ρ0cp

the thermal diffusivity and
ST denotes an external energy source, which is further defined in Section 2.1.3 for
fire specific flow.

Now, in order to solve the governing equations the buoyancy force fB = ρ(T )g
needs to be further detailed. Assuming that the changes of density as a function of
temperature are small (i.e., |∆ρ| = |ρ − ρ0| � ρ0), the force density fB(T ) can be
written as

1
ρ0

fB(T ) = 1
ρ0
ρ(T )g = 1

ρ0
(ρ0 + ∆ρ)g .

With a linear dependence on temperature, i.e., ∆ρ = −ρ0β∆T , it holds that

1
ρ0

fB(T ) = (1− β(T − T0))g , (2.8)

where β = 1
T0

denotes the thermal expansion coefficient of an ideal gas with ambient
temperature T0. To avoid potential round-off errors in the calculation of the forces in
the momentum equations (2.6), a pressure shift is introduced, meaning p is replaced
by p = P − ρ0gh (dynamic and hydrostatic pressure) with elevation h (by Bernoulli’s
principle). This shift results in

∂tu + (u · ∇) u− ν∇2u + 1
ρ0
∇p = 1

ρ0
fB(T )

⇐⇒ ∂tu + (u · ∇) u− ν∇2u + 1
ρ0
∇P = −β(T − T0)g ,

using (2.8). Often the dynamic pressure P is again renamed into p.
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In summary, smoke propagation and heat transfer can be mathematically described
with the incompressible Navier-Stokes and energy equations

∇ · u = 0 (2.9)

∂tu + (u · ∇) u− ν∇2u + 1
ρ0
∇p = −β(T − T0)g (2.10)

∂tT + (u · ∇)T − α∇2T = ST , (2.11)

for a gas with velocity u, pressure p and temperature T .
In (2.10) and (2.11), the diffusion terms ν∇2u and α∇2T describe a process that

drives a balancing of differences in the flow properties (velocity and temperature,
respectively). The advection terms, (u · ∇)u and (u · ∇)T , describe the transport of
the properties due to the flow. The advection of velocity is further called convection
which is the fluid’s intrinsic movement.

In case of various species, their concentration can be modeled as a passive scalar
C by

∂tC + (u · ∇)C −D∇2C = SC , (2.12)

where D is the mass diffusivity and SC denotes an external source, which is further
defined in Section 2.1.3 for fire specific flow. Equation (2.12) states that the rate of
change of a scalar property equals the net rate of the scalar property added plus the
rate of creation or destruction caused by an external source.

2.1.1 Boundary Handling

In order to solve Equations (2.9) - (2.12) in a distinct space (and time) and therefore
close the system mathematically, appropriate initial conditions (at time t = 0) and
boundary conditions need to be specified. In general, the value of the variable at the
boundary (i.e., Dirichlet boundary condition), its gradient normal to the boundary
(i.e., Neumann boundary condition) or a linear combination of the two conditions is
given. Examples of the Dirichlet boundary condition for velocities are the no-slip
and inflow condition, whereas the outflow condition is an example of the Neumann
boundary condition for velocities. Based on Yeoh and Yuen (2009), the boundary
conditions used here are defined as follows:

Definition 2.1.1 (No-slip boundary condition). The solid surface has zero relative
velocity between the surface and the fluid right at the surface. Assuming the surface
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is stationary, all the velocity components can be set to be zero, i.e.,

u = v = w = 0 at the solid wall . (2.13)

Definition 2.1.2 (Inflow boundary condition). At inflow boundaries, at least one
velocity component needs to be prescribed, i.e.,

u = U at the inflow boundary , (2.14)

where U can be specified as a vector of constant values with at least one component
unequal to zero.

Definition 2.1.3 (Zero-gradient boundary condition). If the shear forces along the
surface are taken to be zero, the outflow condition is provided by

∂nu = ∂nv = ∂nw = 0 at the outflow boundary , (2.15)

where n is the direction normal to the surface.

Definition 2.1.4 ((Zero-gradient) pressure boundary condition). When setting the
pressure boundary condition, the derivative of the pressure in normal direction to the
open boundary is set, for instance,

∂np = 0 . (2.16)

Here, caution must be given combining boundary conditions of velocity (at inflow/
outflow) and pressure.

Definition 2.1.5 (Wall temperature boundary condition). For the temperature at
a wall surface, the Dirichlet boundary condition can be used. If the material at the
wall surface has temperature Tw, then the temperature fluid layer directly in contact
with the wall should also be Tw, i.e.,

T = Tw at the wall . (2.17)

Definition 2.1.6 (Adiabatic surface boundary condition). If a perfectly insulated
surface needs to be assured (thus, no flux shall flow through the wall), the normal
derivative for temperature is set to zero

∂nT = 0 at the surface . (2.18)
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Prescribing a non-zero value means prescribing a certain constant heat flux c in K/m
through the surface, i.e.,

∂nT = c at the surface . (2.19)

For the work at hand, there exists no explicit boundary layer model for the heat
transfer from solids into the fluid (or from the fluid into the solid) other than setting
the wall temperature.

Definition 2.1.7 (Periodic boundary condition). If the geometry and the expected
flow pattern are of a periodically repeating nature, so-called periodic boundary con-
ditions are used. Thus, the transport property of one of the surfaces, φ1, is taken to
be equal to the transport property φ2 of the second surface depending on which two
surfaces experience periodicity, i.e.,

φ1 = φ2 . (2.20)

2.1.2 Turbulence Modeling

Turbulence is induced by shear flows as introduced in Section 2.1 and was first
characterized by Reynolds (1883). Due to the existence of random fluctuations in
the fluid (called turbulence) additional complexities arise in modeling turbulent flow
since these fluctuations occur in different spatial scales from being large to very small
(cf. Fig. 2.1). In order to predict turbulent flows there exist various approaches.
Two of them are the large eddy simulation (LES) and the direct numerical simulation
(DNS).

Energy 

Eddy size 

Kolmogorov scale 

Large scale  
Production 

Dissipation 

Figure 2.1: Schematic representation of scales in turbulent flows
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Direct numerical simulation: In DNS the Navier-Stokes equations are solved
without modeling turbulence. The scale of the largest eddy can be measured by the
large scale L. Further, the simulation must also capture the smallest scales, on which
the viscosity dominates, in order to assure that all of the significant structures of
the turbulent flow are captured. Thus the numerical grid spacing must be no larger
than the so-called Kolmogorov scale, η ≈ (ν3L/U3)1/4, with characteristic length
L and characteristic velocity U . Since for highly turbulent flows the Kolmogorov
scale is very small (in the micrometer range) and the scales are wide apart, these
requirements on the resolution would make most real-world simulations not practical,
being too expensive to calculate. What DNS is beneficial for are its detailed results
which may be regarded as the equivalent of experimental data and thus can be used
for validation where no experimental data exist.

LES DNS 

(a) Schematic representation of turbulent
motion

u 

t 

DNS 
LES 

(b) Time dependence of a velocity
component at a point in the
flow

Figure 2.2: Schematic comparison of DNS and LES (based on Ferziger and Peric
(2002))

Large eddy simulation: In contrast to DNS, in LES the large eddies are dissolved
whereas the small ones are modeled (cf. Fig. 2.2 and Fig. 2.3). Thus, LES is less costly
than DNS and preferred in highly turbulent flows or flows in complex geometries. LES
is based on the assumption that any arbitrary quantity φ can be separated into a mean
value φ and a fluctuation φ′, so that

φ = φ + φ′ with φ(x) =
∫

G(x, x′)φ(x′)dx′ , (2.21)

where spatial filtering is applied by a convolution kernel G (cf. Fig. 2.3). This ap-
proach leads to a scale separation into resolvable large-scale modes φ of low frequency
and unresolved (modeled) subgrid-scale (SGS) modes φ′ of high frequency.
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Grid scale  
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Figure 2.3: Schematic representation of spatial filtering

The filter function G depends on the filter width Δf and satisfies the normalization
constraint

∫
G(x, x′)dx′ = 1 . (2.22)

If the filter width is larger than the spatial resolution of the domain, the filtering
approach is called explicit and if both scales are equal, the spatial resolution itself
does an implicit filtering. Now, filtering the Navier-Stokes equations (2.9) - (2.12)
leads to the LES equations

∇ · u = 0 (2.23)

∂tu + (u · ∇)u − ν∇2u + 1
ρ0

∇p + 1
ρ0

∇ · τSGS
u = 1

ρ0
fB(T ) (2.24)

∂tT + (u · ∇)T − α∇2T + 1
ρ0cp

∇ · τSGS
T = S T (2.25)

∂tC + (u · ∇)C − D∇2C + ∇ · τSGS
C = S C , (2.26)

where τSGS
u = ρ0uu − ρ0u u is called the residual stress tensor and similarly defined

are τSGS
T = ρ0cpuT − ρ0cpuT as well as τSGS

C = uC − uC. The main objective of
the subgrid-scale models is now to approximate the residual stress tensors such that
they represent the scale interaction. Therefore, Smagorinsky (1963) suggested that
the Boussinesq hypothesis (cf. Boussinesq (1877)) can be applied. It states that the
effects of the unresolved subgrid-scales are linearly proportional to the mean large-
scale strain rates by a turbulent viscosity μT :

τSGS
u − 1

3 Tr(τSGS
u )I = −2μT S , (2.27)
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where Si,j = 1
2(∂xj

ui + ∂xi
uj) for i, j = 1, 2, 3 and i 6= j denotes the filtered stress

tensor (also called rate-of-strain tensor) for the resolved scale. If µT were to be known
and the bars (for the mean quantities) are further omitted, the LES equations

∇ · u = 0 (2.28)

∂tu + (u · ∇) u− (ν + νT )∇2u + 1
ρ0
∇p = −β(T − T0)g (2.29)

∂tT + (u · ∇)T − (α + αT )∇2T = ST (2.30)

∂tC + (u · ∇)C − (D +DT )∇2C = SC (2.31)

could be solved, where νT = µT

ρ0
, αT , DT are the turbulent kinematic viscosity, tur-

bulent thermal and turbulent mass diffusivities, respectively, whereby αT and DT

depend linearly on νT .
Thus, as a final step in the SGS model, the turbulent viscosity, µT , needs to be

determined. Therefore, the Constant Smagorinsky-Lilly model of Smagorinsky (1963)
assumes that

µT = ρ0C
2
S∆2

f

∥∥∥S∥∥∥ with
∥∥∥S∥∥∥ =

√√√√2
3∑
i=1

3∑
j=1

Si,jSi,j , (2.32)

where the Smagorinsky constant CS is an empirical constant commonly used as
CS ∈ {0.1, 0.2} (cf. Sagaut (2006)). Besides the Constant Smagorinsky-Lilly model
a Dynamic Smagorinsky model (cf. Germano et al. (1991); Moin et al. (1991)), the
Deardorff model (cf. Deardorff (1972)) and Vreman model (cf. Vreman (2004)) exist,
which are not applied for the problem at hand due to the simplicity of the Constant
Smagorinsky-Lilly model. Another approach similar to LES is RANS (Reynolds-
Averaged-Navier-Stokes), but it is less accurate than LES since RANS only models
the large eddies (instead of fully capturing them as in LES) and most of the turbulent
energy is contained in the large eddies, which are responsible for a large part of the
momentum transfer and turbulent mixing. Further, modeling all scales in the (single
model) RANS approach is more difficult than modeling the subgrid-scale motions in
LES.

Now, with νT = µT

ρ0
to be known, the turbulent thermal and mass diffusivity can

be determined using dimensionless numbers:

αT = νT
PrT

and DT = νT
ScT

. (2.33)
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Dimensionless Numbers are introduced to describe the characteristics of the
fluid.

Definition 2.1.8 (Prandtl number). The Prandtl number, which is named after
Ludwig Prandtl (cf. Prandtl (1949)), represents the ratio of diffusion of momentum,
ν, to diffusion of heat, α, in a fluid:

Pr = ν

α
= µ/ρ

k/ρcp
= µcp

k
. (2.34)

Thus, the turbulent Prandtl number reads PrT = νT

αT
. For air at room tempera-

ture Pr = 0.71 holds, while most gases have similar values. Although the turbulent
Prandtl number varies in space and the proper choice is not known, it is often assumed
to be constant and varies in literature within PrT ∈ [0.1, 1.0] according to Sagaut
(2006).

Definition 2.1.9 (Schmidt number). Analogously, the Schmidt number describes
the ratio of kinematic viscosity, ν, and mass diffusivity, D, and is named after Ernst
Heinrich Schmidt (1892 - 1975)

Sc = ν

D
. (2.35)

Similarly, the turbulent version, ScT = νT

DT
, describes the rates of turbulent transport

of momentum and the turbulent transport of mass. Since Sc/Pr ≈ 1 is frequently
adapted in many investigations (cf. Yeoh and Yuen (2009)), the turbulent Schmidt
number is taken to also be in the range of ScT ∈ [0.1, 1.0].

Definition 2.1.10 (Reynolds number). The ratio between inertial and friction force is
described by the Reynolds number, Re, named after Osbourne Reynolds (in Reynolds
(1895)),

Re = inertial force
friction force = ρUL

µ
= UL

ν
, (2.36)

where U and L represent the characteristic velocity and length scale, respectively,
typical for the flow or setup at hand. Examples for the characteristic velocity are the
average or maximum velocity, and exemplary characteristic lengths are the radius
or (hydraulic) diameter of a pipe the fluid is flowing through or the plume diameter
(cf. White (1991)).

The Reynolds number, Re, thereby measures the effect of viscosity and therefore
is used to distinguish laminar from turbulent flows by comparing it to an appropriate
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transition criterion. The Reynolds number is also used to identify the similarity of
flows in the design of experiments. Similarity of two flows with the same geometry
occurs if they hold the same Reynolds number.

Definition 2.1.11 (Grashof number). Since the choice of the characteristic velocity
is not always obvious, the Grashof number can be taken into account in buoyancy-
driven flows to determine the transition of a laminar to a turbulent flow. The Grashof
number, Gr, describes the ratio between buoyancy and viscous forces

Gr = buoyancy force
viscous force = gβ∆TL3

ν2 , (2.37)

where ∆T = Tsurf−T0 is the difference between the surface and ambient temperatures.
The relation of the Grashof to the squared Reynolds number can be used to determine
if buoyancy effects are important (Gr � Re2).

Definition 2.1.12 (Rayleigh number). Also associated with buoyancy-driven flows
is the Rayleigh number relating the heat transfer in the form of (natural) convection
to the heat transfer in the form of conduction near a vertical wall:

Ra = gβ

να
(Tsurf − T0)L3 , (2.38)

where g is the gravitational acceleration, ν describes the kinematic viscosity, and α

and β denote the thermal diffusivity and expansion, respectively. The temperatures,
Tsurf and T0, are the surface temperature of the vertical wall and ambient temperature
(far from the wall), respectively. The characteristic length is denoted by L. Hence,
the Rayleigh number is related to the Grashof and Prandtl numbers by Ra = GrPr.

Definition 2.1.13 (Nusselt number). For heat transfer at a boundary or surface
within the fluid, the Nusselt number relates the (natural or forced) convective heat
transfer to the conductive heat transfer by

Nu = convective heat transfer
conductive heat transfer = h

k/L
= hL

k
, (2.39)

with heat transfer coefficient h of the flow, the fluid’s thermal conductivity k and
characteristic length L. Empirically, the Nusselt number for natural convection func-
tionally correlates with the Rayleigh and Prandtl numbers by Nu = f(Ra, Pr).
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2.1.3 Fire Modeling

So far, the flow of a turbulent fluid and its heat transfer is modeled using the Navier-
Stokes and energy equations (2.28) - (2.30). With the passive scalar equation (2.31)
the concentration of species can also be described. In the scope of this work is neither
fire modeling including the processes of combustion, radiation or chemical reactions
such as pyrolysis nor external influences such as pedestrians (cf. Fig. 2.4).

Fire and evacuation modeling is computationally expensive and would, therefore,
negatively impact the goal of simulating pure smoke propagation in real-time or faster
than real time. Further, fire and evacuation modeling is not crucial for the fire
fighters to quickly adjust their tactics based on a fast and rough check of the smoke
propagation motivating this work in the first place.

What needs to be accounted for in the validation of the software through experi-
ments including fire is the reduction of the heat source in the energy equation to only
the convective heat transfer fraction. Thus, the radiative fraction χrad ∈ [0.02, 0.5]
from the flame (dependent amongst others on the fire diameter and fuel burned,
cf. Drysdale (1999); Koseki (1989); McCaffrey and Cox (1982); Hamins et al. (1996))
needs to be subtracted from the total heat source. The (volumetric) heat source is
then modeled as

ST = (1− χrad)Stotal
T , (2.40)

where
Stotal
T = Q̇

ρcpV
· fvol(x) · f ramp(t) , (2.41)

with total heat release rate (HRR), Q̇, discrete volume V =
∫
V f

vol dV with volume
function fvol (e.g., of Gaussian form) such that

∫
V ρcpS

total
T dV = Q̇ · f ramp and time

ramp-up function f ramp (e.g., f ramp(t) = tanh(t/τ)). This approach is error-prone
due to simplifications and assumptions such as the empirical estimation of radiative
friction and constant density.

The concentration source of soot, SC in kg/(m3 s), is modeled similarly by

SC = Ys ·
Q̇

HcV
· fvol(x) · f ramp(t) , (2.42)

where Ys is the soot yield and Hc is the heat of combustion.
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equations together with other concepts and equations that supplement the field
modeling approach are discussed in Part I of Chapter 2. Since most practi-
cal fires are turbulent in nature, the concept of time-averaging based upon
Reynolds-averaging and Favre-averaging along with a variety of models rang-
ing from the simple k–e to the complex Reynolds Stress representations of
the turbulence, are described in Part II of Chapter 2. Parts I and II in this chap-
ter represent the essential flow equations of field modeling.

The importance of combustion in fires is dealt with in Part III of Chapter 3.
There, the principle knowledge of whether the process is governed by chemical
kinetics or turbulent mixing strongly influences the selection of appropriate
combustion models for fires. Also, since most practical fires experience signifi-
cant radiation heat loss during the burning process, radiation heat transfer is
treated in Part IV of Chapter 3. The choice of radiation models generally
requires considerations on the level of simplification assumed for the radiation
properties of absorbing gases corresponding to the level of sophistication
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Figure 1.17 Road map of scope of the book.
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(a) CFD-based fire modeling

As the combustible volatiles fuel the burning fire, as shown in Figure 2.1,
they react with the oxygen in the air, which is being entrained into the combus-
tion zone under appropriate conditions in the gas phase. The air entrainment
may be driven by force or free convection depending on the environmental
conditions surrounding the burning fire. Assuming a carbon-based fuel, com-
bustion products such as carbon dioxide and water vapor are generated for a
complete chemical reaction. In reality, such a chemical reaction is an idealiza-
tion of the actual gas phase combustion, whereby the complexity of the overall
process is hidden. The true picture usually consists of a series of elementary
reaction steps taking part in the course of combustion. Heat is released follow-
ing the chemical reaction—an exothermic process. With very few exceptions,
particulate smoke is usually produced in all fires. Depending on the nature of
different fuels, smoke can contain high concentrations of finely dispersed par-
ticles, commonly known as soot, or narcotic gases such as carbon monoxide,
in addition to the production of combustion products. Radiation from these
hot combustion gases and non-luminous flames also plays an important

Air Entrainment Air Entrainment

Solid Fuel 

Radiation
Heat Transfer  

Visible Flame 

Pyrolysis Zone 

Combustion Zone 

Fuel + Oxygen → Products  

Release of
Volatiles  

Radiation
Feedback  

Force or Free
Convection  

Figure 2.1 Schematic representation of a burning solid fuel in air showing the
respective physical processes involved.
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(b) Physical processes of a fire

Figure 2.4: Combination of CFD and Fire Modeling (cf. Yeoh and Yuen (2009))



Chapter 2 Methodology 31

Clarified which governing equations best describe the physical problem at hand – the
smoke propagation – they need to be solved for the unknown velocity u, pressure
p and temperature T (and concentration). There only exist a few known analytical
solutions and experimental testing is costly, difficult and could be dangerous. As an
alternative, computational fluid dynamics is a way to obtain approximated solutions
to the governing equations through numerics and computational power. Therefore,
numerical approximations are applied to simplify the non-linear structure of spatial
and temporal derivatives. With numerics, the so-called discretized equations in space
and time can then be solved using modern calculators such as CPUs and GPUs.
There exist various methods to numerically approximate the governing equations.
In Section 2.2 selected solution models are introduced and methods suitable for the
calculation using a GPU are described.

2.2 Numerical Models of Fluid Dynamics

In general, numerical models (besides analytical models, cf. Hurley et al. (2016))
can be divided into two types: zone modeling and field modeling. Zone models
partition the computational domain into few subdomains with zone-global homoge-
neous properties (cf. Klote et al. (2012); Hurley et al. (2016)). Although zone models
are commonly used in fire modeling they are too vague for the purpose of this work.
Further, they can only represent simple geometries. Thus, the focus of the present
work lies on field modeling (cf. e.g., Peiró and Sherwin (2005); Ferziger and Peric
(2002); LeVeque (2007); Yeoh and Yuen (2009); Hurley et al. (2016)).

Field modeling is based on computational fluid dynamics solving the governing
equations of mass, momentum, energy and passive scalars – derived in Section 2.1 –
for each element in a computational domain with the help of computer architectures.
In order to do so, the following steps need to be applied

1. The computational domain needs to be divided into smaller units (called space
discretization resulting in a numerical grid) depending on an appropriate coor-
dinate system for the flow at hand.

2. Based on the nature of the grid, a suitable discretization method has to be
chosen, i.e., a method of approximating the governing differential equations
(2.28) - (2.31) by a system of algebraic equations for the unknown variables at
a set of discrete locations in space and time.
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3. Based on the discretization method and numerical grid, finite approximations
need to be selected. The choice influences, besides others, the ease of implemen-
tation, the accuracy of the solution (cf. Section 2.3) as well as the execution
speed or efficiency of the code (cf. Section 6.1). Thus, a compromise has to
be made, especially targeting parallel computing for real-time simulation, since
approximations designed for traditional serial machines may not run efficiently
on parallel computers.

4. In order to solve the non-linear algebraic equations of time-dependent variables
(like those at hand), a solution method needs to be defined consisting of an
iterative and a time marching solution method. In turn, convergence criteria
for the iterative method(s) need to be set steering the accuracy and efficiency.

2.2.1 Numerical Grid

Depending on the flow at hand and the physical domain, (fixed or moving) coordinate
systems can be chosen, for instance cylindrical, spherical, curvilinear orthogonal or
non-orthogonal systems. Since the target geometry for the simulation of smoke prop-
agation is set to be of cubic shape, the coordinate system remains fixed and Cartesian.
Based on the Cartesian coordinate system a discrete representation of the geometric
domain – the numerical grid – needs to be defined in order to calculate the unknown
variables at discrete locations. One distinction in the choice of the numerical grid is
its structure.

Unstructured grid: In case of very complex geometries, such as curved surfaces,
an unstructured grid is beneficial for its flexibility to fit an arbitrary domain. Unstruc-
tured or irregular grids are thereby constructed by simple shapes, such as triangles
or tetrahedra, in an irregular pattern. Thus, they do not consist of a regular array
of cells that can be grouped into rows, columns, and layers, but the elements or vol-
umes may have any shape (e.g., cf. top part of Fig. 2.5) yielding that the algebraic
system of equations does not have an ordered structure. This irregularity, in turn,
affects the memory access pattern and thus the efficiency of the solution method on
a computer architecture, since node locations and neighbor connections need to be
explicitly specified. Therefore, a structured grid is used if neighbor connectivity and
uniquely defined node positions are crucial for the solution method as it is the case
for the study at hand (cf. bottom part of Fig. 2.5).
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Figure 2.5: Examples of a structured grid (below) and an unstructured grid (top)
in 3D, adjusted from Brieda (2015)

Structured grid: In structured grids, the position of any grid point within the
domain is uniquely identified by a tuple, (i, j), in 2D and a 3-tuple, (i, j, k), in
3D for i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1 and k = 0, . . . , Nz − 1 (with Nx, Ny, Nz

being the number of cells in the respective direction). Thereby, each point has four
direct neighbors in 2D being (i ± 1, j ± 1), and six in 3D, (i ± 1, j ± 1, k ± 1). Thus,
the memory access pattern for computer architectures is simple (e.g., in a row-wise
(lexicographical) manner with global index ix = i + Nx · j + Nx · Ny · k). Due to the
simplicity a (Cartesian) structured grid with orthogonal mesh lines is used for the
problem at hand (cf. Fig. 2.6) with cell distances, Δx �= Δy �= Δz, being different in
each direction (called a regular grid) instead of uniform, i.e., Δx = Δy = Δz. This
simplicity also reveals the main disadvantages of structured grids: they can only be
applied for geometrically simple (rectangular) domains with the possibility to lose
accuracy if the distances are chosen to be too wide and a waste of computational
resources if no flow needs to be calculated in regions with fine grid spacing.

Once a grid structure is chosen, it is important to decide where the unknown
variables, u, p and T (and C), are located on the chosen grid. They can either all
be set to the cell center (called collocated grid, cf. Fig. 2.7a) or only the scalars are
located in the cell centers and vectors are defined at the cell faces (called staggered
grid, cf. Fig. 2.7b). The variable location has an effect on the ease of implementation
(pro collocated) and application of boundary conditions (pro staggered). For the ease
of implementation, a collocated grid is used for the problem at hand. Therewith, the
boundary condition for pressure needs to be explicitly set at all boundaries.
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Figure 2.6: Schematic representation of a structured regular collocated grid in 2D

Now, using a collocated grid so-called ghost cells (cf. dark gray cells in Fig. 2.6)
need to be added to the domain to prescribe the boundary conditions at the physical
domain borders x1, x2, y1, y2, z1, z2. The width of the computational domain can then
be defined as Lx = x2 − x1 with height Ly = y2 − y1 and depth Lz = z2 − z1. Further,
the cell centers are defined by x̃i = x1 + (i − 0.5)Δx, where Δx = Lx

Nx−2 = xi+1 − xi

with Nx being the number of cells in x-direction including the ghost cells. Cell centers
ỹj, z̃k are defined analogously. The mesh lines themselves lie on xi = x1 + (i − 1)Δx,
yj = y1 + (j − 1)Δy, and zk = z1 + (k − 1)Δz. Therewith, an unknown variable, φ,
is approximated by φ ≈ φi = φ(x̃i).
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Figure 2.7: Schematic comparison of variables located on a grid in 3D
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2.2.2 Discretization Method

At these discrete locations in space (and time), the unsteady differential equations
now need to be approximated by a system of algebraic equations for the unknown
variables. Therefore, various approaches exist depending on the numerical grid and
problem at hand. The most common are finite difference (FDM), finite volume (FVM)
and finite element (FVM) methods. Relatively new simulation techniques for complex
fluid systems in CFD are the Lattice Boltzmann (LBM) and cellular automata (CA)
method.

Lattice Boltzmann method: Instead of solving the Navier-Stokes equations, LBM
solves the discrete Boltzmann equation simulating the flow with collision models.
Thereby, the fluid consists of fictitious particles performing consecutive streaming and
collision processes on a discrete mesh in terms of the probabilities of the particles’
presence. Although LBM is designed to run efficiently on parallel architectures and
can handle complex geometries and boundaries, a consistent thermodynamic scheme
is absent in LBM. For this reason, LBM is not applicable for the incompressible equa-
tions at hand (or is at least associated with great effort to couple heat transfer into
LBM).

Cellular automata: The CA approach follows the same idea as LBM (replaced
by the explicit interaction between the particles instead of probabilities) with the
additional advantage to be numerically stable. Due to the same drawback, CA is not
applicable here.

Finite volume method: Applying FVM, the computational domain is divided
into a finite number of control volumes and the integral formulation of the govern-
ing Navier-Stokes equations is then approximated. Surface integrals are evaluated
as fluxes through the control volume. Thus, the FVM is conservative by construc-
tion, since the flux entering the volume equals the flux leaving the adjacent volume.
Further, FVM allows for unstructured meshes, therefore it is suitable for complex
geometries and local mesh refinement. However, a disadvantage of FVMs is that
higher- (more than second-) order methods are hard to implement. More importantly,
regarding the aim of real-time simulation, FVM is evaluated slowly on computer ar-
chitectures since the unstructured mesh yields irregular memory accesses.
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Finite element method: The same advantage of complex geometries with the
resulting disadvantage of a less efficient solution holds the finite element method. The
domain is divided into finite elements that are unstructured. Then, basis functions,
such as a piecewise polynomial basis, are chosen as weight functions for the govern-
ing equations in integral form, which are approximated to form a set of non-linear
algebraic equations. These basis functions allow for a higher-order solution method
but make the method more complex.

Finite difference method: With the finite difference method, the pros and
contras of the FEM or FVM are reversed. Although using FDM only allows simple
geometries divided into a structured grid, many efficient solutions methods exist mak-
ing the most of the restriction to simple geometries regarding ease of implementation
and parallelization. Thus, again keeping in mind the goal of a real-time and faster
than real-time prognosis simulation, FDM is the choice of discretization method for
the problem at hand. Starting with the governing equations in differential form, each
partial derivative is approximated (e.g., by Taylor series expansion or polynomial fit-
ting) at each grid point of the structured mesh. Thus, on structured grids, FDM
is very simple and effective with the possibility to obtain higher-order schemes very
easily. An important drawback of FDM is that the conservation is not enforced.
Thus, special care has to be taken for the governing equations to remain conservative
since numerical errors have to be taken into account.

2.2.3 Finite Difference Approximations

For applying FDM on the governing equations (2.28) - (2.31), the derivatives of first
and second-order need to be approximated at the grid points. All approximations are
shown for derivatives in x-direction but also hold for y, z-directions.

Definition 2.2.1 (First derivative in space). Let φ be a continuous differentiable
function of x. Then the first spatial derivative of φ at point xi is defined as(

∂φ

∂x

)
i

..= lim
∆x→∞

φ(xi + ∆x)− φ(xi)
∆x . (2.43)

As a short notation ∂xφ
∣∣∣
i

is used and describes the slope of a tangent to the curve
φ(x) at point xi.
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This slope can now be approximated by the slope of a line passing through two
adjacent points on the curve. Depending on the chosen two points, the forward,
backward or central difference is defined (cf. Fig. 2.8).
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φ(x)

Δx Δx
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φi−1
φi+1

x̃i+1x̃i−1 x̃i

backward 

forward 

central 

exact 

Figure 2.8: Schematic representation of a spatial derivative and its approximations,
based on Ferziger and Peric (2002)

Definition 2.2.2 (Forward, backward and central difference). The first derivative of
a continuous differentiable function φ can be approximated by
(

∂φ

∂x

)
i

= φi+1 − φi

Δx
+ O(Δx) ≈ φi+1 − φi

Δx
forward difference (FD) , (2.44)

(
∂φ

∂x

)
i

= φi − φi−1

Δx
+ O(Δx) ≈ φi − φi−1

Δx
backward difference (BD) , (2.45)

(
∂φ

∂x

)
i

= φi+1 − φi−1

2Δx
+ O(Δx2) ≈ φi+1 − φi−1

2Δx
central difference (CD) (2.46)

using the Taylor series expansion of φ in the vicinity of xi with uniform grid spacing

φ(x) = φ(xi) + (x − xi)
(

∂φ

∂x

)
i

+ (x − xi)2

2!

(
∂2φ

∂x2

)
i

(2.47)

+ (x − xi)3

3!

(
∂3φ

∂x3

)
i

+ · · · + (x − xi)n

n!

(
∂nφ

∂xn

)
i

+ ε ,

which is aborted at a given order n+1 and evaluated at xi+1 for FD, at xi−1 for BD.
CD is then obtained by taking the average of FD and BD.

Definition 2.2.3 (Truncation error, accuracy, rate of convergence). The remainder
in (2.47), ε, is called truncation error of order O((x − xi)n+1). It measures the
accuracy of the approximation and determines the rate at which the error decreases
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when refining the grid. The speed in which the error goes to zero as x→ xi is called
rate of convergence.

Definition 2.2.4 (Method of p-th order). A method is referred to as a method of p-th
order if the truncation error is of order O((x−xi)p), i.e., ε(∆x) ≈ c∆xp evaluated on
discrete points with uniform grid spacing (cf. LeVeque (2005)). The higher the order
of the scheme, the more accurate is its solution.

FD and BD are schemes of first-order O(∆x) and CD is a method of second-order
O(∆x2). It holds that the smaller the grid spacing, ∆x, the higher the quality of the
approximation.

For the estimation of the second derivative at a point in space the approximation
for the first derivative can be used twice (either FD then BD or first BD then FD
or even centered with half of the step size) since ∂2

xφ
..= ∂x(∂xφ) or the Taylor series

expansion is applied again.

Definition 2.2.5 (Central difference for the second derivative). The second derivative
of a continuous differentiable function φ can be approximated by the central scheme(

∂2φ

∂x2

)
i

≈ φi−1 − 2φi + φi+1

∆x2 , (2.48)

which is second-order accurate for a uniform grid with spacing ∆x.

Higher-order approximations for the second derivative can be obtained by includ-
ing more data points (cf. Ferziger and Peric (2002); LeVeque (2005)).

The time derivatives in the governing equations (2.28) - (2.31) also need to be
approximated. Thus, a time integration scheme is needed. Since they are also
first-order derivatives, the schemes for the spatial first-order derivative can be ap-
plied here. Therefore, the time needs to be divided into discrete time steps t(n) for
n = 0, . . . , Nt − 1 with time spacing ∆t (cf. Fig. 2.9).

Time integration schemes can roughly be divided into two-level and multilevel
methods. Two-level methods only use evaluation at two time dates, whereas multi-
level methods use more than two. The most simple and computationally inexpensive
(two-level) schemes are the explicit and implicit Euler method besides other multilevel
schemes such as Runge-Kutta methods (RK) and higher-order backward differentia-
tion formulas (BDF, cf. Peiró and Sherwin (2005); Ferziger and Peric (2002); LeVeque
(2005, 2007)).
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Figure 2.9: Schematic representation of time and space discretization

Definition 2.2.6. (Forward and backward Euler scheme) Let φ be a continuous
differentiable function depending on time and space complying ∂tφ = f(φ). Then the
temporal derivative can be approximated by

φ(n+1) − φ(n)

Δt
= f(φ) , (2.49)

where φ(n) = φ(x, t(n)) and t(n) = n · Δt. Depending on the point in time the right
hand side of (2.49) is evaluated, the Euler methods are defined as

φ(n+1) − φ(n)

Δt
= f(φ(n)) ⇐⇒ φ(n+1) = φ(n) +Δt · f(φ(n)) Forward Euler ,

(2.50)
φ(n+1) − φ(n)

Δt
= f(φ(n+1)) ⇐⇒ φ(n+1) = φ(n) +Δt · f(φ(n+1)) Backward Euler .

(2.51)

Since the Forward Euler (FE) scheme can directly be evaluated using the previously
calculated values f(φ(n)) it describes an explicit method (cf. Fig. 2.10a). Evaluating
f(φ) on the current time step n + 1 (Backward Euler, BE) results in an implicit
method (cf. Fig. 2.10b). Both methods are of first-order O(Δt). Evaluating f(φ) at
midpoint, t(n+1/2) leads to the midpoint rule and interpolating between f(φ(n)) and
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f(φ(n+1)) yields the trapezoid rule (cf. Peiró and Sherwin (2005); Ferziger and Peric
(2002); LeVeque (2005, 2007)).
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(a) Schematic representation of forward (explicit) Euler
method
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(b) Schematic representation of backward (implicit) Euler
method

Figure 2.10: Schematic comparison of explicit and implicit Euler methods, based
on Laurien and Oertel (2013)

Although only of first-order, the Euler scheme is preferred for the problem at hand,
since multilevel schemes such as RK are computationally more expensive as they in-
volve matrix operations and are not trivially parallelized due to their data-dependent,
thus variable task length (cf. Murray (2011)). Two-level schemes are, however,
easy to program, computationally inexpensive regarding memory and need little
computational time per step. A drawback of explicit schemes is their instability
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in cases of large time steps. Nevertheless, the explicit Euler scheme is less expen-
sive than an implicit scheme (being unconditionally stable). Stability is explained in
detail when applying the solution method yet to be chosen.

2.2.4 Solution Method

The finite difference approximations now provide a system of (non-linear and time-
dependent) algebraic equations for the Navier-Stokes equations. Thus, the discretized
equations must be solved in space and time. Therefore, again various methods
exist including the MAC (Marker And Cell) method for staggered grids (cf. Harlow
and Welch (1965)), Semi-Implicit Methods for Pressure-Linked Equations (SIMPLE,
cf. Patankar and Spalding (1972)) and developments thereof such as SIMPLER –
revised (cf. Patankar (1981)), SIMPLEC – consistent (Van Doormaal and Raithby
(1984)) and PISO (Pressure-Implicit with Splitting of Operators, cf. Issa (1986)), as
well as projection methods introduced by Chorin (1968), further developed by Kim
and Moin (1985) and Choi and Moin (1994). The MAC and ADI (Alternating Direc-
tion Implicit, cf. Peaceman and Rachford Jr. (1955)) methods are similar to fractional
step methods but computationally costly. Whereas SIMPLE type methods have been
successfully applied to steady flows, projection methods are dominantly used for un-
steady flows. For these reasons, a fractional step method with projection is applied
for the problem at hand resulting into four (sequential) updates at each time step
(such as in Stam (1999); Harris (2004); Crane et al. (2007); Glimberg et al. (2009))
for the momentum’s equations (2.29)

∂tu(1) = −(u(n) · ∇)u(n) convection C (2.52)
∂tu(2) = νeff∇2u(1) diffusion D (2.53)
∂tu(3) = −β(T − T0)g force F (2.54)

∂tu(n+1) = − 1
ρ0
∇p pressure P , (2.55)

where (·)(f) describes a variable at fractional step f , the input (·)(n) results from the
last discrete time step t(n) and the solution solved for is denoted by (·)(n+1). Further,
νeff = ν + νT denotes the effective viscosity including the turbulent viscosity. The
operators comply with

∂tu = P ◦ F ◦ D ◦ C(u) =.. L(u) , (2.56)

and thus,
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u(n+1) = u(n) + ∆t(P ◦ F ◦ D ◦ C)(u(n)) , (2.57)

when explicit time stepping is applied.
The incompressibility constraint (2.28), ∇·u(n+1) = 0, is enforced by a Helmholtz-

Hodge decomposition after the last fractional step. Since the force is dependent on
the temperature, the energy equation (2.30) (and, if applicable, the concentration
equation (2.31)) needs to be solved in every time step as well. This step can be done
using the same methods as applied in solving the momentum equation without the
need to implement any additional solvers. As an alternative, the Scharfetter-Gummel
method can be used (cf. Scharfetter and Gummel (1969)) to solve passive scalar equa-
tions by exponential fitting. However, exponential fitting adds an implementation
effort and is therefore not applied here.

Each of the fractional steps can now be handled independently, whereby the
boundary conditions need to be applied after each fractional step. Therefore, a solu-
tion method for each step must be chosen. Here, again many variations depending on
the problem and aim at hand are possible. Though, before these schemes are defined,
consistency, numerical stability, convergence, and conservation need to be explained,
since they constitute many of the crucial characteristics of a method and impact the
methods’ efficiency.

Definition 2.2.7 (Consistency). Consistency is a condition on the numerical scheme.
A numerical scheme is considered consistent if the discretization becomes exact (i.e.,
tends to the differential equation) as the steps in time and space tend to zero. Thus,
the truncation error ε of order O(∆tq,∆xp) vanishes, i.e.,

ε→ 0 for ∆t,∆x→ 0 . (2.58)

Definition 2.2.8 (Stability). Stability is a condition on the numerical solution. A
numerical solution is considered stable if all errors (including round-off errors, errors in
boundary or initial conditions) remain bounded when the iteration process progresses,
i.e., for finite values of ∆t and ∆x the error has to remain bounded when the number
of time steps n tends to infinity. Let εni , num = φ

(n)
i −φni , num be the difference between

the computed solution, φ(n)
i (including round-off errors, errors in boundary or initial

conditions), and the exact solution, φni , num, of the discretized equation, then the
stability condition reads

lim
n→∞
|εni

, num| ≤ c at fixed ∆t and any point xi . (2.59)
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Stability does not ensure that the error will not become unacceptably large at interme-
diate time steps t(n) while remaining bounded. The Von Neumann stability analysis
(cf. Crank and Nicolson (1947); Charney et al. (1950)) can be used to further obtain
a condition for stability by expanding the computed solution in a finite Fourier series.
All numerical solutions of implicit schemes are unconditionally stable, while explicit
schemes are at best conditionally stable.

Example (Convective and diffusive stability constraints).

a) Let the scalar linear advection equation ∂tu+c∂xu = 0 with c > 0 be discretized
by BD in space and FE in time. Then the Von Neumann stability analysis leads
to the (necessary) CFL condition named after Richard Courant, Kurt Friedrichs
und Hans Lewy in 1928 (cf. Courant et al. (1928))

0 < CFL = c
∆t
∆x ≤ 1 . (2.60)

For the non-linear advection equation ∂tu + (u · ∇)u = 0 in 3D the convective
constraint reads

0 < CFL = ‖u‖ ∆t
∆xi

≤ 1 , (2.61)

where

‖u‖
∆xi

=



‖u‖∞
∆xi

..= max
(
|u|
∆x ,

|v|
∆y ,

|w|
∆z

)

‖u‖1
∆xi

..= |u|
∆x + |v|

∆y + |w|
∆z

‖u‖2
∆xi

..=
√

u2

∆x2 + v2

∆y2 + w2

∆z2 .

(2.62)

Physically, the CFL condition states that a fluid element should not traverse
more than one cell within a time step. Numerically, this condition can be
expressed with the domains of dependency (cf. Fig. 2.11). The numerical so-
lution is stable if the physical lies within the numerical domain of dependency
(cf. Fig. 2.11a), otherwise the numerical solution is unstable (cf. Fig. 2.11b).
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Figure 2.11: Schematic comparison of numerical and physical domains of depen-
dency yielding stability (top) or instability (bottom)

b) Let the diffusion equation ∂tu − ν∂2
xu = 0 be discretized by CD in space and

FE in time. Then the Von Neumann stability analysis leads to the diffusive
constraint for numerical stability of the scheme

ν
Δt

Δx2 ≤ 1
2 with ν > 0 . (2.63)

For the diffusion equation ∂tu − ν∇2u = 0 in 3D the diffusive constraint reads
(cf. Peiró and Sherwin (2005))

νΔt

(
1

Δx2 + 1
Δy2 + 1

Δz2

)
≤ 1

2 with ν > 0 . (2.64)
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Definition 2.2.9 (Convergence). Convergence is a condition on the numerical solu-
tion. The numerical solution is considered convergent if it tends to the exact solution
of the mathematical model when refining the mesh, thus when the steps in time and
space tend to zero. Let εin, ana = φ

(n)
i −φin, ana be the difference between the computed

solution, φ(n)
i (including round-off errors, errors in boundary or initial conditions), and

the exact solution, φin, ana = φana(xi, t(n)), of the analytical equation representing the
mathematical model, then the convergence condition reads

lim
∆x,∆t→0

|εin, ana| = 0 . (2.65)

In practice, convergence can be investigated by comparing the results obtained by
successively refining the grid. Therefore, let ε(∆x) = c∆xp be the truncation error of
the discretization scheme. Refining the grid by reducing the grid size to ∆x/2 results
in ε(∆x/2) = c(∆x/2)p, i.e, the convergence rate is

p = log2

(
ε(∆x)
ε(∆x/2)

)
. (2.66)

To also assess the temporal error in a time integration scheme alone, the spatial error
needs to be filtered out since they will typically dominate. Therefore, a method based
on Richardson extrapolation (cf. Moin (2001)) is applied. Let φ be any quantity (e.g.,
the calculated numerical solution of a variable or the error to an analytical solution),
then expanding φ in a Taylor series with different time increments at a constant ratio
r = ∆tfine/∆tcoarse < 1 yields

φ1 = φ0 + c∆tp + ε(∆tp+1) (2.67)
φ2 = φ0 + c(r∆t)p + ε(rp+1∆tp+1) (2.68)
φ3 = φ0 + c(r2∆t)p + ε(r2p+2∆tp+1) , (2.69)

where φ0 is the continuum value at zero spacing and c is a constant. The temporal
convergence order is then given by

p =
ln
(
φ3−φ2
φ2−φ1

)
ln r . (2.70)

This method is especially useful if no analytical solution to the mathematical model
exists since φ can be any quantity related to the numerical scheme.
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Definition 2.2.10 (Discretization error). The discretization error is defined as the
difference between the exact solution of the governing equations and the exact solution
of the discrete approximation. It can only be approximated (due to the truncation
error). A way to approximate the discretization error is to use the p-th order of
convergence

ε2 ≈
φ2 − φ1

rp − 1 , (2.71)

where r is the constant grid refinement ratio, r = ∆xfine/∆xcoarse < 1, and therefore,
φ1 a quantity on the coarser grid and φ2 on the finer grid.

Definition 2.2.11 (Conservation). Physical principles such as mass, momentum and
energy conservation, should apply at a discrete level. A finite difference scheme is
considered conservative if it can be written in the form

φ
(n+1)
i − φ(n)

i

∆t + Fi+1/2 − Fi−1/2

∆x = Si , (2.72)

where F is called flux.

Definition 2.2.12 (Numerical dissipation and dispersion). Let φni , num be the exact
solution to the numerical scheme for ∂tφ + L(φ) = 0. Then φni

, num satisfies the
modified differential equation

∂tφ+ L(φ) =
∞∑
p=1

c2p∂
2p
x φ+

∞∑
p=1

c2p+1∂
2p+1
x φ , (2.73)

where the even-order derivatives cause numerical dissipation (also called artificial or
numerical diffusion) resulting in additional damping (amplitude errors) of the nu-
merical solution φ

(n)
i , whereas the odd-order derivatives cause numerical dispersion

leading to jumps (phase errors) in the numerical solution φ
(n)
i .

Depending on these characteristics suitable numerical schemes for the convection,
diffusion and pressure terms are now chosen. Thereby (·)(f)

ijk denotes a discretized
variable in space at grid cell center (i, j, k) at fractional step f , where the input (·)(n)

ijk

results from the last discrete time step t(n) and the solution solved for is denoted
as (·)(n+1)

ijk .
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Convection: First the convection equation (2.52), i.e.,

∂tu(1) = −(u(n) · ∇)u(n) (2.74)

is numerically solved. Explicit time stepping yields

u(1) − u(n)

∆t = −(u(n) · ∇)u(n) , (2.75)

which is limited by a maximum time step size to avoid numerical instability. This
restriction was overcome by Stam (1999) introducing the so-called Semi-Lagrangian
advection (SL) method, which is equivalent to an implicit time integration and is
based on the method of characteristics. Thereby, consider the convection equation

∂tφ(x, t) + u(x) · ∇φ(x, t) = 0 (2.76)

with steady vector field u and unknown scalar field φ = φ(x, t) with φ(x, 0) = φ0(x).
Let p(x0, t) denote the characteristics of vector field u flowing through the point x0

at time t = 0, i.e.,

d

dt
p(x0, t) = u(p(x0, t)) (2.77)

with p(x0, 0) = x0 and material derivative d
dt

..= ∂t + u · ∇ (cf. Chorin and Marsden
(1979)). Now, let φ̂(x0, t) = φ(p(x0, t), t) be the value of the scalar field along the
characteristic passing through point x0 at time t = 0. Then using the chain rule the
variation of φ̂ over time can be computed with the convection equation (2.76) as

d

dt
φ̂ = ∂tφ̂+ u · ∇φ̂ = ∂tφ+ u · ∇φ = 0 (2.78)

showing that the value of the scalar φ̂ does not vary along the streamlines, i.e.,
φ̂(x0, t) = φ̂(x0, 0) = φ0(x0). Thus, the initial field φ0 and the characteristics p
entirely define the solution of the convection problem by first tracing the location x
back in time along the characteristic to get to point x0 and then evaluating the initial
field at that point:

φ(p(x0, t), t) = φ0(x0) . (2.79)

Translating this approach for the convection equation (2.52) to obtain velocity u(1) at
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point x at time t+Δt, the point x is traced back through velocity field u(n) over the
time step Δt obtaining a path p(x, −Δt) = x − Δtu(n) =.. xd(−Δt) (cf. Fig. 2.12a).
The new velocity u(1) is then set to the velocity that the element had at its previous
location Δt ago (cf. Fig. 2.12c)

u(1)(x, t +Δt) = u(n)(p(x, −Δt)) = u(n)(xd) = u(n)(x − Δtu(n)) . (2.80)

xd(−Δt)

x(t)

(a) Trace back from point
x(t) with current ve-
locity u(n) to its previ-
ous location xd(−Δt)
Δt ago

u(n)(xd)

(b) Interpolate with cur-
rent velocities of grid
around departure
point xd to obtain
u(n)(xd)

u(n)(xd,−Δt)

u(1)(x, t+Δt)

(c) Assign the interpo-
lated u(n)(xd) to the
unknown velocity u(1)

to get its state at time
t + Δt

Figure 2.12: Schematic representation of the Semi-Lagrangian method, based
on Verma et al. (2014)

Since the departure point xd will normally not be a grid point, the value at the de-
parture point must be calculated by (trilinear) interpolation from surrounding points
(cf. Fig. 2.12b). Thus, find indices (i, j, k) such that xi,j,k ≤ xd ≤ xi+1,j+1,k+1 or
xi−1,j−1,k−1 ≤ xd ≤ xi,j,k depending on the direction of u(n), v(n), w(n), respectively,
and use the velocity at these grid cells to interpolate. In 1D this interpolation reads

u
(1)
i = u

(n)
i− Δt

Δx
u(n) = u

(n)
i−c−ω ≈ (1 − ω)u(n)

i−c + ωu
(n)
i−c−1 (2.81)

with c =
[

Δt
Δx

u(n)
]
and ω = Δt

Δx
u(n)−c. The interpolation with non-negative coefficients

smaller than unity in each direction ensures that the path falls within the numerical
domain of dependence since maxijk(u(1)) ≤ maxijk(u(n)) at all times (cf. Bonaventura
(2004)). Therefore, the SL scheme is unconditionally numerically stable by definition
leading to a computationally efficient scheme. Nevertheless, using trilinear interpo-
lation the SL scheme is only of first-order. Thus, time stepping and grid resolution
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still need to be carefully chosen to obtain enough accuracy. Also at the boundary
caution has to be taken. If the backtracing reaches beyond the boundary, the indices
used for interpolation are set to the nearest boundary indices (cf. Fig. 2.13). Another
drawback to keep in mind is that the SL scheme introduces numerical dissipation (arti-
ficial viscosity) since backtracing with the forward Euler scheme introduces numerical
truncation errors (cf. Huang et al. (2015)).

x(t)

xd(−Δt)

Figure 2.13: Schematic representation of backtracing at the boundary, based on Jin
et al. (2012)

Further, the SL scheme is not fully conservative (cf. Lentine et al. (2011)). Thus,
enhancements of the SL were made such as the unconditionally stable, second-order
accurate MacCormack scheme (cf. Selle et al. (2008)) or the fully conservative scheme
of Lentine et al. (2011), both with higher computational costs. For the problem at
hand, the (classic) SL scheme is integrated since its simplicity for parallel implemen-
tation and its implicit nature compensate for the numerical dissipation.

Diffusion: Now for solving the diffusion equation (2.53), i.e.,

∂tu(2) = νeff∇2u(1) (2.82)

an implicit scheme is directly used to support the idea of an unconditionally stable
solution method as it is for the convection equation. Thus with BE in time the
right-hand side of the diffusion equation (2.53) is evaluated at the next time step,
yielding

u(2) − u(1)

Δt
= νeff∇2u(2) . (2.83)
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Now, reordering gives a linear system of equations Aφ = b

(I−∆tνeff∇2)u(2) = u(1) (2.84)

with matrix A = I − ∆tνeff∇2 ∈ RN×N , unknown φ = u(2) ∈ RN and right-hand
side b = u(1) ∈ RN known from the previous fractional step. After discretizing the
second derivatives in space with central differences, any matrix solver for a linear and
diagonally dominant system of equations can be applied here.

The size of the matrix, N ..= (Nx − 2)(Ny − 2)(Nz − 2), quickly rules out di-
rect solvers such as LU decomposition or Gaussian elimination since the inverse or
decomposition are often again fully occupied resulting in high computational costs.
Further, direct methods solve the system more accurately than necessary since the
discretization error is usually larger than the arithmetic accuracy (round-off error ε)
of a computer architecture. Therefore, it suffices to search for a method with an
accuracy smaller than the accuracy of the discretization scheme (i.e., for first-order
FDM it holds that ∆x ≥

√
ε and ∆x ≥ 4

√
ε for the CD of the second derivative).

Thus, iterative methods are preferred for the problem at hand. A major advantage
of iterative solvers is the significantly lower memory usage than for direct solvers for
the same problem size; this holds since the (non-changing) coefficient matrix can
be stored in a memory efficient way (e.g., in compressed sparse row format). As a
drawback of iterative solvers, the errors resulting from the finite nature of iterative
processes (being stopped after a certain tolerance is reached) need to be taken into
account. Thus, for the problem at hand an iterative method should be chosen whose
single iteration is cheap (i.e., low number of read and write accesses) as well as data
independent (to be parallelized) and whose number of iterations to obtain convergence
is small.

In general, an iteration method is described by its iteration specification (cf. for
instance Ferziger and Peric (2002)). Thereby, an initial guess of the solution is sys-
tematically improved by iterating until it converges to the exact solution.

Definition 2.2.13 (Iteration method). Let Aφ = b be a linear system of N equa-
tions. Then, for each row i = 0, . . . , N − 1 it holds that

N−1∑
j=0

Aijφj = bi (2.85)

⇐⇒
i−1∑
j=0

Aijφj + Aiiφi +
N−1∑
j=i+1

Aijφj = bi . (2.86)
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In the case of Aii 6= 0, this relation yields

φi = 1
Aii

bi −
i−1∑
j=0

Aijφj −
N−1∑
j=i+1

Aijφj

 . (2.87)

Iterating this approximation l times with initial guess φ(0) defines the iteration
specification for φ(l+1) based on the previous iteration approximation φ(l). In matrix
notation this method can also be written as

Mφ(l+1) = Nφ(l) + b , (2.88)

where A = M−N since at convergence φ(l+1) = φ(l) = φ holds.

Definition 2.2.14 (Residual, Iteration error). Let φ(l) be an approximate solution
of an iteration method for a linear system, Aφ = b, after l iterations. Since φ(l) does
not satisfy the linear system exactly there exists a non-zero residual r(l) satisfying

r(l) = b−Aφ(l) . (2.89)

The difference between the exact solution, φ, and the approximate solution, φ(l), is
called iteration error ε(l) = φ− φ(l) and satisfies

Aε(l) = r(l) . (2.90)

Definition 2.2.15 (Iteration convergence, stopping criterion). Consider an iteration
method Mφ(l+1) = Nφ(l) + b. At convergence, i.e., φ(l+1) = φ(l) = φ, it holds that
Mφ = Nφ + b, i.e., Mε(l+1) = ε(l) or ε(l+1) = M−1Nε(l). Thus, an iterative method
converges if

lim
l→∞

ε(l) = 0 . (2.91)

To be able to estimate the iteration error is therefore crucial for the decision when
to stop iterating. The most common procedure to estimate a stopping criterion is to
take the (normed) difference between two successive iterates. The iteration is then
stopped when

‖φ(l+1) − φ(l)‖ < δtol (2.92)

for a pre-defined tolerance value δtol. This criterion can be misleading if the difference
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is small (e.g., for small values of φ(l)) but the error, ε(l) = φ−φ(l), is not. Hence, the
reduction of the residual, r(l) = b−Aφ(l), is often used as it is accompanied by the
reduction of the iteration error by Aε(l) = r(l). Thus, the iteration is stopped (after
a maximal number of iterations or) after

‖r(l)‖ < δtol . (2.93)

The simplest iteration method is the Jacobi method named after Carl Gustav Jacob
Jacobi (cf. Jacobi (1845)) which only takes the previous iterates into account

φ
(l+1)
i = 1

Aii

bi −
i−1∑
j=0

Aijφ
(l)
j −

N−1∑
j=i+1

Aijφ
(l)
j

 , (2.94)

for rows i = 0, . . . , N − 1 and Aii 6= 0. Adding weights, ω ∈ (0, 2), to the iteration
method such that the new iterate also consists of parts of the previous iterate, i.e.,

φ
(l+1)
i = (1− ω)φ(l)

i + ω

Aii

bi −
i−1∑
j=0

Aijφ
(l)
j −

N−1∑
j=i+1

Aijφ
(l)
j

 . (2.95)

can accelerate the convergence. This approach is called a weighted Jacobi method
(cf. Saad (2003)) or over- or under relaxation dependent on the magnitude of the
weights, ω > 1 or ω < 1, respectively.

For the 3D diffusion equation (2.53), in particular, with matrix A = I−∆tνeff∇2,
unknown φ = u(2) and right-hand side b = u(1) the (weighted) Jacobi method in one
component reads

(
u

(2)
ijk

)(l+1)
= (1− ω)

(
u

(2)
ijk

)(l)
+ ωβ

u(1)
ijk + αx

((
u

(2)
i+1,j,k

)(l)
+
(
u

(2)
i−1,j,k

)(l)
)

+ αy

((
u

(2)
i,j+1,k

)(l)
+
(
u

(2)
i,j−1,k

)(l)
)

+ αz

((
u

(2)
i,j,k+1

)(l)
+
(
u

(2)
i,j,k−1

)(l)
) , (2.96)

where the coefficients are defined as α = (αx, αy, αz)> ..= (νeff∆t
∆x2 ,

νeff∆t
∆y2 ,

νeff∆t
∆z2 )> and

β ..= 1/(1 + 2(αx + αy + αz)) and the result of the convection step serves as initial
guess (u(1)

ijk)(0). The velocities v(2)
ijk and w

(2)
ijk are approximated analogously.

Since the calculation of the new iterate is data independent (only dependent on
already calculated iterates), the (weighted) Jacobi method is perfectly suitable for
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parallelization on modern architectures. However, the previous iterate must be re-
tained until after the new iterate is constructed. Thus, both iterates need to be stored
in different parts of the memory. The situation is different in the case of the Gauss-
Seidel method (a one-step method, cf. Jeffreys and Jeffreys (1956)) with iteration
specification taking the new iterate into account

φ
(l+1)
i = (1− ω)φ(l)

i + ω

Aii

bi −
i−1∑
j=0

Aijφ
(l+1)
j −

N−1∑
j=i+1

Aijφ
(l)
j

 (2.97)

for rows i = 0, . . . , N − 1 and Aii 6= 0. The weighted version is also called successive
over-relaxation (SOR). Due to its data dependency, the Gauss-Seidel method cannot
directly be parallelized.

To parallelize the Gauss-Seidel method so-called coloring is needed resulting in
the Colored Gauss-Seidel method (CGS, cf. Bertsekas and Tsitsiklis (1989)). Using
two colors, red and black, the Red-Black Gauss-Seidel method restructures the row-
major ordered linear equation system (cf. Fig. 2.14a) such that there exist no more
data dependencies within one iteration step. Thereby, the matrix components are
decomposed into two disjunct subsets, red for 0, . . . , r−1, and black for r, . . . , r+b+1
with r+ b = n ·m for a matrix of size n×m, such that red and black indices alternate
(cf. Fig. 2.14b) without changing the solution.
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(a) Row-major ordering
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(b) Red-black ordering

Figure 2.14: Schematic representation of matrix ordering (cf. Würzburger (2016))
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The iteration specification for regular grids then reads

(
φ

(l+1)
i

)
r

= 1
Aii

(bi)r −
∑

j∈N(i)
Aij

(
φ

(l)
j

)
b

 , i = 0, . . . r − 1 (2.98)

(
φ

(l+1)
i

)
b

= 1
Ai+r,i+r

(bi)b −
∑

j∈N(i)
Ai+r,j

(
φ

(l+1)
j

)
r

 , i = 0, . . . b− 1 , (2.99)

where N(i) denotes the respective neighbor indices. Therewith, first, the red iterates
are calculated in parallel using the previous black iterates and, then, the new red
iterates are used to calculate the new black iterates in parallel. Thus, fewer colors
mean more parallelism but slower convergence. Although, CGS can converge faster
than the Jacobi method (depending on the nature of the matrix A with non-zero
diagonal elements, cf. Ferziger and Peric (2002)) it needs twice as many parallel
steps resulting in a similar runtime (cf. Smart and White (1988); Tritsiklis (1989)
and Würzburger (2016) for the implementation at hand).

In summary, the ease of implementation and parallelization of the simple Jacobi
method compensate the fact that the convergence rate is slower than the rate of more
sophisticated methods such as Krylov subspace methods (e.g., Conjugate Gradient
method (CG, cf. Hestenes and Stiefel (1952)), BiConjugate Gradient method with
stabilization (BiCGStab, cf. van der Vorst (1992)), Generalized Minimal Residual
method (GMRES, Saad and Schultz (1986))) or Colored Gauss-Seidel methods which
need to be adapted to be parallelized (e.g., due to data dependencies).

Sources: In the third step of the fractional scheme the external sources need to
be added, ∂tu(3) = fB. For the momentum equation (2.29) the buoyancy force,
fB = fB(T ) = −β(T − T0)g, depends on the temperature, which is obtained by
solving the energy equation (2.30). Therefore, the explicit Euler scheme is used for
fast calculation

u(3) = u(2) + ∆tfB(T (n)) (2.100)
= u(2) −∆tβ(T (n) − T0)g . (2.101)

Since the buoyancy force, fB, is evaluated at the previous time step, the energy
equation (2.30) can be solved independently, contrarily to an implicit time stepping
approach where the temperature approximation is needed simultaneously. Again,
time stepping and grid resolution still need to be carefully chosen to obtain enough
accuracy.
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Pressure and Incompressibility: The last fractional step consists of two single
steps, namely solving the pressure Poisson equation and correcting the velocity to be
incompressible. Again using the explicit Euler scheme for (2.55), ∂tu(n+1) = −1/ρ0∇p,
yields

u(n+1) = u(3) − Δt

ρ0
∇p . (2.102)

Applying the divergence operator on (2.102) gives

0 != ∇ · u(n+1) = ∇ · u(3) − Δt

ρ0
∇2p (2.103)

⇐⇒ ∇2p
!= ρ0

Δt
∇ · u(3) (2.104)

with the incompressibility constraint (2.28), ∇ · u(n+1) = 0. Since the fractions ρ0/Δt

and Δt/ρ0 cancel each other out in (2.102) and (2.104), it suffices to solve

∇2p = ∇ · u(3) (2.105)

for pressure p with known velocity u(3) to get

u(n+1) = u(3) − ∇p (2.106)

with an orthogonal pressure projection of a (possibly) divergent velocity field u(3) to a
divergence-free field u(n+1) (based on the Helmholtz-Hodge decomposition introduced
by Chorin (1967, 1968), cf. Fig. 2.15).

∇p u(3)

u(n+1)u : ∇ · u = 0

Figure 2.15: Schematic representation of pressure projection

Ideally, the pressure Poisson equation (2.106) should be solved exactly in order to
satisfy the incompressibility constraint. Therefore, a more accurate scheme is applied
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here which utilizes the Jacobi method whose computational stencil for pressure reads

p
(l+1)
ijk = (1− ω)p(l)

ijk + ωβ

−∇ · u(3) + αx
(
p

(l)
i+1,j,k + p

(l)
i−1,j,k

)
+ αy

(
p

(l)
i,j+1,k + p

(l)
i,j−1,k

)
+ αz

(
p

(l)
i,j,k+1 + p

(l)
i,j,k−1

) (2.107)

with ω < 1, β = 1/(2(αx + αy + αz)) and α = (αx, αy, αz)> = ( 1
∆x2 ,

1
∆y2 ,

1
∆z2 )>. The

spatial derivatives ∇ · u(3) and ∇p are hereby approximated with central differences.
Other methods such as the colored Gauss-Seidel method could also be applied.

The iteration error ε(l) of those iteration schemes can be expressed as (a mix-
ture of) smooth and oscillating functions of the spatial coordinates. By applying
an iteration method, the rapidly varying components of the iteration error can be
removed and the error becomes a smooth function. If the error is smooth (such as
with the weighted Jacobi method), the approximation to the iteration error (called
smoothing or relaxation) can be calculated on a coarser grid (called restriction) with
less computational effort and faster convergence. Then, the error approximation is
interpolated (called prolongation) from the coarse to the fine grid to correct the fine
grid solution by this error. This procedure is repeated until a coarse grid is reached,
where the computational cost of a direct solution of the iteration error is negligible.
Hereby, a collocated grid (as it is used for the problem at hand) is beneficial due to
the ease of transfer of information between the various grids.

This approach describes the main idea of the multigrid method (MG) (cf. Fe-
dorenko (1962, 1964); Bakhvalov (1966); Brandt (1973, 1977); Hackbusch (1977)):
accelerate the convergence of a basic iteration method (such as Jacobi or Gauss-
Seidel) by solving a computationally cheaper problem on a coarse grid and therewith
correcting the fine grid solution globally. There are various ways to apply the multi-
grid method, for instance only two grids are used (called two-level multigrid) or more,
starting with the finest grid, restricting to the coarsest then prolonging back to the
finest grid (called V-cycle, cf. Fig. 2.16). Restricting to the coarsest grid, prolonging
back only one level, restricting again once and prolonging two levels to restrict again
to the coarsest grid and then repeating restriction and prolongation for one level be-
fore prolonging to the finest grid is called a W-cycle. Laying between the V-cycle and
W-cycle is the F-cycle, whereby the restriction starts to the coarsest grid and then
after having reached each level for the first time in the prolonging process a restriction
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to the coarsest grid is performed. Those cycles can also be repeated several times one
after another.

Relax + Residual Correct + Relax 

Relax + Residual Correct + Relax 

Solve 

level 

level 

level 

Restriction Prolongation 

l + 1

l

L

Figure 2.16: Schematic representation of a V-cycle in the multigrid method

Since Glimberg et al. (2009) showed that two V-cycles suffice to get faster conver-
gence for the problem at hand than the Jacobi method itself, the V-cycle multigrid
method is also used here whereat more level restrictions yield better convergence.
Thereby, it is crucial to solve the pressure Poisson equation as accurate as possible in
order to ensure incompressibility of the velocity field. Therefore, a pre-conditioning of
the initial guess is applied in the first time step. Here, as many V-cycles in the multi-
grid method and iterations in the Jacobi method are applied as a residual tolerance,
δtol, in the Jacobi iteration and a tolerance for the preceding pressure approximation
(or a set maximum) is reached.

Definition 2.2.16 (V-Cycle Multigrid Method). Let Ahφh = bh be the linear system
of equations to be solved at the finest grid with resolution h. Further, let R2h

h be a
restriction operator taking a vector field from a fine grid with resolution h to a coarser
grid with double the cell size in each direction, i.e., φ2h = R2h

h φh.
Analogously, let Ph

2h be a prolongation operator taking a vector field from a coarse
grid to a finer grid with half the cell size in each direction, i.e., φh = Ph

2hφ2h.
Assuming that there are l + 1 grids, l ≥ 0, with finest grid l = 0 and coarsest
grid L, where the number of cells is decreased by the power of two, the V-Cycle
multigrid method is illustrated in Listing 2.1.
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Listing 2.1: Pseudocode of the V-Cycle multigrid method
- Relax Ahφh = bh with initial guess φ

(0)
h .

- Compute the residual rh = bh − Ahφh and restrict to
r2h = R2h

h rh.
- Relax the residual equation A2hε2h = r2h with initial

guess ε
(0)
2h = 0.

. .

. .

. .
- Solve the residual equation ALhεLh = rLh with

initial guess ε
(0)
Lh = 0.

. .

. .

. .
- Prolongate the error εh = Ph

2hφ2h.
- Correct the approximation φh = φh + εh.
- Relax Ahφh = bh with the updated approximation φh as

new initial guess.

In order to send the information between the grids, the restriction and prolonga-
tion operators need to be defined (cf. Fig. 2.17). Again, there exist multiple ways
(neither correct nor incorrect) to define them (e.g., injection or full/ half weighting
for restriction, (bi-/ tri-) linear interpolation for prolongation).

1/81/8

1/8

1/8
1/8

1/8

1/8

1/8

(a) Restriction (average)

1/64 3/64

3/64

3/64 9/64

9/64 27/64

9/64

(b) Prolongation (trilinear interpola-
tion)

Figure 2.17: Schematic representation of restricting and prolonging cells in 3D
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Definition 2.2.17 (Restriction operator). The applied restriction operator R2h
h takes

the average of all neighboring cells of the finer grid while the domain boundaries are
fixed (cf. Fig. 2.17a), i.e.,

R2h
h = 1

2
[
1 1

]
in 1D (2.108)

R2h
h = 1

4

1 1
1 1

 in 2D (2.109)

R2h
h = 1

8

1 1
1 1

 1 1
1 1

 in 3D (2.110)

resulting for three dimensions in
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Definition 2.2.18 (Prolongation operator). The applied prolongation operator Ph
2h

(cf. Fig. 2.17b) uses linear interpolation with weight ω = 1
4 in 1D, bilinear interpola-

tion 2D and trilinear interpolation in 3D (reusing the 1D weight in each direction).
This interpolation results for three dimensions in
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Since the restriction and prolongation operations divide the grid by two for each level
in each direction (without considering boundary cells), the grid at zero level needs to
comply with Nx = 2o + 2, Ny = 2p + 2 and Nz = 2q + 2 for o, p, q ∈ N0. Then the
maximal number of levels is l = max(o, p, q) for the last level only consisting of one
cell or l = max(o − 1, p − 1, q − 1) for remaining two cells in each direction (given
that the exponents (minus one) smaller than l are set to one when there is no more
restriction possible in the respective direction).

For the pressure Poisson equation (2.105) it holds that A = ∇2, φ = p and
b = ∇·u(3) in Definition (2.2.16) of the V-cycle. Since the matrix corresponds to the
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Laplacian operator, it never changes. Thus, the matrix is never actually constructed
and the weighted Jacobi method with ω = 2/3 can be reused for relaxation which is
stable for the Poisson equation.

Further, boundary conditions need to be applied in each step of the multigrid
method. At the finest level pressure boundary conditions are set, whereas at coarser
grids boundary conditions for the errors need to be set. Depending on the nature
of the pressure boundary condition (Dirichlet or Neumann), the error boundary
condition is set to match with values ε = 0 or ∂nε = 0. In case of inner bound-
ary conditions for obstacles, special care has to be taken to prevent the obstacles to
vanish. See Section 3.2.2 for details.

As already mentioned, the solution method of fractional steps with its methods
to approximate the single steps can now be reused for the energy equation (2.30)
and concentration equation (2.31) with the same advantages (stability, ease of im-
plementation, memory usage, parallelism) and disadvantages (low-order of accuracy,
convergence, numerical dissipation). Although the solution method is unconditionally
stable (cf. Stam (1999)), time stepping and grid resolution still need to be carefully
chosen to obtain enough accuracy due to the applied low-order schemes which result
in a general first-order solution method (in time and space).

The possibly occurring uncertainties and errors which determine the accuracy of
the solution method are explained in the next section in more detail.

2.3 Uncertainties and Errors in CFD

The results of computational fluid dynamic simulations may differ from their exact
values since uncertainties and errors occur. In the following section, the terms uncer-
tainty and error are characterized using the AIAA (1998) Standards and error terms
are partitioned further.

Definition 2.3.1 (Uncertainty and error). In the AIAA (1998) Standards, uncer-
tainty is defined as “a potential deficiency in any phase or activity of the model-
ing process that is due to the lack of knowledge”, whereas error is “a recognizable
deficiency in any phase or activity of modeling and simulation that is not due to lack
of knowledge”.

Therewith, uncertainty, on the one hand, is only a potential source of imbal-
ance if physical processes and parameters are not well understood. Uncertainty (and
sensitivity) analyses can be applied in order to better determine the uncertainty in
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the modeling phase. Therefore, a number of simulations with a variety of models can
be run to determine how modeling affects the results. This uncertainty quantification,
however, would extend the scope of this work.

Errors, on the other hand, are a known source of imbalance identifiable upon
examination and are classified further into acknowledged and unacknowledged errors
(cf. Ferziger and Peric (2002)).

2.3.1 Unacknowledged Errors

Unacknowledged errors include computer programming errors or usage errors.

Computer Programming Errors: These mistakes made while programming the
code are the responsibility of the programmer(s) and can be discovered by systema-
tically verifying (parts of) the code (by unit tests). Verification is thereby defined
as the “process of determining that the implementation of a calculation method
accurately represents the developer’s conceptual description of the calculation method
and the solution of the calculation method” (cf. ASTM (2005)).

Usage Errors: When applying the code, the user chooses the models (if applicable),
defines the grid and time resolution, selects the boundary and initial conditions and
sets the (physical) input parameter used in a simulation (to a defined extent) estab-
lishing the accuracy of the simulation. Here, and in the post-processing process user
or usage errors can occur which can (to a certain level) be controlled through training
and a detailed user guide documentation.

2.3.2 Acknowledged Errors

Acknowledged errors are further divided into physical, numerical and computer errors.

Computer Errors: Round-off errors occur when computers store floating point
numbers at a certain accuracy (e.g., with 16, 32, or 64 bits). These errors are not
considered significant compared to other errors such as numerical errors.

Numerical Errors: Numerical errors can be further characterized by discretization
and iteration errors. The iteration error is defined as the difference between the exact
and the iterative solution of the discretized equations (cf. Def. (2.2.14)). This error
occurs since the iteration process is stopped after a defined convergence criterion
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based on the sum of residuals (cf. Def. (2.2.15)). The tolerance thereby determines
the accuracy in case the error tends towards zero since the norm of residuals is tightly
connected to the error.

Discretization errors are referred to as the difference between the exact solution of
the governing equations and the exact solution of the discrete approximation. Due to
the truncation error (cf. Def. (2.2.3)), the discretization error can only be measured
by comparing discrete approximations on refined grids. Thereby, the quality of an
approximation is described by its order p (cf. Def. (2.2.4)) which relates the truncation
error to the grid spacing to the power of p (here, first-order due to first-order time
discretization and linear interpolation in the advection scheme). It indicates, how the
error changes when changing the grid spacing, hence it is not directly measuring the
magnitude of the error. The order of a method can be determined for example with
Richardson extrapolation (cf. Def. (2.2.9)) and can be related to the discretization
error through Definition (2.2.10).

Also, local and global errors need to be distinguished. Local errors occur at
each cell and are transported (through advection and diffusion) throughout the grid
causing numerical dissipation and dispersion (cf. Def. (2.2.12)). Global errors refer to
errors over the entire domain (in space and time). Errors can thereby be measured
by different norms, for instance by the root mean square (RMS), where the squared
difference of the numerical to the analytical solution at the center of the domain, xc
with corresponding cell index (i, j, k), is summed over all time steps, then weighted
by the number of time steps and, finally, the square root is taken:

εRMS
..=

√√√√ 1
Nt

Nt∑
n=1

[
φ

(n)
ijk − φ(xc, t(n))

]2
(2.113)

or the summed and squared difference is taken at fixed time step n over the whole
domain

εn ..=

√√√√√ 1
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]2
(2.114)

with N ..= (Nx − 2)(Ny − 2)(Nz − 2) being the total amount of inner cells.
At t(Nt) = tend, εNt =.. εabs describes the absolute error and thereof, the relative
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error is defined by

εrel
..= εabs√

1
N

∑Nx−1
i=1

∑Ny−1
j=1

∑Nz−1
k=1 φ(xijk, tend)2

. (2.115)

Physical Modeling Errors: The modeling error is defined as the difference between
the real flow and the exact solution of the mathematical model. This error cannot be
quantified since the real flow is not known and the exact solution might not be de-
fined. However, the error does occur due to assumptions or deliberate simplifications
in the continuum model, as for the result of a more efficient computation. For the
problem at hand, the following assumptions and simplifications depict an extract:

- Newton’s laws of conservation and the First Law of Thermodynamics,

- Constant, but uncertain properties,

- Boussinesq approximation in the buoyancy force,

- Bernoulli’s principle and its assumptions (i.e., incompressibility and negligible
friction due to viscous forces),

- Setting of initial and boundary conditions as well as omitting boundary layer
equations,

- Simplified turbulence model (Constant Smagorinsky-Lilly with uncertain para-
meters),

- No models for combustion, radiation or pyrolysis.

Under the assumption of Cartesian grids, details in complex geometries are further
neglected for the ease of representing the geometry.

A way of estimating physical modeling errors is the concept of validation. Thereby,
validation is defined as “the process of determining the degree to which a calculation
method is an accurate representation of the real world from the perspective of the
intended use of the calculation method” (cf. ASTM (2005)). Therefore, a comparison
of the solution data of the calculation method with experimental data is performed.
Here, it is crucial to choose suitable experiments which reflect the physical model
well within the limitations of the calculation method. If this mapping is not possible,
the differences and made assumptions to approximate the numerical setup to the
experimental setup need to be discussed. Accompanied by validating the underlying
models with experiments additional experimental errors occur.
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Experimental Errors: In experimental studies, two types of errors occur – system-
atic and random errors. Systematic errors affect the accuracy of the measurement
(meaning how close a measured value is to the true or accepted value). Common
sources of systematic errors are incorrect calibration of measuring instruments, their
maintenance, or faulty readings of instruments by the user. Random errors, in turn,
affect the precision of a measurement, i.e., how closely repeated measurements agree
with each other. Common sources of random errors are fluctuating readings during
measurements or extrapolation or estimation of quantities. Experimental accuracy is
reported either as significant figures (i.e., the least significant digit which can be mea-
sured using the instrument), as percentage error (i.e., fractional difference between the
measured and true or accepted value or repeated measured values in case of precision)
or mean and standard deviation (for repeated measurements).

The experimental errors affect the set values of all physical parameters in the
simulation and therefore influence the accuracy of the simulation as well as all of
the above explained errors. Since there are ways to identify some of the errors (and
possibly reduce them), unit testing, verification, and validation are applied through-
out the development process. Before doing so in Chapter 4, the introduced solution
method needs to be implemented on modern architectures.



Chapter 3

Simulation of Smoke Propagation
on CPU

The design concept of the solution method derived in Section 2.2 is fully adapted to
highly parallel computer architectures and accelerators like GPUs by choosing the
numerical schemes to match the target hardware with a deliberate decision for a
reduced modeling approach. Thus, the next step in the development cycle is to trans-
late the numerical solution method into a computer code, called JuROr (Jülich’s
Real-Time simulation within ORPHEUS). Since JuROr shall run on various modern
architectures (open to the end-user to choose from CPU or GPU) with comparable
performance, the implementation uses the pragma-oriented OpenACC programming
model (cf. Chapter 5) applied to a C++ code base. This model has several advan-
tages: ease of implementation and maintenance of only one source code, performance
portability on various (multicore) CPU and GPU architectures making the applica-
tion independent on the hardware (cf. Section 5.2), and speedup towards real-time
(cf. Chapter 6). To start, a 2D code is first implemented in C++ for simple geometries
and then expanded to a 3D code including inner boundaries (cf. Section 3.2.1). The
code design is intended to be simply structured using interfaces and, therefore, easy
to maintain and develop by using the free and open source distributed version control
system git (cf. Hamano et al. (2005)). To verify new methods, unit tests are set up
with analytical solution scenarios which need to be applied whenever a new method
or model is implemented. After CPU implementation, the code is then verified and
the model is validated in Chapter 4 before porting JuROr to GPU in Chapter 5.

This chapter is designed to resemble the code development process using a CPU.

65
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3.1 Code Structure Using Interfaces

JuROr is developed as an open source software basis using an object-oriented design
complying with the SOLID principle of class design. Thereby, SOLID follows the
set of rules outlined in Table 3.1 (cf. Hunt and Thomas (1999); Martin (2003) and
Liskov (1987)).

Table 3.1: Five rules of the SOLID principle

Principle Description
S Single Responsibility Use independent components with a single purpose.
O Open-Closed Entities are open for extension, closed for modification.
L Liskov Substitution Subtypes must be substitutable for their base types.
I Interface Segregation Interfaces have a single, well defined purpose.
D Dependency Inversion Depend on abstractions, not on concretions.

These rules ensure that the software’s complexity is reduced by managing inter-
dependencies, and that it is adaptable to frequent changes, hence maintainable,
flexible and reusable for multiple developers. In JuROr, these rules are met using
the behavioral strategy pattern. This pattern captures the abstraction in an inter-
face, burying implementation details in derived classes realizing the interface (open-
closed, no repetition, single responsibility), but being open for additional add-ons.
The classes obey behavioral inheritance (Liskov substitution) and the interfaces have
only a single purpose (interface segregation). Further, macros and singletons are used
fulfilling the dependency inversion principle. Singletons, thereby, ensure that a class
only has one instance and provide a global point of access to it.

In total, JuROr consists of approximately 22 000 lines of code in 35 classes with
four miscellaneous classes or headers. Based on the derived numerical model, these
classes can be structured into four levels:

1. A time integration scheme starting the solver, measuring clock time, launching
analyses and visualization,

2. A solution scheme with an interface for various solvers defining the problem and
fractional steps to be solved,

3. Numerical methods for single fractional steps abstracted by suitable interfaces,

4. Auxiliaries and libraries for pre- and post-processing (reading, writing, analyses,
and visualization), macros, and data structures.
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       Time Integration 

       Problem and solution method definition 

      1 

      2 

       Numerical methods       3 

Figure 3.1: Class diagram of the CPU implementation using interfaces

Figure 3.1 illustrates these four levels and therefore the structure of the implemen-
tation in a class diagram. After parsing the user input data provided by an XML
(Extensible Markup Language) file, the problem is defined with initial and boundary
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conditions, and physical as well as numerical parameters are set.
Based on this input, the variables are parsed and initialized and the class named

TimeIntegration starts the time integration scheme (1) with its function run().
Here, boundary conditions are first set, and then the solution scheme (fractional steps)
is started by calling the virtual function DoStep() of the interface class SolverI.
After each time step, the temperature dependent variables (e.g., buoyancy force)
and all temporary variables are updated to the newly calculated variables. This
update needs to be done since the variables at time step n serve as input data to
calculate the new variables at time step n + 1. To measure the wall-clock time (i.e.,
the time the calculation actually needs) time stamps (for start and end) are set as
well. Further, analyses (such as RMS error calculations or difference to an analytical
solution if applicable), visualization and saving data output (cf. Fig. 3.2) is handled
in the TimeIntegration class as well and can be shut off for speedup calculations
(cf. Chapter 6 and Appendix A.1).

pre- 
processing 

post- 
processing 

libraries 4 

       Numerical methods       3 

       Problem and solution method definition       2 

       Time Integration       1 

Figure 3.2: Auxiliary and library classes for pre- and post-processing

The fractional steps of the solution scheme (2) are defined via the interface SolverI,
more precisely in the virtual function DoStep(). By employing an interface, the solu-
tion method can be realized as flexible as possible allowing for different problems such
as an AdvectionDiffusionSolver with pure diffusion and advection (without exter-
nal sources) or more complex problems such as a turbulent Navier-Stokes problem
with thermally driven buoyancy force, as the NSTempTurbSolver whose implementa-
tion is exemplarily shown in Figure 3.3 as a flow chart. With the structural advantage
of interfaces, new solutions methods can easily be added.
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Figure 3.3: Flow chart of an implemented fractional step solution method

The way the single fractional steps are numerically solved is defined by interfaces for
each step in the numerical methods (3) (e.g., advection, diffusion, calculating pressure
or turbulent viscosity, adding sources) where a pool of methods is already realized;
again being open for further add-ons (cf. Fig. 3.1). Additionally, auxiliary classes
(4) are implemented for pre- and post-processing (cf. Fig. 3.2), e.g., for applying
boundary conditions (in Boundary), performing analyses (in Analysis, Solution),
reading input, setting values or writing output (in Parameters, Functions, Visual)
and defining certain structures (in Field, GlobalMacrosTypes), which in turn use
supporting libraries to read data from an XML file via tinyxml and to write data to
vtk (visualization toolkit)-format for visualization via the visit writer library.

In order to apply the code to real-world scenarios, it is extended for 3D geometries
including inner obstacles.
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3.2 Extension to Complex Geometries in 3D

Including the third dimension as well as allowing inner boundaries elevates the CFD
code, JuROr, to model complex geometries, such as rooms and buildings, as well as
flow around obstacles. Therefore, a change of concept was performed regarding the
way of iterating through the computational domain.

3.2.1 From 2D to 3D domains

In 2D, the spatial grid is built up by two nested, but independent loops along each
direction complying a row-major approach. In order to also model inner boundaries,
a different approach other than simply adding a third inner loop to include a third
dimension (as in Listing 3.1) is needed. This different approach is again justified by
efficiency and flexibility since a query (if a cell is an inner boundary) inside a loop
or using multiple loops with different start and end points is not efficient – neither
on CPU nor on GPU. Further, most compilers use the most inner loop (here the
z-dimension) as kernel dimension for parallelization slowing down the performance
when using a coarse grid in z-direction.

Listing 3.1: 3D loops through the spatial domain
1 // including domain boundaries
2 for ( size_t i = 0; i < Nx; ++i){
3 for ( size_t j = 0; j < Ny; ++j){
4 for ( size_t k = 0; k < Nz; ++k){
5 ...
6 }
7 }
8 }

The new concept is realized by replacing the three nested, independent loops by lists of
indices (cf. Fig. 3.4 and Listing 3.2) representing either the domain interior (very light
gray) with iList, the domain boundary (light gray) with bList, inner boundaries
(so-called obstacles in dark gray) with oList or patches on the domain boundary
(so-called surfaces in medium gray) with sList. For each type of boundary, there
also exist lists for each direction (front and back in z-direction; top and bottom in
y-direction; left and right in x-direction) to set the relevant boundary conditions more
easily (cf. Section 3.2.2). In C++ the lists are implemented using std::vector because
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setup, sorting and accessing vectors are most efficient using this type of container.
Since the indices do not change during the calculation, i.e., obstacles are static, they
can be initialized directly after parsing the XML input file containing all information
about the problem, numerics and geometry (cf. Appendix A.3 for an example XML
file).

Figure 3.4: Small-scale exemplary illustration of index lists (very light gray: inte-
rior, light gray: boundary, dark gray: obstacle, medium gray: surface)

Listing 3.2: 1D row-major lists
1 // going through inner indices (iList)
2 for (auto idx: iList ){
3 ...
4 }
5 // going through domain boundary indices (bList)
6 for (auto idx: bList ){
7 ...
8 }
9 // going through obstacle indices (oList)

10 for (auto idx: oList ){
11 ...
12 }
13 // going through surface indices (sList)
14 for (auto idx: sList ){
15 ...
16 }

Thereby, all obstacles need to be defined as a rectangle spanned by its two opposing
corners (front-bottom-left and back-top-right). Adding multiple obstacles (e.g., for a
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combination of obstacles) and surfaces is possible in order to build a more complex
setup. This approach results in index lists for every single obstacle or surface. To
assure that the combination of adjacent obstacles is waterproof, i.e., there is no gap
where fluid can escape, and to avoid that the boundary conditions for each direction do
not interfere with each other, all duplicate indices are marked in order to ensure that
the respective boundary condition is only applied on cells with no obstacle neighbor
(cf. Fig. 3.5, where black arrows mark duplicates, and gray arrows show duplicate-free
cells).

Figure 3.5: Small-scale exemplary illustration of checking duplicate indices
(gray arrow: not marked, black arrow: marked as duplicate)

In order to still model 2D cases such as the unit tests in the upcoming section, the
number of (inner) cells in the z-direction is set to one such that the total number of
cells equals three including one ghost cell on each side, i.e., Nz = 3.

3.2.2 Inner and Outer Boundary Handling

Now being able to also model inner boundaries with the help of index lists, the
boundary handling within the numerical methods such as the multigrid method as
well as setting the boundary conditions need to be further refined. As for the domain
boundaries (cf. Section 2.1.1) there also exist Dirichlet and Neumann boundary con-
ditions for the inner boundaries. For the domain boundaries the discrete value of the
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boundary (φout) depends on the discrete value of the adjacent inner value (φin), i.e.,

φout = −φin + 2c for a Dirichlet condition on the outer boundary (3.1)
φout = φin + c∆s for a Neumann condition on the outer boundary, (3.2)

where c is the prescribed constant value at the boundary or the gradient, respectively,
and ∆s ∈ {∆x,∆y,∆z} is the grid spacing in the direction of the regarded boundary
(i.e., ∆s = ∆x for left and right domain boundary, ∆s = ∆y for top and bottom
domain boundary, and ∆s = ∆z for front and back domain boundary). Since a
collocated grid is used, the physical boundary lies between two cells. Therefore, the
Dirichlet condition represents setting the average between the two adjacent cells to
the desired value, c, at the boundary. The Neumann condition represents a spatial
derivative in direction of the normal vector, thus the BD or FD schemes are used in
discrete space depending on the considered boundary. Since the boundary condition
is applied sequentially to all the boundary directions, the corner and edge cells are
therewith set to the average based on all adjacent cells in the inner domain.

For inner boundaries, the discrete Dirichlet condition remains unchanged, whereby
the inner adjacent cell is part of the inner domain, not the inside of the obstacle.
The Neumann condition is changed since the inner adjacent cell lies in the opposite
direction as before regarding the domain boundary, i.e., changing the direction of the
normal

φout = −φin + 2c for a Dirichlet condition on the inner boundary (3.3)
φout = φin − c∆s for a Neumann condition on the inner boundary. (3.4)

The boundaries of the surfaces are treated exactly as the outer boundaries since the
former are a subset of the latter.

As addressed in the previous section, applying boundary conditions on obstacles,
surfaces or domain boundaries being in direct contact with other obstacles needs
special treatment. To assure that a boundary condition is only applied on cells with
no obstacle as input cell, φin, all boundaries need to be checked for adjacent boundary
cells. Therefore, for each type of boundary, each direction (front, back, top, bottom,
left, right), and each instance (in case there are multiple obstacles or surfaces), it is
checked if the respective input cell, φin, is already marked as inner or outer boundary
(cf. Fig. 3.5 with black arrows indicating conflicting boundary cells). If it is the case
the respective boundary cell is marked and the boundary condition (for the direction



74 3.2 Extension to Complex Geometries in 3D

at hand) is not applied to this boundary cell. This way it is avoided that multiple
boundary conditions (for the different directions) are applied to the same boundary
cell.

Applying boundary conditions on the restricted levels of the multigrid method
also needs special care when introducing obstacles. If inner boundaries are fully
ignored at the restricted levels, the fluid penetrates the obstacle and causes incorrect
movement downstream the obstacle (cf. Glimberg et al. (2009)). If inner boundaries
are restricted naively with injection (being an obstacle cell at the next level only if
the restricted cell was an obstacle at the previous level), thin obstacles might vanish,
again causing the fluid to penetrate obstacles. To avoid this penetration, a dominant
restriction (and prolongation) is employed (cf. Fig. 3.6): if any of the eight neighboring
cells forming the restricted cell is marked as an obstacle (or surface) the restricted
cell is also marked as obstacle (or surface, respectively) and is hence included in the
appropriate index list of that level and type of boundary. Since dominant restriction
does not prevent the obstacles become one cell thick, either the resolution needs to
be increased, or the obstacle needs to be thick enough from the beginning (which is
most often the case in fire-related problems). Preventing the obstacle cells to fully
occupy the computational domain (also at restricted levels) should additionally be
avoided. Here, the check for restricted outer and inner domain boundary cells lying
adjacent to each other is also necessary at each level of the multigrid scheme. This
check is done in the same manner as described at the finest level.

Figure 3.6: Small-scale exemplary illustration of dominant restriction in 2D
(left: fine grid before restriction, right: coarse grid after restriction)

In order to test the implementation at each step, unit tests for most of the fractional
steps have been integrated (cf. Appendix A for compiling, developing and running
the code).
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3.3 Intermediate Code Testing via Unit Tests

During code development it is essential to test newly implemented parts of the code.
Therefore, unit tests are created to isolate each part of the solver and determine
whether they are fully operational (cf. Kolawa and Huizinga (2007)).

3.3.1 Unit Test Advection

Applying (linear) advection to a fluid with velocity u and bulk velocity c 6= 0, i.e.,

∂tu + (c · ∇)u = 0 , (3.5)

results in the transport of fluid in the direction of the bulk velocity. Solving this con-
vection equation numerically with the Semi-Lagrangian scheme results in additional
artificial diffusion (dissipation) as explained in Section 2.2. Thus, the numerical solu-
tion to the linear advection equation (3.5) experiences additional diffusive behavior.
Here, the test case solves the advection equation with initial fluid velocity distribution

u(0)
ijk

..= A exp
− 1

2σ2

(xi − x0
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− t
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+
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)2

|t=0

,

(3.6)

where A = 1 describes the amplitude of the Gaussian curve, the center of the curve
is denoted by (x0, y0, z0) = (1.025, 1.025, 0.5) m within the computational domain
[0, 2]2 × [0, 1] m3, (cx, cy, cz) = (0.50, 0.50, 0.25) m/s describes the bulk velocity and
σ ≈ 0.03 m determines the width of the curve. The boundary in each direction
adheres to the no-slip boundary condition u = 0 m/s and space as well as time are
discretized with resolutions (∆x,∆y,∆z) = (0.05, 0.05, 1.00) m and ∆t = 0.001 s,
respectively (for more details see Tab. B.1 in Appendix B).

Figure 3.7 shows the fluid velocity in x-direction at t = 0 s (on the left) and
at t = 1 s (on the right) in every grid cell (on the top) and as a profile along the
diagonal (on the bottom). The fluid travels in the direction of the bulk velocity
(upper right corner) but also gets diffused through artificial diffusion. This diffusion
is characterized by a decreased amplitude and an increased width as indicated in the
right column of Figure 3.7 by the color range and ordinate which are reduced to
1 % of the original. Therefore, the convection unit test demonstrates the expected
behavior.
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Figure 3.7: Unit test for (linear) advection showing the x-velocity
(top: pseudocolor plot, bottom: curve along diagonal, left: at initial
stage, right: at t = 1 s with different color and ordinate range (!))

The spatial (absolute) error after tend = 2 s over the whole computational domain
is of order ε ≈ 2.85 × 10−4. Hereby, the resulting artificial diffusion can be reduced
by increasing the grid resolution as seen in Figure 3.8, where a passive scalar (here
temperature) is transported for tend = 10 s with advection due to cooled walls on the
left and top (T = 0 ◦C) and heated walls (T = 100 ◦C) on the right and bottom. The
bulk velocity is set to c = (2, 2, 0)m/s.
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Figure 3.8: Test for artificial diffusion
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Here, different grid resolutions from a coarse grid with (Δx,Δy) ≈ (1.6, 1.6) cm, over
a medium resolution with (Δx,Δy) ≈ (0.8, 0.8) cm to a fine grid with a small cell
spacing of roughly (Δx,Δy) ≈ (0.4, 0.4) cm, are tested, whereas the grid size of 1.0m
in z-direction and time stepping remain unchanged with Δt = 0.001 s (cf. Tab. B.2
in Appendix B). The numerical solution approximates a sharp distribution along
the diagonal of the computational domain of [0, 1]3 m3 the better, the higher the
grid resolution is set (cf. Fig. 3.9). The mixing of temperatures along the diagonal
represents the artificial diffusion, which has a greater influence on the numerical
solution the coarser the grid is.
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Figure 3.9: Artificially diffused temperature profile along the diagonal

3.3.2 Unit Test Diffusion

a) A manufactured solution for the diffusion equation, ∂tu = ν∇2u, is a multipli-
cation of the exponential function and sinuses

uana(x, t) ..= A exp(−3l2νt) sin(lx) sin(ly) sin(lz) . (3.7)

Solving the diffusion equation numerically for tend = 1 s with time step size
Δt = 0.0125 s on a domain of size [0, 2]2 × [0, 1]m3 with grid cell sizes of 0.05m
for Δx and Δy, and Δz = 1.00m, kinematic viscosity ν = 1 × 10−3 m2/s, ampli-
tude A = 1, and wave number l = 5/2π (so that the number of extremal points
per direction equals five), shows the expected diffusive behavior (i.e., smoothing
in regions of steep gradients, cf. Fig. 3.10).
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Figure 3.10: Unit test for diffusion showing x-velocity
(top: pseudocolor plot, bottom: curve along diagonal,
left: initial condition, right: numerical solution at t = 1 s)

Here, no-slip boundary conditions are set and the velocity takes the analytical
solution at t = 0 as initial guess, u(0)(x) = uana(x, t = 0) (for more details see
Tab. B.3 in Appendix B). Comparing the numerical with the analytical solution
at tend = 1 s over the whole domain gives a relative error of εrel ≈ 6%, whereby
the absolute error εabs ≈ 1.75 × 10−2 is divided by the L2-norm of the analytical
solution. The root mean square error for the horizontal velocity at the center
xc of the domain amounts to εRMS ≈ 4 × 10−3.

b) Another (qualitative) test is to start with the piecewise constant (hat) function

u(x) ..=

⎧⎪⎨
⎪⎩
2 , if x ∈ [0.5, 1]3

1 , else
(3.8)

on a uniform domain [0, 2]3 m3 with Dirichlet boundary conditions complying
with the piecewise function, thus u = 1m/s (cf. Tab. B.4 in Appendix B).
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When highly diffused with kinematic viscosity ν = 0.05m2/s, the amplitude
decreases while the width increases without any movement of the center. The
numerical solution on a grid of cell size (Δx,Δy,Δz) = (6.25, 6.25, 6.25) cm and
time step Δt = 0.02 s shows exactly this expected behavior (cf. Fig. 3.11).
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Figure 3.11: Qualitative test for diffusion showing x-velocity
(top: pseudocolor plot, bottom: curve along diagonal,
left: initial condition, right: numerical solution at t = 1 s)

3.3.3 Unit Test Pressure

Testing the multigrid scheme with pre-conditioning at the first time step is applied
on the setup of a combined sinus function as right-hand side of ∇2p = ∇ · u(3), where

∇ · u(3) ..= sin(lx) sin(ly) sin(lz) (3.9)
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results in the analytical solution for pressure

pana = − 1
3l2 sin(lx) sin(ly) sin(lz) (3.10)

with p(0) = 0Pa as the initial guess and wave number l = 2π. On the computa-
tional domain [0, 2]3 m3 the pressure Poisson equation is solved in one time step with
Δt = 0.1 s on a grid with Nx − 2 = Ny − 2 = Nz − 2 = 64 inner cells in each direc-
tion (i.e., Δx = Δy = Δz ≈ 3.13 cm). The Dirichlet boundary condition, p = 0Pa,
complies with the analytical solution at the boundaries. The pre-conditioning in the
first time step starts with two V-cycles and goes up to 100 cycles (stopping when
the L2-norm of the residual is less than δtol = 1 × 10−7). Within the cycles the
Jacobi method solves the residual equation on the coarsest grid (at fifth level with
Nx − 2 = Ny − 2 = Nz − 2 = 2 inner cells in each direction) iterating for a minimum
of four and a maximum of 100 iterations, but no longer than the L2-norm of the
residual reaches δtol = 1 × 10−7 (cf. Tab. B.5 in Appendix B).
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Figure 3.12: Unit test for pressure at t = 0.1 s
(top: pseudocolor plot, bottom: curve along diagonal,
left: numerical, right: analytical)
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Figure 3.12 shows the qualitative comparison between the numerical and analytical
result. The pre-conditioning succeeded since the initial guess p(0) = 0 Pa proceeds
in only one time step into a numerical solution with an absolute error of order
εabs ≈ 1× 10−5 and resulting relative error of εrel ≈ 0.3 % compared to its analyt-
ical solution. The root mean square error for the pressure at the center xc of the
domain is of order εRMS ≈ 2.5× 10−8.

The unit tests for advection, diffusion and pressure show good results in terms of
expected behavior and accuracy. Testing the combination(s) of the fractional steps for
correctness is left to the verification of the code with (semi-) analytical test cases, and
in addition, the underlying model needs to be validated using experimental studies.





Chapter 4

Verification and Validation of the
Prognosis Software

During and after code development, it is essential to be aware of errors and if possible
eliminate these errors to enhance the accuracy of the application (cf. Section 2.3). By
systematically verifying the code (e.g., by unit tests as in Section 3.3) computer
programming errors can be eliminated. Whereas unit testing handles isolated parts
of the solver, verification determines if the implemented computer model accurately
represents the mathematical model aimed to be solved. After code verification, model
validation is investigated. With validation, the physical modeling errors can be esti-
mated and the degree to which the underlying physical model accurately represents
the real world can be determined. This process of model development, verification,
and validation (cf. Thacker et al. (2004)) is illustrated in Figure 4.1. Accordingly, the
verification of the CFD application, JuROr, is discussed in Section 4.1 using (2D)
analytical and (3D) semi-analytical test cases solving the Navier-Stokes equations.
Thereafter, in Section 4.2 the validation of JuROr is demonstrated using a large-scale
and a small-scale experiment.

4.1 Verification of the Implementation

Analytical test cases are designed to assess the convergence (and therefore, accuracy)
of the numerical to the analytical solution. Hence, they can be used for code verifi-
cation. During the development of the code (especially in 2D), two test cases from
McGrattan et al. (2017a) were set up solving for the unsteady advective, viscous, and
pressure terms for non-turbulent flows without external sources.

After adding the third dimension and, more importantly, inner boundaries, also

83
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Figure 4.1: Illustrative approach to modeling, verification and validation (based
on Thacker et al. (2004))

more complex test cases in 3D such as in Ghia et al. (1982) or Martinuzzi and Tropea
(1993) and Breuer et al. (1996) are tested to verify JuROr.

4.1.1 Analytical Verification Scenarios

In 2D, there exist several analytical test cases which are useful for confirming the
convergence rates of the truncation errors in the spatial and temporal discretization
of the governing incompressible Navier-Stokes equations (2.5) - (2.6)

∇ · u = 0

∂tu + (u · ∇)u − ν∇2u + 1
ρ0

∇p = 0 .

In order to assure the same conditions when increasing the time and grid resolu-
tion, the number of iterations for the iterative solver is fixed (and not adjusted
automatically based on the residual).
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4.1.1.1 McDermott Test Case

An analytical solution of these equations is given by McDermott (2003) as

u(x, y, t) ..= 1 − A cos(x − t) sin(y − t) exp(−2νt) , (4.1)
v(x, y, t) ..= 1 + A sin(x − t) cos(y − t) exp(−2νt) , (4.2)

p(x, y, t) ..= −A2

4 [cos(2(x − t)) + cos(2(y − t))] exp(−4νt) (4.3)

with amplitude A = 2, kinematic viscosity ν ∈ {0, 0.1}m2/s, total simulation time
tend = 2π s and periodic boundary conditions. The underlying uniform and collocated
grid for the computational domain of a [0, 2π]2 m2 square varies for being coarse (with
8 × 8 inner cells) to fine (with 64 × 64 inner cells). Further physical, numerical and
model parameters can be obtained from Tables B.6 and B.7 in Appendix B.

In case of zero viscosity, the analytical solution is periodic in time, hence after
tend = 2π s the solution equals the initial setup. Figure 4.2 shows the numerical solu-
tion for the x-velocity in m/s with time step Δt = 0.01 s, where the time periodicity
for ν = 0m2/s cannot be verified, since the initial and final numerical solution at the
left and right, respectively, differ.
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Figure 4.2: McDermott (2003) test case: JuROr’s initial and final states of the u-
component of velocity (in m/s) for 64 × 64 inner cells with Δt = 0.01 s

Due to artificial diffusion (cf. Section 3.3.1) induced by the Semi-Lagrangian advection
scheme, the amplitude decreases even if diffusion is set to zero and the periodicity de-
clines. When the grid resolution is increased, the effect of artificial diffusion is reduced
while the amplitude stays at the same initial level and the periodicity improves
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(cf. Fig. 4.3 showing the x-velocity in m/s).
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Figure 4.3: McDermott (2003) test case: JuROr’s initial and final states of the
u-component of velocity (in m/s) for 512 × 512 inner cells with
Δt = 0.01 s

Intendedly including diffusion by setting ν = 0.1m2/s, the amplitude of the velocity
now decreases in time (cf. Fig. 4.4). From top left to bottom right of Figure 4.4, the
profiles also show the convergence of JuROr to the analytical solution when increasing
the grid resolution Nx − 2 = Ny − 2 ∈ {8, 16, 32, 64}.

To quantify the (spatial) convergence rate, and therefore, the order of accuracy of
the advective and viscous terms in JuROr, the RMS error

εRMS =

√√√√ 1
Nt

Nt∑
n=1

[
u(n)

ijk − u(xc, t(n))
]2

(4.4)

of the u-velocity at the center xc of the grid is plotted against the grid spacing as
log-log-plot in Figure 4.5. It demonstrates that the advective, viscous and pressure
terms in JuROr are convergent and first-order accurate independent from the kine-
matic viscosity. This result is in line with the theoretical first-order accuracy of
the implemented numerical solution methods for advection, diffusion and pressure
(cf. Section 2.3).
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Figure 4.4: McDermott (2003) test case: Curve of horizontal velocity over time at
grid center for resolutions Nx − 2 = Ny − 2 ∈ {8, 16, 32, 64}

10−2 10−1
10−4

10−3

10−2

10−1

100

p = 0.84

p = 1.04

Δx in m

ε R
M

S(
x c

)
in

m
/s

ν = 0
ν = 0.1
O(Δx)
O(Δx2)

Figure 4.5: McDermott (2003) test case: JuROr’s spatial
convergence rate for horizontal velocity with
Nx − 2 = Ny − 2 ∈ {32, 64, 128, 256} and Δt = 0.01 s
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To calculate the temporal convergence order, Richardson’s extrapolation (cf. Moin
(2001)) is applied to the RMS error, ε = εRMS(xc), of the horizontal velocity at the
grid center

pRich =
ln
(
ε3−ε2
ε2−ε1

)
ln 0.5 (4.5)

showing an order of p = 1 in Table 4.1, which is also in line with the theoretical order
of convergence in time.

Table 4.1: McDermott (2003) test case: JuROr’s temporal convergence rate for
horizontal velocity with Richardson extrapolation

ν = 0 m2/s ν = 0.1 m2/s

Inner cells ∆t in s εRMS(xc) pRich εRMS(xc) pRich

64× 64 0.01 0.378 1.05 0.132 1.04
64× 64 0.005 0.399 1.02 0.140 1.00
64× 64 0.0025 0.409 1.02 0.143 1.02
64× 64 0.00125 0.414 - 0.145 -
64× 64 0.000625 0.416 - 0.146 -

4.1.1.2 Vortex Test Case

Another test case demonstrating the order of accuracy of JuROr is a flow field of a
single vortex advected by a uniform flow, U0, in a square of width L with periodic
boundary conditions and no diffusion, i.e., ν = 0 m2/s (cf. Fig. 4.6, Tab. B.8, Tab. B.9
in Appendix B). The vortex test case was developed by Jouhaud (2010) with an
analytical solution of

u(x, y) ..= U0 −
Γy
R2
c

exp(−x
2 + y2

2R2
c

) , (4.6)

v(x, y) ..= V0 + Γx
R2
c

exp(−x
2 + y2

2R2
c

) , (4.7)

maintaining the geometry of the vortex over time providing a measure of the order
of accuracy of the advection scheme (and time integration). Thereby, Rc

..= L/20
determines the characteristic size of the vortex and Γ ..= 0.04 U0Rc

√
e describes its

intensity. Due to the uniform flow field and periodic boundary conditions, the vortex
repeatedly passes through the domain. Thereby, the time of passing through is defined
as the time period required for the vortex to return to its original position, hence

tf = L/U0 . (4.8)
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L
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(a) Exemplary illustration of
the geometry setup

(b) Exemplary illustration of
the vector field

Figure 4.6: Jouhaud (2010) test case: Two-dimensional vortex in a constant flow
field

Setting the domain width to L = 1m and the uniform flow velocity pointing into
x-direction to U0 = (0.1, 0)� m/s, results in tf = 10 s. For the numerical result
with Δt = 0.01 s it holds that the more often the vortex passes its original position,
the further its u-velocity profile diverges from the profile of the analytical solution
(cf. Fig. 4.7, Fig. 4.8). To assess the order of accuracy, again the RMS error of the
u-velocity at the first three pass-through times is plotted as log-log-plot in Figure 4.7.
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Figure 4.7: Jouhaud (2010) test case: JuROr’s spatial convergence rate
for x-velocity with Nx − 2 ∈ {80, 160, 320} and Δt = 0.01 s
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Figure 4.8: Jouhaud (2010) test case: Horizontal velocity u along a section of the
domain height y at width x = 0m for the first three complete loops
(top: 160 × 160 inner grid cells, bottom: 320 × 320 inner grid cells)

The gradients of the (spatial) RMS error lines in Figure 4.7 are only very roughly
parallel to the first-order line for the first pass through. The second and third passes
suffer even more from artificial diffusion and therefore smoothing, which leads to
decreasing convergence orders with increasing pass-through times (as also indicated
in Figure 4.8 for different grid resolutions). The theoretical convergence order (p = 1)
for the numerical solution scheme can only slightly be maintained by the first pass
through.
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Also of first-order should be the temporal convergence rate. Again the Richardson
extrapolation is consulted to calculate the temporal convergence rate, which is indeed
of first-order as can be seen in Table 4.2.

Table 4.2: Jouhaud (2010) test case: JuROr’s temporal convergence rate for hori-
zontal velocity with Richardson extrapolation

tend = 10 s tend = 20 s tend = 30 s

Inner cells ∆t in s εRMS(xc) pRich εRMS(xc) pRich εRMS(xc) pRich

80× 80 0.01 2.37× 10−4 1.05 2.86× 10−4 1.06 3.09× 10−4 1.05
80× 80 0.005 2.40× 10−4 1.03 2.88× 10−4 1.03 3.11× 10−4 1.04
80× 80 0.0025 2.42× 10−4 1.02 2.89× 10−4 1.01 3.12× 10−4 1.01
80× 80 0.00125 2.43× 10−4 - 2.90× 10−4 - 3.13× 10−4 -
80× 80 0.000625 2.43× 10−4 - 2.90× 10−4 - 3.13× 10−4 -

The 2D test cases of McDermott (2003) and Jouhaud (2010) confirm that the nu-
merical solution of the incompressible Navier-Stokes equations converges in space and
time to the analytical solution with rate p = 1 using JuROr, but nevertheless suffering
from artificial diffusion.

4.1.2 Semi-Analytical Verification Scenarios

Next, JuROr is tested using semi-analytical test cases, where no analytical solu-
tion is available, but relevant benchmarks such as drift points (for separation and
reattachment) can be compared to simulations and experimental data from litera-
ture.

Thereby, the first test case of lid-driven cavity flow is numerically solved by solv-
ing the incompressible Navier-Stokes equations (2.5) - (2.6) without external forces,
whereas the second test case of flow around a cube is solved using the Constant
Smagorinsky-Lilly LES turbulence model for

∇ · u = 0 (4.9)

∂tu + (u · ∇) u− (ν + νT )∇2u + 1
ρ0
∇p = 0 (4.10)

with

νT = C2
S∆2

f

∥∥∥S∥∥∥ with
∥∥∥S∥∥∥ =

√√√√2
3∑
i=1

3∑
j=1

Si,jSi,j , (4.11)

where Si,j = 1
2(∂xj

ui+∂xi
uj) for i, j = 1, 2, 3 and i 6= j and the Smagorinsky constant

CS is set to be CS = 0.2.
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4.1.2.1 Lid-Driven Cavity Flow

The classical 2D lid-driven cavity problem simulating a continuously moving lid with
constant velocity on top of a square cavity as illustrated in Figure 4.9 is well docu-
mented and has been investigated by many authors (cf. Bruneau and Saad (2006);
Ghia et al. (1982); Glimberg et al. (2009); Marchi et al. (2009)).

x

y z

V 1 V 2

L

Ulid = 1, p = 0

u = 0
∂np = 0

u = 0
∂np = 0

u = 0
∂np = 0

Figure 4.9: Setup of lid-driven cavity flow with boundary conditions

The key characteristics of the resulting flow are three vortices: the primary vortex in
the middle of the cavity, and two secondary vortices, V 1 and V 2, in the lower corners
(cf. Fig. 4.9). Thereby, the separation and reattachment points of the numerical
solution (i.e., the widths, V 1

x , V 2
x and heights, V 1

y , V 2
y , of the secondary vortices as

indicated in the streamline plot 4.10) are taken as quality reference in literature for
a wide range of Reynolds numbers. Here, a Reynolds number of

Re = UlidL

ν
= 1000 (4.12)

is set by prescribing Ulid = 1m/s, ν = 1 × 10−3 m2/s for a square cavity of width
L = 1m resulting in a laminar flow. Further, all velocities except the lid velocity in
x-direction comply with the no-slip boundary condition u = 0m/s. Additionally, the
pressure at the lid is set to be zero, p = 0Pa, with no change in gradient, i.e., zero
Neumann condition ∂np = 0Pa/m, everywhere else. Further physical, numerical and
solution parameters can be obtained from Tables B.10 and B.11 in Appendix B.
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Figure 4.10: JuROr’s streamlines colored by the speed
√

u2 + v2 (in m/s) of the
cavity flow for Nx − 2 = Ny − 2 = 256 showing the primary vortex and
two secondary vortices V 1 (bottom left) and V 2 (bottom right)

The vertical and horizontal spreads of the secondary vortices, V 1
x , V 1

y , V 2
x , and V 2

y ,
are measured by taking the separation points of the speed streamlines into account
(cf. Fig. 4.11 for Nx − 2 = Ny − 2 = 256 from top left to bottom right). The separation
point is thereby defined as the point in space where following two adjacent streamlines
leads to separate directions.

Simulating the cavity flow for tend = 300 s with time resolution Δt = 0.001 s and
grid resolutions, Nx − 2 = Ny − 2 ∈ {64, 128, 256}, the results (relative to L) are com-
pared to the two-dimensional simulations of Ghia et al. (1982) using a 129 × 129 grid.
Table 4.3 and Figure 4.12 indicate that JuROr’s results are closer to the reference
results of Ghia et al. (1982) the higher the grid resolution is. Thereby, the finest
grid result shows sufficient agreement, whereas the coarse and medium grid results
suffer from smoothing due to artificial diffusion and discretization errors. Further,
the grid sizes for Nx − 2 = Ny − 2 ∈ {64, 128} are larger than the Kolmogorov scale,
estimated by η ≈ (ν3L/U3)1/4, which results in possibly non-dissolved eddies.
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Figure 4.11: Detailed view of the separation points of the secondary vortices of the
cavity flow for Nx − 2 = Ny − 2 = 256 (in m/s)

Table 4.3: Vertical and horizontal spread of secondary vortices V 1 and V 2 for the
lid-driven cavity flow compared to Ghia et al. (1982)

JuROr Ghia et al. (1982)

Vortex size in m 64 × 64 128 × 128 256 × 256 129 × 129

V 1
x 0.15 0.18 0.20 0.22

V 1
y 0.12 0.14 0.15 0.18

V 2
x 0.25 0.26 0.27 0.30

V 2
y 0.29 0.32 0.34 0.35



Chapter 4 Verification and Validation 95

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Horizontal velocity u in m/s

0.0

0.2

0.4

0.6

0.8

1.0
V

er
ti

ca
l

ce
n
te

r
li

n
e

y
in

m

0.0 0.2 0.4 0.6 0.8 1.0

Vertical velocity v in m/s

−0.4

−0.2

0.0

0.2

0.4

H
o
ri

zo
n
ta

l
ce

n
te

r
li

n
e

x
in

m

Ghia et al.

JuROr (64×64)

JuROr (128×128)

JuROr (256×256)

Figure 4.12: Velocity profiles along the center lines of the cavity flow for
Nx − 2 = Ny − 2 ∈ {64, 128, 256}

4.1.2.2 Flow Around a Cube

With the scenario of turbulent flow around a cube, the turbulence model introduced
in Section 2.1.2 as well as inner boundaries in 3D defined in Section 3.2.1 are tested.
Therefore, the numerical results of JuROr are compared to the simulation data from
Breuer et al. (1996); Rodi et al. (1995, 1997); Yakhot et al. (2006) and experimental
data from Martinuzzi and Tropea (1993), again using the reattachment length of the
occurring vortex as relevant benchmark for quality.
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The setup consists of a fixed cube of width L in an open flow channel with dimensions
width×height×depth of 10L × 2L × 7L as depicted in Figure 4.13 and parameters
as summarized in Tables B.12 and B.13 in Appendix B. In order to reproduce an open
flow at the outlet and a fully developed flow at the inlet (on the left-hand side), the
domain boundary conditions for the velocity are set to a (horizontal) inflow velocity
Uinflow = (uin, 0, 0)� at the left with the same velocity, Uoutflow = (uin, 0, 0)�, at the
outflow on the right, whereas at all other domain boundaries the velocity is set to
have a zero gradient using the Neumann condition. The pressure is set to have zero
gradients at all domain as well as obstacle boundaries, where the velocity obeys the
no-slip condition u = 0m/s. In order to assure a turbulent flow, the inlet velocity,
the height of the cube and the kinematic viscosity are chosen to yield a high Reynolds
number of

Re = uinL

ν
= 40 000. (4.13)

For a cube of height L = 1 m, and viscosity ν = 1 × 10−5 m2/s, the inflow velocity is
set to uin = 0.4 m/s.

x

y z

L

u = 0
∂np = 0

2L
3L 6L

L

7L

∂nu = 0
∂np = 0

∂nu = 0
∂np = 0

uin
uout = uin

Figure 4.13: Setup of flow around cube with inner and outer boundary conditions

Since it is not possible with JuROr to set boundary conditions via functions (e.g.,
a parabolic velocity profile as it is the case in Breuer et al. (1996)), the open flow
channel is reproduced with a constant background velocity of u(0) = Uinflow as initial
condition resulting in a symmetric flow field. This approach already produces an error
source for the numerical result compared to the expected flow behavior. The flow at
hand is expected to build a primary vortex downstream the cube and a horseshoe-
shaped flow alongside the cube since the flow upstream the cube is split when striking
the wall.
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As the flow is turbulent and hence not steady, the numerical solution is averaged over
the whole simulation time (with 50 instantaneous records from a simulation time of
tend = 10 s and time resolution of Δt = 0.01 s, thus every 20th time step is taken into
account). The top of Figure 4.14 shows the speed streamlines in m/s in the x-y-plane
at the center z = 0 m. Here, the primary vortex downstream the cube is visible. The
flow around the cube in the x-z-plane at y = 0.01 m is depicted at the bottom of
Figure 4.14.
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Figure 4.14: JuROr’s speed streamlines in m/s of the flow around the cube in the
x-y-plane z = 0 m (top) and in the x-z-plane at y = 0.01 m (bottom)

Again the reattachment length, xr, of the vortex is defined as separation point of
the streamlines at downstream location. The speed streamlines in m/s calculated by
JuROr are shown in detail in Figure 4.15. The reattachment length is then com-
pared to the simulation results of Breuer et al. (1996); Rodi et al. (1995, 1997) and
Yakhot et al. (2006) as well as to the experimental result of Martinuzzi and Tropea
(1993) (taken from Rodi (1997)). Table 4.4 shows that JuROr underestimates the
reattachment point. Taking into consideration that the parabolic velocity profile at
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the inflow and the wall boundaries are not explicitly modeled affecting the length of
the reattachment point, the characteristics of the flow are maintained in sufficient
agreement with the theoretical flow behavior.
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Figure 4.15: Detailed view of the reattachment point at x = 1.85m, downstream
the cube in the x-y-plane at z = 0 m (top) and in the x-z-plane at
y = 0.01 m (bottom) (taken from the speed streamlines in m/s)

Table 4.4: Comparison of the reattachment length, xr, for the flow around a cube

Reference Calculation method xr in m

JuROr LES, Smagorinsky 0.85
Breuer et al. (1996) LES, Smagorinsky 1.69

LES, Dynamic 1.43
Rodi et al. (1995) LES, Smagorinsky 1.70
Rodi et al. (1997) LES, Dynamic 1.43
Yakhot et al. (2006) DNS 1.50
Martinuzzi and Tropea (1993) Experiment 1.61
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It is not only the goal to prove that the numerical methods are correctly implemented,
but also to evaluate if the code maps the physics (as in Section 2.1) correctly. There-
fore, simulation results are further compared to experimental data in the next section.
Sensitivity and uncertainty quantification (e.g., with Latin Hypercube Sampling or
Monte Carlo) are out of scope for the work at hand, but by considering an increasing
set of validation experiments, it is possible to estimate the quality of the model’s
prognosis in the future. This set of validation scenarios (and its execution) still needs
to be build up for JuROr.

4.2 Validation of the Underlying Model

In order to validate JuROr, single room scenarios in 3D with thermally driven flows
are simulated and compared to experimental data. First, the well-documented fire
induced flow experiment of Steckler et al. (1982) in a compartment is evaluated with
regards to various benchmarks. After this scenario, a comparison of JuROr’s simula-
tion data to a small-scale open plume experiment is assessed modeling the flow due
to an electrically heated copper block.

4.2.1 Fire Induced Flow Experiment in a Compartment

Steckler et al. (1982) conducted 55 full-scale steady state fire experiments in a 2.8 m
by 2.8 m by 2.13 m compartment with a single door of various widths, or a single
window with various heights (see also Steckler et al. (1985)). At varying locations on
the floor of the compartment, a methane burner with a 0.3 m diameter was placed
to generate fires with heat release rates of 31.6 kW, 62.9 kW, 105.3 kW and 158 kW
(cf. Fig. 4.16). The insulation of the compartment consisted of calcium silicate on
top of plywood at the bottom and ceramic fiber over aluminium on the walls and the
ceiling (cf. Steckler et al. (1985)).

Since the temperature difference between the room and the outside with ambient
temperature T0 creates a pressure difference, the gas flows through the opening. This
effect can be seen in velocity profiles in the doorway, where the neutral plane location
determines the height at which the velocity changes directions. Further, gas layers
develop due to the nearby walls restricting the flow with high average temperatures
below the ceiling and lower temperatures at the bottom (separated by the so-called
interface height) as can be seen in temperature profiles in the room and in the opening.
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Figure 4.16: Illustrative setup of Steckler et al. (1982)’s experiment No 16:
outside 3D view (left) and inside 2D view (right)

Hence, the horizontal velocity, u, and the temperature, T , were measured verti-
cally in the doorway (at center), along with temperature measurements inside the
compartment at the front right corner. These measurements were conducted with
bi-directional velocity probes and stationary bare-wire thermocouples placed 5.7 cm
above the ground with a distance of 11.4 cm. The thermocouple wires, the data record-
ing system as well as the installation (e.g., through radiation errors at the junctions)
at the door opening were associated with a difference between the gas temperature,
Tg, and thermocouple temperature, Tt. Table 4.5 shows relevant corrections as a
function of the thermocouple temperature and gas velocity near or above the neutral
plane. Further, differences of −9 ◦C to −1 ◦C occurred below the neutral plane.

Table 4.5: Corrections (Tg − Tt) for opening thermocouples near or above the neu-
tral plane in Steckler et al. (1982)’s experiments

Tt in ◦C
u in m/s

< 0.1 0.1 − 0.6 0.6 − 1.2 > 1.2

< 50 −20/ + 2
50 − 100 −14/ + 4 −9/ + 4
100 − 150 −9/ + 7 −2/ + 6

Within the room, the error limits of the thermocouple wires and the data recording
system are found to be ±1 ◦C and those associated with the thermocouple junctions
(including radiation errors) are estimated at −3 ◦C to +1 ◦C. The velocity probes
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were aligned such that their heads were directed parallel to the flow with their axes
being horizontal. The associated errors due to uncertainties in the pressure difference
across the probe heads, absolute gas temperature and in the calibration factor are
stated to be 10 % at maximum for u < 0.1 m/s and at least 13 % for u > 0.1 m/s.

In order to simulate Steckler et al. (1982)’s experiment No 16 with the burner
placed in the center of the compartment releasing total heat of 62.9 kW and with
a door of height × width of 1.83 m × 0.86 m, the physical, numerical and model
parameters from Tables B.14, B.15 and B.16 in Appendix B were set. Further, to
be able to capture the outflow of the door and the flow into the surrounding area
with outflow boundaries, the computational domain was enhanced in each direction
to 7.00 m× 4.26 m× 5.60 m with a grid of 160× 128× 128 inner cells resulting in a
spatial resolution of roughly 0.04 m× 0.03 m× 0.04 m. The domain boundaries were
set to an ambient temperature of Tw = T0 = 26 ◦C with a no-slip boundary for the
velocities and a no-flow pressure boundary. The compartment was constructed by
an assembly of seven obstacles each of 0.2 m thickness with no-slip solid walls and
no-flow pressure condition as well as adiabatic surfaces.

Since JuROr is not designed to simulate either radiation or combustion, the total
heat release rate of 62.9 kW is reduced by χrad = 20 % to 50.3 kW (cf. McGrattan
et al. (2017b)). Further, the volumetric heat source is modeled by a Gaussian curve
of full width at half maximum of 0.25 m× 0.60 m× 0.25 m to ensure that the heat
source is discretized with at least eight cells in x-z-plane and the fire height is modeled
correctly. The ramp-up time is set to τ = 5 s until the maximum heat is released.
Additionally, the flow is turbulent and therefore non-steady. Hence, the average
of 100 instantaneous numerical results of a total simulation period of tend = 1800 s
integrated with a time step size of ∆t = 0.05 s was taken to assess the vertical profiles
in the doorway and the inside of the compartment. Also, the results of Steckler et al.
(1982) are averaged over multiple readings taken at certain time intervals.

With this setup, the qualitative effect of gas flowing through the opening can
be seen at the top of Figure 4.17 showing the speed streamlines in m/s colored by√
u2 + v2 in the center of the x-y-plane. At the bottom, Figure 4.17 shows the corre-

sponding upper hot and lower cold gas layers (as filled contour lines in ◦C). Figure 4.18
shows the velocity profile (on the top) and the vertical temperature profile (on the
bottom) at the center of the doorway. Here, JuROr’s numerical results are compared
to the experimental result of Steckler et al. (1982) (including reported error ranges)
as well as the simulation result of NIST’s Fire Dynamics Simulator (FDS v6.5.3,
cf. McGrattan et al. (2017c)).
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Figure 4.17: JuROr’s speed streamlines (in m/s, at the top) and temperature con-
tour lines (in ◦C, at the bottom) in the central x-y-plane averaged in
time for Steckler et al. (1982)’s experiment No 16
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Thereby, the temperature at the top of the doorway is slightly overestimated by
JuROr (with a relative error in L2-norm of 16% over all data points), whereas the
velocity at the bottom of the door is underestimated (with a relative error in L2-norm
of 26% over all data points). Since the walls are assumed to have no-slip boundaries,
the velocity takes a sharp turn on the floor and beneath the door soffit. From these
velocity profiles the neutral plane location, N , relative to the door height, H0, can
be determined and shows good agreement with Steckler et al. (1982)’s experimental
and FDS’s simulation results (cf. Tab. 4.6).
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Figure 4.18: Vertical velocity (at the top) and temperature profiles (at the
bottom) at the center of the doorway for Steckler et al. (1982)’s
experiment No 16 including measurement errors
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Table 4.6: Comparison of neutral plane locations for Steckler et al. (1982)’s
experiment No 16

Reference Calculation method N/H0 in m

JuROr Solely transport of hot gas 0.537
FDS (v6.5.3) With radiation, combustion, and insulation, no soot 0.569
Steckler et al. (1982) Experiment 0.573

Within the room, the temperature profile is depicted in Figure 4.19. Again, the result
of JuROr is compared to the experimental result of Steckler et al. (1982)’s experiment
No 16 (including reported error ranges) and the simulation result of FDS. As it is the
case for FDS’ simulation, the thermal interface height of JuROr’s simulation marked
by a steep temperature gradient is not as distinctive as for the experimental results.
Towards the ceiling of the room, the temperature is mostly overestimated by JuROr
(with a relative error in L2-norm of 15% over all data points).
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Figure 4.19: Vertical temperature profile at the front right corner of the room for
Steckler et al. (1982)’s experiment No 16 including errors

As an additional benchmark the thermal interface height, Yi, is taken into con-
sideration. Thereby, Yi is calculated with the method of the steepest gradient (approx-
imated with second-order central differences) based on the assumption of a two-zone
separation. The upper and lower average temperatures, Tu and Tl, are then deter-
mined based on the thermal interface height as separation point between Tu and Tl.
Table 4.7 shows good agreement of the thermal interface height and upper and lower
average temperature for both, JuROr’s simulation result and Steckler et al. (1982)’s
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experiment No 16 stating a ±8 % to ±50 % accuracy range. Nevertheless, JuROr (and
FDS) fail to accurately predict the sharp transition between the upper hot layer and
lower cold layer (cf. Fig. 4.19). In JuROr’s case this imprecision could be explained by
the smearing effect of artificial diffusion resulting from the use of the Semi-Lagrangian
advection scheme, deficiencies in the LES (Constant Smagorinsky-Lilly) turbulence
scheme and/or the lack of a radiation model.

Table 4.7: Comparison of thermal interface heights for Steckler et al. (1982)’s ex-
periment No 16

Reference Yi in m Tl in ◦C Tu in ◦C

JuROr 0.915 50.23 121.53
FDS (v6.5.3) 0.798 43.54 103.62
Steckler et al. (1982) 1.038 50.82 118.73

Taking into consideration that neither radiation, combustion nor conduction into
walls are modeled (other than in FDS) and the Steckler experiments themselves are
associated with measurement errors (cf. Tab. 4.5), JuROr’s results are highly satisfy-
ing.

4.2.2 Open Plume Experiment Using Particle Image Velo-
cimetry

In order to validate JuROr with a more suitable experiment that lies within the
bounds of JuROr’s technical limitations, an open plume experiment of a buoyancy-
driven flow resulting from an electrically heated copper block (instead of burning
methane) is used. In his dissertation, Meunders (2016) designed and conducted small-
scale laboratory experiments specially designed for the validation of buoyancy-driven
flows while neglecting pyrolysis and combustion due to simplification, high precision,
and reproducibility. Two different setups were investigated: an undisturbed open
buoyant plume above the heat source (cf. Fig. 4.20), and a buoyant spill plume emerg-
ing from a compartment opening, inside of an enclosure of width × height × depth
of 735 mm× 650 mm× 575 mm.

The enclosure made of polymethyl methacrylate is needed to confine tracer par-
ticles which are used for a non-intrusive measurement technique, called Particle Im-
age Velocimetry (PIV). With PIV the flow field as well as the concentration field
of buoyancy-driven plumes can be investigated. First, the centered copper block of
size 60 mm × 40 mm × 60 mm is electrically heated (on top of a 20 mm thick plate
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Figure 4.20: Illustrative setup of Meunders (2016)’s PIV experiment for an open
plume: outside 3D view (left) and enlarged heated copper block
(right)

out of calcium silicate to reduce heat loss to the floor and covered with chalk to
keep the radiative and convective heat transfer constant). While reaching stationary
block as well as gas and enclosure temperatures, the tracer particles are injected into
the enclosure spreading quickly due to the buoyancy-driven air movement. Then,
after reaching a quasi-steady state, the flow velocity is derived from particle images
taken by adjustable cameras at a defined time interval. The particles are thereby
illuminated by a laser light sheet, which is placed vertically along the plumes axis
(cf. Meunders (2016); Meunders et al. (2018)). Therewith, the flow velocities can be
accurately measured due to the non-intrusive nature of PIV leaving the investigated
flow undisturbed. Hence, flow velocities are not only derived at a single location but
in an entire plane almost instantaneously.

Additionally to the flow velocities, gas temperatures are measured by multiple
thermometers in- and around the enclosure. Thereby, five (resistance) thermometers
are placed at the front right corner inside of the enclosure (100mm away from the
adjacent walls) proceeding vertically beneath each other with a distance of 120mm
starting at 60mm beneath the ceiling and ending 110mm above the floor of the
enclosure. The setup of the undisturbed buoyant plume developing over an electrically
heated block of copper, as it is evaluated in Meunders et al. (2018), is now used to
validate JuROr. The whole measurement setup including the laser sheet and cameras
is shown in Figure 4.21.
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Figure 4.21: Experimental geometry of Meunders (2016) with an heat source placed
in the middle of an enclosure, various thermometers in- and outside
the enclosure, and adjustable cameras to capture the particles illumi-
nated by a laser light sheet

What is expected as outcome of the open plume experiment is an undisturbed buoyant
plume above the heat source and the formation of a hot gas layer in the upper part of
the enclosure. The temperature will continuously increase and, thus, no distinct inter-
face between the hot upper layer and cold lower layer can be observed (cf. Meunders
et al. (2018)). Relevant benchmarks for comparing the experimental and simulation
results are (besides others) time-averaged horizontal profiles of the vertical velocity
component 100 mm, 250 mm and 400 mm above the copper block, as well as a time-
averaged vertical temperature profile in the corner of the enclosure. Further, the
convective heat transfer as sole driver of the plume is estimated by calculating the
radiative fraction based on available temperature data and subtracting it from the
total energy input (cf. Meunders et al. (2018)). In order to generally compare the
laminar and turbulent characteristics of the flow across various experiments, the ver-
tical velocity is plotted as a function of the dimensionless (local) Grashof number at
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the symmetry centerline (at block center in z-direction) following Noto et al. (1999)

Gr = gβ(THS, surf − T0)y3

ν2 (4.14)

with gravitational acceleration g, thermal expansion coefficient β and kinematic vis-
cosity ν of air at ambient temperature T0.

Out of four different heating powers, PHS, of the heat source (HS), a medium high
setting is chosen as benchmark with PHS = 78.0± 0.3 W (and associated standard
deviation). This power setting results in an internal heat source temperature of
THS = 270.7± 0.5 ◦C measured by an embedded thermocouple and a surface tem-
perature of THS, surf = 264.8 ◦C measured by an infrared camera with a measurement
uncertainty of 1% of the measured temperature. The surface temperature of the
heat source is thereby lower than its internal temperature since cooling effects of
convection and radiation on the outside occur. Meunders et al. (2018) estimated
the radiative heat transfer based on the Stefan-Boltzmann law (cf. Stefan (1879);
Boltzmann (1884))

Prad = Aεσ(T 4 − T 4
0 ) , (4.15)

where A denotes the area between which the radiative heat transport occurs, ε is
the emissivity (here of the block coating), σ ≈ 5.67× 10−8 W/(m2 K4) is the Stefan-
Boltzmann constant and T0 is the reference temperature (here of the enclosure walls).
For the radiative fraction emitted from the heat source, they derive an estimate
of Prad, HS = 46.0 W, and from the insulating plate underneath the heat source the
radiative heat flux is calculated to be Prad, ins = 7.3 W. Under the assumption that the
conductive heat losses are negligible, the convective heat transfer can be estimated as
difference between the measured total power input PHS and the total radiative heat
fluxes, i.e.,

Pconv,∆ = PHS − (Prad, HS + Prad, ins) = 24.7 W . (4.16)

An alternative estimation of the convective heat transfer is based on VDI (2013) where
heat transfer coefficients, hi, for each surface i are derived from Nusselt correlations
for free convection (cf. Def. 2.1.13). Thereby, the Nusselt number is expressed as a
function of the Rayleigh number and the Prandtl number such that the heat transfer
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coefficients can be calculated from the ratio of convective to conductive heat transfer

Nui = convective heat transfer
conductive heat transfer = hi

k/L
= hiL

k
, (4.17)

where k denotes the thermal conductivity and L the characteristic length. The con-
vective heat flux in the setup at hand can then be computed as

Pconv = hside

(
4 · xins · yins · (Tins − T0) + 4 · xHS · yHS · (THS, surf − T0)

)
(4.18)

+ htop · x2
HS · (THS, surf − T0)

= 28.5 W

with Rayleigh numbers of Raside = 40.8× 104 and Ratop = 2.15× 104, and resulting
heat transfer coefficients hside = 11.13 W/(m2 K) and htop = 2.66 W/(m2 K). The
respective widths and heights of the surfaces are denoted by x and y. Since JuROr
does not model the radiative heat transfer, (4.19) is now used in the simulation
setup to approximate the surface temperature of the heated block solely based on
convection:

T−HS, surf = Pconv − 4 · hside · xins · yins · (Tins − T0)
4 · hside · xHS · yHS + htop · x2

HS
+ T0 = 150.03 ◦C (4.19)

assuming that Pconv = 26.6 W (taken as the average of both, Pconv,∆ = 24.7 W and
Pconv = 28.5 W), Tins = THS = 270.7 ◦C and T0 = 31.5 ◦C. This reduced temperature,
THS, surf being 56.7 % of the measured temperature including radiation, serves as wall
temperature boundary condition in the simulation setup with point of origin centered
at the top of the heated block.

In order to quickly obtain a (quasi-) steady state (obtained in the experiments
after 1.5 hours), the initial conditions for the gas temperatures inside the enclosure
are prescribed as layers, while the velocity and pressure are set to zero. The domain
boundaries are set to T = 31.5 ◦C since the inner walls of the enclosure heat up
over time due to higher gas temperatures than the ambient temperature. A no-
slip boundary condition for velocity (u = 0 m/s) is set and a no-flow boundary
for the pressure (∂np = 0 Pa/m) ensures that no fluid enters or exits the domain.
Since no material properties, such as emissivity of wood, can be set in JuROr and
there exists no model for the heat transfer to or from solid walls but to set the
wall temperature, the heated block is constructed as one coherent obstacle with an
obstacle wall temperature of T−HS, surf = 150.03 ◦C (except at the bottom), a no-slip
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velocity and again a no-flow pressure condition. Based on the grid sensitivity analysis
of Meunders (2016), the domain is discretized using two resolutions, 256 × 256 × 256
inner cells, which is considered appropriate for this setup and 128 × 128 × 128 inner
cells as a rather coarse grid. However, to achieve low calculation times, the coarser
grid with 128 × 128 × 128 inner cells is initially applied and the time stepping is set
to Δt = 0.01 s (possible due to the unconditionally stable nature of JuROr) with a
total simulation time of tend = 300 s. As physical parameters, the kinematic viscosity
is set to ν ≈ 2.44 × 10−5 m2/s and the thermal diffusivity to α = 3.31 × 10−5 m2/s.
For the turbulence model, a turbulent Prandtl number of Pr T = 0.9 is used and
the Smagorinsky Constant is set to CS = 0.2. Details of the simulation setup with
JuROr can be found in Tables B.17 and B.18 in Appendix B. All following figures
show JuROr’s time-averaged simulation results of 100 instantaneous recordings for a
total simulation time of tend = 300 s with Δt = 0.01 s.
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Figure 4.22: Meunders (2016)’s experimental result for one specific run showing
speed contour lines (left), JuROr’s speed contour lines (middle) and
horizontal velocity profiles (right) in the central x-y-plane for Meun-
ders (2016)’s open plume experiment with 128 × 128 × 128 inner cells
and Δt = 0.01 s. Blue horizontal lines indicate the heights at which the
horizontal profiles of the vertical velocity are taken.

On the left of Figure 4.22, the magnitude,
√

u2 + v2 + w2, of the velocity is shown
in the region around the heated block for one specific run of Meunders (2016)’s open
plume experiment. In JuROr’s simulation results in the middle of Figure 4.22, it can
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be observed that the gas velocity increases in height until the gas reaches the ceiling of
the enclosure. This increase is also indicated by the horizontal profiles of the vertical
velocity at 100mm, 250mm and 400mm above the copper block (see right side of
Figure 4.22). Around the surface of the copper block, the velocity builds up at the
left and right side, while it is reduced at its top (see middle of Figure 4.22). Here, a
slipstream of the heat source is produced, where the temperature is the highest on
top of the heated block. This slipstream can also be observed in Figure 4.23 showing
JuROr’s temperature contours.
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Figure 4.23: JuROr’s temperature contour lines in the central x-y-plane for Meun-
ders (2016)’s open plume experiment with 128 × 128 × 128 inner cells
and Δt = 0.01 s

These observations are qualitatively in line with Meunders (2016)’s results. How-
ever, the observed widening of the plume in the upper half and the narrowing above
the heat source (cf. Fig. 4.22 on the left) cannot be validated with JuROr due to
the unincisive turbulent behavior of the flow in JuROr’s simulation results. When
explicitly comparing all velocity profiles on the right side of Figure 4.22, JuROr’s
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results (in blue) still satisfactorily agree with the experimental results marked in gray
indicating multiple measurement runs. JuROr and FDS (in black) overestimate the
velocity at 400mm, while FDS’s simulation results (with a 5mm grid, including ra-
diation) additionally underestimate the gas velocity at the lower heights. Further,
the phenomenon of a double plume in the lower part is more dominant in JuROr’s
simulations than it is in FDS’ results. Whereas in JuROr’s (and FDS’) simulation
the plume rises vertically above the heat source, the plume in the experiment bends
to the left causing a shift of the velocity profiles. According to Meunders (2016), this
bend is (possibly) due to an uneven heating of the source (which is not simulated by
JuROr or FDS).

Regarding the temperature distribution (in the front right corner of the enclosure),
JuROr gives less satisfactory results as indicated in Figure 4.24. Although the effective
convective heat flux (with 29.4W =

∫
A ρ0cpv(T − T0)dA ≈ ∑

ρ0cpv(T − T0)ΔxΔz at
y = 10mm) is slightly higher than the estimated convective heat flux of Pconv = 26.6W
in average, the temperature is underestimated in the lower and upper layers (cf. pro-
file in Fig. 4.24 for T −

HS, surf, 57% = 150.03 ◦C). Only at the center thermocouple, T3 at
y = 300mm, JuROr approximates the temperature in the range of the experimental
results. Consequently, the sharp interface between the upper and lower layer is less
distinct.
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Figure 4.24: Vertical temperature profiles compared for T −
HS, surf, 57% = 150.03 ◦C and

T −
HS, surf, 70% = 185.36 ◦C for Meunders (2016)’s open plume experiment

The differences can be explained through various approaches. A missing radiation
(and emissivity) model and the crude approximation of the convective heat flux in
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JuROr (together with a missing conduction model) lead to uncertainties since radia-
tion is the dominant mode of heat transfer in this setup regarding Meunders (2016).
Further, the heat transfer into solids is not taken into account in JuROr, which would
effect the temperature. Also, the missing turbulent character of the flow is an indi-
cator for the simulation’s uncertainties as already indicated by the unfitting width of
the plume (measured in Meunders (2016) with 0.2m/s as arbitrary velocity threshold
for the plume’s boundary). Moreover, errors occur due to the simplification assump-
tion of constant material parameters of the gas such as a unity density or a certain
thermal diffusivity. The Boussinesq assumption ignoring density differences except in
the buoyancy force could be causing errors as well. From the experimental view, also
measurement uncertainties exist.
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Figure 4.25: JuROr’s speed (left) contour lines and horizontal velocity profiles
(right) in the central x-y-plane for Meunders (2016)’s open plume
experiment with 128 × 128 × 128 inner cells and Δt = 0.01 s, but
T −

HS, surf, 70% = 185.36 ◦C. Blue lines indicate the heights at which the
horizontal profiles of the vertical velocity are taken.
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Whereas FDS’ results show better accordance to the experimental results with a
finer grid (and smaller time step size), JuROr’s results remain basically unchanged
when refining the grid and reducing the time spacing to 256 × 256 × 256 cells and
Δt = 0.005 s, respectively. Also only increasing the surface temperature of the heated
block to 70% of the experimentally measured temperature (THS, surf = 185.36 ◦C)
does not give satisfactory results. Although the temperature profiles improve as
shown in Figure 4.24, JuROr overestimates the velocity profiles especially at 400mm
even more as can be seen in Figure 4.25. These analyses make the missing radiation
and boundary models as well as the inadequate turbulence model and Boussinesq
assumption even more evident.

Nevertheless, the dimensionless benchmark of the velocity profile compared to the
Grashof number again shows good agreement (for all applied setups). At maximum
velocity, the Grashof number in JuROr’s simulation (with a 128 × 128 × 128 grid,
Δt = 0.01 s time spacing and T −

HS, surf, 57% = 150.03 ◦C) is with 2 × 108 < Gr < 1 × 109

in the range of Noto et al. (1999)’s presented range of 2 × 108 < Gr < 2 × 109

(cf. Fig. 4.26).
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Figure 4.26: Normalized vertical velocity as a function of Gr along the centerline
for Meunders (2016)’s open plume experiment with 128 × 128 × 128
inner cells, Δt = 0.01 s and T −

HS, surf, 57% = 150.03 ◦C

In summary, JuROr also performs well enough for the second validation test case
based on the previous benchmark assessments.
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4.3 Summary

Keeping in mind that JuROr solves the turbulent, incompressible Navier-Stokes equa-
tions (2.28) - (2.30) with first-order accuracy as shown in Section 4.1 and neither
models radiation nor heat transfer into or from solid walls, the analyses of JuROr in
Section 4.2 show acceptable agreement with the experimental results of the shown
validation cases. These cases ranged from a small-scale open plume experiment
thermodynamically driven by an electrically heated copper block to a real-scale spill
plume experiment with a heat source induced by fire.

Now, parallelizing the CPU code and porting it to graphics processing units is
necessary in order to achieve a simulation towards real-time or faster than real-time.





Chapter 5

Towards Real-Time and Prognosis
Simulation Using a GPU

To speed up the CFD application, JuROr, GPU-accelerated computing is deployed.
GPU-accelerated computing is the use of a graphics processing unit together with
a central processing unit. Thereby, the compute-intensive portions of the applica-
tion are ported to the GPU to run in parallel, whereas the remainder runs sequen-
tially on the CPU. Consisting of only a few cores including arithmetic logic units
(ALUs), CPUs are optimized for the sequential processing of tasks. In contrast,
GPUs are designed for handling multiple tasks simultaneously due to their parallel
architecture consisting of thousands of smaller cores assembled in several streaming
multiprocessors (SMs) (cf. Fig. 5.1).

Control 

Cache 

DRAM 

ALU ALU 

ALU ALU 

DRAM 

Code 

SM 

Figure 5.1: Illustrative comparison of a CPU chip (left) and a GPU chip (right)

Further, the memory and memory interfaces differ on CPUs and GPUs. CPUs con-
tain a large system memory (i.e., dynamic random access memory (DRAM)) with
medium bandwidth (BW, measured as a rate of data transfer in GB/s) as well as

117
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cache memory close to the control unit and therefore faster access (cf. Fig. 5.1).
However, GPUs contain their own high bandwidth graphics memory being smaller
than the CPU memory but again consisting of DRAM and cache. CPU and GPU
memory is connected to send data from the host (CPU) to the device (GPU) and
back or have memory available on both, CPU and GPU (called unified memory).

The choice of deploying a GPU not only depends on the application but also
on the hardware. In the case of the present work, the choice of using a GPU was
additionally driven by economic factors such as acquisition, maintenance and running
costs (compared to multiple CPUs, e.g., as in supercomputers Top500 (2017), to get
parallelism) as well as the practicality in transportation and installing the hardware
on site due to the compact size of GPUs.

Nevertheless, the CPU is necessary since the device does not run without its
host (i.e., the program execution on the accelerator is host-driven) and together they
combine both their advantages. CPUs are designed to serve a serial computing thread
with low latency, whereas GPUs are optimized for throughput. Thereby, low latency
means that it takes a low number of processor clocks for an instruction to have its
data available for use of another instruction. Whereas high throughput denotes that
it takes a low number of processor clocks for an instruction to perform calculations.

Since a CPU code cannot be run on a GPU straight away, changes and adjustments
need to be carried out even if the numerical schemes are already chosen to match the
target hardware (cf. Section 2.2).

In the following, the porting process from CPU to GPU as well as optimizations
thereof are described. Then a performance portability analysis is conducted. Partial
results of the presented work have already been published in Küsters et al. (2017).

5.1 Porting to GPU Using OpenACC

The pragma-oriented OpenACC programming model was deliberately deployed to
port the CPU code, JuROr, to the GPU architecture since it has various benefits
over GPU programming languages such as CUDA or OpenCL. Using a special GPU
programming language results in extra source code for the GPU implementation and
different languages are necessary for different brands of GPUs (CUDA for NVIDIA
and OpenCL for AMD). An OpenACC-compatible compiler, though, translates the
code to a multicore version with OpenMP and to GPU code with CUDA or OpenCL
(dependent on the target) – ignoring pragmas for the serial CPU version. Neverthe-
less, the GPU programming languages can be more performant since special optimiz-
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ing can be fully exhausted. Whereas with using OpenACC, various decisions regard-
ing optimization are (deliberately) left to the compiler (e.g., commercial compilers
such as PGI, Cray, CAPS, and PathScale or GNU gcc7 as an open-source compiler).
Overall, the advantages of OpenACC outweigh its disadvantages for the real-world
application at hand. OpenACC’s benefits thereby range from ease of implementation,
development, and maintenance of only one source code, over performance portabil-
ity on numerous (multicore) CPU and GPU architectures making the application
independent on the hardware for the end-user, to the speedup towards real-time.

Independent on the programming model, the parallel design process remains the
same. In order to identify parts of the code which would benefit from GPU accel-
eration, realize the acceleration, and leverage the speedup in production as early as
possible, the so-called APOD (Assess, Parallelize, Optimize, Deploy) process consists
of four stages (cf. NVIDIA Corporation (2018b), Fig. 5.2). Thereby, APOD describes
a cyclical process.

Parallelize Deploy 

Assess 

Optimize 

Figure 5.2: Four stages of the APOD process

Assess: The first stage is the assessment of the application locating the most time-
consuming parts of the code in order to focus on the most beneficial sections.

Profiling tools (such as Linux GNU GCC Profiling Tool gprof or Intel’s VTune
for CPU code) can help to identify the hotspot of the code. Also in subsequent itera-
tions of the development cycle, the assessment step is crucial for progress evaluation.



120 5.1 Porting to GPU Using OpenACC

Here, NVIDIA’s profiler nvvp (or nvprof as command line tool) can be used for the
GPU code. Adding tracers in the code (e.g., with NVIDIA’s Tools Extension Library
(NVTX)) can additionally help to evaluate the code.

Parallelize: After identifying the code’s hotspot and setting acceleration goals or
expectations, the hotspot needs to be parallelized. Thereby, OpenACC’s directives
(for parallelizing, data management, and optimization) apply to the immediately
following structured block of code and are constructed in C++ as

#pragma acc directive [clause clause ...] newline

Thereby, compute and data constructs are differentiated. “A compute construct is
a parallel, kernels, or serial construct”, whereas “a device data construct de-
fines a region of the program within which data is accessible by the device“ (see
The Portland Group (2015)).

Optimize: To further improve performance, the implementation can be optimized
after completing the parallelization step. Therefore, an opportunity for optimization
first needs to be identified, then optimization needs to be applied and tested before
the achieved speedup can be measured and repeated. Again profilers support the
process of optimization, which can be applied at various levels, such as merging
parallel regions, minimizing data transfers, asynchronous launches, or fine-tuning
loop schedules and memory accesses.

Deploy: Taking the development to deployment early on, minimizes the risk of any
integration issues and making it possible to quantify the achieved speedup.

5.1.1 Parallelization of the CPU Implementation

Based on the APOD cycle, the CPU-based code, JuROr, is now parallelized using
OpenACC’s 2.5 API and PGI 17.4 (unless otherwise stated). Thereby, the responsi-
bility of producing performance portable code is delegated to the PGI compiler.

For all performance measurements (unless otherwise stated), a benchmark test
case in 2D is run in double precision with JuROr (cf. Küsters et al. (2017)). This test
case was introduced in Chapter 4 and describes a simple analytical solution to the
Navier-Stokes equations comprising advection, diffusion and pressure without forces,
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energy or turbulence (cf. McDermott (2003))

u(x, y, t) ..= 1− A cos(x− t) sin(y − t) exp(−2νt) , (5.1)
v(x, y, t) ..= 1 + A sin(x− t) cos(y − t) exp(−2νt) , (5.2)

p(x, y, t) ..= −A
2

4 [cos(2(x− t) + cos(2(y − t)))] exp(−4νt) (5.3)

with amplitude A = 2, kinematic viscosity ν = 1× 10−3 m2/s and periodic boundary
conditions.

The underlying uniform and collocated grid for the computational domain of a
[0, 2π]2 m2 square varies for being coarse (with 8× 8 inner cells) to very fine (with
4096× 4096 inner cells). Therewith, the memory size of the largest dataset com-
prises approximately 4098× 4098× 8 bytes ≈ 135 MB (including the ghost cells at
the boundary). This dataset exceeds the CPU and GPU cache sizes but fits into the
CPU main memory and GPU global memory.

After assessing the test case run with JuROr using Intel’s VTune profiler, the
OpenACC parallelization procedure of JuROr is based on the serial runtime profile
in Figure 5.3. Thereby, the diffusion and pressure methods take the majority of the
runtime on an Intel Xeon Sandy Bridge E5-2650 0 CPU (other methods include ini-
tialization, boundary handling, advection, etc.). The shares for diffusion and pressure
highly depend on the problem size, here in 2D for Nx − 2 = Ny − 2 ∈ {512, . . . , 4096}.
Within these two methods, the 5-point Jacobian stencil operation takes 20 % to 80 %
of the serial runtime when measured by Intel VTune’s hotspot analysis (again depen-
dent on the problem size).

Thus, the Jacobian stencil describes the hotspot of the CPU code and has been
parallelized first (in 2D) using OpenACC’s kernel, parallel and data regions
(cf. Chandrasekaran and Juckeland (2018)). In order to maintain the knowledge of
directional parameters such as Nx, Ny, Nz or Lx, Ly, Lz instead of losing them when
using one-dimensional arrays, a new data structure, a Field pointer, is defined since
vectors are not supported in OpenACC (API 2.5). Consequently, the data pointers
to the variable fields (with data of length size) are used for data transfer and calcu-
lation on the GPU (cf. Listing 5.1).
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Figure 5.3: JuROr’s runtime shares for fractional steps for various grid resolutions
(complete circle: shares of total runtime, adjacent section: share of
pressure and diffusion runtime)

Listing 5.1: OpenACC directives for 2D loops
1 // send variable pointers from CPU to GPU
2 # pragma acc enter data copyin (out [: size], in[: size ])
3 // parallel directives for nested loops
4 # pragma acc parallel loop independent
5 for ( size_t i = 1; i < Nx -1; ++i){
6 for ( size_t j = 1; j < Ny -1; ++j){
7 out [...] = in [...]}}
8 // send variables from GPU back to CPU
9 # pragma acc exit data delete (in[: size ])

10 # pragma acc exit data copyout (out [: size ])
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After parallelizing the hotspot, all outstanding parallelizable methods – called kernels
– (e.g., advection, pressure, boundary conditions) are step-by-step ported to the GPU
always measuring the speedup in between. Whereas all applicable loops are marked
as parallelizable independent loops, a certain loop schedule (number of threads exe-
cuted by a scalar processor as vector or number of thread blocks in a multiprocessor
via gangs) for NVIDIA’s GPUs is not specified in order to leave it up to the com-
piler to choose an appropriate loop schedule for the corresponding target architecture
(cf. Fig. 5.4). This decision contributes to reaching performance portability.

Scalar  
processor 

Multiprocessor 

Device 

Thread 

Thread block 

Block grid 

Warp with 32 threads 

Figure 5.4: Loop schedules when using NVIDIA architectures

Further, the data regions responsible for copying in the variables via enter data
copyin as well as copying out the variables via exit data copyout are expanded
to ensure that all data needed for the calculation reside on the GPU. For that, the
variables need to be present within the parallel regions. In case no data regions
are set, the data is sent unnecessarily back and forth from and to the GPU slowing
down the runtime (unless the compiler flag -ta=tesla:managed is set for NVIDIA
GPUs). In the OpenACC CPU versions (serial and multicore), all data transfers
are simply ignored by the compiler resulting in the same code base for GPU and
CPU execution. Further, all routines with data dependencies between iterations,
such as the time integration scheme, stay sequential. Also, analyzing and saving the
results for visualization during the time iteration need to be done on CPU. Hence, in
intermediate steps the current numerical solution needs to get updated on the CPU,



124 5.1 Porting to GPU Using OpenACC

otherwise, the variables still contain their initial values (cf. Fig. 5.5 for a schematic
execution model).

GPU CPU 

Read parameters 

Allocate CPU memory 

Initialize CPU variables 

Send data to GPU Receive data from CPU 

Solve 

Send data to CPU Receive data from GPU 

Write data file 

Free CPU memory 

End 

Start 

While  
 n < Nt

Analyze/ Visualize data 

Figure 5.5: Schematic OpenACC execution model

5.1.2 Optimization of the GPU Implementation

After porting all outstanding parallelizable methods to the GPU and spreading the
data region as wide as possible such that all computations (besides initialization,
analysis, and data output) are performed by the GPU, a number of optimizations are
implemented.

First, the parallelism across (2D) loops is maximized by merging smaller loops
into one kernel. Further, the access to C++ member attributes in parallelized sub-
routines caused unnecessary CPU-to-GPU as well as GPU-to-CPU transfers. Hence,
data management optimizations include the minimization of data transfers, which
are avoided by introducing local parameters stored in the stack instead of the heap
memory (cf. Listing 5.2 line 3). Regarding the 3D implementation of JuROr, the slow
running index in the z-dimension is also avoided by using the index lists introduced
in Section 3.2 (cf. Listing 5.2 line 7).
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Listing 5.2: OpenACC directives for 1D row-major lists
1 // get member data as local parameters
2 size_t * d_iList = iList .data ()
3 size_t bsize_i = iList .size ()
4

5 // parallel directives for inner indices
6 # pragma acc parallel loop independent
7 for( size_t j = 0; j < bsize_i ; ++j){
8 const size_t i = d_iList [j];
9 ...

10 }

Lastly, pipelining is enabled by asynchronous kernel launching (cf. Listing 5.3 line 2)
from the CPU which reduces the kernel launch latency.

Listing 5.3: OpenACC’s asynchronous clause
1 // launch kernel asynchronously on the CPU
2 # pragma acc parallel loop independent async
3 for( size_t j = 0; j < bsize_i ; ++j){
4 const size_t i = d_iList [j];
5 ...
6 }
7

8 // wait for completion , if necessary
9 # pragma acc wait

Figure 5.6 shows JuROr’s nvvp timeline for kernel launching on the CPU (in the
row ‘Driver API’) as well as the kernel execution on GPU (in the row ‘Compute’).
For the top Figures 5.6a and 5.6b, the code was started with synchronous kernel
launching causing serial kernel launches, whereas the bottom Figures 5.6c and 5.6d
show asynchronous launching leading to a reduced kernel launch latency. The left
figures of Figure 5.6 show the first considered kernel marked yellow, whereas at the
right a subsequent kernel is marked yellow to compare its launch and execution times.
When comparing the top (synchronous) from left to right, the second kernel is only
launched after the first kernel was executed. For the asynchronous launch (bottom),
the kernel launches start way before the kernel executions start.
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(a) Kernels launched serially by CPU (b) Second kernel launched after execution
of first kernel

(c) Kernels launched asynchronously by
CPU

(d) Second kernel launch independent from
termination of first kernel

Figure 5.6: Pipelining visualized with NVIDIA’s nvvp profiler (in timeline view)
using NVTX tracers showing different code fractions in different colors.
Yellow background highlighted in a red box shows the chosen kernel.

Latency could be further reduced if the data is small enough to fit into the processor’s
cache memory but for large datasets, such as the test case, the memory does not
fit into cache. Thus, the whole application is likely to be bandwidth bound, since
the problem is also of low computational intensity (i.e., the number of operations
performed per memory access is low). Investigations regarding memory-boundedness
(where the limits of the system’s bandwidth are reached) are shown in Section 5.2.
Also, the performance portability of the (2D) application is tested, before assessing
the speedup results in Chapter 6.
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5.2 Performance Portability Analysis

To measure if the real-world application, JuROr, performs equally well on differ-
ent architectures, the performance portability of PGI’s OpenACC implementation
of JuROr (for the 2D case using loops, cf. Küsters et al. (2017)) is investigated
across various hardware architectures: NVIDIA’s Kepler and Pascal GPUs, and Intel
Xeon’s Sandy Bridge, Ivy Bridge, Haswell and Broadwell CPUs (using PGI’s mul-
ticore target). Therefore, roofline models are built for the different architectures,
i.e., performance limiters such as Flop/s and memory bandwidth are modeled on the
base of the application’s (manually-computed) theoretical arithmetic intensity (A.I.)
versus the measured intensity by hardware performance counters. Then, the perfor-
mance portability given as a percentage of sustainable peak performance is analyzed
using these roofline models.

5.2.1 Roofline Model

To investigate the performance portability of JuROr’s parallelization using the PGI
compiler, a roofline performance model is set up allowing the comparison of achieved
performance as a percentage share of (sustainable) peak performance. The roofline
model builds upon peak floating point performance and sustainable memory band-
width (cf. Williams et al. (2009)). It assumes that computation and communication
can be completely overlapped and takes only the slowest data path into account.

Based on these assumptions, the roofline model for JuROr is built for seven
different hardware architectures (listed in Tab. 5.1): four Intel CPUs and three
NVIDIA GPUs. These computing resources were provided by the Research Center
Jülich GmbH (FZJ), and by RWTH Aachen University under the project rwth0207.
For the investigations either one CPU socket or one GPU chip of the given hardware is
used. GPU-CPU hybrid computations are not considered. Correspondingly, the per-
formance bounds are modeled for either the CPU or the GPU chip, even though the
host of a GPU-based system actually adds theoretical peak performance to the GPU
performance limiters. The latter would require a corresponding two-device roofline
model with inclusion of data transfers. Further, the theoretical arithmetic intensity of
JuROr is computed and compared to the measured value by its performance counters.
Thereby, the following terminology for performance numbers is used:

- theoretical: values defined in or computed from technical hardware specifications
or from manual code investigations
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- sustainable: upper performance values that might be obtained in real-world
usually using benchmarks

- measured/ achieved: actual measured performance values of real codes on real
hardware.

Table 5.1: Used hardware architectures and compilers

Name Hardware Used Compiler & Flags

BDW 2-socket Intel Xeon Broadwell E5-2650 v4
@ 2.2 GHz, 2× 12 cores

1 socket PGI 16.10
-ta=multicore

HSW 2-socket Intel Xeon Haswell E5-2680 v3
@ 2.5 GHz, 2× 12 cores

1 socket PGI 16.1
-ta=multicore

SNB 2-socket Intel Xeon Sandy Bridge E5-2650 0
@ 2.0 GHz, 2× 8 cores

1 socket PGI 16.1
-ta=multicore

IVB 2-socket Intel Xeon Ivy Bridge E5-2640 v2
@ 2.0 GHz, 2× 8 cores

1 socket PGI 16.1
-ta=multicore

P100 NVIDIA Pascal P100 SMX2 GPU, 1328 MHz,
16 GB, autoboost off, ECC on, BDW host

1 GPU PGI 16.10
-ta=tesla:cc60

K80 NVIDIA Kepler K80 with 2 GPUs, 562 MHz,
2×12 GB, autoboost off, ECC on, HSW host

1 GPU PGI 16.1
-ta=tesla:cc35

K40 NVIDIA Kepler K40 GPU, 745 MHz,
12 GB, autoboost N/A, ECC on, SNB host

1 GPU PGI 16.1
-ta=tesla:cc35

To get the architectural performance limiters, the peak double precision floating-
point performance needs to be computed and the bandwidth measured using (micro)
benchmarks. Most architectures nowadays provide boosting capabilities of the clock
frequency that are applied if thermal processor conditions allow it. Since this lim-
iter is difficult to track when calculating Flop/s, auto boosting is disabled (where
possible) and Flop/s calculations are based on the base operational frequency of the
CPU or GPU as reported in Table 5.1. This approach is in line with the report-
ing rules of the Rpeak value of the Top 500 list (cf. Top500 (2017)). Regarding the
memory bandwidth measurement, it holds that achievable memory bandwidth can
be significantly lower than the theoretical peak bandwidth. This discrepancy is es-
pecially true for systems that employ error correcting code (ECC) such as the given
architectures do. Therefore, benchmarks are used to obtain the sustainable memory
bandwidth. For the GPU systems, the CUDA version of the GPU-STREAM bench-
mark is applied and the bandwidth of the triad kernel is evaluated (cf. Deakin and
McIntosh-Smith (2017), Deakin et al. (2016)). The measurements are verified using
the SHOC benchmark (cf. Danalis et al. (2010)) as well as by comparing them with
the published results on the GPU-STREAM website (where possible). For the CPU
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systems using the Intel compiler with the flag -qopt-streaming-stores=always,
the triad results of the OpenMP STREAM benchmark of McCalpin (1995) are eval-
uated. These results are in turn verified using Intel VTune’s memory access analysis
that automatically evaluates the local DRAM single-package bandwidth using a (not
further specified) micro benchmark. This micro benchmark delivers slightly higher
bandwidth numbers. Thus, the CPU performance portability investigations are based
on these values. All floating-point performance and memory bandwidth results for
CPU and GPU can be found in Table 5.2.

Table 5.2: Floating-point performance and memory bandwidth of the hardware ar-
chitectures under investigation

Machine Peak GFlop/s Peak GB/s STREAM GB/s VTune GB/s

BDW 422.40 76.80 60.71 68.00
HSW 240.00 68.00 55.76 61.00
SNB 128.00 51.20 35.88 43.00
IVB 128.00 51.20 40.43 43.00
P100 4759.55 720.00 550.35 N/A
K80 935.17 240.00 149.70 N/A
K40 1430.40 288.00 191.20 N/A

High performance applications are mostly limited by either memory or computational
speed. Thereby, memory-boundedness reaches the limits of the system bandwidth,
whereas compute bound applications exploit the compute capabilities of the processor.
Now, to evaluate which performance boundary (memory or compute capabilities) is
hit by JuROr, its arithmetic intensity in Flop per Byte (in Flop/B) is investigated.
Since the concept of arithmetic intensity can only be applied on individual kernels,
JuROr’s hotspot – the Jacobian stencil – is taken into account. Whereas the Jacobian
stencil takes up to 80 % of the runtime of the diffusion and pressure methods in
serial execution when measured by Intel VTune’s hotspot analysis (cf. Fig. 5.3), its
parallelized version still takes up to 50 % of the runtime on a K40 for the 2D test case
with Nx−2 = Ny−2 = 4096 grid cells in each direction. Thus, again it describes the
hotspot and (5.4) can be applied to first compute the stencil’s sustainable performance
with respect to its performance limiters:

sustainable performance(in GFlop/s)
= min(sustainable BW (in GB/s) · A.I. (in Flop/B),

peak Flop/s performance (in GFlop/s)) . (5.4)
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In a second step, the achievable performance is measured by using performance
counters and its percentage share from the sustainable peak is computed via

performance share (in %) = measured performance of the hotspot (in GFlop/s)
sustainable performance of the hotspot (in GFlop/s) .

(5.5)
For determining the arithmetic intensity of the Jacobian stencil kernel, theoreti-
cal arithmetic intensity and measured arithmetic intensity are differentiated. Here,
theoretical arithmetic intensity refers to the traditional approach of investigating the
kernel’s source code and manually counting (double) floating-point operations and
transferred words. While this approach works well for small regular kernels, it is
very challenging for real-world codes that also employ special built-in function calls
or complex data access patterns. For example, a call of the pow or sin function does
not deliver an intuitive Flop per Byte ratio and, thus, is little predictable. Therefore,
a measured arithmetic intensity of JuROr’s hotspot based on performance counters
is also examined.

Theoretical Arithmetic Intensity: Besides counting floating-point operations,
only the slowest data path is taken into account, i.e., access to main memory (on
the CPU) or global memory (on the GPU). Therefore, the cache reuse with layer
conditions is evaluated to exclude corresponding data accesses. Further, it is verified
that non-temporal stores are used on the CPU systems. Overall, for JuROr’s hotspot,
it holds that

A.I. = floating-point operations
data movement

= 12 Flops
(2 reads + 1 write) · 8 Bytes

= 0.500 Flop/B . (5.6)

Measured Arithmetic Intensity: The approach of measured arithmetic inten-
sity has the advantage of being applicable for any kind of code. However, it might
not reflect the best possible arithmetic intensity, since it also tracks unnecessary data
transfers or occurring inflating ‘macho-Flop/s’. To get the measured arithmetic inten-
sity, performance counters provide information about the number of double-precision
floating-point operations and the transferred bytes. Since no common performance
counter interface is available across the selected machines, the counters are manually
tracked using different tools: NVIDIA’s nvprof 7.5 on the NVIDIA GPU systems and
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Intel’s VTune Amplifier 2016/2017 on the Intel CPU systems. Unfortunately, a direct
mapping from memory access counter values to the hotspot function is not possible,
since the counters are based on uncore events. Therefore, VTune’s filter capabilities
are used to track the hotspot function within the timeline view. Then the values are
read off that timeline. For ease of calculation, also VTune’s calculated bandwidth
numbers are taken. A summary of the applied setups can be found in Tables 5.3
and 5.4.

Table 5.3: Performance counters: Flops

Machine Flops counter Tool

BDW FP ARITH INST RETIRED.SCALAR DOUBLE,
FP ARITH INST RETIRED.128B PACKED DOUBLE,
FP ARITH INST RETIRED.256B PACKED DOUBLE,
INST RETIRED.X87

VTune

HSW N/A N/A
SNB FP COMP OPS EXE.SSE SCALAR DOUBLE,

FP COMP OPS EXE.SSE PACKED DOUBLE,
SIMD FP 256.PACKED DOUBLE,
FP COMP OPS EXE.X87

VTune

IVB FP COMP OPS EXE.SSE SCALAR DOUBLE,
FP COMP OPS EXE.SSE PACKED DOUBLE,
SIMD FP 256.PACKED DOUBLE,
FP COMP OPS EXE.X87

VTune

P100 flop count dp nvprof
K80 flop count dp nvprof
K40 flop count dp nvprof

Table 5.4: Performance counters: Bytes

Machine Bytes counter Tool

BDW UNC M CAS COUNT:RD, UNC M CAS COUNT:WR VTune
HSW UNC M CAS COUNT:RD, UNC M CAS COUNT:WR VTune
SNB UNC M CAS COUNT:RD, UNC M CAS COUNT:WR VTune
IVB UNC M CAS COUNT:RD, UNC M CAS COUNT:WR VTune
P100 dram read transactions, dram write transactions nvprof
K80 dram read transactions, dram write transactions nvprof
K40 dram read transactions, dram write transactions nvprof

Due to known hardware restrictions on the Intel Haswell machine, Flop performance
counters are not available on this architecture. Nevertheless, the Intel Advisor tool
shall be able to measure arithmetic intensities of parts of the code for roofline models
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automatically. From the intermediate result (before crashing), the achieved GFlop/s
number on the Haswell system is used. Unfortunately, the Intel Advisor is not capable
of running the real-world code successfully on all architectures due to crashes. Thus,
the performance counter measurements described above are taken for the remaining
architectures.

Given the counters in Tables 5.3 and 5.4, the measured arithmetic intensity is
computed as follows:

A.I.CPU = X87 + SCALAR + SSE PACKED · 2 + 256 PACKED · 4
(RD + WR) · 64 Bytes

= X87 + SCALAR + SSE PACKED · 2 + 256 PACKED · 4
BW · runtimehotspot

(5.7)

as well as
A.I.GPU = flop count dp

(read + write) · 32 (threads per warp) , (5.8)

where
read + write = dram read transactions + dram write transactions. (5.9)

5.2.2 Measurement Setup

Based on this methodology, the roofline model using the theoretical and measured
arithmetic intensities is built and the performance shares are calculated. In addition
to the hardware setups given in Table 5.1, all code versions (from serial over multicore
CPU to GPU) are compiled with -fast -O3. All performance and counter measure-
ments are run three times and the corresponding average value is taken with runtime
deviations below 0.6 %. Furthermore, all measurements are executed on machines
with exclusive access. For OpenACC runs on the available CPU systems, thread
binding is enabled to ensure good data affinity by setting the environment variables

ACC_NUM_CORES=<#cores> ACC_BIND=yes MP_BIND=yes MP_BLIST=0,1,<...#cores-1>.
Since the selection of OpenACC loop schedules is left to the compiler, Table 5.5 gives
an overview on the PGI compiler’s choice for the Jacobian stencil on different hard-
ware setups. For the CPUs, the outer loop of the Jacobian loop nest gets distributed
across gangs (i.e., CPU cores), while the compiler attempts to vectorize the inner
loop. Contrarily, the compiler chooses a two-dimensional work distribution on the
GPUs. Each dimension gets distributed across the GPU’s multiprocessors (gangs)
and the double-precision logic units (vector). Whereas the overall thread tile size is
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the same across all GPUs, i.e., 128 threads per block, the compiler selects different
distributions within the tiles for Kepler and Pascal GPUs.

Table 5.5: Loop schedules for loop nests of the Jacobian stencil kernel chosen and
reported by the PGI compiler

Machine Outer loop Inner loop
BDW gang vector sse + prefetching
HSW gang vector sse + prefetching
SNB gang vector sse + prefetching
IVB gang vector sse + prefetching
P100 gang vector(32) gang vector(4)
K80 gang vector(4) gang vector(32)
K40 gang vector(4) gang vector(32)

5.2.3 Theoretical and Measured Arithmetic Intensity

Results for the theoretical and measured arithmetic intensity of the Jacobian stencil
are presented in Table 5.6. Values of the measured arithmetic intensity show only little
deviation with values in the range of 0.332 to 0.498 Flop/B across all architectures.
In addition, they are roughly in line with the theoretical arithmetic intensity of 0.500,
since the Jacobian stencil does not exhibit any special built-in functions or macho-
Flop/s.

Table 5.6: Theoretical and measured A.I. of the Jacobian stencil kernel

Arithmetic intensity in Flop/B
Machine Theoretical Measured Performance limiter
BDW 0.500 0.340 Memory bandwidth
HSW 0.500 0.332 Memory bandwidth
SNB 0.500 0.386 Memory bandwidth
IVB 0.500 0.354 Memory bandwidth
P100 0.500 0.498 Memory bandwidth
K80 0.500 0.416 Memory bandwidth
K40 0.500 0.418 Memory bandwidth

5.2.4 Performance Portability Results

As an overview, two exemplary roofline models for JuROr running on the Broad-
well CPU in Figure 5.7 and the Pascal GPU in Figure 5.8 illustrate the theoretical
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(vertically dashed line) and measured arithmetic intensity (circle marker) while also
visualizing the performance limiters as rooflines. This representation also shows the
achieved performance (circle marker) in comparison to the sustainable memory band-
width (slope of diagonal line) indicating that the hotspot is memory-bound. The
high performance share as ratio of measured to sustainable performance can also be
read off the roofline representation by comparing the measured GFlop/s of the circle
marker with the sustained GFlop/s of the diagonal line (theoretical A.I.).
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Figure 5.7: Roofline of an Intel Broadwell CPU based on
dataset size of Nx − 2 = Ny − 2 = 4096
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The absolute performance numbers derived by performance counter measurements
running JuROr are listed in Table 5.7. All these numbers, i.e., GFlop/s, GB/s, and
runtime in seconds, highly differ across the architectures giving the impression of
having non-portable code with respect to performance.

Table 5.7: Flop/s, memory bandwidth and runtime measurement for Jacobian sten-
cil kernel. Bandwidths given in brackets are based on ECC overhead.

Machine Measured GFlop/s Measured BW in GB/s Kernel runtime in s
BDW 21.66 63.71 4.97
HSW 19.81 59.59 5.29
SNB 14.93 38.65 8.54
IVB 14.90 42.04 7.70
P100 251.77 505.14 0.47
K80 71.17 170.91 (−29.08) 1.65
K40 91.47 218.79 (−36.30) 1.29

However, in the following, the performance portability is expressed as performance
share to sustainable peak by applying Definition (5.5). The results are illustrated in
Figure 5.9.
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Looking at the theoretical arithmetic intensities, the Jacobian stencil achieves 64 %
to 69 % of sustainable memory bandwidth (given by Intel VTune’s micro bench-
marks) across the CPUs. For the GPU systems, it achieves higher performance shares
that range from 91 % to 96 % with respect to the GPU-STREAM results. Since the
measured arithmetic intensities are slightly below the theoretical values, they also
assume a lower sustainable peak performance in GFlop/s. Therefore, higher perfor-
mance shares are achieved for the measured arithmetic intensities ranging from 90 %
to 98 % on the CPUs with respect to Intel VTune’s bandwidth micro benchmark
and from 104 % to 108 % with respect to the OpenMP STREAM benchmark results.
Thus, JuROr’s hotspot delivers higher bandwidth measurements than the STREAM
benchmark which may be due to additional transferred bytes for prefetching. For the
GPU performance shares, initially, a similar behavior with values from 92 % to 114 %
can be observed.

When investigating the appearance of the GPU performance shares above 100 %
further, i.e., for the two Kepler architectures K80 and K40, it holds that NVIDIA’s
device memory performance counters also track transactions caused by ECC over-
head (cf. Tab. 5.7). Since these extra ECC bytes do not contribute to the bandwidth
achieved by the application, the corresponding values (counters ecc_transactions/
ecc_throughput) are subtracted from the measured bandwidth of the Jacobian stencil.
In contrast, the Pascal architecture supports ECC natively and, hence, does not show
ECC effects on bandwidth. With that, more realistic performance shares of 92 % to
95 % across the GPUs are achieved for JuROr.

Overall, although absolute performance numbers suggest otherwise, the results,
that are based on the specific hardware and software characteristics, show that for
the real-world OpenACC code, JuROr, the PGI compiler is capable of producing
performance portable code across different target architectures with a single source
code base.

5.3 Summary

Due to the similar and high valued performance shares across architectures, the
OpenACC parallelization of the memory-bound hotspot of JuROr shows good per-
formance portability (in 2D using loops) relying on the PGI compiler. More impor-
tantly, the performance portability can be transferred to the whole application, since
the Jacobi method remains the hotspot even after parallelization (in 2D using loops)
driving the performance.
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While hand-tuned or low-level code might generally achieve higher performance, the
OpenACC approach benefits from the possibility to maintain one source code base
for different architectures while still delivering good performance. To achieve these
results, target specific adjustments (e.g., loop schedules) are left to compiler making
decisions based on the target architecture.

To further highlight JuROr’s advantages, additional test cases, besides revisiting
some existing cases, are set up in the next chapter. Here, JuROr’s performance
regarding its speedup is analyzed comparing JuROr’s GPU towards its (multicore)
CPU performance, but also against FDS’ performance. Lastly, JuROr’s ability to run
in real-time and faster than real-time is evaluated.





Chapter 6

Analysis of the Real-time and
Prognosis Software

After parallelizing and optimizing the CFD code, JuROr, using GPU-accelerated
computing, it is of high interest to analyze JuROr’s abilities to run in and faster
than real-time in order to advance toward the intended support of a prognosis tool
in times of emergencies. Therefore, JuROr’s speedup in terms of cell updates per
second (CUPS) for different grid resolutions is first determined, and JuROr’s limits
regarding profitability and memory – running on either CPU (serially), multicore
CPU, or GPU – are tested using McDermott (2003)’s test case. Secondly, JuROr’s
runtime performance is compared to FDS’ performance for the presented validation
scenarios, and, lastly, a different performance measure, the real-time ratio (R) is
consulted comparing the simulation and wallclock times of a new setup in order to
analyze the real-time and prognosis capability of JuROr.

6.1 Speedup Analysis

The goal of the following speedup analysis is to provide a performance indicator
comparing JuROr’s performance in cell updates per second

CUPS ..= number of cells× number of time steps
runtime (6.1)

139
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using a GPU as opposed to a reference architecture such as one or multiple CPU
cores. This definition then results in a speedup of

S ..= tref

tpar
= CUPSpar

CUPSref
, (6.2)

for the parallel (here: GPU) wallclock time, tpar, in relation to the reference wall-
clock time, tref, or cell updates per second, CUPSpar and CUPSref, respectively. The
wallclock time thereby is the actual amount of time taken to perform a certain task
measured by a clock.

Compared is JuROr’s GPU performance using an NVIDIA Pascal P100 (PCIe)
GPU with 1328 MHz, 12 GB and 56 SMs (streaming multiprocessors) to the multicore
and serial performance using one socket of an Intel Xeon Broadwell E5-2623 v4 (BDW)
@ 2.6 GHz with 2× 8 cores. JuROr is compiled with PGI 17.4 in release mode using
-fast -O3 optimization, autoboost disabled as well as ECC off by setting nvidia-smi
-e 0. Exclusive access is assured on both, the CPU and the GPU system, and for
the OpenACC runs on the CPU system, thread binding is again enabled to ensure
good data affinity by setting the environment variables
ACC_NUM_CORES=8 ACC_BIND=yes MP_BIND=yes MP_BLIST=0,1,2,3,4,5,6,7.

Again, McDermott (2003)’s analytical solution to the 2D Navier-Stokes equations
comprising advection, diffusion, and pressure without forces, energy and turbulence
is used as benchmark test case

u(x, y, t) ..= 1− A cos(x− t) sin(y − t) exp(−2νt) , (6.3)
v(x, y, t) ..= 1 + A sin(x− t) cos(y − t) exp(−2νt) , (6.4)

p(x, y, t) ..= −A
2

4 [cos(2(x− t) + cos(2(y − t)))] exp(−4νt) (6.5)

with amplitude A = 0.1 and kinematic viscosity ν = 1× 10−3 m2/s.
The simulation is run for tend = 0.002 s with periodic boundary conditions and

initial conditions adhering to the analytical solution at time t = 0 s. The time is
discretized with ∆t = 0.0001 s sized time steps (Nt = 20) and the square domain
[0, 2π]3 m3 is divided into a grid with various resolutions ranging from coarse to fine
(Nx − 2 = Ny − 2 ∈ {4, 8, 16, . . . , 1024, 2048} and Nz − 2 = 1 to simulate the 2D
flow). The variance in the grid resolution shall give insights into the limits of the
serial, multicore and GPU-parallel execution of JuROr. The performance measure
is cell updates per second, where the number of cells consists of all cells including
ghost cells and the runtime is measured during time stepping to only include the
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calculation time. Again, the time measurements are averaged from three runs with a
maximal deviation of 11%.

Figure 6.1 shows JuROr’s performance in MCUPS for the various resolutions
comparing the serial (in light gray), multicore (in gray) and GPU-parallel versions
(in black) on the Intel Xeon Broadwell E5-2623 v4 (BDW) and NVIDIA Pascal P100
(PCIe, 12GB), respectively. The speedup of the GPU version is shown on top of the
bars. For 2048×2048 inner cells, the speedup amounts 29× for the GPU-parallel com-
pared to the serial CPU version and 7× when comparing to the 8-core CPU version.
The P100 GPU dominates on fine grids – starting from 256 × 256 to 2048 × 2048
inner cells – regarding the performance measure of cell updates per second, while the
execution of JuROr using multiple CPU cores is profitable for medium resolutions of
128 × 128 inner cells. For coarse grids, here 4 × 4 to 64 × 64 inner cells, the serial
CPU version outperforms the multicore and GPU-parallel versions (cf. Tab. 6.1).
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Figure 6.1: McDermott (2003) test case: JuROr’s cell updates per second for
various resolutions (2D) compared for BDW (serial and multicore) and
P100 (GPU-parallel)

It is worth mentioning that the P100 PCIe reaches its memory-bound of 12GB after
roughly 40 million cells (including ghost cells). For the purpose of JuROr, though,
this limitation is manageable since the simulation of smoke propagation in complex
geometries does not need very fine grid resolutions. Exemplarily, Schröder (2016)
simulated buoyancy-driven flows in Berlin’s underground station ’Osloer Straße’ with
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FDS using approximately 26 million grid points with grid spacing of ∆x = 0.15 m.
This resolution suffices to adequately represent filigree geometry components such as
stairs, lintels or beams, being relevant for the occurring fluid dynamics. Thus, P100’s
memory-bound of 12 GB is fully sufficient for JuROr’s area of application.

After showing that JuROr runs faster and is able to update more cells per second
on GPU than on (multicore) CPU for high-resolution grids and the memory of the
GPU at hand suffices for the work’s target geometries, the runtime performance of
JuROr is compared to FDS’ performance for real-world applications.

Table 6.1: McDermott (2003) test case: calculation time, cell updates per second
and speedup compared for BDW (serial and multicore) and P100.
Underlined architecture shows highest performance.

Inner cells Machine Cores/ SM Time in s MCUPS Max. speedup (w.r.t.)

4× 4 BDW 1 0.001 2.160 54× (GPU) 46× (8-core)
BDW 8 0.046 0.047
P100 56 0.054 0.040

8× 8 BDW 1 0.003 2.000 27× (GPU) 20× (8-core)
BDW 8 0.061 0.098
P100 56 0.081 0.075

16× 16 BDW 1 0.008 2.340 16× (GPU) 10× (8-core)
BDW 8 0.080 0.244
P100 56 0.133 0.146

32× 32 BDW 1 0.026 2.703 7× (GPU) 4× (8-core)
BDW 8 0.097 0.713
P100 56 0.179 0.390

64× 64 BDW 1 0.070 3.735 3× (GPU) 2× (8-core)
BDW 8 0.119 2.203
P100 56 0.218 1.206

128× 128 BDW 1 0.261 3.892
BDW 8 0.163 6.209 2× (GPU) 2× (serial)
P100 56 0.268 3.789

256× 256 BDW 1 0.991 4.030
BDW 8 0.313 12.76
P100 56 0.311 12.88 3× (serial) 1× (8-core)

512× 512 BDW 1 3.666 4.330
BDW 8 1.104 14.35
P100 56 0.416 38.28 9× (serial) 3× (8-core)

1024× 1024 BDW 1 15.82 3.993
BDW 8 4.171 15.14
P100 56 0.924 68.38 17× (serial) 5× (8-core)

2048× 2048 BDW 1 80.08 3.149
BDW 8 18.20 13.86
P100 56 2.754 91.57 29× (serial) 7× (8-core)
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6.2 Runtime Performance of Used Cases

The validation cases of Section 4.2 also serve for the evaluation of JuROr’s runtime
performance, which is then compared to FDS’ time-to-solution. First, Steckler et al.
(1982)’s Experiment No. 16 is revisited.

6.2.1 Fire Induced Flow Experiment in a Compartment

In order to compare the wallclock times, twc, of FDS’ and JuROr’s simulation for
Steckler et al. (1982)’s experiment No 16, some adjustments need to be applied.
First, the radiation model in FDS is turned off. Then, no output must be generated
(for both, FDS and JuROr) and the simulation time is set to tend = 180 s (instead of
1800 s). Finally, a domain decomposition into twelve equally sized subdomains needs
to be performed for the parallel computation with FDS on JURECA’s 2-socket Intel
Xeon Haswell E5-2680 v3 @ 2.5 GHz (HSW) and 2 × 12 cores (cf. Jülich Supercom-
puting Centre (2018), Jülich Research on Exascale Cluster Architectures). FDS is
compiled with Intel ifort 18.0.0 and MPI 3.1.

For comparison purposes, JuROr’s multicore simulation is also performed on
JURECA compiled with PGI 17.3 and run with enabled thread binding ensuring
good data affinity:
ACC_NUM_CORES=12 ACC_BIND=yes MP_BIND=yes MP_BLIST=0,1,2,3,4,5,6,7,8,9,10,11.
JuROr’s GPU version is run on an NVIDIA Pascal P100 (PCIe) GPU with 1328 MHz,
12 GB, 56 SMs and a 2-socket Intel Xeon Broadwell E5-2623 v4 @ 2.6 GHz (BDW)
as host. This version is compiled with PGI 17.4 and autoboost as well as ECC off.
Additionally, all measurements are executed on the machines with exclusive access.

Since JuROr’s time stepping is independent of CFL and Von Neumann conditions,
a larger time step of ∆t = 0.1 s is set still assuring convergence and giving satisfying
results (with relative errors of εTdoor = 11%, εudoor = 30% and εTroom = 12% running
for tend = 90 s). Further, all performance measurements using JuROr are run three
times and the corresponding average value is taken with runtime deviations below
1 %.

Table 6.2 and Figure 6.2 demonstrate a speedup of 44× when comparing JuROr’s
and FDS’ 12-core parallel CPU results and a speedup of 126× for JuROr’s GPU
version compared to FDS’ 12-core parallel CPU result regarding the wallclock time
of the time stepping.
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Table 6.2: Compared wallclock times for Steckler et al. (1982)’s experiment No 16

Software Machine Cores/ SM twc in s Speedup w.r.t. FDS

FDS (v6.5.3) HSW 12 57 701 -
JuROr HSW 12 1312 44×

P100 56 459 126×

12 HSW cores P100 vs.
12 HSW cores
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Figure 6.2: Wallclock times (in h) for Steckler et al. (1982)’s experiment No 16

In order to compare the performance on multicore CPU rather fairly, two charac-
teristics of the P100 GPU are mapped to the number of CPU cores. First, P100’s
theoretical peak performance of 4700GFlop/s can be roughly matched to a perfor-
mance of 4800 = 20 · 240GFlop/s of 20 HSW CPUs with each 240GFlop/s. These 20
HSW CPUs consist of 10 HSW 2-socket nodes with 24 cores each – resulting in 240
cores in total. Secondly, the acquisitions costs of an NVIDIA P100 (PCIe, 12GB)
GPU with approximately $ 6000.00 = 4 · $ 1500.00 yield four HSW CPUs (two nodes
with 48 cores in total) for roughly 1500.00$ each.

Thus, assuming a linear course, the time stepping wallclock time of FDS on 12
HSW cores is extrapolated to twc, 48 = 14 425 s on 48 cores and twc, 240 = 2885 s on 240
cores. This comparison still results in a speedup of JuROr’s GPU version of 31× and
6× compared to FDS’ performance on 48 and 240 HSW cores, respectively. Hence,
JuROr has the advantage (over FDS) of a faster time-to-solution.
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6.2.2 Open Plume Experiment Using Particle Image Velo-
cimetry

Next, Meunders (2016)’s PIV experiment is consulted again in order to evaluate
JuROr’s runtime performance. Thereby, JuROr’s total time-to-solution is compared
to the time FDS takes. The FDS simulations are once more run on one socket of
JURECA’s 2-socket Intel Xeon Haswell E5-2680 v3 @ 2.5 GHz (HSW) and 2 × 12
cores with exclusive access and FDS is compiled again with Intel ifort 18.0.0 and
MPI 3.1. For comparison purposes, JuROr’s multicore simulation is also performed
on JURECA compiled with PGI 17.3 and run with enabled thread binding ensuring
good data affinity by setting the environment variables
ACC_NUM_CORES=24 ACC_BIND=yes MP_BIND=yes MP_BLIST=0,...,23.
JuROr’s GPU version is executed on the NVIDIA Pascal P100 (PCIe) GPU with
1328 MHz, 12 GB, 56 SMs and a 2-socket Intel Xeon Broadwell E5-2623 v4 as host
with exclusive access. This version is compiled with PGI 17.4 and autoboost as well
as ECC are turned off.

Here, the total time (including initialization etc.) is considered and in order to
compare the same setup, the PHS = 78 W case with the 5 mm mesh is recalculated
in parallel with FDS v6.5.3 since Meunders (2016) only reported the total time for
a different test case of PHS = 96 W. Therefore, it needs to be noticed that these
compute times include the radiation model and the output production since these
have no negative impact on the compute time in this case. For JuROr, the output is
omitted since producing output results in restraining communication efforts between
CPU and GPU (which is not necessary for MPI processes such as in FDS). Further,
the number of cells in JuROr is reduced to the restriction of the multigrid method
to be of magnitude 2n + 2 (in each direction) reducing FDS’ time by 0.746×. Thus,
the times are not fully comparable, but are taken is an indicator (cf. Tables 6.3
and 6.4). Again, the average of three runs is taken with JuROr resulting in variations
of less than 0.6 %.

Table 6.3: Comparison of wallclock times for Meunders (2016)’s PIV experiment
with 5.0 mm resolution and tend = 300 s

Software Machine Cores/ SM Number of cells twc in h Speedup w.r.t. FDS

FDS (v6.5.3) HSW 24 2.95× 106 38.00 -
JuROr HSW 24 2.20× 106 1.20 32×

P100 56 0.78 49×
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Reducing the FDS times by 0.746× still results in a remarkable speedup of JuROr’s
multicore version of 24× and for the GPU version of 36× (cf. Tab. 6.4 and Fig. 6.3).
In contrast to the speedup results of the Steckler et al. (1982) test case, these speedup
numbers are not as high due to the unaltered small time stepping of Δt = 0.01 s.

Table 6.4: Corrected wallclock times for Meunders (2016)’s PIV experiment with
5.0mm resolution and tend = 300 s

Adjusted by penalty factor 0.746

Software Machine Cores/ SM Number of cells twc in h Speedup w.r.t. FDS

FDS (v6.5.3) HSW 24 2.20 × 106 28.35 -
JuROr HSW 24 2.20 × 106 1.20 24×

P100 56 0.78 36×

24 HSW cores P100 vs.
24 HSW cores

Architecture

0

5

10

15

20

25

30

T
o
ta

l
ca

lc
u
la

ti
o
n

ti
m

e
in

h

24 36

JuROr

FDS

Figure 6.3: Corrected wallclock times (in h) for Meunders (2016)’s PIV experiment
with 5.0mm resolution and tend = 300 s

Again comparing JuROr’s P100 performance to 48 and 240 Haswell cores by extrapolation
of FDS’ 24-core total wallclock time of twc, 24 = 28.35 h to the respective wallclock
times twc, 48 = 14.18 h and twc, 240 = 2.84 h, still results in satisfying runtime perfor-
mances of 18× and 4×, respectively, with respect to FDS’ runtime results. Neverthe-
less, the simulation was not executed in real-time.



Chapter 6 Analysis of the Real-time and Prognosis Software 147

Both validation cases clearly showed the advantage of JuROr to produce results faster
than the widely used fire simulation tool FDS. In addition to comparing the runtime
performance of JuROr and FDS, it is analyzed in the following if JuROr’s goal of a
real-time and prognosis simulation can be achieved.

6.3 Real-Time and Prognosis Analysis

A measure to analyze the real-time and prognosis capability of a code is the real-time
ratio, R, a performance indicator relating the program’s wallclock time, twc, to the
simulation time, tsim (cf. Kempe and Hantsch (2017)):

R ..= twc

tsim
= CUPSsim

CUPS . (6.6)

It can be related to cell updates per second, where

CUPSsim = number of cells× number of time steps
simulation time (6.7)

takes the simulation time instead of the actual runtime into consideration.
Now, a code is called real-time capable if the real-time ratio equals one, thus the

calculation takes as long as the time simulated, R = 1. Is the real-time ration smaller
than one, the code is even capable of giving a prognosis, R < 1. In the case of
prognosis capability, the time difference, tsim − twc, indicates the lead time.

JuROr’s real-time and prognosis capability using NVIDIA’s P100 (PCIe, 12 GB)
is investigated with a simple test case relevant for fire protection. Therefore, a tunnel
as in Figure 6.4 is set up with width, height, and depth of 150 m × 5 m × 8 m. The
center of a volumetric heat source is placed 50 m from the left and 2 m from the front
boundary at the bottom of the geometry. Its full width at half maximum extents 2.5 m
in length, 4 m in depth and 4 m in height. This heat source dimension is in alignment
with Schneider (2006)’s design fire scenario 02.02.003 of a burning car with a heat
release rate of Q̇ = 8.3 MW, which is reduced for JuROr by a radiative fraction of
20 % to Q̇ = 6.64 MW (cf. McGrattan et al. (2017b)) with a ramp-up time τ = 5 s. As
initial condition, the velocity and pressure are set to zero, whereas the temperature is
initialized with five equally and vertically distributed layers, each with a temperature
out of T0 ∈ {30.5, 30.9, 32.1, 35.7, 37.4} ◦C. The domain boundaries consist of no-slip
walls for the velocity (u = 0 m/s) and zero-gradient for pressure (∂np = 0 Pa/m) at
the front, back, top and bottom domain boundary.
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Figure 6.4: Real-time test case: tunnel setup with a volumetric heat source

Zero-gradient velocities (∂nu = 0m/s) as well as zero pressure (p = 0Pa) are set on
the left and right domain boundaries. The wall temperature at the boundaries is set
to T = 31.5 ◦C with an adiabatic bottom (∂nT = 0 ◦C/m to prevent heat transfer).
Further physical, numerical and solution method parameters can be obtained from
Tables B.19 and B.20 in Appendix B.
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Figure 6.5: Real-time test case: accuracy analysis for coarse grid with various time
stepping sizes, Δt ∈ {0.1, 0.05, 0.025, 0.0125} s

JuROr is run with various time stepping sizes, Δt ∈ {0.1, 0.05, 0.025, 0.0125} s,
and spatial resolutions, coarse, medium, and fine, of roughly Δx ∈ {0.6, 0.3, 0.15}m,
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Δy ∈ {0.6, 0.3, 0.16}m and Δz ∈ {0.5, 0.25, 0.13}m complying with the results of
the speedup analysis in Section 6.1 stating that JuROr’s GPU version outperforms
in high-resolution problems. Figures 6.5 - 6.7 show JuROr’s numerical results after a
simulation time of tsim = tend = 500 s. Here, the vertical temperature profile 2m to the
left of the heat source center and in 2m depth is compared to the numerical solution
with the finest spatial and temporal resolution, Δt = 0.0125 s and Δx ≈ 0.15m,
respectively, as a reference (in gray).

This accuracy analysis is conducted in order to obtain the limits of the chosen spa-
tial and temporal resolutions. As an example of the coarse time resolution, Δt = 0.1 s,
Figure 6.5 reveals that the temperature above 4m height is underestimated by JuROr.
Thus, the results for the coarse time resolution need to be handled with caution keep-
ing the temperature underestimation at the top of the tunnel in mind. All other
setups provide satisfying (or slightly overestimated) results when compared with the
finest (numerical) resolution result (cf. Fig. 6.6 and Fig. 6.7 ).
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Figure 6.6: Real-time test case: accuracy analysis for medium grid with various
time stepping sizes, Δt ∈ {0.1, 0.05, 0.025, 0.0125} s
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Figure 6.7: Real-time test case: accuracy analysis for fine grid with various time
stepping sizes, Δt ∈ {0.1, 0.05, 0.025, 0.0125} s

Now, when comparing the time stepping wallclock time of JuROr’s GPU-parallel
version (with exclusive access) with the total simulation time of tend = 500 s or the
respective cell updates per second, the real-time ratio, R, in brackets, Table 6.5
indicates that for all simulations with the coarsest spatial resolution JuROr runs in
and faster than real-time. For the medium resolution, the real-time ratio yields R < 1
for the three coarser time steppings and just slightly above one, R ≈ 1.3, for the finest
time stepping. Regarding the finest grid resolution, only the coarsest time stepping
results in a forecast.

Table 6.5: Real-time test case: JuROr’s cell updates per second (MCUPS) and cor-
responding real-time ratio (R) for different setups using a P100 GPU

Inner cells
Δt in s

0.1 0.05 0.025 0.0125

coarse: 256 × 8 × 16 3.48 (0.13) 3.65 (0.25) 3.73 (0.50) 3.77 (0.99)
medium: 512 × 16 × 32 16.67 (0.19) 17.67 (0.36) 18.39 (0.68) 19.08 (1.32)
fine: 1024 × 32 × 64 31.96 (0.72) 34.17 (1.35) 36.13 (2.55) 40.97 (4.50)
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Figure 6.8: Real-time test case: time stepping wallclock times for JuROr’s GPU
version (at the top with time steps Δt ∈ {0.1, 0.05, 0.025, 0.0125})
and FDS’ CPU parallel version (at the bottom in parallel with 240
and 48 cores, where fine grid wallclock times of twc, 48 = 8820 s and
twc, 240 = 44 100 s rise above the ordinate’s limit indicated by black
arrows)

The top of Figure 6.8 shows the corresponding time stepping wallclock times of
JuROr’s GPU-version compared to the total simulation time of tend = 500 s (indi-
cated as a dashed threshold line) for coarse to fine spatial resolutions with various
time steps Δt ∈ {0.1, 0.05, 0.025, 0.0125} within each spatial resolution block. For
eight out of twelve simulation setups with simulation time of 500 s, JuROr runs in
or even faster than real-time (indicated in green below the real-time threshold line)
with lead times up to roughly 430 s meaning that the predictions are actual forecasts
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while maintaining a sufficiently high accuracy. For this analysis, the average of three
runs with a maximal variation of 6 % is again taken. Also, JuROr is again compiled
with PGI 17.4 in release mode using -fast -O3 optimization, autoboost disabled as
well as ECC off. Worth mentioning is that, although the time stepping wallclock
time is assessed, the total runtime (including parameter parsing, setup of boundary
lists as well as initialization, but excluding output and visualization) is closer to the
time stepping time the larger the problem size and therefore, the differences can be
neglected in this analysis.

On the bottom of Figure 6.8, the time stepping wallclock times of FDS’ (v6.5.3)
simulation of the tunnel on JURECA’s Intel Xeon Haswell E5-2680 v3 @ 2.2 GHz
(HSW) are shown again for a coarse to a fine grid, but with time stepping based
on the CFL-condition. The ordinate axis is deliberately cut off at twc = 3500 s to
ensure comparability with JuROr’s results. Compared here are the different amounts
of processors used to run FDS in parallel while still being comparable with the char-
acteristics of the P100 GPU: 240 cores based on a performance match (left bar in
blocks) and 48 cores based on an acquisition cost comparison (right bar in blocks).
Thereby, the time stepping wallclock time for 240 cores is extrapolated from a run
with 192 cores assuming a linear course. Table 6.6 shows the underlying values of
FDS’ time stepping wallclock times and the corresponding real-time ratios (R) in
brackets indicating that FDS is only able to run faster than real-time for the coarse
grid in this setup, but with a faster time-to-solution than JuROr for the case of 240
cores on the coarse grid.

Table 6.6: Real-time test case: FDS’ time stepping wallclock times in s and corre-
sponding real-time ratio (R) for different setups

Inner cells
Number of CPU cores

240 48

coarse: 256× 8× 16 24 ( 0.05) 121 ( 0.24)
medium: 512× 16× 32 911 ( 1.82) 3123 ( 6.25)
fine: 1024× 32× 64 8820 (17.64) 44 100 (88.20)

6.4 Summary

The speedup analysis in Section 6.1 revealed that JuROr’s GPU version achieves an
acceleration of 29× on an NVIDIA Pascal P100 (PCIe, 12 GB) GPU compared to
JuROr’s serial single-socket version on an Intel Xeon Broadwell E5-2623 v4 (BDW)
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using the McDermott (2003) test case with 2048 × 2048 inner cells. Compared to
JuROr’s multicore version with eight cores on the BDW CPU, its GPU version still
reaches a speedup of 7×. Including a larger range of spatial grid resolutions, the
analysis showed that JuROr’s GPU version outperforms the multi- (and single-) core
version for fine grids from 256×256 to 2048×2048 inner cells and more, whereby the
memory limit of 12 GB is reached simulating with roughly 40 million cells in total.
The multicore version of JuROr succeeds in the specific setup with 128 × 128 inner
cells. For the coarser grids (4 × 4 to 64 × 64 inner cells) the serial version on CPU
dominates regarding runtime or cell updates per second due to high memory effort
on multicore CPUs and GPU.

After assessing the speedup using the verification test case of McDermott (2003)
with an analytical solution, the used validation cases were revisited in Section 6.2
to assess JuROr’s runtime performance in real-world applications compared to FDS’
performance. Here, a speedup of 126× was achieved simulating Steckler et al. (1982)’s
Experiment No. 16 with JuROr’s GPU version on NVIDIA’s Pascal P100 (PCIe,
12 GB) with respect to FDS’ wallclock time of the time stepping for the CPU-parallel
execution on 12 cores of Intel’s Xeon Haswell E5-2680 v3. Regarding the second
validation case of Meunders (2016)’s PIV experiment, JuROr achieves a speedup of
36× using the P100 compared to 24 Intel Haswell cores.

Lastly, JuROr’s real-time and prognosis capability was analyzed in Section 6.3 in
order to advance toward a fire fighting support tool with fast time-to-solution while
maintaining high accuracy. Here, a tunnel test case was set up with buoyancy-driven
flow. The chosen spatial and temporal resolutions were successfully tested regarding
accuracy based on a vertical temperature profile close to the heat source. With these
compatible resolutions, the real-time ratio was determined revealing that JuROr is
real-time and prognosis capable in eight out of the twelve setups at hand.

To conclude, JuROr serves as a software basis for a real-time and prognosis capable
simulation of smoke propagation using a GPU. However, in order to act as a support
tool in real-world emergencies, JuROr needs to be further developed including in-situ
visualization and user interfaces. These and other developments of JuROr such as
data assimilation are left to be handled in the future.





Chapter 7

Closing Remarks

7.1 Conclusions

The evaluation of life safety in buildings in case of fire is often based on smoke spread
calculations. However, recent simulation models – in general, based on computational
fluid dynamics – often require long execution times or high-performance computers
to achieve simulation results in or faster than real-time.

7.1.1 Societal Benefit and Value-add for Research
Community

Real-time or even faster than real-time executions of CFD models would allow for
further application fields, where the predicted data may be used to steer technical
systems like smoke extractions systems or dynamic escape routing for the benefit
of self-rescue, besides the direct objectives of capturing the high-risk situation (in
status-quo) and the dynamic and scenario-based adoption of fire fighting tactics.
Here, the decision-makers, such as the operational leadership of a fire brigade or
police responsible for direct emergency response measures, and the fire fighters at
site, would require practicable resources. This resource should be financially feasible
and space-saving for the usage at site, while being able to calculate highly parallel
computations in or faster than real-time as well as visualize the results.

To provide these opportunities the study at hand took up the challenge to develop
a concept for the real-time and prognosis simulation of smoke propagation in com-
partments, where the propagation of smoke is complex and hard to predict. Thereby,
these methods were summarized in a software basis, called JuROr (Jülich’s Real-time
simulation within ORPHEUS), making use of the advantages of GPUs (being highly
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performant, affordable and portable as well as space-saving). The focus of this study
lies in providing a proof of JuROr’s concept while handling the challenge of balancing
practicality with sufficient accuracy. Therefore, the following approach was pursued:

1. Specification of smoke propagation processes and physical, mathematical as
well as numerical modeling thereof fully adapted to highly parallel computer
architectures (cf. Chapter 2)

2. Development of an expandable and abstract software design concept for central
processing units (CPUs), inner boundary handling in 3D as well as implemen-
tation and testing thereof (cf. Chapter 3)

3. Verification of the code using (semi-) analytical test cases as well as validation
of the model by comparison to experimental results of scenarios relevant for fire
protection (cf. Chapter 4)

4. Porting of the software to a GPU providing use of various resources with high
performance portability while maintaining one source code (cf. Chapter 5)

5. Analysis of JuROr’s speedup (using a verification test case) and runtime per-
formance compared to the established Fire Dynamics Simulator (based on the
applied validation scenarios) as well as real-time and prognosis capability while
maintaining sufficient accuracy (cf. Chapter 6)

Equipped with this software basis, the research community is then able to enhance
it by different numerical methods, models, and geometries, or adopt the software for
similar applications in the field of transport phenomena.

7.1.2 Main Contributions and Limitations

Following the outlined approach from modeling, over software design and implemen-
tation, verification and validation, to real-time and prognosis analysis, results in the
main contribution of this study:

a real-time and prognosis capable CFD code base
simulating buoyancy-driven turbulent smoke spread
based on finite differences and a large eddy simulation
turbulence model, being performance portable on CPU
and GPU contained in one expandable, open source
code, successfully verified using unit, analytical and
semi-analytical tests, and successfully validated with
scenarios relevant for fire protection.
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In detail, a reduced modeling approach was deliberately chosen and fully adapted to
match the target hardware of highly parallel computer architectures such as GPUs.
This modeling approach solely regards a large eddy simulation turbulence model
with focus on heat and mass transfer in buoyant flows leading to incompressible
Navier-Stokes equations neither including combustion, radiation nor pyrolysis. In
the CFD model, first-order numerical schemes, which are of implicit nature (where
needed), were applied using finite differences on a structured, regular and collocated
grid with a fractional step approach decoupling the governing equations. Thereby,
the pressure Poisson equation is solved by a (geometric) multigrid solver to ensure
incompressibility by orthogonal projection. The model further allows for volumetric
heat and mass sources and supports obstacles with individual boundary conditions
in three-dimensional space to simulate compartments.

Accordingly, a software design concept was developed and implemented. It was
guided by the desire for continuous testing, development, and enhancement as well
as reusability by providing all the software and data in an online repository, along
with user instructions. The implementation is written in C++ and uses the pragma-
oriented OpenACC programming model to provide a one-source code base flexibly
applicable on various (multicore) CPU and GPU systems. It was shown that this
implementation, called JuROr, produces highly performance portable code with per-
formance shares between 90 % and 95 % across various architectures ranging from
CPU to GPU.

During the implementation, verification studies were conducted. They covered
manufactured solutions of the fluid dynamic model as well as semi-empirical set-
ups. The results were compared with other models and empirical correlations. They
confirmed the anticipated first order of accuracy in space and time and show reason-
able agreement with the results of the consulted models. Further, the simulation of
relevant experiments for buoyant flows showed sufficiently high accordance with both,
the experimental and simulation results of the established Fire Dynamics Simulator.

Besides validation, the speedup, computing power and memory limits in terms
of time-to-solution, number of cell updates per second and maximal spatial resolu-
tion were assessed. It is worth mentioning, that for all performance analyses the
post-processing (such as data output, visualization, or error assessments) was turned
off. Thereby, the first assessment revealed a speedup of JuROr’s GPU version (on
NVIDIA’s Pascal P100 PCIe 12 GB) for fine grid resolutions of 29× compared to
its serial CPU version (on Intel’s Xeon Broadwell E5-2623 v4) and was still up to
7× faster than its multicore version. JuROr’s computing power increased up to
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approximately 92 MCUPS. Its memory-bounds on the P100 with 12 GB were reached
using roughly 40 million grid cells. For JuROr’s purpose, though, this limitation of
memory is manageable, since the simulation of smoke propagation, for instance, in
the underground station ‘Osloer Straße’ in Berlin, only required a grid resolution of
roughly 15 cm which adequately represents filigree geometry components relevant for
the occurring fluid dynamics (cf. Schröder (2016)). In a second study, the runtime
performance of JuROr was compared to FDS using the validation cases of buoyant
flows to assess how JuROr performs in real-world applications. This study revealed
a speedup of 126× when simulating a real-scale spill plume experiment in a com-
partment with JuROr’s GPU version on NVIDIA’s Pascal P100 (PCIe, 12 GB) with
respect to FDS’ wallclock time of the time stepping for the CPU-parallel execution on
12 cores of Intel’s Xeon Haswell E5-2680 v3 @2.2 GHz. Simulating a small-scale open
plume experiment, JuROr showed a speedup of 36× using the P100 compared to 24
Haswell cores. In the last study, JuROr’s real-time and prognosis capabilities, while
maintaining sufficient accuracy, were successfully determined with the measure of the
real-time ratio. Ultimately, JuROr serves as a basis for a real-time and prognosis
capable simulation of the relevant processes of smoke propagation by efficiently using
the advantages of a GPU.

Nevertheless, it is needless to say that this study is bound by its limitations and
scope. First, the limited range of verification and validation test cases together with
limited boundary and initial conditions shows JuROr’s vulnerability to quantify its
accuracy and uncertainty in general. Secondly, the limited range of speedup and
time-to-solution test cases reveals a shortage of a comprehensive study regarding
real-time and prognosis capability. Then, the scope of real-world applications is quite
narrow since the applied test case geometries only illustrate rather simple rooms
or enclosures created manually with XML-files instead of automatically for instance
from computer-aided design (CAD) software. Lastly, JuROr has not been coupled to
assisting tools such as a graphical user interface (GUI) with real-time visualization
in order to achieve the motivational goal of a decision-making tool utilized by the
end-user in real life. These limitations serve as motivation for future developments
which are worth investigating in more detail or worth implementing to enhance the
presented code base JuROr.
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7.2 Outlook

Based on the outlined limitations, the following enhancements would be a beneficial
future augmentation for JuROr.

Accuracy: In order to further evaluate and quantify JuROr’s accuracy in its results
as well as sensitivity and uncertainty of parameters, a comprehensive, but aligned test
suite needs to be created. This test suite could be structurally build up as a test matrix
as introduced in Münch (2013) consisting of various tests (with analytical solution,
numerical solution, (semi-)experimental data) to build trust into the program with
chosen parameters, assumptions, and discretizations by assuring fundamental func-
tionality, significance and quality of the prediction. In Münch (2013), the eligibility
of a CFD code is examined in three steps:

1. Program qualification: compare requirements for the model to the program’s
documentation,

2. Program verification: test correct implementation and functionality of the pro-
gram(’s units) with possible first restrictions for the program

3. Program validation: run the tests in the test matrix which are comparable with
the application at hand to estimate optimal execution parameters with respect
to the balance between runtime and accuracy.

Here, semi-analytical test cases could be a channel flow (with and without an ob-
stacle), flow over a backwards facing step where drift points are compared to literature
(cf. Kim et al. (1980); Pronchick (1983); Driver et al. (1987); Lasher and Taulbee
(1992)) or a periodic isotropic turbulence simulation in the absence of both molecular
and turbulent viscosity or plume experiments as in McGrattan et al. (2017a). Further,
the comparison to experimental data could range from small-scale lab experiments
such as Meunders (2016)’s spill plume experiment to real-scale experiments in com-
plex buildings such as an underground station in ORPHEUS (2018).

To allow for continuous integration of new or optimized methods or models, this
test suite needs to automatically verify newly implemented methods and validate
changes to the underlying model. Methodical changes could include a staggered
grid approach or higher-order advection schemes such as MacCormack (cf. Selle et al.
(2008)) to decrease artificial diffusion, or the Conjugate Gradient method (cf. Hestenes
and Stiefel (1952)) as well as mixed boundary conditions for a far-field outflow and
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more complex initial conditions such as parabolic inflow using functions or given data.
Testing different models could consist of a suitable turbulence model such as Dynamic
Smagorinsky (cf. Germano et al. (1991); Moin et al. (1991)), Deardorff (cf. Deardorff
(1972)), Vreman (cf. Vreman (2004)) or RANS model (cf. Reynolds (1895)), with
a wall function approach (cf. Bredberg (2000)), or adding combustion including a
radiation model (cf. Viskanta and Mengüç (1987)).

Furthermore, it is intended to add a coupling layer to JuROr in order to assimilate
data from sensors. A potential approach is based on existing models employing either
an ensemble Kalman filter (cf. Evensen (2009)) or a deterministic and variational
ansatz (cf. Law et al. (2015); Lahoz et al. (2010)), which have both been successfully
integrated in the fire engineering context (cf. Cowlard et al. (2010); Jahn et al. (2009);
Jahn (2010); Jahn et al. (2012); Jahn (2017) in enclosures and Rochoux et al. (2013a,b,
2014, 2015) for wildfire spread) including the quantification of uncertainties. These
inverse modeling frameworks aim to minimize a cost function based on a combination
of distances between measurements and model forecasts over time. Which sensors
can be used is tested for instance in Cowlard et al. (2010); Jahn et al. (2009); Jahn
(2010); Jahn et al. (2012); Jahn (2017), where smoke detectors and sprinkler heads
are successfully applied as detection devices for the estimation of fire characteristics
such as the growth rate of the fire together with the location of the fire origin.

Speedup: Having the balance between accuracy and practicality in mind, the com-
putational runtime needs to be continuously evaluated and accelerated when imple-
menting new methods or solvers. In order to assure and maintain the real-time and
prognosis capability of JuROr, additional relevant test cases should be established.
Further, additional analyses regarding the performance should be integrated such as
the performance portability assessment of the code for 3D cases and quantifying the
speedup (or loss) by deploying lists instead of loops to map the domain.

Also, methodological optimizations can be carried out. For instance, only parts
which are affected by smoke could be simulated instead of the entire building or room,
which is then dynamically extended based on set thresholds (cf. Meyer (2005)). In
addition, the percentage of parallelism can be further increased by allowing indepen-
dent solvers for different variables such as pressure and temperature to run in parallel
within the so far sequential fractional steps. For the pressure solver itself, it could
be tested to outsource the computationally inexpensive coarse levels of the multigrid
method to the host CPU while keeping in mind the additional data transfers.

To improve memory management, pinned or unified memory accessible from CPU
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or GPU could be utilized by ta=tesla:pinned and ta=tesla:managed, respectively.
Here, parsing the parameters should be adjusted to use stack instead of heap memory.
Shared memory could be declared to be used on the device using OpenACC’s cache
directive. Also mixed precision could improve data management.

Scope of application: In order to enhance the range of applications towards com-
plex infrastructures such as underground stations, it would be beneficial to incorporate
static data such as the geometry with openings and obstacles automatically by en-
abling data import to JuROr from CAD or BIM (building information modeling).
Thereby, BIM is a process of generating and managing digital representations of
physical and functional characteristics of facilities (cf. Ruffle (1986); Aish (1986);
van Nederveen and Tolman (1992)). To avoid long preparation and setup times for
the simulation, especially in emergencies, the static data of various existing buildings
and infrastructures need to be accumulated beforehand.

In terms of reusability of simulation results, the storing of lists maintaining the
static data of the domain and obstacles should be outsourced in such a way that these
unchanged lists can be again used for the same static data, but with different physical
or numerical parameters. Also restarting a simulation at a certain time (other than
zero) with initial conditions from a previous simulation would help to broaden the
range of applications.

Further, the applied computing resources could be expanded by testing HPC cloud
operation systems, since parallel problems require little or no communication of results
between tasks, which makes them highly suited for cloud computing with limited
interconnect speeds, but high-throughput workloads. Additional advantages of using
a cloud are space- and energy-savings by the end-user. Nevertheless, the limitations
of clouds such as data egress and storage in the cloud, possible connection problems,
and costs are not (yet) manageable for emergency cases, where the end-user needs to
have instantaneous unlimited access as single user without being interrupted.

Handling: To improve JuROr’s practical value from the perspective of the end-user,
a graphical user interface is inevitable. With this interface, the user should be able
to dynamically steer the simulation by changing parameters and to simultaneously
view and analyze the simulation results during the simulation to assess the smoke
spread and danger based on only a few key characteristics. The underlying framework
of coupling the visualization with the simulation and visualizing the results whilst
the simulation is running is called in-situ visualization (cf. Rivi et al. (2012) and
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Buffat et al. (2015)). Therewith, monitoring of the simulation is allowed in-situ,
enabling, besides visualization, the analysis of incoming data as it is generated in order
to stop or modify the simulation and, hence, conserving resources. This approach
also circumvents shortages regarding storing data in or retrieving data from disk.
Technically, the continuous visualization can be handled by the computing or an
additional GPU, while the data analyses and storage could be handled by the host
CPU, which idles during the calculation on GPU anyway.

From the researcher’s point of view, all sources and data developed within this
work will be provided in an online repository, along with instructions for compiling,
expanding, and running JuROr in order to assure continuous development, support
and collaboration with researchers and users at the interface between CFD, HPC and
civil safety. In addition to being reliable, accessible and expandable from a research
standpoint, feedback from the intended users, such as fire fighters and decision-makers
such as the operational leadership, lastly needs to be gathered, assessed, translated
and then implemented to ensure that tools such as JuROr are meeting the needs of
the end-user. This feedback, besides training, can, in the long run, raise the potential
for the acceptance and adoption of JuROr.



Appendix A

Compiling, Developing and
Running the Software

A.1 Requirements and Code Compilation

The source code will be openly available in a repository of the version control system
git. To access the code, save the repository locally by cloning (git clone). The
repository is structured into two folders, Src and Test. In Src all source code is
placed, whereas in Test all test cases are stored subordinated into folders based on
the nature of their solver.

A.1.1 Minimum requirements

The serial CPU version of JuROr can be compiled on Linux or OS X systems with
very few tools, whereas the multicore and GPU version need an OpenACC capable
compiler. Detailed requirements are listed in Table A.1 (general requirements for
serial version, specific for multicore and GPU version).

It is worth mentioning that JuROr’s 3D GPU version using lists has only been
tested with PGI’s compiler in versions 17.3 and 17.4, whereas versions ≥ 17.9 were
not able to compile the code due to compiler bugs.

A.1.2 Compiling the code

Once the code has been checked out and all required software has been loaded, JuROr
can be built from the terminal by first running cmake to configure the build, then
running make. Listing A.1 summarizes the steps.
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Table A.1: Minimum requirements to compile JuROr on CPU, multicore or GPU

Purpose Tool Version

General Version control system to obtain the source code git ≥ 2.0
Build processor using a compiler-independent method CMake ≥ 2.8
Compiler fully supporting C++-11 gcc ≥ 4.7

clang ≥ 6.1
Visualization of output vtk ≥ 5.8

Paraview/ VisIT
Testing for consistency of output while developing python 2.7

Specific Compiler fully supporting C++-11 and OpenACC PGI 17.3/17.4
Profiling (using NVTX) CUDA ≥ 8.0

Listing A.1: Cloning, building and running JuROr
# 1. Clone
git clone https :// gitlab . version . <... >/ JuROr.git
cd JuROr

# 2. Make and enter a folder for compiling the code
mkdir build
cd build

# 3. Prepare environment (for use of CUDA Tools)
export CUDA_LIB = $CUDA_ROOT /lib64
export CUDA_INC = $CUDA_ROOT / include

# 4. Use CMake to configure the build
# By default JuROr builds in release mode
# with optimizations , without warnings .
cmake ..

# 5. Build JuROr (fast with option -j <#cores >)
make

# 6. Run simulations with appropriate executable
cd Test/<test case >
../../ bin/< executable > testcase .xml

II



CMake options:
By default, JuROr is build in release mode, which should be used for installing,
benchmarking and producing with JuROr. To compile in debug mode with -g -O0
flags and warnings, use the CMAKE_BUILD_TYPE CMake parameter. Further, CMake
uses the compiler which is set by the environment variables CC and CXX. Check
with cc --version or c++ --version. To change these, use the CMake parameters
CMAKE_C_COMPILER and CMAKE_CXX_COMPILER. Listing A.2 summarizes these options.

Listing A.2: CMake options for building JuROr
# In 4. Use CMake parameters to configure the build
cmake -DCMAKE_BUILD_TYPE ={Release , Debug} \

-DCMAKE_C_COMPILER ={gcc , clang , pgcc} \
-DCMAKE_CXX_COMPILER ={g++, clang ++, pgc ++} \

..

Based on the GPU’s compute capability, the GPU target needs to be set as special
flag, e.g., by -DGPU_MODEL={K40,K80,P100} resulting, for instance, in the target flag
-ta=tesla:cc60 for NVIDIA’s P100 GPU, whereas P100 is set as default. Here, also
the CUDA version can be set, e.g., by -DCUDA_VERSION={8,9}, where cuda8.0 is set
as default.

Executables:
Since JuROr is performance portable and applicable to various architectures, there
exist several targets when building JuROr (selected by make <target>), whereby
each executable has a different purpose described in Table A.2.
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Table A.2: Various executables of JuROr

Purpose and properties Architecture Executable/ Target

Production CPU - serial juror
- with terminal/ data output, CPU - multicore juror_multicore
- visualization and analysis GPU juror_acc

- using unified memory GPU juror_acc_managed

- using pinned memory GPU juror_acc_pinned

Convergence testing CPU - serial juror_iter
- with set number of CPU - multicore juror_multicore_iter

iterations for diffusion GPU juror_acc_iter

Benchmarking CPU - serial juror_prof
- without output or visualization CPU - multicore juror_multicore_prof
- without analysis, GPU juror_acc_prof
- with tracing for profiling

- using unified memory GPU juror_acc_managed_prof

- using pinned memory GPU juror_acc_pinned_prof

Using a Script to Compile:
There also exists a compile.sh script to compile JuROr. Thereby, only the first step
in Listing A.1 needs to be performed, and all other steps (including creation of the
build folder, loading modules for a specified workstation and setting the compute ca-
pability or CUDA version) are executed automatically. Listing A.3 shows an example
for compiling JuROr for an NVIDIA P100 GPU on a specific workstation zam035, for
which CUDA and PGI modules are loaded and environment variables for CUDA are
exported.

Listing A.3: Example of compiling JuROr with a script
# 1. Clone
git clone https :// gitlab . version . <... >/ JuROr.git
cd JuROr

# 2. Compile GPU - target on zam035 using script
./ compile .sh --zam035 --juror_acc

In case no workstation is specified, the default compiler (which is set by the environ-
ment variables CC and CXX) is used and as default, all executables in Table A.2 are
compiled. For more options, type ./compile -h.
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Checking OpenACC compiler output:
During the compilation of GPU targets, the flags -Minfo=accel as well as
-ta=<target>,lineinfo set in CMakeLists.txt display all acceleration information
such as data regions or kernel generation with loop schedules and show the corre-
sponding lines of the source files (cf. List. A.4 for an example). Here, it is impor-
tant to check the information in cases of new parallelizations or optimizations with
OpenACC. Using the PGI OpenACC compiler, results such as
Complex loop carried dependence of ... -> prevents parallelization or
Loop carried backward dependence of ... -> prevents vectorization
indicate false usage of kernel or parallel loop pragmas, whereas
upper bound for dimension 0 of array ’...’ is unknown
shows missing pointer size information in a data pragma.

Listing A.4: Example of PGI’s compiler output
338 , Generating present ( d_out [: bsize],d_in [: bsize],

d_iList [: bsize_i ],d_b [: bsize ])
Accelerator kernel generated
Generating Tesla code

341 , # pragma acc loop gang , vector (128) /*
blockIdx .x threadIdx .x */

After compilation during running a simulation, there can still occur errors such as
FATAL ERROR: variable in data clause is partially present on device.
This error indicates that a pointer used by the GPU is not present and was not send
to the GPU via enter data. In order to gain more detailed insights into the data
movements or accelerator kernel launches, profiling tools can be utilized or additional
verbose output while running the executable can be requested (by the PGI compiler)
by setting the environment variable PGI ACC NOTIFY=3 before executing a program.
PGI ACC NOTIFY=1 will only print kernel launches, and PGI ACC NOTIFY=2 will only
print upload and download lines.

A.2 Code Development and Testing

For code development, request access to the git repository and create a new branch.
After successful implementation and testing, file a merge request on git. Developments
and testing thereof can be easily added to the existing code as described as follows:
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Steps to include a new solver:

1. If necessary, add a new field
(in SolverI.cpp, TimeIntegration.cpp, Visual.cpp, Solution.cpp)

2. Implement the solver itself (according to the interface DoStep()) in a new source
file and add source and header files in CMakeLists.txt

3. Add the solver in if-statements
(in main.cpp, SolverI.cpp, Boundary.cpp, SourceI.cpp)

Inclusion of further methods:

1. Implement the method itself in a new source file (according to the solver inter-
face) and add the source and header files in CMakeLists.txt

2. Add the method in if-statements in all solvers using the method

Steps to include more functions for initialization:

1. If necessary, add the initialization to Functions.cpp

2. Build an XML file with the new initialization function

3. Where applicable, add the function
(in SetUp(), Init(), UpdateSources() of SolverI.cpp and Solution.cpp)

Adding new tests in Test folder:

1. Build an XML file for the new test (e.g., by using the script xml-builder.sh)
and save it in new folder Test/<name of case>

2. If an analytical solution is available, add the solution to Functions.cpp as well
as
Solution.cpp to calculate the error between the numerical and the analytical
solution (in Analysis.cpp)

3. Run and save the output in ref.dat files in the Test/<name of case> folder
to test the consistency in cases of changing the underlying code
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4. Add consistency testing via the Python script verify.py in the Test/<name of
case> folder, which simply compares the output files .dat with the reference
files ref.dat via element-wise comparison using the L2-norm.

5. Optional for use of ctest:

• Add the run.sh script to test the case for consistency

• Add the test in CMakeLists.txt with add test( NAME <...> COMMAND
sh ./run.sh $CMAKE BINARY DIR/$EXECUTABLE OUTPUT PATH/juror
WORKING DIRECTORY $CMAKE BINARY DIR/Test/<name of case>)

Testing:

1. Test for consistency automatically via ctest .., which uses the provided run.sh
and verify.py scripts or manually start simulation and then test for consis-
tency with the script verify.py

2. If an analytical solution is available, check the absolute and root mean square
errors in the terminal output

A.3 Software Usage and Restrictions

Input File:
JuROr takes an XML file as input argument (cf. Listings (A.5) - (A.11) as an example).
This XML file includes several parts which are constructed with a tree structure. First,
the root element is always JuROr, then the filename is set and thereafter the physical
and numerical parameters such as simulation end time, time stepping as well as, if
needed, viscosity, thermal expansion, gravitational constant and thermal diffusion are
defined (cf.Listing A.5).
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Listing A.5: Example of an XML input file: part I (filename and physical parame-
ters)

1 <?xml version ="1.0" encoding ="UTF -8" ?>
2 <JuROr >
3 <xml_filename >testcase .xml </ xml_filename >
4

5 <physical_parameters >
6 <t_end > 300. </ t_end > <!-- simulation end time -->
7 <dt> 0.01 </dt> <!-- time stepping -->
8 <nu> 2.44139e -05 </nu> <!-- kinematic viscosity -->
9 <beta > 3.28e -3 </beta > <!-- thermal expansion -->

10 <g> -9.81 </g> <!-- gravitation -->
11 <kappa > 3.31e -5 </ kappa > <!-- thermal diffusion -->
12 </ physical_parameters >

Then, the solver and its methods are set for the respective unknowns (field) and
suitable parameters are defined (cf. Listing A.6, exemplarily, for the velocity and
pressure). These are for instance,

• the advection model,

• the maximum number of iterations, tolerances for the residual threshold, or
relaxation weight for the chosen diffusion method,

• the Smagorinsky-Lilly constant for the turbulence model,

• the buoyancy force and its direction (besides the possibility to set the force to
zero),

• number of levels and cycles for the multigrid method and corresponding maxi-
mal cycles and tolerance for the pre-conditioning in the first step of solving the
pressure Poisson equation as well as

• the diffusion solver for the multigrid method and its parameters such as num-
ber of relaxations in finer levels and maximum number of iterations and the
tolerance for solving at the coarsest level as well as the relaxation weight
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Listing A.6: Example of an XML input file: part II (solver and methods for velocity
and pressure)

14 <solver description = " NSTempTurbSolver " >
15 <advection type = " SemiLagrangian " field = "u,v,w">
16 </ advection >
17 <diffusion type = " Jacobi " field = "u,v,w">
18 <max_iter > 100 </ max_iter >
19 <tol_res > 1e -07 </ tol_res >
20 <w> 1 </w>
21 </ diffusion >
22 <turbulence type = " ConstSmagorinsky ">
23 <Cs> 0.2 </Cs>
24 </ turbulence >
25 <source type = " ExplicitEuler " force_fct = " Buoyancy "

dir = "y">
26 </ source >
27 <pressure type = " VCycleMG " field = "p">
28 <n_level > 6 </ n_level >
29 <n_cycle > 2 </ n_cycle >
30 <max_cycle > 4 </ max_cycle >
31 <tol_res > 1e -07 </ tol_res >
32 <diffusion type = " Jacobi " field = "p">
33 <n_relax > 4 </ n_relax >
34 <max_solve > 100 </ max_solve >
35 <tol_res > 1e -07 </ tol_res >
36 <w> 0.6666666667 </w>
37 </ diffusion >
38 </ pressure >
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For solving the temperature equation, the methods and their parameters are set,
similarly (cf. Listing A.7, lines 39 − 52). Further, for verification cases, the numeri-
cal solution can be compared to an analytical solution against which the numerical
solution can then be analyzed regarding numerical errors by setting the availability
to "Yes" (cf. Listing A.7, lines 53− 54).

Listing A.7: Example of an XML input file: part III (methods for temperature and
analytical solution availability)

39 <temperature >
40 <advection type = " SemiLagrangian " field = "T">
41 </ advection >
42 <diffusion type = " Jacobi " field = "T">
43 <max_iter > 100 </ max_iter >
44 <tol_res > 1e -07 </ tol_res >
45 <w> 1 </w>
46 </ diffusion >
47 <turbulence include = "Yes">
48 <Pr_T > 0.9 </Pr_T >
49 </ turbulence >
50 <source type = " ExplicitEuler " temp_fct = "Zero"

dissipation = "No">
51 </ source >
52 </ temperature >
53 <solution available = "No">
54 </ solution >
55 </ solver >

In case of a volumetric heat source, the temp_fct in lines 50 − 51 of Listing A.7 is
replaced by "GaussST" with certain heat release rate, specific heat capacity, center co-
ordinates of the volume as well as full widths at half maximum (FWHM). A ramp_fct
is set to "RampTanh" with specific ramp-up time (cf. Listing A.8).
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Listing A.8: Example of an XML input for a volumetric heat source
<source type = " ExplicitEuler " temp_fct = " GaussST "

ramp_fct = " RampTanh " dissipation = "No">
<HRR > 50.3 </HRR > <!-- total HRR (in kW) -->
<cp> 1. </cp> <!-- c_p (in kJ/kgK)-->
<x0> 0. </x0> <!-- center of Gaussian -->
<y0> 0.02 </y0>
<z0> 0. </z0>
<sigmax > 0.25 </ sigmax ><!-- FWHM -->
<sigmay > 0.6 </ sigmay >
<sigmaz > 0.25 </ sigmaz >
<tau > 5. </tau > <!-- ramp up time -->

</ source >

After defining the solver and its methods, the domain (the whole physical domain and
the computational domain, which is always part of the first) and possible obstacles
or surfaces need to be set up as well as the resolution of the computational domain
(cf. Listing A.9). The domains and obstacles are set in 3D as rectangular boxes
defined by their opposing corners, whereby the domains range from their corner cell
faces (excluding boundary cells), but obstacles are defined at their corner cell centers.
Surfaces are defined as 2D rectangles (specified at their corner cell centers) as part
of the domain boundary.
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Listing A.9: Example of an XML input file: part IV (domain parameters, obstacles
and resolution)

57 <domain_parameters >
58 <X1> -0.3675 </X1> <!-- physical domain -->
59 <X2> 0.3675 </X2> <!-- defined by opposing corners -->
60 <Y1> -0.06 </Y1>
61 <Y2> 0.59 </Y2>
62 <Z1> -0.2875 </Z1>
63 <Z2> 0.2875 </Z2>
64 <x1> -0.3675 </x1> <!-- computational domain -->
65 <x2> 0.3675 </x2> <!-- defined by opposing corners -->
66 <y1> -0.06 </y1>
67 <y2> 0.59 </y2>
68 <z1> -0.2875 </z1>
69 <z2> 0.2875 </z2>
70 <obstacle ID="0" ox1=" -0.025840" ox2=" 0.025840 "
71 oy1=" -0.057461" oy2=" -0.00160"
72 oz1=" -0.029199" oz2=" 0.029199 "/>
73 <!-- use cell centers -->
74 <Nx> 130 </Nx> <!-- computational grid resolution -->
75 <Ny> 130 </Ny>
76 <Nz> 130 </Nz>
77 </ domain_parameters >

Then, the boundary conditions are defined for the various unknowns (u, v, w also
possible separately, p only on its own such as T in Kelvin by itself). The patches
(also possible to set separately) are left, right in x-direction, top, bottom in y-
direction, and front, back in z-direction and the conditions are set in the fixed
order front, back, top, bottom, left, right. The type can be chosen from
Dirichlet, Neumann or periodic with an appropriate value. This approach also holds
for obstacles and surfaces (cf. Listing A.10).
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Listing A.10: Example of an XML input file: part V (boundary conditions)
79 <boundaries >
80 <boundary field ="u,v,w"
81 patch ="front ,back ,left ,right ,top , bottom "
82 type=" dirichlet "
83 value ="0.0" />
84 <boundary field ="p"
85 patch ="front ,back ,left ,right ,top , bottom "
86 type=" neumann "
87 value ="0.0" />
88 <boundary field ="T"
89 patch ="front ,back ,left ,right ,top , bottom "
90 type=" dirichlet "
91 value =" 304.64 " />
92 <obstacle ID="0" field ="T"
93 patch ="front ,back ,left ,right ,top"
94 type=" dirichlet "
95 value =" 423.17 " />
96 <obstacle ID="0" field ="T"
97 patch =" bottom "
98 type=" dirichlet "
99 value ="0.0" />

100 <obstacle ID="0" field ="u,v,w"
101 patch ="front ,back ,left ,right ,top , bottom "
102 type=" dirichlet "
103 value ="0.0" />
104 <obstacle ID="0" field ="p"
105 patch ="front ,back ,left ,right ,top , bottom "
106 type=" neumann "
107 value ="0.0" />
108 </ boundaries >

Lastly, the initial conditions (set all to zero as default) for the unknowns are set
(cf. Listing A.11). Here, various functions are already defined (see Functions.cpp).
Further, the output format (a CSV (comma-separated values) file and/ or vtk files) is
set.
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Listing A.11: Example of an XML input file: part VI (initial conditions and output
management)

110 <initial_conditions usr_fct = " LayersT " dir="y">
111 <n_layers > 5 </ n_layers >
112 <border_1 > 0.11 </ border_1 > <!-- at cell face -->
113 <border_2 > 0.23 </ border_2 >
114 <border_3 > 0.35 </ border_3 >
115 <border_4 > 0.47 </ border_4 >
116 <value_1 > 303.64 </ value_1 > <!-- in Kelvin -->
117 <value_2 > 304.04 </ value_2 >
118 <value_3 > 305.24 </ value_3 >
119 <value_4 > 308.84 </ value_4 >
120 <value_5 > 310.54 </ value_5 >
121 </ initial_conditions >
122

123 <visualization save_csv ="No">
124 <n_plots > 100 </ n_plots > <!-- # of vtk ’s -->
125 </ visualization >
126 </ JuROr >

Error Sources and Restrictions:
Once the input file is set up, the simulation can be started with an appropriate exe-
cutable from the build/bin file and the XML file as argument. The set of executables
can be found in Table A.2. In case the terminal shows a segmentation fault, there
might be errors in the XML file. Thereby, the possible non-functionality of the input
file can be caused by:

• Filename discrepancies: always set the correct filename in the xml_filename,

• Whitespaces: do not use whitespaces in attributes of the XML file,

• Grid sizing: use 2n+2 cells for each direction when using the multigrid method,

• Grid positions: use cell centers, when setting up obstacles or surfaces,

• Obstacle dimensions: prevent using one cell thick obstacles or multiple obstacles
occupying all inner cells (especially when restricting to the lowest level in the
multigrid method).
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Besides a segmentation fault, numerical instability or precision errors on different
architectures in examples of chaotic systems with high turbulence (i.e., high Re) can
occur. Then, try refining the grid and/ or the time stepping.

Using a Script to Build an XML Input file:
In order to keep usage errors as low as possible, a supporting script (used from the
terminal) is provided for setting up XML files. The xml-builder.sh has built-in
options for different solvers:

• Pure advection (--advection)

• Pure diffusion (--diffusion) and turbulent diffusion (--diffturb)

• Pure pressure (--pressure)

• Advection and diffusion (--burgers)

• Navier-Stokes equations for velocity (--ns)

– with turbulence modeling (--nsturb)

– with energy equation for temperature (--nstemp)

- with turbulence modeling (--nstempturb)
- with passive scalar equation for concentration (--nstempcon)

- with turbulence modeling (--nstempturbcon)

Mandatory to provide are appropriate initial (--initialconditions) and boundary
conditions (--boundaryconditions), which are declared in corresponding txt files.
If applicable, also all domain obstacles (--domainobstacles) and all surface patches
(--domainsurfaces) have to be explicitly declared via txt files, which the script then
parses. It is worth mentioning that there is no validation of the chosen (or default)
parameters (all shown with ./xml-builder.sh -h). An example of the usage is given
in Listing A.12.
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Listing A.12: Example of using the script for building an XML file
# 1. To get an overview of the options , type
./xml - builder .sh -h

# 2. To build up a Navier - Stokes solver
# with no external forces in domain [0 ,1]ˆ3
# with set time and spatial resolution , type e.g.,
./xml - builder .sh --ns \

--forcefct Zero --forcedir xyz \
-- initialconditions ifile.txt \
-- boundaryconditions bfile .txt \
--xstartc 0. --xstartp 0. --xendc 1. --xendp 1. \
--ystartc 0. --ystartp 0. --yendc 1. --yendp 1. \
--zstartc 0. --zstartp 0. --zendc 1. --zendp 1. \
--tend 10. --dt 0.01 --nu 0.001 \
--nx 514 --ny 514 --nz 514 \
--nplots 100 --solavail No \
--xml testcase .xml

In order to build various XML files with different simulation times, time and/ or spatial
resolutions or iterations, the entry of multiple parameters for --nx, --ny, --nz, --dt,
--tend, and --maxiter is possible by separation of values with commas. To assure
that the different setups are saved in different XML files use the printf specifier %d for
multiple files (as in --xml testcase_No_%d.xml).

Using a Script to Run:
Now, to start one or multiple XML files and save details on the input parameters such as
resolution and simulation time as well as output data such as runtime, CUPS, or final
errors, the xml-starter.sh script in the Test folder can be used (cf. Listing A.13 as
an example). Available options are

• Choosing an executable (as in Table A.2)

• Specifying the parent directory of JuROr or the absolute path to it with -d

• Specifying files to execute (default: all XMLs in the directory the script is started
in) with -f

• Specifying the output file with -o
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• Printing all output to screen with -v

Listing A.13: Example of using the script for starting an XML file
# 1. To get an overview of the options , type
./xml - starter .sh -h

# 2. To start a testcase .xml with JuROr ’s
# GPU version in profiling mode , which lies
# in absolute path /home/ software /JuROr/build/bin ,
# type e.g.,
./xml - starter .sh -- juror_acc_prof \
-d /home/ software / JuROr /build/bin\
-f testcase .xml -o output .csv

The scripts xml-builder.sh and xml-starter.sh can in particular be used for
analyses such as convergence or speedup testing, where multiple configurations (e.g.,
in time and grid resolution) need to be build and run.
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Appendix B

Detailed Input Data of Test Cases

B.1 Advection Test Case

Table B.1: Advection test case: physical, numerical and solution parameters

Physical parameters Value Unit

Simulation time tend 2 s
Density ρ0 1 kg/m3

Computational domain (x1, x2) (0, 2) m
(y1, y2) (0, 2) m
(z1, z2) (0, 1) m

Domain boundary condition
- all walls u 0 m/s

Numerical parameters

Time resolution ∆t 0.001 s
Initial condition
- Velocity u A exp

(
− 1

2σ2

[∑
i

(
xi−xi,0

ci

)2
])

m/s
- Amplitude A 1
- Width σ 0.031 25 m
- Center (x0, y0, z0) (1.025, 1.025, 0.5) m
- Bulk velocity (cx, cy, cz) (0.5, 0.5, 0.25) m/s
Number of inner cells Nx − 2 40

Ny − 2 40
Nz − 2 1

Fractional step Method Parameter

Advection Semi-Lagrangian
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B.2 Artificial Diffusion Test Case

Table B.2: Artificial diffusion test case: physical, numerical and solution parame-
ters

Physical parameters Value Unit

Simulation time tend 10 s
Density ρ0 1 kg/m3

Computational domain (x1, x2) (0, 1) m
(y1, y2) (0, 1) m
(z1, z2) (0, 1) m

Domain boundary condition
- left, top T 0 ◦C
- right, bottom T 100 ◦C
- front, back ∂nT 0 ◦C/m

Numerical parameters

Time resolution ∆t 0.001 s
Initial condition
- Temperature T 0 ◦C
- Bulk velocity (cx, cy, cz) (2, 2, 0) m/s
Number of inner cells Nx − 2 {64, 128, 256}

Ny − 2 {64, 128, 256}
Nz − 2 1

Fractional step Method Parameter

Advection Semi-Lagrangian
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B.3 Diffusion Test Case

Table B.3: Diffusion test case: physical, numerical and solution parameters

Physical parameters Value Unit

Simulation time tend 1 s
Density ρ0 1 kg/m3

Kinematic viscosity ν 0.001 m2/s
Computational domain (x1, x2) (0, 2) m

(y1, y2) (0, 2) m
(z1, z2) (0, 1) m

Domain boundary condition
- all walls u 0 m/s

Numerical parameters

Time resolution ∆t 0.0125 s
Initial condition
- Velocity u A sin(lx) sin(ly) sin(lz) m/s
- Amplitude A 1
- Wave number l 5/2π
Number of inner cells Nx − 2 40

Ny − 2 40
Nz − 2 1

Fractional step Method Parameter

Diffusion Jacobi 100 iter’s or δtol = 1× 10−7
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B.4 Diffusion (Hat) Test Case

Table B.4: Diffusion hat test case: physical, numerical and solution parameters

Physical parameters Value Unit

Simulation time tend 1 s
Density ρ0 1 kg/m3

Kinematic viscosity ν 0.05 m2/s
Computational domain (x1, x2) (0, 2) m

(y1, y2) (0, 2) m
(z1, z2) (0, 2) m

Domain boundary condition
- all walls u 1 m/s

Numerical parameters

Time resolution ∆t 0.02 s
Initial condition
- Velocity u 2 if x ∈ [0.5, 1]3 m/s

0 else m/s
Number of inner cells Nx − 2 32

Ny − 2 32
Nz − 2 32

Fractional step Method Parameter

Diffusion Jacobi 100 iter’s or δtol = 1× 10−7
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B.5 Pressure Test Case

Table B.5: Pressure test case: physical, numerical and solution parameters

Physical parameters Value Unit

Simulation time tend 0.1 s
Density ρ0 1 kg/m3

Kinematic viscosity ν 0.1 m2/s
Computational domain (x1, x2) (0, 2) m

(y1, y2) (0, 2) m
(z1, z2) (0, 2) m

Domain boundary condition
- all walls p 0 m/s

Numerical parameters

Time resolution ∆t 0.1 s
Initial condition
- Pressure p 0 Pa
- Wave number l 2π
Number of inner cells Nx − 2 64

Ny − 2 64
Nz − 2 64

Fractional step Method Parameter

Pressure Multigrid 2 cycles 5 levels
- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7
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B.6 McDermott Test Case

Table B.6: McDermott (2003) test case: physical and numerical parameters

Physical parameters Value Unit

Simulation time tend 2π s
Density ρ0 1 kg/m3

Kinematic viscosity ν {0, 0.1} m2/s
Computational domain (x1, x2) (0, 2π) m

(y1, y2) (0, 2π) m
(z1, z2) (0, 2π) m

Domain boundary condition
- all walls u periodic m/s

p periodic Pa/m

Numerical parameters

Time resolution ∆t {0.01, 0.005, 0.0025, 0.001 25, 0.000 625} s
Initial condition
- Velocity u 1−A cos(x) sin(y) m/s

v 1 + 2 sin(x) cos(y) m/s
w 0 m/s

- Pressure p −(cos(2x) + cos(2y)) Pa
Number of inner cells Nx − 2 {8, 16, 32, 64}

Ny − 2 {8, 16, 32, 64}
Nz − 2 1

Table B.7: McDermott (2003) test case: solution method and parameters

Fractional step Method Parameter

Advection Semi-Lagrangian
Diffusion Jacobi 100 iter’s or δtol = 1× 10−7

Pressure Multigrid 2 cycles 4 levels
- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7
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B.7 Vortex Test Case

Table B.8: Jouhaud (2010) test case: physical and numerical parameters

Physical parameters Value Unit

Simulation time tend {10, 20, 30} s
Density ρ0 1 kg/m3

Kinematic viscosity ν 0 m2/s
Computational domain (x1, x2) (−0.5, 0.5) m

(y1, y2) (−0.5, 0.5) m
(z1, z2) (−0.5, 0.5) m

Domain boundary condition
- all walls u periodic m/s

p periodic Pa/m

Numerical parameters

Time resolution ∆t {0.01, 0.005, 0.0025, 0.001 25, 0.000 625} s
Initial condition
- Velocity u 0.1− Γy

R2
c

exp(−x2+y2

2R2
c

) m/s
v Γx

R2
c

exp(−x2+y2

2R2
c

) m/s
w 0 m/s

- Pressure p 0 Pa
Number of inner cells Nx − 2 {8, 16, 32, 64}

Ny − 2 {8, 16, 32, 64}
Nz − 2 1

Table B.9: Jouhaud (2010) test case: solution method and parameters

Fractional step Method Parameter

Advection Semi-Lagrangian
Pressure Multigrid 2 cycles 4 levels

- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7
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B.8 Lid-Driven Cavity Flow

Table B.10: Cavity flow test case: physical and numerical parameters

Physical parameters Value Unit

Simulation time tend 300 s
Density ρ0 1 kg/m3

Kinematic viscosity ν 0.001 m2/s
Computational domain (x1, x2) (0, 1) m

(y1, y2) (0, 1) m
(z1, z2) (0, 1) m

Domain boundary condition
- top u (1, 0, 0)> m/s

p 0 Pa
- bottom, left, right, front, back u 0 m/s

∂np 0 Pa/m

Numerical parameters

Time resolution ∆t 0.001 s
Initial condition
- Velocity u 0 m/s
- Pressure p 0 Pa
Number of inner cells Nx − 2 256

Ny − 2 256
Nz − 2 1

Table B.11: Cavity flow test case: solution method and parameters

Fractional step Method Parameter

Advection Semi-Lagrangian
Diffusion Jacobi iterations until δtol = 1× 10−7

Pressure Multigrid 2 cycles 5 levels
- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7
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B.9 Flow Around a Cube

Table B.12: Flow around cube test case: physical and numerical parameters

Physical parameters Value Unit

Simulation time tend 10 s
Density ρ0 1 kg/m3

Kinematic viscosity ν 1× 10−5 m2/s
Computational domain (x1, x2) (−3.0, 7.0) m

(y1, y2) ( 0.0, 2.0) m
(z1, z2) (−3.5, 3.5) m

Domain boundary condition
- left , right u (0.4, 0.0, 0.0)> m/s

∂np 0 Pa/m
- top, bottom ∂nu 0 1/s

∂np 0 Pa/m
- front, back ∂nu 0 1/s

∂np 0 Pa/m
Obstacle (cell centers) (x1, x2) ( 0.0273440, 0.964844) m

(y1, y2) ( 0.0078125, 0.992188) m
(z1, z2) (−0.4785160, 0.478516) m

Obstacle boundary condition
- all walls u 0 m/s

∂np 0 Pa/m

Numerical parameters

Time resolution ∆t 0.01 s
Initial condition
- Velocity u (0.4, 0.0, 0.0)> m/s
- Pressure p 0 Pa
Number of inner cells Nx − 2 256

Ny − 2 128
Nz − 2 256

Table B.13: Flow around cube test case: solution method and parameters

Fractional step Method Parameter

Advection Semi-Lagrangian
Diffusion Jacobi iterations until δtol = 1× 10−7

Turbulence Smagorinsky-Lilly constant Cs = 0.2
Pressure Multigrid 2 cycles 5 levels

- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7
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B.10 Fire Induced Flow Experiment in a
Compartment

Table B.14: Steckler et al. (1982)’s experiment No 16: physical parameters

Physical parameters Value Unit

Simulation time tend 1800 s
Density ρ0 1 kg/m3

Kinematic viscosity ν 3.10× 10−5 m2/s
Gravitation g (0,−9.81, 0)> m/s2

Thermal expansion coefficient β 3.34× 10−3 1/K
Thermal diffusivity α 4.10× 10−5 m2/s
Effective heat release rate Q̇ 50.3 (80% from 62.9) kW
Specific heat capacity cp 1 kJ K/kg
Computational domain (x1, x2) (−2.80, 4.20) m

(y1, y2) ( 0.00, 4.26) m
(z1, z2) (−2.80, 2.80) m

Domain boundary condition
- front, back, left, right, top, bottom u 0 m/s

∂np 0 Pa/m
- front, back, left, right, top T 26 ◦C
- bottom ∂nT 0 ◦C/m
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Table B.15: Steckler et al. (1982)’s experiment No 16: physical (cont’d) and numer-
ical parameters

Physical parameters Value Unit

Obstacle (cell centers)
- left wall (x1, x2) (−1.640625000,−1.421875000) m

(y1, y2) ( 0.016640625, 2.113359375) m
(z1, z2) (−1.378125000, 1.378125000) m

- top wall (x1, x2) (−1.640625000, 1.640625000) m
(y1, y2) ( 2.146640625, 2.313046875) m
(z1, z2) (−1.640625000, 1.640625000) m

- back wall (x1, x2) (−1.640625000, 1.640625000) m
(y1, y2) ( 0.016640625, 2.113359375) m
(z1, z2) ( 1.421875000, 1.640625000) m

- front wall (x1, x2) (−1.640625000, 1.640625000) m
(y1, y2) ( 0.016640625, 2.113359375) m
(z1, z2) (−1.640625000,−1.421875000) m

- right front wall (x1, x2) ( 1.421875000, 1.640625000) m
(y1, y2) ( 0.016640625, 2.113359375) m
(z1, z2) (−1.378125000,−0.459375000) m

- right middle wall (x1, x2) ( 1.421875000, 1.640625000) m
(y1, y2) ( 1.847109375, 2.113359375) m
(z1, z2) (−0.415625000, 0.415625000) m

- right back wall (x1, x2) ( 1.421875000, 1.640625000) m
(y1, y2) ( 0.016640625, 2.113359375) m
(z1, z2) ( 0.459375000, 1.378125000) m

Obstacle boundary condition
- all walls u 0 m/s

∂np 0 Pa/m
∂nT 0 ◦C/m

Numerical parameters

Time resolution ∆t 0.05 s
Initial condition
- Velocity u 0 m/s
- Pressure p 0 Pa

T 26 ◦C
Number of inner cells Nx − 2 160

Ny − 2 128
Nz − 2 128
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Table B.16: Steckler et al. (1982)’s experiment No 16: solution method and parame-
ters

Fractional step Method Parameter

Velocity & Pressure
- Advection Semi-Lagrangian
- Diffusion Jacobi iterations until δtol = 1× 10−7

- Turbulence Smagorinsky-Lilly constant Cs = 0.2
- Source: buoyancy force Explicit Euler
- Pressure Multigrid 2 cycles 5 levels

- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7

Temperature
- Advection Semi-Lagrangian
- Diffusion Jacobi iterations until δtol = 1× 10−7

- Turbulence Smagorinsky-Lilly Prandtl number PrT = 0.5
- Source: volumetric heat Explicit Euler Gaussian x0 = 0

y0 = 0.016640625
z0 = 0
σx = 0.25
σy = 0.6
σz = 0.25

Ramp-up τ = 5 s
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B.11 Open Plume Experiment Using
Particle Image Velocimetry

Table B.17: Meunders (2016)’s PIV experiment: physical and numerical parameters

Physical parameters Value Unit

Simulation time tend 300 s
Density ρ0 1 kg/m3

Kinematic viscosity ν 2.441 39× 10−5 m2/s
Gravitation g (0,−9.81, 0)> m/s2

Thermal expansion coefficient β 3.28× 10−3 1/K
Thermal diffusivity α 3.31× 10−5 m2/s
Computational domain (x1, x2) (−0.3675, 0.3675) m

(y1, y2) (−0.0600, 0.5900) m
(z1, z2) (−0.2875, 0.2875) m

Domain boundary condition
- all walls u 0 m/s

∂np 0 Pa/m
T 31.5 ◦C

Obstacle (cell centers) (x1, x2) (−0.025840, 0.025840) m
(y1, y2) (−0.057461,−0.001600) m
(z1, z2) (−0.029199, 0.029199) m

Obstacle boundary condition
- all walls u 0 m/s

∂np 0 Pa/m
- all walls except bottom T 150.03 (55% from 270.7) ◦C

Numerical parameters

Time resolution ∆t 0.01 s
Initial condition
- Velocity u 0 m/s
- Pressure p 0 Pa
- Temperature

- lower layer T 30.5 ◦C
T 30.9 ◦C
T 32.1 ◦C
T 35.7 ◦C

- upper layer T 37.4 ◦C
Number of inner cells Nx − 2 {128, 256}

Ny − 2 {128, 256}
Nz − 2 {128, 256}
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Table B.18: Meunders (2016)’s PIV experiment: solution method and parameters

Fractional step Method Parameter

Velocity & Pressure
- Advection Semi-Lagrangian
- Diffusion Jacobi iterations until δtol = 1× 10−7

- Turbulence Smagorinsky-Lilly constant Cs = 0.2
- Source: buoyancy force Explicit Euler
- Pressure Multigrid 2 cycles {6, 7} levels

- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7

Temperature
- Advection Semi-Lagrangian
- Diffusion Jacobi iterations until δtol = 1× 10−7

- Turbulence Smagorinsky-Lilly Prandtl number PrT = 0.9
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B.12 Tunnel Simulation for Real-time
and Prognosis Analysis

Table B.19: Tunnel test case: physical and numerical parameters

Physical parameters Value Unit

Simulation time tend 500 s
Density ρ0 1 kg/m3

Kinematic viscosity ν 2.441 39× 10−5 m2/s
Gravitation g (0,−9.81, 0)> m/s2

Thermal expansion coefficient β 3.28× 10−3 1/K
Thermal diffusivity α 3.31× 10−5 m2/s
Computational domain (x1, x2) (−50, 100) m

(y1, y2) (0, 5) m
(z1, z2) (−4, 4) m

Domain boundary condition
- front, back, top, bottom u 0 m/s

∂np 0 Pa/m
- left, right ∂nu 0 1/s

p 0 Pa
- all walls except bottom T 31.5 ◦C
- bottom ∂nT 0 ◦C/m

Numerical parameters

Time resolution ∆t {0.1, 0.05, 0.025, 0.0125} s
Initial condition
- Velocity u 0 m/s
- Pressure p 0 Pa
- Temperature

- lower layer T 30.5 ◦C
T 30.9 ◦C
T 32.1 ◦C
T 35.7 ◦C

- upper layer T 37.4 ◦C
Number of inner cells Nx − 2 {256, 512, 1024}

Ny − 2 {8, 16, 32}
Nz − 2 {16, 32, 64}
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Table B.20: Tunnel test case: solution method and parameters

Fractional step Method Parameter

Velocity & Pressure
- Advection Semi-Lagrangian
- Diffusion Jacobi iterations until δtol = 1× 10−7

- Turbulence Smagorinsky-Lilly constant Cs = 0.2
- Source: buoyancy force Explicit Euler
- Pressure Multigrid 2 cycles {7, 8, 9} levels

- pre-conditioning 100 cyc’s/ iter’s or δtol = 1× 10−7

- Jacobi relaxation ω = 2/3 4 iterations
- Jacobi solver ω = 2/3, 100 iter’s or δtol = 1× 10−7

Temperature
- Advection Semi-Lagrangian
- Diffusion Jacobi iterations until δtol = 1× 10−7

- Turbulence Smagorinsky-Lilly Prandtl number PrT = 0.5
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Nomenclature

Latin Symbols
A Area m2

C Species concentration kg/m3

c Constant value [−]
cp Specific heat capacity at constant pressure J/(kg K)
D Mass diffusivity m2/s
e Specific internal energy J/kg
f Force density N/m3

g Gravitational acceleration m/s2

G Convolution kernel (filter function) [−]
h Elevation m
h Grid resolution, h finest and Lh coarsest m
h Heat transfer coefficient W/(m2 K)
h Specific enthalpy, h ..= e+ p/ρ J/kg
Hc Heat of combustion J/kg
(i, j, k) 3-tuple of cell indices [−]
ix Global cell index ix ..= i+Nx · j +Nx ·Ny · k [−]
k Thermal conductivity W/(m K)
l Iteration step [−]
l Number of levels [−]
L Width of domain; large scale; characteristic length m
Lx Width, Lx ..= x2 − x1, of physical domain in x-direction m
Ly Height, Ly ..= y2 − y1, of physical domain in y-direction m
Lz Depth, Lz ..= z2 − z1, of physical domain in z-direction m
M Molar mass kg/mol
N Number of all inner cells, N ..= (Nx − 2)(Ny − 2)(Nz − 2) [−]
n Time step of current discrete time t(n), n ..= t(n)/∆t [−]
N(i) Set of neighbor indices [−]
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Nt Number of time steps, Nt
..= tend/∆t [−]

Nx Number of cells in x-direction (including ghost cells) [−]
Ny Number of cells in y-direction (including ghost cells) [−]
Nz Number of cells in z-direction (including ghost cells) [−]
p Order of a numerical method [−]
p Path of a fluid element m
p Pressure Pa
P Dynamic pressure Pa
P Power W
Q̇ Heat release rate J/s
r Refinement ratio [−]
r Residual [−]
R Universal gas constant, R ≈ 8.134 J/(mol K) J/(mol K)
R Real-time ratio [−]
S Speedup, S ..= tref/tpar [−]
SC Specific mass source for species kg/(m3 s)
ST Energy source K/s
t Time s
tend Total simulation time, tend

..= Nt∆t s
t(n) Discrete time, t(n) ..= n∆t s
T Temperature field T (x, t) inside a fluid ◦C
u Velocity u(x, t) of an element of fluid moving through x at time t m/s
u Velocity in x-direction m/s
U Characteristic velocity m/s
v Velocity in y-direction m/s
V Volume m3

V Vortex [−]
w Velocity in z-direction m/s
x Point in space (x, y, z)> ∈ R3 m
xd Departure point xd ..= p(x,−∆t) ..= x−∆tu along path p m
(x1, x2) Physical domain borders in x-direction m
xi Cell faces, xi ..= x1 + (i− 1)∆x, of numerical grid in x-direction m
x̃i Cell centers, x̃i ..= x1 + (i− 0.5)∆x, of numerical grid in x-direction m
(y1, y2) Physical domain borders in y-direction m
yj Cell faces, yj ..= y1 + (j − 1)∆y, of numerical grid in y-direction m
ỹj Cell centers, ỹj ..= y1 + (j − 0.5)∆y, of numerical grid in y-direction m
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Ys Soot yield g/g
(z1, z2) Physical domain borders in z-direction m
zk Cell faces, zk ..= z1 + (k − 1)∆z, of numerical grid in z-direction m
z̃k Cell centers, z̃k ..= z1 + (k − 0.5)∆z, of numerical grid in z-direction m

Greek Symbols
α Thermal diffusivity m2/s
β Volumetric thermal expansion coefficient 1/K
Φ Viscous dissipation W/m3

ε Emissivity [−]
ε Truncation error [−]
ε(l) Iteration error at iteration step l [−]
η Kolmogorov scale m
µ Dynamic (shear) viscosity Pa · s
ν Kinematic viscosity ν ..= µ/ρ m2/s
ω Weight [−]
φ Arbitrary quantity [−]
ρ Mass density ρ(x, t) for each time t and space x kg/m3

σ Full width at half maximum of a Gaussian curve m
σ Normal stress Pa
σ Stefan-Boltzmann constant, σ ≈ 5.670× 10−8 W/(m2 K4) W/(m2 K4)
δtol Tolerance value [−]
τ Ramp-up time s
τ Shear stress Pa
τSGS Residual stress tensor in subgrid-scale Pa
χ Radiative fraction [−]

Mathematical Symbols
A Matrix notation (upper case, bold) [−]
a Vector notation (lower case, bold) [−]
a · b Scalar or inner product of two vectors a,b ∈ Rn, a · b ..= ∑n

i=1 aibi [−]
a Scalar notation (lower case) [−]
C Convection operator [−]
∆ Change of any varying quantity [−]
∆f Filter width [−]
D Diffusion operator [−]
∂t Time derivative [−]
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∂xi
Partial derivative in space, where xi ∈ {x, y, z} [−]

d
dt

Material derivative d
dt

..= ∂t + u · ∇ [−]
d(·) Infinitesimal (infinitely small) change in some varying quantity [−]
∆t Time step ∆t ..= tend/Nt s
∆x Grid spacing, ∆x ..= Lx/(Nx − 2), in x-direction m
∆y Grid spacing, ∆y ..= Ly/(Ny − 2), in y-direction m
∆z Grid spacing, ∆z ..= Lz/(Nz − 2), in z-direction m
F Force operator [−]
I Identity matrix [−]
L Differential operator for respective conservation law [−]
∇2 Laplace operator ∇2 ..= ∇ · ∇ ..= ∑n

i=1 ∂
2
xi

[−]
∇ Nabla operator ∇ ..= (∂x, ∂y, ∂z)> [−]
N0 Natural numbers including zero [−]
‖·‖ Norm [−]
O Big O notation [−]
P Pressure operator [−]
Ph

2h Prolongation operator from coarse grid 2h to fine grid h [−]
R Real numbers [−]
R2h
h Restriction operator from fine grid h to coarse grid 2h [−]

[·] Rounding operator [−]
[[·][·]] Tensor operator [−]
Tr() Trace of a matrix A ∈ Rn×n, Tr(A) ..= ∑n

i=1 aii [−]

Subscripts
(·)0 Reference, ambient quantity or quantity at time t = 0 s
(·)B Body or buoyancy related quantity
(·)b Black iterates in red-black ordering
(·)c Quantity at domain center
(·)coarse Quantity related to a coarse resolution
(·)conv Convection related quantity
(·)eff Effective quantity
(·)fine Quantity related to a fine resolution
(·)g Gas related quantity
(·)h Quantity at grid with resolution h

(·)ins Insulation related
(·)ijk Quantity at discrete location (i, j, k) in numerical grid
(·)l Quantity at lower level
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(·)par Parallel version
(·)rad Quantity related to radiation
(·)ref Reference
(·)Rich Richardson’s Extrapolation
(·)r Red iterates in red-black ordering
(·)surf Surface related
(·)sim Simulation related
(·)T Turbulent quantity; quantity related to temperature
(·)t Quantity of thermocouple
(·)u Quantity at upper level
(·)w Quantity at wall
(·)wc Wallclock time related
(·)wc, #cores Wallclock time related with applied number of cores
(·)x Quantity or operator in x-direction
(·)y Quantity or operator in y-direction
(·)z Quantity or operator in z-direction

Superscripts
(·)ana Analytical solution
(̃·) Quantity at cell center
(·)′ Eddy (turbulent) motion of an instantaneous property
(·)(l) Quantity at iteration step l

(·) Mean motion of an instantaneous property
(·)(n) Quantity at discrete time t(n)

(·)ramp Ramp-up function
˙(·) Rate

(·)total Total quantity
(·)vol Volumetric function

Abbreviations
1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional
A.I. Arithmetic Intensity
ADI Alternating Direction Implicit
ALU Arithmetic Logic Unit
APOD Assess, Parallelize, Optimize, Deploy
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BD Backward Difference
BDF Backward Differentiation Formulas
BDW Intel Xeon Broadwell E5-2650 v4, 2.5 GHz, 2× 12 cores or

Intel Xeon Broadwell E5-2623 v4, 2.6 GHz, 2× 8 cores
BE Backward Euler method
BiCGStab BiConjugate Gradient method with Stabilization
BIM Building Information Modeling
BMBF German Federal Ministry of Education and Research
BW Bandwidth
CA Cellular Automata method
CAD Computer-Aided Design
CD Central Difference
CFD Computational Fluid Dynamics
CG Conjugate Gradient method
CGS Colored Gauss-Seidel method
CPU Central Processing Unit
CSV Comma Separated Values
CUPS Cell Updates Per Second
DAAD Deutscher Akademischer Austauschdienst
DNS Direct Numerical Simulation
ECC Error Correcting Code
FD Forward Difference
FDM Finite Difference Method
FDS Fire Dynamics Simulator
FE Forward Euler method
FEM Finite Element Method
Flop Floating-point operation
FVM Finite Volume Method
Gr Grashof number
GMRES Generalized Minimal Residual method
GPU Graphics Processing Unit
GUI Graphical User Interface
HPC High Performance Computing
HRR Heat Release Rate
HS Heat source
HSW Intel Xeon Haswell E5-2680 v3, 2.2 GHz, 2× 12 cores
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IVB Intel Xeon Ivy Bridge E5-2640 v2, 2.0 GHz, 2× 8 cores
JSC Jülich Supercomputing Center
JURECA Jülich Research on Exascale Cluster Architectures
JuROr Jülich’s Real-time simulation within Orpheus
K40 NVIDIA Kepler K40 GPU with 12 GB
K80 NVIDIA Kepler K80 with 2 GPUs and 2× 12 GB
LBM Lattice Boltzmann Method
LES Large Eddy Simulation
Ma Mach number
MAC Marker And Cell method
MG Multigrid method
MPI Message Passing Interface
Nu Nusselt number
OpenACC Open Accelerators
OpenMP Open Multi-Processing
ORPHEUS Optimierung der Rauchableitung und Personenführung in U-Bahnhöfen:

Experimente und Simulationen
Pr Prandtl number
P100 NVIDIA Pascal P100 SMX2 GPU with 16 GB or PCIe with 12 GB
PISO Pressure-Implicit with Splitting of Operators
PIV Particle Image Velocimetry
Ra Rayleigh number
Re Reynolds number
RK Runge-Kutta method
Sc Schmidt number
SGS Subgrid-scale
SIMPLE Semi-Implicit Methods for Pressure-Linked Equations
SIMPLEC Semi-Implicit Methods for Pressure-Linked Equations – Consistent
SIMPLER Semi-Implicit Methods for Pressure-Linked Equations – Revised
SL Semi-Lagrangian method
SM Streaming Multiprocessor
SNB Intel Xeon Sandy Bridge E5-2650 0, 2.0 GHz, 2× 8 cores
SOR Successive Over-Relaxation
vtk Visualization Toolkit
w.r.t With respect to
XML Extensible Markup Language
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