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Abstract

The large-scale Density Functional Theory (DFT) code KKRnano allows one to perform
ab initio simulations for thousands of atoms. In this thesis an extension of KKRnano
is presented and utilized which facilitates the investigation of exotic non-collinear
magnetic textures in bulk materials on huge length scales. Such an undertaking
inevitably involves the utilization of High Performance Computing (HPC) which is
itself a scientific field. The work in this context includes the adaptation of new coding
paradigms and the optimization of codes on constantly changing hardware architectures.
In KKRnano, the runtime of a simulation scales linearly with the number of atoms due
to an advanced Korringa-Kohn-Rostoker (KKR) scheme that is applied, in which the
sparsity of the matrices in the multiple-scattering equations is exploited. This enables
us to investigate phenomena that occur on a length scale of nanometers involving
thousands of atoms.
The main purpose of this thesis was to generalize the KKR formalism in KKRnano
in such a way that a non-collinear alignment of the atomic spins can be treated. In
addition to this, the relativistic coupling of spin and orbital degrees of freedom, which
arises from the Dirac equation, was introduced to the code. This coupling gives rise to
the Dzyaloshinskii-Moriya interaction (DMI) from which the formation of non-collinear
magnetic textures usually originates. Other methodological features that were added
to KKRnano or were re-established in the context of this thesis are the Generalized
Gradient Approximation (GGA), Lloyd’s formula and a semi-core energy contour
integration. GGA is known to be a better approximation to the exchange-correlation
energy in DFT than the still very popular Local Density Approximation (LDA), Lloyd’s
formula allows to determine the charge density exactly, despite the angular momentum
expansion of all quantities, and the semi-core energy contour integration facilitates the
treatment of high-lying electronic core states. Furthermore, an experimental port of the
multiple-scattering solver routine to Graphics Processing Unit (GPU) architectures is
discussed and the large-scale capabilities of KKRnano are demonstrated by benchmark
calculations on the supercomputer JUQUEEN that include more than 200.000 atoms.
The new version of KKRnano is used to investigate the magnetic B20 compounds
B20-MnGe and B20-FeGe as well as alloys of B20-Mn1−xFexGe type with varied
concentration of Mn and Ge. These compounds are well-known for exhibiting helical
states. Recently reported observations of topologically protected magnetic particles,
also known as skyrmions, make them promising candidates for future spintronic devices.
Initially, the known pressure-induced transition from a high-spin to a low-spin state in
B20-MnGe is reproduced with KKRnano and an examination of the magnetocrystalline
anisotropy yields unexpected results. Different non-collinear magnetic states are then



analyzed with both an extended Heisenberg model Hamiltonian and KKRnano. The
parameters for the model Hamiltonian are extracted with the KKR method. The
advantage of such a model is that micromagnetic quantities can be derived from
it, which provide information on the helical wavelength of a magnetic texture, and
that the Curie temperature can be estimated from the isotropic model parameters.
Furthermore, the model parameters can be fed into an Atomistic Spin Dynamics (ASD)
simulation package. The subsequent simulations show that skyrmions and anti-vortices
are metastable in B20-MnGe. The calculations with KKRnano lead to the conclusion
that helical states are stable in B20-MnGe, if the chosen lattice parameter is larger
than the experimentally reported one.
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Conventions and Abbreviations

In this thesis, we try to stick to the following conventions in mathematical expressions:

Symbol Explanation

~r arrow head 3-dimensional vector (containing Cartesian components)
r̂ hat normalized 3-dimensional vector
c underline general vector
M double underline general matrix
S calligraphic symbol operator (in basis-independent form)

The following abbreviations are used:

Abbr. Meaning

ASA Atomic Sphere Approximation
ASD Atomistic Spin Dynamics
AVX Intel’s Advanced Vector Extensions
bcc Body-centered Cubic
BCP Block-circulant Preconditioning
BG/Q IBM Blue Gene/Q Supercomputer
BLAS Basic Linear Algebra Subprograms
BP Bloch Point
CPA Coherent Potential Approximation
CPU Central Processing Unit
DDR-RAM Double Data Rate Dynamic Random Access Memory
DMI Dzyaloshinskii-Moriya Interaction
DRAM Dynamic Random-access Memory
ES Electrostatics
ESSL IBM’s Engineering and Scientific Subroutine Library



Abbr. Meaning

ESSLSMP Multi-threaded ESSL
fcc Face-centered Cubic
FLOP Floating Point Operation
FM Ferromagnetic
FP Full Potential Calculation
FPU Floating Point Unit
GEA Gradient-expansion Approximation
GGA Generalized Gradient Approximation
GMRES Generalized Minimal Residual Method
GNEB Geodesic Nudged Elastic Band Method
GPFS IBM General Parallel File System
GPU Graphics Processing Unit
HPC High Performance Computing
IEEE Institute of Electrical and Electronics Engineers
KKR Korringa-Kohn-Rostoker
KNL Intel’s Knights Landing CPU
LDA Local Density Approximation
LLG Landau-Lifshitz-Gilbert Equation
LSD Local Spin Density Approximation
LSGF Locally Self-consistent Green Function Method
LSMS Locally Self-consistent Multiple Scattering
MA Magnetocrystalline Anisotropy
MCE Magnetocrystalline Anisotropy Energy
MCDRAM Multi-Channel DRAM
MPI Message Passing Interface
MPS Multi-process Service for GPUs
OpenMP Open Multi-Processing
PAC Linear Algebra Package
QMR Quasi-Minimal Residual Algorithm
RAM Random-access memory
RKKY Ruderman-Kittel-Kasuya-Yosida Interaction
SIMD Single Instruction, Multiple Data
SMT Simultaneous Multithreading
SOC Spin-orbit Coupling
SRA Scalar Relativistic Approximation
TB-KKR Tight-binding Korringa-Kohn-Rostoker Method
TD-DFT Time-dependent DFT
TFQMR Transpose-Free Quasi-Minimal Residual Algorithm
VCA Virtual Crystal Approximation
WS Wigner-Seitz Cell



1 Introduction

The origin of modern solid state physics dates back to the 20s and the beginning of the
30s of the last century. This period of time is characterized by remarkable progress
that was made with regards to the theoretical description of matter. Fundamentally
new physical concepts were introduced that constituted the emergent field of quantum
mechanics. Erwin Schrödinger and Paul Dirac derived equations that describe the
motion of elementary particles while taking into account their inherent wave-particle
duality [1, 2]. Felix Bloch extended this concept to crystal lattices [3]. Their work and
the work of others laid the ground that enabled scientists to commence exploring the
rich quantum theory of materials. The fundamental problem in quantum mechanics has
always been the exponentially increasing computational complexity of finding solutions
to its equations. The advent of quantum computing could potentially provide the
means to circumvent this problem in the future [4]. A solid consists of a huge number
of atoms. In view of the fact that solving the quantum mechanical problem for solids
has been and still is out of reach, schemes were devised that reduce the computational
complexity while not sacrificing too much of the quantum mechanical nature of the
problem at hand. The density functional formalism, which is part of this effort and the
foundation stone of this thesis, was first suggested by Hohenberg and Kohn in 1964
[5] and its importance to the field of quantum chemistry can hardly be overestimated.
Walter Kohn became a Nobel laureate in chemistry for his work in 1998 and today
almost 20.000 scientific publications per year are related to Density Functional Theory
(DFT) in one way or another [6]. The areas of application of DFT range from the
calculation of band-gaps to molecular dynamics [7, 8] and magnetic materials. A large
section of contemporary research, as well as the work that is presented in this thesis,
revolves around the latter.

In 1988 Grünberg and Fert independently discovered the giant magnetoresistance effect
in magnetic layers [9, 10]. This gave rise not only to an unimagined increase of hard
disk storage capacity but also sparked a new field of research that is called spintronics.
In this context much emphasis was recently put on the investigation of novel magnetic
phases in solids. For instance, spin spirals with a unique rotational sense were first
predicted theoretically and later observed in experiment [11, 12]. Even more promising
in terms of application potential are skyrmionic textures. The term skyrmion traces
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1. Introduction

back to the British physicist Tony Skyrme [13], who proposed a concept of topologically
protected particles, i.e. they cannot be annihilated by a continuous deformation, to
explain hadrons in nuclear physics. However, it turned out that such particles can
also be found in chiral magnets [14–16]. In the medium term, skyrmions are the
most promising candidates for serving as information carriers in nanoscale spintronic
devices, although there still lie many challenges ahead, e.g. achieving functionality
at room temperature [17]. The fact that the functionality of memory devices is at
the center of much of today’s fundamental research in many fields can be ascribed
to the ever increasing global need for data storage. By the year 2025 this need is
predicted to add up to 163 zettabytes, i.e. a trillion gigabytes [18]. Fulfillment of
this demand will become increasingly difficult with present-day technology, even if
additional optimizations can, at least to some degree, further increase data density in
devices. Hence, some new ideas are here needed.

The work that was done during the formation process of this thesis is two-fold: It
comprised method development in the context of DFT and the application of DFT and
atomistic spin dynamics (ASD) codes to shed light on the origins of exotic magnetic
phases in solids. At the centre of the former stands the first principles DFT code
KKRnano which was designed to allow a linearly scaling treatment of up to a million
atoms [19]. In this project, technology of today, i.e. state-of-the-art supercomputers, is
exploited to pave the way for future innovations in materials science. A main aspect of
the work that was done in the context of this thesis was to extend KKRnano in such a
way that the investigation of non-collinear magnetism in conjunction with spin-orbit
coupling effects becomes feasible. This is a prerequisite for examining materials that
have the chiral magnetic properties to host skyrmionic textures. An undertaking like this
necessarily takes place at the interface of physics and computational science as in every
work step both aspects regarding physical accuracy and computational performance
need to be taken into consideration. With the advent of exascale computing, super large-
scale simulations that have been deemed impossible before, will soon be within reach
[20]. In order to be granted sufficient computing time from leading supercomputing
facilities for such projects, great emphasis must be put on adjusting the code to the
local hardware. The hardware components can differ substantially between different
machines, and it is to be ensured that the provided resources are used efficiently.
The current standard method to simulate systems containing thousands of magnetic
spins is ASD. It is based on a strong simplification of the physical description, i.e.
the quantum mechanical many-body Hamiltonian is replaced by a spin Hamiltonian
that only includes the most prominent magnetic interactions. An approach based
on first principles, as implemented in KKRnano, represents by construction a more
comprehensive description and is therefore superior to the ASD method, if ground
state properties are to be investigated. Nevertheless, it is instructive to compare
results obtained with both methods as first principles calculations for large systems
are costlier in terms of required computational resources. A calculation featuring a
few thousand magnetic atoms with ASD can easily be conducted on a laptop while a
similar calculation with KKRnano is only feasible on supercomputers. A well-working
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ASD model that yields results which are similar to a DFT calculation should therefore
not be discarded but used for counterchecking the DFT results as it is done in the
context of this thesis. Apart from KKRnano, the juKKR code [21, 22] was used for
extracting atomistic model parameters and the SPIRIT code [23] was used for ASD
simulations.

The materials that are central to the work presented in the following are the noncen-
trosymmetric B20 compounds, namely the B20 germanides MnGe and FeGe as well
as alloys of the form Mn1−xFexGe. The lack of inversion symmetry in their crystal
structure gives rise to spin-orbit coupling effects, a requirement for the existence of
most chiral magnetic textures [24]. The first observation of skyrmions in any material
was made by Mühlbauer et al. in the B20 compound MnSi in 2009 [15]. Both B20-
MnGe and B20-FeGe feature a relatively broad helical phase with a magnetic ordering
temperature of TC = 170 K [25] and TC = 278 K [26], respectively, which makes them
interesting materials for room-temperature memory devices. Furthermore, there seems
to be a prevalence for exotic novel magnetic phases in them. In a recent theoretical
and experimental investigation of thin films of B20-FeGe, a new type of localized
particle-like object, named the chiral bobber, was discovered [27]. In another study
for B20-MnGe, experimentalists found by means of transmission electron microscopy
that bulk samples exhibit a cubic lattice of skyrmions with a very short period of ≈
3 nm [28]. This is a length scale which can be treated by KKRnano which is why
B20-MnGe, out of all B20 materials, is in the focus of our attention. Especially for
B20-MnGe, the physical origin of the observed chiral textures is still under debate.
While some experts in the field attribute their existence to the competition between
ferromagnetic interaction and Dzyaloshinskii-Moriya interaction [29], others emphasize
Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, i.e. magnetic frustration, as a
key factor [30]. It was the aim of this PhD project to develop the necessary tools that
can throw light on such unsolved questions.

The thesis is structured in the following manner:

In Chapter 2 the concepts behind Density Functional Theory (DFT) are introduced.
The Hohenberg-Kohn theorems, which form the basis of DFT, are given and the essential
Kohn-Sham equation is derived. This is followed by an explanation of spin-dependent
DFT that is vital to the treatment of magnetic materials and a brief description of
how exchange-correlation effects are approximated in DFT.

Chapter 3 builds upon this and serves to introduce the Korringa-Kohn-Rostoker
(KKR) method as a Green function-based DFT formalism. Its essential attribute is
the rigid distinction between the single-site scattering problem and the multiple-site
scattering problem. Furthermore, important methodological achievements that have
been accomplished in Jülich and are utilized in KKRnano, e.g. the full-potential
screened KKR treatment, are discussed. The chapter concludes with a recipe for
obtaining a self-consistent solution for the Kohn-Sham potential which is the main
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1. Introduction

variational quantity in our scheme. Understanding the KKR formalism is crucial in
order to apprehend what distinguishes KKRnano from other DFT codes.

In Chapter 4 a thorough explanation of KKRnano and its linear-scaling capabilities
is given. Another topic that is extensively covered is the optimization of KKRnano
for High Performance Computing (HPC). Different homogeneous and heterogeneous
hardware architectures are discussed and the parallelization scheme used in KKRnano is
explained. GPUs are destined to become the backbone of future HPC architectures and
HPC research in this field is therefore of high importance. As part of this PhD project
KKRnano was equipped with an extension that allows to solve the multiple-scattering
problem on a GPU. Performance results as well as architecture-related challenges
are elaborated on in the corresponding section. A detailed performance analysis on
the supercomputer JUQUEEN in Jülich allows to demonstrate KKRnano’s linear-
scaling behaviour but also reveals potential computational bottlenecks. Finally, other
methodological improvements that were added to KKRnano are discussed. These are
the newly added support for the more elaborate GGA exchange-correlation functionals,
the re-established Lloyd’s formula for exact charge densities and a special treatment of
semi-core states, which can neither be attributed to the group of valence states nor to
the group of core states.

A major part of this PhD project was the implementation of non-collinear magnetism in
conjunction with relativistic effects in KKRnano. The algebraic concepts behind these
extensions are presented in Chapter 5 and the calculation of the magnetocrystalline
anisotropy energy of IrMn3 is given as an example to illustrate the enhanced under-
standing of magnetic effects which a non-collinear relativistic simulation can provide.
Finally, methodological improvements that were added to KKRnano are discussed.
These are the newly added support for the more elaborate GGA exchange-correlation
functionals, the re-established Lloyd’s formula for exact charge densities and a special
treatment of semi-core states, which can neither be attributed to the group of valence
states nor to the group of core states.

Chapter 6 is intended to be a brief introduction to the concept of atomistic spin
dynamics (ASD). The Landau-Lifshitz-Gilbert equation that describes the precession
of an atomic magnetic moment in a magnetic field is derived and the constituents of
the extended Heisenberg model are discussed. Subsequently, it is shown how these
constituents, in particular the isotropic exchange term and the Dzyaloshinskii-Moriya
interaction term, can be extracted from a KKR calculation.

The focus of Chapter 7 is on the results that could be obtained with both the
KKR and the ASD method for the non-noncentrosymmetric B20 materials. In this
chapter the B20-MnGe and B20-FeGe compounds as well as B20-Mn1−xFexGe alloys
with a variable ratio of Mn and Fe are scrutinized. The known pressure-induced
high-spin/low-spin transition of B20-MnGe [31] is confirmed in a KKRnano calculation.
Furthermore, atomistic and micromagnetic parameters are extracted and analyzed.
These parameters can be used in ASD simulations, where meta-stable skyrmionic
objects are observed. KKRnano is utilized to investigate the energetics of different

12



magnetic states, from the trivial ferromagnetic state to the complex 3D-hedgehog
lattice. This investigation is then extended to layered systems and a generalization of
the crystallographic space group. Subsequently, similar investigations are conducted
for B20-FeGe and B20-Mn1−xFexGe alloys.
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2 Density Functional Theory

The point of departure in Density Functional Theory (DFT) is the recognition that
the ground state of a system of electrons can be determined by the knowledge of the
electron density distribution alone as shown by Hohenberg and Kohn in the 1960s. [5]
They provided a proof for the assumption that the total energy in a quantum system
exposed to an external potential is a unique functional of the electron density within
the system. This built the foundation for a story of success which followed and has still
not reached its peak, making DFT a widely-applied method for research in condensed
matter physics and also in other fields, e.g. quantum chemistry [6].
Theoretically, DFT provides an exact solution of the quantum many-body problem, if
there was an analytical form of the exchange-correlation potential. Since this is not the
case, one must resort to approximate functionals like the Local Density Approximation
(LDA) or the Generalized Gradient Approximation (GGA). More elaborate schemes
apply many-body perturbation theory to extract certain physical quantities more
precisely, e.g electron band gaps can be very precisely calculated by using the GW
approximation.
A growing interest in non-collinear magnetic textures asks for the consideration of
relativistic effects in DFT calculations which are derived from the Dirac equation.
Indeed, primarily the inclusion of spin-orbit coupling has triggered a whole new field of
physics ranging from e.g. anisotropy effects in ferromagnets or skyrmions to topological
insulators that is investigated with the help of DFT codes [32].
This chapter is meant to reproduce the important constituents of DFT and follows
the structure and derivations of other elaborations, in particular the ones by Thieß (cf.
[33]) and Lounis (cf. [34]).

2.1. Born-Oppenheimer Approximation

Electronic structure methods often neglect the kinetic energy contribution of the atomic
nuclei to the Hamiltonian. In the Born-Oppenheimer approximation it is assumed
that the slowly moving nucleus does not influence the electronic behavior because the
electrons adjust their positions adiabatically according to the nucleus’ movement. Thus
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2. Density Functional Theory

the electronic problem and the nuclear problem can be separated due to their inherently
different timescales. In low-temperature physics, where phononic interactions do not
need to be taken into account, lattice vibrations are neglected completely and the fixed
nuclei contribute to the Hamiltonian solely via their electromagnetic potential [35]. In
the following all notations are given in atomic units (~ = 1; me = 1

2 ; e2 = 2; energies
in Rydberg , 1Ry = 13.6058 eV; lengths in units of Bohr radii)

2.2. Hohenberg-Kohn Theorems

There are two theorems called the Hohenberg-Kohn theorems that lay the foundation
for DFT calculations [5]. The associated proofs can be taken from the literature,
e.g. [32]. Both theorems draw a connection between the energy functional E [n] of a
quantum many-body system and the spatial electron density n (~r) in it.

Theorem 1 For a given external potential V , the total energy of a system is a unique
functional of the ground state electron density n0 (~r)

If the ground state is not degenerate, it hence follows that all properties of the system of
interest are determined by the ground state density n0 (~r). In particular the calculation
of individual wave functions is not necessary.

Theorem 2 The exact ground state density n0 (~r) minimizes the energy functional
E [n (~r)]

This would allow one to minimize the energy functional depending on the electron
density, if there was a known exact functional. In the following it is explained why there
is no such practical functional [36] and how nonetheless reasonable approximations can
facilitate an analytical treatment.

2.3. Kohn-Sham Equation

Kohn and Sham suggested to write the total energy of the many-body problem as a
sum of contributions of non-interacting electrons [37]. The energy functional written
in terms of the electron density has the form

E[n] = T [n] + U [n] + V [n]
= Ts[n] + UH [n] + V [n] + EXC [n]

= Ts[n] +
∫ ∫ n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ +

∫
n(~r)Vext(~r)d~r + EXC [n], (2.1)
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2.4. Spin Density Functional Theory

where

n(~r) =
N∑
i=1

φ∗i (~r)φi(~r) and Ts[n] =
N∑
i=1

∫
φ∗i (~r)

(
−∇2

)
φi(~r)d~r.

The sum of kinetic energy T [n], electron-electron interaction U [n] and nuclear potential
V [n] is reformulated by introducing the kinetic energy of a non-interacting electron
Ts[n] and the Hartree electron-electron interaction term UH [n] that accounts for the
Coulomb interaction. This approximation is made because the effect of the electron-
electron interaction on the kinetic energy and the exchange and correlation effects
in the Coulomb potential are difficult to determine. In order to compensate for this
shortcoming the exchange-correlation functional EXC [n] is introduced. Here, the
challenge is to find a functional only depending on the electron density n that can
mimic contributions of quantum mechanical nature [38].
Now that the total energy functional has been derived we can apply Theorem 2. In
order to ensure that the number of electrons remains constant the Lagrange constraint

∑
i

εi

(∫
φ∗i (~r)φi(~r)d~r − 1

)
(2.2)

is imposed, where the εi are Lagrange parameters. Here, the variational principle has
the form

0 = δE[n]
δn

= δE [φi(~r), φ∗i (~r)]
δφ∗i (~r)

. (2.3)

If this is applied to eq. (2.1) with the additional constraint eq. (2.2), it yields the
Kohn-Sham equations (

−∇2 + Veff [n]
)
φi = εiφi, (2.4)

where an effective potential is defined as

Veff [n] =
∫ n(~r′)
|~r − ~r′|

d~r′ + Vext(~r) + δEXC [n]
δn

. (2.5)

Although eq. (2.4) has the form of a single-particle Schrödinger equation it describes the
physics of a quantum many-body system under the approximations made above. Note,
that both φi(~r) and εi do not have a rigorously defined physical meaning although they
are often interpreted as single-particle wave functions and single-particle excitation
energies, respectively. Quantities in DFT are only well-defined if they are directly
related to the electron density n(~r).

2.4. Spin Density Functional Theory

The inclusion of collinear magnetic effects requires the consideration of two spin channels
in DFT calculations. Both spin channels then converge to different electron densities

17



2. Density Functional Theory

n↑(~r) for spins polarized in positive z-direction and n↓(~r) for spins pointing in negative
z-direction. These quantities can be used to define an electron and a magnetization
density[39]

n(~r) = n↑(~r) + n↓(~r) (2.6)
m(~r) = n↑(~r)− n↓(~r). (2.7)

The generalization of the Kohn-Sham equation eq. (2.4) for collinearly spin polarized
systems reads (

−∇2 + V σ
eff [n]

)
φσi = εσi φ

σ
i (2.8)

which can be solved independently for both spin channels σ = {↑, ↓}.
While a collinear treatment of magnetizations is sufficient for ferromagnetic systems,
more sophisticated compounds can show non-collinear magnetic behavior, i.e. atomic
spins point in arbitrary directions and not only along a clearly defined z-axis. In
non-collinear spin DFT the scalar magnetization density is replaced by a vectorial
magnetization density ~m(~r). Both n(~r) and the newly defined ~m(~r) may be expressed
by the 2x2 spin density matrix nαβ(~r), where α and β can have the directions ↑ or ↓:

n(~r) =
∑
α

nαα(~r) ~m(~r) =
∑
αβ

~σαβnαβ(~r) (2.9)

Here, the Pauli matrices ~σαβ =
(
σαβx , σαβy , σαβz

)
are used. Inversely, the spin den-

sity matrix can be written in terms of the electronic density and the vector of the
magnetization density as

nαβ(~r) = 1
2
(
n(~r)δαβ +mx(~r)σαβx +my(~r)σαβy +mz(~r)σαβz

)
. (2.10)

The spin-dependent energy functional

E[nαβ(~r)] = Ts[nαβ(~r)] +
∫ ∫ n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ (2.11)

+
∑
αβ

∫
nαβ(~r)V αβ

ext (~r)d~r + EXC [nαβ(~r)] (2.12)

is defined analogously to eq. (2.1) but with spin density depended kinetic energy,
external potential and exchange-correlation energy. Kinetic energy functional and
spin-density matrix in the single-particle scheme read

Ts[nαβ(~r)] =
∑
i,α

∫
φ∗αi (~r)

(
−∇2

)
φαi (~r)d~r (2.13)

and
nαβ(~r) =

∑
i

φ∗αi (~r)φβi (~r). (2.14)
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The considerations above lead to the non-collinear Kohn-Sham equations

−∇2φαi (~r) +
∑
β

V αβ
eff (~r)φ

αβ
i (~r) = εiφ

α
i (~r), (2.15)

where the effective potential is defined as

V αβ
eff (~r) = δαβ

∫ n(~r′)
|~r − ~r′|

d~r′ + V αβ
ext (~r) + V αβ

XC(~r). (2.16)

It is noteworthy that the two spin channels α and β are separated in all terms except
for the external potential term V αβ

ext and the exchange-correlation term EXC [nαβ(~r)].

2.5. Exchange-correlation Potential

It should be stressed that in the derivation of the total energy functional eq. (2.1) no
approximations are introduced and the expression is exact. The remaining task is to find
an expression for the exchange-correlation potential EXC [n] in which non-local effects
are combined. This is where DFT needs to resort to approximative functionals since an
exact expression in terms of the electronic density is not known. Such functionals can
be of arbitrary complexity but it has turned out that for the majority of applications the
local density approximation (LDA) or the slightly more elaborate generalized gradient
approximation (GGA) suffice. On average these approximations yield considerably
better results than the well-known Hartree approximation, where EXC [n] is completely
neglected.
In the spin-polarized regime LDA is denoted local spin density approximation (LSD).
Here, the exchange-correlation energy reads

ELSD
XC =

∫
n(~r)εhomXC

(
n↑(~r), n↓(~r)

)
d~r, (2.17)

where the exchange-correlation functional εhomXC is obtained from a quantum Monte-
Carlo simulation of a homogeneous electron gas. While LSD requires only the electronic
density n(~r) as an input parameter GGA functionals additionally utilize the gradient
of the electronic density

EGGA
XC =

∫
f(n↑(~r), n↓(~r),∇n↑(~r),∇n↓(~r))d~r. (2.18)

There are numerous expressions for the functional f , e.g. PBE [40], PBEsol [41],
PW91 [42] or B3LYP [43] are among the most popular. The search for more precise
approximations to the exchange-correlation energy itself constitutes a large area of
research. For some materials advanced schemes like the GW approximation [44] yield
more accurate results than LDA and GGA. However, such a gain in accuracy is
associated with increasing computational complexity an lack of physical clarity.
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3 KKR-Green Function Method

The Korringa-Kohn-Rostoker (KKR) method was introduced in 1947 by Korringa [45]
and in 1954 by Kohn and Rostoker [46]. Its characteristic feature is that it divides the
solution of the Schrödinger equation into a single scattering problem which is given by
a single potential in free space and a multiple scattering problem which is based on the
precept that the incoming wave at a scattering site is the sum of the outgoing waves
from all other scattering centers.
KKR was initially proposed as a wave function scheme but soon reinvented as a Green
function method [47] that brings along significant advantages, e.g. a complex energy
contour integration that drastically improves the method’s efficiency. As will be shown
in this chapter, knowledge of the Green function of a specific system allows to extract a
range of physical quantities and it is therefore very well justified to center the method
around it.
The KKR scheme has been applied very successfully to systems with impurities in
a host crystal and to randomly disordered alloys by means of the coherent potential
approximation (KKR-CPA) [48]. Both efficiency and accuracy were further refined
by the introduction of the so-called screened or tight-binding KKR method [49] that
ensures an exponential decay of the multiple scattering components and therefore
allows to cut them off at a rather short range without any loss of accuracy.
This chapter reproduces established knowledge and is based on earlier work that can for
instance be found in [21, 22, 33, 50, 51]. First, a brief introduction to Green functions
is given followed by an explanation of how to extract physical quantities from them
by using a complex contour integration based on the recapitulation of Zimmermann
(cf. [50]). Hereafter, the separation into single-site and multiple-scattering problems is
discussed (cf. [50]). The chapter concludes with the full-potential treatment in KKR,
a description of the screened KKR method and the presentation of a workflow scheme
on how to solve the KKR equations self-consistently following the remarks of Thieß (cf.
[33]).
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3. KKR-Green Function Method

3.1. Properties of Green Functions

Green functions in differential equations

The concept of Green functions was introduced to the field of linear partial differential
equations by the mathematician George Green. A Green function G(x, x′, z) is defined
as a solution of

(z − L)G(x, x′, z) = δ(x− x′), (3.1)

where L is a linear differential operator, z is a real or complex scalar parameter and
δ(x − x′) is the Dirac delta function. If the respective Green function G(x, x′, z) is
known, the inhomogeneous differential equation

(z − L)f(x) = h(x) (3.2)

can be solved by evaluating

f(x) = f0(x) +
∫
dx′G(x, x′, z)h(x′). (3.3)

This expression is formed by a solution f0(x) of the homogeneous differential equation
(eq. (3.2) with h(x) = 0) and a convolution integral of the Green function and the
inhomogeneity. In the following Green functions are utilized to solve the quantum
many body problem by means of the KKR method.

Green functions in physics

In quantum mechanics an electron exposed to a time-independent potential is described
by the Hamiltonian

H = −∇2 + V (~r), (3.4)

where the first term describes the kinetic energy and the second term a potential that
depends on the position of the electron. For simplicity ~ = 1, me = 1

2 and e =
√

2
is assumed from here on. The Hamiltonian H is a differential operator for which the
stationary Schrödinger equation must be fulfilled so that for a Green function G(E)

(E −H)G(E) = 1 (3.5)

holds. This procedure is analogous to eq. (3.1). The solution can be obtained in a
straightforward manner as G(E) = (E −H)−1. Naturally, it is also possible to solve
this problem by obtaining the eigenstates ψi of eq. (3.4). Therefore, both approaches
are closely connected which manifests in the so-called spectral representation of the
Green function

G±(E) =
∑
i

|ψi〉 〈ψi|
E − εi ± iγ

(3.6)
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Note, that an infinitesimal imaginary contribution γ → 0 is added to the denominator
to avoid singularities when E = εi. Depending on the sign of γ the Green function is
referred to as retarded (G+) or advanced (G−). In the following we exclusively use the
retarded version. Equation (3.6) can then be generalized for real and spin space as

Gσ,σ′(~r, ~r′, E) =
∑
i

ψσi (~r)
(
ψσ
′

i (~r′)
)†

E − εi + iγ
, (3.7)

where σ ∈ {↑, ↓}, i.e. spin up or spin down.

Extraction of physical quantities

A convenient attribute of the Green function formalism is that observables A, which
depend only on single particle properties, can be extracted from G(E) by making use
of the algebraic connection

〈A〉 = − 1
π

Im
∫ EF

−∞
dETr [AG(E)] . (3.8)

The trace is integrated over the energy contour up to the Fermi level EF of the electronic
structure.

This allows to easily calculate the electronic density, the key ingredient to DFT, by
defining the projection operator

P~r =
∑
σ

|~r, σ〉 〈~r, σ| , (3.9)

which projects G(E) onto a position ~r. Putting A = P~r then leads to the spatially
resolved electronic density

ρ(~r) = − 1
π

Im
∑
σ

∫ EF

−∞
dE Gσ,σ(~r, ~r, E) (3.10)

A spin-resolved density of states for distinct energy points is given by

nσ(~r, E) = − 1
π

ImGσ,σ(~r, ~r, E). (3.11)

Complex energy contour

The extraction of an observable A from eq. (3.8) requires the evaluation of a semi-
infinite integral over the energy E. This integral can be made finite by dividing it into
a core electronic part (−∞ < E < Eb) and a valence electronic part (Eb < E < EF )
(see Figure 3.1). Conveniently, the core contribution that reaches up to the bottom
of the valence band Eb can be evaluated in a simpler atomic-like formalism assuming
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3. KKR-Green Function Method

ReE

ImE

Eb EF

Figure 3.1.: Energy contour in complex plane as used for the integration in eq. (3.8)
(red). The contour ranges from the bottom of the valence band Eb to the
Fermi level EF . The black crosses mark poles of the Green function on the
real axis that are deliberately avoided by choice of the contour. Matsubara
poles arising from the Fermi function are depicted with blue crosses.

that the charge density of the core states is fully localized within the individual cells.
The contribution from the valence band is calculated by means of a complex contour
integration, where the integration contour is shifted into the complex plane to avoid
poles that the Green function defined in eq. (3.6) has on the real axis whenever E = εi
[52]. Resorting to the complex plane also allows to use fewer points in the numerical
integration (typically around 30) and therefore makes a calculation computationally
less expensive. Additionally, the Green function is convoluted with the Fermi-Dirac
distribution

fT (E − EF ) = 1
1 + exp ((E − EF )/kBT ) , (3.12)

where kB is the Boltzmann constant and T an artificial electronic temperature which
is usually set to a value between 200 and 800 K. This basically leads to a broadening
of the density of states at the Fermi level. The Fermi-Dirac distribution leads to
so-called Matsubara poles that are located where E = EF ± (2n− 1)πkBTi. Residual
contributions from these poles need to be considered in the integration pattern, too.
Convolution of the Fermi-Dirac distribution with eq. (3.8) yields

〈A〉 = − 1
π

Im
∫ EF

Eb

dEfT (E − EF )Tr [AG(E)] . (3.13)

Note, that fT (E −EF ) exponentially decays above the Fermi level EF which allows to
formally extend the integral to infinity. Observables, e.g. the electronic density, can be
derived from this equation analogously to eq. (3.10) and eq. (3.11).
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3.2. Single-Site Scattering

3.2. Single-Site Scattering

In the following it is explained how the propagation of a single electron in a finite
potential can be described by a Green function. This is done by introducing the Green
function for an electron in free space g(~r, ~r′, E) followed by a derivation of the solution
to the single-site scattering problem G(~r, ~r′, E).

Free space

The Hamiltonian for an electron in free space reads H0 = −∇2. The eigenfunctions to
it are plane waves

φ~k = ei
~k·~r =

∑
L

4πiljl(κr)YL(r̂)YL(k̂), (3.14)

which can be expanded in spherical harmonics YL(x̂) with Bessel function coefficients
jl(x). L = (l,m) serves as a combined index for both angular (l) and magnetic (m)
quantum number. In order to keep notations compact we define κ = |~k| =

√
E, r = |~r|,

r̂ = ~r/r and k̂ = ~k/κ The Green function corresponding to the problem given by H0 is
known to be

g(~r, ~r′, E) = − 1
4π

eiκ|~r−~r
′|

|~r − ~r′|
. (3.15)

It can again be expanded in spherical harmonics as

g(~r, ~r′, E) =
∑
L

YL(r̂) 1
rr′
gl(r, r′, E)YL(r̂′), (3.16)

where
gl(r, r′, E) = κrr′jl(κr<)hl(κr>). (3.17)

Here, r< denotes the smaller radius of r and r′ and r> denotes the larger radius of r
and r′. hl(x) = nl(x) − ijl(x) is the spherical Hankel function in which nl(x) is the
spherical Neumann function. Note, that hl(x) does not enter in the expansion of the
wave function eq. (3.14), where only the spherical Bessel functions jl(x) are included.
The Hankel functions diverge as hl(x) ∝ 1/xl+1 for x→ 0 and are needed to describe
the divergence of the denominator in eq. (3.15). The spin-dependent Green function
for free space is diagonal and reads

gσσ
′(~r, ~r′, E) = δσ,σ′g(~r, ~r′, E). (3.18)

Atomic potential with finite range

The next step is to generalize the problem above to a scenario in which a potential V
of finite range is added so that the Hamiltonian reads H = −∇2 + V . The potential is
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defined as

V σσ′(~r, ~r′) =


∑
L,L′

1
r2V

σσ′
LL′ (r)YL(r̂)YL′(r̂′)δ(r − r′) , for |~r| ≤ R

0 , for |~r| > R
(3.19)

and expanded in spherical harmonics YL. It is given with an explicit dependency on
both spatial parameters ~r and ~r′. While this dependency can be replaced with the
relative distance |~r − ~r′| in many cases it is indispensable, if e.g. spin-orbit interaction
shall be incorporated. In this case the potential includes spatial derivatives which
cannot be evaluated, if only |~r−~r′| is known. However, for the following derivations we
can assume V σσ′(~r, ~r′) to be local which is indicated by the δ-distribution in eq. (3.19).
For an atomic potential of finite range the Green function reads

◦
Gσσ′(~r, ~r′, E) =

∑
LL′

YL(r̂) 1
rr′

◦
Gσσ′

LL′(~r, ~r′, E)YL′(r̂′) (3.20)

with expansion coefficients
◦
Gσσ′

LL′(~r, ~r′, E) =
κ
∑
s,L′′

[
Θ(r′ − r)Rsσ′

LL′′(r, E)S̄σsL′′L′(r′, E) + Θ(r − r′)SσsLL′′(r, E)R̄sσ′

L′′L′(r′, E)
]
. (3.21)

It consists of products of so-called regular (Rσs
L′L/R̄σs

L′L) and irregular (SσsL′L/S̄σsL′L)
solutions. Furthermore, it must be distinguished between right (Rσs

L′L/SσsL′L) and left
(R̄σs

L′L/S̄σsL′L) solutions.
All solutions can be obtained by using the Lippmann-Schwinger equation. It connects
the wave functions of a perturbed and an unperturbed system

H0 |ψ0〉 = E |ψ0〉 (3.22)
(H0 + ∆V ) |ψ〉 = E |ψ〉 (3.23)

by the relation

|ψ〉 = |ψ0〉+G0(E)∆V |ψ〉 = |ψ0〉+
∫
drdr′gl(r, r′, E)V σσ′(~r, ~r′) |ψ〉 , (3.24)

where the Green function for free space (eq. (3.17)) and the atomic potential with finite
range (eq. (3.19)) are inserted. The expansion of |ψ〉 in spherical harmonics reads

|ψ〉 = ψσ~k,s(~r) =
∑
L,L′

4πil 1
r
Rσs
L′L(r, E)YL(k̂)YL′(r̂). (3.25)

It must be distinguished between right and left solutions to a given operator equation.
A right solution is defined as a solution to (H− E) |ψ〉 = 0 while a left solution solves
¯|ψ〉(H− E) = 0.

A lengthy evaluation of eq. (3.24) [53] yields the regular right solution

Rσs
L′L(r, E) = JL(r, E)δL′,Lδσ,s +

∑
σ′′,L′′

∫
cell
dr′′gl′(r, r′′, E)V σσ′′

L′L′′(r′′)Rσ′′s
L′′L(r′′, E) (3.26)
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3.2. Single-Site Scattering

formulated as a Lippmann-Schwinger equation. The interval in which the integral
over r′′ is evaluated depends on methodological approaches discussed in section 3.4.
Analogously to free space an irregular right solution is given as

SσsL′L(r, E) = HL(r, E)βσsL′L(E) +
∑
σ′′,L′′

∫
cell
dr′′gl′(r, r′′, E)V σσ′′

L′L′′(r′′)Sσ
′′s

L′′L(r′′, E) (3.27)

Note, that similarly to the potential-free case the regular solution contains a Bessel
function while the irregular solution includes a Hankel function that diverges at the
origin.
The left solutions can be derived in a similar manner and read

R̄σs
L′L(r, E) = δL′,Lδσ,sJL′(r, E) +

∑
σ′′,L′′

∫
cell
dr′′R̄sσ′′

LL′′(r′′, E)V σ′′σ
L′′L′(r′′)gl′(r′′, r, E) (3.28)

in the regular and

S̄σsL′L(r, E) = β̄σsL′L(E)HL′(r, E) +
∑
σ′′,L′′

∫
cell
dr′′S̄sσ

′′

LL′′(r′′, E)V σ′′σ
L′′L′(r′′)gl′(r′′, r, E) (3.29)

in the irregular form.
In our scheme the irregular solutions shall coincide with the Hankel functions outside
the scattering region such that

SσsL′L(r, E) = HL(r, E)δL′,Lδσ,s for r > R. (3.30)

The Hankel functions HL(r, E) in eq. (3.27) and eq. (3.29) are therefore multiplied
with

βσsL′L(E) = δL′,Lδσ,s − κ
∫

cell
dr′JL(r′, E)

∑
σ′′,L′′

V σσ′′

L′L′′(r′)Sσ
′′s

L′′L(r′, E) (3.31)

and

β̄sσLL′(E) = δL,L′δs,σ − κ
∑
σ′′,L′′

∫
cell
dr′S̄sσ

′′

LL′′(r′, E)V σ′′σ
L′′L′(r′)JL′(r′, E), (3.32)

respectively. This is to ensure the validity of eq. (3.30) and to impose correct boundary
conditions.
Both Lippmann-Schwinger equations for Rσs

L′L(r, E) in eq. (3.26) and R̄σs
L′L(r, E) in

eq. (3.28) can in most cases be solved up to sufficient accuracy by expanding them in
a Born series. However, if spin-orbit coupling is included in the Hamiltonian, the Born
series for the irregular solutions SσsL′L(r, E) (eq. (3.27)) and S̄σsL′L(r, E) (eq. (3.29)) do
not converge any longer. That is why a different approach was introduced by Zeller
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et al. [22] in which the radial dependency of the solutions is expanded in Chebyshev
polynomials Tn(x) as

f(x) =
∞∑
j=0

ajTj(x), (3.33)

where aj are the expansion coefficients. Conveniently, the integral over f(x) is again
given by an expansion in Chebyshev polynomials as

F (x) =
∫ x

−1
f(x′)dx′ =

∞∑
j=0

βjTj(x) (3.34)

In practice, the summation is performed only for a finite number of polynomials
j = 0, .., N . The coefficients aj and βj are connected by a matrix transformation of
the form 

β0

β1
...
βN

 = S


α0

α1
...
αN

 (3.35)

with the transformation matrix S. This property of the Chebyshev expansion allows
to write the Lippmann-Schwinger equations eqs. (3.26) to (3.29) as matrix equations
that can be solved by matrix inversion. The procedure is described in detail in [22].

3.3. Multiple-Site Scattering

The derivations above exclusively considered single scattering sites. In a crystal
structure multiple scattering sites at positions ~Rn (n = 1, ..., N) must be taken into
account. Due to the periodicity inherent to a crystal the Cartesian coordinates of the
scattering centers can be written as a sum of cell-centered coordinates ~Rn and a local
vector ~r that lies within the cell n,

~x = ~Rn + ~r. (3.36)

In the following we first derive an expression for the electronic Green function in free
space and then for a system of identical scatterers where we assume a site-diagonal
potential

V nn′(~r + ~Rn, ~r′ + ~Rn′) = δnn′V
n(~r, ~r′) (3.37)

with both arguments ~r and ~r′ being confined to the same cell. A Dyson equation is
formulated to obtain the associated Green function. Subsequently, the problem is
extended to a system with multiple atoms in the unit cell.
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3.3. Multiple-Site Scattering

Free space

The Green function for free space reads

g(~x, ~x′, E) = κ
∑
L

JL(~x<, E)HL(~x>, E) (3.38)

As in eq. (3.16) the spin components are omitted. The conventions JL(~x,E) =
jl(
√

(E)x)YL(x̂) and HL(~x,E) = hl(
√

(E)x)YL(x̂) denote products of spherical Bessel
and Hankel functions with spherical harmonics. ~x< (~x>) is to be replaced by the
shorter (longer) vector of ~x and ~x′. Equation (3.38) can be transformed into the double
expansion [54]

g(~r + ~Rn, ~r′ + ~Rn′ , E) = δnn′g(~r, ~r′, E) +
∞∑
L=0

JL(~r, E)
∞∑
L′=0

gnn
′

LL′(E)JL′(~r′, E). (3.39)

This form features the cell-centered coordinates and allows to distinguish between the
on-site part for which n = n′ (first term) and the multi-scattering part (second term).
It is straightforward to confirm that eq. (3.39) is merely a different expression for
eq. (3.38) [54]. With the help of the addition theorem

κHL(~r′ + ~Rn − ~Rn′ , E) =
∞∑
L′=0

gnn
′

LL′JL′(~r′) (3.40)

the Hankel functions can be expanded in Bessel functions with expansion coefficients

gnn
′

LL′(E) = 4πκ
∑
L′′
il−l

′+l′′CLL′L′′HL′′(~Rn − ~Rn′). (3.41)

The integrals over three spherical harmonics

CLL′L′′ =
∫
dΩYL(r̂)YL′(r̂)YL′′(r̂) (3.42)

are called Gaunt coefficients. They vanish for l′′ > l′ + l and thereby restrict the
amount of terms which have to be considered in eq. (3.39) to a finite number. If the
summations over L and L′ are performed in the correct order (see [54] for details),
eq. (3.39) is guaranteed to converge.
For magnetic particles the derivation above can be easily generalized with expansion
coefficients

gnn
′

ΛΛ′ = gnn
′

LL′δσσ′ , (3.43)

where Λ = (L, σ) = (l,m, σ) is a combined angular momentum and spin index.
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3. KKR-Green Function Method

Dyson equation

The problem given by the potential in eq. (3.37) is solved by the Green function

Gσσ′(~r+ ~Rn, ~r′+ ~Rn′ , E) = δnn′
◦
Gσσ′(~r, ~r′, E) +

∑
ΛΛ′

Rσ
Λ(~r, E)Gnn′

ΛΛ′(E)R̄σ′

Λ′(~r′, E). (3.44)

Its derivation is lengthy and therefore not discussed here [22].
◦
Gσσ′ is known from

eq. (3.20) while Rσ
Λ and R̄σ′

Λ′ are given in eq. (3.26) and eq. (3.28), respectively. The
so-called structural Green functions Gnn′

ΛΛ′ require further explanation. They are defined
as

Gnn′

ΛΛ′(E) = gnn
′

ΛΛ′(E) +
∑

n′′,Λ′′,Λ′′′
gnn

′′

ΛΛ′′(E)tn′′Λ′′Λ′′′(E)Gn′′n′

Λ′′′Λ′(E) (3.45)

with the t-matrices

tnΛΛ′(E) =
∫
d~r
∫
d~r′J̄Λ(~r, E)V n(~r, ~r′)Rn

Λ′(~r′, E) (3.46)

which describe the transition of the wave function of an incoming electron to the wave
function of an electron that is scattered at the potential V n(~r, ~r′).
It is convenient to transform eq. (3.45) into reciprocal space which yields

GΛΛ′(~k,E) = gΛΛ′(~k,E) +
∑

Λ′′,Λ′′′
gΛΛ′′(~k, E)tΛ′′Λ′′′(E)GΛ′′′Λ′(~k, E). (3.47)

This approach exploits the periodicity that is inherent to a crystal structure which
means that physical quantities can be derived solely from the relative position ~Rn− ~Rn′ .
While tnΛ′′Λ′′′(E) does not depend on spatial coordinates, the single-site Green functions
must also be transformed into Fourier space and are given as

gΛΛ′(~k,E) =
∑
n6=n′

gnn
′

ΛΛ′(E)ei~k·(~Rn−~Rn′ ). (3.48)

In order to obtain the structural Green function eq. (3.48) is inverted which provides

GΛΛ′(~k,E) =
[(

1− g(~k,E)t(E)
)−1

g(~k,E)
]

ΛΛ′
. (3.49)

This equation constitutes the core of multiple-scattering theory in KKR. Usually,
the inversion is performed directly. Under certain circumstances it can however be
beneficial to use an iterative scheme as it is used in KKRnano (see section 4.1).
The result is transformed back to real space resulting in

Gnn′

ΛΛ′(E) = 1
VBZ

∫
BZ

d~kGΛΛ′(~k, E)e−i~k·(~Rn−~Rn′ ) (3.50)

so that eq. (3.44) can be easily evaluated to obtain the Green function Gσσ′(~r+ ~Rn, ~r′+
~Rn′ , E) which solves the multiple-scattering problem.
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3.4. Full-potential Treatment

A more general setting includes multiple atoms µ = 1...Nat in a unit cell with a different
potential V σσ′

µ (~r, ~r′) around each of them. The indices µ and µ′ designate atoms within
the unit cells n and n′, respectively. The Fourier transformation in eq. (3.48) must
then be generalized to

gµµ
′

ΛΛ′(~k,E) =
∑
n6=n′

gnµn
′µ′

ΛΛ′ (E)ei~k·(~Rn−~Rn′ ) (3.51)

and the form of the subsequent transformation back to real space changes to

Gnµn′µ′

ΛΛ′ (E) = 1
VBZ

∫
BZ

d~kGµµ′

ΛΛ′(~k,E)e−i~k·(~Rn−~Rn′ ). (3.52)

3.4. Full-potential Treatment

The spatial integrals
∫

cell in this chapter (e.g. eq. (3.26) and eq. (3.27)) are deliberately
given without lower and upper boundaries. In the KKR methodology it must be
distinguished between calculations that utilize the atomic sphere approximation (ASA)
and full-potential (FP) calculations [21].
ASA is based on an approximation where the potential surrounding the scattering sites
is considered to be spherical and thus all integrals can be evaluated in a straightforward
manner by integrating up to a certain radius. This so-called Wigner-Seitz radius
RWS is chosen such that the volume of the unit cell coincides with the volume of the
Wigner-Seitz sphere. A consequence of this procedure is that the different spheres
overlap since their radii are larger than the touching radius, i.e. the so-called muffin-tin
radius RMT .
While ASA gives valid results for a variety of problems it is desirable to work with a
scheme that utilizes non-spherical cells. Therefore, in the FP scheme the integrations
are performed over the Wigner-Seitz (WS) cells of the individual scattering sites. The
radius of the sphere that circumscribes the Wigner-Seitz cell is denoted by RC . The
radii RMT and RC are depicted in fig. 3.2.

For an FP calculation all spatial integrals
∫

cell in the formalism described in this chapter
need to be convoluted with the shape function

Θ(~r) =
∑
L

ΘL(r)YL(~r) =

1 inside WS cell
0 outside WS cell

. (3.53)

It has the form of a step function expanded in spherical harmonics YL(~r) that masks
regions outside the cell. The L-expansion converges rather slowly but it can be shown
that only the radial shape functions ΘL(~r) for which l ≤ 4lmax contribute to the sum,
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3. KKR-Green Function Method

RC
RMT

Figure 3.2.: Left: Illustration of a Wigner-Seitz cell (blue) with muffin-tin radius RMT

and circumscribing radius RC . Right: Radial shape functions ΘL(~r) of an
fcc lattice for L = 0, 4, 6, 8 with indicated muffin-tin radius RMT , Wigner-
Seitz radius RWS and radius of the circumscribing sphere RC . Reprinted
from [55].

if the expansion of the wave functions is truncated above lmax [55]. The radial shape
functions are given by

ΘL(r) =

δl,0
√

4π , for r ≤ RMT

0 , for r ≥ RC ,
(3.54)

if r lies within the muffin-tin sphere or outside the circumscribing sphere. In between,
the integral

ΘL(r) =
∫
dΩYL(~r)Θ(~r) (3.55)

has to be evaluated numerically. Figure 3.2 illustrates how values from different
L-components contribute to the expansion in eq. (3.53) for an fcc lattice.

3.5. Screened KKR Method

The screened KKR method was suggested by Zeller et al. as a scheme that allows
the treatment of large-scale systems [49]. It is also known as tight-binding KKR
method. The idea behind it is to replace the vanishing potential of free space, which is
used as reference system above, by a constant muffin-tin potential on all sites. The
muffin-tin potential leads to an exponential spatial decay of the structural constants
(c.f. eq. (3.47)) and is an essential step towards a linear-scaling KKR algorithm (see
chapter 4).
This exponential decay of the structural constants occurs for negative energies since
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3.6. Self-consistent Solution

the Schrödinger equation has no eigensolutions for negative energies. Therefore, a
reference system is chosen that does not feature eigensolutions in the energy range of
an electronic structure calculation. It is characterized by potentials V r,n(~r, ~r′) that are
located at the scattering centers n. We can then define

∆tnΛΛ′(E) = tnΛΛ′(E)− tr,nΛΛ′(E) (3.56)

which is the difference of the t-matrix of the real system tnΛΛ′ (see eq. (3.46)) and the
t-matrix of the reference system tr,nΛΛ′ which are defined by V r,n(~r, ~r′).
In order to derive a Dyson equation in which free space is substituted, the structural
reference Green functions Gr,nn′

ΛΛ′ must be calculated from

Gr,nn′

ΛΛ′ (E) = gnn
′

ΛΛ′(E) +
∑

n′′,Λ′′,Λ′′′
gnn

′′

ΛΛ′′(E)tr,n
′′

Λ′′Λ′′′(E)Gr,n′′n′

Λ′′′Λ′ (E), (3.57)

where gnn′ΛΛ′ are the familiar Green functions for free space.

The Dyson equation for the structural Green functions of the real system in reciprocal
space is then given by

GΛΛ′(~k,E) = Gr
ΛΛ′(~k,E) +

∑
Λ′′,Λ′′′

Gr
ΛΛ′′(~k,E)∆tΛ′′Λ′′′(E)GΛ′′′Λ′(~k, E). (3.58)

An inversion leads to the Dyson equation for the screened KKR method

GΛΛ′(~k,E) =
[(

1−Gr(~k, E)∆t(E)
)−1

Gr(~k,E)
]

ΛΛ′
. (3.59)

It is important to stress that, if evaluated exactly, eq. (3.59) and eq. (3.49) yield
identical results but that the former features the aforementioned exponential decay in
space of Gr which is favorable with regards to the convergence of an iterative solution.
The decay can be visualized by considering the ’partial norm’

Nll′(|~Ri − ~Rj|, E) = |E|(l+l′)/2

(2l + 1)!!(2l′ + 1)!! ×
[∑
mm′
|Gr,ij

lm,l′m′(E)|2
]1/2

(3.60)

which is plotted in Figure 3.3 both for the screened muffin-tin potential and free space.
In case of the screening muffin-tin potential Nll′(|~Ri − ~Rj|, E) is rapidly decaying with
increasing distance between scattering site i and j, while free space as a reference
system leads to a very weak decay.

3.6. Self-consistent Solution

After having discussed the necessary steps of the KKR scheme we can formulate a self-
consistency cycle (cf. [33]) in which the electronic density is adjusted until convergence
is achieved and the variational principle of Hohenberg and Kohn (c.f. eq. (2.3)) is
fulfilled. The crucial steps in the self-consistency cycle are the following:
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3. KKR-Green Function Method

Figure 3.3.: Screened (left panel) and unscreened (right panel) partial norms for l = l′

as a function of the distance in units of the lattice constant. The results
for l = 0, 1, 2, 3 and 4 are shown from top to bottom. Reprinted with
permission from [49]. Copyright 1995 by the American Physical Society.

1. Define initial potential Vin.

2. Calculate single-site solutions (eqs. (3.26) to (3.29)) for all sites n.

3. Set up screened reference system according to the scheme presented in section 3.5.

4. Solve Dyson equation given in eq. (3.59).

5. Use resulting Green function to extract density nout via the complex energy
contour integration in eq. (3.13).

6. Compute new potential Vout by means of the Poisson equation which reads
∇2Vout = −8πnout.

7. Check convergence by comparing Vin and Vout. If the potential is not converged,
mix Vout with Vin and use the result as new Vin to start again from step 1.

In this chapter the fundamentals of the KKR methodology were outlined. They form
the basis of several KKR codes that are developed e.g. in Jülich, Munich, Halle and
other places.
In the next chapter, we focus on the unique features of the massively-parallelized
KKRnano. It is shown that the multiple-scattering part is the computationally most
demanding problem and how it can be solved with less computational effort
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4 Linear-scaling KKRnano and
High Performance Comput-
ing

The growing interest in phenomena that occur on a length scale of nanometers has
triggered research in the direction of linear-scaling DFT methods. The KKR Green
function as it is presented in the previous chapter suffers from a bottleneck due to the
scaling behavior of its arithmetic complexity which behaves like O(N3), where N is the
number of Voronoi cells that are in the unit cell. This number usually coincides with
the number of atoms unless empty cells are included in the system. Obviously, this
sets an upper bound for the length scales of the phenomena that can be investigated
with ordinary KKR codes. In recent years substantial efforts have been made within
the electronic structure community to overcome this computational barrier [56].
Zeller gives a vivid explanation of how DFT can be used for large-scale calculations
on state-of-the-art supercomputers with thousands of processors in [32]. It turned out
that in order to fully utilize such machines, it is most effective to use grid-based real-
space algorithms that can exploit the locality of the real-space Kohn-Sham equations.
Thereby, wave functions, electronic density and potentials need to be stored only locally
and the inter-processor communication is kept at a minimum. It can be shown that
by exploiting the near-sightedness principle of electronic matter [57] the cubic scaling
can be reduced to a linear scaling with complexity O(N). Examples of codes that
follow this principle are the locally self-consistent multiple scattering (LSMS) code [58],
CONQUEST and ONETEP that can handle up to hundreds of thousands of atoms
[59].
KKRnano [33] is an electronic structure code, specifically designed for petaFLOP
computing. Its method falls in the category of codes that scale linearly with the
number of atoms, so that we can realize system sizes of up to half a million atoms in a
unit cell.

The purpose of this chapter is to introduce the underlying concepts of KKRnano and
to explain in which sense it was extended during the course of this PhD thesis. At the
beginning, we introduce the iterative solver for the multiple-scattering problem and
the real-space truncation based on the extensive description by Thieß in [33]. Both
are crucial measures in order to achieve linear-scaling. A large part of this chapter is
dedicated to High Performance Computing. Here, we present current and upcoming
hardware architectures for supercomputers and discuss the various parallelization
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4. Linear-scaling KKRnano and High Performance Computing

options that KKRnano has to offer. Part of this ongoing work is the efficient usage of
GPUs to solve the multiple-scattering problem. A subsection on benchmarks that were
run during the JUQUEEN Extreme Scaling Workshop 2017 provides evidence that
the multiple-scattering solver in KKRnano scales indeed linearly. The benchmarks
also show that the solution of the Poisson equation does not scale linearly. For the
treatment of a million atoms on the upcoming generation of supercomputers it is
therefore required to further optimize the formalism by e.g. using fast multipole
methods [60].

Methodological improvements with regards to KKRnano that have been made in the
context of this thesis are presented in chapter 5.

4.1. Iterative Solution of the Dyson Equation

The solution of the Dyson equation in eq. (3.59) constitutes the biggest computational
challenge in large-scale KKR calculations. Its computational complexity can be reduced
by choice of a suitable reference system, i.e. a system of repulsive potentials that
guarantees the exponential decay of the Green function elements (c.f. section 3.5).
Then, the reference Green function is given as a sparse matrix with (lmax + 1)4NclN
instead of (lmax + 1)4N2 non-zero elements, where Ncl denotes the number of atoms
in the reference cluster and N the number of atoms in the complete system. While a
direct inversion with a linear algebra package, e.g. LAPACK, is the appropriate line
of action if confronted with a dense matrix, it can be advantageous to consider an
iterative approach, if the matrix is sparse. This is a crucial intermediate step towards
a linear-scaling algorithm since it lowers the number of necessary algebraic operations
from O(N3) to O(NitNclN

2), where Nit is the number of iterations needed to invert
the matrix iteratively.

In the following it is explained how the Dyson equation is rewritten in order to solve it
with an iterative scheme which is presented subsequently (cf. [19, 33]).
Omitting the indices for a moment, the Dyson equation reads

G = Gr +Gr∆tG, (4.1)

where G is the sought Green function, Gr is the Green function of the screened reference
system and ∆t = t− tref is the difference between the t-matrices of the actual system
and the reference system.
We can rewrite eq. (4.1) as

(1−Gr∆t)G = Gr = −(1−Gr∆t)(∆t)−1 + (∆t)−1 (4.2)

and multiply by (1−Gr∆t)−1 so that

G = −(∆t)−1 + (∆t)−1
[
(∆t)−1 −Gr

]−1

︸ ︷︷ ︸
M−1

(∆t)−1. (4.3)
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4.1. Iterative Solution of the Dyson Equation

If it was not for M−1, this equation could be evaluated easily but the calculation of M−1

requires a computationally expensive matrix inversion. In a direct matrix inversion
M is decomposed into a product of lower and upper triangular matrices which comes
with computational costs of O(N3) floating-point operations for dense matrices. Such
a cubic scaling behavior obviously prohibits the investigation of very large supercells
and a computationally less demanding way to compute M−1 is desirable. It is difficult
to parallelize a matrix inversion routine as this inevitably involves operations that can
only be performed sequentially.
An iterative inversion provides a way that exploits the sparsity of M and thereby
avoids the cubic scaling. If we define X = M−1,

∆tMX = ∆t (4.4)

holds and by inserting M we get

X −∆tGrX = ∆t. (4.5)

This equation can be reformulated as an iterative condition

X(i+1) = ∆t+ ∆tGrX(i), (4.6)

where X(i) is inserted in iteration i to obtain the input X(i+1) for the next iteration
step i+ 1. In principle, an iterative mixing scheme that ensures proper convergence
can be used to determine the result, e.g. Anderson mixing [61]. However, such mixing
schemes require memory-demanding bookkeeping of prior steps in the iteration process
which contradicts our intention to keep memory consumption low in KKRnano.
Therefore, eq. (4.5) is reformulated as

(∆tGr − 1)X = −∆t (4.7)

to take the form of a system of linear equations

Ax = b. (4.8)

In our case A, x and b are complex matrices and A is non-singular and non-Hermitian.
There exist various iterative algorithms to solve linear equation problems, the most
popular being the Krylov projection methods. A thorough derivation and detailed
description of them is given in [62] whereas this thesis only covers the fundamentals.
In a nutshell, the Krylov subspace methods approximate x = A−1b by p(A)b, where
p(A) is a polynomial that contains powers of A.
The basis of the algorithm is the creation of a Krylov subspace

Kn(r0, A) = span{r0, Ar0 . . . , A
n−1r0} (4.9)

by consecutively multiplying A with the residual vector r0 = b− Ax0, where x0 is an
initial guess for the solution x. An approximation to the solution of eq. (4.8) in the
subspace Kn is then given by

A−1b ≈ xm = x0 + qm−1(A)r0, (4.10)
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in which qm−1 is a polynomial of degree m − 1, i.e. it contains powers of A up to
Am−1. The way it is constructed depends on the chosen Krylov method. Well-known
methods are the Lanczos algorithm, the GMRES algorithm and the QMR algorithm
whose transpose-free variant (TFQMR) is utilized in KKRnano. For algorithmic details
the reader is referred to the literature [33, 63]. The TFQMR algorithm was specially
tailored to yield good convergence for the non-singular and non-Hermitian problem
that eq. (4.7) constitutes. In the standard QMR algorithm a matrix-vector product
with both A and the transpose AT is required. TFQMR avoids multiplications with the
transpose AT which would require intensive communications between the individual
processors as more array entries would have to be shared. An extensive explanation of
the TFQMR algorithm itself and the implementation in KKRnano is given by Thiess
[33]. The default choice for the initial guess x0 is 0 + 0i but a smarter choice in
combination with a preconditioning scheme (see below) can significantly reduce the
number of necessary iterations in the algorithm.

Complementary to a well-considered initial guess convergence can be further improved
by preconditioning the problem at hand (cf. [33]). The underlying concept is to find a
matrix

P = P1 · P2 (4.11)

that approximately corresponds to A and for which the inverse P−1 can be easily
determined. This leads to a modified linear matrix equation

A′y = b′, (4.12)

where A′ = P−1
1 AP−1

2 , b′ = P−1
1 (b− Ax0) and y = P2(x− x0). x0 is again the initial

guess of the solution to the initial problem Ax = b. The residual vector for eq. (4.12)
is given by r′n = b′ − A′yn. When r′n is sufficiently small, i.e. convergence is reached,
the solution to the genuine problem is connected to yn by

xn = x0 + P−1
2 yn (4.13)

with a residual vector that reads

rn = P1r
′
n. (4.14)

The effect of preconditioning schemes has been studied in KKRnano yielding mixed
results [64]. On the one hand schemes like the block-circulant preconditioning (BCP)
can accelerate convergence substantially, on the other hand preconditioning does not
guarantee better convergence per se but is very sensitive with regards to the treated
material and its crystal structure, e.g. calculations concerning amorphous systems do
not benefit from BCP. In light of this observation the decision was made to drop the
support of BCP in KKRnano.
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4.2. Truncation for Linear Scaling

The introduction of the screened reference potential (see section 3.5) in combination
with the iterative solution of the Dyson equation led to an O(NitNclN

2) scaling behavior.
This ∝ O(N2) scaling can be further improved to become a linear ∝ O(N) scaling
by using Kohn’s nearsightedness principle [57]. In KKRnano this translates into the
spatial truncation of the Green function [19].
Prototypes of such a neglect of long-range effects are the locally self-consistent multiple
scattering (LSMS) [58] and locally self-consistent Green function (LSGF) methods
which are based on the assumption that the local electronic density is not decisively
affected by the potential of sites that are sufficiently faraway. However, both LSMS
and LSGF are limited in the sense that the computational effort increases cubically
with the number of atoms in the truncation zone and hence the truncation needs to be
made at a rather short range to prevent this behavior from becoming a dominant factor
in the overall scaling. This necessity also diminishes the effectiveness of an iterative
solving scheme as this is only efficient, if matrices are of a certain sparsity. In LSMS
an iterative solver has been tested [65] but it was found that due to the rather small
number of atoms within the truncation cluster, typically about a hundred atoms, a
direct inversion is preferable.
The procedure introduced by Zeller [66] and implemented in KKRnano [19] combines
the TB-KKR formalism (c.f. section 3.5) with a truncation of the Green function and
an iterative solution of the Dyson equation (c.f. section 4.1).

It is instructive to recall the connection of the single-particle density matrix with the
Green function

ρ(~r, ~r′) = − 1
π

Im
∫ ∞
−∞

dEf(E,EF , T )G(~r, ~r′, E), (4.15)

where an evaluation shows that the spatial decay of ρ(~r, ~r′) is mainly determined by
the decay of the Green function at the first Matsubara energy E = EF + iπkBT . This
relation between density matrix and Green function suggests that a truncation of the
Green function above a distance |~r− ~r′| is equivalent to a neglect of the density matrix
elements above the same distance.
The Dyson equation formulated as a system of linear equations (c.f. eq. (4.7)) with an
imposed truncation reads ∑

µ

∑
L′
AνµLL′X

µ
L′L′′ = bνL′L′′ . (4.16)

The truncation is determined by the parameter ν which runs only over the atoms
inside the truncation cluster. The index µ is the index for the screened reference Green
function. This alters the scaling from O(NitNclN

2) to a linear scaling O(NitNclNtrN)
in N , where Ntr is the number of atoms in the truncation cluster. In an ideal scenario
the introduction of a truncation can therefore lead to a reduction of complexity by the
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factor Ntr/N which can be quite significant, e.g. in a system with N = 10000 atoms
and a truncation cluster that contains only Ntr = 1000 atoms.

Truncating interactions naturally introduces a methodological inaccuracy. This is
however well controlled and test calculations for metallic NiPd have shown that the
total energy per atom changes by less than 2 meV with a truncation cluster that
comprises Ntr = 959 atoms [19].
The size of the truncation cluster can be defined differently for the separate angular
momentum scattering channels, e.g. contributions from components with l = 1 can
be truncated at a larger distance than components with l = 0. Such an l-dependent
truncation was implemented in KKRnano but it did not yield the expected performance
enhancement and was therefore dropped as it does not comply with our policy of
performance-oriented implementations.

4.3. Parallelization for High Performance
Computing

KKRnano was designed to utilize the most powerful supercomputers available and an
ongoing effort is made to ensure that the code runs efficiently on such machines. This
comprises the porting of KKRnano to new architectures, performance optimization and
sometimes also the rewriting of routines that are crucial to the overall performance.
The Forschungszentrum Jülich provides and excellent supercomputing architecture and
its machines JUQUEEN and JURECA are featured in the latest TOP500 list from
November 2017 (see [67]).
The TOP500 list is composed of the 500 supercomputers around the world that achieve
the best performance in the LINPACK benchmark which gives a measure of a system’s
floating point computing power. Figure 4.1 gives an account of the performance
development of the supercomputers represented in the TOP500 list. It shows how High
Performance Computing (HPC) has evolved from the gigaflop regime and is currently
approaching the threshold to the exaflop regime.
Exascale computing will bring along a variety of new challenges, e.g. keeping energy
consumption at a reasonable level or the necessity to minimize the impact of unavoidable
failures of hardware parts over time which occur more often, if a machine relies on
more components [20].
Today’s HPC machines are constructed of thousands of processing units and exploiting
their full potential poses a great challenge to scientists. In order to use them efficiently,
the computational problem at hand needs to be split up into smaller pieces and
distributed to the single units. The results of these individual calculations must then
be brought back together to solve the initial task. Hence, an adequate parallelization
scheme as it is presented for KKRnano in section 4.3.2 is crucial. In the future the
required level of parallelism in HPC will increase even more because Dennard scaling,
i.e. transistors get smaller while their power density stays constant, will come to an
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end.
To minimize power consumption, low-clocked, but highly parallel compute devices
like GPUs (Graphics Processing Unit) have become more important in HPC and will
continue to play an even bigger role. Therefore, the TFQMR solver in KKRnano was
ported to Nvidia GPUs by Thorsten Hater from the Jülich Supercomputing Center [68].
Subsequent tests that were performed in the context of this thesis revealed anomalies
that can arise, if code is ported to a different architecture (see section 4.3.3).

1 Gflop/s 

1 Tflop/s 

100 Mflop/s 

100 Gflop/s 

100 Tflop/s 

10 Gflop/s 

10 Tflop/s 

1 Pflop/s 

100 Pflop/s 

10 Pflop/s 

1 Eflop/s 

Figure 4.1.: Performance development of the supercomputers represented in the
TOP500 list over the past two decades. The three data sets denote
the cumulative LINPACK-measured peak performance of the fastest 500
supercomputers in the world (SUM), the peak performance of the single
fastest supercomputer in each year (N=1) and that of the supercomputer
taking 500th place in the list (N=500). Reprinted with permission from
[67].

4.3.1. Hardware Architectures

Since HPC systems have become increasingly heterogeneous, e.g. hybrid architectures
entered the market which consist of a host compute unit and an accelerator module,
performance tuning and the design of customized algorithms is of outmost importance
in order to use these systems efficiently. In the following the most common hardware
architectures currently used in HPC are presented and a brief description of their
strengths and weaknesses is given.
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Intel Xeon Haswell

The Intel Xeon x86 microprocessor is widely used in servers and embedded systems.
They are very similar to the CPUs that can be found in ordinary workstations but are
equipped with some more advanced features, e.g. larger cache memory. The product
line was introduced in 1998.
Both JURECA in Jülich and the fastest German supercomputer HazelHen in Stuttgart
are equipped with Xeon E5-2680 v3 Haswell 2.5 GHz CPUs which feature 12 cores per
die and 128 GiB of memory per compute node. The nodes of both machines consist
of two such CPUs so that the total number of cores per node is 24. Communication
between different nodes is facilitated by high-speed interconnection networks that are
provided by Mellanox and Cray, respectively.
A very important feature of state-of-the microprocessors is SIMD (Single instruction,
multiple data), i.e. the possibility to ’vectorize’ floating-point operations. This means
that the operations are performed on multiple values stored in vectors at once in parallel
instead of serially on single scalar values. The Haswell microarchitecture provides the
Advanced Vector Extensions (AVX) 2.0 with 256-bit instructions for that purpose.
Such vectorization is performed automatically by the compiler but supplemental hints
on where and how to vectorize can help improve the procedure.
The Intel Haswell architecture aims at general purpose computing with powerful
individual CPU cores and therefore massive parallelism is not an issue as crucial as it is
with other architectures. However, such convenience brings along the negative aspect
of a relatively high power consumption per floating point operation which makes this
design ineligible for future exascale computing.

Nvidia GPU Accelerators

Starting from the early 2000s, Graphics Processing Units (GPUs) have been introduced
to HPC as so-called accelerators that are characterized by their ability to deal with
massive parallelism which is not only needed for video games but can also be exploited
for supercomputing [69]. Within a decade GPUs evolved from single core devices with
fixed function hardware to highly parallel and programmable devices suited for general
purpose computation.
The GPUs that can be found in current HPC machines are predominantly manufactured
by Nvidia. A rather small amount of 75 nodes of JURECA is equipped with Nvidia
K80 GPUs that can be used additionally to the CPUs. Other supercomputers, e.g.
TITAN at Oak Ridge National Laboratory and its upcoming successor SUMMIT, are
already based solely on the computational power of GPUs and the trend towards such
GPU-based accelerator architectures is expected to intensify. A very important feature
is the support of double precision floating-point operations described in the IEEE
754 standard [70]. It is indispensable in scientific computing and is available in all of
Nvidia’s current HPC-GPUs. Another crucial aspect is the bandwith between CPU and
GPU memory which is very often a performance-limiting bottleneck. A new memory
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interconnect called NVlink that provides more bandwith has recently been introduced
by Nvidia and IBM [71]. A detailed description of the GPU architecture goes beyond
the scope of this thesis and the reader is referred to, e.g. [72], for further technical
details. Nvidia’s Kepler generation GPU GK110, that was used for our benchmarks in
[68], has a clock speed of 745 MHz which is significantly less than the 2.5 GHz of the
CPUs used in JURECA. Lower clock speeds help improving the power efficiency since
less heat is dissipated. In terms of performance this is compensated by the very high
floating-point operation throughput made possible by the high degree of parallelism. A
single GK110 can efficiently handle 30720 threads at once. This makes GPUs perfect
tools for large linear algebra problems. There exist linear algebra libraries specifically
designed for GPUs for this purpose, e.g. cuSPARSE [73].
The generation of GPU-compliant code often requires a change of programming
language, e.g. from Fortran90 to CUDA, and a change of compilers. This makes the
porting of complex applications from a classical architecture such as x86 microprocessors
to GPUs rather complicated. It is therefore advisable to first port the parts of an
application that are most crucial to its overall performance as it was done for the
TFQMR solver in KKRnano (see section 4.3.3).

Intel Xeon Phi

The Xeon Phi series of processors is intended as an x86-compatible answer by Intel
to the challenge posed by GPUs in HPC. It is an attempt to adopt the advantage of
low energy consumption per floating point operation that a GPU has over standard
CPUs, while keeping the required optimization and performance tuning, when porting
the applications, as small as possible. This is achieved by keeping the clock rate low
and by using a high degree of parallelism. Application developers can stick to their
programming language and applications that run on x86 microarchitectures will run
on a Xeon Phi, too.
The latest revision of this series of processors was named Knights Landing (KNL). Its
low clock rate is compensated by a high number of cores (between 64 and 72), high
bandwith memory located very close to the cores and very wide SIMD units. The high
bandwith memory (MCDRAM) is shared between all the cores and can either serve as
an extended L3 cache or as an extension to the DDR-RAM. KNLs are equipped with
the new AVX-512 SIMD extension that features a register size of 512 bits instead of
the 256 bits supported by AVX 2.0.
The QPACE3 machine installed in Jülich is based on KNLs with 64 cores each running
at a clock speed of 1.30 GHz. In June 2017 it took 17th rank in the Green500 list
which ranks supercomputers according to their power efficiency. JURECA was recently
equipped with 1640 additional KNL nodes that amount to a peak performance of 5
Petaflop.
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IBM BlueGene

Not very long ago, IBM BlueGene supercomputers were among the most powerful
and most power efficient machines. The key concept behind the latest BlueGene/Q
architecture is a reduction of power consumption by using IBM A2 processors with
a clock rate of 1.6 GHz and 17 cores per die. The A2 processor was designed as a
system-on-a-chip device, i.e. all components except for the memory are embedded on
one chip. A single compute node is comprised of one A2 processor but only 16 out of the
17 cores can be used for computation while the 17th core is reserved for the operating
system. The processor supports 4-way hardware threading. Each node disposes of only
16 GiB RAM which is little compared to, e.g. JURECA and HazelHen. Therefore, the
optimization of an application’s memory usage can be of importance. BlueGene/Q has
a very large number of nodes and cores and in order to ensure sufficient communication
capabilities between them, it is equipped with a five-dimensional torus interconnect.
1024 nodes form a rack and the supercomputer JUQUEEN in Jülich consists of 28 of
such racks. It is to be de-installed in 2018.
With regards to upcoming machines the focus of IBM’s HPC efforts seems to have
shifted towards the OpenPower architecture, where an IBM POWER processor is
combined with an accelerator, e.g. an Nvidia Volta chip.

4.3.2. Parallelization Schemes in KKRnano

The parallel supercomputing architectures that are described above are more complex
than commodity workstations, as they are used in offices or at home, and exploiting
their full potential requires the deliberate use of parallelization schemes. This topic is
covered extensively in the literature, e.g. part D in [32], and we explain here only the
most important concepts.
Let us assume for a moment that we have a serial application that runs nicely on
our single processor. We further assume that 9/10 of it can be parallelized, i.e. these
parts of the code can be run in parallel on multiple processors. This leaves us with a
serial part of α = 0.1 that cannot be run in parallel, e.g. because a calculation done in
the code requires input from a prior calculation. According to Amdahl’s law [74] the
maximum speedup that can be achieved by parallelization is given by

Sr = 1
α + 1−α

n

, (4.17)

where n is the number of available processors. An example of modest parallelization is
n = 8 which leads to a speedup of Sr = 4.7, a value that is surprisingly small given
that the resources are increased eightfold. It is furthermore instructive to consider the
limit n→∞ for which

Sr →
1
α

(4.18)
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meaning that in our example there is an upper limit of speedup of Sr = 10 that cannot
be overcome, even if there was an infinite number of processors at our disposal. This
gives a good impression of the limitations of parallelization. Nevertheless, it will be
shown in the following that the KKR method can be sufficiently parallelized and that it
is parallelization that allows us to treat systems containing ten thousands of atoms.

The two most common programming models for parallel computing are the Message
Passing Interface (MPI) [75] and the Open Multi-Processing (OpenMP) [76].

MPI allows to initiate an appropriate number of tasks where each of the tasks has its
own non-shared memory. Tasks can be seen as sub-processes that run independently
of each another unless they are explicitly told to do otherwise at certain points in the
code. Often, the number of tasks is chosen such that it coincides with the number of
available processor cores. Tasks can communicate with each other, i.e. data can be
exchanged, consolidated or barriers can be put in place that suspend the execution of
the code until all tasks have reached a specific point defined in the code.
With MPI it is possible to create a hierarchical structure of tasks. In this way we
can group tasks according to the purpose they serve. Let us assume that there is
a computational problem that we want to solve in parallel for N different input
configurations and sum up the results at the very end. Then, we would assign N
MPI tasks to this and run the calculation. However, it could be that each of these
individual calculations can also be parallelized internally, e.g. assume that we want to
compute the sum of the integrals of N different functions numerically and want to use
M integration points in each integration. A highly parallelized code could then initiate
N tasks (one for each function) and additionally M sub-tasks for each integration point
so that in total N ·M MPI tasks are launched. In the following we will refer to such
different types of MPI tasks as levels.

The OpenMP programming model is based on a different approach, where the parallel
processes are called threads. OpenMP allows to define parallel regions in the code at
which the master thread forks into several threads that then run in parallel until the
end of the parallel region is reached, where these threads are killed and the master
thread continues to execute the code sequentially. Unlike MPI tasks, OpenMP threads
share a common memory address space.
Typically, OpenMP is used when single loops in a code shall be parallelized with little
effort. All iterations of the loop can be carried out in parallel, if the operations that
are performed for each increment do not depend on each other.

KKRnano features both MPI and OpenMP parallelization [19]. The parallelization
concept is sketched in Figure 4.2. There are three MPI levels to parallelize over
atoms, spins and energy points. OpenMP is used in various parts of the code, mainly
to parallelize important loops. The single-site solver for calculations involving non-
collinear magnetism and the TFQMR solver that solves the Dyson equation are the
parts that potentially benefit the most from OpenMP.
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Figure 4.2.: Schematic representation of MPI and OpenMP parallelization in KKRnano.
The most important steps in the KKR workflow are depicted on the left
side and the three MPI regions over atoms, spins and energy points are
indicated on the right side.
Parts filled with blue comprise routines where OpenMP is used and where
this can be of high importance to the overall performance while in the
striped blue parts OpenMP is used but is less significant.

MPI parallelization over atoms

The most crucial MPI level in KKRnano is the one for atoms since application scenarios
for KKRnano involve the treatment of a few thousand atoms and the KKR formalism
allows us to solve the multiple-scattering problem locally for each atom, if the Green
functions of the reference system and the t-matrices of the other scattering centers are
provided (see eq. (4.7)). In practice one MPI task handles 1-16 atoms.
The reference Green functions are calculated by each task for the atoms it is responsible
for and are then sent to other tasks that require them. The reference t-matrices for the
atoms inside the respective reference cluster are not communicated but calculated by
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each task individually as it takes less time to re-compute them than communicating
them. In any case the t-matrices of the actual systems need to be communicated.
After the necessary information is distributed, the Dyson equation can be solved
independently by each task. The calculation of the local charge density can also be
conducted locally since only the diagonal nn-elements are needed for this. In order
to subsequently obtain the potential from the local charge moments via the Poisson
equation, the moments must be shared with all other atom tasks by means of all-to-all
communication.

MPI parallelization over spin channels

If the system of interest is a collinear magnet, the two spin channels can be handled
by two distinct MPI tasks since the magnetic Kohn-Sham equations are separable (c.f.
eq. (2.8)). Due to the relatively small additional MPI communication effort this yields
an almost ideal speed-up by a factor of 2. It should be noted that in the non-collinear
KKR formalism such a separation of spin channels is no longer possible because there
is intermixing (c.f. eq. (5.5)) and all operations involving the t-matrices and Green
functions in the global frame of reference need to be performed in full spin space, i.e.
{↑↑, ↑↓, ↓↑, ↓↓}. Thus, the spin parallelization level can only be used in connection
with a collinear calculation.

MPI parallelization over energy points

The requirement to calculate the Green function at different energy points offers another
possibility to introduce a parallel level since the values of the Green function G(~r, ~r, Ei)
at energy points Ei can be obtained in parallel. After the values are obtained the
results must be distributed among the processes within the energy parallelization level
to recover the full Green function at all energy points.
Assigning one MPI task to each energy point is not a promising concept because of
the significantly different runtimes per energy point. Especially the points closest to
the Fermi level (and therefore to the real axis) need many more k-points and TFQMR
iterations than the points that lay high up in the complex plane (see fig. 3.1). Therefore
the energy points are split into three different groups and each group is taken care of by
one MPI task. In the first iteration of the self-consistency cycle the points are equally
distributed to all groups. At the end of the first iteration the points are regrouped
depending on how much time was used at each point. The aim is to find a grouping for
which all groups of energy points are converged at a similar time so that idle tasks are
avoided. This is also referred to as dynamical load-balancing. A correct load-balancing
is of outmost importance to the effectiveness of this MPI level since all tasks need
to have finished before the program can move on to the solution of the electrostatic
problem, i.e. the Poisson equation. Due to the challenge that load-balancing can pose,
parallelization over energy points should only be used, if plenty of processor cores are
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available and ought to be utilized.
A lookahead on the performance results presented in section 4.3.4 reveals that with
growing system size the electrostatic problem, which in terms of energy parallelization
must be considered a serial part of the code, becomes computationally more relevant.
Table 4.1 shows that the fraction of the electrostatics (ES) solver runtime compared to
the combined runtime of TFQMR solver and ES solver ranges from α = 84

432+84 = 0.16
for 8,192 atoms to α = 470

430+470 = 0.52 for 229,736 atoms. According to eq. (4.18)
this limits the maximum speedup that can be achieved by energy parallelization to
Sr → 6.25 and Sr → 1.92, respectively.

OpenMP parallelization

KKRnano can be compiled either with or without support for OpenMP. If it is enabled,
loops primarily in the TFQMR solver but also in the routines that calculate the
regular and irregular solutions are executed using parallel threads. This is particularly
useful on architectures that support simultaneous multithreading (SMT). However, we
try to use BLAS (Basic Linear Algebra Subprograms) library routines for arithmetic
operations, e.g. matrix-matrix multiplications, throughout our code. BLAS libraries
usually have their own built-in SMT support. Therefore, the available SMT threads
must be partitioned between the explicit OpenMP parallel regions in the code and the
implicit parallelization of the BLAS library. Here, the optimal partitioning is highly
architecture-dependent and a general recommendation cannot be given.

Multiple Atoms per Thread

Assigning multiple atoms to one MPI task is beneficial, if the hardware architecture is
not based on a large number of CPU cores, e.g. BlueGene/Q, but heterogeneous as in
the accelerated architectures. The host device can be, e.g. an IBM Power 9 CPU, and
the accelerator an Nvidia Volta GPU.
The goal that is pursued in GPUs is to process a huge amount of floating-point
operations per clock cycle, i.e. the amount of data that is processed at once is larger
than in CPUs. It is therefore desirable to have the option of treating multiple atoms
per MPI process/CPU and thereby increase the problem size per host CPU on such
architectures. On the one hand, this helps to reduce the number of individual data
transfer events from CPU to GPU (and vice versa). On the other hand, it allows to
use the GPU’s capacities more efficiently as its capability to handle more data per
clock cycle is better utilized.
KKRnano can treat multiple atoms per atomic MPI task by using the following
algebraic scheme, which was implemented by Elias Rabel: We rewrite the Dyson
equation from eq. (4.16) which reads∑

µ

∑
L′
AνµLL′X

µ
L′L′′ = bνL′L′′ , (4.19)
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where A has dimension Ncl(lmax + 1)2 ×Ntr(lmax + 1)2, b usually has the negative local
∆t as diagonal elements and X has dimension Ntr(lmax +1)2× (lmax +1)2. A is a matrix
of blocks of size (lmax + 1)2 × (lmax + 1)2 while X and b are vectors of such blocks. For
more than a single atom per task x and b can also take a matrix form with dimension
Ntr(lmax + 1)2×Nloc(lmax + 1)2, where Nloc is the number of atoms treated by one MPI
task of the atom parallelization level. The corresponding linear equation system reads

∑
µ

∑
L′
AνµLL′X

µγ
L′L′′ = bνγL′L′′ , (4.20)

where an additional index γ is introduced that runs over Nloc.

The single-site scattering calculations are realized with loops over the local atoms Nloc
which are OpenMP-parallelized.

4.3.3. TFQMR Solver on GPUs

Exascale supercomputers will rely on devices which operate at relatively low clock
frequency but are capable of performing an extraordinary large number of floating-
point operations per cycle. Currently, there are two prototypes installed at the Jülich
Supercomputing Center to gather experience on this new kind of architecture. They
were named JURON and JULIA. JURON is equipped with IBM Power8 host processors
and Nvidia P100 GPUs (Graphics Processing Units) of the Pascal generation while
JULIA is based on Intel’s Xeon Phi KNL architecture.

In this subsection we focus on the GPU-based architecture for which Thorsten Hater
ported the TFQMR solver (see section 4.1) from FORTRAN90 to C++ in order to use
Nvidia’s CUDA language [77] which enables developers to offload computational work
directly to the GPU. The author of this thesis integrated the stand-alone version of
Hater’s TFQMR solver in KKRnano. The TFQMR solver accounts for the computa-
tionally most demanding part of KKRnano and it is therefore appropriate to focus on
it.
Benchmarks [68] show that with the ported solver the GPU architecture can be used
most efficiently, if large matrices are involved, i.e. the interactions of Ntr ≥ 1000 atoms
are included in the scattering path operator (see left part of Figure 4.3). The maximum
performance that can be reached on an Nvidia K40m processor is around 320 GFlop/s.
The theoretical peak performance is 1430 GFlop/s.
The performance can be further improved by running multiple tasks on the CPU that
use a single K40m simultaneously. Here, the so-called Multi-process service (MPS)
feature is used. The parallel efficiency can be defined as

εpar = n∆ts/∆tp(n), (4.21)

where n is the number of tasks, ∆ts the serial execution time without MPS and ∆tp
the time that is required for n concurrent calls of the solver.
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A gain of 17% in parallel efficiency, when four or more tasks are used is observed (see
right part of Figure 4.3).84 P.F. Baumeister et al.

Fig. 1. Benchmark performance results obtained using Niter = 1000 using a single
(left) and multiple tasks for Ntr = 1000 (right) on a single K40m.

limit corresponds to one task per core of the processor, to which the GPU is
attached. A gain of 17% in efficiency is observed.

6 Performance Model Analysis

To enable an assessment of the performance of KKRnano on not yet existing
larger systems based on GPU-accelerated nodes with POWER8 processors, we
employ a performance modeling approach used in [4], which combines the infor-
mation exchange analysis with semi-empirical performance analysis [12]. For this
we assume that time-to-solution depends linearly on the information exchange.
Furthermore, we assume that arithmetic operations and memory transfers can be
perfectly overlapped. In case the solver is executed on the POWER8 processor,
the performance can be expected to be limited by the floating-point operation
throughput and we thus make the following ansatz:

∆tCPU
solver = aCPU

0 + aCPU
1,fp Ifp, (8)

where Ifp is defined in Eq. (2). The coefficients aCPU
0 , aCPU

1,fp are determined by
fitting Eq. (8) to timing measurements for different application parameters.

If the solver is executed on the GPU, we assume performance to be limited
by memory bandwidth. Additionally we have to take the time into account that
is required to data transfer from host to device and vice versa. This results in
a slightly more complex ansatz using Ild, Ist and Iacc from Eq. (3), (4) and (6),
respectively:

∆tGPU
solver = aGPU

0 + aGPU
1,mem(Ild + Ist) + aGPU

1,accIacc. (9)

To determine the model parameters we have performed multiple runs with fixed
Natom = 20, Nnode = 1, Ncl = 13, b = 16, and different Niter as well as Ntr.
The runs are repeated multiple times for the same parameter setting and the
minimal value is used. Error bounds are established by k-fold cross-validation
with k = 100. Due to the size of the problem, the constant terms turned out to
be insignificant and have been ignored.

Figure 4.3.: Benchmark performance results obtained for Niter = 1000 iterations using
a single (left) and multiple tasks for Ntr = 1000 (right) on a single K40m.
Reprinted from [68].

The attempt of the author of this thesis to calculate fcc-Cu with four atoms in the
unit cell revealed a GPU-specific problem.
The results obtained with the GPU version of the TFQMR solver differ substantially
from those obtained with the standard CPU solver. In addition, the symmetry require-
ment, i.e. all four atoms have to be symmetrically equivalent, is not fulfilled.
A step-by-step comparison of calculations with both solvers shows that at some points
in the TFQMR algorithm, array entries in the GPU-based solver are flushed to zero
while they remain finite in the CPU version. This happens occasionally when a product
of the form ~a ·~b is calculated, where ~a and ~b are complex vectors.
To understand this architecture-related problem an excursion into the basics of float-
ing-point arithmetic is instructive. A comprehensive review on this topic can e.g. be
found in [78]. For the sake of simplicity, we consider ~a and ~b to be real in the following.
Let us consider as an example the number 200.15. As floating-point number it can be
written in decimal notation as 2.0015× 102. The p = 5 leading digits are called the
significand, the decimal base is β = 10 and the exponent is e = 2.
In a processor’s floating point unit (FPU) there is only a limited number of bits that
are reserved for the representation of a floating-point number with the binary base
β = 2. In KKRnano we use double precision for all quantities in the TFQMR solver,
i.e. 64 bits in total with 1 bit for the sign, 11 bits for the exponent and 52 bits for the
significand according to the IEEE754 standard [70].
However, while Nvidia GPUs strictly follow IEEE754 requirements with 64-bit repre-
sentation, x86 microprocessors, as they are e.g. manufactured by Intel, use an extended
precision of 80 bits with 15 exponent and 64 significand bits during floating point
operations [79]. The result is stored with only double precision in both cases. Both
the bit-wise layouts of the IEEE754 double precision standard and of the x86 extended
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precision are visualized in Figure 4.4.

exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

exponent
(15 bit)sign

fraction
(63 bit)

79 64 0

Integer Part
(1 bit)

Figure 4.4.: Top: The layout of a double precision floating point number (64 bits)
including the sign bit, the exponential bits and the significand/fraction
bits. The figure was created by Codekaizen and licensed under CC BY-SA
4.0. Bottom: The analogue for an extended precision floating point number
(80 bits) on x86 processors. Here, the significand bits also include a single
integer bit since there is no hidden bit. The figure was created by BillF4
and licensed under CC BY-SA 3.0.

The different precision can lead to a difference in the computed result and potentially
cause a breakdown in the TFQMR algorithm. For the detailed algorithm we refer the
reader to p. 36 in [33].
Remember that we attempt to iteratively solve a linear equation problem of the form
Ax = b, where A, x and b are complex matrices. Here, complex vectors derived from
entries in the matrix A are multiplied repeatedly with each other. For fcc-Cu the
absolute values of the complex numbers in A range from an order of O(10−20) to an
order of O(1) (see Figure 4.5).
Such a spread of values poses a challenge for floating-point arithmetic. This can be
exemplified by considering the dot product

�a ·�b =

⎛
⎜⎜⎝

1.0
1.0 × 10−9

1.0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

−1.0
1.0 × 10−9

1.0

⎞
⎟⎟⎠ = −1.0 + 1.0 × 10−18 + 1.0, (4.22)

where the exact sum is clearly 1.0 × 10−18.
Here, we encounter a problem of floating-point accuracy , when numbers have exponents
that are far apart. In order to add 1.0 and 1.0 × 10−18 the latter summand is brought
to the same exponent as the first, i.e. e = 0. This requires bit shifting by 18 positions,
if the basis β = 10 is used. Computing architectures naturally use β = 2, which would
make it necessary to shift the bits by 60 positions to approximate 1.0 × 10−18 by a
finite value. IEEE754 double precision provides a significand of only 53 bits (52 plus
one hidden bit) so that 1.0× 10−18 is flushed to 0.0× 100 in the summation in eq. (4.22)
which results in �a ·�b = 0.
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Figure 4.5.: Structure of the complex matrix A in the TFQMR eigenwert problem
given by eq. (4.8) for fcc-Cu with four atoms in the unit cell. The matrix is
composed of 4x4 blocks, where each block is of the size (lmax+1)2×(lmax+1)2.
In our calculation we use lmax = 3. The color bar indicates the absolute
value of each complex number in the matrix. Figure created by Ingo
Heimbach.

Contrarily, FPUs as in the Intel Haswell architecture use an extended precision of
64 significand bits that can represent 1.0 × 10−18 as a finite value in floating-point
notation with β = 2 and e = 0 and thus ~a ·~b 6= 0 is computed.
This gives rise to the aforementioned difference in the result that the TFQMR algorithm
yields on an x86 microarchitecture and on a GPU since the algorithm has a built-in
termination criterion, if certain quantities become zero (see again p. 36 in [33]).

A possible solution to this floating-point related problem is to change the KKR
formalism in such a way that the huge spread in the range of values is avoided, e.g. by
changing the reference system in section 3.5.
A more promising and less comprehensive approach is to improve the accuracy of
floating-point operations that are performed on the GPU while not sacrificing too much
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computational efficiency. One way of doing so could be to perform several independent
sub-summations of values which are of similar order so that numerical accuracy is
maintained. The results of these summations possibly do not differ as much as the
individual summands and could therefore be added up in the end without loss of
accuracy.

4.3.4. Benchmarks on Blue Gene/Q

Parts of this subsection have been published in Ref. [80]

In the context of the JUQUEEN Extreme Scaling Workshop 2017 [80] performance
results for the latest version of KKRnano could be obtained on a BlueGene/Q (BG/Q)
machine.

The tested version of KKRnano exclusively uses MPI collectives and two-sided MPI
communication calls. Compute-intense linear algebra operations are performed by
calling BLAS/LAPACK routines wherever applicable. File I/O is required only at
application start-up and after the convergence of the self-consistency cycle. I/O
operations are realized using Fortran direct-access files but an upgrade to MPI I/O is
planned.
We perform all benchmarks for the helical magnet MnGe in B20 structure which
requires a minimum of 8 atoms per unit cell and can easily reach supercell sizes of a
million atoms when large magnetic superstructures need to be accommodated in the
simulation volume.
We perform a series of weak scaling tests on different supercell sizes of MnGe. Our aim
for these benchmarks is to treat several thousands of atoms self-consistently, i.e. estimate
the runtime that about a hundred KKR iterations in a production calculation would
require. However, for the purpose of obtaining benchmark results a single KKR
iteration is sufficient.

The weak-scaling benchmarks are performed for MnGe in a collinear magnetic setup.
KKRnano is compiled with the IBM XL compiler (-q64,-O3,-qstrict) and linked to the
ESSLSMP linear algebra package. Here, three different hybrid parallelization schemes
are used:

• The first runs are conducted with a task distribution of 16 MPI processes per
node and 4 OpenMP threads per process (see Table 4.1). This setup is supposed
to work best as it complies with the vendor’s suggestion.

• Then, OpenMP threading is increased while the number of MPI processes is
lowered. The total number of threads running (MPI × OpenMP) is kept constant
at 64 matching the number of available hardware threads per node (see Table 4.2
and Table 4.3).
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The atomic supercells are scaled from 8, 192 atoms (1024 BG/Q nodes) to 229, 376
atoms (28672 BG/Q nodes) according to the number of racks used. A physically correct
description requires coverage of the magnetic properties of MnGe, i.e. both a spin-up
and a spin-down calculation need to be done. Thus, we start twice as many MPI tasks
as are needed to treat the non-magnetic system, e.g. for 8192 atoms in a 16× 8× 8-
supercell 16, 384 MPI ranks are used in Table 4.1. Runtimes are measured for the
initialization, a single self-consistency iteration and result output. Each MPI process
reads four shared binary direct-access files before commencing the self-consistency
iterations. Two of them are index-files of the size of a few hundred kByte while the
other two can grow with system size up to several GByte. The combined size of all
files that are read in is roughly N × 0.5 MBytes, where N is the number of atoms.
In our benchmarks we do not write out a converged potential as we perform only
a single self-consistency step. However, a single shared index file is set up at the
very beginning before the self-consistency loop. This and the read-in of the four files
mentioned above accounts for most of the time spent in I/O. In order not to hit the
wall time limit for test runs of one hour, writing of the index file is omitted in the
calculations on 24 and 28 racks, indicated with a (t) in Table 4.1.
Figure 4.6 shows the total runtime of a single self-consistency iteration for all three
parallelization concepts in a double logarithmic plot. Obviously, a bipartite distribution
of MPI and OpenMP load promotes shorter runtimes. We know from timing output
that the increased slope for 8 racks and higher can be mainly attributed to Fortran
direct-access I/O which does not scale well on a GPFS file system. The observation
that the increase in runtime when moving from 8 to 28 racks is linked to the number of
MPI tasks is a strong hint to this as the amount of file accesses is proportional to the
number of MPI processes. The implementation of a more suitable I/O library (e.g.,
MPI I/O or SIONlib) is likely to solve this issue.
The TFQMR solver is expected to account for most of the computational work in
KKRnano which is why linear scaling is of particular importance in this part of the code.
Timings for it are depicted in Figure 4.7 (solid lines). Necessary MPI communication
before the TFQMR part takes less than a second and is therefore not discussed here.
Our benchmark results suggest to use a more MPI-oriented parallelization architecture
in order to achieve best performance. However, it should be noted that the TFQMR
solver kernel has been restructured to benefit from OpenMP threads. Shifting from
one atom per MPI process towards e.g. 8 atoms per process reduces the memory
requirements for the operator to be inverted as neighboring atoms can share matrix
elements. Also the solver performance should increase using more OpenMP threads
and less ranks per node, however, this effect cannot be observed here. A more thorough
investigation and architecture-specific tuning would be needed.
In the KKR formalism, the electron density and the potential are connected via the
Poisson equation. For large systems the Poisson solver contributes considerably to the
overall runtime (see dashed lines in Figure 4.7). This is expected since the algorithm
used in KKRnano scales quadratically with the number of atoms but does not have a
major impact when mid-sized systems are investigated. However, there are ideas on
how to restructure the Poisson solver towards a more favorable scaling behavior.
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In order to get a more realistic impression, we extrapolated the total runtime for more
than one self-consistency iteration. The extrapolated results for 10 iterations can be
found in Figure 4.8. Here, the black line is not connecting between 16 and 24 racks as
the bottleneck of final I/O has been omitted in the two calculations with 393, 216 and
458, 752 MPI ranks on 24 and 28 racks, respectively. As mentioned above, production
runs may have of the order of hundred iterations. Multiplying the runtimes with a
factor 100 would for some test cases exceed a wall-time of one day.
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Figure 4.6.: Weak scaling of the total runtime for a single SCF iteration on MnGe
using 1 to 16 BG/Q racks and three different parallelization schemes.
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Figure 4.7.: MnGe: Time per iteration spent in the TFQMR solver (solid lines) and in
the electrostatics solver (dashed lines).
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Figure 4.8.: Extrapolated weak scaling of the total runtime for 10 SCF iterations on
MnGe. The triangles indicate the two runs with no final I/O operations.
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Table 4.1.: Total runtime (Total), TFQMR solver runtime (TFQMR) and electrostatics
solver runtime (ES) in weak scaling measurement series employing moderate
OpenMP parallelization with 16 MPI ranks per node and 4 threads per
process. Runtimes are given in seconds. (t) indicates the tuned version
where final I/O is omitted.

Supercell BG/Q nodes MPI ranks Threads Total TFQMR ES
16× 8× 8 1,024 16,384 65,536 750 432 84
16× 16× 8 2,048 32,768 131,072 839 432 86
16× 16× 16 4,096 65,536 262,144 973 430 96
32× 16× 16 8,192 131,072 524,288 1223 431 113
32× 32× 16 16,384 262,144 1,048,576 1880 432 196
32× 32× 24 24,576 393,216 1,572,864 (t) 1077 431 353
32× 32× 28 28,672 458,752 1,835,008 (t) 1210 430 470

Table 4.2.: Total runtime (Total), TFQMR solver runtime (TFQMR) and electrostatics
solver runtime (ES) in weak scaling measurement series employing balanced
OpenMP parallelization with 8 MPI ranks per node and 8 threads per
process. Runtimes are given in seconds.

Supercell BG/Q nodes MPI ranks Threads Total TFQMR ES
16× 8× 8 1,024 8,192 65,536 714 452 84
16× 16× 8 2,048 16,384 131,072 753 449 86
16× 16× 16 4,096 32,768 262,144 — — —
32× 16× 16 8,192 65,536 524,288 1003 449 113
32× 32× 16 16,384 131,072 1,048,576 1371 453 196
32× 32× 24 24,576 196,608 1,572,864 2910 450 350
32× 32× 28 28,672 229,376 1,835,008 2969 451 464
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Table 4.3.: Total runtime (Total), TFQMR solver runtime (TFQMR) and electrostatics
solver runtime (ES) in weak scaling measurement series employing massive
OpenMP parallelization with 1 MPI rank per node and 64 threads per
process. Runtimes are given in seconds.

Supercell BG/Q nodes MPI ranks Threads Total TFQMR ES
16× 8× 8 1,024 1,024 65,536 883 527 150
16× 16× 8 2,048 2,048 131,072 935 535 154
16× 16× 16 4,096 4,096 262,144 1031 528 155
32× 16× 16 8,192 8,192 524,288 1108 529 132
32× 32× 16 16,384 16,384 1,048,576 1461 528 198
32× 32× 24 24,576 24,576 1,572,864 1923 527 355
32× 32× 28 28,672 28,672 1,835,008 2162 527 473
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5 Methodological Improvements
to KKRnano

During the formation process of this thesis, several methodological improvements were
added to KKRnano that were crucial to the investigation of the physical phenomena
that should and shall be investigated in the future. In this chapter, these improvements
are explained and their usefulness with regards to specific scientific questions is shown.
We begin with a section on non-collinear magnetism and discuss how it was implemented
by the author within the framework of KKRnano. Closely connected to this work is
the consideration of relativistic effects. Section 5.2 gives a short overview on where
these effects originate from and how our new version of KKRnano combines the scalar
relativistic approximation with the treatment of spin-orbit coupling effects. In order to
test this new implementation, the strong magnetic anisotropy in IrMn3 is investigated
and results from a fully-relativistic code are used as a benchmark.

The chapter is concluded by some smaller methodological improvements that were newly
introduced or re-established during the course of this PhD thesis. The Generalized
Gradient Approximation (GGA) as well as the semi-core contour integration were
added as new features. Also Lloyd’s formula, which allows to determine the exact
charge density, was re-established during the restructuring of KKRnano. In the last
years it was neglected and had become dis-functional so that a rather time-consuming
re-implementation needed to be done.

5.1. Non-collinear Magnetism in KKR

The need to distinguish between calculations where the atomic spins point collinearly in
parallel or anti-parallel direction, i.e. order ferromagnetically or antiferromagnetically,
and spins that point non-collinearly in arbitrary directions was already mentioned in
section 2.4. Lounis gives an illustrative description of how non-collinear alignments of
magnetic spins can be treated within KKR (cf. chapter 4 in [34]) and we adopt his
scheme in the following. While both spin channels are decoupled in the collinear case,
they mix for non-collinear calculations and the Kohn-Sham equations are therefore not
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separable.
For convenience we rewrite them here as

−∇2φαi (~r) +
∑
β

V αβ
eff (~r)φαβi (~r) = εiφ

α
i (~r), (5.1)

where the effective potential is given as

V αβ
eff (~r) = δαβ

∫ n(~r′)
|~r − ~r′|

d~r′ + V αβ
ext (~r) + V αβ

XC (~r) (5.2)

and the indices α and β stand for the spin directions ↑ or ↓ (cf. [34]). The exchange-
correlation effects in the potential V αβ

XC are treated in the local spin frame which is
introduced below.
This leaves us with the external potential V αβ

ext as the contribution that requires a
treatment that is different from the collinear KKR formalism presented in chapter 3.
It can be expressed as

V αβ
ext =

(
V↑↑ V↑↓
V↓↑ V↓↓

)
= 1 · V (~r) + σ · ~B(~r) (5.3)

with a diagonal contribution V (~r) = 1/2TrsV (~r) that consists of the trace in spin
space over the potential and is familiar from the collinear definition and an additional
contribution that is non-diagonal and couples different spin channels by a product
a magnetic field ~B(~r) and the Pauli matrices σ = (σ

x
, σ

y
, σ

z
). The individual Pauli

matrices are defined as

σ
x

=
(

0 1
1 0

)
σ
y

=
(

0 i

−i 0

)
σ
z

=
(
−1 0
0 1

)
(5.4)

This definition differs from the common definition but is equally justified and used
as such in the KKR codes developed in Jülich. Obviously, there is no off-diagonal
contribution in V αβ

ext , if ~B(~r) points along the z-direction. This matches the prerequisites
of a collinear calculation and hence the decoupling of the Kohn-Sham equations is
restored in this case.
The fact that the effective potential can no longer be expressed in two decoupled
equations naturally manifests in the structural Green functions, too. They are then
given with off-diagonal elements in spin space and read

Gnn′,αβ
LL′ =

(
Gnn′,↑↑
LL′ Gnn′,↑↓

LL′

Gnn′,↓↑
LL′ Gnn′,↓↓

LL′

)
. (5.5)

The Dyson equation that allows to determine the structural Green functions in a
non-collinear calculation is found to be

Gnn′,αβ
LL′ (E) = δαβG

r,nn′,αα
LL′ (E) +

∑
n′′,L′′,L′′′

Gr,nn′′,αα
LL′′ (E)tn

′′,αβ
L′′L′′′(E)Gn′′n′,αβ

L′′′L′ (E) (5.6)
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It should be noted that the reference Green function Gr,nn′,αα
LL′ is still diagonal in

spin-space and that the non-diagonality of Gnn′,αβ
LL′ is the result of the non-diagonal

t-matrices tn
′′,αβ
L′′L′′′ . They reflect the spin channel mixing in V αβ

ext which is given, if ~B(~r)
does not point along the z-axis. The expression for the spatial electronic density

n(~r) = − 1
π

ImTrs
∫ EF

−∞
dE Gnn′,αβ

LL′ (~r, ~r, E) (5.7)

slightly differs from the convention in eq. (3.10) as the trace is not only taken over
the sites (nn′) but also over the spin components (αβ). The magnetization in each
direction γ reads

mγ(~r) = − 1
π

ImTrs
∫ EF

−∞
dE σ

γ
Gnn′,αβ
LL′ (~r, ~r, E) (5.8)

following the prescription for the extraction of physical quantities in eq. (3.8).
The density matrix of a non-collinear system

ρ(~r) =
(
ρ↑↑(~r) ρ↑↓(~r)
ρ↓↑(~r) ρ↓↓(~r)

)
= 1

2
[
n(~r) + σ · ~m(~r)

]
(5.9)

is non-diagonal like the Green function and can be written as a composition of electronic
density and magnetization.

In order to simplify the evaluation of the single-site problem one distinguishes between
the global spin frame and the local spin frame. In the global spin frame the direction
of every magnetic moment is given relative to a globally defined z-axis. If we assume
that the magnetic moment is uniform within each Wigner-Seitz cell, a local frame
of reference can be defined in which the local magnetic moment always points in
z-direction (see Figure 5.1).
In case of non-collinear magnetization such a local spin frame is different for each cell.
The reference system can be switched from local to global by a unitary rotation matrix

U(θ, φ) =
(

cos θ
2e
− i

2φ − sin θ
2e
− i

2φ

sin θ
2e

i
2φ cos θ

2e
i
2φ

)
, (5.10)

where θ and φ are the polar and the azimuthal angle. An operator Aloc which is known
in the local frame can thus be easily transformed into its counterpart Aglob in the global
fre via the algebraic connection

Aglob = UAlocU
†. (5.11)

The advantage of being able to transform quantities from a local to a global frame
and vice versa is that the single-site problem can then be solved in the local spin
frame where there are neither off-diagonal contributions in the potential nor in the
t-matrix:
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Figure 5.1.: Rotation of a magnetic moment (arrow) from the global frame given by
the axis z to the local frame denoted by the different axis z′. The polar
angles needed for the rotation are θ and φ

Vloc =
(
V ↑ 0
0 V ↓

)
tloc =

(
t↑ 0
0 t↓

)
.

With a potential in diagonal form the solving techniques for collinear setups discussed
in section 3.2 can be applied which yield the regular and irregular solutions Rσs

L′L/R̄σs
L′L

and SσsL′L/S̄σsL′L. The standard procedure here is to solve the Lippmann-Schwinger
equations with a few (usually less than five) Born iterations. As the convergence of
this procedure is not guaranteed, if e.g. spin-orbit coupling effects are included, Zeller
and Bauer proposed a scheme that solves the Lippmann-Schwinger equation directly
(Chapter 5 in [22]). It is automatically used in KKRnano whenever spins are allowed
to be non-collinear.
The multiple-scattering problem, i.e. the Dyson equation in eq. (5.6), is not solvable
in the local picture as it generally contains contributions from different sites with
individual local spin frames. Therefore, the Dyson equation is formulated with four
spin components and the resulting structural Green functions consist of blocks that
are of the size 2 · (lmax + 1)2 × 2 · (lmax + 1)2 instead of (lmax + 1)2 × (lmax + 1)2 for a
non-magnetic calculation.

5.2. Relativistic Full-potential Treatment

The KKR formalism for non-collinear magnetism which is discussed in the prior section
is closely connected to relativistic effects, e.g. spin-orbit coupling (SOC), which can
drive certain systems into a non-collinear state. Relativistic effects are not included in
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the standard DFT scheme but are usually treated as extensions to it. In the following
we introduce the Dirac equation as the fully relativistic generalization of the Schrödinger
equation and briefly discuss its most important properties. Subsequently, the scalar
relativistic approximation is described and a scheme is presented which allows to treat
SOC.

5.2.1. Dirac Equation

In 1928 Paul Dirac presented his famous equation that gives a fully relativistic de-
scription of the properties and the behavior of fermions [2]. While it is sufficient to
only consider the non-relativistic Schrödinger equation for a variety of applications,
there are effects, e.g. spin-orbit coupling, that can only be described in a relativistic
framework. In the following a derivation of a solution to the fully relativistic problem
is given and the term that gives rise to SOC is identified. This subsection is based on
the scheme proposed in [81].

We begin with the single-site Dirac Hamiltonian which reads

HD = c

i
~α~∇+ 1

2
(
β − 1

)
+ V (~r), (5.12)

where

αi =
(

0 σ
i

σ
i

0

)
β =

(
12×2 0

0 −12×2

)
(5.13)

are the standard Dirac matrices. The potential can be split up into a spin-independent
part and a spin-dependent part so that

V (~r) = V (r) + β~σ ~Beff(~r) (5.14)

Note, that in this derivation it is assumed that the potential terms are spherically
symmetric and that ~Beff points along the z-axis, i.e. ~Beff = Beff(~r)~̂z. An ansatz to a
solution for the eigenvalue problem that the Hamiltonian in eq. (5.12) constitutes is
given by

Ψ(~r, E) =
∑
Λ

(
gΛ(r, E)χΛ(~̂r)
ifΛ(r, E)χ−Λ(~̂r)

)
, (5.15)

where Λ = (κ, µ) and −Λ = (−κ, µ) are combined indices for the spin-orbit and
magnetic quantum numbers κ and µ. gΛ and fΛ are the so-called the major and minor
wave functions and χΛ(~̂r) denotes the spin-angular functions which are composed of
complex spherical harmonics and Pauli spin functions.
This ansatz yields a set of radial differential equations

P ′Λ = −κ
r
PΛ +

[
E − V
c2 + 1

]
QΛ + Beff

c2

∑
Λ′
〈χ−Λ|σ3 |χ−Λ′〉QΛ′ (5.16)

Q′Λ = κ

r
QΛ − [E − V ]PΛ +Beff

∑
Λ′
〈χΛ|σ3 |χΛ′〉PΛ′ , (5.17)
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if it is applied to eq. (5.12). P ′ = d
dr
P and Q′ = d

dr
Q denote the spatial derivatives

of P (r, E) = g(r, E)r and Q(r, E) = cf(r, E)r. P is often referred to as the large
component and Q as the small component. Note, that the radial dependencies of some
quantities were dropped for the sake of readability. We restrict our investigation to the
case where ∆l = |l′ − l| = 0 and ∆µ = µ′ − µ = 0 and define the abbreviations

SΛ = E − V
c2 + 1 + Beff

c2 〈χ−Λ|σ3 |χ−Λ〉 , (5.18)

T = E − V (5.19)
and

BΛΛ′ = Beff 〈χΛ|σ3 |χΛ′〉 . (5.20)
Then, eq. (5.16) and eq. (5.17) can be simplified to

P ′Λ = −κ
r
PΛ + SΛQΛ (5.21)

Q′Λ = κ

r
QΛ − TPΛ +

∑
Λ′
BΛΛ′PΛ′ (5.22)

By inserting eq. (5.21) into eq. (5.22) we arrive at a second-order radial differential
equation

P ′′Λ = l(l + 1)
r2 PΛ − SΛTPΛ + SΛ

∑
Λ′
BΛΛ′PΛ′ +

S ′Λ
SΛ

 ddr − 1
r

+ κ+ 1
r︸ ︷︷ ︸

SOC

PΛ, (5.23)

where P ′′ = d2

dr2 . A comparison with the Schrödinger equation shows that the last term
on the right hand side does not have a non-relativistic counterpart. Furthermore, we
can identify its κ-dependent part as the contribution that describes spin-orbit coupling
as it is the only term that depends on the corresponding quantum number.

5.2.2. Scalar-relativistic Approximation

In order to obtain solutions for the Dirac Hamiltonian given in eq. (5.12) about twice
as many states as needed for a non-relativistic calculation have to be taken into
account [82]. This is why approximative schemes have been invented that only consider
first-order contributions up to O(1/c2) from the Dirac equation and neglect spin-orbit
coupling. Hereby, important relativistic effects, e.g. change of the mass with velocity,
can be retained.
In KKRnano the scalar relativistic approximation (SRA) of Drittler and Weinert [55]
is adopted which has the advantage that spin-orbit coupling can subsequently be added
in a perturbative scheme and thus its impact can be studied in our calculations. SRA
re-establishes the angular momentum as a good quantum number so that the spin-orbit

64



5.2. Relativistic Full-potential Treatment

quantum number κ can be replaced by the angular momentum l as it is used in the
non-relativistic derivations. For the sake of readability we do not mark the explicit
energy dependence of the variables in the following.
To arrive at the desired approximation we consider eq. (5.23) without magnetic field
(BΛΛ′ = 0) and projected potentials (SΛ → SLL′ = EδLL′−VLL′

c2 + 1 and T → TLL′ =
EδLL′ − VLL′). In combination with the neglect of SOC this yields (cf. eq. (13.11) in
[83])

P ′′L′′L′ = l′′(l′′ + 1)
r2 PL′′L′ − SLL′′TLL′′PL′′L′ +

S ′

S

[
d

dr
− 1
r

]
PL′′L′ (5.24)

Note, that in contrast to the Dirac equation, the combined angular momentum indices
L are used which is legitimate since l and m are good quantum numbers, if SOC is
neglected. Furthermore, we consider here the general case of full potential and hence
two angular momentum indices are required. The second-order differential equation
in eq. (5.24) can be rewritten as two first-order differential equations (see [83]) which
then read

P ′LL′ = 1
r
PLL′ +

∑
L′′
SLL′′(r)QL′′L′ (5.25)

Q′L′′L′ = −1
r
QL′′L′ +

∑
L′′
ULL′′(r)PL′′L′ (5.26)

with coefficients

SLL′ =
[
E

c2 + 1
]
δLL′ −

1
c2VLL′ (5.27)

ULL′ =
∑
L′′
S−1
LL′′(r)δL′′L′

l′′(l′′ + 1)
r2 − [EδLL′ − VLL′ ] (5.28)

From this one can obtain the potential-free solutions by setting VLL′ = 0 which simplifies
eq. (5.25) and eq. (5.26) to

d

dr
P 0
l = 1

r
P 0
l +

[
E

c2 + 1
]
Q0
l (5.29)

d

dr
Q0
l = −1

r
Q0
l +

[
1

E
c2 + 1

l(l + 1)
r2 − E

]
Q0
l . (5.30)

Solutions to these equations can be easily derived [22] and are given as

R0
l = r

(
jl(κr)

1
2M0

∂rjl(κr)

)
, R̄0

l = r
(
jl(κr), − 1

2M0
∂rjl(κr)

)

S0
l = r

(
hl(κr)

1
2M0

∂rhl(κr)

)
, S̄0

l = r
(
hl(κr), − 1

2M0
∂rhl(κr)

)
, (5.31)
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where the relativistic mass of an electron in free space

M0 = 1
2 + E

2c2 (5.32)

and the coefficient κ =
√
E + E2

c2 are introduced.
The structure of the solutions is similar to those of the non-relativistic solutions given
in eqs. (3.26) to (3.29). However, in SRA we have a large component (P 0

l ) and a
small component (Q0

l ) and the first (second) entry in each of the four solutions in
eq. (5.31) solves our problem for the large (small) component, e.g. jl(κr) is the regular
right solution for the large component and 1

2M0
∂rjl(κr) the analogue for the small

component.
As in eq. (3.21) we can calculate expansion coefficients for the Green function from the
regular and irregular solutions. The coefficients are then written as 2x2-matrices

G0
l
(r, r′) = κΘ(r′ − r)R0

l (r)S̄0
l (r′) + κΘ(r − r′)S0

l (r)R̄0
l (r′). (5.33)

with matrix products of R0
l , S̄0

l , S0
l and R̄0

l . A general expression that is not restricted
to the potential-free case can be given in close analogy.
It is straightforward to formulate Lippmann-Schwinger equations that connect the
solutions in empty space to the solutions of a system with a given general potential. To
this aim, we define the relativistic masses of an electron that is subject to a spherical
potential

M(r) = 1
2 + E − Vsph

2c2 . (5.34)

The term that needs to be inserted into the Lippmann-Schwinger equations which
describes the difference between free space and VLL′ then reads

∆V
LL′

(r) =
[ 1

2M(r) −
1

2M0

]
l(l+1)
r2 + VLL′(r) 0

0 2M(r)− 2M0

 . (5.35)

It is a diagonal 2x2-matrix, where the upper left part acts on the large relativistic
component and the lower right part on the small relativistic component. Hence, we can
write the Lippmann-Schwinger equations to obtain the solutions to the full potential
problem as

RLL′(r, E) = R0
L(r, E)δLL′

+ 2M0κR
0
L(r, E)

∫ Rmax

r
dr′S̄0

L(r, E)
∑
L′′

∆V
LL′′

(r′)RL′′L′(r′, E)

+ 2M0κS
0
L(r, E)

∫ r

0
dr′R̄0

L(r, E)
∑
L′′

∆V
LL′′

(r′)SL′′L′(r, E) (5.36)

for the regular solutions and
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SLL′(r, E) = S0
L(r, E)βLL′

+ 2M0κR
0
L(r, E)

∫ Rmax

r
dr′S̄0

L(r, E)
∑
L′′

∆V
LL′′

(r′)SL′′L′(r′, E)

+ 2M0κS
0
L(r, E)

∫ r

0
dr′R̄0

L(r, E)
∑
L′′

∆V
LL′′

(r′)SL′′L′(r, E) (5.37)

for the irregular solutions. In order to impose correct boundary conditions

βLL′ = 1 + 2M0κ
∫ Rmax

0
dr′R̄0

L(r′, E)
∑
L′′

∆V
LL′′

(r′)SL′′L′(r′, E) (5.38)

is defined following the same philosophy as in section 3.2.

In practice, the eqs. (5.36) and (5.37) are not written as Fredholm integral equations
but rewritten as Volterra integral equations and the problem is solved in a two-
step procedure in which first the spherical part of the potential is included in the
Lippmann-Schwinger equations while the non-spherical part is treated thereafter as an
inhomogeneity (see [22]).
It should be noted that Zeller recently proposed to solve the full Dirac equation without
making any approximations [84]. This feature is to be implemented in KKRnano but
it requires a substantial effort which was beyond the scope of this thesis.

5.2.3. Spin-orbit Coupling

In the relativistic single particle theory spin and orbital degrees of freedom couple
(see eq. (5.23)) which gives rise to interesting physical phenomena in magnetic and
non-magnetic materials [85]. The first example of spin-orbit coupling (SOC) that is
typically encountered in atomic physics is the fine structure splitting in hydrogen,
where the p-levels p 1

2
and p 3

2
have different energy which they do not have in the

Schrödinger picture without SOC.
Recently, SOC has begun to play an important role in the field of spin-orbitronics
where single atomic spins or non-trivial topologically protected magnetic textures, e.g.
skyrmions [17], are used to store information. While charge-based storage devices
can store information merely based on the magnitude of charge they accumulate,
spin-based storage devices rely on the atomic spin, which is a vector quantity, and
therefore offers different ways of manipulating and processing information. SOC is
of particular interest to this topic as it e.g. couples the spin direction to an applied
electric field. An important example is the Spin Hall effect whose physical origin is
SOC [86].
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Derivation in the KKR Formalism

In the following it is shown how SOC is derived and dealt with in the KKR formalism
(cf. [53]).
By inserting the Dirac spinor

|Ψ〉 =
(
ψ

χ

)
(5.39)

into the Schrödinger equation with an electromagnetic field we obtain the two equa-
tions

(E −mc2 + eV (~r))ψ = ~σ · (c~p+ e ~A(~r))χ (5.40)
(E +mc2 + eV (~r))χ = ~σ · (c~p+ e ~A(~r))ψ (5.41)

for the familiar large and small components. If we now combine both equations by
inserting eq. (5.41) into eq. (5.40) we can obtain a lengthy expression which contains a
term

~σ · (∇V (r)× ~p) (5.42)

=1
r

dV (r)
dr

~σ · (~r × ~p) (5.43)

=1
r

dV (r)
dr

~σ · ~L (5.44)

that couples the spin matrices ~σ to the orbital moment ~L (see [85]). The spin-orbit
potential that needs to be added to the Kohn-Sham equations which are given by
eq. (2.1) is defined as

VSOC = 1
M(r)2c2

1
r

dV (r)
dr

~L · ~S, (5.45)

where we once again encounter the relativistic mass

M(r) = 1
2 + E − V (r)

2c2 . (5.46)

as part of the prefactor. The evaluation of eq. (5.45) requires the knowledge of the
Kohn-Sham potential

V (r) = VZ−e + Ve−e (5.47)

and its spatial derivative. V (r) can be split up into a part that stems from the
interaction of the electrons and the core (VZ−e) and a part that originates from the
mutual interaction of the electrons (Ve−e).
The electron-core contribution is given analytically as the classical Coulomb potential

VZ−e = −2Z
r
, (5.48)
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while the electron-electron contribution is an essential part of a DFT calculation and
is therefore inherently available. The spatial derivative of the potential

dV (r)
dr

= 2Z
r2 + dVe−e(r)

dr
(5.49)

is thus a sum of an analytical expression and a derivative that is calculated numerically
from Ve−e(r) whose values are known for specific radial grid points ri.
The strength of SOC is determined mostly by the nuclear field which behaves like
∝ 1

r
dV
dr
∝ − Z

r3 . This dependency is the reason why SOC is more important in heavy
elements with high nuclear charge than in light elements.
The remaining term in eq. (5.45) that needs to be evaluated is ~L · ~S. In the KKR scheme
spatial quantities are expanded in spherical harmonics. Therefore, an expression for the
matrix elements of the coupling term in real spherical harmonics needs to be derived.
It reads 

(
~L · ~S

)↑↑
LL′

(
~L · ~S

)↑↓
LL′(

~L · ~S
)↓↑
LL′

(
~L · ~S

)↓↓
LL′

 = 1
2 〈YL(~̂r)|

(
Lz L−
L+ −Lz

)
|YL′(~̂r)〉 , (5.50)

where we used the common angular momentum operators Lz, L+ and L− to write ~L · ~S
in a basis of real spherical harmonics YL(~̂r). The off-diagonal elements indicate that
SOC causes a mixing of spin channels. Details on how the expansion is performed can
be found in [53].
What remains to be done is the correct addition of the perturbation VSOC to the
potential without SOC. In KKRnano this is done in the following way: First, the
single-site problem is solved for the spherical part of the potential Vsph because SRA
yields diverging terms in a full-potential approach. Then, the SOC potential ∆VSOC
and the non-spherical parts of the ordinary potential ∆Vns are combined as(

∆V (~r)↑↑ ∆V (~r)↑↓
∆V (~r)↓↑ ∆V (~r)↓↓

)
=
(

∆VSOC(~r)↑↑ ∆VSOC(~r)↑↓
∆VSOC(~r)↓↑ ∆VSOC(~r)↓↓

)
+
(

∆Vns(~r)↑↑ 0
∆Vns(~r)↓↑ 0

)
. (5.51)

This perturbation potential can then be used to formulate Lippmann-Schwinger equa-
tions in the same manner as it is done in eqs. (5.36) and (5.37). If the wave functions
are known, the change in the t-matrices caused by SOC can be determined straightfor-
wardly (see again [53]). The implementation of this scheme in KKRnano is based on a
prior implementation in another KKR code that was devised by Bauer and Zeller [22].
A look at eq. (5.45) also explains the fine structure splitting that can be observed
in the hydrogen atom. The p-states (l = 1) can have the total angular momentum
quantum number j = |l − s| or j = |l + s| so that there is a p 1

2
- and a p 3

2
-state. This

difference manifests in the product

~L · ~S = 1
2 (j(j + 1)− l(l + 1)− s(s+ 1)) (5.52)

, which enters in the SOC term and hence gives rise to two distinct energy levels that
depend on the respective value of j.
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5.2.4. Results for IrMn3

In order to test the implementation of non-collinear magnetism in combination with
the scalar relativistic approximation and spin-orbit coupling, IrMn3 was chosen as an
appropriate system.
IrMn3 in the cubic fcc phase is one of the most widely used industrial antiferromagnets
and shows a frustrated triangular magnetic ground state known as the T1 state [87]
that is shown in the left part of Figure 5.2. In this state (indicated by the dotted red
arrows), the three Mn spins lay in one plane with a 120◦-angle between them.
A KKRnano calculation of the system is initialized using a lattice constant of a = 3.785
Å with the three Mn spins pointing in the directions depicted by the black arrows.
The spins are allowed to relax during the self-consistency cycle so that the magnetic
energy is minimized. The converged result correctly predicts the T1 ground state. A

H = −
1
2 !

a,b=1

n

JabS!aS!b −
1
2 !

a,b=1

n

S!aDabS!b − !
a=1

n

S!aKaS!a, "1#

where S!a is the spin vector of the Mn sublattice labeled by a;
n=2 for L10 IrMn and n=3 for L12 IrMn3. Note that in Eq.
"1# only terms up to second order in the spin variables are
considered, Dab are "traceless# symmetric matrices represent-
ing anisotropic two-site "exchange# coupling, and Ka are the
on-site anisotropy matrices.17 All the parameters in Eq. "1#
are defined as sums over sites in the sublattices, e.g., Jab
=! j"bJij for i"a "j= i excluded#, Jij being the isotropic in-
tersite interactions. In the case of L10 IrMn, tetragonal
symmetry implies

Dab = Dab$−
1
2

0 0

0 −
1
2

0

0 0 1
% , Ka = K$0 0 0

0 0 0

0 0 1
% , "2#

with D11=D22=D and D12=D!. Rotating an antiferromag-
netic configuration around the "100# axis, S!1

= "0,sin ! , cos !# and S!2=−S!1, a simple orientation "!−# de-
pendence of the energy can be derived, E"!#=E"0#
+Keff sin2 !, introducing an effective uniaxial MA constant
per unit cell, Keff=2K+ 3

2 "D!−D#.
In order to calculate E"!# from first principles, we

adopted the so-called magnetic force theorem18 in which the
previously determined self-consistent effective potentials and
fields are kept fixed and the change in total energy of the
system with respect to ! is approached by that of the single-
particle "band# energy. The values for E"!# from these cal-
culations could be very well fitted with Keff=−6.81 meV, in
very good agreement with the theoretical value reported by
Umetsu et al.7 and also with the easy-plane anisotropy ob-
served experimentally.16 Furthermore, by using the method
described in Ref. 17 we calculated an on-site anisotropy con-
stant of K=−2.94 meV. This result implies that in this sys-
tem the MA energy is dominated by the on-site anisotropy,
i.e., the third term in Eq. "1#.

In the case of L12 IrMn3, for each of the three Mn atoms
in a unit cell a tetragonal symmetry axis of the lattice applies
as indicated in Fig. 1. This local tetragonal symmetry gener-
ates again uniaxial two-site and on-site magnetic anisotro-
pies, however, with different symmetry axes that have to be
accounted for in Eq. "1# by suitable transformations of the
matrices in Eq. "2#. C3 rotational symmetry around the "111#
axes furthermore implies D11=D22=D33=D and D12=D23
=D31=D!. Clearly, for a ferromagnetic state of the system,
such a Hamiltonian would yield a vanishing MA energy.

This second-order MA becomes, however, evident if all
the spins forming the T1 ground state are rotated around the
"111# axis. Straightforward calculations show that E"!# fol-
lows again a sin2 ! dependence with an effective MA con-
stant Keff=2K+ 3

2 "D+D!#. Our first-principles calculations
reproduced well the proposed functional form of E"!# with a

value of Keff=10.42 meV; see Fig. 2. Thus we conclude that
the MA constant for L12 is almost twice as large in magni-
tude than for L10 IrMn.

We confirm the validity of spin Hamiltonian "1# for L12
IrMn3 by applying two additional rotations of the spin sys-
tem. First, we repeat the rotation around the "111# axis by
simultaneously interchanging the orientations of the spins at
Mn sites 2 and 3. It should be mentioned that this triangular
spin structure "say, T2# corresponds to a chirality vector,

"! =
2

3&3
"S!1 # S!2 + S!2 # S!3 + S!3 # S!1# , "3#

which is just the opposite of the chirality vector related to
state T1. Note also that "! is normal to the plane of the mo-
ments and the normal component of this vector "chirality
index# " for state T1 is "=1, while for state T2 "=−1. While
by considering only the first "isotropic# term in Eq. "1# the
energy of these two states is identical, the anisotropy terms
lift this degeneracy. Interestingly, rotating the spins in state
T2 around the "111# axis does not induce changes in the
energy of the system. This is confirmed by our calculations
up to an absolute error of 2 $eV. Furthermore, the energy of
state T2 should be higher by Keff /2 than the energy minimum
of state T1 "!=0#. From our calculations we found this dif-
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FIG. 1. "Color online# Sketch of the IrMn3 unit cell. Dark
spheres represent three Mn atoms corresponding to the antiferro-
magnetic sublattices. The solid arrows indicate the local easy axes
and the dotted arrows indicate the spin direction in the T1 ground
state.
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FIG. 2. "Color online# Calculated change in energy of the L12
IrMn3 system when rotating the triangular T1 spin structure around
the "111# axis "circles# and the "110# axis "squares#. The solid lines
display appropriate fits to Keff sin2"!# and the function in Eq. "4#.

SZUNYOGH et al. PHYSICAL REVIEW B 79, 020403"R# "2009#

RAPID COMMUNICATIONS

020403-2

Figure 5.2.: Left: Triangular T1 state depicted in the IrMn3 unit cell. The magnetic
moments (red) lay in the (111) plane and are separated by angle of 120
degrees. The solid arrows indicate the local easy axis for each Mn atom.
Right: Magnetocrystalline anisotropy energy for rotations of the T1 state
around the (110) and the (111) axis. The solid black line displays a fit to
the function Keff sin2 (φ). Reprinted with permission from [87]. Copyright
2009 by the American Physical Society.

comparison of the total energy of the collinear state and the non-collinear T1 state
laying in the (111) plane yields that the latter is 0.9 eV lower in energy. This underlines
the inherent non-collinear magnetic nature of the system.
A subsequent investigation that is reasonable to test the correct implementation of our
extensions to magnetism in KKRnano is a study of the magnetocrystalline anisotropiy
energy (MCE) in IrMn3. This is done by usage of the magnetic force theorem, where
we start from the converged T1 state and then perform a one-shot calculation, i.e. a
single iteration instead of a fully self-consistent cycle. In each one-shot calculation all
three Mn spins are rotated by the same specific rotation angle φ around the (111) axis.
The differences in the single particle energies ∆E for different rotation angles then
give a measure of the MCE landscape. This analysis is performed in steps of 10◦ for a
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range φ = [0◦, 180◦] and the results are visualized in Figure 5.3. A strong magnetic
anisotropy can be observed that is of the order of 10 meV per unit cell. Furthermore,
KKRnano yields the correct symmetry properties, i.e. a rotation by 180◦ leads to a
configuration that is symmetrically equivalent to the initial one.
We can compare our results to calculations following the same procedure that were
performed by Szunyogh et al. [87]. Their results are adapted in Figure 5.2. For an
antiferromagnetic system a simple orientation-dependence of the MCE can be derived
that reads

E(φ) = E(0) +Keff sin2 φ, (5.53)

where Keff is an effective uniaxial magnetic anisotropy constant. Fitting our data
points to this function yields the curve shown in Figure 5.3 with Keff = 9.22 meV. This
nicely compares to the value of Keff = 10.42 which was obtained by Szunyogh et al..
It should be noted though that they followed the same procedure in their calculation but
used a fully relativistic KKR code while our data is obtained in the scalar relativistic
approximation including spin-orbit coupling. However, this nicely shows that our
approach can almost reproduce the results of a fully relativistic calculation.
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Figure 5.3.: Sum of band energies over rotation angle φ in (111) plane. The obtained
values are fitted with a function E(φ) = E(0) +Keff sin2 φ , where Keff =
9.22 meV.

5.3. Generalized Gradient Approximation (GGA)

The challenge of determining an exchange-correlation potential that describes the
non-local nature of exchange and correlation effects only by the local electronic density
and its gradient is briefly discussed in section 2.5. The local density approximation
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(LDA) as well as the generalized gradient approximation (GGA) yield surprisingly
accurate results for structural parameters as well as energy barriers and band gaps
considering that it is a rather crude way of characterizing the quantum mechanical
origin of exchange and correlation effects.

As part of this thesis an existing implementation of GGA was ported to KKRnano and
extended by the PBEsol functional.

The idea of GGA was introduced by Langreth and Perdew in 1980 [88]. In the GGA
picture, the LDA approximation is the first term of an asymptotic Taylor expansion in
gradients of the density [89]. Considering only the first- and second-order term in this
expansion leads to the second-order gradient-expansion approximation (GEA) which
does not provide systematic improvements over LDA.

GGA goes beyond local approximations and defines the exchange-correlation energy
as

EGGA
xc =

∫
f(n↑(~r), n↓(~r),∇n↑(~r),∇n↓(~r))d~r (5.54)

in its most general form. Different GGA functionals f have been proposed and the
achievable accuracy strongly depends on the kind of material and the physical properties
that are of interest, e.g. atomic bonding energies.
Exchange and correlation effects are a result of the interaction between an electron and
the exchange-correlation hole that exists around the electron due to the Pauli principle.
The hole is characterized by a deficit of one electron,∫ ∞

0
dR 4πR2nxc(~r,R) = −1, (5.55)

with an electron located at ~r. R denotes the distance to the electron. The exchange-
correlation hole density nxc(~r,R) can be subdivided into the exchange hole density
nx(~r,R) and the correlation hole density nc(~r,R). The former satisfies

nx(~r,R) ≤ 0 (5.56)

and integrates to −1, whereas nc(~r,R) integrates to zero. These two conditions are
met by the LDA functional which is important to the explanation of its success. The
refinement that GGA offers is then that it improves the description of the hole close
to the electron by adding the Taylor expansion terms of the density. This in turn
worsens the description of the hole further away from the electron. These spurious
contributions and oscillations for large R need to be cut off. The numerous proposed
GGA functionals all adopt this goal but differ in the way it is met and in the additional
constraints that are imposed.
In the following the most popular functional named PBE and its variation for more
accurate equilibrium properties in densely-packed solids PBEsol are derived.

72



5.3. Generalized Gradient Approximation (GGA)

PBE

The GGA functional PBE was introduced in 1996 by Perdew, Burke and Ernzerhof
[40]. Contrarily to other functionals, e.g. PW91 [42], it satisfies only the conditions
which are energetically significant. It can therefore be derived rather easily and is the
de facto standard in present-day DFT calculations.
All parameters of PBE are fundamental constants except for the exchange-correlation
energy of the uniform electron gas. Correlation and exchange energies are determined
separately and the expression for the correlation energy reads

EGGA
c =

∫
d3r n

[
εunif
c (rs, ζ) +H(rs, ζ, t)

]
, (5.57)

where rs is the local Wigner-Seitz radius (n = 3/4πr3
s = k3

F/3π2), ζ = (n↑ − n↓)/n is
the relative spin polarization and t = |∇n|/2φksn is a dimensionless density gradient in
which φ(ζ) =

[
(1 + ζ)2/3 + (1− ζ)2/3

]
/2. The Thomas-Fermi screening wave number

is used as ks =
√

4kF/π. εunif
c (rs, ζ) is the correlation energy of the uniform electron

gas.
The gradient contribution H is constructed from three conditions:

1. For slow variations of the dimensionless density gradient (t→ 0) H shall equal
the second-order gradient expansion [90]

H → 2βφ3t2, (5.58)

where β ≈ 0.066725.

2. For rapid variations t→∞ the correlation energy in eq. (5.57) shall vanish and
therefore

H → −εunif
c (rs, ζ) (5.59)

must hold.

3. The logarithmic singularity that εunif
c (rs, ζ) ∝ ln (rs) has in the high-density limit

rs → 0 [91] must cancel out and EGGA
c has to scale to a constant [92]. This is

achieved by demanding that

H → 2γφ3 ln t2 (5.60)

in the high density limit, where γ = 0.031091.

All three conditions are met by the ansatz

H = 2γφ3 ln
[
1 + β

γ
t2
(

1 + At2

1 + At2 + A2t4

)]
, (5.61)

where
A = β

γ

[
exp

(
−εunif

C /(2γφ3)
)
− 1

]−1
(5.62)
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In the limit t→ 0 the t4-term can be neglected and the first contribution to the Taylor
expansion of ln

[
1 + β

γ
t2
]

reads β
γ
t2 which leads to the behavior demanded by eq. (5.58).

For t→∞ we can write

H =2γφ3 ln
[
1 + β

γ
t2
(

1 + At2

1 + At2 + A2t4

)]
(5.63)

≈2γφ3 ln
[
1 + β

γ

(
t2 + At4

At2 + A2t4

)]
(5.64)

=2γφ3 ln
[
1 + β

γ

1
A

]
(5.65)

=− εunif
c (5.66)

and arrive at eq. (5.59).

The contribution of the exchange energy reads

Ex =
∫
d3r nεunif

x Fx(s) (5.67)

In order to recover the excellent approximation of the exchange energy by LDA for
small density variations [93], i.e. s = |∇n|/2kFn→ 0, the constraint

Fx(s)→ 1 + µs2 (5.68)

shall hold, where µ = β(π2/3) = 0.21951. The Lieb-Oxford inequality [94] defines a
lower boundary

Ex [n↑, n↓] ≤ Exc [n↑, n↓] ≤ −1.679e2
∫
d3r n4/3. (5.69)

for the indirect part of the Coulomb energy, i.e. exchange and correlation. The
combination of eq. (5.68) and eq. (5.69) is satisfied by the simple ansatz

Fx(s) = 1 + κ− κ/(1 + µs2/κ), (5.70)

where κ = 0.804.

Exchange and correlation contributions can be combined and written as a single
functional that needs to be convoluted with the exchange energy of a uniform electron
gas and the electronic density to yield the exchange-correlation energy for PBE

EGGA
xc [n↑, n↓] =

∫
d3r nεunifX (n)Fxc(rs, ζ, s). (5.71)

In the limit Fxc(rs, ζ, s) → Fxc(rs, ζ, 0) the LDA approximation is recovered. In the
high-density limit (rs → 0) exchange dominates and Fxc(rs, ζ, s)→ Fx(ζ, s), whereas
in the low-density limit (rs →∞) correlation non-locality dominates.
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PBEsol

In 2008 Perdew et al. [41] presented the functional PBEsol which was designed to
correct PBE in such a way that equilibrium properties of densely packed solids are
improved. Its implementation is straightforward since it differs from PBE merely by
the two coefficients µ and β.
It is important to note that no GGA functional can yield both accurate atomization
and total energies and lattice parameters or surface energies. Hence, a trade-off is
inevitable and a decision for either must be made depending on which properties are
paramount.
The fundamental idea behind PBEsol is to restore the correctness of the density gradient
expansion of the exchange in the first order approximation for the uniform electron
gas.

We rewrite eq. (5.68) for convenience

Fx(s) = 1 + µs2 + ..., (5.72)

where the choice of µ = 0.1235 (cf. µ = 0.21951 in PBE) yields the correct exact
linear response for the uniform electron gas. This alone leads to much better lattice
constants.
The change of µ requires an alteration of the parameter β which enters as a parameter
in the expression for the correlation energy in eq. (5.57) via the definition in eq. (5.61).
For a GGA correlation functional one can write

EGGA
c =

∫
d3r n

[
εunif
c (rs, ζ) + βt2(r) + ...

]
(5.73)

up to the first order contribution. For weakly-varying valence-electron densities as they
are found in densely packed solids, LDA gives a proper response to an applied weak
potential. In order to completely retain this feature the condition

µ = π2β/3 (5.74)

must be fulfilled. However, β is chosen as β = 0.046 which deviates from the value
0.0375 which the condition suggests. This is done in favor of better surface energies as
comparisons with meta-GGA functionals, i.e. functionals that also make use of the
orbital kinetic energies, have shown.

Comparison

KKRnano currently features the GGA functionals PBE, PBEsol and PW91 [89]. We
conducted an evaluation of the equilibrium lattice constants that each of the functionals
predicts and compared them with experimental values for Cu and Ge in Table 5.1. Cu
is a text book example for a DFT calculation. LDA tends to overbind the atoms in a
solid which results in underestimating the equilibrium lattice parameters while PBE
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shows a tendency to slightly overestimate them. PBEsol corrects this overshooting and
yields a value that matches experiment.
The case of Ge is an exception from the empirical knowledge that GGA usually does a
better job at predicting the lattice constant. Here, all GGA functionals overestimate
the lattice parameter while the result obtained with LDA matches the experimental
value.

LDA PW91 PBE PBEsol exp.
aCu (a0) 6.7 6.9 6.9 6.8 6.82
aGe (a0) 10.7 > 10.9 > 10.9 10.9 10.7

Table 5.1.: Equilibrium lattice constants for Cu (aCu) and Ge (aGe) produced with LDA,
PW91, PBE and PBEsol exchange-correlation functionals in KKRnano and
the experimental lattice parameters.

5.4. Lloyd’s Formula

The angular momentum components of the Green function in the KKR method can
only be considered up to a certain cut-off (c.f. section 3.5) in L and L′. This inevitably
causes an inaccuracy in the calculation of the electronic charge density which in turn
leads to an incorrect Fermi energy.
This does not constitute a problem in metals as it will only result in a small shift of
the Fermi level. However, in band-gap materials, i.e. insulators and semiconductors,
correct charge normalization is of outmost importance. Even small errors cause the
Fermi level to move into the valence or conduction band and the material is falsely
treated as a metal. Lloyd’s formula [95] is a method to calculate the integrated density
of states exactly. It implicitly sums over all angular momenta and thereby avoids the
problem mentioned above. The variant of Lloyd’s formula presented in the following is
the one which is implemented in KKRnano and was derived by Zeller [96].
In KKR the electronic density is obtained via

ρ(~r + ~Rn) = − 2
π

Im
∫ ∞
−∞

dE f(E,EF , T )G(~r + ~Rn, ~r + ~Rn, E), (5.75)

where f(E,EF , T ) is the Fermi-Dirac distribution, G(~r+ ~Rn, ~r+ ~Rn, E) is the multiple-
scattering Green function and ~r + ~Rn denote cell-centered coordinates. The integral
needs to be evaluated numerically so we rewrite it as

ρ(~r + ~Rn) = − 2
π

∑
i

Im
[
wiG(~r + ~Rn, ~r + ~Rn, Ei)

]
(5.76)
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5.4. Lloyd’s Formula

with suitably chosen complex valued integration points Ei and weights wi. The Fermi
energy EF is determined by the energetically highest-lying integration point and can
be obtained straightforwardly by imposing the condition that the total charge Q, which
is identical to the number of valence electrons in the system, equals the integral over
the spatial electronic density in all cells:

Q =
∑
n

∫
n
d~r ρ(~r + ~Rn). (5.77)

The error that is made when determining EF like this stems from the fact that the
Green function

G̃(~r + ~Rn, ~r + ~Rn, E) =
lmax∑
L

Rn
L(~r, E)SnL(~r, E) +

lmax∑
LL′

Rn
L(~r, E)Gnn′

LL′(E)Rn
L′(~r, E) (5.78)

is truncated in angular momentum space above l = lmax. Here, we used eq. (3.44) in a
modified form for equal space arguments. The truncation results in a spurious charge
density

ρ̃(~r + ~Rn) = − 2
π

∑
i

Im
[
w̃iG̃(~r + ~Rn, ~r + ~Rn, Ei)

]
(5.79)

with integration points Ẽi and weights w̃i that differ from the correct values Ei and wi
in eq. (5.76) Therefore, also the total charge

Q̃ =
∑
n

∫
n
d~rρ̃(~r + ~Rn) (5.80)

is associated with an error and ẼF is not correct in band-gap materials.
Lloyd’s formula [97] can correct this shortcoming by providing an exact expression

N(E) = N r(E)+ 2
π

∑
n

ln det |∆αnLL′(E)|− 2
π

ln det
∣∣∣δnn′LL′ −G

r,nn′

LL′ (E)∆tn′LL′(E)
∣∣∣ (5.81)

for the total charge in the system N(E). N r(E) is the total charge and Gr,nn′

LL′ (E) the
Green function of an arbitrary reference system, e.g. free space. ∆tn′LL′(E) denotes
the difference of the t-matrices of the actual and this reference system. The α matrix
describes the different behavior of the single-scattering solutions Rn

L and JnL at the
origin:

Rn
L(~r, E) =

∑
L′
JnL′(~r, E)αnL′L(E) r → 0. (5.82)

With the exact expression from eq. (5.81) the total charge and with it the correct
Fermi level can be correctly calculated as

Q = Im
∫ ∞
∞

dEf(E,EF , T )n(E) =
∑
i

Im [win(Ei)] , (5.83)
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where n(E) denotes the energy derivative of N(E). In a periodic crystal with an
infinite number of atoms eq. (5.81) is applied in reciprocal space and reads

N(E) =N r(E) + 2
π

∑
ν

ln det |∆ανLL′(E)|

− 2
πVBZ

∫
BZ

d~k ln det
∣∣∣δνν′LL′ −G

r,νν′

LL′ (~k, E)∆tν′LL′(E)
∣∣∣ . (5.84)

Here, ν and ν ′ are restricted to the basis sites in the unit cell and the integral in the
last term is over the Brillouin zone.
Lloyd’s formula only yields the total charge in a system but does not deliver the
spatially resolved charge density. The correct Fermi level which is obtained in eq. (5.83)
does not make up for the incorrect Green function that enters in eq. (5.79). This
deficiency can be compensated by the introduction of normalization factors λi that are
applied along the integration contour so that we arrive at an adjusted density of states

ρλ(~r + ~Rn) = − 2
π

∑
i

λiIm
[
wiG̃(~r + ~Rn, ~r + ~Rn, Ei)

]
. (5.85)

The factors are determined by the condition

2
π

∑
i

λiIm
[
wiG̃(~r + ~Rn, ~r + ~Rn, Ei)

]
= Im [win(Ei)] , (5.86)

where the exact energy derivative n(E) obtained with Lloyd’s formula and the spurious
Green function G̃(~r + ~Rn, ~r + ~Rn, Ei) enter. A correct choice of the λi makes both
sides of the equation equivalent. The adjusted density of states ρλ is thus correctly
normalized and provides the correct total charge∑

n

∫
n
d~rρλ(~r + ~Rn) = Q. (5.87)

In practice an additional step needs to be made due to the infinite increase of the
real part of G̃ with lmax → ∞. This causes the λi to vanish in that limit which is
unphysical since the inclusion of higher angular momentum components should improve
the accuracy of G̃ in eq. (5.85) so that a smaller amount of correction is needed and
λi → 1. Well-behaving λi can be obtained by subtracting the contribution of a suitably
chosen reference system from both sides of eq. (5.86). We choose the potential-free
space (see section 3.3) as reference with the Green function

G0(~r + ~Rn, ~r + ~Rn, E) =
∞∑
L

JL(~r, E)HL(~r, E) (5.88)

The analogue to eq. (5.86) is then

2
π

∑
i

Im
[
wiG̃

0(~r + ~Rn, ~r + ~Rn, Ei)
]

= Im
[
win

0(Ei)
]
− Im

[
wi∆n0(Ei)

]
, (5.89)
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where n0(E) denotes the energy derivative of the integrated density of states N0(E)
for free space which is a quantity that can be exactly calculated. The sum over l is
divided into a part up to lmax and a part

Im
[
wi∆n0(Ei)

]
= 2
π

∑
n

∫
n
d~r Im

wi ∞∑
l>lmax

JL(~r, Ei)HL(~r, Ei)
 (5.90)

that covers l > lmax. Its contribution to the total charge is very small (less than 0.0006
electrons per atom). It is therefore justified to use the following two-step scheme to
calculate the factors λi. We add eq. (5.89) to eq. (5.86) and neglect the contribution
from eq. (5.90) so that

2
π

∑
i

λ?i Im
[
wiG̃(~r + ~Rn, ~r + ~Rn, Ei)

]
= Im [win(Ei)] + Im

[
win

0(Ei)
]
− 2
π

∑
i

Im
[
wiG̃

0(~r + ~Rn, ~r + ~Rn, Ei)
]

(5.91)

with preliminary factors λ?i . These preliminary factors are then scaled by the ratio
Q/Q? which yields

λi = λ?i
Q

Q?
. (5.92)

Q is the exact charge calculated with Lloyd’s formula while Q? is the charge calculated
according to eq. (5.85) with λi being replaced by λ?i . Thus, the factors λi are the
essential quantities in correcting the charge normalization error, that is made in KKR
due to angular momentum truncation, by means of Lloyd’s formula.

An example of the importance of Lloyd’s formula in KKRnano for non-metals is shown
in Figure 5.4. The density of states of the perovskite SrTiO3 has a band-gap since this
material is a semiconductor. It plays an important role in the research on resistive
switching materials and is considered to be a candidate for a new non-volatile solid-state
memory [98]. With Lloyd’s formula the Fermi level is placed in the band-gap where it
is supposed to be. Without Lloyd’s formula SrTiO3 appears to be a metal with a high
density of Ti states at the Fermi energy.
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(a)

(b)

Figure 5.4.: Density of states for the resistive switching material SrTiO3 with (a) and
without (b) the use of Lloyd’s formula. The Fermi level is indicated by a
dashed line. With Lloyd’s formula it is positioned correctly on the edge
of the band gap of the semiconducting SrTiO3. If Lloyd’s formula is not
used, it lies deep inside the conduction band so that the system is treated
like a metal.
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5.5. Semi-core Contour

At the beginning of this subsection about the introduction of a semi-core energy contour
it should be remembered from section 3.1 that the energetically low-lying core states
are treated differently from the higher-lying valence states. The crucial complex energy
contour in eq. (3.8) covers only the valence states. Some states in certain materials
cannot be unambiguously identified as core or valence states. Higher-lying core states
have wave functions that significantly reach out of the muffin-tin region and therefore
require a treatment similar to valence states [83]. In order to account for this one can
define another contour integration in addition to the valence contour. This semi-core
contour is only over the states that cannot be assigned either to the group of core
states or the group of valence states. The newly added feature in KKRnano is inspired
by an existing implementation in the juKKR code.

Bulk Ge has high-lying 3d-states that are positioned closely to the valence band (see
Figure 5.5). They qualify as semi-core states and can be treated with the scheme that

Figure 5.5.: Semi-core contour (dotted line) and valence contour (solid line) depicted in
an energy-resolved density of states for Ge with high-lying 3d core states.
The Fermi level is indicated by a dashed line. The strong localization of
the 3d state is evident.

is described in the following.
The simplest way of dealing with semi-core states would be to extend the valence
contour to include them. However, this requires more energy points in the complex
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contour integration or a sacrifice of accuracy. The semi-core contour offers a more
elegant way to calculate the contribution of the strongly localized semi-core states. We
take advantage of the fact that the number of electrons that are to be found within
the contour is an integer and known exactly. In case of Ge 10 electrons are in the
3d-state. With that knowledge we can afford to trade accuracy for performance, i.e.
use a sparser k-mesh and less energy points than in the valence contour.
The imprecise charge Q̃ that is obtained by this sloppy procedure is rounded to the
nearest integer value bQ̃e, e.g. Q̃ ≈ 9.8 and bQ̃e = 10 in Ge. Then, a factor

fSC = bQ̃e
Q̃

(5.93)

can be determined which is multiplied with the integration weights in the semi-core
contour in the next iteration to ensure that the charge it contains has the correct
integer value. The procedure is similar to the one in Llyod’s formula (c.f. section 5.4)
and we define w̃SC,i as the uncorrected weights and wSC,i = fSCw̃SC,i as corrected
weights. Then, we rewrite the charge density in the semi-core contour as

ρSC(~r + ~rn) = − 2
π

∑
i

Im
[
wSC,iG(~r + ~Rn, ~r + ~Rn, ESC,i)

]
(5.94)

with integration points ESC,i. It leads to the correct integer semi-core contour charge

QSC =
∑
n

∫
n
d~r ˜ρSC(~r + ~Rn). (5.95)
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6 Atomistic Spin Dynamics

Density Functional Theory (DFT) is formulated as a static theory that does not include
dynamic effects. This is quite obvious when looking at the Kohn-Sham equations in
eq. (2.4) since they depend neither explicitly nor implicitly on time. In this chapter
we show that there is a time-dependent analogon, usually referred to as TD-DFT,
that can capture dynamical effects, e.g. the precession of an atom’s magnetic moment.
The concept of atomistic spin dynamics (ASD) is introduced as a cheaper alternative
to the much more costly prospect of solving the TD-DFT equations in real time.
Furthermore, due to the complexity of TD-DFT only very short time scales of the order
of femtoseconds can be accessed [99, 100]. ASD is based on the Landau-Lifshiftz-Gilbert
equation that describes the motion of an atomic moment under an effective magnetic
field. The usage of the Landau-Lifshitz-Gilbert equation in the ASD framework was
initially proposed by Antropov et al. [101].
More comprehensive elucidations on the matter can be found in textbooks [102] and
PhD theses [22, 103] in the field. For the derivation of the Landau-Lifshitz-Gilbert
equation and the magnetic Hamiltonian we adopt the approach of Eriksson et al. (cf.
[102]).

6.1. Landau-Lifshitz-Gilbert Equation

It is the aim of this section to derive the Landau-Lifshitz-Gilbert (LLG) equation which
models the effects of a magnetic field on magnetic materials. It is based on an equation
originally proposed by Landau and Lifshitz which was later modified by Gilbert [104].
The equation reads

d~mi

dt
= −γL ~mi × ~Beff,i − γL

α

|~mi|
~mi ×

[
~mi × ~Beff,i

]
(6.1)

and describes the dynamical behaviour of a magnetic moment ~mi under an effective
magnetic field ~Beff,i. The first term on the right-hand side accounts for the moment’s
precession that is directed perpendicular to the direction of the moment and the
direction of the effective field, i.e. it causes the moment to precess on a circular path
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around ~Beff,i. The second term is called the damping term as it yields a vector that
damps the precession of ~mi and eventually causes it to realign with the effective
magnetic field. The prefactor

γL = γ

1 + α2 (6.2)

is determined by the gyromagnetic ratio γ and the Gilbert damping coefficient α.

In order to derive the LLG equation we write the spin-dependent Kohn-Sham Hamilto-
nian

Hαβ
KS = −∇2δαβ + V αβ

eff (~r, t)
= −∇2δαβ + V0(~r, t)δαβ + σ̂ · ~Beff(~r, t) (6.3)

by using the formulation in eq. (2.15). However, in this notation the effective potential
V αβ

eff (~r, t) can be time-dependent and is divided into a diagonal potential V0(~r, t) and a
magnetic potential σ̂ · ~Beff(~r, t).
The time evolution of a quantum mechanical system is governed by the time-dependent
Schrödinger equation

i
∂ψ(~r, t)
∂t

= HKSψ(~r, t) (6.4)

−i∂ψ
†(~r, t)
∂t

= [HKSψ(~r, t)]† (6.5)

which is needed in the following both in its standard form and conjugated form. We
can calculate the time evolution of a spin density ~s = ψ†i (~r, t)ŝψi(~r, t) by

∂~s(~r, t)
∂t

= ∂

∂t

[
ψ†i (~r, t)ŝψi(~r, t)

]
= ψ†i (~r, t)ŝ

∂ψi(~r, t)
∂t

+ ∂ψ†i (~r, t)
∂t

ŝψi(~r, t)

= 1
2i
{
ψ†i (~r, t)σ̂HKSψi(~r, t)− [HKSψi(~r, t)]† σ̂ψi(~r, t)

}
= 1

4i∇ ·
{[
σ̂∇ψ†i (~r, t)

]
ψi(~r, t)− ψ†i (~r, t)σ̂∇ψi(~r, t)

}
− γ~s× ~Beff (~r, t)

= −∇ · ~Js − γ~s× ~Beff(~r, t), (6.6)

where ŝ = 1
2 σ̂ is the quantum mechanical spin operator. A thorough derivation of the

equation above is given in appendix A.1. The result can be written as the sum of the
divergence of the so-called spin current density

~Js = 1
4i
{[
σ̂∇ψ†i (~r, t)

]
ψi(~r, t)− ψ†i (~r, t)σ̂∇ψi(~r, t)

}
. (6.7)

From here on we consider this term to be negligible since it is usually only relevant, if
certain transport phenomena, e.g. spin transfer torque effects, are investigated. The
crucial term is the last one which is very similar to the first term in eq. (6.1). Dropping
the prefactor for a moment they can be brought into complete agreement by assuming
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that the atomic magnetic moments are localized and not itinerant. Then, the magnetic
moment can be spatially integrated around the atomic positions and our reference
changes from continuum to discrete atomic positions ~s(~r, t) → ~mi(t). This is also
known as the atomic moment approximation.
We can make another approximation similar to the Born-Oppenheimer approximation
(c.f. section 2.1) by assuming that ~Beff,i changes slowly with time on a scale of 10−12

s or longer compared to the magnetic dynamics of the electrons which are much
faster and change within 10−16 s. This is an adiabatic approximation and allows to
solve eq. (6.6) straightforwardly by considering ~Beff,i as being independent of the
characteristic electronic time scales.
While the precession term in eq. (6.1) is easy to derive from first principles, the damping
term was initially introduced as a phenomenological parameter. An ab initio derivation
of the latter requires the consideration of spin-orbit coupling or the full Dirac equation.
Therefore, we restrict its explanation to qualitative arguments. Obviously, a real
magnetic system is always connected to an environment and energy dissipation is
inevitable. This obstructs the conservation of individual atomic spins and the spin
will eventually align with the effective magnetic field. The damping term can also be
written and included in the LLG equation as

d~mi

dt
= −γ ~mi × ~Beff,i −

α

|~mi|
~mi ×

d~mi

dt
. (6.8)

This is the so-called Gilbert damping which is used more often in the spin dynamics
community. However, for the case of isotropic damping it can be shown that the
damping terms in eq. (6.1) and eq. (6.8) are equal. The damping parameter α can
be extracted from an ab initio calculation but is in many calculations just set to a
constant value that is deduced from experiment.

6.2. The Magnetic Hamiltonian

The considerations above led to eq. (6.1) and gave an explanation of its constituents.
However, it was not clarified how ~Beff,i is obtained in practice. This shall be done in
the following based on the remarks in [102].

~Beff,i can be written as the derivative of an effective spin Hamiltonian H such that

~Beff,i = ∂H

∂~mi

. (6.9)

H shall contain all relevant magnetic interactions that need to be considered in an
atomistic spin model for a given system so that it reads

H = HHeis +HMCE +HDM +Hdd +Hext. (6.10)
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This is called the extended Heisenberg Hamiltonian and it comprises the interatomic
Heisenberg interaction, the magnetocrystalline anisotropy, the Dzyaloshinskii-Moriya
(DM) interaction [105, 106], the magnetostatic dipole-dipole interaction and the Zeeman
energy. The contribution from the standard Heisenberg model is given by the well-
known Hamiltonian

HHeis = −1
2
∑
i6=j

Jij ~mi · ~mj (6.11)

which is a sum over neighbouring isotropic exchange interactions Jij multiplied with the
product of the two magnetic moments ~mi and ~mj on site i and j, respectively. Positive
(negative) sign of Jij favours ferromagnetic (antiferromagnetic) coupling between the
two spins. The Heisenberg contribution is in most cases the largest summand in
eq. (6.10) and is crucial in determining the critical temperature of the system, i.e.
the temperature above which a magnet system becomes paramagnetic. While the
Heisenberg contribution alone already yields quite accurate results for many materials,
further terms are necessary to capture the magnetic behaviour more precisely.
The DM interaction

HDM = −1
2
∑
i,j

~Dij · (~mi × ~mj) (6.12)

has only recently been recognized as very important because it plays a decisive role
in thin metallic films with broken inversion symmetry, e.g. the underlying creation
mechanism for topological solitons known as skyrmions in various layered systems is
the DM interaction [17]. Note, that DM interaction exclusively exists in systems with
non-negligible spin-orbit coupling and that it favours a magnetic configuration, where
the moments point in perpendicular directions.
Another contribution arises from the magnetocrystalline anisotropy which has its
origin in the coupling between magnetic moments and the crystal lattice. Spin-orbit
coupling imposes a preferred orientation of the magnetization in certain crystallographic
directions, i.e. the magnetocrystalline anisotropy energy (MCE) has a minimum, if
spins are aligned along those directions. This favourable direction is called the easy
axis while the energetically most unfavourable direction is referred to as the hard axis.
The MCE can be uniaxial or cubic depending on the magnetic material. The uniaxial
form reads

Huni = −
∑
i

{
K1
i

(
êi · ê ki

)2
+K2

i

(
êi · ê ki

)4
+ ...

}
, (6.13)

where Kn
i are the uniaxial anisotropy constants and ê ki is the axis of the uniaxial

anisotropy, i.e. the preferred direction of magnetization, while êi = ~mi/|~mi| is the unit
vector of the magnetic moment. Usually, it is sufficient to restrict the expansion in
eq. (6.13) to the first order and only consider K1

i . In case of a cubic symmetry the
MCE is given by

Hcub = −
∑
i

{
K1
i

(
e2
x,ie

2
y,i + e2

x,ie
2
z,i + e2

y,ie
2
z,i

)
+K2

i

(
e2
x,ie

2
y,ie

2
z,i

)
+ ...

}
. (6.14)

The dipole-dipole interaction Hdd is routinely neglected, if the isotropic exchange
interaction is dominant. If we neglect K2

i , it is obvious that for K1
i < 0 the easy axes
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are the x-, y- and z-axes while for K1
i > 0 the easy axes are given by the diagonal

directions, e.g. êi = 1√
3(1, 1, 1).

6.3. Extraction of Magnetic Interaction
Parameters from KKR

The coefficients which enter in eqs. (6.11) to (6.14) are not known a priori. They
can either be estimated by analyzing experimental results or can be obtained from
first-principles calculations. The latter is particularly convenient within the KKR
formalism since the Green function is known which contains all the information that is
necessary to extract coupling parameters with the aid of eq. (3.8).
We focus on the extraction of the isotropic Heisenberg exchange coupling constants Jij
and the Dzyaloshinskii-Moriya interaction coupling constants ~Dij and neglect other
terms for a moment. Liechtenstein et al. presented a simple formalism that allows to
calculate the Jij [107] which was later generalized by Udvardi et al. [108, 109] so that
also the ~Dij can be obtained.
The generalized Heisenberg Hamiltonian (cf. eq. (6.10)) with neglected dipolar interac-
tion reads in tensorial form

H = êiJêj = êi


Jxxij Jxyij Jxzij
Jyxij Jyyij Jyzij
Jzxij Jzyij Jzzij

 êj, (6.15)

where êj and êj is the orientation of the magnetic moment on site i and j, respectively.
It can be decomposed into

J = Jij1 + JS + JA (6.16)

with the diagonal isotropic Heisenberg contributions

Jij = 1
3TrJ, (6.17)

a traceless symmetric part

JS = 1
2
(
J + JT

)
− Jij1 (6.18)

and an antisymmetric part
JA = 1

2
(
J − JT

)
. (6.19)

We can thus write the Hamiltonian combining all three contributions as

H = Jij êi · êj + êiJ
S êj + ~Dij (êi × êj) , (6.20)
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where the DM interaction is defined as a vectorial quantity that is connected to the
tensor elements of J by

Dx
ij = 1

2
(
Jyzij − J

zy
ij

)
, Dy

ij = 1
2
(
Jxzij − Jzxij

)
, Dz

ij = 1
2
(
Jxyij − J

yx
ij

)
. (6.21)

The tensor J can be obtained through the method of infinitesimal rotations [108].
Here, the magnetic moment is infinitesimally rotated around the axis α which leads to
a perturbation of the local potential ∆V α

i . This perturbation can again be utilized
to calculate the concomitant energy shift that corresponds to the exchange coupling
tensor and one can write

J = Jαα
′

ij = − 1
π

Im
∫ ∞
Eb

dE Tr
[
∆V α

i Gij ∆V α′

j Gji

]
(6.22)

following the specification given by eq. (3.8).
For instance, if the tensor elements Jxzij is to be calculated, an infinitesimal rotation
of the magnetic moment i is made around the x-axis that results in a perturbation
∆V x

i and another rotation around the z-axis for the magnetic moment at site j yields
∆V z

j . The Green function Gij is known from the solution of eq. (3.44). Then, the
tensor element Jxzij can be calculated straightforwardly by integrating over the energy
contour. Our approach to obtain the model parameters is advantageous since the full
electronic Green function is a byproduct of our method and we can therefore access it
without any additional costs. In comparison to other methods it should also be noted
that with our approach we can extract the parameters in a one-shot calculation for
each magnetization axis, while usage of e.g. the generalized Bloch theorem requires
more computational effort.
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7 Magnetic Textures in B20
Compounds

Figure 7.1.: Illustration of the elementary unit cell of B20-MnGe with the Mn-atoms
colored in red and the Ge-atoms colored in blue. Other B20 materials
adopt the same basic structure with slightly varying structural parameters.
Reprinted with permission from [110]. Copyright 2014 by the American
Physical Society.

The focus of this chapter is on the investigation of complex magnetic textures in
B20 materials. Most of the current research activity dealing with magnetism in
B20 compounds is closely connected to the field of skyrmionics. Skyrmions are two-
dimensional magnetization solitons, i.e. two-dimensional magnetic structures localized
in space, protected by a topologically non-trivial magnetization texture, which have
particle-like properties. These days, they constitute one of the most active subjects
in the field of magnetism, because such topological solitons can serve as information-
carrying particles that are small-sized and stable up to room temperature [111, 112].
That is why special attention has been paid lately to cubic B20-type compounds
with broken lattice inversion symmetry, where skyrmion phases have been observed
experimentally [113]. In fact, the B20 material MnSi was the first material in which
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the formation of skyrmions was experimentally observed [15].

In this chapter, results from both magnetic models and KKRnano calculations are
presented. The investigations are directed at the B20 compounds MnGe and FeGe as
well as Mn1−xFexGe-alloys.
B20 materials order in a cubic structure that is described by the P213 space group.
This space group is noncentrosymmetric, which means that there is no lattice inversion
symmetry. The atoms are located at the Wyckoff positions (u, u, u), (1/2 − u, 1 −
u, 1/2 +u), (1−u, 1/2 +u, 1/2−u) and (1/2 +u, 1/2−u, 1−u), where u is a constant
value that is determined for each atom type, e.g. uMn = 0.14 and uGe = 0.84 for
B20-MnGe [110]. Hence, there are 8 atoms in total in a simple B20 unit cell. The B20
germanides that are of interest in our analysis consist of a transition metal like Mn
or Fe and the metalloid Ge. An exemplary visualization of the B20-MnGe unit cell is
given in Figure 7.1.

7.1. Basic Properties of MnGe

B20-MnGe was identified as a good candidate material to be investigated with the new
version of KKRnano (see chapter 4), which was developed as part of this thesis and
now contains the feature of non-collinear magnetism and spin-orbit coupling.
In a recent study [28], it was found by transmission electron microscopy that 3D
magnetic objects exist in B20-MnGe. The authors of [28] came to the conclusion that
their data indicates a cubic lattice of skyrmionic hedgehogs and anti-hedgehogs (see
Figure 7.2a) with a rather short pitch of about 3-6 nm which can be observed up to a
temperature of 170 K. The singularity at the center of the texture exists only in the
micromagnetic description since the atomic magnetic moment of the atom, which is
located at the center, remains finite [114].

Findings by Kanazawa et al. suggest that this lattice is set up by a superposition of
three orthogonal helical structures also referred to as 3Q state [24]. Here, the local
magnetization is determined by the provision

~M(~r) =


sin qy + cos qz
sin qz + cos qx
sin qx+ cos qy

 , (7.1)

where q = 2π
λ

is the wavenumber given in terms of the helical wavelength λ and x, y and
z are the spatial coordinates within the unit cell. Note, that ~M(~r) is not normalized.
In contrast to other systems exhibiting a similar magnetic phase, the rather short
helical wavelength in B20-MnGe allows one to perform density functional theory (DFT)
calculations with KKRnano.
B20-MnGe is currently the subject of extensive investigation [25, 28, 116–118]. This is
mainly inspired by the discovery of skyrmions as small information-carrying particles

90



7.1. Basic Properties of MnGe

(a) (b)

Figure 7.2.: Magnetic textures that are found experimentally in B20-MnGe: (a) Mag-
netic anti-hedgehog texture that is wrapped around a singularity at the
center. (b) Helical spin spiral that propagates in (001) direction. Reprinted
from [115] with modifications and licensed under CC BY 3.0.

that could potentially be used in spintronic devices [17]. However, no large-scale DFT
calculation seems to have been performed, yet.
At present there is a lack of a convincing explanation of what is observed in experiment.
Research in the framework of micromagnetic models identified both magnetic frustration
(RKKY interaction) [30] as well as spin-orbit coupling induced Dzyaloshinskii-Moriya
(DM) interaction as potentially crucial to a better understanding [29].
While the 3Q state certainly constitutes the most interesting non-trivial magnetic
texture in B20-MnGe, there are also reports that the magnetic ground state in this
system is actually a helical spiral (see Figure 7.2b) [119] which was observed up to a
temperature of 170 K [120]. These two observations are clearly contradictory and it has
not yet been explained how both can coexist within the same material. The helical spin
spiral in B20-MnGe forms along the (001) direction and therefore the magnetization is
described by the relation

~M(~r) =


cos qz
− sin qz

0

 . (7.2)

In the following, we refer to this as the 1Q state. In Figure 7.3 the result of a density of
states calculation for the ferromagnetic 8-atomic unit cell with KKRnano is shown. It
is clearly visible that the magnetic properties of MnGe are governed by the 3d-states of
the Mn. The spin splitting gives rise to a magnetic moment of roughly 2 µB/f.u.. The
other channels as well as the Ge states do not contribute significantly to the density of
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states at and around the Fermi level.

Figure 7.3.: Energy-resolved density of states for B20-MnGe. The contributions of the
Mn bands and the Ge bands are plotted separately with dotted lines while
the combined density of both the Mn and the Ge states is indicated by
a solid line. The majority (minority) spin channel is denoted by positive
(negative) y-values. The spin splitting, which gives rise to the magnetic
moment of the Mn atoms, is clearly recognizable.

7.1.1. High-spin/Low-spin Transition

In 2012 Rößler [121] predicted a pressure-induced magnetic transition from a high-spin
state (HS) to a low-spin (LS) state in B20-MnGe. He used the FPLO code [122], a
full-potential local orbital method, with the PBE functional and performed additional
calculations with LDA to compare with. In [121] the lattice constant is varied between
4.2 and 5.0 Å to simulate the exertion of pressure on the sample. His calculations
yield an HS state that has a magnetic moment of a bit more than 2μB/f.u and a
LS state with a magnetic moment of only 1μB/f.u. If LDA is used to account for
exchange-correlation effects, the global minimum of the total energy is found for the LS
state, while for PBE the lowest total energy coincides with a high magnetic moment
and hence with the HS state.
Rößler’s prediction was experimentally observed in 2014 by Deutsch et al. [31]. They
confirmed that at a pressure of about 6 GPa the magnetic moment rapidly drops by
more or less the amount that Rößler’s calculations had predicted. They also report
that the helical ordering in the material collapses above an applied pressure of 10 GPa.
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We investigate this phenomenon with KKRnano, i.e. calculate the change of the
total energy as well as that of the magnetic moment over a lattice parameter that
is varied from 4.6 to 4.8 Å. The calculations are performed in the scalar-relativistic
approximation with ferromagnetically aligned spins and do not include the effects of
spin-orbit coupling. As exchange-correlation functionals we choose LDA according
to the scheme of Vosko, Wilk and Nusair [123] and PBEsol. A grid of 14 × 14 × 14
k-points in combination with a broadening temperature of 800 K is used. The resulting
curves are visualized in Figure 7.4. The total energies for LDA and PBEsol have the
shape of a parabola around the energetic minimum. The equilibrium lattice constant
is determined by the minimum of the total energy, which is found to be at 4.65 Å
in LDA and 4.76 Å in PBEsol. In comparison to experiment, where 4.8 Å has been
reported [110], PBEsol clearly yields the more accurate lattice constant for B20-MnGe.
The same calculation also sheds light on the behaviour of the magnetic moment under
a variation of the lattice constant. As can be seen in the lower part of Figure 7.4, the
magnetic moment of each Mn atom becomes larger with increasing lattice constant.
The main difference between LDA and PBEsol is the location of the crossover region
in which the moments increase abruptly and the system goes into the HS state. For
PBEsol it is found around 4.65 Å while it is slightly below 4.7 Å for LDA. Furthermore,
it is remarkable that the magnetic moments per Mn atom differ a lot for the equilibrium
lattice constant of LDA and PBEsol. Here, LDA predicts a magnetic moment/f.u. that
is a bit larger than 1 µB, where instead PBEsol prefers a value of almost exactly 2
µB/f.u.. Experimentally, a magnetic moment between 1.6 µB/f.u. and 2.3 µB/f.u.
was measured [119].
A closer look reveals that there are actually two parabola-like energy curves for each
functional. One describes the total energy of the system in the HS state (solid line)
while the other does the same for the LS state (dashed line). At the transition point
the two curves intersect and the two states are degenerate. The nature of a DFT
calculation is to minimize the total energy and therefore the path of the parabola with
the lower energy is followed, if the lattice constant is increased or decreased.
In conclusion it can be stated that the results obtained with KKRnano coincide with
those of Rößler. A HS/LS-state transition is predicted with both LDA and PBEsol,
where PBEsol correctly finds the ground state to be the HS state while LDA does not.
In combination with the fact that PBEsol also gives a more realistic estimate of the
equilibrium lattice constant, it can be stated that PBEsol is to be preferred over LDA
for B20-MnGe.
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Figure 7.4.: Top: Total energy vs. lattice parameter with LDA and PBEsol functional.
For LDA the equilibrium lattice constant is found at 4.65 Å, while PBEsol
predicts it to be at 4.76 Å. The respective minimum energy is taken
as reference for the energy scale. Bottom: Magnetic moment vs. lattice
parameter. If pressure is applied, both LDA and PBEsol predict a transition
from a high-spin state (solid line on the right-hand side of the figure) in
which the magnetic moment is around 2 μB/f.u. to a low-spin state (dashed
line on the left-hand side of the figure), where the moment is about 1
μB/f.u.. While LDA estimates the crossover region to be around 4.7 Å,
PBEsol expects it to be at approximately 4.65 Å.

7.1.2. Magnetocrystalline Anisotropy

Many materials, e.g. IrMn3, which is discussed in section 5.2.4, show a strong Mag-
netocrystalline Anisotropy (MA), i.e. there are directions of the magnetic moments
with respect to the crystal axes that are energetically preferred. These directions
are referred to as the easy axes while the least preferable directions are named the
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hard axes. The most common reason given for such rotational symmetry breaking is
spin-orbit coupling.
Surprisingly, and in contradiction to previous assumptions, Chacon et al. [124] stated in
a recent publication that cubic MA can be a stabilization mechanism in the formation
of skyrmions and helices. The influence of (uniaxial) MA on the magnetic structure of
B20-MnGe thin films was studied by Kanazawa et al. [125]. The cubic MA was already
theoretically considered by Grigoriev et al. [126], who found that it can also have an
impact on the stability of helical states in cubic B20-MnGe. These findings ask for a
thorough analysis of the MA in B20-MnGe, which is conducted in the following.
In the single-ion picture of MA, there are two main well-known mechanisms. The
anisotropy in 4f ions is caused by electrostatic effects that deform the charge cloud,
which is rigidly coupled to the spin due to the strong spin-orbit interaction within the
4f electronic shell. In contrast, for 3d magnets, spin-orbit coupling is a small correction
to the electronic Hamiltonian and perturbation theory can be used to obtain its impact
on the electronic structure, and so compute the magnetocrystalline anisotropy energy
(MCE), among other quantities. However, in heavy transition metals both mechanisms
can be of importance, establishing an intermediate picture [127].
Computationally, the MCE can be extracted in two ways: The first way is to force the
magnetization to point in a certain direction and achieve self-consistency. This scheme
has been applied successfully to 3d magnets in the past [128]. The challenging aspect of
this type of calculation is to achieve sufficient precision in the computed total energies.
For a KKR calculation, we prescribe the orientation of the exchange-correlation mag-
netic field to the desired direction and iterate until the potential and with it the total
energy are self-consistently determined. In this case, the resulting total energy Etotal
is the quantity that needs to be analyzed. The calculations are performed for every
magnetization direction that shall be investigated, e.g. for a set of directions that lay
in a certain symmetry plane. The other way is to utilize the magnetic force theorem, as
it is done in [129]. This theorem justifies replacing the difference of self-consistent total
energies with the difference of non-self-consistent band energies Eband, which are easier
to obtain with the required numerical precision. According to Wang et al. [130], the
validity of such an approach in cubic materials is questionable – an aspect that must be
kept in mind when analyzing the results. For a KKR calculation, a single calculation
is converged with the magnetization pointing along a specific direction (for instance,
the z-axis). Then, a single KKR iteration is performed with the exchange-correlation
magnetic field pointing in each direction that is of interest, starting from the potential
obtained in the self-consistent calculation.

We first investigate the MA in bulk B20-MnGe by means of the total energy obtained
from a series of self-consistent KKRnano calculations. The direction of all Mn moments
is continuously rotated within the z-x plane from the positive z-direction to the negative
z-direction. Additionally, another set of calculations is performed in the x-y plane,
where the moments are rotated from the positive x-direction to the negative x-direction.
Both rotations are equivalent in a cubic system and comparing both of them in a single
plot is a good consistency check. The resulting total energies over the sweeping angle
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α are depicted in Figure 7.5, where a rotation by 180◦ is performed in both planes.
The value for α = 0◦ is taken as the base value. The ideal curve that models the cubic
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Figure 7.5.: Magnetocrystalline anisotropy energy of B20-MnGe obtained by means
of the total energy. The total energy is calculated for different sweeping
angles α, i.e. the direction of all Mn moments is rotated within a plane,
and the value for α = 0◦ serves as base line. This rotation is performed in
the z-x plane and the x-y plane. The red curve is the form expected from
eq. (7.3).

MCE has the form [127]

ΔEtotal = Etotal(n̂) − Etotal(ẑ) = K
(
n2

xn2
y + n2

yn2
z + n2

xn2
z

)
. (7.3)

Here, n̂ = (nx, ny, nz) is the unit vector describing the orientation of the magnetic
moment, and K is the MCE constant, which can be positive or negative. This means
that the possible easy axes are either the cubic axes or the diagonals of the cube. The
red curve in the figure is fitted following these assumptions. The obtained data is
symmetric around α = 90◦ and we can therefore restrict the angular range in further
investigations to values below α = 90◦. Total energy mimima are found for α = 0◦ and
α = 90◦, respectively, i.e with moments pointing in positive or negative z-direction. The
energy is supposed to peak when the moments are aligned along the crystallographic
x-direction with α = 45◦. Interestingly, this is not the case, neither for a rotation
in the z-x plane nor in the x-y plane. Instead, with the available data the peak is
found for α = 30◦. The origin of this non-trivial behavior of the MA is currently being
investigated. Figure 7.6 proves that this is not something that is related to convergence
with k-points. Even a calculation with a very dense mesh of 64 × 64 × 64 k-points
yields the peculiarity mentioned above.
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Figure 7.6.: Magnetocrystalline anisotropy energy of B20-MnGe calculated with dif-
ferent k-point meshes. The total energy is calculated for a sweep in the
z-x plane with both a k-point mesh of 14 × 14 × 14 and 64 × 64 × 64 to
investigate the convergence with respect to k-points. The red curve is the
form expected from eq. (7.3). The differences in the total energy between
both meshes are insignificant.

The second possibility to quantify the MCE in a system is to utilize the magnetic force
theorem and compare the sum of band energies for a series of one-shot calculations in
which the magnetic moments are made to point in different directions. Such calculations
might help to identify the origin of the peculiar angular dependence of the MA found
with the total energy calculations. For B20-MnGe this procedure yields the results
depicted in Figure 7.7. In addition to the one-shot calculation, we also provide data
from a related set of calculations, where the Fermi level is adjusted to guarantee charge
neutrality. This is done by performing multiple iterations instead of just a single
one while prohibiting the potential from changing. Both data sets obviously do not
fulfill the symmetry conditions of a cubic anisotropy, i.e. a symmetric curve around
α = 45◦. One possible explanation is that SOC lowers the symmetry from cubic to
tetragonal in the self-consistent calculation with the magnetic moment pointing in the
z-direction. This is then built into the spatial shape of the self-consistent potential.
For the one-shot calculations, the rotation of the magnetic direction does not take
into account that the deformation of the shape of the potential should be tied to the
magnetic direction, which might lead to the lower symmetry found in these results.
Furthermore, the energy scale is of the order of less than a μeV which raises concerns
on the meaningfulness of these energy differences. Therefore, from a numerical point
of view we conclude that the converged total energy is the more meaningful quantity
with regards to the investigation of the MCE in B20-MnGe.
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Figure 7.7.: Magnetocrystalline anisotropy energy in B20-MnGe by means of the sum
of band energies. The sum of band energies is calculated for a sweep in
the z-x plane. The Fermi level is either left as it is after a single iteration
(red points) or adjusted to guarantee charge neutrality in the system
(blue points), always while leaving the potential unchanged. The resulting
patterns do not comply with what is observed for the total energies in
Figure 7.6.

A possible explanation for the different outcome of both methods is that the mechanism
that gives rise to MA in B20-MnGe is rather of the 4f-type than of the 3d-type,
although Mn is a 3d element and Ge is not particularly heavy. This would mean that
the anisotropy effect is not directly linked to spin-orbit coupling, which is the energy
contribution captured in the one-shot calculations, but is the result of a change of the
electrostatic crystal field, where the charge cloud surrounding the nucleus is deformed
depending on the orientation of the magnetic moments, which happens indirectly
through the spin-orbit coupling. Such a phenomenon is not captured by a one-shot
calculation and therefore the investigation of converged total energies is required.

In general, it must be stressed that the energy differences are in the μeV range and
therefore fairly small, even for magnetic effects which usually occur on the meV scale.
Therefore, it can be concluded that there is a small magnetic anisotropy but that it
does not play a decisive role in bulk B20-MnGe. It is therefore well justified to neglect
the effect of the magnetocrystalline anisotropy in the following.

Further investigation, after the first edition of this thesis was handed in, showed
that the magnetic anisotropy results depend strongly on the density of the radial
mesh points that are used in the scalar-relativistic non-collinear single-site solver (see
section 5.2). This issue is still under investigation but it underlines that when energy
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differences in the µeV range are compared, possible numerical issues should be taken
into consideration.

7.2. Magnetic Model for MnGe

In this section, an attempt to investigate B20-MnGe with help of the atomistic spin
model and the micromagnetic model is made. It is explained how the atomistic
quantities can be transformed into micromagnetic quantities and the Curie temperature
is calculated from the extracted parameters. The deviation to the experimentally
determined Curie temperature can be considered as a quality measure of our parameters.
Finally, atomistic spin dynamics (ASD) simulations are performed based on the
atomistic parameters that we obtained.

7.2.1. Micromagnetic Parameters

The atomistic model parameters, which appear in the Heisenberg model in chapter 6,
can be connected to the micromagnetic model, that has the form of a continuum theory.
The latter is widely used in the skyrmion community and we adopt it to complement
our toolbox for the investigation of the magnetic properties of the B20 materials.
We exemplify the connection between the two models with a helical spin spiral that
points along the z-axis (c.f. 1Q state in eq. (7.2)) and is described by the wave vector
~q =

(
0, 0, q

)
, i.e. the magnetic moments rotate within the x-y-plane and the wave

vector points along the z-axis. The magnetization of each atom i is then given by

~mi = cos (qzi)êx − sin (qzi)êy, (7.4)

where zi denotes the z-coordinate of the respective atom. In the following we show how
such a magnetic structure interpolates smoothly between the discrete lattice and the
continuum limit. We define the Heisenberg energy with isotropic exchange interaction
and DMI interaction as

Eatom = −
∑
ij

Jij ~mi ~mj +
∑
ij

~Dij · (~mi × ~mj) (7.5)

using the same convention as in the juKKR code, which we will use in the following to
extract the model parameters from DFT. Insertion of eq. (7.4) and usage of addition
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theorems leads to

Eatom,1Q =−
∑
ij

Jij cos (q(zi − zj))

+
∑
ij

~Dij · êz (sin (qzi) cos (qzj)− cos (qzi) sin (qzj))

=−
∑
ij

Jij cos (q(zi − zj)) +
∑
ij

Dz
ij sin (q(zi − zj))

=N (−J(q) +Dz(q)) , (7.6)

where we used the translational invariance of Jij and N is the number of atoms. For
the helical spiral defined in eq. (7.4), only the z-component Dz

ij of ~Dij needs to be
considered.
The micromagnetic energy [113] reads

Emicro =
∫
dV

A

2
(
(∇mx)2 + (∇my)2 + (∇mz)2

)
+D~m · (∇× ~m) , (7.7)

where A is the so-called spin stiffness and D the DM spiralization. Insertion of the
magnetization of the helical spiral given by eq. (7.4) yields

Emicro,1Q =
∫
dV

A

2 q
2
(
sin2 (qz) + cos2 (qz)

)
+D (cos (qz)êx − sin (qz)êy) ·

(
∂

∂z
sin (qz)êx + ∂

∂z
cos (qz)êy

)
(7.8)

=
∫
dV

A

2 q
2 +Dq

(
cos2 (qz) + sin2 (qz)

)
=
∫
dV

A

2 q
2 +Dq

=NVΩ

(
A

2 q
2 +Dq

)
, (7.9)

where VΩ is the volume of the considered unit cell. The wave number q will take the
value which minimizes Emicro,1Q and we can thus impose the condition

∂Emicro,1Q

∂q
!= 0 (7.10)

⇔ ∂

∂q

(
VΩ

(
A

2 q
2 +Dq

))
= 0 (7.11)

⇔Aq +D = 0 (7.12)

⇔ q = −D
A
, (7.13)

which gives us a provision on how the wave number q depends on the magnitude of
DM spiralization and spin stiffness.
The atomistic and the micromagnetic model are connected in the limit q → 0, i.e.

100



7.2. Magnetic Model for MnGe

for a helical spiral that extends over multiple unit cells. Equation (7.6) can then be
simplified to

Eatom,1Q =−
∑
ij

Jij cos (q(zi − zj)) +
∑
ij

Dz
ij sin (q(zi − zj))

=−
∑
ij

Jij

(
1− 1

2 (q(zi − zj))2
)

+
∑
ij

Dz
ijq(zi − zj) +O(q3)

=−
∑
ij

Jij︸ ︷︷ ︸
E0

+1
2
∑
ij

Jij (zi − zj)2

︸ ︷︷ ︸
A

q2 +
∑
ij

Dz
ij (zi − zj)︸ ︷︷ ︸
D

q +O(q3). (7.14)

Thus in this limit, it is possible to derive the micromagnetic parameters A and D from
the atomistic parameters Jij and ~Dij which can be obtained from a KKR calculation
by following the procedure described in section 6.3. The term E0 determines the
ferromagnetic reference energy. The exchange stiffness A describes the increase in
energy if a spin spiral is assumed instead of the ferromagnet. The micromagnetic DMI
D can lower the energy if the product of D and q is negative and can thus make the
spin spiral configuration the energetically preferred state.
In general, A and D are 3×3 tensors that we denote with A and D. For B20 compounds
this simplifies to diagonal matrices due to symmetry arguments and we obtain

A =
∑
ij

Jij


~Rij · ~Rij 0 0

0 ~Rij · ~Rij 0
0 0 ~Rij · ~Rij


=
∑
ij

Jij
∣∣∣~Rij

∣∣∣2 I3 = AI3 (7.15)

and

D =
∑
ij


~Rij · ~Dij 0 0

0 ~Rij · ~Dij 0
0 0 ~Rij · ~Dij


=
∑
ij

(
~Rij · ~Dij

)
I3 = DI3. (7.16)

It should be noted that from eq. (7.16) it follows that D vanishes for ~Dn ⊥ ~Rn and is
largest for ~Dn ‖ ~Rn.

Extraction of Parameters

We use the juKKR code to extract the isotropic exchange interactions (Jij) and the
Dzyaloshinskii-Moriya interactions ( ~Dij) between the four Mn atoms in B20-MnGe.
To this aim the formalism explained in section 6.3 is utilized.
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The calculations are performed for a = 4.76 Å, the theoretical equilibrium lattice
constant using PBEsol, with a broadening temperature of T = 800 K and the interaction
parameters are extracted using a 60× 60× 60 k-point mesh. In order to investigate
the impact of a shift of positions, the interaction parameters are determined for the
experimentally obtained positions of the Mn atoms with u = 0.135 and a slightly
smaller (larger) value of u = 0.125 (u = 0.145). When the Mn atoms are moved, the
distance between Mn and Ge atoms in the crystal structure changes. This potentially
gives rise to increased hybridization between both atom types which might be the
reason for the changes of the DM interaction. The Ge atoms are non-magnetic and
therefore the calculations yield only a small induced magnetic moment of 0.1µB/f.u.
so that their explicit contribution can be neglected in our magnetic model analysis.

An inhouse code that only considers the isotropic exchange interactions Jij to determine
the Curie temperature of the system [131] is used. Sergii Grytsiuk performed these
simulations with the interactions that the author of this thesis calculated with the
juKKR code. The resulting Curie temperature TC (see Figure 7.8) depends on the
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Figure 7.8.: Curie temperature TC obtained with a Monte Carlo method by usage of
the isotropic exchange interactions Jij from Figure 7.9 for u = 0.135. The
consideration of interactions above a cut-off distance of rcut = 2.0 does not
significantly change the resulting TC . The Monte Carlo simulation was
performed by Sergii Grytsiuk.

number of shells that are included in the simulation. In contrast to the micromagnetic
quantities A and D (see below), the Curie temperature TC is more or less converged,
when interactions up to 2a are taken into account. The consideration of Jij parameters
where the distance between site i and j lies above this value does not significantly
change TC . However, this converged value of TC ≈ 300 K lies considerably above the
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experimental value T exp.
C ≈ 170 K [25].

The capability to correctly predict the Curie temperature can be considered as a quality
measure of the extracted isotropic interaction coefficients. In our calculations we see a
discrepancy of more than 100 K which is unsatisfactory.

The results of our detailed analysis of the magnetic coupling coefficients can be found
in Figure 7.9, where both the atomistic model parameters Jij and | ~Dij| as well as the
derived micromagnetic quantities A and D are depicted. For all three u-parameters the
first nearest-neighbor interaction is strongly positive which means that ferromagnetic
coupling is preferred here. However, the alternating sign of the second nearest-neighbour
isotropic exchange interactions indicates magnetic frustration.
The absolute values of ~Dij are two orders of magnitude smaller than the values of Jij.
Interestingly, a different choice of the structural parameter u has a strong influence on
their behavior between the second and fifth shell.
Neither spin stiffness A nor DM spiralization D converge to a constant value, when shells
up to 3a are taken into account, where a is the lattice parameter. It is therefore not
possible to estimate the helical pitch by the relation of spin-stiffness and micromagnetic
DM interaction that is given in eq. (7.10). Note, that estimating the pitch in this
manner is only valid, if the magnetic texture is created by the competition of spin-
stiffness and DM interaction in the micromagnetic model. If frustration plays a crucial
role, as described in [132], eq. (7.10) is no longer applicable. While the absolute values
of ~Dij are very similar for the first shell, the values of D differ if only the first shell is
taken into account. This can be attributed to the scalar product in eq. (7.16) which
makes D dependent not only on the absolute value of ~Dij but also on its direction with
respect to the corresponding atomic bond vectors. Conclusively, it can be observed that
a change of the u-parameter results in a global shift of D. Its value can be increased
by decreasing u.
Note that the different values of the atomistic parameters for the same spatial distance
are possibly caused by numerical inaccuracies in the calculation of the infinitesimal
rotations in connection with the PBEsol functional. This issue is not present, when
LDA is used.

Another structural parameter whose effect on the magnetic model parameters can be
studied is the lattice constant. Our results of this analysis are shown in Figure 7.10.
We performed calculations for a = 4.85, 4.90, 5.00 and 5.10 Å. All of these lie above the
equilibrium lattice constant. Our interest in this regime was triggered by the results of
KKRnano calculations presented in section 7.3.1, where non-trivial magnetic states
are favoured, when a larger lattice constant is assumed.
By increasing a, and therefore the inter-atomic distances, the first nearest-neighbor
isotropic exchange can be reduced. The Jij-couplings between the neighbours that lay
further apart are less affected.
The behaviour of the absolute values of ~Dij differs between the two smaller (a =
4.85, 4.90 Å) and the two larger (a = 5.00, 5.10 Å) lattice constants. For the smaller
lattice constants the first nearest-neighbor contribution dominates. Interestingly, the
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behaviour changes for the larger lattice constants. Here, the most significant ~Dij values
are found for |~rj − ~ri| = 1.0 a.
Similar to the data obtained with varied u-parameter in Figure 7.9, the spin stiffness
parameter A cannot be converged for any data set. Nevertheless, it is interesting
that A becomes increasingly negative with larger lattice constants. A comparison
with eq. (7.14) shows that a negative spin stiffness A < 0 would favour a magnetic
configuration where ~q 6= ~0. This could be a hint to the existence of a helical magnetic
texture. Similarly, to the spin stiffness tensor, the micromagnetic DM interaction D
does not converge either. However, it is interesting to see that its sign differs between
different lattice parameters if we consider only the first shell for a moment. This
indicates that there is also a sign change in the components of ~Dij.
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2
)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

|−→Dij|(meV)

0.
5

1.
0

1.
5

2.
0

2.
5

3
.0

|−→ r
j
−
−→ r

i|
(l
at
ti
ce

co
n
st
an
t)

−4−20246810

D(meV·Å)
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7.2.2. Atomistic Spin Dynamics Results

Another reason for extracting the model parameters Jij and ~Dij is to be able to perform
Atomistic Spin Dynamics (ASD) simulations by solving the Landau-Lifshitz-Gilbert
(LLG) equation as explained in section 6.1. For that purpose we use the software
package SPIRIT [23] which is capable of simulating the dynamics of each spin via the
LLG equation and additionally features a real-time visualization of the spin system.
The model parameters are obtained from juKKR for a = 4.795 with LDA as exchange-
correlation functional and interactions up to rcut = 2.0a are taken into account. This
is a configuration for which the following observations can be made, although it should
be mentioned that slightly varied lattice constants and u-parameters yield qualitatively
similar results in ASD.

For our first setup we initialize a 6× 6× 1 supercell grid of B20-MnGe unit cells with
open boundary conditions. In ASD we only consider the Mn atoms since the Ge atoms
have merely a small induced magnetic moment which we neglect. Furthermore, it
should be noted that in layered systems the uniaxial magnetocrystalline anisotropy
can be of importance [125] but is neglected for simplicity in our simulations. Several
runs from random magnetic starting configurations indicate that the ground state is
ferromagnetic which contradicts the findings of recent experimental works [28, 119].
Further, relaxation of several random initial configurations reveals that two non-trivial
objects are found to be metastable, i.e. they exist at a higher total energy than the
ferromagnet but are confined in a local energy minimum. These two objects are a

(a) (b) (c)

Figure 7.11.: Magnetic moments of the Mn atoms for three (meta-)stable magnetic
states in a grid of 6× 6× 1 unit cells of B20-MnGe: a) Ferromagnet, b)
Skyrmion with left-handed chirality, c) Achiral antiskyrmion. Positive
(negative) z-direction of the spins is coded in red (blue).

chiral vortex and an achiral antivortex (see Figure 7.11). In the literature these two
objects are also referred to as skyrmion and antiskyrmion. To further analyse this
discovery the energy landscape between the two states is of special interest.
The geodesic nudged elastic band (GNEB) method [133] provides a concept to perform
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such an analysis. Here, the energetically optimal transition path between two a priori
defined states is calculated so that an energy landscape can be determined. This allows
to identify local energy minima where magnetic textures can exist in a metastable
state.
The result of the application of GNEB to our problem is depicted in Figure 7.12. It
shows that there is a small local minimum of the spin dynamics energy ESD for the
skyrmion and the antiskyrmion at the 10th GNEB frame. Globally, both skyrmion
(red) and antiskyrmion (blue) state are approximately 1.8 meV per Mn site higher in
energy than the ferromagnetic state. The energy barrier is centered around the 8th
GNEB frame of the transition path. Its height can be approximated to be 0.1 meV for
both skyrmion and antiskyrmion.

Figure 7.12.: Energy landscape between ferromagnetic (frame 1) and skyrmionic/anti-
skyrmion (frame 10) state obtained with GNEB. Red (blue) markers
denote points in the transition path from the skyrmion (antiskyrmion)
state to the ferromagnetic state. The data points are interpolated with a
cubic spline. Both skyrmion and antiskyrmion state are approximately
1.8 meV per site higher in energy than the ferromagnetic state. The
energy barrier separating both states is given by the energy difference of
frame 8 and 10 and has a height of roughly 0.1 meV for both textures.

Another simulation using a 25× 25× 1 grid, that is open in z-direction and periodic
in x- and y-direction, allows to investigate the impact of the DM interaction on the
chirality of the skyrmions. Figure 7.13 shows an example simulation (a), where the
coefficients ~Dij are considered and a simulation (b), where they are not included in
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(a) (b)

Figure 7.13.: Result of a spin dynamics simulation on a 25× 25× 1 grid of MnGe unit
cells with an applied magnetic field Bz = 2.4 T, a damping parameter
α = 0.5 and periodic boundary conditions in all three spatial directions.
a) DM interaction is considered in the Hamiltonian: Two skyrmions
with left-handed chirality and an antiskyrmion emerge from the random
starting configuration. The applied magnetic field ensures a background
polarized in positive z-direction. b) DM interaction is neglected: There
are two skyrmions with opposite chirality and the antiskyrmion.

the model Hamiltonian. From this it can be deduced that the creation mechanism
can be attributed to the frustrated isotropic exchange interactions, while the chirality
of the skyrmions is determined by the DM interaction. In the case of B20-MnGe the
magnetic chirality corresponds to the crystal chirality [117]. Our SPIRIT calculations
confirm this since our unit cell describes left-handed B20-MnGe and the skyrmions
that can be observed with included DM interaction are exclusively left-handed.

Finally, we perform an ASD simulation with SPIRIT starting from randomized spin
directions on a periodic grid of 25 × 25 × 1 MnGe unit cells (2500 magnetic Mn
atoms) with periodic boundary conditions, an applied external B-field in z-direction
~B = (0, 0, 2.4) T and a damping parameter α = 0.5. The magnetic field coincides
with the maximum field strength at which the 3Q state was observed in B20-MnGe
[28]. The large damping parameter of 0.5 fosters a quick relaxation of the system
into the ground state. At this point both isotropic and antisymmetric exchange are
taken into account. The system is initialized with the magnetic moments pointing
in random directions (Figure 7.14a). After some time steps magnetic domains form
(Figure 7.14b) During the relaxation process the two familiar non-trivial textures from
Figure 7.11 form spontaneously at a priori indeterminate positions (see Figure 7.14c).
Once formed with sufficiently large spacing between one another they remain stable due
to their inherent topological protection. If textures with opposite topological charge,
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i.e. a skyrmion and an antiskyrmion form in immediate proximity, they annihilate
each other. Here, this is the case as eventually one skyrmion and one antiskyrmion
remain, approach each other and eventually annihilate. Therefore, it seems like there
is an attractive force between skyrmion and antiskyrmion. The process is visualized
in Figures 7.14c to 7.14e. Energetically, such an annihilation is preferable over an
individual dissolution of each texture as the energy barrier that needs to be overcome is
smaller. Without any topologically protected objects, the spins finally align in positive
z-direction (Figure 7.14f), which is the preferred axis due to the imposed magnetic
field.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.14.: Evolution of the magnetic moments of a periodic 25× 25× 1 grid of B20-
MnGe unit cells in a SPIRIT simulation. The system is initialized with
the moments pointing in random directions. Skyrmions and antiskyrmions
form during the relaxation process and then annihilate each other so that
the final state is ferromagnetic.
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7.3. Large-Scale KKRnano Calculations for MnGe

In this section we present the large-scale DFT results that we obtained with KKRnano
for B20-MnGe. We commence with a comparison of energy profiles of three different
non-trivial magnetic states: The helical spiral, the hedgehog lattice and the Bloch point
state. In this study, the lattice constant is varied and the total energies corresponding
to the three states are tracked. Subsequently, an attempt is made to stabilize the
Bloch point state as the ground state by artificially increasing the strength of spin-orbit
coupling in a KKRnano calculation. Furthermore, a layered system of B20-MnGe is
investigated to gather information on the enhancement of the magnetic moment on a
B20-MnGe surface.
We conclude this section with an analysis of variations of the crystallographic structure
of B20-MnGe. Based on a result from experiment, we allow more structural degrees of
freedom by assuming that the material crystallizes according to the properties of the
P212121 space group.
In all following calculations we use supercells built of 6 × 6 × 6 unit cells so that
1728 atoms are treated. Such calculations can de facto only be conducted in the
context of High Performance Computing (HPC) and are in our case performed on the
supercomputers Hazel Hen in Stuttgart and QPACE3 in Jülich.

7.3.1. Helical Spiral (1Q), Hedgehog Lattice (3Q) and Bloch
Point (BP) State

The main reason that motivates the usage of KKRnano in conjunction with B20-MnGe
is that Tanigaki et al. [28] reported on the existence of the 3Q hedgehog lattice state
in this material. A detailed explanation of this magnetic state was already given in
section 7.1.
Koretsune et al. [29] used a tight-binding model with Wannier functions and found the
DM interaction to be larger than 100 meVÅ which is large enough to explain the short
pitch of the predicted helical spiral or the hedgehog lattice in B20-MnGe. However,
other works [134] report a minor DM interaction of less than 5 meV Å. Our approach
with juKKR does not reproduce a large DM interaction, but estimates it to be at
most around 10 meV Å(see Figures 7.9 and 7.10). A DFT calculation with KKRnano
is more sophisticated than the extended Heisenberg model approach in section 7.2
and could therefore give valuable insights that cannot be obtained otherwise. In the
following, calculations are presented with which we attempt to fathom the nature of
magnetism in B20-MnGe by imposing non-trivial magnetic textures on the system and
comparing them to the trivial ferromagnetic state. These non-trivial textures are the
helical 1Q spiral, the hedgehog 3Q lattice and the Bloch point. In the context of these
studies we monitor the total energy difference between the three magnetic states by
varying the lattice constant and artificially changing the strength of spin-orbit coupling
in the system.
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Energy profiles for varied lattice constant

We begin by setting up a 6 × 6 × 6 B20-MnGe supercell, where we use PBEsol as
exchange-correlation functional and include only a single k-point, i.e. the Γ-point. In
this initial comparison of ferromagnetic, 1Q and 3Q state using the equilibrium lattice
constant a = 4.80 Å, the ferromagnet is the one with the lowest total energy. The
respective states are imposed on the system by forcing the atomic exchange-correlation
B-fields to point into specific directions. As this contradicts experimental observations
we take into consideration that in experiment the crystal structure might inadvertently
differ from the ideal structure. Such discrepancies can for instance be caused by strain
that originates from the manufacturing process of the sample.
Therefore, it is reasonable to check whether the magnetic materials properties change,
when the lattice constant is varied. The result of such a variation is reported in the
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lattice (3Q) state with KKRnano. Top: Difference of total energies with
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is clearly visible between a = 4.60 and a = 4.70 Å. Experimentally, the
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upper part of Figure 7.15, where the total energy is evaluated for FM, 1Q and 3Q
state. Clearly, neither the 1Q nor the 3Q state constitutes the ground state, when the
experimental lattice constant is assumed. Yet, by increasing or decreasing the lattice
constant the energetic difference can be made smaller.
We focus on an increase of the lattice constant rather than a decrease since the system
goes into the low-spin state below a = 4.65 Å and according to experiment the non-
trivial textures exist in the high-spin regime. A crucial transition point is found around
a = 5.0 Å, where by imposing the 1Q or 3Q state the energy can be made smaller than
for the ferromagnetic state. In general, for a > 5.0 Å both helical states are favored
over the ferromagnetic one.
Obviously, an artificial increase of the lattice constant by 0.2 Å (≈ 4%) or more is
fairly large. However, probes in experiment are seldom if ever perfectly clean and
impurities in the sample need to be considered as a source of error in the final analysis.
One potential effect of impurities is chemical pressure that causes a spatial expansion
of the lattice structure. An example of the possible effects of positive chemical pressure
can be found in Co-doped B20-FeGe [135]. Here, it was experimentally observed that
doping can increase the melting temperature and change the magnetic properties of a
B20 alloy.
In the lower part of Figure 7.15 the evolution of the magnetic moment with varying
lattice constant is tracked. The resulting magnetic moment for the experimental lattice
constant nicely falls on top of the magnetic moment of approximately 2µB/f.u., which
is reported by experimentalists [119].
In the lower part of Figure 7.15 the high-spin/low-spin transition is recognizable
between a = 4.60 and a = 4.70 Å.
Furthermore, the magnetic moment increases, when the lattice constant is increased.
This is a common behaviour which is often observed in metallic systems. For larger
lattice constants the magnetic moments of the three different magnetic textures differ
more than for the smaller lattice constants. This might be connected to the observation
of the differences in the total energy.

Bloch point with scaled spin-orbit coupling strength

Spin-orbit coupling (SOC) in KKRnano is implemented such that its contribution is
simply added to the scalar-relativistic potential. This allows to scale its strength by
tuning the prefactor so that SOC can artificially be made stronger which enables us to
investigate a system’s behaviour if this parameter is altered with respect to its proper
value.
In this context we perform a comparison of the Bloch point (BP) state and the
ferromagnetic (FM) state. The BP texture is defined by means of the four spherical
parameters φ, θ, Φ and Θ. φ and θ designate the position of an individual atom in
the unit cell which is described by the radius r and the common polar and azimuthal
angle

φ = arctan (y/x) (7.17)
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and
θ = arccos

(
z√

x2 + y2 + z2

)
. (7.18)

The BP texture does not depend on r and we can therefore neglect it in the following.
Usually, the atomic positions are given in the Cartesian coordinates x, y and z. In
the definition above, we define the origin of the coordinate system, i.e. the tuple
(x = 0, y = 0, z = 0), to be at the center of the unit cell. In this frame of reference all
atoms that lay in an x-y-plane that intersects with the center are described by θ = π/2.
The orientation of the individual atomic magnetic moments for a BP texture is
then defined by the polar angle

Φ = φ+ φ1 (7.19)
and the azimuthal angle

Θ = 2 arctan
(

cot θ2

)
, (7.20)

where the angles designating the atomic position enter as arguments. φ1 is a phase
factor. An illustration of a BP is given in Figure 7.16. Note, that in contrast to

Figure 7.16.: Illustration of a Bloch point in real space with all magnetic moments
pointing out of the center of the Bloch sphere. We use the same magnetic
configuration but invert the spin direction so that all moments point into
the center. Figure provided by Nikolai Kiselev.

that illustration we conduct our investigation for a BP with φ1 = π, where magnetic
moments are inverted, i.e. all moments point into instead of out of the center.
For our calculations we again use a 6× 6× 6 supercell but this time with a 2× 2× 2
k-point-mesh and LDA as exchange-correlation functional. Here, LDA is used because
it has been used extensively in all KKR codes in the past and we want to eliminate the
possibility of numerical problems that could occur when SOC is artificially enhanced.
The magnetic moments are allowed to relax during the convergence process. This leads
to a small canting of the moments which is a known effect in B20 materials [136]. A
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Figure 7.17.: Effect of increased SOC on B20-MnGe in a 6×6×6 supercell. Top: Total
energy difference between (relaxed) Bloch point and (relaxed) ferromagnet.
Bottom: Magnetic moment of ferromagnet and Bloch point.

series of calculations is conducted ranging from the physical value of the SOC to an
enhancement of it by a factor of fSOC = 4.0 (see Figure 7.17). As could be expected
from the investigation of 1Q and 3Q state before, the BP state is energetically not
preferred over the FM state for a small scaling of SOC. However, when SOC is scaled
further up to fSOC = 3.5, both states are energetically more or less equivalent. Above
fSOC = 3.5 the BP state is clearly preferred over the FM state with an energy difference
of up to 4 meV/f.u. Within the parameter range that we checked in this study, the most
beneficial scaling value for the BP is found to be fSOC = 4.0. The effect of SOC scaling
on the magnetic moment can be deemed negligible. Over the whole range it decreases
by 0.07 μB for each of the two states (see again Figure 7.17). It would be interesting
to check whether a global minimum of EBP − EFM can be found for fSOC > 4.0. This
would hint to an optimal scaling at which also other non-collinear magnetic textures,
e.g. 1Q spin spiral or 3Q hedgehog lattice, can possibly be stabilized. However, this is
not possible as our method becomes increasingly numerically unstable for such strong
scaling factors, i.e. the total energy does not converge anymore. The reason for this is
currently under investigation.
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7.3.2. Layers

Recently, Kanazawa et al. [125] reported on their research of skyrmions in thin films of
B20-MnGe. They found that the 3Q hedgehog-antihedgehog lattice changes depending
on the epitaxial-film thickness and attribute this to a change in the magnetic anisotropy.
KKRnano was not designed for the treatment of thin films as its superior efficiency
over other codes is most pronounced for 3D systems. Still, we can simulate a surface by
using the familiar 6× 6× 6 supercell from before and replacing one layer of MnGe unit
cells with vacuum cells. We use a 2× 2× 2 k-point-mesh and the PBEsol functional
and only consider the collinear ferromagnetic state for this analysis. The magnetic
moment is tracked for each layer of Mn atoms so that a layer-resolved impression of the
variability of the moments with increasing sample depth is obtained (see Figure 7.18).
In the figure the well-known effect of magnetic moment enhancement at a surface can
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Figure 7.18.: Dependence of the magnetic moment of the Mn atoms on the distance to
the artificially constructed surface of B20-MnGe. A Mn-layer depth of 1
designates the first layer of Mn that is adjacent to the vacuum region.

be recognized. This effect can be understood by considering a single Mn atom that is
not confined in a solid. The magnetic moment of it is approximately given by

µeff ≈ nµB, (7.21)

where n is the number of unpaired electrons and orbital contributions are neglected. A
single Mn ion has five unpaired electrons in the 3d-shell and hence µeff ≈ 5 µB. This is
considerably larger than it is in bulk B20-MnGe, where it is found to be µMn,eff ≈ 2 µB.
This difference can be explained by the competition of kinetic and exchange energy. In
the bulk, electrons delocalize and form bands which means that it costs more energy to
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populate states of the same spin projection. Hence, the magnetic moment is reduced.
In the first Mn layer in Figure 7.18 the atoms are exposed to vacuum on one side so
that they can be considered half-free in this context. Hence, their magnetic moment is
increased to roughly 3.4 µB per Mn atom. This surface effect propagates through 6
layers, i.e. one and a half reduced unit cells. Below this depth, the familiar magnetic
moment in bulk B20-MnGe is restored which is approximately 2.1 µB. Note, that the
total number of Mn layers in the system is 20 but that the pattern is symmetric so
that there is no need to include more than 10 layers in the plot.
We can conclude from this study that the magnetic characteristics of B20-MnGe are
indeed changed, if a thin film is considered. According to our results in section 7.3.1
and particularly in Figure 7.15 the enhancement of the magnetic moment close to
the surface could facilitate the existence of non-trivial magnetic textures. There, we
observed that an increase of the lattice parameter coincides with an increase of the
magnetic moment and that this combined increase promotes the formation of the 1Q
and 3Q helical state.

7.3.3. P213 vs. P212121 Space Group

In most scientific publications as well as in the established literature B20-MnGe is
described within the parameter range of the P213 space group.
In 2012 Makarova et al. found out by means of neutron diffraction studies that around
a temperature of 50 K and below B20-MnGe is best described by the more general
P212121 space group [120]. Here, the parameters uMn and uGe (see introduction to
Chapter 7) are replaced by parameters xMn, yMn and zMn which determine the position
of the individual atoms within the unit cell according to

~rMn,1 = (xMn, yMn, zMn)
~rMn,2 = (0.5− xMn, 1.0− yMn, 0.5 + zMn)
~rMn,3 = (1.0− xMn, 0.5 + yMn, 0.5− zMn)
~rMn,4 = (0.5 + xMn, 0.5− yMn, 1.0− zMn) .

The Ge atoms occupy their positions according to the same provision but with their own
parameters xGe, yGe and zGe. The neutron diffraction data of Makarova (see Table 7.1)
also reveals that the unit cell is elongated along the c-axis for low temperatures. The
direction of the c-axis coincides with the propagation direction of the 1Q helical spin
spiral. The structural difference is most prominent for the measurement that was made
at a temperature of 6 K.
Per se, a DFT calculation with KKRnano does not account for temperature effects
like e.g. lattice vibrations. It is therefore advisable to compare DFT results with
experimental results that are obtained at low temperatures. In this spirit we analyze
the ferromagnetic state and the 1Q state with varying geometry, i.e. a transition from
the P213 to the P212121 space group. Subsequently, we shed light on the impact that
a variation of the parameters xMn, yMn and zMn can have on the energy difference
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200 K 50 K 6 K
Space group P213 P212121 P212121

Lattice parameters
a (Å) 4.7925(25) 4.7808(24) 4.7806(30)
b (Å) 4.7807(22) 4.7805(29)
c (Å) 4.7938(30) 4.7939(10)

Atomic coordinates
xMn 0.136(30) 0.145(40) 0.142(12)
yMn 0.129(41) 0.131(16)
zMn 0.136(36) 0.136(11)

xGe 0.846(9) 0.846(9) 0.845(6)
yGe 0.843(9) 0.843(7)
zGe 0.843(8) 0.842(6)

Table 7.1.: Structural parameters of B20-MnGe at 200 K, 50 K and 6 K. The structure
can be best described by the P213 and the P212121 space group, respec-
tively. The data is deduced from the refinements of high-resolution neutron
diffraction patterns. Data is taken from [120].

between these two states. The positions of the Ge atoms remain fixed and are given
by xGe = yGe = zGe = 0.846.

The KKRnano calculations are done for a 6× 6× 6 supercell using only the Γ-point
for the Brillouin zone integration. The experimentally observed slight elongation along
the c-axis is accounted for by defining the Bravais matrix as

6.0 0.0 0.0
0.0 6.0 0.0
0.0 0.0 6.0168

 (7.22)

Once again the broadening temperature is set to T = 800 K and the exchange-correlation
functional PBEsol is used. Linear-scaling behaviour of the multiple-scattering problem
is achieved by setting the truncation radius to rtr = 2.0 a, where a is the lattice constant
of the reduced unit cell that comprises 8 atoms.
For each geometrical configuration a calculation imposing the ferromagnetic and the 1Q
state is converged. The resulting individual difference of the total energies between both
states is visualized in Figure 7.19 for different space group parameters (xMn, yMn, zMn).
We check various configurations starting with the experimentally reported parameter set
(0.142, 0.131, 0.136). Here, we find an energy difference of E1Q − EFM = 3.5 meV/f.u.,
which is not much different from the result for the P213 space group at equilibrium
lattice constant (see Figure 7.15).
A shift of the z-parameter in positive or negative z-direction brings about a sharp
increase of the difference of up to 14 meV indicating that the tuning of this parameter
does not help in finding a geometric setup in which the 1Q state is the ground state.
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Hence, we focus on shifts in the x-y-plane. In this restricted parameter space the
energy difference changes only slightly and remains positive. However, minima can
be found for (0.149, 0.138, 0.136) and (0.156, 0.144, 0.136), where E1Q − EF M = 0.5
meV/f.u.. Thus, a simultaneous increase of the parameters xMn and yMn narrows the
energetic gap between FM and 1Q state.
Unfortunately, useful data could not be obtained for the parameter sets (0.142, 0.125, 0.136),
(0.149, 0.125, 0.136) and (0.156, 0.125, 0.136) as the system went into a paramagnetic
state for these. This might be because the magnetic moment of the Mn atoms is
sensitive to the distance between Mn and Ge atoms.

In summary it can be stated that the transition from the P213 space group to the
P212121 space group can narrow the energetic gap between ferromagnet and 1Q state
only marginally. We can therefore assume that, at least in a DFT calculation, the
observed reordering of the atoms at low temperatures does not provide an explanation
to the existence of the helical spin spiral in B20-MnGe. Yet, it is interesting to see
that changes of the parameters xMn and yMn by 5% do not have a significant impact
on the magnetic energy landscape.
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Figure 7.19.: Energy difference between ferromagnetic (FM) and 1Q helical spiral state
E1Q − EF M for different P212121 space group parameter configurations.
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7.4. Mn1−xFexGe Alloys

So far, the focus of this chapter was exclusively on B20-MnGe. B20-FeGe is another
compound which has interesting magnetic properties. It exhibits helimagnetism up to
a transition temperature of 278 K in bulk crystals [137]. Recently, a new type of chiral
object, which was named the chiral bobber, was predicted theoretically in thin films of
B20-FeGe and shortly after observed in transmission electron microscopy experiments
[27]. In this section we examine the magnetic parameters of B20-Mn1−xFexGe alloys
with varying ratios of Mn and Fe. Subsequently, we investigate the magnetic Bloch
point state in B20-FeGe with artificially enhanced spin-orbit coupling.

7.4.1. Magnetic Parameters

Both experimentalists and theoreticians have not only investigated pure B20 compounds
but also alloys that contain two different transition metals, namely portions of Mn and
Fe [117, 138].
The lattice constant of B20-FeGe is a = 4.7 Å and its structure is described by the
P213 space group parameters uFe = 0.136 and uGe = 0.842 [117]. Like B20-MnGe,
B20-FeGe exhibits a chiral magnetic ground state with a pitch of λ = 70 nm [26]. This
is much larger than the helical pitch of 3-6 nm which can be found in B20-MnGe [28].
The magnetic chirality of B20-MnGe coincides with the crystal chirality, i.e. if the
crystal is right-handed, the helical spin spiral is right-handed too. Contrarily, in
B20-FeGe the chiralities are opposed, so that in a right-handed crystal a left-handed
spin spiral is observed [117].
As of today, systems that demand length scales significantly larger than 10 nm cannot
be treated with KKRnano. This is on the one hand due to the lack of sufficient
supercomputing resources and on the other hand aggravated by a slowdown of the
convergence of the DFT self-consistency cycle for such super-large systems. We
therefore initially restrict our investigations to the familiar atomistic spin model and
the micromagnetic model that was introduced in section 7.2 but then make an attempt
to stabilize a non-trivial magnetic texture in a 6× 6× 6 supercell by tuning the SOC
strength in section 7.4.2.

Recently, Gayles et al. [134] and Mankovsky et al. [139] extracted the micromagnetic
DMI from DFT calculations for varying amounts of Mn and Fe in the B20-alloy
Mn1−xFexGe.
Gayles used the virtual crystal approximation (VCA) in his calculations, i.e. the core
charge of each transition metal atom is adjusted to a (non-integer) value that reflects
the ratio of Mn and Fe, e.g. for xFe = 0.6 the charge is set to Z = 25.6. Mankovsky
relied on the coherent potential approximation (CPA) [140] which is more accurate.
In this particular case, CPA means that the Green function G is replaced by an
average Green function < G > whose constituents are determined by two independent
multiple-scattering calculations, where the transition metal is Mn and Fe, respectively.
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7. Magnetic Textures in B20 Compounds

Figure 7.20.: Value of DMI depending on the Fe concentration xFe as calculated by
Mankovsky et al. using CPA compared to results of Gayles and Kuckuchi
who use VCA in their calculations. A sign change occurs in all calculations
at xFe ≈ 0.8. Reprinted with permission from [139]. Copyright 2018 by
the American Physical Society.

The results by Mankovsky [139], Gayles [134] and Kikuchi [141], who also performed a
VCA analysis, are depicted in Figure 7.20.
Both CPA and VCA yield qualitatively similar results but the enhancement of the DMI
around x = 0.5 is more pronounced in CPA. The DMI in B20-MnGe is particularly
small but has a positive sign, i.e. the magnetic chirality corresponds to the crystal
chirality, while for B20-FeGe the sign is clearly negative and hence the chiralities are
opposed, as reported from experiment.

We extract magnetic coupling parameters with KKR using VCA for nuclear charges of
Z = 25.0, Z = 25.2, Z = 25.4, Z = 25.6, Z = 25.8 and Z = 26.0. The lattice constant is
adjusted linearly depending on the Fe concentration x so that a = x·aFeGe+(1−x)·aMnGe,
where aFeGe = 4.7 Å and aMnGe = 4.8 Å. We use a mesh with 60x60x60 k-points. Since
the parameters uFe/Mn and uGe do not differ much between B20-FeGe and B20-MnGe
we keep them fixed at uFe/Mn = 0.135 and uGe = 0.842. LDA is used as exchange-
correlation functional.
The results of our detailed analysis of the magnetic coupling coefficients can be found
in Figure 7.21, where the atomistic model parameters for the isotropic exchange Jij

and the absolute values of the DM interaction vectors
∣∣∣ �Dij

∣∣∣ as well as the derived
micromagnetic quantities A for the spin-stiffness and D for the DM interaction are
depicted. These quantities were already introduced in section 7.2.1.
The isotropic Heisenberg coupling strength between first-nearest neighbours ranges
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7.4. Mn1−xFexGe Alloys

from slightly more than 7 meV for xFe = 1.0 and almost 20 meV for xFe = 0.2. All
alloys show magnetic frustration, i.e. the coupling to the next-nearest neighbour is
anti-ferromagnetic for any xFe. However, the sign fluctuation of interactions between
more remote neighbours is stronger for small xFe, i.e. for an alloy whose properties are
comparable to pure B20-MnGe.
For the absolute values of the DMI vectors it can be observed that the amplitude of
the third-nearest neighbour interaction differs substantially depending on xFe. While
for xFe = 1 the DMI vector is just slightly larger than it is for the second-nearest
neighbour, for xFe = 0.2 a peak at 0.35 meV is found which is not that much smaller
than the first-nearest neighbour DMI vector with 0.5 meV.
Converging the spin-stiffness A for B20-MnGe has already turned out to be difficult in
section 7.2. It is therefore not surprising that A is fluctuating for alloys with a large
portion of Mn, even if distances of up to 4a are taken into account.
Interestingly, this issue does not seem to be conveyed to B20-FeGe. For xFe = 1.0 the
spin-stiffness is almost constant beyond a neighbour distance of approximately 2.5a.
A similar convergence problem can be observed for the micromagnetic DMI. The
fluctuations with increasing distance are more pronounced for alloys with a large Mn
ratio.
The pitch of the helical spiral in B20-FeGe in the picture of competing isotropic and
asymmetric interaction is given by eq. (7.10). From Figure 7.21 we can estimate
A = 250 meV·Å2 and D = −2 meV·Å which yields λ = 150 nm. This is more than
twice the pitch that is reported in experiment. An explanation for this is yet to be
found.
In order to illustrate the evolution of the micromagnetic DMI in KKR with increasing
substitution of Mn by Fe and to better compare with Figure 7.20 the DMI converged
up to 4a is depicted in Figure 7.22.
In comparison with Figure 7.20 we find a similar behaviour, where DMI is small for
xFe = 0 and peaks around xFe = 0.4. The maximum DMI value of about 10 meV·Å is
comparable to the results obtained by Mankovski and Gayles. Note, that also the sign
change that occurs close to xFe = 1.0 is predicted correctly.
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Å

)

Figure 7.22.: Micromagnetic DMI D of the B20-alloy Mn1−xFexGe for x ranging from
0 to 1. The DMI is converged up to an interatomic distance of 4a, where
a is the lattice constant. For B20-MnGe the sign of the DMI is positive
while it is negative for B20-FeGe.
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7.4.2. Bloch Point State

We once more investigate the Bloch point (BP) as a magnetic texture but this time
in B20-FeGe. A description of the BP and an analysis of it in B20-MnGe is given in
section 7.3.1.
To this aim we initialize a KKRnano calculation for a 6 × 6 × 6 supercell with a
2×2×2 k-point-mesh and the LDA exchange-correlation functional. As in section 7.3.1
the SOC strength is scaled by a factor fSOC from 1.0 (no enhancement) to 4.0. The
magnetic moments are allowed to relax.
The energy difference EBP − EFM between Bloch point state and ferromagnet as well as
the magnetic moment of both states with varied SOC strength is depicted in Figure 7.23.
For a scaling factor of up to fSOC = 3.4 the difference is constant and amounts to
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Figure 7.23.: Effect of increased SOC on B20-FeGe in a 6× 6× 6 supercell. Top: Total
energy difference between (relaxed) Bloch point and (relaxed) ferromagnet.
Bottom: Magnetic moment of ferromagnet and Bloch point.

EBP − EFM = 0.5 meV per formula unit. As for B20-MnGe (see Figure 7.17) the
ferromagnet remains the ground state unless SOC is enhanced by almost a factor
of 4. At this point the BP is energetically preferable. Yet, while an enhancement
by fSOC = 3.5 is sufficient to drive B20-MnGe into a non-trivial ground state, for
B20-FeGe it must be enhanced by fSOC = 4.0. Note, that the former exhibits a shorter
helical pitch than the latter. It is therefore consistent that a non-trivial texture can be
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stabilized with less enhancement of SOC in B20-MnGe.
The total magnetic moment differs between the two states by roughly 0.15 µB. Both in
absolute as well as relative values this is more than what we found for B20-MnGe.
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8 Conclusions

The work that is presented in this thesis covers on the one hand the further development
of the large-scale Density Functional Theory code KKRnano. On the other hand, results
of simulations of exotic magnetic textures that are of the size of several nanometers are
presented. This has become feasible only due to the implementation of an extended
Korringa-Kohn-Rostoker (KKR) scheme in KKRnano that accounts for non-collinear
magnetism and spin-orbit coupling (SOC).
The rather large portion of methodological work that was done is reflected in the
chapters on Density Functional Theory (DFT), the KKR Green function method and
KKRnano. The KKR method and its linear-scaling variant, which is used in KKRnano,
are presented. Furthermore, matters concerning high performance computing (HPC)
are discussed. These are mainly the parallelization strategy and the preparation for
upcoming heterogeneous supercomputers that will heavily rely on Graphics Processing
Units (GPUs). The newly added functionality to solve the multiple-scattering problem
on GPUs is presented and the potential pitfall of floating-point accuracy is exemplified.
Additionally, it is shown that KKRnano can be used for systems that contain up to
230,000 atoms on the supercomputer JUQUEEN. In the chapter on new methodological
implementations, it is described how non-collinear magnetism was implemented by
introducing the concept of local and global spin frame of reference. This is followed
by an explanation of relativistic effects and in particular of how SOC was added to
KKRnano. A subsequent attempt to correctly capture the large magnetocrystalline
anisotropy energy (MCE) in IrMn3 shows that the implementation works accurately.
Apart from this, three important extensions to KKRnano that were (re-)established
are presented. The generalized gradient approximation (GGA) offers an additional
and usually preferable way of approximating the exchange-correlation functional as
calculations of the equilibrium lattice constant with KKRnano show. In order to
calculate the electronic charge density correctly, Lloyd’s formula was re-implemented
in KKRnano. Sample calculations of the density of states of SrTiO3 show how the
Fermi level is placed correctly inside the band gap, when Lloyd’s formula is used. The
newly added possibility to split the energy integration contour into a semi-core contour
and a valence contour provides a tool to use broad energy contours without having
to add many more integration points to it.
Finally, the last chapter is focused on the magnetic B20 materials, in particular
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B20-MnGe and B20-FeGe and the B20-Mn1−xFexGe alloys. An initial calculation of
the energy-resolved density of states shows that in B20-MnGe the 3d-states of Mn
are the important states for the investigation of magnetic phenomena as only these
states contribute significantly to the electronic density around the Fermi level. The
experimentally confirmed pressure-induced transition from a high-spin to a low-spin
regime in this material is correctly predicted by KKRnano as an analysis with varied
lattice parameters shows. Here, the description of the exchange-correlation potential
with GGA works better since it yields a global energy minimum for the high-spin state
while LDA falsely predicts the low-spin state to be the ground state. A closer look
at the MCE of B20-MnGe showed that the magnetic force theorem does not yield
reasonable results for this system. Instead, a comparison of converged total energies
reproduces more or less the correct cubic anisotropy characteristics, apart from some
deviations that require further investigation. The atomistic magnetic model parameters
that can be obtained with KKR do not give a satisfactory answer to the question of
how helical magnetism comes about in B20-MnGe. The magnetic ordering temperature
which is estimated by a Monte-Carlo simulation in combination with the magnetic
model parameters is 100 K higher than it should be according to experiment. The
micromagnetic quantities cannot be fully converged but anyway the conclusion can be
drawn that the atomic Dzyaloshinskii-Moriya interaction is small and does not play a
decisive role in the formation of the short-pitch helical objects which are reported from
experiment. Rather, the magnetic frustration that is shown by the isotropic exchange
interaction parameters appears to be a crucial effect in B20-MnGe. This frustration
alone gives rise to metastable topologically protected objects in B20-MnGe. In atomistic
spin dynamics simulations a Bloch-type skyrmion and an antiskyrmion can be observed.
In a KKRnano calculation it is found that the helical spiral state and the skyrmion
lattice state are energetically preferable over the trivial ferromagnetic state, if the lattice
parameter is increased by roughly 5% compared to the equilibrium lattice constant. This
result could potentially explain the experimental observation of the skyrmion lattice
since in experiment the crystal structure often deviates from the ideal structure due
to the preparation process of the sample. Instead of varying the lattice constant, also
the strength of spin-orbit coupling can artificially be increased. An increase by at least
a factor of 3.5 makes the Bloch point energetically preferable over the ferromagnet in
B20-MnGe. In a layered system with 5 layers of B20-MnGe unit cells it can be observed
that the magnetic moment of the Mn atoms almost doubles in the transition layer next
to the vacuum. The introduction of further spatial degrees of freedom by adopting the
P212121 space group coordinates allows one to reduce the energy gap between helical
and ferromagnetic state but does not provide a way to close it completely.
An Investigation of the B20-Mn1−xFexGe alloys with varied concentration of Mn and
Fe showed that KKR can reproduce the findings of other groups, i.e. the amplitude
and the sign of the Dzyaloshinskiii-Moriya interaction. The sign change between pure
B20-MnGe and pure B20-FeGe explains why helical spirals with opposite chirality
are observed in both systems. Like in B20-MnGe, it is found that the Bloch point
texture can also be stabilized in B20-FeGe, albeit with a stronger scaling of SOC than
in B20-MnGe.
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A Appendix

A.1. Equation of Motion for Spin Densities in a
Magnetic Field

In this appendix it is shown that
1
2i

{
ψ†i (~r, t)σ̂H

αβ
KSψi(~r, t)−

[
Hαβ
KSψi(~r, t)

]†
σ̂ψi(~r, t)

}
= 1

4i∇ ·
{[
∇ψ†i (~r, t)σ̂

]
ψi(~r, t)− ψ†i (~r, t)σ̂∇ψi(~r, t)

}
− γ~s× ~Beff (~r, t), (A.1)

where the Kohn-Sham Hamiltonian is given by

Hαβ
KS = −∇2δαβ + V αβ

eff (~r, t)
= −∇2δαβ + V0(~r, t)δαβ + σ̂ · ~Beff(~r, t). (A.2)

To this aim we first show that Hαβ
KS,1 = −∇2, which accounts for the kinetic energy in

the Hamiltonian, fulfills the relation
1
2i

{
ψ†i (~r, t)σ̂H

αβ
KS,1ψi(~r, t)−

[
Hαβ
KS,1ψi(~r, t)

]†
σ̂ψi(~r, t)

}
= 1

4i∇ ·
{[
σ̂∇ψ†i (~r, t)

]
ψi(~r, t)− ψ†i (~r, t)σ̂∇ψi(~r, t)

}
. (A.3)

The right side of the equation can be converted to the left side as follows:
1
4i∇ ·

{[
∇ψ†i (~r, t)σ̂

]
ψi(~r, t)− ψ†i (~r, t)σ̂∇ψi(~r, t)

}
= 1

4i
[
∇2ψ†i (~r, t)σ̂ψi(~r, t) +∇ψ†i (~r, t)σ̂∇ψi(~r, t)−∇ψ

†
i (~r, t)σ̂∇ψi(~r, t)− ψ

†
i (~r, t)σ̂∇2ψi(~r, t)

]
= 1

4i
[
∇2ψ†i (~r, t)σ̂ψi(~r, t)− ψ

†
i (~r, t)σ̂∇2ψi(~r, t)

]
= 1

4i
[
2ψ†i (~r, t)σ̂H

αβ
KS,1ψi(~r, t)− 2Hαβ

KS,1ψ
†
i (~r, t)σ̂ψi(~r, t)

]
= 1

2i
[
ψ†i (~r, t)σ̂H

αβ
KS,1ψi(~r, t)−H

αβ
KS,1ψ

†
i (~r, t)σ̂ψi(~r, t)

]
�. (A.4)
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The constant potential in the Hamiltonian is modelled by Hαβ
KS,2 = V0(~r, t). We exploit

that [V0(~r, t), σ̂] = 0 and can thus show that the dynamics are not affected by V0:

1
2i

{
ψ†i (~r, t)σ̂H

αβ
KS,2ψi(~r, t)−

[
Hαβ
KS,2ψi(~r, t)

]†
σ̂ψi(~r, t)

}
= 1

2i
{
ψ†i (~r, t)σ̂V0(~r, t)ψi(~r, t)− [V0(~r, t)ψi(~r, t)]† σ̂ψi(~r, t)

}
= 1

2i
{
ψ†i (~r, t)σ̂V0(~r, t)ψi(~r, t)− ψ†i (~r, t)V0(~r, t)σ̂ψi(~r, t)

}
= 1

2i
{
ψ†i (~r, t)σ̂V0(~r, t)ψi(~r, t)− ψ†i (~r, t)σ̂V0(~r, t)ψi(~r, t)

}
=0 �. (A.5)

Showing that for Hαβ
KS,3 = σ̂ · ~Beff(~r, t)

1
2i

{
ψ†i (~r, t)σ̂H

αβ
KS,3ψi(~r, t)−

[
Hαβ
KS,3ψi(~r, t)

]†
σ̂ψi(~r, t)

}
=− γ~s× ~Beff (~r, t), (A.6)

requires knowledge of the two algebraic relations

σ̂
(
σ̂ · ~Beff

)
= ~Beff − i

(
σ̂ × ~Beff

)
(A.7)

σ̂
(
~Beff · σ̂

)
= ~Beff + i

(
σ̂ × ~Beff

)
(A.8)

which can be derived by applying the commutation and anticommuntation relations of
the Pauli matrices. Then, the correctness of eq. (A.6) can be confirmed by

1
2i

{
ψ†i (~r, t)σ̂H

αβ
KS,3ψi(~r, t)−

[
Hαβ
KS,3ψi(~r, t)

]†
σ̂ψi(~r, t)

}
= 1

2i

{
ψ†i (~r, t)σ̂σ̂ ~Beff(~r, t)ψi(~r, t)−

[
σ̂ ~Beff(~r, t)ψi(~r, t)

]†
σ̂ψi(~r, t)

}
= 1

2i
{
ψ†i (~r, t)σ̂σ̂ ~Beff(~r, t)ψi(~r, t)− ψ†i (~r, t)σ̂ ~Beff(~r, t)σ̂ψi(~r, t)

}
= 1

2i
{
ψ†i (~r, t)

(
~Beff − i

(
σ̂ × ~Beff

))
ψi(~r, t)− ψ†i (~r, t)

(
~Beff + i

(
σ̂ × ~Beff

))
ψi(~r, t)

}
=− ψ†i (~r, t)

(
σ̂ × ~Beff

)
ψi(~r, t)

=−
(
ψ†i (~r, t)σ̂ψi(~r, t)

)
× ~Beff

=− 2~s× ~Beff

≈− γ~s× ~Beff �. (A.9)

In the end we substitute σ̂ with the electronic spin ~s = 1
2 〈σ̂〉 and replace 2 with the

gyromagnetic ratio γ ≈ 2.00232 which accounts for effects that go beyond the Dirac
picture.
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[15] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R.
Georgii, and P. Boni, “Skyrmion Lattice in a Chiral Magnet”, Science 323,
915–919 (2009).

[16] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendan-
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Last but not least, I would like to thank my family for the constant support that
allowed me to write this thesis in the first place.



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 182 
8th Georgian-German School and Workshop in Basic Science 
A. Kacharava (Ed.) erscheint nur als CD (2018) 
ISBN: 978-3-95806-353-2 
 
Band / Volume 183 
Topological properties of complex magnets from an  
advanced ab-initio Wannier description 
J.-P. Hanke (2018), xi, 173 pp 
ISBN: 978-3-95806-357-0 
 
Band / Volume 184 
Translation Initiation with 70S Ribosomes: A Single Molecule Study 
C. Remes (2018), iv, 113 pp 
ISBN: 978-3-95806-358-7 
 
Band / Volume 185 
Scanning tunneling potentiometry at nanoscale defects in thin films 
F. Lüpke (2018), iv, 144 pp (untersch. Pag.) 
ISBN: 978-3-95806-361-7 
 
Band / Volume 186 
Inelastic neutron scattering on magnetocaloric compounds 
N. Biniskos (2018), iii, 92 pp 
ISBN: 978-3-95806-362-4 
 
Band / Volume 187 
Magnetic Order and Excitation in Frustrated  
Pyrochlore 5d - Transition Metal Oxides 
E. Feng (2018), iv, 182 pp 
ISBN: 978-3-95806-365-5 
 
Band / Volume 188 
Finite-Difference Time-Domain Simulations Assisting to Reconstruct 
the Brain’s Nerve Fiber Architecture by 3D Polarized Light Imaging 
M. Menzel (2018), ix, 296 pp 
ISBN: 978-3-95806-368-6 
 
Band / Volume 189 
Characterization of the cell-substrate interface  
using surface plasmon resonance microscopy 
E. M. Kreysing (2018), xiii, 260 pp 
ISBN: 978-3-95806-369-3 
 
 
 
 



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 190 
Scattering! Soft, Functional and Quantum Materials 
Lecture Notes of the 50th IFF Spring School 2019 
11 – 22 March 2019, Jülich, Germany 
ed. by M. Angst, T. Brückel, S. Förster, K. Friese, R. Zorn (2019), 
ca 1000 pp 
ISBN: 978-3-95806-380-8 
 
Band / Volume 191 
Absolute scale off-axis electron holography of thin dichalcogenide 
crystals at atomic resolution 
F. Winkler (2019), xxiii, 187 pp 
ISBN: 978-3-95806-383-9 
 
Band / Volume 192 
High-resolution genome and transcriptome analysis of Gluconobacter 
oxydans 621H and growth-improved strains by next-generation 
sequencing 
A. Kranz (2019), III, 182 pp 
ISBN: 978-3-95806-385-3 
 
Band / Volume 193 
Group IV (Si)GeSn Light Emission and Lasing Studies 
D. Stange (2019), vi, 151 pp 
ISBN: 978-3-95806-389-1 
 
Band / Volume 194 
Construction and analysis of a spatially organized cortical network model 
J. Senk (2019), 245 pp 
ISBN: 978-3-95806-390-7 
 
Band / Volume 195 
Large-scale Investigations of Non-trivial Magnetic Textures 
in Chiral Magnets with Density Functional Theory 
M. Bornemann (2019), 143 pp 
ISBN: 978-3-95806-394-5 
 
 

Weitere Schriften des Verlags im Forschungszentrum Jülich unter 
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp 





Schlüsseltechnologien / Key Technologies
Band / Volume 195
ISBN 978-3-95806-394-5

Schlüsseltechnologien / Key Technologies
Band / Volume 195
ISBN 978-3-95806-394-5

Large-scale Investigations of Non-trivial Magnetic Textures 
in Chiral Magnets with Density Functional Theory
Marcel Bornemann

195

Sc
hl

üs
se

lte
ch

no
lo

gi
en

  
Ke

y 
Te

ch
no

lo
gi

es
La

rg
e-

sc
al

e 
In

ve
st

ig
at

io
ns

 o
f N

on
-t

riv
ia

l M
ag

ne
tic

 T
ex

tu
re

s
in

 C
hi

ra
l M

ag
ne

ts
 w

ith
 D

en
si

ty
 F

un
ct

io
na

l T
he

or
y

M
ar

ce
l B

or
ne

m
an

n


	Introduction
	Density Functional Theory
	Born-Oppenheimer Approximation
	Hohenberg-Kohn Theorems
	Kohn-Sham Equation
	Spin Density Functional Theory
	Exchange-correlation Potential

	KKR-Green Function Method
	Properties of Green Functions
	Single-Site Scattering
	Multiple-Site Scattering
	Full-potential Treatment
	Screened KKR Method
	Self-consistent Solution

	Linear-scaling KKRnano and High Performance Computing
	Iterative Solution of the Dyson Equation
	Truncation for Linear Scaling
	Parallelization for High Performance Computing
	Hardware Architectures
	Parallelization Schemes in KKRnano
	TFQMR Solver on GPUs
	Benchmarks on Blue Gene/Q


	Methodological Improvements to KKRnano
	Non-collinear Magnetism in KKR
	Relativistic Full-potential Treatment
	Dirac Equation
	Scalar-relativistic Approximation
	Spin-orbit Coupling
	Results for IrMn3

	Generalized Gradient Approximation (GGA)
	Lloyd's Formula
	Semi-core Contour

	Atomistic Spin Dynamics
	Landau-Lifshitz-Gilbert Equation
	The Magnetic Hamiltonian
	Extraction of Magnetic Interaction Parameters from KKR

	Magnetic Textures in B20 Compounds
	Basic Properties of MnGe
	High-spin/Low-spin Transition
	Magnetocrystalline Anisotropy

	Magnetic Model for MnGe
	Micromagnetic Parameters
	Atomistic Spin Dynamics Results

	Large-Scale KKRnano Calculations for MnGe
	Helical Spiral (1Q), Hedgehog Lattice (3Q) and Bloch Point (BP) State
	Layers
	P213 vs. P212121 Space Group

	Mn1-xFexGe Alloys
	Magnetic Parameters
	Bloch Point State


	Conclusions
	Appendix
	Equation of Motion for Spin Densities in a Magnetic Field

	Bibliography
	195 Titelei.pdf
	Leere Seite

	Leere Seite



