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Decomposing Real Wage Changes in the 
United States*

We employ CPS data to analyze the sources of hourly real wage changes in the United 

States for 1976 to 2016 at various quantiles of the wage distribution. We account for the 

selection bias from the annual hours of work decision by developing and implementing 

an estimator for nonseparable selection models with censored selection rules. We then 

decompose wage changes into composition, structural and selection effects. Composition 

effects have increased wages at all quantiles but the patterns of wage changes are 

generally determined by the structural effects. Evidence of changes in the selection effects 

only appear at lower quantiles of the female wage distribution. The combination of these 

various components produce a substantial increase in wage inequality. This increase has 

been exacerbated by the changes in females’ working hours.
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1 Introduction

The dramatic increase in earnings inequality in the United States is an intensely

studied phenomenon (see, for example, Katz and Murphy, 1992, Murphy and Welch,

1992, Juhn et al., 1993, Katz and Autor, 1999, Lee, 1999, Lemieux, 2006, Autor

et al., 2008, Acemoglu and Autor, 2011, and Murphy and Topel, 2016). While

this literature employs a variety of measures of earnings and inequality and utilizes

different data sets, there is general agreement that earnings inequality has greatly

increased since the early 1980s. As an individual’s earnings reflects both the number

of hours worked and the average hourly wage rate, understanding the determinants

of each is important for uncovering the sources of earnings inequality. This paper

examines the evolution and sources of changes in hourly real wage rates in the United

States for 1976 to 2016.

Figure 1 presents selected quantiles of male and female real hourly wage rates

using the U.S. Current Population Survey, or March CPS, data for the survey years

1976 to 2016 based on individuals aged 24 to 65 years who worked a positive number

of hours the previous year and are neither in the Armed Forces nor self-employed.1

The profiles differ by gender and quantile. Consider the median male wage rate.

Despite a slight increase between 1987 and 1990, the overall trend between 1976

and 1994 was negative, reaching a minimum of 17.6 percentage points below its

initial level. It rebounds between 1994 and 2002 but falls between 2007 and 2013.

The decline between 1976 and 2016 is 13.6 percentage points. The female median

wage, despite occasional dips, increases by nearly 25 percentage points over the

sample period. The male wage profile at the 25th percentile shows the same cyclical

behavior as the median but a greater decline, especially between 1976 and 1994,

resulting in a 2016 wage 18.2 percentage points below its 1976 level. In contrast,

the female wage at the 25th percentile increases by about 17 percentage points. The

profiles at the 10th percentile are similar to those of the 25th and 50th.

Descriptions of wage inequality involve contrasts between the lower and upper

parts of the wage distribution and thus we also examine the higher quantiles. There

1 Section 2 provides a detailed discussion of the data employed in our analysis and our sample
selection process. Our empirical investigation does not employ the person supplement weights
provided by the March CPS to account for the survey design. However, we also conducted our
analysis employing these weights and our results are unchanged.
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Figure 1: Percentiles of real hourly wages

is a small increase in the male real wage at the 75th percentile over the sample period.

However, it was below its 1976 level until the late 1990’s before a notable increase

in the last 15 years. The profile at the 90th percentile resembles the 75th percentile,

although the periods of growth have produced larger increases. For females, there

has been strong and steady growth at the 75th and 90th percentiles since 1980 with

an increasing gap between each and the median wage.

Figure 2 reports the time series behavior of the 90th/10th percentile ratios and

confirms the widening wage gap for both males and females with increases over

the sample period of 54.6 and 37.9 percent respectively. Rather than immediately

focusing on these ratios, we first identify the determinants of the observed wage

changes. The cyclicality of the profiles in Figure 1 suggests that each responds to

business cycle forces although the strength of this relationship varies by quantile.

The behavior of the various profiles suggests that the workers in their associated

labor markets are undergoing contrasting experiences.

Previous empirical work has identified some possible determinants of the growth

in wage inequality. First, the labor economics literature (see for example, Juhn,

et al., 1993, Katz and Autor, 1999, Welch, 2000, Autor et al., 2008, Acemoglu

and Autor, 2011, and Murphy and Topel, 2016) has highlighted the increasing skill

premia and returns to higher education. The manner in which the prices of individ-
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Figure 2: D9-D1 ratio.

ual’s characteristics contribute to wages is known as the “structural effect”. This

also captures factors such as declining real minimum wages and the decrease in the

union premium (see, for example, DiNardo et al., 1996 and Lee, 1999). Krueger and

Posner (2018) argue that employers have also reduced the bargaining power of rela-

tively low paid workers by including non-compete clauses in employment contracts.

Second, the workforce has changed over the past 41 years, suggesting that changes

in workers’ characteristics also contributed to wage movements. This reflects in-

creases in educational attainment, decreases in unionization rates, and changes in

the age structure. The large increase in female labor force participation may have

also produced changes in the labor force composition. The contribution to changes

in the distribution of hourly wages attributable to these observed characteristics is

known as the “composition effect”.

Earlier papers (see, for example, Angrist et al., 2006, and Chernozhukov et

al., 2013) estimated structural and composition effects under general conditions.

However, they ignore the potential selection bias from the employment outcome

(see Heckman, 1974, 1979). This “selection effect” is potentially important as the

movements in the employment rates and the average number of annual hours worked

of both males and females, shown in Figure 3, suggest that unobserved features of the

workforce may have changed over the sample period. Just as the returns to observed

characteristics may evolve over time and differ across the wage distribution, the
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returns to unobservables may also vary. Mulligan and Rubinstein (2008) find that

selection by females into full-time employment played an important role in explaining

the variation in inequality and that the selected sample of working females became

increasingly more productive in terms of unobservables during the last three decades

of the twentieth century. Moreover, this contributed to a reduction in the gender

wage gap and an increase in wage inequality for females. Maasoumi and Wang

(2018) support these findings.
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Figure 3: Employment rate and average annual hours worked of employees

Mulligan and Rubinstein employ the Heckman (1979) selection model to evaluate

the role of selection in changes in the conditional mean wage. This is straightfor-

ward given the separable nature of the model. However, to evaluate the impact

of selection at different quantiles of the wage distribution requires a nonseparable

model. Maasoumi and Wang (2018) do so by employing the Arellano and Bon-

homme (2017) procedure which is based on a copula approach to quantile selection

models. These studies allocate observations into categories denoting whether or not

the individual worked full time. This facilitates the use of the Heckman (1979) and

the Arellano and Bonhomme procedures as each employs a binary selection rule.

One is then restricted to examining full time wages. However, to obtain a fuller

understanding of the evolution of real wages it is useful to examine the wages of all

those working across a range of hours and account for the selection bias from the
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hours of work decision. Figure 4 presents the fraction of workers who are full time

and full year (FTFY) defined as working at least 35 hours a week for a minimum

of 50 weeks. There is a large increase in the fraction of FTFY females, from 45

percent in 1976 to 65 percent in 2016, while the percentage of males increases from

75 to 81. However, while the proportions working full time are increasing, there are

a substantial number of individuals working less than full time. Moreover, the real

wage changes of the corresponding groups, presented in Figure 5, feature important

differences. While there are instances of specific quantiles and time periods when

the non-FTFY wage is higher than the FTFY category, the opposite is generally

true and the differences are large in some periods. The general trends also appear to

sometimes differ across categories. Note that while we illustrate these differences by

examining these two categories, it is possible that there is a continuum of differences

along the hours distribution.
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Figure 4: Fraction of full-time-full-year workers

This evidence suggests that considering only the wages of the FTFY workers

may not provide an accurate representation of the evolution of wages for all work-

ers. Also, while the differences in the wages across these two working categories

might capture structural and composition effects, they may also reflect selection

effects. The failure to include non-FTFY workers means that the selection effects in

earlier studies may reflect movement from the non-FTFY to FTFY rather than from
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Figure 5: Percentiles of real hourly wages

non-employment to FTFY. A preferred approach would allow for different selection

effects at different points of the hours distribution while incorporating varying struc-

tural and compositional effects. We incorporate these considerations by providing

an estimation strategy for nonseparable models with a censored selection rule. We

estimate the relationship between the individual’s wage and their characteristics

while accounting for selection resulting from the individual’s location in the hours

distribution. We employ distribution regression methods and account for sample
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selection via an appropriately constructed control function. Although our control

function requires a censored variable as the basis of the selection rule, this is provided

via the number of annual working hours.

Our estimator contributes to the literatures on nonseparable models with en-

dogeneity (see, for example, Chesher, 2003, Ma and Koenker, 2006, Florens et al.,

2008, Imbens and Newey, 2009, Jun, 2009 and Masten and Torgovitsky, 2014) and

nonseparable sample selection models (for example, Newey, 2007 and Arellano and

Bonhomme, 2017). We provide statements, applicable for both the selected and

non-selected samples, regarding the wage distribution conditional on specific values

of the control function. This local approach to identification is popular in many

contexts (see, for example, Chesher, 2003 and Heckman and Vytlacil, 2005). We

show that for any population observation with a positive probability of being se-

lected, selection is irrelevant for the wage distribution conditional on the control

function. Hence, we can estimate certain objects that are appropriate for the whole

population conditional on the value of the control function. Our approach, when

applicable, is an alternative to Arellano and Bonhomme (2017) and requires weaker

identification conditions for the associated decomposition exercises described below.

Our empirical results are striking. Male real wages at the median and below

have decreased despite an increasing skill premium and an increase in educational

attainment. The reduction primarily reflects the large wage decreases of those with

low levels of education. Wages at the upper quantiles have increased drastically due

to the increasing skill premium. The combination of these two trends substantially

increases male wage inequality. Female wage growth at lower quantiles is modest

although the median wage has grown steadily. Gains at the upper quantiles for

females are substantial and reflect increasing returns to schooling. These factors

also have produced a substantial increase in female wage inequality. Changes in

the impact of selection appear at the lower parts of the female wage distribution.

Moreover, we find that these changes in selection decrease the observed wage growth

and increase observed wage inequality.

The following section discusses the data. Section 3 outlines our empirical model.

Section 4 provides the objects of interest and our most important identification re-

sults. Section 5 presents the empirical results and Section 6 provides some additional

discussion of the empirical results. Concluding comments are offered in Section 7.
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2 Data

We employ micro-level data from the Annual Social and Economic Supplement

(ASEC) of the Current Population Survey (CPS), or March CPS, for the 41 survey

years from 1976 to 2016 which report annual earnings for the previous calendar

year.2 The 1976 survey is the first for which information on weeks worked and usual

hours of work per week last year are available. To avoid issues related to retirement

and ongoing educational investment we restrict attention to those aged 24–65 years

in the survey year. This produces an overall sample of 1,794,466 males and 1,946,957

females, with an average annual sample size of 43,767 males and 47,487 females. The

annual sample sizes range from a minimum of 30,767 males and 33,924 females in

1976 to a maximum of 55,039 males and 59,622 females in 2001.

Annual hours worked last year are defined as the product of weeks worked and

usual weekly hours of work last year. Most of those reporting zero hours respond

that they are not in the labor force (i.e., they report themselves as doing housework,

unable to work, at school, or retired) in the week of the March survey. We define

hourly wages as the ratio of reported annual earnings and annual hours worked

last year. Hourly wages are unavailable for those not in the labor force. However,

for the Armed Forces, the self-employed, and unpaid family workers annual earn-

ings or annual hours tend to be poorly measured. Thus we exclude these groups

from our sample and focus on civilian dependent employees with positive hourly

wages and people out of the labor force last year. This restricted sample contains

1,551,796 males and 1,831,220 females (respectively 86.5 percent and 94.1 percent

of the original sample of people aged 24–65), with average annual sample sizes of

37,849 males and 44,664 females. The subsample of civilian dependent employees

with positive hourly wages contains 1,346,918 males and 1,276,125 females, with an

average annual sample size of 32,852 males and 31,125 females.

2 We downloaded the data from the IPUM-CPS website maintained by the Minnesota Popula-
tion Center at the University of Minnesota (Flood et al., 2015), which provides standardized data
from 1963 to 2016.
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3 Model and Objects of Interest

The model has the following structure:

Y = g(X, ε) if C > 0, (3.1)

C = max (h(Z, η) , 0), (3.2)

where Y and C are observable random variables, and X and Z are vectors of observ-

able explanatory variables. The set of variables in X is a subset of those in Z. We

do not need to impose an exclusion restriction on Z with respect to the elements

of X, although our identification assumptions will be more plausible with such a

restriction. The functions g and h are unknown and ε and η are respectively a vec-

tor and a scalar of potentially mutually dependent unobservables. We shall impose

restrictions on the stochastic properties of these unobservables. Our objective is to

estimate functionals related to g noting that Y is only observed when C is above

some known threshold normalized to be zero. The non observability of Y for specific

values of C induces the possibility of selection bias. For generality, we refer to (3.1)

and (3.2) as the outcome and selection equations although below they refer to the

wage and hours equations respectively. The model is a nonparametric and nonsep-

arable representation of the tobit type-3 model and is a variant of the Heckman

(1979) selection model. It has been studied in more restricted settings than consid-

ered here (see Amemiya, 1978, 1979, Vella, 1993, Honoré et al., 1997, Chen, 1997

and Lee and Vella, 2006). This model is ideal for our purposes as it incorporates

a conditional wage distribution in the presence of nonparticipants and variation in

the number of hours worked. Estimating functions related to g while accounting

for selection enables the construction of counterfactual distributions adjusted for

selection required for our decomposition exercises.

As the following approach is applicable in many settings we acknowledge that

the binary selection model is more frequently employed in empirical work than the

censored selection model. However, this partially reflects the popularity of the Heck-

man (1979) two-step procedure. Many empirical investigations dichotomize censored

selection variables in order to employ the Heckman procedure.3 In the parametric

3Examples of such commonly encountered censoring selection variables include unemployment
duration, training program length and the magnitude or length of welfare benefit receipt.
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setting there are no substantial benefits in using the censored, rather than the di-

chotomized, form of the selection variable other than that the selection variable can

appear in the outcome equation as a regressor and the variation in the selection rule

provides an additional form of identification. However, in the nonseparable setting

the use of the censored selection rule has the additional advantage that, in compari-

son with the closely related existing treatment effects literature, we are able to allow

for nonseparability in both the outcome and selection equations. Moreover, using

the censored selection rule enables inference for both the selected and non-selected

populations and the local effects. It also allows the selection effects to vary by C.

Thus it could be argued that the censored selection approach should be employed

when possible.4

4 Identification of objects of interest

We account for selection bias through an appropriately constructed control function.

We establish the existence of such a function for this model and then define some

objects of interest incorporated in (3.1)-(3.2).

Let ⊥⊥ denote stochastic independence. We begin with the following assumption:

Assumption 1 (Control Function) (ε, η) ⊥⊥ Z, η is a continuously distributed

random variable with strictly increasing CDF on the support of η, and t 7→ h(Z, t)

is strictly increasing a.s.

This assumption allows for endogeneity between X and ε in the selected population

with C > 0, since in general ε and η are dependent, i.e., ε⊥⊥X | C > 0. The mono-

tonicity assumption allows a non-monotonic relationship between ε and C because

ε and η are allowed to be non-monotonically dependent. Under Assumption 1, the

4The model can be extended in several directions. For example, the selection variable C could
be censored in a number of ways provided there are some region(s) for which it is continuously
observed. This allows for top, middle and/or bottom censoring. The approach is also applicable
when the Y is censored. For example:

Y = max(g(X, ε), 0) if C > 0.

The model can also be extended to include C in the outcome equation as an explanatory variable
provided that there is an exclusion restriction in Z with respect to X. This corresponds to the
triangular system of Imbens and Newey (2009) with censoring in the first stage equation.
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distribution of η can be normalized to be uniform on [0, 1] without loss of generality

(Matzkin, 2003).5 The following result establishes the existence of a control func-

tion for the selected population in this setting. That is, there is a function of the

observable data such that once it is conditioned upon, the unobservable component

is independent of the explanatory variables in the outcome equation for the selected

population. Let V := FC(C | Z) where FC(· | z) denotes the CDF of C conditional

on Z = z.

Lemma 1 (Existence of Control Function) Under the model in (3.1)-(3.2) and

Assumption 1:

ε ⊥⊥ Z | V,C > 0.

Proofs for the results in this section are provided in Appendix B. The intuition

behind Lemma 1 is based on three observations. First, V = η when C > 0, so con-

ditioning on V is identical to conditioning on η in the selected population. Second,

conditioning on Z and η makes selection, i.e., C > 0, deterministic. Therefore, the

distribution of ε, conditional on Z and η, does not depend on the condition that

C > 0. The final observation, namely the assumption that (ε, η) ⊥⊥ Z, is sufficient

to prove the Lemma.

We consider two classes of objects: (1) local effects conditional on the control

function, and (2) global effects based on integration over the control function.

4.1 Local effects

Let Z, X , and V denote the marginal supports of Z, X, and V in the selected

population, respectively. Let the set XV denote the joint support of X and V in

the selected population. That is:

Definition 1 (Identification set) Define:

XV := {(x, v) ∈ X × V : h(z, v) > 0, z ∈ Z(x)} ,

where Z(x) = {z ∈ Z : x ⊆ z}, i.e. the set of values of Z with the component

X = x.
5Indeed if t 7→ h(z, t) is strictly increasing, and η is continuously distributed with η ∼ Fη, then

h̃(z, η̃) = h(z, Fη(η̃)) is such that t 7→ h̃(z, t) is strictly increasing and η̃ ∼ U(0, 1).
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Depending on the values of (X, η), we can classify the units of observation into 3

groups: (1) always selected units when h(z, t) > 0 for all z ∈ Z(x), (2) switchers

when h(z, t) > 0 for some z ∈ Z(x) and h(z, t) ≤ 0 for some z ∈ Z(x), and (3) never

selected units when h(z, t) ≤ 0 for all z ∈ Z(x). The set XV only includes always

selected units and switchers, i.e. units with (X, V ) such that they are observed

for some values of Z. When X = Z there are no switchers because the set Z(x)

is a singleton. Otherwise the size of the set XV increases with the support of the

excluded variables and their strength in the selection equation. The local average

structural function is the first local effect we consider.

Definition 2 (LASF) The local average structural function (LASF) at (x, v) is:

µ(x, v) = E(g(x, ε) | V = v).

The LASF is the expected value of the potential outcome g(x, ε) obtained by fixing

X at x conditional on V = v for the entire population. It is useful for measuring the

effect of X on the mean of Y . For example, the average treatment effect of changing

X from x0 to x1 conditional on V = v is:

µ(x1, v)− µ(x0, v).

The following result shows that µ(x, v) is identified for all (x, v) ∈ XV .

Theorem 1 (Identification of LASF) Under the model (3.1)-(3.2), Assumption

1 and E|Y | <∞, for (x, v) ∈ XV,

µ(x, v) = E(Y | X = x, V = v, C > 0). (4.1)

According to Theorem 1, the LASF is identical to the expected value of the outcome

variable conditional on (X, V ) = (x, v) in the selected population. The proof of this

theorem is based on Assumption 1 that allows for the LASF to be conditional on

the outcome of (Z, V ) = (z, v). Since (x, v) ∈ XV , there is a z ∈ Z(x) such

that h(z, v) > 0 and hence the expected mean outcome of g(x, ε) conditional on

V = v for the total sample, i.e. the LASF, is the same as the mean outcome for

the selected population. That is, selection is irrelevant for the distribution of the
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outcome variable conditional on the control function. This mean outcome is equal

to the conditional expectation in the selected population, which is a function of the

data distribution and is hence identified. When X is continuous and x 7→ g(x, ε) is

differentiable a.s., we can consider the average derivative of g(x, ε) with respect to

x conditional on the control function.

Definition 3 (LADF) The local average derivative function (LADF) at (x, v) is:

δ(x, v) = E[∂xg(x, ε) | V = v], ∂x := ∂/∂x. (4.2)

The LADF is the first-order derivative of the LASF with respect to x, provided that

we can interchange differentiation and integration in (4.2). This is made formal in

the next corollary which shows that the LADF is identified for all (x, v) ∈ XV .

Corollary 1 (Identification of LADF) Assume that for all x ∈ X , g(x, ε) is

continuously differentiable in x a.s., E[|g(x, ε)|] <∞, and E[|∂xg(x, ε)|] <∞. Under

the conditions of Theorem 1, for (x, v) ∈ XV,

δ(x, v) = ∂xµ(x, v) = ∂xE(Y | X = x, V = v, C > 0) .

The local effects extend to distributions and quantiles.

Definition 4 (LDSF and LQSF) The local distribution structural function (LDSF)

at (y, x, v) is:

G(y, x, v) = E[1 {g(x, ε) ≤ y} | V = v].

The local quantile structural function (LQSF) at (τ, x, v) is:

q(τ, x, v) := inf{y ∈ R : G(y, x, v) ≥ τ}.

The LDSF is the distribution function of the potential outcome g(x, ε) conditional

on the value of the control function for the entire population. The LQSF is the left-

inverse function of y 7→ G(y, x, v) and corresponds to quantiles of g(x, ε). Differences

of the LQSF across levels of x correspond to quantile effects conditional on V for

the entire population. For example, the τ -quantile treatment effect of changing X

13



from x0 to x1 is:

q(τ, x1, v)− q(τ, x0, v).

Remark 1 (Identification of LDSF) Identification of the LDSF follows by the

same argument as the identification of the LASF, replacing g(x, ε) (as in Definition

2) by 1 {g(x, ε) ≤ y} and Y (as in equation (4.1)) by 1{Y ≤ y}. Thus, under

Assumption 1, for (x, v) ∈ XV:

E[1 {g(x, ε) ≤ y} | V = v] = FY |X,V,C>0(y | x, v).

The LQSF is then identified by the left-inverse function of y 7→ FY |X,V,C>0(y | x, v),

the conditional quantile function τ 7→ QY [τ | X = x, V = v, C > 0], i.e., for

(x, v) ∈ XV ,

q(τ, x, v) = QY [τ | X = x, V = v, C > 0].

We also consider the derivative of q(τ, x, v) with respect to x and call it the local

quantile derivative function (LQDF). This corresponds to the average derivative of

g(x, ε) with respect to x at the quantile q(τ, x, v) conditional on V = v under suitable

regularity conditions; see Hoderlein and Mammen (2011). Thus, for (τ, x, v) ∈
[0, 1]×XV ,

δτ (x, v) := ∂xq(τ, x, v) = E[∂xg(x, ε) | V = v, g(x, ε) = q(τ, x, v)].

By an analogous argument to Corollary 1, the LQDF is identified at (τ, x, v) ∈
[0, 1]×XV by:

δτ (x, v) = ∂xQY [τ | X = x, V = v, C > 0],

provided that x 7→ QY [τ | X = x, V = v, C > 0] is differentiable and other regularity

conditions hold.

Remark 2 (Exclusion restrictions) The identification of local effects does not

explicitly require exclusion restrictions in Z with respect to X although the size of

the identification set XV depends on such restrictions. For example, if h(z, η) =

z + Φ−1(η) where Φ is the standard normal distribution and X = Z, then XV =
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{(x, v) ∈ X × V ] : x > −Φ−1(v)} ⊂ X × V; whereas if h(z, η) = x+ z1 + Φ−1(η) for

Z = (X,Z1), then XV = {(x, v) ∈ X ×V : x > −Φ−1(v)− z1, z1 ∈ Z(x)}, such that

XV = X × V if Z1 is independent of X and supported in R.

4.2 Global effects

The global counterparts of the local effects are obtained by integration over the

control function in the selected population. A typical global effect at x ∈ X is:

θS(x) =

∫
θ(x, v)dFV |C>0(v), (4.3)

where θ(x, v) can be any of the local objects defined above and FV |C>0(v) is the

distribution of V in the selected population. Identification of θS(x) requires identi-

fication of θ(x, v) over V , the support of V in the selected population. For example,

the average structural function (ASF):

µS(x) := E[g(x, ε) | C > 0],

gives the average of the potential outcome g(x, ε) in the selected population. By

the law of iterated expectations, this is the global effect (4.3) with θ(x, v) = µ(x, v),

the LASF. The average treatment effect of changing X from x0 to x1 in the selected

population is:

µS(x1)− µS(x0).

Similarly, one can consider the distribution structural function (DSF) in the selected

population as in Newey (2007), i.e:

GS(y, x) := E[1{g(x, ε) ≤ y} | C > 0],

which gives the distribution of the potential outcome g(x, ε) at y in the selected

population. This is the global effect (4.3) with θ(x, v) = G(y, x, v). We construct

the quantile structural function (QSF) in the selected population as the left-inverse

of y 7→ GS(y, x). That is:

qS(τ, x) := inf{y ∈ R : GS(y, x) ≥ τ}.
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The QSF gives the quantiles of g(x, ε). Unlike GS(y, x), qS(τ, x) cannot be obtained

by integration of the corresponding local effect, q(τ, x, v), because we cannot inter-

change quantiles and expectations. The τ -quantile treatment effect of changing X

from x0 to x1 in the selected population is:

qS(τ, x1)− qS(τ, x0).

Global counterparts of the LADF and LQSF are obtained by taking derivatives of

µS(x) and qS(τ, x) with respect to x.

As in Newey (2007), identification of the global effects in the selected population

requires a condition on the support of the control function. Let V(x) denote the

support of V conditional on X = x, i.e. V(x) := {v ∈ V : (x, v) ∈ XV}.

Assumption 2 (Common Support) V(x) = V.

The main implication of common support is the identification of θ(x) from the

identification of θ(x, v) in v ∈ V(x) = V . Assumption 2 is only plausible under

exclusion restrictions on Z with respect to X; see the example in Remark 2. We

now establish the identification of the typical global effect (4.3).

Theorem 2 (Identification of Global Effects) If θ(x, v) is identified for all (x, v) ∈
XV, then θS(x) is identified for all x ∈ X that satisfy Assumption 2.

We can now apply this result to show identification of global effects in the selected

population, because under Assumption 1 the local effects are identified over XV ,

which is the support of (X, V ) in the selected population.

Remark 3 (Global Effects in the Entire Population) The effects in the se-

lected population generally differ from the effects in the entire population, except

under the additional support condition:

V = (0, 1), (4.4)

which imposes that the control function is fully supported in the selected population.

This condition requires an excluded variable in Z with sufficient variation to make

h(Z, η) > 0 for any η ∈ [0, 1].
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4.3 Global effects for “the treated” and average derivatives

Assumption 2 might be considered implausible in the absence of a variable with

large support which can be included in the selection equation but excluded from

the outcome equation. Without this assumption the global effects are not point

identified, but can be bounded following a similar approach to Imbens and Newey

(2009). We consider instead the alternative generic global effect:

θS(x | x0) =

∫
θ(x, v)dFV |X,C>0(v | x0), (4.5)

which is point identified under weaker support conditions than (4.3). Examples of

(4.5) include the ASF conditional on X = x0 in the selected population:

µS(x | x0) = E[g(x, ε) | X = x0, C > 0],

which is (4.5) with θ(x, v) = µ(x, v). This measures the mean of the potential out-

come g(x, ε) for the selected individuals with X = x0, and can be used to construct

the average treatment effect on the treated of changing X from x0 to x1 :

µS(x1 | x0)− µS(x0 | x0).

The object in (4.5) is identified in the selected population under the following sup-

port condition:

Assumption 3 (Weak Common Support) V(x) ⊇ V(x0).

Assumption 3 is weaker than Assumption 2 because V(x0) ⊆ V . For example, if the

selection equation (3.2) is monotone in X, Assumption 3 is satisfied by setting x0

lower than x.

We define the τ -quantile treatment on the treated as:

qS(τ, x1 | x0)− qS(τ, x0 | x0),

where qS(τ, x | x0) is the left-inverse of the DSF conditional on X = x0 in the
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selected population,

GS(y, x | x0) := E[1{g(x, ε) ≤ y} | X = x0, C > 0],

which is (4.5) with θ(x, v) = G(y, x, v).

We now establish identification of the typical global effect (4.5).

Theorem 3 (Identification of Global effects on “the treated“) If θ(x, v) is

identified for all (x, v) ∈ XV, then θS(x | x0) is identified for all x ∈ X that satisfy

Assumption 3.

We can define global objects in the selected population that are identified without

a common support assumption when X is continuous and x 7→ g(x, ·) is differen-

tiable. An example is the average derivative conditional on X = x in the selected

population:

δS(x) = E[δ(x, V ) | X = x,C > 0],

which is (4.5) with θ(x, v) = δ(x, v) and x0 = x. This object is point identified in

the selected population under Assumption 1 because the integral is over V(x), the

support of V conditional on X = x in the selected population. Another example is

the average derivative in the selected population:

δS = E[δ(X, V ) | C > 0],

which is point identified under Assumption 1 because the integral is over XV , the

support of (X, V ) in the selected population. This is a special case of the generic

global effect:

θS =

∫
θ(x, v)dFXV |C>0(x, v). (4.6)

4.4 Counterfactual distributions

We consider linear functionals of the global effects including counterfactual distribu-

tions constructed by integration of the DSF with respect to different distributions of

the explanatory variables and control function. These counterfactual distributions

enable wage decompositions and other counterfactual analyses (e.g., DiNardo et al.,
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1996, Chernozhukov et al., 2013, Firpo et al., 2011, and Arellano and Bonhomme,

2017).

We focus on functionals for the selected population. To simplify notation, we

use a superscript s to denote these functionals, instead of explicitly conditioning

on C > 0. The decompositions are based on the following representation of the

observed distribution of Y :

Gs
Y (y) =

∫
F s
Y |Z,V (y | z, v)dF s

Z,V (z, v) =

∫
G(y, x, v)1(h(z, v) > 0)dFZ,V (z, v)∫

1(h(z, v) > 0)dFZ,V (z, v)
.

(4.7)

This representation follows from F s
Y |Z,V (y | z, v) = G(y, x, v) by Lemma 1, and:

dF s
V,Z(v, z) =

P(C > 0 | Z = z, V = v)dFV,Z(v, z)

P(C > 0)
=

1(h(z, v) > 0)dFV,Z(v, z)∫
1(h(z, v) > 0)dFV,Z(v, z)

,

by Bayes’ rule and monotonicity of v 7→ h(z, v).

We construct counterfactual distributions by combining the component distribu-

tions G and FZ,V with the selection rule h from different populations corresponding

to different time periods or demographic groups. Let Gt and FZk,Vk denote the

distributions in groups t and k, and hr denote the selection rule in group r. The

counterfactual distribution of Y when G is as in group t, FZ,V is as in group k, while

the selection rule is identical to group r, is:

Gs
Y〈t|k,r〉

(y) :=

∫
Gt(y, x, v)1(hr(z, v) > 0)dFZk,Vk(z, v)∫

1(hr(z, v) > 0)dFZk,Vk(z, v)
. (4.8)

Note that under this definition the observed distribution in group t is Gs
Y〈t|t,t〉

. The

integral in (4.8) is non-parametrically identified if Zk ⊆ Zr and (XVk∩XVr) ⊆ XVt.
These conditions are weaker than ZVk ⊆ ZVr and XVk ⊆ XVt, which guarantee

that hr and Gt are identified for all combinations of z and v over which we integrate.6

By monotonicity of v 7→ h(z, v), the condition hr(z, v) > 0 is equivalent to:

v > FCr|Z(0 | z), (4.9)

6We can weaken the condition ZVk ⊆ ZVr to Zk ⊆ Zr because v 7→ hr(z, v) is monotone and
we only need to know if hr(z, v) > 0. We weaken the condition XVk ⊆ XVt to [XVk ∩XVr] ⊆ XVt
by adopting the convention that Gt is equal to some arbitrary constant whenever it is not identified
at (x, v) ∈ XVk \ XVr because hr(z, v) ≤ 0 if (x, v) 6∈ XVr and Gt(y, x, v)1(hr(z, v) > 0) = 0.
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where FCr|Z is the distribution of C conditional on Z in group r.

We can decompose the difference in the observed distribution between group 1

and group 0 using counterfactual distributions:

Gs
Y〈1|1,1〉

−Gs
Y〈0|0,0〉

= [Gs
Y〈1|1,1〉

−Gs
Y〈1|1,0〉

]︸ ︷︷ ︸
(1)

+ [Gs
Y〈1|1,0〉

−Gs
Y〈1|0,0〉

]︸ ︷︷ ︸
(2)

+ [Gs
Y〈1|0,0〉

−Gs
Y〈0|0,0〉

]︸ ︷︷ ︸
(3)

,

where (1) is a selection effect due to the change in the selection rule given the dis-

tribution of the explanatory variables and the control function, (2) is a composition

effect due to the change in the distribution of the explanatory variables and the

control function, and (3) is a structural effect from the change in the conditional

distribution of the outcome given the explanatory variables and control function.

4.5 Comparison with the Heckman Selection Model

Our decomposition of the distribution yields effects that differ from those derived for

the Heckman selection model (HSM) by Mulligan and Rubinstein (2008). Relative

to our selection effect, we show that the selection effect in the HSM excludes a

component, includes another we attribute to the composition effect, and contains

one that cannot be separately identified from the structural effect in nonseparable

models. We illustrate this via a comparison of the decomposition of the observed

mean of Y , which in our notation for counterfactual distributions, has the form:

µsY〈t|k,r〉 :=

∫
µt(x, v)1(hr(z, v) > 0)dFZk,Vk(z, v)∫

1(hr(z, v) > 0)dFZk,Vk(z, v)
. (4.10)

Suppose that (3.1) and (3.2) follow the HSM:7

Yt = α′tXt + εt if Ct > 0,

Ct = max{γ′tZt + ηt, 0},

where the first element of the vector Xt is the constant term, and εt and ηt follow a

standard bivariate normal distribution with correlation ρt independently of Zt. The

mean of Yt in the selected population (after integration over the distribution of Zt)

7For simplicity we suppress the i subscript and the t subscript denotes period t.
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equals:

µsY〈t|t,t〉 = α′t E[Xt | Ct > 0] + ρt E[λ(γ′tZt) | Ct > 0],

where λ(·) denotes the inverse Mills ratio. We decompose the difference in µsY〈t|t,t〉

between t = 0 and t = 1 into selection, composition and structural effects.

Mulligan and Rubinstein (2008) define the selection effect as:

ρ1 E[λ(γ′1Z1) | C1 > 0]− ρ0 E[λ(γ′0Z0) | C0 > 0].

This effect consists of three components:

ρ1

∫
[λ(γ′1z)Π1(γ′1z)− λ(γ′0z)Π1(γ′0z)]dFZ1(z)

+ ρ1

{∫
λ(γ′0z)Π1(γ′0z)dFZ1(z)−

∫
λ(γ′0z)Π0(γ′0z)dFZ0(z)

}
+ (ρ1 − ρ0)′ E [λ (γ′0Z0)|C0 > 0] , (4.11)

where Πk(γ
′
rz) = Φ(γ′rz)/

∫
Φ(γrz)dFZk(z) is the counterfactual probability of selec-

tion in group k when the selection equation is as in group r. The term Πk(γ
′
rz)FZk(z)

can therefore be interpreted as the counterfactual distribution of Z in the population

k when the selection equation is as in group r. The first two terms capture effects

from changes in the composition of the selected population in terms of observable

characteristics. The first term results from applying the selection equation from

group 0 to group 1 holding the composition of group 1 fixed, whereas the second

term results from changing the distribution of characteristics from group 1 to group

0. The third term captures the effect from a change in the composition of the se-

lected population in terms of unobservables through the correlation coefficient.8 In

our view, the first and third terms are rightful components of the selection effect,

whereas the second term belongs to the composition effect as it is driven by changes

in the distribution of Z.

We now obtain the effects of our decomposition and compare them with the

8Mulligan and Rubinstein (2008) assume that the covariates are homogeneous across groups,
FZ0

= FZ1
, such that the second component drops out.
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selection effect of Mulligan and Rubinstein (2008). The LASF in the HSM is:

µ(x, v) = α′tx+ ρtΦ
−1(v). (4.12)

Plugging this expression into (4.10) and some straightforward calculations given in

Appendix B.3 yield:

µsY〈t|k,r〉 =

∫
[α′tx+ ρtλ(γ′rz)] Πk(γ

′
rz)dFZk(z). (4.13)

Our selection effect is:

µsY〈1|1,1〉 − µ
s
Y〈1|1,0〉

= α′1

∫
x[Π1(γ′1z)− Π1(γ′0z)]dFZ1(z)

+ ρ1

∫
[λ(γ′1z)Π1(γ′1z)− λ(γ′0z)Π1(γ′0z)]dFZ1(z). (4.14)

The first term is the effect on the average wage due to changes in the composi-

tion of the selected population in terms of observable characteristics resulting from

applying the selection equation from group 0 to group 1. It is positive when the

selected population contains relatively more individuals with characteristics that are

associated with higher average wages. This term is missing in the selection effect

in equation (4.11). The second term is the corresponding effect for the unobserved

characteristics and corresponds to the first term in (4.11). Our composition effect

is:

µsY〈1|1,0〉 − µ
s
Y〈1|0,0〉

= α′1

{∫
xΠ1(γ′0z)dFZ1(z)−

∫
xΠ0(γ′0z)dFZ0(z)

}
+

ρ1

{∫
λ(γ′0z)Π1(γ′0z)dFZ1(z)−

∫
λ(γ′0z)Π0(γ′0z)dFZ0(z)

}
.

The first term is the change in the average wage resulting directly from differences

in the distribution of the observed characteristics. The second term is the same as

the second term in (4.11). Finally, our structural effect is:

µsY〈1|0,0〉 − µ
s
Y〈0|0,0〉

= (α1 − α0)′ E [X0|C0 > 0] + (ρ1 − ρ0)E [λ (γ′0Z0)|C0 > 0] .

The first term reflects the impact of the change in the returns to observed charac-
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teristics. The second term captures the type and degree of selection and is the same

as the third term in equation (4.11). As the expectation involving the inverse Mills

ratio is positive, the contribution of this term is positive whenever ρ1 > ρ0.

Finally, we show, via an example, that the two terms of the structural effect

cannot be identified separately in general when the model is nonseparable. Consider

the multiplicative version of the HSM:

Yt = X ′tαtεt, if Ct > 0, (4.15)

Ct = max{γ′tZt + ηt, 0}, (4.16)

where we weaken the parametric assumption on the joint distribution of εt and ηt

to ηt ∼ N(0, 1) and:

E[εt | Zt, Ct > 0] = ρtλ(γ′tZt).

In this case αt and ρt are not identified separately from the moment condition:

E[Yt | Zt, Ct > 0] = X ′tαtρtλ(γ′tZt),

which is the only information of the model about αt and ρt.

While this illustrative discussion focuses on the decomposition of the mean, oth-

ers have also investigated the decomposition of the distribution. Arellano and Bon-

homme (2017) and Maasoumi and Wang (2018) use the Machado and Mata (2005)

method to derive selection effects at different points of the distribution. That is,

they simulate the distribution of wages that would result if everybody in the popula-

tion worked based on estimates of the model’s parameter obtained via the correction

method of Arellano and Bonhomme (2017). They interpret the difference between

this distribution and the uncorrected distribution of wages as a selection effect.

This differs from our approach which investigates the counterfactual distribution for

a more restrictive selection regime.
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5 Empirical Results

5.1 Hours Equation

Figure 3 plots the employment rates of males and females, defined as the percentage

of the sample reporting positive annual hours. The male employment rate fluctuates

cyclically around a downward trend starting at 90.0 percent, reaching a minimum

of 82.1 percent in 2012, and increasing to 83.1 percent in 2016. The female rate

increases from a low of 56.5 percent in 1976 to a high of 75.3 percent in 2001.

It is 70.0 percent in 2016. Figure 3 also plots average annual hours worked for

wage earners. For males they vary cyclically around a slightly upward trend. They

decrease from 2032 in 1976 to a sample minimum of 1966 hours in 1983. They

then increase reaching a maximum of 2160 hours in 2001 before ending at 2103

hours. For females, average annual hours increase by nearly 20 percent, from 1515

to 1792 hours, between 1976 and 2000. The increase continues more slowly after

2000 reaching 1838 hours in 2016. These patterns suggest important movements

along both the intensive and extensive margins of labor supply.

We estimate the control function, defined as the conditional distribution function

of hours, via a distribution regression of annual hours of work on the conditioning

variables for the whole sample separately by gender for each year, as outlined in

the Appendix C. This first step includes those reporting zero hours of work. The

conditioning variables include age and age squared, dummy variables for the highest

educational attainment reported (less than high school, high school, some college,

or college or more), a dummy variable for marital status (married or not), a dummy

variable for being nonwhite, a set of dummy variables for the region of residence

(North-East, South, Central and West), the number of children in the household,

the number of household members, a dummy variable for the presence of children

aged less than 5 years and a dummy variable for the presence of unrelated individuals

in the household. We also include the interaction of the educational dummies with

age and age squared. Each of these variables appears in the hourly wage models

except those capturing family composition.

As our focus is on the wage equation, we do not discuss the results for the hours

equation although we highlight the role of the exclusion restrictions. Given our se-
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lection rule the assumption that annual hours do not affect the hourly wage rate

means that the variation in hours across individuals is a source of identification.

That is, the variation in hours induces movement in the control function for the

sample of workers. We also use measures of family household composition as ex-

planators of hours which do not directly affect wages. While one can argue that

household composition may affect hourly wage rates, we regard these restrictions as

reasonable. Note that similar restrictions have been previously employed (see, for

example, Mulligan and Rubinstein, 2008). Given the potentially contentious use of

these exclusion restrictions, we explore the impact of not using them below.

5.2 Wage Equation and the Impact of Education

We now focus on the determinants of individual hourly wage rates by estimating

wage equations, separately for males and females, for each of the cross sections by

distribution regression over the subsample reporting a positive wage. The condition-

ing variables are those in the hours equation except for the household composition

variables. We also include the control function and its square, and the other condi-

tioning variables are all interacted with the control function.

Substantial empirical evidence suggests that the increasing wage dispersion par-

tially reflects changes in the impact of education (see for example, Autor et al.,

2008, and Murphy and Topel, 2016). We explore this by estimating the impact of

education on wages. We treat an individual’s education level as exogenous and the

“endogeneity/selection” here reflects that from the hours of work decision.

Education is represented by three dummy variables indicating that an individual

has acquired, as her/his highest level of schooling, “high school”, “some college” or

“college or more”. The excluded category is “less than high school”. Since 1992,

the CPS measures educational attainment by the highest year of school or degree

completed rather than the previously employed “highest year of school attendance”.

Although the educational recode by the IPUM-CPS aims at maximizing compara-

bility over time, there is a discontinuity between 1991 and 1992 in how those with a

high school degree and some college are classified. Note that the educational attain-

ment of the workforce increases dramatically over our sample period. Male workers

with at most a high-school degree fell from 64.1 percent in 1976 to 38.4 percent
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in 2016, while those with at least a college degree rose from 20.4 percent in 1976

to 35.2 percent in 2016. The trends for females are even more striking as those

with at most a high-school degree fell from 69.1 percent in 1976 to 29.7 percent in

2016, while those with at least a college degree rose from 16.1 percent in 1976 to

40.1 percent in 2016.

We estimate the various treatment effects introduced above. For example, the

average treatment effects are estimated as:

1

ne

∑
i=1,Ei=e

µ̂(Xi, e
′, V̂i)−

1

ne

∑
i=1,Ei=e

µ̂(Xi, ei, V̂i),

where Ei is education level of individual i, e and e′ are the actual and counterfactual

education levels respectively, ne is the number of observations that have an educa-

tion level equal to e, Xi denotes other observed characteristics, and V̂i denotes the

estimated control function for individual i. The function µ̂ is the estimated LASF

based on a flexibly specified regression of log wages on (Xi, Ei, Vi). The quantile

treatment effects can be obtained via inversion of the estimated LSDF’s. As we

use log wages these effects can be interpreted as percentage changes. To satisfy

the identification restriction we calculate the wage increase that individuals with

education, e, would receive if they achieved a higher level of education, e′.

Figures 6 to 8 present the average treatment effects, and their 95 percent confi-

dence level bands, for various contrasts in education levels.9 The average treatment

effects for the “high school” to “less than high school” comparison, shown in Figure

6, reveal that the effect is increasing but reasonably flat. Figure 7 provides the

estimated treatment effect for the contrast between “some college” and “less than

high school”. For males it is 33 percent in 1976 and 45 percent in 2016. It peaks at

50 percent in 2008. Although there are episodic declines, there is a sizable increase

over the sample period. For females there is a notable increase during the 1980’s

although generally the pattern and magnitude of the changes are similar to those of

males.

Figure 8 provides the treatment effect for the difference between “college” and

“less than high school”, and it is generally large. This premium increases from 50

9The asymptotic theory and the associated proofs for our estimates are provided in Appendices
D and F. Our inference procedures are provided in Appendix E.
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Figure 6: Average treatment effect of education, high school versus less than high
school with correction.
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Figure 7: Average treatment effect of education, some college versus less than high
school with correction.

to 89 percent for males and from 69 to 88 percent for females. For males there is a

steady increase with several large jumps. The occasional decreases appear to either

reflect sampling issues or cyclical influences. The evidence for females is similar

although there is a large decline in the late 1970’s before large increases in both the

1980’s and 1990’s. The growth in the final decades of the previous millennium is

not observed in the new millennium.

The average treatment effects fail to reflect the heterogeneity in the specific
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Figure 8: Average treatment effect of education, college versus less than high school
with correction.

educational treatments. Accordingly, Figures 9 to 11 provide the quantile treat-

ment effects at the 25th, 50th and 75th percentiles.10 Figure 9 presents the “high

school”/“less than high school” comparison. Several features are notable. First, de-

spite the growth in this premium from the period 1976 to 2000, the profiles are rea-

sonably flat over large parts of the sample period. Second, for males there are some

differences across quantiles with those at the 75th percentile showing the strongest

evidence of growth. Third, females have relatively similar profiles at the three quan-

tiles we examine. Figure 10 contrasts “some college” to “less than high school”

and provides a clearer indication that this premium has increased with particularly

strong evidence of large increases in the 1980’s and part of the 1990’s for females.

The variability across the quantiles is small. Figure 11 presents the quantile treat-

ment effects for the college premium. There is a notable increase in the college effect

for males at the first quartile until around 2000 before it flattens for the remainder of

the sample period. There is a more prolonged increase at the median. This reflects

a more heterogeneous effect with the quantile effect at the first quartile starting at

around 52 percent before ending at 81 percent, while the median increases to 93 per-

cent in 2013 before ending at 90 percent. The increase is even more evident at the

third quartile. Similar patterns appear for females although with some additional

10The quantile treatment effects are based on location in the wage distribution. Thus the treat-
ment effects are not necessarily increasing as the quantile at which they are evaluated increases.
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features. There is dramatic growth at the median and below in the 1980’s and parts

of the 1990’s and some leveling out over the 2000’s. There is a steady increase at

the third quartile over the 1980’s and 1990’s and periods of equally fast growth in

some post 2000 periods. For females, there is significant heterogeneity in the effects

across quantiles.

The following conclusions can be drawn regarding these estimated education

treatment effects. First, the returns to education have increased over our sample

period and the premia for the higher education levels have increased remarkably.

Second, the treatment effects, particularly for the college premium, display hetero-

geneity with the quantile treatment effects showing that the treatment effect for

college education is very high for both males and females at the upper quantiles.

Finally, the general trends and level of the treatment effects are similar across gen-

der although the trends in wages differ by gender. This suggests that the education

premia is not the only contributing factor to the different patterns of within gender

wage inequality. While we do not attempt to isolate the role of the other conditioning

variables, they are included in the decomposition exercise. Note that these results

are for the selectivity adjusted estimates. Although they are not reported here, the

unadjusted estimates are similar. We also estimated local effects corresponding to

different values of the control function. Those estimated effects, available from the

authors, did not reveal anything remarkable.

5.3 Decompositions

For the decompositions the base years are set to 1976 for females and 2010 for males.

The increasing female participation rate makes the choice of 1976 seem reasonable

as it assumes that those individuals with a certain combination of x and v working

in 1976 have a positive probability of working in any other year. A sensible choice

of base year for males is 2010, the bottom of the financial crisis, as it has the lowest

level of participation over our sample period. Nevertheless, this is somewhat harder

to defend. The different base years for the genders means that we can compare

trends but not wage levels across gender. The decompositions are presented in

Figures 12 to 16. They capture the impact of changes in the specified components

on the change of the wage distribution. For example, the selection effect captures
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Figure 9: Quantile treatment effect of education, high school versus less than high
school with correction.

the change in the wage distribution due to a change in the selection process.

We commence with the median presented in Figure 14. During our sample
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Figure 10: Quantile treatment effect of education, some college versus less than high
school with correction.

period the male median wage decreases by 13 percent while that of females increased

by 20 percent. The total and structural effects are very similar for males with
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Figure 11: Quantile treatment effect of education, college versus less than high
school with correction.

the small difference due to the composition effect. There is no evidence of any

change in the selection effects. The composition effect increases the median wage by
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Figure 12: Decompositions at D1.
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Figure 13: Decompositions at Q1.

around 2 percent and most likely reflects the increasing educational attainment of

the workforce. The structural component, which appears to be strongly procylical,

produces large negative effects. While there are some upturns, coinciding with

periods of improving economic conditions, the structural effect is negative for the

entire period. This is a striking result noting that it is consistent with Chernozhukov
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Figure 14: Decompositions at Q2.
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Figure 15: Decompositions at Q3.

et al. (2013) who perform a similar exercise for the period 1979 to 1988 without

correcting for sample selection.

Figure 14 reveals that the increase in the female median wage is entirely driven

by the composition effect. The structural effect is negative for the whole period, but

is less substantial than that for males. The turning points appear to coincide across

34



1980 1990 2000 2010

−0.2

0

0.2

0.4

year

d
iff

er
en

ce

Males

1980 1990 2000 2010
year

Females

Selection Structural Composition Total

Figure 16: Decompositions at D9.

genders. The contribution of the selection component is negative but negligible.

This contrasts with Mulligan and Rubinstein (2008) who find a large change in the

selection effect at the mean over time. Specifically, they find that the selection effect

changes from negative and large to positive and large. We do not find evidence for

such a drastic effect, but as highlighted above, our selection effect differs from that

employed by Mulligan and Rubinstein (2008). If their assertion that the correlation

between the error terms increased over time is correct, implying that the selected

sample of females became increasingly more productive relative to the total popu-

lation, then our selection effect might underestimate the total change in the wage

distribution due to changes in the selected sample over time.

We do not, however, find support for the conclusion of Mulligan and Rubinstein

that the least productive females, in terms of unobservables, were working in the

1970’s and 1980’s. Our selection effect measures the difference between the observed

distribution in any given year and the resulting distribution if the “least likely to

participate” females among the selected sample would not have participated. If

the “least likely females” to participate would have been the most productive, this

would reduce the wage in the year of evaluation and reflect a positive change in

the selection effect in our figures for the 1970’s and the 1980’s. We do not find any

support for a positive change in the selection effect.
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The decompositions for the median suggests that the decline in the median male

wage is due to the prices associated with the male skill characteristics. However, the

evidence above established that the returns to schooling have generally increased and

the male labor force has become increasingly more educated. This suggests that the

wages of those individuals with the lowest levels of education must have markedly

decreased. A similar pattern is observed for the female median wage although the

less substantial negative structural impact is offset by the composition effects.

Figures 12 and 13 report the decompositions at the 10th and 25th percentiles

and they are remarkably similar for males. They suggest the reductions in the male

wage rate capture the prices associated with the human capital of individuals located

at these lower quantiles. There is evidence of a negative structural component of

around 25 to 30 percent at each of these quantiles in both the late 1990’s and the

late 2010’s. While these effects are somewhat offset by the composition effects, the

overall effect on wages is negative. The wage reduction appears to be driven by how

worker’s characteristics in this part of the wage distribution are valued. There are

no signs of selection effects for males. Our results at the first decile for the period

1979 to 1988 appear to differ to those in Chernozhukov et al. (2013). However, that

study breaks the structural effect into separate components due to changes in the

mandatory minimum wage, unionization, and the returns to any other characteristic.

Not surprisingly, changes in the mandatory minimum wage have a large impact on

the 10th percentile. Our estimate of the structural effect combines these various

components and also includes the variation in the prices of unobservables. Our

results are consistent with their study at any other quantile.

The evidence at the 10th and 25th percentiles for females is very different to that

for males. First, there are greater differences between the 10th and 25th percentiles.

The negative structural effects for females are more evident at the 10th percentile.

The structural effects are small at the 25th percentile and offset by the composition

effects. For both the 10th and 25th percentiles the overall wage changes become

positive in the late 1990’s and generally increase over the remainder of the sample.

Figures 15 and 16 present the decompositions at the 75th and 90th percentiles.

The male wage at the third quartile shows a small increase. The structural compo-

nent displays a similar pattern to that for females at the lower quantiles discussed

above. That is, initially there is a large decrease before rebounding and remaining
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relatively flat from the early 2000’s. Unlike the lower quantiles the negative changes

resulting from the structural component are not sufficiently large to dominate the

positive composition effects so the overall wage growth at the 75th percentile is

positive from the early 2000’s onwards.

The changes in the female hourly wage rate at the 75th percentile highlights that

the larger movements have occurred at the upper quantiles of the wage distribution.

The changes in the structural component are initially negative before turning posi-

tive around the mid 1980’s. From the beginning of the 1980’s the positively trending

structural component combines with the composition effect to produce a steadily

increasing wage. However, while the decomposition at the 75th pecentile suggests

that the structural components are an important contribution to inequality at higher

quantiles of the distribution, the results at the 90th percentile are even more sup-

portive of this perspective. For males the structural component is less negative than

at lower quantiles and this combined with the positive composition effect produces

a wage gain for the whole period. For females the structural component is positive

from the middle of the 1980’s and has a larger positive effect than the composition

effect. The two effects combine to produce a remarkable 41 percent growth in the

wage.

Consider now the selection effects recalling they capture changes in the selection

rule while assuming that the same unobservables have an impact on the hours of work

decision as those in the year being evaluated. Thus, there can only be a change in

the selection effect if the selection rule, and hence the employment rate, has changed

over time. Figures 14 to 16 suggest that selection effects cannot explain the observed

changes in the males’ wage distribution. At the 50th, 75th and the 90th percentiles

the selection effect is essentially zero. This result is not surprising as males in

this area of the wage distribution have a strong commitment to the labor force.

Moreover, there is likely to be relatively little movement on either the extensive or

intensive margin given males’ level of commitment to full-time employment. One

might suspect that it would be more likely to uncover changes in the selection effects

at the lower parts of the wage distribution as these individuals are likely to have

a weaker commitment to full-time employment. However, the evidence does not

support this.

Now focus on the selection effects for females. There is little evidence of changes
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in selection at higher quantiles. Similar to males, females located in this part of the

wage distribution are likely to have had a relatively strong commitment to employ-

ment in 1976 and thus there were no substantial moves in their hours distribution.

However, at the 10th and 25th percentiles the selection effects seem economically

important.11 At the 10th percentile in 2016 the selection effect contribution is 2.2

percent, while the total wage change is between 8 and 9 percent. Thus the female

wage was lowered by 2 percent due to the increased participation of females. This is

consistent with the “positive selection” finding of Mulligan and Rubinstein (2008)

for the 1990’s. We also find a similar relationship for the late 1970’s and 1980’s. Our

results generally suggest a positive relationship between the control variable V and

wages at the bottom of the distribution. This implies that those with the highest

number of working hours, after conditioning on their observed characteristics, had

the highest wages. The trends implied by our results suggest that selection becomes

more important as we move further down the female wage distribution. This is

similar to the findings of Arellano and Bonhomme (2017) who study the evolution

of female wages in the British labor market for the period 1978 to 2000.

Before we further discuss our results we focus on two important issues. Namely,

the validity of our exclusion restrictions and the composition of our wage sample. We

noted above that the use of household composition variables as exclusion restrictions

can be seen as controversial in this setting for both males and females. Accordingly

we reproduced the decompositions, excluding first the household variables from both

the hours and wage equations and then including them in both equations. For each

of these two new specifications the model is now identified by the variation in the

number of hours worked. Although we do not present the results here, neither

model produces any remarkable changes with respect to the presence or magnitude

of selection effects. The only notable difference with the specification used above is

the presence of occasionally larger negative selection effects at the bottom decile for

females for the specification which excludes the family composition variables from

both equations.

Now focus on the issues related to our wage sample composition. As we construct

our control function using the hours of annual work variable we are imposing, for

11The confidence intervals for these selection effects are presented in Figure 19 in Appendix A.
They indicate that for many time periods they are statistically significantly different from zero.
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example, that an individual who works 2 hours a week for 50 weeks of the year is the

same, in terms of unobservables, as one who works 50 hours a week for 2 weeks of the

year. Given the interpretation of the control function this may be unreasonable. We

check for the sensitivity of our results to this assumption by censoring the data at

various points of the hours distribution. Our empirical work above employs wages

for all those working positive hours so we reproduce the decomposition exercises

after censoring the data at the 5th, 10th and 25th points of the hours distribution.

That is, we exclude the individuals working lower numbers of hours from our wage

sample while retaining them in the estimation of the hours equation. We also repeat

the decomposition exercise using the full time full year selection rule employed by

Mulligan and Rubinstein (2008). The increased censoring has the impact of making

the wage sample more homogenous. Note, however, that as this exercise is changing

the sample size of the wage sample it is not reasonable to compare results at the

same quantiles across samples. However, with the exception of the structural effects

for females at the third quartile the results for the structural, composition and total

effects at different quantiles are very similar for the different censoring rules and

the FTFY samples. The only notable difference is the absence of the selection

effects except for the larger samples. That is, once we censor the bottom of the

hours distribution the selection effects even disappear for the lower quantiles for

females. This is consistent with our earlier discussion that the selection effects, as

measured by our definition, captures the impact of the inclusion of those with a

weaker commitment to market employment. We highlight that we find no evidence

of a change in selection effects using the FTFY sample corresponding to the Mulligan

and Rubinstein (2008) selection rule. However, as we discussed in detail above, this

reflects the different definition of selection effects and the inability to disentangle

components of their selection effect from the structural effect in our setting.

6 Discussion

A number of our empirical results are notable. The impact of the educational treat-

ment varies drastically by level of attainment. While the return to completing high

school and obtaining some college, relative to not completing high school, clearly

increases wages, they do not appear to be the major driving forces of increasing
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inequality. In contrast the college premium for both genders has increased dramat-

ically over the sample period and has important implications for inequality. This is

consistent with several other studies dating back to Murphy and Welch (1992).

The decompositions reveal a number of findings. The mechanisms driving wages

differ by location in the wage distribution and across gender. For males, the fall

in wages at the median and below appears partially due to the penalty associated

with lack of education and other forces which are negatively affecting the lower

skilled. This is reflected by the large negative structural effects for this area of the

wage distribution. As more workers are receiving higher education the composition

effects are positive and somewhat offset the negative structural effects. However, the

large, and increasing educational premium, signals that the “penalty” to not being

educated has increased. The negative structural effects for males are not restricted

to the lower part of the wage distribution. For females, there are wage increases

at each quantile we examined and these reflect, in part, positive and increasing

composition effects. Moreover, while the structural effects are generally negative

for the whole period at the 10th and 25th percentiles, they are typically positive at

the quantiles we examined above the median. Most notably, the structural effects

for females are not dampening wage growth to the same extent as for males and

at some quantiles these structural effects are even substantial contributors to wage

growth. At the lower parts of the female wage distribution the impact of selection

is negative and can be substantial. Selection effects become more important as we

move down the wage distribution. The patterns at the 10th and 25th percentiles

are suggestive of possible larger selection effects at lower percentiles.

Our investigation does not provide direct insight into the macro factors gener-

ating these wages profiles. Nor does it provide evidence on the role of institutional

factors which disproportionately influence certain sectors of the work force. How-

ever it does seem that the mechanisms affecting the wages at the bottom are very

different than those influencing the top. The evidence at the top is supportive of

an increasing skill premium. At the bottom it appears that the prevailing con-

siderations are those associated with the lack of protection of lower wage workers.

These include the decreases in the real value of the minimum wage, the reduction in

unionization and the union premium, and increases in employer bargaining power.

We now directly examine the issue of inequality. The 90/10th percentile ratios for
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Figure 17: Decompositions of D9-D1 ratio.

hourly wages for males and females have increased by 55 and 38 percent respectively.

Our evidence illustrates that hourly wage growth at different locations in the wage

distribution is affected differently by the relevant factors. However, we are unable

to directly infer from that evidence the respective contribution of these factors to

the changes in inequality. For males recall that wage changes at the 10th percentile

were due to the large negative structural effects. There was no evidence of selection

effects and a small positive composition effect offsets the decreases from around the

early 1990’s. The large gains at the 90th percentile reflected a steadily increasing

composition effect and a structural effect which contributed both negatively and

positively over the sample period. There are no signs of changes in selection effects.

Figure 17 provides a decomposition of the changes in the 90/10 ratio for males.

Unsurprisingly, the large increase in the 90/10 ratio for males is almost entirely due

to structural effects. These reflect the negative structural effects at the first decile

and not the positive effects at the ninth decile. The composition effects increase

inequality via their large positive contribution at the ninth decile.

The evidence is more difficult to interpret for females. There is an increas-

ingly positive composition effect at the first decile but the negative structural effect

produces a decline in wages. At the ninth decile, there is a steadily increasing com-

position effect and a structural effect which is generally increasing wages. The large
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42



increase in the total effect for the majority of the sample period reflects the sum of

these two positive effects. At the first decile, the evidence suggests that the changes

in the selection effects are negatively affecting wage growth, while there is no sign

of selection at the ninth decile. Figure 17 presents the decomposition of the change

in the 90/10 ratio for females. Given the various issues related to wage growth, it is

not surprising that the change in the 90/10 ratio appears to reflect almost entirely

a structural effect. The composition effect has slightly decreased this measure of

inequality due to the large composition effects at the lower part of the wage distri-

bution. The change in the selection effects has increased the 90/10 ratio. Moreover,

its contribution in some periods is a relatively large fraction of the total change.

Although our primary focus is not gender inequality, we examine the trends in the

male/female hourly wage ratio at different points of the wage distribution. These are

reported in Figure 18. First, at all locations of the wage distribution females appear

to be catching up. Moreover, the largest gains appear at the median and below.

This result should be treated with caution as it appears largely due to the reduction

in the male wage and not large increases in the female wage. This is confirmed by a

re-examination of Figure 1. Second, the improvement in the relative performance of

females is almost entirely due to structural effects at all of the quantiles reported in

Figure 18. As the earlier evidence suggested the sign and the size of the structural

effects on the individual gender specific wages varied by sample period and location

in the wage distribution, it is surprising that the impact on the gender wage ratios

is so clear. The evidence suggests a relative improvement in the value of female

labor at all points of the wage distribution. Third, the composition effects also have

steadily increased the relative performance of females at all quantiles noting that the

size of the effect diminishes as we move up the wage distribution. The effect is small

at the ninth decile. Finally, the selection effects are increasing gender inequality

although they only appear at the lower parts of the wage distribution.

7 Conclusions

This paper documents the changes in female and male wages over the period 1976 to

2016. We decompose these changes into structural, composition and selection com-

ponents by proposing and implementing an estimation procedure for nonseparable
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models with selection. We find that male real wages at the median and below have

decreased over our sample period despite an increasing skill premium and an in-

crease in educational attainment. The reduction is primarily due to large decreases

of the wages of the individuals with a low level of education. Wages at the upper

quantiles of the distribution have increased drastically due to a large and increasing

skill premium. Combined with the decreases at the lower quantiles, this increase

in the upper quantiles has substantially increased wage inequality. Female wage

growth at lower quantiles is modest although the median wage has grown steadily.

The increases at the upper quantiles for females are substantial and reflect increas-

ing skill premia. These changes have resulted in a substantial increase in female

wage inequality. As our sample period is associated with large changes in the par-

ticipation rates and the hours of work of females we explore the role of changes in

“selection” in wage movements. We find that the impact of these changes in selec-

tion is to decrease the wage growth of those at the lower quantiles with very little

evidence of selection effects at other locations in the female wage distribution. The

selection effects appear to increase wage inequality.
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Figure 19: Selection component and 95% confidence intervals for females.

B Proofs of Section 4

B.1 Lemma 1

Proof. The proof is similar to the proof of Theorem 1 in Newey (2007). For any bounded
function a(ε) and C > 0 (and hence h(Z, η) > 0), by Assumption 1,

E [a(ε) | Z = z, η = q, C > 0] = E [a(ε) | η = q, C > 0]

Since this holds for any function a(ε) and any h(Z, η) > 0 , Z and ε are independent
conditional on η and C > 0. The result follows because η is a one-to-one function of
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FC|Z(C | Z) when C > 0 since η = h−1(Z,C) if C > 0 by Assumption 1, and for c > 0

FC|Z(c | Z = z) = P(max(h(Z, η), 0) ≤ c | Z = z)

= P(h(Z, η) ≤ c | Z = z) = P(η ≤ h−1(Z, c) | Z) = h−1(Z, c),

where we use the normalization η ∼ U(0, 1).

B.2 Theorem 1

Proof. Define the generic local object

θ(x, v) = Eε[Γ(x, ε) | V = v]

for some function Γ(x, e) : X × E → Rk; k ∈ N+, where E is the support of ε. Using
Assumption 1, this equals

θ(x, v) = Eε[Γ(x, ε) | Z = z, V = v].

Since conditional on Z = z and V = v, we have that C = max{h(z, v), 0} and since
(x, v) ∈ XV, there is a z ∈ Z such that C = h(z, v) > 0 and hence

θ(x, v) = Eε[Γ(x, ε) | Z = z, V = v, h(z, v) > 0]

= Eε[Γ(x, ε) | Z = z, V = v, C > 0]

= Eε[Γ(X, ε) | Z = z, V = v, C > 0],

where the third line is due to X ⊆ Z. This third line is identical to the right-hand side
of (4.1) when Γ(x, e) = g(x, e). Along the same lines, this also proves Corollary 1, with
Γ(x, e) = ∂xg(x, e). Note that this also proves identification of the LDSF, since

G(y, x, v) = Eε[1{g(x, ε) ≤ y} | V = v]

and hence the proof is completed by using Γ(x, e) = 1{g(x, e) ≤ y}.

B.3 Proof of equation (4.13)

Note that hr(z, v) implies in this case that v ≥ Φ(−γ′rz). Hence, we can rewrite (4.10)
after substitution of (4.12) as

µsY〈t|k,r〉 :=

∫ ∫ 1
Φ(−γ′rz)

[
α′tx+ ρΦ−1(v)

]
dvdFZk(z)∫ ∫ 1

Φ(−γ′rz)
dvdFZk(z)

.

The result follows from the change of variables w = Φ−1(v) and calculation of the inte-
grals.

C Estimation

The effects of interest are all identified by functionals of the distribution of the observed
variables and the control function in the selected population. The control function is the
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distribution of the censoring variable C conditional on all the explanatory variables Z.
We propose a multistep semiparametric method based on least squares, distribution and
quantile regressions to estimate the effects. The reduced form specifications used in each
step can be motivated by parametric restrictions on the model (3.1)–(3.2). We refer to
Chernozhukov et al. (2017) for examples of such restrictions.

Throughout this section, we assume that we have a random sample of size n, {(Yi ∗
1(Ci > 0), Ci, Zi)}ni=1, of the random variables (Y ∗ 1(C > 0), C, Z), where Y ∗ 1(C > 0)
indicates that Y is observed only when C > 0.

C.1 Estimation of the control function

We estimate the control function using logistic distribution regression (Foresi and Peracchi,
1995, and Chernozhukov et al., 2013). More precisely, for every observation in the selected
sample, we set:

V̂i = Λ(RT
i π̂(Ci)), Ri := r(Zi), i = 1, . . . , n, Ci > 0,

where, for c ∈ Cn, the empirical support of C,

π̂(c) = arg max
π∈Rdr

n∑
i=1

[
1{Ci ≤ c} log Λ(RT

i π)) + 1{Ci > c} log Λ(−RT
i π)

]
,

Λ is the logistic distribution, and r(z) is a dr-dimensional vector of transformations of z
with good approximating properties such as polynomials, B-splines and interactions.

C.2 Estimation of local objects

We can estimate the local average, distribution and quantile structural functions using
flexibly parametrized least squares, distribution and quantile regressions, where we replace
the control function by its estimator from the previous step.

For reasons explained in Section D, our estimation method is based on a trimmed
sample with respect to the censoring variable C. Therefore, we introduce the following
trimming indicator among the selected sample

T = 1(C ∈ C)

where C = (0, c] for some 0 < c <∞, such that P (T = 1) > 0.
The estimator of the LASF is µ̂(x, v) = w(x, v)Tβ̂, where w(x, v) is a dw-dimensional

vector of transformations of (x, v) with good approximating properties, and β̂ is the ordi-
nary least squares estimator:12

β̂ =

[
n∑
i=1

ŴiŴ
T
i Ti

]−1 n∑
i=1

ŴiYiTi, Ŵi := w(Xi, V̂i).

12An alternative approach is to follow Jun (2009) and Masten and Torgovitsky (2014). These
papers acknowledge that with an index restriction the parameters of interest can be estimated in
the presence of a control function by estimation over subsamples for which the control function has
a similar value. While each of these papers considers a random coefficients model with endogeneity
their approach is applicable here.
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The estimator of the LDSF is Ĝ(y, x, v) = Λ(w(x, v)Tβ̂(y)), where β̂(y) is the logistic
distribution regression estimator:

β̂(y) = arg max
b∈Rdw

n∑
i=1

[
1{Yi ≤ y} log Λ(ŴT

i b)) + 1{Yi > y} log Λ(−ŴT
i b))

]
Ti.

Similarly, the estimator of the LQSF is q̂(τ, x, v) = w(x, v)Tβ̂(τ), where β̂(τ) is the Koenker
and Bassett (1978) quantile regression estimator

β̂(τ) = arg min
b∈Rdw

n∑
i=1

ρτ (Yi − ŴT
i b)Ti.

Estimators of the local derivatives are obtained by taking derivatives of the estimators of
the local structural functions. Thus, the estimator of the LADF is:

δ̂(x, v) = ∂xw(x, v)Tβ̂,

and the estimator of the LQDF is:

δ̂τ (x, v) = ∂xw(x, v)Tβ̂(τ).

C.3 Step 3: Estimation of global effects

We obtain estimators of the generic global effects by approximating the integrals over
the control function by averages of the estimated local effects evaluated at the estimated
control function. The estimator of the effect (4.3) is

θ̂S(x) =
n∑
i=1

Tiθ̂(x, V̂i)/
n∑
i=1

Ti.

This yields the estimators of the ASF for θ̂(x, v) = µ̂(x, v) and DSF at y for θ̂(x, v) =
Ĝ(y, x, v). The estimator of the QSF is then obtained by inversion of the estimator of the
DSF.13 We form an estimator of the effect (4.5) as

θ̂S(x | x0) =

n∑
i=1

TiKi(x0)θ̂(x, V̂i)/

n∑
i=1

TiKi(x0),

for Ki(x0) = 1(Xi = x0) when X is discrete or Ki(x0) = kh(Xi−x0) when X is continuous,
where kh(u) = k(u/h)/h, k is a kernel, and h is a bandwidth such as h → 0 as n → 0.
Finally, the estimator of the effect (4.6) is

θ̂S =
n∑
i=1

Tiθ̂(Xi, V̂i)/
n∑
i=1

Ti.

13We can use the generalized inverse

q̂S(τ, x) =

∫ ∞
0

1(ĜS(y, x) ≤ τ)dy −
∫ 0

−∞
1(ĜS(y, x) > τ)dy,

which does not require that the estimator of the DSF y 7→ ĜS(y, x) be monotone.
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C.4 Step 4: Estimation of counterfactual distributions

Based on equations (4.8) and (4.9), the estimator (or sample analog) of the counterfactual
distribution is:

ĜsY〈t|k,r〉(y) =
n∑
i=1

Λ(ŴT
i β̂t(y))1[V̂i > Λ(RT

i π̂r(0))]/nskr,

where the average is taken over the sample values of V̂i and Zi in group k, nskr =∑n
i=1 1[V̂i > Λ(RT

i π̂r(0))], β̂t(y) is the distribution regression estimator of step 2 in group
t, and π̂r(0) is the distribution regression estimator of step 1 in group r. Here we are
estimating the components F sYt by logistic distribution regression in group t and the com-
ponent F sZk by the empirical distribution in group k.

D Asymptotic theory

We derive large sample theory for some of the local and global effects. We focus on
average effects for the sake of brevity. The theory for distribution and quantile effects
can be derived using similar arguments, see, for example, Chernozhukov et al. (2015)
and Chernozhukov et al. (2017). Throughout the analysis we treat the dimensions of
the flexible specifications used in all the steps as fixed, so that the model parameters
are estimable at a

√
n rate. The model remains semiparametric because some of the

parameters are function-valued such as the parameters of the control variable.14

In what follows, we shall use the following notation. We let the random vector A =
(Y ∗ 1(C > 0), C, Z, V ) live on some probability space (Ω0,F0, P ). Thus, the probability
measure P determines the law of A or any of its elements. We also let A1, ..., An, i.i.d.
copies of A, live on the complete probability space (Ω,F ,P), which contains the infinite
product of (Ω0,F0, P ). Moreover, this probability space can be suitably enriched to carry
also the random weights that appear in the weighted bootstrap. The distinction between
the two laws P and P is helpful to simplify the notation in the proofs and in the analysis.
Calligraphic letters such as Y and X denote the supports of Y ∗ 1(C > 0) and X; and YX
denotes the joint support of (Y,X). Unless explicitly mentioned, all functions appearing
in the statements are assumed to be measurable.

We now state formally the assumptions. The first assumption is about sampling and
the bootstrap weights.

Condition 1 (Sampling and Bootstrap Weights) (a) Sampling: the data {Yi∗1(Ci >
0), Ci, Zi}ni=1 are a sample of size n of independent and identically distributed observations
from the random vector (Y ∗ 1(C > 0), C, Z). (b) Bootstrap weights: (ω1, ..., ωn) are i.i.d.
draws from a random variable ω ≥ 0, with EP [ω] = 1, VarP [ω] = 1, and EP |ω|2+δ < ∞
for some δ > 0; live on the probability space (Ω,F ,P); and are independent of the data
{Yi ∗ 1(Ci > 0), Ci, Zi}ni=1 for all n.

The second assumption is about the first stage where we estimate the control function

ϑ0(c, z) := FC(c | z).
14Chernozhukov at al. (2017) discuss the trade-offs between imposing parametric restrictions in

the model and the support conditions required for nonparametric identification of the effects of
interest.
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We assume a logistic distribution regression model for the conditional distribution of C in
the trimmed support, C, that excludes censored and extreme values of C. The purpose of
the upper trimming is to avoid the upper tail in the modeling and estimation of the control
variable, and to make the eigenvalue assumption in Condition 2(b) more plausible. We
consider a fixed trimming rule, which greatly simplifies the derivation of the asymptotic
properties. Throughout this section, we use bars to denote trimmed supports with respect
to C, e.g., CZ = {(c, z) ∈ CZ : c ∈ C}, and V = {ϑ0(c, z) : (c, z) ∈ CZ}.

Condition 2 (First Stage) (a) Trimming: we consider the trimming rule as defined by
the indicator T = 1(C ∈ C). (b) Model: the distribution of C conditional on Z follows the
distribution regression model in the trimmed support C , i.e.,

FC(c | Z) = FC(c | R) = Λ(RTπ0(c)), R = r(Z),

for all c ∈ C, where Λ is the logit link function; the coefficients c 7→ π0(c) are three
times continuously differentiable with uniformly bounded derivatives; R is compact; and
the minimum eigenvalue of EP

[
Λ(RTπ0(c))[1− Λ(RTπ0(c))]RRT

]
is bounded away from

zero uniformly over c ∈ C.

For c ∈ C, let

π̂b(c) ∈ arg min
π∈Rdim(R)

n∑
i=1

ωi{1(Ci ≤ c) log Λ(RT
i π) + 1(Ci > c) log Λ(−RT

i π)},

where either ωi = 1 for the unweighted sample, to obtain the estimator; or ωi are the
bootstrap weights to obtain bootstrap draws of the estimator. Then set

ϑ0(c, r) = Λ(rTπ0(c)); ϑ̂b(c, r) = Λ(rTπ̂b(c)),

if (c, r) ∈ CR, and ϑ0(c, r) = ϑ̂b(c, r) = 0 otherwise.
Theorem 4 of Chernozhukov et al. (2015) established the asymptotic properties of

the DR estimator of the control function. We repeat the result here as a lemma for
completeness and to introduce notation that will be used in the results below. Let
‖f‖T,∞ := supa∈A |T (c)f(a)| for any function f : A 7→ R, and λ = Λ(1 − Λ), the density
of the logistic distribution.

Lemma 2 (First Stage) Suppose that Conditions 1 and 2 hold. Then, (1)

√
n(ϑ̂b(c, r)− ϑ0(c, r)) =

1√
n

n∑
i=1

ei`(Ai, c, r) + oP(1) ∆b(c, r) in `∞(CR),

`(A, c, r) := λ(rTπ0(c))[1{C ≤ c} − Λ(RTπ0(c))]×

×rTEP
{

Λ(RTπ0(c))[1− Λ(RTπ0(c))]RRT
}−1

R,

EP [`(A, c, r)] = 0,EP [T`(A,C,R)2] <∞,

where (c, r) 7→ ∆b(c, r) is a Gaussian process with uniformly continuous sample paths and
covariance function given by EP [`(A, c, r)`(A, c̃, r̃)T]. (2) There exists ϑ̃b : CR 7→ [0, 1]
that obeys the same first order representation uniformly over CR, is close to ϑ̂b in the
sense that ‖ϑ̃b − ϑ̂b‖T,∞ = oP(1/

√
n) and, with probability approaching one, belongs to a
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bounded function class Υ such that the covering entropy satisfies:15

logN(ε,Υ, ‖ · ‖T,∞) . ε−1/2, 0 < ε < 1.

The next assumptions are about the second stage. We assume a flexible linear model for
the conditional distribution of Y given (X,V ) in the trimmed support C ∈ C, impose com-
pactness conditions, and provide sufficient conditions for identification of the parameters.
Compactness is imposed over the trimmed support and can be relaxed at the cost of more
complicated and cumbersome proofs.

Condition 3 (Second Stage) (a) Model: the expectation of Y conditional on (X,V ) in
the trimmed support C ∈ C is

E(Y | X,V,C ∈ C) = WTβ0, V = FC|Z(C | Z), W = w(X,V ).

(b) Compactness and moments: the set W is compact; the derivative vector ∂vw(x, v)
exists and its components are uniformly continuous in v ∈ V, uniformly in x ∈ X , and are
bounded in absolute value by a constant, uniformly in (x, v) ∈ XV; E(Y 2 | C ∈ C) < ∞;
and β0 ∈ B, where B is a compact subset of Rdw . (c) Identification and nondegeneracy:
the matrix J := EP [WWT T ] is of full rank; and the matrix Ω := VarP [f1(A) + f2(A)] is
finite and is of full rank, where

f1(A) := {WTβ0 − Y }WT,

and, for Ẇ = ∂vw(X, v)|v=V ,

f2(A) := EP [{[WTβ0 − Y ]Ẇ +WTβ0W}T`(a,C, Z)]
∣∣
a=A

.

Let

β̂ = arg min
β∈Rdim(W )

n∑
i=1

Ti(Yi − βTŴi)
2, Ŵi = w(Xi, V̂i), V̂i = ϑ̂(Ci, Ri),

where ϑ̂ is the estimator of the control function in the unweighted sample; and

β̂b = arg min
β∈Rdim(W )

n∑
i=1

ωiTi(Yi − βTŴ b
i )2, Ŵ b

i = w(Xi, V̂
b
i ), V̂ b

i = ϑ̂b(Ci, Ri),

where ϑ̂b is the estimator of the control function in the weighted sample. The following
lemma establishes a central limit theorem and a central limit theorem for the bootstrap
for the estimator of the coefficients in the second stage.

Let  P denote bootstrap consistency, i.e. weak convergence conditional on the data
in probability as defined in Appendix F.1.

Lemma 3 (CLT and Bootstrap FCLT for β̂) Under Conditions 1–3, in Rdw ,

√
n(β̂ − β0) J−1G, and

√
n(β̂b − β̂) P J

−1G,

where G ∼ N(0,Ω) and J and Ω are defined in Assumption 3(c).

15See Appendix F for a definition of the covering entropy.
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The properties of the estimator of the LASF, µ̂(x, v) = w(x, v)Tβ̂, and its bootstrap
version, µ̂b(x, v) = w(x, v)Tβ̂b, are a corollary of Lemma 3.

Corollary 2 (FCLT and Bootstrap FCLT for LASF) Under Assumptions 1–3, in
`(XV),

√
n(µ̂(x, v)− µ(x, v)) Z(x, v) and

√
n(µ̂b(x, v)− µ̂(x, v)) P Z(x, v),

where (x, v) 7→ Z(x, v) := w(x, v)TJ−1G is a zero-mean Gaussian process with covariance
function

CovP [Z(x0, v0), Z(x1, v1)] = w(x0, v0)TJ−1ΩJ−1w(x1, v1).

To obtain the properties of the estimator of the ASFs, we define Wx := w(x, V ), Ŵx :=

w(x, V̂ ), and Ŵ b
x := w(x, V̂ b). The estimator and its bootstrap draw of the ASF in the

trimmed support, µS(x) = EP {βT
0 Wx | T = 1}, are µ̂S(x) =

∑n
i=1 β̂

TŴxiTi/nT , and

µ̂bS(x) =
∑n

i=1 eiβ̂
bT Ŵ b

xiTi/n
b
T , where nT =

∑n
i=1 Ti and nbT =

∑n
i=1 eiTi. The estima-

tor and its bootstrap draw of the ASF on the treated in the trimmed support, µS(x |
x0) = EP {βT

0 Wx | T = 1, X = x0}, are µ̂S(x | x0) =
∑n

i=1 β̂
TŴxiKi(x0)Ti/nT (x0), and

µ̂bS(x) =
∑n

i=1 eiβ̂
bT Ŵ b

xi Ki(x0)Ti/n
b
T (x0), where nT (x0) =

∑n
i=1Ki(x0)Ti and nbT (x0) =∑n

i=1 eiKi(x0)Ti. Let pT := P (T = 1) and pT (x) := P (T = 1, X = x). The next result
gives large sample theory for these estimators. The theory for the ASF on the treated is
derived for X discrete, which is the relevant case in our empirical application.

Theorem 4 (FCLT and Bootstrap FCLT for ASF) Under Assumptions 1–3, in `(X ),

√
npT (µ̂S(x)− µS(x)) Z(x) and

√
npT (µ̂bS(x)− µ̂S(x)) P Z(x),

where x 7→ Z(x) is a zero-mean Gaussian process with covariance function

CovP [Z(x0), Z(x1)] = CovP [WT
x0β0 + σx0(A),WT

x1β0(v) + σx1(A) | T = 1],

with
σx(A) = EP {WT

x T}J−1[f1(A) + f2(A)] + EP {ẆT
x β0T`(a,X,R)}

∣∣
a=A

.

Also, if pT (x0) > 0, in `(X ),√
npT (x0)(µ̂S(x | x0)− µS(x | x0)) Z(x | x0) and√

npT (x0)(µ̂bS(x | x0)− µ̂S(x | x0)) P Z(x | x0),

where x 7→ Z(x | x0) is a zero-mean Gaussian process with covariance function

CovP [Z(x | x0), Z(x̃ | x0)] = CovP [WT
x β0 + ψx(A),WT

x̃ β0 + ψx̃(A) | T = 1, X = x0],

Theorem 4 can be used to construct confidence bands for the ASFs, x 7→ µS(x) and
x 7→ µS(x | x0), over regions of values of x via Kolmogorov-Smirnov type statistics and
weighted bootstrap, and to construct confidence intervals for average treatment effects,
µ(x1)− µ(x0) and µ(x1 | x0)− µ(x0 | x0), via t-statistics and weighted bootstrap.
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E Inference

We use weighted bootstrap to make inference on all the objects of interest (Praestgaard and
Wellner, 1993; Hahn, 1995). This method obtains the bootstrap version of the estimator of
interest by repeating all the estimation steps including random draws from a distribution
as sampling weights. The weights should be positive and come from a distribution with
unit mean and variance such as the standard exponential. Weighted bootstrap has some
theoretical and practical advantages over empirical bootstrap. Thus, it is appealing that
the consistency can be proven following the strategy set forth by Ma and Kosorok (2005),
and the smoothness induced by the weights helps dealing with discrete covariates with
small cell sizes. The implementation of the bootstrap for the local and global effects is
summarized in the following algorithm:

Algorithm 5 (Weighted Bootstrap) For b = 1, . . . , B, repeat the following steps: (1)
Draw a set of weights (ωb1, . . . , ω

b
n) i.i.d. from a distribution that satisfies Condition 1(b)

such as the standard exponential distribution. (2) Obtain the bootstrap draws of the control
function, V̂ b

i = Λ(RT
i π̂

b(Ci)), i = 1, . . . , n, where for c ∈ Cn,

π̂b(c) = arg max
π∈Rdr

n∑
i=1

ωbi
[
1{Ci ≤ c} log Λ(RT

i π)) + 1{Ci > c} log Λ(−RT
i π)

]
.

(3) Obtain the bootstrap draw of the local effect, θ̂b(x, v) . For the LASF, θ̂b(x, v) =
µ̂b(x, v) = w(x, v)Tβ̂b, where

β̂b =

[
n∑
i=1

ωbi Ŵ
b
i (Ŵ b

i )TTi

]−1 n∑
i=1

ωbi Ŵ
b
i YiTi, Ŵ b

i := w(Xi, V̂
b
i ).

For the LDSF, θ̂b(x, v) = Ĝb(y, x, v) = Λ(w(x, v)Tβ̂b(y)), where

β̂b(y) = arg max
b∈Rdw

n∑
i=1

ωbi

[
1{Yi ≤ y} log Λ(bTŴ b

i ) + 1{Yi > y} log Λ(−bTŴ b
i )
]
Ti.

For the LQSF, θ̂b(x, v) = q̂b(τ, x, v) = w(x, v)Tβ̂b(τ), where

β̂b(τ) = arg min
b∈Rdw

n∑
i=1

ωbiρτ (Yi − bTŴ b
i )Ti.

(4) Obtain the bootstrap draw of the global effects as

θ̂bS(x) =

n∑
i=1

ωbiTiθ̂
b(x, V̂ b

i )/

n∑
i=1

ωbiTi,

θ̂bS(x | x0) =

n∑
i=1

ωbiTiKi(x0)θ̂b(x, V̂ b
i )/

n∑
i=1

ωbiTiKi(x0),

or

θ̂bS =
n∑
i=1

ωbiTiθ̂
b(Xi, V̂

b
i )/

n∑
i=1

ωbiTi.
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F Proofs of Appendix D

F.1 Notation

In what follows ϑ denotes a generic value of the control function. It is convenient also
to introduce some additional notation, which will be extensively used in the proofs. Let
Vi(ϑ) := ϑ(Zi), Wi(ϑ) := w(Xi, Vi(ϑ)), and Ẇi(ϑ) := ∂vw(Xi, v)|v=Vi(ϑ). When the pre-
vious functions are evaluated at the true values we use Vi = Vi(ϑ0), Wi = Wi(ϑ0), and
Ẇi = Ẇi(ϑ0). Recall that A := (Y ∗ 1(C > 0), C, Z, V ), T (c) = 1(c ∈ C), and T = T (C).
For a function f : A 7→ R, we use ‖f‖T,∞ = supa∈A |T (c)f(a)|; for a K-vector of functions
f : A 7→ RK , we use ‖f‖T,∞ = supa∈A ‖T (c)f(a)‖2. We make functions in Υ as well as

estimators ϑ̂ to take values in [0, 1]. This allows us to simplify notation in what follows.
We adopt the standard notation in the empirical process literature (see, e.g., Van der

Vaart, 1998),

En[f ] = En[f(A)] = n−1
n∑
i=1

f(Ai),

and

Gn[f ] = Gn[f(A)] = n−1/2
n∑
i=1

(f(Ai)− EP [f(A)]).

When the function f̂ is estimated, the notation should interpreted as:

Gn[f̂ ] = Gn[f ] |
f=f̂

and EP [f̂ ] = EP [f ] |
f=f̂

.

We also use the concepts of covering entropy and bracketing entropy in the proofs. The
covering entropy logN(ε,F , ‖ · ‖) is the logarithm of the minimal number of ‖ · ‖-balls of
radius ε needed to cover the set of functions F . The bracketing entropy logN[](ε,F , ‖ · ‖)
is the logarithm of the minimal number of ε-brackets in ‖ · ‖ needed to cover the set of
functions F . An ε-bracket [`, u] in ‖ · ‖ is the set of functions f with ` ≤ f ≤ u and
‖u− `‖ < ε.

We follow the notation and definitions in Van der Vaart and Wellner (1996) of boot-
strap consistency. Let Dn denote the data vector and En be the vector of bootstrap
weights. Consider the random element Zbn = Zn(Dn, En) in a normed space Z. We say
that the bootstrap law of Zbn consistently estimates the law of some tight random element
Z and write Zbn  P Z in Z if

suph∈BL1(Z)

∣∣EbPh (Zbn)− EPh(Z)
∣∣→Pb 0, (F.1)

where BL1(Z) denotes the space of functions with Lipschitz norm at most 1, EbP denotes
the conditional expectation with respect to En given the data Dn, and →Pb denotes con-
vergence in (outer) probability.

F.2 Proof of Lemma 3

The proof strategy follows closely the argument put forth in Chernozhukov et al. (2015) to
deal with the dimensionality and entropy properties of the first step distribution regression
estimators.
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F.2.1 Auxiliary Lemmas

We start with 2 results on stochastic equicontinuity and a local expansion for the second
stage estimators that will be used in the proof of Lemma 3.

Lemma 4 (Stochastic equicontinuity) Let ω ≥ 0 be a positive random variable with
EP [ω] = 1, VarP [ω] = 1, and EP |ω|2+δ < ∞ for some δ > 0, that is independent of

(Y ∗ 1(C > 0), Z, C, V ), including as a special case ω = 1, and set, for A = (ω, Y ∗ 1(C >
0), Z, C, V ),

f1(A, ϑ, β) := ω · [W (ϑ)Tβ − Y ] ·W (ϑ) · T.

Under Assumptions 1–3 the following relations are true

(a) Consider the set of functions

F = {f1(A, ϑ, β)Tα : (ϑ, β) ∈ Υ0 × B, α ∈ Rdim(W ), ‖α‖2 ≤ 1},

where B is a compact set under the ‖·‖2 metric containing β0, Υ0 is the intersection
of Υ, defined in Lemma 2, with a neighborhood of ϑ0 under the ‖ ·‖T,∞ metric. This
class is P -Donsker with a square integrable envelope of the form ω times a constant.

(b) Moreover, if (ϑ, β)→ (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric, then

‖f1(A, ϑ, β)− f1(A, ϑ0, β0)‖P,2 → 0.

(c) Hence for any (ϑ̃, β̃)→P (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric such that ϑ̃ ∈ Υ0,

‖Gnf1(A, ϑ̃, β̃)−Gnf1(A, ϑ0, β0)‖2
P→ 0.

(d) For for any (ϑ̂, β̃)→P (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric so that

‖ϑ̂− ϑ̃‖T,∞ = oP(1/
√
n), where ϑ̃ ∈ Υ0,

we have that
‖Gnf1(A, ϑ̂, β̃)−Gnf1(A, ϑ0, β0)‖2

P→ 0.

Proof of Lemma 4. The proof is divided in subproofs of each of the claims.
Proof of Claim (a). The proof proceeds in several steps.
Step 1. Here we bound the bracketing entropy for

I1 = {[W (ϑ)Tβ − Y ]T : β ∈ B, ϑ ∈ Υ0}.

For this purpose consider a mesh {ϑk} over Υ0 of ‖ · ‖T,∞ width δ, and a mesh {βl} over
B of ‖ · ‖2 width δ. A generic bracket over I1 takes the form

[i01, i
1
1] = [{W (ϑk)

Tβl − κδ − Y }T, {W (ϑk)
Tβl + κδ − Y }T ],

where κ = LW maxβ∈B ‖β‖2 + LW , and LW := ‖∂vw‖T,∞ ∨ ‖w‖T,∞.
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Note that this is a valid bracket for all elements of I1 because for any ϑ located within
δ from ϑk and any β located within δ from βl,

|W (ϑ)Tβ −W (ϑk)
Tβl|T ≤ |(W (ϑ)−W (ϑk))

Tβ|T + |W (ϑk)
T(β − βl)|T

≤ LW δmax
β∈B
‖β‖2 + LW δ ≤ κδ, (F.2)

and the ‖ · ‖P,2-size of this bracket is given by

‖i01 − i11‖P,2 ≤
√

2κδ.

Hence, counting the number of brackets induced by the mesh created above, we arrive at
the following relationship between the bracketing entropy of I1 and the covering entropies
of Υ0, and B,

logN[](ε, I1, ‖ · ‖P,2) . logN(ε2,Υ0, ‖ · ‖T,∞) + logN(ε2,B, ‖ · ‖2)

. 1/(ε2 log4 ε) + log(1/ε),

and so I1 is P -Donsker with a constant envelope.
Step 2. Similarly to Step 1, it follows that

I2 = {W (ϑ)TαT : ϑ ∈ Υ0, α ∈ Rdim(W ), ‖α‖2 ≤ 1}

also obeys a similar bracketing entropy bound

logN[](ε, ‖ · ‖P,2) . 1/(ε2 log4 ε) + log(1/ε)

with a generic bracket taking the form [i02, i
1
2] = [{W (ϑk)

Tα − κδ}T, {W (ϑk)
Tα + κδ}T ].

Hence, this class is also P -Donsker with a constant envelope.
Step 3. In this step we verify the claim (a). Note that F = ω · I1 · I2. This class has a
square-integrable envelope under P . The class F is P -Donsker by the following argument.
Note that the product I1 · I2 of uniformly bounded classes is P -Donsker, e.g., by Theorem
2.10.6 of Van der Vaart and Wellner (1996). Under the stated assumption the final prod-
uct of the random variable ω with the P -Donsker class remains to be P -Donsker by the
Multiplier Donsker Theorem, namely Theorem 2.9.2 in Van der Vaart and Wellner (1996).

Proof of Claim (b). The claim follows by the Dominated Convergence Theorem, since
any f1 ∈ F is dominated by a square-integrable envelope under P , and, W (ϑ)TβT →
WTβ0T and |W (ϑ)TαT −WTαT | → 0 in view of the relation such as (F.2).
Proof of Claim (c). This claim follows from the asymptotic equicontinuity of the em-
pirical process (Gn[f1], f1 ∈ F) under the L2(P ) metric, and hence also with respect to
the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric in view of Claim (b).

Proof of Claim (d). It is convenient to set f̂1 := f1(A, ϑ̂, β̃) and f̃1 := f1(A, ϑ̃, β̃). Note
that

max
1≤j≤dimW

|Gn[f̂1 − f̃1]|j ≤ max
1≤j≤dimW

|
√
nEn[f̂1 − f̃1]|j + max

1≤j≤dimW
|
√
nEP (f̂1 − f̃1)|j

.
√
nEn[ζ̂ ] +

√
n EP [ζ̂ ]

. Gn[ζ̂ ] + 2
√
nEP [ζ̂ ],
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where |f |j denotes the jth element of the application of absolute value to each element of

the vector f1, and ζ̂ is defined by the following relationship, which holds with probability
approaching one,

max
1≤j≤dimW

|f̂1−f̃1|j . ω|W (ϑ̂)Tβ̃−Y |‖W (ϑ̂)−W (ϑ̃)‖2+ω|W (ϑ̂) Tβ̃−W (ϑ̃)Tβ̃| . ω(k+|Y |)∆n =: ζ̂,

where k is a constant such that k ≥ LW maxβ∈B ‖β‖2 with LW = ‖∂vw‖T,∞ ∨ ‖w‖T,∞,
and ∆n = o(1/

√
n) is a deterministic sequence such that

∆n ≥ ‖ϑ̂− ϑ̃‖T,∞.

The second inequality result follows from

|W (ϑ̂)Tβ̃ − Y |‖W (ϑ̂)−W (ϑ̃)‖2 . (k + |Y |)∆n, and |W (ϑ̂)Tβ̃ −W (ϑ̃)Tβ̃| . k∆n.

Then, by part (c) the result follows from

Gn[ζ̂ ] = oP(1),
√
nEP [ζ̂ ] = oP(1).

Indeed,

‖ζ̂‖P,2 .
√

EPω2(k2 + EP (Y 2 | C ∈ C))∆2
n = o(1)⇒ Gn[ζ̂ ] = oP(1),

and

‖ζ̂‖P,1 ≤ EP |ω| · (k + EP (|Y | | C ∈ C)∆n = o(1/
√
n)⇒ EP |ζ̂| = oP(1/

√
n).

Lemma 5 (Local expansion) Under Assumptions 1–3, for

δ̂ =
√
n(β̃ − β0) = OP(1);

∆̂(c, r) =
√
n(ϑ̂(c, r)− ϑ0(c, r)) =

√
n En[`(A, c, r)] + oP(1) in `∞(CR),

‖
√
n En[`(A, ·)]‖T,∞ = OP(1),

we have that

√
n EP [{W (ϑ̂)Tβ̃ − Y }W (ϑ̂)T ] = Jδ̂ +

√
n En [f2(A)] + oP(1),

where
f2(a) = EP {[WTβ0 − Y ]Ẇ +WẆTβ0}T`(a,C,R).

Proof of Lemma 5.
Uniformly in Z ∈ Z,

√
nEP {W (ϑ̂)Tβ̃ − Y | Z}T

=
√
nEP {WTβ0 − Y | Z}T + {W (ϑ̄ξ)

Tδ̂ + Ẇ (ϑ̄ξ)
Tβ̄ξ∆̂(C,R)}T

=
√
nEP {WTβ0 − Y | Z}T + {WTδ̂ + ẆTβ0∆̂(C,R)}T + ρZ ,

ρ̄ = sup
{Z∈Z}

|ρZ | = oP(1),

where ϑ̄ξ is on the line connecting ϑ0 and ϑ̂ and β̄ξ is on the line connecting β0 and β̃.
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The first equality follows by the mean value expansion. The second equality follows by

uniform continuity of W (·) and Ẇ (·), ‖ϑ̂− ϑ0‖T,∞
P→ 0 and ‖β̃ − β0‖2

P→ 0.

Since the entries of W and Ẇ are bounded, δ̂ = OP(1), and ‖∆̂‖T,∞ = OP(1), with
probability approaching one,

√
nEP {W (ϑ̂)Tβ̃ − Y }W (ϑ̂)T = EP {WTβ0 − Y }ẆT ∆̂(C,R)

+ EP {WWTT}δ̂ + EP {WẆTβ0T ∆̂(C,R)}+OP(ρ̄)

= Jδ̂ + EP [{WTβ0 − Y }Ẇ +WẆTβ0]T ∆̂(C,R) + oP(1).

Substituting in ∆̂(x, r) =
√
n En[`(A, x, r)] + oP(1) and interchanging EP and En,

EP [{WTβ0 − Y }Ẇ +WẆTβ0]T ∆̂(C,R) =
√
n En[g(A)] + oP(1),

since ‖[{WTβ0 − Y }Ẇ + WẆTβ0]T‖P,2 is bounded . The claim of the lemma follows.

F.2.2 Proof of Lemma 3.

The proof is divided in two parts corresponding to the CLT and bootstrap CLT.

CLT: In this part we show
√
n(β̂ − β0) J−1G in Rdw .

Step 1. This step shows that
√
n(β̂ − β0) = OP(1). Recall that

β̂ = arg min
β∈Rdw

En[(Y −W (ϑ̂)Tβ)2T ].

Due to convexity of the objective function, it suffices to show that for any ε > 0 there
exists a finite positive constant Bε such that ,

lim inf
n→∞

P
(

inf
‖η‖2=1

√
nη TEn

[
f̂1,η,Bε

]
> 0

)
≥ 1− ε, (F.3)

where
f̂1,η,Bε(A) :=

{
W (ϑ̂)T(β0 +Bεη/

√
n)− Y

}
W (ϑ̂)T.

Let
f1(A) :=

{
WTβ0 − Y

}
WT.

Then uniformly in ‖η‖2 = 1,

√
nηTEn[f̂1,η,Bε ] = ηTGn[f̂1,η,Bε ] +

√
nηTEP [f̂1,η,Bε ]

=(1) ηTGn[f1] + oP(1) + ηT√nEP [f̂1,η,Bε ]

=(2) ηTGn[f1] + oP(1) + ηTJηBε + ηTGn[f2] + oP(1)

=(3) OP(1) + oP(1) + ηTJηBε +OP(1) + oP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃ = β0 + Bεη/
√
n,

respectively, using that ‖ϑ̂ − ϑ̃‖T,∞ = oP(1/
√
n), ϑ̃ ∈ Υ, ‖ϑ̃ − ϑ0‖T,∞ = OP(1/

√
n) and

‖β0 + Bεη/
√
n − β0‖2 = O(1/

√
n); relation (3) holds because f1 and f2 are P -Donsker

by step-2 below. Since J is positive definite, with minimal eigenvalue bounded away from
zero, the inequality (F.3) follows by choosing Bε as a sufficiently large constant.
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Step 2. In this step we show the main result. Let

f̂1(A) :=
{
W (ϑ̂)Tβ̂ − Y

}
W (ϑ̂)T.

From the first order conditions of the least squares problem,

0 =
√
nEn

[
f̂1

]
= Gn

[
f̂1

]
+
√
nEP

[
f̂1

]
=(1) Gn[f1] + oP(1) +

√
nEP

[
f̂1

]
=(2) Gn[f1] + oP(1) + J

√
n(β̂ − β0) + Gn[f2] + oP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃ = β̂, respectively,
using that ‖ϑ̂ − ϑ̃‖T,∞ = oP(1/

√
n), ϑ̃ ∈ Υ, and ‖ϑ̃ − ϑ‖T,∞ = OP(1/

√
n) by Lemma 2,

and ‖β̂ − β0‖2 = OP(1/
√
n).

Therefore by invertibility of J ,

√
n(β̂ − β0) = −J−1Gn(f1 + f2) + oP(1).

By the Central Limit Theorem

Gn(f1 + f2) G in Rdw , G ∼ N(0,Ω), Ω = EP [(f1 + f2)(f1 + f2)T],

where Ω is specified in the lemma. Conclude that

√
n(β̂ − β0) J−1G in Rdw .

Bootstrap CLT: In this part we show
√
n(β̂b − β̂) P J

−1G in Rdw .
Step 1. This step shows that

√
n(β̂b−β0) = OP(1) under the unconditional probability P.

Recall that
β̂b = arg min

β∈Rdim(W )
En[ω(Y −W (ϑ̂b)Tβ)2T ],

where ω is the random variable used in the weighted bootstrap. Due to convexity of the
objective function, it suffices to show that for any ε > 0 there exists a finite positive
constant Bε such that

lim inf
n→∞

P
(

inf
‖η‖2=1

√
nη TEn

[
f̂ b1,η,Bε

]
> 0

)
≥ 1− ε, (F.4)

where
f̂ b1,η,Bε(A) := ω ·

{
[W (ϑ̂b)T(β0 +Bεη/

√
n)]− Y

}
W (ϑ̂b)T.

The result then follows by an analogous argument to step 1 in the proof of the CLT, which
we do not repeat here.
Step 2. In this step we show that

√
n(β̂b − β0) = −J−1Gn(f b1 + f b2) + oP(1) under the

unconditional probability P. Let

f̂ b1(A) := ω · {W (ϑ̂b)Tβ̂b − Y }W (ϑ̂b)T.
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From the first order conditions of the least squares problem in the weighted sample,

0 =
√
nEn

[
f̂ b1

]
= Gn

[
f̂ b1

]
+
√
nEP

[
f̂ b1

]
=(1) Gn[f b1 ] + oP(1) +

√
nEP

[
f̂ b1

]
=(2) Gn[f b1 ] + oP(1) + J

√
n(β̂b − β0) + Gn[f b2 ] + oP(1),

where relations (1) and (2) follow by Lemma 4 and Lemma 5 with β̃ = β̂b, respectively,
using that ‖ϑ̂b − ϑ̃b‖T,∞ = oP(1/

√
n), ϑ̃b ∈ Υ and ‖ϑ̃b − ϑ0‖T,∞ = OP(1/

√
n) by Lemma

2, and ‖β̂b − β0‖2 = OP(1/
√
n). Therefore by invertibility of J ,

√
n(β̂b − β0) = −J−1Gn(f b1 + f b2) + oP(1).

Step 3. In this final step we establish the behavior of
√
n(β̂b − β̂) under Pb. Note that Pb

denotes the conditional probability measure, namely the probability measure induced by
draws of ω1, . . . , ωn conditional on the data A1, ..., An. By Step 2 of the proof of the CLT
and Step 2 of the proof of the bootstrap CLT, we have that under P:

√
n(β̂b − β0) = −J−1Gn(f b1 + f b2) + oP(1),

√
n(β̂ − β0) = −J−1Gn(f1 + f2) + oP(1).

Hence, under P
√
n(β̂b − β̂) = −J−1Gn(f b1 − f1 + f b2 − f2) + rn = −J−1Gn((ω − 1)(f1 + f2)) + rn,

where rn = oP(1). Note that it is also true that

rn = oPb(1) in P-probability,

where the latter statement means that for every ε > 0, Pb(‖rn‖2 > ε) = oP(1). Indeed, this
follows from Markov inequality and by

EP[Pb(‖rn‖2 > ε)] = P(‖rn‖2 > ε) = o(1),

where the latter holds by the Law of Iterated Expectations and rn = oP(1).
Note that f b1 = ω · f1 and f b2 = ω · f2, where f1 and f2 are P -Donsker by step-2 of the

proof of the first part and EPω2 <∞. Then, by the Conditional Multiplier Central Limit
Theorem, e.g., Lemma 2.9.5 in Van der Vaart and Wellner (1996),

Gbn := Gn((ω − 1)(f1 + f2)) P G in Rdw .

Conclude that √
n(β̂b − β̂) P J

−1G in Rdw .

F.3 Proof of Theorem 4

In this section we use the notation Wx(ϑ) = w(x, V (ϑ)) such that Wx = w(x, V (ϑ0)).
We focus on the proof for the estimator of the ASF, because the proof for the estimator

of the ASF on the treated can be obtained by analogous arguments. The results for the
estimator of the ASF follow by a similar argument to the proof of Lemma 3 using Lemmas
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6 and 7 in place of Lemmas 4 and 5, and the delta method. For the sake of brevity, here
we just outline the proof of the FCLT.

Let ψx(A, ϑ, β) := Wx(ϑ)TβT such that µS(x) = EPψx(A, ϑ0, β0)/ EPT and µ̂S(x) =
Enψx(A, ϑ̂, β̂)/EnT . Then, for ψ̂x := ψx(A, ϑ̂, β̂) and ψx := ψx(A, ϑ0, β0),

√
n
[
Enψx(A, ϑ̂, β̂)− EPψx(A, ϑ0, β0)

]
= Gn

[
ψ̂x

]
+
√
nEP

[
ψ̂x − ψx

]
=(1) Gn[ψx] + oP(1) +

√
nEP

[
ψ̂x − ψx

]
=(2) Gn[ψx] + oP(1) + Gn[σx] + oP(1),

where relations (1) and (2) follow by Lemma 6 and Lemma 7 with β̃ = β̂, respectively,
using that ‖ϑ̂ − ϑ̃‖T,∞ = oP(1/

√
n), ϑ̃ ∈ Υ, and ‖ϑ̃ − ϑ‖T,∞ = OP(1/

√
n) by Lemma 2,

and
√
n(β̂ − β0) = −J−1Gn(f1 + f2) + oP(1) from step 2 of the proof of Lemma 3.

The functions x 7→ ψx and x 7→ σx are P -Donsker by Example 19.7 in Van der Vaart
(1998) because they are Lipschitz continuous on X . Hence, by the Functional Central
Limit Theorem

Gn(ψx + σx) Z(x) in `∞(X ),

where x 7→ Z(x) is a zero mean Gaussian process with uniformly continuous sample paths
and covariance function

CovP [ψx0 + σx0 , ψx1 + σx1 ], x0, x1 ∈ X .

The result follows by the functional delta method applied to the ratio of Enψx(A, ϑ̂, β̂)
and EnT using that (

Gnψx(A, ϑ̂, β̂)
GnT

)
 

(
Z(x)
ZT

)
,

where ZT ∼ N(0, pT (1− pT )),

CovP (Z(x), ZT ) = GT (x)pT (1− pT ),

and

CovP [ψx0 + hx0 , ψx1 + σx1 | T = 1]

=
CovP [ψx0 + σx0 , ψx1 + σx1 ]− µT (x0)µT (x1)pT (1− pT )

pT
.

Lemma 6 (Stochastic equicontinuity) Let ω ≥ 0 be a positive random variable with
EP [ω] = 1, VarP [ω] = 1, and EP |ω|2+δ < ∞ for some δ > 0, that is independent of

(Y 1(C > 0), C, Z, V ), including as a special case ω = 1, and set, for A = (ω, Y 1(C >
0), C, Z, V ),

ψx(A, ϑ, β) := ω ·Wx(ϑ)Tβ · T.

Under Assumptions 1–3, the following relations are true.

(a) Consider the set of functions

F := {ψx(A, ϑ, β) : (ϑ, β, x) ∈ Υ0 × B × X},

where X is a compact subset of R, B is a compact set under the ‖ · ‖2 metric
containing β0, Υ0 is the intersection of Υ, defined in Lemma 2, with a neighborhood
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of ϑ0 under the ‖ · ‖T,∞ metric. This class is P -Donsker with a square integrable
envelope of the form ω times a constant.

(b) Moreover, if (ϑ, β)→ (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric , then

sup
x∈X
‖ψx(A, ϑ, β)− ψx(A, ϑ0, β0)‖P,2 → 0.

(c) Hence for any (ϑ̃, β̃)→P (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric such that ϑ̃ ∈ Υ0,

sup
x∈X
‖Gnψx(A, ϑ̃, β̃)−Gnψx(A, ϑ0, β0)‖2 →P 0.

(d) For for any (ϑ̂, β̃)
P→ (ϑ0, β0) in the ‖ · ‖T,∞ ∨ ‖ · ‖2 metric , so that

‖ϑ̂− ϑ̃‖T,∞ = oP(1/
√
n), where ϑ̃ ∈ Υ0,

we have that
sup
x∈X
‖Gnψx(A, ϑ̂, β̃)−Gnψx(A, ϑ0, β0)‖2

P→ 0.

Proof of Lemma 6. The proof is omitted since it is similar to the proof of Lemma 4.

Lemma 7 (Local expansion) Under Assumptions 1–3 , for

δ̂ =
√
n(β̃ − β0) = OP(1);

∆̂(x, r) =
√
n(ϑ̂(x, r)− ϑ0(x, r)) =

√
n En[`(A, x, r)] + oP(1) in `∞(XR),

‖
√
n En[`(A, ·)]‖T,∞ = OP(1),

we have that

√
n
{
EPWx(ϑ̂)Tβ̃T − EPWT

x β0T
}

= EP {WxT}Tδ̂+EP {ẆT
x β0T`(a,X,R)}

∣∣
a=A

+ōP(1),

where ōP(1) denotes order in probability uniform in x ∈ X .

Proof of Lemma 7. The proof is omitted because it is similar to the proof of Lemma 5.
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