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In this paper I demonstrate, both theoretically and empirically, that the interpretation of 

regression estimates of between-group differences in economic outcomes depends on 

the relative sizes of subpopulations under study. When the disadvantaged group is small, 

regression estimates are similar to its average loss. When this group is instead a numerical 

majority, regression estimates are similar to the average gain for advantaged individuals. 

I analyze black–white test score gaps using ECLS-K data and black–white wage gaps 

using CPS, NLSY79, and NSW data, documenting that the interpretation of regression 

estimates varies dramatically across applications. Methodologically, I also develop a new 

version of the Oaxaca–Blinder decomposition whose unexplained component recovers 

a parameter referred to as the average outcome gap. Under a particular conditional 

independence assumption, this estimand is equivalent to the average treatment effect 

(ATE). Finally, I provide treatment-effects reinterpretations of the Reimers, Cotton, and 

Fortin decompositions.
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1 Introduction

Despite five decades of progress since the civil rights movement, black–white gaps in eco-
nomic outcomes are very persistent in the United States. A large number of papers study
racial differences in wages (Neal and Johnson 1996; Lang and Manove 2011), labor force
participation (Boustan and Collins 2014), unemployment (Ritter and Taylor 2011), home
ownership (Collins and Margo 2001; Charles and Hurst 2002), wealth (Barsky et al. 2002),
cognitive skills (Fryer and Levitt 2004, 2006, 2013; Bond and Lang 2013), non-cognitive
skills (Elder and Zhou 2017), infant mortality (Elder et al. 2016), and other outcomes.1

Even after controlling for many observable characteristics of individuals, a typical study
finds a significant black–white gap that remains unexplained.

Traditionally, unexplained gaps in mean outcomes were studied using decomposition
methods (Elder et al. 2010; Fortin et al. 2011; Firpo 2017).2 However, as noted by Charles
and Guryan (2011), in recent empirical work researchers have typically focused on a sim-
pler approach of estimating the following model using ordinary least squares:

Yi = αBi + Xiβ + εi, (1)

where Yi is the outcome under study, Bi is the binary variable which indicates race (1 if
black, 0 if white), and Xi is the vector of observed characteristics. Indeed, this simple
method is used in a large number of important papers on black–white gaps, including
Collins and Margo (2001), Charles and Hurst (2002), Fryer and Levitt (2004, 2006), Clot-
felter et al. (2009), Fryer (2011), Lang and Manove (2011), Bond and Lang (2013), Fryer and
Levitt (2013), Fryer et al. (2013), Rothstein and Wozny (2013), Boustan and Collins (2014),
Carruthers and Wanamaker (2017), Elder and Zhou (2017), and many others.

In this paper I borrow from the recent program evaluation literature to call this prac-
tice into question. As discussed by, among others, Angrist (1998), Humphreys (2009), and
Słoczyński (2018), ordinary least squares estimation of a model analogous to (1) does not
recover, in general, the average treatment effect (ATE), unless there is no heterogeneity
in the effects of the treatment. These results immediately extend to studies of between-

1Recent surveys of this topic—and the related problem of racial discrimination—include Charles and
Guryan (2011), Fryer (2011), and Lang and Lehmann (2012).

2Recent contributions to the decomposition literature have concentrated on semi- and nonparametric
analogues of standard decomposition techniques (Barsky et al. 2002; Black et al. 2006, 2008; Frölich 2007;
Mora 2008; Ñopo 2008), extensions to other statistics besides the mean (Juhn et al. 1993; DiNardo et al. 1996;
Machado and Mata 2005; Melly 2005; Firpo et al. 2007; Rothe 2010, 2012; Chernozhukov et al. 2013), and
causal interpretations of decomposition methods (Huber 2015).
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group differences in economic outcomes. In particular, Słoczyński (2018) shows that

τ̂OLS ' P̂(Di = 0) · τ̃ATT + P̂(Di = 1) · τ̃ATC, (2)

where Di is the binary variable which indicates treatment status (1 if treated, 0 if control),
τ̂OLS is the ordinary least squares estimate of the coefficient on Di, and τ̃ATT and τ̃ATC are
estimates of the average treatment effect on the treated (ATT) and the average treatment
effect on the controls (ATC), as discussed in Słoczyński (2018).

This result has important implications for the interpretation of regression estimates
of between-group differences in economic outcomes. If we refer to one of the groups
as “disadvantaged” (e.g., blacks) and to the other as “advantaged” (e.g., whites), then
regression estimates will be similar to the average loss for disadvantaged individuals—
under the condition that these individuals also constitute a numerical minority. When
instead they are a numerical majority—albeit disadvantaged—regression estimates will
be similar to the average gain for advantaged individuals.

This relationship between the interpretation of regression estimates and the relative
sizes of subpopulations under study is illustrated empirically in a number of applications.
First, I study black–white differences in kindergarten test scores using ECLS-K data, sim-
ilar to Fryer and Levitt (2004, 2006), Bond and Lang (2013), Penney (2017), and many
others. My analysis weakens some of the conclusions in Fryer and Levitt (2004) but the
general picture remains unchanged. Next, I study black–white differences in wages us-
ing CPS (as in Juhn 2003 and Elder et al. 2010), NLSY79 (as in Neal and Johnson 1996 and
Lang and Manove 2011), and NSW data. In the first two cases, regression estimates are
very similar to the average wage loss for blacks. In the last application, however, regres-
sion estimates appear to mimic the average wage gain for whites; they also dramatically
overstate both the average wage gap and the average wage loss for blacks. The source
of this discrepancy is very simple. Participation in the NSW program was intended to
provide assistance to a highly disadvantaged population whose members were dispro-
portionately black (Smith and Todd 2005). In this case, however, the interpretation of
regression estimates of black–white gaps is substantially different than in the “standard”
case where blacks are also a numerical minority.

To address this important issue, I derive a new version of the Oaxaca–Blinder decom-
position (Oaxaca 1973; Blinder 1973) whose “unexplained component” can be interpreted
as the average treatment effect, which is likely to be the primary object of interest in var-
ious empirical contexts.3 Because the potential outcome model (see, e.g., Holland 1986;

3Recently, several researchers (Barsky et al. 2002; Black et al. 2006, 2008; Melly 2006; Fortin et al. 2011;
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Imbens and Wooldridge 2009) is rarely invoked in the decomposition literature, I usu-
ally refer to this object as the average outcome gap—an equivalent parameter which lacks a
causal interpretation. It is important to note that this new procedure is distinct from pre-
vious versions of the “generalized” Oaxaca–Blinder decomposition (Reimers 1983; Cot-
ton 1988; Neumark 1988; Oaxaca and Ransom 1994; Fortin 2008), although it easily fits
into this class of methods. Different members of this class are defined by the choice of
the comparison coefficients which in turn determine the counterfactual conditional mean
with which all actual outcomes are compared. In this paper I study, among other things,
whether the average outcome gap can be recovered with some version of the general-
ized Oaxaca–Blinder decomposition. I derive such a new procedure which uses a linear
combination of the regression coefficients for both subpopulations to construct the coun-
terfactual conditional mean. However, these coefficients are weighted in a nonstandard
way, namely the proportion of advantaged individuals (e.g., whites) is used to weight the
coefficients for disadvantaged individuals (e.g., blacks), and vice versa. Clearly, such a
weighting scheme may at first look counterintuitive.4 Nevertheless, within the frame-
work of this paper the role of each group’s coefficients is to serve as the counterfactual
for the other group, and therefore we should indeed put more weight on the coefficients
for the smaller group in order to recover the average outcome gap. Note that a similar in-
tuition can be applied to provide a reinterpretation of the Reimers (1983), Cotton (1988),
and Fortin (2008) decompositions. Each of these procedures is easily shown to recover
some generally uninteresting weighted average of conditional outcome gaps.

2 Theory

Consider a population which is divided into two mutually exclusive categories, indexed
by Wi ∈ {0, 1} and referred to as the advantaged group (Wi = 1) and the disadvantaged
group (Wi = 0). For each unit i, we also observe an outcome, Yi, and a row vector of
observed characteristics, Xi. In this case, µ1(x) = E(Yi | Xi = x, Wi = 1) is the expected
outcome of an advantaged individual with Xi = x and µ0(x) = E(Yi | Xi = x, Wi = 0) is
the expected outcome of a disadvantaged individual with these characteristics. Moreover,
define the conditional outcome gap as δ(x) = µ1(x) − µ0(x), that is, the gap between the
expected outcomes of an advantaged and a disadvantaged individual with Xi = x. This

Kline 2011) have noted that the unexplained component in the most basic version of the Oaxaca–Blinder
decomposition can sometimes be interpreted as the average treatment effect on the treated.

4Note that a similar decomposition is used by Duncan and Leigh (1985) in an application to union
wage premiums. However, this approach is criticized—as “not a very intuitive procedure”—by Oaxaca
and Ransom (1988).
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object is also referred to as the conditional average controlled difference by Li et al. (2018).
Dependent on the question we wish to answer, we may average δ(x) over the whole
population, over the subpopulation of advantaged individuals or over the subpopulation
of disadvantaged individuals. Define the average outcome gap as

δgap = E [δ(Xi)] . (3)

Within the framework of a potential outcome model, and under additional assumptions,
this parameter is equivalent to the average treatment effect. Moreover, define the average
gain for advantaged individuals and the average loss for disadvantaged individuals as

δgain = E [δ(Xi) |Wi = 1] and δloss = E [δ(Xi) |Wi = 0] , (4)

respectively. Similarly, under certain conditions, these parameters can be regarded as
equivalents of the average treatment effect on the treated and the average treatment effect
on the controls. It is also the case that

δgap = P(Wi = 1) · δgain + P(Wi = 0) · δloss. (5)

Thus, a particular weighted average of the average gain for advantaged individuals and
the average loss for disadvantaged individuals is equal to the average outcome gap.

It is important to note that without further assumptions δ(x), δgap, δgain, and δloss can-
not be interpreted as causal or counterfactual; they are also identified from the data. As
demonstrated by Fortin et al. (2011), a counterfactual interpretation can be justified by a
set of three additional assumptions: simple counterfactual treatment, overlapping sup-
port, and conditional independence/ignorability. These assumptions are discussed be-
low for completeness.

Assumption 1 (Simple Counterfactual Treatment) The observed conditional mean of advan-
taged (disadvantaged) individuals represents a counterfactual conditional mean for disadvantaged
(advantaged) individuals.

This assumption restricts the analysis to counterfactuals which are based on the observed
conditional mean for the other group. In other words, the observed conditional mean
of advantaged individuals provides a counterfactual for disadvantaged individuals, and
vice versa. It is important to note that this assumption rules out the presence of general
equilibrium effects, and this might be a substantial restriction in some empirical contexts.
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Assumption 2 (Overlapping Support) Let the support of observed characteristics Xi be X .
For all x in X , 0 < P(Wi = 1 | Xi = x) < 1.

The overlapping support assumption ensures that no combination of observed charac-
teristics can be used to identify group membership. This restriction might be somewhat
controversial in the context of black–white differences in economic outcomes, as it is likely
that many black or white individuals might have few counterparts in the other subpopu-
lation; clearly, similar problems can also arise in other empirical contexts.

Assumption 3 (Conditional Independence/Ignorability) Denote the unobserved character-
istics as εi. Let (Wi, Xi, εi) have a joint distribution. Then, Wi ⊥ εi | Xi, i.e. the individual’s un-
observed characteristics are independent of group membership, conditional on observed covariates.

This assumption rules out the presence of unobserved characteristics which would be cor-
related with both group membership and outcomes, conditional on observed covariates.
For example, this requirement would be violated in the case of black–white differences
in wages if school quality were correlated with both wages and race (conditional on Xi)
while also being unobserved.5 Indeed, Card and Krueger (1992) argue that omission of
measures of school quality might affect estimates of black–white wage gaps; on the other
hand, Grogger (1996) presents a different view.

It is important to note that Assumptions 1 to 3 guarantee identification of the aggregate
decomposition (Fortin et al. 2011). If we maintain these assumptions, it becomes possible
to construct a counterfactual distribution which would be observed if outcomes of disad-
vantaged individuals were determined according to the conditional mean of advantaged
individuals, and vice versa. This counterfactual experiment provides a meaningful inter-
pretation of δgap, δgain, and δloss. The average outcome gap, δgap, is equal to the difference
between mean outcomes in two counterfactual distributions: in the first distribution, out-
comes of all individuals are determined according to the conditional mean of advantaged
individuals; in the second distribution, outcomes of all individuals are determined ac-
cording to the conditional mean of disadvantaged individuals. Similarly, the average gain
for advantaged individuals, δgain, is equal to the average gap between (i) actual outcomes
of these individuals and (ii) their counterfactual outcomes which would be observed if
these outcomes were determined according to the conditional mean of disadvantaged in-
dividuals. Finally, the average loss for disadvantaged individuals, δloss, is equal to the

5Of course, some form of endogeneity might also arise if there are unobserved covariates with differ-
ent correlation patterns. However, as demonstrated by Fortin et al. (2011), identification of the aggregate
decomposition is not threatened unless the conditional independence assumption is violated.
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average gap between (i) their counterfactual outcomes which would be observed if these
outcomes were determined according to the conditional mean of advantaged individuals
and (ii) actual outcomes of disadvantaged individuals.

Arguably, δloss might be the most intuitive estimand in many empirical contexts. For
example, in a study of black–white differences in wages, it seems reasonable to focus
on counterfactual wages of black workers which would be observed if they were paid
according to the wage structure of white workers. On the other hand, the decomposition
literature has often been concerned with both gains and losses (see, e.g., Fortin 2008), and
therefore δgap and δgain might also be interesting. Especially, the average outcome gap—a
noncausal equivalent of the average treatment effect—is likely to be the primary object of
interest in many empirical studies. It is intuitively appealing to compare mean outcomes
of all individuals in two counterfactual distributions, which differ only in the choice of the
conditional mean that is used to generate these counterfactual outcomes.

Regression Estimates

As noted previously, researchers often analyze between-group differences in economic
outcomes by means of ordinary least squares estimation of the simple linear model:

Yi = δWi + Xiβ + εi. (6)

Now, unlike in equation (1), the disadvantaged group is the omitted category. This en-
sures that the sign of δ is consistent with the signs of δgap, δgain, and δloss. Moreover, it is
a straightforward extension of a result in Słoczyński (2018) that

δ̂ = (1− π̂) · δ̃gain + π̂ · δ̃loss, (7)

where π̂ is decreasing in P̂(Wi = 0).6 In other words, if there are many disadvantaged
individuals (e.g., blacks), the weight on the average loss for these individuals, π̂, is rela-
tively small. In a benchmark case, π̂ is equal to P̂(Wi = 1). What follows,

δ̂ ' P̂(Wi = 0) · δ̃gain + P̂(Wi = 1) · δ̃loss. (8)

This result has important implications for the interpretation of δ̂. Consider, for example,
the problem of analyzing gender wage gaps. Intuitively, in a typical study, proportions of
male and female workers are roughly similar (see, e.g., Blau and Beller 1988; Weinberger

6The exact expressions for δ̃gap, δ̃gain, and δ̃loss also follow from Słoczyński (2018).
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and Kuhn 2010; Blau and Kahn 2017). In this case, δ̂ ' δ̃gap. If instead we are interested
in the average wage loss for women, δloss, we need to use a different method.

On the other hand, when we focus on black–white gaps in economic outcomes, the
disadvantaged group (i.e., blacks) also constitutes a numerical minority, at least in the
United States (see, e.g., Elder et al. 2010). In this case, δ̂ ' δ̃loss, and hence the interpre-
tation of regression estimates is substantially different. If we are interested in estimating
the average outcome gap, δgap, a different method must be chosen.

Of course, blacks do not constitute a numerical minority in all studies of black–white
differences in economic outcomes. Sometimes we might intentionally focus on a popula-
tion which is also disproportionately black. For example, Stiefel et al. (2006) analyze test
score gaps in a big city school district. In some countries, such as South Africa, blacks are
both disadvantaged and a numerical majority (Sherer 2000; Allanson and Atkins 2005). In
either of these cases regression estimates would be similar to the average gain for whites,
δ̂ ' δ̃gain, while this parameter is less likely to be of direct interest.

Oaxaca–Blinder Decompositions

The simplest solution to this problem with regression estimates is to allow the regression
coefficients to be different for both groups of interest:

Yi = Xiβ1 + υ1i if Wi = 1 and Yi = Xiβ0 + υ0i if Wi = 0. (9)

Also, E(υ1i | Xi, Wi) = E(υ0i | Xi, Wi) = 0. In this case, the raw mean difference in
outcomes, δraw = E(Yi |Wi = 1)− E(Yi |Wi = 0), can be decomposed as:

δraw = E(Xi |Wi = 1) · (β1 − β0)

+ [E(Xi |Wi = 1)− E(Xi |Wi = 0)] · β0, (10)

where the first element, E(Xi | Wi = 1) · (β1 − β0), reflects intergroup differences in
regression coefficients, and is often referred to as the unexplained component, while the
second element, [E(Xi |Wi = 1)− E(Xi |Wi = 0)] · β0, reflects intergroup differences in
mean covariate values, and is often referred to as the explained component. Similarly:

δraw = E(Xi |Wi = 0) · (β1 − β0)

+ [E(Xi |Wi = 1)− E(Xi |Wi = 0)] · β1. (11)
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The difference between equations (10) and (11) rests upon using alternate comparison co-
efficients to calculate the explained component as well as measuring the distance between
the regression functions, β1 − β0, for a different set of covariate values. Moreover, equa-
tions (10) and (11) recover the average gain for advantaged individuals and the average
loss for disadvantaged individuals, respectively:

δgain = E(Xi |Wi = 1) · (β1 − β0) and δloss = E(Xi |Wi = 0) · (β1 − β0) . (12)

Traditionally, the decomposition literature regarded the choice of the comparison coef-
ficients in this context—in other words, the choice between equations (10) and (11)—as
necessarily ambiguous. A number of papers suggest alternative solutions to this com-
parison group choice problem. Such an approach is often referred to as “generalized”
Oaxaca–Blinder, and it involves an alternative decomposition:

δraw = E(Xi |Wi = 1) · (β1 − βc) + E(Xi |Wi = 0) · (βc − β0)

+ [E(Xi |Wi = 1)− E(Xi |Wi = 0)] · βc, (13)

where βc is the set of comparison coefficients. In the context of decomposing differences
in wages, these coefficients are typically referred to as the “nondiscriminatory” or “com-
petitive” wage structure. Note that if βc = β1 = β0, then there is no unexplained compo-
nent, because β1 = β0 implies that both groups have the same conditional mean.

As noted previously, a number of papers suggest alternative comparison coefficients
for equation (13). These coefficients are often of the form βc = λ · β1 + (1− λ) · β0,
where λ ∈ [0, 1] is a weighting factor. If λ = 0, then the disadvantaged group is used
as reference, βc = β0, and equation (13) simplifies to equation (10). Similarly, if λ = 1,
then the advantaged group is used as reference, βc = β1, and equation (13) simplifies to
equation (11). Alternatively, Reimers (1983) suggests λ = 1

2 and Cotton (1988) suggests
λ = P(Wi = 1), the proportion of advantaged individuals. Moreover, in the context of
wage gaps, Neumark (1988) develops a simple model of Beckerian discrimination and
shows that identification of the nondiscriminatory wage structure is ensured, for exam-
ple, if the utility function of the representative producer is homogeneous of degree zero
with respect to labor inputs of advantaged and disadvantaged workers. Such a wage
structure can be approximated by regression coefficients in a pooled model which ex-
cludes the indicator for group membership (Neumark 1988). Although this solution con-
stitutes the most popular alternative to the basic decomposition (Weichselbaumer and
Winter-Ebmer 2005), it is criticized by both Fortin (2008) and Elder et al. (2010), as ex-
clusion of the indicator for group membership can bias coefficients on other covariates
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which also affects the unexplained component. Therefore, Fortin (2008) proposes to use
a pooled model including this variable as the comparison wage structure. By construc-
tion, the unexplained component in such a decomposition is equal to the coefficient on
the indicator for group membership in a pooled regression.

Recovering the Average Outcome Gap

A number of papers (Barsky et al. 2002; Black et al. 2006, 2008; Melly 2006; Fortin et al. 2011;
Kline 2011) note that the unexplained component in equation (10) can be interpreted as
τATT, as long as a potential outcome model is invoked. In a noncausal framework, the
basic decomposition recovers δgain or δloss, as in equation (12). It is natural to ask whether
there exists an alternative decomposition, perhaps a version of equation (13), such that its
unexplained component can be interpreted as τATE or δgap. In other words, we wish to
determine whether a particular choice of βc, or maybe of λ, implies that

δgap = E(Xi) · (β1 − β0)

= E(Xi |Wi = 1) · (β1 − βc) + E(Xi |Wi = 0) · (βc − β0) . (14)

In fact, this result follows from the choice of λ = P(Wi = 0), as stated in Proposition 1.

Proposition 1 (Oaxaca–Blinder and the Average Outcome Gap) The unexplained compo-
nent of the Oaxaca–Blinder decomposition in equation (13) is equal to the average outcome gap,
δgap, if βc = P(Wi = 0) · β1 + P(Wi = 1) · β0. Then, equation (13) takes the form

δraw = δgap + [E(Xi |Wi = 1)− E(Xi |Wi = 0)] · βc.

A proof of Proposition 1 follows immediately from simple algebra. Perhaps surprisingly,
the choice of λ = P(Wi = 0) implies that the proportion of advantaged individuals is used
to weight the coefficients for disadvantaged individuals and the proportion of disadvan-
taged individuals is used to weight the coefficients for advantaged individuals. Although
this weighting scheme may at first look counterintuitive, both sets of coefficients play a
clearly defined role in this decomposition—as the counterfactual for the other group (As-
sumption 1). This is exactly the reason why more weight should be put on the coefficients
of the smaller group which are used to provide the counterfactual for the larger one.

Interestingly, this alternative decomposition is equivalent to a flexible linear regression
model for the average treatment effect, discussed in Imbens and Wooldridge (2009) and

10



Wooldridge (2010). If Wi now denotes the treatment indicator, τATE can also be recovered
as the coefficient on Wi in the regression of Yi on 1, Wi, Xi, and Wi · [Xi − E(Xi)]. As noted
by Imbens and Wooldridge (2009), this model implies that

τATE = E(Yi |Wi = 1)− E(Yi |Wi = 0)

− [E(Xi |Wi = 1)− E(Xi |Wi = 0)] · [P(Wi = 0) · β1 + P(Wi = 1) · β0] , (15)

which is equivalent to the decomposition in Proposition 1. Similarly, the unexplained
component of the decomposition in equation (10) is equal to the coefficient on Wi in the re-
gression of Yi on 1, Wi, Xi, and Wi · [Xi − E(Xi |Wi = 1)] and the unexplained component
of the decomposition in equation (11) is equal to the coefficient on Wi in the regression of
Yi on 1, Wi, Xi, and Wi · [Xi − E(Xi |Wi = 0)].

Several recent papers criticize the dependence of traditional decomposition methods
on linear conditional means (Barsky et al. 2002; Frölich 2007; Ñopo 2008). Thus, it is
useful to clarify that the main insight underlying Proposition 1 is unrelated to the linearity
assumptions in equation (9). If we write the counterfactual conditional mean as µc(x) =
λ · µ1(x) + (1− λ) · µ0(x), we can always decompose δraw as

δraw = (1− λ) · E [δ(Xi) |Wi = 1] + λ · E [δ(Xi) |Wi = 0]

+ {E [µc(Xi) |Wi = 1]− E [µc(Xi) |Wi = 0]} . (16)

As before, the choice of λ = P(Wi = 0) and, equivalently, µc(x) = P(Wi = 0) · µ1(x) +
P(Wi = 1) · µ0(x) ensures that δgap = (1− λ) ·E [δ(Xi) |Wi = 1] +λ ·E [δ(Xi) |Wi = 0] =
P(Wi = 1) · δgain + P(Wi = 0) · δloss. Clearly, if one group is “small” and the other is
“large,” we need to put a “large” weight on the conditional mean of the “small” group,
as it constitutes the counterfactual conditional mean for the “large” one.

Estimation of δgap, δgain, and δloss also does not require any linearity assumptions,
even though they are present in equations (12) and (14). In general, any of the standard
estimators of τATE and τATT under conditional independence can be used to estimate δgap

and δgain/δloss, respectively. We can probably assume that the better an estimator is for
various average treatment effects, the better it is also for various averages of conditional
outcome gaps (see, e.g., Fortin et al. 2011). Indeed, several recent applications use match-
ing on covariates (Black et al. 2006, 2008; Ñopo 2008), methods based on the propensity
score (Frölich 2007), reweighting (Barsky et al. 2002), and regression trees (Mora 2008) to
study between-group differences in various outcomes.
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Interpreting the Explained Component

Traditionally, decomposition methods were used to provide estimates of both the unex-
plained and explained components. The interpretation of the explained components in
equations (10) and (11) is well known. Similarly, it might be useful to clarify the interpre-
tation of the explained component in Proposition 1, [E(Xi |Wi = 1)− E(Xi |Wi = 0)] · βc,
and equation (16), E [µc(Xi) |Wi = 1]− E [µc(Xi) |Wi = 0]. Interestingly, after simple al-
gebra, it can be shown that if µc(x) = P(Wi = 0) · µ1(x) + P(Wi = 1) · µ0(x), then

E [µc(Xi) |Wi = 1]− E [µc(Xi) |Wi = 0] = E [µ1(Xi) |Wi = 1]− E [µ1(Xi)]

+ E [µ0(Xi)]− E [µ0(Xi) |Wi = 0] . (17)

We can easily interpret both elements of this explained component. The first element,
E [µ1(Xi) |Wi = 1]− E [µ1(Xi)], is equal to the difference between actual mean outcomes
of advantaged individuals and counterfactual mean outcomes which would be observed
if the whole population had their outcomes determined according to the conditional mean
of these individuals. This is also equal to the amount by which actual mean outcomes of
advantaged individuals would decrease if their characteristics were the same as those of
the whole population. Whenever advantaged individuals have “better” characteristics
than disadvantaged individuals, it will be the case that E [µ1(Xi) |Wi = 1] > E [µ1(Xi)].
Therefore, this element of the explained component will contribute positively to the raw
mean difference in outcomes. Similarly, the second element of this explained compo-
nent, E [µ0(Xi)]− E [µ0(Xi) |Wi = 0], can be interpreted as the difference between coun-
terfactual mean outcomes which would be observed if the whole population had their
outcomes determined according to the conditional mean of disadvantaged individuals
and actual mean outcomes of these individuals—and this is equal to the amount by
which actual mean outcomes of disadvantaged individuals would increase if their char-
acteristics were the same as those of the whole population. Again, if advantaged indi-
viduals have “better” characteristics than disadvantaged individuals, then E [µ0(Xi)] >

E [µ0(Xi) |Wi = 0], and therefore this element of the explained component will also con-
tribute positively to the raw mean difference in outcomes. This is analogous to the inter-
pretation of the explained component in other versions of the Oaxaca–Blinder decompo-
sition, but—in this case—we do not need to interpret the counterfactual conditional mean
as “nondiscriminatory” or “competitive.”

Of course, the same interpretation holds in the case of the explained component in
Proposition 1, [E(Xi |Wi = 1)− E(Xi |Wi = 0)] · βc. Namely, if βc = P(Wi = 0) · β1 +
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P(Wi = 1) · β0, then this component takes the form

[E(Xi |Wi = 1)− E(Xi |Wi = 0)] · βc = [E(Xi |Wi = 1)− E(Xi)] · β1

+ [E(Xi)− E(Xi |Wi = 0)] · β0, (18)

which is a linear special case of equation (17). A similar explained component is also
briefly discussed by Fortin et al. (2011).

Reinterpreting Reimers (1983), Cotton (1988), and Fortin (2008)

Finally, the logic of Proposition 1 applies also to several versions of the Oaxaca–Blinder
decomposition in Reimers (1983), Cotton (1988), and Fortin (2008). It can be easily veri-
fied that (i) the unexplained component of the Reimers (1983) decomposition is equal to
the arithmetic mean of δgain and δloss; (ii) the unexplained component of the Cotton (1988)
decomposition is equal to a weighted mean of δgain and δloss, with reversed weights at-
tached to both these parameters (i.e., the proportion of disadvantaged individuals is used
to weight δgain and the proportion of advantaged individuals is used to weight δloss);
and (iii) the unexplained component of the Fortin (2008) decomposition is approximately
equal to the same parameter. This last interpretation follows from the earlier discussion of
regression estimates of between-group differences in economic outcomes. A related point
is made in Elder et al. (2010) who recommend, however, focusing on regression estimates,
as they are similar to the unexplained component of the Cotton (1988) decomposition. In
this paper I demonstrate that this is not necessarily an advantage.

To be clear, these interpretations of the Reimers (1983), Cotton (1988), and Fortin (2008)
decompositions are based on the assumption of simple counterfactual treatment (As-
sumption 1), while this assumption is not invoked in any of these papers. More precisely,
each of these papers tries to account for the presence of general equilibrium effects—
which are ruled out by Assumption 1—and to derive a counterfactual conditional mean
which would be observed—in the context of wage gaps—if discrimination ceased to ex-
ist. It is very difficult, however, to correctly guess the form of this “nondiscriminatory”
or “competitive” wage structure—and Reimers (1983), Cotton (1988), and Fortin (2008)
do not offer any theoretical basis to rationalize their choices. In this case it might be
easier to invoke the assumption of simple counterfactual treatment instead of relying on
the general-equilibrium approach—in which case the Reimers (1983), Cotton (1988), and
Fortin (2008) decompositions would be problematic.
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3 Black–White Differences in Test Scores and Wages

It is now clear that regression estimates of black–white gaps in economic outcomes have
an interpretation that is dependent on the relative sizes of black and white subsamples.
Still, ordinary least squares estimation of the model in (6) constitutes a standard approach
in empirical work (Charles and Guryan 2011). While we can always solve this problem
using a variety of semi- and nonparametric methods, it might be sufficient to use one of
several versions of the Oaxaca–Blinder decomposition. To estimate δgain or δloss we need
to choose one of the basic decompositions (Oaxaca 1973; Blinder 1973). If instead we focus
on δgap, then we need to choose the new decomposition, as derived in Proposition 1.

These methodological considerations will be illustrated in a number of empirical ap-
plications to black–white differences in test scores and wages. Whenever blacks are a
numerical minority, regression estimates will be similar to their average loss. When,
however, blacks become a disadvantaged majority, regression estimates will mimic the
average gain for whites. On the other hand, the estimates based on decomposition meth-
ods will always have the desired interpretation: δ̂gap, δ̂gain, or δ̂loss.

Black–White Test Score Gaps in ECLS-K

Following Neal and Johnson (1996), it has been widely agreed among labor economists
that a substantial portion of the black–white wage gap is a consequence of differences in
premarket factors. Consequently, in a search for an explanation of the emergence of this
gap, many papers have focused on education and cognitive development in children.
For example, in an influential paper, Fryer and Levitt (2004) study the black–white test
score gap in kindergarten and first grade; strikingly, they conclude that the gap among
incoming kindergartners practically disappears when we control for a small number of
covariates. This gap, however, appears to reemerge during the first two years of school.

Recent follow-up studies by Bond and Lang (2013) and Penney (2017) focus on the
(lack of) robustness of these conclusions that is related to the ordinality of test scores.
More precisely, Fryer and Levitt (2004) treat test scores as interval scales, even though this
is inappropriate and any monotonic transformation of the test score scale is also a valid
scale. Considering a number of such transformations, Bond and Lang (2013) present a
very pessimistic view of the main conclusions in Fryer and Levitt (2004). On the other
hand, Penney (2017) corroborates this earlier study; his preferred estimates are very sim-
ilar to regression estimates in Fryer and Levitt (2004).

All of these papers are based on data from the Early Childhood Longitudinal Study
kindergarten cohort (ECLS-K). The sample includes more than 20,000 children who en-
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Table 1: Black–White Test Score Gaps in ECLS-K

Math test scores
δ̂OLS δ̂gap δ̂gain δ̂loss

Fall kindergarten 0.068*** 0.113*** 0.123*** 0.051*** P̂(Wi = 1) = 0.861
(0.020) (0.028) (0.030) (0.019) N = 16,097

Spring kindergarten 0.152*** 0.194*** 0.203*** 0.137*** P̂(Wi = 1) = 0.863
(0.021) (0.030) (0.032) (0.021) N = 15,823

Reading test scores
δ̂OLS δ̂gap δ̂gain δ̂loss

Fall kindergarten –0.107*** –0.064* –0.055 –0.115*** P̂(Wi = 1) = 0.854
(0.021) (0.034) (0.037) (0.020) N = 15,310

Spring kindergarten –0.048** –0.019 –0.014 –0.050** P̂(Wi = 1) = 0.858
(0.022) (0.033) (0.037) (0.021) N = 15,315

Notes: See also Fryer and Levitt (2004), Bond and Lang (2013), and Penney (2017) for more
details on these data. All regressions control for gender, age, birth weight, WIC participation,
socioeconomic status, two indicators for mother’s age at first birth (teenager and age 30 or over),
the number of books in the home and its square, and three additional race categories (Hispanic,
Asian, and other). δ̂OLS is a least squares estimate of δ in equation (6). δ̂gap, δ̂gain, and δ̂loss are
based on least squares and sample analogue estimation of equations (12) and (14). Huber–White
standard errors are in parentheses. Positive values reflect black disadvantage.
*Statistically significant at the .10 level; **at the .05 level; ***at the .01 level.

tered kindergarten in 1998. The main outcomes of interest are standardized test scores in
math and reading. In this paper I borrow the sample and covariate selections from Pen-
ney (2017) who follows Fryer and Levitt (2004). I also restrict my attention to test scores
in the fall and spring of kindergarten.

Table 1 reproduces the estimates of δ from Penney (2017) and supplements them with
estimates of δgap, δgain, and δloss. Blacks are a clear minority in this sample, and they
account for 14–15% of all observations. Hence, in line with equation (8), δ̂OLS is very
similar to the estimated average loss for blacks. These results suggest that in the fall of
kindergarten the black–white test score gap is quite small; in fact, blacks enjoy a slight ad-
vantage in reading. By the spring of kindergarten, the relative position of blacks worsens:
the math gap widens and their advantage in reading shrinks.

At the same time, the minority status of blacks has an additional consequence. Namely,
the estimated average gaps and average gains for whites are always very similar. In fact,
they are also quite different from both δ̂OLS and δ̂loss. The average gap in math is 28–66%
larger than suggested by δ̂OLS. The average gap in reading is much closer to zero than
δ̂OLS; it is also not significantly different from zero in the spring of kindergarten.

To be clear, it is not unreasonable to believe that δloss is the most interesting parameter
in this empirical context. It is natural to ask whether the test scores of blacks are signifi-
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cantly different from those of similar whites. However, the fact that δ̂loss is well approxi-
mated by δ̂OLS is purely a virtue of the small proportion of blacks in the ECLS-K data or,
more generally, in the U.S. population. Moreover, if we decided to focus on δgap, which is
also a very useful measure, we would conclude that black disadvantage in kindergarten
is substantially larger than suggested by Fryer and Levitt (2004).

Black–White Wage Gaps in CPS

A large number of papers document that the trend towards black–white wage conver-
gence stopped in mid-1970s or around 1980 (see, e.g., Grogger 1996; Chay and Lee 2000;
Juhn 2003; Bayer and Charles 2018). While some studies also reveal a sharp decline of
the black–white wage gap in the 1990s (Juhn 2003), other papers do not (Elder et al. 2010).
Moreover, several recent contributions conclude that the current magnitude of the racial
wage gap in the United States is the largest in several decades (see, e.g., Hirsch and Win-

Figure 1: Black–White Wage Gaps in CPS
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Table 2: Black–White Wage Gaps in CPS

Log hourly wages
δ̂OLS δ̂gap δ̂gain δ̂loss

2000 0.079*** 0.086*** 0.086*** 0.079*** P̂(Wi = 1) = 0.918
(0.013) (0.014) (0.014) (0.013) N = 25,924

2001 0.109*** 0.126*** 0.127*** 0.108*** P̂(Wi = 1) = 0.902
(0.009) (0.011) (0.011) (0.009) N = 40,949

2002 0.107*** 0.126*** 0.128*** 0.105*** P̂(Wi = 1) = 0.902
(0.010) (0.012) (0.012) (0.010) N = 40,215

2003 0.124*** 0.146*** 0.148*** 0.122*** P̂(Wi = 1) = 0.907
(0.011) (0.012) (0.012) (0.011) N = 38,836

2004 0.109*** 0.136*** 0.139*** 0.107*** P̂(Wi = 1) = 0.908
(0.010) (0.012) (0.012) (0.010) N = 37,825

2005 0.118*** 0.110*** 0.109*** 0.119*** P̂(Wi = 1) = 0.906
(0.011) (0.011) (0.012) (0.011) N = 37,430

2006 0.113*** 0.133*** 0.135*** 0.110*** P̂(Wi = 1) = 0.910
(0.010) (0.013) (0.013) (0.010) N = 37,697

2007 0.112*** 0.124*** 0.125*** 0.110*** P̂(Wi = 1) = 0.905
(0.010) (0.010) (0.010) (0.010) N = 37,785

2008 0.118*** 0.130*** 0.131*** 0.117*** P̂(Wi = 1) = 0.902
(0.009) (0.010) (0.010) (0.009) N = 37,437

2009 0.112*** 0.119*** 0.120*** 0.111*** P̂(Wi = 1) = 0.902
(0.011) (0.012) (0.012) (0.011) N = 36,402

2010 0.117*** 0.116*** 0.116*** 0.116*** P̂(Wi = 1) = 0.899
(0.011) (0.013) (0.013) (0.011) N = 34,262

2011 0.124*** 0.138*** 0.140*** 0.122*** P̂(Wi = 1) = 0.902
(0.010) (0.011) (0.011) (0.010) N = 33,457

2012 0.115*** 0.127*** 0.128*** 0.113*** P̂(Wi = 1) = 0.904
(0.011) (0.012) (0.012) (0.011) N = 33,276

2013 0.131*** 0.138*** 0.139*** 0.129*** P̂(Wi = 1) = 0.903
(0.011) (0.011) (0.011) (0.011) N = 33,928

2014 0.127*** 0.131*** 0.132*** 0.126*** P̂(Wi = 1) = 0.901
(0.012) (0.013) (0.013) (0.012) N = 33,945

2015 0.112*** 0.116*** 0.117*** 0.111*** P̂(Wi = 1) = 0.894
(0.010) (0.011) (0.011) (0.010) N = 34,060

2016 0.129*** 0.136*** 0.137*** 0.128*** P̂(Wi = 1) = 0.891
(0.011) (0.012) (0.012) (0.011) N = 31,895

2017 0.136*** 0.131*** 0.131*** 0.136*** P̂(Wi = 1) = 0.892
(0.011) (0.011) (0.011) (0.011) N = 32,391

Notes: See also Elder et al. (2010) for more details on these data. All regres-
sions control for a quartic in age, four education categories (no high school
diploma, high school diploma either obtained or unclear, 3 years of college
or less, and 4 years of college or more), and twelve “major occupation” cat-
egories listed in the CPS. δ̂OLS is a least squares estimate of δ in equation
(6). δ̂gap, δ̂gain, and δ̂loss are based on least squares and sample analogue
estimation of equations (12) and (14). Huber–White standard errors are in
parentheses. Positive values reflect black disadvantage.
*Statistically significant at the .10 level; **at the .05 level; ***at the .01 level.
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ters 2014; Bayer and Charles 2018).
In this paper, as in Juhn (2003) and Elder et al. (2010), I focus on data from the March

Current Population Surveys (CPS), which are distributed by Flood et al. (2017). I also
borrow the sample and covariate selections from Elder et al. (2010), also extending their
analysis by 10 years, from 2008 to 2017. Thus, I study a subsample of full-time, full-year
working males; this category is defined as those observations who are at least 18 years
old, have earned nonzero wage or salary income, and have worked strictly more than 40
weeks a year and 30 hours in a typical week. The outcome variable of interest is the log
hourly wage, and the hourly wage is measured as annual earnings divided by annual
hours. The set of control variables is relatively sparse and is listed in Table 2.

Figure 1 and Table 2 report the estimates of δ, δgap, δgain, and δloss for each year between
2000 and 2017. It follows immediately that these results corroborate the earlier conclusion
that black–white wage convergence in the U.S. came to a halt. In fact, all measures of the
black–white wage gap were slightly larger in magnitude in 2017 than around 2000.

It should also be noted that, generally speaking, the differences between the average
loss for blacks and the average gain for whites are rather small in the CPS data, and hence
δ̂OLS is also of the same order of magnitude. Still, the average loss for blacks is typically
smaller than the average gain for whites.7 Because blacks are again a numerical minority,
as they account for 8–11% of all observations, this translates into a very consistent differ-
ential between δ̂OLS and δ̂gap. Namely, regression estimates understate the average wage
gap in most years. As expected, δ̂OLS is generally indistinguishable from the average loss
for blacks; δ̂gap and δ̂gain are also practically identical—and larger than δ̂OLS.

Black–White Wage Gaps in NLSY79

A common concern about the CPS data is that it does not contain information about some
important determinants of wages. In particular, Neal and Johnson (1996) demonstrate
that the black–white wage gap nearly disappears after controlling for age and perfor-
mance on the Armed Forces Qualifying Test (AFQT). Unsurprisingly, this measure of
ability is unavailable in most microeconomic data sets, including CPS. It is recorded,
however, as part of the National Longitudinal Survey of Youth (NLSY79), which is a
panel study of individuals born between 1957 and 1964 that began in 1979 and is also

7At first, this might seem inconsistent with a stylized fact reported in Lang and Lehmann (2012) that
black–white wage gaps decrease with education—to the extent that there are no significant wage differ-
ences between high-skilled blacks and high-skilled whites. If this is true, then we should expect δgain to
be relatively small, and not large, as whites are, on average, more highly educated than blacks. A detailed
analysis of this problem, however, is beyond the scope of this paper.
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Table 3: Black–White Wage Gaps in NLSY79

Log hourly wages
δ̂OLS δ̂gap δ̂gain δ̂loss

Age, Hispanic 0.362*** 0.350*** 0.348*** 0.361*** P̂(Wi = 1) = 0.866
(0.021) (0.020) (0.020) (0.021) N = 3,841

Age, Hispanic, AFQT 0.089*** 0.054* 0.048 0.096*** P̂(Wi = 1) = 0.866
(0.021) (0.030) (0.033) (0.022) N = 3,841

Age, Hispanic, AFQT, education 0.151*** 0.121*** 0.116*** 0.153*** P̂(Wi = 1) = 0.866
(0.021) (0.028) (0.030) (0.022) N = 3,841

Age, Hispanic, AFQT, other controls 0.056* 0.017 0.013 0.061* P̂(Wi = 1) = 0.914
(0.033) (0.046) (0.049) (0.033) N = 1,876

Age, Hispanic, AFQT, education, other controls 0.109*** 0.085** 0.083* 0.109*** P̂(Wi = 1) = 0.914
(0.032) (0.042) (0.044) (0.033) N = 1,876

Notes: See also Lang and Manove (2011) for more details on these data. “AFQT” includes the AFQT score and its square.
“Other controls” include school inputs and family background. School inputs include log of enrollment, log number of
teachers, log number of guidance counselors, log number of library books, proportion of teachers with MA/PhD, propor-
tion of teachers who left during the year, and average teacher salary. Family background includes mother’s education,
father’s education, number of siblings, and indicators for whether the respondent was born in the U.S., lived in the U.S.
at age 14, lived in an urban area at age 14, whether his mother was born in the U.S., and whether his father was born in
the U.S. δ̂OLS is a least squares estimate of δ in equation (6). δ̂gap, δ̂gain, and δ̂loss are based on least squares and sample
analogue estimation of equations (12) and (14). Huber–White standard errors are in parentheses. Positive values reflect
black disadvantage.
*Statistically significant at the .10 level; **at the .05 level; ***at the .01 level.

the source of data in Neal and Johnson (1996).
More recently, Lang and Manove (2011) build a model of educational attainment which

predicts that, conditional on ability (as proxied by AFQT scores), blacks should get more
education than whites. On the basis of this model—whose predictions are broadly con-
sistent with the NLSY79 data—Lang and Manove (2011) recommend that one should
control for both AFQT scores and education when studying black–white differences in
wages. Interestingly, when Lang and Manove (2011) augment the specifications of Neal
and Johnson (1996) with education, a substantial black–white wage gap reemerges.

In this paper I borrow the sample and covariate selections from Table 5 in Lang and
Manove (2011). What follows, I study log hourly wages of black men from the 1996, 1998,
and 2000 waves of the survey. The list of control variables is reported in Table 3, together
with a replication of regression estimates from Lang and Manove (2011) as well as a num-
ber of new estimates of δgap, δgain, and δloss. As in previous applications, the proportion
of blacks in the NLSY79 data is small; they account for 9–13% of all observations. Thus, in
line with equation (8), δ̂OLS is always very similar to the average loss for blacks. Similarly,
δ̂gap and δ̂gain are also hardly distinguishable. Finally, it is useful to note that, unlike in
CPS, the average loss for blacks is generally larger than the average gain for whites.
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The second and fourth rows of Table 3 correspond to the specifications of Neal and
Johnson (1996). It turns out that focusing on the average wage gap—as opposed to
regression estimates—would have strengthened their conclusions. Even though δ̂OLS

and δ̂loss are already quite small in the second and fourth rows, δ̂gap and δ̂gain are even
smaller; in fact, they are very close to zero—and not statistically significant—in the fourth
row. In other words, a moderately large set of control variables—including age, AFQT
scores, school inputs, family background, and an indicator for whether the respondent is
Hispanic—shrinks the average black–white wage gap to (practically) zero.

At the same time, the main conclusion of Lang and Manove (2011) still holds true.
When we additionally control for education, as in the third and fifth rows of Table 3, all
measures of the black–white wage gap become substantially larger. Still, δ̂gap is visibly
smaller than the regression estimates, which are also reported in Lang and Manove (2011),
but they are both larger than the estimates in the second and fourth rows.

Black–White Wage Gaps in NSW

My results on black–white differences in ECLS-K, CPS, and NLSY79 data share an es-
sential feature: in each case, δ̂OLS provides a good approximation to δ̂loss. At first, this
might seem like a useful property of δ̂OLS, as δloss is definitely a very interesting param-
eter. However, as explained before, this relationship between δ̂OLS and δ̂loss is purely an
artifact of the small proportions of blacks in ECLS-K, CPS, and NLSY79 data. If instead
we focus on an empirical context in which blacks constitute a numerical majority, this
supposedly useful property will disappear.

Following LaLonde (1986), Dehejia and Wahba (1999), and Smith and Todd (2005),
many papers use the data from the National Supported Work (NSW) Demonstration, to-
gether with nonexperimental data sets constructed by LaLonde (1986), to compare the ef-
fectiveness of various identification strategies and estimation methods for average treat-
ment effects. In short, NSW was a U.S. work experience program that operated in the
mid-1970s and randomized treatment assignment among eligible participants. Also, this
program served a highly disadvantaged population whose members were disproportion-
ately black (Smith and Todd 2005).

As noted previously, these data are typically used to study the effects of the NSW
program itself. There is little reason, however, why they should not be used to study
black–white wage gaps, although—of course—the results will not be informative about
the magnitudes of these gaps in the whole U.S. population. In this paper I study a subset
of the experimental treatment and control groups which was constructed by Dehejia and

20



Table 4: Black–White Wage Gaps in NSW

Log wages in 1978
δ̂OLS δ̂gap δ̂gain δ̂loss

Baseline controls 0.284** 0.230* 0.303** 0.211 P̂(Wi = 1) = 0.208
(0.119) (0.139) (0.122) (0.149) N = 308

+ Nonemployment 0.285** 0.231* 0.304** 0.212 P̂(Wi = 1) = 0.208
(0.120) (0.138) (0.124) (0.147) N = 308

+ Higher-order terms 0.280** 0.117 0.302** 0.069 P̂(Wi = 1) = 0.208
(0.119) (0.149) (0.126) (0.169) N = 308

Notes: See also LaLonde (1986), Dehejia and Wahba (1999), and Smith and Todd (2005)
for more details on these data. “Baseline controls” include age, education, earnings in
months 13–24 prior to randomization, earnings in 1975, and indicators for whether mar-
ried, whether a high school dropout, and whether treated. “Nonemployment” includes
indicators for whether had zero earnings in months 13–24 prior to randomization and
whether had zero earnings in 1975. “Higher-order terms” include age squared, age cubed,
education squared, and squares of both earnings variables. δ̂OLS is a least squares estimate
of δ in equation (6). δ̂gap, δ̂gain, and δ̂loss are based on least squares and sample analogue
estimation of equations (12) and (14). Huber–White standard errors are in parentheses.
Positive values reflect black disadvantage.
*Statistically significant at the .10 level; **at the .05 level; ***at the .01 level.

Wahba (1999). To be consistent with the previous empirical applications, I focus on log
wages, which reduces the sample size to 308 individuals, 79% of whom are black.8

Table 4 reports the estimates of δ, δgap, δgain, and δloss; it also includes the list of control
variables. In general, the differences between the average loss for blacks and the average
gain for whites are large. This statement is especially true for the third row of Table 4,
where we control for the standard set of covariates and a number of higher-order terms.

Unlike previously, the average loss for blacks is not approximated by δ̂OLS in any use-
ful way. On the contrary, regression estimates, δ̂OLS, are always very similar to the average
gain for whites. This is, however, a clear implication of equation (8). When one of two
groups is large and the other is small, δ̂OLS is similar to the “effect” on the smaller group.
The difference between δ̂OLS and δ̂loss (and also δ̂gap) is particularly striking in the third
row of Table 4. While the regression estimate suggests a black–white wage gap of 28 log
points, the estimated average loss for blacks is only 6.9 log points and the estimated av-
erage gap is 11.7 log points. These differences are very substantial; in the latter two cases,
the estimates are also not significantly different from zero.

8As explained by Smith and Todd (2005), it is generally preferable to use the “early random assignment”
sample which they also construct. When I consider the same specifications using their data, I observe the
same relationship between δ̂OLS, δ̂gap, δ̂gain, and δ̂loss. However, the sample size is much smaller, and hence
the estimates are also quite noisy. Thus, I focus on the data set constructed by Dehejia and Wahba (1999).
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4 Summary

In this paper I have borrowed a recent result from the program evaluation literature to
demonstrate that the interpretation of regression estimates of between-group differences
in economic outcomes necessarily depends on the relative proportions of these groups.
If the disadvantaged group is also a numerical minority, as is often the case with blacks,
regression estimates will be similar to the average loss for this group. Importantly, I have
demonstrated the empirical relevance of this prediction in applications to black–white
test score gaps in ECLS-K data and black–white wage gaps in CPS and NLSY79 data.

Sometimes, however, the disadvantaged group does not constitute a numerical mi-
nority, in which case regression estimates will not approximate the average loss for this
group. When the majority group is, in fact, disadvantaged—say, blacks in an urban school
district, in South Africa, or in NSW data—regression estimates will be similar to the aver-
age gain for advantaged individuals. Unfortunately, in most applications, this parameter
is also less likely to be of direct interest.

In an intermediate case, where the proportions of both groups are similar—which is
to be expected, for example, in a typical study of gender wage gaps—regression esti-
mates will be similar to the average outcome gap. There are reasons to believe that this
is an interesting parameter, as it is equal to the difference between mean outcomes in two
counterfactual distributions. In the first distribution, outcomes of both groups are de-
termined in a way that actual outcomes of advantaged individuals currently are. In the
second distribution, this is true for outcomes of disadvantaged individuals.

Of course, instead of relying on regression estimates, researchers may prefer to explic-
itly choose their parameter of interest. While its estimation would be easy to implement
semi- or nonparametrically, it is also possible to follow a more traditional approach of
using parametric decomposition methods. If we wish to estimate the average gain for ad-
vantaged individuals or the average loss for disadvantaged individuals, we need to use
one of the most basic versions of the Oaxaca–Blinder decomposition (Oaxaca 1973; Blin-
der 1973). If instead we are interested in the average outcome gap, we need to apply a
further contribution of this paper—a new decomposition whose unexplained component
is equal to this parameter. Interestingly, under a particular conditional independence as-
sumption, this object is also equivalent to the average treatment effect.

Future work might add to our understanding of formal conditions under which causal
effects of race, gender, and other immutable characteristics can be identified and esti-
mated (see Kunze 2008, Greiner and Rubin 2011, and Huber 2015 for recent discussions).
As already suggested by Fortin et al. (2011), it is also important to improve the economic
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structure behind decomposition methods. Finally, it is essential to understand the links
between the decomposition methods and the program evaluation literature. Following
an important review in Fortin et al. (2011), this paper has attempted to take this ongo-
ing discussion one step further by providing an interpretation of regression estimates of
between-group differences in economic outcomes and developing a new decomposition
which is compatible with the treatment effects framework.
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