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S U M M A RY

Construction and analysis of a spatially organized cortical network model

The cerebral cortex is one of the most intricate natural systems known, due to the
multitude and heterogeneity of interconnected cells and its operation on different
temporal and spatial scales. Cortical activity on the mesoscopic scale, spanning
square millimeters to centimeters of cortical surface area, can be recorded with
multi-electrode arrays implanted in neural tissue. Such extracellular recordings
provide simultaneous access to population signals like local field potentials (LFPs)
as well as spiking activity of individual neurons, and expose spatiotemporal activ-
ity patterns emerging parallel to the cortical surface. Local neuronal connectivity
is specific with respect to cortical layers and neuron types, and the probability
that two neighboring neurons are connected decays with distance. Computational
models of neuronal networks with corresponding spatial extents and signal predic-
tions are needed to infer the relationship between connectivity structure and exper-
imentally recorded activity. This thesis focuses on the development of mesoscopic
spatially organized cortical network models with cellular resolution. We develop a
multi-layer network model with realistic neuron density and distance-dependent
connectivity covering 4× 4 mm2, a similar area as covered by multi-electrode ar-
rays in use today. The model comprises excitatory and inhibitory spiking neuron
populations in four cortical layers, integrates experimentally obtained connectivity
data, and reproduces features of observed in-vivo spiking statistics. As a find-
ing, the model reconciles the seemingly contradictory experimental observations
of weakly correlated spike trains and strong, distance-dependent correlations of
LFPs. Experimental data on the structure and dynamics of cortical networks are
only known within certain margins of error and severe simplifications need to
be made. Therefore, mean-field theory is required to explore regimes of biologi-
cally realistic activity and uncover mechanisms governing the network dynamics.
This thesis advances the theory of spatially organized networks to a point where
predictions are in quantitative agreement with direct simulations of spiking neu-
ronal networks. Since conventional high-performance computing architectures are
not optimized for accelerated and massively parallel neuroscientific simulations,
the community develops dedicated neuromorphic hardware. We compare the per-
formance of the software simulator NEST to the neuromorphic hardware system
SpiNNaker in terms of accuracy, runtime, and energy consumption. To capture
spatiotemporal patterns in simulated activity data, we design concepts for visual
data analysis and provide the interactive web-based tool VIOLA (VIsualization
Of Layer Activity) as a reference implementation. Moreover, we assess the inte-
gration of collaborative and interdisciplinary simulation-analysis workflows into
online platforms. This thesis discusses the foundations of a model platform for the
stepwise refinement of mesoscopic spatially structured network models and paves
the way towards tackling further questions on the brain’s function, learning, and
diseases.





Z U S A M M E N FA S S U N G

Konstruktion und Analyse eines räumlich organisierten kortikalen Netz-
werkmodells

Die Großhirnrinde (Cortex cerebri) ist eines der kompliziertesten natürlich vor-
kommenden Systeme aufgrund der Vielzahl und Verschiedenartigkeit vernetzter
Zellen und der Informationsverarbeitung auf unterschiedlichen zeitlichen und räum-
lichen Skalen. Kortikale Aktivität auf der mesoskopischen Skala, die Quadratmil-
limeter bis -zentimeter an kortikaler Oberfläche umfasst, kann mit in Nerven-
gewebe implantierten Multi-Elektroden-Arrays aufgezeichnet werden. Derartige
Messungen im extrazellulären Raum ermöglichen die gleichzeitige Erfassung so-
wohl von Populationssignalen wie lokalen Feldpotentialen (LFPs) als auch von
Aktionspotenzial-Sequenzen einzelner Neuronen. Dabei können räumliche und
zeitliche Aktivitätsmuster beobachtet werden, die sich parallel zur Oberfläche des
Cortex ausbilden. Die lokale neuronale Verbindungsstruktur weist spezifische Cha-
rakteristika abhängig von kortikaler Schicht und Neuronentyp auf. Außerdem
fällt die Wahrscheinlichkeit, dass zwei benachbarte Neuronen verbunden sind,
mit ihrem Abstand ab. Um die Beziehung zwischen Verbindungsstruktur und
experimentell aufgezeichneter Aktivität aufzudecken, werden Computermodelle
neuronaler Netze mit entsprechender räumlicher Ausdehnung und Vorhersage-
fähigkeit von Messgrößen benötigt. Die vorliegende Arbeit behandelt die Ent-
wicklung mesoskopischer, räumlich organisierter kortikaler Netzwerkmodelle mit
zellulärer Auflösung. Wir entwickeln ein mehrschichtiges Netzwerkmodell mit
realistischer Neuronendichte und abstandsabhängiger Verbindungsstruktur, das
mit 4× 4 mm2 eine ähnliche Fläche wie heutzutage verwendete Multi-Elektroden-
Arrays einnimmt. Dieses Modell besteht aus vier kortikalen Schichten mit Popula-
tionen exzitatorischer und inhibitorischer Einzelneuronen, integriert experimentell
ermittelte Daten zur Verbindungsstruktur und kann Merkmale von in-vivo aufge-
zeichneter Aktivität statistisch reproduzieren. Ein Ergebnis ist, dass das Modell die
scheinbar widersprüchlichen experimentellen Beobachtungen schwach korrelier-
ter Aktionspotenzial-Sequenzen und starker, abstandsabhängiger Korrelationen in
LFPs in Einklang bringt. Experimentelle Daten zu Struktur und Dynamik kortika-
ler Netze sind nur innerhalb gewisser Fehlertoleranzen bekannt, die vereinfachen-
de Annahmen erzwingen. Daher ist es erforderlich Molekularfeldtheorie anzuwen-
den, um Bereiche biologisch realistischer Aktivität zu erforschen und Mechanis-
men aufzuklären, die die Netzwerkdynamik dominieren. Diese Arbeit entwickelt
die Theorie von räumlich organisierten Netzen weiter und erreicht quantitative
Übereinstimmungen mit direkten Simulationen gepulster Netze. Da konventionel-
le High-Performance-Computing-Architekturen nicht für beschleunigte und mas-
siv parallele neurowissenschaftliche Simulationen optimiert sind, wird zweckbe-
stimmte neuromorphe Hardware entwickelt. Wir vergleichen die Performance der
Simulations-Software NEST mit der des neuromorphen Hardware-Systems SpiN-
Naker in Bezug auf Genauigkeit, Laufzeit und Energieverbrauch. Um raumzeit-
liche Muster in simulierten Aktivitätsdaten zu erfassen, entwerfen wir Konzep-



te zur visuellen Datenanalyse und entwickeln das interaktive, webbasierte Pro-
gramm VIOLA (VIsualization Of Layer Activity) als Referenzimplementierung.
Des Weiteren untersuchen wir die Integration kollaborativer, interdisziplinärer
Simulations- und Analyse-Workflows in Online-Plattformen. Diese Dissertation
erarbeitet Grundlagen für eine Modell-Plattform zur schrittweisen Weiterentwick-
lung mesoskopischer, räumlich strukturierter Netzwerkmodelle und bereitet den
Weg, um weiteren Fragestellungen zu Gehirnfunktion, Lernen und Krankheiten
nachzugehen.



C O N T E N T S

1 introduction 1

1.1 Spatial dependencies in the cortex on the mesoscale 3

1.2 Modeling of neuronal networks 12

1.3 Simulation technology 17

1.4 Visualization 20

1.5 Scope of the thesis 23

2 a collaborative simulation-analysis workflow 27

2.1 Introduction 28

2.2 Workflow 30

2.3 Discussion 36

3 neuromorphic hardware for full-scale networks 39

3.1 Introduction 40

3.2 Methods 43

3.2.1 The leaky integrate-and-fire neuron model 43

3.2.2 Single-neuron tests 44

3.2.3 Cortical microcircuit model 45

3.2.4 Implementation 46

3.2.5 Performance benchmarks 47

3.3 Results 49

3.3.1 Conceptual separation of biological time and wall-clock time 49

3.3.2 Steps toward implementation on SpiNNaker 50

3.3.3 Comparison of single-neuron results between NEST and SpiN-
Naker 54

3.3.4 Comparison of network results between NEST and SpiN-
Naker 57

3.3.5 Performance 61

3.4 Discussion 65

4 interactive web-based data visualization with viola 71

4.1 Introduction 72

4.2 Results 80

4.2.1 Views of VIOLA 80

4.2.2 VIOLA use case 85

4.3 Methods 90

4.3.1 Data formats 90

4.3.2 Reference implementation 91

4.3.3 2D and 3D view implementations 93

4.3.4 Network description 94

4.3.5 LFP predictions 96

4.3.6 Software summary 99

4.4 Discussion 102

5 conditions for traveling waves in spiking neural networks 107

5.1 Introduction 108

5.2 Results 112



5.2.1 Linear stability analysis of a neural-field model 114

5.2.2 Conditions for spatial and temporal oscillations, and travel-
ing waves 116

5.2.3 Application to a network with excitation and inhibition 118

5.2.4 Network simulation with nonlinear rate neurons 119

5.2.5 Linearization of spiking network model 120

5.2.6 Comparison of neural-field and spiking models 123

5.2.7 Validation by simulation of spiking neural network 127

5.3 Methods 130

5.3.1 Linear stability analysis 130

5.3.2 Properties of the spatial profile 132

5.3.3 Transition curves for reduced profile 132

5.3.4 Linearization of the spiking model 135

5.3.5 Model comparison 136

5.3.6 Fixing the working point 137

5.3.7 Physical units 138

5.3.8 Network structure and parameters 138

5.3.9 Software and implementation 139

5.4 Discussion 143

6 a mesoscopic , multi-layer , full-scale cortical network model 147

6.1 Introduction 148

6.2 Methods 149

6.2.1 Point-neuron networks 149

6.2.2 Forward modeling of extracellular potentials 160

6.2.3 Statistical analysis 163

6.2.4 Software accessibility 168

6.3 Results 169

6.3.1 Upscaling of a cortical microcircuit model using lateral distance-
dependent connectivity 169

6.3.2 Spiking activity of the point-neuron networks 176

6.3.3 LFP predictions 183

6.4 Discussion 193

7 discussion 199

7.1 Conclusions 199

7.2 Outlook 202

Bibliography 205



1
I N T R O D U C T I O N

The cerebral cortex is the few millimeter thick and folded outer region of the cere-
brum that consists of gray matter, a neural tissue with a high density of neuronal
cell bodies. The gray matter covers the subjacent white matter which mainly con-
sists of long-range connections, glia, and subcortical nuclei. The well-orchestrated
interplay of a large number of connected neurons within the cortex underlies cog-
nitive functions and complex behavior. Human cortex, for example, contains about
16 billion neurons (Herculano-Houzel, 2009) and each neuron processes input
from on the order of 104 other neurons (Abeles, 1991; Binzegger et al., 2004).
Despite its ubiquity, the brain, and in particular the cortex, is one of the most
intricate natural systems known and scientists are still far from a full understand-
ing of it as a whole. The intrinsic complexity of the brain not only originates
from the multitude and heterogeneity of cells contributing to the activity, but also
from its operation on different temporal and spatial scales; from submilliseconds
for neuronal processing to months or years for learning, and from submicrome-
ter structures of cell components to the unfolded area of cortex covering about a
quarter of a square meter (Sejnowski et al., 2014).

Brain research or neuroscience (Albright et al., 2000; Kandel et al., 2000) is
not only driven forward by the pure desire to expand the territory of knowledge,
but likewise by practical questions from different disciplines: how to treat neuro-
degenerative diseases, or how to exploit neural principles for efficient information
processing to advance technology? Studies on neural systems become increasingly
complex and heterogeneous, that is, endeavors that require cooperation and coor-
dination of expertise from different disciplines (Kandel and Squire, 2000; Kan-
del et al., 2013). This development challenges the typical scientific procedure
to collect experimental data, and to build theoretical models for explaining the
data and making predictions, and calls for comprehensive and reproducible work-
flows (Denker and Grün, 2015; Bouchard et al., 2016; Zehl et al., 2016; Rougier
et al., 2017; Antolík and Davison, 2018). A fundamental challenge in the interdisci-
plinary field of Computational Neuroscience (Sterratt et al., 2011; Kass et al., 2018)
is to uncover the relationship between anatomical structure and emergent activity
in the brain (Bouchard et al., 2018). Experimental measurements provide data
of the biological object under investigation. Mathematical and physical methods
are needed to analyze the data and to develop theoretical models and hypotheses.
Techniques from computer science facilitate numerical model simulations as well
as efficient data processing.

This thesis focuses on the construction and analysis of spatially structured corti-
cal network models. In contrast to experimental recordings, computational models
offer control over all parameters and do not suffer from undersampling (Levina
and Priesemann, 2017). The two extreme ends of modeling strategies are bottom-
up and top-down. While top-down models aim at finding a network architecture
to realize a specific function or to reproduce an observation, bottom-up models
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Figure 1.1: Towards spatially structured cortical network models at cellular resolution.
Integrative loop for model development and structure of this thesis. Experi-
ment: Structural data to be integrated into models; activity data for model val-
idation. Workflow (Chapter 2): A collaborative simulation-analysis workflow
using high-performance computing (HPC) for the comparison of data from
NEST (software-based) and SpiNNaker (neuromorphic hardware) integrated
into a web-based software platform. Simulation (Chapter 3): Performance
comparison of the simulators NEST and SpiNNaker in terms of accuracy, run-
time, and energy consumption for a full-scale cortical microcircuit model. Data
analysis (Chapter 4): Visual inspection of spatially and temporally resolved
neuronal activity data; visualization concepts and the corresponding interac-
tive and web-based reference implementation VIOLA. Theory (Chapter 5): An-
alytical conditions for traveling waves in spiking networks derived via mean-
field theory and parameter mapping to a neural-field model. Model building
(Chapter 6): A mesoscopic, multi-layer, full-scale cortical network model with
distance-dependent connectivity that accounts for spiking activity and local
field potentials (LFPs).

are built up from elementary components. We here aim to approach the origin of
spatiotemporal activity observed in cortex and we assume that such macroscopic
collective dynamics rely on the microscopic interaction of connected single neu-
rons. In line with the bottom-up modeling strategy, we integrate available struc-
tural data into models and analyze the emerging dynamics. However, our models
incorporate also neuroscientific concepts such as cortical layers and simplified cell
types. A model of a natural system requires both enough relevant detail to cap-
ture the phenomenon in study as well as an adequate level of abstraction achieved
with simplifying assumptions to generate and test predictions. In the connectionist
modeling approach (McLeod et al., 1998), complex dynamics can emerge from in-
terconnected networks of simple units. Accordingly, the neuronal model networks
considered here encompass large numbers of identical simple model neurons as
basis elements (up to realistic neuron densities) and a complex connectivity struc-
ture.

The development of such large-scale neuronal network models can be split up
into a number of individual components that together form the integrative loop
shown in Figure 1.1. We identify the following components:
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• The Experiment provides access to the natural system, the cerebral cortex,
that we aim to understand. Structural data of the cortical connectivity are
integrated into bottom-up models. Experimentally recorded activity data are
compared to simulated model data for model validation.

• Model building deals with finding mathematical descriptions for cortical net-
works on the basis of structural experimental data. The level of description
is a trade-off between tractability and predictive power.

• Theory contributes to model building. Predictions from reduced dynamics
of the neuronal network as an interacting many-body system help to infer
underlying mechanisms and to constrain model parameters.

• Simulation includes the efficient implementation of the model description and
execution of simulation codes using high-performance computing (HPC) sys-
tems to generate model data.

• Data analysis covers processing of simulation output, in-depth statistical anal-
ysis, and visualization with the aim to interpret model data in relation to
experimental activity data.

• The Workflow integrates all other components into a loop that facilitates the
interoperability as well as the iterative refinement of individual components.
Ideally, this loop enables repeatability of all steps and reproducibility of re-
sults.

These named components of model development require specific expertise and
come with their own challenges. Section 1.1 establishes the biological detail of cor-
tical structure and activity considered. Section 1.2 introduces mathematical and
computational modeling of neuronal networks. Section 1.3 focuses on simulation
technology for neuronal networks and distinguishes between software-based ap-
proaches and neuromorphic hardware. Section 1.4 deals with the visualization
of experimental and model data. On the basis of these foundations and initial
considerations, the scope of this thesis is finally specified in Section 1.5.

1.1 spatial dependencies in the cortex on the mesoscale

Horizontal and vertical organization of the cortex

The cerebral cortex has a distinct hierarchical spatial structure, both in parallel
(horizontal) and perpendicular (vertical) to the cortical surface. To maximize the
surface area, the cortex is folded and exhibits characteristic grooves called sulci
and crests called gyri. The horizontal organization begins with a division into
two hemispheres. Each hemisphere comprises four anatomically different lobes,
illustrated in Figure 1.2A, with specialized functions: frontal (planning, movement
control), parietal (somatic sensation), temporal (hearing) and occipital (vision). Fur-
ther parcellation into brain areas is based on either the cytoarchitecture (Brodmann
areas, Brodmann, 1909) or the functional involvement (Kandel et al., 2000). For
example, Brodmann area 4 refers to the primary motor cortex (M1) in the precen-
tral gyrus of the frontal lobe, and area 17 refers to the primary visual cortex (V1)
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Figure 1.2: Structural organization of the cortex. A Cortical lobes; adapted from Gray
(1918). B Cytoarchitectonic differences between frontal, parietal, and occipital
areas of cat cortex; adapted from DeFelipe (2011, Figure 8). Photomicrographs
from 100 µm thick Nissl-stained sections. Cortical layers 1–6 and white matter
(WM) indicated. C Morphological reconstruction of a layer 5 pyramidal neuron
from a rat somatosensory cortical slice of 300 µm thickness with dendritic (blue)
and axonal (red) arborizations; adapted from Boucsein et al. (2011, Figure 4B).
D Connection probability versus distance (error bars represent SEM); adapted
from Perin et al. (2011, Figure 1 E–G) with permission. Simultaneous record-
ings from up to 12 thick-tufted layer 5 pyramidal neurons in rat somatosensory
cortical slices of 300 µm thickness. E Connection probability versus distance;
adapted from Boucsein et al. (2011, Figure 4A). Comparison of results from
different studies with maximum connection probabilities normalized to unity.
Methodological differences prevent direct numerical comparison. Data from
Holmgren et al. (2003); Matsuzaki et al. (2008); Bureau et al. (2004); Dalva and
Katz (1994); Hellwig (2000); Stepanyants et al. (2008), and black curve from
Boucsein et al. (2011, Figure 3).
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in the occipital lobe; note that cat V1 typically combines areas 17 and 18 (Payne
and Peters, 2002). The surface area per hemisphere of area 17, also known as stri-
ate cortex, amounts to ∼ 1090 mm2 in macaque monkey and ∼ 310 mm2 in cat,
as measured by van Essen and Maunsell (1980). This thesis mainly focuses on
sensory cortices.

Vertically, the cortex is organized into layers, each with characteristic neuron
compositions as already described by Ramon y Cajal (1899). The conventional
division considers six layers with the topmost layer 1 containing only few neu-
rons. Layers 2 and 3 are often combined into a layer 2/3, and deeper layers are
sometimes subdivided even further (Abeles, 1991; Braitenberg and Schüz, 1998;
Payne and Peters, 2002). Absolute and proportional layer thicknesses and neuron
densities vary markedly between brain areas, as shown in Figure 1.2B for different
sections of the cat cortex. Visual cortex, for instance, has a distinct layer 4, but this
layer is hardly present in motor cortex; on the existence of layer 4, see Skoglund
et al. (1997); García-Cabezas and Barbas (2014); Yamawaki et al. (2014); Barbas
and García-Cabezas (2015). Motor cortex is one of the thickest regions with a
thickness of more than 4 mm compared to other regions of about 1 mm in human
cortex (Fischl and Dale, 2000). The neuron density in cortex is on the order of
104− 105 neurons/mm3 and at least twice as high in the thinner visual cortex com-
pared to motor cortex (Beaulieu and Colonnier, 1983; Abeles, 1991; Herculano-
Houzel et al., 2013). Within cortical areas, cylindrical volumes of roughly 1 mm2

surface area spanning all layers are associated with the concept of a cortical col-
umn (Mountcastle, 1957; Hubel and Wiesel, 1977). Columns do not have strict
boundaries and are defined rather on the functional level as neurons within the
same column are assumed to participate in the same function. An exception is
barrel cortex in the rodent which exhibits clearly defined anatomical boundaries
(see, for example, Petersen and Sakmann, 2001), but we here use the simplifying
assumption that cortex is laterally shift-invariant. This thesis primarily considers
the cortical mesoscopic scale spanning square millimeters to centimeters of cortical
surface area (Muller et al., 2018), and we hereby refer to this scale as mesoscale.

Neurons and spiking activity

Having established the main cortical structures and relevant spatial scales, we next
describe individual neurons and their interactions. The three main parts of a neu-
ron are the cell body (soma), a branching tree-like structure around the soma serv-
ing as the main target for input (dendrites), and a nerve fiber transmitting output
(axon), see for example Kandel et al. (2000). Neurons exchange signals across
anatomical connections (synapses) that link an axon terminal of a presynaptic neu-
ron to a dendrite of a postsynaptic neuron. The signals manifest in excursions of
the membrane potential, that is an electrical potential difference due to relative
differences in ion concentrations on each side of the resistive and capacitive cell
membrane. A neuron continuously integrates its input currents and a sufficient
depolarization causes the initiation of an action potential (spike) at the soma or
axon hillock through activation of voltage-gated ion channels. This discrete elec-
trical pulse propagates along the axon of the presynaptic neuron to a synapse
causing the release of neurotransmitters into the synaptic cleft. The intake of neu-
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rotransmitters by the postsynaptic neuron results again in a deflection of the mem-
brane potential through opening of ion-specific channels that is propagated along
the dendrites to the soma and is integrated. We here only consider interaction
via such chemical synapses and not via electrical synapses, so-called gap junc-
tions (Connors and Long, 2004). Further, we assume static synaptic connection
strengths. That means that the effect of an incoming spike onto the postsynaptic
membrane potential does not change over time, for example, dependent on pre-
and postsynaptic neuronal activity (for synaptic plasticity, see Hebb, 1949; Abbott
and Nelson, 2000; Zucker and Regehr, 2002).

Sequences of spikes (spike trains) are assumed to be the primary means of com-
munication between neurons. Spiking activity in the neocortex is typically char-
acterized by sparse and highly irregular spiking (Softky and Koch, 1993; Brunel
and Hakim, 1999) with weak pairwise correlations (Ecker et al., 2010; Renart et al.,
2010; Cohen and Kohn, 2011; Tetzlaff et al., 2012). Mochizuki et al. (2016) find
that differences of the firing regularity across brain areas in one species are greater
than the differences in similar areas across species. They observe that the spiking
activity in visual areas is typically nearly random while motor areas exhibit most
regular activity. The spike counts per unit time (firing rates) of cortical neurons
range between < 1 and 30 spikes/s (Swadlow, 1988; de Kock and Sakmann, 2009).
Firing rates of excitatory neurons are typically low in superficial and deep layers
(layers 2/3 and 6, respectively), and higher in middle layers (layers 4 and 5), as
reviewed in Potjans and Diesmann (2014, Table 6). Spike count correlations, how-
ever, appear to be more pronounced in superficial and deep layers than in middle
layers (Smith et al., 2012). Although cortical neurons differ significantly in mor-
phology, electrical properties, spiking behavior, and connectivity (Connors and
Gutnick, 1990; Markram et al., 2015), Dale’s principle (Eccles et al., 1954) simply
classifies them based on the effect a spike occurrence has onto postsynaptically
connected neurons: excitatory neurons increase the negative membrane potential
of all postsynaptic neurons, thus facilitate their spiking, while inhibitory neurons
decrease the potential further. Excitation and inhibition are typically balanced in
cortical network activity (Haider et al., 2006; Dehghani et al., 2016). Although
more than 80 % of all cortical neurons are excitatory (Braitenberg and Schüz, 1998;
Markram et al., 2015), many inhibitory neurons establish stronger connections and
exhibit higher firing rates to maintain the balance.

We next introduce the most prominent neuron types in cortex (Abeles, 1991;
Braitenberg and Schüz, 1998; Payne and Peters, 2002). Pyramidal neurons are the
most frequently occuring type and they are excitatory. Their morphology, illus-
trated in Figure 1.2C, is characterized by a triangular-shaped soma, a thick apical
dendrite extending towards the cortical surface, a dense tree of basal dendrites
below the soma, and a long axon that often forms long-range connections. The
apical dendrite grows more branches the closer it gets to the surface, while the
basal dendrites spreads profusely in all directions within short range around the
soma. The axon branches strongly close to the soma, but the main axon often leaves
cortex and proceeds through the white matter. Pyramidal cells are encountered in
all cortical layers with various deviations from the just described morphological
features. Stellate cells are another common cell type in cortex, named after their
star-shaped dendritic tree. Spiny stellate cells are excitatory and largely occur in
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the middle region of cortex in primary sensory brain areas. For example, layer 4 of
the primary visual cortex is termed granular layer due to its high density of spiny
stellate cells; layers above and below are called supragranular and infragranular,
respectively. Large spiny stellate cells can have axons extending into the white
matter, while small cells remain local. A large number of subtypes of inhibitory
neurons exists, but we here focus on inhibitory interneurons that release the neu-
rotransmitter GABA. Such neurons are restricted to the gray matter, and they are
commonly classified into basket and non-basket cells. The fast-spiking basket cell
is the most-studied interneuron type with its compact shape due to a dense axonal
arborization around the soma. Although our work only accounts for neuronal cells,
nonneuronal cells like glial cells are also present in cortex. Azevedo et al. (2009)
compute the ratio between nonneuronal and neuronal cells in the gray matter to
1.48 for the human cortex.

Distance-dependent connectivity

Already the composition of the cerebrum points towards the important role of neu-
ronal connectivity: axons, dendrites and spines occupy more than 80 % of the gray
matter (Schüz and Palm, 1989), and the white matter is almost exclusively com-
posed of myelinated axons. Cortical networks are hierarchically organized, from
connections spanning the whole cortex to local microcircuits. An example for inter-
area connectivity is the network linking the 32 visual or visual-association areas in
the primate cortex that exhibits a distinct processing hierarchy (Felleman and Van
Essen, 1991; Chaudhuri et al., 2015). Within cortical areas, it is widely believed
that canonical microcircuits are stereotypical circuits that are similar in connectiv-
ity and their ability to process information (Douglas et al., 1989; Douglas and
Martin, 1991; Thomson et al., 2002; Binzegger et al., 2004; Douglas and Martin,
2004; Binzegger et al., 2009; Harris and Shepherd, 2015). A cortical microcircuit is
loosely defined as the local circuit within a cortical column, thus connecting on the
order of 104 − 105 neurons (Potjans and Diesmann, 2014; Markram et al., 2015).
The characteristic flow of activity through the cortical layers of a microcircuit in-
volves distinct feedforward and feedback projections. In primary visual cortex,
for instance, thalamic afferents enter mainly in layer 4 (and partially also in layer
6), and excitatory signals are first transmitted upwards into superficial layers and
then downwards into deeper layers (Douglas and Martin, 2004; Thomson, 2010;
Potjans and Diesmann, 2014).

The connectivity within a microcircuit can be derived statistically in terms of con-
nection probabilities between neurons of a certain type and within a certain layer,
based on measurements obtained with different experimental techniques (Thom-
son and Lamy, 2007). To begin with, staining techniques render the otherwise
translucent neuronal morphologies visible by injecting a tracer that is absorbed
by the cells. Anterograde tracers (for example, biocytin, see King et al., 1989) are
taken up by the soma and are transmitted along the axon to its terminals, while ret-
rograde tracers (for example, horseradish peroxidase, see Adams, 1977) are taken
up by the terminals and are transmitted along the axon back to the soma (Abeles,
1991). Staining and subsequent visualization with microscopes are often combined
with a reconstruction of the morphologies. Statistical assumptions help further to
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infer the connectivity from these reconstructed cells (see, for example, Binzegger
et al., 2004; Hill et al., 2012; Helmstaedter, 2013; Berning et al., 2015; Kasthuri
et al., 2015). Peter’s rule (Peters and Feldman, 1976; Braitenberg and Schüz, 1998)
is such a simplistic assumption, according to which the density of synaptic contacts
is proportional to the overlap of the dendritic and axonal arborizations (Amirikian,
2005; Brown and Hestrin, 2009; Hill et al., 2012). Binzegger et al. (2004) compile
a quantitative connectivity map of cat primary visual cortex based on an extension
of Peter’s rule.

While anatomical reconstructions already indicate whether connections are likely
to exist or not, electrophysiological measurements can directly assess functional
connectivity, that means, not only whether two neurons are connected but also how
strong that connection is. The patch clamp technique (Sakmann and Neher, 1984)
allows intracellular recordings by controlling either the current (current clamp) or
the voltage (voltage clamp). Thomson et al. (2002) derive a comprehensive connec-
tivity map with data from cat (visual cortex) and rat (somatosensory, motor and
visual cortex) with pairwise recordings. They evoke spikes in a putative presynap-
tic neuron with an intracellular current-pulse injection and simultaneously record
possible responses in putative postsynaptic neurons to compute connectivity ratios.
Whole-cell recordings of the membrane potential of putative postsynaptic neurons
can alternatively be combined with photostimulation of presynaptic neurons (Call-
away and Katz, 1993; Boucsein et al., 2011; Schnepel et al., 2015). The technique
used in these studies evokes presynaptic firing by applying short light pulses to
uncage precursors of neurotransmitters like glutamate.

The probability for two neurons being connected depends on their relative spa-
tial location, the morphologies of their dendrites and axons, their types, and their
functional properties. Here, we are in particular interested in the distance depen-
dency of connection probabilities. Experimental data indicates that the large part
of local cortical connections are established within a distance of . 500 µm from
the source/target neuron (Voges et al., 2010), with probabilities that decay with
distance according to a Gaussian or exponentially shaped profile (Hellwig, 2000;
Budd and Kisvárday, 2001; Boucsein et al., 2011; Packer and Yuste, 2011; Perin
et al., 2011; Levy and Reyes, 2012; Reimann et al., 2013; Jiang et al., 2015; Schnepel
et al., 2015; Reimann et al., 2017), as shown in Figure 1.2D–E. Excitation is typi-
cally assumed to be broader than inhibition (Budd and Kisvárday, 2001; Binzegger
et al., 2004; Buzás et al., 2006; Binzegger et al., 2007; Stepanyants et al., 2008, 2009;
Ohana et al., 2012) but some interneuron types form longer-range lateral connec-
tions (McDonald and Burkhalter, 1993). The spatial reach of local connections
depends not only on neuron types and layers (Reimann et al., 2017), but differs
also between cortical areas in the same species (Kätzel et al., 2011a, Figure 4). Be-
side such local connectivity, in particular pyramidal neurons can develop longer
horizontal axons spanning several millimeters. In cat and monkey visual cortex,
these connections are often clustered or patchy and connect neurons with similar
functions such as orientation tuning (Livingstone and Hubel, 1984; Gilbert and
Wiesel, 1989; Bosking et al., 1997; Tanigawa et al., 2005; Buzás et al., 2006; Binzeg-
ger et al., 2007). The total number of incoming connections per neuron is on the
order of 104 (Abeles, 1991). Stepanyants et al. (2009) find that a local cortical vol-
ume of radius 500 µm, corresponding to the blue region in Figure 1.2C, comprises
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only about 26% of all excitatory synapses, and that the remaining synapses origi-
nate from nonlocal neurons, while almost 90% of inhibitory synapses fall into the
local volume.

Stimulation experiments reveal that connections are temporally delayed with a
distance-dependent and a constant contribution. The distance-dependent contri-
bution results from finite conduction speeds of action potentials along neuronal
fiber. Long-range axons, connecting to distant or subcortical brain regions, are
mostly covered by a myelin sheath that increases conduction speeds to typically
several meters per second with maximum values of about 100 m/s (Debanne, 2004;
Muller et al., 2018). Short-ranging axons within gray matter, as considered in this
work, are typically not myelinated, and the conduction speed is with about 0.3 m/s
much smaller (Andersen et al., 1978; Berg-Johnsen and Langmoen, 1992; Mu-
rakoshi et al., 1993; Kang et al., 1994; Lohmann and Rörig, 1994; Salin and Prince,
1996; Debanne, 2004; Muller et al., 2018). The constant contribution is estimated
to 0.5− 1 ms (Hirsch and Gilbert, 1991; Murakoshi et al., 1993; Kang et al., 1994)
and depends on synaptic processing on the pre- and postsynaptic terminals, and
includes neurotransmitter release, binding and spike initiation. Measured values
for both conduction speed and synaptic delay rely on experimental conditions as a
reduced ambient temperature results in smaller conduction speeds (Berg-Johnsen
and Langmoen, 1992) and larger synaptic delays (Katz and Miledi, 1965; Sabatini
and Regehr, 1996), reviewed by González-Burgos et al. (2000). Moreover, delays
may change over time due to synaptic plasticity (Waldeck et al., 2000; Lin and
Faber, 2002).

Cortical recordings of activity patterns in physical space and time

Cortical activity can exhibit inhomogeneities across the cortical surface with pat-
terns evolving over time. Such spatiotemporal activity patterns considered here ex-
plicitly account for physical space, although the same term is often used for spike
patterns of multiple neurons without any spatial information (see, for example,
Abeles and Gerstein, 1988). Propagating or localized neuronal activity has been
detected in many species and cortical areas (Wu et al., 2008; Muller and Destexhe,
2012; Sato et al., 2012; Muller et al., 2018). The spatiotemporal aspect of activity
appears to be a general phenomenon of the cortex as various patterns are observed
both in vitro (in brain slices) and in vivo (in the anesthetized or awake brain), and
in the spontaneous activity of the resting state as well as under stimulation or
during a task. Macroscopic traveling waves traverse across the whole cortex, while
mesoscopic waves can be observed within single cortical areas (Muller et al., 2018).
The two main experimental techniques that unveil spatiotemporal patterns emer-
gent on the mesoscale with sufficient temporal and spatial resolution are optical
imaging with voltage sensitive dyes (Chemla and Chavane, 2010) and electrophys-
iological recordings with multiple electrodes (for example, Maynard et al., 1997).
This thesis concentrates on experiments performed with electrode arrays in vivo
in the mammalian visual or motor cortex and activity propagating in parallel to
the cortical surface.

Extracortical recording techniques like electroencephalography (EEG), magneto-
encephalography (MEG) and electrocorticography (ECoG) can cover several corti-
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Figure 1.3: Spatiotemporal activity patterns recorded with multi-electrode arrays.
A Spike-triggered traveling waves of local field potentials (LFPs) in monkey
primary visual cortex (V1); adapted from Nauhaus et al. (2009, Figure 2) with
permission from Springer Nature. Data from three example spike locations
(rows). Left: Time to peak versus distance from triggering electrode, both as
image and scatter plot, with estimated propagation speeds. Middle: Signal am-
plitudes, both as image (pseudo-color map: darkest red-saturated pixel at spike
location) and scatter plot, with estimated space constants. Right: Average LFP
waveforms at different distances r from spike location (blue: at spike location,
gray: r ∈ [400, 2, 400) µm, red: r ∈ [2, 400, 3, 600) µm). B Spatial location of
the Utah multi-electrode array (green square) on the cortical surface in monkey
L (motor cortex); adapted from Denker et al. (2018, Figure 1B–C). Anatomi-
cal features (red curves; CS: central sulcus, AS: arcuate sulcus, PS: precentral
sulcus) estimated from photograph taken during surgery. C Automatically de-
tected phase patterns of LFPs recorded from monkey L (see panel B); adapted
from Denker et al. (2018, Figure 3B). Patterns: planar wave, synchronized, ran-
dom, circular, and radial. Sequences (rows) show a total of 18 ms in steps of
2 ms. Denker et al. (2018) is licensed under a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/


1.1 spatial dependencies in the cortex on the mesoscale 11

cal areas. Chronic or acute implants of intracortical multi-electrode arrays can be
used to record neuronal activity directly in neural tissue on the mesoscale (Buzsáki
et al., 2012). The signal obtained with multi-electrode arrays has a submillisecond
temporal resolution allowing the separation of the local field potential (LFP) as
a mesoscopic population signal (low-frequency band, . 100 Hz) from the spik-
ing activity of individual neurons (high-frequency band, & 100 Hz), see Einevoll
et al. (2013a). The spatial resolution is constrained by the electrode separation and
typically on the order of 100 µm (Maynard et al., 1997). Despite the high neu-
ron density of 104− 105 neurons/mm3 of cortical tissue (Herculano-Houzel, 2009),
only a few neurons can be identified through spike sorting (Quiroga, 2007). Utah
arrays (10× 10 electrodes on 4× 4 mm2, Blackrock Microsystems, Salt Lake City,
UT, USA), for instance, resolve little more than a hundred distinct neurons (Riehle
et al., 2013).

Spatiotemporal patterns detected with multi-electrode arrays are categorized
into different types of patterns and quantified. Muller and Destexhe (2012) distin-
guish globally propagating oscillatory waves from depolarizations spreading from
a center of origin. For example, Rubino et al. (2006) show globally propagating
LFP oscillations in the beta band (10− 45 Hz), recorded in monkey motor cortex
during an instructed-delay reaching task. Similar waves are observed in the human
motor cortex (Takahashi et al., 2011). Nauhaus et al. (2009) demonstrate spread-
ing depolarizations as LFP waves traveling outward from a spike occurrence in
cat and monkey visual cortex (anesthetized), in spontaneous activity as well as un-
der visual stimulation. Such spike-triggered LFP waves are shown in Figure 1.3A
for the case of spontaneous activity in monkey cortex. The mechanism underly-
ing these observations is debated (Ray and Maunsell, 2011b; Ian Nauhaus and
Carandini, 2012). Muller et al. (2018, Figure 2) identify two different stimulus-
evoked response types in the visual cortex: stationary bumps that are associated
with relatively input-driven systems, and traveling waves that are associated with
circuits dominated by recurrent activity. Riehle et al. (2013) observe movement-
related spatiotemporal patterns in LFPs recorded in monkey motor cortex during
a delayed reach-to-grasp task. Denker et al. (2018) later categorize such complex
spatiotemporal phase patterns in LFP oscillations (beta band), here shown in Fig-
ure 1.3B. In visual cortex of anesthetized monkeys, Townsend et al. (2015) record
complex patterns in low-frequency components of spontaneous LFP activity (delta
band, 1 − 4 Hz) and analyze them with methods from turbulence physics. Fur-
thermore, Zanos et al. (2015) demonstrate that the execution of saccadic eye move-
ments triggers traveling LFP waves in monkey visual cortex. The spatial reach
of LFPs appears to be frequency dependent as shown by Łęski et al. (2013) and
Dubey and Ray (2016). The latter study uses electrode stimulation in visual cortex
of awake monkeys to expose that the spread is larger for intermediate frequencies
(high-gamma band, 60− 150 Hz) than for lower or higher frequencies. Muller et al.
(2018) summarize that traveling waves observed on the mesoscale exhibit propa-
gation speeds of 0.1 − 0.8 m/s which is similar to axonal conduction speeds of
unmyelinated long-range horizontal connections. Note, however, that such propa-
gation also includes synaptic processing times and is affected by intrinsic dendritic
filtering (Grinvald et al., 1994; Nauhaus et al., 2009; Takahashi et al., 2015; Zanos
et al., 2015).
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So far, we only discussed studies identifying spatiotemporal patterns in LFPs, a
signal that includes the subthreshold activity of neuronal populations, but there
is also evidence for spatial structure in spiking activity (Sato et al., 2012). Spike-
count correlations decay with distance, measured in visual cortex of anesthetized
monkeys (Smith and Kohn, 2008). Takahashi et al. (2015) find sequential firing
that closely matches propagating LFP waves. With single-pulse intracortical mi-
crostimulations in motor cortex of awake monkeys, Hao et al. (2016) evoke activity
spreading outward from a stimulating electrode, both in single-unit and multi-unit
activity. In general, the detection of spatiotemporal patterns in population activ-
ity is more difficult on the level of spikes than from a continuous signal like the
LFP. The two main reasons for that are sparse spiking (low firing rates) and sparse
sampling of individual neurons inherent to the recording technique.

1.2 modeling of neuronal networks

Neural-field models (top–down)

The aim of top-down neuronal network models is to propose a network archi-
tecture that reproduces a desired observation, function, or computation of a bio-
logical neural system. Although guided by biophysical constraints, these models
typically do not incorporate microscopic detail but rather provide phenomeno-
logical and coarse-grained descriptions using continuous variables (Schöner et al.,
2015). Neural-field models (Wilson and Cowan, 1972a, 1973a; Amari, 1977), for ex-
ample, describe the activity of neuronal populations on the meso- or macroscopic
scale as a function of time and space with continuous nonlinear integro-differential
equations and effective distance-dependent connectivity kernels. Such models pro-
vide explanations for diverse spatiotemporal activity patterns like traveling waves,
wave fronts, bumps, pulses, and various periodic patterns (reviewed by Ermen-
trout, 1998; Coombes, 2005; Wyller et al., 2007a; Coombes, 2010; Bressloff, 2012;
Coombes et al., 2014; Bressloff, 2014). The existence and uniqueness of activity
patterns and their dependence on model parameters can be investigated either by
constructing the patterns explicitly (Amari, 1977) or via bifurcation theory and lin-
ear stability analysis as described by Ermentrout (1998, Section 7) and Bressloff
(2012, Sections 3-4). Neural fields also serve as models for hallucination patterns
(Ermentrout and Cowan, 1979a; Bressloff et al., 2001), short-term memory (Laing
et al., 2002), spatial working memory (Compte et al., 2000), movement prepara-
tion (Erlhagen and Schöner, 2002), saccade planning (Schneider and Erlhagen,
2002), visual perception (Erlhagen, 2003), motion perception (Giese, 2012), and
binocular rivalry (Kilpatrick and Bressloff, 2010), to name some examples. While
neural-field models already succeed in reproducing such observations, recent work
strives to link these models to more realistic features like single-neuron properties
(Hutt et al., 2015).

Spiking neuron and network models (bottom-up)

In contrast to top-down models, bottom-up models construct interconnected neu-
ronal systems from its basic components to analyze the emerging dynamics. We
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Figure 1.4: The leaky integrate-and-fire (LIF) neuron model. A RC circuit representing
the subthreshold dynamics of the LIF neuron model (Equation 1.1). B Sketch of
two connected neurons i (postsynaptic) and j (presynaptic) with external drive.
C Simulated membrane potentials V and currents I for neurons i and j driven
by a step current (left, Iext = 400 pA) and by Poisson spike trains (right, rate
νext = Iext/τs/Jext with a weight Jext = 4000 pA), starting at t = 30 ms. Neuron
and synapse parameters: Cm = 250 pF, τm = 10 ms, τs = 0.5 ms, τref = 2 ms,
EL = Vreset = −65 mV, Vθ = −50 mV, d = 1 ms, J = 87.8 pA.

consider individual neurons as basic components and describe their dynamics and
their interaction via spikes in a simplified yet biophysically inspired way. This
level of detail is assumed to be enough to capture the main cortical processes
(Hebb, 1949; Rumelhart et al., 1986; McLeod et al., 1998). A neuron is seen as
a computational unit that receives and integrates input and generates output, yet
there is a multitude of neuron models that differ in biological realism, capability
to explain experimental observations, and analytical tractability (see Sterratt et al.,
2011). The Hodgkin-Huxley model, for example, is a mathematical model that cap-
tures the time course of action potentials observed in voltage-clamp experiments
including membrane currents and ion channels (Hodgkin and Huxley, 1952). Mul-
ticompartment models account for the spatial extent of the neuronal morphology
with soma and axonal and dendritic structures (De Schutter and Van Geit, 2009a).
More simplified neuron models are often used in large networks to study the ef-
fect of connectivity on the network dynamics, thereby disentangling this effects
from biophysical detail on the single-cell level. In such models, the morphology is
collapsed to a point, and the neuron dynamics are described by a single variable
that often represents the neuron’s membrane potential. Rate-based neuron models,
for instance, ignore spiking mechanisms and just convert their input by means of
an activation (or characteristic) function to an output that can be interpreted as a
firing rate or probability of firing; this level of description is comparable to phe-
nomenological neural-field models. Binary neurons have only two possible states,
on or off, and they can be modeled, for example, with a step function as activation
function. Networks presented in this thesis are composed of leaky integrate-and-
fire (LIF) neurons (Lapicque, 1907; Stein, 1967) with current-based synapses. LIF
neuron models pose a compromise as they are analytically tractable but can still
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reproduce in-vivo like spiking activity. A passive patch of the cell membrane is rep-
resented by an electrical RC circuit, illustrated in Figure 1.4A. The sub-threshold
dynamics of a single LIF neuron i with exponentially decaying synaptic currents is
described by a set of differential equations for the time evolution of the membrane
potential Vi and its synaptic current Ii as

τm
dVi

dt
= − (Vi − EL) + Rm Ii (t) ,

τs
dIi

dt
= −Ii + τs ∑

j
Jijsj

(
t− dj

)
,

(1.1)

with the membrane time constant τm and the membrane resistance Rm (related by
the membrane capacitance Cm as τm = RmCm), the resistive leak reversal poten-
tial EL, the synaptic time constant τs, the current jump Jij due to a single spike

from neuron j, incoming spike trains sj (t) = ∑k δ
(

t− tj
k

)
, and the transmission

delay dj. The current jump (also called connection strength or weight) is by con-
vention positive for excitatory presynaptic neurons j and negative for inhibitory
ones. Whenever Vi reaches the spike threshold Vθ , a spike is emitted and the mem-
brane potential is reset to the spike reset potential Vreset and voltage-clamped for
the refractory period τref. Figure 1.4B illustrates an example of two synaptically
connected neurons with the presynaptic neuron receiving external input. The neu-
ronal responses are simulated in Figure 1.4C for the external drive being either a
step current or a spike train drawn from a Poisson point process. The applied cur-
rent input elicits regular spiking of the presynaptic neuron. Each spike is followed
by a small deflection in the membrane current and potential of the postsynaptic
neuron, that is, an excitatory postsynaptic current (EPSC) or potential (EPSP). Al-
though with similar firing rate, the spiking activity caused by the noisy Poisson
input is irregular; spikes occur only if the spike threshold is reached by sufficient
summation of EPSPs.

Synaptic connectivity in spiking neuronal networks is typically described by
statistical rules and realized at random. Such rules prescribe, for example, a con-
nection probability, or a fixed number of incoming or outgoing connections per
neuron, called in- or out-degree, respectively. In networks with spatial structure,
connections can be restricted to nearest neighbors (Kriener et al., 2014b) or are es-
tablished with a probability that falls of with distance between neurons (Mehring
et al., 2003; Yger et al., 2011; Voges and Perrinet, 2012; Rosenbaum and Doiron,
2014; Keane and Gong, 2015; Schnepel et al., 2015; Pyle and Rosenbaum, 2017;
Rosenbaum et al., 2017). Spatially organized networks also need to account for
boundaries of the spatial domain modeled, and mostly assume periodic boundary
conditions that are realized by a ring network in 1D (Roxin et al., 2005; Kriener
et al., 2014b; Rosenbaum and Doiron, 2014) or with torus connectivity in 2D
(Mehring et al., 2003; Yger et al., 2011; Voges and Perrinet, 2012; Rosenbaum and
Doiron, 2014; Keane and Gong, 2015; Schnepel et al., 2015; Pyle and Rosenbaum,
2017; Rosenbaum et al., 2017).

Spiking neuronal networks without spatial structure already reproduce and ex-
plain features of in vivo activity like spike-train irregularity (Softky and Koch,
1993; van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997b; Shadlen
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and Newsome, 1998), asynchronous firing (Ecker et al., 2010; Renart et al., 2010;
Ostojic, 2014; Brunel, 2000), spike-train correlations (Gentet et al., 2010; Okun
and Lampl, 2008; Helias et al., 2013), rate distributions across neurons (Griffith
and Horn, 1966; Koch and Fuster, 1989; Roxin et al., 2011), and self-sustained ac-
tivity (Ohbayashi et al., 2003; Kriener et al., 2014a). Brunel (2000), for example,
finds that randomly and sparsely connected networks of excitatory and inhibitory
neuron populations exhibit a rich space of distinct dynamical states classified by
the synchrony and regularity of neuronal spiking activity. When inhibition dom-
inates excitation, these models can reproduce asynchronous and irregular activ-
ity at low firing rates, as observed in vivo. Such a stable state is achieved for
stronger inhibitory than excitatory connection weights while the number of exci-
tatory connections equals four times the number of inhibitory connections, in line
with experimental data (Braitenberg and Schüz, 1998). We refer to such models
as “balanced random networks”. Models of this complexity can be treated an-
alytically with mean-field models that reduce the single-neuron dynamics to an
averaged population activity that resembles again rate-based equations (see, for
example, Brunel, 2000; Deco et al., 2008; Tetzlaff et al., 2012; Helias et al., 2013;
Schuecker et al., 2015). The approach introduced by Brunel (2000) accounts for
both mean and variance of the input to a neuron in a self-consistent way. Balanced
random networks serve as examples or building blocks for larger, more complex
networks. Spatially structured network models that are constructed accordingly
can be used to study the emergence of spatiotemporal activity patterns similarly
to the approaches based on neural-field models (Mehring et al., 2003; Roxin et al.,
2005; Yger et al., 2011; Voges and Perrinet, 2012; Kriener et al., 2014b; Rosen-
baum and Doiron, 2014; Keane and Gong, 2015; Schnepel et al., 2015; Pyle and
Rosenbaum, 2017; Rosenbaum et al., 2017).

Models that aim to represent the cortex on the mesoscale are typically diluted or
encompass only one cortical layer. The comparability with biological cortical net-
works is thereby hampered since the preservation of neuronal dynamics including
the correlation structure is severely limited upon downscaling (van Albada et al.,
2015). Also, distance-dependent connectivity and emerging activity patterns rely
on inter-neuron distances in comparison to the shape of connectivity kernels. In
contrast, full-scale cortical network models aim to represent a patch of cortex at
biologically realistic neuron and synapse density.

A full-scale cortical microcircuit model

The cortical microcircuit model by Potjans and Diesmann (2014), illustrated in
Figure 1.5A, represents a 1 mm2 patch of early sensory cortex at full density of neu-
rons (approximately 80, 000) and synapses (approximately 0.3 billion). The model
is a minimal model with realistic in-degrees; larger networks are consequently less
densely connected. Figure 1.5B shows spiking statistics of the simulated network
activity. Biologically plausible firing rates of simple LIF model neurons (Equa-
tion 1.1) across four cortical layers with excitatory and inhibitory populations are
explained by detailed connectivity derived from anatomical and electrophysiologi-
cal data sets, that is, mainly from Binzegger et al. (2004) and Thomson and Lamy
(2007). The model serves as a building block for a large multi-area model of the



16 introduction

fi

fi

fi

fi

fi

fi
fi

fi
Figure 1. Model definition. Layers 2/3, 4, 5, and 6 are each represented by an
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Figure 1.5: A cortical microcircuit model with LIF neurons. A Sketch of a microcircuit
model; adapted from Potjans and Diesmann (2014, Figure 1) with permis-
sion from Oxford University Press. The model has four cortical layers with
excitatory (triangles) and inhibitory (circles) populations of LIF neurons (same
parameters as used in Figure 1.4C). B Simulated spiking activity of microcir-
cuit model and statistics; adapted from Potjans and Diesmann (2014, Figure 6).
Left: spike raster. Top right: boxplot of single-unit firing rates. Middle right:
irregularity quantified by coefficient of variation of interspike intervals. Bottom
right: synchrony quantified by variance of spike-count histogram divided by
its mean.
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visual system (Schuecker et al., 2017; Schmidt et al., 2018), and it is used as ref-
erence implementation for a forward-model based scheme to predict LFPs from
spiking activity (Hagen et al., 2016a). Further studies analyze the role of different
neuron populations in the model network with respect to attentional information
(Wagatsuma et al., 2011), computational properties related to the input-output rela-
tionship (Cain et al., 2016), and network oscillations (Bos et al., 2016). In addition,
analytical treatment of the model is feasible, for example by reducing the spiking
dynamics via mean-field theory (Bos et al., 2016; Hahne et al., 2017; Schuecker
et al., 2017) or a population density approach (Cain et al., 2016) to population rate
dynamics, or by deriving stochastic population equations for the population activ-
ity (Schwalger et al., 2017). The source code of the model is publicly available at
Open Source Brain1 and is provided as an example for the simulator NEST2.

1.3 simulation technology

In addition to experimental and theoretical approaches, numerical simulations
play an important role for the investigation of the relationship between the struc-
ture of neuronal networks and emerging dynamics. Unlike earlier proof-of-concept
simulations implemented from scratch, the emerging need for efficient and repeat-
able large-scale simulations calls for novel simulation technologies for the com-
munity (Bouchard et al., 2016; Eglen et al., 2017; Bouchard et al., 2018). The
development of such technologies is driven by the requirements of neuroscientists
and aims for both, performant exploitation of available hardware and ease of use
for neuroscientific research. Code maintenance, continuous advancements and
extensive testing by many scientists support the correctness of simulation results
as well as the reproducibility of simulation studies (Rougier et al., 2017). Mean-
while, a variety of simulator systems are established with different design goals but
also overlapping scopes, for example, in the biological detail represented. Many
simulators have in common that they provide a Python interface (Muller et al.,
2015) to ease the definition of simulation while hiding simulator infrastructure
from the neuroscientist. Some simulator back ends can even be controlled with
the same executable network model description if implemented in the simulator-
independent language PyNN (Davison et al., 2009, 2010). We here primarily dis-
tinguish between software-based simulators (Brette et al., 2007) like NEST (NEu-
ral Simulation Tool, Gewaltig and Diesmann, 2007), and neuromorphic hardware
(Furber, 2016a; Nawrocki et al., 2016) like SpiNNaker (SPIking Neural Network
Architecture, Furber et al., 2013a). While software-based simulators focus on the
optimal usage of conventional general-purpose hardware, the term neuromorphic
hardware refers to dedicated hardware inspired by neural systems. Finally, we
introduce a forward modeling scheme to predict LFPs from the simulated spiking
activity of point-neuron networks.

1 http://opensourcebrain.org/projects/potjansdiesmann2014

2 http://nest-simulator.org

http://opensourcebrain.org/projects/potjansdiesmann2014
http://nest-simulator.org
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Software-based simulators

As it is a common hypothesis that essential aspects of brain function rest on neu-
ronal interaction on the level of spikes and rates, a number of simulators focuses
on the the description of individual neurons and their connectivity (Jordan et al.,
2018). While other simulators even resolve fine structures like molecules (STEPS,
Wils and De Schutter, 2009) or operate rather on the level of large groups of
neurons or brain areas (MIIND, de Kamps et al., 2008; The Virtual Brain (TVB),
Sanz Leon et al., 2013; Nengo, Bekolay et al., 2013), we here also consider this
intermediate scale and focus on interactions via spikes. GENESIS (Bower and
Beeman, 2007) and NEURON (Carnevale and Hines, 2006) allow for biological
detail of individual neurons including complex morphologies (multicompartment
neurons), whereas Brian (Goodman and Brette, 2013) and NEST (Gewaltig and
Diesmann, 2007) rather aim for large networks of simple point-neurons, that is,
for cellular resolution. These simulator systems have evolved over three decades
of development (Brette et al., 2007) and advance further as network models are
becoming ever more complex and general-purpose hardware progresses (Lytton
et al., 2016; Jordan et al., 2018). Commonly used simulator code is mainly open
source (Gleeson et al., 2017) and implementations of a large number of neuron and
network models are hosted at publicly available resources (for example, ModelDB3,
Hines et al., 2004, and Open Source Brain4, Gleeson et al., 2015).

The simulation code NEST5 (Gewaltig and Diesmann, 2007) is developed and
maintained in a collaborative fashion by the NEST initiative6 under the GNU Gen-
eral Public License. Simulations are defined in terms of neuronal populations
and connections employing the built-in scripting language SLI, the Python inter-
face PyNEST (Eppler et al., 2009; Zaytsev and Morrison, 2014), or PyNN (Davi-
son et al., 2009). The actual simulation kernel that executes network construction
and state propagation of neuron dynamics is implemented in C++ to enable high
computational performance. To optimize performance on available hardware, the
simulation kernel is continually advanced with new data structures, algorithms
and communication schemes (Morrison et al., 2005; Helias et al., 2012; Kunkel
et al., 2014; Jordan et al., 2018). NEST uses a hybrid parallelization strategy com-
bining MPI across compute nodes and multi-threading with OpenMP within each
MPI process (Plesser et al., 2007). This strategy facilitates the simulation of large
networks with neuron and synapse counts comparable to 10 % of the human cor-
tex (around 109 neurons and 1013 synapses) on contemporary supercomputers
(RIKEN BSI, 2013; Kunkel et al., 2014; Jordan et al., 2018); smaller simulations
can be run on laptops, workstations or moderately-sized clusters. NEST provides
implementations of a number of common neuron and synapse models that are typ-
ically described by a system of a few delayed differential equations to be solved
exactly, if possible, or numerically, otherwise (Rotter and Diesmann, 1999; Plesser
and Diesmann, 2009). New models can be implemented either directly in C++
or in the domain-specific model description language NESTML (Plotnikov et al.,

3 https://senselab.med.yale.edu/ModelDB
4 http://opensourcebrain.org
5 http://nest-simulator.org
6 http://nest-initiative.org

https://senselab.med.yale.edu/ModelDB
http://opensourcebrain.org
http://nest-simulator.org
http://nest-initiative.org
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2016). The Topology module allows the placement of neurons in 2D or 3D space
and provides distance-dependent connectivity rules. Apart from spiking interac-
tions via delayed static synapses, other connection schemes are also implemented
in NEST such as plasticity (neuro-modulated, see Potjans et al., 2010, and struc-
tural, see Diaz-Pier et al., 2016), gap junctions (Hahne et al., 2016), and continuous
(rate-based) interactions (Hahne et al., 2017).

Neuromorphic hardware

The term “neuromorphic hardware”, coined by Mead around 1990 (Mead, 1990), is
an umbrella term for multi-disciplinary research that aims for novel brain-inspired
hardware architectures and breaks with principles of the conventional von Neu-
mann hardware (von Neumann, 1993). Expectations for such new systems are
high and include massively parallel operation, asynchronous updates, low-power
consumption, fault-tolerance, dimensionality reduction, speed-up, and so forth
(Monroe, 2014; Ahmed and Sujatha, 2015; Furber, 2016b,a; Nawrocki et al., 2016;
Vanarse et al., 2016). Possible fields of application are neuroscience research but
also artificial intelligence, robotics, and machine learning in general. To date, a
large number of different design approaches are followed that range from emulat-
ing single neurons or synapses to large-scale neuromorphic computing systems,
use digital, analog or combined circuits, employ CMOS, organic electronic, mem-
ristive or hybrid devices, and tackle specific challenges posed by emerging limita-
tions of current general-purpose hardware. A direct comparison between all these
emerging systems is difficult due to different design goals coming with trade-offs
between desirable objectives and missing standard benchmarks (Nawrocki et al.,
2016; Furber, 2016a). To quantify energy consumption, a common measure is the
energy per synaptic event, that is, the energy needed to transmit a spike through
a synapse.

We here bring the attention to large-scale neuromorphic computing systems in-
tended to simulate large neuronal networks with biological realism that aim to
advance neuroscience research. Simulating a network with neuron and synapse
counts comparable to 10 % of the human cortex on the JUQUEEN supercomputer
located in Jülich, Germany, with NEST demonstrates the need for both accelerated
simulation times and a reduced power consumption: 1 s of biological times takes
40 min of wall-clock time and consumes about 2 MW of power (Kunkel et al.,
2014), while the the brain’s power consumption is ∼ 10 W (Herculano-Houzel,
2011). Such results render the investigation of slow processes like plasticity for
similar network sizes unfeasible on contemporary HPC systems. Four large-scale
systems are currently under consideration (Furber, 2016a): the IBM TrueNorth
chip (Hsu, 2014; Merolla et al., 2014) is developed for real-time cognitive applica-
tions with digital neuron models; the Stanford Neurogrid (Benjamin et al., 2014)
employs real-time sub-threshold analogue neural circuits; the Heidelberg Brain-
ScaleS system (Schemmel et al., 2010; Scholze et al., 2012) uses waver-scale above
threshold analogue neural circuits with a speed-up of 104 compared to biological
time; the Manchester SpiNNaker (Furber et al., 2014) system is a real-time digital
many-core system implementing neuron and synapse models in software running
on small embedded processors.



20 introduction

SpiNNaker resembles a conventional supercomputer as it is a scalable, mas-
sively parallel, highly configurable digital system. It is in particular designed for
the energy-efficient real-time simulation of large neural networks. To meet these
requirements, SpiNNaker integrates a large number of ARM processor cores (typ-
ically used in mobile and embedded applications) with a communication infras-
tructure optimized for sending many small data packages (such as single spikes)
to many destinations. Customized processor chips (Painkras et al., 2013) with
on-board multicast packet routers are combined with standard memory chips to
minimize the distances over which frequently accessed data is moved. Communi-
cation relies on routing tables using address-event-representation and data pack-
ets are exchanged via globally-asynchronous-locally-synchronous (Painkras et al.,
2012) operations. Simulations are controlled with high-level neural description lan-
guages, for example, PyNN (Davison et al., 2009) or Nengo (Bekolay et al., 2013),
on a host machine that is needed to map networks onto the SpiNNaker system and
to retrieve simulation results. The largest simulations performed with SpiNNaker
so far comprise up to 50 million (Sharp et al., 2014; Knight et al., 2016) and 86
million synapses (Stromatias et al., 2013).

Forward modeling of local field potentials

The main result of simulations implemented in software like NEST or run on neu-
romorphic hardware like SpiNNaker is the spiking activity of a large number of
interconnected point neurons. Hagen et al. (2016a) propose a method for the
forward-model prediction of extracellular potentials, that is, local field potentials,
from such spiking activity. Forward modeling builds on the hypothesis that the
complete knowledge of the spiking activity of all neurons is sufficient to predict
other measures like LFPs (Einevoll et al., 2013a). In their framework, each point
neuron has its equivalent multicompartment neuron, and spike trains are mapped
to synapse activations that translate into a distribution of transmembrane currents
(see, for example, De Schutter and Van Geit, 2009b). Volume conduction theory
(Nunez and Srinivasan, 2006; Einevoll et al., 2013b) then relates these current
sources to electric potentials in 3D space. Multicompartment neurons are modeled
in NEURON7 (Carnevale and Hines, 2006; Hines et al., 2009) and forward-model
computations rely on the tool LFPy8 (Lindén et al., 2014; Hagen et al., 2018).

1.4 visualization

Visualization is the communication of information with graphical representations
(Ward et al., 2010) that can enhance or even replace textual information. Graphical
representations promote an efficient and effective understanding of relationships
and processes. They are therefore an invaluable tool to gain and impart knowl-
edge in scientific workflows, and can support all steps from the acquisition of raw
data, across data processing and analysis, to the presentation of results. The opti-
mization problem of visually encoding complex data to best convey information
is non-trivial and constrained not only by features of the data itself, but also by

7 https://neuron.yale.edu
8 https://lfpy.readthedocs.io

https://neuron.yale.edu
https://lfpy.readthedocs.io
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A B
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Figure 1.6: Wave propagation in simulated spiking activity. Spatially structured networks
modeled as 2D cortical sheets with distance-dependent connection probabili-
ties and conduction delays. A Spike raster (top, sorted according to neuron
positions), average firing rate per neuron over time (middle), and distribution
of interspike intervals (bottom) for two distinct network states; adapted from
Voges and Perrinet (2012, Figure 4). Left: dense spiking, characterized by ex-
ceptionally high firing rates. Right: plane waves propagating in y−direction.
B Two 2D cortical sheets showing dots at spike positions for two different time
steps each; adapted from Voges and Perrinet (2012, Figure 6A–B). Left: circu-
lar spherical wave propagation. Right: plane wave of spikes propagating in
y−direction (as in panel A, right).
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available graphical representations or the choice of colors (Fairchild, 2013; Spence,
2014). For explorative and interactive visual analysis, as considered in this the-
sis, theoretical principles provide guidelines to approach multi-dimensional data
sets. One example is the ‘information-seeking mantra’ introduced by Shneider-
man (1996): overview first, zoom and filter, then details-on-demand. Another ex-
ample is the concept of ‘coordinated multiple views’ established by Wang Baldon-
ado et al. (2000) that suggests to study a complex conceptual entity with comple-
mentary visual representations in a coordinated way. The implementation of such
visualizations can be realized with basic or advanced plotting functions of stan-
dalone programs (see Gnuplot9, Janert, 2010) or libraries associated with common
programming languages (see Matplotlib for Python, Devert, 2014). An alternative
is dedicated visualization tools that are optimized for a specific type of data (for
example, VisNEST (Nowke et al., 2013, 2015) for the spiking activity of multi-area
network models with the example model by Schmidt et al., 2018).

The data type most relevant for this thesis comprises spatially and temporally
resolved neuronal activity resulting either from a network model simulation or an
experimental recording. Such data may be multi-modal, meaning that the data
can contain, for instance, discrete spike events of individual neurons, but also
continuous population signals like LFPs as recorded with a multi-electrode array
(Riehle et al., 2013). The data is high-dimensional as it accounts for up to three-
dimensional spatial information of individual neurons or electrodes, and a tempo-
ral component. Activity can evolve on multiple scales: from single-neuron dynam-
ics to slowly propagating features. In addition, the data may exhibit a high variabil-
ity across space and time with locally confined activity and transient phenomena,
for example, related to stimulation or behavior (Denker et al., 2018). Spike data
is commonly visualized in spike raster diagrams or dot displays (Abeles, 1982)
where rows show spike trains of different neurons and spike times are marked
by dots; compare the spike raster shown in Figure 1.5A. Spatial resolution can be
achieved by sorting neurons according to their location in physical space. In this
way, Voges and Perrinet (2012) resolve different spatiotemporal activity patterns
from a simulated spatially structured network such as dense spiking and planar
waves shown in Figure 1.6A. Another common way to visualize spatially resolved
spike data is to show sequences of temporal snapshots of the cortical sheet mod-
eled as in Figure 1.6B. This method has proven beneficial also for analog data
like the LFP phase patterns shown in Figure 1.3C; other examples are Mehring
et al. (2003, Figure 5), Yger et al. (2011, Figures 2 and 12), and Keane and Gong
(2015, Figure 1). Such routinely used graphic representation types are challenged
by more and more complex data (Antolík and Davison, 2018). For example, ad-
vances in experimental recording techniques allow the simultaneous recording of
an increasing number of neurons calling for novel analysis methods (Stevenson
and Kording, 2011). Likewise, neuronal network models may comprise up to a
realistic density of neurons and are organized in cortical layers (Potjans and Dies-
mann, 2014) or encompass even more biophysical detail (Markram et al., 2015).

9 http://www.gnuplot.info

http://www.gnuplot.info
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1.5 scope of the thesis

This thesis intends to advance the development of spatially structured cortical net-
work models in the framework of the integrative loop shown in Figure 1.1. For this
purpose, we present five complementary studies that all encompass multiple as-
pects of the entire loop, but focus in particular on the progress of one component
each: Workflow (Chapter 2), Simulation (Chapter 3), Data analysis (Chapter 4),
Theory (Chapter 5), and Model building (Chapter 6). The common aim of these
studies is to construct and analyze mesoscopic cortical network models accounting
for similar spatial extents and signals as recorded using multi-electrode arrays like
the Utah array with 10× 10 electrodes on 4× 4 mm2 (Section 1.1). Networks are
composed of excitatory and inhibitory spiking point neurons, based on the con-
cept of balanced random networks or the cortical microcircuit model by Potjans
and Diesmann (2014) as a multi-layer extension (Section 1.2). We target full-scale
neuronal networks, meaning, networks with realistic neuron and synapse densities,
and assume specific experimentally derived connectivity that depends on neuron
types, layers, and inter-neuron distances. Network simulations are implemented
in NEST, and we compare the simulation performance to the neuromorphic hard-
ware system SpiNNaker (Section 1.3). To capture spatiotemporal activity patterns
eventually produced by such models, we further develop concepts for visual data
analysis (Section 1.4). We also employ mean-field theory to reduce the dynamics
of spiking neuronal networks to averaged population dynamics or neural fields
to investigate the origin of observed spatiotemporal activity patterns (Section 1.2).
In addition, we assess the integration into web-based platforms of collaborative,
interdisciplinary workflows with similar complexity as illustrated by the loop in
Figure 1.1. The following expands on the concrete objectives of the individual
studies included.

Workflow

Chapter 2 addresses the challenges and demands for workflows for the acquisi-
tion and analysis of data in the interdisciplinary domain of Computational Neuro-
science.

These workflows grow in complexity and heterogeneity, and are increasingly be-
coming large collaborative efforts that require diverse data generation and process-
ing steps using different tools and HPC systems. We argue for the need of software
platforms integrating HPC systems that allow scientists to construct, comprehend
and execute workflows. As a use case we present a concrete implementation of
such a complex workflow, covering diverse topics including HPC-based simula-
tion using the NEST software, access to the SpiNNaker neuromorphic hardware
platform, complex data analysis using the Elephant library10, and interactive visu-
alization methods for facilitating further analysis. This workflow includes simu-
lations of the full-scale cortical microcircuit model (Potjans and Diesmann, 2014,
see Section 1.2) both with NEST and SpiNNaker as simulator back end and a first
comparison of the results. All tools used are embedded into a web-based software
platform under development by the Human Brain Project, called the Collabora-

10 http://elephant.readthedocs.io

http://elephant.readthedocs.io
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tory11. On the basis of this prototype implementation, we discuss the state of
the art and future challenges in constructing large, collaborative workflows with
access to HPC resources.

Simulation

Chapter 3 provides a quantitative performance comparison of NEST and SpiN-
Naker simulations in terms of accuracy, time-to-solution, and energy-to-solution.

The study uses the full-density microcircuit model by Potjans and Diesmann
(2014) as an example. The digital neuromorphic hardware SpiNNaker has been
developed with the aim of enabling large-scale neural network simulations in real
time and with low power consumption (Furber et al., 2014). Real-time perfor-
mance is achieved with 1 ms integration time steps, and thus applies to neural net-
works for which faster time scales of the dynamics can be neglected. By slowing
down the simulation, shorter integration time steps and hence faster time scales,
which are often biologically relevant, can be incorporated. We here describe the
first full-scale simulations of a cortical microcircuit with biological time scales on
SpiNNaker. With approximately 80, 000 neurons and 0.3 billion synapses, this
model is among the largest networks simulated on SpiNNaker to date. The scale-
up is enabled by recent developments in the SpiNNaker software stack that allow
simulations to be spread across multiple boards. A comparison with simulations
using the NEST software on a HPC cluster shows that both simulators can reach a
similar accuracy, despite the fixed-point arithmetic of SpiNNaker. We thus demon-
strate the usability of SpiNNaker for computational neuroscience applications with
biological time scales and large network size.

Data analysis

Chapter 4 deals with the challenge to inspect spatially and temporally resolved
activity data recorded from layered, spatially structured networks that resemble
recordings with multi-electrode arrays.

To cover the surface area captured by today’s experimental techniques and to
achieve sufficient self-consistency, such models can contain millions of neurons.
The interpretation of the resulting stream of multi-modal and multi-dimensional
simulation data calls for integrating interactive visualization steps into existing
simulation-analysis workflows. Here, we present a set of interactive visualiza-
tion concepts, called views, for the visual analysis of activity data in topological
network models, and a corresponding reference implementation VIOLA (VIsual-
ization Of Layer Activity). The software is a lightweight, open-source, web-based
and platform-independent application combining and adapting modern interac-
tive visualization paradigms, such as coordinated multiple views (Wang Baldon-
ado et al., 2000), for massively parallel neurophysiological data (Stevenson and
Kording, 2011). For a use-case demonstration we consider spiking activity data
of a two-population, layered point-neuron network model incorporating distance-
dependent connectivity subject to a spatially confined excitation originating from

11 http://collab.humanbrainproject.eu

http://collab.humanbrainproject.eu
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an external population. With the multiple coordinated views, an explorative and
qualitative assessment of the spatiotemporal features of neuronal activity can be
performed upfront of a detailed quantitative data analysis of specific aspects of the
data.

Theory

Chapter 5 investigates the origin of spatiotemporal patterns like traveling waves in
neural activity.

Although such patterns are frequently observed in experimental recordings, the
mechanisms underlying their generation are largely unknown. Previous studies
have investigated the existence and uniqueness of different types of waves or
bumps of activity using neural-field models, phenomenological coarse-grained de-
scriptions of neural-network dynamics (Coombes, 2005; Bressloff, 2012). But it
remains unclear how these insights can be transferred to more biologically realis-
tic networks of spiking neurons, where individual neurons fire irregularly (Softky
and Koch, 1993). Here, we employ mean-field theory (Brunel and Hakim, 1999;
Schuecker et al., 2015) to reduce a microscopic model of LIF neurons with distance-
dependent connectivity to an effective neural-field model. In contrast to existing
phenomenological descriptions, the dynamics in this neural-field model depends
on the mean and the variance in the synaptic input, both determining the ampli-
tude and the temporal structure of the resulting effective coupling kernel. For
the neural-field model we derive conditions for the existence of spatial and tem-
poral oscillations and periodic traveling waves using linear stability analysis; see
Ermentrout (1998, Section 7) and Bressloff (2012, Sections 3–4). We demonstrate
quantitative agreement between predictions of the analytically tractable neural-
field model and numerical simulations of both networks of nonlinear rate-based
units and networks of LIF neurons.

Model building

Chapter 6 finally presents the construction and analysis of a mesoscopic, multi-
layer, full-scale, cortical network model.

The interpretation of data recorded with multi-electrode arrays, that is, extra-
cellular potentials and spiking activity, calls for multiscale computational models
with corresponding spatial dimensions and signal predictions. Such models can
then facilitate the search of candidate mechanisms underlying experimentally ob-
served spatiotemporal activity patterns in cortex. We here extend the microcircuit
model by Potjans and Diesmann (2014) and the corresponding forward model for
LFP predictions by Hagen et al. (2016a) from an area of 1 mm2 to 4× 4 mm2. The
upscaling preserves the densities of neurons and local synapses, and introduces
distance-dependent connection probabilities and conduction delays. As detailed
experimental data on distance-dependent connectivity is partially lacking, we ad-
dress this uncertainty in model parameters by testing different parameter combina-
tions within biologically plausible bounds. Based on model predictions of spiking
activity and LFPs, we find that the upscaling procedure preserves the overall spik-
ing statistics of the original model and reproduces asynchronous irregular spiking
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(Softky and Koch, 1993) across populations and weak pairwise spike-train corre-
lations (Ecker et al., 2010) experimentally observed in sensory cortex. In contrast
with the weak spike-train correlations, the correlation of LFP signals is strong and
distance-dependent, compatible with experimental observations.

The last Chapter 7 summarizes the results of the individual studies, concludes
on the combined advancement, and provides an outlook for the concrete network
model and the more general problem of digitized modeling workflows in Compu-
tational Neuroscience.
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2.1 introduction

Workflows in the natural sciences that deal with the acquisition and analysis of
experimental or simulated data often comprise an intricate sequence of process-
ing steps, each of which requires the use of diverse software tools. The resulting
heterogeneity in terms of both the composition of steps of the workflows and the
diversity of tools employed generates a substantial degree of complexity that in-
creases with the number of researchers involved. The situation is compounded if
the tools themselves add an additional level of complexity, for instance requiring
scientists to be trained in using the software. In particular, in interdisciplinary set-
tings, users need to know how to integrate the various tools that may be unfamiliar
to them in terms of practical usage and/or the scientific processing step they per-
form. A commonly encountered scenario where this holds are workflows and tools
that rely on the capabilities of high-performance computing (HPC) systems, but
where the access to and usage of such systems is complicated for less experienced
users. Another problem dimension is added if requirements such as reproducibil-
ity or reusability are considered, for example in terms of version control of code
and data or provenance tracking of the analysis. Ad hoc approaches are bound to
fail as the complexity of the workflow increases. Instead, the heterogeneity and
the emerging complexity of such workflows call for user-friendly standards and
software tools that meet and integrate such requirements.

Interdisciplinary workflows in computational neuroscience are facing these prob-
lems. Computational neuroscience entails integrating and analyzing experimental
data, building network models for brain simulations, and using theory to develop
concepts concerning neuronal information processing. Datasets obtained from
both experiments and simulations are highly diverse in their internal structure
and content. Analysis tools are therefore often adapted to the specifics of the ex-
periment or the simulation study. Moreover, the analysis tools employ methods
with a different focus depending on the source of the data. For instance, while
simulation studies often exploit the fact that data are controlled and can be ac-
quired over long durations and large ensembles, experimentally obtained data are
often analyzed with respect to the inherent non-stationarity of the data and the be-
havioral protocols. Thus, in the attempt to bring experiment and simulation closer
together, a large array of heterogeneous data standards and tools exist. These need
to be merged and linked into workflows for analysis, in particular for comparison
of data from model and experiment. Moreover, workflows typically consist of
complex chains of processing steps that often require the use of HPC systems for
expensive computations, e.g., to run large-scale network simulations, to process
extensive data records, or to perform parameter scans. At the same time, they
necessitate the option of exploratory analysis in an interactive fashion (cf. Denker
and Grün, 2015).

To propose a solution for this problem domain, this work presents an example
of such an interdisciplinary and heterogeneous workflow in computational neu-
roscience. We describe in the following a realistic research question, derive its
concrete challenges, and provide a possible approach to tackle them. The research
question addressed is to what extent different simulators produce comparable re-
sults as they differ, for instance, in the biological detail they can represent, their
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underlying architecture, performance, flexibility, or other design goals like appli-
cation in robotics. We here compare two simulators, NEST and SpiNNaker, re-
lying on two different types of digital hardware, and outline a workflow which
is conceptually applicable for the comparison of other simulators as well. Both
simulators aim at simulations of large networks of simple spiking neuron mod-
els which are currently gaining significant relevance in the field of computational
neuroscience (van Albada et al., 2015). The simulator NEST1 (NEural Simulation
Tool, see Eppler et al., 2015; Gewaltig and Diesmann, 2007) is optimized to ef-
ficiently use existing HPC infrastructure and allows for exact and reproducible
simulations. It combines ease of use (Python interface) and runtime performance
(C++ kernel, multi-threading, and MPI-parallelism). Recent development of NEST
has notably reduced the memory requirements (Kunkel et al., 2014), thus fur-
ther facilitating large-scale simulations. In contrast, SpiNNaker2 (Spiking Neural
Network Architecture, see Furber et al., 2013b; Stokes et al., 2016) is a specific
neuromorphic hardware designed for biological real-time operation, low power
consumption, and scalability. The architecture of the SpiNNaker Neuromorphic
Computing Platform itself is inspired by biological neuronal networks. A large
number of low-powered and thus energy-efficient computation units are highly
connected together by an asynchronous communication network.

Since there are by design major differences in how NEST and SpiNNaker oper-
ate, it remains to be evaluated to what extent simulation results are comparable at
all. This suggests the refined research question (cf. above):

If a simulation of the same neural network model is run both on an HPC
system using NEST and on the neuromorphic hardware system SpiNNaker, are
the results the same?

When investigating the implications of this question in detail, the following dis-
tinct challenges emerge. First of all, access to HPC systems and the neuromorphic
hardware is required. It must also be guaranteed that the same network model is
simulated on both systems to enable a direct comparison of the simulation results;
this calls for a model description valid for both systems. The model development
itself needs to be performed under version control and the source code must be
accessible to all scientists involved. Assuming that both simulations have been run
successfully, the simulation output must be validated and compared using a suit-
able analysis tool. In order to evaluate the recorded series of spike times of each
simulated neuron, i.e., the spike trains, and to assess whether the results from
both simulations can be considered “the same”, a tool for statistical data analysis
is needed. A prerequisite for the analysis is that the simulation output is readily
accessible, for example after transferring it to the same data storage, and that the
data is available in the same format. It is further desirable to have the possibil-
ity of an interactive data analysis and a more sophisticated one relying on HPC.
Finally, visualization techniques are needed in order to convey a more intuitive
understanding of the expectedly complex analysis results.

In summary, the initially posed research problem can be broken down into a
list of separate demands which encompass the collaboration of experts from dif-
ferent scientific disciplines as well as a series of consecutive tasks that depend on

1 http://nest-simulator.org
2 http://apt.cs.manchester.ac.uk/projects/SpiNNaker

http://nest-simulator.org
http://apt.cs.manchester.ac.uk/projects/SpiNNaker
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access to and usage of specific tools. On first sight, one could argue that solutions
for the isolated problems already exist. To give an example, there are web-based
repository hosting services like GitHub3 for source code management and version
control which allow sharing repositories among researchers of different institu-
tions. Sumatra4 allows for automated tracking of scientific computations. For the
field of neuroscience, in particular, there are platforms to facilitate access, storage,
analysis, and exchange of data, such as the G-Node Data Portal5. Resources for
computational models of neural systems are Open Source Brain6 and ModelDB7.
The Neuroscience Gateway8 provides an opportunity for neuroscientists to use
HPC resources. When using such independent solutions, however, one faces ma-
jor problems in terms of provenance tracking. If there are no links between the
individual components, it will quickly become untraceable who did what, why,
and when. Since scientific progress is rarely straightforward, but includes trial
and error, repetitions, and iterative improvement, it is crucial to keep track of all
steps involved and their history. Here, we suggest integrating such components
into one collaboration platform in order to establish a stable and reproducible
workflow.

In this study, we demonstrate how such a workflow can be implemented ad-
dressing the aforementioned problems by integrating established and emerging
software tools using a web-based infrastructure. We will describe the workflow
consisting of the following steps: (i) simulate the activity generated by a model of
a cortical microcircuit (Potjans and Diesmann, 2014) using the NEST simulator, (ii)
simulate the same network model with identical parameters using the SpiNNaker
system, (iii) pool data on the centralized storage of the integrative software infras-
tructure, (iv) compare the resulting activity data using Elephant (Electrophysiology
Analysis Toolkit, see Yegenoglu et al., 2015, 2016b), and (v) interactively visualize
the analysis results. In the following, the individual steps comprising this work-
flow will be briefly highlighted, before we discuss the benefits and shortcomings
of the currently available implementation of this workflow based on an integrative
software architecture that is developed in the European FET Flagship “Human
Brain Project” (HBP).

2.2 workflow

The principal layout of the workflow that we defined and implemented to com-
pare the activity data coming from the classical NEST-based simulations, and the
neuromorphic SpiNNaker-based simulations is depicted in Figure 2.1. The work-
flow comprises a collaboration of different laboratories with different expertises
(marked by colored dots): HPC, neural network simulation, neuromorphic hard-
ware, data analysis, and visualization. Each of the five steps in Figure 2.1 is defined
by a set of methods and tools specific to these individual areas of expertise, and
needs to be integrated into a common infrastructure that makes them accessible

3 https://github.com
4 http://neuralensemble.org/sumatra
5 http://www.g-node.org
6 http://opensourcebrain.org
7 https://senselab.med.yale.edu/modeldb
8 https://www.nsgportal.org

https://github.com
http://neuralensemble.org/sumatra
http://www.g-node.org
http://opensourcebrain.org
https://senselab.med.yale.edu/modeldb
https://www.nsgportal.org
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for cooperative work. All components integrated in the workflow are based on
or accessible via Python, a programming language which is becoming commonly
used in computational neuroscience for both simulation and data analysis (Davi-
son, 2009). Furthermore, we incorporate tools like NEST and Elephant which fol-
low standardized development processes in software engineering, e.g., test-driven
development and continuous integration.

We embedded our workflow into an integrative software platform called the
“HBP Collaboratory”9. The Collaboratory is a web-based portal which provides
a common entry point to facilitate collaboration by providing a shared project
space (termed the “Collab”) for groups of scientists. Specifically, for our project
we created the “NEST SpiNNaker Elephant Demo” Collab10, which enables us to
share simulation data and analysis results through the centralized “Collab stor-
age”, to use all relevant applications including access to HPC infrastructures and
neuromorphic hardware, and to document the workflow. For interactive Python
programming, the Collaboratory provides Jupyter Notebooks11 that run directly
in the Collab and have NEST and Elephant preinstalled by default. The HPC
resources required for simulations and analyses are launched via the Collabora-
tory’s internal task framework as jobs (“tasks”) which are sent to predefined com-
pute clusters or supercomputers. Finally, the Collaboratory offers basic provenance
tracking, providing the ability to reenact an already executed task.

The specific network we simulate is a full-scale neural network model of a corti-
cal microcircuit (Potjans and Diesmann, 2014). Full-scale means that the natural
density of neurons and synapses of the biological circuit is preserved. The mi-
crocircuit represents 1 mm2 of cortex and contains around 80, 000 spiking leaky
integrate-and-fire point neurons connected by around 0.3 billion synapses in four
cortical layers (L2/3, L4, L5, L6). Each layer comprises an excitatory and an in-
hibitory neuron population which are interconnected with cell-type- and layer-
specific connection probabilities derived from experimental data on early sensory
cortex. The model is well-suited for our workflow for two reasons: First, it is of
neuroscientific interest since it is a minimal microcircuit that combines a realistic
number of synapses per neuron with sparse network connectivity as found in cor-
tex, exhibits realistic spiking activity, and serves as a prototype for larger networks
(see Schmidt et al., 2017 for an example). Second, it fits onto both systems in terms
of computational resources. More precisely, the network size indicates HPC for
the NEST simulations, although it is still considered to present a small workload
for HPC systems. For SpiNNaker, the model is an interesting use case because it
requires the parallel use of multiple boards (van Albada et al., 2016). For compara-
bility of the simulation results, we use a common model implementation based on
PyNN and develop the source code using the version control system git12. PyNN
is a Python API for simulator-independent neuronal network model specification
(Davison et al., 2009, 2013, 2015). The PyNN API enables writing generic code
to control different simulators such as NEST, NEURON, Brian and also neuromor-
phic hardware (Brüderle et al., 2011), including the SpiNNaker platform. In the

9 http://collab.humanbrainproject.eu
10 https://collab.humanbrainproject.eu/#/collab/507/nav/6326

11 http://jupyter.org
12 https://git-scm.com

http://collab.humanbrainproject.eu
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http://jupyter.org
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Figure 2.1: Workflow overview. A network simulation of a cortical microcircuit model is
run using both NEST (1) and SpiNNaker (2). Simulation results are transferred
to a common storage (3) and compared utilizing functionalities of the Elephant
library (4). Complex analysis results are visualized to gain further insight (5).
The middleware UNICORE is used to access HPC systems. Colored dots on top
of each box indicate the disciplines involved. For example, supercomputers
(red dots) are used to run a NEST simulation and to compare results using
Elephant.
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case of SpiNNaker, a software library is used to break down the Python network
description into small chunks each of which can be run on a core, and to route
communications between the parts of the network.

As the first step of the workflow (Figure 2.1, Step 1) we run the microcircuit
simulation on an HPC system using NEST. We established two ways to access
HPC resources from within the Collaboratory: using the task framework or inter-
actively from a Jupyter Notebook running within the Collab. Specific simulation
and network parameters such as the simulation duration (in our case: 10 s) can
be configured via a Jupyter Notebook before submitting the job. Both the task
framework and the Jupyter Notebooks use UNICORE13 as middleware that yields
secure and seamless access to supercomputing and data resources from a web-
based environment such as the Collaboratory. UNICORE provides a wide range of
features for HPC job submission and management as well as data transfer and han-
dling. Concretely, the microcircuit simulation runs on JUQUEEN14, a supercom-
puter with an IBM BlueGene/Q architecture at the Jülich Supercomputing Centre
(JSC), Forschungszentrum Jülich, Germany and is one of the fastest supercomput-
ers in Europe and worldwide. Gathered simulation results, i.e., a down-sampled
set of spike data from 100 excitatory and 100 inhibitory neurons from each of the
four simulated cortical layers (800 neurons in total), are automatically copied from
the supercomputer to the central Collab storage (Step 3).

In the second step of the workflow (Step 2), the simulation is run on (a part of)
the half-million-core SpiNNaker machine located in Manchester, UK, with identi-
cal parameters. The Collaboratory integration in this case is implemented via the
Neuromorphic Job Manager App. This allows users to submit PyNN scripts di-
rectly, through a git repository, or as a compressed archive of files using a webpage-
based user interface. It is also possible to submit jobs directly from a Python script
through the hbp_neuromorphic_platform15 library. Jobs for execution on SpiN-
Naker are periodically retrieved and run on a virtual machine cluster situated
close to the SpiNNaker machine. Results are then retrieved from the machine,
stored locally, and finally transferred to the Collab storage via the Job Manager
App when requested (Step 3).

In order to compare the simulation results of the two systems and to character-
ize potential differences, we analyze the statistical features of the two datasets us-
ing the Elephant library (Step 4). Elephant is a community-centered, open-source
Python library for analyzing multi-scale data on brain dynamics from experiments
and simulations. The focus is on tools for the analysis of electrical activity, such as
single-unit or massively parallel spike train data and local field potentials (LFPs).
The scope of the library covers the analysis of analog signals (including time-
domain and frequency-domain methods), spike-based analysis (e.g., spike train
correlation, spike pattern analysis), and methods combining both signal types (e.g.,
spike-triggered averaging of an LFP signal). We first execute a task on the Collab
to convert the data into the HDF5

16 format and save the result. This data format
is compatible with the Neo library (Garcia et al., 2016, 2014) which serves as a

13 https://www.unicore.eu
14 http://www.fz-juelich.de/ias/jsc/EN
15 https://pypi.python.org/pypi/hbp_neuromorphic_platform
16 https://www.hdfgroup.org/hdf5

https://www.unicore.eu
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https://www.hdfgroup.org/hdf5
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Figure 2.2: The data obtained from the NEST (A) and the first (B) and second (C) itera-
tion of the SpiNNaker simulations are presented as raster displays. Each dot
indicates a spike at its time of occurrence and each line represents the firing
activity of a neuron. Neurons are grouped into different cortical layers (L2/3,
L4, L5, L6) and sorted by neuron type, i.e., excitatory (EX) and inhibitory (IN).
The histograms at the bottom and right side show the population activity and
the firing rate of the neurons, respectively.

foundation of Elephant. The internal structure of the HDF5 file complies with the
Neo17 architecture introduced in version 0.2 and is created using the Neo HDF5

I/O18.
Next, we compare the two simulation results in an interactive fashion using

the Elephant library within a Jupyter Notebook. In particular, we consider fea-
tures that are typically analyzed in neuroscience, such as the irregularity of the
individual spike trains and correlations between pairs of neurons. A first visual
impression (Step 5) of the firing behavior of individual neurons and the neuronal
populations is provided by dot displays as shown for NEST in Figure 2.2A and for
SpiNNaker in Figure 2.2B. Each spike is represented as a dot at the time of its oc-
currence. Multiple neurons are displayed below each other in different lines. The
summed population activity is shown in the histogram below the dot display of
the respective layer. On the right, the average firing rates of the individual neurons
are depicted. The visualized spiking activity of NEST and SpiNNaker is qualita-
tively comparable. As we compare different network realizations on NEST and
SpiNNaker, the neurons do not correspond one-to-one between the two systems,
and hence, statistical measures for comparison are needed.

To capture properties of the coordination between individual neurons, we also
computed Pearson correlation coefficients, i.e., the zero-delay correlation coeffi-
cients between all pairs of neurons in each population. Their distributions are
visualized in Figure 2.3A,B. The shapes of the distributions agree between the two
types of simulations—except for a remarkable difference for the layer four (L4)
neurons (second row of Figure 2.3). In the process of tracking down the origin

17 http://neo.readthedocs.io/en/0.4.1/core.html#grouping-objects
18 http://neo.readthedocs.io/en/0.4.1/io.html#neo.io.NeoHdf5IO
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Figure 2.3: The distributions of Pearson correlation coefficients are shown for the
NEST (A) and and the two SpiNNaker (B and C) simulations The correla-
tion coefficients were computed for all pairs of recorded neurons of the same
layer and neuron type. The y-axis is truncated for comparability between the
different neuron populations.

of this variation, a slight improvement in the simulation and recording routine of
SpiNNaker was made. With respect to the dot displays, the dataset resulting from
this iteration step, shown in Figure 2.2C, does not exhibit striking differences to
the initial results that are noticeable by eye. However, the distribution of correla-
tion coefficients (Figure 2.3C) approaches the ones from the NEST simulation in
Figure 2.3A in L4 much better.

We hence see that rather simple analysis methods already suffice to reveal promi-
nent differences between the simulation results. To access the subtle differences,
however, we aimed to uncover the full correlation structure of the activity using
more sophisticated techniques. Since these demand HPC resources due to ex-
pensive surrogate generation and multiple hypothesis testing, we execute a task
that uses UNICORE to send the data to the HPC system JURECA, located at the
Forschungszentrum Jülich, and to parallelize the analysis (Step 4).

After completion, the results are again transferred to the Collab storage. Due to
the complicated nature of the resulting data, we decided to visualize them using
a special tool designed to interactively probe the correlation structure in order to
obtain an overview and to gain further insight. To this end, the data are staged
to a visualization server using dCache19, a distributed file system. This enables
the use of high-fidelity visualization tools, e.g., based on the visualization toolkit
ViSTA20 (Virtual Reality Toolkit). Such a tool can interpret the data as a graph
and render it as a node-link diagram, with the nodes representing the neurons
and the weighted edges representing the correlations. The correlation value serves
as attraction criterion in a force-directed layout algorithm that results in visual
clusters of neurons where neurons are spatially close if they are strongly correlated.

19 https://www.dcache.org
20 http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/Virtuelle-

Realitaet/Infrastruktur/∼fgmo/ViSTA-Virtual-Reality-Toolkit/?lidx=1

https://www.dcache.org
http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/Virtuelle-Realitaet/Infrastruktur/~fgmo/ViSTA-Virtual-Reality-Toolkit/%3Flidx%3D1
http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/Virtuelle-Realitaet/Infrastruktur/~fgmo/ViSTA-Virtual-Reality-Toolkit/%3Flidx%3D1
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This helps the analyst to identify and compare possible correlation patterns in the
statistical data. Using a web-based streaming library, the visualization tool could
deliver the rendered images to a website integrated into the Collab.

2.3 discussion

Our general aim is to map an interdisciplinary workflow involving multiple steps
and tools to a common platform and to address major problems emerging from
this setting: heterogeneous data, diverse knowledge of the participants in the work-
flow, the involvement of complex tools and infrastructures as well as aspects such
as reproducibility, reusability and iterative refinement. The requirements for such a
platform are to provide a collaborative environment which allows one to integrate
and easily access software tools, libraries, and data, as well as HPC systems which
are needed for demanding simulations and analyses. As an example, we demon-
strated a concrete working solution implemented in the HBP Collaboratory and
responded to the list of challenges identified in the introduction. From within the
Collaboratory, we established access to the HPC systems JUQUEEN and JURECA
by means of the middleware UNICORE. Likewise, a connection to a SpiNNaker
machine was realized via the Neuromorphic Job Manager App. PyNN provides
an interface to NEST and SpiNNaker and hence allows for a common model de-
scription, developed under version control with git. The simulation output from
both systems was obtained in the HDF5 data format and, once transferred to the
common Collab storage, it was read by the Elephant library which offers a variety
of analysis methods. Jupyter Notebooks in the Collab were used for interactive
Python programming and, as a last point, analysis results were visualized. In sum-
mary, our workflow comprises a variety of tools and resources which themselves
are widely used within the communities involved. Our Collab is public within
the Collaboratory, i.e., other users can inspect the developed tasks and Jupyter
Notebooks as documented there or integrate them into their own Collabs.

Using a common framework usually restricts the user to available tools, but
a versatile structure allows for adaption and extension if requested by the user.
For example, a continuous exchange between us (computational neuroscientists as
users and software engineers as developers of the Collaboratory) resulted in the
integration of Jupyter Notebooks into the portal. This shows the importance of a bi-
lateral communication between developers and users for a successful and ongoing
development of a collaboration platform. Use cases based on the daily practice of
the users are a main component of this development. During the implementation
of the workflow into the Collaboratory, we not only aimed at the full integration
of tools like Jupyter Notebooks, but also at establishing interfaces to tools outside
the portal, for example by making supercomputers accessible via the middleware
UNICORE. Furthermore, we accounted for different data types and formats with
a conversion task to enable applying the same analysis functions to data obtained
from different sources.

In addition to the inherent heterogeneity of workflow components, reproducibil-
ity and reusability are considered. For single workflow steps, we use tools that
fulfill criteria of quality assurance, e.g., continuous integration and test-driven de-
velopment. The task framework of the Collaboratory already allows provenance
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tracking to some extent, but the whole workflow is not fully traceable, yet. Thus,
we envision that all individual steps of the workflow can be tracked from the be-
ginning of the simulations to the end of the visualization The workflow can be
improved through an iterative adjustment of single steps and parameters. There-
fore, we need a flexible workflow implementation that allows for easy integration
of individual parts.

Transparency of the workflow is an important property of a successful integra-
tion since it allows collaborators to comprehend and even carry out different steps
of the workflow. The web interface of the Collaboratory serves as a common access
point for collaboration where we collect documentation together with code, data,
and results, as well as provenance information. However, a complete representa-
tion of how individual steps of the workflow are connected within the Collab is
still ongoing work.

A possible next step is to set up a test battery to quantify detailed differences
in results complementing the visual inspection in the interactive analysis. Further-
more, having common metadata (e.g., layer of neuron) for the data simulated by
the two systems is important for the follow-up analysis tools. Here, we aim to
make use of the odML metadata framework which is also used for experimental
data (Grewe et al., 2011; Zehl et al., 2016). We seek a shared terminology which
allows for easy handling and manipulation of the data, and avoids misinterpreta-
tions of vocabulary.

In contrast to well-established groupware solutions, such as BSCW (Appelt,
1999) for project management and file sharing or Moodle (Dougiamas and Taylor,
2003) used in the context of academic teaching, the Collaboratory offers a domain-
specific integration of tools and middleware. It concentrates on content-based
communication (e.g., sharing data and documentation) instead of direct communi-
cation using video or audio conference tools and therefore offers a single point of
access for tools and data used in the neurosciences. The latter makes it especially
useful for this scientific community and thus differentiates it from existing more
general solutions.

Taken together, we believe that the workflow implementation presented in this
work provides a promising vista of how a collaborative system such as the HBP
Collaboratory, supported by a chain of compatible software tools, can help sci-
entists to come together in large, interdisciplinary, and collaborative research en-
deavors. Indeed the availability of technologies that allow for large collaborative
research endeavors is expected to become an indispensable asset as neuroscience
moves towards questions that can no longer be handled by a single person. Con-
sidering the diversity of approaches and data types in the field of neuroscience,
even the workflow presented here, consisting of a collaborative effort of eighteen
researchers distributed over six institutes, may be considered a small collaboration
in the future. These developments are expected to produce new challenges, e.g.,
the need for more dynamic ways of setting up workflows, better visualizations
of the provenance information for generated data, or the ability to control more
heterogeneous HPC environments required by the individual components of the
workflows.
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3.1 introduction

Tools for simulating neural networks fall into two categories: simulation software
and neuromorphic hardware. The available features, the speed at which the sim-
ulation engine arrives at the solution, and the power consumption differ between
tools, but the tools are rarely systematically compared. To find out where we stand
and to provide guidance for future research, we need to learn how to port network
models discussed in the current literature from conventional software implementa-
tions to neuromorphic hardware and how to quantitatively compare performance.

The distinction between simulation software and neuromorphic hardware is not
clear-cut. Next to the hardware, a neuromorphic system readily usable by neurosci-
entists requires a multi-level software stack engaging in tasks from the interpreta-
tion of a domain-specific model description language to the mapping of the neural
network to the topology of the neuromorphic hardware. Reversely, simulation
software profits from computer hardware adapted to the microscopic parallelism
of neural networks with many computational cores and a tight integration of pro-
cessing hardware and memory. For the purpose of the present study we refer
to simulation software as a system that runs on conventional high-performance
computing hardware without dedicated neuromorphic hardware.

The time as well as the energy required to arrive at the solution are becoming
relevant as neuroscientists turn to supercomputers to simulate brain-scale neural
networks at cellular resolution. Today’s supercomputers require tens of minutes to
simulate one second of biological time and consume megawatts of power (Kunkel
et al., 2014; Jordan et al., 2018). This means that any studies on processes like
plasticity, learning, and development exhibited over hours and days of biological
time are outside our reach.

Although this is sometimes forgotten, not only speed and power consumption
but also the accuracy of the simulation results is of importance: a highly inaccu-
rate solution can be obtained arbitrarily fast. In other words, a statement on the
wall-clock time required to arrive at the solution is meaningless without a state-
ment on the achieved accuracy. Like runtime, energy consumption depends on
the level of simulation accuracy. Low energy consumption is emphasized in the
development of neuromorphic hardware, but accuracy is generally not explicitly
taken into account when characterizing energy consumption. How one quantifies
accuracy should be determined in the light of the trade-off between the combina-
tion of precision and flexibility on the one hand and the combination of speed and
energy efficiency on the other hand which is the main idea behind dedicated hard-
ware. If a dedicated hardware trades precision for speed and energy efficiency,
for instance by having noisy components or not delivering every single spike, this
is acceptable if the given precision still yields the desired network behavior. The
relevant issue is then not whether but how to assess accuracy, that is, defining how
the network should behave.

Here, we consider as a use case the digital neuromorphic hardware SpiNNaker
(Furber et al., 2013b) and the neural network simulation software NEST (Gewaltig
and Diesmann, 2007), both in use by the neuroscientific community and support-
ing the simulator-independent description language PyNN (Davison et al., 2009).
Both NEST and SpiNNaker are designed to enable the simulation of large neural
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network models. SpiNNaker enhances its efficiency through asynchronous update
where spikes are processed as they come in and are dropped if the receiving pro-
cess is busy over several delivery cycles. It is especially suited to robotic applica-
tions enabling the simulation to operate in real-time, but since it is general-purpose,
in principle any type of neural network model can be simulated, including biolog-
ical and artificial neural networks. In the context of the European Human Brain
Project (HBP) a large system is under construction at the University of Manch-
ester targeting brain-scale simulations. The networks in question may have static
synapses or include plasticity. For simplicity, and since there is a close relationship
between simulator performance with and without synaptic plasticity (e.g., Knight
and Furber, 2016), we here focus on a non-plastic network: a spiking cortical mi-
crocircuit model (Potjans and Diesmann, 2014).

The microcircuit is regarded as unit cell of cortex repeated to cover larger areas of
cortical surface and different cortical areas. The model represents the full density
of connectivity in 1 mm2 of the cortical sheet by about 80,000 leaky integrate-and-
fire (LIF) model neurons and 0.3 billion synapses. This is the smallest network
size where a realistic number of synapses and a realistic connection probability
are simultaneously achieved. The capability to simulate this model constitutes a
breakthrough as larger cortical models are necessarily less densely connected, with
only a limited increase in the number of synapses per neuron for increased model
size. Consequently, from this network size on, the computer memory required to
store the synaptic parameters grows close to linearly with network size (Lansner
and Diesmann, 2012). Further, a simulation technology can be devised such that
the memory consumption of a compute node is independent of the total number
of neurons in the network (Jordan et al., 2018). This renders the total memory
consumption approximately directly proportional to the number of neuronal and
synaptic elements in the model. The model already serves as a building block for
a number of further studies and larger networks (Wagatsuma et al., 2011; Schmidt
et al., 2016; Cain et al., 2016; Hagen et al., 2016a; Schwalger et al., 2017), and a
first comparison of the simulation results of NEST and SpiNNaker for this model
has served as a test case for a workflow implementation on the collaboration plat-
form of the Human Brain Project (Senk et al., 2017b). The original implementation
uses NEST, which can also handle much larger networks with trillions of synapses
(RIKEN BSI, 2013; Kunkel et al., 2014; Forschungszentrum Jülich, 2018; Jordan
et al., 2018) under the increased memory consumption and run time costs indi-
cated above. The previously largest simulations on SpiNNaker comprised about
50 million (Sharp et al., 2014; Knight et al., 2016) and 86 million synapses (Stro-
matias et al., 2013). Thus, the present study describes the largest simulation on
SpiNNaker to date, and also the first to implement the connectivity at full biologi-
cal density.

SpiNNaker achieves real-time performance for an integration time step of 1 ms,
which is suited to networks with dynamics on time scales sufficiently greater than
1 ms. While a resolution of 1 ms generally suffices for today’s applications in
robotics and artificial neural networks, a time step of 0.1 ms is typical for neuro-
science applications due to the neurobiological time scales and the need to avoid
artifacts of global synchronization (Morrison et al., 2007b). The model of Pot-
jans and Diesmann (2014) has synaptic time constants of 0.5 ms, and therefore
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requires integration time steps smaller than this. The current software controlling
SpiNNaker enables using small time steps by slowing down the simulation. In
the present work, we show how this feature in combination with further improve-
ments of the software stack allows the cortical microcircuit model to be accurately
integrated. This result demonstrates the usability of SpiNNaker for large-scale
neural network simulations with biologically realistic time scales.

To assess accuracy, we compare simulation results with a reference solution ob-
tained with an alternative solver (Hanuschkin et al., 2010; Morrison et al., 2007b)
available in the NEST simulation code where spikes are not restricted to the grid
spanned by the computation step size. The spike times from the cortical microcir-
cuit model obtained with different simulation engines can only be compared in a
statistical sense. Therefore we also look at single-neuron accuracy (Henker et al.,
2012). Here, we consider both the 0.1 ms time step used in the microcircuit simu-
lations, and 1 ms, the original design specification of SpiNNaker, and further, we
investigate different spike rates to vary the relative contributions of subthreshold
and spiking activity. This is relevant because NEST integrates the subthreshold dy-
namics exactly (Rotter and Diesmann, 1999), whereas SpiNNaker uses exponential
integration (MacGregor, 1987), in which the synaptic currents are treated as piece-
wise constant. For the microcircuit model, we characterize accuracy based on dis-
tributions of spike rates, spike train irregularity, and correlations. Spike rates are
chosen as a first-order measure of neural activity, and correlations together with
spike train irregularity are relevant because cortical activity is known to be asyn-
chronous irregular (van Vreeswijk and Sompolinsky, 1998); mesoscopic measures
of brain activity like the local field potential (LFP) primarily reflect correlations in
the microscopic dynamics (Hagen et al., 2016a); and correlations in spiking activity
drive further aspects of network dynamics like spike-timing-dependent plasticity
(STDP; Morrison et al., 2007a) underlying system-level learning. The three afore-
mentioned measures of spiking activity are also the focus in the work of Potjans
and Diesmann (2014).

Previous work has evaluated the energy consumption of various types of proces-
sors (Hasler and Marr, 2013) including SpiNNaker (Sharp et al., 2012; Stromatias
et al., 2013) in relation to the number of operations performed. Here, we take a
different approach, comparing the energy consumption of two simulation engines
under the condition of comparable accuracy. This accuracy depends not only on
the number of operations of a given precision, but also on the algorithms employed.
For comparison with previous results (Sharp et al., 2012; Stromatias et al., 2013),
we further derive the energy consumed per synaptic event.

In the following, we compare the accuracy of single-neuron LIF simulations
between NEST and SpiNNaker, describe the adjustments made to SpiNNaker to
enable the cortical microcircuit model to be implemented, and compare both simu-
lators in terms of accuracy, runtime, and energy consumption. We also discuss the
sources of differences in simulation results and performance between NEST and
SpiNNaker. Thus, our study enables neuromorphic engineers to learn more about
the internal workings of SpiNNaker and the implications for performance, and
brings SpiNNaker closer to being a tool of choice for computational neuroscience
use cases with large network size and short biological time scales.
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Figure 3.1: Schematic illustration of the microcircuit model of early sensory cortex. The
model represents 1 mm2 of cortex with the full density of neurons and synapses,
for a total of 77,169 neurons and about 3× 108 synapses. Each of the layers
2/3, 4, 5, and 6 contains an excitatory (E) and inhibitory (I) population of leaky
integrate-and-fire model neurons. All neurons receive an external Poisson drive
representing inputs from the rest of the brain. Figure adapted from Potjans and
Diesmann (2014) with permission.

3.2 methods

3.2.1 The leaky integrate-and-fire neuron model

The cortical microcircuit model uses leaky integrate-and-fire (LIF) model neurons
with synaptic currents modeled as jumps followed by an exponential decay. The
subthreshold dynamics of each neuron is given by

τm
dVi

dt
= − (Vi − EL) + Rm Ii(t),

τs
dIi

dt
= −Ii + τs ∑

j
Jijsj(t− dj),

where τm and τs are membrane and synaptic time constants, EL is the leak or
resting potential, Rm is the membrane resistance, Vi is the membrane potential
of neuron i, Ii is the total synaptic current onto the neuron, Jij is the jump in

the synaptic current due to a single spike from neuron j, sj = ∑k δ(t − tj
k) are

the incoming spike trains, and dj is the transmission delay. When Vi reaches a
threshold θ, a spike is emitted, and the membrane potential is clamped to a level
Vr for a refractory period τref. Table 3.1 lists the single-neuron parameters.

NEST integrates this model using exact integration (Rotter and Diesmann, 1999),
so that the subthreshold dynamics precisely follows the analytical solution. The
spikes can either be constrained to the time grid or interpolated between grid
points to yield precise spike times (Hanuschkin et al., 2010; Morrison et al., 2007b).
In the present study, we consider both options, the latter providing a reference so-
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membrane time constant τm 10 ms
synaptic time constant τs 0.5 ms

refractory period τref 2 ms
membrane resistance Rm 40 MΩ

leak potential EL −65 mV
threshold θ −50 mV

reset potential Vr −65 mV

Table 3.1: Parameters of the leaky integrate-and-fire model neurons used in the simula-
tions.

lution. For reasons of modularity, SpiNNaker separates the neuron and synapse
dynamics and uses exponential integration (MacGregor, 1987; reviewed in Rotter
and Diesmann, 1999), in which the input current to the membrane potential equa-
tion is treated as piecewise constant. The synaptic currents are decayed over one
time step before being added to the input, to ensure that the total charge trans-
ferred per synaptic event is Jτs, as in the exact solution.

3.2.2 Single-neuron tests

Simple systems such as single LIF model neurons allow a deterministic assess-
ment of simulation accuracy (Henker et al., 2012). We assess the accuracy of NEST
and SpiNNaker by comparing with precise solutions the subthreshold and spik-
ing dynamics of single LIF model neurons receiving excitatory Poisson input with
synaptic strength 87.8 pA, equal to the mean synaptic strength for the excitatory
connections between most populations in the network model. The study consid-
ers both integration time steps of 0.1 ms to match the network simulations, and
1 ms, matching the primary design specification of SpiNNaker. Two input rates
are investigated: 8,000 spikes/s (giving an output rate of around 17 spikes/s) and
10,000 spikes/s (giving an output rate of around 47 spikes/s), to study different
proportions of subthreshold activity and spiking. As in the network simulations,
the input spikes are constrained to the time grid. The simulations with the lower in-
put rate are run for 16 s and those with the higher input rate for 4 s biological time
to yield comparable total numbers of spikes for the low-rate and high-rate simula-
tions, and a total of 10 simulations with different random seeds are performed for
each setting. The other neuron parameters are as in the network model.

We characterize the accuracy of the single-neuron simulations in four ways, in
each case comparing with NEST simulations with precise spike timing: 1) cross-
correlation histograms of spike times with bin width equal to half the integration
time step; 2) Pearson correlation coefficients between membrane potential traces
recorded at the integration time steps; 3) the average percentage lead or lag in
spike times; and 4) the root mean square error (RMSE) of the spike times after cor-
recting for the average lead or lag. To determine the accumulated percentage lead
or lag in spike times, we first find N = min

(
Nspikes [precise] , Nspikes [discrete]

)
,

where discrete refers to simulations with SpiNNaker or with NEST with spikes
constrained to the grid and Nspikes is the total number of spikes in the respective
simulation. The accumulated fractional lead or lag in spike times is then com-
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puted as
[
tdiscrete(N)− tprecise(N)

]
/tdiscrete(N), where tprecise(N) and tdiscrete(N)

refer to the time of the Nth spike in the respective simulation. The correction for
the accumulated lead or lag before determining the RMSE is performed to obtain a
measure of the variability of the spike times independent of overall rate differences
between simulation methods. It consists of warping the spike times in the discrete
simulation by the factor tprecise(N)/tdiscrete(N) such that the last spike times con-
sidered coincide. Denoting the resulting spike times as t∗discrete, the RMSE is then

determined as
√

∑N
i=1
(
t∗discrete(i)− tprecise(i)

)2 /N.

3.2.3 Cortical microcircuit model

The model, taken from Potjans and Diesmann (2014), represents the neurons un-
der 1 mm2 of surface of generic early sensory cortex, organized into layers 2/3, 4,
5, and 6 (see Figure 3.1). It comprises 77,169 neurons connected via approximately
3 × 108 synapses, with population-specific connection probabilities based on an
extensive survey of the anatomical and physiological literature. The connectivity
is otherwise random, drawing both source and target neurons with replacement.
Each layer contains one excitatory and one inhibitory population of LIF model neu-
rons. We denote the eight populations by 2/3E, 2/3I, 4E, 4I, 5E, 5I, 6E, and 6I. The
synaptic strengths Jij are normally distributed with mean ± standard deviation
of 351.2 ± 35.21 pA for inhibitory source neurons and 87.8 ± 8.78 pA for excita-
tory source neurons except for connections from 4E to 2/3E, which have weights
175.6± 8.78 pA. Transmission delays are normally distributed with mean ± stan-
dard deviation of 1.5± 0.75 ms for excitatory source neurons and 0.75± 0.375 ms
for inhibitory source neurons, truncated at the simulation time step. All neurons
receive independent Poisson inputs with population-specific rates reflecting con-
nections from adjacent cortex, other cortical areas, and subcortical regions. For
further details we refer to Potjans and Diesmann (2014).

We run the simulations over 10 s of biological time with a time step of 0.1 ms,
the original time step used for simulating the model and one of the time steps for
which SpiNNaker is designed. In one set of simulations, the Poisson input of the
original model is replaced by a DC drive corresponding to its mean current. The
second set of simulations uses Poisson input, drawn independently for each sim-
ulation. A 1 s transient is discarded before analysis. The accuracy of the network
simulations is assessed by statistical comparisons with NEST simulations with pre-
cise spike timing, which avoid synchronization artifacts (Hanuschkin et al., 2010;
Morrison et al., 2007b). Specifically, we compute the Kullback-Leibler divergence
DKL between three sets of smoothed histograms for each neural population; 1)
single-neuron firing rates averaged over the simulation duration; 2) single-neuron
coefficients of variation of interspike intervals (CV ISI); 3) Pearson correlation coef-
ficients between spike trains binned at 2 ms (corresponding to the refractory time)
from all disjoint neuron pairs within a subpopulation of 200 neurons, which pro-
vides a trade-off between statistical precision and computation time. For each
neural population and dynamic variable, the histogram bin sizes are determined
using the Freedman-Diaconis rule (Freedman and Diaconis, 1981) on the his-

tograms for NEST with precise spike timing, bin size = 2
IQR(x)

3
√

n
with IQR the
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interquartile range and n the number of observations. For each population and
variable, we determine DKL(P||Q) where Q represents the grid-based NEST or
SpiNNaker data, and P represents the data from NEST with precise spike timing.
The histograms are first smoothed via Gaussian kernel density estimation using
the scipy.stats.gaussian_kde function with bandwidth 0.3 s−1 for the rates, 0.04 for
the CV ISIs, and 0.002 for the correlations. To avoid excessive contributions of
low-probability bins due to division by vanishingly small numbers, bins where
the normalized histograms have values smaller than 10−15 are ignored. We do
not perform significance tests on the results, because we know the ground truth:
the simulation methods differ. The comparisons between the simulation methods
therefore focus on the sizes of the differences between the outputs.

3.2.4 Implementation

The network model was originally implemented in the native simulation language
interpreter (SLI) of NEST. To allow execution also on SpiNNaker and to unify the
model description across back ends, we developed an alternative implementation
in the simulator-independent language PyNN (version 0.7; Davison et al., 2009).
On SpiNNaker, this works in conjunction with the sPyNNaker software (Rowley
et al., 2015).

The NEST (version 2.8; Eppler et al., 2015) simulations are performed on a
high-performance computing (HPC) cluster with 32 compute nodes. Each node
is equipped with 2 Intel Xeon E5-2680v3 processors with a clock rate of 2.5 GHz,
128 GB RAM, 240 GB SSD local storage, and InfiniBand QDR (40 Gb/s). With
12 cores per processor and 2 hardware threads per core, the maximum number
of threads per node using hyperthreading is 48. The cores can reduce and in-
crease the clock rate (up to 3.3 GHz) in steps, depending on demand and thermal
and power limits. Two Rack Power Distribution Units (PDUs) from Raritan (PX3-
5530V) are used for power measurements. The HPC cluster uses the operating
system CentOS 7.1 with Linux kernel 3.10.0. For memory allocation, we use jemal-
loc 4.1.0 in this study (see Ippen et al., 2017, for an analysis of memory allocation
in multi-threaded simulations).

The SpiNNaker simulations are performed using the 4.0.0 release of the software
stack. The microcircuit model is simulated on a machine consisting of 6 SpiNN-5
SpiNNaker boards, using a total of 217 chips and 1934 ARM9 cores. Each board
consists of 48 chips and each chip of 18 cores, resulting in a total of 288 chips and
5174 cores available for use. Of these, two cores are used on each chip for loading,
retrieving results and simulation control. Of the remaining cores, only 1934 are
used, as this is all that is required to simulate the number of neurons in the network
with 80 neurons on each of the neuron cores. Cores are also used for simulating
delays of greater than 16 time steps using a “delay extension” implementation, and
for simulating the Poisson input noise. Each of these cores also simulates 80 units
per core, i.e., 80 sources in the case of the Poisson sources, and the extra delay for
80 neurons in the case of the delay extensions.

The given number of neurons per core was chosen as this is the smallest number
of neurons that can be simulated on each core for this particular network, whilst
still being able to allocate routing keys to the neurons and having the SpiNNaker
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routing tables fit within the hardware constraints of the machine with the current
software implementation. The routing tables grow as the problem is distributed
across more chips on the machine, as this requires additional paths to be made to
allow the cores to communicate. The fact that the number of neurons per core can-
not be reduced further also restricts the maximum speed with which the network
can be simulated given the network traffic rates of the microcircuit; we find that
we need to slow the simulation down by a factor of 20 from real time to maintain
a 0.1 ms time step and be able to process all the spikes without overrunning the
time allocated for each step. The simulation could otherwise run faster by having
fewer neurons per core, and so less work to do on each core.

Whereas NEST represents parameters and dynamic variables as double-precision
floating-point numbers, SpiNNaker uses the ISO draft s16.15 fixed-point arithmetic
type.

All analyses are carried out with Python 2.7.9, using the Elephant package (ver-
sion 0.2.1; Yegenoglu et al., 2016a) for computing spike train statistics.

3.2.5 Performance benchmarks

We compare the power efficiency and runtime of the microcircuit simulations with
DC input between NEST and SpiNNaker. For NEST, the strong-scaling efficiency
of the simulation is assessed on the HPC cluster. In line with NEST’s hybrid
parallelization strategy, we use one MPI process per compute node and OpenMP-
based multi-threading within each process. Since NEST internally treats threads
like MPI processes, they are also referred to as “virtual processes”, and the total
number of virtual processes vp equals the number of MPI processes times the
number of threads per MPI process (Plesser et al., 2007; Kunkel et al., 2014). For
the benchmark simulations, vp is increased from one single thread on one compute
node up to the saturation of the full cluster. One compute node is first filled
with one thread per core, first on one and then on the second processor, before
threads are also assigned to the second available hardware thread of each core
(hyperthreading). During the benchmark simulations, the power consumption of
the compute nodes under load is measured with the PDUs. The active power is
read approximately once per second remotely from the PDUs using the Simple
Network Management Protocol (SNMP). To account for additional contributions
to the overall power consumption, we furthermore estimate the usage of service
nodes and switches (2 Ethernet and 1 InfiniBand) based on PDU measurements
and data sheets.

Timestamps in the simulation scripts allow the identification of different execu-
tion phases, such as “network construction” and “state propagation”, and to relate
them directly to the temporally resolved power measurements. For the phase
during which the dynamical state of the neural network is propagated, we com-
pute the average power consumption, the energy consumption and the energy per
synaptic event. The energy consumption is obtained by integrating the measured
power. The energy per synaptic event is defined as the energy divided by the total
number of transmitted spikes Ntspikes. Ntspikes is composed of all occurring spikes
times the number of outgoing connections from the respective sending neurons.
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On SpiNNaker, a maximum number of neurons to be simulated on each core can
be specified in the current software implementation. Populations of neurons are
specified in the PyNN script, and a core runs a subset of the neurons from at most
a single population; neurons from several populations are not combined. Thus if
the network specifies a population of 100 neurons and a second population of 50
neurons and requests 90 neurons on a core, three cores will be used split as 90 on
the first core, 10 on the second core and 50 on the third, despite the fact that the last
10 neurons of the first population could be combined with the second population
within the given constraints. This is purely due to software engineering decisions;
it is easier to keep track of the neurons if a core can only contain part of a single
population. This could change in a future version of the software.

SpiNNaker boards are either single boards or combined in units of 3 boards.
This makes it easier to deal with the coordinate space on the boards. The boards
are physically placed into subracks of 24 boards, where each subrack has a back-
plane providing power to the boards and a 48-port switch providing networking
from the outside world to the boards, with one 100 Mb/s Ethernet connection to
each board and a second Ethernet connection to the management processor on
each board. This external network is used purely for I/O interactions with the
boards; network traffic generated during the simulation is passed entirely via the
SpiNNaker network on and between the boards. The management processors al-
low each of the boards to be powered on independently and the links between
boards to be turned on and off; thus within a single 24-board rack, boards are
allocated either individually or in groups of units of 3 boards. The software is
capable of working out an approximate number of boards required for the simu-
lation and then requesting this allocation; in the case of the cortical microcircuit
model simulation, 6 boards are requested.

Once a SpiNNaker machine has been allocated, it interacts with a host computer,
which reads the machine configuration information (including the layout of the
machine and any hardware issues such as faulty cores, chips and links), and works
out how the neural network is to be run on the machine. Once this has been
determined, the network data is generated and loaded, and the network is run.

For estimates of power consumption we connected a single 24-board rack to a
consumer power measurement device at the mains socket, and ensured that there
were no other users; thus only 6 of the 24 boards were ever active, with the other
18 remaining switched off. The power measurement device integrates the power
usage over time providing an energy consumption in kWh at chosen points in time.
An estimate of baseline power results from a measurement with the power on but
with all the boards powered off. This allows eliminating the power usage of the
rack itself, including the power consumption of the network switch, though not the
cooling system, which is activated dynamically. A webcam pointing at the meter
takes snapshots of the device at appropriate moments in the simulation setup,
loading, execution, and result extraction phases to obtain readings for these stages.
These measurements yield the total energy consumption for each execution phase
in steps of ∆E = 0.01 kWh. When computing the power for a phase of duration
T, we propagate this measurement inaccuracy according to ∆P = 1/T · ∆E. The
software of SpiNNaker presently does not allow turning off individual cores and
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chips. Therefore it is not possible to subtract the power consumption of unused
hardware components on each board.

For both NEST and SpiNNaker, the respective machines are exclusively used
for the simulations under consideration. There are no contributions to the overall
energy consumption from other jobs running.

3.3 results

3.3.1 Conceptual separation of biological time and wall-clock time

Model neurons in the SpiNNaker system are updated at regular intervals in wall-
clock time; this allows the simulation to be divided between several CPUs with in-
dependent timers, and still maintain reasonable synchronization across the system.
A typical setting in previous studies is hw = 1 ms. As SpiNNaker was originally
designed for real-time operation, the interpretation of the biological model of the
time span between two update events was considered to be identical to the wall-
clock time passing between two updates hb = hw. However, from the point of view
of a general simulation engine the two quantities are conceptually not identical. If
the equations of a neuron model require updates in intervals of 0.1 ms in order to
achieve the desired numerical accuracy, hb can be interpreted as hb = 0.1 ms. With-
out further changes to the parameters of the SpiNNaker system this means that the
dynamics of the neural network now evolves 10 times slower than wall-clock time.
However, the number of spikes occurring per second of wall-clock time is now
reduced by a factor of 10: if a neuron model emits a spike within 1 ms with proba-
bility 1, the probability to emit a spike within an interval of 0.1 ms is 0.1. Therefore,
if the limiting factor for reliable operation of the hardware is the number of spikes
per second of wall-clock time, it might be possible to increase the clock-speed of
the system by a factor of 10 (hw = 0.1 ms) and recover real-time performance while
safely staying within the limits of the communication bandwidth.

However, the communication bandwidth is rarely the limiting factor in simula-
tions on SpiNNaker; we must also consider the CPU cycles required to process
each spike received, and each synapse the spike activates. The design specifica-
tions of SpiNNaker assume a connectivity of 1,000 incoming synapses per neuron;
the cortical microcircuit model has a value closer to 10,000, which means that the
simulation must be slowed down further to accommodate the extra computation
this requires, otherwise the synchronization of the simulation is liable to drift be-
tween the cores, and the results will be unpredictable and unreliable. If we assume
that at the design specifications of SpiNNaker, the computation is split roughly as
10% or 20,000 CPU cycles per time step for neural updates and 90% or 180,000 CPU
cycles for synapse processing, setting the time step to 0.1 ms means that 10 times
more work is required for neural processing, giving 200,000 CPU cycles per ms of
biological time but the amount of work for synapses remains constant at 180,000
CPU cycles per ms as the number of synaptic events per time step is reduced by
a factor of 10. Setting the number of synapses per neuron to 10,000 means 10
times more work, or 1,800,000 CPU cycles per ms, leading to a total of 2,000,000
CPU cycles per ms of biological time for all the computation required. This can be
achieved by slowing down the simulation by a factor of 10. In practice, there are
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additional overheads in these processes, and we achieve reliable operation when
hw = 2 ms, meaning a slow-down of the dynamics compared to real time by a
factor of 20.

3.3.2 Steps toward implementation on SpiNNaker

We iteratively refined the SpiNNaker interface for PyNN to extend the range of
functions covered, and to match their syntax and functionality. Furthermore, we
enabled running long simulations, where it was previously only possible to have
short runs due to the memory filling up with the recorded data. We also imple-
mented the NEST connectivity routine used by Potjans and Diesmann (2014) on
SpiNNaker. The representation of multapses (multiple synapses between a pair of
neurons; Crook et al., 2012) was already supported in the software, and all that
was required was to generate the connectivity data using the host Python soft-
ware. The large number of synapses, however, were more of an issue; for previous
models, the synaptic data for the entire network was generated in advance of exe-
cution. The representation of this data in Python required a large amount of RAM
on the host PC. We therefore modified the software to perform initial estimates of
resource usage on the SpiNNaker machine based on statistical information about
the PyNN connectors, including the multapse connector created specifically for
this network. The software now generates the actual connectivity data lazily for
each core, one by one, just prior to loading onto the machine, reducing the RAM
usage on the PC by orders of magnitude. This method is also faster, reducing the
data generation time from more than 8 hours to around 1 hour. This process could
be parallelized to further reduce the data generation time, but this is not done in
the current software due the restrictions of Python running in parallel.

The limited resources and efficiently implemented data structures within the
SpiNNaker simulation environment enforce a limit of 1.6 ms for connection delays
when the biological time step is 0.1 ms, due to the use of 16-element ring buffers for
synaptic inputs (for an explanation of ring buffers in neural network simulations,
see for instance Morrison et al., 2005). The mean delay of excitatory connections
in the microcircuit model is 1.5 ms, so it was not initially possible to draw delays
from a normal distribution with reasonable width. To resolve this issue, we imple-
mented a “delay extension” mechanism, whereby delays >1.6 ms were split into a
multiple of 1.6 ms steps plus a remainder:

delayextended =

⌊
delaytotal

1.6 ms

⌋
× 1.6 ms,

delayremaining = delaytotal − delayextended.

The extended delay is handled by a separate core. Knowing that the delay is
a multiple of 1.6 ms allows up to 8 such multiples, or 12.8 ms of delay, to be
simulated within the limited resources of this core. These can in principle be
chained together allowing any delay, but a single additional core combined with
the maximum 1.6 ms in the neuron model itself (a total of 14.4 ms) was deemed
sufficient in this model. Besides enabling longer delays to be represented, support
for distributed delays was added.
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The synaptic weights of the model are of the order of 102 pA. On SpiNNaker, a
single synapse is represented by a 32-bit number consisting of 8 bits for the target
neuron index (allowing up to 256 neurons per core—the identity of the core is not
stored in the synaptic word but in the routing tables, so neurons can have more
than 256 targets), 4 bits for the delay (allowing up to 16 values, as described above),
2 bits for the synapse type (excitatory or inhibitory), and 16 bits for the synaptic
weights; 2 bits are reserved to allow for increasing the number of synapse types.
The 16-bit weight values are stored as fixed-point values, but the position of the
binary point is adjusted to ensure that also the largest summed synaptic inputs
occurring in the simulation can be represented. The reason for this adjustment is
that when a spike is received on a core, the weight from each synapse is added into
one of the 16-delay ring-buffers, each of which is also 16 bits in size; thus ideally
the combination of the additions of several weights should not overflow the buffer.
Additionally, an appropriate degree of precision is required to represent the weight
values given; for example, using 8 bits for the decimal part of the numbers would
lead to a precision of 1/

(
28) nA ≈ 4 pA. This would give a fairly large error as a

fraction of the synaptic weights in our simulations. The calculation of the position
of the binary point is done by finding the maximum value likely to be added to any
single ring buffer element. In previous implementations, this was done by simply
adding together all the weights incumbent on each of the neurons and taking the
maximum. This guaranteed that the ring buffer elements would never overflow
but tended not to leave enough precision in the weights for correct representation,
especially not in the case of the cortical microcircuit where there are a large number
of connections, but a relatively low firing rate. This calculation was therefore
updated to combine the statistics of the connectivity to get an approximate upper
bound on the sum of the weights in any ring buffer element. This is done by
firstly assuming an average input spike rate and choosing a scale factor σ to use
for the overhead in the calculation. We treat the ring buffer elements equally, since,
although the delays are distributed, the ring buffer element that represents the
given delay from the current time step is moving as the time steps progress. Also
the number of ring buffer elements is unimportant, since, regardless of how many
there are, delay values will appear which could place the weight in any one of
the elements. Thus, the calculation concerns any delay ring buffer element. We
then look to the distribution of the weights combined with the timing of the spikes,
since it is the arrival of a spike that causes a weight to be added to the ring buffer.
For the purpose of determining the maximal resolution of the synaptic weights that
allows the summed inputs to the neurons to be represented, we assume a Poisson
distribution in the number of spikes arriving. This does not mean that inputs in
the model indeed need to be Poissonian; the estimated resolution will work under
moderate deviations from Poisson statistics, and the resolution can be decreased in
case of highly synchronous input. Under the Poisson assumption, we can expect
this same distribution in the addition of the weights to the ring buffer elements.
Taking the mean and standard deviation of the weights, we can then compute
an expected mean and standard deviation in the sum of the weights in any ring
buffer element. Thus, we can approximate the maximum weight as a number
of standard deviations above this mean value. Applying these assumptions, the
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following closed-form solution is derived from standard results on means and
variances of products of independent variables:

vr = n w2
mean (3.1)

U = round[n + 3
√

n]

vw =
e−n n wvar(−nU + en Γinc[1 + U, n])

Γ[1 + U]
,

M = n wmean + σ
√

vr + vw

where M is the expected maximum value over time in any of the delay ring buffer
elements, which is calculated using n, the average number of expected incoming
spikes in a time step; wmean, the mean of the incoming weights; σ, the number
of standard deviations above the mean for safety overhead (set to 5 here); wvar,
the variance of the incoming weights; the gamma function Γ, and the incomplete
gamma function Γinc. In the cortical microcircuit simulation, we take the expected
rates within the network to be 30 spikes/s and use the known rates of the Poisson
generators for calculating the synaptic weight resolution. Requiring that M from
Equation 3.1 can be represented leads to weights with 6 or 7 bits for the integer
part (respectively allowing summed input values with integer parts up to 26− 1 =

63 nA and 27 − 1 = 127 nA) and 10 or 9 bits respectively for the fractional part,
depending on the total number of incoming synapses to the population in question,
since it is the summed weights in the ring buffer elements that determine the
necessary resolution. In terms of weights of single synapses, with 10 bits for the
fractional part of the number, the weight of 0.0878 nA would be represented as
0.0869140625, and with 9 bits for the fractional part, the representation is 0.0859375.
By comparison, the nearest double-precision (64-bit) floating point representation
of 0.0878 is 0.08780000000000000304201108747292892076075077056884765625, the
nearest single-precision (32-bit) representation is 0.087800003588199615478515625;
using half-precision floating point (16-bit) for the value would result in the value
0.08779296875 being used. Thus, the precision of the weight values on SpiNNaker
is reasonable given the 16 bits available for use. During the single-neuron tests,
the whole 16 bits were used as the fractional part of the number, leading to 0.0878
being represented as 0.087799072265625. Note that even with this calculation, the
chances of overflow of the buffer are non-zero, and overflows will still likely occur
in long-running simulations. Thus the software counts the number of times an
overflow occurs and reports this to the user at the end of the simulation.

The communication network of SpiNNaker can support up to 6 million spike
packets per second, but it does not cope well with all the traffic occurring within
a short time window within the time step. This is exacerbated by the initial syn-
chronization of the simulation engine at the code level, making all cores likely to
send spikes at the same time. The neuron cores pause the processing of neurons
and thus the sending of spikes whilst they are processing incoming spikes, so after
the initial spikes there is some spreading of the network traffic over the time step
occurring naturally. However, the Poisson noise generating cores and the delay
extension cores have little to no inputs, so they have no automatic spreading of
the sending of the spikes over the time step due to time spent processing incom-
ing spikes. Furthermore, in the microcircuit simulations, the spikes tended to be
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concentrated within a small window within the time step despite the desynchro-
nization due to the processing of inputs. Without any correction, it is likely that all
the network traffic will therefore occur within a small window at the start of the
time step, and all cores will send simultaneously. To overcome this issue, each core
is firstly given a random wait time at the start of every time step. This gives a basic
offset so that the first network packet sent by a core is unlikely to be synchronized
with that of the other cores. Given the maximum number of network packets to be
sent by the application within a single time step, it is then possible to work out an
expected minimum number of CPU clock cycles between sending packets within
a time step; in the case of neurons each neuron can only send at most one spike
per time step, but with Poisson sources, the likely maximum number of spikes per
time step has to be calculated statistically. For example, with a 0.1 ms biological
time step in real time, a 200 MHz CPU and 100 neurons being executed on the core,
there are at most 100 packets to be sent each time step, and 20,000 clock cycles in
which to send them, so there should be 200 clock cycles between the sending of
packets. In practice, we spread the packets over half the time step, to allow the
spikes to be processed at the receiving end, so there would be 100 clock cycles be-
tween packets in this example. If the execution arrives at a point at which a packet
is to be sent, but the expected number of CPU cycles since the start of the time
step has not passed, the core is simply made to wait until this occurs. On neuron
cores, the neurons continue processing spikes during this pause, whereas the delay
extension and Poisson generator cores have little else to do when this occurs. Prior
to this change, there were quite a few dropped packets in the simulation. With this
change no packets were lost during the simulation.

The independent Poisson input sources of the cortical microcircuit model also
required modifications of the SpiNNaker software stack. The software was de-
signed for an input spike rate to each neuron around 10 spikes/s and assuming
each source neuron to have synapses onto multiple target neurons within each
population. This means that there is not too much network traffic, and that each
Direct Memory Access (DMA) performed when a spike is received retrieves multi-
ple synapses from the SDRAM, increasing the overall efficiency of the transfer by
reducing the overheads of each transfer. The one-to-one connectivity of the Pois-
son sources coupled with their high firing rate breaks both these assumptions. The
revised software contains a heuristic in the placement algorithm which attempts
to place one-to-one connected populations on the same chip where possible. This
reduces the communication overhead, since only the internal network-on-chip is
used to transfer the spikes between the Poisson sources and the populations they
feed. Furthermore, the synaptic connectivity data for the one-to-one connected
populations are now stored in local Data Tightly Coupled Memory (DTCM); a
DMA to transfer the data is no longer required. The high input rates also mean
that multiple spikes often need to be sent in a single time step, for which support
was added.

As SpiNNaker has limited SDRAM and no other backing store, the storage of
recorded data can become an issue, even for short simulations. The improved
software overcomes the problem by calculating the maximum duration of the sim-
ulation before the SDRAM is filled by the recorded data. The simulation runs
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for this period, pauses whilst the data are extracted from the machine, and then
resumes. This repeats until the simulation has covered the required duration.

3.3.3 Comparison of single-neuron results between NEST and SpiNNaker

Figure 3.2 shows the results of the single-neuron tests, comparing the simulation
output of grid-based NEST and SpiNNaker with that of NEST with precise spike
timing, which provides a near-exact reference solution (cf. Section 3.2.1). The ex-
ample membrane potential traces in Figure 3.2A show that both simulators achieve
a high accuracy. SpiNNaker displays a slight lead and grid-based NEST a slight
lag with respect to the precise solution that is visible especially at 1 ms resolu-
tion. These deviations are also apparent in the cross-correlation histograms of the
binned spike trains (Figure 3.2B; for a comparison of different numerical solvers,
see Rotter and Diesmann, 1999). The histograms for time step 1 ms contain multi-
ple peaks due to the 1000 Hz rhythm imposed by the grid-constrained input spikes.
The lag of grid-based NEST is due to the fact that spike times are always rounded
up to the nearest grid point, not down (Morrison and Diesmann, 2008; Krishnan
et al., 2017). The early spiking of SpiNNaker is likely to be due to the use of fixed-
point numerical representations and the separation of the exponential decay of the
synaptic inputs from the integration of the membrane equation, as shown for a
single input spike in Figure 3.3. Since the fixed-point synaptic weights in these
simulations are slightly smaller than the floating-point values, the increased post-
synaptic response with the fixed-point representation must be due to the limited
resolution of the other neuron parameters and variables. The separated integration
leads to consistently higher values of the membrane voltage in response to the in-
coming spike, but for 0.1 ms time steps, the numeric type appears more influential
than this separation (insets of Figure 3.3). The deviations for the lower-rate sim-
ulations are slightly smaller than those for the high-rate simulations, because the
limited memory of the dynamics causes subthreshold traces with different initial
conditions to converge under identical inputs. In terms of membrane potential cor-
relations, both simulators perform well at 0.1 ms resolution (Figure 3.2C). At 1 ms
resolution and low rates, NEST outperforms SpiNNaker in terms of membrane
potential correlations, accumulated spike lead or lag, and spike time precision
(Figure 3.2C–E). This may be explained by the greater contribution of subthresh-
old dynamics, which NEST integrates exactly, as compared to spiking dynamics at
low rates. At 1 ms resolution and high rates, SpiNNaker outperforms NEST on all
three measures (Figure 3.2C–E).
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Figure 3.2: Single-neuron tests for SpiNNaker and grid-based NEST simulations. A Ex-
ample membrane potential traces of leaky integrate-and-fire model neurons
(parameters as in Table 3.1) receiving Poisson input with a “low rate” of
8,000 spikes/s and a “high rate” of 10,000 spikes/s (rows) for computation time
steps 0.1 ms and 1 ms (columns). Red, NEST with spikes constrained to the grid;
blue, SpiNNaker; black dashed curves, NEST with precise spike timing. Spike
times are indicated by vertical lines. For time step 0.1 ms, all subthreshold
traces overlap nearly precisely. B Average cross-correlation histograms over
10 simulations between binned spike trains from grid-based NEST (red) and
SpiNNaker (blue) and those from NEST with precise spike timing. C Pearson
correlation coefficients between membrane potential traces. D Accumulated
fractional lead or lag in spike times. E Root mean square error of spike timing
after correcting for accumulated lead or lag. All comparisons are with NEST
with precise spike timing. Panels C–E: Thick black lines, median across 10 re-
peat simulations; boxes, interquartile range (IQR); whiskers extend to the most
extreme observations within 1.5×IQR beyond the IQR.
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Figure 3.3: Membrane potential excursion for different computation step sizes and nu-
merical representations. Panels show the peak region of the response of the
model neuron on the SpiNNaker system to a single input spike (neuron pa-
rameters as in Table 3.1) for computation time steps 0.1 ms (A) and 1.0 ms (B).
The ISO specification s16.15 fixed represents signed fixed-point numbers with
16 bits for the integer part and 15 bits for the fractional part; 32-bit float uses
a single-precision ISO standard floating-point representation. Both s16.15 fixed
and 32-bit float separate out the integration of the exponential decay of the
synapses and the LIF neuron model (exponential integration), though each com-
ponent uses a closed-form solution. Exact 32-bit float uses a single closed-form
solution that encompasses both the exponential decay of the synapses and the
LIF neuron model. This exact integration corresponds precisely to the analyti-
cal solution sampled at the integration time step. The s16.15 format leads to the
same synaptic weights as with the 16-bit format in Figure 3.2. Double-precision
(64-bit) floating-point numbers give membrane potential excursions that are vi-
sually indistinguishable from the single-precision results. Insets enlarge the
membrane potential traces delineated by the black boxes.
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3.3.4 Comparison of network results between NEST and SpiNNaker

Different slowdown factors were tested on SpiNNaker to determine the minimal
slowdown factor at which no spike loss occurs in the simulation of the cortical mi-
crocircuit model. Based on the biological time step of 0.1 ms compared to the 1 ms
design specification, this slowdown has to be at least a factor of 10. As explained
in Section 3.3.1, additional slowdown is necessary to enable processing the high
input rates to the neurons. At a slowdown factor of 20 with respect to real time
SpiNNaker simulates this model without any spike loss. Also, the chosen precision
for the synaptic weights prevents any overflows of the synaptic ring buffers from
occurring in the SpiNNaker simulations. Therefore, differences between the NEST
and SpiNNaker simulation results are only caused by floating-point vs. fixed-point
numerical representations, exact subthreshold integration vs. separate integration
of membrane voltage and synaptic inputs, and different random number gener-
ator seeds. Grid-based NEST, NEST with precise spike timing, and SpiNNaker
produce closely similar spiking statistics, both for DC input (Figure 3.4) and for
Poisson input (Figure 3.5). The raster plots of the spiking activity (Figure 3.4A–C;
Figure 3.5A–C), a standard tool for the visual inspection of multi-channel spike
data (Grün and Rotter, 2010), bring out the similarity. Despite the different initial
conditions and different realizations of the connectivity, and also different input
realizations in the case of Poisson input, distributions of average single-neuron fir-
ing rates (Figure 3.4D; Figure 3.5D), spiking irregularity (Figure 3.4E; Figure 3.5E),
and correlation coefficients between binned spike trains (Figure 3.4F; Figure 3.5F)
match closely between the three simulation methods and for all neural popula-
tions.

To assess how meaningful the differences between the simulation methods are,
we compare these differences with those caused by the random number generator
seeds alone. We perform three simulations of the microcircuit model with Poisson
input for 10 s with NEST with precise spike timing with different random seeds for
the connectivity, initial membrane potential distributions, and Poisson generators
(Figure 3.6). In each case, we compare the distributions of rates, CV ISIs, and
correlations, discarding a 1 s transient as before, in terms of the Kullback-Leibler
divergence between the smoothed histograms. Since the simulations with the three
methods (grid-based NEST, NEST with precise spike timing, and SpiNNaker) each
use different random seeds, differences between the simulation results for these
methods include the influence of the seeds, particularly in view of the finite length
of the data. The results shown in Figure 3.6D–F indicate that the influence of the
random seeds is comparable in size to the combined influence of the simulation
method and the seeds. Thus, the simulation method itself contributes little to
the variation in the dynamical properties of the microcircuit model, indicating
in particular that SpiNNaker’s fixed-point numerics and approximations in the
subthreshold integration do not compromise accuracy for networks of the given
type.
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Figure 3.4: Spiking output of the cortical microcircuit model with DC input. A–C Raster
plots showing spike times (dots) of excitatory neurons in blue and of inhibitory
neurons in red. The spikes of 5% of all neurons (vertical) are displayed. D–
F Distributions of spiking activity for each of the eight populations of the model.
D Single-neuron firing rates of all neurons averaged over the last 9 s of the
simulation. E CV ISI, a measure of irregularity of all neurons. F Correlation
coefficients between binned spike trains for 200 neurons in each population.
Histogram bin widths are determined by the Freedman-Diaconis rule.
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Figure 3.5: Spiking output of the cortical microcircuit model with Poisson input. Same
display and parameters as in Figure 3.4.
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Figure 3.6: Comparison of influence of random number generator seeds and simulation
method. A–C Distributions of dynamical properties of the microcircuit model
for each of the 8 neural populations obtained using NEST with precise spike
timing. Results for three simulations, each of 10 s duration discarding a 1 s
transient, with different random seeds. D–F Kullback-Leibler (KL) divergences
from NEST with precise spike timing as a reference, using results from NEST
with precise spike timing and different random seeds (mean of KL divergences
for two simulations with different seeds), and results from grid-based NEST
and SpiNNaker. A,D Time-averaged single-neuron firing rates. B,E Coefficient
of variation of interspike intervals. C,F Pairwise correlations between binned
spike trains.
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3.3.5 Performance

Figure 3.7 shows results from measurements of the power consumption during
benchmark simulations with NEST on one and two compute nodes of an HPC
cluster. The simulations use an increasing number of threads on the single node,
and all threads supported by the hardware on the two nodes (Figure 3.7A). The
measured power consumption rises during script execution and we observe that
it increases with the number of vps whereas the required time decreases. In Fig-
ure 3.7B and C, we enlarge the traces for vp = 48 and vp = 96, respectively, and
indicate the execution phases of the script. Prior to the execution of the script,
the system exhibits a fluctuating baseline power consumption of the switched-on
nodes; the baseline is higher for two nodes compared to one node. The phases
“network construction” (red) and “state propagation” (blue) are the main phases
as they refer to the setup of neurons and connections and the propagation of the
dynamical state of the neural network, respectively. The color-coded areas for
these phases have approximately the same size, indicating a similar energy con-
sumption. The “writing output” phase transfers spike times from the simulation
engine to file buffers after the dynamics has reached its final state. The correspond-
ing PyNN function gathers data from all processes and uses only one thread per
node for writing. Time spent otherwise during script execution is denoted in dark
gray. These intervals correspond for instance to loading Python modules and set-
ting simulation parameters before the network construction starts, and plotting the
spiking activity after writing output. When the script has terminated, the times-
tamps are written to file, and after that, the power consumption returns to the
baseline level.

We further spread the NEST simulations across up to all 32 compute nodes of
the HPC cluster with 48 threads on each node (vp = 1536), shown in Figure 3.8.
Panel A demonstrates the parallel scalability of network construction and propa-
gation of the dynamics by showing the measured times together with the ideal
linear expectations. The propagation time saturates at about three times the bio-
logical time. The jump in propagation time after vp = 24 coincides with the onset
of hyperthreading. Network construction time continues to decrease over the full
range of compute nodes but exhibits an intermediate increase starting at vp = 15
(see Ippen et al., 2017 for a general discussion of network construction time). Fig-
ure 3.8B shows the power consumption averaged over the propagation phase as
a total across all nodes used in the particular simulation. The change in slope at
vp = 48 is due to the successive switching on of additional nodes. Integrating
the power consumption traces over the propagation interval yields the energy con-
sumption as depicted in Figure 3.8C. Due to the decrease in propagation time and
the concomitant growth in power consumption with increasing vp, the energy con-
sumption reaches a minimum at vp = 96, i.e., at two nodes. Thus, the hardware
configuration requiring the minimal energy-to-solution is neither the one with the
smallest number of hardware components involved nor the one with the shortest
time-to-solution, but a system of intermediate size. The energy per synaptic event
for the optimal configuration is 4.4 µJ.

Apart from the compute nodes, however, we also have to take other components
of the cluster into account to estimate the total energy-to-solution. The HPC cluster
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Figure 3.7: Temporally resolved power consumption during microcircuit simulation
with NEST on HPC cluster. A Total power consumption as a function of time
of a single compute node using 1–48 threads (gray code) and of two compute
nodes with 48 threads per node (vp = 96, black). The curves terminate with
the end of the simulations (for 10 s of biological time in all cases). B Power
consumption in labeled execution phases of a simulation (legend) on a single
compute node with 48 threads. C Execution phases for two compute nodes
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indicates stretch of biological time simulated (10 s). B Mean power consump-
tion during propagation for NEST simulations measured at involved compute
nodes (filled markers) and with an additional power offset for the InfiniBand
(IB) switch (open markers). C Energy consumption during propagation for
NEST simulations measured at involved compute nodes (filled markers) and
with an additional power offset for the IB switch (open markers). On a single
node, vps bind initially to cores on one processor (up to vp = 12), then to cores
on the second processor (up to vp = 24, left vertical dashed line), and finally to
the second hardware thread on each core (up to vp = 48, right vertical dashed
line). Blue horizontal lines in each panel indicate duration, power and energy
of state propagation, respectively, for a SpiNNaker simulation. All panels in
double-logarithmic representation.
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Figure 3.9: Power consumption during microcircuit simulation with the SpiNNaker sys-
tem. The vertical axis shows the average power consumption during the color-
coded execution phases. The power (black solid horizontal line segments) is
computed from measurements of the energy consumption (colored areas) of
the execution phases. The dashed horizontal line indicates the baseline mea-
surement with the rack powered on but all 6 boards switched off. Numbers
above black lines state the error in power estimation. Before and after the
execution of the simulation script (light gray segments) boards are switched
on and booted but idle. Power consumption during mapping (salmon) is set
identical to consumption in data generation phase (raspberry). Propagation of
the dynamical state by 10 s of biological time takes 200 s (blue segment). The
respective power estimate results from the propagation by a longer stretch of
biological time (1000 s) for increased accuracy.

requires two service nodes, with an estimated combined contribution of approxi-
mately 300 W, comparable to the base level of two compute nodes. Two Ethernet
switches and one InfiniBand (IB) switch consume, based on their data sheets, a
maximum of 64 W and 226 W, respectively. During the propagation phase, only
the compute nodes and the IB switch are required. Figure 3.8B and C assess how
an additional power offset accounting for the IB switch affects the power and the
energy consumption as functions of vp. The increase in power consumption is
crucial for small vp, but it is almost irrelevant for simulations across multiple com-
pute nodes (large vp). We also observe that the minimum energy to solution shifts
to a larger vp, and conclude that simulations become more efficient if distributed
across more hardware. Including the contribution of the IB switch, the minimal en-
ergy per synaptic event is obtained at vp = 144 and equals 5.8 µJ. At this number
of virtual processes, the simulation takes about 4.6 times real time.

Figure 3.9 illustrates the power consumption of the SpiNNaker system, derived
from the measurements of the energy consumption for each execution phase (see
Section 3.2.5). The background power usage caused by the network switch, the
active cooling systems, and the power supply itself explains half of the total power
consumption. As in the case of the HPC cluster we do not include any cooling
of the room into the measure. The mapping phase is where the software of the
host computer reads the machine configuration and then uses this description to
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work out which parts of the neural network are to be executed on which chip,
and the routes taken by network traffic that is to traverse the machine during
simulation. Power consumption is mostly the same as in the idle phase, since the
machine is only briefly contacted during this phase, with the rest of the work being
done on the host computer. The data generation phase creates the data for each
core; this includes the neuron parameters and synaptic matrices, as well as other
SpiNNaker-specific data. Again, the machine is not in use during this phase, and
hence could be turned off. The loading phase transfers the data generated on the
host computer to the SpiNNaker machine. Although this requires communication
with the machine, power consumption is still low, because only two cores on the
machine are active at any time during this phase. These are the monitor core on
an Ethernet-connected chip and the monitor core on the chip storing the data in
memory. During the phase of state propagation, the power consumption increases
significantly above the level of the idle state, reflecting the work done by the cores.
The energy per synaptic event consumed during the propagation phase is 5.9 µJ.

Duration, power, and energy consumption of the propagation phase are in-
cluded as horizontal lines in Figure 3.8 to facilitate a comparison with NEST. The
energy consumed by the SpiNNaker simulation is close to the minimum energy
of the NEST simulation for compute nodes and the IB switch, leading to a similar
result for the energy per synaptic event on both systems.

Previous measurements of the SpiNNaker system indicated the approximate
power usage of each chip to be 1 W when fully loaded, and the overhead for
each board itself, excluding the chips, to be approximately 12 W. The 6 boards
and 217 chips used in the present study thus predict a power consumption of
(6× 12 + 217) W = 289 W. This is close to the 277 W measured during the state
propagation phase, indicating that a calculation based on the number of chips
and boards in use delivers a good estimate of the power consumption during this
phase. With 48 chips per board, there are 48 × 6 − 217 = 71 unused chips, of
which the power consumption is measured along with that of the active chips, but
not taken into account in the back-of-the-envelope calculation. The fact that this
calculation already gives a higher value than the measurement suggests that the
power consumption of the unused chips is negligible.

3.4 discussion

On the example of a full-scale cortical microcircuit model (Potjans and Diesmann,
2014), the present work demonstrates the usability of SpiNNaker for large-scale
neural network simulations with short neurobiological time scales and compares
its performance in terms of accuracy, runtime, and power consumption with that
of the simulation software NEST. With ∼ 0.3 billion synapses, the model is the
largest simulated on SpiNNaker to date, as enabled by the parallel use of multiple
boards. The result constitutes a breakthrough: as the model already represents
about half of the synapses impinging on the neurons, any larger cortical model
will have only a limited increase in the number of synapses per neuron and can
therefore be simulated by adding hardware resources. The synaptic time constants
and delays of the model necessitate a shorter integration time step (here, 0.1 ms)
than the original 1 ms design specification of SpiNNaker. The higher resolution is
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achieved by a conceptual separation of biological time and wall-clock time. For the
microcircuit model the current software stack of SpiNNaker requires the number
of neurons per core to be set to exactly 80. This restriction is the result of the
number of routing entries available on each router in the machine, combined with
the current algorithm for assigning keys to the neurons. As a consequence of
the combination of required computation step size and large numbers of inputs,
the simulation has to be slowed down compared to real time. In future, we will
investigate the possibility of adding support for real-time performance with 0.1 ms
time steps. Reducing the number of neurons to be processed on each core, which
we presently cannot set to fewer than 80, may contribute to faster simulation. More
advanced software concepts using a synapse-centric approach (see Knight and
Furber, 2016) open a new route for future work.

We assess accuracy by comparing grid-based NEST and SpiNNaker simulations
with NEST simulations with precise spike timing, which provide a highly accurate
reference solution. For the cortical microcircuit model, we consider firing rates,
coefficients of variation of interspike interval distributions, and cross-correlations
between binned spike trains. Which measures to use to quantify accuracy and
which level of accuracy is considered to be acceptable has to be determined on
an individual model basis from the acceptable range of desired model behaviors.
For instance, for the microcircuit model, it is important that the simulations pre-
serve asynchrony and irregularity of spiking, and differences in firing rates be-
tween the neural populations. Although models and their desired outcomes are
diverse, these measures are also chosen because they characterize several funda-
mental aspects of single-neuron and population activity, and are therefore relevant
to a wide range of models. Despite its fixed-point arithmetic, SpiNNaker is able
to achieve comparable accuracy on these measures to that of NEST. Conversely,
NEST executed on a high-performance cluster achieves speed and power efficiency
comparable to the performance of SpiNNaker for some settings and in addition en-
abling a flexible trade-off between runtime and energy-to-solution. These results
take into account that runtime and energy consumption should be assessed while
controlling for simulation accuracy. For networks even larger than the cortical cir-
cuit considered, where runtime becomes strongly communication-dominated on
traditional architectures, the asynchronous update of SpiNNaker may yet give it
an advantage in terms of efficiency outside the scope of the present study due
to an ability to simply expand the number of cores used by the simulation with
minimal communication overhead. Thus, larger networks can be simulated in a
weak scaling scenario where network size increases without increasing the rates of
neuron state updates and synaptic events per neuron. For networks of any size,
SpiNNaker is expected to yield accurate results as long as the simulation speed is
chosen such that no spikes are lost and the resolution of the synaptic weights is
sufficiently high. Further work is required to assess its scaling of runtime, memory,
and energy consumption with network size.

The cortical microcircuit model consists of leaky integrate-and-fire (LIF) model
neurons. To assess accuracy in a more controlled setting, we also consider single-
neuron simulations. This reveals that grid-based NEST and SpiNNaker have sim-
ilarly high accuracy at 0.1 ms time steps, with NEST slightly lagging behind and
SpiNNaker slightly leading the precise solutions. This respective lag and lead can
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be attributed to details of the neuron and synapse implementation, with NEST
using exact integration (Rotter and Diesmann, 1999) for the subthreshold dynam-
ics, whereas SpiNNaker uses fixed-point representations and a separation of the
integration of the synaptic exponential decay and the neuron model. In terms
of single-neuron dynamics, NEST performs relatively better at low spike rates,
whereas SpiNNaker performs relatively better at high spike rates. The high accu-
racy of NEST for low rates may be due to the greater contribution of subthreshold
dynamics in this condition.

Previous work has provided estimates of the power consumption of SpiNNaker
executing spiking neural network models. Stromatias et al. (2013) instrument
a 48-chip SpiNNaker circuit board to measure power consumption directly. They
model locally and randomly connected networks of up to 200,000 Izhikevich model
neurons and up to 250,000 LIF model neurons with a 1 ms time step and over
a billion synaptic events per second, with a total board power consumption in
the region of 30 W, arriving at a total energy per synaptic event of around 20 nJ.
Subtracting baseline power, the incremental energy per synaptic event is found to
be 8 nJ. Sharp et al. (2012) describe a small but detailed cortical model running
with a 1 ms time step on a 4-chip SpiNNaker board instrumented to measure power.
The model has 10,000 neurons and 4 million synapses, consuming just under 2 W,
and the energy breakdown yields an incremental cost of 100 nJ per neuron per ms
and 43 nJ per synaptic event, with a total energy per synaptic event of 110 nJ.

The present work measures the power consumption of the microcircuit model
simulations on SpiNNaker and uses strong scaling with NEST on a high-perfor-
mance compute cluster. At the optimal setting for NEST, with 144 virtual pro-
cesses, the energy consumption of the compute nodes per synaptic event is 5.8 µJ,
and for SpiNNaker the equivalent measurement is 5.9 µJ. There are several fac-
tors that contribute to the lower efficiency of SpiNNaker when running this model
compared to the earlier studies, which mostly relate to the model being distributed
sparsely over the SpiNNaker hardware, thereby causing baseline power to be amor-
tized across many fewer synaptic events. The principal factors are: the use of a
0.1 ms time step, rather than the standard 1 ms; the biologically realistic number of
∼10,000 synapses per neuron compared with the ∼1,000 typical in neuromorphic
models; and the highly distributed sparse connectivity of the biological model.
With further software optimizations we expect such a network, with 80,000 neu-
rons and 0.3 billion synapses, to map onto around 320 SpiNNaker cores—about
half of a 48-chip board instead of the 6 boards used here—and to run in real time.
With a 30 W power budget for half a board and 10 billion synaptic events over
10 seconds this yields 30 nJ per synaptic event, in line with the earlier total energy
figures and two orders of magnitude below the present value. This ratio highlights
the potential and the importance of further improvements of the software stack of
the SpiNNaker system; this could include the use of the synapse-centric approach
(Knight and Furber, 2016), which has been shown to accommodate the 0.1 ms time
step and high synapse count better than the current mapping, but this is not yet
available within the SpiNNaker tool flow. This would hopefully enable real-time
operation of SpiNNaker during the network propagation phase, as well as reduce
the number of cores and thus boards required for this simulation, and so result in
a reduction in the power per synaptic event.
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Mammalian brains consume about 6 kCal/day = 0.3 W per 1 billion neurons, of
which roughly half is consumed by the cerebral cortex (Herculano-Houzel, 2011),
and a substantial fraction is due to action potential signaling (Attwell and Laugh-
lin, 2001; Lennie, 2003). In the human brain, with its 1011 neurons (Herculano-
Houzel, 2012), cortex makes up close to 20% in terms of the number of neu-
rons (Pakkenberg and Gundersen, 1997), so that we obtain 0.15 W per 2 × 108

cortical neurons. Assuming 104 synapses per neuron and an average spike rate
of 4 spikes/s (Attwell and Laughlin, 2001), we arrive at an energy consump-
tion of 0.15 W/

(
2× 108 × 104 × 4 spikes/s

)
= 19 fJ per synaptic event. Since

commonly used extracellular recording methods may miss a large fraction of
neurons that are silent or nearly so, the average spike rate of cortex may actu-
ally be lower (Shoham et al., 2006). Taking an estimate of 0.1 spikes/s based
on whole-cell recordings (Brecht et al., 2003; Margrie et al., 2002), we obtain
0.15 W/

(
2× 108 × 104 × 0.1 spikes/s

)
= 760 fJ per synaptic event. These estimates

indicate that with our computing systems and for the given model we are between
about 7 and 9 orders of magnitude removed from the efficiency of mammalian
cortex.

It is important that all contributing components are taken into account when
comparing computing systems (noted by Hasler and Marr, 2013). In the present
study, we have excluded the energy required for controlling the room temperature.
In addition, we have ignored the contributions of the host computer and the Eth-
ernet network to the energy consumption of the SpiNNaker simulations, and for
the NEST simulations we have excluded the energy consumed by storage units,
service nodes, and Ethernet switches in the derivation of the energy per synaptic
event. The reason for ignoring these components is that they are in principle not
needed during the phase in which the dynamics is propagated, except for data out-
put, of which the contribution depends on the goal of the study. Similarly, it is in
principle possible to power off the unused cores on the SpiNNaker boards, so the
power usage of these cores could also be discounted. However, comparison of our
measured power consumption, which includes both active and unused cores, with
estimates based on active cores only, suggests that the contribution of the unused
cores is negligible. Since we measured the power consumption of entire nodes on
the HPC cluster, the measurements include cores not used for the NEST simulation
up to the point where full nodes are assigned. This contribution is limited by the
cores controlling their clock speed in steps depending on computational load, but
could be discounted altogether.

Currently, both simulation engines require initial simulations to find the optimal
setup in the first place, and these should be taken into account when evaluating
their total energy consumption. In future, runtime models may be developed to es-
timate the optimal setup for a given network. This way, no additional simulations
would be needed in order to determine at least a reasonable parallelization.

While the power consumption measurements described here only concern the
phase in which the dynamics is propagated, on SpiNNaker the time taken to gen-
erate and load the network architecture is much longer, and needs to be addressed
by future work. The present implementation already substantially reduces the
time it takes to generate the connectivity. Work in progress includes developing
the ability to generate the connectivity, which makes up the bulk of the data used
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by the simulation, on the cores of SpiNNaker. This, as in the case of NEST (Mor-
rison et al., 2005), has the potential to further reduce the network generation time
through parallelization, as well as speeding up the loading of data by only trans-
ferring the parameters for the statistical generation of the synapses rather than the
instantiated connections as is done now.

The current work considers networks of point neurons with static current-based
synapses. In general, neural network models can contain more complex features,
such as multi-compartment neuron models, conductance-based effects, and plas-
ticity. Since such features increase the time required for neuron and synapse pro-
cessing, they reduce the maximal rate at which the neurons on the SpiNNaker
hardware can receive inputs and the number of neurons that can be mapped to
a core while maintaining simulation speed. For instance, depending on the exact
model and parameters chosen, simple pairwise spike-timing-dependent plasticity
with additive weight dependence reduces both these quantities by a factor of 7 on
SpiNNaker with the current software stack, and a factor of 2.5 with synapse-centric
mapping of the network to the cores (Knight and Furber, 2016). More complex
synaptic plasticity models with multiple dynamical variables like those described
by Benna and Fusi (2016) can also be implemented but would further lower the
number of neurons per core and their maximal input rates for a given simula-
tion speed. One trend in computational neuroscience is toward ever larger-scale
complex models (e.g., Traub et al., 2000; Lundqvist et al., 2006; Yu et al., 2013;
Markram et al., 2015; Schmidt et al., 2016). Also such models can in principle be
implemented on SpiNNaker; however, the scaling of the required resources and
the corresponding simulation performance remain to be investigated.

Our comparison of SpiNNaker and NEST highlights concepts like accuracy, the
influence of randomness, concreteness of use cases, and a common formal model
specification that need to be considered when comparing systems of this sort. The
concepts herein discussed facilitate the evaluation of other low-power platforms
such as TrueNorth (Akopyan et al., 2015) and ROLLS (Qiao et al., 2015), and
those that are similar to SpiNNaker but with other architectural features, such as
described by Moradi et al. (2018).

Porting network models to dedicated hardware is a useful exercise to help iden-
tify requirements (the right product is built) and benchmark the results against
existing simulation software (the product is built right). This gives us confidence
that the co-design process in which we are engaged in the framework of a se-
quence of large-scale European consortia will continue to successfully guide us in
the future. Close collaboration between hardware developers and computational
neuroscientists ensures that the product can be used for realistic applications by
its intended user community.
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4.1 introduction

One common technique to capture brain activity on the neuronal level is to record
extracellular potentials in cortical tissue (Buzsáki et al., 2012; Einevoll et al., 2013a).
The low frequency (. 100 Hz) part of the signal, often referred to as the local field
potential (LFP), remains difficult to interpret as thousands to millions of proxi-
mal and distal neurons contribute to the signal (Kajikawa and Schroeder, 2011;
Lindén et al., 2011; Łęski et al., 2013). From the high-frequency band (& 100 Hz),
however, one can detect sequences of spikes, the transient extracellular signatures
of action potentials in single neurons nearby the recording electrode. The number
of reliably identified neurons (through spike sorting, Quiroga, 2007) per recording
session is low compared to the number of neurons in vicinity of the recording de-
vice, even if the experiment is performed with hundreds or more electrode contact
points (Einevoll et al., 2012). The Utah array from Blackrock Microsystems1, for
example, resolves with 10× 10 electrodes on 4× 4 mm2 little more than a hundred
distinct neurons. Also optical methods for measuring neuronal activity have seen
continuous improvements. As recently demonstrated, non-invasive three-photon
fluorescence microscopy facilitates functional imaging at high optical resolution as
deep as 1 mm (Ouzounov et al., 2017). While the method simultaneously images a
comparably large number of neurons, the recordings lack the temporal resolution
to reliably detect individual action potentials. Ouzounov et al. (2017) record from
as many as 150 neurons in mouse hippocampal stratum pyramidale within a field
of view of 200× 200 µm2.

The rapidly improving parallel recording technology increases the need for suit-
able analysis methods for high-dimensional and dynamic data streams. Neverthe-
less, the recordings will remain to be characterized by a massive undersampling
for some time. Therefore, detailed full scale models of the cortical tissue are re-
quired to understand the microscopic dynamics (van Albada et al., 2015) and to
relate the microscopic activity to mesoscopic measures like the LFP. For this pro-
gram to succeed, neuroscientists not only need to analyze model data in the same
way as experimental data, but to explore data sets with orders of magnitude more
channels than experimentally available.

Networks of model neurons incorporating varying levels of biophysical and
anatomical detail reproduce a number of features of experimentally obtained spike
trains. For networks of point- or one-compartment neuron models, this list of fea-
tures includes irregular spike trains (Softky and Koch, 1993; van Vreeswijk and
Sompolinsky, 1996; Amit and Brunel, 1997b; Shadlen and Newsome, 1998), asyn-
chronous spiking (Ecker et al., 2010; Renart et al., 2010; Helias et al., 2014; Ostojic,
2014), correlation structure (Gentet et al., 2010; Okun and Lampl, 2008; Helias
et al., 2013), self-sustained activity (Ohbayashi et al., 2003; Kriener et al., 2014b),
realistic firing rates across cortical lamina (Potjans and Diesmann, 2014), single-
neuron spiking activity of different cell types (Izhikevich, 2003; Kobayashi et al.,
2009; Yamauchi et al., 2011) and responses under ‘in vivo’ conditions (Jolivet et al.,
2008; Gerstner and Naud, 2009). Relating point-neuron network activity to pop-
ulation signals such as the LFP is, however, not straightforward. Approximations
(see Mazzoni et al., 2015) or forward-model based schemes (Hagen et al., 2016a)

1 http://blackrockmicro.com

http://blackrockmicro.com
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Figure 4.1: Geometry and connectivity of a layered point-neuron network. A Schematic
illustration of distance-dependent network connectivity using connectivity pat-
tern tables (Nordlie and Plesser, 2010). Each row represents source populations
X ∈ {STIM, EX, IN}, and each column target populations Y ∈ {EX, IN}. The
color coding in each image shows the connection intensity between presynap-
tic neurons j and postsynaptic neurons i located in (xj, yj) and (xi, yi) with
origin (0, 0) at the center. The connection intensities are defined as the prod-
uct between pairwise connection probabilities εYX(rij) and synapse strengths
gYX J for each respective connection. Gray values denote connection intensities
of zero. B Illustration of one network instantiation with randomly drawn neu-
ron positions and outgoing connections from a subset of neuronal units. The
colored dots represent individual units at their (x, y)-coordinates. Gray dots de-
note units in a stimulus (STIM) layer, blue dots excitatory (EX) units, and red
dots inhibitory (IN) units. Blue and red lines denote excitatory and inhibitory
connections respectively, from a source unit (white circles) onto neurons within
the same or another layer.

are required to bridge the gap to experimental electrophysiological data which
predominantly reflects population activity.

The focus of this study lies on visualization methods for activity of spatially ex-
tended neuronal network models. Incorporation of spatial structure is a prerequi-
site for models aiming to explain experimentally observed spatiotemporal patterns
of activity (Rubino et al., 2006; Denker et al., 2011; Sato et al., 2012; Muller et al.,
2014; Townsend et al., 2015). Such models have an arrangement of neurons in
one-, two- or three-dimensional (1D, 2D or 3D) space and connection rules which
typically depend on the distance between (parts of) the neurons (Mehring et al.,
2003; Coombes, 2005; Yger et al., 2011; Bressloff, 2012; Voges and Perrinet, 2012;
Kriener et al., 2014b; Keane and Gong, 2015; Rosenbaum et al., 2017). Although
we primarily focus on model data, the same visualization methods can be applied
with experimentally recorded data.

We here consider an example spiking point-neuron network consisting of an
excitatory (EX), an inhibitory (IN) and an external stimulus (STIM) population. EX
and IN units are positioned randomly within square domains while STIM units are
randomly positioned within a circle at the center. A schematic representation of the
network connectivity is shown in Figure 4.1A. We use connectivity pattern tables
(Nordlie and Plesser, 2010) for source populations X (rows) and target populations
Y (columns). The images indicate the ‘connection intensities’ for each connection,
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Figure 4.2: Spiking activity of a layered point-neuron network model. A Spike raster
plot for STIM (gray dots), EX (blue dots) and IN (red dots) units from a simu-
lation of the network instantiation depicted in Figure 4.1B. Each individual dot
corresponds to a unit ID vs. spike time; only the spikes of every fifth neuron
are shown in the raster. The color coding for each population is reused in the
subsequent panels. B Spike count histogram across units in each population,
calculated using a bin width of 625 units, sorted by neuron index j. C Sorted
spike raster where dots correspond to the spatial location (projected onto the
x−axis) and spike times of each unit. The raster-plot density is diluted as in
panel A. D Spike count histogram across spatial bins with a width ∆l = 0.1 mm.
E Spike count histogram for each population across time, computed using a
temporal bin width ∆t = 1 ms.
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defined as the product between averaged pairwise connection probabilities εYX(rij)

and synapse strengths gYX J. The distance between a source and a target neuron
is denoted by rij. Pairwise connection probabilities decay with horizontal distance
between EX and IN units according to a Gaussian profile, while STIM units only
connect locally to the EX population restricted by a cut-off radius. The geometry of
one network instantiation is depicted in Figure 4.1B. EX (blue dots), IN (red dots)
and STIM (gray dots) units are placed in separate layers. The distance dependency
is illustrated by outgoing excitatory connections (blue lines) from single units in
the STIM and EX populations and outgoing inhibitory connections (red lines) from
single units in the IN population.

The visualization of neuronal activity data poses challenges due to the high di-
mensionality and time dependence of the data. Historically, electrophysiological
data have been recorded from few electrodes or from many electrodes with un-
defined relative and absolute spatial coordinates (see, for example, the pioneering
work of Krüger and Bach, 1981). This is not an essential limitation for record-
ings within the local cortical network where a neuron can form a synapse with
any other neuron and there is little spatial organization. Furthermore, the fun-
damental interaction in a neuronal network is considered to be a dynamics on a
graph; nodes solely interact via the edges of the graph. In this picture the spa-
tial embedding of the graph is arbitrary as the dynamics is not constrained by
the dimensions of physical space. Therefore, neuroscientists developed concepts
for visualizing correlation structure and time dependence of neuronal activity in
multi-channel recordings in ignorance of spatial properties. A temporal segment
of activity of our example network is visualized in Figure 4.2. Panel A is the spike
raster diagram or dot display in use for decades (explained in Abeles, 1982). Each
row shows the spike train of one neuron where spike times are marked by dots.
The rows either represent data of the same neuron in several trials or, as here,
data of simultaneously recorded neurons in a single trial (Grün, 1996, Figure 6.2).
The spike trains are vertically arranged by neuron ID and in addition color coded
by population. The spike raster highlights global features of network activity and
generations of neuroscientists have been trained to visually inspect these diagrams.
For example, network synchrony appears as a stripy vertical pattern even if indi-
vidual neurons only rarely participate in an individual synchronous event. The
activation of the stimulus population is reflected in the other populations as an
increased density of the dots. Epping et al. (1984) extend the concept of the raster
diagram by assigning a unique color to the dots of a neuron. In this way multi-
channel activity observed over multiple trials can be superimposed. Panel B shows
spike counts along the temporal axis over neuronal units demonstrating that the
per-neuron spike count is similar for the excitatory and the inhibitory populations.
The spike count along the vertical axis in panel E is called the post-stimulus time
histogram (PSTH, Perkel et al., 1967a) originally computed for an individual neu-
ron observed over several trials. Later the display was also called peri-stimulus
time histogram. Here the histogram is computed over simultaneously recorded
neurons in a single trial. The display uncovers the fluctuations of population activ-
ity in time.

The development of adequate visualization concepts for multi-channel neuronal
data is an ongoing endeavor (Allen et al., 2012). The cross-correlation function
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(Perkel et al., 1967b) exposes the time-averaged relationship between the spike
times of two neurons. The snowflake diagram generalizes the concept to three
neurons (Perkel et al., 1975; Czanner et al., 2005). Gravitational clustering (Ger-
stein et al., 1985; Gerstein and Aertsen, 1985 and reviewed in Chapter 8 of Grün
and Rotter, 2010) attempts to identify the emergence of correlated groups of neu-
rons, so called cell-assemblies, and the temporal dynamics of the changing mem-
bership of individual neurons in such groups without averaging over trials. The
joint peri-stimulus time histogram (JPSTH, Aertsen et al., 1989) generalizes the
cross-correlation function to visualize the dynamics of the correlation between the
spikes of two neurons in reference to a stimulus. Later, Prut et al. (1998) used the
idea to investigate the occurrence of spatiotemporal patterns in the spike trains of
three neurons, where “spatio” refers to the abstract space of neuron IDs not phys-
ical space. Because of the difficulties in determining statistical significance Grün
et al. (2002) restricted the scope to patterns in the space of IDs and for visualiza-
tion mapped significant events, so called unitary events, back into the spike raster
diagram. Progress in the theory of neuronal networks showed that propagating
spiking activity due to the stochastic nature of neuronal activity is likely to ex-
hibit in each instance a random sub-pattern of spikes of some superset of neurons.
Therefore, Schrader et al. (2008) designed a matrix spanned by binned ongoing
time in both dimensions where matrix-elements represent the cardinality of the
intersection set of the neurons spiking at the two respective time bins. With color-
coded cardinality, in this matrix repeatedly occurring propagating spiking activity
appears as a diagonal feature. Later an assessment of statistical significance was
added (Torre et al., 2016a). Kemere et al. (2008) employ multi-channel recordings
to construct the time course of a multi-dimensional vector of spike rates. A suitable
projection to a lower dimensional space reveals differentiable trajectories of net-
work activity depending on the experimental protocol (reviewed in Cunningham
and Byron, 2014). Another line of work attempts to cope with the combinatorial
explosion of patterns in multi-channel spike trains while maintaining sensitivity
by the construction of a pattern spectrum: a two-dimensional histogram spanned
by the number of spikes in a pattern, called pattern complexity, and the number
of occurrences of the particular patterns (Gerstein et al., 2012; Torre et al., 2013).

Figure 4.2C modifies the spike raster diagram in panel A to arrange the spike
trains on the vertical axis according to the x-coordinate of the position of the emit-
ting neuron in physical space. In contrast to the regular spike raster, we observe
inhomogeneous spatiotemporal features in network activity. The spatially binned
spike counts along the temporal axis in panel D, however, do not reveal any un-
expected structure. Thus, taking into account one coordinate of the neurons in
physical space hints at some organization of neuronal activity. Nevertheless, a
higher-dimensional analysis seems to be required to uncover its origin, as the fea-
tures of spatiotemporal patterns can only be conjectured in 2D.

The emergence of planar wavelike spiking activity in 2D networks was shown
by Voges and Perrinet (2012, Figures 3–5), but a 2D spatial visualization of the
data could not faithfully capture intermediate mixed patterns such as rings and
spiraling waves. Temporal snapshots of spatial activity show the evolution of pat-
terns, as seen in Mehring et al. (2003, Figure 5), Yger et al. (2011, Figures 2,12),
Voges and Perrinet (2012, Figure 6) and Keane and Gong (2015, Figure 1). Series
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of such snapshots combined in an animation or movie can be informative, but re-
quire settings to be defined beforehand, leaving only little room for interactivity.
With such non-interactive visualization methods, crucial decisions about a figure
or an animation thus have to be made before a sufficient intuition about the data
exists. Flexible, interactive visualization techniques identifying relevant dynamical
features present in the data would have the potential to avoid the tedious and time-
consuming loop of refining parameters and regenerating snapshots, animations or
movies. In addition, high-dimensional and multi-modal data demand adequate
workflows for analysis, from raw data to statistical measures, where interactive
visual analysis methods can play a major role. It is for example essential to get
a basic understanding of the datasets to better decide what statistical methods to
use for more elaborate analysis. Furthermore, interactive visualization allows for
explorative data analysis, including dimensionality reduction of complex datasets,
highlighting of data points, and direct changes to visualization parameters.

For the development of supportive visual analytics tools, Shneiderman (1996)
introduced the so-called ‘information-seeking mantra’. It describes the steps of
common visual analysis workflows: “overview first, zoom and filter, details on
demand”. The first step provides a superficial ‘overview’ of the data. In the second
step, ‘zooming’ into the dataset allows the user to get a more detailed view on a
chosen data subset. Application of ‘filters’ implies a change in dimensionality
of the data or the extraction of particular features. Finally, Shneiderman (1996)
proposes that visualization tools should enable the user to access all details of
selected data points.

To not restrict the user to only one visual representation of the data, Wang Bal-
donado et al. (2000) established the concept of ‘coordinated multiple views’. Co-
ordinated multiple views is a paradigm for the implementation of visual analysis
applications that “use two or more distinct views to support the investigation of a
single conceptual entity” (Wang Baldonado et al., 2000, page 110), and has been
applied in various contexts (see for example Roberts, 2007). Basic coordination of
views addresses selection operations (e.g., whether to display only a subset of the
data) and also includes immediate control over animated frames (e.g., animation
time step and playback speed for time-resolved data). In addition, each view may
have an exclusive (view-specific) set of user controls and settings.

The activity exhibited by our example network is characterized by a non-trivial
interplay between neuronal populations resulting in non-stationary activity in time
and space. The neuroscientist needs to identify the propagation of spiking activ-
ity within and across individual layers over time and space, and simultaneously
observe population activity measures such as the LFP. This is an opportunity to
exercise the concepts by Shneiderman (1996) and Wang Baldonado et al. (2000).
Visualization in most cases focuses on a specific aspect or hypothesis to be tested
by analyzing the corresponding data. Therefore, for each task the neuroscientist
combines a different set of views. Sometimes particular views are not among the
regularly used ones provided by the visualization framework but are created ad
hoc specifically for the research question or the experimental protocol. Therefore
the analysis software environment needs to facilitate fast prototyping of visualiza-
tions and an interface to a computing programming language used in the scientific
domain. This focus on a specific aspect under investigation by the neuroscientist
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necessarily entails an individual level of reduction or aggregation of the data. A
particular visualization realizes this preprocessing of the data with methods like
binning of data points in time or space, or by filtering out a certain subset of pa-
rameters of each data point. For instance, the spike raster plot in Figure 4.2A
displays the individual spikes of all neurons whereas the bar chart in Figure 4.2E
visualizes the total number of spikes per time step. The visualization abstracts
from the spikes of individual neurons and turns the focus to the whole population.
On the one hand the visualization simplifies interpretation by presenting less de-
tail, on the other hand the reduction increases the chance of wrong or inaccurate
conclusions. Historically, Vaadia et al. (1988, Figure 4 middle) illustrate a poten-
tial misinterpretation of the PSTH due to variability in the onset of the neuronal
response: a neuron observed over multiple trials exhibits in the PSTH a smooth in-
crease in spike rate, whereas the raster plots show in each trial an abrupt increase
in spike density with a variable onset. Grün et al. (2002, Figure 8) demonstrate
how such misalignments can propagate to measures of statistical significance: with
respect to one trigger event the data show surplus spike synchrony simply due to
non-stationarity of spike rate, whereas with respect to another trigger the rate is
stationary and no excess synchrony is detected. However, if a multi-view approach
is implemented that combines various visualizations, more than one aspect of the
data (more then one visual representation of differently processed data) can be
inspected simultaneously and can be put into relation. By interactive addition
and removal of certain views, this process can be made flexible and thus address
changes in the analysis goals or to consider findings during the analysis. Finally,
we require a solution that allows for integration with platform-independent web-
based technologies to keep the accessibility of the tool as high as possible.

A variety of coordinated multi-view applications for the interactive analysis of
activity data has been described in literature, which generally follow the information-
seeking mantra. For models of neuronal systems, the NEURON simulation envi-
ronment (Carnevale and Hines, 2006) provides a graphical user interface based on
a modified version of the discontinued InterViews library in addition to scripting
in HOC and Python (Hines et al., 2009). The software itself offers the possibility
of drawing multiple concurrent windows with dynamic and interactive plots of
voltages, currents, morphology shapes and phase planes that are updated while
simulations of single-neuron models or neuron networks are running. 3D visual-
ization is not directly supported, but NEURON’s Python bindings also allow run-
ning simulations to interact with modern visualization software, as for example
incorporated by NeuronVisio (Mattioni et al., 2012) that relies on the OpenGL-
accelerated Mayavi visualization toolset (Ramachandran and Varoquaux, 2011).
The simulation software for large-scale neuronal network models NEST2 (NEural
Simulation Tool, Gewaltig and Diesmann, 2007) does not provide built-in interac-
tive visualization. The original authors state this in their first report (Diesmann
et al., 1995) as a design decision based on two considerations. First, in 1995 the
life time of graphics frameworks and libraries appeared much shorter than the
envisioned period of relevance of a simulation code. Thus, only a software stack
with a strict separation of levels would ensure platform independence and sustain-
ability of NEST. Second, a basic idea of the project is to contribute to a software

2 http://nest-simulator.org

http://nest-simulator.org
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environment for ‘in virtu’ now often called ‘in silico’ experiments (restated in Dies-
mann and Gewaltig, 2002). In this concept, the authors state, simulated data and
experimental data should be analyzed with the same analysis tools to maximize
comparability and reproducibility. At the same time researchers at the department
of Physiology and the Center for Neural Computation of the Hebrew University
in Jerusalem started to work on an integrated analysis and visualization platform
based on Open Inventor3 called Neural Data Analysis (NDA) but the project was
abandoned with the advent of MATLAB (Vaadia, 2017). Recently Nowke et al.
took on the challenge to develop a simulator independent visualization platform
for brain-scale neuronal networks. The VisNEST (Nowke et al., 2013, 2015) frame-
work visualizes the spiking activity of multi-area network models (using as an
example Schmidt et al., 2017) in a virtual environment. The time-resolved activity
data is mapped onto a 3D brain model. This enables the researcher to interact
with the model in 3D to expose otherwise occluded parts of the brain and to relate
brain activity to anatomy. In a different view, a dynamic 3D graph represents time
course of spike exchange between different cortical areas. These representation of
spatial information can be combined with classic charts such as spike raster plots.
The tool does presently not account for the spatial organization of activity within
brain areas. Apart from VisNEST, other standalone interactive multi-view applica-
tions have been developed for simulated spiking data, for instance SNN3DViewer
(Kasiński et al., 2009) and ViSimpl (Galindo et al., 2016). SNN3DViewer focuses
on 3D neuronal networks by visualizing individual neurons and their connections
schematically, including interactive control over the 3D visualization (navigation,
scale). ViSimpl combines a 3D particle-system-based visualization of the simulated
neuronal network using color coding for the activity, supplemented by a set of data
charts for single neurons and populations. Geppetto4 is a web-based modular
platform for visualization and simulation of complex biological systems including
spiking neuronal networks. Unlike the visualization concepts along which these
tools have been developed, we here focus on concepts that expose the spatial orga-
nization of neuronal activity in layered networks and scale to signals from several
square millimeters of brain surface.

Beside the aforementioned softwares applicable with spike data, general-purpose
multi-view frameworks exist with different design goals and contexts of use (see
Roberts, 2007). One generic high-level example is GLUE5, a Python and OpenGL-
based multi-view framework. Another powerful framework is the now neglected
OpenDX6. In contrast to the GLUE toolset, we here aim at web-based visualization.
Easy access to libraries of common plotting functions and methods (scatter, line,
surface plots etc.) is provided for most common programming languages (C++,
Python, MATLAB, etc.). Nevertheless, a large amount of time and resources is
still required to construct fully interactive visualization tools adhering to the prin-
ciples outlined by Shneiderman (1996) and Wang Baldonado et al. (2000). Includ-
ing interactivity and time synchronization between different visualizations may be

3 https://www.openinventor.com
4 http://www.geppetto.org
5 http://glueviz.org
6 http://www.opendx.org

https://www.openinventor.com
http://www.geppetto.org
http://glueviz.org
http://www.opendx.org
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demanding in terms of software design and development time, however, existing
plotting libraries can be used to realize the individual visualizations.

As a reference implementation of our conceptual study, we introduce the in-
teractive visualization tool VIOLA, an open-source, platform-independent and
lightweight web-browser application. The tool is designed for initial visual in-
spection of massively parallel data generated primarily by simulations of spiking
neuronal networks similar to the example network illustrated in Figure 4.1. VIOLA
is designed around the information-seeking mantra and the concept of coordinated
multiple views. 2D and 3D visualizations support the exploration of neuronal ac-
tivity across space and time. The software can display raw spiking output as well
as spatiotemporally binned data that may represent instantaneous spike counts
gathered from nearby groups of neurons. Spike and LFP data can be displayed
simultaneously, thus allowing for a multi-modal analysis.

The next sections are organized as follows: In Section 4.2 we present different
visualization types and their application. Subsequently, in Section 4.3, we describe
their implementation in the visualization tool VIOLA, the example network model
and the phenomenological model for the LFP signal. Finally, in Section 4.4, we
conclude our work and discuss general limitations of frameworks for explorative
visualization and potential future developments.

4.2 results

For the analysis of data, static figures can help to highlight certain characteristics
of the data or show results relevant for a particular hypothesis. However, static
figures hamper an exploratory analysis of data as the adaption of data filters, vi-
sualization parameters, or changes in the perspective (in case of 3D visualization)
require a re-rendering of the figure resulting in a very slow visual analysis pro-
cess. Interactive visualization tools tackle these shortcomings by offering multiple
views on the same data simultaneously, for example by projecting the data across
different dimensions. This allows the user to investigate data at different levels of
detail, and to adapt visualization parameters in a dynamic and explorative man-
ner as the rendering of the visualization is continuously updated. Throughout
this section, we use the spike output of the point-neuron network introduced in
Section 4.1 as an example to demonstrate appropriate visualization types in an
interactive and multi-view framework. Neurons in this network are placed in 2D
sheets, and connections are drawn using distance-dependent probabilities between
pairs of neurons. The model represents spatially heterogeneous neuronal activity
across a 4× 4 mm2 cortical sheet. As we here focus on visualization methods in VI-
OLA, we refer the reader to Sections 4.3.4 and 4.3.5 for the details on our network
implementation in NEST (Kunkel et al., 2017), Python-based preprocessing steps
and predictions of a mesoscopic population signal, the local field potential (LFP).
We next describe in detail the different views of VIOLA and their use cases.

4.2.1 Views of VIOLA

VIOLA incorporates two conceptually different visualization types with two sep-
arate ‘views’ each. The first visualization type (view 1 and view 2 in Figure 4.3)
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focuses on instantaneous snapshots of data across space. The second visualization
type (view 3 and view 4 in Figure 4.4) shows time series of data. We first present
the visualizations of preprocessed data described in Section 4.3.1. Views 1–3 may
also be used to visualize raw data (non-preprocessed) as shown in Figure 4.5.

4.2.1.1 View 1: 2D spike-count rate

The 2D spike-count rate view (Figure 4.3A) shows instantaneous activity data in
separate sub-panels for individual populations. The values in each panel corre-
spond to the instantaneous spike-count rate νβ in one discrete spatiotemporal bin
indexed by β = (lx, ly, k) in our preprocessed data format (lx and ly denote spa-
tial bin indices along the x−and y−axes, and k denotes a temporal bin index). In
this format, each spike event is added to the corresponding spatiotemporal bin
as described in detail in Section 4.3.1. The color bar denotes bin values in units
of spike counts per second (spikes/s) and is shared between all sub-panels. This
view provides a side-by-side comparison of the spatially resolved activity in each
individual population. For a larger number of populations (than shown here), it is,
however, difficult to relate the activity of one population to another population by
visual observation. This problem can however be amended by combining multiple
population activities in a single scene.

4.2.1.2 View 2: 3D layered spike-count rate

In the 3D layered spike-count rate view (Figure 4.3B), we combine the activity of
all network layers in one 3D-animated scene. The view incorporates the possibility
to show also other activity measures, for example the population LFP. The layers
in view 2 correspond to the different sub-panels for each population in view 1. Dif-
ferent populations are here assigned unique colors. We chose to illustrate instanta-
neous spike-count rate νβ by dynamically sized cubic boxes. The box sizes are by
default scaled such that their volumes are proportional to νβ at each time step, thus
low-activity bins may still be visualized simultaneously with high-activity bins.

View 2 offers multiple possibilities for interactive adaptation of the visualization.
As suggested by the information-seeking mantra (Shneiderman, 1996), the user
can manually select which part of the data to show, for example by switching on
or off individual layers that may occlude visibility of activity in other layers or by
setting the horizontal x− and y−limits of the layers. It is also possible to reduce the
opacity of the colored boxes or to scale their side length linearly. The camera can be
set either to an orthographic or perspective-corrected projection mode. Dependent
on the projection mode, the camera can be moved freely and allows for zooming,
panning and rotating the scene. One can easily reset the camera to its default
position by the click of a button or select different preset camera positions such as
on top or to the side.

The major benefit provided by view 2 over view 1 is the possibility to visually
relate the activity in one layer to other layers as all layers are drawn in the same 3D
scene. As box volumes are computed from instantaneous spike-count rate values,
this view brings the attention of the user to spatial regions of the network with high
local activity. While views 1 and 2 offer flexible visualizations of instantaneous
activity across space, we next consider scenes capable of showing time-series data.
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Figure 4.3: View 1: 2D spike-count rate. Panel A shows the instantaneous spike-count
rates, defined as the number of spikes per second occurring within a spatiotem-
poral bin, using 2D image plots spanning the spatial x− and y−axes of the net-
work layers. One separate image plot is created for each network population
and denoted by the population name (EX, IN). The color map and correspond-
ing color bar for instantaneous spike-count rate values are shared among all
populations. In this and subsequent panels, we show the screen shot of the
view itself to the left and highlight its components to the right. View 2: 3D lay-
ered spike-count rate. Panel B combines the data shown in Panel A in a single
3D scene by stacking the different population data on top of each other. The
size of each cubic marker denotes the magnitude of the corresponding bin-wise
instantaneous spike count, and its position corresponds to the spatial positions
of the respective bin. Unique colors are assigned to each layer as indicated
by the population names. Projections of the spike counts along the x− and
y−axes are displayed towards the corresponding edges. The optional bottom
image plot layer shows the spatial variation in an LFP-like signal at the present
time step of the rendering loop.
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4.2.1.3 View 3: Scrolling spike-count rate plot

The scrolling spike-count rate plot (Figure 4.4A) is a time-series representation of
the data that neglects spatial features of the network and its activity. It shows the
time evolution of the total spike-count rate νk (black line), defined as the sum over
the spike-count rates of all spatial bins and populations divided by the number of
bins, together with the relative rate of each individual population (colored stacked
plot). νk is defined as νk ≡ 1/(LxLy) · ∑X ∑lx ∑ly νβ with β = (lx, ly, k) and where
Lx and Ly denote the number of bins along the x− and y−axes and neuronal
populations are denoted X. The per-population spike-count rates can therefore be
inferred by multiplication of the total rate with the fraction of spiking in individual
sub-populations. The color coding of each population corresponds to the one used
in view 2, but can also be read from the bar to the right. The plot is centered on the
current time step (vertical white line indicator) when scrolling through data points
in the animation. It allows for interactive change of the width of the visible time
window and also permits to manually select or deselect individual populations
to be displayed. View 3 provides a temporal overview of the data and allows to
identify time intervals of interest, for example, due to an external perturbation.

4.2.1.4 View 4: Scrolling spike-count rate iso-surface plot

The instantaneous spike-count rates of our example network are time-series activ-
ity data with 2D spatial structure. In order to visualize such data without loss of
dimensionality, a 3D representation is in general required (unlike for instance view
3). The scrolling spike-count rate iso-surface scene in Figure 4.4B simultaneously
shows the evolution of network activity in space (as in views 1 and 2) and time (as
in view 3). The rate iso-value surfaces of each population is rendered using the
computer-graphics algorithm ‘marching cubes’ (Lorensen and Cline, 1987). The
color coding of the individual populations matches the coding used in views 2 and
3. In terms of user interactivity, the user can set the threshold (isolation) for the
surfaces. Furthermore, the user can select which populations to show, vary their
opacity level, apply a temporal offset to individual populations, change the width
of the time window, and take full control of the viewpoint in the 3D scene as in
view 2.

4.2.1.5 Raw data views

In addition to visualizing spatiotemporally binned, preprocessed data, views 1–3

can also be used with raw simulation output files formatted according to the de-
scription in Section 4.3.1. With raw file output, view 1 (Section 4.2.1.1, Figure 4.5A)
displays for each animation time step a square marker for each spike time ts

j at the
spatial location (xj, yj) of neuron j in population X. The square marker color is
population specific. Likewise, view 2 (Section 4.2.1.2, Figure 4.5B) shows boxes of
equal size for each spike event, colored according to population. The view allows,
as with precomputed spike-count rates, to show spiking activity in each population
in the same scene. We here show a snapshot of the spiking activity in perspective
mode, and top-down. The main interactive feature of views 1 and 2 incorporated
with raw data files is the option to reduce the neuron density to be displayed. As
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Figure 4.4: View 3: Scrolling spike-count rate plot. Panel A is a time-series representa-
tion of the data across a user-variable time interval around the present time
step of VIOLA’s rendering loop, indicated by the vertical white line. The in-
stantaneous total spike-count rate summed over all populations is drawn using
a black line. The relative fraction of spikes of each population to the total spike
count is shown as a stacked, normalized histogram. The population outputs
are color coded as in view 2. View 4: Scrolling spike-count rate iso-surface
plot. Panel B provides a 3D representation of the spatiotemporally resolved
spike-count rates of one selected network population across a user-variable
time window. The spike-count rate is rendered as a closed iso-value surface
in the color of the respective population and extends in both space (x− and
y−axes) and time (delay axis). The present time step in the visualization is in-
dicated by a time lag of zero on the time-delay axis. At zero time delay we also
show the LFP signal corresponding to the present time step in the animation.
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A B C

Figure 4.5: Views 1–3 applied with raw data formats. A View 1: Each dot corresponds
to a single spike event of a neuronal unit at its spatial location in the net-
work. B View 2: Perspective top-down view onto stacked layers of Panel A.
C View 3: The stacked plot has the temporal bin-size of the simulation resolu-
tion. The black trace shows the spike count of all neurons per time bin (in units
of spikes/s).

with preprocessed data visualization with view 2, individual layers can be activat-
ed/deactivated, one can switch between the orthographic and perspective viewing
modes, and the camera can be positioned freely. View 3 (Section 4.2.1.3) applied to
raw data is shown in Figure 4.5C. The temporal bin size of the animation is then
equal to the simulation time step dt (one spike therefore results in the spike count
rate 1/dt in units of spikes/s for that instant). The total spike count (black line) is
summed over all neurons, in contrast to the mean over per-bin rates as in the case
of the preprocessed data. The relative spike count per population is shown as a
stacked plot normalized by the total amount of spikes in each temporal bin.

4.2.2 VIOLA use case

Numerical model development representing a physical system comprises imple-
mentation, simulation, analysis as well as comparison, validation and verification
steps. Such model development is important for building hypotheses and aid-
ing interpretation based on experimental data and observations. We here demon-
strate how the views described above can be integrated with the development of
a spiking point-neuron network model. For this purpose, we can hypothesize that
transient external input to a layered spiking point-neuron network model with
distance-dependent recurrent connections results in propagating spatiotemporal
activity. We wish to assess the spatial extent and temporal duration of the network
response to external perturbation and whether or not the unperturbed network
state is recovered. In this use case we do this assessment by visual inspection prior
to any detailed numerical analysis, focusing on the importance of coordinated
multiple views (Wang Baldonado et al., 2000; Roberts, 2007) and Shneiderman’s
information-seeking mantra (Shneiderman, 1996). For our hypothesis above we
will therefore use our implementations of views 1–4 in VIOLA to rapidly analyze
our network activity. We show that a combination of the different views is needed
to asses the relevant aspects in the data, which is the evoked response to a network
perturbation.
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Figure 4.6: Identifying a time interval of interest with view 3. A The spike-count rate
summed across spatial bins and the relative contributions by populations EX,
IN and STIM shown for a time window of ±500 ms around the current time
step of the animation. B Same as Panel A, but with a narrower time window of
±70 ms (indicated by the green frame in panel A), highlighting the activation
of the STIM population and corresponding network response. C Same as panel
B, but with the STIM contribution turned off.

The layered point-neuron network illustrated in Figure 4.1B consists of an ex-
citatory (EX) and an inhibitory (IN) neuronal population plus one stimulus pop-
ulation (STIM). Each neuron is placed randomly within square sheets. EX, IN
and STIM units are connected using distance-dependent rules as illustrated in Fig-
ure 4.1A. The connectivity is periodic across boundaries (torus connectivity). The
detailed network description is given in Section 4.3.4. The main simulation output
is spike times of individual neurons, neuron locations and a synthetic LFP signal
(see Section 4.3.5 for details). Our initial preprocessing steps and corresponding
data formats are described in Section 4.3.1.

4.2.2.1 Temporal features of evoked network activity

We first focus on ongoing activity of the network in the time domain, as provided
by view 3. This view implements a scrolling spike-count rate plot which ignores
spatial information. Interactive control of the view’s time window allows for quick
identification of events of interest from the full duration of the simulation (Fig-
ure 4.6A). One such event that is clearly differentiated from other ongoing activity
is the activation of the external STIM population at the animation time step of
500 ms. Pausing the animation at 504 ms and zooming in onto the event (Fig-
ure 4.6B) allows for a detailed look on how the total spike-count rate (black trace)
increases and oscillates while the stimulus is active, and confirms that the stimulus
duration was 50 ms. The color-coded stacked histogram reveals that during stim-
ulus activation a large relative fraction of spike events is contributed by the STIM
units (gray), while the relative fraction generated by the recurrently connected EX
(blue) and IN (red) units is reduced. We may also conclude that the transient on-
set of the stimulus results in temporally brief imbalances between excitatory and
inhibitory populations in the network as the relative rate of the inhibitory popula-
tion drops with regular intervals during the stimulation period. The imbalances
occur at the stimulus onset and during each period of the resulting network oscilla-
tion (from recurrent interactions between excitatory and inhibitory neurons). This
network spike-rate imbalance is even more pronounced when the STIM activity is
hidden (Figure 4.6C). We note, however, that the rate balance averaged over the
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Figure 4.7: From spontaneous to evoked activity, resolved in time and 2D space. Time
frames of populations EX (first row) and STIM (second row) are captured from
view 1 every 1 ms. After three frames showing spontaneous activity of pop-
ulation EX, the STIM layer is activated (first visible in the fourth column, at
500 ms), resulting in a repeated pattern of outward spread of activity in the EX
layer. The time step highlighted by a green outline (at 504 ms) corresponds to
the animation time step in Figure 4.6.

stimulus duration is similar to time-averaged rate balance in the non-perturbed
state.

From the visualization we can also infer that the external perturbation to the
network does not result in a shifted network state after the stimulus is switched
off. Overall rate fluctuations and relative fractions of spike-count rates appear
comparable before and after the stimulus period, unlike networks that may display
multi-stable patterns of activity (Litwin-Kumar and Doiron, 2012; Miller, 2016)
wherein their state can shift from one attractor to another either spontaneously or
due to a perturbation.

4.2.2.2 Spatial features of evoked network activity

Having identified a time segment of particular interest (the stimulus duration), we
next exploit view 1, the 2D spike-count rate view, and focus on spatial aspects
of the evoked network activity. Figure 4.7 shows a series of snapshots from the
instantaneous spike-count rate animation across space for the EX (top row) and
the STIM (bottom row) layers. Snapshots are shown for successive bins of width
∆t. The first three columns in Figure 4.7 show spontaneous activity of the EX units.
Thereafter the STIM population is switched on, as seen in the fourth column of the
bottom row. The activity of the STIM layer is by construction confined to a circle
at the center of the network. As the activity of the NSTIM units in the STIM layer
is governed by Poisson processes with rate expectations νSTIM, its spike intensity
remains fairly constant (except for the bin at 500 ms as the time bin is centered on
the time step). In layer EX, the stimulus elicits an increase in activity spreading
outwards from the center. This response dies out after a few milliseconds due to
recurrent inhibition, but reoccurs regularly as reflected by the oscillatory behavior
observed in Figure 4.7B. The time step at 504 ms highlighted by the green outline
is the same as in Figure 4.7 and latter Figures 4.8 and 4.9.

4.2.2.3 2D and 3D views of spatial activity

In order to relate the spatial relationship between activity in individual popula-
tions, we compare in Figure 4.8 three different layer-wise animations of neuronal
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CBA

Figure 4.8: Coordinated views on a temporal snapshot of the neuronal activity. A In-
stantaneous spike-count rates in layers EX, IN and STIM using view 1. The
animation time step of 504 ms is identical to the one in Figures 4.6 and 4.7 in
this and subsequent panels. B Orthographic top-down view onto stacked pop-
ulation layers and LFP image plot with view 2. C Perspective view with large
layer separation, including summed spike counts projected towards the layer
edges in view 2.

activity. View 1 (Figure 4.8A) shows individual 2D image plots for the spike-count
rates per population, with a shared color bar coding for instantaneous spike-count
rate values. This view offers an accurate spatial representation of network activity
in temporal bins of width ∆t, showcasing the locality of the STIM layer activity
and the wider spread of evoked activity in the EX and IN layers. This view does
not, however, offer interactive features except time control of the animation (shared
with views 2-4) and global scaling of the color-value mapping (sensitivity control,
shared with views 2 and 3).

The 3D-scene provided by view 2 adds additional interactive features and incor-
porates the layer-resolved data of view 1 in one animation (Figure 4.8B,C). Panels B
and C show the same temporal snapshot of activity as in Panel A. The view shows
also the spatial variation of the LFP signal that we synthesized from network ac-
tivity. The LFP signal, here shown as image plot with a color-coding reflecting
its magnitude and sign, is more difficult to relate to the ongoing activity, as it is
inherently a signal driven by past spiking activity (resulting of delayed synaptic
activation on postsynaptic neurons from spiking activity in presynaptic neurons,
cf. Section 4.3.5). We then compare rate values of one spatial bin and one popula-
tion to other spatial locations and other populations through their different color
codings and cube sizes. An observation is that activity in the EX and IN layers are
typically confined within the same spatial region of the network, while a larger
fraction of the network is quiescent at the time. This observation can for example
explain high variability in interspike-intervals of individual neurons (Keane and
Gong, 2015), as neurons may fire frequently while fronts of activity spread across
the network and remain quiet until the next burst of activity.

In terms of using interactive features offered in view 2, we turn off the ortho-
graphic mode of panel B and go back to its default 3D perspective in panel C. We
also rotate the viewpoint in order to directly focus on highly active parts of the net-
work. Furthermore, the different layers of the network and LFP are offset vertically,
with dynamic projections of the sum of spiking activity across each respective spa-
tial axis for each network layer. From this setup of view 2, we can better infer the
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Figure 4.9: Spatiotemporally resolved activity. A Spike-count rates across time and space
of populations EX (blue), IN (red) and STIM (gray) shown with view 4 for a
time window of ±100 ms around the present time step of the animation. The
isolation threshold is set to a rate of 100 spikes/s. The animation time step is
identical to the one in Figures 4.6–4.8 in this and subsequent panels. B Same
as panel A, but with IN activity turned off. C Same as Panel B, but with an
increased isolation threshold of 360 spikes per second. D Same as panel C,
but with reduced opacity of layer EX activity and an isolation threshold of
195 spikes/s. E A narrower time window (±55 ms) and shifted camera position
(isolation threshold of 195 spikes/s). The image plot at a delay of 0 ms shows
the synthesized LFP signal across space. F Same as panel E, but with the camera
position rotated around the vertical z−axis.

activity in each individual layer, including that of the LFP layer, without switching
off individual layers.

4.2.2.4 Spatiotemporally resolved network activity

We finally investigate network activity in space and time using the 3D scene pro-
vided by view 4. Similar to the scrolling spike-count rate plot of view 3, view 4

allows full control of the time axis. The activity of all populations EX, IN and STIM
is displayed for a wide (200 ms) temporal segment using red, blue and gray iso-
surfaces, respectively, in Figure 4.9A. We have centered the current time step (at
504 ms) on the evoked activity in the STIM layer (highlighted in Figure 4.7). It is al-
ready possible to identify activity patterns confined in space and time. However, it
remains difficult to assess how spontaneous network activity changes in response
to the stimulus due to occlusion of one surface by another, an inherent issue with
multiple solid surfaces. In Figure 4.9B we therefore hide the activity of the IN layer
and focus on the activity in the EX layer. The surfaces correspond to the bin-wise
instantaneous spike-count rates at an isolation threshold of 100 spikes/s. Increas-
ing this threshold to 360 spikes/s (Figure 4.9C) reveals that regular bursts of high
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rates occur at the center of the layer, in the period when the STIM layer is activated.
In the other views, these bursts may be seen as rate oscillations (Figure 4.6) or pul-
sating spatial activity (Figures 4.7 and 4.8). We here show that the attenuation of
activity radiating outward from the center is rather strong.

Using view 4, both the oscillation frequency and the outward spread of activity
in the EX population can be assessed. We highlight the STIM activity by reducing
the opacity of the EX surfaces in Figure 4.9D. This reduces occlusion problems
present with multiple overlapping opaque surfaces, and thus allows relating the
activity in these two populations to one another. A smaller time segment of the
scene is shown in panels E and F where we also demonstrate different camera
positions. Rotating the camera allows us to observe the synthesized LFP signal
at the current time step, and the corresponding network interactions resulting in
a strong LFP fluctuation. We also observe the temporal offset between stimulus
onset and a response in the EX activity as shown in Figure 4.9F.

In contrast to the previously discussed applications of views 1–3, the 3D-scene
of view 4 allows to relate both temporal and spatial aspects of the spiking activity
of different neuronal populations and the LFP signal to one another. With this
view, we can get an overview of a large time segment and several populations
and then use its incorporated interactive features in order to explore the network
activity under influence of the stimulus. The focus of this view lies on highlight-
ing qualitatively interesting features of the data on spatiotemporal scales such as
the oscillating activity of EX population surrounding the STIM location (as in Fig-
ure 4.9C) or the temporal offset between STIM and EX seen in Figure 4.9F. Views 1

and 3, however, better resolve quantitative rate values or temporal offsets, respec-
tively, than views 2 and 4.

4.3 methods

4.3.1 Data formats

The data we consider for visualization are sequences Sj of spike times, defined
as tj = ∑s∈Sj

δ(ts
j ), of a neuronal unit j ∈ X located at coordinate (xj, yj), where X

denotes a neuronal population of size NX. Individual spike times ts
j are constrained

to a discrete grid n · dt for n ∈ {0, 1, 2, ..., nsteps− 1}, where dt is the time-resolution
of spike acquisition and nsteps the number of time steps in the acquisition period T.
We assume that the raw spike data to be visualized is available in two pure text files
per population X. The first file contains two columns with values separated by a
white space. Its first column contains integer numbers representing ‘global neuron
identifiers’ (neuron IDs) j, while the second column contains corresponding spike
times ts

j in units of ms. This data format, first introduced for experimental data
and reviewed in Rostami et al. (2017), is the default output format for spike data
of the neuronal network simulator NEST (Kunkel et al., 2017). While the floating
point data type is sufficient for displays and the computation of single-neuron and
population spike rates, the format is only safe for correlation analysis if the time
step is a power of two (Morrison et al., 2007c, A.2). The latter guarantees that
spike times have a representation in the data type. An alternative is to use the
original definition of the format and denote spike times by the integers n, thus
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expressing time in units of the resolution of the grid. The second file contains
three space-separated columns. Its first column contains unit IDs j, while columns
two and three contain the corresponding coordinates xj and yj in units of mm.
NEST internally represents networks as a graph where edges denote connections.
Neurons cannot be interrogated for their location and are only identified by their
ID, thus the information on the location must be defined and stored explicitly.

We consider another text-based data format for the visualization of spike data
that are preprocessed by a temporal and spatial binning procedure. For the tem-
poral binning we define a temporal bin size ∆t as an integer multiple of the ac-
quisition time resolution dt. For spatial binning of neuron positions along the x−
and y−axes we define the bin widths ∆l. The third spatial dimension (z−axis)
is ignored. Assuming an acquisition period T and the side length L of the cen-
tered square network domain, the number of temporal bins is K = T/∆t and the
numbers of spatial bins along each axis {Lx, Ly} = L/∆l. A spatiotemporal bin
is indexed by the length-three tuple of indices β = (lx ∈ {0, 1, ..., Lx − 1}, ly ∈
{0, 1, ..., Ly − 1}, k ∈ {0, 1, ..., K − 1}), spanning x ∈ [lx∆l − L/2, (lx + 1)∆l − L/2),
y ∈ [ly∆l − L/2, (ly + 1)∆l − L/2) and t ∈ [k∆t, (k + 1)∆t). In each spatiotemporal
bin, we sum for every population X the number of spike events and divide by the
temporal bin size ∆t. We refer to this measure as the instantaneous spike-count
rate νβ in units of 1/s. The preprocessed data is contained in one single file per
population with four space-separated columns. Indices lx, ly and k for each spa-
tiotemporal bin are put in columns 1, 2 and 3, respectively, while the 4th column
contains the corresponding rate value. Rows are ordered in iteration running or-
der according to k ∈ [0, 1, ..., K − 1] over all lx ∈ [0, 1, ..., Lx − 1] and finally over
all ly ∈ [0, 1, ..., Ly − 1]. Row entries where νβ = 0 is not written. The same data
format is used to represent the evolution of spatially organized analog data with
spatial resolution ∆lφ. The unit of the data depends on the actual measure, for
example mV in case of the LFP.

4.3.2 Reference implementation

We have made implementations of the visualization types discussed throughout
this chapter available in the tool VIOLA (VIsualization Of Layer Activity). Fig-
ure 4.10 illustrates the web-based JavaScript framework integrating the different
visualizations we refer to as views. A central class named Main carries out the ini-
tialization and coordination of the views. The Graphical User Interface (GUI) is
comprised of two main components, the Setup Panel and the Main Panel. The
Main Panel also serves as a container for the views. The Setup Panel is the first
entity presented to the user when the application is opened in a web browser. It
serves mainly to specify the data types to be loaded and the basic data features
(spatial dimensionality, time resolution) and visualization features such as the col-
ors for each neuron population. Parameters can be set manually or be loaded
from configuration files, for example specifying whether to load raw or prepro-
cessed data. These configuration files are JavaScript Object Notation7 (JSON) files
specifying the format of the loaded data, file names, and preset values for the vi-
sualizations. After confirming the entered information, the Main.setup() function

7 http://www.json.org

http://www.json.org
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Main.setup()
- extraction of setup values from GUI
- test for correctness of entered values

Main.init()
- generates data object by loading specified
  data files
- generates configuration dependent panels
- instantiate views
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Figure 4.10: Flow chart of VIOLA’s components. VIOLA incorporates two main parts: ‘ini-
tialization’ (top) and ‘run time’ (bottom). The initialization procedure defines
a Setup and Main Panel in VIOLA’s GUI and the corresponding Main.setup()

and Main.init() functions. The Main.setup() function is used for setting ini-
tial values, while the Main.init() function allows for loading datasets with
parameters that depend on setup values. The Main.init() function also in-
stantiates the different views in the application. The run-time component of
VIOLA uses a rendering loop and time model provided by the web browser.
The time model is needed to synchronize the rendering of each view, such that
at all times each view shows the same time step of the data and thus compen-
sates for different redering times of the views. By default, the timeStepIndex

in the rendering loop is automatically updated by the browser (using the time
model), but can also be set by the user, e.g. by a slider widget. The browser
time model is controlled using the ‘animate’ widget, while a time bar is used
for ‘manual’ time selection. Each update of the timeStepIndex triggers an exe-
cution of the Main.render() method and a corresponding update of all views.
Parameters for the different views can be modified during run time as each
view offers its individual input widgets.
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extracts the entries and provides them globally to the other components. The Main

Panel shown afterwards is used to load the input data files from the local file
system using JavaScript FileReader, which includes setting up the internal data
structure giving a coherent access to the data to be visualized. The Main.init()

function then initializes the rendering loop, which is built into the web browser
and controls the rendering of the various views. The Main.render() method is ex-
ecuted periodically by built-in functionality of the browser, which is further used
to synchronize the rendering of all views. This is necessary as the rendering of
an individual time step needs different amount of time per view. For example,
rendering a complex 3D scene is slower (because it need more computational re-
sources) than rendering a less complex 2D plot. All views must have finished
rendering before the next rendering step is triggered. Each rendering call is trig-
gered by updating the global timeStepIndex through the browser. The update
of the timeStepIndex calls the rendering loop, which redirects the rendering call
to all views. For rendering the data, all views access the loaded simulation data
structure as part of the Main object.

The timeStepIndex variable can be controlled in two modes. First, it can be
manually set by the user via a slider widget. The slider widget enables the user
to scroll manually along the time axis, thus offering a simple navigation through
the time series. Second, the user can start an animation of the loaded data set by
pressing a start button. This triggers a periodic update of the timeStepIndex. As
both manual and periodical updates of the timeStepIndex trigger the same down-
stream functionality for updating the views, manual navigation through the time
series can be combined with automatic updates of the timeStepIndex. In case the
animation is running, manual intervention by the user overrides the periodic up-
date of the timeStepIndex, such that the shown data item (time step) corresponds
to that manually selected one. The animation is continued from this manually
selected time step.

All views offer view-specific selectors for visualization parameters. These pa-
rameters are read in and used in each render call.

4.3.3 2D and 3D view implementations

This section describes the visualization algorithms used with the different view im-
plementations in VIOLA as introduced throughout Section 4.2. As the output data
produced by the simulation are scalars organized on a regular grid (related to the
neuron’s position), visualization methods applicable to scalar data are employed
as well as standard chart types (Hansen and Johnson, 2011). View 1 implements a
standard image plot in which the color of each spatial bin represents a spike-count
rate value. The display maps a binned measure of neuronal activity on a color by
using a lookup table ranging from black to white over red and yellow (often re-
ferred to as ‘red hot’ or ‘white hot’ lookup table). We selected this lookup table as
it is widely used and offers (if non-linear interpolated) equidistant colors accord-
ing to the CIE L*a*b* color space [EN ISO 11664-4 from 1976]8. This color space
is designed to represent equidistant colors according to human perception: a color
twice as light in CIE L*a*b* space is also perceived twice as light by a human user

8 https://www.vis4.net/blog/posts/mastering-multi-hued-color-scales

https://www.vis4.net/blog/posts/mastering-multi-hued-color-scales
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(Fairchild, 2013). Such a heat map (Spence, 2014) facilitates the representation of
the spatial structure of the data.

In the 3D visualization of view 2, VIOLA also implements a geometrical map-
ping of activity data to a cube’s edge length, resulting in a cubic mapping of the
single scalar value representing activity at each time step. The default scaling of
the cube’s edge length is such that the cube’s volume is proportional to the data
value in each bin.

In view 3, the concept of a stacked bar chart supports a global perspective on
the simulated model (Spence, 2014). Individual populations in the model are color-
coded to be separable in the bar chart. An additional line graph added on top of
the bars shows the total spike-count rate as reference to the global activity.

For view 4, in order to support the visual interpretation of time series of spatially
organized activity data, the 2D-organized activity data (considering the neurons in
one layer) are extracted along the time axis resulting in a regularly structured 3D
volume of scalar values. Through contouring, partial sub-volumes with a certain
minimum threshold of activity get extracted and rendered as geometry. By means
of a selected iso-value Ith such geometry gets extracted by applying the marching
cubes algorithm for implicit volume rendering (Lorensen and Cline, 1987). For
extraction of the geometry, the algorithm assumes that each data point of the data
set is mapped onto a vertex (corner point) of a regular 3D grid, which can be
subdivided into cells delimited by eight neighboring vertices each. Then, the al-
gorithm calculates for each vertex of a cell whether the associated data value of
the considered vertex lies inside or outside of the contour defined by the iso-value
Ith by comparing the data value with the iso-value. If the data value of a vertex
is smaller than the iso-value, the vertex is assumed to lay inside of the contour.
For each possible combination of inside/outside states of the vertices of a cell, the
topology of the contour for each cell gets extracted from a table by calculating a
representative index. This table holds all possible topological states of a cell, which
are constructed under the assumption that there are an infinite number of possi-
bilities how a contour can pass a cell (for more details, please refer to, for example
Hansen and Johnson (2011, Chapter 1). Finally, the exact position of the contour
gets calculated by interpolation along the cell’s edges.

Views 2, 3 and 4 all use the same color coding to identify the different neu-
ronal populations. The implementation of the algorithms and views uses na-
tive JavaScript. The 2D rendering routine uses the HTML5 canvas element. The
browser rendering engine supports HTML5 and especially the functionality of the
canvas element, therefore no external libraries are required. 3D renderings relied
on the three.js9 wrapper for WebGL content which is natively supported by the en-
gine of modern browsers. Node.js10 facilitates the communication between views
and the GUI for control.

4.3.4 Network description

The example network is based on an implementation of a random balanced net-
work (Brunel, 2000) which is part of NEST as an example (brunel_alpha_nest.py

9 https://threejs.org
10 https://nodejs.org

https://threejs.org
https://nodejs.org
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in NEST 2.12.0 by Kunkel et al., 2017). The model is expressed using PyNEST
(Eppler et al., 2009) in Python11. The network consists of NEX excitatory and
NIN inhibitory spiking point-neurons which are sparsely connected with connec-
tion probability c. Neurons have fixed in-degrees of cNEX excitatory and cNIN

inhibitory incoming synapses with weights gY,EX J and gY,IN J, respectively, with
Y ∈ {EX, IN}. The integrate-and-fire model neurons are connected using static,
current-based synapses with an alpha-shaped time course (NEST neuron model:
iaf_psc_alpha). The intrinsic neuron parameters are identical for both neuron
types. In addition to the recurrent connections, each neuron receives uncorrelated,
external excitatory input from a Poisson process of a fixed rate νext = ηνθ , where
η denotes the external rate relative to the threshold rate νθ which is defined as
νθ = (Vθ − EL)Cm/(exp(1)Jτmτs). The threshold rate is the hypothetical external
rate needed to bring the average membrane potential of a neuron to threshold Vθ

(in the absence of an actual spiking mechanism). EL denotes the resting poten-
tial, Cm the membrane capacitance, τm the membrane time constant and τs the
postsynaptic current time constant.

Unlike the original network implementation which has no spatial information,
we here place neurons randomly on a square 2D sheet with side lengths L. The
connection probability between a presynaptic neuron j and postsynaptic neuron i
decays with increasing horizontal distance rij (using periodic boundary conditions)
while we preserve the in-degrees (number of incoming connections). A Gaussian-
shaped profile pYX

(
rij
)

is used with a standard deviation of σYX with X, Y ∈
{EX, IN}. We use εYX

(
rij
)

to describe the distance-dependent connectivity profile
assuming that the in-degree is preserved. The transmission delay function dYX

(
rij
)

has a linear distance dependency with an offset d0
YX and a conduction velocity vYX.

In addition to the stationary external input to each population, the network
receives a spatially confined transient input with a duration tSTIM. The input is
provided by a size NSTIM population of parrot neurons (NEST’s parrot_neuron

devices), positioned inside a circle of radius RSTIM around (x, y) = (0, 0). Parrot
neurons simply repeat input spike events as output spike events. Each parrot
neuron receives input from a Poisson process with a rate expectation of νSTIM

and connected to KSTIM neurons of the EX population inside a connection mask
radius R from the parrot-neuron location. The Poisson input starts at TSTIM and
consequently the STIM units become active after a delay of dSTIM.

Table 4.1 summarizes the network description with model and simulation pa-
rameters listed in Table 4.2A and B. The original parameters for the EX-IN network
in the NEST example are modified for this VIOLA use case demonstration bring-
ing the network in a state with spatially confined network activity. For this we
increase the network’s neuron count, reduce the ratio of inhibitory to excitatory
weights gY,IN and the membrane capacitance Cm, while the postsynaptic ampli-
tude J is increased. The parameter J is originally defined in units of mV, but is
here re-defined in units of pA. Finally, the fixed conduction delay is replaced by a
distance-dependent one.

The data sets result from simulations of duration Tsim with a temporal resolution
of dt. We discard the startup transient period Ttrans and record all spike times from
all neurons. The unprocessed spike times together with the corresponding neuron

11 http://www.python.org

http://www.python.org
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positions are considered as raw output. The temporal and spatial bin sizes used
for preprocessing, ∆t and ∆l respectively, are given in Table 4.2C.

4.3.5 LFP predictions

Generation of LFP-like data: The local field potential (LFP) is, due to its relative ease
of measurement, a common measure of neuronal activity (Buzsáki et al., 2012;
Einevoll et al., 2013a). The LFP is, in general, assumed to reflect synaptic activity
and correlations of a large number of neurons in vicinity of the recording elec-
trodes (Kajikawa and Schroeder, 2011; Lindén et al., 2011; Łęski et al., 2013). For
the purpose of demonstrating VIOLA’s functionality, we synthesize LFP signals
from network activity assuming a linear network-population spike to LFP rela-
tionship HX ≡ HX(~∆, τ) derived using a biophysical model. In this relationship,
~∆ denotes the displacement between the center of a spatial bin and an electrode
contact point γ at rγ, and τ the time relative to a presynaptic spike event (“lag”).
Assuming linearity and homogeneous spike-LFP responses of individual presy-
naptic neurons located within the same bin of width ∆lφ indexed by b = (lφ

x , lφ
y )

(see Section 4.3.1), the signal φX at one contact γ of one population X is then given
by

φX(rγ, t) = ∑
b

(
(∑

s
δ(ts

b)) ∗ HX

)
(rγ, t) . (4.1)

Here, the term ∑s δ(ts
b) represents a series of spike times ts

b of all presynaptic
neurons in a bin b where δ denotes the Dirac delta function, and ∗ a convolution.
As contributions of different populations X sum linearly, the total signal at each
contact is

φ(rγ, t) = ∑
X

φX(rγ, t) . (4.2)

Point-like neurons (as used in our network model) can not generate an extracel-
lular potential, as all in- and outgoing currents sum to zero at the point’s location
(due to conservation of charge). As in Hagen et al. (2016a) we assume that spa-
tially extended (morphologically detailed) neurons and corresponding multicom-
partment models in combination with an electrostatic forward model are required
to compute a biophysically meaningful LFP signal. To compute the LFP, we here
derive for each presynaptic population X ∈ {EX, IN, STIM} the phenomenological
mapping HX(~∆, τ) between a presynaptic spike event time ts

b occurring in a spatial
bin indexed by b to the extracellular potential.

Measurement sites: The electrode contact point locations are defined at the center
of each spatial bin as rγ = ((lφ

x + 1/2)∆lφ − L/2, (lφ
y + 1/2)∆lφ − L/2, 0).

Multicompartment model: We define a ball-and-stick type multicompartment model
neuron with morphological features and passive parameters derived from the net-
work’s LIF neuron description (membrane capacitance Cm, membrane time con-
stant τm, passive leak reversal potential EL). Assuming a homogeneous specific
membrane capacitance cm (capacitance per membrane area) and axial resistiv-
ity ra (resistance times length unit), we choose the dendritic stick length Ldend
and radius rdend as follows: To preserve the total capacity of the point neuron
(and equivalent surface area), we compute the corresponding soma radius as



4.3 methods 97

rsoma =
√

Cm
4πcm
− rdendLdend

2 . We define the passive leak conductivity as gL = cm/τm

and leak reversal potential as EL. For these calculations we choose cm, ra, Ldend
and rdend values as given in Table 4.3, resulting in rsoma ≈ 13.1 µm. The compact
ball-like soma is treated as a single segment, while the elongated dendrite is split
into ndend = 11 segments of equal length. The center of the soma segment is set
to r = (0, 0, 0), and the dendritic stick is aligned in the positive direction along the
vertical z−axis.

Synapse model: For LFP predictions we use the same current-based synapse
model as in the network, defining the postsynaptic input current of a single presy-
naptic spike event as Iij(t) = JYX · (t− ts

j − dij)/τsyn exp(1− (t− ts
j − dij)/τsyn)Θ(t−

ts
j − dij), where JYX denotes the connection-specific postsynaptic current amplitude

as in the network, ts
j the presynaptic spike time, dij = dYX(rij) the conduction de-

lay between presynaptic cell j and postsynaptic cell i and Θ the Heaviside step
function. As we initially ignore delays and network spike times we set dij = 0 and
ts

j = τs.
Synaptic connectivity: For outgoing connections of the excitatory populations X ∈
{EX, STIM} we distribute synaptic input currents evenly along the entire length of
the dendritic stick, while for outgoing connections of the inhibitory population
X = IN all synaptic input currents are assumed to be evenly distributed on the
ball-like soma.

Electrostatic forward model: As described in detail in Lindén et al. (2014), we as-
sume an extracellular conductive medium that is linear (frequency independent),
isotropic (identical in all directions), homogeneous (identical in all positions) and
ohmic (linear relationship between current density and electric potential), as rep-
resented by the scalar conductivity σe (cf. Table 4.3 for values). From the linearity
of Maxwell’s equations, contributions to the extracellular potential from different
current sources sum linearly. Here, these current sources are transmembrane cur-
rents (summed over resistive, capacitive and synaptic currents). In the presently
used volume conduction theory, the electric potential in location rγ from a point
current with magnitude I(t) in location r0 is

φpoint(rγ, t) =
1

4πσe

I(t)
|rγ − r0|

. (4.3)

This relation is also valid for a sphere current source (i.e., our ball soma) centered
at r0 with total transmembrane current Im,soma and radius rsphere when |rγ − r0| ≥
rsphere. Thus

φsoma(rγ, t) =
1

4πσe

Im,soma(t)
|rγ − rsoma|

. (4.4)

The elongated dendritic segments are treated as ‘line sources’, obtained by inte-
grating the point-source formula along the central axis of the segments (Holt and
Koch, 1999; Lindén et al., 2014):

φdend(rγ, t) =
1

4πσe

ndend

∑
u=1

Im,u(t)
∫ dru

|rγ − ru|
. (4.5)

The total extracellular potential from somatic and dendritic sources is then

φ(rγ, t) = φsoma(rγ, t) + φdend(rγ, t) . (4.6)
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Our calculations of extracellular potentials rely on the Python package LFPy12

(Lindén et al., 2014; Hagen et al., 2018). The tool implements the above forward-
model formalism for extracellular potentials, and uses the NEURON simulation
environment (Carnevale and Hines, 2006) to compute transmembrane currents
Im(t) of multicompartment neuron models. As singularities may occur in the limit
|rγ − ru| → 0, the minimum distance between sources and measurement locations
was set equal to the somatic or dendritic segment radius.

Prediction of spike-LFP relationship: We here describe the calculation of the lin-
ear spike-LFP relationships HX(~∆, τ) which we use to construct an LFP-like sig-
nal from spatially binned network activity. While Hagen et al. (2016a) present a
hybrid scheme to compute extracellular potentials from point-neuron network ac-
tivity, and incorporated the biophysics-based forward model summarized above,
this hybrid scheme is not adapted to laminar point-neuron networks with distance-
dependent connections. We therefore construct a simpler and numerically much
less demanding method inspired by the hybrid scheme, that still encompasses
the governing biophysics underlying the generation of extracellular potentials and
accounts for the laminar structure and distance-dependent connectivity of our net-
work.

In this simplified model, we ignore heterogeneity in spike-LFP responses Hi, of
individual presynaptic cells i ∈ X located within a spatial bin b, i.e., HX ≡ 〈Hi〉.
Hi corresponds to the extracellular potential resulting of synaptic activation of
postsynaptic populations of cells j ∈ Y from a spike in cell i at time τ = 0. We
also assume that HX is invariable across presynaptic bins, and encompasses the
overall distance-dependent connection probabilities and connection delays in the
network.

The calculation of HX(~∆, τ) involves a number of steps. We first estimate the
spatially averaged extracellular potential ϕj(~∆, τ) resulting from a single synapse
activation at a time τs of the ball and stick neuron positioned at the center of a
reference bin, for excitatory and inhibitory input. Electrode contact point locations
rγ are defined at the centers of each square spatial bin indexed b (see above). With
rotational symmetry around the z−axis and periodic (torus) connectivity of the
network, we compute extracellular potentials at the unique subset of bin center-to-
center distances r ⊂ {|~∆|} up to the maximum distance

√
2L2, where L denotes

the side length of the network layers, and {|~∆|} the complete set of center-to-center
displacement vector lengths from reference bin to all spatial bins. We utilize built-
in functionality in LFPy to perform spatial averaging (cf. Equation 6 in Lindén
et al. (2014)), assuming square contact points parallel to the horizontal xy−plane
with side lengths equal to the bin width ∆lφ. In a following step we compute the
average out-degree (number of outgoing connections of neuron i) KX = ∑Y NYc
for X ∈ {EX, IN}, where c denotes the overall connection probability between
X and Y (cf. Table 4.2 which also gives KSTIM as a fixed parameter). With the
distance-dependent connectivity εYX(r) used for each presynaptic population and
out-degree KX we compute the number of activated synapses (denoted by Kr) in
each spatial bin at a distance r from the reference bin (including r = 0) by eval-
uating pYX(r) at the bin center points. The average connection delays from the
reference bin to other bins are approximated as dYX(r) = d0

YX + r/vYX, where d0
YX

12 http://lfpy.github.io

http://lfpy.github.io
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denotes a constant delay offset and vYX the conduction speed of action potentials
in the network, with values as in Table 4.2. With the elements of these steps in place
(single-synapse LFP responses across bins, bin-wise number of activated synapses
and delays), we construct HX(~δ, τ) as function of r as:

HX(~∆, τ) = ∑
r∈{|~∆|}

Kr · (δ(dYX(r)) ∗ ϕj)(~∆, τ) , (4.7)

where δ(·) denotes the Dirac delta function. Note that we sum over all elements r
in {|~∆|}.

LFP output: Each HX is calculated at a spatial resolution ∆lφ and temporal resolu-
tion of dt (as in the network, cf. Table 4.2) for a total duration of 2τs, with synapse
activation time at time τs. An identical spatial and temporal binning resolution is
also used for spike events entering in Equation 4.1. The spike rates in each bin are
filtered by a length ∆t normalized boxcar filter using the scipy.signal.lfilter

method prior to the convolution with the corresponding LFP kernel. Otherwise a
temporal shift between the spatiotemporally binned spiking data (cf. Section 4.3.1)
and the downsampled LFP in the visualization occurs. Discrete convolutions
are incorporated using numpy.convolve and scipy.signal.convolve2d methods
in Python. The final LFP signals are low-pass filtered and downsampled to the
time resolution ∆t of our preprocessed network output as described in Hagen
et al. (2016a) in order to simultaneously show both datasets in VIOLA. Output is
stored in a pure-text format as described in Section 4.3.1.

Table 4.3 summarizes the parameter values for the LFP predictions.

4.3.6 Software summary

All source codes of the tool VIOLA, the example network model and the processing
of model output are hosted at https://github.com/HBPVIS/VIOLA (SHA:ca2f3c5).

We simulated the example network (topo_brunel_alpha_nest.py) with NEST
v2.12.0 and Python v2.7.11. Further processing and plotting of Figures 4.1 and 4.2
(nest_preprocessing.py) also relied on Python with numpy v1.10.4, SciPy v0.17.0,
and matplotlib v1.5.1. LFP signals (fake_LFP_signal.py) were computed using
NEURON v7.5 and LFPy from http://lfpy.github.io (SHA:5673a6). We visual-
ized the neuronal activity with VIOLA using the Google Chrome browser, version
58.0.3029.110 (64-bit). VIOLA used JavaScript V8 5.8.283.38 with the 3D library
three.js of revision 87, including WebGL and HTML5 build in the browser and
Node.js v4.8.3. For colors, VIOLA used Chroma.js in the version 1.3.4.

Screenshots from VIOLA for the other figures were taken with Kazam-“NCC-
80102” v1.4.5, and combined in Microsoft PowerPoint 2013.

https://github.com/HBPVIS/VIOLA
http://lfpy.github.io
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A: Model summary
Populations Three: excitatory EX, inhibitory IN, external stimulus STIM
Topology EX/IN: random neuron positions on square domain of size L× L;

STIM: random neuron positions inside a circle with radius RSTIM

at the center of the domain; periodic boundary conditions
Connectivity Random (EX/IN: convergent, fixed in-degree; STIM: divergent,

fixed out-degree) connections described by distance-dependent
probability kernels and cut-off masks

Neuron model EX/IN: leaky integrate-and-fire (LIF), fixed threshold, absolute
refractory time; STIM: parrot

Synapse model Static weights, EX/IN: alpha-shaped postsynaptic currents,
distance-dependent delays

Input Independent fixed-rate Poisson spike trains to all neurons
Measurement Spike activity
B: Network model

Subthreshold
dynamics

EX/IN:
If t > t∗ + τref

dV
dt = −V−EL

τm
+

Isyn(t)
Cm

Isyn (t) = ∑j Jjα
(

t− t∗j − dj

)
with connection strength Jj, presynaptic spike time t∗j and
conduction delay dj
α (t) = t

τs
e1−t/τs Θ (t) with Heaviside function Θ

else

V (t) = Vreset

Spiking If V (t−) < Vθ ∧V (t+) ≥ Vθ

1. set t∗ = t
2. emit spike with timestamp t∗

3. reset V (t) = Vreset

Distance-
dependent
connectivity

Neuronal units j ∈ X at location
(
xj, yj

)
and i ∈ Y at (xi, yi) in pre-

and postsynaptic populations X and Y, respectively.
Distance between units i and j:

rij =
√(

xi − xj
)2

+
(
yi − yj

)2

Gaussian kernel for connection probability:

pYX(rij) = e−r2
ij/2σ2

YX

R is the radius of a cut-off mask.
Transmission delay function:

dYX(rij) = d0
YX + rij/vYX

Table 4.1: Description of the network model following the guidelines of Nordlie et al.
(2009a).



4.3 methods 101

A: Global simulation parameters
Symbol Value Description
Tsim 1, 500 ms Simulation duration
dt 0.1 ms Temporal resolution
Ttrans 500 ms Startup transient
TSTIM 999 ms Start time of Poisson input to STIM
tSTIM 50 ms Duration of STIM onset
B: Point-neuron network

Populations and external input
Symbol Value Description
X EX, IN, STIM Name
NX Population size:

20, 000 X = EX
5, 000 X = IN
975 X = STIM

L 4 mm Extent length
η 2 External rate relative to threshold rate for X ∈ {EX, IN}
RSTIM 0.5 mm Radius of circle around (0, 0) for locations of STIM
νSTIM 300 Hz External rate to each STIM neuron

Connection Parameters
Symbol Value Description
c 0.1 Connection probability for recurrent connections between

EX and IN
J 40 pA Reference synaptic strength. All synapse weights are mea-

sured in units of J.
gYX Relative synaptic strengths:

1 X = EX, Y ∈ {EX, IN}
−4.5 X = IN, Y ∈ {EX, IN}
1 X = STIM, Y = EX

R 0.1 mm Radius of cut-off mask for X = STIM, Y = EX
KSTIM 300 Number of connections per STIM neuron
σYX Standard deviation of Gaussian kernel:

0.3 mm X, Y ∈ {EX, IN}
d0

YX Delay offset:
0.5 ms X, Y ∈ {EX, IN}
0.5 ms X = STIM, Y = EX

vYX Conduction velocity:
2 m/s X, Y ∈ {EX, IN}
− X = STIM, Y = EX

dSTIM 0.5 ms Delay from Poisson input to STIM
Neuron model

Symbol Value Description
Cm 100 pF Membrane capacitance
τm 20 ms Membrane time constant
EL 0 mV Resting potential
Vθ 20 mV Firing threshold
Vreset 0 mV Reset potential
τref 2 ms Absolute refractory period
τs 0.5 ms Postsynaptic current time constant
C: Preprocessing

Symbol Value Description
∆t 1 ms Temporal bin size
∆l 0.1 mm Spatial bin size

Table 4.2: Simulation, network and preprocessing parameters.
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Simplified LFP model parameters
Symbol Value Description
cm 1 µF/cm2 Specific membrane capacitance
ra 150 Ωcm Axial resistivity
Ldend 500 µm Dendritic stick length
rdend 2.5 µm Dendritic stick radius
ndend 11 Dendritic stick number of segments
rsoma 13.1 µm Derived soma segment radius
τs 25 ms Synapse activation time
∆lφ 400 µm Electrode separation, spatial bin width
σe 0.3 S/m Extracellular conductivity

Table 4.3: Parameters for prediction of LFP signals.

4.4 discussion

The present study introduces four 2D and 3D visualization concepts, or views,
for the interactive visual analysis of the activity of spiking neuronal network sim-
ulations, and a reference implementation for these views named VIOLA (VIsu-
alization of Layer Activity). VIOLA is an interactive web-technology based vi-
sualization tool designed to fit in between simulations and subsequent in-depth
data analysis, and exemplifies key concepts of the information-seeking mantra by
Shneiderman (1996) and the paradigm of coordinated multiple views (Wang Bal-
donado et al., 2000). The main application areas are the rapid validation of simula-
tion results and the exploration of spatiotemporally resolved data prior to further
quantitative analyses. As a use case, we demonstrate the usefulness of the tool
with output from a simulation of a layered spiking point-neuron network model
that incorporates distance-dependent connectivity. The use case shows that we can
examine a perturbation of ongoing network activity caused by a temporally and
spatially confined stimulus. The duration and the spatial spread of the event are
quickly assessed with the help of multiple simultaneously displayed views.

In contrast to other visualization tools for simulated network output, for ex-
ample VisNEST (Nowke et al., 2013, 2015), SNN3DViewer (Kasiński et al., 2009),
ViSimpl (Galindo et al., 2016), and Geppetto or more generic multi-view tools like
GLUE, the interactive JavaScript- and WebGLbased visualization integrates data
analysis methods in a web application, thereby achieving mobility and deploya-
bility. Our approach builds on visualization concepts known from the literature
for data of similar structure (reviewed in the introduction), but advances the con-
cepts and adds interactivity and animation. For example, views 1 and 2 com-
pare to series of snap shots (as in Mehring et al. 2003; Yger et al. 2011; Voges
and Perrinet 2012; Keane and Gong 2015), but are here enhanced by the pos-
sibilities to show raw or preprocessed data, to specify visualization parameters
interactively, and to provide a 3D and temporally animated view on the multi-
dimensional data. View 4 presents a new concept combining 2D spatial and tem-
poral resolution of multiple neuron populations, all shown simultaneously. This
data representation delivers a wealth of information, but, to circumvent occlusion
and instead expose interesting features of the data, it relies on interactive usage.
The code of the reference implementation is open source and available in a pub-
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lic repository (https://github.com/HBPVIS/VIOLA) together with the revision
history and documentation. The present work uses the simulation code NEST
to generate the data but the VIOLA implementation is completely independent
of the former. The JavaScript code defines a standalone application (accessible
at http://hbpvis.github.io/VIOLA) and interpretable by the browser running on
the client device. In the last decade, JavaScript-based visualization got more and
more versatile especially fostered by the introduction of HTML5 and its canvas
environment. Furthermore, the development of WebGL enables the access to GPU-
accelerated 3D rendering in the browser. Beside limitations regarding memory
and access to low-level program control (as needed for controlled use of multi-
threading), JavaScript offers the opportunity for simple deployment and handling
of external libraries and dependencies. Unfortunately, JavaScript-based implemen-
tations tend to fail on one or the other browsers as browsers still differ in their
interpretation of JavaScript and in the degree of following the HTML standard.
Nevertheless, most browsers are free to use and usable on most operating systems.
Therefore, this work explores the radical decision to use web-based technology to
offer an easy-to-deploy tool for the visualization of dynamic simulation data. As a
consequence, software development and deployment are integrated with minimal
effort and no computational resources are required on the server: researchers im-
mediately profit from progress on the development platform. Furthermore, due to
the web-technology and the minimal requirements on the client, web portals can
embed the application as a visualization backend; a prerequisite for the idea to
create centralized ICT infrastructure for neuroscience. One such portal is currently
being developed by the European Human Brain Project, named the HBP Collabora-
tory13. Another ongoing effort is the Neuroscience Gateway14 (Sivagnanam et al.,
2013). Online embedding opens the possibility to accompany interactive visualiza-
tion with server-side preprocessing steps and a database integration, in particular
for simulation output being generated on the portal itself. This advances the goal
of the HBP Collaboratory to provide a fully digitized workflow from data repre-
sentation over model construction and simulation to model validation (Senk et al.,
2017b). We argue that interactive visual analysis of simulated data is an obvious
feature of a collaboratory, in addition to non-interactive script-based plotting rely-
ing for example on matplotlib.

The reference implementation accesses the file system of the host machine to
load data. This is not recommended for web applications for security reasons. If
data processing and storage were handled on the server-side, SQL-like database
queries could restrict communication to only the data needed for the different view
instances. Communication does not have to be limited to the raw data. Binning
operations similar to those performed in our preprocessing steps can be handled by
the database in a straightforward manner, and could also be performed in parallel.
The data format HDF15 would also be an option to store and access large amounts
of raw and preprocessed data with improved performance in terms of speed and
compactness compared to the currently used text format.

13 https://collab.humanbrainproject.eu
14 http://www.nsgportal.org
15 https://www.hdfgroup.org

https://github.com/HBPVIS/VIOLA
http://hbpvis.github.io/VIOLA
https://collab.humanbrainproject.eu
http://www.nsgportal.org
https://www.hdfgroup.org
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Inherent in interactive visualization is the problem of reproducibility. The raw
data are insufficient to reproduce the visuals, only in combination with the full
collection of GUI parameters adjusted by the researchers is the data set complete.
In the same way as experimental and simulated data need to be enriched with
metadata in order to uniquely specify their origin and enable reuse (Zehl et al.,
2016), the visuals need to be enriched with the parameters of their creation. This
new type of metadata could be stored in a database.

The JavaScript implementation imposes other shortcomings. Prominent is its
limited capability for numerical analysis. While the math.js16 library provides
a number of basic math functions and support for symbolic operations, complex
numbers and arrays (matrices), the JavaScript libraries are not comparable to the
Scientific Python stack (SciPy17) which provides an ecosystem of fundamental tools
and methods encountered in mathematics, engineering and science. VIOLA im-
plements the function computing the spatial correlation of neuronal activity from
scratch (not shown). This approach has two conceptual weaknesses. First, the
speed and accuracy of such functions are hampered by the fact that there is little
native support for advanced mathematical operations, like the Fast Fourier Trans-
form (FFT). Second, there is no separation between the code carrying out the statis-
tical analysis and the code performing the visualization. This cuts visualization off
from the rich set of analysis tools developed by the community and their reliable
implementations, for example as collected in the Elephant package18. Future work
needs to disentangle numerics from visualization code as separate building blocks
in a visual analysis workflow.

As VIOLA’s main focus lies on responsive interactive visualization, the reference
implementation uses WebGL for all views. Prior tests exposed the low efficiency
of the Document Object Model (DOM) as used in Scalable Vector Graphics (SVG)
based visualization libraries such as d3.js as well as its high memory consump-
tion. This led to the decision to the sole use of WebGL rendering, which has the
limitation that external tools are required for generating screen shots and screen
casts; vector graphics can neither be recorded nor exported. For the 2D views,
an additional implementation based on the HTML 5 support of SVG graphics can
be added and used for the export of vector-based image material. For extracting
vector-based material from the 3D views, WebGL and its access to the underlying
rendering pipeline can be facilitated. The 3D scene can be exported to be viewed
in other 3D programs. To this end, three.js (as used in the reference implementa-
tion) offers export functionality for Wavefront OBJ file format, one standard for 3D
content. The alternative is to extract the rendered scene prior to rasterization and
use these data to generate a SVG or postscript-based representation similar to the
operation of the C library gl2ps19. Nevertheless, any export mechanism needs to
facilitate means of reproducibility. In particular metadata such as simulation and
visualization parameters, time stamps, viewpoint angle and position etc. need to
be bundled with the raw visualizations. As direct file writes may not be possible
in a client side JavaScript application, one solution is server-based rendering and

16 http://mathjs.org
17 https://www.scipy.org
18 http://elephant.readthedocs.io
19 http://www.geuz.org/gl2ps

http://mathjs.org
https://www.scipy.org
http://elephant.readthedocs.io
http://www.geuz.org/gl2ps
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storage based on visualization parameters being communicated from the client
back to the server. The resulting server-side rendered images are then stored as
provenance information. Another option for reproducible visualization outcome
is to only store the previously mentioned visualization parameters in the database,
such that the client-side visualization application can be set back into the original
captured state. If these parameters are captured over a longer period, the resulting
data can ease the regeneration of content for demonstration purposes or a post-hoc
video rendering.

While we here develop our arguments along model data, the different views
and the reference implementation is equally suited for the exploration of experi-
mental data. Our model network describes a neuronal layer covering a 4× 4 mm2

patch of cortical tissue. Electrophysiological measurements of neuronal activity
with the Utah multi-electrode array from Blackrock Microsystems sample both
spiking activity of individual cells and population LFPs across near 4 × 4 mm2

of cortex (Milekovic et al., 2015; Torre et al., 2016b; Denker et al., 2018). Other
multi-electrode arrays are used for in vitro experimentation on neural tissue or
cell cultures (Massobrio et al., 2015). No changes to the reference implementa-
tion are required for the processing of these data. Other measurement modali-
ties are of interest as well. One common experimental method is Ca2+ imaging
which may infer changes in intracellular [Ca2+] of neurons in superficial (Grien-
berger and Konnerth, 2012) and deep layers (Ouzounov et al., 2017), while another
method is voltage-sensitive dye imaging (VSDi) that measures membrane-voltage
time-derivatives in surface-proximal tissues (Chemla and Chavane, 2010). With
modifications to existing views or new view implementations, VIOLA can also
represent this type of spatiotemporally resolved data. In particular the 3D visual-
ization types incorporated in the present views 2 and 4 are well suited to represent
the changes in intracellular Ca2+ ion concentrations across different cell bodies
from 2- and 3-photon volumetric Ca2+ imaging in neural tissue. Within view 2

the visual representations of each cell’s concentration can be set to a depth and
position in the horizontal plane according to its image stack position in the raw
imaging data. Units with baseline Ca2+ concentrations may then be hidden, and
increasing levels can be visualized by scaling the box sizes as we have demon-
strated with spike-rate data. A view similar to view 4 could show time-varying
ion-concentrations of individual units as 3D tube plots where the tube diameter
at a given time is proportional to a unit’s Ca2+ concentration. As VSDi imaging
data (typically) lack depth-information, color-image plotting can be applied sim-
ilar to what we utilize here to show LFPs in our 3D view implementations. In
addition, the multi-view aspect of visualization enables the combination of spatial
representations with more abstract non-spatial representations of neuronal activity,
as reviewed in the introduction.

The concepts developed here advance the visual exploration of data from cor-
tical networks at cellular resolution. If the reference implementation finds more
widespread interest it can be further developed by a community driven approach
as all requirements like a proper licensing and a suitable development platform are
in place, the primary purpose, however, is to serve as a living supplement to this
publication. Creating a common web portal for the collaboration of neuroscientists
is a central long-term goal of the Human Brain Project. In this endeavor our study
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contributes knowledge on how a user interface for visual exploration needs to be
designed and on the proper layout of the software stack at the troubled transition
point between data processing and visualization.
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5.1 introduction

Experimental recordings of neural activity frequently reveal spatiotemporal pat-
terns such as traveling waves propagating across the cortical surface (Rubino et al.,
2006; Nauhaus et al., 2009; Muller and Destexhe, 2012; Sato et al., 2012; Muller
et al., 2014; Townsend et al., 2015; Zanos et al., 2015; Denker et al., 2018) or
within other brain regions such as the thalamus (Kim et al., 1995; Muller and Des-
texhe, 2012) or the hippocampus (Lubenov and Siapas, 2009). These large-scale
dynamical phenomena are detected in local-field potentials (LFPs), see Riehle et al.
(2013), and in the spiking activity (Takahashi et al., 2015) recorded with multi-
electrode arrays, by voltage-sensitive dye imaging (Ferezou et al., 2006), or by two-
photon imaging monitoring the intracellular calcium concentration (Garaschuk
et al., 2000). They have been reported in in-vitro and in in-vivo experiments, in
both anesthetized and awake states, and during spontaneous as well as stimulus-
evoked activity (Muller and Destexhe, 2012).

Previous modeling studies have shown that networks of spiking neurons with
distance-dependent connectivity, extending in one- or two-dimensional space, can
exhibit a variety of such spatiotemporal patterns (Mehring et al., 2003; Yger et al.,
2011; Voges and Perrinet, 2012; Keane and Gong, 2015). For illustration, consider
the example in Figure 5.1. Depending on the choice of transmission delays, the
spatial reach of connections and the strength of inhibition, a network of leaky
integrate-and-fire (LIF) model neurons generates asynchronous-irregular activity
(A), spatial patterns that are persistent in time (B), spatially uniform temporal
oscillations (C), or propagating waves (D). Distance-dependent connectivity is a
prominent feature of biological networks. In the neocortex, local connections are
established within a radius of about 500 µm around a neuron’s cell body (Voges
et al., 2010), and the probability of two neurons being connected decays with dis-
tance (Hellwig, 2000; Perin et al., 2011; Schnepel et al., 2015).

So far, the formation of spatiotemporal patterns in neural networks has mainly
been studied by means of phenomenological neural-field models describing net-
work dynamics at a macroscopic spatial scale (Wilson and Cowan, 1972b, 1973b;
Amari, 1977). Such models can describe patterns in recorded brain activity that
are related to movement (Erlhagen, 1997) or occur in response to a visual stimulus
(Bressloff and Carroll, 2015). Neural-field models are formulated with continuous
nonlinear integro-differential equations for a spatially and temporally resolved ac-
tivity variable and usually possess an effective distance-dependent connectivity
kernel. These models provide insights into the existence and uniqueness of di-
verse patterns which are stationary or non-stationary in space and time, such as
waves, wave fronts, bumps, pulses, and periodic patterns (reviewed in Ermentrout,
1998; Coombes, 2005; Wyller et al., 2007a; Coombes, 2010; Bressloff, 2012, 2014;
Coombes et al., 2014). There are two main techniques for analyzing spatiotem-
poral patterns in neural-field models (Bressloff, 2012): First, in the constructive
approach introduced by Amari (1977), bump or wave solutions are explicitly con-
structed by relating the spatial and temporal coordinates of a nonlinear system
(reviewed in Ermentrout, 1998, Section 7 and Bressloff, 2012, Sections 3–4). Sec-
ond, the emergence of periodic patterns is studied with bifurcation theory as in
the seminal works of Ermentrout and Cowan (1979a; 1979b; 1980a; 1980b). In
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Figure 5.1: Spatiotemporal patterns in a spiking neural network model. Spiking activity
of recurrently connected populations of excitatory (E, blue) and inhibitory (I,
red) leaky integrate-and-fire neurons. Each dot represents the spike-emission
time of a particular neuron. Neurons within each population are equally spaced
on a ring with perimeter of 1 mm. Each neuron receives a fixed number of
incoming connections from its excitatory (inhibitory) neighbors uniformly and
randomly drawn within a distance of RE (RI). The spike-transmission delay
d, the widths RE and RI of the spatial connectivity profiles, and the relative
inhibitory synaptic weight g are varied. A Asynchronous-irregular activity (d =
1 ms, RE = RI = 0.4 mm, g = 6). B Oscillations in space (d = 3 ms, RE =
0.1 mm, RI = 0.15 mm, g = 5). C Oscillations in time (d = 6 ms, RE = RI =
0.4 mm, g = 7). D Propagating waves (d = 3 ms, RE = 0.2 mm, RI = 0.07 mm,
g = 5). For remaining parameters, see Table 5.3.
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this latter framework, linear stability analysis is often employed to detect pattern-
forming instabilities and to derive conditions for the onset of pattern formation
(see, for example, Bressloff, 1996 and Hutt et al., 2003 or the reviews Ermentrout,
1998, Section 8 and Bressloff, 2012, Section 5). There are four general classes of
states that can linearly bifurcate from a homogeneous steady state: a new uniform
stationary state, temporal oscillations (spatially uniform and periodic in time, also
known as global ‘bulk oscillations’, see Bressloff and Kilpatrick, 2008), spatial os-
cillations (spatially periodic and stationary in time), and periodic traveling waves
(spatially and temporally periodic), see Ermentrout (1998, Section 8) and also other
studies (Roxin et al., 2005; Atay and Hutt, 2006; Venkov et al., 2007). The anal-
ysis of these states is often called ‘(linear) Turing instability analysis’ (Coombes,
2005; Coombes et al., 2007; Venkov et al., 2007) referring to the work of Turing
on patterns in reaction-diffusion systems (Turing, 1952). The respective instabil-
ities leading to these states are termed: a firing rate instability, Hopf instability
(Kuramoto, 1984), Turing instability, and Turing-Hopf (Roxin et al., 2005) or ‘wave’
(Hutt et al., 2003) instability. The instabilities generating temporally periodic pat-
terns (Hopf and Turing-Hopf instabilities) are known as ‘dynamic’ (Venkov et al.,
2007) or ‘nonstationary’ (Hutt and Atay, 2005) instabilities, in contrast to ‘static’
(Venkov et al., 2007) or ‘stationary’ (Hutt and Atay, 2005) instabilities generating
temporally stationary patterns. The emergence of pattern-forming instabilities has
been investigated with respect to system parameters such as the spatial reach of
excitation and inhibition in an effective connectivity profile (Ermentrout, 1998);
specifically without transmission delays (Wyller et al., 2007b; Folias and Ermen-
trout, 2012), or with constant (Roxin et al., 2005, 2006), distance-dependent (Jirsa
and Kelso, 2000; Hutt et al., 2003; Atay and Hutt, 2005, 2006; Coombes et al.,
2007; Bressloff and Kilpatrick, 2008; Hutt, 2008; Bojak and Liley, 2010; Hutt and
Rougier, 2010) or both types (Veltz, 2011, 2013) of delays.

Neural-field models treat neural tissue as a continuous excitable medium and
describe neural activity in terms of a space and time dependent real-valued quan-
tity. Throughout the current work the spatial coordinate refers to physical space,
although in general it could also be interpreted as feature space. At the micro-
scopic scale, in contrast, neural networks are composed of discrete units (neurons)
– which interact via occasional short stereotypical pulses (spikes) rather than con-
tinuous quantities like firing rates. In the neocortex, spiking activity is typically
highly irregular and sparse (Softky and Koch, 1993; Brunel and Hakim, 1999),
with weak pairwise correlations (Ecker et al., 2010). To date, a rigorous link be-
tween this microscopic level and the macroscopic description by neural-field mod-
els is lacking (Coombes, 2010; Bressloff, 2014; Hutt et al., 2015; Montbrió et al.,
2015). While randomly connected spiking networks have been extensively ana-
lyzed using mean-field approaches (Amit and Brunel, 1997a; Brunel and Hakim,
1999; Brunel, 2000; Lindner et al., 2005), the theoretical understanding of spatially
structured spiking networks is still deficient. Hence, it remains unclear how to
qualitatively transfer insights on the formation of spatiotemporal patterns from
neural fields to networks of spiking neurons. Moreover, it is unknown how the
multitude of neuron, synapse and connectivity parameters of spiking neural net-
works relates to the effective parameters in neural-field models. A quantitative
link between the two levels of description is, for example, required for adjusting



5.1 introduction 111

parameters in a network of spiking neurons such that it generates a specific type
of spatiotemporal pattern, and to enable model validation by comparison with
experimental data.

Different efforts have already been undertaken to match spiking neuron mod-
els and time-continuous rate models with spatial structure. Certain assumptions
and approximations allow the application of techniques for analyzing spatiotem-
poral patterns developed for neural-field models. The above mentioned construc-
tive approach (Amari, 1977), for example, can be applied to networks of spiking
neurons under the assumption that every neuron spikes at most once, thus ignor-
ing the sustained spike generation and after-spike dynamics of biological neurons
(Golomb and Ermentrout, 2001; Cremers and Herz, 2002; Osan and Ermentrout,
2002). A related simplification substitutes a spike train by an ansatz for a wave
front. This leads to a mean-field description of single-spike activity often applied
to a spike-response model (Fohlmeister et al., 1995; Kistler et al., 1998; Kistler,
2000; Bressloff, 2000). Traveling-wave solutions have also been proposed for a net-
work of coupled oscillators and a corresponding continuum model (Crook et al.,
1997). In the framework of bifurcation theory, Roxin et al. (2005; 2006) demonstrate
a qualitative agreement between a neural-field model and a numerically simulated
network of Hodgkin-Huxley-type neurons in terms of emerging spatiotemporal
patterns. However, the authors do not observe stable traveling waves in the spiking
network, even though the neural-field model predicts their occurrence. In the limit
of slow synaptic interactions, spiking dynamics can be reduced to a mean-firing-
rate model for studying bifurcations (Ermentrout, 1994; Bressloff and Coombes,
1998, 2000). An example is the lighthouse model (Haken, 2000a,b), defined as a
hybrid between a phase oscillator and a firing-rate model, that reduces to a pure
rate model for slow synapses (Chow and Coombes, 2006). Laing and Chow (2001)
demonstrate a bump solution in a spiking network and discuss a corresponding
rate model. Recently, the group around Doiron and Rosenbaum explored in a se-
quence of studies spatially structured networks of LIF neurons without transmis-
sion delays in the continuum limit with respect to the spatial widths of connectivity.
The authors focus on the existence of the balanced state (Rosenbaum and Doiron,
2014), the structure of correlations in the spiking activity (Rosenbaum et al., 2017),
and bifurcations in the linearized dynamics in relation to network computations
(Pyle and Rosenbaum, 2017). Kriener et al. (2014b) employ static mean-field the-
ory and extend the linearization of a network of LIF neurons with constant delays
as described by Brunel (2000) to spatially structured networks. The work derives
conditions for the appearance of spontaneous symmetry breaking that leads to sta-
tionary periodic bump solutions (spatial oscillations), and distinguishes between
the mean-driven and the fluctuation-driven regime.

Despite these previous works on spatially structured network models of spik-
ing neurons and attempts to link them with neural-field models, there still exists
no systematic way of mapping parameters between these models. Furthermore,
none of these studies focuses on uncovering the underlying mechanism of peri-
odic traveling waves in spiking networks. In the present work, we establish the so
far missing, quantitative link between a sparsely connected network of spiking LIF
neurons with spatial structure and a typical neural-field model. An explicit param-
eter mapping between the two levels of description allows us to study the origin of
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spatiotemporal patterns analytically in the neural-field model using linear stability
analysis, and to reproduce the predicted patterns in spiking activity. We employ
mean-field theory to derive the neural-field model as an effective rate model de-
pending on the dynamical working point of the network that is characterized by
both the mean and the variance of the synaptic input. The rate model accounts
for biological constraints such as a static weight that is either positive (excitatory)
or negative (inhibitory) and a spatial profile that can be interpreted as a distance-
dependent connection probability. Given these constraints, we show that periodic
traveling waves cannot occur in a single homogeneous population irrespective of
the shape of distance-dependent connection probability. For two-population net-
works of excitatory and inhibitory neurons, in contrast, traveling waves emerge
for specific types of spatial profiles and for sufficiently large delays, as shown in
Figure 5.1D.

The remainder of this chapter is structured as follows: In Section 5.2 we derive
the conditions for the existence of periodic traveling waves for a typical neural-field
model by linear stability analysis, present an effective model corresponding to the
microscopic description of spiking neurons, compare the two models, and show
simulation results for validation. Section 5.3 contains details on our approach.
Finally, in Section 5.4 we put our results in the context of previous literature.

5.2 results

We aim to establish a mapping between two different levels of description for
spatially structured neural systems to which we refer as ‘neural-field model’ and
‘spiking model’ based on the initial model assumptions. While the neural-field
model describes neural activity as a quantity that is continuous in space and time,
the spiking model assumes a network of recurrently connected spiking model neu-
rons in discrete space. Our methodological approach for mapping between these
two models, as well as the structure of this section, are illustrated in Figure 5.2. (1)
We start in Sections 5.2.1–5.2.3 with linear stability analysis of a typical neural-field
model that is a well-known and analytically tractable rate equation. This approach
builds on existing literature (cf. Ermentrout, 1998, Section 8 and Bressloff, 2012,
Section 5) and introduces the concepts of our study with modest mathematical
efforts. We analyze the neural-field model for one and two populations and derive
conditions for the occurrence of periodic traveling waves based on spatial con-
nectivity profiles and transmission delays. (2) In Section 5.2.4 we continue with
simulations of a discrete version of the neural-field model, a network of nonlinear
rate-based units, and show that the results from our linear analysis indeed accu-
rately predict transitions between network states (homogeneously steady, spatial
oscillations, temporal oscillations, waves). (3) Then, in Section 5.2.5 we linearize the
population dynamics of networks of discrete spiking leaky integrate-and-fire (LIF)
neurons using mean-field theory and derive expressions similar to the neural-field
model. (4) Thus, both the linearized neural-field and spiking models can be treated
in a conceptually similar manner, with the exception of an effective coupling kernel
which is mathematically more involved for the spiking model. In Section 5.2.6 we
perform a parameter mapping between the biophysically motivated parameters of
the spiking model and the effective parameters of a neural-field model. (5) Finally,
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Figure 5.2: Mapping microscopic single-neuron dynamics to spatially averaged popula-
tion dynamics. (1) Conditions for periodic traveling waves in a neural-field
model. (2) Network simulation of discrete nonlinear rate neurons. (3) Mean-
field approximation of the spiking model and spatial averaging lead to an effec-
tive linearized continuous system. (4) Parameter mapping between spiking and
neural-field model. (5) Network simulation of spiking neurons and validation
of analytical results.
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Figure 5.3: Effective profile yields conditions for traveling waves. A Boxcar-shaped spa-
tial profile p of width R = 1 mm for a single population. B Effective profile P̂
(blue curve) denotes Fourier transform of spatial profile p̂ times positive weight
wE = 1. Gray crosses indicate maximum P̂max and minimum P̂min. Same spatial
profile but with negative weight (wI = −wE) yields mirrored curve (red, dashed
line). C Spatial profiles of different widths for two populations E (RE = 1 mm,
blue) and I (RI = 0.5 mm, red). D Effective profile: P̂ (k) = wE p̂E (k) + wI p̂I (k).
E Transition curve P̂crit

min(τ/dcrit) given by Equation 5.10 for Hopf bifurcation in-
dicating onset of delay-induced oscillations (appearing in purple region) with
time constant τ and delay d. F Transition curves for relative width ρ = RI/RE
and relative weight η = −wI/wE. Colored regions indicate which extremum,
the minimum P̂min or the maximum P̂max, has larger absolute value and if
the dominant one occurs at k = 0 or at k > 0. (1, purple): P̂min appears at
kmin > 0. (2, light blue): P̂min appears at kmin = 0. (3, dark gray): P̂max appears
at kmax = 0. (4, green) P̂max appears at kmax > 0.

in Section 5.2.7 we demonstrate that the insights obtained in the analysis of the
neural-field model apply to networks of simulated LIF neurons: The bifurcations
indeed appear at the theoretically predicted parameter values.

In summary, the mapping of a microscopic spiking network model to a con-
tinuum neural-field model (bottom up) allows us to transfer analytically derived
insights from the neural-field model directly to the spiking model (top down).

5.2.1 Linear stability analysis of a neural-field model

We first consider a neural-field model with a single population defined as a contin-
uous excitable medium with a translation-invariant interaction kernel and delayed
interaction in one spatial dimension. The dynamics follow an integro-differential
equation

τ
du
dt

(x, t) + u (x, t) =
∫ ∞

−∞
P (x− y) ψ (u (y, t− d)) dy. (5.1)
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The variable u describes the activity of the neural population at position x and
time t. Here τ > 0 denotes a time constant and d > 0 a transmission delay. The
function ψ describes the nonlinear transformation of the output activity u if consid-
ered as input to the neural field. The function P specifies the translation-invariant
connectivity depending only on the displacement r = x− y where x and y denote
neuron positions. Earlier studies show that specific choices for connectivities P
and nonlinear transformations ψ result in spatiotemporal patterns such as waves
or bumps (Ermentrout, 1998; Coombes, 2005; Wyller et al., 2007a; Coombes, 2010;
Bressloff, 2012, 2014; Coombes et al., 2014).

Here, we assume that the connectivity P is isotropic and define P (r) := w p (r).
The scalar weight w can either be positive (excitatory) or negative (inhibitory). The
spatial profile p(r) is a symmetric probability density function with the properties
p (r) = p (−r), p(r) > 0 for r ∈ (−∞, ∞) and

∫ ∞
−∞ p (r) dr = 1. Figure 5.3A

shows, as an example, a boxcar-shaped spatial profile with width R, defined by
p (r) = 1

2R Θ (R− |r|) where Θ denotes the Heaviside function.
Throughout this study we investigate bifurcations of the system in Equation 5.1

between a state of spatially and temporally homogeneous activity u(x, t) = u0 to
states where the activity shows structure in the temporal domain, in the spatial
domain, or both. For this purpose we use Turing instability analysis (Bressloff,
1996; Hutt et al., 2003; Coombes, 2005). Initially we assume that the model pa-
rameters are chosen such that the homogeneous solution is locally asymptotically
stable, implying that small perturbations away from u0 will relax back to this base-
line. We ask the question: In which regions of the parameter space (R, d, w, ψ) is
the stability of the homogeneous solution lost? To this end we linearize around
the steady state and denote deviations δu(t) = u(t)− u0. Without loss of general-
ity we assume the slope ψ′(u0) of the gain function to be unity; a non-zero slope
can be absorbed into a redefinition of w. Because the resulting system is linear
and invariant with respect to translations in time and space, its eigenmodes are
Fourier-Laplace modes of the form

δu (x, t) = eikxeλt, (5.2)

where the wave number k ∈ R is real and the temporal eigenvalue λ ∈ C is
complex. Solutions constructed from these eigenmodes can oscillate in time and
space, and exponentially grow or decay in time. The characteristic equation (see
Equation 5.31 in Section 5.3)

(1 + τλ) eλd = P̂ (k) , (5.3)

comprises the effective profile P̂ (k) := wp̂ (k). The Fourier transform of the spa-
tial profile is denoted by p̂ (k) which, by its definition as a probability density, is
maximal at k = 0 with p̂ (0) = 1 (see Equations 5.38 and 5.39 in Section 5.3). The
effective profile for the boxcar-shaped spatial profile is shown in Figure 5.3B, for
excitatory and inhibitory weights with absolute magnitudes of unity.

We next extend the system to two populations, an excitatory one denoted by E,
and an inhibitory one denoted by I. Time constants τ and delays d are assumed
to be equal for both populations, but u becomes a vector, u = (uE, uI)

T, and the
connectivity P (r) a matrix
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P (r) =
(

wEE pEE (r) wEI pEI (r)
wIE pIE (r) wII pII (r)

)
. (5.4)

The linearized system again possesses the same symmetries as the counterpart for
a single population so that the eigenmodes for the deviation from the stationary
state are of the form δu (x, t) = veikxeλt with a constant vector v. Hence, we arrive
at an auxiliary eigenvalue problem (see Equation 5.32 in Section 5.3) with the two
eigenvalues

P̂1,2 (k) =
1
2

(
wEE p̂EE (k) + wII p̂II (k)±

√
D
)

, (5.5)

where

D = (wEE p̂EE (k)− wII p̂II (k))
2 + 4wEI p̂EI (k) wIE p̂IE (k) . (5.6)

These two eigenvalues play the same role as the effective profile P̂ in the one-
population case above. As a consequence, the same characteristic equation (Equa-
tion 5.3) holds for both the one- and the two-population system.

In the following example, we restrict the weights and the spatial profiles to be
uniquely determined by the source population alone, denoted by wαE =: wE, wαI =:
wI for α ∈ {E, I}. An illustration of the two spatial profiles of different widths
RE and RI is shown in Figure 5.3C. The respective effective profile (Equation 5.5)
reducing to P̂ (k) = wE p̂E (k) + wI p̂I (k) is shown in Figure 5.3D.

The characteristic equation (Equation 5.3) can be solved for the eigenvalues λ

by using the Lambert W function defined as z = W (z) eW(z) for z ∈ C (Corless
et al., 1996). The Lambert W function has infinitely many branches, indexed by b,
and the branch with the largest real part is denoted the principle branch (b = 0),
see Equations 5.34–5.36 in Section 5.3 for a proof. The characteristic equation
determines the temporal eigenvalues (see Equation 5.37 in Section 5.3 and compare
with Veltz, 2013)

λb(k) = −
1
τ
+

1
d

Wb

(
P̂ (k)

d
τ

e
d
τ

)
. (5.7)

5.2.2 Conditions for spatial and temporal oscillations, and traveling waves

The homogeneous (steady) state of our system is locally asymptotically stable if
the real parts of all eigenvalues λb are negative

Re
[

Wb

(
P̂ (k)

d
τ

e
d
τ

)]
<

d
τ

, (5.8)

for all branches b of the Lambert W function. The system loses stability when the
real part of the eigenvalue λ0 on the principle branch becomes positive at a certain
k = k∗. Such instabilities may occur either for a positive or a negative argument of
the Lambert W function.

We denote the maximum of P̂ as P̂max and the minimum as P̂min occurring at
kmax and kmin, respectively, as indicated in Figure 5.3B and D. The system becomes
unstable for a positive argument of W if P̂max = 1 where Re

[
W0

(
d
τ e

d
τ

)]
= d

τ
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by the definition of the Lambert W function; so equality holds in Equation 5.8
independent of the values d and τ. The imaginary part of λ0 is zero at such a
transition. If the instability appears at a wave number k∗ = 0, the population
activity is collectively destabilized. This transition corresponds in networks of
binary neurons and of spiking neurons to the transition between the asynchronous
irregular (AI) state and the synchronous regular (SR) state, where the system ceases
to be stabilized by negative feedback and leaves the balanced state (van Vreeswijk
and Sompolinsky, 1996; Brunel, 2000). If this transition appears at a wave number
k∗ > 0, it follows from Equation 5.2 that the activity shows spatial oscillations that
grow exponentially in time.

For a negative argument of W of less than −1/e, the eigenvalues (Equation 5.7)
come in complex conjugate pairs. The real part of λ0 becomes positive if the
condition

Re
[

W0

(
P̂min

d
τ

e
d
τ

)]
=

d
τ

(5.9)

is fulfilled with a negative P̂min < −1. Because the eigenvalues have non-zero
imaginary parts, this transition corresponds to a Hopf bifurcation and the onset of
temporal oscillations. The condition for this bifurcation has been derived earlier
(Helias et al., 2013, Equation 10)

dcrit

τ
=

π − arctan
(√

P̂crit2

min − 1
)

√
P̂crit2

min − 1
. (5.10)

Here, dcrit denotes a critical delay and P̂crit
min a critical minimum of the effective pro-

file for points on the transition curve. The system is stable for P̂min > −1 for all
delays. For larger absolute values of P̂min, the bifurcation point is given by the
critical value of the ratio between the time constant and the delay, shown in Fig-
ure 5.3E. If the transition occurs at k∗ = 0, temporal oscillations emerge in which
all neurons of the population oscillate in phase (‘bulk oscillations’, see Bressloff
and Kilpatrick, 2008). In spiking networks this Hopf bifurcation corresponds to
the transition from the AI regime to the state termed ‘synchronous irregular fast
(SI fast)’, see Brunel and Hakim (1999). If the transition appears for k∗ > 0, spa-
tial and temporal oscillations occur simultaneously. This phenomenon is known
as ‘periodic traveling waves’, see Ermentrout (1998, Section 8) and also other stud-
ies (Roxin et al., 2005; Atay and Hutt, 2006; Venkov et al., 2007). For the case
that the system becomes unstable due to P̂max reaching unity, the transition curve
in Figure 5.3E also provides a lower bound P̂crit

min(τ/dcrit) above which temporal
oscillations do not occur prior to the transition due to P̂max.

In summary, the system is stable if P̂max < 1 and P̂min > P̂crit
min(τ/dcrit). For

transitions occurring at either P̂max = 1 or P̂min = P̂crit
min(τ/dcrit) we distinguish

between solutions with k∗ = 0 or k∗ > 0. In Figure 5.4 we provide an overview
of the conditions for bifurcations leading to spatial, temporal, or spatiotemporal
oscillatory states. These conditions imply that a one-population neural-field model
does not permit traveling waves, which follows from the fact that the absolute
value of p̂ is strictly maximal at k = 0 (see Equations 5.38–5.39 in Section 5.3). For
a purely excitatory population (w > 0) the critical minimum P̂crit

min(τ/dcrit) therefore
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Figure 5.4: Conditions for the onset of spatial and temporal oscillations, and traveling
waves. Gray cells in each column indicate the conditions required for the insta-
bility causing the bifurcation. White cells denote the conditions for the respec-
tive other bifurcation not to occur. Last row indicates whether the bifurcation
happens for zero or nonzero wave number k∗. Here dcrit and P̂crit

min, as defined
in Equation 5.10 and shown in Figure 5.3E, denote the critical delay and the
minimum of the effective profile on the transition curve for a Hopf bifurcation.

cannot be reached while keeping the maximum P̂max stable as P̂max >
∣∣∣P̂min

∣∣∣. For
a purely inhibitory population (w < 0), the condition kmin > 0 is not fulfilled
because P̂min occurs at k = 0 as p̂ has its global maximum at the origin.

For a neural-field model accounting for both excitation and inhibition, however,
we can select shapes and parameters of the spatial profiles, weights and the de-
lay that fulfill the conditions for the onset of traveling waves as demonstrated by
example in the next section.

5.2.3 Application to a network with excitation and inhibition

Based on the conditions derived in the previous section, the minimal network in
which traveling waves can occur consists of one excitatory (E) and one inhibitory
(I) population. As in the example in Figure 5.3, we assume that the connection
weights and widths of boxcar-shaped spatial profiles only depend on the source
population. The effective profile (Equation 5.5) in this case is

P̂ (k) = wE
sin (REk)

REk
+ wI

sin (RIk)
RIk

, (5.11)

and positive and negative peaks of the profile are responsible for bifurcations to
spatial or temporal oscillations or wave solutions, respectively. The previous sec-
tion derives that in particular the position and height of the minima and maxima of
the effective profile are decisive. To assess parameter ranges in which the peaks of
the effective profile in Equation 5.11 change qualitatively, we introduce the relative
width ρ := RI/RE > 0 and the relative weight η := −wI/wE > 0, divide P̂ (k) by
wE and introduce the rescaled wave number κ = REk to arrive at the dimensionless
reduced profile

B̂ (κ) =
sin (κ)

κ
− η

sin (ρκ)

ρκ
, (5.12)

which simplifies the following analysis.
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Our aim is to divide the parameter space (ρ, η) into regions that have qualita-
tively similar shapes of the effective profile. Section 5.3 describes the derivation of
transition curves and Figure 5.3F illustrates the resulting parameter space. Above
the first transition curve ηt1 (ρ) (dashed curve, see Equation 5.46 in Section 5.3),
the absolute value of B̂min is larger than B̂max (regions 1 and 2), and vice versa
below this curve (regions 3 and 4). The second transition curve ηt2 (ρ) (solid curve,
see Equation 5.49 in Section 5.3) indicates whether the extremum with the largest
absolute value occurs at k = 0 (regions 2 and 3) or at k > 0 (regions 1 and 4). The
diagram provides the necessary conditions and corresponding parameter combi-
nations required for both spatial and spatiotemporal patterns, purely based on the
relative weights and the relative widths which determine the effective profile. The
analysis shows that traveling waves require wider excitation than inhibition, ρ < 1,
because only this relation simultaneously realizes a minimum at a non-zero wave
number k∗ and a maximum with a peak below unity (see Figure 5.4).

A neural-field model exhibiting traveling waves can therefore be constructed at
will by first selecting a point within region 1 of Figure 5.3F where ρ < 1 and η

ensures that
∣∣∣B̂min

∣∣∣ > B̂max. Next, P̂ is fixed by scaling B̂ with the absolute weight

wE such that P̂max < 1 for a stable bump solution and P̂min < −1 for a Hopf bifur-
cation. Finally, a delay d > dcrit specifies a point below the bifurcation curve shown
in Figure 5.3E, given by the sufficient condition for the Hopf bifurcation in Equa-
tion 5.10. Likewise, solutions for purely temporal oscillations appear in region 2,
where P̂min < −1 is attained at a vanishing wave number k and a delay d > dcrit; in
addition P̂max < 1 ensures absence of the other bifurcation into spatial oscillations.
For purely spatial oscillations, however, the comparison of the absolute values of
B̂min and B̂max is not sufficient; it is hence not sufficient to rely on the dashed curve
separating regions 2 and 4 in Figure 5.3F. A loss of stability due to P̂max > 1 can
emerge not only in region 4 but also in region 2, because even if

∣∣∣P̂min

∣∣∣ > P̂max,

stability of P̂min can be ensured by a sufficiently short delay d < dcrit, as shown in
Figure 5.4.

5.2.4 Network simulation with nonlinear rate neurons

We have so far only investigated the properties of an analytically tractable linear
system that assumes time and space to be continuous variables. Next, we test the
derived conditions for the onset of oscillations, summarized in Figure 5.4, for a
nonlinear, discrete system in the continuum limit. We here consider a network of
NE = 4, 000 excitatory (E) and NI = 1, 000 inhibitory (I) rate neurons described
by a discrete version of the neural-field equation in Equation 5.1 (see Table 5.2 for
details). The model neurons within each population are equally spaced on a ring
of perimeter L = 1 mm. This rate-neuron network constitutes an intermediate step
towards a network of spiking neurons. Each neuron has a fixed in-degree KX (fixed
number of incoming connections) per source population X ∈ {E, I} with connec-
tions selected randomly within a distance RX. A normalization of weights with
the in-degree, w′X = wX/KX, allows us to interpret p as a connection probability.
The time constant τ and the delay d are the same as in the neural-field model. As
nonlinear gain function in Equation 5.1 we choose ψ (u) = tanh (u).
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The neuron activity of four rate-network simulations with different parameter
combinations are shown in Figure 5.5A–D. The location of the specific parameter
combinations is illustrated in Figure 5.5E-G with corresponding markers in the
phase diagrams that visualize the stability conditions shown in Figure 5.3 derived
with the neural-field model. Periodic traveling waves are possible if parameters
are in the purple regions of the diagrams.

The system simulated in Figure 5.5A is stable according to the corresponding
conditions. The square marker in the lower panels shows that P̂max < 1 (panel E),
and although P̂min < −1, the delay is small such that the system is far away from
the bifurcation (panel F). Indeed, the activity appears to not exhibit any spatial or
temporal structure.

Figure 5.5B illustrates a case where P̂max > 1 causes an instability (diamond
marker in panel E). The Hopf bifurcation is remote in the parameter space (panel
F) and panel G ensures kmax > 0. A simulation of the corresponding rate-model
network again confirms the predictions and exhibits stationary spatial oscillations
(or periodic bumps) with a wave number of kmax. In this finite-sized system with
periodic boundary conditions, the bumps are homogeneously distributed across
the domain and the wave numbers are integers.

Figure 5.5C demonstrates temporal oscillations at the parameter combination
indicated by the circular marker. We here choose P̂max < 1 and P̂min < −1 (panel
E). The latter condition leads to an entire range of delays that are beyond the
bifurcation in panel F; we choose a delay slightly larger than the critical delay,
lying to the left of the bifurcation curve. Inferred from panel G, kmin = 0 and, as
expected from the analytical prediction, the oscillations observed in simulations of
the rate-neuron network are purely temporal.

Finally, Figure 5.5D depicts periodic traveling waves (denoted by star marker),
as predicted by the analytically tractable neural-field model. The instability results
from P̂min < P̂crit

min (panel F) and occurs at kmin > 0 (panel G) while P̂max remains
stable (panel E).

5.2.5 Linearization of spiking network model

To assess the validity of the predictions obtained from the analytical model for bi-
ologically more realistic spiking-neuron networks, we next linearize the dynamics
of spiking leaky integrate-and-fire (LIF) neurons and derive a linear system simi-
lar to the neural-field model above. The sub-threshold dynamics of a single LIF
neuron i with exponentially decaying synaptic currents is described by a set of
differential equations for the time evolution of the membrane potential Vi and its
synaptic current Ii as

τm
dVi

dt
= −Vi + Ii (t) ,

τs
dIi

dt
= −Ii + τm ∑

j
Jijsj (t− d) ,

(5.13)

where we follow the convention of Fourcaud-Trocmé and Brunel (2005), see Equa-
tion 5.61 in Section 5.3 for the relation to physical units. This definition, with
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Figure 5.5: Predictions from linear stability analysis lead to spatiotemporal patterns in
simulated network of nonlinear rate neurons. Different parameter combina-
tions, selected according to stability conditions in Figure 5.4, cause pattern
formation in rate-neuron network with tanh gain function. A–D Color-coded
deviation from the activity δu per neuron over time. Neurons within each pop-
ulation are consecutively numbered with a ‘neuron ID’ according to their posi-
tion on the ring, and neuron IDs of inhibitory neurons follow the ones of excita-
tory neurons. E–F Phase diagrams showing conditions and parameter choices
indicated by corresponding markers. Purple regions indicate the possibility for
periodic traveling waves. A Stable activity (square marker). B Spatial oscilla-
tions (diamond marker). C Temporal oscillations (circular marker). D Periodic
traveling waves (star marker). Parameters: d, RE and RI as in Figure 5.1A–
D, wE = 2.73 in all panels. A wI = −4.10. B wI = −3.42. C wI = −4.79.
D wI = −3.42.
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both quantities Vi and Ii having the same unit, conserves the total integrated
charge per impulse flowing into the membrane independent of the choice of the
synaptic time constant τs. The membrane time constant, defined as τm = RmCm

with membrane resistance Rm and membrane capacitance Cm, couples the current
to the capacitance. We here assume τs to be much smaller than τm. The term
sj (t) = ∑k δ

(
t− tj

k

)
denotes a spike train of neuron j which is connected to neu-

ron i with a constant connection strength Jij and transmission delay d. Whenever
Vi reaches the threshold Vθ , a spike is emitted and the membrane potential is reset
to the resting potential Vr and voltage-clamped for the refractory period τref.

Assuming that a neuron receives many uncorrelated and Poisson-distributed
input spikes, and that amplitudes of postsynaptic potentials are small, we apply
the diffusion approximation (Tuckwell, 1988; Amit and Brunel, 1997a; Ricciardi
et al., 1999) and approximate the input to the neuron by a current with mean µi
and variance σi as given by

τm ∑
j

Jijsj (t− d) ≈ µi (t) +
√

τmσi (t) ξ (t) . (5.14)

The term ξ (t) denotes a Gaussian white noise characterized by 〈ξ (t)〉 = 0 and
〈ξ (t) ξ (t′)〉 = δ (t− t′). Next, we introduce the instantaneous firing rate νj (t) of
neuron j. If all presynaptic neurons j belong to a homogeneous population of iden-
tical neurons with uncorrelated activity and a postsynaptic neuron i receives input
from K of these neurons, the mean and variance (first and second infinitesimal
moments, Ricciardi et al., 1999) of the input current to neuron i are given by

µi (t) = τm ∑
j

Jij νj (t− d) = τm JK ν (t− d) ,

σ2
i (t) = τm ∑

j
J2
ij νj (t− d) = τm J2K ν (t− d) ,

(5.15)

where ν ≡ 〈νj〉 represents the population-averaged instantaneous firing rate.
Such a mean-field approach has been employed previously to study networks

of spiking neurons without spatial structure (Amit and Brunel, 1997b; Brunel and
Hakim, 1999; Brunel, 2000; Lindner et al., 2005). We extend on this approach by
assuming that the neurons are placed on a discrete one-dimensional domain with
an inter-neuron space constant ∆x. In the continuum limit ∆x � 1 we discard the
single-neuron index i and use a continuous variable x ∈ R for space, replacing
µi (t) → µ (x, t). We preserve the in-degree K and establish connections accord-
ing to the symmetric and normalized connection probability p (r). As before, p
depends only on distance, the absolute value of the displacement r = x − y for
neurons at positions x and y.

In a spatially and temporally homogeneous state we may describe the state of
the system by a stationary firing rate independent of time and space: ν (x, t) =

ν0 (see Equation 5.50 in Section 5.3). To investigate the stability of the spatially
homogeneous stationary state, we consider a small excursion δν away from the
stationary firing rate ν0,

ν (x, t) = ν0 + δν (x, t) , δν� ν0, (5.16)
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caused by a perturbation of the synaptic input and study its effect on the dynamics
of ν. The response of the firing rate to the synaptic input can be approximated to
linear order in δν by applying linear response theory to the Fokker-Planck equa-
tion (Risken, 1996), and expressing δν in terms of the temporal linear convolution
kernels hµ (t) and hσ2 (t) (Schuecker et al., 2015) as

δν (x, t) =
[
hµ ∗ δµ

]
(x, t) +

[
hσ2 ∗ δσ2] (x, t) . (5.17)

The convolution operation is purely temporal, and the form of the response kernels
is given in Equations 5.51–5.53 in Section 5.3.

As the network is recurrently connected, an excursion of the firing rate in turn
leads to a perturbation of the mean of the synaptic input and its variance according
to

δµ (x, t) = τm JK
∫ ∞

−∞
p (x− y) δν (y, t− d) dy

δσ2 (x, t) = τm J2K
∫ ∞

−∞
p (x− y) δν (y, t− d) dy.

(5.18)

In the following section, however, we ignore the hσ2 terms because their contribu-
tions are usually small (Schuecker et al., 2015). The combination of Equations 5.17

and 5.18 provides a linearized system for the spiking model that is continuous in
space and time and enables a direct comparison with the neural-field model in the
following section.

5.2.6 Comparison of neural-field and spiking models

The linearization of the LIF model presented in the preceding section is the ana-
logue to taking the derivative ψ′ of the gain function in the linear stability analysis
of the neural-field model in Section 5.2.1. Therefore, the results for the neural-field
model carry over to the spiking case. To expose the similarities between the lin-
earized systems of the spiking model and the neural-field model, we may bring
the equations for the deviation from baseline activity

δo(x, t) =

δu(x, t) neural field

δν(x, t) spiking
(5.19)

to the form of the convolution equation

δo(x, t) =
[

h̃ ∗ δi
]
(x, t)

δi (x, t) =
∫ ∞

−∞
p (x− y) δo (y, t− d) dy,

(5.20)

where the only difference is the convolution kernel relating the deviations from
the input δi to those of the output δo defined as

h̃(t) :=

h̃nf(t) := Θ(t) w
τ e−

t
τ neural field

h̃s(t) := τm JK hµ(t) spiking.
(5.21)
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Figure 5.6: Transfer function of spiking neuron model and its approximation. A Fitting
error of the low-pass filter approximation of the transfer function for LIF neu-
rons derived in (Schuecker et al., 2015) over µ and σ (given relative to the

reset potential). The fitting error ε =
√

ε2
τ + ε2

H0
is color-coded. B Amplitude

of the transfer function and approximation (legend). Dashed line illustrates
H0 following from the analytically-determined effective coupling strength (see
Equation 5.54 in Section 5.3). C Phase. The white cross in panel A indicates the
working point (µ, σ) selected for the transfer function shown in panels B and C
and used in the simulations throughout the study.

The kernel on the first line is the fundamental solution (Green’s function) of
the linear differential operator appearing on the left hand side of Equation 5.1,
including the coupling weight w. As a consequence, the characteristic equations
for both models result from the Fourier-Laplace ansatz δo (x, t) = eikxeλt which
relates the eigenvalues λ to the wave number k as

H̃ (λ) · e−λd · p̂ (k) = 1. (5.22)

The effective transfer function H̃ (λ) is defined as the Laplace transform of Equa-
tion 5.21 of the respective functions for the spiking model h̃s (t) and for the neural-
field model h̃nf(t). As a result, we obtain the transfer function for the neural-field
model

H̃nf (λ) =
1

1 + λτ
w. (5.23)

The corresponding expression for the effective spiking transfer function H̃s (λ)
results from Equations 5.51–5.53 in Section 5.3.

5.2.6.1 Parameter mapping

So far the stability analysis shows that the characteristic equations for both the
neural-field and the spiking model have the same form (Equation 5.22) given a
proper definition of the respective transfer functions. The transfer function char-
acterizes the transmission of a small fluctuation in the input to the output of the
neuron model. Because these transfer functions differ between the two models, it
is a priori unclear whether their characteristic equations have qualitatively similar
solutions.

The transfer function of the LIF model in the fluctuation-driven regime inves-
tigated here can, however, be approximated by a first order low-pass (LP) filter
(Lindner and Schimansky-Geier, 2001; Brunel et al., 2001; Helias et al., 2013)

Hµ (λ) ≈ HLP (λ) =
H0

1 + λτ
. (5.24)
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This simplified transfer function is of identical form as the transfer function (Equa-
tion 5.23) of the neural-field model, and thereby relates the phenomenological pa-
rameters w and τ of the neural-field model to the biophysically motivated param-
eters of the spiking model.

Fitting the absolute values of HLP (λ) to Hµ (λ) yields values for the parameters
τ and H0. According to Equation 5.21, H0 directly relates to w as

w = H0τm JK. (5.25)

The goodness of the fit of this transfer function to the first-order low pass filter de-
pends on the mean µ and variance σ of the synaptic input, as shown in Figure 5.6A.
The color-coded error of the fit combines the relative errors from both fitting pa-

rameters: ε =
√

ε2
τ + ε2

H0
. For the majority of working points (µ, σ) the error is

< 1% but the relative errors increase abruptly towards the mean-driven regime. In
this regime input fluctuations are small and the mean input predominantly drives
the membrane potential towards threshold, so that the model fires regularly and
the transfer function exhibits a peak close to the firing frequency (Lindner and
Schimansky-Geier, 2001; Brunel et al., 2001). We here fix the working point to
the parameters indicated by the white cross (see Equation 5.59 in Section 5.3) for
all populations, resulting in a common effective time constant τ. Here, we obtain
a time constant τ = 1.94 ms which thus lies in between the synaptic time constant,
τs = 0.5 ms, and the membrane time constant, τm = 5 ms, of the LIF neuron model.
For these parameters, Figure 5.6B shows the amplitude and Figure 5.6C the phase
of the original transfer function Hµ (λ) in black and the fitted transfer function
HLP (λ) in purple. The dashed gray line denotes H0 obtained by computing the
effective coupling strength from linear response theory, Hecs

0 , as a reference (see
Equation 5.54 in Section 5.3).

5.2.6.2 Linear interpolation between the transfer functions

Evaluating the characteristic equation for the neural-field model yields an exact
solution for each branch of the Lambert W function, given by Equation 5.7. For
this model we already established that the principle branch is the most unstable
one. An equivalent condition is not known for the general response kernel of
the LIF neuron. To asses whether we may transfer the result for the neural-field
model to the spiking case, we investigate the correspondence between the two
characteristic equations that are both of the form Equation 5.22 but with different
transfer functions. For this purpose, we define an effective transfer function

H̃α (λ) = αH̃s (λ) + (1− α) H̃nf (λ) , (5.26)

with the parameter α that linearly interpolates between the effective transfer func-
tions of the spiking and the neural-field model: H̃α=0 (λ) = H̃nf(λ) and H̃α=1 (λ) =

H̃s(λ). Figure 5.7 illustrates two different ways for solving the combined charac-
teristic equation

H̃α (λ) · e−λd · p̂ (k) = 1. (5.27)

The first results from computing the derivative dλ/dα (see Equations 5.55–5.58 in
Section 5.3) from the combined characteristic equation and integrating numerically
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Figure 5.7: Linear interpolation between neural-field (α = 0) and spiking (α = 1) model
for eigenvalue close to bifurcation. A Real and B imaginary part of the eigen-
value λ as a function of the linear interpolation parameter α for the charac-
teristic equation in Equation 5.27. The solution at α = 0 for the neural-field
model is exact. C Real and D imaginary part of the eigenvalues (same units
but different scaling as in A and B) with analytically exact solution (by Lam-
bert W function, α = 0) as functions of the wave number k. Different branches
b are color-coded (legend); b = 0 corresponds to the principal branch with the
maximum real eigenvalue (gray cross). Circular markers denote the linear inter-
polation according to the numerical integration of Equation 5.28. Dashed line
segments for the linear interpolation are obtained by solving the characteristic
equation (Equation 5.27) numerically. Both are evaluated at the same values for
α. Parameters: d = 1.5 ms, RE = 0.2 mm, RI = 0.07 mm, g = 5.

with the exact solution of the neural-field model at α = 0 for each branch b as initial
condition:

λ (α) =
∫ α

0

dλ

dα′
dα

′
, λ (0) = λb (5.28)

with

dλ

dα
= − H̃s (λ)− H̃nf (λ)

α
∂H̃s(λ)

∂λ + (1− α) ∂H̃nf(λ)
∂λ − d · H̃α (λ)

. (5.29)

The spatial profile only enters the initial condition, and the derivative (Equa-
tion 5.29) is independent of the wave number k.

As an alternative approach, we directly solve the combined characteristic equa-
tion (Equation 5.27) numerically with the known initial condition. Figure 5.7A and
B indicate that only the principle branch (b = 0) becomes positive while the other
branches remain stable. The branches come in complex conjugate pairs. For the
numerical solution of the characteristic equation, we fix the wave number to the
value of k that corresponds to the maximum real eigenvalue.

The analysis shows that we may ignore the danger of branch crossing since dif-
ferent branches remain clearly separated in Figure 5.7A and B. In addition, the
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eigenvalue on the principle branch is mostly independent of α, even if the system
is close to the bifurcation (when the real part of λ0 is close to zero). Thus for all
values of α we expect qualitatively similar bifurcations, including α = 1. This jus-
tification transfers the rigorous results from the bifurcation analysis of the neural-
field model in Sections 5.2.2 and 5.2.3, and corresponding effective parameters, to
the spiking model.

5.2.7 Validation by simulation of spiking neural network

Section 5.1 illustrates spatiotemporal patterns emerging in a spiking network sim-
ulation in Figure 5.1 and the subsequent sections derive a theory describing the
mechanisms underlying such patterns. Finally, the parameter mapping between
the spiking and the neural-field model explains the origin of the spike patterns by
transferring the conditions found for the abstract neural-field model in Sections
5.2.2 and 5.2.3 to the spiking case. This section validates that the correspondence
between network parameters in the two models is not incidental but covers the full
phase diagram.

In the following, we simulate a network with the same neural populations and
spatial connectivity used in the nonlinear rate-network in Figure 5.5, but replace
the rate-model neurons by spiking neurons, and map the parameters as described
in Section 5.2.6.1. The network model characterizes all neurons by the same work-
ing point (see Equation 5.59 in Section 5.3), which means that the connectivity ma-
trix for the excitatory-inhibitory network has equal rows; entries in Equation 5.4
depend on the presynaptic population alone. Therefore the relative in-degree
γ = KI/KE and the relative synaptic strength g = −JI/JE parametrize the spiking-
network connectivity matrix as

P (r) = τm JEKE

(
pE (r) −γg pI (r)
pE (r) −γg pI (r)

)
. (5.30)

The rightmost panels of Figure 5.8A–C show the same simulation results as Fig-
ure 5.1B–D; likewise the panels of Figure 5.1 have parameters that correspond
to those of the rate-neuron network in Figure 5.5. The different patterns in Fig-
ure 5.1B–D emerge by gradually shifting a single network parameter that switches
the system from a stable state (white filled markers in Figure 5.8D and E), across
intermediate states (gray-scale filled markers) to the final states where stability is
lost and the patterns have formed (black filled markers). Arrows visualize the se-
quences in the phase diagrams Figure 5.8D and E and the markers reappear in the
upper left corners of the corresponding raster plots in Figure 5.8A–C.

The sequence of panels in Figure 5.8A illustrates a gradual transition from a
stable (AI) state to spatial oscillations attained by increasing the amplitudes of
excitatory postsynaptic current (PSC) amplitudes J

′
E in the network. With J

′
we

denote the weight as a jump in current while J denotes a jump in voltage in the
physical sense, and the relationship is: J

′
= Cm J/τs (see Equation 5.61 in Sec-

tion 5.3). The parameter variation thus homogeneously scales the effective profile
P̂ but preserves the shape of the reduced profile B̂ (fixed position of diamond
marker in panel F). Simultaneously an increasing rate of the external Poisson in-
put compensates for the reduced PSC amplitudes to maintain the fixed working
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point (µ, σ) of the neurons (see Equation 5.59 in Section 5.3). Diamond markers in
Figure 5.8D show that along its path the system crosses the critical value P̂max = 1,
while P̂min > P̂crit

min(τ/dcrit) stays in the stable regime, as shown in panel E. How-
ever, even for P̂max . 1 (for J

′
E = 60 pA) the network activity already exhibits weak

spatial oscillations.
Choosing the synaptic delay d as a bifurcation parameter highlights the onset

of temporal oscillations for the case k = 0 (panel B sequence, circular markers)
and spatiotemporal oscillations for the case k > 0 (sequence in Figure 5.8C, star
markers). In contrast to the case of purely spatial waves in panel A, the procedure
preserves the effective spatial profile (fixed positions in panels D and F) and the
system crosses the transition curve in panel E due to increasing delay alone, thus
decreasing the ratio τ/d.
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Figure 5.8: Transitions from theoretically stable states to spatiotemporal patterns in spik-
ing network simulation. A–C Spike rasters showing transition to network
states in Figure 5.1B–D (same markers, same parameter combinations). The
changed parameter value is given on top of each raster plot. A Increasing re-
current weight J

′
E leads to onset of spatial oscillations. B Increasing synaptic

delay d leads to onset of temporal oscillations at k = 0. C Increasing delay d
leads to onset of temporal oscillations at k > 0, i.e., periodic traveling waves.
D–E Gray shaded markers and white arrows labeled according to respective
panel A–C in phase diagrams indicate sequences of parameter combinations
and breakdown of stability at P̂max = 1 or at P̂min = P̂crit

min. For each sequence
in panels A–C, delay d, excitatory profile width RE, inhibitory profile width
RI, and the relative synaptic strength g correspond to the values given in Fig-
ure 5.1B–D with corresponding markers.
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Figure 5.8C illustrates the gradual transition to traveling waves, where P̂max re-
mains in the theoretically stable regime at all times, but is close to the critical value
of 1 (see the star marker in panel D). As a result, we observe spatial oscillations
with a spatial frequency given by kmax before and even after the Hopf bifurcation.
For delays longer than the critical delay, mixed states occur in which different
instabilities due to P̂max and P̂min compete. For delay values well past the bifurca-
tion, this mixed state is lost resulting in a dependency only on P̂min and periodic
traveling waves with a spatial frequency that depends on kmin.

5.3 methods

5.3.1 Linear stability analysis

5.3.1.1 Derivation of the characteristic equation

With the Fourier-Laplace ansatz u (x, t) = eikxeλt for the integro-differential equa-
tion in Equation 5.1 linearized around u0 and the choice to set the slope of the gain
function to unity, the characteristic equation in Equation 5.3 results from

τλ eikxeλt = −eikxeλt +
∫ ∞

−∞
wp (x− y) eikyeλ(t−d) dy

τλ = −1 + we−λd
∫ ∞

−∞
p (x− y) e−ik(x−y) dy

= −1− we−λd
∫ −∞

∞
p (r) e−ikr dr, r = x− y

= −1 + we−λd
∫ ∞

−∞
p (r) e−ikr dr︸ ︷︷ ︸
≡ p̂(k)

.

(5.31)

In the last row, we recognize the Fourier transform p̂ of the spatial profile p.

5.3.1.2 Effective connectivity profile for two populations

While the connectivity P is a scalar in the one-population model, it is a matrix in
the case of two populations (given in Equation 5.4). The ansatz for deriving the
characteristic equation in the latter case reads δu (x, t) = veikxeλt, with v denoting
a vector of constants. This leads to the auxiliary eigenvalue problem

P̂ (k) v = P̃ (k) v, (5.32)

where P̂ denotes an eigenvalue and P̃ is an auxiliary matrix containing the Fourier
transforms of the entries of P:

P̃ (k) =
(

wEE p̂EE (k) wEI p̂EI (k)
wIE p̂IE (k) wII p̂II (k)

)
. (5.33)

Equation 5.32 possesses a nontrivial solution v if and only if det
(

P̃ (k)− P̂ (k)1
)
=

0. Equation 5.5 explicitly states the two eigenvalues P̂1,2 solving this equation.
These eigenvalues constitute the effective profile in the characteristic equation in
Equation 5.3 that hence holds also for the two-population case.
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5.3.1.3 Largest real part on principle branch of Lambert W function

The function x (W) = W eW has a minimum at W = −1, no real solution for x <

−e−1, a single solution for x > 0, and two solutions for x ∈ [−e−1, 0). Typically,
the term ‘principal branch’ of the Lambert W function with branch number b = 0
refers to the real branch defined on the interval [−e−1, ∞), where for negative
arguments the larger solution is considered. Here we extend the definition to
the whole real line by the complex branch with maximal real part and positive
imaginary part on (−∞,−e−1).

We demonstrate that the branch of the Lambert W function with the largest real
part is the principal branch. Considering only real-valued arguments x ∈ R, we
write W (x) = |W (x)| eiϕ = α + iβ and

W (x) eW(x) = |W (x)| eα ei(ϕ+β) = x ∈ R (5.34)

→ ei(ϕ+β) = ±1, (5.35)

where ϕ ∈ [−π, π] is the principal value. We index the branches by q ∈ Z accord-
ing to the number of half-cycles of the exponential in Equation 5.35: ϕ + β = q · π.
The branch number is equal to b =

⌊ q
2

⌋
with b·c denoting the floor function. The

principle branch is therefore given by the index q = 0 for x ≥ 0 and by q = 1 for
x < 0.

Taking the absolute square of Equation 5.34 yields the real equation

x2 e−2α = α2 + β2. (5.36)

Without loss of generality we may assume β ≥ 0; this is certainly true for the real
solutions with β = 0 and it also holds for one of the complex solutions for any
complex pair. Complex solutions come in conjugate pairs due to the symmetry
(ϕ, β) → (−ϕ,−β) exhibited by Equations 5.35 and 5.36. Since each member of
a pair has by definition the same real part, it is sufficient to consider only the
member with positive imaginary part β > 0.

To prove that the real part α of W is maximal for b = 0, we show that α is a
decreasing function of β along the solutions of Equation 5.34. Investigating the
intersections of the left-hand side and the right-hand side of Equation 5.36 as a
function of α illustrates how increasing the imaginary part β affects the real part
α. The left-hand side is a decaying function of α with an intercept of x2. The
right-hand-side is a parabola with an offset of β2.

For x ∈ (−∞,−e−1) ∪ [0, ∞), an intersection occurs either at a positive real part
α ≥ 0 if x2 ≥ β2, or at a negative real part α < 0 if x2 < β2. Increasing β moves
the parabola upwards and therefore the intersection to the left, meaning that α

decreases with increasing β.
For x ∈ [−e−1, 0), we distinguish the cases β = 0 and β > 0 which both have

only solutions with α < 0. First, the two real solutions (q = ±1) existing in this
interval correspond to two simultaneously occurring intersections; in addition a
third intersection is created by the squaring (Equation 5.36) but it is not an actual
solution of Equation 5.34. The intersection at the larger real part per definition
corresponds to the principal branch with index q = 1. Second, the complex solu-
tions are indexed by odd numbers q with |q| > 1. Taking into account the interval
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where ϕ is defined, the imaginary part is bounded from below such that β ≥ 2π for
non-principal branches. Analogous to the previously discussed interval of x, there
exists only one intersection between the exponential function and the parabola for
large values of β (in particular: x2 < β2) that moves towards smaller values of α

with increasing β.
So in summary we have shown that for real x, the principal branch harbors the

solutions with maximal real part α.

5.3.1.4 Characteristic equation with Lambert W function

The characteristic equation in Equation 5.3 can be rewritten in terms of the Lambert
W function to Equation 5.7 using the transformation:

(1 + τλ) eλd = P̂ (k) | · d
τ

e
d
τ(

dλ +
d
τ

)
edλ+ d

τ = P̂ (k)
d
τ

e
d
τ

dλ +
d
τ
= W

(
P̂ (k)

d
τ

e
d
τ

)
.

(5.37)

The last step collects terms using the definition of the Lambert W function, z =

W (z) eW(z) with z ∈ C.

5.3.2 Properties of the spatial profile

We assume that the spatial profile p is a symmetric probability density function,
which implies that its Fourier transform p̂, also called the characteristic function,
is real valued and even. Further, we can prove that p̂ ∈ (−1, 1] and that p̂ attains 1
only at the origin in two steps:

• | p̂(k)| ≤ 1 for all k ∈ R:

| p̂(k)| =
∣∣∣∣∫ ∞

−∞
p(r)e−ikr dr

∣∣∣∣ ≤ ∫ ∞

−∞

∣∣∣p(r)e−ikr
∣∣∣ dr

=
∫ ∞

−∞
p(r)dr = 1 for all k ∈ R,

(5.38)

• | p̂(k)| < 1 for all k 6= 0:∣∣∣∣∫ ∞

−∞
p(r)e−ikrdr

∣∣∣∣ ≤ ∫ ∞

−∞
p(r) |cos (kr)| dr

<
∫ ∞

−∞
p(r)dr = 1 for all k 6= 0,

(5.39)

because |cos (kr)| < 1 almost everywhere in r if k 6= 0.

5.3.3 Transition curves for reduced profile

We here use a graphical approach to derive the transition curves shown first in
Figure 5.3F. A necessary condition for an extreme value of the reduced profile
B̂ (κ) from Equation 5.12 located at κ∗ is: ∂

∂κ B̂ (κ) |κ∗ = 0. With the derivative
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Figure 5.9: Graphical analysis for extrema of reduced profile for derivation of transition
curves. A The condition for the extremum (Equation 5.41) amounts to the addi-
tion of two vectors in the complex plane whose sum is purely imaginary. The
vectors have lengths a1 and a2 and angles φ1 and φ2, defined in Equation 5.42.
B Diagram of Figure 5.3F with indicated parameter combinations (ρ, η) as used
in panels C and D. C–D Reduced profile B̂ (top) and φ1 and φ±1 from Equa-
tion 5.43 vs. κ (bottom) for two different combinations of (ρ, η) with curve
colors corresponding to regions in panel B. C

∣∣∣B̂min

∣∣∣ > B̂max in purple and vice

versa in dark gray. D B̂min at κ = 0 in light blue and at κ > 0 in purple.

∂

∂κ
B̂ (κ) =

cos (κ)
κ
− sin (κ)

κ2 − η
cos (ρκ)

κ
+ η

sin (ρκ)

ρκ2 , (5.40)

this condition can be rewritten as

0 = Re
[
(κ + i) eiκ − η

ρ
(ρκ + i) eiρκ

]
= Re

[
a1eiφ1 + a2eiφ2

]
= a1 cos (φ1) + a2 cos (φ2) ,

(5.41)

where a1 and a2 are the absolute values of the complex numbers and φ1 and φ2

their phases, given by

a1 (κ) =
√

1 + κ2

φ1 (κ) = κ +
π

2
− arctan (κ)

a2 (κ; ρ, γ) =
η

ρ

√
1 + ρ2κ2

φ2 (κ; ρ) = ρκ +
3π

2
− arctan (ρκ) .

(5.42)

The vanishing right-hand-side of Equation 5.41 implies that the term in the square
brackets is purely imaginary. An example solution for the case a1 < a2 is illus-
trated in Figure 5.9A in the complex plane. Note that a1 and φ1 are independent
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of the parameters ρ and η in this representation. In our graphical analysis, Equa-
tion 5.41 is interpreted as the sum of two vectors in the complex plane. As shown
in Figure 5.9A, we determine φ1 as the angle at which the tip of the second vector
ends on the imaginary axis, which follows from elementary trigonometry as

φ±1 = π ± arccos
(

a2

a1
cos (φ2)

)
. (5.43)

The locations of extrema are then given by the intersections of φ±1 with the sec-
ond row of Equation 5.42. Here φ2 is determined from the last equation in Equa-
tion 5.41.

Figure 5.9B reproduces Figure 5.3F. The white bars connect points given by pa-
rameter combinations (ρ, η) on both sides of the transition curves, and the param-
eters are specified in panels C and D. The first transition curve ηt1 (ρ) (dashed
curve in Figure 5.9B) is determined by B̂max (κmax) =

∣∣∣B̂min (κmin)
∣∣∣, that means it

is determined by parameters (ρ, η) for which the absolute values of the positive
and negative extremum of the profile are equal. The top panel of Figure 5.9C com-
pares two reduced profiles obtained for a fixed value for ρ and two values for η.
The curve colors correspond to the colored regions in the diagram in Figure 5.9B
for the respective parameter combination

∣∣∣B̂min

∣∣∣ > B̂max for the purple profile and
vice versa for the dark gray profile. The point with the maximum absolute value
of each profile is indicated with a cross. Exactly at the transition either κmax or κmin

is zero (for example κ0 = 0) and the other one is non-zero (for example κ1 > 0).
This condition, with Equation 5.12, yields the absolute value for both extrema at
the transition, where they must be equal, thus

∣∣∣B̂ (κ0)
∣∣∣ = ∣∣∣B̂ (κ1)

∣∣∣ = |1− η|. Any
point on the transition curve is a unique triplet of parameters (ρ, η, κ1), and with
the condition ∂

∂κ B̂ (κ) |κ1 = 0 we obtain two equations that need to be fulfilled at
each point for κ = κ1:

1− η =
sin (κ)

κ
− η

sin (ρκ)

ρκ

1− η = cos (κ)− η cos (ρκ) .
(5.44)

The lower equation is obtained by identifying B̂ (κ) in its derivative in Equa-
tion 5.40. We solve both equations with respect to η and equate them to get

1
κ

sin (κ) [1 + cos (ρκ)]− 1
ρκ

sin (ρκ) [1 + cos (κ)] + cos (ρκ)− cos (κ) = 0. (5.45)

For a given value of ρ, we compute the roots of the left-hand-side expression,
which defines κ(ρ). The bottom panel of Figure 5.9C shows φ1 from Equation 5.42

as a black curve and φ±1 from Equation 5.43 for the parameters of the two effective
profiles (same color coding as in the top panel). The intersections corresponding
to the relevant extrema are highlighted by crosses. This visual analysis allows us
to identify the interval for κ in which zero-crossings of the left-hand side of Equa-
tion 5.45 as a function of κ can correspond to the extrema, that is κ ∈ (0, 4.49341)
where the lower limit corresponds to φ1 = π

2 and the upper limit to φ1 = 3π
2 . The
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zero-crossing at the smallest non-zero κ indicates the extremum at κ1. Finally, the
transition curve is given by

ηt1 (ρ) =
1 + cos (κ (ρ))

1 + cos (ρκ (ρ))
, (5.46)

where κ(ρ) is given by the roots of Equation 5.45.
The second transition curve ηt2 (ρ) (solid curve in Figure 5.9B) indicates whether

the extremum with the largest absolute value occurs at κ = 0 or at κ > 0. Fig-
ure 5.9D shows in the top panel two reduced profiles for a fixed value of η, but two
values for ρ such that the B̂min occurs once at κmin = 0 (light blue as in Figure 5.9B)
and once at κmin > 0 (purple as in Figure 5.9B), indicated by cross markers.

Graphical analysis using the bottom panel of Figure 5.9D indicates that this
transition happens when φ−1 at κ & 0 switches from lying slightly above (light
blue curve) to below (purple curve) the parameter-independent function φ1 (black
curve). We observe that decreasing ρ moves the intersection point and with it the
location of the extremum up the black line, starting from κ = 0 to larger values for
κ.

Close to the transition, the intersection point comes arbitrarily close to κ = 0,
which permits local analysis by a Taylor expansion of φ1 for small κ:

φ1 (κ) ≈
π

2
+

κ3

3
+O

(
κ5) (5.47)

φ−1 (κ; ρ, η) ≈ π

2
+

ηρκ3

3
+O

(
(ρκ)5

)
. (5.48)

A comparison of the coefficients of the third-order polynomials then gives the
transition curve

ηt2 (ρ) =
1
ρ2 , (5.49)

because this coefficient decides for small κ whether φ1 (black curve) or φ−1 as a
function of the parameters (ρ, η) has a larger slope and lies on top.

5.3.4 Linearization of the spiking model

5.3.4.1 Stationary firing rate

The stationary firing rate ν0 in the limit of short synaptic time constants (τs � τm)
is given in Fourcaud and Brunel (2002) and Helias et al. (2013, Equation A.1):

ν−1
0 = τr + τm

√
π (F (yθ)− F (yr))

f (y) = ey2
(1 + erf (y)) , F (y) =

∫ y
f
(

y
′
)

dy
′

with y{θ,r} =
V{θ,r} − µ

σ
+

β

2

√
τs

τm
, β =

√
2
∣∣∣∣ζ (1

2

)∣∣∣∣ ,

(5.50)

where ζ denotes the Riemann’s zeta function (Abramowitz and Stegun, 1974).



136 conditions for traveling waves in spiking neural networks

5.3.4.2 Transfer function

The transfer function here denoted by Hµ is computed based on the first term of
(Schuecker et al., 2015, Equation 29)

HG (ω) =
ν0

√
2

σ

1 + iωτm

Φ′ω|xr
xθ

Φω|xr
xθ

, (5.51)

for the oscillation frequency ω and x{r,θ} =
√

2y{θ,r}. The function Φω (x) =

e
1
4 x2

U
(
iωτm − 1

2 , x
)

is defined by parabolic cylinder functions U (Abramowitz and
Stegun, 1974; Lindner and Schimansky-Geier, 2001) and Φ

′
ω = ∂xΦω. We need to

multiply the transfer function with the transfer function of a first-order low-pass
filter due to the exponential time course of our synaptic currents:

Hµ (ω) = HG (ω)
1

1 + iωτs
. (5.52)

We then obtain hµ by an inverse Fourier transform and a Laplace transform because
λ is a complex frequency and ω is real in the present context:

hµ (t) = F−1 [Hµ

]
(t)

Hµ (λ) = L
[
hµ

]
(λ) .

(5.53)

The latter relations imply a replacement iω → λ in Equation 5.51.

5.3.5 Model comparison

5.3.5.1 Effective coupling strength

For the numerical evaluation of the transfer function, we show Hecs
0 = wecs/ (τm JK)

as the dashed line in Figure 5.6B, obtained by calculating analytically the effective
coupling strength wecs from linear-response theory. The effective coupling strength
for a connection from neuron j with rate νj to neuron i with rate νi is defined as
(Helias et al., 2013, Equations A.2 and A.3, correcting a typo in this previous work):

wecs
ij =

∂νi

∂νj

= α̃Jij + β̃J2
ij

with α̃ =
√

π (τmνi)
2 1

σi
( f (yθ)− f (yr))

and β̃ =
√

π (τmνi)
2 1

2σ2
i
( f (yθ) yθ − f (yr) yr) ,

(5.54)

where f and y{θ,r} are defined as in Equation 5.50. The dashed line in Figure 5.6B
is given by the term ∝ α̃ alone since we also ignore the small contribution of the
variance to the transfer function of the LIF neuron (Schuecker et al., 2015) .
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5.3.5.2 Linear interpolation

To compute the derivative dλ/dα given in Equation 5.29, we use a method for
computing the derivative of an implicit function: If R (α, λ) = 0, it follows that the
derivative

dλ

dα
= − ∂R/∂α

∂R/∂λ
=: −Rα

Rλ
. (5.55)

With the characteristic equation for the effective transfer function (Equation 5.27),
we get

R (α, λ) = H̃α (λ) · e−λd · p̂ (k)− 1 = 0. (5.56)

The partial derivatives of R with respect to α and λ are

Rα = e−λd · p̂ (k) · ∂H̃α (λ)

∂α

= e−λd · p̂ (k) ·
[

H̃s (λ)− H̃nf (λ)
]

,
(5.57)

and

Rλ = p̂ (k) · ∂

∂λ

[
H̃α (λ) · e−λd

]
= e−λd · p̂ (k) ·

[
∂H̃α (λ)

∂λ
− d · H̃α (λ)

]

= e−λd · p̂ (k) ·
[

α
∂H̃s (λ)

∂λ
+ (1− α)

∂H̃nf (λ)

∂λ
− d · H̃α (λ)

]
= e−λd · p̂ (k) ·

[
αH̃s

λ (λ) + (1− α) · H̃nf
λ (λ)− d · H̃α (λ)

]
.

(5.58)

5.3.6 Fixing the working point

For the spiking model, we fix the mean input µ and its variance σ relative to their
reset potential for both populations. Each neuron receives external excitatory and
inhibitory input with Poisson-distributed interspike interval statistics (analogous
to Helias et al., 2013, Equation E.1). The external input rates for excitatory neurons
νE,ext and for inhibitory neurons νI,ext are

νE,ext = νE,0 + νbal, νI,ext = νbal/g, (5.59)

with νE,0 =
µ−µloc

JEτm
and νbal =

σ2−σ2
loc−τmνE,0 J2

E
τm J2

E(1+g2)
, (5.60)

where µloc = τmν KJ (1− γg) and σ2
loc = τmν KJ2 (1 + γg2) are the mean and

variance due to local input from other neurons firing with the target rate ν, respec-
tively. The rate νbal establishes a balance between excitation and inhibition, taking
into account the variances, and the rate νE,0 only applies to the excitatory neurons
with the aim to shift the mean.
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5.3.7 Physical units

The sub-threshold dynamics of the LIF neuron in Equation 5.13 are, without loss
of generality, given in scaled units. In this formulation, V, J and I are all quan-
tities with unit Volt. For the parameter-wise comparison with numerical network
simulation (for example using NEST, see Gewaltig and Diesmann, 2007), it is use-
ful to consider a description where I

′
and J

′
represent electric currents in units of

Ampere:

τm
dV

′
i

dt
= −

(
V
′
i − EL

)
+ Rm I

′
i (t)

τs
dI
′
i

dt
= −I

′
i + τs ∑

j
J
′
ijsj (t− d) .

(5.61)

Here, we also introduce a resistive leak reversal potential EL, and shift threshold
and reset potentials V ′θ = Vθ + EL and V ′r = Vr + EL, respectively. The membrane
time constant τm = RmCm relates the membrane resistance Rm and capacitance
Cm. In units of Ampere, the total current input I

′
= I/Rm and the synaptic weight

amplitude J
′
= Cm J/τs.

5.3.8 Network structure and parameters

We simulate recurrently connected neural networks of one excitatory and one in-
hibitory populations each using the neural simulation software NEST (Gewaltig
and Diesmann, 2007), using either spiking- or rate-neuron models. The support
for rate neurons in NEST was recently added as described in Hahne et al. (2017).
Tables 5.1 and 5.2 provide the complete neuron and network model descriptions
and Table 5.3 summarizes all parameters as used for the network state showing
periodic traveling waves (marked by black star in Figure 5.1D, Figure 5.5D and
Figure 5.8C). Other simulation parameters used to obtain other network states
shown throughout this chapter are indicated with a � marker in Table 5.3, and
the changed parameters are given in the corresponding figures. The same marker
always denotes the same parameter combination across figure panels. The tables
distinguish between network properties and parameters valid for both spiking and
rate neuron models and those specific to only one neuron model. Irrespective of
the choice of neuron model (rate vs. spiking), the neuron parameters are shared
between both neuron populations. The neurons of each population are positioned
with equal spacing along a one-dimensional path of perimeter L and connections
between neurons are drawn according to a distance-dependent rule with periodic
boundary conditions (a “ring” network) using the NEST Topology module.

The number of excitatory neurons NE in our network is four times larger than
the number of inhibitory neurons NI (Braitenberg, 2001). The number of incoming
connections, the in-degree K{E,I}, is proportional to the population size of the presy-
naptic population, assuming an overall connection probability of 10%. Around
each postsynaptic neuron, the connection algorithm establishes connections from
neighboring neurons within a distance of R{E,I}. The width of the profile depends
on the presynaptic population alone. Potentially presynaptic neurons within this
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distance are picked at random and connections are established until the fixed in-
degree is reached. Multiple connections between the same pair of neurons termed
multapses are allowed, but self-connections (autapses) are prohibited.

The leaky integrate-and-fire model with exponential postsynaptic currents is
implemented in NEST under the name iaf_psc_exp. The neuron parameters are
the same as in the microcircuit model of Potjans and Diesmann (2014) with the
difference that our membrane time constant τm is half of theirs and that we here
omit the refractory period τref, although our results generalize to a non-zero τref.
An excitatory and an inhibitory Poisson generator provide external input to all
neurons. Their rates ν{E,I},ext are determined according to Equation 5.59 for fixing
the working point (µ, σ).

The dynamics of rate-based units in NEST is specified as stochastic differential
equations using the Itô convention (Hahne et al., 2017), except that we here set
the stochasticity (the variance of the input) to zero. We use the neuron model
tanh_ipn, that employs a hyperbolic tangent as a gain function.

Simulations run for a simulation time Tsim with a temporal resolution of dt.
During rate simulations, the instantaneous rate is recorded once at each time step
dt. Our raster plots from simulations of the spiking model and the image plots
from simulation of the rate model show the network activity from all simulated
neurons after a start-up transient Ttrans.

5.3.9 Software and implementation

Spiking- and rate-neuron network simulations were implemented in NEST v2.14.0
(Peyser et al., 2017), and Python v2.7.11. Post-processing and plotting relied on
Python with numpy v1.10.4, SciPy v0.17.0, and matplotlib v2.0.2.
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Model summary
Populations Excitatory (E), inhibitory (I)
Topology Ring network: Neurons positioned equally spaced on one-

dimensional domain of length L; periodic boundary conditions
Connectivity Random convergent connections with fixed in-degree, distance-

dependent boxcar-shaped spatial profiles realized with cut-off
masks

Spiking model
Neuron model Leaky integrate-and-fire (LIF), fixed threshold, absolute refractory

time
Synapse model Static weights and delays, exponentially shaped postsynaptic cur-

rents
Input Independent fixed-rate Poisson spike trains to all neurons (excita-

tory and inhibitory Poisson sources)
Measurement Spike activity

Rate model
Neuron model Rate neuron with tanh gain function
Synapse model Delayed rate connection
Input -
Measurement Activity

Table 5.1: Summary of network models following the guidelines of Nordlie et al. (2009b).
Separation between nonlinear spiking and rate neurons as used in NEST simu-
lations.
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Network models
Distance-
dependent
connectivity

Neural units j ∈ X at location xj and i ∈ Y at xi in pre- and
postsynaptic populations X and Y, respectively.
Displacement between units i and j:

rij = xi − xj

Boxcar-shaped spatial profile with width R and Heaviside func-
tion Θ:

p
(
rij
)
= 1

2R Θ
(

R−
∣∣rij
∣∣)

Spiking model
Subthreshold
dynamics

If t > t∗ + τref

dV
dt = −V−EL

τm
+

Isyn(t)
Cm

Isyn (t) = ∑j Jj IPSC

(
t− t∗j − d

)
with connection strength Jj, presynaptic spike time t∗j and
conduction delay d
IPSC (t) = e−t/τs Θ (t) with Heaviside function Θ

else

V (t) = Vr

Spiking If V (t−) < Vθ ∧V (t+) ≥ Vθ

1. set t∗ = t
2. emit spike with timestamp t∗

3. reset V (t) = Vr

Rate model

Differential
equation

τ dδu
dt = −δu (t) + ∑j=1 wjψ

(
δuj (t− d)

)
ψ (x) = tanh (x)

Table 5.2: Description of network models. Separation between nonlinear spiking and rate
neurons as used in NEST simulations.
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A: Global simulation parameters
Symbol Value Description
Tsim 350 ms Simulation duration
Ttrans 150 ms Start-up transient
dt 0.1 ms Temporal resolution
B: Populations and external input

Symbol Value Description
NE 4, 000 Population size of excitatory neurons
NI 1, 000 Population size of inhibitory neurons
L 1 mm Domain length

Spiking model
µ 10 mV Mean input relative to reset potential
σ 10 mV Variance of input relative to reset potential
νE,ext 35085 Hz � Excitatory external rate (by fixing working point)
νI,ext 3683 Hz � Inhibitory external rate (by fixing working point)
C: Connection parameters

Symbol Value Description
RE 0.2 mm � Profile width of excitatory neurons
RI 0.07 mm � Profile width of inhibitory neurons
d 3 ms � Delay

Spiking model
KE 400 In-degree from excitatory neurons
γ 0.25 Relative in-degree, γ = KI/KE
J
′
E 87.8 pA � Reference synaptic strength

g 5 � Relative synaptic strength, g = −JI/JE
Rate model

wE 2.73 � Excitatory weight (by parameter mapping)
wI −3.42 � Inhibitory weight (by parameter mapping)
D: Neuron model

Symbol Value Description
Spiking model

Cm 250 pF Membrane capacitance
τm 5 ms Membrane time constant
EL −65 mV Leak potential
Vθ −50 mV Firing threshold
Vr −65 mV Reset potential
τref 0 ms Absolute refractory period
τs 0.5 ms Postsynaptic current time constant

Rate model
τ 1.94 ms Time constant (by parameter mapping)

Table 5.3: Simulation and network parameters. Parameters according to setting for trav-
eling waves as shown in Figure 5.1D, Figure 5.5D and Figure 5.8C (black star
marker). Deviant parameters are given in the captions of the respective figures
and indicated by different markers.
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5.4 discussion

The present study employs mean-field theory (Brunel and Hakim, 1999) to rig-
orously map a spiking network model of leaky integrate-and-fire (LIF) neurons
with constant transmission delay to a neural-field model. We use a conceptually
similar linearization as Kriener et al. (2014b) combined with an analytical expres-
sions for the transfer function in the presence of colored synaptic noise (Schuecker
et al., 2015). The insight that this transfer function in the fluctuation-driven regime
resembles the one of a simple first-order low-pass filter facilitates the parameter
mapping between the two models. The resulting analytically tractable effective
rate model depends on the dynamical working point of the spiking network that is
characterized by both the mean and the variance of the synaptic input. By means of
bifurcation theory, in particular linear Turing instability analysis (Coombes, 2005;
Coombes et al., 2007; Venkov et al., 2007), we investigate the origin of spatiotem-
poral patterns such as temporal and spatial oscillations and in particular periodic
traveling waves emerging in spiking activity. The mechanism underlying these
waves encompasses delay-induced fast global oscillations, as described by Brunel
and Hakim (1999), with spatial oscillations due to a distance-dependent effective
connectivity profile. We derive analytical conditions for pattern formation that
are exclusively based on general characteristics of the effective connectivity pro-
file and the delay. The profile is split into a static weight that is either excitatory
or inhibitory for a given neural population, and a spatial modulation that can be
interpreted as a distance-dependent connection probability. Given the biological
constraint that connection probabilities depend on distance but weights do not, pe-
riodic traveling waves cannot occur in a single homogeneous population irrespec-
tive of the shape of distance-dependent connection probability. Only the effective
connectivity profile of two populations (excitatory and inhibitory), permits solu-
tions where a mode with finite non-zero wave number is the most unstable one,
a prerequisite for the emergence of nontrivial spatial patterns such as traveling
waves. We therefore establish a relation between the anatomically measurable con-
nectivity structure and observable patterns in spiking activity. The predictions of
the analytically tractable neural-field model are validated by means of simulations
of nonlinear rate-unit networks (Hahne et al., 2017) and of networks composed
of LIF-model neurons, both using the same simulation framework (Peyser et al.,
2017). In our experience, the ability to switch from a model class with continu-
ous real-valued interaction to a model class with pulse-coupling by changing a
few lines in the formal high-level model description increases the efficiency and
reliability of the research.

The here presented mathematical correspondence between these a priori distinct
classes of models for neural activity has several implications. First, as demon-
strated by the application in the current work, it facilitates the transfer of results
from the well-studied domain of neural-field models to spiking models. The in-
sight thus allows the community to arrive at a coherent view of network phenom-
ena that appear robustly and independently of the chosen model. Second, the
quantitative mapping of the spiking model to an effective rate model in particular
reduces the parameters of the former to the set of fewer parameters of the latter;
single-neuron and network parameters are reduced to just a weight and a time
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constant. This dimensionality reduction of the parameter space conversely im-
plies that entire manifolds of spiking models are equivalent with respect to their
bifurcations. Such a reduction supports systematic data integration: Assume a
researcher wants to construct a spiking model that reproduces a certain spatiotem-
poral pattern. The presented expressions permit the scientist to restrict further
investigations to the manifold in parameter space in line with these observations.
Variations of parameters within this manifold may lead to phenomena beyond the
predictions of the initial bifurcation analysis. Additional constraints, such as fir-
ing rates, degree of irregularity, or correlations, can then further reduce the set of
admissible parameters.

To keep the focus on the transferability of results from a neural-field to a spiking
model, the study restricts the analysis to a rather simple network model. In many
cases, extensions to more realistic settings are straight forward. As an example, we
perform our analysis in one-dimensional space. In two dimensions, the wave num-
ber becomes a vector and bifurcations to periodic patterns in time and space can
be constructed (see Ermentrout, 1998, Section 8.4 and Coombes, 2005). Likewise,
we restricted ourselves to a constant synaptic delay like Roxin et al. (2005; 2006)
because it enables a separation of a spatial component, the shape of the spatial
profile, and a temporal component, the delay. A natural next step is the inclusion
of an axonal distance-dependent delay term as for instance in Hutt et al. (2003)
to study the interplay of both delay contributions (Veltz, 2013). For simplification,
we use here a boxcar-shaped spatial connectivity profile in the demonstrated ap-
plication of our approach. For the emergence of spatiotemporal patterns, however,
the same conditions on the connectivity structure and the delays hold for more
realistic exponentially decaying or Gaussian-shaped profiles (Hellwig, 2000; Perin
et al., 2011; Schnepel et al., 2015). If the spatial connectivity profiles are monoton-
ically decaying in the Fourier domain (as it is the case for exponential or Gaussian
shapes), the Fourier transform of the effective profile of a network composed of an
excitatory and an inhibitory population exhibits at most one zero-crossing. Either
the minimum or the maximum are attained at a non-zero and finite wave number
k, but not both. With a cosine-shaped effective profile, only a single wave number
dominates by construction (Roxin et al., 2005, 2006). Here, we decided for the
boxcar shape because of its oscillating Fourier transform that allows us to study
competition between two spatial frequencies corresponding to the two extrema.

Similar to our approach, previous neural-field studies describe the spatial con-
nectivity profile as a symmetric probability density function (see, for example,
Wyller et al., 2007b). For our aim, to establish a link to networks of discrete
neurons, the interpretation as a connection probability and the separation from
a weight are a crucial addition. This assumption enables us to distinguish be-
tween different neural populations, to analyze the shape of the profile based on
parameters for the excitatory and the inhibitory contribution, and to introduce bio-
physically motivated parameters for the synaptic strength. Starting directly with
an effective profile that includes both, excitation and inhibition, such as (inverse)
Mexican hat connectivity, is mathematically equivalent and a common approach in
the neural-fields literature (Hutt et al., 2003; Atay and Hutt, 2005; Coombes, 2005;
Roxin et al., 2005). But it neglects the biological separation of neurons into exci-
tatory and inhibitory populations according to their effect on postsynaptic targets
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(Dale’s law, see Eccles et al., 1954) and their different spatial reach of connectivity
(Stepanyants et al., 2009). A result of this simplification, these models can pro-
duce waves even with a single homogeneous population (Roxin et al., 2005; Atay
and Hutt, 2006; Venkov et al., 2007), while with homogeneous stationary external
drive we show that at least two populations are required.

Local excitation and distant inhibition are often used to support stationary pat-
terns such as bumps, while local inhibition and distant excitation are associated
with non-stationary patterns such as traveling waves (Cross and Hohenberg, 1993;
Ermentrout, 1998; Hutt et al., 2003). For sufficiently long synaptic delays, we also
observe periodic traveling waves with local inhibition and distant excitation, as
often observed in cortex (Stepanyants et al., 2009). However, we show that the
reason for this is the specific shape of the effective spatial profile, and not only
the spatial reach itself. Our argumentation is therefore in line with Hutt et al.
(2005; 2008) who demonstrate that wave instabilities can even occur with local
excitation and distant inhibition for specific spatial interactions. The spatial con-
nectivity structure and related possible activity states are in addition important
factors for computational performance or function of model networks (Legenstein
and Maass, 2007; Pyle and Rosenbaum, 2017).

The parameter mapping between a neural-field and a spiking model in this
study relies on the insight that the transfer function of the LIF neuron in the
fluctuation-driven regime resembles the one of a simple first-order low-pass filter.
Since this approximation not only holds for LIF neurons, but also for other spiking
neuron models, our results are transferable. A further candidate model with this
property is the exponential integrate-and-fire model (Fermani and Richardson,
2015). Other examples include Nordlie et al. (2010) who characterize the firing-rate
responses of LIF neurons with strong alpha-shaped synaptic currents and similarly
Heiberg et al. (2013) for a LIF neuron model with conductance-based synapses and
potassium-mediated after-hyperpolarization currents previously proposed (Casti
et al., 2008).

In the literature, the time constant of neural-field models is often associated
with the membrane or the synaptic time constant (Bressloff, 2000, 2014; Pyle and
Rosenbaum, 2017). Here, we observe that the time constant of the neural-field
model derived from the network of spiking neurons falls in between the two. In
line with (Gerstner, 2000; Nordlie et al., 2010), we suggest to reconsider the mean-
ing of the time constant in neural-field models.

A limitation of the approach employed here is that the linear theory is only exact
at the onset of waves. Beyond the bifurcation, it is possible that nonlinearities in the
spiking model govern the dynamics and lead to different prevailing wave numbers
or wave frequencies than predicted. Roxin et al. (2006) report that the stability of
traveling waves depends crucially on the nonlinearity. Nevertheless they do not
observe traveling waves in their spiking-network simulations. In the present work,
however, we identify biophysically motivated neuron and network parameters that
allow traveling waves to establish in a spiking network. Still, we had to increase
the delay beyond the predicted bifurcation point to obtain a stable wave pattern.

Furthermore, the theory underlying the mapping of the spiking network to the
neural-field model is based on the diffusion approximation and therefore only
applicable for sufficiently small synaptic weights. Widely distributed synaptic
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weights, for example, may lead to larger deviations. We here primarily target a
wave-generating mechanism for cortical networks. Since in other brain regions in-
volved neuron types, connectivity structures and input characteristics are different,
other mechanisms for pattern formation not covered in this work need to be taken
into account (Muller and Destexhe, 2012).

The working-point dependence of the neural-field models derived here offers a
new interpretation of propagating activity measured in vivo (Takahashi et al., 2015;
Denker et al., 2018). Even if the anatomical connectivity remains unchanged dur-
ing a period of observation, the stability of the neural system can be temporarily
altered due to changes in activity. The transfer function of a LIF neuron depends
on the mean and the variance of its input, and we have shown that stability is
related to its parametrization. In particular, local changes of activity, for example
due to a spatially confined external input, can affect stability and hence influence
whether a signal remains rather local or travels across the cortical surface. That
means, we would relate the tendency of a neural network to exhibit spatiotempo-
ral patterns not only to its connectivity, but also to its activity state that can change
over time.
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6.1 introduction

Cortical activity on the mesoscopic scale (mesoscale), below a cortical surface area
on the order of several square millimeters to centimeters (Muller et al., 2018),
can be recorded extracellularly with chronic or acute implants of multi-electrode
arrays (Maynard et al., 1997; Buzsáki et al., 2012; Einevoll et al., 2013a). The
low-frequency part (. 100 Hz) of the measured extracellular potential, the local
field potential (LFP), is a population signal with contributions from up to millions
of local and remote neurons (Kajikawa and Schroeder, 2011; Lindén et al., 2011;
Łęski et al., 2013). Spiking activity of individual neurons can be obtained from
the high-frequency part (& 100 Hz) of the signal through spike sorting (Quiroga,
2007). The number of reliably identified single neurons is on the order of 100 neu-
rons for chronically implanted Utah arrays (10× 10 electrodes on 4× 4 mm2, Black-
rock microsystems1) as in Riehle et al. (2013). The recordings expose LFP activity
appearing to propagate across the cortex associated with distance dependency of
statistical measures like correlations and coherences (Destexhe et al., 1999; Smith
and Kohn, 2008; Wu et al., 2008; Muller and Destexhe, 2012; Sato et al., 2012;
Dubey and Ray, 2016; Denker et al., 2018; Muller et al., 2018). The observation
of coherent LFPs across space contrasts with the often reported low pairwise cor-
relation in cortical spike trains obtained in asynchronous brain states (for example
Ecker et al., 2010; Renart et al., 2010).

With the assumption of a neuron density of 105 neurons/mm2 across the cortical
surface (Herculano-Houzel, 2009), the number of neurons covered by a Utah array
is more than a million. Every neuron receives up to 104 synapses from neighboring
and distant neurons (Abeles, 1991). However, the local circuitry is highly specific
with respect to cortical layers and neuron types (Douglas et al., 1989; Thomson
et al., 2002; Binzegger et al., 2004). The majority of local cortical connections are
established within a distance of . 500 µm from the sending/receiving neuron (Vo-
ges et al., 2010), with probabilities that decay with distance according to a Gaus-
sian or exponentially shaped profile (Hellwig, 2000; Boucsein et al., 2011; Packer
and Yuste, 2011; Perin et al., 2011). Local connections are typically made by un-
myelinated axons. Therefore, typical conduction delays between pre- and postsy-
naptic neurons are governed by propagation speeds estimated around 0.3 mm/ms
(Hirsch and Gilbert, 1991; Murakoshi et al., 1993; Kang et al., 1994).

To date, the relationship between cortical connectivity structure and experimen-
tally recorded activity of spikes and LFPs on the mesoscale remains poorly under-
stood. Network models that encompass the relevant anatomical and physiological
detail, spatial scales, and corresponding measurements can aid the interpretation
of experimental observations and their underlying mechanisms. We here argue for
full-scale models, in terms of realistic numbers of neurons and synapses: Down-
scaled or diluted network models may not reproduce first- and second-order statis-
tics (rates and correlations, respectively) of full-scale networks (van Albada et al.,
2015). Also, Hagen et al. (2016a) demonstrate that biophysical forward-model
predictions of LFP signals (and by extension electroencephalographic (EEG) and
magnetoencephalographic (MEG) signals) must include the full density of cells
and connections to account for network correlations. One such full-density model,

1 http://blackrockmicro.com

http://blackrockmicro.com
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the microcircuit model by Potjans and Diesmann (2014), represents a 1 mm2 cor-
tical patch of early sensory cortex with approximately 80, 000 leaky integrate-and-
fire neurons and about 0.3 billion synapses set up using neuron-type- and layer-
specific connection probabilities derived from anatomical and electrophysiological
data. This model produces biologically plausible firing rates across four cortical
layers with one excitatory and inhibitory population per layer, is simple enough
to allow for rigorous mathematical analysis, is publicly available, and has by now
been used also in other studies (Wagatsuma et al., 2011; Bos et al., 2016; Cain et al.,
2016; Hagen et al., 2016a; Hahne et al., 2017; Senk et al., 2017b; Schuecker et al.,
2017; Schwalger et al., 2017; Schmidt et al., 2018; van Albada et al., 2018).

Here, we hypothesize that a version of this microcircuit model and correspond-
ing LFP measurements upscaled laterally to an area of at least 4 × 4 mm2 (sim-
ilar to the Utah multi-electrode array), while accounting for distance-dependent
connection probabilities, should not only preserve the main features of activity
in the original model, but also explain features emerging on the mesoscale such
as spatial propagation of evoked neuronal activity (Bringuier et al., 1999; Swad-
low et al., 2002; Einevoll et al., 2007; Muller et al., 2014; Klein et al., 2016), and
strong distance-dependent correlations and coherences in the measured LFP (Des-
texhe et al., 1999; Berens et al., 2008; Katzner et al., 2009; Nauhaus et al., 2009;
Kajikawa and Schroeder, 2011; Jia et al., 2011; Srinath and Ray, 2014; Dubey
and Ray, 2016) even for typically weak pairwise spike-train correlations in cortex
(see, for example, Ecker et al., 2010; Renart et al., 2010). Furthermore, the up-
scaled model should serve as a test platform for parameters that are to date poorly
constrained by available experimental data, and expose mechanisms underlying
spatiotemporal pattern formation. Indeed, we find that the overall behavior of
the original microcircuit is preserved when upscaled, and that the resulting model
reconciles the observation of weak pairwise spike-train correlations in cortex with
spatially correlated and coherent LFPs.

6.2 methods

6.2.1 Point-neuron networks

This section provides a compact description of the different network models con-
sidered in this study. The full network descriptions are given in Tables 6.1 to
6.3. Each network model represents a part of early sensory cortex with realistic
densities of neurons and synapses. We first consider the original network model
proposed by Potjans and Diesmann (2014) which describes a microcircuit under
1 mm2 cortical surface, henceforth referred to as ‘reference model’. We then con-
sider networks upscaled to greater surface areas, referred to as ‘upscaled models’.
The eight neuron populations within each network are organized into four cor-
tical layers, that is, layer 2/3 (L2/3), layer 4 (L4), layer 5 (L5) and layer 6 (L6),
respectively. Each layer contains an excitatory (E) and an inhibitory (I) popu-
lation of leaky integrate-and-fire (LIF) neurons, whose sub-threshold membrane
dynamics are governed by Equation 6.13. The probabilities for two neurons to
be connected are layer- and neuron-type-specific and derived from a number of
anatomical and electrophysiological studies (Potjans and Diesmann, 2014). Post-
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synaptic currents have static, normally distributed amplitudes at onset that decay
exponentially (Equations 6.14 and 6.15). All neurons receive stationary external in-
put in the form of Poisson spike trains with fixed rate parameters. In addition, one
population of thalamocortical (TC) neurons targeting E and I neurons in both L4
and L6 can provide transient or stationary external input, for example to emulate
stimuli of the sensory pathway.

6.2.1.1 Network model descriptions

We here describe the main differences between the original network model and
upscaled models derived from it.

Reference model: Potjans and Diesmann (2014) parameterize the original micro-
circuit model to cover a cortical column under a surface area of Ar = 1 mm2. The
superscript r denotes ‘reference model’ here and throughout this chapter. The
resulting network connects almost 80, 000 neurons with approximately 0.3 billion
synapses. The calculation of connection probabilities in the model assumes a Gaus-
sian distance dependency of the form (see Potjans and Diesmann, 2014 for details)

cr (r) = c0e−r2/2σ2
0 . (6.1)

Here, r denotes the lateral distance between the two neurons. This distance de-
pendency is introduced to reconcile connectivity measurements obtained using
anatomical connectivity data (retrograde/anterograde staining, Binzegger et al.,
2004) and electrophysiological data (in vitro, Thomson et al., 2002). The computed
mean values averaged over all populations for zero-distance connection probabil-
ity and standard deviation are c0 = 0.14 and σ0 = 0.30 mm, respectively (Potjans
and Diesmann, 2014, Equations 4–8, Figure 3). This spatial decay constant is large
compared to the extent of a typical cortical column, which justifies their choice of
a local network connectivity without distance dependency.

A neuron j in a source population X of size Nr
X connects at random to a neuron

i in a target population Y of size Nr
Y with mean connection probability (Potjans

and Diesmann, 2014, Equation 1)

Cr
YX = 1−

(
1− 1

Nr
X Nr

Y

)Sr
YX

, (6.2)

where Sr
YX denotes the total number of synapses between these populations. The

connection routine draws connections randomly between pairs of neurons i and
j until the total number of synapses Sr

YX is reached. Multiple connections (mul-
tapses) between neuron pairs are allowed. The connection probability Cr

YX is here
defined as the probability that a pair of neurons is connected via one or more
synapses. Connection delays are normally distributed according to Equation 6.17

with different parameters for excitatory and inhibitory sources. The standard de-
viation of delays is 50% of the mean delay, and the excitatory mean delay is twice
as long as the inhibitory one.

Upscaled models: We next consider cortical network models based on the refer-
ence network upscaled to cover an area of Au = L2. With square layers and a
chosen side length L = 4 mm this area is similar to the area covered by the Utah
array (10× 10 electrodes, Blackrock Microsystems). The superscript u denotes ‘up-
scaled models’ here and throughout this chapter. In the upscaled models, neuron
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positions are drawn randomly within a square domain of side length L with the
origin (0, 0) at the center. We position neurons in the TC layer also within the area
Au, which facilitates the connectivity management between TC neurons and corti-
cal neurons in the model. An analogy to the early visual pathway would be that the
distance L in both thalamus and cortex corresponds to the same extent of the visual
field. A source neuron j ∈ X at location

(
xj, yj

)
connects to a target neuron i ∈ Y

at location (xi, yi) with a probability dependent on their distance rij given in Equa-
tion 6.11. This expression for distance accounts for periodic boundary conditions
(torus connectivity). The distance-dependent connection probability is shaped as
a two-dimensional (2D) Gaussian and cut off at a maximal radial distance R as
defined in Equation 6.12. The zero-distance connection probability cYX between
populations X and Y is derived in Section 6.2.1.2. The corresponding standard de-
viation σX defines the spatial width of the profile and depends only on the source
population X. Connection delays of the upscaled models are calculated using a
linear distance dependency given by Equation 6.18 with a constant delay offset d0

and a conduction speed v, plus a random offset drawn from a normal distribution
with zero mean and standard deviation σu

d capped at values ± (d0 − dt) in order to
prevent delays smaller than the simulation time step dt. These values are the same
for all cortical populations. For the external layer, TC neurons within a circle of
adjustable radius RTC

pulse surrounding the center emit spikes in a synchronous and
regular fashion (thalamic pulses) with time intervals ∆tTC.

These network model implementations rely on the neuronal network simulator
NEST2 (Gewaltig and Diesmann, 2007) and are set up such that the same code is
used for both the reference and upscaled models, but with different parameters.

6.2.1.2 Upscaling procedure

We here describe the procedure used to derive parameters for the upscaled model(s)
from the original reference network model description, in terms of neuron num-
bers, synapse numbers, distance-dependent connection probabilities, in-degrees of
external input, and distance-dependent delays from available experimental data.

Neuron numbers: The upscaled networks preserve the neuron densities per square
millimeter of the reference model. Assuming a homogeneous neuron density
across space, the size of a population X in the upscaled networks is

Nu
X = Nr

X
Au

Ar . (6.3)

Synapse numbers: With the aim to derive zero-distance connection probabilities
cYX for a Gaussian connectivity profile (Equation 6.12), we first compute average
connection probabilities Cu

YX in the upscaled models similar to Cr
YX for the ref-

erence model (as in Equation 6.2, but with corresponding neuron and synapse
numbers). We define this connection probability as

Cu
YX = Cui

YX · (1− δCYX) . (6.4)

The superscript ui denotes upscaled, intermediate connection probabilities. The
term δCYX is introduced to allow for selective modifications of the connection prob-
abilities in the final upscaled network (for example to modify firing rate spectra,

2 http://www.nest-simulator.org

http://www.nest-simulator.org
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see below). Thus, connections are unchanged for δCYX = 0, meaning Cu
YX = Cui

YX,
but a small positive or negative value results in an increase or decrease of a specific
connection probability between populations X and Y, respectively. The connection
probability Cui

YX depends linearly on the corresponding population-specific con-
nection probability of the reference model, Cr

YX, and the ratio of mean connection
probabilities from the upscaled and reference models (Schmidt et al., 2018, Equa-
tion 6)

Cui
YX = Cr

YX
Cu

Cr . (6.5)

Like Schmidt et al. (2018), we choose to use the average connection probability
of the reference model Cr

= 0.066 as computed in (Potjans and Diesmann, 2014,
Equation 9). To compute the average connection probability Cu

of the upscaled
models, we integrate the Gaussian profile given in Equation 6.1 over all possible
positions of a source neuron (x1, y1) and a target neuron (x2, y2), located on a
square domain of side length L. Accounting for the maximal radial distance of
connections, set to R = L/2, and the periodic boundary conditions used for the
upscaled model, we numerically solve

Cu
=

1
L4

∫ L/2

−L/2

∫ L/2

−L/2

∫ x1+L/2

x1−L/2

∫ y1+L/2

y1−L/2
cr (r21)dy2dx2dy1dx1 (6.6)

where r21 =
√
(x2 − x1)

2 + (y2 − y1)
2 with cr as defined in Equation 6.1.

The total number of synapses Su
YX follows from Equation 6.2, using connection

probabilities and neuron numbers from the upscaled models. This in turn yields
the average number of incoming connections to the target neurons, the synaptic
in-degree, as Ku

YX = Su
YX/Nu

Y . Connections in the upscaled model are drawn
at random according to the spatial profile (Equation 6.12) and we fix only the
zero-distance connection probability cYX and the spatial width σX, such that the
upscaled in-degree Ku

YX is achieved. Under the assumption of a homogeneous dis-
tribution of neurons and connections inside a disc with radius R around a target
neuron, the local connection probability is then cYX,R = Ku

YX/Nu
X,R, where Nu

X,R de-
notes the number of potential source neurons. We eliminate Nu

X,R from the expres-
sion for cYX,R by relating neuron numbers to surface areas: Nu

X,R = Nu
X · AR/Au

with AR = πR2 and Au = L2. To achieve the same in-degree for the uniform
connection probability c (r) = cYX,RΘ (R− r) and the distance-dependent connec-
tion probability (Equation 6.12), the following volume integral in polar coordinates
must be equal for both choices of c (r):

∫ 2π
0

∫ ∞
0

∫ c(r)
0 r dzdrdϕ. Due to isotropy, it

is enough to equate
∫ ∞

0 r c (r) dr for both connection probabilities to derive the
zero-distance connection probability of the distance-dependent profile,

cYX =
Ku

YX L2

2πσ2
X Nu

X

[
1− exp

(
− R2

2σ2
X

)] . (6.7)

The connection routine used for the upscaled models does not fix the total num-
ber of synapses, unlike the routine used for the reference model. Each pair of
neurons is considered only once in contrast to the reference model which samples
the neurons with replacement. If cYX > 1, the routine is executed Nc times with
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zero-distance connection probabilities cYX/Nc where Nc = dcYXe. In this case, a
pair of neurons can be connected by up to Nc synapses.

Mean input: To preserve the mean input to each neuron of the reference network
in the upscaled network, we adjust the in-degrees of the external stationary Poisson
input to compensate for differences in internal in-degrees between the reference
and the upscaled model that result from the above calculation of recurrent synaptic
in-degrees. If the mean connection weight gYX · J for internal connections, the
weight for external input J, the population firing rates νX, and the external Poisson
rate νext are the same for both models, the external in-degrees Ku

Y,ext per population
Y of the upscaled model follow from the external in-degrees of the reference model
Kr

Y,ext and the difference in internal in-degrees:

∑
X

Ku
YXgYXνX + Ku

Y,extνext =∑
X

Kr
YXgYXνX + Kr

Y,extνext

Ku
Y,ext =Kr

Y,ext + ∑
X

gYXνX

νext
(Kr

YX − Ku
YX) .

(6.8)

This modification of external in-degrees in the upscaled network only preserves the
mean of the spiking input (which is proportional to both in-degrees and weights),
but not its variance (which is proportional to in-degrees and to weights squared);
see, for example, Brunel and Hakim (1999); van Albada et al. (2015) for details.

Delays: To compare the mean delays of the reference model (Equation 6.17) and
mean delays resulting from linear distance dependency in the upscaled model
(Equation 6.18), we compute an effective delay for the upscaled model. The ef-
fective delay is computed as the average delay of the distance-dependent version
evaluated on a disc of 1 mm2 (with radius Q = 1/

√
π mm), thus equalling the ex-

tent of the reference model. Accounting for all distances between random points
on the disc, the effective delay in polar coordinates for a disc of radius Q is

d̄Q (σX) =
1

π2Q4

∫ Q

0

∫ 2π

0

∫ Q

0

∫ 2π

0

(
d0 +

r21

v

) 1
cnorm

e
− r2

21
2σ2

X r1r2 dϕ1dr1dϕ2dr2 (6.9)

with r21 = r2
1 + r2

2 − 2r1r2cos (ϕ1 − ϕ2). We here account for the Gaussian distance
dependency of the spatial profile (Equation 6.12) with spatial width σX but nor-
malize the profile to unity for the integral over the disc by the factor cnorm, and
ignore the Heaviside function because we only consider Q < R. The expression
simplifies (Sheng, 1985, Theorem 2.4) to

d̄Q (σX)

=

∫ 2Q
0

[
d0 +

r
v

]
exp

(
− r2

2σ2
X

)
r
[
4 arctan

(√
2Q−r
2Q+r

)
− sin

(
4 arctan

(√
2Q−r
2Q+r

))]
dr∫ 2Q

0 exp
(
− r2

2σ2
X

)
r
[
4 arctan

(√
2Q−r
2Q+r

)
− sin

(
4 arctan

(√
2Q−r
2Q+r

))]
dr

,

(6.10)

which we evaluate numerically. Hence, the delay offset d0 and conduction speed
v can be set based on available experimental data, and the mean delays in the up-
scaled network can be compared with the corresponding excitatory and inhibitory
mean delays of the reference model.
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A: Model summary
Structure Multi-layer excitatory-inhibitory (E-I) network
Populations 8 cortical in 4 layers (L2/3, L4, L5, L6) and 1 thalamic (TC)
Input Cortex: Independent fixed-rate Poisson spike trains to all neurons

(population-specific in-degree)
Measurements Spikes, LFP, CSD, MUA
Neuron model Cortex: leaky integrate-and-fire (LIF); Thalamus: point process
Synapse model Exponentially shaped postsynaptic currents with normally dis-

tributed static weights
Reference model

Topology None (no spatial information)
Delay model Normally distributed delays
Connectivity Random, independent, population-specific, fixed number of

synapses
Upscaled models

Topology Random neuron positions on square domain of size L × L; peri-
odic boundary conditions

Delay model Distributed distance-dependent delays
Connectivity Random, distance-dependent connection probability, population-

specific, number of synapses not fixed in advance
B: Network models

Connectivity

Connection probabilities CYX from population X to population Y
with
{X, Y} ∈ {L2/3, L4, L5, L6} × {E, I} ∪ TC, CYX = 0 for Y = TC

Reference model
Fixed number of synapses SYX between populations X and Y (see
Equation 6.2),
binomially distributed in-/out-degrees

Upscaled models

• Presynaptic neuron j ∈ X at location
(
xj, yj

)
and postsynap-

tic neuron i ∈ Y at (xi, yi)

• Neuron inter-distance (periodic boundary conditions):

rij =
√

∆x2
ij + ∆y2

ij (6.11)

with ∆xij =
∣∣xi − xj

∣∣ if
∣∣xi − xj

∣∣ ≤ L/2, otherwise ∆xij =

L−
∣∣xi − xj

∣∣
(same for ∆yij)

• Gaussian-shaped connection probability with maximal dis-
tance R, spatial width σX and zero-distance connection prob-
ability cYX (see Equation 6.7):

cu (rij
)
= cYX e−r2/2σ2

X Θ
(

R− rij
)

(6.12)

Heaviside function Θ (t) = 1 for t ≥ 0, and 0 otherwise.

Table 6.1: Description of reference and upscaled network models following the guide-
lines of Nordlie et al. (2009a).
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C: Neuron models
Cortex Leaky integrate-and-fire neuron (LIF)

• Dynamics of membrane potential Vi (t) for neuron i:

– Spike emission at times ti
s with Vi

(
ti
s
)
≥ Vθ

– Subthreshold dynamics:

τmV̇i = −Vi + Rm Ii (t) if ∀s : t /∈
(

ti
s, ti

s + τref

]
(6.13)

with τm = RmCm

– Reset + refractoriness: Vi (t) = Vreset if ∀s : t ∈(
ti
s, ti

s + τref
]

• Exact integration with temporal resolution dt (Rotter and
Diesmann, 1999)

• Random, uniform distribution of membrane potentials at
t = 0

Thalamus Spontaneous activity: no thalamic input (νTC = 0)
Upscaled models

Thalamus Thalamic pulses: coherent activation of all thalamic neurons in-
side a circle with radius Rpulse

TC centered around (0, 0) at fixed time
intervals ∆tTC

Table 6.2: Description of reference and upscaled network models (continuation of Ta-
ble 6.1).
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D: Synapse models
Postsynaptic
currents • Instantaneous onset, exponentially decaying postsynaptic

currents
• Input current of neuron i from presynaptic neuron j:

Ii (t) = ∑
j

Jij ∑
s

e−
(

t−tj
s−dij

)
/τs Θ

(
t− tj

s − dij

)
(6.14)

Weights

• Normal distribution with static weights, clipped to preserve
sign:

Jij ∼ N
{

µ = gYX · J, σ2 = σ2
J,YX
}

(6.15)

• Probability density of normal distribution:

f
(

x|µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 (6.16)

Reference model
Delays Normal distribution, left-clipped at dt:

dij = dr
ij ∼ N

{
µ = d̄X, σ2 =

(
σr

d,X
)2
}

(6.17)

Upscaled models
Delays Linear distance dependency with delay offset d0 and conduc-

tion speed v. Normally distributed additive noise, left-clipped
at − (d0 − dt) and right-clipped at d0 − dt:

dij = du
ij ∼ d0 +

rij

v
+N

{
µ = 0, σ2 = (σu

d )
2
}

(6.18)

Table 6.3: Description of reference and upscaled network models (continuation of Tables
6.1 and 6.2).
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A: Global simulation parameters
Symbol Value Description
Tsim 5, 000 ms Simulation duration
dt 0.1 ms Temporal resolution
Ttrans 500 ms Startup transient
B: Preprocessing

Symbol Value Description
∆t 0.5 ms Temporal bin size
∆l 0.1 mm Spatial bin size
C: Global network parameters

Connection parameters and external input
Symbol Value Description
J 87.81 pA Reference synaptic strength. All synapse weights are mea-

sured in units of J.
gYX Relative synaptic strengths:

1 X ∈ {L2/3E, L4E, L5E, L6E, TC}
−4 X ∈ {L2/3I, L4I, L5I, L6I}, except for:
2 (X, Y) = (L4E, L2/3E)

σJ,YX 0.1 · gYX · J Standard deviation of weight distribution
νext 8 s−1 Rate of external input with Poisson inter-spike interval

statistics
LIF neuron model

Symbol Value Description
Cm 250 pF Membrane capacitance
τm 10 ms Membrane time constant
EL −65 mV Resistive leak reversal potential
Vθ −50 mV Spike detection threshold
Vreset −65 mV Spike reset potential
τref 2 ms Absolute refractory period after spikes
τs 0.5 ms Postsynaptic current time constant

Table 6.4: Global simulation, preprocessing, and network parameters used for both ref-
erence and upscaled network models.
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Connection probability modifications
Symbol Value Description
δCYX 0 {X, Y} ∈ {L2/3E, L2/3I, L4E, L4I, L5E, L5I,

L6E, L6I, TC}, except for:
−0.15 (X, Y) = (L4I, L4E)
0.15 (X, Y) = (L4I, L4I)
−0.2 (X, Y) = (L5E, L5I)
0.05 (X, Y) = (L5I, L5E)
−0.1 (X, Y) = (L5I, L5I)

Connection Parameters
Symbol Value Description
d0 0.5 ms Delay offset
v 0.3 mm/ms Conduction speed
σu

d 0.1 ms Width of jitter distribution for delay
σE 0.35 mm Excitatory spatial width
σI 0.1 mm Inhibitory spatial width

Thalamus
Symbol Value Description
Rpulse

TC 0.3 mm TC neuron activation radius of disc around (0, 0), all TC
neurons in the disc are active during pulses

σTC 0.3 mm Spatial width of TC neuron connections
∆tTC 100 ms Interval between thalamic pulses

Table 6.7: Additional network parameters for the final upscaled model (continuation of
Table 6.6).

6.2.2 Forward modeling of extracellular potentials

In the present study we use a now well-established method to compute extracellu-
lar potentials from neuronal activity. The method relies on multicompartment neu-
ron modeling to compute transmembrane currents (see, for example, De Schutter
and Van Geit, 2009a) and volume conduction theory (Nunez and Srinivasan, 2006;
Einevoll et al., 2013b) which relates current sources and electric potentials in space.
Assuming a volume conductor model that is linear (frequency-independent), ho-
mogeneous (the same in all locations), isotropic (the same in all directions), and
ohmic (currents depend linearly on the electric field E), as represented by the
scalar electric conductivity σe, the electric potential in location r ≡ (x, y, z) of a
time-varying point current with magnitude I(t) in location r′ is given by

φ(r, t) =
I(t)

4πσe|r− r’| . (6.19)

The potential is assumed to be measured relative to an ideal reference at infinite
distance from the source. Consider a set of transmembrane currents of ncomp indi-
vidual cylindrical compartments indexed by n in an N−sized population of cells
indexed by j with time-varying magnitude Im

jn(t) embedded in a volume conductor
representing the surrounding neural tissue. The extracellular electric potential is
then calculated as the linear sum

φ(r, t) =
N

∑
j=1

ncomp

∑
n=1

Im
jn(t)

4πσe

∫ 1
|r− rjn|

drjn. (6.20)
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The integral term here enters as we utilize the line-source approximation (Holt and
Koch, 1999) which amounts to assuming a homogeneous transmembrane current
density per unit length and integrating Equation 6.19 along the center axis of each
cylindrical compartment. The thick soma compartments (with n = 1) with mag-
nitude Im,soma

j (t), however, are approximated as spherical current sources, which
amounts to combining Equations 6.19 and 6.20 as Lindén et al. (2014)

φ(r, t) =
N

∑
j=1

1
4πσe

(
Im,soma
j (t)

|r− rsoma
j | +

ncomp

∑
n=2

∫ Im
jn(t)

|r− rjn|
drjn

)

=
N

∑
j=1

1
4πσe

 Im,soma
j (t)

|r− rsoma
j | +

ncomp

∑
n=2

Im
jn(t)

∆sjn
ln

∣∣∣∣∣∣
√

h2
jn + r2

⊥jn − hjn√
l2
jn + r2

⊥jn − ljn

∣∣∣∣∣∣
 . (6.21)

Here, lengths of compartments n of cells j are denoted by ∆sjn, perpendicular dis-
tances from the electrode point contact to the axis of the line compartments by
r⊥jn, and longitudinal distances measured from the start of the compartment by
hjn. The distances ljn = ∆sjn + hjn are measured longitudinally from the end of the
compartment. As the above denominators can be arbitrarily small and cause sin-
gularities in the computed extracellular potential, we set the minimum separation
|r− rsoma

j | or r⊥jn equal to the radius of the corresponding compartment.
The above equations assume point electrode contacts, while real electrode con-

tacts have finite extents. We employ the disc-electrode approximation (Camuñas
Mesa and Quiroga, 2013; Lindén et al., 2014; Ness et al., 2015)

φdisc(u, t) =
1

AS

x

S

φ(u, t)d2r ≈ 1
m

m

∑
h=1

φ(uh, t) (6.22)

to approximate the averaged potential across the uninsulated contact surface (Robin-
son, 1968; Nelson et al., 2008; Nelson and Pouget, 2010; Ness et al., 2015). We
average the potential (Equation 6.21) in m = 50 randomized locations uh on each
circular and flat contact surface S with surface area AS and radius 5 µm. The sur-
face normal vector on the disc representing each contact is the unit vector along
the vertical z−axis. All forward-model calculations are performed with the simula-
tion tool LFPy3 (Lindén et al., 2014; Hagen et al., 2018), which uses the NEURON4

simulation software (Carnevale and Hines, 2006; Hines et al., 2009) to calculate
transmembrane currents.

6.2.2.1 Modifications to the hybrid scheme

Extracellular potentials from the point-neuron network models are here calculated
using a slightly modified version of the biophysics-based hybrid scheme intro-
duced by Hagen et al. (2016a). The scheme combines forward modeling of ex-
tracellular potentials, or more specifically its low-frequency part termed the local
field potential (LFP), from spatially extended multicompartment neuron models
described above instead of point neurons. Point neurons cannot generate an extra-
cellular potential, as the sum of all in- and outgoing currents vanishes in a point,

3 https://lfpy.readthedocs.io
4 https://neuron.yale.edu

https://lfpy.readthedocs.io
https://neuron.yale.edu
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in contrast to multicompartment neuron models, which can account for in- and
outgoing currents distributed in space. We refer the reader to the Methods of
Hagen et al. (2016a) for an in-depth technical description of the implementation
for randomly connected point-neuron network models. Here, we only summarize
its main steps and list the main changes which allow accounting for extracellular
potentials of networks with distance-dependent connectivity and periodic bound-
ary conditions. This hybrid modeling scheme for extracellular potentials combines
the simplicity and efficiency of point-neuron network models with multicompart-
ment neuron models for LFP generation accounting for the biophysical origin of
extracellular potentials. As in Hagen et al. (2016a), we assume that cortical net-
work dynamics are well captured by the point-neuron network, and implement
the hybrid scheme as follows:

• Spike trains of individual point neurons are mapped to synapse activation
times on corresponding postsynaptic multicompartment neurons while over-
all connection parameters are preserved, that is, the distribution of delays,
the mean postsynaptic currents, and the mean number of incoming connec-
tions onto individual cells (in-degree).

• Each multicompartment neuron has its equivalent in the point-neuron net-
work and receives input spikes from presynaptic point neurons with the
same distribution as in the point-neuron network (the mean in-degree of
neurons in the network and the cell-type and layer specificity of connections
is preserved, as in Hagen et al. (2016a).

• The multicompartment neurons are mutually unconnected, and synaptic ac-
tivations are translated into a distribution of transmembrane currents that
contributes to the total LFP.

• Activity in multicompartment neuron models (and the corresponding LFP)
does not interact with other multicompartment neurons or the activity in the
point-neuron network model, that is, there are no ephaptic interactions.

The first version of the hybrid scheme implemented in hybridLFPy5 is developed
for random networks such as the layered cortical microcircuit model of Potjans and
Diesmann (2014) that is our reference network. In contrast to this reference model
that contains no spatial information, the upscaled models described in Section 6.2.1
assign spatial coordinates to the neurons within each layer but ignore information
about cortical depth, and draw connections between neurons with probabilities
depending on lateral distance. Modifications to the hybrid scheme to account for
upscaled networks thus include:

• We use the lateral locations of the point neurons also for the multicompart-
ment neuron models, and assign population-dependent somatic depths as in
Hagen et al. (2016a).

• We record the spiking activity from all neurons in the point-neuron network
and associate each spike train to the corresponding neuron ID.

5 https://INM-6.github.com/hybridLFPy

https://INM-6.github.com/hybridLFPy
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• Presynaptic neuron IDs are drawn for each multicompartment neuron using
the same distance-dependent probability rule as is used when constructing
the point-neuron network (the connectivity is thus statistically reproduced).
The same distance-dependent delay rule is also implemented in the hybrid
scheme, and can be set separately for each pair of populations.

• We compute the extracellular potential at 100 contact sites arranged on a
square regular grid with each contact separated by 400 µm, similar to the
layout of the Blackrock ‘Utah’ multi-electrode array. The local field potential
is computed at the center of layer 2/3 (L2/3).

• LFPy, which implements the above forward model and is used internally in
the hybrid scheme, accounts for periodic boundary conditions.

6.2.2.2 Modifications to LFPy to account for periodic boundary conditions

As the upscaling procedure of the 1mm2 reference point-neuron network model
incorporates periodic boundary conditions, we modify the forward-model calcu-
lations in LFPy6 (Lindén et al., 2014; Hagen et al., 2018) to also account for such
boundaries. The basic premise for this modification is that transmembrane cur-
rents of a neuron positioned near the network layer boundary should result in a
fluctuation of the extracellular potential also due to sources across the boundary.
This is analogous to input from network connections across the boundaries re-
sulting from the distance-dependent connectivity rule. Thus, for a current source
located in location rjn = (xjn, yjn, zjn) the extracellular potential in location r is
computed as the sum

φ(r, t) =
M

∑
p=−M

M

∑
q=−M

φpq(r, t), (6.23)

where φpq(r, t) corresponds to the extracellular potential with horizontally shifted
source coordinates (xjn + pL, yjn + qL, zjn), L the network layer side length and
M = 2 a chosen integer setting the number of ‘mirror’ sources to either side.

6.2.3 Statistical analysis

As simulation output, we consider the spiking activity of the point-neuron net-
works (Section 6.2.1.1), and corresponding multi-unit activity (MUA), LFP (Sec-
tion 6.2.2) and current-source density (CSD) estimates. We use simulated output
data only after an initial time period of Ttrans to avoid startup transients, and com-
pute all measures for the whole time interval of the following simulation duration
Tsim. Parameters are given in Tables 6.4 to 6.7.

6.2.3.1 Temporal binning of spike trains

Spike times ts
i of the point-neuron networks simulated using temporal resolution

dt are assigned to bins with width ∆t. Temporally binned spike trains are used
to compute pairwise spike-train correlations and population-rate power spectral
densities, and to illustrate population-averaged rate histograms. The bin width ∆t

6 https://LFPy.readthedocs.io

https://LFPy.readthedocs.io
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is an integer multiple of the simulation resolution dt. The simulation duration Tsim

is an integer multiple of the bin width such that the number of bins is K = T/∆t.
Time bins have indices k ∈ {0, 1, ..., K − 1}, spanning time points in t ∈ [k∆t, (k +
1)∆t).

6.2.3.2 Spatiotemporal binning of spike trains

In order to compute the propagation speed of evoked activity in the network, we
perform a spatiotemporal binning operation of spiking activity in the network.
As introduced in Section 6.2.1.1, neuron positions (xi, yi) of the point-neuron net-
work are randomly drawn with {xi, yi} ∈[−L/2, L/2) . We subdivide the spatial
domain of each layer into square bins of side length ∆l such that the integer num-
bers of bins along the x− and y−axis are L{x,y} = L/∆l. The bin indices are
l{x,y} ∈ {0, 1, ..., L{x,y} − 1}, spanning {x, y} ∈ [l{x,y}∆l − L/2, (l{x,y} + 1)∆l − L/2).
Temporal bins of width ∆t are defined as above. We compute for each population
a spatially and temporally binned instantaneous spike-count rate in units of s−1 as
the number of spike events from all neurons inside the spatial bin divided by ∆t.

6.2.3.3 Current-source density (CSD) analysis

We estimate the current-source density (CSD) using the kernel CSD (kCSD) method
introduced by Potworowski et al. (2012). The CSD is an estimate of the volume
density of transmembrane currents nearby each LFP measurement site (in units of
current per volume). Based on the Poisson equation in electrostatics,

∇(σe∇)φ = −C, (6.24)

which relates the electric potential φ ≡ φ(r), conductivity σe ≡ σe(r) (which is
here assumed to be scalar as above), and current density C ≡ C(r), one can make
the assumption that the measured LFP at each electrode results from a sum of
M current sources distributed across space. Similar to Łęski et al. (2011) and
Potworowski et al. (2012), we consider the underlying CSD as a product

f̃ (x, y, z) = f̃ (x, y)H(z), (6.25)

where the term f̃ (x, y) describes a spatial profile in the horizontal xy−plane and
H(z) the step function along the vertical z−axis,

H(z) =

1 −h ≤ z ≤ h,

0 otherwise.
(6.26)

The variable h denotes the half-thickness of the current-generating region. Under
the assumption of a linear (frequency-independent) and homogeneous (equal in
all locations) conductivity, it follows that the electric potential in a location (x, y, 0)
is

f (x, y, 0) =
1

2πσe

∫
arcsinh

(
2h√

(x− x′)2 + (y− y′)2

)
f̃ (x, y)dy′dx′. (6.27)
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We here choose to define f̃ (x, y) in terms of 2D Gaussians of the form

b̃i(x, y) = exp
(
− (x− xi)

2 + (y− yi)
2

2σ2
R

)
, (6.28)

resulting in

bi(x, y) =
1

2πσe

∫
arcsinh

(
2h√

(x− x′)2 + (y− y′)2

)
b̃i(x, y)dy′dx′. (6.29)

Introducing

φ(x, y) = AC(x, y) =
M

∑
j=1

ajbj(x, y), (6.30)

where A : F̃ → F is a linear operator connecting electric potentials and the under-
lying sources, the CSD is estimated as

C∗(x, y) = K̃T(x, y) ·K−1 ·V, (6.31)

which minimizes the norm ||φ||2 = ∑M
i=1 |ai|2. Here V = [φ1, φ2, . . . , φN ]

T is the
observed LFP across channels,
K̃T(x, y) = [K̃1(x1, y1, x, y), K̃2(x2, y2, x, y), . . . , K̃N(xN , yN , x, y)] and

K =

[ K(x1, y1, x1, y1) · · · K(x1, y1, xN , yN)
...

. . .
...

K(xN , yN , x1, y1) · · · K(xN , yN , xN , yN)

]
, (6.32)

defined in terms of the kernel functions K(x, y, x′, y′) = ∑M
i=1 bi(x, y)bi(x′, y′) and

cross-kernel functions K̃(x, y, x′, y′) = ∑M
i=1 bi(x, y)b̃i(x′, y′). See Potworowski et al.

(2012) for details on the procedure. We use the implementation of the 2D kCSD
method available in Elephant7 (Electrophysiology Analysis Toolkit) with default
parameters σe = 0.3 S/m, M = 1000, h = 1 mm, σ2

R = 0.23 mm2, and return the
estimate at the space spanned by the LFP electrodes with resolution 0.4 mm.

6.2.3.4 Calculation of MUA signal

For each electrode contact point located in L2/3, we compute a signal represen-
tative of the so-called multi-unit activity (MUA) signal that can be obtained from
recordings of extracellular potentials by high-pass filtering the signal (& 500Hz),
followed by signal rectification, temporal smoothing, and downsampling (see, for
example, Einevoll et al., 2007). In a biophysical modeling study (Pettersen et al.,
2008) it is shown that this signal is approximately linearly related to the firing rate
of the local population of neurons in the vicinity of the measurement device. Neu-
ron coordinates (xi, yi) of the upscaled point-neuron network are randomly drawn
on the interval {xi, yi} ∈[−L/2, L/2). We subdivide the layers into square bins of
side length ∆lMUA = 0.4 mm resulting in 10 bins along the x− and y−axis, respec-
tively. Each electrode contact point is located at the center of the respective bin.
We also define temporal bins of width ∆t. We then compute for each population a
spatially and temporally binned spike-count rate in units of s−1 by summing the
number of spike events from all neurons inside the spatial bin and divide by the
width of the temporal bin ∆t. We then define the MUA signal as the sum of the
per-bin contributions of the populations L2/3E and L2/3I.

7 https://github.com/neuralensemble/elephant

https://github.com/neuralensemble/elephant
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6.2.3.5 Visual analysis

The spike raster diagrams or dot displays show information on spiking activity.
Each dot marks a spike event, and the dot position along the horizontal axis de-
notes the time of the event. Spike data of different neuron populations are stacked
and the number of neurons shown is proportional to the population size. Within
each population, neurons are sorted according to their lateral x−position and ar-
ranged accordingly on the vertical axis of the dot display.

We compute population-averaged rate histograms by deriving the per-neuron spike
rates in time bins ∆t and units of s−1, averaged over all neurons per population
within the center disc of 1 mm2. The corresponding histogram shows the rates
in a time interval of ±25 ms around the occurrence of a thalamic pulse. Such a
display is comparable to the Peri-Stimulus Time Histogram (PSTH, Perkel et al.,
1967a) that typically shows the spike count summed over different neurons or trials
versus binned time.

Image plots with color bars can have a linear or a logarithmic scaling as specified
in the respective captions. Since values of the distance-dependent cross-correlation
functions can be positive or negative, we plot these with linear scaling up to a
threshold, beyond which the scaling is logarithmic.

6.2.3.6 Statistical measures

Per-neuron spike rates ν are defined as the number of spikes per neuron during each
simulation divided by the simulation duration Tsim. Distributions of per-neuron
spike rates are computed from all spike trains of each population separately for
an interval from 0 to 30 s−1 using bins of width 1 s−1. Histograms are normalized
such that the cumulative sum over the histogram equals unity. We define the mean
rate per population ν as the arithmetic mean of all per-neuron spike rates of each
population.

The coefficient of local variation LV is a measure of spike-train irregularity com-
puted from a sequence of length n of consecutive inter-spike intervals Ti (Shi-
nomoto et al., 2003, Equation 2.2), defined as

LV =
1

n− 1

n−1

∑
i=1

3 (Ti − Ti+1)
2

Ti + Ti+1
. (6.33)

Like the conventional coefficient of variation CV (Shinomoto et al., 2003, Equation
2.1), a sequence of intervals generated by a stationary Poisson process results in
a value of unity, but the LV statistic is less affected by rate fluctuations compared
to the CV; thus, a non-stationary Poisson process should result in LV ≈ 1. We
compute the LV from the inter-spike intervals of the spike trains of all neurons
within each population. Distributions of LVs are computed using bins of width 0.1,
and histograms are normalized such that the cumulative sum over the histogram
equals unity. We define the mean LV per population LV as the arithmetic mean of
all LVs of each population.

The Pearson (product-moment) correlation coefficient CC is a measure of synchrony
that is defined for two signals u und v as
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CCuv =
cov(u, v)√

cov(u, u) cov(v, v)
, (6.34)

with the covariance denoted by cov. The calculation is implemented using the
function numpy.corrcoef. To compute distributions of correlation coefficients from
spike trains, we randomly select 1000 neurons per population and assign their
spike times to temporal bins with width ∆tCC = 5 ms (see Section 6.2.3.1). Then,
we compute pairwise CCs for the spike counts u = ni and v = nj of selected
neurons i from a population X and neurons j from a population Y (ignoring au-
tocorrelations). Within each population, meaning X = Y, the CC is denoted by
E− E for an excitatory population or I − I for an inhibitory population. Correla-
tions between neurons from the excitatory and the inhibitory population in each
layer are denoted by E− I. CC histograms have bins of width 0.003, are restricted
to a range with a minimum and maximum CC of ±0.08, respectively, and are nor-
malized such that the integral over the histogram equals unity. We also compute
correlation coefficients for assessing the distance dependency of spikes, LFP, CSD,
and MUA signals. In these cases, u and v are LFP, CSD, or MUA time series in
different spatial locations. For spikes, we sample 40 excitatory and 10 inhibitory
spike trains, bin them as above, compute their correlation coefficients (ignoring au-
tocorrelations), and plot them according to distance between the pairs of neurons.

Coherences are computed as

γuv( f ) =
|Suv( f )|√
Suu( f )Svv( f )

, (6.35)

where Suv( f ) is the cross-spectral density between u and v, and Suu( f ) and Svv( f )
are the power spectral densities (PSDs) of each signal. The cross-spectral density and
power spectra are computed using Welch’s average periodogram method (Welch,
1967) as implemented by matplotlib.mlab’s csd and psd functions, respectively,
with number of data points used in each block for the fast Fourier transform (FFT),
that is, segment length NFFT = 256, overlap between segments Noverlap = 192 and
signal sampling frequency Fs = 2 kHz. To compute the population-rate power spectral
density, we use the spike trains of all neurons per population (in Figure 6.3N and
H only within the center disc of 1 mm2), resampled into bins of size ∆t, and with
the arithmetic mean of the binned spike trains subtracted.

The effect of thalamic pulses is analyzed by means of distance-dependent cross-
correlation functions CCν (τ, r) evaluated for time lags τ. We discretize the network
of size L × L into an even number of square bins of side length ∆l. The spike
trains from all neurons within each spatial bin are resampled into time bins of
size ∆t and averaged across neurons to obtain spatially and temporally resolved
per-neuron spike rates. We select spatial bins on the diagonals of the network such
that each distance to the center with coordinates (0, 0) is represented by four bins.
For 14 distances from consecutive spatial bins along the diagonal, we compute
the temporal correlation function between the rates in the respective spatial bins
with a binary vector containing ones at spike times of the thalamic pulses and
zeros elsewhere, and then average over the four spatial bins at equal distance.
The sequences are normalized by subtracting their mean and dividing by their
standard deviation. Correlations between the sequences u and v with time steps k
and the length of the sequences K are then computed as
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CCu,v (τ) =
1
K

K

∑
k=1

uk+τvk (6.36)

for τ ∈ [−25, 25] ms in steps of ∆t. Finally, we subtract the baseline correlation
value, obtained by averaging over all negative time lags (before thalamic activation
at τ = 0), and get CCν (τ, r).

To estimate the propagation speed vprop from the cross-correlation functions, we
find for each distance the time lag corresponding to the largest CCν. Values of CCν

smaller than 10 % of the maximum of all CCν per population across distances and
time lags are excluded. We further exclude distances smaller than the thalamic
radius Rpulse

TC plus the spatial width of thalamic connections σTC because a large
part of neurons within this radius are simultaneously receiving spikes directly
from thalamus upon thalamic pulses. A linear fit for the distance as function of
time lag, rp (τ) = rp,0 + vp · τ, yields the speed vp and its fitting error, the standard
deviation σv,p. We compute the speed for different populations p and obtain the
propagation speed as weighted mean with its uncertainty:

vprop =
∑p vp/σ2

v,p

∑p 1/σ2
v,p

, σv,prop =

√
1

∑p 1/σ2
v,p

. (6.37)

6.2.3.7 Curve fitting

For certain measures, such as pairwise correlation coefficients computed for differ-
ent distances between LFP electrode locations, we fit exponential functions of the
form

y(r) = a · e−r/b + c, (6.38)

where β = (a, b, c) are constant parameters that minimize the sum
∑m

i=1 |yi(ri)− y(ri, β))|2 for the m data points yi computed for distance ri. The pa-
rameter fitting is implemented using the non-linear least squares function curve_fit
provided by the scipy.optimize module, with initial guess β = (0.1, 0.1, 0.1). Good-
ness of fit is quantified by the coefficient of determination, defined as

R2 = 1− ∑m
i=1 (yi(ri)− y(ri, β)) 2

∑m
i=1 (yi(ri)− y) 2 , (6.39)

where y is the mean of the observed data.

6.2.4 Software accessibility

We here summarize the details of software and hardware used to generate the
results presented throughout this study. Point-neuron network simulations are
implemented using the SLI interface of NEST v2.12.0 (Kunkel et al., 2017), and
Python v2.7.11. We use the same network implementation for reference and all
upscaled models and switch between them by adjusting parameters. Parameter
scans rely on the parameters module of NeuroTools8. LFP signals are computed

8 http://neuralensemble.org/NeuroTools

http://neuralensemble.org/NeuroTools
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using NEURON v7.5 and LFPy9 (branch ‘som_as_point_periodic’ at SHA:4cab667),
hybridLFPy10(branch ‘LFPy_dev’ at SHA:0f1bfb2). Analysis and plotting rely on
Python with numpy v1.10.4, SciPy v0.17.0, and matplotlib v2.1.2. All simulations
and analyses are conducted on the JURECA11 supercomputer based on Intel Xeon
E5-2680 v3 Haswell CPUs running the CentOS 7 Linux distribution. Simulations
are run using 1152 and 2304 physical cores for the network and LFP simulations,
respectively.

6.3 results

6.3.1 Upscaling of a cortical microcircuit model using lateral distance-dependent connec-
tivity

Starting with a model of the cortical microcircuit (the reference model, see Potjans
and Diesmann, 2014), we construct full-scale multi-layer neuronal network mod-
els with distance-dependent connectivity via the upscaling procedure described in
Section 6.2.1.2. The full network descriptions are provided in Section 6.2.1.1 and
in Tables 6.1 to 6.3. Here, we point out similarities and differences between the
reference model and an upscaled model with parameters set to the values given
in Tables 6.4 to 6.7. We refer to this parameterization as the ‘base parameters’.
Figure 6.1A illustrates the reference model next to the laterally upscaled version.
The reference model comprises almost 80, 000 neurons under 1 mm2 of cortical
surface area, while the upscaled model consists of approximately 1.2 million neu-
rons and covers an area of 4× 4 mm2, similar to the the area covered by the Utah
multi-electrode array. To illustrate their connectivities, the figure shows in both
network sketches incoming connections from population L5E to an example tar-
get neuron in population L4E. In the reference model without spatial structure,
source neurons are picked randomly from the source population. In the upscaled
model, source neurons are picked around the target neuron in layer 4 according to
distance-dependent probabilities with Gaussian profiles of outgoing connections
from layer 5 excitatory neurons. The width of the profile is 0.3 mm which is the
average value σ0 from the connectivity data underlying the reference model, see
Equation 6.1. A major fraction of source neurons falls into the center 1 mm2, justi-
fying the assumption of random connectivity in the reference model.

The population-specific connection probabilities in the reference model Cr
YX,

shown in Figure 6.1B, are equal to those in Potjans and Diesmann (2014, Table 5).
The upscaling procedure yields connection probabilities Cu

YX that are decreased by
approximately one order of magnitude in comparison to the reference model. The
derived in-degrees Ku

YX, however, are slightly larger than Kr
YX for all population

pairs. This is expected since the upscaling procedure adds connections at distances
not accounted for within the limited extent of the reference model.

For the final upscaled model, we increase the excitatory and decrease the in-
hibitory spatial widths of the connection probability profiles (Equation 6.12) com-
pared to the average value σ0 of the reference model to σE = 0.35 mm and σI =

9 http://lfpy.github.io/
10 https://github.com/INM-6/hybridLFPy
11 http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

http://lfpy.github.io/
https://github.com/INM-6/hybridLFPy
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
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Figure 6.1: Layered cortical point-neuron network models. A Illustrations of the network
geometry of the reference model (left, 1 mm2 cortical microcircuit, introduced
by Potjans and Diesmann, 2014) and an upscaled model (right, 4 × 4 mm2

cortical layers). Both models consist of four cortical layers (L2/3, L4, L5, L6)
with an excitatory (E) and an inhibitory (I) population each, and an external
thalamic population (TC). Colored dots represent individual neurons at their
(x, y)−coordinates; excitatory neurons in blue, inhibitory neurons in red, and
thalamic neurons in gray. The number of neurons shown per population is re-
duced by a factor 32 compared to the actual neuron number in each network to
not saturate the illustrated layers. Black lines illustrate convergent connections
from sources in L5E (black dots) to a target neuron in L4E (white dot). In-
degrees correspond to the actual average in-degrees in both models rounded
to the nearest integer: 33 in the reference model and 39 in the upscaled model.
Sources are drawn at random in the reference model, but with lateral distance
dependency (Gaussian-shaped profile) in the upscaled model. B Network con-
nectivity of the reference model (top panels) and the upscaled model (bottom
panels). Upscaled connection probabilities are computed as in Equation 6.4.
Left panels show color-coded connection probabilities Cr

YX and Cu
YX (different

color code) with the values given in Tables 6.5 and 6.6, and right panels show
derived in-degrees Kr

YX and Ku
YX (same color code). Color maps have linear

scaling with zero-values masked in gray.
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0.1 mm, respectively. Accumulating experimental data indicate Gaussian or expo-
nentially decaying connection probabilities with distance for both excitatory and
inhibitory local connections; see, for example, the review by Boucsein et al. (2011),
or Hellwig (2000) for pyramidal cells in layers 2 and 3 of rat visual cortex, Budd
and Kisvárday (2001) for clutch cells in layer 4 of cat visual cortex, Perin et al.
(2011) for pyramidal cells in layer 5 of rat somatosensory cortex, Levy and Reyes
(2012) for pyramidal cells and (non-)fast-spiking inhibitory cells in deep layer 2/3
and layer 4 of mouse auditory cortex, Schnepel et al. (2015) for excitatory input to
pyramidal neurons in layer 5B of rat somatosensory cortex, Jiang et al. (2015) for
pyramidal cells and different interneurons in layers 1, 2/3, and 5 of mouse visual
cortex, Packer and Yuste (2011) for parvalbumin-positive cells connected to pyra-
midal cells in multiple layers of mouse neocortex, and Reimann et al. (2017) for
morphologically classified cell types in an anatomical reconstruction and simula-
tion of a rat hindlimb somatosensory cortex column (Markram et al., 2015). Such
profiles result largely from the axo-dendritic overlap of the neuronal morphologies
(Amirikian, 2005; Brown and Hestrin, 2009; Hill et al., 2012). Broader excitation
than inhibition is in line with the experimental data since excitatory neurons, in
particular pyramidal types, develop axons with larger horizontal reach compared
to most inhibitory interneuron types (Budd and Kisvárday, 2001; Binzegger et al.,
2004; Buzás et al., 2006; Binzegger et al., 2007; Stepanyants et al., 2008, 2009;
Ohana et al., 2012). Certain interneuron types may, however, have elaborate axons
that span and form synapses across different layers within the cortical column (see,
for example, Markram et al., 2015, Figure 2). Others may also form longer-range
lateral connections (McDonald and Burkhalter, 1993).

The chosen value for the conduction speed v = 0.3 mm/ms is in the range of
speeds reported for action potential propagation along unmyelinated nerve fibers
in cortex. Conduction speeds can be measured, for example, in brain slices using
electrical stimulation combined with electrophysiological recordings:
0.2− 0.35 mm/ms in guinea pig hippocampus (Andersen et al., 1978),
1/ (3.5 ms/mm) ≈ 0.29 mm/ms at 34 − 35◦C in cat visual cortex (Hirsch and
Gilbert, 1991), 0.3 mm/ms at 35◦C in rat hippocampus (Berg-Johnsen and Lang-
moen, 1992), 0.15 − 0.55 mm/ms at 31 ± 0.5◦C in rat visual cortex (Murakoshi
et al., 1993), 0.28− 0.48 mm/ms (mean ± standard deviation, 0.37± 0.37 mm/ms)
at 35◦C in cat motor cortex (Kang et al., 1994), 0.28± 0.19 mm/ms at 34◦C in rat
visual cortex (Lohmann and Rörig, 1994), 0.06− 0.2 mm/ms at 34− 35◦C in rat
somatosensory cortex (Salin and Prince, 1996), 0.508 mm/ms at 32− 35◦C in rat
somatosensory cortex (Larkum et al., 2001, back-propagating action-potentials in
dendrites), and 0.34− 0.44 mm/ms at 34± 1◦C in rat somatosensory cortex. Some
of these values are likely underestimated because the separation of conduction
speed from both the synaptic delay and spike initiation time is difficult (Hirsch
and Gilbert, 1991). The bath temperature is provided if specified by the study be-
cause the conduction speed and the timing of synaptic processing depend strongly
on environmental temperature (Katz and Miledi, 1965; Berg-Johnsen and Lang-
moen, 1992; Sabatini and Regehr, 1996; Hardingham and Larkman, 1998). We
are here primarily interested in physiologically relevant body temperatures. Con-
nections in the upscaled models have a delay offset d0 = 0.5 ms comparable to the
experimental estimates 0.5− 1 ms (Murakoshi et al., 1993), 0.6− 0.8 ms (Hirsch
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Figure 6.2: Spiking activity of the reference, intermediate upscaled, and final upscaled
models. A Spike raster showing the spike times (horizontal) of all neurons
of the reference model network (microcircuit below 1 mm2 of cortical surface,
no spatial connectivity structure) vertically organized according to layer (axes
labeling and colors) and neuron type (lighter for inhibitory). B Spike raster of
a model network upscaled to 4× 4 mm2 with distance-dependent connectivity.
The intermediate connection probabilities Cui

YX resulting from the upscaling pro-
cedure are not modified (δCYX = 0). Spike times of all neurons located inside
a disc of 1 mm2 shown (neurons are always sorted vertically according to their
x−position). C Same as panel B, but with modified connection probabilities
Cu

YX according to δCYX given in Table 6.7. The parameters of the final upscaled
model are referred to as ‘base parameters’ and given in Tables 6.4, 6.6 and 6.7.

and Gilbert, 1991) and 0.6 ms (Kang et al., 1994). To account for this variability
in experimental data the delays have an additive normally distributed random
component, see Equation 6.18. From a theoretical perspective, a wide delay dis-
tribution expands the region of stability in the phase space of stationary network
activity (Brunel, 2000, Section 5.2).

Although delay offset and conduction speed have the same parameter values
for excitatory and inhibitory connections in the upscaled model, the effective de-
lays (Equation 6.10) within a given surface area differ due to the different space
constants of the connectivity. Computing the mean delay for connections within
a circle of 1 mm2 with the respective spatial widths according to Equation 6.10

results in a shorter mean delay for inhibitory connections. The effective excita-
tory and inhibitory delays up to single decimal precision are 1.6 ms and 0.9 ms,
respectively. Hence, a shorter inhibitory delay in a network model without dis-
tance dependence like the reference model is justified by a narrower inhibitory
connectivity of the corresponding model with spatial structure.

The spike raster in Figure 6.2A shows that the reference model produces asyn-
chronous irregular spiking with low firing rates (Softky and Koch, 1993; Brunel
and Hakim, 1999; Brunel, 2000) across all populations. Network oscillations ap-
pear as weakly pronounced vertical stripes. The firing rates are on average higher
for inhibitory populations than for excitatory populations within the same layer,
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Figure 6.3: Statistics of spiking activity of the reference, intermediate upscaled, and final
upscaled models. A–G Statistics of spiking activity of reference model shown
in Figure 6.2A. A Heterogeneity of spike rates ν for each population (horizon-
tal black lines: median, short white lines: mean, boxes in population-specific
colors: lower and upper quartiles of the data, whiskers extend to most extreme
observations within 1.5 × IQR beyond the IQR (interquartile range) without
outliers, see documentation of matplotlib.pyplot.boxplot). B Coefficients of lo-
cal variation LV, see Equation 6.33. C Pearson correlation coefficients CC, see
Equation 6.34. D Distributions of spike rates ν. E Distributions of coefficients
of local variation LV. F Distributions of Pearson correlation coefficients CC.
G Population-rate power spectral densities PSD. H–N Same as panels A–G
for spiking activity of intermediate model shown in Figure 6.2B. O–U Same as
panels A–G for spiking activity of upscaled model shown in Figure 6.2C.
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see Figure 6.3A, and the mean illustrated in each box-chart is larger than the
median. The latter corresponds to the long-tailed distributions of spike rates in
Figure 6.3D with most neurons firing at lower rates, while few neurons have
high (> 20 s−1) rates. This type of non-symmetric distribution of firing rates in
the model resembles approximately lognormally distributed firing rates observed
experimentally (reviewed in Buzsáki and Mizuseki, 2014). The mean values of
the coefficients of local variation (Figure 6.3B,E) are slightly below unity, indicat-
ing more regular spike trains than events produced by a Poisson point process
(LV = 1). The distributions are broad, that is, a fraction of neurons in each
population has spike-train statistics with LV > 1. The mean LV values are com-
parable to values observed in visual cortex across different species (Mochizuki
et al., 2016, Figure 5B). The box charts in Figure 6.3A,B are similar to (Potjans
and Diesmann, 2014, Figure 6) showing firing rates and the conventional coeffi-
cient of variation (Shinomoto et al., 2003, Equation 2.1). The Pearson correlation
coefficients (Figure 6.3C,F) are distributed and have a mean close to zero. Weak
pairwise spike-train correlations (with mean values < 0.1 using 50 ms windows)
are reported, for example, by Ecker et al. (2010) who record from nearby neurons
in primary visual cortex of awake monkey under different stimulation conditions,
and by Renart et al. (2010) in somatosensory and auditory cortex of anesthetized
rats. The latter study finds that the mean correlations are not distance-dependent,
but their standard deviations decay with distance (their Figure S11). The authors
also include a theoretical analysis of this phenomenon for networks of infinite
size and find that excitatory and inhibitory synaptic currents are anticorrelated,
thereby leading to a suppression of shared-input correlations, and, hence, weak
overall correlations in the asynchronous state. Tetzlaff et al. (2012) and Helias
et al. (2014) identify the mechanism underlying the suppression of shared-input
correlations for the realistic case of finite-sized networks, which differs from the
mechanism in the infinite-size limit. They show that the decorrelation is due to
dominant negative feedback, which leads to small correlations in both excitatory-
inhibitory and purely inhibitory networks. However, depending on factors such
as brain state and distance, stronger correlations are also detected in some cases
(Smith and Kohn, 2008; Kriener et al., 2009; Peyrache et al., 2012; Smith et al.,
2012; Doiron et al., 2016; Rosenbaum et al., 2017). The population-rate power
spectral densities in Figure 6.3G show that the power tends to be higher in the
activity of excitatory compared to inhibitory populations due to the overall larger
density of excitatory neurons, except for layer 6, where the inhibitory rate is very
high compared to the excitatory rate. Across layers the power is highest in layer 4,
explained by the comparatively high spike rates and high cell densities. The power
spectra reveal two dominant oscillation frequencies of the network in the low and
high gamma ranges (∼ 80 Hz and ∼ 320 Hz). Recent theoretical work by Bos et al.
(2016) provides insight into the main pathways between the recurrently connected
populations involved in generating these high-frequency oscillations. The low-
gamma peak is predominantly generated by a sub-circuit of layer 2/3 and layer 4
populations of excitatory and inhibitory neurons (pyramidal-interneuron gamma
or “PING” mechanism (Leung, 1982; Börgers and Kopell, 2003, 2005), while the
high-gamma peak results from interneuron-interneuron interactions (interneuron-
interneuron gamma or “ING” mechanism, see Whittington et al., 1995; Wang and
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Buzsáki, 1996; Chow et al., 1998; Whittington et al., 2000) within each layer. See
Buzsáki and Wang (2012) for a review on the various mechanisms underlying
gamma oscillations.

Before we discuss the final upscaled model in comparison to the reference model,
we first introduce an intermediate model in order to differentiate between effects
of pure upscaling and effects of modified connection probabilities on network ac-
tivity. This intermediate model is upscaled as described in Section 6.2.1.2 resulting
in connection probabilities Cui

YX derived directly from Cr
YX (from Equation 6.5). No

connection probabilities are otherwise perturbed (δCYX = 0 for all X and Y). All
model parameters are as specified in Tables 6.4 to 6.7 apart from the connection
probabilities and the in-degrees of external input, which are derived as specified in
Section 6.2.1.2. This intermediate model covers an area of 4× 4 mm2, but we here
choose to analyze only the spiking activity of neurons inside a disc of 1 mm2 at the
center to obtain a representative sample for comparison with the reference model
in terms of neuron numbers and spatial scale. The spike raster of the intermediate
model (Figure 6.2B) exhibits by visual inspection spatially inhomogeneous activity
and network synchrony that are more pronounced than observed in the reference
model. Compared to the reference model, spike-train correlations in this interme-
diate model are increased by approximately an order of magnitude (Figure 6.3J,M),
the coefficients of local variation are slightly increased (Figure 6.3I), and finally the
overall power in the rate spectra is increased across all frequencies (Figure 6.3N).
The spectra also exhibit reduced low- and high-gamma peaks, and the activity is
generally more broadband.

The high global synchrony observed in the spiking of the intermediate upscaled
model is most likely exaggerated. There is accumulating evidence that the typical
operating regime of sensory cortices is asynchronous and irregular in particular
when no particular stimulus is present. Measures of LFP signals, which are as-
sumed to mainly reflect synaptic activity, in for example visual cortex also do not
show pronounced peaks in their spectra in the absence of stimuli (see, for example,
Berens et al., 2008; Jia et al., 2011; Ray and Maunsell, 2011a; Jia et al., 2013a; van
Kerkoerle et al., 2014). We therefore modify the network to suppress the ampli-
tudes of the two dominant oscillations in the low- and high-gamma range, and
reduce their frequencies to better resemble the low and high-gamma peaks more
commonly reported in the literature. For the final upscaled model, we adapt con-
nection probabilities by applying the modifications δCYX given in Table 6.7. The
connection probabilities in the reference model are estimated across different areas
and species and are merely suggestive of typical cortical connectivity—we there-
fore consider small modifications to these values to be within the bounds of uncer-
tainties of these probabilities. Our choices on which connections to perturb rely on
the framework developed by Bos et al. (2016) who provide a ‘sensitivity measure’
that relates population rate spectra to the connectivity of the underlying neuron
network in a systematic manner. With the example of our reference model, they ex-
pose which individual connections are crucial for peak amplitudes and frequencies
of emerging oscillations, and demonstrate how modifications of these connections
affect the power spectra. By applying this sensitivity measure to the intermediate
upscaled network, we find that its rate spectra are primarily shaped by the same
specific connections as in the reference network. To stabilize the circuit, Bos et al.
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(2016) reduce the number of connections from L4I to L4E of the reference model
for their analysis. With the same aim, we here reduce the connection probability
from L4I to L4E and also increase that from L4I to L4I. Both of these modifications
reduce amplitude and frequency of the low-gamma peak (Bos et al., 2016, Figure
8A for L4I-L4I). In addition, we increase the number of connections slightly from
L5I to L5E and reduce the number of connections from L5I to L5I to further de-
crease the amplitude of this peak. A decrease of the number of connections from
L5E to L5I amplifies low-frequency oscillations (Bos et al., 2016, Figure 8B). The
resulting spike raster of the final upscaled model, similarly sampled in the center
1 mm2, exhibits temporally and spatially more homogeneous activity (Figure 6.2C)
compared to the reference and intermediate networks. The mean spike-train corre-
lations (Figure 6.3Q) are even lower than in the reference model. The power spec-
tra have overall reduced power and its peaks are attenuated (Figure 6.3U). Most
visible in populations L2/3E and L4E, a broad low-gamma peak spans roughly
40− 60 Hz. Across all interneuron populations, a broad high-gamma peak above
100 Hz is present. The per-population spike rates of the reference model are now
largely retained in the upscaled model (Figure 6.3O), as the upscaling procedure
preserves the mean input of the neurons (see Section 6.2.1.2). The coefficients of
local variation (Figure 6.3P) are similar to those of the reference model, although
the LV of L4I is increased, which we also observe in the intermediate model (Fig-
ure 6.3H).

6.3.2 Spiking activity of the point-neuron networks

We have so far established an upscaling procedure of the reference network from
an area of 1 mm2 to an area of 16 mm2, which includes small perturbations to con-
nection probabilities between key pre- and post-synaptic populations. The final
upscaled network exhibits a stable network state that (1) is asynchronous and ir-
regular across populations, (2) preserves the population rates, (3) preserves the
distribution of firing rates, (4) preserves the variability of spike trains, (5) has
very low average pairwise spike-train correlations, and (6) has rate spectra with-
out pronounced peaks. We next investigate the spontaneous behavior around this
network parameterization (‘base parameters’) by varying external input rates, in-
hibitory feedback weights, spatial connection widths, and the delay offset, which
are all hard to constrain with available experimental data. We also study evoked
thalamocortical activity in different network states in order to quantify the lateral
propagation speed of the evoked network response, motivated by reports of prop-
agating cortical activity.

6.3.2.1 Sensitivity to parameter perturbation during spontaneous activity

We here explore the state space of the upscaled network model by running param-
eter scans of both global network parameters (external input rate and inhibitory
weights) and parameters governing distance-dependent connectivity (width of in-
hibition and delay offset). Theoretical work exposes a crucial sensitivity to net-
work parameters studying the existence and stability of diverse dynamical states
(Brunel, 2000; Roxin et al., 2005; Senk et al., 2018d). However, experimental data
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from the literature are often sparse and disparate and the mapping of measured
quantities to specific model parameters is not straightforward. Therefore, an ex-
ploration of the parameter space is necessary in order to characterize the range
of possible model behaviors given the experimental constraints on the parameter
values and also to obtain an intuition of the model behavior.

We first choose to vary the rate of the external Poisson input νext and the relative
inhibitory weight g. As shown in a simpler, analytically tractable case (Brunel,
2000), spatially unstructured networks of randomly and sparsely connected exci-
tatory and inhibitory leaky integrate-and-fire neurons can transition between dis-
tinct activity states with respect to the regularity of individual neuron firing and
the synchrony of population activity upon changing these two parameters. Jumps
in LV (or the conventional coefficient of variation CV, see Shinomoto et al. 2003,
Equation 2.1) and CC during parameter scans of comparable two-population net-
works typically indicate transitions between states. It is, however, not a priori
clear whether or not this analytical insight obtained with a smaller random net-
work generalizes to spatially extended networks incorporating multiple layers and
realistic density of neurons and connections such as our upscaled network model.
Mehring et al. (2003, Figure 2), Voges and Perrinet (2010, Figure 4) and Voges and
Perrinet (2012, Figure 2) study the same parameter space with spatially organized
network models; however, only in single-layer and diluted networks.

While the mean population rates ν in a two-population network typically in-
crease when increasing νext or decreasing g (see Mehring et al. (2003, Figure 2D),
Voges and Perrinet (2010, Figure 4) and Voges and Perrinet (2012, Figure 2) for
examples), Figure 6.4A shows that a similar trend does not appear for all popula-
tions of our multi-layer upscaled model. Within the parameter range tested, the
mean rate of L4E is nearly unaffected upon varying g, and varying νext has little
effect on the rate of L5E. For L6E, the trend is even reversed. Different responses in
different populations is explained by the population-specific network connectivity
and competing inhibition and excitation between the different populations. Both
recurrent (excitatory and inhibitory) and external (only excitatory) in-degrees and
corresponding presynaptic rates result in population-specific means and variances
of synaptic inputs. Spike-train irregularity, here quantified by the mean coefficient
of local variation LV in Figure 6.4B, also shows different trends per population. For
all populations, the LV increases when increasing νext. Increasing g results in an
increased LV only in layers 4 to 6, while the effect on L2/3 does not show a clear
dependency on either parameter in the tested parameter range. The LV remains
below 1 across the whole parameter space for populations L4E and L6I, while the
highest values (above 1.3) are observed in L4I and L6E. Mean pairwise spike train
correlations CC in Figure 6.4C, increase for all populations by increasing νext and
decreasing g.
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Figure 6.4: Parameter sensitivity in the upscaled model. A–C Dependency on external
rate νext and relative weight of inhibition g (= gYX with any inhibitory presy-
naptic population X). A Mean per-neuron spike rates ν for each population
(color map with logarithmic scaling). The cross marker denotes the default
‘base parameters’ in this and subsequent panels. B Mean coefficients of local
variation LV for each population, see Equation 6.33 (color map with linear scal-
ing). C Mean Pearson correlation coefficients CC between pairs of spike trains
for each population, see Figure 6.3 (color map with linear scaling). D–F Same
as panels A–C, but for dependency on inhibitory spatial width σI and delay
offset d0. Additional markers refer to parameter combinations used in panels
G and H. G Spike rasters of selected parameter combinations (showing 3 %
of all neurons sampled from the full network of size 4× 4 mm2, neurons are
sorted as in Figure 6.2). The symbols in each raster plot legend mark the corre-
sponding locations in the parameter space spanned by d0 and σI (panels D–F).
H Population-rate power spectral densities (PSD) of selected parameter com-
binations. The markers correspond to the chosen parameter combinations in
panels D–F.

Next, we vary the spatial width σI of inhibitory connections and the delay off-
set d0, to assess the sensitivity of the upscaled network dynamics to variations in
their chosen values. Although inhibitory spatial widths in terms of lateral axonal
branching patterns are generally assumed to be shorter than excitatory widths
(Stepanyants et al., 2009), estimates for the local excitatory and inhibitory decay
of connection probabilities are broadly distributed and differ between brain areas,
pre- and post-synaptic neuron types, and species (Hellwig, 2000; Budd and Kisvár-
day, 2001; Boucsein et al., 2011; Kätzel et al., 2011b; Perin et al., 2011; Hill et al.,
2012; Levy and Reyes, 2012; Jiang et al., 2015; Schnepel et al., 2015; Reimann et al.,
2017). The reduction of multiple cell types and classes into only one excitatory and
one inhibitory neuron type per layer in the reference model (Potjans and Dies-
mann, 2014) implicitly collapses the diversity of neuron morphologies (Amirikian,
2005; Brown and Hestrin, 2009; Hill et al., 2012) which have different spatial con-
nectivity characteristics. Just as for the spatial widths of connections, experimental
evidence on distance-dependent delay parameters is also sparse. As reviewed in
Section 6.3.1, the estimates for the conduction speed in unmyelinated nerve fibers
as well as for delay offsets are also widely distributed. In addition, experimentally
obtained spiking statistics exhibit a high variability, even within the same brain
area (Mochizuki et al., 2016). While available experimental data on the typical
widths of connections of different types and corresponding conduction delays is
inherently uncertain, theoretical neural-field model studies frequently investigate
the strong influence of these parameters on the stability of the system (Ermentrout,
1998; Coombes, 2005; Roxin et al., 2005; Bressloff, 2012). In our upscaled model,
broader inhibition and larger delays increase the mean per-neuron spike rates and
the correlations in all populations, shown in Figure 6.4D and F. The effect of chang-
ing the parameters d0 and σI on LV in Figure 6.4E is again population-specific. The
highest LV values (above 1.6) are obtained for long delays (d0 > 1), and broader
inhibition than excitation in L2/3E; the LV remains low (> 0.7) in L5I and L6I
across the whole parameter space. Figure 6.4G shows spike rasters of four distinct
network states emerging from this parameter space. Short-range inhibition and
short delays yield a spatially and temporally homogeneous state (square marker).
Increasing the width of inhibition to an intermediate value results in fast global
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oscillations (diamond marker). For broader inhibition than excitation, we observe
localized activity spreading outwards (plus marker). Finally, we show show an in-
termediate state (circular marker). These results are in line with predictions from
neural-field studies, which indicate that long-range inhibition promotes localized
states such as spatially periodic patterns. By contrast, long-range excitation pro-
motes temporally periodic states that can also combine with spatial patterns; see
Ermentrout (1998, Chapter 8) and Senk et al. (2018d). For a network of spiking
neurons, Rosenbaum and Doiron (2014) show that a balanced state of excitation
and inhibition requires broader excitation than inhibition. They demonstrate that
the balanced state loses stability if excitation is too narrow compared to inhibition,
leading to the emergence of spatial activity patterns.

Finally, Figure 6.4H shows population rate spectra (PSD) varying with the de-
lay offset of the base parameters, d0 = 0.5 ms, and different values for widths
of inhibitory connections. While spatially inhomogeneous activity with localized
patterns (large σI) are manifested as comparatively flat spectra with high power
across all frequencies, reducing the spatial width also reduces the overall power,
while peaks at the dominant oscillation frequencies emerge. Decreasing σI not only
reduces amplitudes of the power spectra, the frequency of the high-gamma peak
is also gradually shifted to higher values. Both observations can be related to a re-
duction of the mean inhibitory delay averaged over all connections in the network
due to the shorter-range connectivity. The faster inhibitory feedback results in a
stronger decorrelation effect that reduces global oscillations (Tetzlaff et al., 2012;
Helias et al., 2014). The upward shift of the high-gamma frequency is explained
by a shorter time period for the ING mechanism (Bos et al., 2016).

6.3.2.2 Sensitivity to perturbed parameters during evoked activity

We have so far only considered networks receiving external inputs with stationary
rates. Cortical areas are, however, recurrently connected to other parts of cortex
and subcortical structures, and receive inputs with large rate fluctuations. We here
mimic a stimulation experiment, by activating all thalamic neurons inside a disc
of radius Rpulse

TC around (x, y) = (0, 0) once every time interval of ∆tTC (see Ta-
ble 6.7 for values). The activation could for example represent a visual stimulation
experiment where activity in lateral geniculate nucleus (LGN, or visual thalamus)
thalamocortical (TC) projection neurons is evoked by a brief flash stimulus to a
part of the visual field (Bringuier et al., 1999; Muller et al., 2014), air puffs or
mechanical whisker deflections to stimulate whisker barrel cortex (Swadlow et al.,
2002; Einevoll et al., 2007), or direct electric or optogenetic stimulation of the tha-
lamocortical pathway (Klein et al., 2016). In its population-specific responses to
thalamic pulses, the reference model of Potjans and Diesmann (2014, page 802)
exhibits a “handshake principle”, in which the receiving layer inhibits the send-
ing layer as if to signal that it has received the message, so that the sending layer
can stop transmitting. We test whether this effect and its strength are preserved
in the upscaled model. Furthermore, we derive the propagation speed of evoked
spiking activity spreading outward from the center of stimulation. Finally, we test
the robustness of the propagation speed to parameter perturbations by varying the
conduction speed and the delay offset.
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Figure 6.5: Activity evoked by thalamic pulses. A Spike raster (showing 3 % of all neu-
rons in 4× 4 mm2, neurons are sorted as in Figure 6.2). A single thalamic pulse
occurs at t = 100 ms. B Population-averaged rate histogram for neurons within
the center disc of 1 mm2 with bin size ∆t for a time interval around the thalamic
pulse shown in panel A. C Series of snapshots of spatiotemporally binned activ-
ity per population over the whole 4× 4 mm2 network. D Distance-dependent
cross-correlation functions between thalamic activation and spatially binned
spiking activity CCν (τ, r) where r is the distance to the center of the network
and τ is the time lag. Color maps have a symmetric logarithmic scaling (lin-
ear up to threshold of ±0.05 indicated by ticks in the color bar). Panels A–D
are obtained in a network with conduction speed v and delay offset d0 as indi-
cated in the legend of panel A. E–H Same as panels A–D but with parameters
as indicated in the legend of panel E. I Propagation speed vprop estimated for
parameter combinations of conduction speeds and delay offsets and averaged
across populations named above the panel; error bars denote standard devia-
tion σv,prop. The same markers correspond to the same parameter combinations
throughout this figure. Base parameters are marked with a cross.
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Panels A–D and E–H in Figure 6.5 show results for two different choices of con-
duction speed v and the delay offset d0. At times prior to a thalamic pulse at
t = 100 ms, the spiking activities in Figure 6.5A and E are comparable, and both
asynchronous and irregular, despite the different parameterization. However, the
effect of the pulse on the network activity is more pronounced in panel E than in
panel A according to visual inspection; the initial response lasts longer and the
subsequent activity vanishes for tens of milliseconds in different populations. In
Hao et al. (2016, Figure 3) a similar suppression period of tens of milliseconds
is observed following a single-pulse electrical micro-stimulation in monkey motor
cortex, often followed by a rebound of excitation. In panel E, the effective delay is
larger due to the choice of a larger d0 and a smaller v. In the population-averaged
rate histograms of activity within 1 mm2 in Figure 6.5B and F, corresponding to the
spike rasters in panels A and E, respectively, we highlight the transient network
responses by zooming into a smaller time window around the pulse. The strong
initial response visible in populations L4E and L6E is expected since the thalam-
ocortical input targets layers 4 and 6 directly (see Table 6.6). This evoked activity
affects the other network populations via recurrent network connections across
and within layers. The larger effective delay (panel H) here increases the response
latency of the populations, and increases the duration of the responses while their
maximum rates in some populations are reduced. The duration of the activation is
overall similar to evoked multi-unit activity (MUA) following whisker stimulation
as reported by Einevoll et al. (2007). The multiple peaks in the rate histograms
in panel D, most prominent in populations L4E, L5E, L5I and L6E, are due to re-
current excitation and inhibition within and across layers. The overall increased
delays expectedly break balance, that is, the high temporal correlation of excitatory
and inhibitory spiking activity (see, for example, Renart et al., 2010). These results
are comparable with Potjans and Diesmann (2014, Figure 10) and Hagen et al.
(2016a, Figure 7), and we therefore conclude that the upscaling procedure does not
fundamentally affect the response of the network to transient external input.

While the population-averaged rate histograms in Figure 6.5B and F expose the
temporal effect of the perturbation of network activity, we next focus on the corre-
sponding spatiotemporal responses. Figure 6.5C and G show series of snapshots
of spatiotemporally binned activity of each population in the full network of size
4× 4 mm2 (similar to Mehring et al., 2003; Yger et al., 2011, Figure 2). The tem-
poral bin size is ∆t as in the rate histograms, but we show snapshots only for
selected time points as indicated below the frames. The thalamic pulse is visi-
ble only at t = 100 ms in the center of the network. The cortical populations
respond with a ring-like outward spread of activity which can be described as a
traveling wave in contrast to a stationary bump (Muller et al., 2018). The wave
travels at a lower speed in the network with larger effective delay (compare se-
lected time points in Figure 6.5C and G). In order to derive the radial propagation
speed of activity evoked by thalamic pulses, we compute the distance-dependent
cross-correlation functions (see Section 6.2.3.6) shown in Figure 6.5D and H. The
maximum value of CCν (τ, r) shifts faster to larger time lags τ with increasing dis-
tances r in panel H compared to panel D, which indicates a lower propagation
speed. Figure 6.5I summarizes the propagation speed estimates vprop as a function
of v and d0. The estimated propagation speeds increase with increasing conduc-
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tion speed v and decreasing delay offset d0. Estimating the propagation speed in
this way from spatially resolved spike trains can help to infer underlying network
parameters from experimental data. It is to date difficult to observe wave-like ac-
tivity on the spiking level (Takahashi et al., 2015). However, model predictions for
spiking propagation speeds can be compared with population measures, keeping
in mind potential differences between spiking activity and population measures
such as the LFP. Both types of signals can reflect propagation along long-range
horizontal connections which also includes synaptic processing times, but they
are also affected by intrinsic dendritic filtering (Grinvald et al., 1994; Nauhaus
et al., 2009; Takahashi et al., 2015; Zanos et al., 2015). Muller et al. (2018) remark
that macroscopic waves traveling across the whole brain typically exhibit propaga-
tion speeds of 1− 10 mm/ms similar to axonal conduction speeds of myelinated
white matter fibers in cortex, while mesoscopic waves (as considered here) show
propagation speeds of 0.1 − 0.8 mm/ms similar to axonal conduction speeds of
unmyelinated long-range horizontal fibers within the superficial layers of cortex.
For example, LFP ‘waves’ in visual cortex travel with such speeds. Nauhaus et al.
(2009) study the propagation of spike-triggered LFPs both in spontaneous activity
and with visual stimulation and and derive speeds (mean ± standard deviation)
of 0.31± 0.23 mm/ms in cat and 0.24± 0.2 mm/ms in monkey (both anesthetized).
Ian Nauhaus and Carandini (2012) reanalyze the data from Nauhaus et al. (2009)
and further report a speed of 0.18 mm/ms in cat and 0.29 mm/ms in monkey for
the impulse response of ongoing activity; for data from awake monkey (Ray and
Maunsell, 2011b) they compute a speed of 0.13 mm/ms. Zanos et al. (2015) mea-
sure a speed of 0.31± 0.08 mm/ms triggered by saccades in monkey visual cortex.
Propagation speeds obtained via voltage-sensitive dye imaging in visual cortex are
comparable as well: an average speed of 0.28 mm/ms with a 75% confidence in-
terval of 0.19 to 0.55 mm/ms in cat (Benucci et al., 2007), 0.1 − 0.25 mm/ms in
monkey (Grinvald et al., 1994), and a range of 0.25− 1.35 mm/ms with median
± standard deviation of 0.57± 0.18 mm/ms in monkey (Muller et al., 2014). Es-
timates from monkey motor cortex are in the same range (Rubino et al., 2006;
Takahashi et al., 2015; Denker et al., 2018). For the biologically plausible ranges
of delay offsets and conduction speeds tested in the model, d0 ∈ [0.2, 0.8] ms and
v ∈ [0.3, 0.9] mm/ms, the resulting propagation speeds are mainly between 0.2
and 0.6 mm/ms. These derived propagation speeds are smaller than the corre-
sponding conduction speeds because propagation through the network includes
neuronal integration and the delay offsets. The values in the model cover the
range of experimentally measured propagation speeds.

6.3.3 LFP predictions

We here summarize our findings for the predicted LFP signal across cortical space,
with recording geometry similar to a 4× 4 mm2 Utah multi-electrode array. As in
Hagen et al. (2016a), the eight cortical network populations spanning layers 2/3, 4,
5 and 6 are expanded into 16 different cell types in order to account for differences
in layer specificity of synaptic connections among cell types in a single layer when
predicting the LFP. While we here refrain from discussing the detailed derivation of
these layer specificities (see Hagen et al., 2016a) from available anatomical data (i.e.,
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Figure 6.6: Cell types and morphologies of the multicompartment-neuron populations.
The 8 cortical populations Y of size NY in the 4× 4 mm2 network model are
represented by 16 subpopulations of cell type y with detailed morphologies
My (Binzegger et al., 2004; Izhikevich and Edelman, 2008). Neuron recon-
structions are obtained from cat visual cortex and cat somatosensory cortex
(source: NeuroMorpho.org by Kisvárday and Eysel (1992); Mainen and Se-
jnowski (1996); Contreras et al. (1997); Ascoli et al. (2007); Stepanyants et al.
(2008), see Hagen et al., 2016a, Table 7). Each morphology My is here shown in
relation to the layer boundaries (horizontal lines). Colors distinguish between
network populations as in Figure 6.2. The number of compartments ncomp, fre-
quencies of occurrence Fy, relative occurrence FyY and cell count Ny are given
for each cell type y ∈ Y.
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Figure 6.7: Illustration of multi-electrode array geometry for LFP, CSD, and MUA pre-
dictions. A Extracellular potentials are computed in 10× 10 electrode locations
denoted by circular markers at the depth corresponding to the center of layer
2/3. The electrode inter-contact distance is 400 µm. The number under each
circular marker denotes the channel number. B–D Example LFP, CSD, and
MUA from one arbitrarily chosen contact (here channel number 68). The CSD
is estimated from the LFP using an inverse method, and the MUA is calculated
as the sum of excitatory and inhibitory spike events from layer 2/3 neurons in
spatiotemporal bins of duration 0.5 ms and width 400 µm around each contact.

Binzegger et al., 2004), in Figure 6.6 we show the reconstructed morphology used
for each cell type y in population Y, with compartment counts and occurrences
summarized in the table contained within the figure. The cortical layer boundaries
and depths are also illustrated, and each morphology is positioned such that the
soma is at the center of the corresponding layer. Different cell types belonging
to the same population within a layer may have different geometries supporting
different layer specificities of synaptic connections. This is the case for example
for the p4 pyramidal cell type versus the ss4 spiny stellate cell types that both
belong to population L4E of the point-neuron network. Previous modeling studies
demonstrate the major effect of the geometry of the morphology on the measured
extracellular potential due to intrinsic dendritic filtering of synaptic input (e.g.,
Lindén et al., 2010; Lindén et al., 2011; Łęski et al., 2013).

The geometry of the recording locations corresponding to the 4× 4 mm2 Utah
multi-electrode array is illustrated in Figure 6.7A. The 100 contact locations de-
noted by circular markers are positioned on a 10 × 10 grid with 400 µm sepa-
ration between contact sites. LFPs are computed at the center of layer 2/3 (at
z = −334 µm). An example LFP signal segment from one chosen channel (channel
68) is shown in panel B, corresponding to the spontaneous activity in our laminar,
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upscaled point neuron network with ‘base parameters’ introduced above (in Fig-
ure 6.2C and corresponding text). The signal fluctuates with amplitudes similar
to experimentally observed spontaneous potentials (0.1− 1 mV, Maier et al., 2010;
Hagen et al., 2015; Reyes-Puerta et al., 2016), with occasional larger transients.
Further, we estimate from the LFP the underlying current source density (CSD)
across space using the so-called kernel CSD method in two dimensions (2DkCSD,
Potworowski et al., 2012). The CSD signal is expected to suppress correlations in
the LFP resulting from volume conduction, and is therefore less correlated across
space as it is taken to reflect the gross in– and outgoing transmembrane currents
in vicinity to the recording device (Nicholson and Freeman, 1975; Mitzdorf, 1985;
Pettersen et al., 2006, 2008; Potworowski et al., 2012). The LFP and corresponding
CSD in general reflect correlations in synaptic input nearby the measurement site
and therefore contain contributions from both local and remote neuronal activi-
ties. In contrast, the high-frequency (& 100 Hz) part of experimentally obtained
extracellular potentials contains information on spiking activity of local neurons.
Activity of high-amplitude single neurons may be separated from the background
based on classification of their extracellular action-potential waveforms (through
‘spike sorting’, Quiroga, 2007). Even if no units are clearly discernible in the high-
frequency part of the signal, a previous biophysical forward-modeling study using
biophysically detailed neuron models (Pettersen et al., 2008) shows that the enve-
lope of the rectified high-pass filtered (750 Hz cutoff frequency) signal correlates
with the spike rate in the local population of neurons. In this study, this rectified
signal is referred to as the multi-unit activity (MUA), which we approximate by
summing up all spiking activities of layer 2/3 neurons in 400× 400 µm2 spatial
bins around each contact. The presently used LFP predictions rely on passive neu-
ron models which do not generate spikes; spiking only occurs in the network. The
contribution from excitatory and inhibitory spikes are weighted identically. One
example MUA trace obtained at the same location as the LFP and CSD is shown
in Figure 6.7D. A notable observation is that the MUA signal and its relations to
the corresponding LFP and CSD signals are non-trivial.

6.3.3.1 Distance-dependent correlations of spike trains and LFPs

We next investigate the temporal correlation and coherence with distance for these
measures of activity. The observation of weak pairwise spike-train correlations in
cortical neuronal networks (for example, Ecker et al., 2010) is seemingly at odds
with the typical observation of highly correlated LFPs across cortical space (for
example, Nauhaus et al., 2009). We have so far established that the mean pair-
wise spike-train correlations within populations in our upscaled layered network
are typically near zero (Section 6.3.1), and that the perturbation of key network
parameters such as the external rate and delays affect the mean correlation (or
‘synchrony’) in the network (Section 6.3.2), as well as other measures like regular-
ity (as measured by their mean coefficients of local variation LV). It is, however,
not clear how this weakly correlated network activity translates into population
signals such as the LFP. Previous modeling studies of mechanisms of the spatial
reach of the LFP highlight the crucial role of correlation in synaptic inputs to the
LFP-generating neurons (Lindén et al., 2011; Łęski et al., 2013). In contrast to
these studies, which use input spike trains with Poisson inter-spike statistics, we
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here account for ongoing network interactions, and realistic numbers of neurons
and connections under 4× 4 mm2 of cortical surface using the methods to com-
pute LFPs introduced by Hagen et al. (2016a). We thus extend our analysis to
distance-dependent correlations in LFP, CSD, MUA, and pairs of spike trains.

For spontaneous spiking activity in the upscaled network (Figure 6.8A), we com-
pute the LFP (panel C), reconstruct the underlying CSD from the LFP (panel F),
and compute the MUA (panel I) across the 100 channel locations in layer 2/3 illus-
trated in Figure 6.7A. The network parameters and corresponding network state
are those resulting from our upscaling procedure (see Section 6.2.1.2, base param-
eters given in Tables 6.4, 6.6 and 6.7). Visual inspection of panel C reveals that
the LFP amplitude across channels is typically small (. 0.5 mV) as highlighted
in Figure 6.7B with occasional transients which may be seen also on neighboring
channels. These transient events presumably result from spatially confined syn-
chronization in the network, but are not seen across every LFP channel as would
be the case with globally synchronous network events. The amplitudes observed
here are similar to those from the forward-model predictions of LFPs from spon-
taneous activity in the original 1 mm2 network model (Hagen et al., 2016a, Figure
8M), even if the total number of neurons in the upscaled model is increased by a
factor of 16. These similar amplitudes are partially explained by the suppression of
strong low-gamma oscillations in the upscaled network using modified connection
probabilities. An increase in network synchrony (that is, increased correlations)
can otherwise be expected to increase LFP amplitudes overall due to an increased
pairwise cross-correlation between single-neuron contributions to the LFP (Hagen
et al., 2016a). The network upscaling procedure does not obliterate the high- and
low-gamma oscillations, which in the LFP spectra result in a large peak around
200 Hz and a small peak around 50 Hz. The network receives background input
with a flat power spectrum (driven by a Poisson process with fixed rate) and has
no internal sub-circuits capable of generating rate fluctuations or slow oscillations.
Hence, the LFP in each channel contains little power towards small frequencies.
Another factor explaining the lack of low frequency power is active decorrelation
by inhibitory feedback, which is shown to suppress population-rate fluctuations
(Tetzlaff et al., 2012; Helias et al., 2014).

We next compute the Pearson product-moment correlation coefficient between
all possible pairs of LFP channels, and sort by inter-contact distance (panel E). The
mean and standard deviation for each discrete contact separation are shown by
the black line and corresponding error bars. Due to the periodic boundary condi-
tions of the network, the longest possible inter-contact distance is L/

√
2 ≈ 2.8 mm.

The mean values are well fit by a simple exponential function (red line), with a
spatial decay constant of ∼ 0.63 mm and constant offset of ∼ 0.3. The histogram
to the right is computed for all observed correlation coefficients. The correlations
in the simulated LFP are lower compared to findings by Nauhaus et al. (2009,
Fig. 8) during spontaneous activity in anesthetized macaque (approximately 0.95
at 0.4 mm and 0.75 at 2.4 mm electrode separation, respectively) and cat (approxi-
mately 0.93 at 0.4 mm and 0.83 at 2.4 mm electrode separation, respectively). With
high-contrast drifting grating type stimuli, however, the correlations between pairs
of LFP signals are shown to decrease to values around 0.5 at an electrode separa-
tion of 2.4 mm. Also Destexhe et al. (1999) analyze spatial correlations in the LFP
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Figure 6.8: Spikes, LFP, CSD, and MUA: Raw signals, power spectra, and distance-
dependent correlations in L2/3. A Spike raster (showing 10 % of all neurons
in 4× 4 mm2, neurons are sorted as in Figure 6.2). B Pairwise spike-train cor-
relations computed for pairs of excitatory (E-E, n = 40), inhibitory (I-I, n = 10)
and excitatory and inhibitory (E-I) L2/3 neurons, sorted by inter-neuron dis-
tance r. C Local field potentials (LFP) across the 10 × 10 electrode contact
points located at the center of layer 2/3, each separated by 400 µm in the lateral
directions. D LFP power spectrum averaged over channels (black line). The
gray area denotes the average spectrum plus/minus one standard deviation.
E Pearson correlation coefficient between pairs of LFP signals as function of
separation between channels. The black line shows the mean at each unique
separation, whiskers denote one standard deviation. The red line shows the
least-square fit of an exponential function to all values. The coefficient of deter-
mination (R2) is given in the legend. F Current-source density (CSD) estimates
from LFPs shown in panel C, calculated using the kCSD method in 2D. G CSD
power spectrum (mean±one standard deviation). H Similar to panel E but for
CSD signals, minus fit to exponential function. I Multi-unit activity (MUA)
approximated as the bin-wise spike rates of layer 2/3 excitatory and inhibitory
point neurons, calculated using a spatial bin width ∆h = 400 µm. J MUA power
spectrum (mean±one standard deviation). K Similar to panel E but for MUA
signals.
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of cat suprasylvian cortex during awake and different sleep states, and find mean
correlations of approximately 0.6 at 2 mm contact separation in the awake state.
These LFP correlations computed from experimental data are highly dependent
on the choice of LFP reference which may introduce a shared signal component
(which increases correlations), while the present model LFPs are computed with
the assumption of an ideal reference electrode at infinite distance from the sources.
The point neuron and corresponding LFP model also ignore rate fluctuations in
their background input (here represented as Poisson generators with fixed rates)
which is another source of spatial correlations. Global fluctuations or shared in-
put correlations in the background input can be expected to increase pairwise LFP
correlations (Lindén et al., 2011; Łęski et al., 2013; Hagen et al., 2016a).

We next bring our attention to the estimated CSD signal in panel F. By design
the chosen CSD estimation method is expected to suppress correlations among
channels due to volume conduction by reconstructing the sink/source pattern un-
derlying the LFP (Nicholson and Freeman, 1975; Mitzdorf, 1985; Pettersen et al.,
2006, 2008; Potworowski et al., 2012). This can, for example, allow the identifi-
cation of loci of strong synaptic activity in experimental LFP data, which may be
generated locally or due to some external drive. A brief inspection of the CSD
traces computed from the model LFP reveals that ‘standout’ LFP events (e.g., in
channel 31 at 525 ms) result in fluctuations in the corresponding CSD, but the
traces appear overall more variable than the LFP. Just as for the LFP, we show
the power spectra (panel G) and pairwise correlation coefficients with distance
(panel H). In contrast to the LFP spectra, the low-gamma peak around 50 Hz is
not present in the CSD spectra, but the high-frequency peak remains. The overall
positive correlations observed for the LFP are largely canceled for the CSD. The
CSD signals are typically anti-correlated with mean around −0.4 at the shortest
electrode separations (0.4 mm), and then weakly correlated (∼ 0.1) up to 1 mm.
This CSD anti-correlation across proximal channels is expected, as a fraction of
capacitive and resistive (‘leaky’) transmembrane return currents of synaptic input
currents exits in vicinity to the synapse site and at the soma. The return currents
are affected by intrinsic dendritic filtering (Lindén et al., 2010) throughout each
individual LFP-generating neuron morphology. Our multicompartment cells are
effectively treated as closed electric circuits and the basic principle of charge con-
servation must apply (see, for example, De Schutter and Van Geit, 2009a). The
correlations between channels are negligible beyond 1 mm electrode separation.
This negligible correlation at greater distances reflects in part that dendrites of
each morphology (cf. Figure 6.6) are mostly confined within ∼ 300 µm in the lat-
eral directions, and that local spontaneous network interactions for this particular
network parameterization do not readily propagate across space. It is important
to point out that the CSD estimate (cf. Section 6.2.3.3) is based on LFPs computed
at a single depth only, and would change if LFPs across all depths were taken into
account.

As an approximation to the so-called multi-unit activity (MUA) signal, we sum
up spiking activity in layer 2/3 in the vicinity of each LFP contact point (cf. Sec-
tion 6.2.3.4), resulting in the signals in Figure 6.8I. Similar to the computed LFP
and CSD signals, we compute power spectra (panel J) and distance-dependent
pairwise correlations among MUA signals (Figure 6.8K). In contrast to pairwise
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spike-train correlations (Figure 6.8B), a sharply decaying distance dependency is
observed, which is well fit by an exponential function with spatial decay constant
of ∼ 0.30 mm and vanishing offset from zero at greater distances. This sharp de-
cay contrasts with the longer spatial decay constant observed for the LFP, and the
anti-correlation between neighboring sites as observed for the CSD does not occur.
These differences reflect that the LFP and CSD are measures resulting from synap-
tically driven transmembrane currents, while the MUA is a measure of the network
spiking activity resulting from said synaptic input. Similar to the CSD spectra, the
low-gamma oscillation around 50 Hz is not seen, while the high-gamma oscillation
around 200 Hz is pronounced.

6.3.3.2 Spatial coherence of local field potential is band-passed

So far we have established that the model LFP is highly correlated with distance in
qualitative agreement with experimental findings, while the corresponding CSD
and MUA signals are hardly correlated beyond electrode separations of ∼ 1 mm.
We next extend this analysis to the frequency domain by considering distance-
dependent coherences. This step is mainly motivated by two experimental obser-
vations: LFP coherence across channels depends on the inter-electrode distance
as described by Jia et al. (2011) and Srinath and Ray (2014), and a recent study
by Dubey and Ray (2016) shows that the ‘spatial spread’ of LFP has band-pass
properties in the gamma range (60 − 150 Hz). Another modeling study (Łęski
et al., 2013) extends the study of LFP ‘reach’ by Lindén et al. (2011) to distance-
dependent coherences, showing that dendritic filtering (Lindén et al., 2010) intro-
duces a low-pass effect on the LFP reach of uncorrelated synaptic input currents
with an approximately white power spectrum. In contrast to these latter modeling
studies, our combined point-neuron network and LFP-generating setup allows ac-
counting for weakly correlated spiking activity in the network, at realistic density
of neurons and connections.

From its spectra (Figure 6.8D) we infer that most of the variance in the sponta-
neous LFP data is due to a high-frequency gamma oscillation above 200 Hz in the
network due to the ING mechanism present in each layer (Bos et al., 2016). In Fig-
ure 6.9A we show the mean coherences 〈γLFP−LFP〉( f ) between individual pairs of
LFP signals from channels separated by a distance r = {0.4, 0.8, 1.2, 1.6, 2.0} mm.
While the coherence is, as expected, highest for the lowest frequencies (. 10 Hz) at
all separations, it drops quickly for frequencies f ≈ 20 Hz. For the shortest separa-
tion (0.4 mm), the coherence is around 0.35 at this frequency, and increases to ∼ 0.5
in the low-gamma range (around 50 Hz). Broader peaks in the coherence with mag-
nitudes around 0.3 and 2 are also seen for 100− 150 Hz and 250− 300 Hz, respec-
tively. Beyond this range, the coherence drops to around 0.1. The coherence across
all frequencies is further reduced for increased separations, but at 2 mm separation
it still drops to the same value of ∼ 0.1 at high frequencies. These model observa-
tions resemble coherences computed for experimental LFP data during stimulus
conditions (Srinath and Ray, 2014, Figure 1A). There, a peak in low-gamma coher-
ence around 40 Hz is seen for distances up to 4 mm in two different subjects. Also
an increase in coherence is seen for frequencies around 80 Hz. The baseline co-
herence (no visual stimulus) shows no increase in the gamma range of frequencies,
except for sharp peaks seen at 100 Hz due to the CRT display frequency and 120 Hz
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Figure 6.9: Distance dependency of LFP, CSD, and MUA coherences in L2/3. A Pair-
wise LFP coherences as function of frequency for different distances (color-
coded) between electrode contacts r, averaged over pairs with identical elec-
trode separation. B Similar to panel A but computed using the reconstructed
CSD signal estimates at each electrode. C Similar to panel A and B but com-
puted using the MUA signal at each electrode. D Mean LFP coherences as
function of distance between electrode contacts for different frequencies (color-
coded) with exponential fit to mean values (R2 = {1, 0.99, 0.99, 0.70, 0.93} for
f = {15.6, 46.9, 125.0, 203.1, 296.9}Hz, respectively) E,F Mean CSD, and MUA
coherences as function of distance between electrode contacts for different fre-
quencies (color-coded). G–I Color image plot of mean LFP, CSD, and MUA
coherences as function of frequency and electrode separation.



192 a mesoscopic , multi-layer , full-scale cortical network model

due to the second harmonic of noise (Srinath and Ray, 2014). This lack of gamma
peaks of physiological origin differs from our model predictions. We therefore con-
clude that the model LFP coherence more closely resembles the stimulus-driven
LFP, but we note also that a baseline stationary thalamocortical activation level is
assumed in the reference network (Potjans and Diesmann, 2014). This baseline
activation enters the Ku

X,ext parameter for populations X ∈ {L4, L6} × {E, I} also
in the upscaled network. The corresponding mean-field theory (Bos et al., 2016)
identifies sub-circuits located in and across layers 2/3 and 4 as the origins of the
low-gamma oscillations. Therefore, a reduced external drive to layer 4 (by turn-
ing off the baseline thalamic activation altogether) should reduce the magnitude
of this intrinsically generated oscillation and consequently reduce the correspond-
ing spatial LFP coherence. An opposite effect on coherence can be expected by
increasing the thalamocortical drive in the model. At present we do not pursue
this possibility further. We also note that our LFP coherence is smaller than the
comparable experimental values (Srinath and Ray, 2014), but see also Jia et al.
(2011) and Dubey and Ray (2016). This smaller coherence underlies the reduced
correlation with distance noted above which is likely due to the lack of temporally
modulated input and intrinsically generated low-frequency fluctuations, and the
use of an ideal reference. Some of these differences may also result from the fact
that these experimental studies rely on the multitaper method (Thomson, 1982) in
order to compute coherences while we use Welch’s average periodogram (see Sec-
tion 6.2.3.6), and that the experimental data have longer durations than our chosen
simulation period of Tsim = 5 s.

We next investigate the distance dependency of coherences for different frequen-
cies. Dubey and Ray (2016) show an apparent band-pass effect in the LFP, in
that the phase coherence across sites is increased and decays more slowly with
distance in the gamma range compared to higher and lower frequencies. In Fig-
ure 6.9D we show the LFP-LFP coherences as functions of distance for different
frequencies f , averaged over values computed for identical separation of channels.
We also show the corresponding least-square fit to exponential functions, in order
to investigate whether or not this model reproduces the experimentally observed
band-pass effect. Indeed, we find for f ≈ 46.9 Hz, which is at the center of the low-
gamma peak in panel A, an elevated coherence with longer spatial decay constant
(λ = 0.82 mm) than for frequencies where the overall coherence is reduced, such as
f = 15.6 Hz (λ = 0.56 mm) and f = 203.1 Hz (λ = 0.13 mm). In the high-gamma
band ( f = 296.9 Hz) we again note a comparatively quick decay (λ = 0.23 mm)
in coherence, which may reflect that the network interactions underlying the gen-
eration of this oscillation frequency remain local. In panel G we show the same
data as displayed in panel A and D for all frequencies up to 500 Hz and average
for each distance up to 2.8 mm. As implied by the above findings, the low-gamma
peak in the coherence near 50 Hz is seen at all distances.

In a similar manner we compute distance-dependent coherences for the CSD
(panels B,E,H) and MUA (panels C,F,I). The CSD shows only a weak frequency
dependence in its coherence at all tested distances (panel B). The coherence is
∼ 0.4 for a contact separation of 0.4 mm, and drops to levels below 0.2 at greater
distances. The MUA coherence, however, is increased for the shortest distances
(0.4 mm) around the high-frequency range of the high-gamma oscillation (∼300 Hz)
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as shown in panel C, but the coherence is at the baseline level at all greater dis-
tances.

6.4 discussion

The present work investigates a multi-layer point-neuron network model covering
4× 4 mm2 of cortical surface at realistic neuron and connection density, amounting
to ∼ 1.2 · 106 neurons and ∼ 5.5 · 109 synapses. The model accounts for spiking
activity across excitatory and inhibitory neurons in layers 2/3, 4, 5, and 6 and
one external thalamocortical population, as well as local field potentials (LFP). The
4× 4 mm2 area covered by the model is similar to the one covered by a 10× 10
Utah multi-electrode array commonly used for electrophysiological measurements
in vivo in different cortical areas and species. The model is a laterally extended
version of the cortical microcircuit under 1 mm2 of cortical surface by Potjans
and Diesmann (2014), but in contrast to this reference network the upscaled net-
work accounts for distance-dependent connection probabilities and delays. The
biophysics-based LFP predictions rely on the hybrid scheme for LFP predictions
in point-neuron networks by Hagen et al. (2016a), which is here modified to ac-
count for spatially structured networks. Earlier work has shown that correlations
are perturbed in downscaled networks (van Albada et al., 2015). The LFP reflects
the fluctuations caused by network correlations and depends also on the spatial
organization of networks (see, for example, Hagen et al., 2016a). Therefore, the
development of biophysical network models that incorporate the full density of
connections as well as the spatial organization of the observed system is crucial to
aid the interpretation of the corresponding experimental data.

Our upscaling procedure preserves the overall features of activity in the refer-
ence network. This includes a stable network state with asynchronous and irreg-
ular spiking activity for the different neuron populations, distributed firing rates
across neurons, spike trains with variability in agreement with observed activity in
sensory cortex, weak pairwise spike-train correlations, and population firing rate
spectra with peaks in the low-gamma range (40− 80 Hz) and high-gamma range
(200− 300 Hz). Around this stable state, we investigate the effect of varying key
network parameters, namely the weight of inhibitory connections and the external
drive, as well as the width of inhibitory connection profiles and the minimum de-
lays. We find that a strong external drive with reduced inhibitory feedback results
in high synchrony, that conduction delays strongly affect the formation of temporal
oscillations, and that wide inhibition results in spatial instabilities. Furthermore,
the model exhibits spatially spreading activity evoked by thalamic pulses compara-
ble to experiments with a brief flash stimulus to a part of the visual field in terms of
the radial propagation speed of the evoked responses. Finally, the model accounts
for spatially correlated and coherent LFPs even during spontaneous network activ-
ity when its pairwise spike-train correlations are low on average. LFP coherences
are distance-dependent with a slower spatial decay around the frequency of the
50 Hz low-gamma oscillation compared to other frequencies, resulting in an appar-
ent band-pass filter effect on the LFP coherence.
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Comparison with other studies

To our knowledge, this computational study is the first to simultaneously account
for both spiking activity and population activity measures such as the LFP in
a layered network model that covers several square millimeters of cortical sur-
face at the full density of neurons and synaptic connections. Compared to ex-
perimentally reported cortical neuron densities of ∼ 105 neurons/mm2 (see, for
example, Herculano-Houzel, 2009; Ribeiro et al., 2013), other studies of laminar
point-neuron networks with distance-dependent connections (Mehring et al., 2003;
Yger et al., 2011; Voges and Perrinet, 2012; Rosenbaum and Doiron, 2014; Keane
and Gong, 2015; Schnepel et al., 2015; Pyle and Rosenbaum, 2017; Rosenbaum
et al., 2017) either rely on reducing the overall size of the network’s geometry, re-
duce the neuron densities per cortical area, consider only one layer of excitatory
and inhibitory neurons, or collapse all cortical layers into one. Tomsett et al. (2014)
also incorporate LFP predictions from a recurrently connected network of ∼ 105

multicompartment neurons, but consider only a thin cortical slice across layers
similar to in vitro experiments. While reduced cell and connection counts speed
up simulations, state-of-the art point-neuron simulation software scales nearly lin-
early up to ∼ 109 neurons (Kunkel et al., 2017; Jordan et al., 2018). Hence, simu-
lations of networks with ∼ 106 neurons such as ours can be executed routinely on
high-performance computing facilities.

We here choose to start from a previously published model of the cortical micro-
circuit by Potjans and Diesmann (2014). In increasing the model size, the choice
of scaling procedure is critical. van Albada et al. (2015) show that the reducibility
(downscaling) of randomly connected asynchronous networks is fundamentally
limited if both spike rates and second-order statistics (correlations) are to be pre-
served. Their proposed scaling rules adjust the amplitudes of synaptic currents
and mean and variance of noisy background input to the decreasing numbers of
synapses. However, upscaling is different. In the microcircuit model each neuron
receives a realistic number of synapses, originating either from within the circuit
or attributed to the background. Increasing the network size necessarily decreases
the probability for two neurons to be connected. The consideration of spatial or-
ganization, however, preserves a certain level of local recurrence while the total
network size is growing. Consequently, our upscaling procedure works without
the need to adjust the amplitudes of synaptic currents of the reference network.
The distance-dependent connectivity results in modified in-degrees of recurrent
network connections and noisy background input such that the mean input to
each neuron is preserved, but not its variance. As demonstrated here, the activity
statistics of neurons in a 1 mm2 patch in the upscaled network is comparable to
the statistics of the reference network. This retrospectively validates the decisions
made in the construction of the microcircuit model by Potjans and Diesmann
(2014).

The modeled LFP has amplitudes in agreement with spontaneous LFP ampli-
tudes observed experimentally between 0.1− 1 mV (see, for example, Maier et al.,
2010; Hagen et al., 2015; Reyes-Puerta et al., 2016). The LFP spectra reveal a strong
ongoing oscillation at high frequencies, in the 200 − 300 Hz range, and around
50 Hz. Spectra of spontaneous potentials in visual cortex do not typically reveal
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strong oscillations at these frequencies, but elevated LFP gamma power in the
30− 80 Hz range is frequently reported during stimuli (Jia et al., 2011; Ray and
Maunsell, 2011a; Berens et al., 2008; Xing et al., 2012; Veit et al., 2017; Katzner
et al., 2009; Jia et al., 2013b; Hadjipapas et al., 2015). A functional role in compu-
tation and synchronization between areas has therefore been hypothesized (Ray
and Maunsell, 2010; Jia et al., 2013a; Buzsáki and Wang, 2012). The strong high-
frequency oscillations here result from short interneuron conduction delays (Bos
et al., 2016). Low frequencies are lacking in our spontaneous LFP as our network
receives external drive with a stationary rate, does not intrinsically generate slow
rate fluctuations, and is subject to active decorrelation (Tetzlaff et al., 2012), as well
as due to the assumption of an ideal reference at infinite distance from the source.
Nevertheless, the model produces highly correlated LFPs with a distance depen-
dence compatible with experimental observations (Destexhe et al., 1999; Nauhaus
et al., 2009). The model also reproduces elevated coherences in the low-gamma
band as seen during visual stimulation (Jia et al., 2011; Srinath and Ray, 2014).
The slower spatial decay for frequencies around 50 Hz in the model is consistent
with a recent report of increased spatial LFP ‘reach’ analogous to a spatial band-
pass filter effect in the low-gamma band (Dubey and Ray, 2016).

Possible model refinements

The upscaled model establishes local connections with a Gaussian decay of con-
nection probabilities up to a radius of 2 mm. However, pyramidal neurons can
develop long horizontal axons spanning several millimeters in addition to local
axonal branching. In cat and monkey visual cortex, these connections are typ-
ically clustered or patchy and connect neurons with similar orientation tuning
(Livingstone and Hubel, 1984; Gilbert and Wiesel, 1989; Bosking et al., 1997;
Tanigawa et al., 2005; Buzás et al., 2006; Binzegger et al., 2007). In contrast, the
visual cortex of rodents exhibits a salt-and-pepper layout without patchiness, but
still some longer-distance connections (Ohki and Reid, 2007; Laramée and Boire,
2015). Although less common, subsets of inhibitory interneurons can also exhibit
long-range connections (McDonald and Burkhalter, 1993). Voges and Perrinet
(2012) assess the influence of different types of remote connections (none, random,
or patchy) on the network activity of a 2D single-layer network, and conclude that
the fraction of local versus remote connections is crucial for the resulting network
dynamics, irrespective of the detailed spatial arrangement of remote connections.

For the type of model development conducted here, comprehensive datasets
with detailed (distance-dependent) connection probabilities are mostly unavail-
able for all possible pairs of pre- and postsynaptic neuron types and different
cortical layers. Some exceptions exist (for example, Binzegger et al., 2004), but
most connectivity studies focus on specific connections, and due to differences
in experimental methods, results may be difficult to compare and reconcile; see,
for example, Schnepel et al. (2015, Supplementary Material) on the limitations of
their photostimulation technique and Stepanyants et al. (2009) on truncated con-
nections in brain slices. Neuron morphology appears to provide a valid first ap-
proximation for the distance dependency of connections (Amirikian, 2005; Brown
and Hestrin, 2009; Hill et al., 2012; Rees et al., 2016), but the overlap between
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dendrites and axons alone does not explain connectivity patterns, due to target
neuron-type specificity (Potjans and Diesmann, 2014), specificity at the level of
individual neurons (Kasthuri et al., 2015), and preferential locations of dendritic
spines and synaptic boutons on connected neurons (Ohana et al., 2012). We make
the conservative choice to let the spatial widths of connections and shape of post-
synaptic potentials depend only on the presynaptic neuron type. Our hope is that
the algorithmic approach pursued within consortia such as the Blue Brain Project
(Reimann et al., 2015; Markram et al., 2015) and the Allen Brain Institute (Kandel
et al., 2013) will provide more accurate neuronal connectomes of different brain
regions across species in the future, including their distance dependencies (as in,
for instance, Reimann et al., 2017 for rat somatosensory cortex).

Activity in finite-sized laminar networks is subject to effects that depend on the
choice of boundary conditions. Periodic boundary conditions are frequently used
in 1D networks (ring networks) (Roxin et al., 2005; Kriener et al., 2014b; Rosen-
baum and Doiron, 2014) and in 2D networks with torus connectivity (Mehring
et al., 2003; Yger et al., 2011; Voges and Perrinet, 2012; Rosenbaum and Doiron,
2014; Keane and Gong, 2015; Schnepel et al., 2015; Pyle and Rosenbaum, 2017;
Rosenbaum et al., 2017) as also used here for the upscaled models. The model of
a cortical slice by Tomsett et al. (2014) incorporates connections only within the
confines of the modeled slice, but we consider networks that are part of a larger
system (the intact brain). An advantage of periodic boundaries is the simplifying
assumption that cortex is homogeneous and isotropic, that is, the connectivity of a
neuron is independent of its location in the network. One disadvantage is that the
maximal distance for connections is only L/2 for a ring domain with circumference
L, or L/

√
2 for a square domain with side length L. Here, we restrict connections

to a radius R = L/2. Another disadvantage is that propagating activity may travel
across the boundary and directly influence its own propagation, resulting in for
example wave-front annihilation (Muller et al., 2018). An option to suppress such
effects would be to simulate a larger network and to sample only the activity of
neurons across a smaller domain. In Figures 6.2 and 6.3, we extract activity of
neurons within a center disc of 1 mm2. The network could be further upscaled, for
example to cover a full cortical area. The lateral size of the unfolded cat striate
cortex in one hemisphere is larger by a factor of almost 25 than the currently sim-
ulated upscaled network of 16 mm2, estimated in the range of 310− 400 µm (Tusa
et al., 1978; van Essen and Maunsell, 1980; Olavarria and Sluyters, 1985; Ander-
son et al., 1988). Striate cortex in macaque monkeys is even two to four times
larger than in cats (van Essen and Maunsell, 1980). Networks of a full cortical
area could also address the effects of borders to adjacent cortical areas. Anatomi-
cal borders between distinct areas are shown to affect wave propagation (Xu et al.,
2007; Muller et al., 2014).

Spontaneous activity in our models is driven by uncorrelated external inputs
with a fixed rate and Poisson statistics, to represent missing connections from
remote and neighboring cortices, subcortical structures, and sensory inputs. Ongo-
ing work aims to account for the structure of one hemisphere of macaque vision-
related cortex in a spiking model (Schuecker et al., 2017; Schmidt et al., 2018).
Mutual interactions between recurrently connected areas can be expected to pro-
foundly affect their input statistics in terms of rates, spectra, and correlations. Fur-
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thermore, we simulate evoked potentials by short thalamic pulses of activity, but
sensory cortex receives continuously varying inputs. Ever more detailed models of,
for example, the response properties of relay cells in visual thalamus are emerging
(Martínez-Cañada et al., 2018), representing naturalistic image or movie stimuli to
cortical models similar to ours.

Activity statistics such as distributions of correlations depend on simulation
length (Tetzlaff et al., 2008). Here, we consider 5 s simulations, but experimen-
tal recordings are often longer (for example, Pan et al., 2013; Chu et al., 2014b,a).
Future work can address how greater simulation durations affect the activity statis-
tics, and their convergence across time.

In terms of signal predictions, the tool LFPy12 embedded in the presently used
hybrid scheme (Hagen et al., 2016a), facilitates the calculation of current dipole
moments of individual neurons and associated contributions to electroencephalo-
graphic (EEG) signals and magnetoencephalographic (MEG) signals as recorded
on the surface of the head (Hämäläinen et al., 1993; Nunez and Srinivasan, 2006;
Hagen et al., 2018). Forward-model predictions of macroscopic signals like EEG
and MEG are thus a tempting proposition, in particular under the consideration of
mutual interactions between areas. Among other applications, this could provide
an avenue towards a mechanistic model and understanding of visually evoked
potentials (Sokol, 1976).

Significance of work

The present work represents a stepping-stone for understanding experimental data
obtained by multi-electrode arrays that cover several square millimeters of cortical
space. While the model description is highly reduced, it simultaneously accounts
for spiking activity and LFPs and thereby enables a multi-scale comparison with
corresponding experimental data. At the same time, its simplicity makes mathe-
matical analysis in terms of mean-field and neural field theory viable (Bos et al.,
2016; Senk et al., 2018d). Our hope is that the model facilitates a more principal
understanding of the dependence of spike correlations on distance, spatially co-
herent and correlated LFPs, spike-LFP relationships, and emergent spatiotemporal
patterns such as waves. The chapter describes not only a particular network model
but a fully digitized “integrative loop”. We therefore envision the model as a start-
ing point and building block for future work iteratively modifying parameters and
adding further constraints to generate predictions for the activity of specific brain
areas.

12 https://lfpy.readthedocs.io

https://lfpy.readthedocs.io
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D I S C U S S I O N

This thesis contributes to understanding cortical networks on the mesoscale by
constructing and analyzing spatially structured spiking neuronal network models.
Chapter 6 presents a full-scale multi-layer network model that covers a similar
area as multi-electrode arrays used today in experimental recordings, that is, 4×
4 mm2. The preceding chapters address and advance relevant aspects of such large-
scale model development, namely, the theory of neuronal networks, simulation
technology, visual data analysis, and a workflow to coordinate complex scientific
studies. Each chapter already contains a detailed discussion on its respective topic.
Here, we collocate the main results in Section 7.1, and discuss in Section 7.2 their
impact on the whole integrative loop illustrated in Figure 1.1 as well as for the
field of Computational Neuroscience.

7.1 conclusions

Workflow

Chapter 2 discusses the need for and the challenges of large, interdisciplinary,
and collaborative research endeavors in Computational Neuroscience. We argue
for the integration of a complex workflow involving a number of steps and tools
into a common platform to facilitate its iterative construction, comprehension, and
repeatable execution. The HBP Collaboratory1 is one such web-based platform
currently under development. On this collaboration platform, we implement a
prototype workflow addressing the comparability of model data from simulations
of the full-scale microcircuit model by Potjans and Diesmann (2014) using either
the simulation software NEST or the neuromorphic hardware SpiNNaker as back
end. Based on this workflow implementation, we identify, discuss and overcome
difficulties like the inclusion of multiple simulation and analysis steps. These steps
rely on community software tools and partially require access to high-performance
computing facilities.

Simulation

Chapter 3 demonstrates the usability of SpiNNaker for large-scale neuronal net-
work simulations with short neurobiological time scales, and compares its perfor-
mance quantitatively in terms of accuracy, time-to-solution, and energy-to-solution
with that of NEST running on an HPC cluster. The comparison is based on the mi-
crocircuit by Potjans and Diesmann (2014) which is with about 0.3 billion synapses
the largest model simulated on SpiNNaker to date. To obtain an accuracy similar
to that of NEST with 0.1 ms time steps, SpiNNaker requires a slowdown of around

1 https://collab.humanbrainproject.eu

https://collab.humanbrainproject.eu
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20 times real time. The runtime for NEST saturates around 3 times real time using
hybrid parallelization with MPI and multi-threading. However, achieving this run-
time comes at the cost of increased power and energy consumption. The lowest
total energy consumption for NEST is reached at around 144 parallel threads and
4.6 times slowdown. At this setting, NEST and SpiNNaker have a comparable en-
ergy consumption per synaptic event. Our results widen the application domain
of SpiNNaker and help guide its development, showing that further optimizations
are necessary to enable real-time simulation of large biological neural networks.

Data analysis

Chapter 4 develops 2D and 3D visualization concepts for the interactive visual anal-
ysis of simulated spiking activity of spatially organized neuronal network models.
These concepts, or views, aim to facilitate the rapid validation of simulation results
and the exploration of spatiotemporally resolved data prior to in-depth quantita-
tive analyses. As reference implementation for these concepts we develop the
interactive, web-based and open-source tool VIOLA (VIsualization of Layer Activ-
ity). The tool is designed around key principles for information visualization, that
is, the information-seeking mantra (Shneiderman, 1996) and the paradigm of coor-
dinated multiple views (Wang Baldonado et al., 2000). We construct and simulate
a layered spiking network model covering a patch of 4× 4 mm2. The model has an
excitatory and an inhibitory neuron population connected according to a distance-
dependent profile. Visual analysis of the spike data with VIOLA enables us to
examine a perturbation of ongoing network activity caused by a temporally and
spatially confined stimulus. As an example, the duration and the spatial spread
of the event are quickly assessed with the help of multiple simultaneously dis-
played views. Since online platforms like the HBP Collaboratory require browser-
compatible tools for integrated simulation-analysis workflows, with VIOLA we
provide a first prototype for the interactive visual data analysis.

Theory

Chapter 5 identifies a mechanism underlying the generation of spatiotemporal
patterns such as periodic traveling waves in the spiking activity of LIF-neuron
networks. We employ mean-field theory (Brunel and Hakim, 1999) to rigorously
map a spiking network model with distance-dependent connection probabilities
and constant transmission delay to a neural-field model. Our approach combines a
conceptually similar linearization in Kriener et al. (2014b) and an analytical expres-
sion for the transfer function in the presence of colored synaptic noise (Schuecker
et al., 2015). This transfer function resembles the one of a simple first-order low
pass filter in the fluctuation-driven regime. A parameter mapping based on this
insight yields quantitative correspondence between a spiking network model and
the corresponding neural-field model. The resulting analytically tractable effective
rate model depends on the dynamical working point of the spiking network that
is characterized by both the mean and the variance of the synaptic input. Using
bifurcation theory, in particular linear Turing instability analysis (Coombes, 2005),
we derive analytical conditions for pattern formation. These conditions depend
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only on the delay (delay-induced fast global oscillations, see Brunel and Hakim,
1999) and on general characteristics of the effective connectivity profile. Spatial
oscillations can occur if the most unstable mode has a finite non-zero wave num-
ber. We find that nontrivial patterns such as traveling waves require an effective
connectivity profile of two populations (excitatory and inhibitory), and hence re-
late anatomically measurable connectivity structure and observable patterns in
spiking activity. For a 1D ring network of an excitatory and inhibitory neuron
population with boxcar-shaped connectivity profiles, we demonstrate quantitative
agreement of analytical predictions obtained with the neural-field model and nu-
merical simulations of nonlinear rate-unit networks (Hahne et al., 2017) and of
networks composed of LIF-model neurons.

Model building

Chapter 6 presents a full-scale spiking neuronal network model covering 4× 4 mm2

of cortical surface and extending across four cortical layers. With an excitatory and
an inhibitory neuron population in each layer, the total number of neurons and
synapses in the model amounts to ∼ 1.2 · 106 and ∼ 5.5 · 109, respectively. We con-
struct this model by laterally extending the full-scale microcircuit model of 1 mm2

by Potjans and Diesmann (2014) to cover a similar cortical surface area as a 10× 10
Utah multi-electrode array commonly used for electrophysiological measurements
in vivo in different cortical areas and species. Our upscaling to the mesoscale
preserves realistic neuron and synapse densities and introduces a distance depen-
dency of connection probabilities and delays. The spiking activity of the upscaled
model is similar to the original model with asynchronous and irregular spiking ac-
tivity for the different neuron populations, distributed firing rates across neurons,
spike trains with variability in agreement with observed activity in sensory cor-
tex, weak pairwise spike-train correlations, and population firing rate spectra with
peaks in the low-gamma (40− 80 Hz) and high-gamma range (200− 300 Hz). Due
to the partial lack of detailed experimental data on distance-dependent connectiv-
ity that leaves the model underconstrained, we test different parameter combina-
tions around the stable network state. We show, for example, that a strong excita-
tory external drive results in high synchrony, that conduction delays strongly affect
the formation of temporal oscillations, and that broad inhibition causes spatial in-
stabilities. We further model thalamocortical input and demonstrate that thalamic
pulses evoke spatially spreading activity with radial propagation speeds compara-
ble to experimentally evoked responses to, for instance, a brief flash stimulus to
a part of the visual field. The model also accounts for LFP predictions computed
from the spiking activity (Hagen et al., 2016b), and achieves to reconcile the ex-
perimental observations of weak spike-train correlations (Ecker et al., 2010) and
strong and distance-dependent correlations of LFP signals (Nauhaus et al., 2009).
Enhanced spatial coherence in the low-gamma band around 50 Hz may explain
the recent experimental report of an apparent band-pass filter effect in the spatial
reach of the LFP (Dubey and Ray, 2016). This band-pass effect is neither explained
by the frequency-independent volume conduction nor by cable properties of the
neurons which effectively act as a low-pass filter (Lindén et al., 2010; Łęski et al.,
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2013). Instead, the effect primarily results from correlations induced by network
interactions.

7.2 outlook

In this thesis, the endeavor to develop cortical network models is separated into
different components that are dealt with in isolation. We improve upon these
components and establish a digitized workflow for the scientific loop of model
construction and validation. Aiming for a full-scale, multi-layer spiking point-
neuron network model representative of a cortical area on the mesoscale, we here
expand on simplifying model assumptions made in this work and discuss next
steps towards the intended level of description.

The workflow implementation into the HBP Collaboratory (Chapter 2) and the
performance comparison of NEST and SpiNNaker (Chapter 3) both use the full-
scale multi-layer microcircuit model by Potjans and Diesmann (2014). This micro-
circuit with about 80, 000 neurons and 0.3 billion synapses serves as a prototype
for even larger network models and corresponding simulations on HPC systems
(for scaling performance, see the benchmark simulations in Section 3.3.5). Simu-
lations of mesoscopic cortical networks can be achieved with state-of-the art sim-
ulation technologies by simply adding hardware resources. Larger networks are
less densely connected; increasing the number of neurons only entails a limited
increase in the number of synapses per neuron. The mesoscopic model (Chapter 6)
is an upscaled version of the microcircuit model and comprises about 1.2 million
neurons and 5.5 billion synapses. This model can already be simulated routinely
with NEST to test parameter combinations as shown in Section 6.3.2. A model
of this size will be the next challenge for SpiNNaker but on the basis of the ad-
vancements of the SpiNNaker system, described in Section 3.3.2, it is presumably
straight forward to implement by increasing the amount of boards used. In terms
of memory consumption, current simulation technologies already facilitate large-
scale network simulations with high accuracy. However, more work is needed to
speed up these simulations to real time and even further.

The original microcircuit model does not incorporate a spatial structure. How-
ever, distance dependency of connections and conduction delays becomes relevant
on the mesoscale (Voges et al., 2010). To investigate such distance dependencies
and spatiotemporal patterns in network activity, we use simplified two-population
networks (apart from Chapter 6). These networks comprise one excitatory and one
inhibitory spiking neuron population, either in 2D (Chapter 4) for the visual anal-
ysis of layer activity, or in 1D (Chapter 5) for deriving a corresponding mean-field
theory. The visualization concepts developed in Chapter 4 apply likewise to more
neuronal populations or layers than exemplified with the reference implementa-
tion VIOLA. A model network that explicitly incorporates multiple cortical layers
will make full use of the features of the tool to visualize 3D activity. The amount
of data shown and its graphical representation can be interactively controlled for
optimizing the visualization with respect to the given data set.

Extending the mean-field description of spatially organized spiking neuronal 1D-
networks (Chapter 5) to 2D, will render the wave number a vector of wave num-
bers. Bifurcations to periodic patterns in time and space can then be constructed
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(Coombes, 2005). Besides, more neuronal populations than the two considered
in the study can be included directly. So far, the theory uses a boxcar-shaped
connection profile as an example, but it is feasible to replace this profile by a bio-
logically more realistic Gaussian or exponential shape. Since the theory is currently
developed for constant delays, a next step is to introduce distance-dependent con-
duction delays (Hutt et al., 2003). A mean-field model with one-to-one correspon-
dence to a mesoscopic full-scale spiking neuronal network model could not only
be validated against network simulation results but also help to constrain model
parameters.

Detailed experimental connectivity data for specific species and cortical areas
are still partially unavailable, and the theory will generate predictions in addition
to already doable parameter scans with the full model (Section 6.3.2). So far, the
mesoscopic model distinguishes only between excitatory and inhibitory neurons
with respect to the spatial width of connections, but more detailed profiles are con-
ceivable (see Reimann et al., 2017 for rat somatosensory cortex). In Section 5.2.6
we establish a parameter mapping between mean-field models and analytically
tractable neural-field models. This mapping can further contribute to transfer re-
sults from neural-field literature across mean-field approaches to spiking neuronal
networks, that in turn allow for comparison with experimental activity data.

The integrative loop for model development shown in Figure 1.1 is a simplified
representation and should in the ideal case exhibit even more connections and sub-
loops. For instance, network simulations and predictions from reduced population
dynamics generate hypotheses that influence the design of experiments. Also, the
loop component data analysis is considered in this thesis primarily for simulated
data but applies similarly to experimental data. We envision a direct comparison
between experimental and simulated activity data that can be realized best by
applying the same data analysis routine to both. VIOLA (Chapter 4) for visual data
inspection and, for example, Elephant2 for statistical data analysis are tools that can
account for both data origins. In general, the community of scientists using certain
software tools grows if the tools are flexible, reliable, and user-friendly. An active
community in turn supports the development, maintenance, and correctness of the
tools. In this thesis, we employ the same simulation software NEST for spiking LIF
neurons and continuous rate-based units (Chapter 5). Similarly, the same PyNN
implementation is used with NEST or SpiNNaker as simulator back end (Chapters
2 and 3). To provide access to different tools, promote collaborations, and keep
track of the status and all steps of a complex workflow, Chapter 2 argues for the
workflow integration into a common software platform like the HBP Collaboratory.
The web-based visualization tool VIOLA (Chapter 4) is easily integrated into such
a platform.

The endeavor to understand the brain and in particular the cerebral cortex brings
together scientists from biology, physics, mathematics, and computer science. Each
of these classical disciplines alone does not have sufficient means and methods to
treat this intricate multi-scale natural system in detail without losing sight of the
big picture. Combined in the field of Computational Neuroscience and with re-
cently emerging opportunities of digitization to communicate, transfer knowledge
and data, and collaborate, novel interdisciplinary research questions can be tackled

2 http://elephant.readthedocs.io

http://elephant.readthedocs.io
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that were unimaginable some decades ago. The development of cortical network
models is one such challenge. Cortical network models serve the purpose to in-
crementally integrate experimental data from different sources and different scales
and relate them to each other. Modeling allows us to assess consistency and detect
gaps in the current knowledge. Direct simulations at the resolution of cells and
synapses help us to validate mean-field theory and uncover discrepancies between
model predictions and experimental activity data. This thesis develops a meso-
scopic, multi-layer, full-scale spiking network model to be iteratively refined along
the progress of experimental techniques, theoretical methods, and simulation tech-
nology. From the level of description considered here, that is, spatially structured
spiking point-neuron networks representing the cortical mesoscale, research may
continue to incorporate more biological detail (Markram et al., 2015) or to extend
the model from the current patch of 4× 4 mm2 to one full or even multiple cortical
areas (Schmidt et al., 2018) towards brain-scale networks (Diesmann, 2013). Fu-
ture work could make detailed predictions for a specific cortical area, for example,
motor cortex studied intensely in our laboratory (Riehle et al., 2013; Denker et al.,
2018). Further development of forward-modeling schemes would expand model
predictions from spiking activity to other experimentally observable signals such
as LFP (see Section 6.3.3), EEG, MEG, or ECoG (Buzsáki et al., 2012; Einevoll
et al., 2013a; Hagen et al., 2016a). Similar to the microcircuit model (Potjans and
Diesmann, 2014) this work is largely based on, it is our hope that this mesoscopic
network model evolves to a platform facilitating further research on questions of
network function and learning (Seger and Miller, 2010).
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