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ABSTRACT
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A fast-growing literature shows that digital technologies are displacing labor from routine 

tasks, raising concerns that labor is racing against the machine. We develop a task-

based framework to estimate the aggregate labor demand and employment effects of 

routine-replacing technological change (RRTC), along with the underlying mechanisms. 

We show that while RRTC has indeed had strong displacement effects in the European 

Union between 1999 and 2010, it has simultaneously created new jobs through increased 

product demand, outweighing displacement effects and resulting in net employment 

growth. However, we also show that this finding depends on the distribution of gains from 

technological progress.

JEL Classification: E24, J23, J24, O33

Keywords: labor demand, employment, routine-replacing technological 
change, tasks, local demand spillovers

Corresponding author:
Terry Gregory
IZA - Institute of Labor Economics
Schaumburg-Lippe-Str. 5-9
53113 Bonn
Germany

E-mail: tgregory@iza.org

* Helpful comments by David Autor, Christian Dustmann, Bernd Fitzenberger, Maarten Goos, Frank Levy, and 

participants of the following workshops are gratefully acknowledged: ZEW & IAB conference on “Spatial Dimensions 

of the Labour Market”; 6th Economic Workshop at the IAAEU; TASKS-III conference on “Changing Tasks - 

Consequences for Inequality”; DFG & ZEW conference on “Occupations, Skills and the Labor Market”; KU Leuven 

workshop on “New Empirical Developments in Health and Labor Markets”; annual ESPE and ERSA conferences; 

as well as Manchester University, Trier University, Utrecht University, and ZEW labor market seminars. The authors 

gratefully acknowledge funding from the state Baden-Württemberg within the SEEK program; Salomons gratefully 

acknowledges funding from the Netherlands Organisation for Scientific Research.



1 Introduction

In recent years, rapid improvements in digital technologies such as information and communica-

tion technologies (ICT) and artificial intelligence (AI) have led to a lively public and scientific

debate on the impact of automation on jobs. As highlighted by Acemoglu and Restrepo (2018a),

this debate is permeated by a false dichotomy. On the one hand, there are alarmists, foremost

in public press, arguing that automation will lead to the end of work. Their views are fueled by

reports zooming in on the automation potential of existing jobs, claiming that large shares of

U.S. and European jobs are at risk of being eliminated in coming decades (Bowles 2014; Frey

and Osborne 2016).1 On the other hand, there are economists arguing that technological revo-

lutions of the past have not persistently reduced labor demand, and that there is no reason to

believe that this time is different. Their views are reflected in canonical skill-biased technologi-

cal change (SBTC) frameworks that assume technology is complementary to (skilled) workers,

thus precluding labor displacement and, ultimately, ruling out the possibility that technological

change may decrease labor demand and employment (see Acemoglu and Autor 2011; Acemoglu

and Restrepo 2018b for a discussion and overview of this extensive literature).

Recent theoretical studies take a more nuanced view by considering that technological change

may have both labor-replacing and labor-augmenting effects. In particular, the routine-replacing

technological change (RRTC)2 hypothesis adapts canonical frameworks by explicitly allowing

for labor displacement. In particular, RRTC entails that digital technologies substitute for hu-

man labor in so-called routine tasks, which follow a set protocol, making them codifiable in

software (see Autor et al. 2003). Using a rich theoretical framework rooted in this approach,

Acemoglu and Restrepo (2018a,c) show that technological progress may lead to decreased labor

demand (along with falling wages and employment), if positive forces spurred by e.g. produc-

tivity increases are not large enough to countervail negative labor displacement effects resulting

from automation.3 Other studies have considered the theoretical conditions for more extreme

scenarios, including human obsolescence and labor immiseration (Benzell et al. 2016; Nordhaus
1Although Arntz et al. (2017) show that these narrow “feasibility studies” overstate the exposure of jobs to

automation by ignoring the substantial variation in job tasks within occupations.
2Sometimes also referred to as routine-biased technological change (RBTC).
3This partially mirrors the theoretical results in Autor and Dorn (2013) and Goos et al. (2014), who show

that the effect of RRTC on the employment share of routine jobs depends on the relative sizes of the elasticity
of substitution between inputs in production and the elasticity of substitution in consumption between different
goods and services. This is a departure from canonical SBTC models which consider a single final consumption
good, thus abstracting from such adjustments in the composition of product demand (e.g. see Card and Lemieux
2001; Katz and Murphy 1992).
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2015; Sachs et al. 2015; Susskind 2017). The common thread in this literature is that the ag-

gregate effect of technological progress on jobs is shown to be theoretically ambiguous (see also

Caselli and Manning 2018). To determine whether labor is racing with or against the machine

therefore ultimately requires empirically testing the existence of both these labor-displacing

and countervailing forces, and determining their relative sizes: this paper aims to tackle these

questions.

In particular, we investigate how routine-replacing technologies impact economy-wide labor

demand and employment by developing and estimating an empirically tractable framework. This

task-based framework builds on Autor and Dorn (2013) and Goos et al. (2014), and incorporates

three main channels through which RRTC affects labor demand. Firstly, RRTC reduces labor

demand through substitution effects, as declining capital costs incentivize firms in the high-

tech tradable sector to substitute capital for routine labor inputs, and to restructure production

processes towards routine tasks. Secondly, RRTC induces additional labor demand by increasing

product demand, as declining capital costs reduce the prices of tradables – we call this the product

demand effect. Thirdly, product demand spillovers also create additional labor demand: the

increase in product demand raises incomes, which is partially spent on low-tech non-tradables,

raising local labor demand. We further investigate how these spillovers depend on the allocation

of gains from technological progress by considering the role of non-wage income in producing

these spillovers, inspired by a theoretical literature emphasizing this channel (Benzell et al.

2016; Freeman 2015; Sachs et al. 2015). The first of these three forces acts to reduce labor

demand, whereas the latter two go in the opposite direction. As such, the net labor demand

effect of RRTC is theoretically ambiguous. For each of these three labor demand channels, we

also model the resulting labor supply responses: this allows us to obtain predictions for changes

in employment. We use data over 1999-2010 for 238 regions across 27 European countries

to construct an empirical estimate of the economy-wide effect of RRTC on labor demand and

employment for Europe as a whole. Rather than only identifying the net impact, we also use our

model to decompose these economy-wide effects into the three labor demand channels outlined

above.

This contributes to the literature in several ways. Firstly, ours is the first estimate of the

effect of routine-replacing technologies on economy-wide labor demand and employment.4 As
4A large literature surveyed in Acemoglu and Autor (2011) has studied the relative labor demand changes

resulting from RRTC, but has so far ignored the absolute labor demand and employment effects which lie at the
heart of the current debate on whether labor is racing with or against the machine.
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outlined in Autor et al. (2003), routine-task replacement is the very nature of digital technology,

making this especially relevant to study. Our approach complements work which has either

taken a more narrow view by considering industrial robotics in isolation (Acemoglu and Restrepo

2017; Chiacchio et al. 2018; Dauth et al. 2017; Graetz and Michaels 2018), or a wider view by

considering all increases in Total Factor Productivity (TFP) irrespective of their source (Autor

and Salomons 2018).

Moreover, we do not only study the net impact of RRTC on labor demand and employment,

but also empirically quantify the relevance of the underlying transmission channels derived from

our framework. As such, we study both the labor-displacing and countervailing effects of RRTC

highlighted in the theoretical literature in an empirically tractable manner. This is in contrast

to the existing empirical literature which uses reduced-form approaches to inform on these em-

ployment effects. However, empirically quantifying the relevance of the underlying transmission

channels is important both because these channels are the key distinguishing features of modern

theoretical frameworks of technological change, and because their relative sizes inform about the

conditions under which labor demand and employment are likely to rise or decline as a result

of RRTC. This matters even more because reduced-form estimates have so far not produced a

strong consensus: Acemoglu and Restrepo (2017) and Chiacchio et al. (2018) find robustly neg-

ative employment effects, whereas positive or weakly positive effects are found by others (Autor

and Salomons 2018; Dauth et al. 2017; Graetz and Michaels 2018). Our approach of separately

identifying these channels helps shed light on how the net effect of technological change on jobs

comes about. In doing so, we build a bridge between reduced form empirical work which studies

net employment effects while remaining largely silent on the underlying mechanisms, and the-

oretical contributions which highlight mechanisms but do not speak to their relative sizes with

empirical evidence.

Our results indicate that the net labor demand and employment effects of routine-replacing

technological change over the past decade have been positive, suggesting that labor has been

racing with rather than against the machine in aggregate. However, this does not imply an

absence of labor displacement. Indeed, decomposing net labor demand and employment changes

into the three separate channels reveals a substantial decrease in labor demand and employment

resulting from the substitution of capital for labor. Nevertheless, the product demand effect and

its spillovers to the non-tradable sector are large enough to overcompensate this substitution

effect for the countries and time period we study. Overall, these findings validate the recent
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literature’s approach of modeling technological change as having labor-displacing effects, but

also stress the importance of considering countervailing product demand responses. Lastly, we

show that these estimates hinge critically on rising non-wage income feeding back into local

product demand: if only wage income is taken into account, the total labor demand effects are

found to be only half as large. This highlights that the allocation of the gains from technological

progress matters for whether labor is racing with or against the machine.

The remainder of this paper is organized as follows. Section 2 presents our theoretical frame-

work for analyzing the employment effect of RRTC as well as the decomposition of this effect

into the three channels outlined above. Our empirical strategy for identifying the parameters of

this framework is outlined in Section 2.7. Section 3 describes the data and presents our param-

eter estimates. Section 4 outlines and discusses our results, and Section 5 concludes.

2 Framework

In this section, we present a stylized task-based framework for understanding how labor races

with or against the machine: specifically, we examine how RRTC affects labor demand and

employment. We do this by modeling how firms’ production processes shift towards capital

inputs in the face of RRTC, leading to subsequent output price changes as well as a spatial

reallocation of output and jobs.

We build on Goos et al. (2014) and distinguish tradable and non-tradable goods in order

to model the spatial reallocation of labor demand resulting from RRTC.5 This extension serves

three purposes. Firstly, it allows us to consider the transmission channel of local labor de-

mand spillovers, which a related economic geography literature (see Moretti 2011) indicates to

be potentially important.6 Secondly, this spatial framework captures the technology-induced

component of interregional trade.7 Since we will estimate this framework using regional data
5The model in Goos et al. (2014) neither contains a spatial dimension nor differentiates sectors by their

tradability. A similar theoretical distinction between tradable and non-tradable goods is made in Autor and Dorn
(2013), although our set-up differs from theirs in that we assume that trade between regions is costly.

6According to this literature, technological change creates high-tech jobs which, in turn, generate additional
employment through local demand spillovers. Reduced-form empirical estimates indeed provide evidence for the
existence of such spillovers for both the U.S. (Moretti 2010; Moretti and Thulin 2013) and Europe (Goos et al.
2015).

7Our framework does not account for any employment effects of exogenously decreasing trade barriers. Previous
work has shown that one such exogenous change, the accession of China to the WTO, has had an economically
sizable impact on employment in U.S. (Autor et al. 2013; Caliendo et al. 2015) and German regions (Dauth et al.
2014). However, these effects were also found not to be strongly correlated with the employment effects of RRTC
at the regional or occupational level, or across time (Autor et al. 2015).
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from 27 European countries, we expect to empirically capture the most important part of such

technology-induced trade: intra-EU27 trade makes up roughly 70 percent of total European

trade (WTO 2012). Finally, this approach allows us to later exploit spatial variation in regions’

exposure to RRTC for empirically identifying the parameters of our model.8

In particular, our framework consists of i = 1, 2, . . . , I regions, where each region has a non-

tradable and a tradable sector.9 Firms produce tradable goods and services by combining a

set of occupational tasks which are themselves produced by combining labor and technological

capital. Hence, we differentiate labor by tasks or occupations and thus indirectly consider

skill or qualification differences as long as they correspond to occupational differences. RRTC

is modeled as exogenously declining costs of capital in routine tasks relative to non-routine

tasks, which can alternatively be interpreted as increasing productivity of capital in routine

tasks relative to non-routine tasks. Non-tradable goods and services, on the other hand, are

produced using only labor. Assuming that only tradables use capital in production implies

that technological change directly affects the tradable sector whereas the non-tradable sector is

affected only indirectly through local spillovers, as in Autor and Dorn (2013). This is rooted

in the empirical observation that tradables, such as business services, are more ICT-intense

and have seen faster ICT-adoption than non-tradables such as personal services (see Table 7 in

Appendix A.4.1).

2.1 Production of tradables

The production structure in the tradable sector g is depicted in Figure 1. Regional firms in the

tradable sector produce a variety cgi that can be traded across regions. We assume monopolistic

competition between the firms so that prices are a constant markup over marginal costs.10 The

production of tradables requires a set of different tasks Tj , j = 1, 2, . . . , J , which differ in their

routine intensity: the more routine the task is, the easier it is to automate. These tasks are

combined to produce tradable output Y g
i with a Constant Elasticity of Substitution (CES)

production technology, Y g
i =

[∑J
j=1(βijTij)

η−1
η

] η
η−1

, where η > 0 is the elasticity of substitution

between tasks, reflecting to what extent firms may substitute one task for another. The term
8Figure 8 in the Appendix shows that regions are differently routine-intense in terms of their employment, so

that they are differently exposed to RRTC.
9The empirical classification we implement to distinguish tradables from non-tradables is reported in Table 1

from Section 3.
10cgi refers to the regional goods bundle, which is a CES bundle of the varieties produced by the firms residing

in region i. Firms within the same region are identical and thus charge the same price. For illustrative purposes,
we present the model at the level of regions.
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βij captures region i’s efficiency in performing task j. As in Goos et al. (2014), each task itself is

performed by a combination of human labor and machines (technological capital). We assume

a Cobb-Douglas (CD) production technology, Tij = (Ng
ij)κ(Kij)1−κ, where the production of

tasks depends on labor from occupation j Ng
j , task-specific capital inputs Kj , and the share of

labor in the costs of producing a task, 0 < κ < 1.11

Firms minimize the costs of producing Y g
i , which leads to the regional task demand,

Tij = Y g
i β

1−η
ij

(
cIi

wκijr
1−κ
j

)η
, (1)

which rises in tradable production Y g
i , in the efficiency of that task βij , and in the ratio of

marginal costs cIi relative to the task-specific costs wκijr1−κ
j , to the extent that tasks can be

substituted (η). In this setting, we then think of RRTC as a decline in the costs of technological

capital in routine tasks relative to non-routine tasks. Equation (1) shows that, as relative

capital costs for routine tasks decrease, firms start shifting their tradable production towards

these tasks.

Firms minimize the costs of producing Tij , which leads to regions’ occupational employment,

Ng
ij = Tij

(
rj
wj

κ

1− κ

)1−κ

, (2)

which increases in the demand for tasks in that region Tij as well as in task-specific capital

costs rj relative to occupational wages wj . From Equation (2) it can be seen that occupational

employment decreases with falling capital costs for routine tasks, reflecting that firms substitute

capital for human labor in routine tasks. Note that, although labor and capital are p-substitutes

in the production of tasks in our framework, they can be either gross complements or gross

substitutes.

Substitution effects. RRTC affects employment through substitution effects, where workers

are replaced by machines in the production of routine tasks (direct positive relationship between

rj and Ng
ij in Equation 2).12 This effect is further reinforced as firms shift their production tech-

nology towards routine task inputs (indirect negative relationship between rj and Ng
ij working

11Note that, as in Goos et al. (2014), we equate tasks and occupations (both denoted by subscript j).
12Note that this substitution effect covers both substitution of capital for labor in routine-intensive jobs, as well

as rising labor demand in non-routine-intensive jobs.
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Figure 1: Regional production

(cgi )
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j KjInputs (CD)
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ηη

through Tij in Equation 2).13 Overall, these two substitution effects lead to a decline in employ-

ment. The size of the negative employment effect rises in the substitutability between tasks in

tradables production (η) and is more pronounced in regions with a higher initial share of routine

tasks.

2.2 Consumption

The product demand structure is depicted in Figure 2. We assume that the utility of households

depends on the consumption of tradables Cg and non-tradables Cs and follows a CD utility

function: U = Cµg C
1−µ
s , where 0 < µ < 1 is the expenditure share of tradables.14 Non-tradables

are consumed locally, and are – without loss of generalizability – assumed to be homogeneous.

Tradables are composed of varieties cgi produced by the regional firms and are consumed by

households from all regions. We assume that preferences for tradables follow a CES utility

function, Cg =
[∑I

i=1(cgi )
σ−1
σ

] σ
σ−1 , where σ > 0 is the elasticity of substitution between regional

bundles of tradables. As such, σ reflects to what extent consumers can replace local bundles

with bundles from other regions. The regional bundles of tradables are, in turn, composed of the

regional firms’ varieties. For illustrative purposes, we present the model at the level of regions.15

Individuals maximize utility by optimizing the composition of regional bundles, which leads

to the demand for regional tradables,

cgi =
(
τii′p

g
i

P g

)−σ
µ
I

P g
, (3)

13Note that this substitution effect corresponds to the canonical factor-augmenting view of technological change:
changing relative prices (or productivities) of labor and capital induce substitution between capital- and labor-
intensive tasks. As highlighted by Acemoglu and Restrepo (2018a,c), this effect alone is unable to explain key
features of automation technologies. We therefore take into account direct capital-labor substitution through our
first substitution effect.

14By relying on CD utility, we assume homothetic preferences and thus assume that technology-induced price
declines of tradables do not affect the expenditure shares of tradables and non-tradables. In an extended version
of our model (available on request) we introduce non-homothetic preferences, relaxing the restriction that δ2 = 1
in empirical Equation 13. However, empirically, non-homothetic preferences have been found to have only small
effects on relative task demand (Autor and Dorn, 2013; Goos et al., 2014) so we do not pursue this extension
further.

15The firm-level relaxes our model by allowing σ to be smaller than one.
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Figure 2: Product demand

U
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Sectors (CD)
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where P g is an aggregated price index and pgi are local producer prices in the tradable sector. τii′

are iceberg trade costs between the exporting i and importing i′ region. Equation 3 shows that

consumption of tradables rises with households’ real income I
P g and with the share of income

spent on these tradables µ. Moreover, consumption of tradables decreases in the relative price

for these goods and services pgi
P g to the extent that consumers can switch to tradables produced

by other regions (σ).16

Product demand effect. This consumption structure provides us with the second channel

through which RRTC affects employment. The substitution of capital for labor (see substitution

effects) allows firms to reduce costs, which lowers the output prices of tradables. Product demand

for tradables rises as a result of lower output prices (negative relationship between pgi
P g and cgi

in Equation 3), leading to higher production and income, inducing additional employment in

the tradable sector. This product demand effect of RRTC thus raises employment.17 The effect

increases in the substitutability between goods bundles, σ, and is stronger in regions with a

higher initial share of routine tasks.

2.3 Non-tradable sector

Firms in the non-tradable sector produce homogeneous goods and services using labor inputs,

only. As outlined at the beginning of this section, this reflects the limited substitution possibili-

ties between technological capital and labor in the production of non-tradables. The production

function for non-tradables in region i is Csi = αsL
s
i , where labor input Lsi is a CES-aggregate

of task-specific labor inputs and αs is the productivity of labor. We further assume the labor
16The elasticity of substitution in production (between tasks) η and the elasticity of substitution in consump-

tion (between regional goods bundles) σ determine whether labor and capital in the tradable sector are gross
complements or substitutes. This can be shown by deriving the cross-elasticity of unconditional labor demand
with respect to capital costs. Our parameter estimates from Table 5 suggest that capital and labor are gross
complements.

17The counterpart to our product demand effect is the productivity effect in the Acemoglu and Restrepo
(2018a,c) framework. A major distinction, however, is that our product demand effect does not contain spillovers
to other sectors, which we instead model separately in Section 2.3. The sum of our product demand and spillover
effects is thus similar to the productivity effect in Acemoglu and Restrepo (2018a,c).
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aggregate Lsi to be performed by occupations j = 1, .., J , Lsi =
[∑J

j=1(βsijNij)
η−1
η

] η
η−1

with

η > 0.

Firms minimize the costs of producing non-tradables Csi by minimizing the cost of obtaining

the labor aggregate Lsi . Occupational employment in the non-tradable sector is then given by

N s
ij = (1− µ)β1−η

ij

(
wj
wsi

)−η
Ii
wsi
. (4)

Employment generally decreases with wages in the non-trabable sector wsi and increases with

local income Ii. Occupational employment in non-tradables rises with regions’ efficiency in

performing tasks (βsij) and declines with occupational wages wj relative to regional wages wsi

to the extent that tasks can be substituted (η). RRTC thus affects employment in Equation 4

only indirectly through its effect on local income.

Local income Ii is composed of the sum of income in the non-tradable and tradable sectors.

The former consists of labor income, only, whereas the latter consists of labor income and firm

profits, which we can rewrite as sales minus capital costs, Ii = wsiL
s
i + pgi Y

g
i −

∑J
j=1 rjKj .18

Defining φ1−K = pgi −
∑J
j=1 rjKij/Y

g
i as the disposable income resulting from tradable sales per

unit of real output, we can express local income as follows:

Ii = wsiL
s
i + φ1−KY

g
i (5)

RRTC thus affects local income and, hence, employment in the non-tradable sector positively by

increasing output Y g
i . Note that RRTC has two opposing effects on φ1−K : falling capital costs

rj imply falling production costs and thus more disposable income per unit of output, although

falling prices (i.e. lower nominal sales) due to falling capital costs counteract this effect.

Product demand spillover effect. This framework leads to the third channel through which

RRTC impacts employment. In particular, RRTC leads to higher production (see product

demand effect), which results in additional income among local households (positive relationship

between φ1−KY
g
i and Ii in Equation 5). This induces a product demand spillover effect as the

additional local income is partly spent on local non-tradables (positive relationship between Ii

and N s
ij in Equation 4), creating additional production and employment in the local economy.

18We assume that there is a competitive K-sector that produces Kj with real resource costs rj and zero profits,
such that capital costs play no role for consumption.
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These spillovers are larger in regions with a higher initial share of routine tasks.

However, note that the product demand spillover effect is only unambiguously positive if firm

owners are located in the region of production, such that additional firm profits arising from

RRTC are spent locally. This may not be realistic if firms are, for instance, owned by non-EU

residents. In the empirical investigation, we therefore compare two alternative scenarios, where

either (1) all income from the tradables sector is spent locally and we assume that the income

generated per unit of output, φ1−K , stays constant, or (2) all non-wage income is consumed

abroad, i.e. regional income consists only of wage income. Derivations on the labor demand and

employment effects under the second assumption can be found in Appendix A.2.

2.4 Labor supply

We follow Acemoglu and Restrepo (2017) and specify the supply of labor as follows:

Ng
ij = N̄g

ijw
g
ij
ε and N s

ij = N̄ s
ijw

s
ij
ε, (6)

This specification implies that ε > 0 is the wage elasticity of labor supply. We do not directly

model movements of workers between occupations, sectors and regions. However, this mobility

is implicitly included in ε, meaning that ε measures both labor supply at the intensive and

extensive margins, and workers’ mobility between labor market segments. We do not directly

model workers mobility due to lack of adequate data at the EU level.

2.5 Labor demand and product demand equations

Combining Equations (1) and (2) from the production of tradables as well as Equations (4) and

(5) from the production of non-tradables, we can derive the following labor demand equations

for the tradable (g) and non-tradable (s) sector:19

19See Appendix A.1 for details on these derivations.
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logNg
ij = log Y g

i + (1− η) log βij + η log cIi + (1− κ) log κ

1− κ

+(1− η)(1− κ) log rj − [(1− κ) + κη] logwj (7)

logN s
ij = log Y g

i + (1− ηs) log βsij + (ηs − 1) logwsi + log 1− µ
µ

−ηs logwj + log φ1−K (8)

Note that we cannot observe task-specific capital costs rj . In order to nevertheless empirically

incorporate a relative decline in capital costs for routine relative to non-routine tasks, we follow

the literature (starting with Autor et al. 2003) and replace log capital costs by γRRj × t, where

Rj is the time-constant Routine Task Intensity (RTI) of occupation j interacted with a linear

time trend t. The occupational RTI thereby rises in its routine task job content and declines in

its non-routine task content. The term γR < 0 reflects the theoretical prediction that routine

intensive occupations (tasks) are more susceptible to technological substitution compared to non-

routine occupations. Note that RRTC in our framework need not only be viewed as a relative

decline in capital costs for routine relative to non-routine tasks, but can also be interpreted as

a relative increase in the productivity of capital for routine relative to non-routine tasks.

Given space-dependent transport costs, we can derive the product demand equation for the

tradable sector from Equation (3),

log Y g
i = logµ− σ log pgi

P g
+ log

I∑
i′=1

τ−σii′
Ii′

P g
, (9)

where the third additive term reflects region i’s market potential, which is defined as the sum of

local incomes I of all potential trading partners i′, lowered by the transport costs τii′ between

region i and its trading partner i′.

2.6 Decomposing labor demand and employment effects

In order to derive the implications of technological change for labor demand and employment, we

define total regional employment Nit as the sum of regional employment in the tradable Ng
it and

non-tradable N s
it sectors, which themselves are composed of occupational employment Ng

ijt and

N s
ijt within these sectors, Nit = Ng

it+N s
it =

∑J
j=1N

g
ijt+

∑J
j=1N

s
ijt. Taking the derivative of this

equation with respect to log occupation-specific capital costs rj′t, and substituting in Equations
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(7), (8) and (6), we obtain two alternative decompositions – a labor demand and an employment

decomposition. In the former, we measure the shift of the labor demand curve holding wages

constant: this is analogous to assuming labor supply to be perfectly elastic (ε→∞). Equation

10, below, first presents this labor demand decomposition.

∆LD = (1− η)(1− κ)γR︸ ︷︷ ︸
A

I∑
i=1


J∑
j=1

RjN
g
ijt + η

1− ηR
I
itN

g
it︸ ︷︷ ︸

Bi

− σ

1− ηR
I
itN

g
it︸ ︷︷ ︸

Ci

− σ

1− ηR
I
itN

s
it︸ ︷︷ ︸

Di

 , (10)

where ∆LD denotes the labor demand change, Rj is the RTI of occupation j and RIit is

the average regional RTI, weighted by occupational employment shares in the tradable sector in

region i.

Equation (10) consists of a scaling factor A, which we refer to as the routinization coeffi-

cient, as well as three additive elements in the square brackets. Multiplied by the routinization

coefficient, the elements correspond to the three channels through which RRTC affects regional

labor demand: substitution effects (A×
∑
iBi), the product demand effect (A×

∑
iCi), and the

product demand spillover effect (A×
∑
iDi).

Analyzing employment effects requires taking into account labor supply responses, and these

create interdependencies between labor market segments in our model. In particular, if labor

supply is not perfectly elastic, a labor demand shock from RRTC will induce wage adjustments

in the region and occupation where the shock occurs. This alters the local occupational wage

structure and thus indirectly affects all other occupations in the region via changing relative

occupational labor demand. Moreover, it induces changes in the local price index, inducing

output and labor demand changes for all occupations. In Appendix A.1, we show that this

employment decomposition relies on this same labor demand shock, but scales all effects to

correct for labor supply responses. The employment change, ∆N , predicted from our model can

be represented as

∆N = A×
I∑
i=1

[LSgi × (Bi − Ci)− LSsi ×Di] , (11)

where A, Bi, Ci, and Di are defined as in equation 10, and 0 ≤ LSgi , LS
s
i ≤ 1 are the

regional labor supply scaling factors for the tradable and non-tradable sectors, respectively.

These scaling factors are derived in Appendix A.1 (equation 25), and are strictly smaller than
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one if labor supply is not perfectly elastic, and strictly larger than zero if labor supply is not

perfectly inelastic.

Our theoretical framework requires η > 0, 0 < κ < 1, σ > 0 and ε > 0. Further, we expect

γR < 0, reflecting that capital costs decline for routine tasks relative to non-routine tasks.

This implies that we expect a negative routinization coefficient, which then leads to negative

substitution effects and positive product demand effects. The effect of RRTC on economy-

wide labor demand is the sum of these three channels and may be either positive or negative,

depending on the relative sizes of the elasticity of substitution between tasks (η) and the elasticity

of substitution between the regional bundles of tradables (σ), as well as on differences in regional

task structures. If the net effect is positive, labor is racing with the machine, whereas labor is

racing against the machine if this effect is negative.

2.7 Empirical implementation

We aim to estimate the net effect of RRTC on labor demand and employment, as well as the

contribution of the three channels outlined above. For this, we estimate the labor demand

equation for the tradable sector (Equation 7) and the product demand equation (Equation 9) in

order to get estimates for the key labor demand parameters of our framework (γR, η, κ, and σ).

We obtain the labor supply parameter (ε) from the literature. We then use these parameters

jointly with the data to predict the labor demand and employment effects of RRTC, using

Equations 10 and 11. Note that we do not need to estimate labor demand in the non-tradable

sector (Equation 8) since it is only indirectly affected by RRTC and its parameter estimates do

not enter in our decomposition.20

(A) Estimating labor demand. First, we estimate the labor demand equation for the trad-

able sector (Equation 7),

logNg
ijt =β0 + β1 log Y g

it + β2 log cIit + β3Rj × t+ θt+ β4wit + υij + εijt (12)

where the number of employed workers for each region i, occupation j, and year t in the trad-

able sector (Ng
ijt) depends on the real regional production of tradables (Y g

it ) and on real regional
20Estimating non-tradable sector labor demand would be required only if we assume non-constant returns to

scale in the production of non-tradables, or non-homothetic preferences. Since constant returns to scale is the
standard assumption in this literature, and the effect of non-homothetic preferences on the task structure of
employment has been found to be relatively small (Autor and Dorn 2013; Goos et al. 2014), we do not pursue
these extensions here.

14



marginal costs of tradables production (cIit). Technological change is modeled by the occupa-

tional RTI measure interacted with a linear time trend Rj × t to reflect changes in the cost of

capital for routine relative to non-routine tasks. To ensure that our measure of technological

change does not capture trends that are unrelated to technological improvements, we further

incorporate a linear time trend (t). Moreover, in order to control for differences in regional pro-

duction technologies and resulting differences in the efficiencies of regions to utilize certain tasks

(βgij in the theoretical framework), we include region-occupation fixed effects (υij). These fixed

effects also capture unobserved factors related to the occupation-region cells. εijt corresponds

to the remaining error term.

In some specifications, wage variation is assumed to be absorbed by the time trend and

region-occupation fixed effects, following Goos et al. (2014). As an alternative, we additionally

report models where we include (instrumented) regional wages in the tradable sector (wit) as a

regressor.

We follow an IV strategy to capture the long-run components of real regional production and

regional marginal costs and to reduce potential measurement errors. In particular, we instrument

regional production with regional net capital stock (as in Goos et al. 2014) and regional marginal

costs with a Bartik (1991) IV: this implies we only rely on national variation in marginal costs

over time (see Appendix A.3.3 for a more detailed explanation of the instruments).

Based on the estimates of Equation (12), we obtain our estimated elasticity of substitution

between job tasks, η = β2. The effect of RTI on labor demand β3 is an estimate of (1−η)(1−κ)γR.

Lastly, we use the coefficient on wages, β4 = 1 − κ + κη,21 jointly with the RTI coefficient,

β3 = (1−η)(1−κ)γR, and the elasticity of substitution between tasks, η = β2, to back out both

κ and γR from our estimated parameters. Note that besides providing all our labor demand

parameters, this procedure provides a check on these estimates: a reasonable value for the labor

share κ would be close to two-thirds, and our empirical model is in no way constrained to

produce this.

(B) Estimating product demand. Next, we estimate the aggregate product demand equa-

tion (Equation 9):

log Y g
it = δ0 + δ1 log cIit + δ2 logMPit + νi + εit (13)

21This represents the wage elasticity of labor demand.
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where the real regional production of tradables (Y g
it ) depends on real regional marginal costs

of producing tradable output (cIit)22 as well as on a region’s market potential (MPt). Market

potential for any one region is the sum of income in all regions, discounted by the transport costs

towards these regions, which we construct from data on trade flows between German regions

(see Appendix A.4.2 for details). It represents the size of the market which can be potentially

accessed by region i. In order to control for further regional factors, we include a set of regional

fixed effects (νi). Finally, εit captures the remaining error term. We follow an IV-strategy

to capture the long-run components of market potential and regional marginal costs and to

deal with potential measurement error in these variables. In particular, we instrument market

potential with the spatially weighted capital stock23 and regional marginal costs using a Bartik

(1991) IV as before (see Appendix A.3.3 for a more detailed explanation).

Based on the estimates in Equation 13 we can then obtain σ = −δ1, our parameter of interest,

the elasticity of substitution between regional bundles of tradables.

(C) Labor demand decomposition. Using our estimated parameters η̂, κ̂, γ̂R and σ̂ jointly

with an estimate of ε from the literature, we calculate the components of equation (10), i.e. the

effects of the three channels on labor demand. All other variables in Equation (10), i.e. RIit, Rj ,

Ng
ijt, N

g
it and N s

it, are calculated from the data. The sum over all three effects reflects the net

effect of RRTC on labor demand.

(D) Employment decomposition. Lastly, we scale the labor demand effects by their labor

supply terms (see equation 11). These terms are obtained by backing out labor supply (resp.

wage) responses and the related interdependencies between the labor market segments. The

terms depend mainly on the elasticity of labor supply, ε, as well as on the employment- and

wage-cost-shares of occupations within regions. This then gives us the three components of the

employment decomposition, and their sum reflects the net effect of RRTC on employment.
22Product demand depends on relative prices pgit/p

g
i , which we replace with regional marginal costs since prices

are a constant mark-up over marginal costs in our model, i.e. pgit = σvi
σv
i
−1c

I
it.

23The weights correspond to the trade costs, such that the instrument is constructed analogously to market
potential.
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Table 1: Classification of European industries

NACE Industry Classification

C Mining and quarrying Tradable
D Manufacturing Tradable
E Electricity, gas and water supply Tradable
F Construction Non-Tradable
G Wholesale and retail trade; repair of motor vehicles, Non-Tradable

motorcycles and personal and household goods
H Hotels and restaurants Non-Tradable
I Transport, storage and communications Tradable
J Financial intermediation Tradable
K Real estate, renting and business activities Tradable
L Public administration and defense; compulsory social security Non-Tradable
M Education Non-Tradable
N Health and social work Non-Tradable
O Other community, social and personal services activities Non-Tradable
P Activities of private households as employers Non-Tradable

Notes: Industries classified with NACE revision 1.1. Agriculture, Hunting and Forestry
(NACE A); Fishing (NACE B); and Extraterritorial Organisations and Bodies (NACE Q)
have been excluded from the dataset.

3 Data and parameter estimates

3.1 Data

Employment data for European regions is obtained from the European Union Labour Force

Survey (EU LFS) provided by Eurostat. The EU LFS is a large household survey on labor

force participation of people aged 15 and over, harmonized across countries. Following the liter-

ature, we exclude all military and agricultural employment. Although occupation and industry

information is available as of 1993, consistent regional information is only available from 1999

onwards, and there are classification breaks in 2011: we therefore analyze the period 1999-2010.

The dataset includes data for 27 European countries including Austria, Belgium, the Czech

Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Iceland,

Italy, Latvia, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slo-

vakia, Slovenia, Spain, Sweden, Switzerland, and the United Kingdom. For most countries,

regional information is available at the level of two-digit or one-digit Nomenclature des Unités

Territoriales Statistiques (NUTS-2006) codes. For five small countries (Estonia, Iceland, Latvia,

Luxembourg, and Malta) we only observe employment at the national level. For some coun-

tries (Austria, the Netherlands, and the United Kingdom), the EU LFS micro-data has been

supplemented with aggregated data from Eurostat online.
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We divide industries classified by one-digit Nomenclature statistique des Activités économiques

dans la Communauté Européenne (NACE revision 1.1) codes into either the tradable or non-

tradable sector defined in our framework. This division is made based on the tradability of

industries’ output, inferred from the spatial concentration of these industries following Jensen

and Kletzer (2006, 2010) (see Appendix A.4.1 for details on the procedure). The resulting di-

vision is outlined in Table 1. Note that the tradable sector includes both goods industries such

as manufacturing, and service industries such as financial intermediation and transport, stor-

age and communications. In contrast, the non-tradable sector includes services such as hotels

and restaurants, education, and health and social work. We sum employment within region-

occupation-sector-year cells to obtain our dependent variable for labor demand estimates.

Occupations are coded by one-digit International Standard Classification of Occupations

(ISCO-1988) codes: for each of these, we obtain a Routine Task Intensity (RTI) index from the

Dictionary of Occupational Titles 1977, constructed as in Autor and Dorn (2013), converted

to European occupations as in Goos et al. (2014). The measure rises with the importance

of routine tasks in each occupation and declines with the importance of manual and abstract

tasks. Note that the index is standardized to have a zero mean and unit standard deviation

across occupations. The routine intensity of occupations is reported in Table 2: office clerks

and production jobs are the most routine occupations, whereas tasks performed by high-skilled

professionals, managers, as well as lower-skilled service workers are less routine-intense.

As wage data, we use employee compensation data from the Cambridge Econometrics Eu-

ropean Regional Database (ERD)24, defined as the annual compensation of employees in 2005

Euros. We divide them by ERD employment figures to obtain annual wages per employee at the

regional level. Unfortunately, ERD aggregates do not distinguish occupations, but they do vary

by industry. However, industry codes are aggregated at a higher level than NACE major groups:

this is problematic when trying to construct wage data for the tradable and non-tradable sector

separately. In particular, the ERD industry aggregate “wholesale, retail, transport & distribu-

tion, communications, hotels & catering” contains both tradable and non-tradable sectors (see

Table 1 in the main text or Table 9 in Appendix A.3.1). We deal with this by assigning this in-

dustry to tradables and checking for robustness when alternatively assigning it to non-tradables.

Furthermore, we have to exclude Switzerland and Iceland from the analyses whenever control-
24ERD is based primarily on Eurostat’s REGIO database, but is also supplemented with data from AMECO,

a dataset provided by the European Commission’s Directorate for General Economic and Financial Affairs.
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Table 2: Occupational Routine Task Intensity (RTI) index

ISCO Occupation RTI

1 Legislators, senior officials and managers -0.94
2 Professionals -1.01
3 Technicians and associate professionals -0.28
4 Clerks 2.01
5 Service workers and shop and market sales workers -0.75
7 Craft and related trades workers 0.38
8 Plant and machine operators and assemblers 0.48
9 Elementary occupations 0.10

Notes: RTI standardized to have a zero mean and unit standard
deviation across occupations. Armed forces (ISCO 6) and farming
professionals (ISCO 0) have been excluded from the dataset.

ling for wages as these two countries are not included in ERD: this leaves 230 (rather than 238)

regions to be considered.

Finally, data on output and regional marginal costs are obtained from the OECD Database

for Structural Analysis (STAN). Following Goos et al. (2014), we define marginal costs as the

logarithm of [(nominal production - nominal net operating surplus) / real production]. For

real production we divide the sector-specific production values by the sector specific deflator

provided in STAN. We regionalize this data by averaging across industries within regions using

the employment shares of industries within regions as weights (see Appendix A.3.3).

A region’s market potential is calculated as the sum of GDP across all other regions, lowered

by the trading costs towards these trading partners. It thus represents the potential market

which a region can serve, depending on the trading costs with these partners and the partners’

market sizes (see Appendix A.4.2 for more details).

For a more detailed description of the data preparation and data availability for specific

countries, see Appendix A.3.

3.2 Parameter estimates

Table 3 shows the estimates of labor demand in the tradable sector from Equation 12. The first

column is an OLS estimate containing all observations and replacing tradable sector output,

marginal costs, and wages with a set of region-year fixed effects. The second column shows the

same estimates but restricted to the set of country-years for which we have output, marginal

cost, and wage data: it can be seen that the coefficient on occupational RTI interacted with a

linear time trend, which we refer to as the routinization coefficient, is very similar across these
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Table 3: Labor demand in the tradable sector

Dependent variable: log employment in tradable sector (in region-occupation-year cells)

FE FE FE-IV FE-IV FE-IV
Full sample Restricted sample with wages with IV wages

(1) (2) (3) (4) (5)

Standardized occupational RTI × timetrend -1.678*** -1.743*** -1.743*** -1.743*** -1.743***
(0.075) (0.092) (0.081) (0.081) (0.081)

Log regional gross production in tradables 0.748*** 0.744*** 0.745***
(0.075) (0.081) (0.082)

Log regional marginal cost index 0.416** 0.285** 0.324*
(0.129) (0.103) (0.164)

Log regional wage in tradables -0.507*** -0.357
(0.052) (0.590)

Number of observations 21,632 11,744 11,744 11,744 11,744
R-squared 0.980 0.982 0.176 0.195 0.193

Notes: European regions, 1999-2010. Models (1) and (2) include region-occupation and region-year fixed effects. Models (3),
(4) and (5) are estimated with region-occupation fixed effects and control for a linear timetrend. Standard errors clustered
by region reported in parentheses. Coefficients on RTI multiplied by 100.

two samples. The third column then adds the instrument regional output and marginal costs to

the model: output and marginal costs have positive and statistically significant coefficients.25

A concern with these estimates, however, is that wage variation may not be absorbed by the

time trend and region-occupation fixed effects. Column 4 therefore augments the specification

by controlling for time-varying regional wages in the tradable sector: the wage elasticity of

labor demand has the expected negative sign. In the fifth and final column, we instrument

wages with a Bartik (1991) instrument based on the increase in female labor supply.26 The

instrumented wage coefficient is still negative and similar in size to the uninstrumented one,

but imprecisely estimated. The coefficients of interest are largely robust to controlling for

wages, however: the routinization coefficients are very similar, and although the coefficient on

marginal costs (representing η, the elasticity of substitution between routine and non-routine

tasks) declines somewhat as compared to the model without wages, it remains within the 95%

confidence interval of the original estimate. We use the parameter estimates from model 4 as

our baseline in Section 4, but Appendix A.5.1 present decomposition results for all parameter

estimates reported in Table 3.

Table 4 reports estimates of product demand in the tradable sector from Equation 13. The

first column shows results including region-occupation fixed effects, whereas column 2 shows

our preferred model which additionally instruments for market potential and marginal costs:
25The first stage estimates, shown in Appendix Table 10 show that the instruments have the expected impact

on the endogenous variables.
26In particular, we construct a counterfactual regional employment series in tradables by multiplying the na-

tional increase in female employment with regions’ initial female employment share in each country. The first
stage for wages, reported in Appendix Table 10, shows that this instrument is indeed negatively correlated with
wages.
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Table 4: Product demand in the tradable sector

Dependent variable: log regional production of tradables (in region-year cells)

FE FE-IV
(1) (2)

Log market potential 1.275*** 1.416***
(0.097) (0.116)

Log regional marginal cost index -0.653*** -0.862***
(0.130) (0.166)

Number of observations 1,904 1,904
R-squared 0.607 0.604

Notes: European regions, 2001-2010. All models are estimated with region-
occupation fixed effects. Standard errors clustered by region reported in paren-
theses.

the first stages are reported in Table 11 in the Appendix, and the instruments are statistically

significant and have the expected sign. The coefficient on marginal costs reflects our parameter

estimate for the elasticity of substitution in consumption between regional bundles of tradables,

σ, which is required for the decomposition.

Table 5 summarizes the baseline parameter estimates we will use to construct predictions. In

particular, we list the direct estimates of three key parameters: (1) the routinization coefficient,

β3 = (1−η)(1−κ)γR; (2) the elasticity of substitution between tasks, η; and (3) the elasticity of

substitution in consumption between regional bundles of tradables, σ. We also report the wage

elasticity of labor demand and the implied estimates for both the labor share (κ), and for the

annual log capital price change for routine-intense tasks (γR) which are also used in constructing

our predictions.

Overall, the framework yields plausible parameter values. Firstly, as expected, the rou-

tinization coefficient is significantly negative, suggesting that an increase in the RTI index by 1

standard deviation decreases employment by 1.74%, on average.

The estimate of η̂ = 0.29 for the elasticity of substitution between tasks in tradables pro-

duction within regions is statistically significant and lies between 0 (perfect complements) and

1 (unit-elasticity).27 Note that the elasticity may theoretically also approach infinity (perfect

substitutes). To our knowledge, there are no estimates of our η coefficient in the literature,

but the size is similar to the the elasticity of substitution between tasks within industries of 0.9
27This estimate is from model 2 in Table 3, where we control for wages. If we instrument wages, the estimate

is 0.32 (see model 3 in Table 3) and without controlling for wages, the estimate is 0.66 as reported in Table 3. In
Section A.5.1, we present robustness checks using these alternative parameter values.
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Table 5: Parameter estimates

Parameter Description Estimate

(1− η)(1− κ)γR routinization coefficient (×100) -1.743***
(0.081)

η substitution elasticity between tasks 0.285**
(0.103)

−[(1− κ) + κη] wage elasticity of labor demand -0.509**
(0.052)

κ labor share 0.689***
(0.136)

γR annual log routine-replacing capital price change (×100) -7.833*
(4.441)

σ substitution elasticity between bundles of tradables 0.862***
(0.166)

Notes: All estimates are obtained from column 4 in Table 3, except for the σ estimate
which is obtained from column 2 in Table 4. Standard errors reported in parentheses.

estimated by Goos et al. (2014).28 Intuitively, the estimate suggests that firms have only limited

scope for substituting between tasks as a reaction to a relative price change, although it is not

impossible. As such, the estimate may reflect that firms’ production steps require very different

and/or specialized tasks which can not be easily substituted: indeed, Cortés and Salvatori (2015)

find that firms are highly specialized in their task content along routine versus non-routine lines.

Our estimate of the wage elasticity of labor demand (-0.51) is close to the estimate of Beaudry

et al. (2018) for the USA.29 Note that the wage elasticity in our model is represented by −[(1−

κ) + κη], so that we can use its estimate and our estimated elasticity of task-substitution η to

obtain estimates for κ and γR. In particular, we find κ = 0.69, a value very close to the aggregate

labor share as usually measured: this increases confidence in the validity of our parameter

estimates. Lastly, the implied γR is negative, reflecting that a decrease in the price of capital

indeed leads to a stronger substitution of routine compared to non-routine labor by capital.

Hence, as shown in the literature on job polarization (e.g. see Autor and Dorn 2013; Goos and

Manning 2007; Goos et al. 2014), there is a shift in employment away from occupations that

are more routine towards those that are less routine. The size of this estimate suggests routine-

replacing capital prices are declining by some 7.8% per year, on average. For comparison, Byrne

and Corrado (2017) report annual ICT investment price declines of 9.9% over 2004-2014.
28However, note that the estimate in Goos et al. (2014) cannot be directly compared to ours, not only because we

estimate the substitution of tasks across tradables production within regions instead of tasks between industries,
but also since we include a larger set of EU countries and consider a different time period.

29Beaudry et al. (2018) report an estimate of -0.3 at the city-level and -1.0 at the industry-city-level, whereas
we estimate a wage elasticity of -0.51 at the regional level.
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The estimate of the substitution elasticity between regional bundles of tradables is σ̂ = 0.86,

indicating that the demand for regional goods bundles is somewhat more elastic, although it is

still smaller than one. Our results thus lie within the range of estimates for the elasticity of

international trade by Imbs and Mejean (2010), ranging from 0.5 to 2.7 at the country level for

30 countries worldwide. Furthermore, they typically find lower estimates for small countries,

suggesting that it is reasonable that we find an estimate at the regional level that lies towards

the lower end of their range.30

Lastly, for the labor supply elasticity (denoted by ε in our model) we use the Hicksian

macro elasticity estimate of 0.5 from Chetty et al. (2011) as a baseline. This is best suited to

our purpose since we use macro data and are interested in a long-term steady-state effect. In

Appendix A.5.1, we explore the sensitivity of our results to this parameter choice.

4 Results

4.1 European labor demand and employment effects

Using the decomposition outlined in Section 2.7, we construct an estimate of the labor de-

mand and employment impact of RRTC. Specifically, we obtain predicted labor demand and

employment effects for each of the three distinct channels from our framework over 1999-2010.

Figure 3 shows the results at the European level. It can be seen that all three channels

are empirically relevant and have the expected signs. The substitution effects are negative,

suggesting that labor demand has decreased by 4.6 million jobs as technology substitutes for

labor in routine tasks, and as production has restructured towards routine tasks. These are

the direct substitution effects that have played a central role in the public debate. However,

the product demand and local demand spillover effects on labor demand are positive and larger

in absolute value, respectively implying an increase in labor demand of 4.0 and 5.6 million

jobs across Europe. These arise because lower goods prices lead to higher demand for tradables,

increasing labor demand; and because the rise in product demand spills over to the non-tradable

sector so that additional labor demand is created. As a result, labor demand increases by 5.0

million jobs, on net.

These labor demand effects only correspond to employment effects if labor supply is as-
30Our estimates for σ are similar when additionally controlling for a linear timetrend in the product demand

models, namely 0.67 in the OLS specification and 1.09 in the IV specification (and both are statistically significant
at the 1 percent level).
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Figure 3: Predicted European labor demand and employment change, 1999-2010
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sumed to be perfectly elastic, which is inconsistent with a large literature finding finite supply

elasticities. Implementing a supply elasticity of 0.5 in our employment decomposition model

produces employment effects which are identically signed but more muted than their labor de-

mand counterparts, as illustrated by the second set of bars in Figure 3. In particular, after

accounting for labor supply rigidities, substitution effects within the tradable sector produce

an employment loss of 1.6 million jobs, which is not fully outweighted by employment gains

from product demand effects of 1.4 million jobs. This implies our model predicts a decline in

employment for those sectors directly affected by routinization, similar to findings for overall

productivity growth in Autor and Salomons (2018). However, on net, employment increases by

1.8 million jobs because of positive spillover effects (amounting to 2.0 million jobs) occurring in

the non-tradable sector.

Table 6 additionally reports the confidence intervals for these labor demand and employ-

ment results, reflecting sensitivity to our parameter estimates. In particular, we create 10,000

bootstrapped predictions from our model, as such varying our key parameter estimates (σ, η,

and γR; reported in Table 5). Table 6 reports the mean, standard deviation, and the 5th and

95th percentiles of the resulting distribution of predictions, for each of the three channels of

our model as well as for the net labor demand and employment effects.31 It can be seen that
31The means of the simulated effects slightly diverge from our point estimates. This divergence is due to outliers:
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Table 6: Confidence intervals for predicted labor demand and employment changes

Mean Std dev 5th pctile 95th pctile

Labor demand change (in millions of jobs)
Substitution -4.71 0.83 -6.23 -3.61
Product Demand 4.08 1.07 2.57 6.00
Spillover 5.80 1.51 3.65 8.53
Net Effect 5.17 2.12 2.02 8.92

Employment change (in millions of jobs)
Substitution -1.68 0.33 -2.30 -1.24
Product Demand 1.44 0.30 1.01 1.98
Spillover 1.89 0.54 1.13 2.88
Net Effect 1.64 0.79 0.43 3.00

Notes: Distribution of predicted effects obtained by bootstrapping predictions with
10,000 draws. Bootstrap clustered by region-occupation for labor demand parameter
estimates; and by region for the product demand parameter estimate.

there is some variation around our baseline labor demand prediction of 5.1 million jobs, with the

5th percentile of the prediction corresponding to 2.1 million jobs and the 95th percentile to 8.8

million jobs – but predictions are positive over the entire interval. Furthermore, our predicted

net employment effects lie within a relatively tight range of 0.8 to 3.0 million jobs (reflecting

a 90 percent confidence interval). Lastly, also for all three channels operating on both labor

demand and employment, the predicted effects have the expected sign within the 5th to 95th

percentile interval, increasing confidence in our overall conclusion of net positive labor demand

and employment effects.32

In addition, appendix A.5.1 provides extensive robustness checks on our findings. In particu-

lar, we rely on estimates from other specifications reported in Tables 3 and 4 for all parameters.

Using these to construct our predictions, we find very similar results.

Finally, Table 7 compares our predictions to regions’ actual employment evolutions. In par-

ticular, it shows regressions of actual employment-to-population changes onto the employment-

to-population change predicted from our model. Each region is one observation, and observations

are weighted by the initial regional employment size to ensure that the results aggregate up to

the total change. We find that our model of routine-replacing technological change is predictive

of actual regional employment rate changes: across specifications, the coefficients are positive

and statistically significant. Further, our model can help explain regions’ employment rate evo-

in some draws η is close to 1, resulting in large estimates of γR, leading to an upward bias of our estimates. When
excluding these outliers, the differences between the means of the simulated effects and the point estimates vanish.

32If we additionally allow the estimated labor share, κ, to vary, the confidence intervals predictably widen
somewhat, but all results are still identically signed and statistically significantly different from zero.
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Table 7: Actual versus predicted employment-to-population change

Dependent variable: actual regional employment-to-population change
(1) (2) (3) (4)

Predicted regional 0.714*** 0.426*** 0.480*** 0.411***
employment-to-population change (0.125) (0.083) (0.061) (0.072)

Number of observations 238 238 216 216
Sample All regions 5th-95th percentile
Fixed effects None Country None Country
R-squared 0.122 0.853 0.226 0.599

Notes: European regions, 1999-2010 long difference. All models are weighted by
the region’s initial employment size in 1999. Models in columns 3 and 4 exclude
regions with an actual employment-to-population change below the 5th and above
the 95th percentile.

lutions both within and across countries, as can be seen by comparing the models with and

without country fixed effects. Further, results are robust to excluding outlier regions in terms

of the actual employment change.33

The results reported in this section highlight four main findings. Firstly, we provide the first

estimate in the literature of the overall effect of RRTC on the number of jobs, finding that the

net labor demand and employment effects of routine-replacing technologies are positive. This

implies there is no support for the scenario of overall routinization leading to a net displacement

of humans from the labor market. Of course, this does not rule out that there could be individual

(automation) technologies which produce net disemployment effects, such as those found for

industrial robots in the U.S. (Acemoglu and Restrepo 2017). Further, it does not imply that

technological progress is the main driver behind job growth: indeed, the estimated labor demand

and employment increases of, respectively, 5.0 and 1.8 million jobs over 1999-2010 across Europe

are non-negligible but modest compared to the total employment growth of 23 million jobs,

observed across these countries over the period considered (see Appendix Figure 5).34

The second important finding is that all three channels are quantitatively relevant: there

are substantial substitution effects at the task level, leading to decreases in labor demand and

employment, but these are countervailed by product demand effects and local spillovers. As

such, the positive overall employment effect of RRTC is not the result of a negligible amount
33These outliers are in part the result of imputing actual employment evolutions for countries which have limited

data coverage over 1999-2010, such as Denmark – see Table 8 in the Appendix. Regression results are similar
when weighting by initial population size, or when giving all regions equal weight; and from an alternative model
specification regressing actual employment changes to predicted employment changes while controlling for regions’
initial employment size.

34This is consistent with findings by Autor and Salomons (2017), who point out that population growth is the
most important driver of overall employment growth.
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of substitution of capital for labor: rather, product market effects dominate these substitution

effects. This highlights the importance of considering the interactions between labor and product

markets when thinking about the employment effects of technological change, as also pointed out

by Autor (2015) and Acemoglu and Restrepo (2018a,c).35 These interactions cannot be studied

in canonical SBTC models, which typically only consider a single final consumption good; or in

reduced-form empirical approaches which do not uncover the channels through which aggregate

effects come about.

Thirdly, the product demand effect alone nearly offsets the employment decline resulting

from the substitution of capital for labor and the reorganization of task production: even within

the tradable sector, there is no mass decline in employment as a result of routine-replacing

technological change, consistent with Autor et al. (2015)’s findings for the U.S.36 However, all job

growth is in non-tradables, industries which are not directly affected by technological progress:

this reallocation of employment to technologically lagging sectors is consistent with Baumol

(1967). These predictions from our model match the overall patterns seen in the European

labor market: employment is strongly reallocating towards non-tradables (see also Figure 5 in

the Appendix).

The fourth result is that localized spillover effects to industries which are not directly affected

by technological progress play a quantitatively important role for understanding the total labor

demand and employment effects of RRTC. Although we are the first to model and estimate prod-

uct demand spillovers in the RRTC context, we can compare our estimates with related studies

on local multipliers. In particular, the findings shown in Figure 3 imply that each job generated

in the local tradable industry as a result of increased product demand results in an additional

employment effect of 2.0 million/1.4 million=1.4 jobs in the local non-tradable industry. This

employment multiplier is similar to the one found by Moretti (2010), who concludes that for

each additional job in the tradable industry in a given U.S. city, 1.6 jobs are created in the local

non-tradable sector. And more generally, our finding that routinization has significant spillover

effects to the non-tradable sector is in line with Autor and Dorn (2013), who show that U.S.

regions that were initially relatively intense in routine jobs experienced both greater adoption
35Our macro-economic findings are also consistent with studies at the micro level such as Harrison et al. (2014),

who find that productivity improvements and process innovations reduce employment in firms only when output
is held constant, since accounting for output increases results in net employment gains.

36Although suggestive, one caveat is that their and our results cannot be compared directly since Autor et al.
(2015) consider manufacturing employment, whereas our tradable sector comprises several additional industries,
as outlined in Table 1.
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of information technology and a greater reallocation of workers from routine task intense jobs

to non-routine service jobs.

However, it is important to note that our estimate of the product demand spillover effect

may be considered as an upper bound, since it hinges on the assumption that non-wage income

earners reside in the region where their income is generated. The next section relaxes this

assumption and assesses its importance for our findings.

4.2 The role of non-wage income

To consider the role of non-wage income in the spillover effect, we relax the assumption that non-

wage income earners spend their income locally by assuming the other extreme: namely, that

non-wage income does not feed back into consumption at all.37 Conceptually, this represents the

case where non-wage earners do not reside in Europe.38 As such, we calculate product demand

spillovers resulting from changes in wage income only, providing a lower-bound estimate of the

spillover effect.

Figure 4 shows the empirical results from this alternative decomposition for both labor de-

mand and employment. Note that the first two channels are unaltered: only the product demand

spillover effect has changed. In particular, the predicted spillover effect is smaller, reflecting an

employment increase of 1.7 million instead of 2.0 million jobs. This smaller prediction for the

demand spillover effect is the result of less tradable income being spent on non-tradables, since

we now exclude any non-wage income. As such, our original estimate represents an upper bound

for the spillover effect, whereas the estimate shown here is a lower bound. Note that the local

employment spillover implied by this lower bound is 1.2 (=1.7/1.4). Given that completely

abstracting from non-wage income is rather extreme, and that our upper bound is closer to

the value of the spillover found in the literature, we interpret the larger spillover as our base-

line result. Most importantly, we find a positive employment effect even in this lower-bound

scenario.39

However, this sensitivity exercise does make the more substantive point that the labor de-
37See Appendix A.2 for a derivation of this alternative model, where we also show that this assumption does

not affect the first two channels in our framework.
38We make this assumption both to obtain a lower bound on our estimate and because we do not have an

alternative prior about to which region to allocate the additional consumption from any increases in non-wage
income.

39Analogously to the robustness checks for our baseline estimates in Appendix A.5.1, we check the sensitivity
of our alternative decomposition with respect to alternative parameter estimates and again find our results to be
very robust.

28



Figure 4: Predicted European labor demand and employment change, lower bound, 1999-2010
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mand effects of routine-replacing technological change depend crucially on where the benefits

of RRTC accrue. Indeed, if we take our lower bound estimate at face value, RRTC is still pre-

dicted to increase labor demand, but only by half as much – 2.5 million instead of 5.0 million

jobs. This empirical prediction is in line with recent theoretical models which stress that the

labor market effects of technological change depend on the allocation of the gains from these

innovations (Benzell et al., 2016; Sachs et al., 2015).

5 Conclusion

There are long-standing public concerns about technological change destroying jobs, invoking

images of labor racing against the machine. These concerns are echoed in a recent crop of

theoretical models which allow technology to be labor-replacing, showing the conditions under

which labor-displacement occurs in the aggregate as a result of technological change. However,

empirical evidence on such aggregate effects is scarce, as most existing studies have focused on the

relative effects of technological progress across worker skill levels and job types; or on very specific

technologies such as industrial robots. Furthermore, the body of empirical evidence considering

absolute labor demand and employment effects uses reduced-form specifications, thus remaining

largely silent on the countervailing transmission channels highlighted in theoretical models. This
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paper contributes by developing and estimating an empirically tractable framework modeling

the key job-creating and job-destroying channels of technological change and quantifying their

empirical relevance for the overall effect. Our approach complements work focusing solely on

industrial robots by studying routine-replacing technologies (RRTC) as a whole: unlike robotics,

these technologies have already permeated many jobs and sectors.

We find that routine-replacing technologies increased employment by 1.5 million jobs in

Europe over the period 1999-2010. Breaking down these employment effects into the underlying

transmission channels, we show that this is not due to an absence of displacement effects. To the

contrary, our results suggest that employment falls by 1.6 million jobs as a result of machines

replacing workers in performing routine tasks. These are the substitution effects ignored in

canonical frameworks where technology is thought of as strictly factor-augmenting. However,

our study also shows that these job losses were more than outweighed by the job-creating effects

of RRTC. These countervailing effects result both from lower product prices and from growing

local incomes, both of which raise local product demand and thereby employment.

Our results thus suggest that recent technological change has created more jobs than it

destroyed. In fact, the net labor demand effect exceeds the employment effect by 1 million

jobs, suggesting that even more jobs would have been created had labor supply adjusted more

elastically. While we cannot rule out that certain technologies are more labor-displacing in nature

than others, or assert that these positive net effects will continue to arise in the future, our results

highlight that focusing on substitution potentials alone is misleading. Indeed, countervailing

effects leading to new job creation are quantitatively important and have to be taken into

consideration.

A final key finding is that the aggregate labor market effects depend on who receives the

gains from technological progress. Although we lack precise data on income flows, an analysis

of two extreme scenarios – all (wage and non-wage) income flows into the local economy vs. all

non-wage income remains outside the European Union – highlights that the distribution of gains

from technological progress is critical for the size of the overall labor demand and employment

effects. Indeed, in the scenario where only labor’s share of the gains flows back into the economy,

the positive aggregate labor demand effect is only half as large. This stresses the importance of

the debates about who owns the capital (Freeman, 2015) and the apparently negative impact of

recent technological change on labor’s share in national income (Autor et al. 2017; Autor and

Salomons 2018; Karabarbounis and Neiman 2014).
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A For Online Publication: Appendix

This supplemental appendix contains 1) a more detailed description of our theoretical model,

including 2), an extension where the role of non-wage income is considered; 3) a data overview;

4) more detailed information on our empirical implementation; and 5) further robustness checks

on our baseline results.

A.1 Theoretical model

This Appendix provides a more formal description of the model outlined in Section 2. In our

model, households have CD preferences for homogeneous non-tradables Cs and heterogeneous

tradables Cg, U = Cµg C
1−µ
s . They spend their entire income on consumption, so that µ resp.

1−µ reflect the expenditure shares of tradables resp. non-tradable consumption in income. We

use P g for the price index in the tradable sector and P s for the price index in the non-tradable

sector. Cg is a CES-bundle of regional bundles of tradables cgi , Cg =
[∑I

i=1(cgi )
σ−1
σ

] σ
σ−1 , where σ

is the elasticity of substitution between the regional bundles of tradables. Individuals optimize

the composition of their bundle of tradables such that the demand for each regional bundle is

cgi =
(
pgi
P g

)−σ
µ
I

P g
, (14)

where P g =
[∑I

i=1(pgi )1−σ
] 1

1−σ is the price index.40

Each regional bundle cgi =
[∑Fi

fi=1(cgif )
σv
i
−1
σv
i

] σv
i

σv
i
−1

contains the varieties produced by local

firms f = 1, . . . , F , such that the demand for each variety is

cgif =
(
pgif
pgi

)−σvi
cgi , (15)

where pgi =
[∑Fi

fi=1(pgif )1−σvi
] 1

1−σv
i is the regional price index and σvi the region-specific elasticity

of substitution between varieties.

Firms combine tasks T1, T2, ..., TJ to produce tradables Y g
i , where the task-intensities and

40Note that there are transport costs τii′ between the regions, such that the price index is actually region-
specific, P gi =

[∑I

i′=1(τii′pgi′)
1−σ] 1

1−σ . We drop the regional index for illustrative purposes.
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-compositions vary across regions i. The underlying production function is CES41:

Y g
i (Ti1, Ti2, ..., TiJ) =

 J∑
j=1

(βijTij)
η−1
η


η
η−1

with η > 0 (16)

Firms minimize the cost of producing Y g
i , such that their task demand is:

Tij = Y g
i β

1−η
ij

(
cIi
cTij

)η
, (17)

where cIi are the region’s marginal costs cIi =
[∑J

j=1

(
cTij
βij

)1−η
] 1

1−η

and cTij are the region’s task-

specific marginal costs. Firms produce tasks by combining labor Ng
ij , which differs by occupa-

tions j, and task-specific capital Kij through a CD technology, Tij(Ng
ij ,Kij) = (Ng

ij)κ(Kij)1−κ,

with 0 < κ < 1. They minimize the cost of producing tasks, such that occupational labor

demand is

Ng
ij(wj , rj |Tij) = Tij

cTij
wj

(
κ

1− κ

)1−κ
(18)

where cTij = wκj r
1−κ
j are the costs of producing one unit of task j, wj are occupational wages,

and rj are task-specific capital costs.

Firms in region i face the same marginal costs. Due to monopolistic competition they

charge a mark-up over marginal costs. As firms in a specific region face the same elasticity of

substitution, the price mark-up is the same for all firms of the same region, so that each firm

f in region i charges the price pgif = σvi
σvi −1c

I
i . The regional price index pgi hence is equal to the

price charged by the firms pgif .

Assume that there are iceberg transport costs τii′ between regions i and i′. Then the demand

for tradables produced in region i is Y g
i =

∑I
i′=1

(
pgi τii′
P g

)−σ
µ
Ii′
P g . After factoring out and taking

logs, this becomes

log Y g
i = logµ− σ log pgi

P g
+ log

I∑
i′=1

τ−σii′
Ii′

P g
(19)

Demand for tradables produced in region i depends on their relative price, their expenditure

share in income, and market-potential
∑I
i′=1 τ

−σ
ii′

Ii′
P g , where Ii′ is the nominal income in region

i′. Note that demand for tradables produced in a region therefore depends on income in other
41Note that since firms within a region are identical, and since our framework has constant returns to scale, we

can directly derive the equations at the regional level. Therefore, we apply the index i instead of f .
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regions, as well as on income in the region itself, such that market potential is endogenous, as

it is itself a function of regional production.

The production function in the non-tradable sector is Csi = αsL
s
i , where Csi is the supply

of non-tradables in region i, and αs is the productivity of labor Lsi in production. There is full

competition in the non-tradable sector, and non-tradables are produced and consumed locally.

Firms maximize profits, such that the marginal product equals real marginal costs. In the non-

tradable sector equilibrium, labor demand is Lsi = (1−µ) Iiwsi , where Ii is local income and wsi are

wages in the non-tradable sector. Local income Ii is composed of income from the non-tradable

and the tradable sectors. In the non-tradable sector, as firms make no profits and no capital

is used, income consists of labor income wsiLsi only. In the tradable sector, we did not include

any restriction on the number of firms (or regions). Therefore profits in the tradable sector

can be larger than zero (or even negative if σvi < 1). Hence, income in the tradable sector is

composed of labor income
∑J
j=1wjN

g
ij and profits. We assume that there is a competitive capital

sector producing task-specific capital Kj at marginal costs rj , which represent a real resource

cost so that they do not feed back into income. As the sector is competitive, rj also reflects

capital prices. This implies that tradable sector income equals its production, lowered by capital

costs. We define φ1−K = pgi −
∑J
j=1 rjKij/Y

g
i as the disposable income per unit of real output

in the tradable sector. We furthermore assume that firm owners are located in the region of

production.42 Then local income is Ii = wsiL
s
i + φ1−KY

g
i , and we can rewrite conditional labor

demand in the non-tradable sector as Lsi = 1−µ
µ Y g

i w
s
i
−1φ1−K .

The labor input Lsi is a bundle of occupations Lsi =
[∑J

j=1(βsijNij)
η−1
η

] η
η−1

with η > 0,

where we assume that tasks Tij in the non-tradable sector are produced using labor N s
ij only,

and that one unit of labor input produces exactly one unit of task input. Firms in the non-

tradable sector minimize the cost of attaining the labor input.43 Occupational labor demand in

the non-tradable sector then is:

N s
ij = Lsiβ

s1−ηs

ij

(
wj
wsi

)−η
, (20)

where wsi =
[∑J

j=1

(
wj
βsij

)1−ηs
] 1

1−ηs

is the factor price index of the non-tradable sector, which

42See Appendix A.2 for an alternative specification.
43Note that wsiLsi =

∑J

j=1 wjN
s
ij implies that wsiLsi remains the costs of labor (i.e. labor income in the non-

tradable sector), such that we can still define Ii = wsiL
s
i + Y gi and do not have to make any further changes to

the previously derived labor demand equation in the non-tradable sector.
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consists of occupational wages.

Using these arguments, we can explicitly derive the labor demand equations (7) and (8) for

the two sectors, reported in the main text.

We follow Acemoglu and Restrepo (2017) and model labor supply for the two sectors as

follows,

Ng
ij = N̄g

ijw
g
ij
ε and N s

ij = N̄ s
ijw

s
ij
ε, (21)

where ε is the wage elasticity of labor supply.

Next, we decompose aggregate employment changes. Total regional employment Ni is the

sum of regional employment in the tradable Ng
i and non-tradable N s

i sector, which themselves

are composed of occupational employment within these sectors:

Ni = Ng
i +N s

i =
J∑
j=1

Ng
ij +

J∑
j=1

N s
ij (22)

Employment responds to changes in log capital prices:

∂Ni

∂ log rj′
=

J∑
j=1

logNg
ij

∂ log rj′
Ng
ij +

logN s
ij

∂ log rj′
N s
ij (23)

Aggregate changes in employment can then be rewritten as

∆N =
J ′∑
j′=1

I∑
i=1

J∑
j=1

 logNg
ij

∂ log rj′
Ng
ij +

J∑
j=1

logN s
ij

∂ log rj′
N s
ij

∆ log rj′︸ ︷︷ ︸
=γRRj′

(24)

We rewrite the last line in matrix notation:

∆N =
J ′∑
j′=1

(
ngNg,j′ + nsNs,j′

)
γRRj′ (25)

where ng is an 1× ij vector of initial employment in the tradable sector, Ng,j′ is an ij×1 vector

with elements ∂ logNg
ij

∂ log rj′
. ns and Ns,j′ are defined analogously for the service sector. Equation

(25) represents our decomposition, where we have to derive the two matrices Ng,j′ and Ns,j′ .

38



Using equation (7), we derive

∂ logNg
ij

∂ log rj′
=(1− η)(1− κ) + (η − σ)∂ log cIi

∂rj′
− (1− κ+ κη)∂ logwij

∂ log rj′
for j = j′ (26)

∂ logNg
ijt

∂ log rj′
=(η − σ) ∂ log cIi

∂ log rj′
− (1− κ+ κη)∂ logwij

∂ log rj′
for j 6= j′ (27)

For this, we have used ∂ log Y G
i /∂ log rj′ = −σ∂ log pi/∂ log rj′ and ∂ log pi/∂ log rj′ = ∂ log cIi /∂ log rj′ .

Further, we approximate regional marginal costs based on a CD technology

cIi ≈
J∏
j=1

(
cTij
βij

)κj|i
=

J∏
j=1

(
r1−κ
j wκj
βij

)κj|i
(28)

where κj|i is the share of task j in the cost of production in region i and we assume that this share

is equal to the share of employment in occupation j within region i, sj|i. Accordingly marginal

costs react to changes in capital prices, ∂ log cIi
∂ log rj′

= sj′|i(1 − κ) + κ
∑J
j=1 sj|i

∂ logwij
∂ log rj′

. Moreover,

from labor supply we can derive wage responses ∂ logwgij
∂ log rj′

= 1
ε

∂ logNg
ij

∂ log rj′
and ∂ logwsij

∂ log rj′
= 1

ε

∂ logNs
ij

∂ log rj′
.

Using the elements from above, we can thus rewrite employment responses to capital price

changes in the tradable sector in matrix notation as

Ng,j′ =
[
I− κ(η − σ)

ε
Sg + 1− κ+ κη

ε
I
]−1 [

(η − σ)(1− κ)Sj′

+(1− η)(1− κ)Tj′
]

(29)

where Ng,j′ is an ij×1 matrix consisting of the elements ∂ logNg
ij

∂ log rj′
, Sj′ is an ij×1 matrix consisting

of the elements sj′|i, Sg is an ij×i′j′ matrix consisting of the elements sj′|i ∀ i = i′ and 0 ∀ i 6= i′,

and where Tj′ is an ij × 1 matrix consiting of the elements 1 ∀ j = j′ and 0 ∀ j 6= j′

Analogously, using equation (8), we derive responses of labor demand to capital prices in

non-tradables:

∂ logN s
ij

∂ log rj′
=− σ ∂ log cIi

∂ log rj′
+ (η − 1)∂ logwsi

∂ log rj′
− η

∂ logwsij
∂ log rj′

(30)

In our decomposition we thus assume that the disposable income per unit of real output in the

tradable sector remains constant or, in other words, that the share of sales that is consumed

by capital costs remains constant. As RRTC is expected to lead to declining capital costs, this

assumption implies that we ignore potential increases in local income that are induced by the
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declining capital costs.

Using the elements from above, we can rewrite employment responses to capital price changes

in the non-tradable sector in matrix notation as

Ns,j′ =
[
I + η

ε
I− η − 1

ε
Ss
]−1 [

−σ(1− κ)Sj′ − κσ

ε
SgNg,j′

]
(31)

The matrix Ss is analogous to Sg, but instead relies on the shares of occupations within regions

in the non-tradable sector.

Using equations (29) and (31) in equation (25), we arrive at our employment decomposi-

tion. It consists of the same labor demand shocks as our labor demand decomposition from

equation (10), although the effects are scaled by the labor supply responses. To implement the

labor demand decomposition, we assume ε → ∞, implying that wages do not respond. The

decomposition then simplifies to equation (10).
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A.2 Extension: The role of non-wage income

In our baseline model, we assume that non-wage earners reside in the region where their income

is generated. However, it turns out this assumption is relevant for the formulation of the local

spillover effect in the non-tradable sector, only. To the extent that non-wage income does not

feed back into European product and labor markets (e.g. because capital and firms are owned

by non-EU residents), we can relax this assumption. This means we alternatively rely on local

wage income only for deriving the local spillover effect. Since this implies none of the additional

non-wage income from RRTC feeds back into the European economy, this alternative assumption

provides us with a lower bound for the product demand spillover effect.

In our alternative decomposition, we rely on wage income, only. That is, income is the sum

of wage income in the two sectors, only:

Ii = wsiL
s
i +

J∑
j=1

wgijN
g
ij (32)

Labor demand in non-tradables then is

NS
ij = 1− µ

µ
β1−η
ij wsij

−ηwsi
η−1

J∑
j=1

wgijN
g
ij (33)

Hence, employment responses to changes in capital costs are

∂ logN s
ij

∂ log rj′
= −η

∂ logwsij
∂ log rj′

+ (η − 1)∂ logwsi
∂ log rj′

+
∂ log

∑J ′′
j′′=1w

g
ij′′N

g
ij′′

∂ log rj′
(34)

We rewrite this in matrix notation, use the definitions from above and rearrange to get:

Ns,j′ =
[
ε+ η

ε
I + 1− η

ε
Ss
]−1 1 + ε

ε
SWNg,j′ (35)

where SW is an ij × i′j′ matrix consisting of the elements swj′|i ∀ i = i′ and 0 ∀ i 6= i′, where swj|i
is the wage-bill share of occupation j in region i.

Using these marginal responses of non-tradable employment as a replacement for equation

(31) in equation (25), we can compute our decomposition as before.
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A.3 Data

A.3.1 Employment

Our analyses use employment data in 1-digit occupations within the tradable and non-tradable

sector for European regions over time. Table 8 outlines the data coverage for employment,

outlining for each country the level of regional disaggregation and years for which we have data.

This has been constructed from EU LFS micro-data for all 27 countries, partially supplemented

with aggregated Eurostat data for Austria, the Netherlands, and the United Kingdom.

Industries are classified with 1-digit NACE revision 1 codes until 2005; 1-digit NACE revision

1.1 codes between 2005 and 2008; and 1-digit NACE revision 2 codes from 2008 onwards.

Although the Eurostat crosswalk44 between 1-digit NACE revision 1.1 and 2 codes is not one-

to-one, this classification change does not matter given our level of aggregation. In particular,

we classify industries as tradable or non-tradable based on NACE revision 1.145, and all 1-digit

NACE revision 2 codes correspond to NACE revision 1.1 codes within either the tradable or the

non-tradable group. We remove employment in industries Agriculture, Hunting and Forestry;

Fishing; as well as Extraterritorial Organisations and Bodies from the dataset. Figure 5 shows

the development of employment separately for the tradable and non-tradable sectors. It can be

seen that employment has grown in both, but much more strongly so in the non-tradable sector.

Occupations are classified with ISCO 1988 codes throughout the sample period (1999-2010):

we use the 1-digit codes to avoid unacceptably small sample sizes at the regional level, and

exclude Farming Professionals (ISCO 6) and Armed Forces (ISCO 0).

Although occupation and industry data are typically available from 1993 onwards in the

EU LFS, regional information only starts in 1999 for most countries. Furthermore, there are

some countries (namely the Czech Republic, Germany, Denmark, Malta, Poland and Slovenia),

where consistent regional data is only available in a later year: see Table 8. In Figures 3,

4, 5, 8, and 6, and Table 7, employment data for these countries is calculated by log-linearly

extrapolating employment within region-occupation-industry cells. Breaks in the employment

series constructed from micro-data (for Austria, Finland, France, Italy, Luxembourg, Portugal

and the UK) have been adjusted as in Goos et al. (2014).

Finally, we supplement EU LFS micro-data for Austria, the Netherlands and the United
44Available at http://ec.europa.eu/eurostat/web/nace-rev2/correspondence_tables
45See Appendix A.4.1, below.
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Kingdom with aggregate Eurostat data46, to add more regional detail for these countries. In

particular, in the EU LFS micro-data, regional information is only available at the 1-digit NUTS

level for Austria and the UK, and at the national level for the Netherlands. For these coun-

tries, we therefore additionally use the aggregated datasets lfst_r_lfe2en1 and lfst_r_lfe2en247,

which provide EU LFS employment data aggregated by Eurostat to the region-industry-year

level.48 This allows us to construct 2-digit NUTS employment by occupation-industry-year for

Austria, the Netherlands, and seven out of twelve 1-digit NUTS regions in the UK.49 Specifically,

we use the following imputation method for regional employment in tradables over time (and

analogously for regional employment in non-tradables over time):

Ng
ijt = Ng

it ×N
g

j |̃it

where ĩ indicates the regional code available in the EU LFS micro-data and i its disaggregated

(i.e. 2-digit NUTS) counterpart; and we have obtained Ng
it from aggregated Eurostat data

and Ng

j |̃it from EU LFS micro-data. Note that this imputation assumes the same employment

distribution across occupation-industry cells within more and less aggregated regions.

Figure 5 shows the development of employment over time for Europe as a whole, in total

and separately by sector.

Figure 6 shows the actual changes in employment shares50 for the 238 European regions

between 1999 and 2010 divided into quintiles. The first quintile (light blue) depicts the 20

percent regions with the strongest decrease in their employment share whereas the fifth quintile

(dark blue) contains the 20 percent regions with the strongest increase. The map shows that

whereas employment shares have increased by up to 0.28 percentage points for some regions,

reflecting employment growth above the European average; they have decreased in others by up

to 0.21 percentage points. Furthermore, a regression of regional employment growth onto country

dummies (not reported) reveals that this variation occurs both between and within countries: 60

percent of the variation in regional employment growth is due to differences between countries,
46Available from http://ec.europa.eu/eurostat/data/database.
47There are two separate datasets because of the change in industry classification from NACE rev. 1.1 to NACE

rev. 2: lfst_r_lfe2en1 uses rev. 1.1 and covers 1999-2008 and lfst_r_lfe2en2 uses rev. 2 and covers 2008-2010.
48As such, this is the same data source as our micro-data: however, Eurostat aggregates from the non-

anonymized micro-data. The anonymized regional identifier released to researchers is less detailed because Austria,
the Netherlands and the UK have not authorized Eurostat to release micro-data at the 2-digit NUTS level.

49In particular, we can disaggregate data for 1-digit NUTS codes UKF, UKH, UKI, UKJ, UKK and UKL; but
not for 1-digit NUTS codes UKC, UKD, UKE, UKG, UKM and UKN, due to data availability in the aggregated
Eurostat data.

50Share of regional employment in total European employment.
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Table 8: Employment data coverage by country

Country Years NUTS level(s) Number of regions

AT 1999-2010 2 9
BE 1999-2010 2 11
CH 2001-2010 2 7
CZ 1999-2010 2 8
DE 2002-2010 1 16
DK 2007-2010 2 5
EE 1999-2010 . 1
ES 1999-2010 2 18
FI 1999-2010 2 5
FR 1999-2010 2 22
GR 1999-2010 2 13
HU 1999-2010 2 7
IE 1999-2010 2 2
IS 1999-2010 . 1
IT 1999-2010 2 20
LU 1999-2010 . 1
LV 1999-2010 . 1
MT 2009-2010 . 1
NL 1999-2010 2 12
NO 1999-2010 2 7
PL 2001-2010 2 16
PT 1999-2010 2 7
RO 1999-2010 2 8
SE 1999-2010 2 8
SI 2001-2010 2 2
SK 1999-2010 2 4
UK 1999-2010 1 & 2 26

Notes: European Union Labour Force Survey micro-data. A
missing (.) NUTS level means there is no regional information
available: for these countries, we only observe country-level
data (i.e. a single region).

and the remaining 40 percent is due to differences within countries.

A.3.2 Routine Task Intensity

The definition and data for the Routine Task Intensity (RTI) measure is described in Section

3.1 in the main text. Table 2 in the main text shows the Routine Task Intensity of occupations:

note that agricultural professionals (ISCO 6) and armed forces (ISCO 0) have been excluded

from the dataset.

Further, Figure 7 shows that the decrease in the routine intensity of European employment

documented in the paper is observed both in the sub-sample of 15 countries covered in Goos

et al. (2014) and the 12 countries not included in the analysis in Goos et al. (2014).51

51Namely, the Czech Republic, Estonia, Hungary, Iceland, Latvia, Malta, Poland, Romania, Slovakia, Slovenia
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Figure 5: Employment in Europe, total and by sector, 1999-2010
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Figure 6: European regional employment growth, 1999-2010
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and Switzerland.
45



Figure 8 highlights the regional variation in the routine intensity of employment in 1999:

this variation arises because regions have different occupational employment shares. A higher

RTI indicates that a higher fraction of jobs in the region can be automated. This map reveals

significant regional heterogeneity in susceptibility to RRTC: Specifically, the most and least

routine intense regions differ by an amount of 0.50 on the index, which corresponds to half a

standard deviation of the index across one-digit occupations. For comparison, Figure 9 shows

the 2010 spatial distribution of RTI.

Figure 7: Routine Task Intensity (RTI) of employment, 1999-2010
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A.3.3 Output, marginal costs and capital stock

We construct measures of regional output in tradables, total regional income, regional marginal

costs in tradables, and regional capital stock from the OECD’s structural analysis database

(OECD STAN).52 We use the ISIC revision 3 version of STAN as a baseline, since this covers

most countries and most years, supplemented with the ISIC revision 4 version whenever revision

3 data is not available.53 This requires resetting the baseyear from 2005 to 2000 in the revision

4 database, as well as crosswalking the ISIC revision 4 code (which is equal to NACE revision 2

at the 1-digit level) to ISIC revision 3 codes (which is equal to NACE revision 1.1 at the 1-digit

level). Data is available for all countries except Latvia, Malta, Romania and Slovenia, due to
52Available at http://www.oecd.org/sti/ind/stanstructuralanalysisdatabase.htm.
53This is typically for years 2009 and 2010.
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Figure 8: Spatial distribution of Routine Task Intensity (RTI) across European regions, 1999
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No data

Notes: Regions grouped into quintiles based on their RTI-index (see Section 3.1 for more details on the construction
of the RTI index.).

these countries not being covered in STAN; and Ireland, due to the absence of industry-varying

deflators.

Industry output is measured as real production by 1-digit industry, obtained from deflating

nominal production by industry-country-year varying deflators. Total income is the sum of

real production across all industries: this is used to construct market potential, as described in

Appendix A.4.2. Industry marginal costs for tradables are defined as the industry-level difference

between nominal production and net operating surplus, divided by real production, following

Goos et al. (2014). Capital stock is defined as real net capital stock summed across all industries,

deflated by country-year varying deflators.

Since these measures are only available at the national level in OECD STAN, we perform an

imputation procedure to obtain regional variation for each of these. In particular, our imputation

method exploits regional variation in output, marginal costs and capital stock arising from
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Figure 9: Spatial distribution of Routine Task Intensity (RTI) across European regions, 2010
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Notes: Regions grouped into quintiles based on their RTI-index (see Section 3.1 for more details on the construction
of the RTI index.).

industry composition differences at the regional level within tradables and non-tradables. For

each year, we assign national production and net capital stock at the level of 1-digit industries

to regions based on the share of regional to national employment by industry, and then sum

production across tradable 1-digit industries and net capital stock across all 1-digit industries.

That is, for production:

Y g
it =

G̃∑
g̃=1

Y g̃
īt

N g̃
it

N g̃
īt

where Y indicates production; ī subscripts countries; and g̃ subscripts 1-digit NACE industries

within tradables.

To obtain regional variation in marginal costs for tradables, we weight national marginal costs

at the level of 1-digit industries with the regional employment shares of 1-digit industries to total

tradable employment and sum across all tradable 1-digit industries. This is done separately for
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each year, such that:

cIit =
G̃∑
g̃=1

cg̃
īt

N g̃
it

Ng
it

where c indicates marginal costs; ī subscripts countries; and g̃ subscripts 1-digit NACE industries

within tradables.

The instrument for regional industry marginal costs is national industry marginal costs

reweighted by industry shares within regions, for each year. In particular, we use the weights of

the starting year for each country (i.e. holding constant the industry shares and using changes in

industry marginal costs at the national level only). Following Goos et al. (2014), who instrument

income with net capital stock, we construct our instrument for market potential by replacing

income with net capital stock (see Appendix A.4.2 for details).
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A.4 Empirical implementation

This appendix provides further details on the empirical implementation.

A.4.1 Classification of industries: tradability and ICT-intensity

To classify 1-digit NACE industries as tradable or non-tradable, we follow Jensen and Kletzer

(2006, 2010) by calculating a Gini coefficient of spatial concentration: the most spatially con-

centrated industries are considered tradable. For this, we rely on data from Eurostat. More

precisely, we combine aggregated data from the EU Labor Force Survey (LFS) on region-industry

employment at the NUTS2 and NACE 1-digit level with information on region-industry employ-

ment at the NUTS2 and NACE 2-digit level from the EU Structural Business Statistics (SBS).

Whereas the EU SBS provides more detailed sectoral data, these do not cover the primary sector

and public sectors, which we obtain from the EU LFS. We then use iterative proportional fitting

to fit the data to total regional employment and total industry employment (at the national

level), which we obtain from Eurostat. These data are available for the EU-15 excluding Den-

mark for the time period 1995-2008.54 We calculate spatial Gini coefficients as a measure for

industry localization, as described by Krugman (1991), for all years individually. We calculate

the spatial Gini coefficients at the level of the NACE 2-digit industries and then calculate the

average spatial Gini coefficient for each NACE 1-digit industry across all years.55 These are re-

ported in column 1 of Table 9. We distinguish between tradable and non-tradable industries at

the cut-off value of 0.25: industries with a Gini coefficient above 0.25 are classified as tradable.

Note that industries L, M, N, O and P are all grouped together in this dataset, hence they have

the same Gini coefficient.

Furthermore, the tradable industries have been more affected by technological change than

non-tradable industries, as is assumed in our theoretical set-up and the resulting empirical

implementation. This is shown in columns 2 and 3 of Table 9, which provide the level and

change in ICT intensity for 15 Western European countries based on EUKLEMS data. These

results are stable across countries.
54Due to the territorial reform in Denmark, these data are unavailable at the NUTS2-level in Denmark.
55The spatial Gini coefficients are based on the employment shares of the region-industries within EU-wide

industry employment. For robustness, we further calculate the spatial Gini coefficients for each country individu-
ally. However, the average of country-specific spatial Gini coefficients differs little from the EU-wide spatial Gini
coefficients.
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Table 9: Spatial Gini coefficients for industries

NACE Industry Classification Gini ICT-intensity
Level ∆

(1) (2) (3)

C Mining and quarrying Tradable 0.54 2.70 11.03
D Manufacturing Tradable 0.37 2.39 1.93
E Electricity, gas and water supply Tradable 0.27 5.65 4.09
F Construction Non-Tradable 0.16 0.45 0.26
G Wholesale and retail trade; repair of motor Non-Tradable 0.15 1.96 2.39

vehicles, motorcycles and personal and
household goods

H Hotels and restaurants Non-Tradable 0.21 0.42 0.28
I Transport, storage and communications Tradable 0.34 7.32 5.09
J Financial intermediation Tradable 0.30 9.51 11.56
K Real estate, renting and business activities Tradable 0.37 4.07 5.16
L Public administration and defense; compulsory Non-Tradable 0.10 0.95 1.49

social security
M Education Non-Tradable 0.10 0.72 1.13
N Health and social work Non-Tradable 0.10 0.67 1.79
O Other community, social and personal services Non-Tradable 0.10 1.58 1.99

activities
P Activities of private households as employers Non-Tradable 0.10 0.00 0.00

Notes: Industries classified with NACE revision 1.1.

A.4.2 Construction of market potential

Production in a region depends on the size of the potential market for the products of this

region. The potential market is defined as the sum of income in all other regions, lowered by the

transport costs towards these regions. While we have data on income in all other regions from

OECD STAN, we do not know the trade costs to these regions. However, we have information

on trade flows between all regions in Germany,56 from which we estimate an index of trade costs

for all region-pairs in Germany. We then estimate the relationship between this index and the

distance between regions, in order to extrapolate the trade costs for all region-pairs in Europe.

Finally, we use these trade costs to calculate market potential in Europe. The procedure is

outlined below.

Our product demand equation is:

Y g
i =

(
pgi
P g

)−σ I∑
i′=1

τ−σii′ µ
Ii′

P g
, (36)

56Eurostat provides information on transport flows, which we use to construct a transport flow matrix for
Germany by types of goods. We apply goods prices from international trade statistics provided by Eurostat and
information on industry production at the regional level provided by the Statistical Offices of the Länder and the
Federal Statistical Office of Germany to convert transport volumes into transport values.
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where demand for tradables produced by region i depends on the prices of these products and

a weighted aggregate of income in all regions, with the weights depending on transport costs.

Therefore, this weighted aggregate is a measure of market potential, since it represents the size

of the market that region i can potentially serve with its products given the transport costs to

this market. That is, market potential is the last term in the product demand equation (now in

logs)

log Y g
it = −σ log

(
pgit
P gt

)
+ log

I∑
i′=1

τ−σii′ µ
Ii′t
P gt

(37)

Market potential depends on unknown variables and parameters and thus cannot be directly

empirically measured. In the trade flow specification of product demand, however, one can

estimate the trade costs from fixed effects. This trade flow specification is:

log cgii′t = −σ log
(
pgit
P gt

)
− σ log τii′ + logµ+ log Ii

′t

P gt
(38)

We translate this into a fixed-effects model:

log cgii′t = β0 + βii′ + β1timetrend+ β2 log Ii
′t

P gt
+ β3 log cIi + εii′t (39)

We use the total real income of private households as a measure for Ii′t
P gt

57 and we replace

the regional price level p
g
it

P gt
with regional marginal costs cIi .58 The trade-pair fixed effects βii′ in

this equation contain estimates of −σ log τii′ , that is, the weights for constructing the market

potential. We therefore extract the fixed effects from the trade flow equation to get our index of

trade costs ˜τii′ . There is a close relationship between trade costs and distance, which we exploit

to extrapolate the trade costs for Europe. More precisely, we regress estimated trade costs (i.e.

the fixed effects β̂ii′ resp. ˜τii′) on distance:59

log ˜τii′ = β0 + β1 log distanceii′ + εii′ (40)

From this, we calculate extrapolated trade costs ˆτ∗ii′ = β̂0 + β̂1distanceii′ . We use the average

of ˜τii′ for those region-pairs where the distance is zero (i.e. sales of a tradables within the region
57Source: Statistical Offices of the Länder and the Federal Statistical Office of Germany.
58See Appendix A.3.3 for the measurement of regional marginal costs.
59Distance is measured as the great-circle distance between the centroids of the regions in our sample.
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of production). We scale the trade costs as follows:

ˆτii′ =
ˆτ∗ii′∑I

i′=1
∑I
i=1

ˆτ∗ii′
(41)

Due to this scaling, ˆτii′ represents the share of each transport flow in total sales across all

flows. Market potential then is defined as

MPit =
I∑

i′=1
ˆτii′
Ii′

P g
(42)

As such, a region’s market potential represents the sales of that region to all destination

regions. Through the scaling, the sum of market potential across all regions equals total income

(or total production). To construct the market potential for Europe, we use output in European

regions (see Appendix A.3.3) as a measure for Ii′ . To construct our IV for market potential, we

replace Ii′ with regional net capital stock (see Appendix A.3.3).

A.4.3 First-stage estimates

Here, we present our first-stage estimates for both labor and product demand.
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Table 10: Labor demand in the tradable sector: first stages

FE-IV model 1 FE-IV model 2
First stage First stage First stage First stage
Output Marginal costs Output Marginal costs
(1) (2) (3) (4)

Log regional net capital stock in tradables 0.536*** -0.013** 0.537*** -0.013**
(0.040) (0.004) (0.043) (0.004)

Log counterfactual regional marginal cost index -0.069 0.896*** 0.038 0.900***
(0.109) (0.027) (0.132) (0.027)

Number of observations 11,744 11,744 11,744 11,744
Sanderson-Windmeijer first-stage F-statistic 183.1 1,606.3 156.1 2,028.2

FE-IV model 3
First stage First stage First stage
Output Marginal costs Wages
(5) (6) (7)

Log regional net capital stock in tradables 0.519*** -0.013** 0.003
(0.040) (0.004) (0.025)

Log counterfactual regional marginal cost index -0.107 0.896*** -0.222
(0.102) (0.027) (0.174)

Female labor supply shock 0.717*** -0.007 -0.175*
(0.096) (0.011) (0.087)

Number of observations 11,744 11,744 11,744
Sanderson-Windmeijer first-stage F-statistic 26.6 3.1 4.4

Notes: European regions, 1999-2010. All models include region-occupation fixed effects and control for a linear
timetrend. Standard errors clustered by region reported in parentheses. Coefficients on RTI multiplied by 100.

Table 11: Product demand in the tradable sector: first stages

Dependent variable: log regional production of tradables (in region-year cells)

First stage First stage
Market potential Marginal costs

(1) (2)

Log regional net capital stock in tradable sector 1.284*** 0.050**
(0.038) (0.018)

Log counterfactual regional marginal cost index 0.235*** 0.914***
(0.033) (0.022)

Number of observations 1,904 1,904
Sanderson-Windmeijer first-stage F-statistic 751.5 769.1

Notes: European regions, 2001-2010. All models are estimated with region-occupation
fixed effects. Standard errors clustered by region reported in parentheses.
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A.5 Empirical robustness checks

This appendix provides further empirical robustness checks.

A.5.1 Alternative parameter estimates

This section presents robustness checks using alternative parameter estimates. We first consider

the parameters obtained from the labor demand equation, i.e. (1 − η)(1 − κ)γR and η. These

parameter estimates (and the assumed or implied values for κ and γR) are reported in Table 12,

along with the baseline. In particular, in panel A we show the baseline estimates used in Sections

4.1 and 4.2. Panel B shows estimates from the labor demand model without controlling for wages

(model 3 in Table 3), and panel C the labor demand model where wages are instrumented by

labor supply shocks (model 5 in Table 3).

Firstly, note that the routinization coefficient (1 − η)(1 − κ)γR is identical across all model

specifications. The estimated substitution elasticity between tasks, η, does differ somewhat

across models: in both alternative specifications reported here, it is higher than the baseline of

0.29. Further, note that without controlling for wages, we have no way to back out both κ and

γR: we therefore assume κ to be 0.69, the plausible value obtained from our baseline estimates.

This suggests an implied annual log capital price decline of 9.6 percent (versus 7.8 percent in

our baseline estimates). In panel C, we again use the estimated wage elasticity of labor demand

to obtain estimates of κ and γR. However, because this coefficient is very imprecisely estimated

(-0.36 with standard error of 0.59, as reported in Table 3’s model 5), these implied parameters

have a lot of variance. Their averages are also less plausible than in the baseline and first

alternative models, suggesting a labor share of 0.95 rather than 0.69, and a stark decline in the

price of capital of 52 percent annually.60

Figure 10 reports point estimates for these two alternative parameter constellations along

with the baseline, showing the predicted employment effects from each of the three channels

as well as the net effect. Note that all predictions shown in this figure still use our baseline

product demand elasticity (σ) of 0.86 for now. The predicted net employment effect is both

qualitatively identical and quantitatively similar for all three parameter sets: 1.8 million jobs in

the baseline, versus 2.2 million and 1.9 million in the two alternative scenarios. This is because

a higher elasticity of substitution across tasks (η) leads to both stronger (negative) substitution
60In Byrne and Corrado (2017), values in this range are only found for computer storage and computing

technologies (25 to 50% annually).
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Figure 10: Robustness check: alternative labor demand estimates
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effects and stronger (positive) product demand effects, creating two countervailing forces on the

net effect. Moreover, variations in the capital price decline γR across specifications are mostly

compensated by inverse changes in the capital share (via the labour share κ), since both are

backed out from the estimate of routinization β3 = (1 − η)(1 − κ)γR which is empirically very

robust across specifications.

We additionally take an alternative value for σ, the product demand elasticity parameter

estimated in Table 4. Our baseline uses the specification where market potential and marginal

costs are instrumented (model 2), but as a robustness check we consider the OLS specification

shown in model 1: this reduces the estimated elasticity from 0.86 to 0.65. Figure 11 implements

this for both the baseline parameter set reported in Table 12’s panel A, and the two alternatives

shown in panels B and C. As before, employment predictions are quite similar across baseline

and alternative specifications, showing that our results do not hinge on any particular labor or

product demand specification.61

Further, note that increasing the labor supply elasticity ε simply moves the predictions

for employment closer to the ones for labor demand predictions: these two converge as the

supply elasticity approaches infinity. Figure 12 illustrates this by showing how the predicted net
61Although not reported here for succinctness, results for the role of non-wage income are also robust to these

alternative parameter configurations – results are available from the authors.
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Figure 11: Robustness check: alternative product demand estimate
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Table 12: Alternative parameter estimates

Parameter Description Estimate
A. Baseline B. Without wages C. Instrumenting wages

(1− η)(1− κ)γR routinization coefficient (×100) -1.743*** -1.743*** -1.743***
(0.081) (0.081) (0.081)

η substitution elasticity between tasks 0.285** 0.416** 0.324*
(0.103) (0.129) (0.164)

−[(1− κ) + κη] wage elasticity of labor demand -0.507** – 0.357
0.052) (0.590)

κ labor share 0.689*** 0.689*** 0.951
(0.136) (0.136) (1.066)

γR annual log routine-replacing -7.833* -9.597*** -52.467
capital price change (×100) (4.441) (2.167) (1150.072)

Notes: Estimates in Panels A, B, and C are obtained from model 4, 3, and 5, respectively, in Table 3. In panel B,
κ is assumed to be equal to the estimate obtained from the baseline model (panel A). Standard errors reported in
parentheses.

employment effect asymptotically approaches the predicted net labor demand effect over a range

of ε from 0 to 10. Lastly, Appendix A.5.2 shows that our labor and product demand parameter

estimates do not vary substantially across the economic cycle.

All in all, the results presented here show that our baseline effects (reported in Section 4)

are robust to alternative parameter configurations.
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Figure 12: Robustness check: labor supply elasticity
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A.5.2 Business cycles

Our theoretical model examines how RRTC impacts long-run labor demand, and does not con-

sider business cycles. Indeed, we model technological progress as a task measure interacted

with a linear timetrend to capture a steady secular process, implying we should pool informa-

tion across the economic cycle. Indeed, there have been both booms and recessions over our

observation window 1999-2010, and as a robustness check we examine whether our parameter

estimates are significantly different across different parts of the economic cycle. This appendix

therefore presents estimates of our labor and product demand equations where our respective

independent variables have been interacted with a dummy for recession and/or boom years. In

particular, we obtain country-specific business cycle indicators from the OECD, which classifies

years as peaks, troughs, or neither, for each country in our sample: around 20 percent of years

are peak years, 20 percent are troughs, and the remainder is neither.62

Table 13 shows estimates of the labor demand equation, allowing parameters (1−η)(1−κ)γR

and η to differ during peaks and troughs. It can be seen that the deviations from the parameter

estimate for (1 − η)(1 − κ)γR, given by the coefficient on RTI × timetrend, are economically
62The OECD does not have indicators for Iceland, Latvia, and Romania– for these countries, we use indicators

for the UK, Estonia, and Hungary, respectively. Results are robust to alternatively constructing a business cycle
indicator common across countries, where a year is classified as a peak or trough if it is classified as such for at
least half of all countries in our sample.
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Table 13: Labor demand in the tradable sector: business cycle interactions

Dependent variable: log employment in tradable sector (in region-occupation-year cells)

FE FE FE-IV FE-IV FE-IV
Full sample Restricted sample with wages with IV wages

(1) (2) (3) (4) (5)

Standardized occupational RTI × timetrend -1.675*** -1.741*** -1.741*** -1.741*** -1.741***
(0.074) (0.092) (0.082) (0.082) (0.082)

Standardized occupational RTI × timetrend 0.000 0.000 0.000 0.000 0.000
× trough dummy (0.000) (0.000) (0.000) (0.000) (0.000)
Standardized occupational RTI × timetrend 0.000* 0.000 0.000 0.000 0.000
× peak dummy (0.000) (0.000) (0.000) (0.000) (0.000)

Log regional gross production in tradables 0.738*** 0.737*** 0.737***
(0.071) (0.077) (0.075)

Log regional marginal cost index 0.435** 0.281* 0.321
(0.133) (0.110) (0.165)

Log regional marginal cost index 0.046 0.053 0.051
× trough dummy (0.052) (0.045) (0.042)
Log regional marginal cost index 0.114** 0.158*** 0.146*
× peak dummy (0.042) (0.041) (0.058)

Log regional wage in tradables -0.506*** -0.376
(0.051) (0.505)

Number of observations 21632 11744 11744 11744 11744
R-squared 0.980 0.982 0.179 0.197 0.196

Notes: European regions, 1999-2010. Models (1) and (2) include region-occupation and region-year fixed effects. Model (3),
is estimated with region-occupation fixed effects and controls for a linear timetrend. Standard errors clustered by region
reported in parentheses. Coefficients on RTI multiplied by 100.

negligble. Furthermore, the estimated η parameter is not significantly different in recession

years. Although only borderline statistically significant, η is slightly higher during peak years–

however, the deviation easily falls within the confidence interval we consider in Table 6.

Table 14 contains the corresponding product demand demand estimates: also here, we do not

find a statistically significant deviation for our estimated σ parameter during peaks or troughs.

In conclusion, we do not find evidence to suggest our parameter estimates are affected by

pooling both recession and boom years.

59



Table 14: Product demand in the tradable sector: business cycle interactions

Dependent variable: log regional production of tradables (in region-year cells)

FE FE-IV
(1) (2)

Log market potential 1.182*** 1.289***
(0.091) (0.103)

Log industry marginal cost index -0.508*** -0.663***
(0.132) (0.156)

Log industry marginal cost index × trough dummy 0.033 0.024
(0.044) (0.046)

Log industry marginal cost index × peak dummy 0.047 0.026
(0.040) (0.042)

Number of observations 2,048 2,048

Notes: European regions, 2001-2010. All models are estimated with region-
occupation fixed effects. Standard errors clustered by region reported in paren-
theses.
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