

TRENDS 2017 Transition to Renewable Energy Devices and Systems

Detlef Stolten, Ralf Peters (Editors)

Energie & Umwelt / Energy & Environment Band / Volume 447 ISBN 978-3-95806-376-1

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung Elektrochemische Verfahrenstechnik (IEK-3)

TRENDS 2017

Transition to Renewable Energy Devices and Systems

Detlef Stolten, Ralf Peters (Editors)

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 447

ISSN 1866-1793

ISBN 978-3-95806-376-1

Bibliografische Information der Deutschen Nationalbibliothek. Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte Bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Herausgeber und Vertrieb:	Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag 52425 Jülich Tel.: +49 2461 61-5368 Fax: +49 2461 61-6103 zb-publikation@fz-juelich.de www.fz-juelich.de/zb
Umschlaggestaltung:	Grafische Medien, Forschungszentrum Jülich GmbH
Bildnachweis Titelseite:	Forschungszentrum Jülich; © fotolia.com: diyanadimitrova (Photovoltaik), W.Scott (Windräder), Thaut Images (Autos), Arcady (Tropfen); © stock.adobe.com: th-photo (Lieferwagen), Yuri Bizgaimer (Busse)
Druck:	Grafische Medien, Forschungszentrum Jülich GmbH
Copyright:	Forschungszentrum Jülich 2018

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment, Band / Volume 447

ISSN 1866-1793 ISBN 978-3-95806-376-1

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER) unter www.fz-juelich.de/zb/openaccess.

This is an Open Access publication distributed under the terms of the <u>creative commons of the creative commons of the creativ</u> This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,

Contents

Preface	3
Sector Coupling for Germany until 2050 – An Energy Systems Perspective - Detlef Stolten, Martin Robinius	5
Options and Challenges of Electrification of the Transport Sector from the Point of View of an Automotive OEM Jörg Wind	17
Power-to-Fuel – A Promising Future Fuel Alternative for the Transport Sector? Ralf Peters, Maximilian Decker, Steffen Schemme, Stefan Weiske, Detlef Stolten	31
The Separation of CO_2 from Ambient Air – a Techno-Economic Assessment Daniel Krekel, Remzi Can Samsun, Ralf Peters, Detlef Stolten	61
Future and Mobility – Perspectives and Needs Martin Lohrmann, Konstantin Kersten	81
Toyota's aspirations on Hydrogen and Fuel Cells Muriel Desaeger	97
Sector Coupling Needs and selected concepts <i>Manfred Waidhas</i>	119
Sector Coupling as a Chance for the Power Generation Klaus Görner	131
Transition of Public Transport to Emission Free Buses in Hamburg Heinrich Klingenberg	151
Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles Martin Robinius, Jochen Linßen, Thomas Grube, Markus Reuß, Peter Stenzel, Konstantinos Syranidis, Patrick Kuckertz, Detlef Stolten	169

 Model-Based Product and Pathway Design for Tailor-Made Fuels
 187

 from Biomass
 Manuel Dahmen, Wolfgang Marquardt

Preface

The round table discussion, *TRENDS 2017: Transition to Renewable Energy Devices and Systems* took up relevant topics in the area of the transformation of the energy system. The objective of the conference was to highlight game changers and address missing links in order to achieve the G8 goals of reducing CO_2 emission by 80% by 2050 and realizing a major share of renewable power by 2030.

TRENDS 2017 focused on relevant topics in relation to the transformation of the energy system and highlighted the interconnection of the power and transport sectors against the backdrop of the COP21 goals. The conference proceedings provide useful data, facts and figures to share different insights from power generation, energy transport and the use of energy in the transportation sector.

There are various approaches to make use of the volatility of renewable power generation in today's energy system as efficiently as possible. Thus, it is necessary to determine appropriate storage technologies and/or to further develop the existing energy system with consideration to fluctuating power generation. The main topics of the conference were the status and prospects of hydrogen vehicles and batteries, Power-to-Fuel, DCDC grids, ideas for sector coupling and the connection of climate zones.

We have compiled most of the presentations of TRENDS 2017, together with a short abstract to a proceedings book. We would once again like to thank all participants for their valuable presentations and contributions to the discussion. With regard to a follow-up, we invite interested readers of this compilation to send their comments to the editors. We would be glad to implement new features in a future event.

Detlef Stolten, Ralf Peters,

Forschungszentrum Jülich GmbH Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Sector Coupling for Germany until 2050 - An Energy Systems Perspective -

5

Detlef Stolten, Martin Robinius

d.stolten@fz-juelich.de

Institute of Electrochemical Process Engineering (IEK-3) TRENDS2017 – Transition to Renewable Energy Devices and Systems Interconnecting Power and Transport in View of COP21 Aachen December 5 – 6, 2017

Interconnecting Power and Transport

Institute of Electrochemical Process Engineering IEK-3

Setting the Scene

Institute of Electrochemical Process Engineering IEK-3

Basic Requirements for a Future Energy System

- In 2050 CO₂ emissions based on 1990 shall be reduced by 80-95 %
- · After the transition period energy should not be more expensive than today
- · Limited emissions shall be reduced
- · Electricity, fuels and heat must be available with high reliability
- All energy sectors need to be addressed
- · Teratogenic, carcinogenic and poisonous substances shall be avoided

Paramount Topics

- Storage
 - Short term: grid stabilization (pumped hydro, batteries, gas storage etc)
 - Long term: compensate for sustainedly low power generation (only gas storage feasible)
- o Transportation (from generation to consumption; connecting regions of different climate)
- o Compensation of fluctuating renewable input
- o Spatial restrictions
- Handling dichotomy between a very <u>distributed</u> (e.g. household PV) vs. very <u>centralized</u> system (off-shore wind farms and coastal on-shore wind power generation)
- Interconnecting the energy sectors

Institute of Electrochemical Process Engineering IEK-3

Timeline for CO₂-Reduction and the Implication of TRL Levels **JÜLICH**

- 2050: 80% reduction goal fully achieved
- 2040: start of market penetration
- 2030: research finalized for 1st generation technology

Development period: unil 2040

Research period: until 2030

 \Rightarrow 15 years left for research => TRL 5 and higher

TRL 4 at least

System Test, Launch & Operations

TRL 9

This is not to say research at lower TRL levels is not useful, it will just not contribute to the 2050 goal

Institute of Electrochemical Process Engineering IEK-3

5

The Energy Systems Background

The overall GHG emission goals of Germany require a holistic 🌄 JÜLICH transformation of all sectors

8

[1] BMWi, Zahlen und Fakten Energiedaten - Nationale und Internationale Entwicklung, 2016. Bundesministerium für Wirtschaft und Energie: Berlin.

[2] BRD, Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung, Bundeskabinett. 2010: Berlin. [3] UN, Paris Agreement - COP21, United Nations Framework Convention on Climate Change 2015: Paris. 7

Institute of Electrochemical Process Engineering IEK-3

Institute of Electrochemical Process Engineering IEK-3

9

Excess Power is Inherent to Renewable Power Generation

Institute of Electrochemical Process Engineering IEK-3

Overcapacity in Power is Inherent for Full Renewable Energy Supply

9

Conscitut factor -	energy harvested			
capacity factor —	nameplate power * 8670 hrs			

Average power demand for Germany: ~ 60 GW (based on 528 TWh grid electricity)

	Capacity factor	Necessary Power, if just one Technology is applied	Reasonable power mix DE 2050 (DE gov. Installation plans extrapolated)	Reasonable electricity mix DE 2050	Electricity to be converted to H ₂ (serving 75% of passenger vehicles in DE)
Offshore wind	0.46	120 GW	59 GW	236 TWh	
Onshore wind	0.23	230 GW	132 GW	267 TWh	
PV	0.12	460 GW	120 GW	126 TWh	
Total			311 GW	629 TWh	101 TWh (2,1 mt H ₂)
Untimely produced electricity				≈ 200 TWh (to be stored)	
CO ₂ cut Ø 80%				90% (10% power by NG)	54% of passenger cars

Institute of Electrochemical Process Engineering IEK-3

Projection of Renewables According to Current German Policy

		2020	2030	2040	2050
Peak excess power*	GW _e	22	55	90	125
Excess energy*	TWh _e	2,5	30	100	200
<u>Minimum</u> storage size**	TWh	0,9	6	12	17

Institute of Electrochemical Process Engineering IEK-3

Simple Model to Illustrate the Impact of Cost Considerations

		Base Case	The Value of Transport
Ene	ergy transport	Pipeline	Not connected
	Onshore wind	49.9 GW	8.1 GW
orth	Inst. electrolyzers	40.8 GW	7.3 GW
Ň	Storage capacity (UGS)	8.8 TWh	1.6 TWh
	Onshore wind	0 GW	75.8 GW
uth	Inst. electrolyzers	0 GW	34.9 GW
Sc	Storage capacity (Large vessel)	0.3 TWh	12.3 TWh
Tota (TA	al annual cost C)	TAC _{bc}	199% of TAC _{bc}

11

Institute of Electrochemical Process Engineering IEK-3

Sector Coupling changes the

Electricity demand [TWh/a] | Install. capacity [GW]

Higher electricity demand due to P2X technologies which will be served throw **Renewable Energy Sources**

Institute of Electrochemical Process Engineering IEK-3

Cost distribution

Cost Results for H₂ provision – Patagonia to Japan

- H₂ Production of 8.8 Mt/a in Patagonia (use of wind energy)
- Domestic transport via Pipeline (4,500 km)
- Liquefaction and storage in domestic harbor (Cap.: 113,600 tons)
- International transport via ship (Punta Arenas to Yokohama: 17,712 km)

Institute of Electrochemical Process Engineering IEK-3

15

Transportation

Institute of Electrochemical Process Engineering IEK-3

Estimated Data for Passenger Car-based Transport in 2050

Battery vehic	e (renewable electricity)	Fuel cell vehi	cle (renewable electricity
Efficiency:	80 % x 85 % = 68 % (WTT) (TTW)	Efficiency:	63 % x 60 % = 38 % (WTT) (TTW)
Vehicle cost:	99	Vehicle cost:	00
Fuel production:	\oplus	Fuel production:	θ
Storage & distrib.:	000	Storage & distrib.:	\oplus
Operating range:	low	Operating range:	medium - high
Resources:	sufficient	Resources:	sufficient
Soot/NOx emission	s: none	Soot/NOx emission	s: none
Combustion e	engine (CO ₂ -based fuels)	Combusti	on engine (bio-fuels)
Efficiency: 70	% x 50 % x 25 % = 9 %	Efficiency:	50 % x 25 % = 13 %
(†	l ₂) (plant) (TTW)		(VVII)(IIVV)
(H Vehicle cost:	I₂) (plant) (TTW) ⊖	Vehicle cost:	Θ
(H Vehicle cost: Fuel production:	l₂) (plant) (TTW) ⊖ ⊖⊖	Vehicle cost: Fuel production:	(WTT) (TTW) 0 00
(F Vehicle cost: Fuel production: Storage & distrib.:	4₂) (plant) (TTW) ⊖ ⊖⊖ ⊕⊕	Vehicle cost: Fuel production: Storage & distrib.:	⊕ ⊖⊖ ⊕⊕
(F Vehicle cost: Fuel production: Storage & distrib.: Operating range:	l₂) (plant) (TTW) ⊖ ⊖⊖ ⊕⊕ high	Vehicle cost: Fuel production: Storage & distrib.: Operating range:	⊖ ⊖⊖ ⊕⊕ high
(F Vehicle cost: Fuel production: Storage & distrib.: Operating range: Resources:	H₂) (plant) (TTW) ⊖ ⊖⊖ ⊕ high sufficient	Vehicle cost: Fuel production: Storage & distrib.: Operating range: Resources:	↔ (WTH) (TTW) ↔ ↔ ↔ ↔ high limited

Institute of Electrochemical Process Engineering IEK-3

JÜLICH

Infrastructure Analysis (simplified)

[2] PV @ 1000 €/kW; wind onshore @ 1400 €/kW; offshore @ 3000/kW; Installed capacities after [3] Robinius, M. (2016): Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Dissertation RWTH Aachen [4] 42 GW GT + comb. Cycles, 23 GW already in place [5] Zeitreihen zur Entwicklung Erneuerbarer Energien, BMWi, August 2016 [6] Netzentwicklungsplan NEP 2025, BNA Institute of Electrochemical Process Engineering IEK-3 20

The Systems Analysis Team

15

Copyright: IEK-3, Forschungszentrum Jülich

Institute of Electrochemical Process Engineering IEK-3

21

Thank You for Your Attention! d.stolten@fz-juelich.de

Institute of Electrochemical Process Engineering IEK-3

Options and Challenges of Electrification of the Transport Sector from the Point of View of an Automotive OEM

Jörg Wind Daimler AG

The presentation introduces the different options for alternative fuels and alternative drivetrains with a focus on electrified drivetrains. A well-to-wheel (WTW) comparison of energy consumption and green-house-gas (GHG) emissions clearly shows that electric vehicles, like battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV), cause the lowest energy consumption and GHG-emissions, whereas biofuels and synthetic fuels have only the potential to reduce GHG emsissions, but leading to a significant increase in energy consumption compared to fossil fuels derived from crude oil. Both BEVs and FCEVs have significant advantages especially concerning environmental impact, but still face some challenges, especially the lack of a sufficient charging and refueling infrastructure. The choice of the specific electric drive train, e.g. the use of batteries and/or fuel cells depends on the size of the vehicle and the requested mileage: the larger the vehicle and the longer the trip, the more is a fuel cell system the adequate solution. For very large vehicles, like ships and airplanes and very long distances synthetic fuels come into play.

Electromobility with battery and/or fuel cell is already reality. Quite a number of electric vehicles are already available on the market. The EV sales numbers was more than 700,000 in 2016 (and exceeded one million in 2017). Daimler has a large experience with FCEVs and has shown the maturity of FCEVs while driving 10 million kilometers with the Mercedes B-Class F-Cell passenger car and more than 4 million kilometers with the Citaro FuelCell Hybrid bus in customers' hands. Daimler's next generation FCEV, the Mercedes GLC F-Cell has been presented at the international automobile exhibition in Frankfurt in September 2017. The vehicle is a big step forward in FCEV technology. It was possible to reduce the platinum content of the FC stack by 90%, while increasing the power by 40% and reducing the volume of the fuel cell system (FCS) by 30%. Additionally, with its 9 kWh Li-ion battery and an on-board charger, it is the first plug-in FCEV on the market.

The build-up of a suitable hydrogen infrastructure is key for a successful market introduction of FCEVs. All new hydrogen refueling stations (HRS) fulfil the necessary standards for a fast refueling of the full hydrogen tank in three minutes. To accelerate the build-up of a HRS network in Germany, six companies have founded the joint venture H2Mobility Deutschland GmbH, supported by five associated partners and the German government via the NOW-organization. Daimler is one of the founding members.

The build-up of charging infrastructure for BEVs and PHEVs is also promoted by many market players and governments. Contrary to HRS, at least four different standards have been established world-wide, which is a barrier for seamless electric mobility. The number of charging stations is growing worldwide, with a focus on the US, Europe, Japan and China.

In the truck segment, especially heavy duty trucks, the first electrified vehicles have just been presented in the last months. It is very likely that especially FCEV-trucks will be seen on the road in future.

DAIMLER

Options and Challenges of Electrification of the Transport Sector from the Point of View of an Automotive OEM

Dr. Jörg Wind, TRENDS 2017, Aachen 5th December 2017

Responsibility for our Blue Planet

- Worldwide rising demand for mobility will increase CO₂ emissions
- · Fossil resources are limited and will therefore become more

Daimler is shaping the future of mobility in many aspects. We re-invent the car!

Daimler AG

Page 3

EV Technology (BEV & FCEV) is an Integral Part of Daimler's Powertrain Strategy

Daimler AG

Revolution of the Mobile Drive vs. Evolution of the Alternative Fuels of the Future

Daimler AG

Choice of electrified powertrains

Well-to-Wheel Comparison of Greenhouse Gas Emissions and Energy Consumption of EUCAR Reference Vehicles (C-segment passenger car) 2020+

Well-to-Wheel Consideration of Fuel Cell Plug-in-Hybrid

Daimler AG

FCEV and BEV Characteristics

Daimler AG

Dr. Jörg Wind

Energy supply and infrastructure: Challenges and opportunities

Hydrogen as fuel for transport:

- Long time storage of large guantities
- Viable option to balance intermittent supply of renewabel electricity
- Fast refuelling of vehicles (200km/minute)
- · Worldwide standardized refueling protocols
- Positive business case for HRS operation possible
- Operation mode and fuel cost similar to conventional fueling stations

Electricity as fuel for transport:

- · Lower invest in the starting phase
- Lower energy losses
- · Large number of equipment suppliers
- Up to now no positive business case for public charging stations
- Large invests in electricity grid needed, especially for fast charging

Choice of electric vehicles type and electric fuels depends on vehicle segment and driving distance

Electric Mobility is already real, innovative products coming

soon

Mercedes-Benz B-Class electric drive (BEV)

Mercedes-Benz GLC F-CELL (FCEV)

Mercedes-Benz EQ (BEV)

Mercedes-Benz Vision Van (BEV)

Dr. Jörg Wind

Worldwide PEV Sales (BEV & PHEV)

```
Daimler AG
```


Next Generation Fuel Cell Powertrain

Next Generation Fuel Cell Vehicle: "The Fuel Cell gets a Plug!"

Daimler AG

Page 17

Technical Configuration of a Hydrogen Fueling Station

Status quo of hydrogen filling stations:

- > Pre-cooling down to -40° Celsius
- > Pressure of hydrogen: 350 and 700 bar
- Standardized refueling process (SAE TIR J2601, ISO/TS 20100) using infrared data interface for communication vehicle <> filling station (SAE J2799)
- > Refueling time: approx. 3 minutes for the B-Class F-CELL (ca. 4 kg hydrogen)
- > Standardized hydrogen filling connector (SAE J2600, ISO/FDIS 17268)
- > Hydrogen fuel quality (SAE J2719, ISO/FDIS 14687)
- > Unitized construction / scalable

Infrastructure: H₂ Mobility Initiative in Germany Built-up of Nationwide Hydrogen Station Network till 2023

Daimler AG

Page 19

Overview of plugs and inlets

Development of public charging infrastructure Example: DC infrastructure in Europe

> 3000 Chademo DC charging stations in Europe Superchargers in Europe SLAM-project: Up to 600 DC charging stations in Germany

Tesla

Daimler AG

Dr. Jörg Wind

Heavy duty vehicles: BEVs and FCEVs enter the market

Mercedes-Benz Citaro Fuel Cell Bus

Nikola One FC Truck (Prototype)

Mercedes-Benz Urban e-Truck (BEV) FUSO Canter E-Cell (BEV)

Toyota FC Truck (Prototype)

Alstom Coradio iLint FC-Train (Prototype)

Daimler AG

Dr. Jörg Wind

Daimler AG

Dr. Jörg Wind

Power-to-Fuel – A Promising Future Fuel Alternative for the Transport Sector?

Ralf Peters, Maximilian Decker, Steffen Schemme, Stefan Weiske, Detlef Stolten Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research – Electrochemical Process Engineering (IEK-3)

Renewable energy from wind and solar sources is affected by fluctuations which do not correspond to the demand for electrical energy. Storage options are therefore required and also other possibilities of utilizing this power in a future energy system. An important first step is water electrolysis for the production of hydrogen. If this hydrogen cannot be used directly then it must also be stored by chemical storage. Fuel synthesis using CO2 from industrial waste gases and hydrogen from electrolysis is an attractive approach.

The following contribution outlines the role of the transport sector in the energy system and the resulting challenge for the transport sector in the context of the transition of the energy system (Energiewende). As an option to face the challenge, coupling the energy-generation and the transport sector using power-to-fuel (PTF) technologies is presented. The paper offers the fundamental approach as well as a basis for discussion concerning the implementation of this option. The focus is on the potential of non-fossil and non-biological diesel fuels produced from CO2 and hydrogen from renewable energy sources and CO2 regarding a possible implementation strategy.

The physical and chemical properties of synthetic diesel fuels are compared with those of conventional diesel. Methylal and higher oxymethylene ethers represent one fuel option due to the low-emission combustion of ethers with their characteristic C-O bonds. However, conventional synthesis is an elaborate process because of the large number of intermediate steps. The direct synthesis of methylal and higher oxymethylene ethers would considerably simplify the technical implementation. Here we present a method that considers Gibbs energy in order to analyze the possibilities of direct synthesis from CO2-H2. High operating pressures and influence of the critical states of educt and products on the thermodynamic state parameters of enthalpy and entropy mean that the real gas properties can be modeled by an equation of state. Methylal can therefore be formed with high conversion rates at pressures of 100 bar and temperatures below 373 K. The formation of dimethyl ether as a potential by-product must be suppressed by a suitable catalyst since it is thermodynamically favored. Higher oxymethylene ethers are difficult to directly synthesize by the following thermodynamic analysis. First of all, formaldehyde must be formed from methanol. Three formaldehyde molecules ultimately form cyclic trioxane, which reacts with methylal to form higher oxymethylene ethers.

This contribution creates a basis for discussion regarding the selection, production, and implementation strategies for promising future fuel alternatives for the transport sector. There are already techno-economic calculations – and in some cases pilot plants – for various pathways for synthesizing these fuels. However, in order to achieve a comparative evaluation of the various paths, standardized calculations are necessary. This evaluation creates the basis for an efficient implementation strategy for a future, ideally greenhouse-gas-neutral, transport sector, and thus to achieve the objectives of the Energiewende and the Energy Roadmap 2050 set by the European Commission. The detailed analysis is published by Schemme et al. in Fuel 205 (2017) 198–221.

Power-to-Fuel – A Promising Future Fuel Alternative for the Transport Sector?

32

<u>Ralf Peters</u>, Maximilian Decker, Steffen Schemme, Stefan Weiske, Detlef Stolten

> Forschungszentrum Jülich Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Topic Workshop "Fuel Cells, Electrolysis & Hydrogen",
 November 2017, Frankfurt Airport Center, Frankfurt a. Main

Electrofuels Connecting Power and Mobility Sector

- > Motivation
- Process development
- > Assessment of available quantities
- Connection to biofuels
- > Fuel Strategy

Motivation

Process Development OME₃₋₅ Comparison

Assessment of Available Quantities

Connection to Biofuels

Fuel Strategy

IEK-3: Elektrochemische Verfahrenstechnik

Political Boundary Conditions and Conclusions

3

- Reduction of anthropogenic GHG emissions by 80%₁₉₉₀ by 2050
- Reduction of primary energy demand in transport by 40%₂₀₀₅ by 2050
- The energy transition must affect the transport sector with a share of 30%
- Interconnection of energy and fuel sectors
- Improvement of energy efficiency

33

- Security of supply
- Reduction of fossil feedstocks
- Reduction of emissions

IEK-3: Elektrochemische Verfahrenstechnik

OME₃₋₅

n-Alkanes

36

Motivation for Selecting these Electrofuels OME₃₋₅ and n-Alkanes (for the analysis)

Electrofuels vs. Standard (fossil) Diesel

	Diesel DIN EN 590	OME ₃₋₅ (Power-to-Fuel)	n-Alkanes C ₁₅ -C ₂₀ (Power-to-Fuel)	
Density at 15 °C [kg/m³]	820 to 845	1073	779.6	
Cetane number	min. 51	72	< 85	Benefit
Viscosity at 40 °C [mm²/s]	2 to 4,5	1 to 3	≈ 4	
Sulphur [mg/kg]	max. 10	0	0	Bonofit
Polyaromatics [wt%]	max. 11	0	0	Denent
Melting point [°C]	- 20	- 43 to 28	N/A	
Distillation range [°C]	200 (T10 ASTM D86) 360 (T95 ASTM D86)	155 to 242	270 (T10 ASTM D86) 355 (T95 ASTM D86)	
Flash point[°C]	min. 55	69	N/A	
LHV [MJ/Liter]	36	20.9	34.2	
O ₂ content [wt%]	-	49	0	Benefit

cetane number $\uparrow \rightarrow \eta_{engine} \uparrow$

 O_2 -content \uparrow energy density ↑ → better emission values (no NOx-soot-tradeoff)

 \rightarrow consumption per mile similar to fossil diesel

IULICH

IEK-3: Elektrochemische Verfahrenstechnik

State of the Art Regarding Fuel Synthesis

Fischer-Tropsch synthesis: Maturated g / kJ/mol_{co} $n CO + (n+m/2) H_2 \rightarrow C_n H_m + n H_2 O$ industrial Methanol synthesis: Process $CO + 2 H_2 \rightarrow CH_3OH$ ~ 200 DME synthesis: $2 \text{ CH}_3\text{OH} \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}$ Methanol to Gasoline Methanation: ~ 600 $CO + 3 H_2 \rightarrow CH_4$ Reverse Water-Gas-Shift $CO_2 + H_2 \rightarrow CO + H_2O$ g / kJ/mol_{CO2} **FRL 7-9** Methanation: CO_2 + 4 H₂ \rightarrow CH₄ + 2 H₂O Methanol synthesis: $CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O$ TRL 4 DME synthesis: ~ 400 $2 \text{ CO}_2 + 6 \text{ H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + 3 \text{ H}_2\text{O}$ TRL 3 A: Electrolysis & synthesis **B:** Distillation ~ 900

TRL 1-2: Idea, concept & techno economic analysis IEK-3: Elektrochemische Verfahrenstechnik

Motivation

Process Development

Comparison

Assessment of Available Quantities

Connection to Biofuels

Fuel Strategy

11

JÜLICH

12

B)

38

 Ho, M.T. and D.E. Wiley, 28 - Liquid absorbent-based post-combustion CO2 capture in industrial processes A2 - Feron, Paul H.M, in Absorption-Based Post-combustion Capture of Carbon Dioxide. 2016, Woodhead Publishing. p. 711-756.

IEK-3: Elektrochemische Verfahrenstechnik

15

Process Design and Assessment Technically feasible production?

JÜLICH FORSCHUNGSZENTRUM

Process Efficiency: Fischer-Tropsch – Optimization

40

Base Case + ATR (autothermal reformer) + μ -Reactor (α variable along reactor length) + heat int. $\alpha = chain growth probability$

Opportunities and Challenges of Fischer-Tropsch synthesis

- Decreased limited emissions
- Higher engine efficiency
- "Drop-In"-feasibility & base fuel for future drop-in solutions
- No synthesis pathways from CO₂/ H₂
 ⇒ reverse water-gas shift reactor required
- Chain growth up to waxes
- Hydrocracking required
- Product spectrum from gases to waxes

Target: high share of kerosene or diesel

Motivation

Process Development

OME₃₋₅

41

Comparison

Assessment of Available Quantities

Connection to Biofuels

Fuel Strategy

JÜLICH

19

IEK-3: Elektrochemische Verfahrenstechnik

Process design for OME Direct synthesis of methylal (OME-1)

$3 \text{ CO}_2 + 8 \text{ H}_2 \rightleftharpoons \text{C}_3 \text{H}_8 \text{O}_2 + 4 \text{ H}_2 \text{O}_3 \text{O}_2$

Feasibility of synthesis pathways

- Thermodynamic modeling in the gas phase ≻
- Chemical equilibrium
- G^E-model for real mixtures in liquid phase

Design of ASPEN Plus flow sheet

- Reactor models: a) yield reactor; b) Gibbs reactor; c) reactor w/ reaction kinetic model
- Separation columns
- Pumps & compressors
- Recycle streams & valorization of side streams

Thermodynamic Modeling for Gas Phase Reactions

Calculation of change in Gibbs energy for real gases by cubic equations of state from gaseous educt mixture (CO₂ - H₂) to gaseous product mixture (CO₂ - H₂ - H₂O - OME-1 - DME - MeOH etc.)

42

 $3 \text{ CO}_2 + 8 \text{ H}_2 \rightleftharpoons \text{C}_3 \text{H}_8 \text{O}_2 + 4 \text{ H}_2 \text{O}_2$ $2 \text{ CO}_2 + 6 \text{ H}_2 \rightleftharpoons \text{C}_2 \text{H}_6 \text{O} + 3 \text{ H}_2 \text{O}$: DME OME-1: Vs.

Selectivity: $CH_4 > DME > CH_3OH > OME-1 >> OME-2$ etc.

Challenge: thermodynamic restriction for direct synthesis for methylal (OME-1) and higher OMEs

Peters Energy 138 (2017) 1221-1246

IEK-3: Elektrochemische Verfahrenstechnik

Technically feasible production?

Process Design and Assessment

Process design for OME

IÜLICH

JÜLICH

Process design for OME

Synthesis of methylal (OME-1): Formaldehyde synthesis

Process design for OME Synthesis of methylal (OME-1): trioxane synthesis

45

Process design for OME

IÜLICH

Synthesis of methylal (OME-1): OME synthesis

Vapor-Liquid Equilibria of the Water – Formaldehyde System

Liquid phase: UNIFAC + quasi-chemical reaction equilibrium forming methylen glycole etc. Gas phase: EOS Redlich Kwong

46

Vapor-Liquid Equilibria of Ternary Systems

Design of destillation column by ASPEN Plus

- Optimization of: Number of stages; Feed stage; Reflux; Reboiling.
- Bottom product: formaldehyde – water: 50:50 (Molar fraction)
- Top product: methanol

31

IÜLICH

Opportunities and Challenges for OME-Synthesis

- Decreased particle/ NO_x-emissions in diesel engine
- Higher motor efficiency
- "Drop-In"-feasibility within borders

- Lower energy density of diesel
 ⇒ halved range
- No direct synthesis from CO₂/ H₂
- Complex multistage synthesis process
- Non-ideal thermodynamic properties of multicomponent mixtures out of intermediate and final products
- Complex separation in each step

IEK-3: Elektrochemische Verfahrenstechnik

Product distribution OME₃₋₅ & FT products

Carbon Number

33

34

JÜLICH

48

49

Gruden, D., Umweltschutz in der Automobilindustrie: Motor, Kraftstoffe, Recycling. ATZ / MTZ-Fachbuch. 2008, Wiesbaden: Vieweg +Teubner / GWV Fachverlage GmbH Wiesbaden

2 lannuzzi, S.E., et al., Fuel, 2016. 167: p. 49-59

Liu, H., et al., Energy, 2015. 88: p. 793-800.

IEK-3: Elektrochemische Verfahrenstechnik

35

JÜLICH

Comparison of Efficiencies

n-Hexadecane OME₃ $16 \text{ CO}_2 + 49 \text{ H}_2 \rightarrow \text{C}_{16}\text{H}_{34} + 32 \text{ H}_2\text{O}$ $5 \text{ CO}_2 + 15 \text{ H}_2 + 1,5 \text{ O}_2 \rightarrow \text{ C}_5 \text{ H}_{12} \text{ O}_4 + 9 \text{ H}_2 \text{ O}_2$ With a value of 100. LHV_{H2} = 120.21 MJ/kg LHV_{H2} = 120.21 MJ/kg hexadecan is the reference for cetane numbers LHV_{C16H34} = 44.32 MJ/kg LHV_{OME3} = 19.14 MJ/kg $\eta_{\text{CCE,theoretical}}$ = 83.8 % P_{ein} [kW] $\eta_{\text{CCE,theoretical}}$ = 68.8 % Pein [kW] Electrolysis 88 % Electrolysis 69 % Utilities 5.6 % Utilities 25 % 1.9 % Pumping Pumping 2.2 % 4.6 % CO₂ CO_2 3.5 % **Fischer-Tropsch** OME₃₋₅ $\eta_{\rm CCE} = 83.7 \%$ $\eta_{\rm CCE} = 66.8 \% (64.8 \%)$ η_{Plant} = 74.6 % $\eta_{\text{Plant}} = 42.6 \% (41.4 \%)$ Literature^[1] $\eta_{\rm CCE}$ = 83.4 % LHV_{Lautenschütz et al.} (LHV_{Lui et al.}) f = 0.89f = 0.64 (0.64) $\eta_{\rm Plant} = 69.3-75.1$ % $\eta_{\rm PTL} = 51.5 \%$ $\eta_{\rm PTI} = 32.3 \% (31.3 \%)$ f = 0.83 - 0.9m_{Fuel}·LHV_{Fuel} Efficiency factor $f = \frac{\eta_{Plant}}{\eta_{Plant}}$ Chemical conversion efficiency $\eta_{CCE} =$ m
{H2}·LHV{H2} m
{Fuel}·LHV{Fuel} ncce Power-to-Liquid $\eta_{Power-to-Liquid} = \frac{m_{Power}}{m_{H2} \cdot LHV_{H2}} + P_{Plant} + P_{CO2}$ Plant efficiency $\eta_{Plant} =$ $\dot{m}_{H2} \cdot LHV_{H2} + P_{Plant}$

A. Tremel et al., International Journal of Hydrogen Energy, 40 (2015) 11457-11464.

IEK-3: Elektrochemische Verfahrenstechnik

η_{Electrolysis}

50

37

IEK-3: Elektrochemische Verfahrenstechnik

Competition for Residual Wood

preservation

residue

timber

growth

T. Grube, R. Menzer, R. Peters, K. Arnold, S. Ramesohl - VDI BERICHTE, 2006 - VDI

IEK-3: Elektrochemische Verfahrenstechnik

Fuels from Biomass

- 2. Generation Biofuels
- Whole plant use
- No direct competition to food product used for consumable oils and grains
- No indirect competition to food production due to use of fertile soil
- Biomass: residual wood and straw, grasses (Miscanthus), vegetable oil from algae or jatropha, salt tolerant plants etc.

CO₂ Emissions from Industry for Fuel Production

 Process technologies: Hydrogenation of vegetable oil (commercial)
 Fischer-Tropsch synthesis (SoA, high investment)
 Bioliq (R&D, medium TRL, bridge to chemistry)
 Fermentation & biochemical pathways (low TRL)

IEK-3: Elektrochemische Verfahrenstechnik

18% truck diesel11% gasoline11.5% kerosene

Basis: Forecast 2025 of MWV 19.7 Mio. t / a truck diesel 11.7 Mio. t/ a gasoline 10.9 Mio. t/ a kerosene

39

Assessment:

1200

- CHOREN planned to start with 150,000-200,000 kt/a ⇒ 0.468 Mio. t CO₂/ a/ scource
- Commercial FT plants have capacities of 0.36 7.5 Mio. t FT product/a

51

Downward adjustment factors (DAF) between min. 0.48 und max. 4 Mio. t CO₂/ a/ plant

Power-to-Fuel concept: Fuels from CO₂ and H₂

52

- Interconnecting energy and transport sector
- Storage of fluctuating renewable energy
- Fuels in analysis:
 - Fischer-Tropsch (FT) products (SoA, high investment)
 - Methanol & DME (SoA for syngas, bridge to chemistry, R&D for direct use of CO_2)
 - Higher alcohols & ethers (R&D, TRL 2-4)
- Industrial CO₂ source with 0.4 4 Mio t CO₂/a/source reasonable link to FT synthesis
- CO₂ from coal fired power plants is not an option; with regard to the COP21 goals Demand: 1.2 Mio. t H₂ /a & 8.3 Mio. t CO₂ /a

IEK-3: Elektrochemische Verfahrenstechnik

Mio.t/a

Available quantities 7.5 % truck diesel 5 % gasoline 5.5 % kerosene

Assumend demand 2025 19.7 Mio. t / a truck diesel 11.7 Mio. t/ a gasoline 10.9 Mio. t/ a kerosene Source: MWV

41

Motivation

Fischer-Tropsch

Process Development OME₃₋₅

Comparison

Connection to Biofuels

Fuel Strategy

Distributed Biomass for Fuel Synthesis at Farms

Concept:

- Distributed production of fuel intermediates in liquid state for suitable transport at farms
- Reduction of eutrophication by increased usage of liquid manure
- Liquid fuels economically advantageous over gaseous fuels

Facts & figures:

- ➤ Liquid manure: 309.5 bn l/a (82% cattle) ≈ 320 Mt/a*
- 9004 biogas facilities in Germany w/ 4166 MW_e installed power & an average size of 500 kW_e w/ 30% feedstock manure (rest: silage) [2016]
- \triangleright CO₂:CH₄ \approx 50:50 \Rightarrow 5.7 mt CH₄ & 16 mt CO₂

Outlook:

Design of butanol synthesis plant from CO₂ (1750 t/a) combined w/ 75 kW_e electrolysis producing 750 t/ a

JÜLICH

Development of a Fuel Strategy: Production & Logistics

- Limited amounts: hydrogen, carbon dioxide, water, solar energy and cultivated area or bio mass production
- Process and techno-economic analysis of complete process chains inclusive separation of components and refinement
 - Consideration of competing or supporting system solutions, i.e. electrical driving (batteries, catenary supply) or gaseous fuels such as hydrogen, methane or dimethyl ether
 - Socio economic studies especially for cultivation of energy plants or for double-use of fossil carbon
 - Logistics: storage and transport systems, local und centralized process untis in the production chain

IEK-3: Elektrochemische Verfahrenstechnik

Overcapacity in Power is Inherent for Full Renewable Energy Supply

47

Capacity factor = $\frac{\text{energy harvested}}{\text{nameplate harvest}}$

Average power demand for Germany: ~ 60 GW (based on **528 TWh** grid electricity)

	Capacity factor	Necessary Power, if just one Technology is applied	Reasonable power mix DE 2050 (DE gov. Installation plans extrapolated)	Reasonable electricity mix DE 2050	Electricity to be converted to H ₂ (serving 75% of passenger vehicles in DE)
Offshore wind	0.46	120 GW	59 GW	236 TWh	
Onshore wind	0.23	230 GW	132 GW	267 TWh	
PV	0.12	460 GW	120 GW	126 TWh	
Total			311 GW	629 TWh	101 TWh (2,1 mt H ₂)
Untimely produced electricity				≈ 200 TWh (to be stored)	
CO ₂ cut Ø 80%				90% (10% power by NG)	54% of passenger cars

IEK-3: Elektrochemische Verfahrenstechnik

49

IÜLICH

Future fuels in heavy duty transport (scenario 2025)

- Airplanes will use a HVO/PTF mix
- CBG can't fulfill high quotes for truck diesel
- H₂ best option for fleet operation of trucks
- H₂ w/ limited operation range and large tank
- H₂/ FC & PTF w/ high demand for electrolysis 275 – 450 TWh (trucks)
- Catenary systems only in combination w/ diesel & hybridization
- Heavy duty transport w/ high diversification of fuels to reach CO₂ reduction

Summary

IEK-3: Elektrochemische Verfahrenstechnik

Teilweise Förderung durch:

JARA ENERGY

Projekthaus TESYS

Energie System 2050 Ein Beitrag des **Forschungsbereichs Energie**

Kooperationspartner

Institut für Mikroverfahrenstechnik

Institut für Verfahrens. und Umwelttechnik

- Linking energy production and mobility by hydrogen production via electrolysis
- > Direct hydrogen usage for fuel cell drive systems
- > Carbon capture from industrial flue gas in combination with other sources
- Synthesis of energy carriers for later electricity production (storage)
- > Fuel synthesis (link to mobility)
 - Techno economic analysis
 - . **Development of fuel strategies**
 - **Catalyst characterization**
 - **Reactor development & testing**
 - **Component testing** •

FINDING TOMORROW TODAY

UNIVERSITY

HELMHOLTZ

GEMEINSCHAFT

Polymerization by ASF-model

 $y_{m,NC} = \text{NC} \propto^{NC-1} (1 - \alpha)^2$ CO 00 H_2 1 $(1-\infty)$ 0.9 CH_3 ► CH₄ 0.8 У м^{°ш} 0.7 H_2 00 C1-C4 Weight distribution, 0.0 0.3 CS-C9 C21-C50, 0.95, 0.45 $(1-\alpha)$ C10-C14 C_2H_5 C_2H_6 C5-C9, 0.75, 0.39 C15-C20 C21-C50 H_2 C15-C20, 0.91, 0.18 (1−∝) 0.2 C_3H_7 → C₃H₈ 0.1 H_2 0 0 0.2 0.8 0.4 0.6 1 (1−∝) chain growth probability, α $C_n H_{2n+1} \bullet C_{2n}H_{2n+2}$ IEK-3: Elektrochemische Verfahrenstechnik 53

- Methanol synthesis from CO₂ suffers from low Gibbs Energy of CO₂
- Additional separation effort for product mixture CH₃OH / H₂O

The Separation of CO₂ from Ambient Air – a Techno-Economic Assessment

Ralf Peters, Daniel Krekel, Remzi Can Samsun, Detlef Stolten Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research – Electrochemical Process Engineering (IEK-3)

The following cotribution assesses the separation of CO2 from ambient air from a technical and economic viewpoint. The reduction of CO2 emissions and its separation from the atmosphere is indispensable to counteract ongoing climate change. The most promising technology for CO2 separation is first identified by reviewing the literature and comparing the most important technical and economic parameters. The results point to amines/imines as adsorbing agent to separate CO2 from ambient air. A system layout is then designed and a technical analysis is conducted by solving mass and energy balances for each component. An economic analysis is performed by applying a specific model. The energy demand of our system is calculated as 3.65 GJ/tCO2. This high energy demand mainly results from the system specific implementation of two compressors that compress air/CO2 and overcome the pressure losses. The second law efficiency calculated ranges of 7.52-11.83 %, depending on the option of heat integration. The costs of avoiding CO2 emissions vary between \$824-1,333/tCO2 depending on the energy source applied. The analysis results from our contribution basically present higher values for energy demand and costs compared to other values stated in literature. Reasons for this deviation are often insufficient and overoptimistic assumptions in other literature on the one hand side, but also related to the specific system design investigated in this paper on the other hand side. Further case studies reveal that enormous land requirements and investments would be needed to reduce prospective CO2 amounts in the atmosphere down to contemporary levels. A comparison between CO2 removal from the atmosphere and carbon capture and storage technology for coal power plants shows that this technology is not yet able to economically compete with carbon capture and storage. Furthermore, the impact of CO2 separation on the production costs of industrial commodities like cement and steel clearly shows that CO2 removal from the atmosphere is not yet a strong alternative to solving our climate change problem. In the long-term, CO2 separation from ambient air may still play a vital role in the sequestration of CO2 from dilute and dispersed sources since the technology has the potential for optimization. The detailed analysis is published by Krekel et al. in Applied Energy 218 (2018) 361-381.

The Separation of CO₂ from Ambient Air – a Techno-Economic Assessment

TRENDS 2017 5.- 6. December 2017

D. Krekel, R. C. Samsun, <u>R. Peters</u>, D. Stolten

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Motivation

Global sectoral CO₂ emissions (2013)

- ~ 60 % of global CO₂ emissions could be captured if CCS technology is applied extensively in the industry and electricity and heat sectors
- In other sectors, the application of CCS is questionable, because of the numerous emitters, which all would need to be equipped with a CO₂ capturing device

 \rightarrow Direct capture of carbon dioxide from ambient air offers the advantage of directly capturing 100% of CO₂ emissions, which are "stored in the air"

WP 4 RE-USE: DME as Chemical Long-term Energy Storage & Link to Mobility

- Chemical long-term energy storage > Fuel for peak power generation & transport sector
 - /w co-benefit: DME offers lowers emissions of Diesel engines

63

CO₂ Sources in Future: Capturing from Air

Source: http://www.climeworks.com/our-products/

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Necessary free Gibbs energy to separate carbon dioxide from a diluted gas stream

4

Separation of carbon dioxide from air just consumes about <u>four times</u> as much energy that is needed to extract CO_2 from a flue gas stream in a post-combustion capture system in terms of thermodynamics, although the concentration differs by a factor of about ≥ 250 .

Comparison of processes for CO₂ separation from air in terms of different process parameters

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

System flow chart of the analyzed CO₂ separation plant

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

65

Model for the economic analysis of the CO₂ separation plant

A.R. Kulkarni et al., Industrial & Engineering Chemistry Research, 51 (2012) 8631-8645. A. Otto, Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, Germany, 2015.

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Detailed system flow chart of the analyzed CO₂ separation plant including thermal and electrical sources and sinks

IÜLICH

IÜLICH

Economic Analysis - Results

Investment Costs									
Com	nponent	Adsor ber	Desorber	Evaporator	Heat exchanger	Condenser	Cyclone	Compres- sor 1/ 2	E-motor 1/ 2
C_p^0 [1	L0 ⁶ \$]	1.89	0.07	0.24	0.03	0.27	3.04	0.67/ 0.21	0.2/ 0.12
C_{BM}	$[10^6]$	7.57	0.26	0.7	0.09	0.79	12.39	2.55/ 0.81	0.3/ 0.18
FCI	I [10 ⁶ \$]	10 ⁶ \$] 43.08							
Manufacturing Costs									
Cost	t Center	C_W	C_P	C_{UB}	C_H	C_L	C_{SV}	Α	Σ
<i>C_F</i> [1	L0 ⁶ \$/a]	1.72	0.52	0.09	0.39	0.08	1.38	4.13	8.31
Material Costs									
Cost Center Water		Electrical work (natural gas)		Overhead costs		Σ			
$C_M [10^6 \$/a] 0.04$		0.95		1.92		2.91			
Production Costs									
C_{PG}	$C_{PC} [10^6 \$/a]$ 11.21			Specific production costs (separation costs) [\$/t _{CO2}]		792 (@14,250 t _{CO2} /a)			

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

System sensitivity analysis

Energy demand and costs for CO₂ separation from ambient air in dependence on the CO₂ concentration

detailed model was resulted in costs in the upper range. 11

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Considered Scenarios

- Compensating CO₂ emissions from industrial sources
- Reduction of CO₂ emissions worldwide

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

CO₂ emissions, production rates and plant sizes for global steel, cement, ethylene and ammonia production

		Product				
Category	Unit	Cement	Steel	Ethylene	Ammonia	
CO ₂ emissions [12] (2002)	Mt/a	928.3	630.0	259.2	112.5	
No. of sources [12] (2002)	-	1,175	180	240	134	
Specific CO ₂ emissions	Mt/a/source	0.79	3.5	1.08	0.58	
Production rate (2002)	Mt/a	1,946 [6]	905 [7]	75 [3]	107 [5]	
Number of separation plants/ source	-	56	246	76	41	
Investment costs	Bill. \$	2.4	10.6	3.3	1.8	
Footprint (Solar)	km²	2.47	10.93	3.37	1.81	
Average Production rate (2013-2015)	Mt/a	4,200 [6]	1,650 [7]	165 [2]	146 [5]	
Price (2002)	\$/t	91.9 [8]	402 [6]	400 [4]	70 [11]	
Average price (2013-2015)	\$/t	105.5 [6]	533 [1]	772 [9]	500 [10]	

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Sources: see next slide 15

69

14

IUI ICH

IÜLICH

Influence of the CO₂ separation from ambient air on the production costs of exemplary industry sectors

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Sources: see next slide 16

Influence of the CO₂ separation from ambient air on the production costs of steel (related to steel price index)

IULICH

Sources: statista

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Case study 1: Scenarios for the separation of global CO₂ emissions

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Results from Case Study 1

Overview buildup scenarios in dependence on CO2 development predictions

Buildup Scenario 1	CO ₂ development prediction			
(+ 5,000 plants/a)	I (increase)	II (constant)	III (decrease)	
Break-even year [-]	-	-	2163	
Separation plants [10^6]	-	-	0.7	
Costs [10^12 \$]	-	-	12	
Sahara area [%]	-	-	0.4	
Buildup Scenario 2				
(+ 20 % plants/a)	I (increase)	II (constant)	III (decrease)	
Break-even year [-]	2087	2086	2084	
Separation plants [10^6]	3.9	3.3	2.3	
Costs [10^12 \$]	58	48	34	
Sahara area [%]	2.1	1.8	1.2	
Buildup Scenario 3				
(+10 % plants/a)	I (increase)	II (constant)	III (decrease)	
Break-even year [-]	2144	2141	2131	
Separation plants [10^6]	3.9	2.9	1.1	
Costs [10^12 \$]	61	46	18	
Sahara area [%]	2.1	1.6	0.6	

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

JÜLICH

Case study 2: Results of buildup scenario 2 to reduce the amount of CO₂ to 2016 level

72

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Results from Case Study 2

Overview buildup scenarios in dependence on CO_2 development predictions for the reduction of global CO_2 emissions to the level in 2016 (Deadline: 2300)

		•	,
Buildup Scenario 1	C	O ₂ development predict	ion
(+ 5,000 plants/a)	I (increase)	II (constant)	III (decrease)
Break-even year [-]	-	-	-
Separation plants [10^6]	-	-	-
Costs [10^12 \$]	-	-	-
Sahara area [%]	-	-	-
Buildup Scenario 2			
(+ 20 % plants/a)	I (increase)	II (constant)	III (decrease)
Break-even year [-]	2101	2101	2100
Separation plants [10^6]	51	51	42
Costs [10^12 \$]	747	747	623
Sahara area [%]	27.29	27.29	22.74
Buildup Scenario 3			
(+10 % plants/a)	I (increase)	II (constant)	III (decrease)
Break-even year [-]	2169	2168	2164
Separation plants [10^6]	42	38	26
Costs [10^12 \$]	710	645	441
Sahara area [%]	22.52	20.48	13.99

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Comparison of carbon capture and storage (CCS) and CO_2 separation from ambient air

	Carbon capture and storage technology					
	Post-Combustion	Oxyfuel	Pre-Combustion			
Efficiency decrease ¹ [%]	9-14	7-11	6-11			
Energy demand [kJ _{el} /mol _{CO2}]	42					
Status of development	+	-	-			
Complexity	+	+	-			
Possibility to change setup	+	(+)	-			
CO_2 abatement costs [\$/t _{CO2}]	Coal: 34	Coal: 36	Coal: 23			
	Natural gas: 58	Natural gas: 102	Natural gas: 112			
	Range literature: 20-260					
CO ₂ transport and storage [\$/t _{CO2}]	4.5-10					
	CO ₂ separation from ambient air					
Energy demand [kJ _{el} /mol _{CO2}]	161					
CO_2 abatement costs [\$/t _{CO2}]	Coal: -	Natural gas: 1,333	Wind: 824			
	Solar heat: 1,041					

73

¹net efficiency loss incl. CO₂ compression for a coal-fired steam power plant

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering Sources: see next slide

CO₂ separation costs/ abatement costs

22

for CCS and $\rm CO_2$ separation from ambient air in dependence on the $\rm CO_2$ certificate cost

CO₂ separation costs/ abatement costs

74

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Summary 1/2

- In terms of costs, cyclability, loading and necessary electrical and thermal work, amines/imines were analyzed to have the highest potential for directly separating carbon dioxide from ambient air
- The technical analysis of the system design showed that second law efficiencies of 7.52-11.83 % are feasible, depending on the heat integration of the system
- Higher CO₂ concentrations in the ambient air increase the efficiency of the separation process
- Coupling CO₂ separation from ambient air with renewable energy has the potential to lower the CO₂ abatement costs compared to systems powered by fossil fuels.
- In two case studies, the separation of the global carbon dioxide amount was investigated by coupling the separation plants with solar thermal power plants.
- The results revealed that an exponential construction of separation plants is mandatory to reduce the carbon dioxide amount to the level of 2016 by 2300.

Summary 2/2

- Different CO₂ separation plant buildup scenarios in combination with diverse CO₂ development predictions showed that costs of up to \$ 747 trillion might be needed to erect up to 51 million CO₂ separation plants. This amount of money corresponds approximately to a tenth of the global gross domestic product in 2014. In addition, up to 27.3 % of the total Sahara area would be occupied if plants were built in this region.
- Compared to carbon capture and storage (CCS) technology, which can be applied to big point emitters, CO₂ separation from ambient air consumes up to a factor of 4 more energy and has much higher abatement costs with increases of up to a factor of 8-13
- A further comparison of both technologies shows that CO₂ separation from ambient air cannot feasibly compete with CCS economically. Unconceivably high CO₂ certificate costs of \$ 620-830/tCO₂ or hygienically harmful CO₂ air concentrations of 0.45 vol.% and higher would be necessary to reach a cost parity between both technologies.
- With regards to the influence of subsequent CO₂ separation from ambient air on the production costs of industrial commodities like cement, steel, ethylene and ammonia, calculations show a dramatic increase. Depending on the power source of the CO₂ separation plant, production costs are likely to increase by a factor of 1.6-3.8, which makes the production of these products economically unfavorable.

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Conclusion

- The results of this contribution show that CO₂ separation from ambient air will not be able to play a vital role in the abatement of the CO₂ climate problem until 2050 due to the fact that the technology has strong technological and economic drawbacks.
- To efficiently counteract climate change, a distributed system consisting of technologies to increase the efficiency of the state-of-the-art technology, substitution of conventional technologies by e.g. renewable energy, and the separation and utilization of carbon dioxide in e.g. power-to-x (PtX) processes will be mandatory.
- CO₂ separation from ambient air still has the potential for optimization, e.g. by constructing separation plants which use the natural air draft to lower the necessary electrical work or by applying improved materials and efficient system designs.

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Development of a Fuel Strategy: Production & Logistics

28

- Limited amounts: hydrogen, carbon dioxide, water, solar energy and cultivated area or bio mass production
- Process and techno-economic analysis of complete process chains inclusive separation of components and refinement
 - Consideration of competing or supporting system solutions,

i.e. electrical driving (batteries, catenary supply) or gaseous fuels such as hydrogen, methane or dimethyl ether

Socio economic studies especially for cultivation of energy plants or for double-use of fossil carbon

Overcapacity in Power is Inherent for Full Renewable Energy Supply

Capacity factor = $\frac{\text{energy harvested}}{\text{nameplate harvest}}$

Average power demand for Germany: ~ 60 GW (based on 528 TWh grid electricity)

	Capacity factor	Necessary Power, if just one Technology is applied	Reasonable power mix DE 2050 (DE gov. Installation plans extrapolated)	Reasonable electricity mix DE 2050	Electricity to be converted to H ₂ (serving 75% of passenger vehicles in DE)
Offshore wind	0.46	120 GW	59 GW	236 TWh	
Onshore wind	0.23	230 GW	132 GW	267 TWh	
PV	0.12	460 GW	120 GW	126 TWh	
Total			311 GW	629 TWh	101 TWh (2,1 mt H ₂)
Untimely produced electricity				≈ 200 TWh (to be stored)	
CO ₂ cut Ø 80%				90% (10% power by NG)	54% of passenger cars

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Future fuels for light duty vehicles & passenger cars

30

Insdistances by and Climate Research IEK-3: Electrochemical Process Engineering

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Sources for slide 3

- [7] A. Goeppert, M. Czaun, G.K. Surya Prakash, G.A. Olah, Energy & Environmental Science, 5 (2012) 7833.
- [9] R. Socolow, M. Desmond, R. Aines, J. Blackstock, O. Bolland, T. Kaarsberg, N. Lewis, M. Mazzotti, A. Pfeffer, K. Sawyer, J. Siirola, B. Smit, J. Wilcox, APS Physics, 2011, pp. 100.
- [10] K.Z. House, A.C. Baclig, M. Ranjan, E.A. van Nierop, J. Wilcox, H.J. Herzog, Proc Natl Acad Sci U S A, 108 (2011) 20428-20433.
 [11] S. Choi, J.H. Drese, P.M. Eisenberger, C.W. Jones, Environ Sci Technol, 45 (2011) 2420-2427.
- [12] Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Chem Eng Sci, 65 (2010) 3695-3698.
- [13] S. Choi, M.L. Gray, C.W. Jones, ChemSusChem, 4 (2011) 628-635.
- J.A. Wurzbacher, C. Gebald, N. Piatkowski, A. Steinfeld, Environ Sci Technol, 46 (2012) 9191-9198.
 C. Gebald, J.A. Wurzbacher, P. Tingaut, T. Zimmermann, A. Steinfeld, Environ Sci Technol, 45 (2011) 9101-9108.
- [16] J.A. Wurzbacher, C. Gebald, A. Steinfeld, Energy & Environmental Science, 4 (2011) 3584.
- [17] N.R. Stuckert, R.T. Yang, Environ Sci Technol, 45 (2011) 10257-10264
- [18] S.A. Didas, A.R. Kulkarni, D.S. Sholl, C.W. Jones, ChemSusChem, 5 (2012) 2058-2064.
- [19] X. Wang, X. Ma, V. Schwartz, J.C. Clark, S.H. Overbury, S. Zhao, X. Xu, C. Song, Phys Chem Chem Phys, 14 (2012) 1485-1492.
- [20] M.A. Sakwa-Novak, C.W. Jones, ACS Appl Mater Interfaces, 6 (2014) 9245-9255.
- [21] M.A. Alkhabbaz, P. Bollini, G.S. Foo, C. Sievers, C.W. Jones, J Am Chem Soc, 136 (2014) 13170-13173.
- [22] A. Goeppert, M. Czaun, R.B. May, G.K. Prakash, G.A. Olah, S.R. Narayanan, J Am Chem Soc, 133 (2011) 20164-20167.
- [23] A. Goeppert, S. Meth, G.K.S. Prakash, G.A. Olah, Energy & Environmental Science, 3 (2010) 1949.
- [24] W. Chaikittisilp, H.-J. Kim, C.W. Jones, Energ Fuel, 25 (2011) 5528-5537.
- [25] W. Zhang, H. Liu, C. Sun, T.C. Drage, C.E. Snape, Chem Eng Sci, 116 (2014) 306-316.
- [26] K.S. Lackner, The European Physical Journal Special Topics, 176 (2009) 93-106
- [27] A.R. Kulkarni, D.S. Sholl, Industrial & Engineering Chemistry Research, 51 (2012) 8631-8645.
- W. Chaikittisilp, J.D. Lunn, D.F. Shantz, C.W. Jones, Chemistry A European Journal, 17 (2011) 10556-10561.
 C. Gebald, J.A. Wurzbacher, A. Steinfeld, in: E.P. Office (Ed.), Switzerland, 2010, pp. 28.
- [30] V. Nikulshina, D. Hirsch, M. Mazzotti, A. Steinfeld, Energy, 31 (2006) 1715-1725
- [30] V. Nikulshina, M.E. Gálvez, A. Steinfeld, Chemical Engineering Journal, 129 (2007) 75-83.
- [32] V. Nikulshina, C. Gebald, A. Steinfeld, Chemical Engineering Journal, 146 (2009) 244-248.
- [33] V. Nikulshina, A. Steinfeld, Chemical Engineering Journal, 155 (2009) 867-873. [34] L. Matthews, W. Lipiński, Energy, 45 (2012) 900-907
- [35] D.W. Keith, M. Ha-Duong, J.K. Stolaroff, Climatic Change, 74 (2005) 17-45.
- [36] K. Heidel, D. Keith, A. Singh, G. Holmes, Energy Procedia, 4 (2011) 2861-2868
- [37] R. Baciocchi, G. Storti, M. Mazzotti, Chemical Engineering and Processing: Process Intensification, 45 (2006) 1047-1058.
- [38] F. Zeman, Environmental Science & Technology, 41 (2007) 7558-7563.
- [39] J.K. Stolaroff, D.W. Keith, G.V. Lowry, Environmental Science & Technology, 42 (2008) 2728-2735.
- [40] J.V. Veselovskaya, V.S. Derevschikov, T.Y. Kardash, O.A. Stonkus, T.A. Trubitsina, A.G. Okunev, International Journal of Greenhouse Gas Control, 17 (2013) 332-340.
- [41] V.S. Derevschikov, J.V. Veselovskaya, T.Y. Kardash, D.A. Trubitsyn, A.G. Okunev, Fuel, 127 (2014) 212-218.
- [42] R.B. Polak, M. Steinberg, in: U.S.P.a.T. Office (Ed.), Coaway LLC, US, 2012, pp. 20.

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Sources for slide 14

A. Goeppert et al., Energy & Environmental Science, 5 (2012) 7833

S. Schiebahn et al., Power to Gas, in: Transition to Renewable Energy Systems, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 813-848

K.Z. House et al., Proc Natl Acad Sci USA, 108 (2011) 20428-20433

Y. Nazarko, Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, 2015.

A. Otto, Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, Germany, 2015.

D.Y.C. Leung et al., Renewable and Sustainable Energy Reviews, 39 (2014) 426-443.

S.T. Schiebahn, Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, 2014.

N. Jones, Nature, 458 (2009) 1094-1097.

C. Pritchard et al., Process Safety and Environmental Protection, 94 (2015) 188-195.

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Sources for slide 18

[1] A. Goeppert, M. Czaun, G.K. Surya Prakash, G.A. Olah, Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere, Energy & Environmental Science, 5 (2012) 7833.

[2] M. Aramo, Global ethylene market outlook, in: Inaugural Ethylene Forum, 2015.

[3] D.M. Carty, P. Mullen, Lummus Technology, in: CB&I (Ed.) CB&I Investor/ Analyst Day, CB&I, 2011.

[4] D.S.A.P. LTD., Ethylene price history and trends, in, Duncan Seddon & Associates PTY. LTD., 2012.

[5] L.E. Apodaca, Nitrogen fixed -ammonia, in: Mineral Commodity Summaries, U.S. Geological Survey, 2016.
 [6] Statista, Index zur Eisen- und Stahlpreisentwicklung* in Deutschland in den Jahren 2000 bis 2016 (2010=Index 100), in, Statista, 2017.

[7] W.s. association, World steel in figures 2016, in, World steel association, Brussels, 2016, pp. 17.

[8] H.G.v. Oss, Cement, in: U.S. Geological Survey Minerals Yearbook, 2002.

[9] D. Lippe, Infrastructure issues slow first-half 2015 ethylene production Oil & Gas Journal, (2015).

[10] R. Peters, Der Ausblick auf den Stickstoff- und Phosphormarkt 2014/2015, in: Pflanzenschutz- und Düngemittelhandelstag, Burg Warenberg, 2014.

[11] R. Kohn, Prices and market concentration in the fertilizer industry in: F.s. news (Ed.), 2015.

[12] J. Gale, J. Bradshaw, Z. Chen, A. Garg, D. Gomez, H.-H. Rogner, D. Simbeck, R. Williams, F. Toth, D.v. Vuuren, Sources of CO₂, in: B. Metz, O. Davidson, H.d. Coninck, M. Loos, L. Meyer (Eds.) Carbon dioxide capture and storage, Intergovermental Panel on Climate Change, Cambridge, 2005, pp. 431.

Sources for slide 20

A. Goeppert, M. Czaun, G.K. Surya Prakash, G.A. Olah, Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere, Energy & Environmental Science, 5 (2012) 7833.

M. Aramo, Global ethylene market outlook, in: Inaugural Ethylene Forum, 2015.

D.M. Carty, P. Mullen, Lummus Technology, in: CB&I (Ed.) CB&I Investor/ Analyst Day, CB&I, 2011.

L.E. Apodaca, Nitrogen fixed -ammonia, in: Mineral Commodity Summaries, U.S. Geological Survey, 2016. Statista, Index zur Eisen- und Stahlpreisentwicklung* in Deutschland in den Jahren 2000 bis 2016 (2010=Index 100), in, Statista, 2017.

W.s. association, World steel in figures 2016, in, World steel association, Brussels, 2016, pp. 17.

H.G.v. Oss, Cement, in: U.S. Geological Survey Minerals Yearbook, 2002.

R. Kohn, Prices and market concentration in the fertilizer industry in: F.s. news (Ed.), 2015.

D. Lippe, Infrastructure issues slow first-half 2015 ethylene production Oil & Gas Journal, (2015).

R. Peters, Der Ausblick auf den Stickstoff- und Phosphormarkt 2014/2015, in: Pflanzenschutz- und Düngemittelhandelstag, Burg Warenberg, 2014.

Institute of Energy and Climate Research IEK-3: Electrochemical Process Engineering

Future and mobility – perspectives and needs

Konstantin Kersten, Martin Lohrmann

Volkswagen Aktiengesellschaft, Group Research

The Two-Degree Goal confirmed in the Paris Agreement in 2015 and currently having 194 participating nations is the worldwide attempt to finally stop further anthropogenic climate change and the disastrous effects which are generally accepted to be connected to it. In order to reduce emissions it is first important to understand where these emissions stem from and how they can be reduced efficiently from a system-wide point-of-view, while also considering ecological and economical side-effects. CO2 is undoubtedly a greenhouse gas that has played and still plays a major role with respect to climate change and for which a reduction in emissions is technologically feasible. However, to effectively reduce CO2 emissions a reduction in all sectors (automobile, transport, energy, industry, etc.) is of paramount importance. With respect to powertrains, the question which technology is most suitable to reach the climate target and will prevail in the long run, is driving research and development at Volkswagen Group Research.

The presentation gives a brief overview on challenges the automotive industry is facing in terms of sustainability and business environment. Hereinafter the group activities regarding electrified powertrains – battery electric vehicles and fuel cell electric vehicles – and their challenges are illustrated. It is followed by an overview on alternative commercial vehicle powertrains.

Besides electrified powertrains, renewable fuels can contribute to the target of greenhouse gas reduction as well and might even bring benefit to the present global vehicle fleet. Some possible pathways on CO2 neutral fuel production are depicted, followed by a close-up on e-Gas plant of the brand Audi in Werlte, producing methane from renewable electricity and CO2 from a biogas plant. The presentation concludes with a possible timeline for the development of sustainable energy carriers in the automotive sector until 2050.

KONZERNFORSCHUNG

FUTURE AND MOBILITY - PERSPECTIVES AND NEEDS

VOLKSWAGEN AG | KONZERNFORSCHUNG ANTRIEBS- UND ENERGIESYSTEME | DR. MARTIN LOHRMANN Konstantin Kersten

TRENDS 2017 | AACHEN | DECEMBER 6TH 2017

VOLKSWAGEN

VOLKSWAGEN GROUP RESEARCH THE BRANDS – OUR CUSTOMERS

Group Research | Konstantin Kersten

VOLKSWAGEN

VALUE CREATION IN THE AUTOMOTIVE INDUSTRY IS UNDERGOING CHANGE

FUEL TRENDS FOR TRANSPORT

VOLKSWAGEN

FUEL TRENDS FOR PRIVATE AND COMMERCIAL TRANSPORT

CASE STUDY: ENERGY CONSUMPTION FOR ROAD TRAFFIC IN THE EU*

* 2011 EU WHITE PAPER: Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system Group Research | Konstantin Kersten

FUEL TRENDS FOR PRIVATE AND COMMERCIAL TRANSPORT

CASE STUDY: ENERGY CONSUMPTION FOR ROAD TRAFFIC IN THE EU*

*based on data of IEA Mobility Modell, progtrans, World Transport reports 2012/2013, own consumptions Group Research | Konstantin Kersten

VOLKSWAGEN

COMPARISON BEV - FCEV

8

Group Research | Konstantin Kersten

BEV - E-GOLF TODAY

Technical Data

Maximum speed:	140 km/h
Electric motor:	85 kW
Torque:	270 Nm
Consumption, NEFZ:	12.7 kWh/100 km
Electrical range (NEFZ):	300 km
Energy content battery	35.8 kWh

Group Research | Konstantin Kersten

VOLKSWAGEN

VOLKSWAGEN

HIGHWAY INFRASTRUCTURE FOR BEV*

ASSUMPTION: 5 % OR 30 % BEV IN 2030

20 MW for 30 % BEV in 2030 is required!

* assuming 500km NEFZ-range in 2030 Group Research | Konstantin Kersten

88

FUEL CELL

VOLKSWAGEN

HISTORY OF FC-TECHNOLOGY IN VOLKSWAGEN-GROUP

Group Research | Konstantin Kersten

HYDROGEN TECHNOLOGY ROADMAP (INTERNATIONAL ENERGY AGENCY - IEA)

"Based on the scenario results [...], the market for passenger FCEVs could be fully sustainable 15 years after introduction of the first 10 000 FCEVs."

Requirements

- · Fuel/energy tax exemption
- · No car and registration taxes
- Rapid market penetration supported by subsidies for customer, OEM and infrastructure

Source: IEA 2015, Technology Roadmap, Hydrogen and Fuel Cells

Group Research | Konstantin Kersten

VOLKSWAGEN

ENERGY CARRIER TRENDS IN CARGO AND PASSENGER TRANSPORTATION

Diesel Hybrid Truck

Group Research | Konstantin Kersten

18

EXAMPLE FOR ELECTRIFICATION OF LONG HAUL SEGMENT

BMUB FUNDED PROJECT ERS FOR LONG HAUL TRUCKS

VOLKSWAGEN

FUEL TRENDS FOR PRIVATE AND COMMERCIAL TRANSPORT

CASE STUDY: ENERGY CONSUMPTION FOR ROAD TRAFFIC IN THE EU*

*based on data of IEA Mobility Modell, progtrans, World Transport reports 2012/2013, own consumptions Group Research | Konstantin Kersten

CO₂-REDUCED FUELS

Group Research | Konstantin Kersten

VOLKSWAGEN

CLASSIFICATION OF BIOFUELS AND THEIR COMPETITION

Туре	Example	No competition with		
		food	land use*	biomass
 Conversion/use of sugar, starch and oil 	 Ethanol from sugar beets, wheat HVO** from rape seed 	×	36	×
Conversion of cellulose	Biomethane from grass silageDiesel from wood	~	×	36
 Conversion of cellulose from residues via algae/bacteria/yeast 	Ethanol from strawBiomethane from strawDiesel from residual wood		1	36
 "Green" electricity as basis Modified photosynthesis with algae or bacteria 	Power-to-Fuel / E-GasEthanol	~		~

Group Research | Konstantin Kersten

VOLKSWAGEN

MODIFIED PHOTOSYNTHESIS WITH ALGAE OR BACTERIA

Cyanobacteria as miniaturised plant for direct fuel production

Challenges biotechnology:

- Fuel production with limited cell growth
- ▶ Optimized metabolism for fuel
- Tolerance of the cells (e.g. salt, temperature)
- Secretion of the fuel

* Agricultural land
 ** HVO Hydrotreated Vegetable Oil

Power-to-Gas: Audi e-gas plant | Werlte (Germany)

Seite 26 Renewable fuels | Audi e-gas project | AUDI AG

Electrolysis & Methanisation Unit

Technological highlights of the Audi e-gas plant

Seite 28 Renewable fuels | Audi e-gas project | AUDI AG

Possible Development of Sustainable Energy in the Automotive Sector

ENERGY CARRIER DEMAND BY PASSENGER CARS IN THE EU

VOLKSWAGEN

THANK YOU FOR YOUR ATTENTION!

Group Research | Konstantin Kersten

Forecast international climate change

Regarding GHG emissions, there is no time to lose

To go beyond zero environmental impact and achieve a net positive impact, Toyota has set itself six challenges. All these challenges, whether in climate change or resource and water recycling, are beset with difficulties, however we are committed to continuing toward the year 2050 with steady initiatives in order to realize sustainable development together with society.

ΤΟΥΟΤΑ

Toyota Environmental Challenge 2050

Achieving zero CO₂ impact for new vehicles, prod. plants, life cycle; Net positive impact through recycling, optimal water usage, acting in harmony with nature;

Toyota Environmental Challenge 2050

99

New Vehicle Zero CO2 Emissions Challenge

90% reduction in new vehicle CO2 emissions by 2050 compared to 2010.

ΤΟΥΟΤΑ

Toyota's future powertrain image

New "Hydrogen Council"

ΤΟΥΟΤΑ

Developing Hydrogen FCV for 20 years

Cost

Apply HV technology to accelerate cost reduction

Cost structure of FCHV-adv system (2008)

Focus on cost reduction of general FC system and FC specific materials

ΤΟΥΟΤΑ

General system cost reduction

Use of high volume mass production components and technology from hybrid

Application of mass production technology to reduce fuel cell specific cost

ΤΟΥΟΤΑ

High performance cell

Electrode

Electrolyte membrane: Thinner by one-third ⇒Proton conductivity increased by 3 times

Gas diffusion layer: Lower density and thinner base material ⇒Gas diffusion performance more than doubled

Catalyst layer: Highly reactive Pt/Co alloy catalyst ⇒Activity increased by 1.8 times

Performance and cost improvement by innovative electrode

High performance cell

Optimised cell flow channels (Cathode) using 3D fine-mesh flow field improve water exclusion and air (oxygen) diffusion, achieving uniform generation in cell surfaces.

Generated water is quickly drawn out through 3D fine-mesh flow field, preventing obstruction flow of air (oxygen).

Material of separator flow field: Corrosion-resistant Titanium with carbon nano-coating (FCHV-adv: stainless steel + Au plating)

Turbulent flow promotes diffusion of oxygen to the catalyst layer.

Innovative flow channels and materials for performance, cost reduction

Internal circulation system – Humidifier-less

FCHV-adv External circulating humidifier System humidifies supplied air (oxygen) using a humidifier to maintain proton conductivity of the electrolyte membrane.

Mirai Internal circulation system – Humidifier-less

System self humidifies by circulating water (water vapor) produced from power generation within cells to maintain proton conductivity performance of electrolyte membrane.

System simplification by eliminating humidifier (-15kg, -15L)

Production technology

Intermittent slot die coating technology for catalytic layers reduces amount of Pt used

Production technologies significantly influence cost

ΤΟΥΟΤΑ

H₂ tank technology

ΤΟΥΟΤΑ

Evolution of the Toyota Hybrid System

Substantial reduction of fuel consumption and costs have been achieved

Fuel cell system costs have been reduced significantly. Efforts for cost reduction will be continued towards widespread use of FC technology.

ΤΟΥΟΤΑ

Comprehensive approach to handle Hydrogen safety

Source: Toyota's Safety Guidance manual 2015.

We ensure safety on board

H2 tanks pass extremely demanding testing

Tank designers and inspectors run a multitude of tests in laboratories to ensure safety

¹Armour-piercing 7mm test according to UN Technical Regulation

FCV market penetration initiatives

FCV sales volume

Global : More than 30,000/year around 2020 and later Japan : Approx. 1,000/month around 2020 1X,000/year @2020 and later

 FC bus introduction to start from February 2017 for Tokyo 100 or more by 2020 for Tokyo Olympics/Paralympics

FC Bus

Toyota to start sales of FC buses under the Toyota brand from early 2017 The Tokyo Metropolitan Government plans to utilize as fixed-route buses.

Toyota aims to engage continuously in the diligent development targeted at the expansion of the introduction of the new FC buses from 2018

Vehicle	Length/width/height	10,525/2,490/3,340 (mm)	
	Capacity (seated+standing+driver)	77 (26+50+1)	
FC stack* (Fuel Cell)	Name	Toyota FC stack	
	Туре	Solid polymer electrolyte	
	Maximum output	114 kw x 2units	
Motor*	Туре	AC synchronous	
	Maximum output	113kw x 2units	
	Maximum torque	335N • m x 2units	
	Туре	Compression hydrogen	
High-pressure hydrogen tank*	Nominal working pressure	70MPa	
	Tank internal volume	600L	
	Number of tanks	10	
Drive battery*	Туре	Nickel-metal hydride	
V2H system	Maximum output/voltage	9kW/DC300V	

Use unit of MIRAI & Cruising range approximately 200km

*Existing component

Advantage and Significance of the FC Bus

	scene	mileage (km/day)	Maximum speed (km/h)	Infra cooperation	Task	Introduction time
Large route bus	The city and the suburban area	160	60	O	Price Durability	FY 2016
Commuter bus	Narrow road width, small route	100	60	Ø	Market size	Undecided
Limousine	City and airport interval	300	100	0	Power performance	Undecided
Large sightseeing bus	From the city to the mountains Various areas	400~ 1000	100	Δ	Power Range	Undecided
© : Very Good ○ : Good △ : Fair						

Route bus is the most suitable for hydrogen society realization

ΤΟΥΟΤΑ

Structure of Toyota FC Bus

Upgrade of Technologies developed for passenger cars

No engine noise to contribute to quiet environment

Advantage of Toyota FC Bus

Clean Energy Partnership (Germany)

- Initiative gathering the German government and industrial companies and focusing on technology
 - 400 hydrogen refuelling stations by 2023, distributed all over the country

Fuel cell infrastructure is expected

ΤΟΥΟΤΑ

Significance of Toyota FC Bus

Base of the local hydrogen infrastructure

H2 d	FCV emand ^{*1}	Annual mileage : 9000km/year Fuel consumption rate : 105km/kg annual H2 consumption : 86kg/year
F H2 d	C Bus emand ^{*2}	Quantity of day filling : 11kg/day Annual business drive : 350 days/year annual H2 consumption : 3850kg/year
	H2 consur Stable cor	*1 : Council for a Strategy for Hydrogen and Fuel Cells *2 : Toyota estimated *2 : Toyota estimated

FC Bus hydrogen consumption is equivalent to 45 FCVs. FC Bus could contribute hydrogen station business.

Electricity generation

Electricity Generation and Power CO2 Intensity in Europe

The increasing share of renewable energy requires an effective energy storage system for stable power supply.

ΤΟΥΟΤΑ

Energy storage

Merit of Electricity Hydrogen Conversion and Storage

Compensating for fluctuations in renewable energy production and enabling renewable energy utilization in many applications

115

Future vision: HyGrid (Hybrid Grid)

Minimum use of fossil energy and maximum use of renewables

High-capacity external power supply system

*1 V2H: power supply from Vehicle to Home, V2L: power supply from Vehicle to Load (electrical products)

ΤΟΥΟΤΑ

116

High-capacity external power supply system

Power supply image by FC Bus

The FC bus equipped with a high-capacity external power supply, could be useful in care of disaster. (9kW output: 235kWh capacity = approximately 4.5 days at evacuation center)

ΤΟΥΟΤΑ

Cooperation of all stakeholders

New Vehicle Zero CO₂ Challenge in cooperation with stakeholders

Sector coupling – Needs and selected concepts

Manfred Waidhas

Siemens AG, Hydrogen Solutions

The forced extension of renewable energies (RE) is mandatory if worldwide targets for CO2reduction are seriously followed. The price decay of renewable power generation facilitates related efforts. However, due to the volatile character of its power generation there will be an increasing mismatch between generation and demand. In that context the storage of excess production will become more and more essential in the future in order to enable viable business cases. The estimated storage demand for many countries with related CO2 reduction plans will be in the TWh range.

There are many concepts and technologies to store electrical energy. Here, hydrogen plays a unique role: among the three options for large-scale storage – pumped hydro, compressed air and hydrogen - hydrogen is the only viable option to address storage capacities >10 GWh. In addition, hydrogen is a multifunctional chemical energy carrier. It provides the option to be reelectrified without CO2 emissions by fuel cells, gas motors or gas turbines. But it is also a valuable raw material in chemical industry with an existing market volume of more than 100 billion USD. The production of ammonia, methanol, aniline and even gasoline require huge volume of hydrogen, which – at least in parts – can be provided by green electricity without any CO2-footprint. Even the coal in steel production could be replaced to a certain degree. Calculations - the most sensitive parameter are 'electricity price' and 'operational hours' - indicate that positive business cases are close or even already exist in certain niches.

Enabling component of the hydrogen storage concept is the electrolyzer system. It must – among a number of other features – be reliable under industrial working conditions and its efficiency must be optimized for intermittent operation. With the intention to provide solutions for future energy grids Siemens developed the PEM system called "SILYZER". The first corresponding systems are successfully in operation since the year 2015 in the lighthouse project 'Energiepark Mainz' (funded by BMWi). In 'H2Future', funded by FCHJU a new Siemens electrolyzer line will be evaluated which is designed to cover the power range from 10 to 100 MW.

In particular, the mobility sector is far behind Germany's CO2 reduction targets. A specific example for Siemens engagement in CO2 free mobility is the eHighway project. Basic idea is to combine the advantages of road traffic with the efficiency advantage of electric drives. Conventional trucks are additionally equipped with an electric drive drain while the electric power is provided by a catenary. This concept eliminates the capacity limitation of batteries and is expected to be beneficial in particular for heavy duty transport along established and highly utilized roads. In Germany a project is supported by the BMUB. There are equivalent tests running in US and Sweden.

In a nutshell: CO2 reduction targets can only be achieved by a rapid and significant (over-) installation of renewables. The consequent use of the produced green electricity in ALL sectors is mandatory !

Sector coupling Needs and selected concepts

Manfred Waidhas, Siemens AG, Hydrogen Solutions, 91058 Erlangen, Germany

Trends2017, Aachen, Dec 06, 2017.

SIEMENS

© Siemens AG 2017. All Rights Reserved.

Renewable power generation technologies becomes cost competitive

- Most recent electricity contracts in Middle East are below 24 USD/MWh (e.g. Saudi-Arabia: 17.8 USD/MWh)
- Countries with low electricity costs are highly interested to invest in green P2X technologies
- In Germany / Europe hurdles have to be removed regarding regulatory framework (e.g. Renewable Energy Directive, sector coupling, "EEG-Umlage", etc.)

Renewable power generation

Extension and smart storage concepts essential

- 1. CO₂-reduction is clearly linked with renewables.
- 2. Enforced extension of renewables is mandatory to reach defined CO₂ reduction targets

© Siemens AG 2017 All rights reserved. Page 3

Energy storage capacities in the TWh-range will be needed

Hydrogen as energy storage concept – the only option to address capacities > 10 GWh SIEMENS

SIEMENS

© Siemens AG 2017 All rights reserved.

Electrical Energy Storage

The common understanding has to be re-defined

Page 5

Hydrogen combustion @ Siemens From fundamentals to real engines

SGT-800 (54 MW)

- 30 DLE burners of so-called 3rd generation
- air enters combustor with ≈ 20 bar and 700 K

© Siemens AG 2017 All rights reserved. Page 6

0 % hydrogen

80 % hydrogen

SIEMENS

SIEMENS

- Re-electrification of H2 in gas turbines technically feasible: most of existing NG gas turbines will allow an admixing of H2 to a certain extent
- Projects @ Siemens with H2 gas turbines were successfully performed
- Mid- to long-term: high demand in gas turbines estimated (≥ 100 GW in Germany by 2050) Products will be available as soon as energy market and customers ask for related solutions

Becoming serious – CO₂-emission reduction targets DE

ludwin

Mobility (target: -92.5%)

UBA (2016), eigene Berechnung; Zielpfad: -81% bis 2050*

Agriculture (target: -60%)

Households/SMEs (target: -92.5%)

UBA (2016), eigene Berechnung; Zielpfad: -92,5% bis 2050

Source: Agora Energiewende, 20.09.2016

7 LBST.de

SIEMENS

Hydrogen is multi-functional: shifts CO₂-savings in power generation to mobility and industry

H₂ enables the coupling between energy, mobility & industry markets

© Siemens AG 2017 All rights reserved.

The different use cases for green hydrogen...follow a `merit order´ principle

current H ₂ market prices				
mobility	~ 4 – 10 USD/kg			
industry	~ 1,4 – 5 USD/kg			
energy	~ 0,7 – 1 USD/kg			

- · Compared to re-electrification ("power to power") the use of hydrogen in industry or mobility leads more easily to a positive business case.
- The three use cases have different maturity, market potential and market starting points.

© Siemens AG 2017 All rights reserved. Page 9

Siemens Hydrogen Solutions

SIEMENS

Power-to-X-concepts

Most of them base on hydrogen as intermediate step

The business cases of the individual P2G(X) approaches differ notably.

© Siemens AG 2017 All rights reserved.

SIEMENS

Green (CO₂-free) hydrogen: a broad variety of potential applications

 • Refineries
 • H₂ as fuel for public transport
 • Refineries

 • Ammonia plant
 • Ammonia plant
 • Substitute of bio-ethanol admixing
 • Substitute of bio-ethanol admixing

 • Steel production
 • Steel of the production
 • Steel of the production
 • Getter

* Besides these: glass, semiconductor, food&beverage

© Siemens AG 2017 All rights reserved. Page 11

Industry *

H₂ production via electrolysis Economy of operation

input parameter:		
electricity costs [ct/kWh]:	3,2	
capex electrolyzer [€/kW]:	1.000	
utilization rate [hours per year]:	4000	
product life [y]:	20	
system efficiency [% HHV]:	70	
additional capex [€/kW]:	0	
additional opex [%]*:	5	
interest rate [%]:	0	
depreciation period [a]:	10	

* service, maintenance, operation (without electricity)

Important: above choosen parameter are arbitrary values and do not reflect data of Siemens electrolyzers !

H2 production costs

SIEMENS

Energy

- Admixing to conventional
- gas turbines
- Generator cooling

Mobility

Project scope and key facts Development of an decentralized hydrogen energy storage plant

- Location: Mainz (Germany)
- Partners Stadtwerke Mainz, Linde, Siemens, RheinMain University
- Connected to a wind-farm (8 MW)
- 6 MW peak electrolyzer (3 stacks, each 2 MW)
- 1000 kg H₂ storage (33 MWh)
- 200 tons H₂ target annual output
 Injection in local gas grid
 - Multi-use trailer-filling
- Funding: ~50% (BMWi)
- Timeline: 10/2012 12/2016

Ein Forschungsprojekt von

ENERGIESPEICHER

H2FUTURE Hydrogen from electrolysis for low carbon steelmaking

Project Consortium:

- Verbund (utility/grid operator in AT = Electricity provider)
- VoestAlpine (steel manufacturer = Hydrogen consumer)
- ECN (Energy Research Centre of the NLD)
- Siemens Hydrogen Solutions (Technology provider)

Project description:

Gefördert durch

EU funded project to show viability of a PEM electrolyzer as flexible load for grid services. Hydrogen used within the steel making/processing to reduce CO_2 footprint.

Time line:

SIEMENS

Jan. 2017 - Jun. 2021

Electrolyzer:

- 6 MW rated power
- new cell and stack design
- designed for power range of $\approx 10 100$ Megawatt

More details:

http://www.h2future-project.eu

© Siemens AG 2017 All rights reserved. Page 15

eHighway -An energy-efficient concept for CO2-free transportation

SIEMENS

127

Die THG-Emissionen des Straßengüterverkehrs -

zunehmende Herausforderung für die Dekarbonisierung

© Siemens AG 2017 All rights reserved.

Page 17

source: H. Grünjes, Siemens MO TI EH

SIEMENS

eHighway – current demonstrations in Germany, Sweden and US

- Forschungsprojekte

- ENUBA (Deutschland)
 Erstes Forschungsprojekt mit BMUB (05/2010 – 09/2011)
- ENUBA 2 (Deutschland)
 Zweites Forschungsprojekt mit BMUB (05/2012 – 12/2015)
- ELANO (Deutschland)
 Drittes Forschungsprojekt mit BMUB (01/2016 – 09/2019)

Projekte auf öffentlichen Straßen

> Los Angeles – Hafenanwendung

- Demonstrationsprojekt über eine Strecke von einer Meile der Verbindung zum Schienenterminal
- Kooperation mit Volvo und lokalen LKW-Herstellern

> Schweden – Autobahnanwendung

- Teststrecke auf einer öffentlichen Straße zwischen einem Industriegebiet und Hafen
- Benchmark verschiedener Elektrifizierungsmöglichkeiten für Langstrecke
- · Kooperation mit Scania

128

SIEMENS

© Siemens AG 2017 All rights reserved. Page 18

Summary

• CO₂-reduction targets are clearly linked with renewables. They will require storage capacities in the TWh-range.

SIEMENS

SIEMENS

- Hydrogen via Power-to-Gas is the only viable approach to store electrical energy >10 GWh.
- Hydrogen is multifunctional: it can be re-electrified, but also shifted to the industry or mobility sector ("sector coupling").
- Sector coupling will be essential to reach CO₂ reduction targets.
- Transportation is the sector with highest need for pushing forward CO₂ reduction.
- eHighway is an energy efficient concept for heavy duty road transport based on proven technologies.

© Siemens AG 2017 All rights reserved. Page 19

Contact page

Dr. Manfred Waidhas Technology & Innovation Hydrogen Solutions

Guenther-Scharowsky-Str. 1 91058 Erlangen

Phone: +49 9131 7-21406 Mobile: +49 173 289 4202

E-mail: manfred.waidhas@siemens.com

siemens.com

© Siemens AG 2017 All rights reserved. Page 20

Sector Coupling as a Chance for the Power Sector

Klaus Görner University of Duisburg-Essen LUAT: Chair of Environmental Process Engineering and Plant Design Essen, Germany

The presentation covers the sector coupling technology as a substantial contribution for the energy transition (Energiewende) in Germany.

The energy system transformation in Germany will generate to some amount surplus renewable power coming from wind and sun in a very volatile manner. This leads to the problem of storing power for a longer time, which is not economic currently, or to use existing power plants in combination with P2X technologies to realize sector coupling. On the other hand dispatchable power generation is needed to stabilize the electrical grid. To some extend Power-to-Products (P2X) technologies like Power-to-Gas (P2G), -Fuels (P2F), - Chemicals (P2C) or-Heat (P2H) can be used in combination with a modified power plant operation.

To integrate these new technologies in the existing energy system, a complex variety of pathways are possible and have to be analysed for the energy system integration.

Possible pathways are investigated by the Virtual Institute "Power to Gas and Heat" in North Rhine Westphalia (NRW). In this context the pathways: "industrial demand side management", "Power-to-Heat", "renewable hydrogen in the mobility sector", "H2 based synthetic products for mobility and industry", "H2 injection into the natural gas grids and decentralized power generation", "large scale H2 storage and centralized power generation" and "decentralized direct use of renewable hydrogen" had been in the focus.

Sector coupling technologies are analyzed with respect to their significance in relation to the power generation in Germany.

The energy sector and the industrial sector (specially the chemical industry in North Rhine Westphalia) show a very high potential for the sector coupling. Both the technical and the economic conditions are very attractive.

In more detail a EU funded H2020 project "MefCO2" was presented. It focuses on the production of methanol as a platform chemical for the chemical industry or as a fuel for the mobility sector. The integration of the CO2 capture plant, the electrolyzer and the methanol synthesis plant in the power plant itself ends up with an efficiency of about 61 % (electrically resp. thermally without an O2 usage), which is a good basis for an economic production. In this context the main idea is to increase the operational time of the plant by producing fuels in periods of low power prices on the market and to generate additional marginal incomes. In addition to this effect the plant is for a longer time in operation condition to participate in the primary control regime, also producing marginal returns.

This contribution gives an overview over the technologies and some possible applications in the context of a future power plant operation.

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil Klaus Görner

Sector Coupling as a Chance for the **Power Generation**

Klaus Görner

Univ.-Prof. Dr.-Ing. habil. LUAT - Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik | Universität Duisburg-Essen

Rhein Ruhr Power e.V. | Düsseldorf GWI - Gas- und Wärme-Institut e.V. | Essen Virtuelles Institut Strom zu Gas und Wärme | NRW

IVERSITÄT

VIRTURILES INSTITUT NRW STROM 711

TRENDS 2017

December 5th -6th 2017 | Aachen

UNIVERSITÄT D U I S B U R G

Folie 1

Sector Coupling as a Chance for the Power Generation

V1.5

LUAT

Lehrstuhl für Umweltverfahrens-technik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil Klaus Görner

Flexible and dispatchable power generation

Content

- Rhein Ruhr Power e.V.

The Energiewende

- energy transition

- Storage
 - Capacities and periodes

Sector coupling

- Classification and potentials
- Virtual institutes
 - Combined Heat and Power
 - Power to Gas and Heat
- Infrastructure
 - Power plants and chemical sites in NRW
- Sector coupling in the chemical industry

Projects

- EU Horizon 2010 project MefCO₂
- Conclusions

Sector Coupling as a Chance for the Power Generation

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik ^{Univ.-Prof. Dr.-Ing. habil.} Klaus Görner

Energiewende

Folie 3

UNIVERSITĂT DUISBURG ESSEN

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik ^{Univ.-Prof. Dr.-Ing. habil.} Klaus Görner

TRENDS 2017: Sector Coupling as a Chance for the Power Generation

Aachen

133

Challenges and potentials of the Energiewende

The main challenge of the Energiewende is:

The Carbon-Footprint must be reduced significantly.

In the moment the energy sector carries the main burden:

Reduction of CO₂ emissions related to power generation.

In other sectors additional contribution can be made:

- Combined heat and power generation
- Closing of carbon cycles (chemistry, iron and steel, ...)
- Reduction of CO₂ emissions in the mobility sector

• ...

By means of

sector coupling

a much bigger effect can be generated.

Folie 6

LUAT Suitable technologies for the situation in Germany Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Factor of 1,000 Univ.-Prof. Dr.-Ing. habil Klaus Görner 王 ^{10,000} Storage time methane 1,000 pumped storage 100 Power-to -Gas compressed air storage 10 1 0.1 necessary existing storage capacity pumped storage capacity Sector Coupling as a Chance for the Power Generation 0.01 for net stabilization -0.001 1 10 100 1 10 100 1 10 100 1 10 100 kWh **MWh** GWh TWh Folie 7 Storage capacity UNIVERSITÄT

Storage - capacities and periodes

Existing capacities in Europe

Lehrstuhl für Umweltverfahrens-technik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil Klaus Görner

D U I S B U R G E S S E N

LUAT

Folie 8

Quelle: Valuing dedicated storage in electricity grids. Leopoldina, 2017

Europe EU28 plus Norway plus Switzerland

Pumped hydroelectric storage	48,325	MW			1	
Compressed air energy storage	322	MW			1000	
Flyweels storage	77	MW	and the second			
Li-Ion battery	186	MW	Scart ?	a starter and		
NaS battery	38	MW	2		and the	A.
Pb acid battery	7	MW			and the second se	Billion
Redox flow battery	1	MW				
					and the second	
Pumped hydroelectric storage,						

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. Klaus Görner

Sector Coupling

Sector Coupling as a Chance for the Power Generation 05./06.12.2017 Aachen Folie 9

UNIVERSITÄT DUISBURG ESSEN

Sector classification

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik ^{Univ.-Prof. Dr.-Ing. habil.} Klaus Görner

Significance of the different sectors

- Energy sector
 - Power
 - · Heating / Cooling
 - Fuels (Gas / Oil / Coal)

TRENDS 2017: Sector Coupling as a Chance for the Power Generation 05./06.12.2017

Aachen

Folie 10

Sector coupling technologies

Folie 13

UNIVERSITÄT DUISBURG ESSEN

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik ^{Univ.-Prof. Dr.-Ing. habil.} Klaus Görner

TRENDS 2017: Sector Coupling as a Chance for the Power Generation 05./06.12.2017

Folie 14

Chemical Industry

Infrastructure and nearness of energy and chemistry in NRW

Köln - Rheinenergie

Bonn - Stadtwerke

Source for the map: Liste der Flüsse in NRW. Wikipedia, aufgerufen am 25.07.2016

Rheinland

Pfalz

BELGIEN

VGB Summer School POWER PLANT 2017: Sector Coupling Electricity, Heat and Transport - Challenges and Potentials -31.08.2017 VGB, Essen Frimmersdorf - RWE

Hürth - Statkraft

Weisweiler - RWE

Folie 16
Sector coupling between energy and chemistry

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik ^{Univ.-Prof. Dr.-Ing. habil.} Klaus Görner

TRENDS 2017: Sector Coupling as a Chance for the Power Generation 05./06.12.2017 Aachen

Folie 17

UNIVERSITÄT DUISBURG ESSEN

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. Klaus Görner

TRENDS 2017: Sector Coupling as a Chance for the Power Generation 05./06.12.2017

Folie 18

Chemical site from Evonik in Marl

4 power plants with a total capacity of 457 $\mathrm{MW}_{\mathrm{el}}$

About 100 production plants for different intermediate and final products

Sector coupling between energy and chemistry

Cooperation of different units

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik ^{Univ.Prof. Dr.Ing. habil.} Klaus Görner

Virtual Institute

TRENDS 2017: Sector Coupling as a Chance for the Power Generation 05./06.12.2017 Aachen

Folie 19

STROM ZU GAS UND WÄRME

VIRTUAL INSTITUTE - POWER TO GAS AND HEAT

FLEXIBILISATION OF THE ENERGY SYSTEM

BY MEANS OF POWER-TO-X AS A SECTOR COUPLING TECHNOLOGY IN NORTH RHINE-WESTPHALIA

Representation of the Energy System

Flexibility options in the power, gas and heat systems

From the network diagram system pathways are identified

- 1) Industrial demand side management
- 2) Power-to-Heat
- Renewable hydrogen in the 3) mobility sector
- 4) H₂ based synthetic products for mobility and industry
- 5) H₂ injection into the natural gas grids and decentralised power generation
- 6) Large scale H₂ storage and centralised power generation

ewi

7) Decentralised direct use of renewable hydrogen

CEF NRW

Klaus Görner, Flexibilisation of the Energy System, IST2016 Conference - International Sustainability Transitions Conference, Wuppertal, 09.09.2016

UNIVERSITÄT LUAT Lehrstuhl für Umweltverfahrens-technik und **Projects** Anlagentechnik Univ.-Prof. Dr.-Ing. habil Klaus <u>Görner</u> EU HORIZON2020 **MefCO2-Project** Sector Coupling as a Chance for the Power Generation Folie 22

$MefCO_2$ - Methanol fuel from CO_2

Synthesis of methanol from captured carbon dioxide using surplus electricity

P2X Technologies

Project Approach

Project Approach

 ${\rm MefCO_2}$ (Methanol fuel from ${\rm CO_2})$ - Synthesis of methanol from captured carbon dioxide using surplus electricity.

144

Aim

To develop an innovative green chemical production technology which contributes significantly to the European objectives of decreasing CO_2 emissions and increasing renewable energy usage, thereby improving Europe's competitiveness in the field.

Concept

The overall concept underpinning the project lies in the utilisation of ordinarily emitted greenhouse gas carbon dioxide and hydrogen, produced from redundant electrical energy into a widely-useable platform chemical, methanol. The technology is being designed in a modular intermediate-scale, with the aim of being able to adapt it to varying plant sizes and gas composition.

Methanol as Fuel for the Mobility Sector

Usage in Direct Methanol Fuel Cell

Anode: CH₃OH + H₂O \longrightarrow CO₂ + 6 H⁺ + 6 e⁻

Kathode: $O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2O$

Gesamtreaktion: CH₃OH + 1.5 O₂ \longrightarrow CO₂ + 2 H₂O

Methanol as Fuel for the Mobility Sector

Combustion in Internal Combustion Engine (Otto Engine)

 Ansaugen 1. Takt
 Verdichten 2. Takt
 Arbeiten 3. Takt
 Austoßen 4. Takt

 1. Umdrehung
 2. Umdrehung
 CH₃OH + 3/2 O₂ → CO₂ + 2 H₂O

∆H = -725 kJ/mol

Advantages of Methanol versus gasoline (petrol) •no fossil basis

•30 % higher efficiencies

•Environmental behaviour better

C02

Methanol as Fuel for the Mobility Sector in China

Example: M15 = 15 % methanol und 85 % gasoline

Power Plant - CO₂ Source and Power Generation

Hard Coal Fired Power Plant 507 MW_{el} with power production for railways

Historie

	1938-42	Indetriednanme und Betried des Kraftwerks, 4 x 45 MW
	1954-93	Inbetriebnahme und Betrieb des 50-MW-Blocks
	1962	Inbetriebnahme des 150-MW-Blocks
	1968	Erste Versuche zur Rauchgasentschwefelung nach dem Aktivkoksverfahren
	1969	Inbetriebnahme des 350-MW-Blocks
	1973-93	Inbetriebnahme mit Betrieb des 170-MW-Kombi-Blocks mit Kohledruckvergasung
	1974	Erste Versuchsanlage zur Rauchgasentschwefelung nach dem Kalkwaschverfahren
	1984/88	Inbetriebnahme des 110-MW-Bahnstrom-Turbosatzes (Teil des 150-MW-Blocks) / Rauchgasentschwefelungsanlage nach dem Kalkwaschverfahren
	1989/96	Inbetriebnahme einer Stickstoffoxidminderungsanlage / Kessel 10 am 150-MW-Block
	2003	Inbetriebnahme Fernwärmeversorgung für Stadtwerke Lünen

CO₂ Sequestration by Chemical Scubbing

Semi-technical plant in the STEAG power plant in Lünen

> Product: very clean CO₂ Amount: 120 kg/h

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik

Technology: Chemical Scubbing with Amines, Amino Acid Salts or Alcalies

CO₂ Sequestration by Chemical Scubbing

Hitachi Power Systems Europe 33

Economy – EEX prices for power

EEX prices for power as a function of the net load and the feed in by wind and PV (2014)

Economy - Situation for future Power Plant Operation

UNIVERSITÄT DUISBURG ESSEN

LUAT

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. Klaus Görner

TRENDS 2017: Sector Coupling as a Chance for the Power Generation 05./06.12.2017

Folie 37

UNIVERSITÄT DUISBURG ESSEN

LUAT

Umweltverfahrenstechnik und Anlagentechnik ^{Univ.-Prof. Dr.-Ing. habil.} Klaus Görner

TRENDS 2017: Sector Coupling as a Chance for the Power Generation

05./06.12.2017 Aachen

Folie 38

Challenges of the Energiewende

- · Carbon footprint must be reduced dramatically in all sectors.
- There is a big demand in power storage and flexible power generation.
- Surplus power should be used sensible (economy, flexibility).

Potentials of the sector coupling

- · Sector coupling opens a big variety of flexibility options.
- Combined heat and power as a proofen technology should be extended.
- P2H can increase the flexibility and economy of existing power plants.
- Power-to-X technologies P2G, P2F, P2H should be further improved and optimized (increase of technology readiness level, reliability, investment and operational costs).
- DSM is able to reduce the demand on storage capacities and can use surplus power directly.

Needs for further developments

• The different sectors (chemistry, iron and steel, cement, pulp and paper, ...) must be analysed for further potentials.

Klaus Görner, Prof. Dr.-Ing.

University of Duisburg-Essen Institute for Environmental Process Engineering and Plant Design Leimkugelstraße 10, 45141 Essen, Germany Mail: klaus.goerner@uni-due.de

Transition of Public Transport to Emission Free Buses in Hamburg

Heinrich Klingenberg hySOLUTIONS GmbH

As all metropolitan regions, the city of Hamburg is challenged by the increasing amount of traffic and its emissions caused by its growing population. This is why Hamburg is pursuing an ambitious program to increase electric and hydrogen mobility. Hamburg's city government has decided that from 2020 onwards only emission free buses will be purchased. Currently, there are various projects to increase the number of electric vehicles and charging infrastructure and prepare the timely transition to innovative systems for fast and more effective charging systems.

Regarding buses, a so called innovation line has been introduced: On this particular line, only buses with innovative electric drive trains are employed in order to compare different innovative drive trains under the same conditions. Currently, serial electric hybrid buses, parallel diesel-electric hybrid buses, battery buses with fuel cells as range extender and plug in buses are tested. The results are collected and compared and will show which systems is the most viable in the future.

German climate protection targets

- Development of concepts for target achievement 2030 and long term agenda setting for 2050
- Submittal of concepts in 2018

Thorsten Herbert (NOW), September 11th, 2017

Why do we act now. Main drivers and actions.

- Driver for City of Hamburg: Realisation of the climate protection aims
- Selected actions of City of Hamburg:
 - Reissue of Clean Air Plan in 2017
 - Political mandate of senate for public transport companies: Procurement of emission free buses only from 2020 onwards, public fleets emission-free
- Our driver our mission: "We organise the sustainable mobility in the Smart City Hamburg"
- Our short-term actions to support the climate protection targets:
 - Development of a masterplan for electrification of the bus fleet
 - Construction of a new e-depot for 250 electric buses
 - On-demand service with FC cars
 - Growing number of emission-free vehicles in city logistics

Das Hamburger Verwaltungsgericht zwingt den Senat zu einem schnelleren Luftreinhalteplan: Es forderte die Stadt am Donnerstag auf, spätestens in einem Jahr vorzulegen, wie man die Grenzwerte der Europäischen Union einhalten ken

5.000 Euro Zwangsgeld angedroht

3

Hamburg verstößt bei den Stickstoffdioxidwe in der Stadt gegen EU-Grenzwerte.

Der Umweltschutzverband BUND hatte ein Zwangsgeid gegen den Senat beantragt. Das Verwaltungsgericht folgt dem teilweise in seiner Entscheidung. Es dröht dem Senat 5.000 Euro Strafe an, wenn er das Maßnahmepaket zur Luftsauberkeit später als Juni 2017 vorlegt. Der Senat wollte sich usprünglich sieben Monate mehr Zeit nehmen.

Das Gericht begründete seine Entscheidung damit, dass es den Senat schon 2014 aufgefordert habe, die gesetzlichen EU-Grenzwerte für Stickoxide einzuhalten, die in Hamburg an Straßen-Messstationen überschritten werden.

BUND verlangt Fahrverbote wegen Stickoxid-Belastung

200.000 Anwohner großer Straßen in Hamburg litten unter den gefahrlichen Stickoxiden, sagte Manfled Braasch vom BUND. Nun müssten schnell Fahrverbote für Disselfährzeuge in der Innenstatt und eine flochendeckende Geschwindigkeitsbegrenzung auf Tempo 30 her. "Bürgermeister Scholz kann sich nicht weiter vor Maßnahmen drücken", sö Braasch. Aber auch die Umweitbehörde

Electric Buses

Clear political commitment

 From 2020: Only emission-free buses to be purchased by HOCHBAHN

Long term strategy

 Early preparation to ensure attractiveness and performance capability of buses in the future

nv

SOLUTIO

- Use of buses up to 14 years: safe energy supply needed
- Introduction of new technology (workshops, refuelling) only doable step by step

5

- Sufficient time for education and on-the-job training
- Functional view: different powertrains for different types of operation
- CAPEX and OPEX but also productivity and flexibility to be considered

Innovative Buses in Hamburg

Fuel cell buses

- Since 2003: HyFLEET:CUTE with up to 9 fuel cell buses
- Since 2011: New generation of fuel cell hybrid buses, consumption: 8 kg hydrogen/100 km; range: 350 km
- Since end of 2014: 2 battery buses with a fuel cell as range extender

Hybrid buses

- Since 2010: Diesel-electrical hybrid buses
- Ongoing tests with hybrid buses

Battery buses

- Line operation with plug-in since end 2014
- Deployment of electric buses since 2016

From test site (Innovation Line 109) ...

It's more than the electrification of a bus line. It's the change of a complete system.

- Complete electrification of the bus fleet from 2020 onwards within approx. 10-15 years
- Predicted total energy demand of the depots with complete electrification of the bus fleet: approx. 132 GWh p.a. (compared to underground traction: approx. 112 GWh in 2015)
- New decisive influencing factors "Technology" and "Range" require specification and integration of new processes, interfaces and the next generation of IT systems in the topics
 - planning
 - operation/disposition
 - infrastructure/technology
 - depot management

НОСНВАНИ

- Target: Evaluation of performance of technology and optimization
- The following innovative buses are evaluated:
 - 3 battery buses (Solaris)
 - 3 plug-in buses (Volvo)
 - 2 battery buses with fuel cell as range extender (Solaris)
 - 4 fuel cell hybrid buses (Evobus)
 - 27 parallel diesel hybrid buses (Volvo)
 - 4 reference vehicles (Euro VI)
- Selected results:
 - High reliability of charging infrastructure and hydrogen station
 - Technical availability and reliability of the prototypes / customer field test not satisfactory yet
 - Seasonal variation of energy supply

Lessons Learned. Our main results: <u>Depot Charger</u>.

- Battery bus (depot charger)
 - Prognosis from market dialogue:
 - 1st level of development 2018/2020: 150 250 km range
 - 2nd level of development 2025: 200 300 km range
 - Heating and air conditioning are critical factors
 - Charging via Combo 2 / CCS plug with a charging capacity of 150 KW
 - But: Only part of today's tours (planning) with the currently projected ranges is possible through pure depot charging

Our main results: Opportunity Charging I.

- Battery bus (opportunity charger)
 - Current electric ranges of our opportunity charger: about 20 - 50 km (depending on outside
 - Battery bus (Solaris):
 - Plug-in hybrid (Volvo):
- temperature) about 6-8 km

- Pantographs:
 - Charging capacity: 300 kW (2 per final stops on innovation line 109)
 - Daily charging of different brands successful (200 succesful charging processes per month, about 98%)
- Positioning assistance critical to success: Combination of dynamic (driver assistance) and static information (lane marking) useful
- Strong coordination need for charging infrastructure in public areas

Lessons Learned. Our main results: Opportunity Charging II.

- Research project: "Evaluation of the operation of electric buses with local charging infrastructure in large cities using the example of HOCHBAHN"
 - Scenario A (2016): chemical heating, 150 kWh (solo bus), 225 kWh (articulated bus)
 - Scenario B (2020): electric heating, 165 kWh (solo bus), 248 kWh (articulated) bus)
- Selected research objectives:
 - Detailed energetic consideration of sub networks based on measured routes
 - Determination of the optimal location of charging infrastructure
- Selected research results:
 - Electrification of a sub network (about 23 % operating performance of HOCHBAHN bus network) requires either 26 (scenario A) or 40 pantographs (scenario B)

- General information on H₂/fuel cell technology:
 - Basic advantage:
 - · High (sufficient) range, therefore flexible deployment of buses
 - Productivity like diesel
 - Basic disadvantages:
 - Framework conditions concerning the handling with hydrogen

mmmm

Lessons Learned.

Our main results: H₂/fuel cell buses.

- Fuel cell hybrid bus
 - Imminent series production offered by established bus manufacturers not predictable today

Range extender battery bus with fuel cells (REX)

- Hydrogen demand (REX) is approx. only 1/3 of hydrogen demand of pure fuel cell buses
- New depot for innovative drivetrains:
 - Considerable reduction of hydrogen demand (compared to 100% fuel cell bus fleet): about 1.5 t instead of 4-5 t H₂ per day (winter)
- Hydrogen supply at depots
 - Options: production or delivery (gaseous, liquid)
 - High security requirements, including:
 - Approval procedure depending on H2 quantities
 - Explosion protection concepts for plants necessary
 - Distances to protective goods

Lessons Learned. Our main results: Depots I.

- Hydrogen supply at the depots

- Options: production or delivery (gaseous, liquid)
- High security requirements, including:
 - Approval procedure depending on H2 quantities
 - Explosion protection concepts for plants necessary
 - Distances to protective goods
- Storage and delivery of large H₂ volumes not possible at all locations without change in bus numbers

Lessons Learned. Our main results: <u>Depots II</u>.

• Stromnetz Hamburg: Survey by Helmut Schmidt University:

For all existing HOCHBAHN depots a **comprehensive energy supply at medium voltage level until 2030** can be guaranteed.

- For the new depot for innovative drives (HOCHBAHN) applies:
 - Charging of up to 250 e-buses (battery, REX) possible
 - = 110 kV connection with own substation required
 - Launch: 2019

Lessons Learned. Our main results: Depots III.

Area requirements on HOCHBAHN depots: Substation (110kV connection): about 400m² Charging technology (for about 50 e-buses each): about 420m² (incl. substation and transformers) H₂-production or delivery: about 1,400m² (base area for plant engineering Realization periods for energy supply of buses with new drive technologies at HOCHBAHN depots: 110kV-substation : about 3 - 4 years Charging technology: about 2 - 3 years about 2 - 4 years depending of technology / volumes H₂ plant engineering:

How to achieve the Masterplan. How to achieve a system decision.

- Strategic approach (preferred solution): battery buses, depot charger
- But: Only part of today's bus cycles can be realized with the currently predicted ranges through pure depot charging
- For longer cycles the following alternatives are under examination:
 - Operational new conception of cycle (depot charger) with temporary increased demand for vehicles
 - Opportunity charger
 - Deployment of range extender buses

How to achieve the Masterplan. How to achieve a system decision.

- Holistic evaluation of alternatives based on the following criteria:
 - Feasibility
 - Sustainability
 - Productivity / efficiency
 - Opportunities / risks
- But: Currently a final decision is not possible due to still existing uncertainties about market maturity of new battery technologies

Therefore here HOCHBAHN will "run on sight"!

2017 Coming soon. Our next milestones.

- Completion of masterplan
- Tender and order of 60 e-buses and appropriate charging infrastructure:
 - 12m city buses as depot charger with a target minimum range of 200km incl. air conditioning and fossil auxiliary heating
 - CCS Combo 2 plugs as standard with 150 KW charging performance
 - Tender of close-to-standard buses with appropriate contractual safeguarding (e.g. reliability, availability and range)
 - Division in 2 or 3 batches to test different buses
 - Planned delivery: until end of 2018

- Current bus fleet with EURO V and better
- Completion of new bus depot for innovative drivetrains

НОСНВАНИ

from 2019 Coming soon. Our next milestones.

- Actions according to Masterplan
- Tender and order of emission free buses only

UNSER ANTRIEB FÜR HAMBURG.

HOCHBAHN e-bus strategy

Fuel Cell Buses in Germany – 16 in operation, 79 planned

European Joint Projects - Buses

	JIVE	JIVE 2	Post 2020
Order volume			
	Total of 230 buses deployed in Europe by 2020	Total of 382 buses deployed in Europe by 2020	Buses deployed in the thousands across Europe
Cost			
	Business case possible with c. 200k of EU subsidy	Business case possible with c. 150k of EU subsidy	Fuel cell buses deployed through local regulations and incentives only
Locations			
	Buses deployed in nine cities across five countries to validate the technology	Buses deployed in fourteen cities across Europe, including demo activities in Sweden and France	Technology validated and in widespread use all across Europe
Awareness			
EMISSION FOLL DIVERSION FOLL NOT THE CONTRACT OF THE DIVERSION FOLL DIVERSION FOL	Raise awareness of FC buses amongst most environmentally aware / proactive cities	FC buses considered alongside alternative powertrains by growing number of cities and operators	Fuel cell buses an established mainstream choice

НОСНВАНИ

The National Strategic Framework – German targets on hydrogen Infrastructure

Nationales Forum Diesel ("Diesel Summit")

29

August 2, 2017

• Meeting of Federal Ministers, Prime Ministers and representatives of the German car industry (no environmental associations) because of exhaust gas scandal (VW)

Results

- 1 billion euro fund announced to support municipalities improve air quality (major percentage provided by the federal government, approx. 25% by car industry).
- Federal Government intends to expand funding of low-emission and emission-free public transport
- Hamburg is an important partner in driving the implementation, Masterplan is in preparation
- Next steps: Additional acceleration of replacement of diesel buses
- Systematical realization of infrastructure

НОСНВАНN

Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles

Thomas Grube

Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research – Electrochemical Process Engineering (IEK-3)

Electric drivetrains are the key elements for low carbon, energy-efficient transport based on renewable energy. Furthermore, a transportation system with zero local emissions will substantially improve quality of life. This is particularly the case for metropolitan areas. Battery-electric vehicles, as well as hydrogen fueled fuel cell electric vehicles, feature these important characteristics. However, the construction of new infrastructures is necessary for both vehicle technologies.

The objective of this investigation is a detailed design study for the required infrastructures for battery, as well as hydrogen fuel cell, electric vehicles for Germany. Based on this, a comparative techno-economic assessment of the infrastructures is conducted. The starting point of the study is a meta-analysis of published studies containing assessments of the infrastructure roll-out costs for electric charging and hydrogen fueling. Particularly for high market penetration, the literature review reveals only aggregated and in part non-transparent information. As a consequence, detailed models for infrastructure development are applied and own scenario calculations carried out. In order to deliver transparent and comparative results, the analyses use the same scenario assumptions with regard to electricity generation and passenger car transport for both infrastructures.

The results of the scenario analyses point out for high market penetrations of the respective electric vehicles (higher than 25%) lower cumulative investments for a hydrogen fueling infrastructure. For low vehicle penetration scenarios, the electric charging infrastructure has advantages with regard to the needed investments. For the construction of both infrastructures, investment for the roll-out is low in comparison to other infrastructures, like electricity generation or transportation routes. A parallel development of both infrastructures allows for the maximization of energy efficiency and the optimized use of renewable energy resources, as well as the minimization of CO2 emissions over a broad range of transportation modes.

With the transformation of the entire energy system in mind, the electricity-based production of hydrogen, including the development of transport and distribution infrastructures, creates the important option of using surplus electricity in a temporally- and spatially-variable manner. The construction of a hydrogen infrastructure for transportation can thus be enhanced to become an essential key element of a renewable-dominated energy system.

Funded by:

Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles

Project Team:

Martin Robinius, Jochen Linßen, <u>Thomas Grube</u>, Markus Reuß, Peter Stenzel, Konstantinos Syranidis, Patrick Kuckertz and Detlef Stolten

> Transition to Renewable Energy Devices & Systems December 05-06, 2017, Aachen/Germany

Contents

- Introduction and meta analysis of scenario studies
- Approach, assumptions and scenario settings
- FCV refueling infrastructure
- BEV charging infrastructure
- Comparison of results
- Conclusion

Introduction and Meta Analysis of Relevant Studies

Electrochemical Process Engineering (IEK-3)

Introduction

Objectives of the Energiewende

 Transforming the national energy system to a sustainable system according to the Paris COP21 agreement with significant reduction of CO₂ emissions achieved by renewable energy, energy efficiency and coupling of energy sectors

Mobility sector as a key element

 Measures in the transportation sector are essential for reaching the ambitious climate protection goals and corresponding renewable energy goals for the entire energy system; important political objectives regarding transportation already installed

Approach

 Changing the current transportation fuel system from a fossil fuel dominated system to a renewable energy dominated system by fuel switch and electrification of drivetrains.

Obstacle

• The supply infrastructure for renewable fuels must meet further requirements, such as being economically reasonable and societally accepted.

Focus here

- Cost of fuel supply infrastructures: hydrogen for FCV and electricity for BEV

Electrochemical Process Engineering (IEK-3)

3

Status Quo of Infrastructure

Hydrogen Fueling

- Worldwide: End of 2016, 204 public Hydrogen Fueling Station (HRS) in operation worldwide: Japan (44%), the USA (17%) and Germany (13%)
- Germany: HRS network reached 30 stations by mid June 2017. At present, 27 HRS are under construction or being planned in Germany, with a goal to build up to 400 HRS before 2023
- pipeline systems exist for the transportation and distribution of hydrogen concentrated for the chemical uses of hydrogen

Existing Hydrogen Pipelines (by 2017-05)				
The USA	2,608 km			
Europe	1,598 km			
of which in Germany	340 km			
Rest of world	337 km			
World total	4,542 km			
Sources: [6], [8], [1				

Electrochemical Process Engineering (IEK-3)

Meta Analysis of Scenario Studies

Selection criteria of scenario studies

• Focus on Germany (broader context studies for EU, worldwide) and quantitative results; parameters: number of hydrogen fueling stations and charging points, cumulative investment for infrastructure set-up

- Total number of scanned literature sources: 79
- Selected studies for meta analysis: 25 (12 hydrogen and 13 electric charging)

Lessons learned of the meta analysis

- Mostly aggregated results and, in many cases without provision of techno-economic assumptions
- Lack of information in literature of important infrastructure parameters, e.g., hydrogen pipeline length, number of trucks for hydrogen transport => no meta-analysis possible
- Regarding electric charging studies: lack of studies considering high xEV penetration scenarios, investment for infrastructure build-up, demand for fast-charging and impacts on the distribution grid

H, MOBILITY

IÜLICH

- cumulative investments differ significantly → different assumptions: power plant investment, number of public hydrogen fueling stations for low market penetration
- Specific cumulative investment per FCEV: 1,500-1,800 €/FCEV in McKinsey/ Robinius;
 3.000 €/FCEV in other scenarios
- In general, a decreasing specific cumulative investment per FCEV with increasing FCEV stock could be expected due to learning and economy of scale effects.

7

8

Electrochemical Process Engineering (IEK-3)

Remarks:

- cumulative investment for public/semipublic normal & fast charging
- investment for private charging points not included.

Electrochemical Process Engineering (IEK-3)

Approach, Assumptions and Scenario Settings

Electrochemical Process Engineering (IEK-3)

Infrastructure Modelling General Approach and Assumptions

H2 MOBILITY WASSERSTOFF TANKEN

Challenge of the comparison:

 Calculate cumulative investment for charging and hydrogen infrastructure for the same assumed market penetration scenario of BEVs and FCEVs as well as the same electricity generation scenario (no cost-optimized electricity supply scenario for each BEV and each FCEV penetration scenario; yet 60 day storage capacity for H₂)

174

General Methodical Approach

- Spatial resolution of demand and production, including sizing of the infrastructure for FCEV and BEV
- Specific costs, including all energy related and annualized infrastructure costs (no margins, taxes, fees or vehicle costs)

Assumptions

- market penetration scenarios for BEV or FCV (only passenger cars, PHEV not considered):
 - 100,000 cars
 - 1,000,000 cars
 - 20,000,000 cars

Assumed Electricity Scenario

Assessment based on municipal level and an hourly resolution of grid load and RES feed-in and an hourly resolution of grid load and RES feed-in an hourly resolution of grid load an hourly resolution of grid l

Share of RES electricity generation: 78 % Total curtailment (including future grid): 266 TWh

Positive residual energy Electrochemical Process Engineering (IEK-3)

Analysis of Curtailment Constrains of Transmission Grid

Power flow analysis based on 523 nodes and 802 edges

Transportation Scenario

	FCEV	BEV
Scenario	Hydrogen consumption [1000 t/year]*	Electricity Consumption [TWh/year]*
100,000	9.1	0.154
1,000,000	91	1.54
20,000,000	1820	30.8

*based on an annual mileage of 14,000 km [1] and 0.65 kg H2/(100 km), respective 11 kWh/(100 km) [2]

Vehicle distribution methodology:

- 1. Startup in metropolitan region first
- 2. Delayed start-up in neighbouring counties
- 3. Latest start-up in urban areas

 Bundesministerium für Verkehr und digitale Infrastruktur (2015). "Verkehr in Zahlen 2014/2015."
Grube, T. (2014). Potentiale des Strommanagements zur Reduzierung des spezifischen Energiebedarfs von Pkw, Jülich, TU Berlin. 216: IX, 255 pp.

Electrochemical Process Engineering (IEK-3)

FCV Refueling Infrastructure

Electrochemical Process Engineering (IEK-3)

8.4

GH2 Pipeline

1 million FCEV

1.9

GH2 Traile

0.6

LH2 Trailei

6.1

Pipe/Trailer

2.5

LH2 Trailer

GH2 Traile

GH2 Pipeline

20 million FCEV

Pipe/Trailer

LH2 Trailer

0.1 million FCEV

5.5

GH2 Pipeline

0.5

GH2 Traile

0

4.2

⊃ipe/Trailer

Electrochemical Process Engineering (IEK-3)

FCV: Fuel Cell Vehicle 19

Specific Fuel Costs

BEV Charging Infrastructure

Electrochemical Process Engineering (IEK-3)

Approach

Analysis of charging in cities and on freeways, relevant parameters

- fleet size and distribution amongst settlement types
- share of overnight charging sites in garages or on-street and their actual utilization
- allocation of charged energy at overnight (Mode 1 & Mode 2), public (Mode 3) and commercial (Mode 4) charging points
- dimensioning of chargers according to charge time definitions
- net electricity cost
- annual mileage and BEV fuel economy

Parameter specifically for charging along freeways

- freeway lengths
- traffic volume classes

Number of overnight chargers (Mode 1 & 2) increases with BEV number but with decreasing ratio:

- 1 by 1 in the first two scenarios (all BEV have an overnight charging option)
- 1 by 2 in the last scenario (only 58 % of all BEV have an overnight charging option)

The ratio of BEV per Mode 4 charger increases due to decreasing charging frequency caused by higher driving range (battery capacity)

OvN.M1+M2: Home and on-street chargers (Mode 1 and 2); Publc.M3: Public convenience chargers (Mode 3); City.M4: quick chargers in cities (Mode 4); Mtwy.M4: Quick chargers along motorways (Mode 4)

Electrochemical Process Engineering (IEK-3)

Distribution of Charged Energy by Charger Type

Assumptions for charging energy distribution by location:

182

- overnight charging decreases
- public Mode 3 charging is assumed low
- Mode 4 fast charging in cities and on motorways increases

Electrochemical Process Engineering (IEK-3)

Comparison of Results

183

vehicle purchase and operation costs excluded

Renewable power capacities and specific invest:

- wind onshore 171 GW @ 1000 €/kW
- wind offshore 59 GW @ 2500 €/kW
- PV 55 GW @ 1000 €/kW

cumulative investement [billion €]

Electrochemical Process Engineering (IEK-3)

Conclusion

Electrochemical Process Engineering (IEK-3)

Conclusion

- With a major share of RE from wind and solar, even the perfect grid doesn't help avoid surplus. H₂ will be required to store energy to balance volatile electricity production and demand. At 80 % RE one third of the surplus electricity allows powering 50 % of the German fleet with H₂.
- The refueling infrastructure for FCVs is very (time) efficient. The more vehicles, the better the economies of scale work in favor of the hydrogen infrastructure.
- At 100.000 vehicles the cost for both infrastructures is about the same. At 1 million EVs the investment for hydrogen refueling stations is lower than that for the charging points.
- Investment in green H₂ production and storage drives the cost for the H₂ infrastructure temporarily above the investment for BEVs. For higher numbers of vehicles the increase of additional investments in infrastructure is steeper for BEVs than for FCEVs.
- The investment in an infrastructure for producing and storing 100% green H₂ to refuel 20 million FCEVs is around 11 billion € lower than the investment required for charging 20 million BEVs.

Thank you for your attention! IEK-3 | Process and Systems Analysis

Prof. Dr. Detlef Stolten Head of IEK-3 d.stolten@fz-juelich.de

Dr. Peter Markewitz Stationary Energy Systems p.markewitz@fz-juelich.de

Electrochemical Process Engineering (IEK-3)

Dr. Bernd Emonts Deputy Head of IEK-3 b.emonts@fz-juelich.de

Jochen Linssen Sector Coupling j.linssen@fz-juelich.de

Dr. Martin Robinius Head of VSA m.robinius@fz-juelich.de

Dr. Thomas Grube Transport th.grube@fz-juelich.de

Model-Based Product and Pathway Design for Tailor-Made Fuels from Biomass

Manuel Dahmen, Wolfgang Marquardt* Aachener Verfahrenstechnik - Process Systems Engineering RWTH Aachen University, Aachen, Germany

The Cluster of Excellence "Tailor-Made Fuels from Biomass" (TMFB) at RWTH Aachen University aims at holistic co-optimization of biofuel production and combustion by considering the fuel's molecular structure (or its composition in case of a mixture) as the single most important design degree of freedom. Conceptually, the challenge is to identify oxygenated fuel components, which enable high-efficiency and low-emission combustion, and their corresponding production pathways that facilitate efficient and sustainable conversion of lignocellulosic materials into liquid biofuel through selective catalytic refunctionalization of biomass monomers. In the present contribution, we give an overview on model-based strategies and tools for such integrated product and pathway design of both pure and multi-component fuels. More specifically, we cover the following aspects of our work:

- i. computational fuel design, i.e., a variant of computer-aided molecular design (CAMD), and its relations with engine experimentation/optimization and (bio-)chemical pathway optimization (reaction engineering),
- ii. key physico-chemical properties of oxygenated fuels and their role in maximizing engine efficiency and minimizing pollutant emissions,
- iii. fast and reliable prediction of those properties (including the derived cetane number (DCN) as an important indicator for fuel auto-ignition quality) on the basis of the twodimensional molecular structure by means of group contribution and quantitative structure-property relationship (QSPR) modeling,
- iv. a generate-and-test CAMD framework for identification of pure compound fuel candidates with tailored properties that exploits the concept of targeted refunctionalization of bio-derived platform chemicals, and
- v. a novel methodology for integrated product and pathway design of biofuel mixtures, where mathematical programming is employed to optimize a production processrelated measure, i.e., the energy of fuel produced for a fixed amount of biomass, subject to a network of potential conversion pathways, predictive mixture property models, and a fuel specification chosen to unlock the potential of a highly-boosted direct-injection spark-ignition engine.

To illustrate the feasibility of the proposed methods and tools, we briefly review some selected important results obtained from case studies. Moreover, we refer to engine testing and optimization results that clearly demonstrate the potentials of the tailor-made fuels approach. Further results as well as details on the methodological approach can be found in the provided references.

^{*} Corresponding author: w.marquardt@fz-juelich.de

Model-Based Product and Pathway Design for Tailor-Made Fuels from Biomass

Manuel Dahmen and Wolfgang Marquardt

Process Systems Engineering Aachener Verfahrenstechnik, RWTH Aachen University

TRENDS 2017 - Novotel Aachen - December 6th, 2017

TRENDS 2017 – Novotel Aachen – December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

The "Tailor-Made Fuels"-Approach at RWTH Aachen University

The "Tailor-Made Fuels"-Approach at RWTH Aachen University

RWTHAACHEN

UNIVERSITY

Processing Steps in the Synthesis of Oxygenated Biofuels

Product and Pathway Design of Tailor-Made Biofuels

Hechinger, Voll & Marquardt. Computers & Chemical Engineering, 34(12), 1909-1918, 2010. Dahmen & Marquardt. Energy & Fuels, 31(4), 4096-4121, 2017.

Model-Based Fuel Design (The TMFB Approach)

TRENDS 2017 - Novotel Aachen - December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

Model-Based Fuel Design (The TMFB Approach)

Dahmen & Marquardt. Energy & Fuels, 30(2), 1109-1134, 2016

TRENDS 2017 - Novotel Aachen - December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT - Process Systems Engineering, RWTH Aachen University

Tailor-Made Fuels

Fuel Property Modeling

Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

The Need for a Predictive Auto-Ignition Model

TRENDS 2017 – Novotel Aachen – December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University Tailor-Made Fuels from Biomass

Tailor-Made Fuels

INVERSIT

The Need for a Predictive Auto-Ignition Model

Rapid Auto-Ignition Screening

Group Contribution Modeling of the IQT Auto-Ignition Delay

Dahmen and Marquardt, Energy & Fuels 29(9), 5781-5801, 2015.

RWTHAACHEN

UNIVERSITY

TRENDS 2017 – Novotel Aachen – December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

Model-Based Fuel Design (The TMFB Approach)

Dahmen & Marquardt. Energy & Fuels, 30(2), 1109-1134, 2016.

Results from Fuel Design Tailored Fuels for the Spark-Ignition (SI) Engine

Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

Results from Fuel Design Tailored Fuels for the Spark-Ignition (SI) Engine

Spark-Ignition (SI) Engi ("Otto"-Engine)	ne	compound	boili poir [°C]	ng t DCN	lower heating value [M.I /kg]	enthalpy of vaporization [kJ/kg(air)]	density [kg/m ³]	intermediates
	ans	2-methylfuran	<u>2-methy</u> stro effic	/ <u>lfuran</u> (ng decre iency +′	RON 102 e ase in s 18% at fu	2) vs. RON95 soot emissio Ill load	ns	furfural
	fu	2,5-dimethylfuran	112.9	9.8	32.1	Hoppe et al., Engine Rese	Internatio arch 17 (1	nal Journal of), 16-27, 2016 .
	nes	2-butanone	2-butanone (RON 117) vs. RON95 ■ strong decrease in soot emissions ■ efficiency >+18% at full load				2,3-butanediol	
	keto	methyl isobutyl ketor	114.3	19.0	34.8	32.0	808	lactic acid, 1,3- propanediol
Dahmen & Marquardt. Energy & Fuels 30(2), 1109-1134, 2016 .		ethyl acetate	104.6	3 13.7	23.2	47.5	920	ethanol, acetic acid
	srs	ethyl propanoate	113.0) 17.4	26.1	42.2	902	ethanol, lactic acid
	este	propyl acet ate	107.5	2 17.4	25.8	41.6	886	acetic acid, 1,3- propanediol, lactic acid
		propanyl acetate	111.8	3 10.3	26.0	38.7	811	acetic acid, lactic acid

Results from Fuel Design Tailored Fuels for the <u>Compression-Ignition</u> (CI) Engine

Dahmen & Marquardt. Energy & Fuels, 30(2), 1109-1134, 2016.

TRENDS 2017 – Novotel Aachen – December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

Results from Fuel Design Tailored Fuels for the <u>Compression-Ignition</u> (CI) Engine

Product and Pathway Design of Tailor-Made Biofuels

Hechinger, Voll & Marquardt. Computers & Chemical Engineering, 34(12), 1909-1918, 2010. Dahmen & Marquardt. Energy & Fuels, 31(4), 4096-4121, 2017.

TRENDS 2017 – Novotel Aachen – December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

Integrated Product and Pathway Design

TRENDS 2017 – Novotel Aachen – December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

RWTHAACHEN

INVERSIT

Tailor-Made Fuels

Integrated Design of Multicomponent Fuels

Integrated Design of Multicomponent Fuels

Pathway Modeling & Optimization

Fuel Property Modeling – Mixture Properties

green: depends on mixture composition blue: depends on a pure compound

RWITHAACHEN

UNIVERSITY

Putting it all together

Putting it all together

UNIVERSITY

Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

Conversion Pathway Map (CPM) of the Case Study

RWITHAACHEN

RWTHAACHEN

UNIVERSITY

INIVERSIT

TRENDS 2017 – Novotel Aachen – December 6th, 2017 Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

Conversion Pathway Map (CPM) of the Case Study

Solution – Maximization of the Energy of Fuel Produced

RWTHAACHEN

UNIVERSITY

Solution – Maximization of the Energy of Fuel Produced

Trade-off Analysis: DCN vs. Energy of Fuel Produced

Solution – Maximization of the Energy of Fuel Produced

Manuel Dahmen and Wolfgang Marquardt AVT – Process Systems Engineering, RWTH Aachen University

More Choices & Less Complex Designs

UNIVERSITY

Manuel Dahmen and Wolfgang Marquardt AVT - Process Systems Engineering, RWTH Aachen University

More Choices & Less Complex Designs

Summary & Perspective

- Tailor-made oxygenated fuels can significantly improve spark-ignition engine efficiency and can greatly simplify exhaust gas aftertreatment.
- Model-based design methodology for the identification of tailored biofuel (blends)
 - Targeted generation of candidate structures
 - Development of property models, e.g. DCN (ignition delay)
 - Pathway model based on selectivity & conversion data
 - Simultaneous product & pathway design
 - → Product/pathway combinations for further investigation by means of early-stage process screening and/or conceptual process design
- Perspective: From the molecular level to the process level (Prof. Alexander Mitsos) Early-stage process screening: Process Network Flux Analysis (PNFA) Effort for separation of intermediates, byproducts and solvents (short-cut models)

→ First economic assessment

Ulonska, Skiborowski, Mitsos & Viell. AIChE Journal, 62(9), 3096-3108, 2016.

Thank you for your attention!

Manuel Dahmen and Wolfgang Marquardt

Process Systems Engineering Aachener Verfahrenstechnik, RWTH Aachen University

Cluster of Excellence

Tailor-Made Fuels from Biomass www.fuelcenter.rwth-aachen.de

funded by DFG, the German Research Foundation, on behalf of the Excellence Initiative of the German State and Federal Governments

Band / Volume 433 Mentalitäten und Verhaltensmuster im Kontext der Energiewende in NRW K. Schürmann & D. Schumann (Hrsg.) (2018), 236 pp ISBN: 978-3-95806-349-5

Band / Volume 434 **Adhäsionsverhalten von wässrigen Nafion-Lösungen an dispersen Phasengrenzen** A. Schulz (2018), xii, 129 pp ISBN: 978-3-95806-354-9

Band / Volume 435 Alterungs- und fehlertolerante optimale Betriebsführung eines Direktmethanol-Brennstoffzellensystems R. Keller (2018), XX, 175 pp ISBN: 978-3-95806-355-6

Band / Volume 436 **Chamber study of biogenic volatile organic compounds: plant emission, oxidation products and their OH reactivity** Y. Zhujun (2018), ix, 139 pp ISBN: 978-3-95806-356-3

Band / Volume 437 **Characterization of High Temperature Polymer Electrolyte Fuel Cells** Y. Rahim (2018), iii, 162 pp ISBN: 978-3-95806-359-4

Band / Volume 438 Lattice Boltzmann Simulation in Components of Polymer Electrolyte Fuel Cell J. Yu (2018), ii, 173 pp ISBN: 978-3-95806-360-0

Band / Volume 439 Quantitative Luminescence Imaging of Solar Cells V. Huhn (2018), 155 pp ISBN: 978-3-95806-363-1

Band / Volume 440 Characterization of Phosphoric Acid Doped Polybenzimidazole Membranes Y. Lin (2018), II, IV, 140 pp ISBN: 978-3-95806-364-8 Band / Volume 441 Degradation Study of SOC Stacks with Impedance Spectroscopy Y. Yan (2018), 135 pp ISBN: 978-3-95806-367-9

Band / Volume 442 **Future Grid Load of the Residential Building Sector** L. Kotzur (2018), xxi, 213 pp ISBN: 978-3-95806-370-9

Band / Volume 443 **Yttriumoxid-Dünnschichten als Tritium-Permeationsbarriere** J. Engels (2018), 252 pp ISBN: 978-3-95806-371-6

Band / Volume 444 Inverse conditioning of a high resolution integrated terrestrial model at the hillslope scale: the role of input data quality and model structural errors

S. Gebler (2018), xxii, 160 pp ISBN: 978-3-95806-372-3

Band / Volume 445 Cathode Stability and Processing in Inert Substrate-Supported Solid Oxide Fuel Cells E. Matte (2018), viii, 178 pp ISBN: 978-3-95806-373-0

Band / Volume 446 **Aging and Degradation Behavior of Electrode Materials in Solid Oxide Fuel Cells (SOFCs)** X. Yin (2018), x, 103 pp ISBN: 978-3-95806-374-7

Band / Volume 447 **TRENDS 2017 Transition to Renewable Energy Devices and Systems** D. Stolten, R. Peters (Eds.) (2018), 206 pp ISBN: 978-3-95806-376-1

Weitere Schriften des Verlags im Forschungszentrum Jülich unter http://wwwzb1.fz-juelich.de/verlagextern1/index.asp

Energie & Umwelt / Energy & Environment Band / Volume 447 ISBN 978-3-95806-376-1

