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This paper studies the consequences of a curriculum reform of the last two years of high 

school in one of the German federal states on the share of male and female students who 

complete degrees in STEM subjects and who later work in STEM occupations. The reform 

had two important aspects: (i) it equalized all students’ exposure to math by making 

advanced math compulsory in the last two years of high school; and (ii) it roughly doubled 

the instruction time and increased the level of instruction in math and the natural sciences 

for some 80 percent of students, more so for females than for males. Our results provide 

some evidence that the reform had positive effects on the share of men completing STEM 

degrees and later working in STEM occupations but no such effects for women. The positive 

effects for men appear to be driven by a positive effect for engineering and computer 

science, which was partly counteracted by a negative effect for math and physics.
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1 Introduction

Recent technological changes strongly suggest that future economic growth can primarily

be expected in fields related to science, technology, engineering, and mathematics (STEM)

(OECD, 2010). One way to promote this growth is to foster female participation in STEM

subjects with the goal of increasing the number of female STEM graduates and female

STEM workers. In addition to this macro perspective, STEM-related jobs are usually

well-paid due to their relation to high productivity sectors of the economy. Attracting

more females into STEM subjects can therefore be seen as a way to improve women’s

career prospects and reduce the gender wage gap and gender-related earnings inequality

over the life-cycle (OECD, 2007).

In this paper, we exploit an exogenous shock in the form of a curriculum change at the high

school level to investigate whether and to what extent it is possible to draw more females

into STEM subjects. The reform was intended to improve students’ general preparation

for university studies and the labor market in one of the German federal states (Schavan,

1999). However, its largest component was an increase in math and natural science classes

during the last two years of high school.

The literature cites several possible reasons for the low share of females in STEM subjects

in various stages of the educational system: (i) ability (Berlingieri and Zierahn, 2014;

Friedman-Sokuler and Justman, 2016), (ii) tastes and preferences (Ardicianono, 2004;

Ceci and Williams, 2010), (iii) stereotypes (Cheryan, 2012; Franceschini et al., 2014),

(iv) path decisions in school (Broecke, 2010; Justman and Méndez, 2018), (v) dropping

out of a STEM study programme (Ehrenberg, 2010; Kokkelenberg and Sinha, 2010), (vi)

underrepresentation in university faculties (Carrell et al., 2010; Griffith, 2010), and (vii)

failure to transform a STEM degree into a STEM occupation in the labor market (Danbold

and Huo, 2017; Sassler et al., 2017a). This paper addresses aspects (iv) and (vii). First, by

taking advantage of an exogenous shock in path decisions, we evaluate whether a reform

at the end of high school changes university study decisions. We do this by evaluating the

number of STEM degrees obtained by high school graduates before and after the reform

using the other federal states as a control group. Due to data limitations, we are not able

to determine whether the reform affected tastes, preferences or stereotypes. Furthermore,

we observe graduates’ transition into the labor market. We are thus able to test whether

the reform led to changes in the eventual share of females entering STEM occupations.

We use difference-in-difference methods to investigate the effects of the reform, including

interactions with gender in order to determine differential effects for women compared to

men.
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In our analysis, we exploit a relatively underutilized data source for Germany, the graduate

surveys from the German Center for Higher Education and Science Studies (DZHW).1

The DZHW surveys provide representative samples of the population of graduates from

German tertiary education institutions. We focus on the first wave of cohorts in 2005/2006,

2008/2009 and 2013/2014, who were surveyed one year after graduation. The surveys

include background information on secondary education, tertiary education decisions as

well as information on the transition to the labor market after graduation.

Our analysis follows the recent literature, e.g., Justman and Méndez (2018), by further

distinguishing between all STEM fields combined and STEM subfields that are especially

math-intensive (here labeled PTEM). Specifically, the latter include all subjects in tech-

nology, engineering, math and physics. Recent research suggests different effects for PTEM

as opposed to the life sciences (biology and chemistry). Among other differences, these

two groups of fields have different requirements with respect to mathematics. In addition,

we look into even more specific combinations of subjects – the already mentioned life

sciences group, a group consisting of mathematics and physics, and finally, a group com-

bining engineering and computer sciences – to identify the primary drivers of our results.

The latter group differs from the former two in that German high schools do not offer

courses in these subjects.

Our study makes the following contributions. First, to the best of our knowledge, our pa-

per is one of the first to use quasi-experimental variation to study the effects of curricula

changes on the inflow into STEM occupations, and one of the few to use quasi-experimental

information to evaluate the effects of curricula changes on college major choices (for the

latter, see Joensen and Nielsen (2016), Jia (2016), De Philippis (2017), and the more

detailed literature review below). Second, in contrast to many of the quasi-experimental

interventions studied in the literature, the reform we are considering is unique and com-

prehensive in that it affected all students in the last two years of high school by making

advanced math courses, which were chosen by only 20 percent of students before the

reform, compulsory. This meant that a very large proportion of the population were com-

pliers to the reform, and that it ‘leveled the playing field’ between the genders and students

of different ability levels (Domina and Saldana, 2012). This is in contrast to other inter-

ventions considered in the literature which often reached considerably smaller fractions of

the population or only subgroups with certain ability levels (e.g., high-ability students as

in Joensen and Nielsen (2016) and De Philippis (2017), or low-ability students as in Jia

(2016)).

A final important aspect of our study is that we take great care to compute correct

standard errors for our difference-in-difference estimates. We demonstrate that this may

substantially change the interpretation of results. Since Bertrand et al. (2004), it is well

1One of the few studies using these data known to us is Parey and Francesconi (2018).
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known that standard errors are underestimated in difference-in-difference frameworks be-

cause of intra-cluster correlation. Common practice for difference-in-difference methods

is to use robust standard errors that are clustered at the broadest level. The resulting

test-distribution is the student’s-t-distribution t(G − 1), where G is the number of clus-

ters (Cameron and Miller, 2015). This correction, however, performs poorly if only a few

clusters are treated (in our study, it was only one cluster), the number of clusters is low

(fourteen in our study), and the cluster sizes differ to a large extent (Mackinnon and

Webb, 2018). Therefore, following Roodman et al. (2018), we calculate wild cluster boot-

strap p-values, wild subcluster bootstrap p-values, and ordinary wild bootstrap p-values

and compare them with the p-values from the t(G− 1) standard errors. This comparison

reveals a considerable increase in p-values compared to the conventional practice, even

after including state/year fixed effects and state-specific variables aimed at taking out

intra-cluster correlation.

Our final results provide some evidence for a positive male treatment effect of the re-

form on completed degrees driven by the subfields of engineering and computer science.

For women, we do not find such effects. We also find a smaller but significant negative

effect on the number of math and physics degrees for both men and women. We obtain

similar patterns for entrance into STEM occupations after graduation, driven mostly by

engineering and computer sciences, as well as a small negative effect for math and physics

occupations.

The structure of this paper is as follows. Section 2 discusses the related literature. In

Section 3, we describe the institutional background and the reform in more detail. Sections

4 and 5 provide details about our data and econometric approach. In section 6, we present

and discuss our empirical results. Section 7 is the conclusion.

2 Related literature

In the following literature review, we focus on two types of contributions. First, we present

studies that evaluated the same reform in order to compare our results to theirs. Second,

we connect our analysis to the broader literature on the effects of school curricula on

educational and economic outcomes. We do not review articles that specifically deal with

STEM occupations in the labor market (see, e.g., Spitz-Oener and Priesack, 2018) or the

more general topic of women in STEM (Kahn and Ginther, 2018).

Using a different data set, Hübner et al. (2018) considered the same reform in Baden-

Württemberg with a particular focus on high school effects and university entry decisions.

In particular, they analyzed gender differences in math achievement, math self-concept, as

well as in realistic and investigative vocational interests. They further considered which
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university field of study the individuals chose two years after completing high school.

Using only data for Baden Württemberg, the state in which the reform took place, and

a before-after comparison, the authors find that gender differences decreased for math

achievement but increased for math self-concept and for realistic as well as investigative

vocational interest. They did not find a significant effect of the reform on the choice

of study subjects at university. An important difference to our study is that they only

considered initial university study choices (not the successful completion of degrees) and

no labor market outcomes.

Görlitz and Gravert (2016) and Görlitz and Gravert (2018) also analyzed the same reform

using aggregate administrative data obtained from the Federal Statistical Office. Their

first paper finds evidence for an increase in high school dropouts which disappears over

time among males but is persistent among females. The individuals who did not drop out

of high school, however, appeared to be better prepared for and more likely to enroll in

university studies after the reform. The second paper explored the positive effects of the

reform on higher education enrollment in more detail. According to Görlitz and Gravert

(2018), this higher enrolment did not go along with an increase in females entering STEM

subjects. Only males exhibited a robust positive effect for STEM. Our study differs from

Görlitz and Gravert (2016) and Görlitz and Gravert (2018) in that we use microdata,

that we consider not only college degrees but also occupational choices after graduation,

and that we take into account a rich set of individual and aggregate covariates in our

analysis.

Our study connects to a wider literature analyzing the effects of differences in school cur-

ricula, especially with regard to math and the natural sciences, on later educational and

economic outcomes. A number of papers have studied the effects of differential exposure

to math curricula on later decisions in high school and on college attendance. For ex-

ample, using observational data for the U.S. and controlling for selection on observables,

Aughinbaugh (2012) found that a more rigorous high school math curriculum is associ-

ated with a higher probability of attending college. Justman and Méndez (2018) showed

for Australia, that choosing STEM subjects in later high school years is not driven by

prior differences in mathematical achievement but that female students require stronger

signals of mathematical ability to choose male-dominated subjects. A few studies have

used quasi-experimental variation to study the effects of math curricula on later school

outcomes. Broecke (2010) exploited the introduction of a ‘triple science’ option in British

high schools and showed that those choosing this option were more likely to choose sci-

ence courses in later grades. However, this effect was restricted to men, and was stronger

for pupils from lower social and academic backgrounds. Domina and Saldana (2012) ex-

amined the intensification of mathematics curricula in American high schools over the

period from 1982 to 2004. Their results suggest that intensification generally reduced so-
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cial stratification in course credit completion but left inequality in some more advanced

subareas very pronounced. Based on a regression discontinuity design, Cortes et al. (2012)

studied an intensive math instruction policy that doubled instruction time for low-skilled

9th graders. They show that this policy had substantial positive effects on test scores,

high school graduation, and college enrollment.

A considerable literature has looked at college major choice and its determinants (for

an overview, see Altonji et al., 2012). Here, we only focus on articles that address the

question of STEM vs. non-STEM majors. In an early contribution based on controlling

for observables, Levine and Zimmerman (1995) considered the effects of taking more high-

school math on wages, college majors and gender-traditional occupations. They found

that more math was associated with a higher likelihood of completing a technical degree

and working in a technical job or a job traditional for one’s sex, but only for women.

Ardicianono (2004) estimated a sophisticated structural choice model of college major

choices, incorporating aspects such as learning about one’s abilities and uncertainty in

educational outcomes. He found that math ability (but not verbal ability) is important for

selecting certain majors (especially STEM), but that ability differences are far from enough

to account for observed choices. Rather, differences in job and school preferences dominate

college major choices. Based on data for Ontario, Card and Payne (2017) studied STEM

major choices in relation to an index of STEM readiness at the end of high school. They

show that men and women do not differ in STEM readiness, but that males not interested

in STEM subjects are less likely to start university studies. Only a few studies have used

quasi-experimental variation to study the effect of prior exposure to math on college major

choices (as we do in our study). Jia (2016) exploits state-specific increases in high school

math curriculum requirements in the U.S. in order to measure the effect of stricter math

requirements on college STEM attainment. She finds that stricter requirements increase

STEM attainment to a certain extent, but only for white males. De Philippis (2017) also

used quasi-experimental variation in the form of a reform that allowed secondary schools

in the U.K. to offer more science to high-ability 14-year-olds. Again, her results suggest

that introducing this option increased men’s willingness to enroll in STEM degrees but

not women’s.

A much smaller literature has focussed on the effects of math and science curricula on

STEM choices and outcomes outside the education system. One strand of the literature

started by Altonji (1995) considers the effects of math curricula on later wages, see e.g.,

Rose and Betts (2004) (using observational data) and Joensen and Nielsen (2009), Joensen

and Nielsen (2016), Goodman (2019) (using quasi-experimental data). However, these con-

tributions typically do not address the question of STEM vs. non-STEM occupations. For

example, Goodman (2019) shows that state changes in minimum high school math re-

quirements substantially increased underprivileged students’ completed math coursework
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and later earnings. Joensen and Nielsen (2009) and Joensen and Nielsen (2016) exploited

a pilot scheme in Denmark that reduced the cost of choosing advanced math in high

school. They show that this pilot scheme drew girls from the top of the ability distribu-

tion and boys from the middle of the ability distribution into choosing more advanced

mathematics. Their results suggest that only the female but not the male compliers bene-

fited from the pilot scheme in the form of higher later earnings, a higher rate of completed

STEM degrees, and higher career outcomes. Joensen and Nielsen (2009) and Joensen and

Nielsen (2016) did not address whether more math in high school increases the inflow into

STEM occupations as we do in this paper. In fact, we are not aware of any other study

that uses quasi-experimental variation in school curricula to study its effect on STEM

occupations. Based on a selection on observables strategy, Morgan et al. (2013) examined

college major selection and occupational plans (i.e. not actual outcomes). Conditioning on

already having completed a STEM degree, Sassler et al. (2017a) study the transitions of

STEM graduates into STEM occupations. They find that the highest share of the vari-

ance in transitions into STEM vs. non-STEM jobs can be accounted for by the type of

STEM degree (i.e. engineering and computer science vs. other degrees), while attitudes

and expectations account for a much smaller share.

Finally, we want to point out a number of studies focusing on certain aspects of college

major choice that will be important for the interpretation of our results. Ardicianono

(2004), Zafar (2013) and Wiswall and Zafar (2015) suggest that preferences and not factors

like expectations or perceived abilities explain gender differences in college major choices

and later wages. For a similar result, see Daymont and Andrisani (1984). Shi (2018) finds

that differences in other-regarding and in professional preferences are more important for

females’ intentions to enroll or not enroll in engineering programs than prior achievement

or lack of academic self-confidence. Ceci and Williams (2010) summarize that “. . . among

a combination of interrelated factors, preferences and choices – both freely made and

constrained – are the most significant cause of women’s underrepresentation [in math-

intensive fields]”.

What are possible sources of gender differences in preferences for different fields? Buser

et al. (2017) and Gneezy et al. (2003) point out that an important factor behind the

STEM gap may be gender differences in willingness to compete. According to these re-

sults, men seek competitive fields while women try to avoid them. One reason why math-

ematics and STEM subjects can be considered particularly competitive is because they

make clear distinctions between ‘right’ and ‘wrong’. Another possible source of female

underrepresentation may be biased self-assessment (Corell, 2001), stereotypes and iden-

tity issues (e.g. Cech et al., 2011; Cheryan, 2012; Franceschini et al., 2014; DelCarpio and

Guadalupe, 2018). For example, Franceschini et al. (2014) suggest that women are more

easily intimidated by ‘stereotype threat’, i.e., by pieces of information that make STEM
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subjects appear inappropriate for them. Finally, there is evidence that gender differences

in underlying preferences and resulting choices may be determined by cultural differences,

see e.g., Guiso et al. (2008), who find that gender differences in math are less pronounced

in more gender-equal cultures. Friedman-Sokuler and Justman (2018) find the opposite

result for Israel, where the STEM gender gap in education is smaller in the Arab than

in the Hebrew part of the population. Sassler et al. (2017b) also point out that negative

STEM gender gaps are far from universal, and that countries such as Iran, Saudi Arabia,

and Malaysia exhibit positive STEM gender gaps.

3 Institutional background

In Germany, educational policies are largely determined at the federal state level, allow-

ing states some degree of freedom to deviate from the general structure of the school

system that is shared by all states. Using this freedom, the federal state of Baden-

Württemberg (the third largest of all federal states) introduced a significant reform of the

high school curriculum in 2002 that provides us with a natural experiment. Apart from

Baden-Württemberg, only the federal states of Mecklenburg-Vorpommern and Sachsen-

Anhalt carried out other school reforms at the high school level during the period of

interest, which is why we drop these states from our analysis.

In general, the German school system is characterized by a pronounced early tracking

school structure. After the fourth or sixth grade, students sort into different secondary

school types. Most common is the differentiation between Hauptschule (lower secondary

school track), Realschule (middle secondary school track) and Gymnasium (highest sec-

ondary school track). Hauptschule ends after nine years, Realschule after ten years. Both

school types leave students without a higher education entrance qualification (HEEQ).

Following graduation from lower or middle secondary school, students may continue

onto Gymnasium to obtain a HEEQ. In addition to Gymnasium, there are special-

ized/vocational high schools and a number of more indirect ways to obtain a HEEQ;

however, these are chosen only by a minority of students. The HEEQ from Gymnasium

generally allows individuals to enroll in all fields of study at university. Specialized and

vocational high schools’ HEEQ usually allow students to study only a subset of degree

programmes related to the secondary school’s area of specialization. In Germany, two op-

tions for tertiary education are available: universities and universities of applied science

(including different variants). Studies at universities of applied science are more practical

and less academically oriented.

The pre-reform high school curriculum was similar in all German states. In this curriculum,

all students completed similar courses during the first ten or eleven school years. In grade
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ten or eleven, however, students were asked to choose a specific combination of subjects

for the last two years of high school, with mild restrictions on which combinations and

exam levels were possible. Out of the chosen classes, two had to be on an advanced

level and several others on a basic level. In Baden-Württemberg, for example, at least

one basic math and one basic German class had to be taken, in addition to at least

one natural science class. If a math, German or science class at an advanced level was

chosen, students could fill their basic courses with other subjects. If they chose their

math, German and science class as basic courses, however, they were free to choose other

subjects, such as languages, arts or even sports as their advanced classes. Advanced classes

were held five hours a week, basic classes only two hours per week. Given the nature of

specialized/vocational high schools, the choices at these schools were less flexible. In both

types of school, three written high school exams and one oral exam in two advanced and

two basic courses had to be passed to earn an HEEQ.

In 1999, Baden-Württemberg announced a reform affecting students starting their sec-

ond to last school year in a Gymnasium from 2002 onwards. Specialized/vocational high

schools introduced a modified version of these reforms one year later. As a consequence,

academic high school graduates from 2004 onwards and specialized/vocational high school

graduates from 2005 onwards were affected by the reform. The post-reform high school

curriculum forced all students to attend a mandatory advanced class in mathematics,

German and one foreign language. In addition, two more advanced courses in one natural

science and/or another foreign language had to be taken. This means that the total num-

ber of mandatory natural science courses increased from one to two (with one of them

potentially at the basic level). Because of the larger number of required classes, advanced

classes were reduced from 5 to 4 hours per week. The minimum instruction time increased

from 26 hours per week to 30 hours per week. Although the reform also had some addi-

tional aspects, it is fair to say that its essential ingredient was a significant shift towards

more instruction time in math and the natural sciences for a large number of students

who previously would not have chosen these subjects at all or would have only chosen

them at the basic level (and thus with only half the instruction time).

— Figures 1 and 2 here —

In order to illustrate the drastic nature and the comprehensive reach of the reform, figures

1 and 2 present raw administrative data showing the impact of the reform compared to

the situation in other federal states. The figures refer to the second qualification phase of

the German Abitur at Gymnasium. Administrative data is available from 2002 onwards,

but a number of missing values and differences in coding make some values before 2003

unusable. As figure 1 shows, advanced math participation in 2004 varied from around

8



.08 for Niedersachsen up to 1 for Baden-Württemberg. The graph demonstrates that the

reform in Baden-Württemberg had a substantial impact. Without mandatory advanced

math classes, the highest share was around .5 in Saarland. All other states range between

.1 and .35. Only Thüringen was constant above .4. Figure 2 shows that the proportion

of females taking advanced math classes was generally lower than that of males. Again

some values are missing, e.g., because no gender-specific administrative data is available.

Unfortunately, the value for Baden-Württemberg in 2003 is missing as well. However, we

have no reason to believe that the gender difference in Baden-Württemberg before the

reform was much different from that in other states. The highest percentage of females

taking non-mandatory advanced math classes was .4, but was typically somewhere between

.10 and .25. This difference shows that, in general, females were more affected by the reform

than males.

Taken together, these numbers illustrate the dramatic impact the curriculum reform had

on the level and instruction time for math during the last two years of high school. For over

80 percent of students, instruction time doubled as students who would have enrolled in

a basic course before the reform (2 hours per week), were forced into the advanced course

after the reform (4 hours a week). For women, the percentage of students receiving more

instruction time was even higher as the share of female students taking advanced math

courses before the reform was below that of men. For the natural sciences, the reform had

a similarly strong impact on instruction time through the introduction of an additional

advanced level course in one of the natural sciences (details not shown here).

4 Econometric methods

4.1 Difference-in-difference estimation

We employ a difference-in-difference setup for our estimations with gender interactions

in order to obtain gender-specific difference-in-difference effects. This setup compares the

situation before and after the reform with the non-treated federal states serving as a

counterfactual for the treated state. Our regression model is

yist = α + γ1 · After t + γ2 · BaWus + ρ · Treatment ist

+ γ3 · Female ist + γ4 · (After t · Female ist) + γ5 · (BaWus · Female ist)

+ λ · (Treatment ist · female ist)

+X ′
ist · β + ηs + νt + εist (1)
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where the index s indicates in which federal state individual i obtained their higher edu-

cation entrance qualification (HEEQ) and t denotes the year the individual obtained their

HEEQ. The dependent variable yist represents a binary outcome, e.g., whether or not the

individual i from state s and HEEQ-year t later completed a STEM degree or worked in

a STEM occupation. The dummies Aftert and BaWus indicate whether the individual

obtained her HEEQ after the reform year of 2004 (rather than before), and whether the in-

dividual obtained her HEEQ in the state of Baden Württemberg (rather than elsewhere).

The treatment variable Treatmentist is the product of Aftert and BaWus and indicates

whether the individual’s high school curriculum was changed by the reform. The vector

Xist contains a number of individual and federal state covariates explained in more detail

below, while ηs and νt are HEEQ-state and -year fixed effects.

In order to differentiate the difference-in-difference effects between genders, we include in-

teractions of the difference-in-difference terms with a female dummy Femaleist indicating

whether individual i is a woman. As a consequence, ρ represents the treatment effect for

men (i.e. individuals with Femaleist = 0), while ρ + λ represents the treatment effects

for women (i.e. individuals with Femaleist = 1). The parameter λ represents the gender

difference of the reform effect. Overall, this setup identifies the reform effects ρ and ρ+ λ

by comparing individuals before and after the reform in Baden Württemberg with the

situation before and after the reform year in other federal states taken as a counterfactual

scenario. There may be general time-constant differences between treatment and control

states ηs as well as common time trends in STEM participation νt (common across all

states). Moreover, we include into Xist a large number of time-varying covariates at the

state level (such as income per capita, unemployment rate, density of tertiary institutions,

see below) that aim to pick up potentially differential developments in STEM participation

across states.

The reform effects ρ and ρ+ λ represent the total effects of the reform, i.e. those for the

larger group of individuals who would have had much lower exposure to math and the

natural sciences without the reform, and those for the smaller group of individuals who

would have participated in advanced math and natural science courses anyway, but whose

instruction time would have been slightly higher without the reform. Despite its mixed

nature, the treatment effect estimated here represents an interesting and relevant policy

parameter corresponding to a well-defined real-world intervention which could in principle

be implemented in other federal states as well.

4.2 Standard errors with few treated clusters

It is well-known that in difference-in-difference setups, it is crucial to control for potential

intra-cluster dependence. In our application, there is clustering on both the state and the
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time dimension. Ignoring intra-cluster dependence will bias standard errors downward

and lead to over-rejection rates (Bertrand et al., 2004). Even when correcting for group

dependency using cluster-robust standard errors, bias may remain due to finite cluster

sizes, unbalanced numbers of treated and untreated clusters, and different cluster sizes

(Cameron and Miller, 2015). The usual clustered variance estimation formula requires

that not only the number of observations but also the number of clusters approaches

infinity (Cameron and Miller, 2015). This assumption is clearly violated in setups such

as ours, with just a few clusters and a very small number of treated clusters (one in our

case).

Mackinnon and Webb (2017), Mackinnon and Webb (2018), and Roodman et al. (2018)

have analyzed the problems of cluster inference in cases with few clusters, few treated

clusters and (possibly ‘wildly’) different cluster sizes. Mackinnon and Webb (2017) in-

troduced the wild subcluster bootstrap and showed that it is superior to other inference

procedures in the case of only a few treated clusters. The wild subcluster bootstrap is an

intermediate case between the wild cluster bootstrap (clustering at the highest level of

clusters observed in the data) and the ordinary individual wild bootstrap (treating each

individual as a cluster). For example, if states are the highest level clusters, the wild sub-

cluster bootstrap may cluster at the state-year level. Mackinnon and Webb (2017) also

advocate comparing restricted and unrestricted standard errors (i.e., with and without

imposing the null hypothesis) as a diagnostic test for the validity of standard errors. If

the two do not coincide, one can be certain that they are invalid. If they are close, there

is probably no problem.

Mackinnon and Webb (2018) present simulation results for a difference-in-difference setup

similar to ours with just one treated cluster and varying cluster sizes. Their results sug-

gest that in this scenario, the individual wild bootstrap performs best, while conventional

clustered standard errors dramatically over-reject and wild cluster bootstrap tests either

over-reject (unrestricted version) or under-reject (restricted version). Moreover, the re-

stricted and unrestricted versions of the individual wild bootstrap coincide well. In our

empirical application below, we follow this procedure as well as Roodman et al. (2018) by

computing conventional t(G − 1) clustered standard errors and cluster, wild subcluster,

and individual wild bootstrap p-values. Our results are very much in line with Mackinnon

and Webb (2017), Mackinnon and Webb (2018) and Roodman et al. (2018). We obtain

very small p-values for conventional clustered standard errors, and discrepancies between

restricted and unrestricted (sub)cluster p-values which become smaller as we approach

the case of the individual wild bootstrap. Taking the limit case of the individual wild

bootstrap as the most credible one, we obtain significant treatment effects only in a num-

ber of cases, whereas the conventional clustered p-values in particular would suggest an

extremely high level of statistical significance for all our results.
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As explained in the previous section, we include a large set of time-varying covariates at

the state level in our difference-in-difference regressions to pick up potentially differential

time trends across states. One might hope that this additionally takes out intra-cluster

correlations, mitigating problems of cluster inference. Therefore, it is interesting to see

how the inclusion of such variables changes cluster inference. We found that including

such variables generally did not change the conclusions from cluster inference very much,

or if it did, then in unsystematic ways.

5 Data

The data for our study were provided by the Centre for Higher Education Research

and Science Studies (DZHW), Hannover. The DZHW starts a new survey of university

graduates every four years. For our analysis, we use the 2005, 2009 and 2013 cohorts.2

The survey includes rich information on parental background, the individual’s higher

education entrance qualification, choices during university study, and labor market entry.

In our analysis, we exclude individuals with a HEEQ obtained before 1995 for the 2005

cohort, before 1999 for the 2009 cohort, and before 2003 for the 2013 cohort in order to

drop unrepresentative long-term students. For the same reason, we exclude individuals

born before 1970 in 2005 cohort, before 1974 in the 2009 cohort and before 1978 in the

2013 cohort.

— Table 1 here —

Table 1 shows some basic sample information. All summary statistics and estimates re-

ported below use the survey weights provided by the DZHW. The three cohorts have

approximately the same size. The table also lists the individual-level covariates we include

in our difference-in-difference regressions. These include gender, cohort, age, parental ed-

ucation in four categories, and parental occupation in two categories.

— Table 2 here —

Table 2 presents summary statistics for the degree and occupational outcome variables

used in the regressions. The degree variables are dummies indicating whether or not a

particular individual obtained a degree in a particular (sub)field. Labels such as ‘at least

one STEM degree’ mean that we have a small number of individuals with more than one

2We use only the first wave of each cohort because subsequent waves suffer from considerable attrition
and because only the first wave for the 2013 cohort is available at this point.
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degree but count them as STEM if at least one of their degrees is in STEM. Following

common practice, we include into STEM all fields in science, technology, engineering and

mathematics. More precisely, our STEM category includes the sciences (biology, chemistry,

pharmacy, geosciences, physics), technology (computer science), engineering (all subfields

of engineering) and mathematics. As indicated above, we also consider smaller subsets

of STEM fields. In the category PTEM, we only include STEM subfields with a partic-

ulary pronounced mathematical or technical orientation (i.e. physics, computer science,

engineering and mathematics). We also consider the smaller STEM subsets of the life

sciences (biology and chemistry), math and physics, as well as engineering and computer

science.

For occupational outcomes, the data provides the KldB occupation code (German clas-

sification of occupations). For 2005, this is the KldB 1992, whereas for the other cohorts

it is the KldB 2010. The German Federal Employment Agency provides a categorization

into STEM and non-STEM occupations, but only for the KldB 2010 (Bundesagentur für

Arbeit, 2016). For the KldB 1992 codes, we followed a translation from KldB 1992 to

KldB 2010. This left us with a small number of cases for which it was not possible to

assign a clear STEM or non-STEM status based on the 2010 STEM classification (be-

cause these occupations were more or less specific in the KldB 1992 classification than in

the KldB 2010 classification). For these cases, we used a special procedure, the details of

which are available on request. As table 2 shows, around 34 percent of the members of

our sample obtained a STEM degree, and for 27 percent this was in PTEM. Note that

PTEM includes only physics out of the sciences fields in STEM and thus is smaller by

definition. Around 5.3 percent of the observations in the sample had at least one degree in

life sciences and 3.97 percent in math or physics, making the latter the smallest group we

investigated. Engineering and computer science is the biggest group within STEM with

a share of 22.6 percent. We obtained a qualitatively similar picture for the occupational

outcomes as for the degrees, except that the numbers are generally lower (because not all

individuals work in jobs that directly match their fields of study).

In order to address potential issues with the parallel trend assumption and in order to

minimize the remaining intra-cluster correlation, we included a set of state- and time-

specific variables shown in table 3. We include variables from four different areas: economy,

education, politics, and other variables. All variables are measured at the state level.
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6 Empirical Results

6.1 Effects on STEM degrees

Our discussion of the empirical results focusses on estimated treatment effects, the gen-

der difference in treatment effects, and the appropriate p-values for the hypothesis that

treatment and gender differences are zero. Apart from conventional clustered p-values

(here labeled t(G − 1)), we compute six different bootstrap p-values: the restricted wild

cluster bootstrap (WCR), the unrestricted wild cluster bootstrap (WCU), the restricted

wild subcluster bootstrap (WSR), the unrestricted wild subcluster bootstrap (WSU), the

restricted ordinary wild bootstrap (WOR), and the unrestricted ordinary wild bootstrap

(WOU), as suggested by Mackinnon and Webb (2017) and Roodman et al. (2018). Like

Mackinnon and Webb (2017) and Roodman et al. (2018), we chose the state-year level as

subclusters.

— Table 4 and figure 3 here —

The first set of results is shown in table 4. Depending on the specification, we obtain a

positive reform effect for male graduation in STEM fields of 6 to 11 percentage points. The

question is of course what degree of statistical significance we can attribute to this result.

The p-values obtained from conventional clustered standard errors signal high degrees of

significance, but we know that this impression should not be trusted. On the other hand,

the wild cluster bootstrap and the wild subcluster bootstrap generally had diverging

results in their restricted and unrestricted versions, which, according to Mackinnon and

Webb (2017) and Roodman et al. (2018), signals their invalidity. However, we also observed

that the difference between the restricted and unrestricted values tended to shrink as we

moved from the cluster to the wild subcluster bootstrap. This is illustrated in figure 3

in which we plot the distribution of bootstrapped p-values for the different bootstrap

variants (the picture looks similar to the ones in Roodman et al., 2018). The difference

between the restricted and the unrestricted values is very small for the case in which each

individual is treated as its own cluster (i.e., ordinary individual wild bootstrap), lending

credibility to the p-values for this case. Taking these p-values, we conclude that the male

treatment effect for STEM degrees is statistically significant at the 10 percent level in

specification (3), which includes state and year effects. For specification (4), which also

includes the state-level variables, the p-values jump above the 10 percent level, suggesting

no statistical significance at conventional levels. Note, however, that adding this rather

large number of extra regressors may have opposing effects on statistical significance. On

the one hand, one may gain precision by reducing the error variance and intra-cluster
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correlation. On the other hand, however, one consumes degrees of freedom potentially

leading to less significant results. To summarize, we obtain a positive treatment effect on

STEM degrees for men, which is not or only weakly statistically significant. This is in

line with the results of Hübner et al. (2018) who also did not find statistically significant

reform effects on university study decisions.

The second half of table 4 reports the results for the gender difference of the reform

effect. The results imply that, if there is a positive treatment effect for men, it is undone

for women. Taking the non-diverging ordinary wild bootstrap p-values of our preferred

specifications (3) and (4), this negative gender difference is significant at the 10 percent

level and marginally significant at the 5 percent level. Therefore, we obtain the result that

the reform effects on STEM degrees significantly differed between men and women in the

sense that women’s propensity to complete a STEM degree was not (or even negatively)

affected by the reform.

6.2 Heterogeneity within STEM degrees: PTEM, life sciences,

math and physics, engineering and computer science

As the combined group of all STEM subjects is a rather broad category, we now look

into subgroups within STEM. For this analysis, we only report the results for the most

comprehensive specification including the full set of covariates as well as year and state

fixed effects (this was specification (4) in table 4; more detailed results are available in the

appendix). The first category we consider is PTEM, which includes all the fields in STEM

except biology, chemistry, geosciences, and pharmacy. PTEM is a policy-relevant category

as it includes all the STEM subfields with a particularly pronounced mathematical or

technical orientation. For this category, we find a positive but insignificant effect in column

(2) of table 5.

— Table 5 here —

Next, we consider the life sciences (biology and chemistry). For this category, we obtain

a male treatment effect close to zero which is not statistically significant (column (3) of

table 5). By contrast, our estimates suggest a statistically significant negative effect of

the reform on the successful completion of a math or physics degree by men, as shown

in column (4) table 5. Finally, our results indicate a large reform effect on the number

of male engineering and computer science degrees which is statistically significant at the

10 percent level based on the ordinary wild bootstrap p-values, which appear to be most

reliable according to column (5) of table 5. Note that the counteracting effects in math and

physics on the one hand, and in engineering and computer science on the other, are the
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likely explanation for why we obtained no significant effect for the PTEM category, which

combines all of these subjects (column (2) of table 5). This shows that it is important to

consider heterogeneity within STEM subjects.

The lower half of table 5 shows the gender difference in the above effects. The estimated

coefficient for the gender difference for PTEM is negative (undoing the positive but in-

significant male treatment effect), but the statistical significance of this gender difference

is questionable. All other gender differences are small and statistically insignificant. An

exception is the negative gender difference in the engineering and computer science cate-

gory which is marginally significant and largely neutralizes for females the very positive

reform effect found for males (column (5) of table 5).

On balance, our results suggest that the positive but statistically very weak male treatment

effect found for STEM degrees (table 4) is driven by a positive effect for engineering and

computer science, while there appears to be a smaller negative effect on math and physics

degrees. For women, the positive effect on engineering and computer science degrees is

either weaker or non-existent, while the negative effect on math and physics appears to

be similar to that of men.

6.3 Effects on STEM occupations

For male graduates entering STEM occupations after graduation, our preferred specifi-

cation (4) in table 6 suggests that the reform had a positive and statistically significant

effect. Again, the negative and marginally significant gender difference in the lower half

of table 6 points to a non-effect of the reform on women’s occupational choices after

graduation. The picture for occupations is clearer in terms of statistical significance than

that for degrees, possibly because STEM occupations represent a smaller percentage of

all occupations than STEM degrees represent among all degrees.

— Table 6 here —

In table 7, we differentiate between different subfields of STEM occupations. Note that

some of these subfields represent very small percentages of jobs in the labor market.

The reason is that occupations are harder to map to different subjects in a clear way than

degrees. Interestingly, the results present a similar picture as for degrees. There is a positive

(but this time slightly more significant) effect for males on PTEM occupations, and a

similarly positive effect on engineering and computer science occupations. These effects

are non-existent for women. Apart from this, there are statistically significant effects on
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life sciences and math/physics for men; however, these are very small in magnitude.

— Table 7 here —

6.4 Common trend assumption and placebo test

Graphical inspection of our raw data does not suggest obvious violations of the common

trend assumption (see figures A1 to A4 in the appendix). Note that figures A1 to A4 do

not reflect our multiple controls for time, state and covariate effects. In addition to this

graphical check, we report the following placebo test, which defines an artificial (i.e., non-

existent) treatment for Baden Württemberg for the years before the actual treatment year

2004. For this test, we have to exclude the HEEQ-years from the treatment year onwards.

We then define the year 2000 as the artificial treatment year so that the years 2000,

2001, 2002 and 2003 represent the placebo treatment period. In order to have enough

observations for the comparison group, we also include individuals born before 1995 in

the placebo analysis (not included in our main analysis).

— Table 8 here —

The placebo results for STEM degrees shown in table 8 give the desired result of no

significant treatment and gender difference effects for STEM and all its subcategories,

with one exception. The exception is a significant positive effect for math and physics

among men which is in the opposite direction of the actual treatment effect for this

category reported in table 5. This calls into question the result for the original treatment

effect, although it is comforting that the placebo effect goes in the opposite direction. A

possible reason for the potentially spurious results for the math and physics category is

that this is a very small group of students for which spurious changes may easily look

large.

— Table 9 here —

The placebo results for STEM occupations and its subcategories are shown in table 9.

Here, we find no significant placebo effects whatsoever, increasing our confidence in the

difference-in-difference results presented in tables 6 and 7.
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7 Conclusion

This paper analyzed the consequences of a substantial curriculum reform of the last two

years of high school in one of the German federal states on the share of male and female

students who complete university degrees in STEM subjects and who work in STEM

occupations after graduation. In addition to some other aspects, the curriculum reform

doubled the instruction time and increased the level of instruction in math and the natural

sciences for some 80 percent of students and an even higher proportion of the female

students.

Our results based on difference-in-difference regressions provide weak evidence for a pos-

itive effect on the share of male STEM graduates which appears to be driven by a sig-

nificant positive effect for engineering and computer science combined with a significant,

but counteracting negative effect on the completion of math and physics degrees. Despite

the fact that women were affected to a larger extent by the reform than men, we find no

positive reform effects on female completion of STEM degrees, but the same relatively

small negative effect on the number of math and physics degrees.

A possible interpretation of these results is that the reform increased the level of prepa-

ration and motivation in math and the natural sciences among male students who were

interested in pursuing a technical degree in engineering or computer science, while the

increased exposure to math and natural science may also have deterred some students

from pursuing these subjects directly in a study programme. For women, we observed no

significant reform effects (except for a small negative effect on the completion of math and

physics degrees), suggesting that, although they would have been better prepared for engi-

neering and computer science degrees, and although more women than men were affected

by the reform, no more women pursued and eventually completed such degrees.

Our results for occupations are very much in line with the results for completed degrees

but slightly clearer in terms of statistical significance. In particular, we find a positive

reform effect on the share of men working in STEM occupations, which is also statistically

significant. We find no such effect for women. Again, the positive effect on the share of

individuals ending up in STEM occupations appears to be driven by increased shares of

individuals working in engineering and computer science occupations, while there is a small

counteracting effect on the share of men working in math and physics occupations.

Our results are consistent with the hypothesis that gender differences in STEM attainment

and STEM employment are rooted in preference differences or issues of role identity

that make it hard to increase female STEM participation without deeper cultural or

institutional changes (Ceci and Williams, 2010; Cech et al., 2011; Wiswall and Zafar,

2015; DelCarpio and Guadalupe, 2018). Given that the reform forced all students into an

18



advanced math treatment, it may also have induced negative effects in terms of stereotype

threat (Franceschini et al., 2014) or underscored the competitive dimensions of the subject

(Buser et al., 2017). Our results for math and physics indicate that there may have also

been deterrence effects among men, who received a clearer signal about the nature of

the subject after the reform, potentially dissuading some individuals from pursuing math

or physics study programs. Another possibility is that these effects are due to the fact

that some individuals’ math exposure was reduced by the reform (those who would have

attended the advanced math course for five hours per week before the reform instead of

four hours after the reform).

Finally, following contributions such as those by Bertrand et al. (2004), Cameron and

Miller (2015) and Mackinnon and Webb (2018), our results provide a further empirical

example of how inappropriate standard errors in clustered difference-in-difference may

potentially lead to erroneous conclusions about statistical significance. Compared to the

conventional use of clustered standard errors, using the inference procedures proposed by

Mackinnon and Webb (2018) and Roodman et al. (2018), which have been shown to be

the most appropriate so far, drastically reduces the statistical significance of our estimates

and suggests a more cautious interpretation.
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Figures

Figure 1: Students taking advanced math per state
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Source: Statistical Offices of the Federal States. Notes: Panel A includes the states Brandenburg (BB),
Baden-Württemberg (BW), Bayern (BA), Mecklenburg-Vorpommern (MV), Schleswig-Holstein (SH),
Sachsen-Anhalt (ST) and Thüringen (TH). Panel B shows the development for Saarland (SL) and Sachsen
(SN), Berlin (BE), Bremen (HB), Hessen (HE), Hamburg (HH), Nordrhein-Westfalen (NW), Rheinland-
Pfalz (RP) and Niedersachsen (NS). The data is provided by each state on a voluntary basis, with missing
years.

Figure 2: Female students taking advanced math per state
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mation for all years, which is why there are some missing years.
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Figure 3: Bootstrap p-value distribution for STEM degrees
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Notes: The plots show the bootstrapped t-statistics based on the particular method. The vertical line
displays the t-statistic of the regression. See text for more explanations.
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Figure 4: Bootstrap p-value distribution for subfield degrees
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(a) PTEM
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(b) Life sciences
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(c) Math and physics
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Notes: The plots show the bootstrapped t-statistics based on the particular method. The vertical line
displays the t-statistic of the regression. See text for more explanations.
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Tables

Table 1: General sample information

Obs Mean SD Min Max

Cohort 21, 633 2008 3.1420 2005 2013
Year of HEEQ 21, 633 2002 3.7460 1995 2009
Treatment period 21, 633 .3475 0.4762 0 1
HEEQ from BaWu 21, 633 .1664 0.3725 0 1
Treated individuals 21, 633 .0587 0.2351 0 1
Female 21, 633 .5366 0.4987 0 1
Treated females 21, 633 .0349 0.1834 0 1
Birthyear 21, 633 1982 3.9185 1970 1992
Parental education: PhD, Uni or Uni Appl. Sc. 21, 633 .0152 0.1225 0 1
Parental education: HS Diploma 21, 633 .3802 0.4854 0 1
Parental education: Vocational training 21, 633 .0509 0.2197 0 1
Parental education: Other 21, 633 .5537 0.4971 0 1
Parental occupation: White collar 21, 633 .9427 0.2323 0 1
Parental occupation: Blue collar and other 21, 633 .0573 0.2323 0 1

Notes: HEEQ from BaWu is a dummy, equal to one if the higher education entrance qualification (HEEQ)
is from Baden-Württemberg and zero otherwise. Not included are individuals with a HEEQ from foreign
countries or with missing information.

Table 2: Descriptive statistics for outcomes

Obs Mean SD Min Max

Degree outcomes

At least one degree in STEM 21,633 .3455 0.4755 0 1
At least one degree in PTEM 21,633 .267 0.4424 0 1
At least one degree life sciences 21,633 .0557 0.2294 0 1
At least one degree math or physics 21,633 .0397 0.1953 0 1
At least one degree engineering or computer science 21,633 .2257 0.4180 0 1

Occupational outcomes

Last or current occupation after graduation in STEM 16,009 0.2459 0.4237 0 1
Last or current occupation after graduation in PTEM 16,009 0.2275 0.4118 0 1
Last or current occupation after graduation life sciences 16,009 0.0184 0.1321 0 1
Last or current occupation after graduation math or physics 16,009 0.0063 0.0766 0 1
Last or current occupation after graduation engineering or computer science 16,009 0.2212 0.4077 0 1

Notes: The drop in the number of observations is due to the fact that within the first year after graduation
not all individuals have entered the labor market. STEM = biology, chemistry, pharmacy, geosciences,
physics, computer science, engineering, mathematics. PTEM = physics, computer science, engineering,
mathematics. Life sciences = biology and chemistry.
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Table 3: Summary statistics for federal state variables

Obs Mean SD Min Med Max

Economics

Unemployment rate (OECD) 21,633 0.0461 0.0222 0.0220 0.0387 0.1129
Registered unemployment by gender 21,633 9.3585 3.8875 3.7000 8.4000 21.5000
Labor market participation rate 21,633 .4979 0.0250 0.4174 .5011 0.5515
GDP per capita 21,633 27.7301 5.9514 13.7080 27.5260 55.9290
Income per capita 21,633 17.1211 2.0551 11.0530 17.0180 22.3950
CPI 21,633 8.9117 0.5140 7.9300 8.8633 9.9692

Education

Density of tertiary institutions 21,633 5.5914 1.3241 3.4975 5.1922 12.3998
BAföG expenditure per capita 21,633 0.0211 0.0091 0.0104 0.0191 0.0592
Funded students per capita 21,633 8.1646 3.0702 4.5418 7.3832 19.0762

Elections/Politics

Voter turnout 21,633 0.6320 0.0580 0.5220 0.6300 0.8350
Votes for SPD in percent 21,633 32.0057 10.6544 9.8000 33.3000 54.1000
Votes for CDU in percent 21,633 43.3251 9.0963 18.7000 43.0000 60.7000
Votes for DieLinke in percent 21,633 4.1655 7.8700 0 0 28.0000
Votes for FDP in percent 21,633 5.8916 3.0715 1.1000 5.9000 16.2000
Votes for DVU in percent 21,633 0.2590 1.0759 0 0 6.3000
Votes for NPD in percent 21,633 .5716 1.4894 0 0 9.2000
Votes for REP in percent 21,633 2.2908 2.1317 0 1.8000 10.9000
Votes for Piraten in percent 21,633 0.0068 0.1068 0 0 1.9000
Votes for FW in percent 21,633 1.9922 2.6047 0 0 10.2000
Votes for Grüne in percent 21,633 7.5969 2.6047 0 7.5000 16.5000
Other

Asylum applications per capita 21,633 1.0866 0.5998 .2638 1.0301 2.5944

Source: Federal Statistical Office of Germany.
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Table 4: Regression results for STEM degree and bootstrapped p-values

Outcome: At least one degree in STEM (1) (2) (3) (4)

Male treatment effect 0.0601 0.0618 0.0739 0.1069

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.11 - 0.09 - 0.01 - 0.30
Wild cluster bootstrap 25.13 0.00 21.02 0.00 16.22 0.00 32.53 2.30
Wild subcluster bootstrap 7.41 5.71 6.81 5.91 3.10 1.70 14.81 6.91
Ordinary wild bootstrap 16.02 16.42 14.71 12.51 8.01 7.71 15.12 16.22

Gender Difference -0.0819 -0.0844 -0.0881 -0.0891

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.02 - 0.01 - 0.00 - 0.00
Wild cluster bootstrap 25.13 0.00 24.92 0.00 25.83 0.00 22.72 0.00
Wild subcluster bootstrap 4.00 1.80 1.60 1.10 1.30 0.50 1.70 0.50
Ordinary wild bootstrap 11.71 9.31 7.11 7.81 6.31 5.31 5.71 5.71

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 21633 21633 21633 21633
R2 0.0776 0.0865 0.0955 0.099

STEM = biology, chemistry, pharmacy, geosciences, physics, computer science, engineering, mathematics.
P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G the
number of clusters. Age stands for the birth year and the squared birthyear. Cohort is a dummy for
cohort 2009 and one for 2013. Parents refers to the highest educational background of the parents and
the highest occupational information. State and year fixed effects are set for the state and year of the
higher education entrance qualification. State variables refer to 21 variables, which vary only at the state
level and over time. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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Table 5: Regression results for subfield degrees and bootstraped p-values

Subfields (2) (3) (4) (5)
PTEM Life Sciences Math & Engineering &

Physics Computer Sciences

Male treatment effect 0.0951 0.0054 -0.0600 0.1580

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 1.00 - 31.90 - 0.00 - 0.07
Wild cluster bootstrap 31.73 3.50 64.86 61.26 8.21 0.00 24.72 0.30
Wild subcluster bootstrap 25.93 16.32 75.58 77.68 5.41 5.71 11.41 1.50
Ordinary wild bootstrap 23.12 24.12 71.27 74.07 2.40 1.10 9.81 10.01

Gender Difference -0.0723 -0.0073 0.0114 -0.0845

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.05 - 22.97 - 26.78 - 0.04
Wild cluster bootstrap 19.82 0.00 53.75 41.34 56.86 49.35 32.83 0.40
Wild subcluster bootstrap 4.50 3.50 66.77 68.27 83.68 84.58 7.31 4.40
Ordinary wild bootstrap 10.21 14.41 66.37 64.96 75.88 75.18 11.21 11.41

Set of covariates

All variables included in specification (4) Yes Yes Yes Yes

Additional regression information

Number of observations 21633 21633 21633 21633
R2 0.1259 0.0237 0.014 0.1345

PTEM = physics, computer science, engineering, mathematics. Life sciences = biology and chemistry.
P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G the
number of clusters. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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Table 6: Regression results for STEM occupation and bootstrapped p-values

Outcome: Occupation in STEM (1) (2) (3) (4)

Male treatment effect 0.1022 0.1032 0.1131 0.1459

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.24 - 0.09 - 0.02 - 0.00
Wild cluster bootstrap 36.94 4.60 38.24 1.30 35.14 0.70 21.52 0.00
Wild subcluster bootstrap 33.73 26.13 26.93 23.02 29.93 22.02 17.52 8.41
Ordinary wild bootstrap 27.23 27.53 19.42 18.12 15.02 14.51 5.71 4.20

Gender Difference -0.1131 -0.1116 -0.1181 -0.1151

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.01 - 0.01 - 0.00 - 0.01
Wild cluster bootstrap 29.23 0.30 27.53 0.00 27.23 0.00 31.43 0.00
Wild subcluster bootstrap 18.52 16.42 18.82 14.71 21.62 17.22 21.12 19.12
Ordinary wild bootstrap 10.91 12.11 9.11 9.81 10.41 8.01 9.71 9.61

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 16009 16009 16009 16009
R2 0.0903 0.0932 0.1097 0.1127

STEM = biology, chemistry, pharmacy, geosciences, physics, computer science, engineering, mathematics.
P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G the
number of clusters. Age stands for the birth year and the squared birthyear. Cohort is a dummy for
cohort 2009 and one for 2013. Parents refers to the highest educational background of the parents and
the highest occupational information. State and year fixed effects are set for the state and year of the
higher education entrance qualification. State variables refer to 21 variables, which vary only at the state
level and over time. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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Table 7: Regression results for subfield occupations and bootstrapped p-values

Subfields (2) (3) (4) (5)
PTEM Life Sciences Math & Engineering &

Physics Computer Sciences

Male treatment effect 0.1088 0.0371 -0.0178 0.1266

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.05 - 0.01 - 0.02 - 0.01
Wild cluster bootstrap 24.22 0.20 23.02 0.00 26.23 0.20 18.92 0.00
Wild subcluster bootstrap 37.64 22.22 11.61 5.31 5.01 2.10 24.12 15.62
Ordinary wild bootstrap 13.31 12.61 1.40 0.90 5.31 4.50 7.91 6.31

Gender Difference -0.1003 -0.0148 0.0091 -0.1094

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.00 - 0.95 - 0.08 - 0.00
Wild cluster bootstrap 32.63 0.00 36.04 8.61 29.73 0.00 23.52 0.00
Wild subcluster bootstrap 24.92 20.12 30.33 22.62 15.62 13.51 19.42 15.82
Ordinary wild bootstrap 9.41 8.71 24.42 23.82 14.71 14.91 6.31 6.41

Set of covariates

All variables included in specification 4 Yes Yes Yes Yes

Additional regression information

Number of observations 16009 16009 16009 16009
R2 0.1182 0.0106 0.0087 0.116

PTEM = physics, computer science, engineering, mathematics. Life sciences = biology and chemistry.
P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G the
number of clusters. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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Table 8: Placebo test for STEM degrees and subfields

(1) (2) (3) (4) (5)
STEM PTEM Life Sciences Math & Engineering &

Physics Computer Sciences

Male treatment effect -0.0367 -0.0298 0.0151 0.0725 -0.1052

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 16.32 - 18.83 - 13.41 - 0.00 - 0.37
Wild cluster bootstrap 54.85 25.93 49.75 29.03 36.94 17.42 8.31 0.00 37.44 1.60
Wild subcluster bootstrap 52.45 45.05 55.86 53.45 41.94 36.54 1.00 0.80 15.22 2.60
Ordinary wild bootstrap 57.86 61.36 64.06 62.06 46.65 47.45 2.00 1.90 13.61 15.72

Gender Difference 0.024 0.0543 -0.0208 -0.0084 0.0691

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 27.52 - 5.95 - 2.62 - 29.24 - 3.33
Wild cluster bootstrap 51.95 43.54 39.24 6.01 33.83 2.90 60.96 48.85 42.74 3.40
Wild subcluster bootstrap 74.07 74.47 42.94 42.04 23.42 17.42 87.89 88.59 24.02 14.71
Ordinary wild bootstrap 74.57 76.28 45.75 45.05 29.23 30.13 82.98 81.58 37.94 35.24

Set of covariates

All variables included in specification 4 Yes Yes Yes Yes Yes

Additional regression information

Number of observations 13285 13285 13285 13285 13285
R2 0.1 0.1275 0.0262 0.023 0.1306

STEM = biology, chemistry, pharmacy, geosciences, physics, computer science, engineering, mathematics.
PTEM = physics, computer science, engineering, mathematics. Life sciences = biology and chemistry.
P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G the
number of clusters. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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Table 9: Placebo test for STEM occupations and subfields

(1) (2) (3) (4) (5)
STEM PTEM Life Sciences Math & Engineering &

Physics Computer Sciences

Male treatment effect -0.0654 -0.0556 -0.0098 0.0068 -0.0624

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 3.72 - 7.80 - 5.19 - 13.19 - 7.47
Wild cluster bootstrap 55.26 12.61 53.85 19.72 27.23 4.90 36.94 24.02 52.45 18.42
Wild subcluster bootstrap 35.54 25.43 41.64 33.63 20.02 15.72 48.15 50.15 36.64 29.03
Ordinary wild bootstrap 37.34 39.24 48.45 50.85 34.33 33.53 62.16 61.86 46.15 46.75

Gender Difference 0.0368 0.0166 0.0202 -0.0167 0.0334

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 12.98 - 32.72 - 1.53 - 0.00 - 20.94
Wild cluster bootstrap 44.74 20.62 73.07 71.27 32.53 4.80 24.82 0.00 48.75 38.64
Wild subcluster bootstrap 55.86 56.96 83.18 83.68 19.62 17.82 10.61 6.61 63.86 57.86
Ordinary wild bootstrap 60.86 58.96 86.29 87.39 19.72 19.62 14.51 14.41 69.77 71.87

Set of covariates

All variables included in specification 4 Yes Yes Yes Yes Yes

Additional regression information

Number of observations 11089 11089 11089 11089 11089
R2 0.097 0.101 0.0152 0.0106 0.0983

STEM = biology, chemistry, pharmacy, geosciences, physics, computer science, engineering, mathematics.
PTEM = physics, computer science, engineering, mathematics. Life sciences = biology and chemistry.
P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G the
number of clusters. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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Appendix

Figure A1: Trends of STEM degrees
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Notes: The figure shows the STEM degree percentages per HEEQ year by cohort. The solid and the long-
dash lines show the means for the treatment state Baden-Württemberg (BaWu). The dash and short-dash
lines show the same for the control states. The vertical red line groups the figure into before and after
treatment.

35



Figure A2: Trends of subfield degrees
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(a) PTEM
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(b) Life sciences
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(c) Math and physics
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(d) Engineering and computer science

Notes: The figure shows the STEM subfield degree percentages per HEEQ year by cohort. The solid and
the long-dash lines show the means for the treatment state Baden-Württemberg (BaWu). The dash and
short-dash lines show the same for the control states. The vertical red line groups the figure into before
and after treatment.
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Figure A3: Trends of STEM occupations
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Notes: The figure shows the STEM occupation percentages per HEEQ year by cohort. The solid and
the long-dash lines show the means for the treatment state Baden-Württemberg (BaWu). The dash and
short-dash lines show the same for the control states. The vertical red line groups the figure into before
and after treatment.

37



Figure A4: Trends of subfield occupations
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(b) Life sciences
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(c) Math and physics
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(d) Engineering and computer science

Notes: The figure shows the STEM subfield occupation percentages per HEEQ year by cohort. The solid
and the long-dash lines show the means for the treatment state Baden-Württemberg (BaWu). The dash
and short-dash lines show the same for the control states. The vertical red line groups the figure into
before and after treatment.
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Table A1: Regression results for PTEM degree and bootstrapped p-values

Outcome: At least one degree in PTEM (1) (2) (3) (4)

Male treatment effect 0.0717 0.0733 0.08 0.0951

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.12 - 0.15 - 0.04 - 1.00
Wild cluster bootstrap 26.83 0.90 24.92 0.60 17.62 0.00 31.73 3.50
Wild subcluster bootstrap 10.91 6.41 11.71 7.01 8.01 4.20 25.93 16.32
Ordinary wild bootstrap 16.82 17.42 18.92 17.42 11.31 12.41 23.12 24.12

Gender Difference -0.0685 -0.0699 -0.0731 -0.0723

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.07 - 0.05 - 0.02 - 0.05
Wild cluster bootstrap 23.02 0.00 22.22 0.00 18.72 0.00 19.82 0.00
Wild subcluster bootstrap 7.61 4.60 4.60 3.80 3.20 2.30 4.50 3.50
Ordinary wild bootstrap 15.32 13.51 12.01 15.02 9.41 12.01 10.21 14.41

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 21633 21633 21633 21633
R2 0.1084 0.1126 0.123 0.1259

PTEM = physics, computer science, engineering, mathematics. P-values are presented in percent. t(G-1)
refers to the p-value from the student t-distribution with G the number of clusters. Age stands for the
birth year and the squared birthyear. Cohort is a dummy for cohort 2009 and one for 2013. Parents refers
to the highest educational background of the parents and the highest occupational information. State
and year fixed effects are set for the state and year of the higher education entrance qualification. State
variables refer to 21 variables, which vary only at the state level and over time. The bootstrap p-values
are calculated using the Stata command bootees, see Roodman et al. (2018).
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Table A2: Regression results for life sciences degree and bootstrapped p-values

Outcome: At least one degree in Life Sciences (1) (2) (3) (4)

Male treatment effect -0.0101 -0.011 -0.0076 0.0054

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 2.68 - 4.27 - 11.39 - 31.90
Wild cluster bootstrap 32.63 1.80 38.74 6.01 39.04 14.71 64.86 61.26
Wild subcluster bootstrap 29.73 30.13 35.84 41.74 53.45 55.96 75.58 77.68
Ordinary wild bootstrap 26.83 26.03 35.64 34.33 48.35 46.55 71.27 74.07

Gender Difference -0.0042 -0.005 -0.0054 -0.0073

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 34.93 - 32.12 - 28.61 - 22.97
Wild cluster bootstrap 69.87 62.66 63.86 54.55 59.06 49.95 53.75 41.34
Wild subcluster bootstrap 83.28 84.28 77.68 78.28 73.47 75.28 66.77 68.27
Ordinary wild bootstrap 83.88 85.09 78.28 77.88 75.28 70.67 66.37 64.96

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 21633 21633 21633 21633
R2 0.0038 0.013 0.0205 0.0237

Life sciences = biology and chemistry. P-values are presented in percent. t(G-1) refers to the p-value from
the student t-distribution with G the number of clusters. Age stands for the birth year and the squared
birthyear. Cohort is a dummy for cohort 2009 and one for 2013. Parents refers to the highest educational
background of the parents and the highest occupational information. State and year fixed effects are set
for the state and year of the higher education entrance qualification. State variables refer to 21 variables,
which vary only at the state level and over time. The bootstrap p-values are calculated using the Stata
command bootees, see Roodman et al. (2018).
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Table A3: Regression results for math or physics degree and bootstrapped p-values

Outcome: At least one degree in Math or Physics (1) (2) (3) (4)

Male treatment effect -0.0405 -0.0397 -0.0409 -0.06

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.00 - 0.01 - 0.00 - 0.00
Wild cluster bootstrap 23.52 0.00 26.13 0.00 26.23 0.00 8.21 0.00
Wild subcluster bootstrap 16.52 12.71 17.52 14.71 16.52 14.51 5.41 5.71
Ordinary wild bootstrap 7.81 7.81 9.01 8.91 6.31 6.41 2.40 1.10

Gender Difference 0.0113 0.0107 0.0112 0.0114

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 25.02 - 26.66 - 26.06 - 26.78
Wild cluster bootstrap 52.25 48.15 57.56 49.55 55.06 47.95 56.86 49.35
Wild subcluster bootstrap 80.38 82.48 84.68 83.98 82.28 83.68 83.68 84.58
Ordinary wild bootstrap 74.27 72.87 75.18 76.98 74.27 74.47 75.88 75.18

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 21633 21633 21633 21633
R2 0.0027 0.0077 0.0119 0.014

P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G
the number of clusters. Age stands for the birth year and the squared birthyear. Cohort is a dummy for
cohort 2009 and one for 2013. Parents refers to the highest educational background of the parents and the
highest occupational information. State and year fixed effects are set for the state and year of the higher
education entrance qualification. State variables refer to 21 variables, which vary only at the state level
and over time. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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Table A4: Regression results for engineering and computer science degree and bootstraped
p-values

Outcome: At least one degree in Engineering or Computer Science (1) (2) (3) (4)

Male treatment effect 0.115 0.1157 0.1237 0.158

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.01 - 0.01 - 0.00 - 0.07
Wild cluster bootstrap 24.02 0.40 21.02 0.00 18.92 0.00 24.72 0.30
Wild subcluster bootstrap 7.51 3.90 6.61 4.00 7.41 2.20 11.41 1.50
Ordinary wild bootstrap 7.41 7.41 8.81 9.11 4.90 5.11 9.81 10.01

Gender Difference -0.0812 -0.0819 -0.0851 -0.0845

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.02 - 0.01 - 0.01 - 0.04
Wild cluster bootstrap 30.73 0.40 28.63 0.00 30.03 0.20 32.83 0.40
Wild subcluster bootstrap 5.11 4.20 5.51 3.80 5.31 3.00 7.31 4.40
Ordinary wild bootstrap 9.81 11.11 6.81 9.11 8.31 9.31 11.21 11.41

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 21633 21633 21633 21633
R2 0.1165 0.1183 0.1315 0.1345

P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G
the number of clusters. Age stands for the birth year and the squared birthyear. Cohort is a dummy for
cohort 2009 and one for 2013. Parents refers to the highest educational background of the parents and the
highest occupational information. State and year fixed effects are set for the state and year of the higher
education entrance qualification. State variables refer to 21 variables, which vary only at the state level
and over time. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).

42



Table A5: Regression results for PTEM occupation and bootstrapped p-values

Outcome: Occupation in PTEM (1) (2) (3) (4)

Male treatment effect 0.0911 0.0907 0.1004 0.1088

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.19 - 0.09 - 0.02 - 0.05
Wild cluster bootstrap 37.04 1.00 32.13 0.30 29.73 0.00 24.22 0.20
Wild subcluster bootstrap 31.53 31.23 26.43 23.62 29.63 28.23 37.64 22.22
Ordinary wild bootstrap 23.82 23.52 18.62 19.32 12.41 11.21 13.31 12.61

Gender Difference -0.0989 -0.0977 -0.1047 -0.1003

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.01 - 0.01 - 0.00 - 0.00
Wild cluster bootstrap 25.63 0.00 23.92 0.00 24.32 0.00 32.63 0.00
Wild subcluster bootstrap 21.62 20.02 22.02 19.82 26.53 19.32 24.92 20.12
Ordinary wild bootstrap 11.21 11.91 10.91 11.81 8.61 8.81 9.41 8.71

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 16009 16009 16009 16009
R2 0.0959 0.0986 0.1148 0.1182

PTEM = physics, computer science, engineering, mathematics. P-values are presented in percent. t(G-1)
refers to the p-value from the student t-distribution with G the number of clusters. Age stands for the
birth year and the squared birthyear. Cohort is a dummy for cohort 2009 and one for 2013. Parents refers
to the highest educational background of the parents and the highest occupational information. State
and year fixed effects are set for the state and year of the higher education entrance qualification. State
variables refer to 21 variables, which vary only at the state level and over time. The bootstrap p-values
are calculated using the Stata command bootees, see Roodman et al. (2018).
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Table A6: Regression results for life sciences occupation and bootstrapped p-values

Outcome: Occupation in Life Sciences (1) (2) (3) (4)

Male treatment effect 0.0111 0.0124 0.0127 0.0371

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 7.62 - 5.05 - 4.63 - 0.01
Wild cluster bootstrap 41.24 24.22 38.84 20.62 35.64 22.32 23.02 0.00
Wild subcluster bootstrap 54.05 48.85 53.35 45.75 55.46 51.95 11.61 5.31
Ordinary wild bootstrap 43.24 44.34 36.74 38.24 37.04 34.63 1.40 0.90

Gender Difference -0.0142 -0.0138 -0.0134 -0.0148

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.64 - 0.87 - 1.03 - 0.95
Wild cluster bootstrap 34.83 3.80 35.74 4.90 38.64 7.31 36.04 8.61
Wild subcluster bootstrap 22.72 21.22 26.93 24.22 26.93 24.12 30.33 22.62
Ordinary wild bootstrap 21.12 16.62 22.72 22.62 23.62 24.12 24.42 23.82

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 16009 16009 16009 16009
R2 5e-04 0.0028 0.0071 0.0106

Life sciences = biology and chemistry. P-values are presented in percent. t(G-1) refers to the p-value from
the student t-distribution with G the number of clusters. Age stands for the birth year and the squared
birthyear. Cohort is a dummy for cohort 2009 and one for 2013. Parents refers to the highest educational
background of the parents and the highest occupational information. State and year fixed effects are set
for the state and year of the higher education entrance qualification. State variables refer to 21 variables,
which vary only at the state level and over time. The bootstrap p-values are calculated using the Stata
command bootees, see Roodman et al. (2018).
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Table A7: Regression results for math and physics occupation and bootstrapped p-values

Outcome: Occupation in Math or Physics (1) (2) (3) (4)

Male treatment effect -0.0132 -0.0132 -0.0129 -0.0178

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.01 - 0.02 - 0.02 - 0.02
Wild cluster bootstrap 33.03 0.40 31.63 1.30 32.63 0.60 26.23 0.20
Wild subcluster bootstrap 13.91 10.31 11.71 8.41 10.11 5.71 5.01 2.10
Ordinary wild bootstrap 9.81 10.51 10.41 12.41 9.31 9.11 5.31 4.50

Gender Difference 0.0082 0.0083 0.0084 0.0091

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.12 - 0.11 - 0.14 - 0.08
Wild cluster bootstrap 28.33 0.60 27.53 0.70 27.13 0.20 29.73 0.00
Wild subcluster bootstrap 22.32 20.32 20.32 18.92 18.82 19.42 15.62 13.51
Ordinary wild bootstrap 18.52 19.62 16.02 17.52 17.72 18.32 14.71 14.91

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 16009 16009 16009 16009
R2 0.0036 0.0052 0.0074 0.0087

P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G
the number of clusters. Age stands for the birth year and the squared birthyear. Cohort is a dummy for
cohort 2009 and one for 2013. Parents refers to the highest educational background of the parents and the
highest occupational information. State and year fixed effects are set for the state and year of the higher
education entrance qualification. State variables refer to 21 variables, which vary only at the state level
and over time. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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Table A8: Regression results for engineering and computer science occupations and boot-
strapped p-values

Outcome: Occupation in Engineering or Computer Sciences (1) (2) (3) (4)

Male treatment effect 0.1043 0.1039 0.1134 0.1266

P-values for male treatment effect Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.03 - 0.01 - 0.00 - 0.01
Wild cluster bootstrap 33.73 0.30 30.53 0.00 28.83 0.00 18.92 0.00
Wild subcluster bootstrap 23.52 21.02 17.62 13.01 20.72 16.52 24.12 15.62
Ordinary wild bootstrap 14.41 14.11 10.91 9.01 5.81 6.31 7.91 6.31

Gender Difference -0.1071 -0.106 -0.1131 -0.1094

P-values for gender difference Res. Unres. Res. Unres. Res. Unres. Res. Unres.

t(G-1) - 0.00 - 0.00 - 0.00 - 0.00
Wild cluster bootstrap 23.02 0.00 21.62 0.00 24.32 0.00 23.52 0.00
Wild subcluster bootstrap 16.32 14.41 14.91 12.41 19.52 12.11 19.42 15.82
Ordinary wild bootstrap 8.31 6.61 6.61 6.81 6.11 5.41 6.31 6.41

Set of covariates

Age, Cohort, Parents No Yes Yes Yes
State and Year Fixed Effects No No Yes Yes
State Variables No No No Yes

Additional regression information

Number of observations 16009 16009 16009 16009
R2 0.0925 0.0953 0.1125 0.116

P-values are presented in percent. t(G-1) refers to the p-value from the student t-distribution with G
the number of clusters. Age stands for the birth year and the squared birthyear. Cohort is a dummy for
cohort 2009 and one for 2013. Parents refers to the highest educational background of the parents and the
highest occupational information. State and year fixed effects are set for the state and year of the higher
education entrance qualification. State variables refer to 21 variables, which vary only at the state level
and over time. The bootstrap p-values are calculated using the Stata command bootees, see Roodman
et al. (2018).
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