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Tropical Storms and Mortality under 
Climate Change*

Extreme weather induced by climate change can have major consequences for human 

health. In this study, I quantify the effect of tropical storm frequency and severity on 

mortality using objective meteorological data and the universe of vital statistics records 

from a large developing country, Mexico. Using a measure of storm exposure that accounts 

for both windspeed dispersion and population density along the storm track, I project 

changes in past storm-related mortality under various scenarios of continued climate 

change, while holding population and income at current levels. I find that storm-related 

deaths would have risen under most climate change scenarios considered, with increases 

of as much as 52% or declines of as much as 10%, depending on the interplay between 

increasing storm severity and decreased frequency.
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1. Introduction 

Weather exerts a tremendous influence on human health. Extreme temperatures lead to 

excess mortality (Huynen et al. 2001; Deschenes and Moretti 2009; Huang et al. 2011; Barreca et 

al. 2013), influence long-term health (Deschenes 2014; Guerrero Compeán 2013), and alter 

economies (Dell, Jones, and Olken 2009; Dell, Jones, and Olken 2012; Dell, Jones, and Olken 

2014). Weather-related natural disasters, including droughts, windstorms, and floods, killed more 

than 1.7 million people from 1970-2002 (Guha-Sapir, Below, and Hoyois 2014). The death toll 

from natural disasters can be most severe in developing countries, where physical infrastructure 

and institutions are weakest (Kahn 2005; Anbarci, Escaleras, and Register 2005; Kellenberg and 

Mobarak 2011).  

Tropical storms, a type of windstorm, have led to significant economic damages (Yang 

2008; Belasen and Polachek 2008; Belasen and Polachek 2009; Nordhaus 2010; Strobl 2011; 

Strobl 2012; Hsiang and Jina 2014), migration (Kugler and Yuksel 2008; McIntosh 2008), 

changes in educational attainment (Bluedorn and Cascio 2005), mortality (Sadowski and Sutter 

2005; Hendrickson and Vogt 1996; Yeo and Blong 2010; Combs et al. 1999; Borden and Cutter 

2008; Zahran, Tavani, and Weiler 2013; Jonkman et al. 2009; Haque et al. 2012; Centers for 

Disease Control 2013; Anttila-Hughes and Hsiang 2013), and other health effects (Shultz, 

Russell, and Espinel 2005; Sanders et al. 1999; Bourque et al. 2006; Caldera et al. 2001; 

Goenjian et al. 2001; Banerjee 2015; Fredrick et al. 2015). Hurricane Katrina, which struck the 

United States in 2005, and Hurricane Mitch, which struck Central America in 1998, 

demonstrated the destructive potential of storms. Katrina killed 1,833 people and caused $125 

billion in damage, while Mitch killed 18,820 people and caused $6 billion in damage (EM-DAT 

2018). 
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Climate change brings not only a secular rise in temperatures, but also changing patterns 

of natural hazards, including tropical storms. Increasing severity of storms in recent decades has 

been linked to climate change via increases in ocean surface temperatures (Webster et al. 2005; 

K. Emanuel 2005; Mann and Emanuel 2006; Elsner, Kossin, and Jagger 2008; Knutson et al. 

2010). Attributing causation to this link is tenuous, however. One study of past storms in the 

Atlantic concluded, “[I]t is premature to conclude that human activities—and particularly 

greenhouse gas emissions that cause global warming—have already had a detectable impact on 

hurricane activity” (Geophysical Fluid Dynamics Laboratory 2018). Nonetheless, climate models 

project storm intensity to increase under continued climate change, though with decreased 

frequency (K. A. Emanuel 1987; Knutson, Tuleya, and Kurihara 1998; K. Emanuel, 

Sundararajan, and Williams 2008; Knutson et al. 2010; Bender et al. 2010; Villarini et al. 2011; 

Lin et al. 2012).  

This study considers how storm patterns related to climate change affect mortality, the 

most basic measure of human health. I quantify the effect of tropical storm frequency and 

severity on mortality using objective meteorological data and the universe of vital statistics 

records from a large developing country, Mexico. I look for evidence of adaptation to the 

mortality effects of storms across regions and time periods that are likely to differ in adaptive 

behavior. I use estimates from past storms to project changes in storm-related mortality under 

various scenarios of continued climate change, while holding population and income at current 

levels. When applying storm patterns projected under climate change to the estimation sample, I 

find that storm-related deaths could have risen or fallen, depending on the interplay between 

increasing storm severity, which increases deaths, and decreased frequency, which decreases 
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deaths.1 I project that storm-related mortality would have risen under most scenarios considered. 

The results suggest that it is important to incorporate climate change scenarios when preparing 

for disasters, particularly in developing countries. 

This study builds upon and contributes to several strands of literature. First, I add to the 

stock of knowledge on the effects of climate change on human health (Haines and Patz 2004; 

Kovats, Campbell-Lendrum, and Matthies 2005; Patz et al. 2005; McMichael, Woodruff, and 

Hales 2006; Haines et al. 2006). Second, I draw on projections of changing storm patterns 

induced by climate change to assess its social consequences, as Mendelsohn et al. (2012) and 

Dinan (2017) have done for storm-related economic damage. The present study relates most 

closely to McMichael et al. (2004), Dasgupta et al. (2009), and Lloyd et al. (2015), each of 

which project global mortality due to storm surges under climate change.2 I build on their work 

in several ways. First, I use a continuous measure of storm exposure that accounts for both 

windspeed dispersion and population density along the storm track (Yang 2008). Second, I take a 

comprehensive approach that uses data on all storms and deaths over a 22-year period, rather 

than subjective determinations of deaths from single storm episodes. Third, I use subnational 

variation in storm intensity from a single country, Mexico, allowing me to hold constant 

national-level institutional influences on public health. My focus on a developing country with 

high-quality data also balances the need for accurate estimates with broader relevance, as the 

effects of tropical storms under continued climate change will disproportionately affect the 

developing world. 

                                                            
1 Note that this approach projects future climate change onto past data. A more sophisticated approach would also 
project changes in population and economic activity under climate change, though at the cost of the additional 
uncertainty inherent in such projections. See Dinan (2017) for an example.  
2 Following the literature, I use the phrase “under climate change” to refer to future scenarios of continued climate 
change that differ in severity. The implicit counterfactual is past climate change, not an alternative future in which 
climate change fails to occur.  
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The paper proceeds as follows. Section 2 describes the measure of tropical storm 

exposure and the mortality data. Section 3 presents main results on the effect of tropical storms 

on mortality. Section 4 explores whether residents adapt to storms in ways that reduce storm-

related mortality, as such adaptation would represent an important response to changing storm 

patterns under climate change. Section 5 projects storm-related mortality under climate change. 

Section 6 concludes. 

 

2. Storm exposure and mortality data 

Tropical storms are storms that originate over tropical oceans and have sustained winds 

exceeding 33 knots (61 kilometers per hour).3 Tropical storms carry three related risks for 

property and human health. First, strong winds from storms can cause direct damage. Second, 

tropical storms can cause a storm surge, or a temporary rise in sea level due to wind-driven 

waves. Storm surges can be massive in the case of the strongest storms. For instance, the surge 

caused by the 1970 Bangladesh hurricane was reported to have reached 30 feet (9 meters). Third, 

storms can be accompanied by heavy rainfall, which can cause flooding or landslides. I expect 

these risks to lead to excess mortality beyond that experienced in the absence of storms. 

Measuring the effect of tropical storm severity on mortality presents challenges. For 

instance, using government and/or media reports of storm damage, even if available for all 

tropical storms in the sample period, would risk biasing the estimates. Specifically, reverse 

causation is likely to be a problem. If excess deaths due to a storm are large, disaster damages 

may be exaggerated to attract more government or international aid. This would lead the 

estimated effect of damage on mortality to be upward biased. Alternatively, areas with the 

                                                            
3 I base much of the background description of tropical storms and corresponding index presented here on Yang 
(2008), which in turn draws on Smith (1992), Alexander (1993), and Bryant (2005). 
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greatest damage might be the wealthiest and most capable of reducing excess death, leading to 

downward bias. To avoid these possibilities, I use objective meteorological data on storm 

windspeed to measure storm exposure.  

I use windspeed data on tropical storms originating in the Atlantic and eastern North 

Pacific oceans (the regions relevant to Mexico), available from the National Oceanic and 

Atmospheric Administration (NOAA) Tropical Prediction Center, a U.S. government agency. 

NOAA analyzes data from reconnaissance aircraft, ships, and satellites to create “best tracks” of 

individual storms: positions (latitude and longitude) of storm centers at 6-hourly intervals, 

combined with intensity information (windspeed and barometric pressure; Jarvinen, Neumann, 

and Davis 1993; Davis, Brown, and Leftwich 1984; Chu et al. 2002). Complete records for both 

ocean regions are available since 1949. Figure 1 maps storm best tracks making landfall in 

Mexico. 

I use data on tropical storm exposure and mortality in all 31 Mexican states, plus Mexico 

City, for each month during 1990-2011 (I chose the starting period based on the availability of 

microdata on mortality). I create an index to measure storm severity by incorporating two 

elements, windspeed and population density (Yang 2008). A storm index S for state j, month m, 

and year t with this property is: 

𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗 =
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖
 (1) 

where x measures the exposure of person i to storm s in state j at month m and year t. The 

exposure measure is the square of the windspeed above the tropical storm windspeed threshold 

(33 knots), normalized by the maximum of this variable. Specifically, 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 is: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 = (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−33)2

(𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀−33)2
 (2) 
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where 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 is the windspeed, in knots, to which an individual was exposed. 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 is the 

maximum observed windspeed in Mexico over the period for which complete data are available 

for all storms in the country (1949-2011). The functional form reflects common practice in 

climatology, which models pressure on structures as rising in the square of windspeed, rather 

than a linear term (K. Emanuel 2005; Yang 2008; Mahajan and Yang 2017). I check for 

robustness to this assumption later in the paper.  

Windspeed is observed directly only for points along the storm track, requiring me to 

estimate the windspeed exposure of individuals. Using a 0.25-degree-square national grid of 

Mexico, I follow Yang (2008) to estimate the windspeed experienced at each gridpoint. The 

procedure uses the storm best track data, a model of windspeed decay given distance from 

hurricane eyes (Dilley 2005), and geographic information systems software. The procedure has 

three steps: 

1. Predict the radius (in kilometers) of tropical storm-force winds using a regression 

equation incorporating windspeed along the storm track, latitude, and an indicator for 

whether the storm has made landfall: 

ln 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖� =  −.616 + .475 ln 𝑙𝑙𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑙𝑙𝑖𝑖 + .056 ln𝑤𝑤𝑖𝑖 + . 848 ln𝑤𝑤𝑖𝑖𝑗𝑗𝑚𝑚𝑥𝑥 − .118 𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑖𝑖 (3) 

where s indexes the point on the storm track, w is windspeed, and 𝑤𝑤𝑖𝑖𝑗𝑗𝑚𝑚𝑥𝑥 is the maximum 

recorded windspeed throughout the best track. Use the predicted radii to determine which 

gridpoints experienced a tropical storm.  

2. Find the distance between each affected gridpoint and the nearest point along the storm 

best track. Predict windspeed (in knots) at each gridpoint g associated with storm track 

point s as:  
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𝑤𝑤�𝑔𝑔𝑖𝑖 = 34 + (𝑤𝑤𝑖𝑖 − 34) × [1 − (𝑑𝑑𝑖𝑖𝑖𝑖𝑗𝑗𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑖𝑖
𝑟𝑟𝑚𝑚𝑑𝑑𝑟𝑟𝑟𝑟𝑖𝑖� 𝑖𝑖

)]   (4) 

3. Insert predicted windspeed into equation (2) to calculate the storm index for each affected 

gridpoint. Then sum across storms and gridpoints in the state-month-year cell. While 

there is no data source for individual-level hurricane exposure, I approximate it using 

data on population density. To capture population density along the storm track, I weight 

gridpoints by the population of the municipality in which it is located. I use municipal 

population from the 1990 Mexican Census; data from more recent Censuses might reflect 

population movements in response to storms within the sample and risk biasing the 

results. For municipalities with more than one gridpoint, I assume the population is 

uniformly distributed throughout the grid. 

 The storm index ranges from [0,1]. Its units are intensity-weighted events per capita. The 

index 𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗 would equal one if each of a state’s residents were exposed to the maximum 

windspeed (𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 = 1 for all residents) on a single occasion in a single month. State-month-

years without any residents exposed to a tropical storm have a storm index of zero. This index 

improves upon other measures of storm severity based on meteorological data, such as the Saffir-

Simpson scale (Categories 0-5), by measuring intensity continuously based on both storm 

strength and population exposure.  

Mortality data are from the universe of Mexican Vital Statistics records. Beginning with 

10.3 million individual recorded deaths, I aggregate by state, month, and year. To construct 

mortality rates, I divide the deaths in each state-month-year cell by the population in that cell, 

using the Mexican Census from 1990, 2000, and 2010 and the Mexican Conteo (a large 

population survey conducted between Census years, comparable to the American Community 
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Survey) from 1995 and 2005. I assume constant population growth to impute population values 

between surveys, and annualize monthly mortality rates by multiplying by 12.  

Using the universe of all recorded deaths helps to avoid potential biases arising from 

official tallies of storm-related deaths, which may reflect desires to over- or under-report deaths 

for similar reasons as damage estimates. For instance, multiple independent research reports have 

suggested that the official government estimate of 64 deaths due to Hurricane Maria, which 

struck Puerto Rico in 2017, may represent just 1-6% of true excess mortality (Robles et al. 2017; 

Kishore et al. 2018). A limitation of using the universe of death records is the potential to 

attribute unrelated deaths to storms. Although information on cause of death could mitigate this 

concern, it is unclear which (if any) causes of death could be completely unrelated to storms, as 

any pre-existing condition could be exacerbated by storm exposure. For this reason, I use deaths 

due to all causes in estimation, but add a series of increasingly stringent controls to isolate the 

causal effect of storms. I also compare my estimates to those from sources that focus more 

narrowly on deaths attributed to disasters.     

 Figure 2 shows the geographic distribution of storms during the sample period, with 

darker shading indicating greater storm frequency. As expected, coastal states experience more 

tropical storms than interior states. Figure 3 shows the frequency and intensity of storms over 

time, revealing large fluctuations. I use this spatial and temporal variation in storm exposure to 

identify the effect of storms on mortality.  

Table 1 shows summary statistics for the monthly state panel. Storms affect 217 of the 

8,448 state-months in the data, or 3 percent of the total. Conditional on a storm, the mean value 

of the storm index is 0.0077, with a standard deviation nearly three times as large, suggesting 

wide variation in storm severity. Almost all storms fall between Categories 1-3 on the Saffir-
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Simpson scale, though 7 percent of storms reach Category 4 (note that these categories are 

defined by state-month, rather than for an entire storm as in common usage). Mean mortality by 

state-month is 1,215, with 56 percent of deaths by males, reflecting their lower life expectancy 

and the toll of drug-related violence during the sample period. Similarly, the male mortality rate 

of 5.3 per 1,000 population is 37 percent greater than the female mortality rate. Mortality is more 

prevalent among the very young and old, with infants and those over 70 experiencing the highest 

mortality rates. 

 

3. Effect of storms on mortality 

3.1 Empirical specification 

 I identify the effect of storms on mortality using the regression equation: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 = 𝛼𝛼 + 𝛽𝛽𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗 + 𝛾𝛾𝑗𝑗 + 𝛿𝛿𝑗𝑗𝑗𝑗 + 𝜀𝜀𝑗𝑗𝑗𝑗𝑗𝑗 (5) 

where j, m, and t are indices for state, month, and year; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is mortality (level or rate); and 𝑆𝑆 

is the storm index. The state-specific fixed effects 𝛾𝛾 capture all time-invariant characteristics of a 

state that contribute to mortality, such as its geography, initial state of public health, and 

historical propensity to experience storms and other natural disasters. The time effects 𝛿𝛿 capture 

all characteristics common to all states in each month and year, such as national economic and 

political conditions, seasonal fluctuations, and climate change that occurs at national scale. The 

regression error term is 𝜀𝜀. The coefficient of interest 𝛽𝛽 therefore isolates excess deaths from 

storms, i.e., the effect of storms on mortality independent of any influences that are permanent 

within a state or common to all states within a particular month. I cluster standard errors by state, 

which accounts for arbitrary patterns of persistence in unobservable characteristics within a state 

over time.  
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3.2 Main results 

 Table 2 presents the main results. In column (1), the coefficient on the storm index means 

that a state experiencing the strongest possible storm (𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗 = 1) is predicted to have 958.2 

additional deaths in that month relative to a month without a storm.4 This value is large relative 

to mean monthly mortality of 1,215, and is statistically significant at 5%. The bottom of the table 

presents alternative ways to gauge the magnitude of a storm’s effect on mortality. A storm of 

average strength (using the sample mean of the storm index, conditional on storm occurrence) 

would cause 7.4 additional deaths. A one standard deviation increase in storm intensity would 

lead to 20 additional deaths.  

While these estimates may appear modest, it is important to note that they are for a single 

state; individual storms are likely to spread over several states. The estimates imply that storms 

killed 1,598 people in Mexico from 1990-2011.5 This figure exceeds the 989 deaths attributed to 

tropical storms in Mexico over the same period according to the International Disaster Database, 

the most comprehensive source for disaster data (EM-DAT 2018). The discrepancy may be due 

to the different methodologies used. The Database is restricted to events with at least 10 deaths, 

100 people affected, or for which there was a declaration of a state of emergency or call for 

international assistance. It relies on reports from the United Nations, governments, aid 

organizations, insurance companies, and the press. It may therefore reflect only “direct” deaths 

immediately attributable to larger storms, omitting smaller storms or any additional “indirect” 

deaths due to pre-existing health conditions exacerbated by storm exposure.    

                                                            
4 The strongest storm observed during the sample period has an index of 0.153, for the state of Quintana Roo in 
October 2005. This observation reflects Hurricane Wilma, which was a Category 5 hurricane at its peak. 
5 The calculation uses the equation 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� = ∑ ∑ ∑ �̂�𝛽𝑗𝑗 𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 , where the circumflex denotes estimated values. 
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 Columns (2)-(3) present results for male and female mortality levels separately. The 

storm coefficient for females is larger in magnitude and more precisely estimated than for males. 

 Column (4) shows that the strongest possible storm would raise the mortality rate by 3.12 

deaths per thousand population, an increase of 68% over the baseline, and significant at the 1% 

level. A storm of average strength raises the mortality rate by .02 per thousand, while a one 

standard deviation increase in storm intensity would increase the mortality rate by .07.  

Looking separately at male and female mortality rates in columns (5)-(6) reveals that the 

storm coefficient for males is larger in magnitude and more precisely estimated than for females, 

the opposite pattern observed for the mortality level. The discrepancy reflects Mexico’s lower 

male population due to international migration and drug-related violence. Higher storm-related 

mortality rates for men may reflect several factors. Men may be more likely than women to be 

exposed to the most destructive aspects of storms as emergency personnel (e.g., fire, law 

enforcement, emergency medical technicians, or construction and maintenance workers). The 

health of older men may also be less robust to storm-related stresses on existing medical 

conditions, consistent with lower male life expectancy. 

 Table 3 presents results by age group, with mortality level as the dependent variable in 

Panel A and mortality rate in Panel B. Column (1) recapitulates the results from Table 2 for 

reference. In Panel A, I find that the age groups with the largest number of deaths are infants 

(under 1) and older adults (50 and above), though it is not clear from these results whether these 

magnitudes are due to greater vulnerability of these groups or higher prevalence in the 

population. Panel B accounts for population prevalence by using age-specific mortality rates, 

showing that infants and the elderly (70 and above) are most vulnerable to storms. The strongest 

storm would increase infant mortality by 25.5 per thousand, or 1.4 times the mean, and is 
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statistically significant at 10%. For the elderly, the storm coefficient is about the same magnitude 

as the mean mortality rate, and also significant at 10%. These results show that the young and 

old are most vulnerable to storm-induced mortality.   

 3.3 Robustness checks  

 Tables 4 alters the regressions for the overall mortality level to probe robustness of 

results. Column (1) includes the main result from Table 2 for reference. Columns (2)-(3) of 

Table 4 allow the storm’s effects to persist for one or two additional months after it makes 

landfall by including the first and second monthly lags of the storm index, 𝑆𝑆𝑗𝑗𝑗𝑗,𝑗𝑗−1and 𝑆𝑆𝑗𝑗𝑗𝑗,𝑗𝑗−2. 

The coefficients on these lagged values of the storm index are not significant. 

Columns (4)-(6) check the robustness of the estimates by allowing mortality to vary 

flexibly within states over time. These specifications are important to ensure that idiosyncratic 

factors within a state, such as economic growth that is particularly slow or fast relative to the 

national average, or drug cartel-related violence, are not spuriously correlated with the 

prevalence of storms and therefore biasing the estimates. Column (4) includes state-specific 

linear time trends in mortality, while column (5) adds a state-specific quadratic trend. Column 

(6) includes state-by-year effects, which account for all factors common to a state within a year, 

such as annual economic growth or changes in political representation. In this specification, the 

effect of storms on mortality reflects deviations from a state’s mean monthly mortality within a 

particular year.6The effect of storms on mortality is of similar magnitude and precision as the 

baseline estimate across each of these stringent specifications.  

                                                            
6 More formally, columns (4)-(6) of Tables 4-5 add state-specific effects 𝑓𝑓𝑖𝑖(𝑚𝑚, 𝑙𝑙) that vary over time: 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗 = 𝛼𝛼 + 𝛽𝛽𝑆𝑆𝑗𝑗𝑗𝑗𝑗𝑗 + 𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑗𝑗𝑗𝑗 + 𝑓𝑓𝑖𝑖(𝑚𝑚, 𝑙𝑙) + 𝜀𝜀𝑗𝑗𝑗𝑗𝑗𝑗 
 

Let 𝜏𝜏 be a variable that is linear in months during the sample period, so that 𝜏𝜏 = 1 corresponds to January 1990, 𝜏𝜏 =
2 is February 1990, etc. Then 𝑓𝑓𝑖𝑖(𝑚𝑚, 𝑙𝑙) is specified in Tables 4-5 as: 
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The squared terms in the storm index emphasize storms with the strongest windspeeds. If 

the effect of storms on mortality is instead linear in windspeed, the index would be misspecified, 

biasing the estimates. To explore this possibility, column (7) of Table 4 shows results when 

removing the squared terms from equation (2) when calculating the storm index.7 The 

coefficient on the storm index is positive and significant at 1%. The estimate implies that an 

average storm kills 14 people, nearly double the estimate of 7.4 deaths when using the original 

storm index. A one standard deviation increase in storm intensity would lead to 25 additional 

deaths, compared to 20 for the original storm index. Both versions of the index fit the data 

equally well, with identical R-squared values of 0.54. In sum, the linear and squared storm 

indices produce results that are consistent with each other. However, the squared storm index 

produces estimates that are more conservative. 

Another potential source of misspecification in the main results is the weighting of storm-

affected gridpoints by 1990 municipal population. An alternative approach is to weight all 

gridpoints within a state equally, while including lagged population as an additional explanatory 

variable. Column (8) of Table 4 presents results. The coefficient on this unweighted storm index 

is positive and significant. The implied average and marginal effects reported at the bottom of 

the table are similar in magnitude to those in the baseline model. 

A final source of misspecification that I explore is to include state income in the model, 

as a state’s level of economic development can moderate the effect of storms on mortality. I 

excluded income from the baseline model because the first year of state gross domestic product  

                                                            
 
 Column (4), linear state trends:  𝑓𝑓𝑖𝑖(𝑚𝑚, 𝑙𝑙) = 𝜃𝜃𝑖𝑖𝜏𝜏   
 Column (5), quadratic state trends:  𝑓𝑓𝑖𝑖(𝑚𝑚, 𝑙𝑙) = 𝜃𝜃1𝑖𝑖𝜏𝜏 + 𝜃𝜃2𝑖𝑖𝜏𝜏2   
  Column (6), state-by-year fixed effects: 𝑓𝑓𝑖𝑖(𝑚𝑚, 𝑙𝑙) = 𝜃𝜃𝑖𝑖𝑗𝑗  
 
7 In other words, I re-specify equation (2) as 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−33

𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀−33
. 
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publicly reported by INEGI, the Mexican statistics agency, is 2003, which would reduce the 

sample size by more than half. Additionally, the inclusion of state-by-year effects in column (6) 

accounts for annual state income without sacrificing observations. Nonetheless, for completeness 

I report results when including the natural log of annual state income per capita (lagged one year) 

for the available years in Table 4, column (9). The coefficient on the storm index is positive and 

significant. The implied average and marginal effects reported at the bottom of the table are 

similar in magnitude to those in the baseline model. 

 Table 5 presents results for the mortality rate using the same methods as Table 4. The 

results mirror the findings of Table 4. The storm effect on mortality fails to persist beyond the 

month of landfall.  Estimates are highly robust to the inclusion of state-specific mortality trends, 

different specifications of the storm index, and to the inclusion of state income per capita. 

 

4. Adaptation in response to tropical storms 

 Households and institutions may adapt to the likelihood of tropical storms by taking 

actions that reduce storm-related mortality. These adaptations could reduce the contemporaneous 

effect of storms on mortality and make residents more likely to survive future storms. Successful 

adaptation could thus prepare residents to face the changing patterns of storms predicted under 

climate change. 

 I look for evidence of adaptation by comparing regions and time periods that are likely to 

differ in their adaptive behavior in response to storms. Conditional on storm severity, I expect 

that states with greater prior exposure to tropical storms should experience lower storm-related 

mortality because of adaptation. I also expect that storm-related mortality should decline over 

time as successful strategies to prepare for tropical storms take hold. These responses represent 
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only a few of the many possible forms of adaptation, of course. They serve as a useful starting 

point, not the final word. In particular, increases in income over longer time spans than those 

considered here should bring many forms of useful adaptation, as richer societies can deploy 

additional resources to prevent storm-related deaths. 

 To test for adaptation, I regress mortality on the storm index and its interaction with 

measures of storm exposure prior to the sample period. I continue to include state and year-by-

month effects in all regressions. In Table 6, column (1), I define storm exposure as an indicator 

for the state experiencing past storms (1949-1989) at above-median frequency. As expected, the 

coefficient on this interaction term is negative for both the mortality level (Panel A) and rate 

(Panel B), consistent with an adaptive response to prior storm exposure. However, neither 

interaction term is statistically significantly different from zero, meaning that I cannot reject 

equal mortality between states with high or low frequency of prior storm exposure.  

In column (2) I redefine prior storm exposure as an indicator for above-median average 

storm severity (conditional on a storm).8 Here again the coefficients on the interaction terms are 

not statistically significant, with opposite signs according to whether the outcome is the mortality 

level or rate. In column (3) I interact the storm index with an indicator for coastal state, where 

storms are more likely to strike (Figures 1-2). Again, the interaction coefficients are insignificant 

and flip signs.9 Interestingly, the sum of the storm index main effect plus interaction (bottom of 

table), representing the storm effect in states where the interaction term is non-zero, are 

statistically significant and similar in magnitude to the main effects reported in Table 2. These 

                                                            
8 For this measure of prior storm severity, I weight all gridpoints equally rather than by 1990 municipal population 
in order to prevent endogenous population flows in response to storms from biasing the index. Changing municipal 
boundaries would make it problematic to weight by municipal population prior to the start of the storm index in 
1949. 
9 I also fail to find evidence that wealthier states adapt better to storms. Interacting the storm index with a dummy 
for state GDP above median (based on predetermined GDP from 1988) also produces insignificant coefficients. 
Results not shown but available upon request. 
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results suggest that the main estimates of storm-related mortality are driven by areas with the 

greatest storm exposure, where I would expect adaptation to be strongest. 

 I also test whether storm-related mortality changes over time by splitting the sample into 

early (1990-2000) and later (2001-2011) periods. The storm index coefficients are nearly 

identical between the two periods when the outcome is the mortality level (Table 6, Panel A, 

columns 4-5), with a larger point estimate for the later period when analyzing the mortality rate 

(Panel B). Moreover, only the later-period coefficients are statistically significant. These results 

are contrary to what I would expect if there were adaptation over time to the mortality effects of 

tropical storms. Overall, I find little evidence of storm-related adaptation in the data.10 These 

results should give greater confidence in projections of storm-related mortality under climate 

change, to which I now turn. 

    

5. Mortality projections under climate change 

 I use the estimates of the effect of storms on mortality to project storm-related mortality 

under continued climate change. As climate change proceeds, storms are likely to become more 

severe but less frequent (K. A. Emanuel 1987; Knutson, Tuleya, and Kurihara 1998; K. Emanuel, 

Sundararajan, and Williams 2008; Knutson et al. 2010; Bender et al. 2010; Villarini et al. 2011; 

Lin et al. 2012). Because I observe past storm frequency and severity in the data, I can predict 

how many storm-related deaths would have occurred under alternate storm patterns during the 

sample period. I calculate counterfactual storm indices under climate change by altering the 

observed storm index along two dimensions: 1) intensity and 2) frequency. On intensity, I 

simulate windspeed increases of 5% and 10%, consistent with projected increases in storm 

                                                            
10 I find similar results when including state-by-year effects. Results omitted for brevity but available from the 
author upon request. 
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intensity reported in the literature (Knutson, Tuleya, and Kurihara 1998; Knutson et al. 2010). To 

do so, I increase predicted windspeed at each gridpoint along the storm track by these amounts 

and recalculate the storm index. This will not alter the storm index in a mechanical way, because 

the storm index depends on the non-linearity of its functional form, the number of gridpoints 

exposed to a storm within a state, and the population density along the storm track. 

 I simulate reduced storm frequency by dropping a randomly selected 20% of positive 

values of the storm index, consistent with the midrange of projected frequency decreases 

(Knutson et al. 2010). I also alter this scenario in some simulations by retaining any storms that 

reach Category 4 or 5 on the Saffir-Simpson scale (Webster et al. 2005). 

 Figure 4 shows how increased storm severity and decreased frequency alters the values of 

the storm index. Each point in the Q-Q plot represents a quantile of the distribution, with the 

observed storm index on the horizontal axis and the projected storm index under climate change 

on the vertical axis. Points above the 45-degree line indicate a projected increase in storm 

severity relative to observed values. Most points in the figure lie above this line, with increasing 

disparities in the highest quantiles (strongest storms). 

 Using these counterfactual storm indices, I predict storm-related deaths by multiplying 

the baseline estimate (the storm index coefficient in Table 2, column [1]) by the simulated values 

of the storm index, then summing over all states and time periods: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� = ∑ ∑ ∑ �̂�𝛽𝑗𝑗 �̃�𝑆𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  (4) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� is predicted mortality under the climate change scenario; �̂�𝛽 = 958.2 is the baseline 

estimate of the storm effect; �̃�𝑆 is the storm index under the climate change scenario; and j, m, and 

t are indices for state, month, and year as before.  
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 Figure 5 shows how the change in storm patterns under continued climate change affects 

mortality. Each bar shows predictions of storm-related deaths during the sample period under 

different climate change scenarios, with the dashed line representing baseline (no adjustment) 

estimates. Whether continued climate change increases or decreases mortality relative to this 

baseline depends on the interplay between increased storm severity and reduced frequency; 

although stronger storms kill more people, their reduced frequency will kill fewer over a given 

time period. At one extreme, a windspeed increase of 10% without any change in storm 

frequency would have killed 832 more people in Mexico from 1990-2011. However, a 

windspeed increase of 5% coupled with 20% lower frequency would have killed 153 fewer 

people. In proportional terms, these projections range from a 52% increase in storm-related 

deaths to a 10% decrease. Other scenarios fall between these extremes, but the latter is the only 

case under which deaths would fall among the scenarios considered.11 

 

6. Conclusion 

Changing patterns of extreme weather under continued climate change will have major 

consequences for human health. I find that past storm-related deaths in Mexico would have 

differed dramatically under projected climate change, with increases of as much as 52% or 

decreases of as much as 10%, depending on the interplay between increased storm intensity and 

decreased frequency. These findings are an important step in connecting the changes in natural 

hazards predicted under continued climate change to their human consequences. 

                                                            
11 To check robustness, I repeat these simulations using results from the model with state-by-year fixed effects 
(Table 4, column 6), which produces a more conservative estimate of storm impact. These simulations imply that 
storms killed 1,499 people in Mexico during the sample period, similar to the baseline estimate of 1,598. An 
increase of 10% in storm windspeed without any change in storm frequency would have killed 781 more people 
during the sample period under this revised simulation. An increase of 5% in windspeed coupled with a 20% 
reduction in severity would have killed 14 fewer people. These results are comparable to the range of +832 to -153 
under the simulations from the baseline model. 
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 All exercises in prediction are fraught with difficulty, and this study is no exception. First 

is the inherent uncertainty in climate science, a limitation of all studies projecting the 

consequences of climate change. A second limitation is the possibility that societies will take 

actions, beyond those already in place during the sample period, to mitigate the human costs of 

storms, as found in an emerging literature on adaptation to storm exposure (Hsiang and Narita 

2012; Seo and Bakkensen 2016; Bakkensen and Mendelsohn 2016). Although I find little 

empirical evidence of past adaptation to storm-related mortality, I of course cannot rule out its 

occurrence. Additionally, the role that changes in population and income might play in future 

storm-related mortality do not enter the model of this study. 

An important form of adaptation not addressed in this study is evacuations. Public 

officials may order residents to evacuate in response to impending storms, potentially saving 

many lives. I lack data on evacuations, however, preventing me from estimating their effect on 

storm-related mortality. All estimates in the paper are therefore inclusive of any evacuations 

ordered during the sample period. Accurate forecasting of incoming storm tracks, combined with 

judicious use of evacuations by policymakers, could help to mitigate deaths caused by future 

storms under climate change. These and other forms of adaptation may in turn alter the future 

effects of storms in ways unforeseen by the model.  
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Table 1: Summary statistics 
Storms Mortality 

      level rate 
 N mean s.d.  N mean s.d. mean s.d. 

storm index 8,448 0.0002 0.004 total 8,448 1215.1 1108.2 4.59 0.96 
conditional on storm  male 8,448 678.7 593.4 5.31 1.07 
storm index 217 0.0077 0.021 female 8,448 535.6 517.1 3.88 0.93 
Saffir-Simpson scale  age group     

 Category 0 217 1.00 0.00  under 1 8,448 104.1 121.8 18.26 9.58 
 Category 1 217 0.21 0.41  1-4 8,448 22.2 25.8 0.91 0.64 
 Category 2 217 0.07 0.25  5-14 8,448 19.6 17.9 0.33 0.15 
 Category 3 217 0.03 0.16  15-29 8,448 80.1 68.3 1.12 0.37 
 Category 4 217 0.005 0.07  30-49 8,448 161.9 150.5 2.55 0.63 
     50-69 8,448 309.0 299.3 10.75 2.20 
     70 or older 8,448 512.6 477.5 57.58 12.29 

Sample is monthly panel of Mexican states, 1990-2011. Saffir-Simpson scale variables are dummies for storm of indicated category or greater. Mortality rate is 
deaths per 1,000 population, annualized.  
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Table 2: Effect of tropical storms on mortality 
 level rate 
 overall male female overall male female 
 (1) (2) (3) (4) (5) (6) 

storm index 958.2 444.8 512.5 3.12 3.49 2.75 
  (436.0)** (225.0)* (215.9)** (0.98)*** (0.98)*** (1.23)** 
N 8,448 8,448 8,448 8,448 8,448 8,448 
R-squared 0.54 0.51 0.54 0.54 0.51 0.49 
mean outcome 1215.1 535.6 678.7 4.59 3.88 5.31 
effect of average storm 7.4** 3.4** 3.9** 0.02*** 0.03*** 0.02** 
 (3.4) (1.7) (1.7) (0.01) (0.01) (0.01) 
marginal effect of storm 20.0** 9.3** 10.7** 0.07*** 0.07*** 0.06** 
 (9.1) (4.7) (4.5) (0.02) (0.02) (0.03) 

Sample is monthly panel of Mexican states, 1990-2011. All regressions include state and month-by-year fixed effects. Mortality rate is deaths per 1,000 
population, annualized. Standard errors clustered by state. Effect of average storm = coefficient on storm index x mean(storm index|storm index>0). Marginal 
effect of storm = coefficient(s) on storm index x s.d.(storm index|storm index>0). * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 3: Effect of tropical storms on mortality, by age group 
 total under 1 1-4 yrs 5-14 yrs 15-29 yrs 30-49 yrs 50-69 yrs 70 or older 
         
 (1) (2) (3) (4) (5) (6) (7) (8) 
Panel A: level         
storm index 958.2 144.9 49.5 21.1 63.4 106.7 172.4 391.6 
 (436.0)** (111.9) (35.4) (13.1) (32.7)* (38.4)*** (152.6) (400.6) 
N 8,448 8,448 8,448 8,448 8,448 8,448 8,448 8,448 
R-squared 0.54 0.34 0.35 0.23 0.18 0.42 0.53 0.55 
mean outcome 1215.1 104.1 22.2 19.6 80.1 161.9 309.0 512.6 
effect of average storm 7.4** 1.1 0.4 0.2 0.5* 0.8*** 1.3 3.0 
 (3.4) (0.9) (0.3) (0.1) (0.3) (0.3) (1.2) (3.1) 
marginal effect of storm 20.0** 3.0 1.0 0.4 1.3* 2.2*** 3.6 8.2 
 (9.1) (2.3) (0.7) (0.3) (0.7) (0.8) (3.2) (8.4) 
Panel B: rate         
storm index 3.12 25.54 2.72 -0.07 -0.34 1.65 5.93 57.04 
 (0.98)*** (13.45)* (1.72) (0.29) (1.04) (1.76) (3.28)* (29.56)* 
N 8,448 8,448 8,448 8,448 8,448 8,448 8,448 8,448 
R-squared 0.54 0.56 0.45 0.22 0.16 0.25 0.47 0.59 
mean outcome 4.59 18.26 0.91 0.33 1.12 2.55 10.75 57.58 
effect of average storm 0.02*** 0.20* 0.02 -0.001 -0.003 0.01 0.05* 0.44* 
 (0.01) (0.10) (0.01) (0.00) (0.01) (0.01) (0.03) (0.23) 
marginal effect of storm 0.07*** 0.53* 0.06 -0.001 -0.007 0.03 0.12* 1.19* 
 (0.02) (0.28) (0.04) (0.01) (0.02) (0.04) (0.07) (0.62) 

Sample is monthly panel of Mexican states, 1990-2011. All regressions include state and month-by-year fixed effects. Mortality rate is deaths per 1,000 
population, annualized. Standard errors clustered by state. Effect of average storm = coefficient on storm index x mean(storm index|storm index>0). Marginal 
effect of storm = coefficient(s) on storm index x s.d.(storm index|storm index>0). * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 4: Effect of tropical storms on mortality (level) 

 mortality (level) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
storm index(t) 958.2 958.9 953.1 1,041.8 967.9 898.8 498.7 3,343.5 1,041.8 
 (436.0)** (436.8)** (440.9)** (243.0)*** (224.0)*** (232.4)*** (169.1)*** (1,057.7)*** (267.9)*** 
storm index(t-1)  294.5 293.1       
  (414.3) (414.6)       
storm index(t-2)   -621.0       
   (598.1)       
N 8,448 8,448 8,448 8,448 8,448 8,448 8,448 8,416 3,072 
R^2 0.54 0.54 0.54 0.71 0.73 0.74 0.54 0.63 0.51 
mean outcome 1,215.1 1,215.1 1,215.1 1,215.1 1,215.1 1,215.1 1,215.1 1,214.3 1,382.9 
effect of average storm 7.4** 7.4** 7.3** 8.0*** 7.4*** 6.9*** 14.0*** 8.7*** 8.0*** 
 (3.4) (3.4) (3.4) (1.9) (1.7) (1.8) (4.7) (2.8) (2.1) 
marginal effect of storm 20.0** 20.0** 19.9** 21.7*** 20.2*** 18.7*** 25.5*** 25.0*** 21.7*** 
 (9.1) (9.1) (9.2) (5.1) (4.7) (4.8) (8.7) (7.9) (5.6) 
state-specific linear trend    x x     
state-specific quadratic trend     x     
state x year fixed effects      x    
linear storm index       x   
unweighted storm index        x  
includes income per capita         x 

Sample is monthly panel of Mexican states, 1990-2011. All regressions include state and month-by-year fixed effects. Regressions using unweighted storm index 
also include lagged population as explanatory variable. Standard errors clustered by state. Effect of average storm = coefficient on storm index x mean(storm 
index|storm index>0). Marginal effect of storm = coefficient(s) on storm index x s.d.(storm index|storm index>0). Income per capita is natural log of state GDP 
per capita, lagged one year, in constant 2013 pesos. * significant at 10%; ** significant at 5%; *** significant at 1%  
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Table 5: Effect of tropical storms on mortality rate 
 mortality rate 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
storm index(t) 3.12 3.12 3.13 2.96 2.90 2.60 2.03 8.99 2.29 
 (0.98)*** (0.98)*** (0.97)*** (1.13)** (1.18)** (1.04)** (0.36)*** (3.41)** (0.64)*** 
storm index(t-1)  0.88 0.88       
  (0.68) (0.67)       
storm index(t-2)   0.46       
   (1.52)       
N 8,448 8,448 8,448 8,448 8,448 8,448 8,448 8,416 3,072 
R^2 0.54 0.54 0.54 0.66 0.68 0.71 0.55 0.55 0.60 
mean outcome 4.59 4.59 4.59 4.59 4.59 4.59 4.59 4.58 4.78 
effect of average storm 0.02*** 0.02*** 0.02*** 0.02*** 0.02** 0.02** 0.06*** 0.02*** 0.02*** 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) 
marginal effect of storm 0.07*** 0.07*** 0.07*** 0.06*** 0.06** 0.05** 0.10*** 0.07*** 0.05*** 
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.01) 
state-specific linear trend    x x     
state-specific quadratic trend     x     
state x year fixed effects      x    
linear storm index       x   
unweighted storm index        x  
includes income per capita         x 

Sample is monthly panel of Mexican states, 1990-2011. All regressions include state and month-by-year fixed effects. Regressions using unweighted storm index 
also include lagged population as explanatory variable. Mortality rate is deaths per 1,000 population, annualized. Saffir-Simpson scale variables are dummies for 
storm of indicated category or greater. Standard errors clustered by state. Effect of average storm = coefficient on storm index x mean(storm index|storm 
index>0). Marginal effect of storm = coefficient(s) on storm index x s.d.(storm index|storm index>0). Income per capita is natural log of state GDP per capita, 
lagged one year, in constant 2013 pesos. * significant at 10%; ** significant at 5%; *** significant at 1%
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Table 6: Adaptation in response to tropical storms 
 full sample 1990-2000 2001-2011 
 (1) (2) (3) (4) (5) 
Panel A: mortality level      

storm index 13,967.2 382.7 4,759.4 1,100.2 1,094.3 
 (8,661.5) (364.2) (7,642.4) (326.9)*** (297.7)*** 
storm index interacted with:      

  historical storm frequency above median -13,017.0     
 (8,584.8)     

  historical storm severity above median  833.7    
  (701.1)    

  coastal state   -3,805.9   
   (7,639.8)   

Observations 8,448 8,448 8,448 4,224 4,224 
R-squared 0.54 0.54 0.54 0.44 0.53 
Mean outcome 1215.1 1215.1 1215.1 1100.9 1329.2 
storm coefficient + interaction 950.2** 1216.4** 953.5**  
 (432.9) (618.4) (434.7)   

Panel B: mortality rate      

storm index 12.77 4.06 -12.79 2.11 3.12 
 (30.04) (0.79)*** (25.04) (2.68) (0.87)*** 
storm index interacted with:      

  historical storm frequency above median -9.66     
 (29.92)     

  historical storm severity above median  -1.35    
  (1.37)    

  coastal state   15.93   
   (24.87)   

Observations 8,448 8,448 8,448 4,224 4,224 
R-squared 0.54 0.54 0.54 0.55 0.62 
Mean outcome 4.59 4.59 4.59 4.49 4.68 
storm coefficient + interaction 3.12*** 2.70** 3.14***  
 (0.97) (1.14) (0.98)   

Sample is monthly panel of Mexican states, 1990-2011. All regressions include state and month-by-year fixed 
effects. Mortality rate is deaths per 1,000 population, annualized. All interaction terms are dummies for state being 
above median for given characteristic. Historical storm frequency is number of months with tropical storm, 1949-
1989. Historical storm severity is average value of storm index, conditional on storm, 1949-1989. Standard errors 
clustered by state. * significant at 10%; ** significant at 5%; *** significant at 1% 
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Figure 1: Tropical storm landfall in Mexico, 1949-2011 
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Figure 2: Geographic distribution of tropical storms in Mexico, 1990-2011 

 

Figure 3: Frequency and severity of tropical storms in Mexico, 1990-2011 
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Figure 4: Effect of climate change on storm index 

 
 

Figure 5: Storm-related deaths under climate change 

 
 


