
DISCUSSION PAPER SERIES

IZA DP No. 12094

Elie Murard

The Impact of Migration on Family Left 
Behind: Estimation in Presence of 
Intra-Household Selection of Migrants

JANUARY 2019



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

IZA DP No. 12094

The Impact of Migration on Family Left 
Behind: Estimation in Presence of 
Intra-Household Selection of Migrants

JANUARY 2019

Elie Murard
IZA and Paris School of Economics



ABSTRACT
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The Impact of Migration on Family Left 
Behind: Estimation in Presence of 
Intra-Household Selection of Migrants

This paper reexamines the literature on the impact of migration on household members 

left behind at origin. The empirical problem previous studies address is the self-selection 

of households into migration, i.e. the endogenous decision as to whether or not send a 

migrant. Yet, the subsequent selection of which family members migrate and which stay 

behind generates additional identification problems that have remained largely ignored. 

To tackle this second form of selectivity within the households, I model the behavior of 

families using latent stratification and potential outcome (Imbens and Angrist, 1994; Rubin, 

1974). I show that the point-identification of the causal impact of migration requires strong 

behavioral assumptions rarely satisfied even with ideal experimental data. As a practical 

solution, I derive non parametric bounds under different sets of weaker assumptions. Using 

Mexican panel data, I show that standard estimates ignoring the intra-household selection 

into migration may suffer from substantial bias.
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1 Introduction

With more than 3% of the world population living outside the country of their birth, the effect of interna-

tional migration on the source countries of origin has become an urgent policy question. Migration often

separates families, with some households members migrating and others staying behind in the country

of origin. A growing literature explores how migration affects the various dimensions of the welfare

of family members left behind , such as education, health, labor supply, or consumption – see Antman

(2013) and Adams (2011) for a comprehensive overview.

The empirical problem this literature confronts is the the self-selection of households into migration.

Non-random selection across households arises because family decisions as to whether send migrant(s)

are endogenous. The factors that cause households to engage in migration also affect the outcome of

interest for the researcher, thereby confounding the estimation of the causal effect of migration. 2

Yet a second form of selection arises as the households also select which family members migrate

and which stay behind at origin. The family decision as to who migrate and who stay at origin is

likely to be influenced by factors related to the outcome of interest, such as individual labor supply or

education for instance. In consequence, the selectivity within the household poses an additional threat

to the identification of the causal migration impact. This second source of endogeneity has largely been

ignored in the existing literature.

To illustrate the problem, let me consider an economy composed of two-person households of three

different types : households in which one member is employed and the other is inactive, households

in which both members are employed, and households in which both members are inactive. There are

height households in total: four of the first type, two of the second type and two of the third type. So

the employment rate in this economy is 50%. I assume that in 50% of the households one member

migrates. I also assume that the migration of one household member has no causal effect on the labor

force participation of the other member left behind at origin. I then examine the extent to which the

estimates an econometrician is likely to produce might be biased by the two different sort of selection,

either across or within households.

Panel A in figure 1 illustrates the standard problem of self-selection of households into migration.

For example, households where both members are working are more likely to engage in migration

because they have higher earnings and can afford the upfront costs of migration. The initial employment

rate is, say, 75% among migrant households and 25% among non-migrant households. Assuming away

intra-household selection of migrants, the employment rate among left-behinds in migrant households is

still 50% higher than among non-migrant households after that the migrants have left. When comparing

households with and without migrants, a researcher may therefore conclude that migration increases the

labor force participation of non-migrants while the true effect is null.

Even in the absence of selection across households, the intra-household selection of migrants may

generate significant bias in the estimates of the impact of migration. To illustrate how, let me consider the

following example in Panel B of figure 1 in which I assume that household participation into migration is

2The literature uses different empirical strategies to address this identification problem, such as instrumental variables ,
fixed-effects approaches using panel data, or experimental approaches using randomized or natural experiments (McKenzie
and Yang, 2010).
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Figure 1: A graphical explanation of selection into migration across and within households in terms of
employment status

random, i.e. unrelated to household characteristics. In particular, the initial employment rate is identical

between migrant and non-migrant households. However, the selection of which member migrate and

which stay behind may not be random. Household members who are inactive may be more likely

to migrate than members employed in a regular job at origin (e.g. because of lower opportunity cost).

Consequently, after that migrants have left the house, the employment rate among left-behinds in migrant

households is on average higher than among non-migrant households. This composition effect biases

estimates obtained by comparing employment rate between migrant and non-migrant households, even

though they were identical before the departure of the migrant.
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This issue have not drawn much empirical attention possibly because that the identification problem

that arises is not obvious at first sight. It is not manifest that selection within households is relevant for

the estimation of the migration impact across different households, with and without migrants. However,

the direct comparison of individuals left behind in migrant households with individuals living in non-

migrant households is not satisfactory, neither empirically nor conceptually. This is because, before

migration, households at origin are composed of two different type of counterfactual members : potential

migrants, i.e. members who would migrate if the family engages in migration, and never-migrants, i.e.

members who stay behind in any case. Since migrants are likely to be selected within the family,

Gibson et al. (2011) underlines that the appropriate comparison group for the remaining individuals

in migrant households are the group of individuals who would stay behind in non-migrant households

in the case these households were to send a migrant. The identification problem is that, in household

without migrants, the econometrician does not observe which member is the potential migrant and which

members would stay behind. 3

The question of intra-household selection into migration has received quite little interest to date,

with only two recent studies providing some evidence. Using a migration lottery in Tonga (giving

the opportunity to emigrate to New Zealand), Gibson et al. (2011) show strong evidence of positive

selectivity into migration among the working-age adult living in the same household. They find that

individuals who would possibly migrate are more educated and have twice the weekly income at origin

of the same age adults who would stay behind 4. Using a unique survey on a multi-sited and matched

sample of Senegalese migrants at destination (France, Italy, Mauritania) and their household of origin in

Senegal, Chort and Senne (2013) explore the key determinants driving the intra-household selection of

the migrants. They find that households select as migrants not only the members with higher comparative

advantages in earnings at destination, but also those with higher remittances potentials, conditional on

earnings.

In this paper, I investigate the implications of this form of selectivity within the household for the

causal estimation of the impact of migration. I contribute to the literature in different ways. First, I use

the approach of principal stratification and potential outcomes (Frangakis and Rubin, 2002; Rubin, 1974)

to model the identification problem in presence of double-selection into migration (across and within

households). I show what assumptions are implicitly made when the second form of intra-household

selectivity is ignored and the consequences of a violation of these. In a general framework, I show that

the identification of the causal impact migration is generally not possible, even with ideal experimental

data. I therefore turn to partial identification as reasonable solution in practice. I derive non parametric

bounds on the causal effect of migration under different sets of transparent behavioral assumptions.

Second, using Mexican panel data (MxFLS survey), I revisit the estimates of Murard (2013) of the

effects of migration on the labor supply of young women left behind in Mexico. The bounds suggest

that estimates ignoring the intra-household selection of migrants may overstate the true magnitude of

3 In some context where migration is almost exclusively confined to men, it is possible to abstract from the intra-household
selection problem by looking into the impact of migration on women since they almost never migrate themselves (Binzel and
Assaad, 2011). How owever, in countries like Mexico (or Indonesia) , the individual characteristics of the migrants are very
heterogeneous across households. Both males and females migrate, as well as young and older. The distinction between
potential migrants and never-migrants– based on observables characteristics – is far from clear-cut.

4This difference being significant in a regression controlling for household fixed effect and gender
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the impact of migration on the participation in the labor market. However, bounds tend to confirm the

findings in Murard (2013) that migration causes a re-allocation of labor away from non-agricultural jobs

to self-employed activities. In a second application, I investigate the effect of migration on school atten-

dance among children left behind in Mexico. Unadjusted point estimates indicate significant negative

impacts on school attendance for which the bounds do not to reject zero effect . This result suggests that

children may be positively selected into migration among households participating in migration.

Another important finding is that standard IV estimators using instruments for household migration

are biased even if there is no systematic selection of migrants within households. The bias in the IV

estimates arises because migration (induced by the instrument) generates an endogenous sample selec-

tion which the IV estimates do not take into account. In case of absence of intra-household selection, I

propose an alternative estimator that converges to the causal impact of migration.

This paper is closely related to the recent work of Steinmayr (2014). The author addresses the prob-

lem that migration of the entire household creates for the identification of the causal effect of migration

on members left behind at origin. I use the same methodological approach – i.e. principal stratification

and latent outcome – to model migration decisions within the family.

Steinmayr emphasizes the issue of whole-household migration and proposes various estimators cor-

recting for what he refers to as an endogenous "invisible sample selection". Yet, endogenous sample

selection – i.e. the fact that individuals staying at origin are not an random subset of the original sample

before migration – may also be driven by selection of migrants within households, which may be empir-

ically more frequent than whole-household migration. 5 More importantly, the behavioral assumptions

made by Steinmayr (2014) about the migration decision process are quite restrictive. The key assump-

tion of his econometric framework is that one household member (the child) would not migrate if the

other member (the adult) does not migrate as well. Although justified in his context, this framework

imposes a hierarchically ordered process where one member is constrained to be the "principal migrant"

and the second to be a "tied-mover" who can only accompany the former. In this paper, I propose a

more general model by allowing every household member to migrate independently from the others,

without limiting the number of migrants per household and thus including the case of whole-household

migration. In my framework, the endogenous sample selection resulting from individual migration may

be driven either by whole-household migration or by intra-household selection into migration.

2 The effect of migration on members left behind and the intra-household
selection problem

The effect of international migration on the the time allocation (or education) of members remaining in

the source country has been explored in various studies. The regression which is generally estimated is

as follows :

yih = α +β .mh +uih (1)

5 For example, among the sample of children living in migrant families, children staying at origin are selected because :(i)
their migrating parents have preferred to take other sons/daughters with them (ii) their migrating parents are not rich enough to
take any children with them . The first case refers to intra-household selection while the second to whole-migration selection.
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where yih denotes the outcome of individual i living in household h (e.g. labor supply) , mh is a binary

indicating whether at least one family member currently lives abroad and uih an error term.

The selection problem these studies usually address is the self-selection of households into migra-

tion. For example, families facing employment constraints in the domestic labor market may be more

likely to send migrants. Lack of employment opportunities and thus low (constrained) labor supply

would cause out-migration rather than the reverse 6. The principal concern is that the error term is

correlated with migration, that is E[uih|mh] 6= 0. Diverse empirical strategies have been carried out to

deal with these endogeneity concerns : selection on observables (Rodriguez and Tiongson, 2001), fixed

effect approaches (Mu and van de Walle, 2011) or instrumental variables (Acosta, 2006; Lokshin and

Glinskayai, 2008; Binzel and Assaad, 2011; Mendola and Carletto, 2012).

In reality, when estimating equation (1), researchers seek to identify the effect of migration on the

outcome (e.g. labor supply) of individual i, provided that the latter does not migrate himself. When

the individual migrates, his labor supply is not of interest and is not observed in general 7. Let the

dummy di denote the migration status of individual i. Each household has two subsequent decisions to

make: to engage or not in migration and if so, select which members will be migrating . For individual

i three alternatives are possible : either no one moves in the family (mh = 0), or he migrates himself

(mh = 1,di = 1) and he is left behind by another family member (mh = 1,di = 0). The regression which

is in fact estimated is

yih = α +β .mh +uih observed only if di = 0 (2)

The difference in unobservables between individual left behind and those living in non-migrant house-

holds can be interestingly decomposed in two terms :

E[uih|mh = 1,di = 0]−E[uih|mh = 0] =E[uih|mh = 1]−E[uih|mh = 0]︸ ︷︷ ︸
inter - household selection

+

P(di = 1|mh = 1)∗ (E[uih|mh = 1,di = 0]−E[uih|mh = 1,di = 1])︸ ︷︷ ︸
intra-household selection

with P(di = 1|mh = 1) the conditional probability of migration. The first term corresponds to the well-

know self-selection bias across households, i.e. the difference in unobservables between households

who send a migrant and households who do not. The second term corresponds to the selection bias

within household, i.e. the difference in unobservables between migrants and left-behinds. This type of

bias can be called "intra-household" in the sense that it is driven by the selectivity into which member

move and which member stay among households participating in migration.

Implicit in previous approaches is the assumption that P(di = 1|mh = 1) = 0, i.e. that individuals

under investigation – generally wifes or children– have a probability to migrate equal to zero, in which

case there is no "intra-household" selection bias. This hypothesis may be a good approximation in some

context. For example, Binzel and Assaad (2011) examines the impact of migration on wifes left in behind

6 Another example is that the labor supply decisions of female household members may drive the migration decision of
the husband. Male migration is likely to depend on whether other household members –including women – are available to
help replace the migrants’ labor.

7 Because the survey does not track the migrants
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in Egypt, a country where migration is almost exclusively confined to men due to strong social norms.

However, in countries like Mexico (or Indonesia) , the individual characteristics of the migrants are very

heterogeneous across households. Both males and females migrate, as well as young and older person
8. Consequently, the distinction between potential migrants and never-migrants– based on observables

characteristics – is far from clear-cut. 9

Various reasons may explain why E[uih|mh = 1,di = 0] 6= E[uih|mh = 1,di = 1], i.e. why unobserv-

ables may differ between migrants and left-behinds. If migration is a long-term collective investment

made by the family (Stark and Bloom, 1985) so should decisions as to which members migrate and which

stay behind be part of the same welfare-maximizing strategy. In Senegal, Chort and Senne (2013) shows

that the migrant is usually the person with the greatest potential of supporting the family in terms of

remittances. In Mexico, Antman (2012) and Hernandez-Leon (2008) describe the uneven distribution of

responsibility of caring for elderly parents among siblings in the household. Some adult children migrate

to the United States an contribute more financially to the parents. Others stay behind and watch over the

parents thereby contributing more in terms of time. Migrating sons are the breadwinner of the family.

Even if they would have not migrated, they would have likely got a commercial job in the village (or next

town) to sustain their parents. In this case , it is likely that E[uih|mh = 1,di = 0]< E[uih|mh = 1,di = 1]

. Naive estimates of β in equation (1) would then be negatively biased, even if households do not self-

select in migration. Regarding education outcomes, children or young adult may be positively selected

into migration in terms of educational ability , not only across but also within the households. If it is the

case, standard estimates of equation (1) would produce downward biased estimates of the causal impact

of migration on education.

3 Econometric Setup

I consider the migration of a household member to be the treatment of interest and migration of the in-

dividual (whose labor supply is under investigation) to be a "post-treatment complication". The econo-

metric literature usually refers to this sort of problem as endogenous sample-selection (Heckman, 1974).

Following the treatment evaluation literature, I use a potential outcome framework (Rubin, 1974). The

idea of this approach is to compare the outcome of interest in two hypothetical states of the world: one in

which a unit receives the treatment and one in which the same unit does not. For example, we might ask

whether a particular individual would participate in the labor market if he lives in a migrant household

and whether the same individual would participate if he does not live in a migrant household. Because

an individual cannot be in both states of the world (treated and not treated), the fundamental problem of

the evaluation is that we cannot observe these two potential outcomes simultaneously.

I define M as the migration status of the household , equal to 1 if at least one household member

out-migrates and 0 otherwise. I define D as the migration status of the individual living in the same

8 Migration flows to the U.S. are typically composed of young male but women do migrate as well and represent about
one third of these flows. See Ibarraran and Lubotsky (2007) – data from Mexican and U.S. censuses

9It is of course possible to restrict the analysis on a subsample of individuals who have no chance of migrating either
because they are are too young or too old. In the case of Mexico, using the MxFLS survey, this would amount to restrict the
sample to men above 50 and women above 40 or to children less than 12. This is certainly not the most interesting population
to look at while investigating the effect of migration on labor supply behaviors and time allocation in general.
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household , equal to 1 if he out-migrates and 0 otherwise. By definition, M = 0 implies D = 0. When

the family decides to send at least one migrant (M = 1), the individual may either be selected as migrant

(D= 1) or may stay behind at origin (D= 0. The decision process might not sequential, but the decision-

making unit is the family and not the individual. D depends on M and not vice versa. This family-

decision hypothesis has become a generally accepted assumption and has been largely supported by

both a theoretical and empirical important body of literature, namely the New Economics of Labor

Migration (Lucas, 1997; Stark and Bloom, 1985; Stark and Lucas, 1988; Stark, 1991).

I observe the outcome Y at some point in time after M and D has been realized. In the empirical

application , Y is the individual labor supply. Y depends on both the migration status of the household

and the migration of the individual. Let Y (m,d) denote the potential values of the outcome. Y (0,0) is the

outcome of the individual in case no household member migrates. Y (1,0) is the outcome in case one (or

many) family member migrates and the individual stays behind. Y (1,1) is the outcome at destination,

in case the individual migrates himself. Similarly, D(m) denotes the potential migration status of the

individual as a function of the family’s migration decision. D(1) is the individual migration status in

case the family to engage in migration. By definition D(0) = 0.

In this setting, the difference Y (1,0)−Y (0,0) is the potential effect of migration in case the individ-

ual would stay at origin. The only group of people for which the outcome at origin – i.e. Y (m,0) – can

be observed under both migration states of the household (m = 1,0) is the group for which D(1) = 0,

i.e. individuals who would never migrate themselves. This is a latent group, distinct from the group of

"realized" non-migrants for which D = 0. Whether individuals belong to it is unobservable. In partic-

ular, D(1) is unobserved for individuals living in non-migrant households m = 0. The policy-relevant

parameter of interest is therefore the average effect of migration on individuals who would never migrate

:

θ = E[Y (1,0)−Y (0,0)|D(1) = 0]

4 Identification with randomly assigned household migration

4.1 Setting

In order to concentrate on the identification problem caused by individual migration D, I assume a

random assignment of the migration status of the household. I will relax this assumption in a second

step. Random assignment of M means that all potential outcomes are independent of M. However, the

actual outcomes Y and D are not independent of M .

Assumption 1 . Randomly assigned household migration status M

{Y (1,0),Y (0,0),Y (0,0),D(1)} ⊥M

Consider now the the potential migration of the individual . Based on the value of D(1), individuals can

be stratified into two latent group (or principal strata). With reference to the Local Average Treatment

(LATE) framework (Imbens and Angrist, 1994), I refer to the types defined by D(1) = 1 as potentials
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migrants and to the types D(1) = 0 as Never migrant (Table 1) . The observed group {M = 1,D = 0}
is composed of Never migrant only, while the observed group {M = 0,D = 0} is composed of both

Potential migrants and Never migrant .

Since the observed group {M = 1,D = 0} corresponds directly to the latent group N of Never mi-

grant, the outcome under treatment for never migrants is directly identified as :

E[Y (1,0)|N] = E[Y |M = 1,D = 0]

The group of non migrating households (M = 0) is a mixture of potential migrants and never mi-

grants. The observed outcome is therefore a mixture of the potential outcome of these two latent strata

under the no migration regime. Noting pN the share of never migrant and pP the share of potential

migrants:

E[Y |M = 0,D = 0] = pNE[Y (0,0)|N]+ pPE[Y (0,0)|P]

In a non migrant household the econometrician does not know which member is the potential migrant

and which member would have stayed home. As a result, E[Y (0,0)|N] is not point identified. The

average effect of migration on never migrants θ is only partially identified. Note that collecting data on

migrants to observe the outcome Y of migrants themselves (D = 1) would not solve the problem. Note

also that this framework encompasses the case of whole-household migration, i.e. migration of all the

household members.

A researcher ignoring this selection problem might estimate the difference E[Y |M = 1,D = 0]−
E[Y |M = 0,D = 0], which equals θ plus a selection term :

E[Y |M = 1,D = 0]−E[Y |M = 0,D = 0] = θ + pP (E[Y (0,0)|N]−E[Y (0,0)|P])

Under assumption 1 , latent group’s shares are simply pP = P(D = 1|M = 1) and pN = 1− pP. As

underlined in the previous section, the "naive" difference in means correctly estimates θ only if either

P(D = 1|M = 1) = 0 or E[Y (0,0)|N] = E[Y (0,0)|P], in which case there is no intra-household selection

of migrants.

Table 1: Principal strata and observed group with randomly assigned household migration

D(1) Latent group description
1 P potentials migrant
0 N never migrant

D=0 D=1
M = 1 N P
M = 0 P,N
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4.2 Bounds on migration effect

Following Zhang and Rubin (2003) and Lee (2009), sharp bounds for E[Y (0,0)|N] can be derived. The

individual migration status D is equivalent to the sample selection indicator in the framework of Lee

(2009) and the household migration status M to the "treatment". Lee’s bounds require the assumption

that the treatment can only affect sample selection in one direction. In my setting, this monotonicity

assumption is satisfied since D(0) = 0 by definition : "non treated" individual – i.e. living in non-

migrant households – do not migrate and remain in the sample.

The trimming procedure they propose is simple.I describe the procedure for the lower bound as

follows. The observed group of non migrating households M = 0 is composed of potential migrants C

and never-migrants N. In the "worst-case" scenario , the highest potential outcome Y (0,0) of the never-

migrants is lower than the lowest outcome of the potential migrants. In this case, we can remove the

upper pP quantiles from the distribution of Y in the group M = 0 and estimate the average outcome for

the remaining individuals. This gives us the lowest possible outcome for never migrants under control.

The upper bound can be derived in similar way, but now trimming the lower tail of the observed outcome

distribution.

Let q(r) be the r-quantile of the distribution of Y |M = 0.The unknown value E[Y (0,0)|N] can be

bounded from above by the mean of Y in the upper q(1− pP) quantiles from below by the mean in the

lower q(pP) quantiles. Bounds of E[Y (0,0)|N] are:

EU [Y (0,0)|N] = E[Y |M = 0,D = 0,Y ≥ q(pP)]

EL[Y (0,0)|N] = E[Y |M = 0,D = 0,Y ≤ q(1− pP)]

and for the causal effect θ :

θ
U = E[Y |M = 1,D = 0]−EL[Y (0,0)|N]

θ
L = E[Y |M = 1,D = 0]−EU [Y (0,0)|N]

4.3 Can θ be identified using experimental data?

An important question is whether it is possible to identify θ using a randomized control trial (RCT)

or experimental data in general. We can imagine the following ideal experimental design. Assume

households participates in a visa lottery with only one application per household and with only one

visa granted per winning application. Households winning the lottery are however NOT free to choose

which family member can use the visa to migrate. Instead, the final individual recipient of the visa

is randomly drawn among family members living in the same ballot-winning household. Suppose all

individuals receiving the visa (V = 1) out-migrate (D = 1), i.e. there is full take-up. Suppose also that

no ballot looser can migrate. Because of random assignment of visas and perfect compliance, household

migration status M is random.

Let D(m,v) denote the individual migration status which is a function of the household migration

status M and the visa assignment V . Note that D(0,v) = 0 for v = 0,1. So I will focus on D(1,v). In this

setting , the assignment of visa (V ) is a an ideal instrument for D: it is randomly assigned, satisfies the

9



exclusion restriction and has a a monotone effect on individual migration D .

• Y (m,d,v) = Y (m,d,v′) = Y (m,d) ∀m,d,v,v′ ∈ {0,1}

• {Y (1,0),Y (1,1),Y (0,0),D(1,0),D(1,1)} ⊥V

• D(1,1)≥ D(1,0)

Two latent group of individuals with respect to visa assignment V can be differentiated: always

migrants (A) for which D(1,1) = D(1,0) = 1 and compliers (C) for which D(1,1) = 1 and D(1,0) = 0.

Always migrants migrate irrespective of whether they win the visa lottery, provided that someone else

in the family receives a visa and migrates; compliers migrate only if they receive the visa but do not

otherwise. There is no never-migrants because, in this settings, winners of the visa lottery always decide

to migrate 10. As table 2 shows, compliers (C) is the only population for which the the outcome Y at

origin can be observed under both migration states of the household (M = 1 and M = 0). The only

interesting parameter is therefore the causal impact of migration among the latent group of compliers :

θC = E[Y (1,0)−Y (0,0)|C].

Table 2: Principal strata and observed group with visa lottery experiment

D(1,1) D(1,0) Latent group
1 1 A , always migrants
1 0 C , complier

D=0 D=1
M = 1 V = 1 A,C

V = 0 C A
M = 0 V = 0 A,C

The potential outcome Y (1,0) under treatment is directly identified for compliers: E[Y (1,0)|C] =

E[Y |M = 1,V = 0,D= 0] . However, the potential outcome Y (0,0) cannot be identified among compliers

(C) because of the presence of always migrants (A) .

The requirement for the identification of θC is that individuals loosing the visa lottery (V = 0) do

not (cannot) migrate, i.e. D(1,0) = 0. This assumption can be directly tested in the data since the share

of always migrant is simply pA = P(D = 1|V = 0,M = 1). pA equals zero only if members loosing

the lottery cannot accompany or rejoin the family member who migrates. This is unlikely in a context

where legal/physical barriers do not limit clandestine migration and strict rules do not constraint family

reunification. Of course θC is also identified if E[Y (0,0)|A] = E[Y (0,0)|C] , i.e. if always-migrant (A)

individuals are not self-selected relative to compliers(C). This assumption is however not testable and

unlikely because inconsistent with the literature on self-selection into migration.

4.4 Partial identification as a practical solution

As McKenzie and Yang (2010) reviewed it, experimental approaches in migration studies are scarce.

Experiments able to deal with the second form of selectivity into which family members move and
10This simplification does not change the result of non-identifiability of the causal migration impact
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which remain in the home country are even fewer. To the best of my knowledge, the only exception is

the study by Gibson et al. (2011) who exploits a migration lottery in Tonga providing the opportunity

for 250 Tongans to move to New Zealand every year. Only one person by household can register for the

lottery. This person is the Principal Applicant and if he is successful, his immediate family - spouse and

dependent children - can also apply as Secondary Applicant. Importantly, successful applicants cannot

take other members of their households to New Zealand( typically parents, siblings or other relatives).

As emphasized by the authors, the identification of the causal migration impact crucially relies on the

rule specifying which family members can and cannot accompany the successful migrant. The impor-

tant natural barriers to clandestine migration between Tonga and Auckland (2000 km of sea) ensures

that families cannot bypass these rules. Would these policy rules not be effective binding constraint ,

identification would be questionable 11

Point identification of the impact of migration on left behind family members is therefore truly

demanding. It requires very specific, if not exceptional, policy or field experiments that researchers do

not have always at their disposal. Using partial identification instead may be a reasonable solution for

migration studies exploring how left behind members are affected by the migration of a relative. In the

the remainder of the paper, following Steinmayr (2014) I derive non parametric bounds for the effect of

migration on remaining members.

5 Partial Identification with non-random household migration

5.1 Setting

In practice, households self-select into migration and household migration is not random. Empirical

studies generally use an instrument for the migration decision of the household – in the Mexico-US mi-

gration literature see McKenzie and Rapoport (2007, 2011); Woodruff and Zenteno (2007) . I therefore

drop assumption 1 of random assignment of M and assume that a binary instrument Z ∈ {0,1} exists,

which is randomly assigned and affects the migration decision of the household. M(z) denotes the po-

tential migration status of the household as a function of the value of the instrument Z. For the moment,

let me note also D(m,z) the potential migration of the individual and Y (m,d,z) the outcome as a function

of Z. In the presence of a sample selection problem, I have to make additional assumptions compared to

the classical IV framework (Imbens and Angrist, 1994). Specifically I make the following assumptions.

Assumption 2 . Exclusion restriction of Z with respect to Y

Y (m,d,z) = Y (m,d,z′) = Y (m,d) ∀m,d,z,z′ ∈ {0,1}

Assumption 2 states that the effect of Z on the potential outcomes Y must be via an effect of Z on M

and D. To put it differently, the instrument may impact the labor supply of family members only only

11 To cite the authors:" We use the age and relationship rules governing which Secondary Applicants can move with the
Principal Applicant to identify household members that would have moved to New Zealand if the Principal Applicant had been
successful and compliant with the treatment. These rules appear to be the binding constraint since the remaining family of
PAC emigrants are almost all outside the age and relationship eligibility for moving to New Zealand"
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through its effect on the migration of the household members. In addition, I assume that the instrument

is randomly assigned and therefore independent of all potential outcomes:

Assumption 3 . Randomly assigned instrument Z

{Y (m,d),M(z),D(m,z)} ⊥ Z ∀m,d,z ∈ {0,1}

I now distinguish different latent strata with respect to the instrument. I can differentiate among

households between the Always takers(A), the Compliers (C), the Defiers (D) and the Never takers (N).

Always takers are households who would send a migrant irrespective of the value of theinstrument ;

compliers send a migrant if the instrument takes on the value of one but not if it takes on the value of

zero; defiers migrate if the instrument equals zero but not if the instrument equals one ; and never taker

never migrate irrespective of the value of the instrument.

Individual migration depends on both M and Z, but since M is itself a function of the instrument, D

is simply a function of Z, i.e. D = D(M(Z),Z) = D(Z). I can distinguish between four different types

of individuals defined with respect to the instrument : always migrant (A) for which D(1) = D(0) = 1;

compliers (C) defined by D(1) = 1 and D(0) = 0; defiers (D) for which D(1) = 0 and D(0) = 1 ; and

never migrants (N) defined by D(1) = D(0) = 0. Combining the four strata of individuals with the four

strata of households gives in total 4×4 = 16 latent strata (see table 9 in Appendix A1). We refer to the

strata using a two letter system, the first letter indicating the type of household , the second the type of

individual. E.g. CN refers to never migrating individuals in compliers household. Since M = 0 implies

that D = 0 by definition, this is also true for potential migration decisions at a given value of Z 12. The

fact thatfor all z ∈ {0,1} M(z) = 0⇒ D(z) = 0 rules out the existence of strata NA, NC, ND , CA, CD,

DA,DC 13.

I now make two additional assumption that are common in the LATE literature. First, I assume a

monotone effect of the instrument on the household migration M. This assumption states that every

household is at least as likely to send a migrant if Z = 1 as it should be with Z = 0. It thus rules out the

existence of defiers (D) among households.

Assumption 4. Monotonicity of M in Z (no defiers)

M(1)≥M(0)

Second, I also assume a non-zero average effect of Z on the migration decision of the household. This

assumption amounts to ensure the existence of the latent group of compliers (C) among households:

Assumption 5. Non-zero effect of Z on M (existence of compliers)

E[M(1)−M(0)]> 0

I now make an important assumption specific to this framework: I suppose that the effect of the

instrument on the potential migration of the individual must be via an effect on M. To put differently,

12there is no potential migrant individuals in never migrating household
13 In strata CA and CD, m(0) = 0 implies that D(0) = 0 and in strata NA, NC,ND m(1) =m(0) = 0 implies d(1) = d(0) = 0
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the decision of the family as to which member(s) migrate should not be influenced by the value of the

instrument. The instrument is supposed to have no effect on the intra-household selection of the migrant

individuals. In a later step I will derive alternative bounds in case this assumption is violated and replace

this assumption by another monotonicity hypothesis.

Assumption 6. Exclusion restriction of Z with respect to D

D(m,z) = D(m,z′) = D(m) ∀m,z,z′ ∈ {0,1}

Assumptions 6 rules out the existence of strata AC and AD. In these strata , the household migration

status does not react to the instrument ( because M(1) = M(0) = 1 ) while the individual migration is

affected by Z ( since D(1) 6= D(0) ). The instrument has thus a direct effect on D in these strata, which

is precisely what Assumption 6 excludes. Table 3 shows the correspondence between observed group

and latent strata that remain after Assumptions 4 and 6 are imposed.

The only latent group for which the outcome at origin Y (m,0) can be observed under both migration

states of the household is the stratum CN. In this latent group, the instrument induces the family to send

at least one migrant but the individual does not migrate himself . The causal migration impact for this

stratum is therefore the local average effect of migration for individuals who never migrate 14. In the

rest of the section, I will focus on the partial identification of the causal effect :

θCN = E[Y (1,0)−Y (0,0)|CN]

Table 3: Latent and observed groups with non random household migration M and exclusion restriction
D(M,Z) = D(M)

M(1) M(0) D(1) D(0) Latent group
1 1 1 1 AA
1 1 0 0 AN
1 0 1 0 CC
1 0 0 0 CN
0 0 0 0 NN

D=0 D=1
Z = 1 M = 1 AN, CN AA, CC

M = 0 NN
Z = 0 M = 1 AN AA

M = 0 CC, CN ,NN

5.2 Bounds on the migration effect

Under the assumptions 2,3,4,5 and 6 , only five different latent groups remain. Six different groups are

observed based on realized D and M across Z. In total, four unknown proportions can be identified

14 It is a local effect in the sense that it is identified only for the population of households whose migration decision is
affected by the instrument
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from four linearly independent equations. 15 To simplify the notation , I denote Y zmd
= E[Y |Z = z,M =

m,D = d] for the observed average outcome in the observed group {Z = z,M = m,D = d}. The potential

outcome under treatment Y (1,0) for the latent group CN is observed as part of the mixture distribution

in the observed group {Z = 1,M = 1,D = 0} . In addition, the outcome under treatment for the latent

group AN is directly observed in the observed group {Z = 0,M = 1,D = 0}. Combining these two

remarks allows identifying the expected outcome under treatment for CN :

E[Y (1,0)|CN] =
(pAN + pCN)Y

110− pANY 010

pCN
(3)

I follow Chen and Flores (2012) and Steinmayr (2014) to derive bounds for the potential outcome

of CN under control E[Y (0,0)|CN]. In appendix A2 , I detail and explain the derivation of the non-

parametric lower and upper bounds EL[Y (0,0)|CN] and EU [Y (0,0)|CN]. Bounds for the causal effect can

be constructed by combining these bounds with the point identified potential outcome under treatment

for the latent group CN:
θ

U = E[Y (1,0)|CN]−EL[Y (0,0)|CN]

θ
L = E[Y (1,0)|CN]−EU [Y (0,0)|CN]

(4)

5.3 Bias in the standard LATE estimator

5.3.1 Asymptotic bias

It is interesting to compare the standard LATE (Local Average Treatment Effect) with the parameter

of interest θCN . A researcher neglecting the intra-household selection would estimate the LATE on the

sample of individuals who stay at origin and for whom the outcome Y is observed.

LAT E ≡ E[Y |Z = 1,D = 0]−E[Y |Z = 0,D = 0]
E[M|Z = 1,D = 0]−E[M|Z = 0,D = 0]

After some computations , it can be shown that the standard LATE converges towards θCN plus three
selection terms:

LAT E = θCN +
pCC

π

[
(pAN + pCN)(E[Y (0,0)|CN]−E[Y (0,0)|CC])+ pNN (E[Y (0,0)|NN]−E[Y (0,0)|CC])

+ pAN (E[Y (1,0)|AN]−E[Y (1,0)|CN])

] (5)

with π = pCN(1− pAA)+ pAN pCC. Two important remarks must be made. First, if in households who

15

pNN = P(M = 0,D = 0|Z = 1)

pAN = P(M = 1,D = 0|Z = 0)

pCN = P(M = 1,D = 0|Z = 1)−P(M = 1,D = 0|Z = 0)

pCC = P(M = 0,D = 0|Z = 0)− pCN − pNN

pAA = P(M = 1,D = 1|Z = 0) = 1− pCC− pCN − pAN − pNN
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comply with in instrument individuals have a zero probability to migrate then pCC = 0 and the standard

Wald estimate consistently converge towards θCN
16. This might the case only if the econometrician is

able to restrict the sample to individuals, who, based on their observables characteristics, are unlikely to

migrate themselves (e.g. women in Egypt) but may be left behind by other potential migrant members

who are excluded from the sample (e.g. men in Egypt).

Second and most importantly , the LATE may be inconsistent even in the absence of the second form

of selectivity due to the intra-household selection of the migrants. Even if migrants do not self-select

within complier households, i.e. if E[Y (0,0)|CN] =E[Y (0,0)|CC], LATE may be asymptotically biased.

The LATE estimator is prone to bias because it does not take into account the fact that the instrument

generates an endogenous sample selection. Among the group for which Z = 1 , complier individuals

living in complier households (CC) migrate and their outcome is no more observed at origin. In contrary,

among the group for which Z = 0, all individuals have stayed at origin, despite (CC) types would have

migrated in case they would have received the instrument Z = 1. This discrepancy in the proportion of

the latent group (CC) between the group Z = 1 and Z = 0 suffices to generate a bias – even when the

potential outcome are identical between the (CC) and (CN) group.

Of course, a sufficient condition for which LATE is unbiased is that E[Y (0,0)|CN] =E[Y (0,0)|CC] =

E[Y (0,0)|NN] and E[Y (1,0)|AN] = E[Y (1,0)|CN]. However, in this case, there is no selection at all,

not even ac cross households. The use of an instrument is pointless and a simple difference in means

E[Y |M = 1]−E[Y |M = 0] consistently estimates θCN

Finally, as I show in appendix A4 , the LATE estimator can possibly lie outside the non-parametric

bounds a la Chen and Flores (2012) derived in the previous section in equation (4) . Examples can be

build in which the LATE is above the upper bound θU .

5.3.2 Adjusted IV estimator in the absence of intra-household selection

More generally, if there is no systematic intra-household selection into migration among compliers

households , i.e. if E[Y (0,0)|CN] = E[Y (0,0)|CC] , then the causal migration impact θCN among the

(CN) population can be identified by :

θ̂CN
IV

=
(pAN + pCN)Y

110− pANY 010

pCN
− (pNN + pCN + pCC)Y

000− pNNY 100

pCN + pCC
(6)

Note that θ̂CN
IV

is generally different from the LATE estimator. The bias of the LATE can be

expressed as :

LAT E− θ̂CN
IV

=
pCC

π

[
pNN(1+

pNN

pCC + pCN
)(Y 100−Y 000

)+
pAN(pAN + pCN)

pCN
(Y 010−Y 110

)

]

16 pCC = P(D = 1|Z = 1)−P(D = 1|Z = 0)

15



5.4 Alternative bounds without assumption 6

Assumption 6 may be debatable in some context. For instance, migration networks at destination may

certainly be used as instrument because they reduce the cost of migration and thereby affect the family

decision as to whether send migrant(s) or not. However, such networks may also influence family

decision as to which and how many members are sent. If it is the case, assumption 6 would be violated.

I thus drop assumption 6 in this subsection. Now the existence of the latent strata AC and AD cannot

be ruled out anymore. In these latent groups, the instrument has a direct effect on individual migration.

I then make the alternative assumption that the effect of the instrument on individual migration is mono-

tonic: every individual is more likely to migrate if Z = 1 than if Z = 0. This excludes the existence of

defiers and therefore the existence of the stratum AD 17

Assumption 7. Monotonicity of D in Z

D(1,1)≥ D(1,0)

The proportion of the latent groups are no more identified.Indeed, there are five unknown strata

proportions for only four known probabilities ( linear independent equations) 18. I therefore introduce

an additional parameter λ , which equals the ratio of the share of always migrant individuals to the the

share of complier individuals in always migrant households :

pAC = λ pAA

The sensitivity of the bounds with respect to the value of λ ≥ 0 will be explored in the empirical

application. We know that pAA = P(D = 1|Z = 0) that P(M = 1,D = 0|Z = 0) = pAN +λ pAA and also

that P(D = 1|Z = 1) = pCC +(1+λ )pAA . These three equations and the requirement that pAN ≥ 0 and

pCC ≥ 0 give a interval of possible values of λ , i.e.

0≤ λ ≤ λmax = min(λ an
max,λ

cc
max)

with λ
an
max =

P(M = 1,D = 0|Z = 0)
P(D = 1|Z = 0)

and λ
cc
max =

P(D = 1|Z = 1)
P(D = 1|Z = 0)

−1

I use the procedure of Huber and Mellace (2013) to derive sharp bounds on θCN which depends on the

value of λ . The formulas and details of the derivation are provided in the appendix A3.

17 As the rest of the paper will show, this assumption only affects the bounds for E[Y (1,0)|CN] : they are less tight if the
existence of defiers is not rule out

18 The 6th strata proportions is one minus the sum of the others. There are only 4 independent equations because

P(M = 1,D = 1|Z)+P(M = 1,D = 0|Z)+P(M = 0,D = 0|Z) = 1
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6 Estimation and inference

6.1 Estimating migration probabilities : the issue of whole-household migration

As underlined by Steinmayr (2014), the estimation of the probability to migrate are problematic when

using cross-sectional data. By construction, cross-sectional surveys do not include households where

all members have migrated as no household member is left to respond to the survey. When estimating

migration probabilities, one should normally takes into account this type of whole-household migration.

Using a Mexican cross-sectional survey, Steinmayr (2014) proposes a method to correct the migration

probabilities (to the U.S.) by exploiting discrepancies in the number of Mexican between the U.S. and

Mexican census.

Because I use a panel survey, I do not face similar difficulties. In the empirical application, I use

the two rounds of the Mexican Family Life Survey conducted in 2002 and 2005. As described in Rubal-

cava and Teruel (2008) and Teruel et al. (2012) when a person moved and was not found in the same

household of origin (at the baseline survey) , enumerators inquired about his/her whereabouts by ask-

ing members left behind in the original household about his/her new location. In cases where the whole

household moved, respondent’s friends, relatives or neighbors provided the location of the absent house-

hold. Hence, even if they could not be individually recontacted, all migrants to the U.S. can be identified,

irrespective of whether they leave behind household members or not.

In the rural sample of the MxFLS life survey , I find that 4% of working-age respondents (15-

65) have migrated to the U.S. between 2002 and 2005. The attrition rate at the household level – i.e.

percentage of households that are not re-interviewed in 2005 in Mexico – is low, of about 3% . Among

these "attriter" households, I find that 20% have actually migrated as a whole to the U.S.

Based on the 2000 U.S. census, 1,492,111 Mexican immigrants live in the U.S. Based on the 2000

Mexican census, only 1,221,598 Mexicans have migrated to the U.S. 19. The discrepancy corresponds

to all-move households who migrate as a whole and are not counted in the Mexican census. Based on

theses figures , migrants moving with their entire family represent 1,492,111−1,221,598
1,492,111 = 18% of all U.S.

migrants, a proportion close to what I find using the MxFLS, namely 48
328 = 15% .This suggests the

MxFLS does not miss many cases of whole-household migration.

Table 4: Migrants in the rural sample of working wage individuals - MxFLS 1-2 (absolute frequencies)

"Attriter" household
No Yes Total

Non migrant 6,963 184 7,147
U.S. migrant 280 48 328
Total 7,243 232 7,475

19See Ibarraran and Lubotsky (2007) estimates. The size of the Mexican immigrant population living in the U.S. is com-
puted using two different data sources: (i) the 2000 U.S. census, which is supposed to provide the exhaustive number of
migrants (who did not return) (ii) the 2000 Mexican census, which gives the number of migrants who leave behind at least
one household member in Mexico. Left-behind report whether any household member has migrated in the U.S. in the last five
years. The U.S. census sample includes only people who report they came to the United States between 1995 and 2000 .
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6.2 Using covariates to narrow bounds and weaken assumption 3

The use of exogenous covariates - such as baseline socio-demographics characteristics - can serve two

different purposes. First, as Lee (2009) shows, the use of covariates tightens the bounds. Bounds are

narrower when using baseline characteristics than when not using it. Second, the assumption of random

assignment of the instrument Z might be valid only conditionally on a set of covariates X . We might

then want to replace assumption 3 of unconditional independence by a weaker conditional independence

assumption.

To identify bounds conditional on X , I need to make new assumptions and to modify some of the

previous hypothesis. My framework is quite different as Lee (2009) because I use an instrument Z and

because I do not assume that the instrument is orthogonal to the X . My econometric setup is closer

to Frolich (2007) who proposes a non parametric estimation of the LATE with covariates. I adapt his

procedure to my problem. I begin by assuming that my covariates are exogenous :

Assumption 9. Exogenous covariates

Xi(m,d,z) = Xi ∀m,d,z ∈ 0,1

where X(m,d,z) is the potential value of X for unit i that would be observed if M, D and Z were set

by external intervention. This assumption precludes that X itself is caused by the migration or by the

instrument. However it does not forbid X to affect the probabilities of migration or to determine the

instrument. Now I weaken assumption 3 of random assignment of Z by allowing the instrument to be

unconditionally correlated with the potential outcomes (and potential migration) . I make a standard

conditional independence assumption :

Assumption 3* . Randomly assigned instrument Z conditionally on X

{Y (m,d),M(z),D(m,z)} ⊥ Z |X ∀m,d,z ∈ {0,1}

Finally, I suppose that the support of X is the same for the to subpopulation of Z = 1 and Z = 0. This

hypothesis ensures that a local average treatment effect conditional on X = x, as well as its bounds, are

well defined for all x :

Assumption 10 . Common support

0 < P(Z = 1|X = x)< 1 for all x with positive density

Under assumption 2 (exclusion restriction with respect to Y ) , 3* , 4 (no household defiers) , 5 (existence

of compliers) , 6 ( exclusion restriction with respect to D) , 9 and 10, an upper and lower bound of θCN

can be constructed in each cell X = x. The same procedure as before can be applied conditional on X ,

i.e. stratified by observed characteristics. Then by averaging across the distribution of X conditional on

CN, we can obtain sharp lower and upper bounds for θCN . Assume that each element of the vector of

covariates X has a discrete support so that this vector can take on one finite number of discrete values

{x1,x2, ...,xJ} . Let p(xk) denote the proportions of individuals with characteristics xk. Then note also
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with reference to section 3.2 and equation (4)

θ
U(x) = E[Y (1,0)|CN,X = x]−EL[Y (0,0)|N,X = x]

θ
L(x) = E[Y (1,0)|CN,X = x]−EU [Y (0,0)|N,X = x]

Proposition 1 (adapted from Lee (2009) ) Under assumptions 2,3*, 4,5,6,9 and 10 , θU and θ L

are sharp lower and upper bound for the average treatment θCN = E[Y (1,0)−Y (0,0)|CN] where:

θU =
J

∑
j=1

θ
U(x j)∗P(X = x j|CN)

θ L =
J

∑
j=1

θ
L(x j)∗P(X = x j|CN)

P(X = x|CN) =
pCN(x)∗ p(x)

∑
J
k=1 pCN(xk)∗ p(xk)

pCN(x) = P(M = 1,D = 0|Z = 1,X = x)−P(M = 1,D = 0|Z = 0,X = x)

In a given cell X = x, the bounds of θCN(x) = E[Y (1,0)−Y (0,0)|CN,X = x] are θU(x) and θ L(x).

If pCN(x) = 0 these bounds are not identified. But for the identification of the bounds on all individuals

in the latent group CN( compliers never migrants), the assumption 5 that pCN > 0 suffices because any

value x with pCN(x) = 0 receives zero weight in the weighted average . The bounds θU and θ L are

sharp in the sense that they are respectively the smallest upper bound and largest lower bound that are

consistent with the data. Furthermore, θU ≤ θU and θ L ≥ θ L because more information is used when

using covariates.

When assumption 6 is replaced by assumptions 7 and 8, the procedure is similar except that the

conditional bounds in each cell X = x are different.

6.3 Discrete outcomes: issue with quantiles

When the outcome Y is discrete – such as participation in the labor market in the empirical example

– the occurrence of mass points with equal outcome values entails a non unique quantile function. As

suggested in Kitagawa (2009) and Huber and Mellace (2013) , I replace the non-unique quantile function

with a rank function in order to break ties. For example, the estimate of the upper tail trimming function

E[Y |M = m,D = d,Z = z,Y ≤ q(p)] , where q(p) denotes the p−th quantile, can be obtained as follows.

I simply sort the observations by increasing order of Y in the observed cell {M = m,D = d,Z = z,},
giving an (arbitrary) different rank for the observations with the same outcome value. I then estimate the

mean in the subsample of the first p∗n observations, where n denotes the number of observations in this

cell. For deriving the lower tail trimming function E[Y |M = m,D = d,Z = z,Y ≥ q(1− p)] , I estimate

the mean in the subsample of the last p∗n observations.
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7 Empirical application: migration and labor supply in Mexico

A growing empirical literature has studied the effect of migration on the labor supply of family members

left behind in source country , and especially in Mexico (Amuedo-Dorantes and Pozo, 2006; Hanson,

2007). In Murard (2013), using the rural sample of the Mexican Family Life Survey I examine how the

non-migrant individuals’ participation (and hours) in different activities – such as non non-agricultural

wage work or self-employment – are affected by the migration of a household member to the United

States. Using instrumented difference-in-differences estimators (IV with individual fixed effect) , I find

that left-behinds reduce their participation in non-agricultural wage work but also increase their self-

employed work in response to the international migration of a family member in the U.S. . Importantly,

I find that this re-allocation of labor is particularly significant among young women (below 36), who are

typically the daughters of the household head.

An important question is whether these results can be interpreted as causal or whether they are

biased by intra-household selection of the migrant(s). The division of family role within the household

could indeed totally account for these results, even in the absence of any causal effect of migration. For

example, in a family with several daughters, parents likely assign different role to their daughters. The

(unique) migrant daughter could be the one in which the family has invested the more in terms of human

capital ; even if she would not have migrated, she would have stopped farm work and got a commercial

job while the other never-migrating daughters are in charge of working in the farm and taking care of

the elderly and children 20.

In this paper I will use the same Mexican Family Life Survey as my previous work and estimate non

parametric bounds for the effect of migration on remaining young women in Mexican rural household.

The narrowness of the bounds will suggest the extent to which previous estimates in Murard (2013) could

have been biased. It will also give a confidence interval of the "causal" effect of migration (assuming

the validity of the instrument).

7.1 Data

The Mexican Family Life Survey (MxFLS) is a longitudinal household survey representative at the rural

level. The baseline survey was conducted from April to July 2002 and collected information from a

sample of approximately 3,300 households (14,000 individuals) residing in 75 rural communities with

less than 2,500 inhabitants (defined as rural areas) . The second round of the survey was begun in

mid-2005 and completed in 2006.

I use a sample consisting of 1521 women between 15 and 36. I define household migration, the

treatment, as the fact to live in a household where at least one member has migrated to the U.S. between

the two survey rounds, i.e. 2002 and 2005. I define individual migration as the fact to be one of the

migrant(s) of the family. In the sample, 86% of women live in a household which does not send any

migrant(s) Among the 14% who live a a migrant household, 5% migrate themselves to the U.S. and 9%

20 De Janvry and Sadoulet (2001) have shown the importance of off-farm activities in the Mexican ejido sector, i.e. peasant
communities containing the majority of the rural population and half the country’s agricultural land. Non agricultural employ-
ment is very frequent and highly varied ; it is typically composed of construction , manufactures, commerce jobs . I find in the
MxFLS survey that about 20% of young women work in non agricultural jobs, a figure close to De Janvry and Sadoulet (2001)
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are left behind by another migrating family member.

The two outcomes of interest are the participation in the non agricultural labor market and the par-

ticipation in self-employed activities – mainly farming or micro-businesses in rural villages of Mexico.

More precisely, I use the longitudinal structure of the data to apply first time-differences in order to

wipe out time-invariant unobservables factors. My outcomes are therefore the variation of the labor

supply before and after migration, that is between 2002 and 2005 . These variations over time equal

to −1 in case the woman stops working , 0 if she keeps working (or not working) and 1 if she starts

working. At baseline, I find that about 26% of women work, either in non agricultural jobs (15%) or in

self-employment (8%). From 2002 to 2005, I find that more than 25% of women have either switched

of activity or stopped working or entered the labor force.

7.2 Evidence of intra-household selection before migration

The longitudinal structure of the data allows to observe the situation of the households before migra-

tion has occurred. Before turning to the impact of migration, an interesting question is thus whether,

in 2002 at baseline, would-be migrants who will have migrated by 2005 have already a systemati-

cally different labor supply behavior than non-migrants. More precisely, among young women living in

migrant-sending households, some migrate themselves and some stay behind. Significant differences in

the initial levels of labor force participation between these two populations would provide suggestive

evidence of intra-household selection. Formally, I estimate the following regression on the sample of

young women living in households who have sent at least one migrant in the U.S. by 2005 :

Lih,2002 = α + γ.Di,02−05 +β .Xih,2002 + εih

where Lih,2002 is the initial participation in the labor force (binary), Di,02−05 is a binary indicating whether

women i has migrated by 2005, and Xih,2002 a vector of households and individual characteristics at

baseline.21 Table 10 in Appendix A1 shows that would-be migrant women are initially about 15% more

likely to work ( either in wage-earning occupation or in self-employment) than women staying behind.

This difference remains significant (at 10% ) when household fixed effects are included in the regression

(column 3 ). This difference seems to be especially driven by a higher participation in non-agricultural

jobs. This finding suggests that migrant women are indeed likely to be in charge of sustaining the family

financially while women staying behind might be responsible for tacking care of the elderly and children

as well as doing various household chores.

7.3 Past municipal migration networks to instrument for household migration

Unobserved shocks between 2002 and 2005 may affect both migration decisions and labor outcomes.

For example, local labor demand shocks may provoke involuntary unemployment in wage-earning jobs

and force some members of the family to out-migrate to find jobs elsewhere. The migration of one

household member may also reflect joint decisions with family labor allocation : women’s participation

21 age, individual education, household size, number of elderly, number of children under 12 , highest educational level
attained in the family, initial social and private transfers received, and initial wealth of the household
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in agricultural work may help finance men’s out-migration.

To overcome the problem of households self-selection into migration , a number of studies (McKen-

zie and Rapoport, 2011; Woodruff and Zenteno, 2007) have used historical state-level migration rates as

an instrument for current migration levels. Following these studies, I use as instrument the emigration

rate to the U.S. from 1995 to 2000 in each Mexican municipality. To derive the migration rates I use the

2000 Mexican Census which records the international migration of each household member during the

5 years prior the interview. This instrument is meant to proxy for the extent of village level migration

networks which likely reduce migration costs – such as travel costs (smugglers), initial setup and job

search costs at destination.

The exclusion restriction is that these 1995-2000 municipal migration rates do not affect the variation

in the labor supply outcomes between 2002 and 2005, expect through current migration of household

members. A detailed discussion of this instrument and the exclusion restriction can be found in Murard

(2013). Assumption 6 also requires that the instrument does not influence the migration decision of the

individual directly, but only the decision of the household as to whether or not send a migrant in the U.S..

This might be a reasonable assumption if, in a context of binding liquidity/credit constraints, migration

networks primarily helps to reduce upfront migration costs without affecting the within-family-selection

of the migrant individuals.

Finally, I recode the continuous measure of municipal migration rate into a binary variable. I define

municipalities as low-migration municipalities (Z = 0) if the migration rate is below the sample median

(close to 2%) and as high-migration municipalities (Z = 1) if migration rate is above the 75th percentile

(around 5%). Observations with emigration rate between the two endpoints are neglected. I do this

to allow stratification on instrument assignment and to estimate a LATE on the largest population of

compliers – see Frolich (2007) for a justification 22.Figure 3 in Appendix A1 shows the relation between

emigration rates and the probability of living in a U.S. migrant household at baseline.

7.4 Results

I bound the effect of living in a migrant household on participation in non-agricultural jobs and self-

employment among young women below 36 in Mexico. More precisely, the population for which the

effect is of interest – and for which bounds can be identified – is the latent group CN of young women.

This group corresponds to those young female who would never migrate themselves but who live in a

household where the migration of another family member is induced by the availability of community

networks in the U.S.. Ignoring the endogenous intra-household selection of the migrant, I estimate the

local average effect (LATE) using a simple linear IV estimator without covariates – i.e. a Wald estimator.

22 Consider a multivalued discrete instrument Z ∈ z0,z1,z2 with z2 > z1 > z0. The monotony assumptions requires that
M(z2) ≥M(z1) ≥M(z0) Note Compliers C01 = {M(z1) = 1,M(z0) = 0} and Compliers C12 = {M(z2) = 1,M(z1) = 0} The
Average treatment on both compliers group is :

E[Y 1−Y 0|C12
⋃

C01] = E[Y 1−Y 0|M(z2) = 1,M(z0) = 0]

Generally if Supp(Z) = (zmin,zmax) , the parameter of interest is

E[Y (1,0)−Y (0,0)|M(zmax) = 1,M(zmin) = 0,D(z) = 0 ∀z]
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The estimated impact is a (statistically) significant increase in self-employment by 27 percentage points

and a significant reduction in non-agricultural wage labor by 23 percentage points (table 5 ).

7.4.1 Bounds without covariates

I begin by estimating in table 5 the bounds derived in equation (4) under assumptions 2,3,4,5, 6 . The

expected participation in self-employment under treatment, i.e. in case the household sends a U.S.

migrant , is 0.026 for the group CN . The lower and upper bounds of the outcome under control, i.e. in

case of no migration, are -0.37 and 0.10 for the group CN. In consequence, the lower and upper bounds

for the average effect of migration for the CN stratum are -0.078 and 0.399 ). The estimated bounds

suggest that migration may have a negative effect on self-employment instead of a positive one. Relative

to never-migrant daughters, migrant daughters might have been much more likely to stop farming (or

less likely to start farming) if they have would not migrated. This type of selection would cause a upward

bias of the standard Wald estimator.

With respect to non agricultural wage labor, lower and upper bounds for the average effect are -

0.60 and 0.22, suggesting that that migration may have a positive effect. Again, the fact that migrant

daughters would have been much more likely to find a local non-rural job than never-migrant daughters

can totally account for a downward bias of the standard IV estimate.

In table 5, I also report θ̂CN
IV

, the consistent estimator of θCNderived in equation (6) under the

assumption of absence of intra-household selection into migration . It is apparent that the standard LATE

overestimates the impact of migration on self-employment, even if there is no selection into migration

within complier households. However, the bias in the LATE, measured by the difference between the

LATE and θ̂CN
IV

,is not statistically significant.

7.4.2 Bounds with covariates

Using panel data, I observe characteristics of individuals and households in 2002 before migration

(age,sex,education...) . I now use the baseline characteristics to tighten the bounds for the causal mi-

gration impact. However, because the estimation method in proposition 1 is non-parametric, I must

first derive the bounds in each population cell defined by a vector of discrete value of characteristics

(x1,x2, ...,xK). Because the sample size is not very large and the number of characteristics K is high,

I face the well-known problem of "curse of dimensionality" 23. To bypass this problem, I project the

vector of characteristics X on a single one-dimensional index. As a relevant index, I choose the ex-ante

propensity to migrate which I estimate using a standard probit model:

P(D = 1|X) = P(Xβ + ε > 0) = Φ(Xβ )

I use Φ(X β̂ ) to create three population groups of equal size : individuals with low p̂(X) in the first

tercile of the sample distribution , medium p̂(X) in the second tercile, and high p̂(X) in the last tercile.

I then estimate bounds in proposition 1 using this categorical variable which divides the sample only

23The number of observations within each cell shrink very rapidly and the common support condition (assumption 10) is
violated
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exploiting variation in the exogenous X . Table 11 in appendix A1 shows the estimation of Φ(X β̂ ) using

the initial demographic composition of the households, the initial wealth and nonlabor income, the age

, education and marital status of the individual, as well as some characteristics of the municipality.

When I use these covariates in table 6, , I obtain tighter bounds as expected – also see table 12 in

appendix A1 for details. With respect to self-employment, I find lower and upper bounds on θCN of

0.247 and 0.377 , close to the LATE estimate. This interval lies strictly within the one in the previous

table 5 without covariates. Since the lower bounds is positive, it appears that the causal effect of migra-

tion is positive, even when the endogenous intra-household selection of migrants is taken into account.

Migration seems to cause young women left behind to increase their participation in self-employed ac-

tivities. With respect to non-rural jobs, I obtain a lower bound of -8% suggesting that the true magnitude

of the causal impact of migration θCN may be lower than what the LATE indicates. However, the lower

bound is negative which indicates that the causal migration impact θCN is strictly negative. Migration

seems to cause a decline in the participation in non-rural jobs among young women staying behind.

Overall, non parametric bounds on θCN tend to confirm the findings of a re-allocation of labor away

from non-agricultural jobs to farm work and other self-employed activities.

7.4.3 Bounds without assumption 6 : sensitivity with respect to λ

By reducing the cost of migration, migration networks in the U.S. probably influences the decision of

the family as to whether or not send migrant(s) . However, networks might also affect the decision

as to which and how many members are sent. For example, by facilitating initial setup at destination,

the availability of kinship/community networks in the U.S. might determine whether girls/daughters

accompany the principal male migrant. If it is the case, assumption 6 of exclusion restriction of Z with

respect to D, i.e. D(m,z) = D(m) might be violated.

As an alternative,I derive bounds under Assumption 7 instead of Assumption 6. Assumption 7

allows for a direct effect of migration networks on individual migration but requires this effect is to be

monotonic. Since networks lower the cost of migration, they likely have a monotonic positive effect on

individual migration. Assumption 7 also introduces an additional parameter λ , the ratio of the proportion

of compliers individuals to the proportion of alway-migrant individuals in always-migrating households.

In the entire sample of young women, the maximum value of λ can take – to ensure that pAN

and pCC are not negative – is 1.7, which is the minimum of P(M=1,D=0|Z=0)
P(D=1|Z=0) and P(D=1|Z=1)

P(D=1|Z=0) − 1. To

investigate the sensitivity of the bounds with respect λ , I plot in figure 2 the the variation of the bounds

on θCN with the value of λ . I also derive non-parametric bounds using the the three different population

categories based on the ex-ante propensity to migrate p(X) . I assume that the parameter λ is identical

across the three categories of low, medium and high pscore p(X). As a result, the range of λ for which

the bounds on θCN are defined across the entire sample is bounded from above by the minimum of

min(P(M=1,D=0|Z=0)
P(D=1|Z=0) , P(D=1|Z=1)

P(D=1|Z=0) − 1) across the three categories of p(X). The maximum value λ can

take to ensure that existence of bounds across all categories of p(X) is 0.7.

With respect to participation in self-employed activity, it is apparent in figure 2 that the lower bound

on θCN using the three categories based the index p(X) is around 10%, higher than zero. This suggests

that irrespective of the value of λ , the causal impact of migration θCN seems to be positive and higher
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than 10%. With respect to participation in non-rural jobs, the upper bound on θCN which uses the index

p(X) seems to be negative, around −5%, for all possible values of λ . This indicates that the causal

impact of migration θCN is to reduce participation in the non-agricultural labor market among young

women staying in Mexico. Overall, the result that migration triggers a re-allocation of labor among

left-behinds appears to be robust to the violation of assumption 6.

Table 5: Bounds on θCN - No covariates used

Self-employed labor Non agricultural wage labor

LATE 0,276∗∗ −0,239∗∗

(0,111 ) ( 0,121)

θ̂CN
IV

0,191∗∗ -0,161 ∗

(0,089) (0,090 )

bounds on θCN [ -0,078; 0,399] [ -0,603 ; 0,222]

pAA 0,021 0,021
pAN 0,044 0,044
pNN 0,692 0,692
pCC 0,079 0,079
pCN 0,164 0,164
E[Y (1,0)|CN] 0,026 -0,033
EU [Y (0,0)|CN] 0,105 0,570
EL[Y (0,0)|CN] -0,373 -0,255

N 1521 1521

θ̂CN
IV

is the corrected IV estimator under the assumption of the absence of intra-household selection
E[Y (0,0)|CN] = E[Y (0,0)|CC] . Standard errors in parentheses from 99 bootstrap replications. ∗ denotes
that estimates are statistically different from zero at the 10% level, ∗∗ at the 5% level.
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Table 6: Bounds on θCN . Migration propensity p(X) used to define three categories with high, medium
and low propensity

Self-employed labor Non agricultural wage labor

LATE 0,316∗∗ −0,321∗∗

(0,124 ) ( 0,136)

θ̂CN
IV

0,249∗∗ -0,308 ∗∗

(0,116) (0,113 )

bounds on θCN [0,247 ; 0,377] [ -0,545 ;-0,084]

N 1521 1521
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Figure 2: Sensitivity of Bounds for θCN with respect to λ : (i) without covariates and (ii) using three
categories of p(X) with high, medium and low propensity to migrate

(a) Self-employed labor

(b) Non agricultural wage labor
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8 Empirical application: migration and children education

Another strand of research has investigated the effect of migration on educational attainment of children

staying behind. Using the rural sample of 12 to 18 years old children in the MxFLS survey, I revisit

previous estimates. As table 7 describes, school attendance drops from 95% at age 12 to 71% at age 15

and 46% at age 16. About 18% of children live in household who will participate in migration by 2005.

About 10% of children older than 14 will migrate themselves to the U.S. within the next 3 years of the

baseline survey (2002).

I estimate the impact of migration on the variation in school attendance between 2002 and 2005. I use

the same instrument as previously, i.e. the past emigration rate by municipality. I derive non parametric

bounds under the assumption that the instrument does not affect the intra-household selection of migrants

(assumption 6). I also derive bounds using three categories of individual propensity to migrate estimated

with a probit model using initial demographic characteristics of the individuals and of the households.

As table 8 shows, the standard LATE estimator indicates that migration reduces attendance by 40%

. The corrected IV estimator θ̂CN
IV

suggests that the LATE suffers from downward bias, even in the

absence of intra-household selection of migrant(s). In the presence of such selection, the bounds do not

exclude that the causal impact may be null. This suggests that children might be positively selected into

migration among households engaging into migration (i.e. migrating children would have stayed longer

in school relative to children left behind).

Table 7: Children sample in the MxFLS survey

age school attendance Migration 2005-2002
in 2002 2005-2002 M = 1 D = 1

12 0,95 -0,38 0,14 0,03
13 0,90 -0,43 0,16 0,04
14 0,84 -0,42 0,17 0,09
15 0,71 -0,43 0,17 0,09
16 0,46 -0,28 0,19 0,12
17 0,42 -0,25 0,17 0,09
18 0,26 -0,15 0,20 0,13

Observations 1972 1972 1972 1972

28



Table 8: Bounds on causal impact on migration on school attendance (under assumption 6)

No covariates Covariates based on p(x)

LATE −0,42∗∗ −0,43∗∗

( 0,15 ) ( 0,15)

θ̂CN
IV

-0,25 ∗∗ -0,24 ∗∗

(0,09 ) (0,09 )

bounds [ -0,50 ;-0,001 ] [ -0,43; -0,007]

N 1972 1972

θ̂CN
IV

is the corrected IV estimator under the assumption of the absence of intra-household selection
E[Y (0,0)|CN] = E[Y (0,0)|CC] . Standard errors in parentheses from 99 bootstrap replications. ∗ denotes
that estimates are statistically different from zero at the 10% level, ∗∗ at the 5% level.

9 Conclusion

This paper examines the identification of the causal effect of migration on the family left behind in

presence of double-selection. The first selection problem arises from the well-studied self-selection of

households into migration and the endogenous family decision as to whether send or not a migrant.

The second selection problem arises from the selection of migrant individuals within households and

the endogenous decision as to which members migrate and which stay behind at origin. The complex

identification problem this second form of selectivity generates has largely been ignored in the literature.

Similarly to Steinmayr (2014) , I use principal stratification to model migration decisions and struc-

ture the identification problem. This allows deriving non parametric bounds on the causal effect of

migration under different sets of assumptions in a setting with double-selection. Using panel data drawn

from the Mexican Family Life Survey , I illustrate the approach by estimating bounds on the migration

impact on two outcome: the labor supply of young women left behind and the school attendance of

children remaining in Mexico. Results suggest that ignoring the intra-household selection problem may

lead to biased estimates, usually overstating the true magnitude of the causal effect.

Most importantly, this paper shows that point-identification of the causal effect of migration requires

strong, if not unrealistic, assumptions which are rarely met in practice even with ideal experimental data.

Empirical applications indicate that a combination of weaker assumptions can instead provide sufficient

identifying power to derive informative bounds. Partial identification appears therefore as a practical,

judicious and promising solution for migration research.
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10 Appendix

Appendix A1 : additional tables and figures

Figure 3: Cut-off for binary instrument . 1995-2000 Emigration rate to the U.S. by municipality (2000
Mexican census)

(a)
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Table 9: Latent strata with and without assumptions

Latent group
(1) (2) (3) (4) (5)

M(1) M(0) D(1) D(0) All M(z) = 0⇒ Assum. 4 Assum. 6 Assum. 7
D(z) = 0 instead of 6

1 1 1 1 AA AA AA AA AA
1 1 1 0 AC AC AC AC
1 1 0 1 AD AD AD
1 1 0 0 AN AN AN AN AN
1 0 1 1 CA
1 0 1 0 CC CC CC CC CC
1 0 0 1 CD
1 0 0 0 CN CN CN CN CN
0 1 1 1 DA
0 1 1 0 DC
0 1 0 1 DD DD
0 1 0 0 DN DN
0 0 1 1 NA
0 0 1 0 NC
0 0 0 1 ND
0 0 0 0 NN NN NN NN NN

Column (1) shows all 16 strata.
Column (2) shows remaining strata after the implication M(z) = 0⇒ D(z) = 0
Column (3) shows remaining strata after Assumption 4 has been made
Column (3) shows remaining strata after Assumption 6
Column (3) shows remaining strata after Assumption 6 is replaced with Assumption 7

Table 10: Initial (2002) participation in the labor force among young women living in U.S. migrant-
sending households : differences between migrant and left behind women .

(1) (2) (3)
Participation in :
Any work 0.149∗∗ 0.189∗∗∗ 0.250∗

(0.066) (0.066) (0.127)
Non rural jobs 0.131∗∗ 0.148∗∗ 0.185

(0.059) (0.060) (0.120)
Self-employed work 0.011 0.029 0.038

(0.041) (0.041) (0.054)
Controls:
Household characteristics† X
Household fixed effets X
N 229 229 229
Each number corresponds to a different regression .
Standard errors in (). Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
† : individual age and education, household size, number of elderly, number of children under 12 , highest
education in the family, initial social and private transfers received, and initial wealth of the household
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Table 11: Probability individual migration among young women in rural area

(1)
Migration U.S.

b se
nbmaleage1435 0.006 (0.076)
nbmaleage3654 -0.035 (0.137)
nbfemaleage3654 0.269∗ (0.150)
nbage13minus 0.059 (0.039)
nb_60 0.243∗∗ (0.101)
ln_socialnonlabincome 0.002 (0.017)
ln_HH_transfer02 0.027∗ (0.016)
hh_higestgrade3 -0.153 (0.207)
hh_higestgrade4 -0.620∗ (0.328)
wealthindex 0.105∗∗ (0.051)
wealthindexsq -0.030 (0.021)
ln_pop95 -0.052 (0.062)
ln_ave_dis 0.120∗∗ (0.057)
ln_medincome_mun2000 -0.295∗∗ (0.120)
age 0.141 (0.111)
age2 -0.004∗ (0.002)
educ primary -0.105 (0.189)
educ secondary 0.206 (0.238)
educ post secondary 0.278 (0.402)
spouse not resident 0.742∗∗∗ (0.252)
divorced 0.329 (0.378)
single never married 0.437∗∗ (0.191)
_cons -1.535 (1.589)
N 1614

Table 12: LATE and bounds within each cell defined by Pscore

Self-employed labor
Category pscore LATE Lower bound Upper bound pCN N
high pscore 0,248 -0,068 0,345 0,154 538
medium pscore 0,230 0,230 0,249 0,147 538
low pscore 0,558 0,558 0,558 0,143 538

Non agricultural wage labor
Category pscore LATE Lower bound Upper bound pCN N
high pscore -0,334 -0,846 0,324 0,154 538
medium pscore -0,336 -0,336 -0,320 0,147 538
low pscore -0,240 -0,240 -0,240 0,143 538
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Appendix A2 : Derivation lower and upper bounds EL[Y (0,0)|CN] and
EU [Y (0,0)|CN] under assumptions 2 to 6

The observed outcome for the group {Z = 0,M = 0,D = 0} is a mixture of the outcomes of the three

strata CN, CC and NN and the outcome of the stratum NN is point identified. Indeed, Y (0,0) for the

latent group NN is directly observed in the observed group {Z = 1,M =,0,D = 0} :

E[Y (0,0)|NN] = Y 100

I introduce additional notation to describe the bounds. Let yzmd
r be the r-th quantile of Y in the

observed group {Z = z,M = m,D = d} and let the mean outcome in this cell for the outcomes between

yzmd
r and yzmd

r′ be

Y (yzmd
r ≤ Y ≤ yzmd

r′ ) = E[Y |Z = z,M = m,D = d,yzmd
r ≤ Y ≤ yzmd

r′ ]

Denote also αCN = pCN
pCN+pNN+pCC

, αNN = pNN
pCN+pNN+pCC

and αCC = 1−αCN −αNN the conditional prob-

abilities in the observed group {Z = 0,M = 0,D = 0}. The idea behind the bounds proposed by Chen

and Flores (2012) is to calculate the lowest and highest possible values of E[Y (0,0)|CN] that are consis-

tent withe the constraint that E[Y (0,0)|NN] = Y 100. I now describe their procedure to derive the lower

bound.

To begin, consider the problem without the constraint and ignore the information about NN. In this

case, I can directly apply the trimming procedure of Zhang and Rubin(2003) and Lee(2009) , just as

described in the previous section. E[Y (0,0)|CN] can be bounded from below by the expected value of Y

for the αCN fraction of the smallest values of Y in the cell {Z = 0,M = 0,D = 0}, that is Y (Y ≤ y000
αCN

).

Next, I check whether this solution is consistent with constraint that E[Y (0,0)|NN] = Y 100. To do this,I

construct the "wort-case" scenario lower bound for E[Y (0,0)|NN] by assuming that all observations that

belong to the NN latent group are at the bottom of the remaining observations in the cell {Z = 0,M =

0,D = 0}. This yields Y (y000
αCN
≤ Y ≤ y000

αCN+αNN
). If Y 100 ≥ Y (y000

αCN
≤ Y ≤ y000

αCN+αNN
), the unconstrained

solution is consistent with the constraint and the lower bound for E[Y (0,0)|CN] is Y (Y ≤ y000
αCN

) – similar

to Lee’s bound. If the constraint is not satisfied, I construct the "worst-case" scenario lower bound for

E[Y (0,0)|CN] by placing all the observations NN and CN at the bottom of the distribution of Y 24 .

Thus, the lower bound EL[Y (0,0)|CN] can be derived from the equation :

Y (Y ≤ y000
αCN+αNN

) =
αCN

αCN +αNN
∗EL[Y (0,0)|CN]+

αNN

αCN +αNN
∗Y 100

The upper bound is derived in a similar way as the lower bound, but now by placing the observations in

the corresponding strata in the upper part of the distribution of Y in the cell {Z = 0,M = 0,D = 0}. It

follows that the lower bound is ( Chen and Flores (2012) ) :

24 Intuitively,the fact that Y 100
< Y (y000

αCN
≤ Y ≤ y000

αCN+αNN
) implies that some observations in the NN stratum must at the

bottom αCN fraction of the smallest values of Y . Thus, Y (Y ≤ y000
αCN

) is not a sharp lower bound for E[Y (0,0)|CN] .
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EL[Y (0,0)|CN] =

Y (Y ≤ y000
αCN

) if Y (y000
αCN
≤ Y ≤ y000

αCN+αNN
)≤ Y 100

αCN +αNN

αCN
∗Y (Y ≤ y000

αCN+αNN
)− αNN

αCN
∗Y 100 otherwise

(7)

and the upper bound:

EU [Y (0,0)|CN] =

Y (Y ≥ y000
1−αCN

) if Y (y000
1−αCN−αNN

≤ Y ≤ y000
1−αCN

)≥ Y 100

αCN +αNN

αCN
∗Y (Y ≤ y000

1−αCN−αNN
)− αNN

αCN
∗Y 100 otherwise

(8)

Bounds for the causal effect can be constructed by combining these bounds with the point identified

potential outcome under treatment for the latent group CN:

θ
U = E[Y (1,0)|CN]−EL[Y (0,0)|CN]

θ
L = E[Y (1,0)|CN]−EU [Y (0,0)|CN]

(9)

Figure 4: Unconstrained lower bound EL[Y (0,0)|CN]
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Appendix A3 : Alternative bounds under assumption 7 instead of 6

I thus drop assumption 6 in this subsection. Now the existence of the latent strata AC and AD cannot be

ruled out anymore. I then make the alternative assumption that the effect of the instrument on individual

migration is monotonic: every individual is more likely to migrate if Z = 1 than if Z = 0. This excludes

the existence of defiers and therefore the existence of the stratum AD 25

Assumption 7. Monotonicity of D in Z

D(1,1)≥ D(1,0)

The proportion of the latent groups are no more identified.Indeed, there are five unknown strata

proportions for only four known probabilities ( linear independent equations) 26. I therefore introduce

an additional parameter λ , which equals the ratio of the share of always migrant individuals to the the

share of complier individuals in always migrant households :

pAC = λ pAA

We know that pAA = P(D = 1|Z = 0) that P(M = 1,D = 0|Z = 0) = pAN + λ pAA and also that

P(D = 1|Z = 1) = pCC +(1+ λ )pAA
27. These three equations and the requirement that pAN ≥ 0 and

pCC ≥ 0 give a interval of possible values of λ , i.e.

0≤ λ ≤ λmax = min(λ an
max,λ

cc
max)

with λ
an
max =

P(M = 1,D = 0|Z = 0)
P(D = 1|Z = 0)

and λ
cc
max =

P(D = 1|Z = 1)
P(D = 1|Z = 0)

−1

When λ = 0 , we are back to the previous situation where the share of complier individuals in always

migrating households AC is zero. If λ an
max < λ cc

max then pAN = 0 when λ reaches his upper bound : there

are no never-migrants in always migrant-sending households. This means that this type of households

(A) migrate as a whole, with the entire family, when Z = 1 . In this case the outcome under treatment

25 As the rest of the paper will show, this assumption only affects the bounds for E[Y (1,0)|CN] : they are less tight if the
existence of defiers is not rule out

26 The 6th strata proportions is one minus the sum of the others. There are only 4 independent equations because

P(M = 1,D = 1|Z)+P(M = 1,D = 0|Z)+P(M = 0,D = 0|Z) = 1

27 The share of the latent groups can be expressed as :

pAA = P(M = 1,D = 1|Z = 0)

pAC = λ pAA

pNN = P(M = 0,D = 0|Z = 1)

pAN = P(M = 1,D = 0|Z = 0)− pAC

pCN = P(M = 1,D = 0|Z = 1)−P(M = 1,D = 0|Z = 0)+ pAC

pCC = P(M = 0,D = 0|Z = 0)− pCN − pNN
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E[Y (1,0)|CN] is identified. If λ an
max > λ cc

max then pCC = 0 when λ reaches λmax: in complier households,

the family members under investigation never migrate themselves. IN this case the outcome under

control E[Y (0,0)|CN] is identified 28. These two symmetric situations will be considered in the empirical

application.

Under Assumptions 7 ( instead of 6) it is no longer possible to point-identify E[Y (1,0)|CN], expect

when λ = 0 or when λ = λmax = λ an
max

29. For λ strictly within its interval, it is however possible to derive

sharp bounds for E[Y (1,0)|AN] and in further consequence for E[Y (1,0)|CN] 30. Indeed the potential

outcome under treatment Y (1,0) for the latent group CN is observed as part of the mixture distribution

in the observed group {Z = 1,M = 1,D = 0} :

Y 110
=

pCNE[Y (1,0)|CN]+ pANE[Y (1,0)|AN]

pCN + pAN

It follows that sharp bounds for E[Y (1,0)|AN] willyield sharp bounds for E[Y (1,0)|CN]

I use the procedure of Huber and Mellace( 2013) to derive sharp bounds for E[Y (1,0)|AN]. First

let α110
AN = pAN

pAN+pCN
denote the fraction of AN in the group {Z = 1,M = 1,D = 0} and α010

AN = pAN
pAN+pAC

denote the fraction of AN is the group {Z = 0,M = 1,D = 0} . The conditional distribution Y (1,0)|AN

is observed in each of these the two groups . Within each of this cell, I can bound E[Y (1,0)|AN] from

below by the expected value of Y in the α
z10
AN fraction of the smallest value of Y for z = 1,0. The sharp

lower for E[Y (1,0)|AN] is the maximum of the two. For the upper bound, I take the α
z10
AN fraction of

the largest value of Y and then the minimum of the two. This yields the upper and lower bounds for

E[Y (1,0)|CN]:

EL[Y (1,0)|CN] =
pCN + pAN

pCN
∗Y 110− pAN

pCN
∗min

{
Y (Y ≥ y110

1−α110
AN
),Y ≥ y010

1−α010
AN
)
}

EU [Y (1,0)|CN] =
pCN + pAN

pCN
∗Y 110− pAN

pCN
∗max

{
Y (Y ≤ y110

α110
AN
),Y ≤ y010

α010
AN
)
} (10)

Bounds for the causal effect can be constructed by combining the bounds for the potential outcome of

stratum CN under control with the bounds for potential outcome of CN under treatment :

θ
U = EU [Y (1,0)|CN]−EL[Y (0,0)|N]

θ
L = EL[Y (1,0)|CN]−EU [Y (0,0)|N]

28 When λ = λmax = λ cc
max :

E[Y (0,0)|CN] =
P(M = 0|Z = 0)∗Y 000−P(M = 0|Z = 1)∗Y 100

P(M = 1|Z = 1)−P(M = 1|Z = 0)

29 In which cases, and noting P(m,d|z) = P(M = m,D = d|Z = z) to shorten notation :

When λ = 0 : E[Y (1,0)|CN] =
P(1,0|1)Y 110−P(1,0|0)Y 010

P(1,0|1)−P(1,0|0)
- see eq (3)

When λ = λmax = λ
an
max : E[Y (1,0)|CN] = Y 110

30See Huber and Mellace (2013) for the proof of sharpness of these bounds.
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Finally, note that the bounds θU and θ L are not monotonic functions of λ in general. This is because

the bounds for E[Y (1,0)|CN] are not monotonic with respect to λ 31 .Therefore the sensitivity of the

bounds forθCN with respect to λ remains an empirical question. However, it can be shown that the

bounds for E[Y (0,0)|CN] unambiguously contract with λ . This is because pCC decreases with λ : the

share of the group CC for which the potential outcome under control Y (0,0) is unknown shrinks as λ

augments. Therefore in the observed group {M = 0,D = 0,Z = 0} the mixture of the distribution of the

latent groups CC + CN + NN become closer to the mixture CN+ NN. Since the expected value of Y (0,0)

for NN is point identified already, the potential outcome for CN can be inferred with more precision. In

others words, the bounds are tighter.

Table 13: Latent and observed groups without exclusion restriction of Z with respect to D

M(1) M(0) D(1) D(0) Latent group
1 1 1 1 AA
1 1 1 0 AC
1 1 0 0 AN
1 0 1 0 CC
1 0 0 0 CN
0 0 0 0 NN

D=0 D=1
Z = 1 M = 1 AN, CN AA ,AC ,CC

M = 0 NN
Z = 0 M = 1 AC, AN AA

M = 0 CC, CN ,NN

31To see this, note than pAN is decreasing with λ and pCN is increasing. Therefore the ratio pAN
pCN

is decreasing . Note

also that α110
AN and α100

AN are both decreasing. To fix idea let assume that Y > 0 . Then it is clear that ∀z Y (Y ≤ yz10
α

z10
AN
) are

decreasingfunction of λ since a smaller fraction of the smallest value o Y are averaged out. So the max of the two is also
decreasing . The firstterm of EU [Y (1,0)|CN] is decreasing as well because pCN+pAN

pCN
is decreasing. So EU [Y (1,0)|CN] is equal

to adecreasing term minus another decreasing term. IN consequence, it is a non monotonic function of λ .
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Appendix A4 : bias in the LATE

Computation : what does LATE estimate ?

LAT E =≡ E[Y |Z = 1,D = 0]−E[Y |Z = 0,D = 0]
E[M|Z = 1,D = 0]−E[M|Z = 0,D = 0]

=
DY
DP

(11)

Note P(m|d,z) = P(M = m|D = d,Z = z) and Y zmd
= E[Y |Z = z,M = m,D = d]

Y 110
=

pCN

pCN + pAN
E[Y (1,0)|CN]+

pAN

pCN + pAN
E[Y (1,0)|AN]

Y 100
= E[Y (0,0)|NN]

Y 010
= E[Y (1,0)|AN]

Y 000
=

pCC

pCN + pNN + pCC
E[Y (0,0)|CC]+

pCN

pCN + pNN + pCC
E[Y (0,0)|CN]+

pNN

pCN + pNN + pCC
E[Y (0,0)|NN]

And, noting pxN = pAN + pCN + pNN :

P(m = 1|d = 0,z = 1) =
pCN + pAN

pxN

P(m = 1|d = 0,z = 0) =
pAN

pxN + pCC

Then :

DY = P(1|0,1)Y 110
+(1−P(1|0,1))Y 100−P(1|0,0)Y 010− (1−P(1|0,0))Y 000

DY =
pCN

pxN
E[Y (1,0)|CN]+

pAN

pxN
E[Y (1,0)|AN]+

pNN

pxN
E[Y (0,0)|NN]

− pAN

pxN + pCC
E[Y (1,0)|AN]− pCC

pxN + pCC
E[Y (0,0)|CC]− pCN

pxN + pCC
E[Y (0,0)|CN]− pNN

pxN + pCC
E[Y (0,0)|NN]

DP =
pCN + pAN

pxN
− pAN

pxN + pCC
=

pAN pCC + pCN(pxN + pCC)

pxN(pxN + pCC)
=

φ

pxN(pxN + pCC)

SO :

LAT E =
1
φ
∗ [ pCN(pxN + pCC)E[Y (1,0)|CN]− pCN pxNE[Y (0,0)|CN]︸ ︷︷ ︸

a

+

pCC pANE[Y (1,0)|AN]+ pCC pNNE[Y (0,0)|NN]− pCC pxNE[Y (0,0)|CC]]

writing

a = φ ∗θCN + pCC((pAN + pCN)E[Y (0,0)|CN]− pANE[Y (1,0)|CN])

LAT E = θCN +
pCC

φ
∗ [(pAN + pCN)E[Y (0)|CN]− pANE[Y (1)|CN]+ pANE[Y (1)|AN]+ pNNE[Y (0)|NN]− pxNE[Y (0)|CC]]
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LAT E = θCN +
pCC

φ
∗ [

(pAN + pCN)E[Y (0)|CN]−E[Y (0)|CC])+ pAN(E[Y (1)|AN]−E[Y (1)|CN])+ pNN(E[Y (0)|NN]−E[Y (0)|CC])]

Computation : Is the LATE within the bounds?

LAT E =
pxN(PxN + pCC)

φ
∗ [ pAN + pCN

PxN
Y 110

+
pNN

PxN
Y 100− pAN

PxN + pCC
Y 010− pCC + pNN + pCN

PxN + pCC
Y 000

]

=
1
φ
∗ [(pAN + pCN)(PxN + pCC)Y

110
+ pNN(pxN + pCC)Y

100− pAN pxNY 010− (pCC + pNN + pCN)pxNY 000

θ
U = E[Y (1,0)|CN]−EL[Y (0,0)|CN] =

pAN + pCN

PCN
Y 110− pAN

PCN
Y 010−EL[Y (0,0)|CN]

Since EL[Y (0,0)|CN] is a function of the distribution of Y |z = 0,m = 0,d = 0 and Y |z = 1,m =

0,d = 0 then

∆u = θ
U −LAT E = Function(p,Y )

If there no alway-migrants households : PAA = pAN = 0 and pCN + pNN + pCC = 1. Then φ = pCN

and

LAT E = Y 110
+

pNN

pCN
Y 100− pNN + pCN

pCN
Y 000

θ
U = Y 110−EL[Y (0,0)|CN]

θ
U −LAT E =

pNN + pCN

pCN
Y 000− pNN

pCN
Y 100−EL[Y (0,0)|CN]

Recall that

EL[Y (0,0)|CN] =

Y (Y ≤ y000
αCN

) if Y (y000
αCN
≤ Y ≤ y000

αCN+αNN
)≤ Y 100

αCN +αNN

αCN
∗Y (Y ≤ y000

αCN+αNN
)− αNN

αCN
∗Y 100 otherwise

(12)

Note ε = Y 100−Y (y000
αCN
≤ Y ≤ y000

αCN+αNN
) :

If ε < 0 , then:
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θ
U −LAT E =

pNN + pCN

pCN
[Y 000−Y (Y ≤ y000

αCN+αNN
)]

=
pCC

pCN
[Y (Y ≥ y1−αCC)−Y 000

]

= ∆
∗ > 0

using that: Y 000
= (pNN + pCN)Y (Y ≤ y000

αCN+αNN
)+ pCCY (Y ≥ y1−αCC)

If ε > 0 , then:

θ
U −LAT E =

pCC

pCN
[Y (Y ≥ y1−αCC)−Y 000

]− pNN

pCN
ε

= ∆
∗− pNN

pCN
ε

using that: Y 000
= pCNY (Y ≤ y000

αCN
)+ pNNY (y000

αCN
≤ Y ≤ y000

αCN+αNN
)+ pCCY (Y ≥ y1−αCC)

Figure 5: θU −LAT E as a function of ε

Note

ε
∗ =

pCN

pNN
∆
∗ =

pCC

pNN
[Y (Y ≥ y1−αCC)−Y 000

]

THen

ε− ε
∗ = Y 100−Y (y000

αCN
≤ Y ≤ y000

αCN+αNN
)− pCC

pNN
[Y (Y ≥ y1−αCC)−Y 000

]

Constraint for the late assumptions :

Y (Y ≤ yαNN )< Y 100
< Y (Y ≥ y1−αNN )
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