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ABSTRACT
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Rationalizing Rational Expectations? 
Tests and Deviations*

In this paper, we build a new test of rational expectations based on the marginal 

distributions of realizations and subjective beliefs. This test is widely applicable, including in 

the common situation where realizations and beliefs are observed in two different datasets 

that cannot be matched. We show that whether one can rationalize rational expectations 

is equivalent to the distribution of realizations being a mean-preserving spread of the 

distribution of beliefs. The null hypothesis can then be rewritten as a system of many 

moment inequality and equality constraints, for which tests have been recently developed 

in the literature. Next, we go beyond testing by defining and estimating the minimal 

deviations from rational expectations that can be rationalized by the data. In the context 

of structural models, we build on this concept to propose an easy-to-implement way to 

conduct a sensitivity analysis on the assumed form of expectations. Finally, we apply our 

framework to test for and quantify deviations from rational expectations about future 

earnings, and examine the consequences of such departures in the context of a life-cycle 

model of consumption.
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1 Introduction

How individuals form their beliefs about uncertain future outcomes is critical to understand-

ing decision making. Despite longstanding critiques (see, among many others, Pesaran, 1987;

Manski, 2004), rational expectations remain by far the most popular framework to describe

belief formation (Muth, 1961). This theory states that agents have expectations that do not

systematically differ from the realized outcomes, and efficiently process all private information

to form these expectations. Rational expectations (RE) are a key building block in many macro-

and micro-economic models, and in particular in most of the dynamic microeconomic models

that have been estimated over the last two decades (see, e.g., Aguirregabiria and Mira, 2010;

Blundell, 2017, for recent surveys).

In this paper, we build a new test of RE. Our test only requires having access to the marginal

distributions of subjective beliefs and realizations, and, as such, can be applied quite broadly.

In particular, this test can be used in a data combination context, where individual realizations

and subjective beliefs are observed in two different datasets that cannot be matched. Such

situations are common in practice (see, e.g., Delavande, 2008; Arcidiacono et al., 2012, 2014;

Stinebrickner and Stinebrickner, 2014a; Kuchler and Zafar, 2017; Kapor et al., 2018). Besides,

even in surveys for which an explicit aim is to measure subjective expectations, such as the

Michigan Survey of Consumers or the Survey of Consumer Expectations of the New York Fed,

expectations and realizations can typically only be matched for a subset of the respondents. And

of course, regardless of attrition, whenever one seeks to measure long or medium-term outcomes,

matching beliefs with realizations does require waiting for a long period of time before the data

can be made available to researchers.

The tests of RE implemented so far in this context (see, e.g., Patton and Timmermann, 2012;

Gennaioli et al., 2015) only use specific implications of the RE hypothesis. In contrast, we

develop a test that exploits all possible implications of RE. Using the key insight that we

can rationalize RE if and only if the distribution of realizations is a mean-preserving spread

of the distribution of beliefs, we show that rationalizing RE is equivalent to satisfying one

moment equality and infinitely many moment inequalities.1 As a consequence, if these moment

conditions hold, RE cannot be rejected, given the data at our disposal. By exhausting all relevant

implications of RE, our test is able to detect much more violations of rational expectations than

existing tests.

To develop a statistical test of RE rationalization, we build on the recent literature on inference

based on moment inequalities, and more specifically, on Andrews and Shi (2017). By applying

their results to our context, we show that our test controls size asymptotically and is consistent

1Interestingly, the equivalence on which we rely, which is based on Strassen’s theorem (Strassen, 1965), is also

used in the microeconomic risk theory literature, see in particular Rothschild and Stiglitz (1970).
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over fixed alternatives. We also provide conditions under which the test is not conservative.

We then consider several extensions to our baseline test. First, we show that by using a set of

covariates that are common to both datasets, we can increase our ability to detect violations of

RE. Another important issue is that of unanticipated aggregate shocks. Even if individuals have

rational expectations, the mean of observed outcomes may differ from the mean of individual

beliefs simply because of aggregate shocks. We show that our test can be easily adapted to

account for such shocks. Finally, we prove that our test is robust to measurement errors in

the following sense. If individuals have rational expectations but both beliefs and outcomes are

measured with (classical) errors, then our test does not reject RE provided that the amount of

measurement errors on beliefs does not exceed the amount of intervening transitory shocks plus

the measurement errors on the realized outcomes. In particular, this allows for elicited beliefs

to be noisier than realized outcomes. This provides a rationale for our test even in cases where

realizations and beliefs are observed in the same dataset, since a direct test based on a regression

of the outcome on the beliefs (see, e.g., Lovell, 1986) is, at least at the population level, not

robust to any amount of measurement errors on the subjective beliefs.

Next, we go beyond testing and introduce the concept of minimal deviations from rational

expectations that can be rationalized by the data. To do so, we use tools from the optimal

transport literature (see Galichon, 2016, for an overview). In particular, building on the insights

of a recent article by Gozlan et al. (2018), we construct the minimal deviations by projecting the

subjective expectations on the space of expectations compatible with RE. A remarkable property

of this projection is that it does not depend on the particular choice of distance between random

variables that we consider. These minimal deviations from RE allow us to go beyond the binary

result of the statistical test, and quantify the magnitude of the violations from RE. We then

derive a consistent estimator of these minimal deviations. Importantly for practical purposes,

this estimator can be easily implemented, and at a modest computational cost.

We extend the concept of minimal deviations from rational expectations to accommodate re-

strictions on the information set of the agents. In the context of structural models, the proposed

approach yields a natural and easy-to-implement sensitivity check on the assumed form of ex-

pectations. This procedure does not require observing the beliefs in the same dataset as the

one used to estimate the model, and can thus be used quite generally. Overall, this method

offers a middle ground between estimating structural choice models based on realized data only,

under the assumption of rational expectations (standard approach a la Rust, 1987; Keane and

Wolpin, 1997), and estimating more flexible choice models using subjective beliefs (as in, e.g.,

Stinebrickner and Stinebrickner, 2014b; Delavande and Zafar, 2018).

We apply our framework to test for and quantify deviations from rational expectations about fu-

ture earnings. To do so, we combine elicited beliefs about future earnings with realized earnings,
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using data from the Labor Market module of the Survey of Consumer Expectations (SCE, New

York Fed), and test whether household heads form rational expectations on their annual labor

earnings. While a naive test of equality of means between earnings beliefs and realizations shows

that earnings expectations are realistic in the sense of not being significantly biased, thus not

rejecting the rational expectations hypothesis, our test does reject rational expectations at the

1% level. Taken together, our findings illustrate the practical importance of incorporating the

additional restrictions of rational expectations that are embedded in our test. The results of our

test also indicate that the RE hypothesis is more credible for certain subpopulations than oth-

ers. For instance, we reject RE for individuals without a college degree, who exhibit substantial

deviations from RE. On the other hand, we fail to reject the hypothesis that college-educated

workers have rational expectations on their future earnings.

Finally, we explore the sensitivity of a standard life-cycle incomplete markets model of con-

sumption to violations of the rational expectations hypothesis. Even though agents are about

right on average about their future earnings, we show that minimal deviations from RE entail

substantial changes in the predicted responses of consumers to income shocks. In addition to

underlining the sensitivity of the model to the RE hypothesis, our results show that departures

from RE account for some of the over-insurance to permanent income shocks, as well as the ex-

cess sensitivity of consumption to transitory shocks that have been documented in the literature

(see, e.g., Hall and Mishkin, 1982; Blundell et al., 2008; Kaplan and Violante, 2010).

By developing a test of rational expectations in a setting where realizations and subjective beliefs

are observed in two different datasets, we bring together the literature on data combination (see,

e.g., Cross and Manski, 2002, Molinari and Peski, 2006, Fan et al., 2014, Buchinsky et al., 2018,

and Ridder and Moffitt, 2007 for a survey), and the literature on testing for rational expectations

in a micro environment (see, e.g., Lovell, 1986; Gourieroux and Pradel, 1986; Ivaldi, 1992, for

seminal contributions).

On the empirical side, we contribute to a rapidly growing literature on the use of subjective

expectations data in economics (see, e.g., Manski, 2004; Delavande, 2008; Van der Klaauw and

Wolpin, 2008; Van der Klaauw, 2012; Arcidiacono et al., 2014; de Paula et al., 2014; Stinebrickner

and Stinebrickner, 2014b; Wiswall and Zafar, 2015). In this paper, we show how to incorporate

all of the relevant information from subjective beliefs combined with realized data to test for,

and measure deviations from rational expectations.

By developing a new framework allowing to examine the sensitivity of behavioral models to

departures from the rational expectations hypothesis, we also contribute to a small but growing

body of research estimating structural choice models without imposing rational expectations

(see, e.g., Buchinsky and Leslie, 2010; Stinebrickner and Stinebrickner, 2014a; Kapor et al.,

2018; and Agarwal and Somaini, 2018). We add to this literature by showing how a sensitivity
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analysis of the RE hypothesis can be conducted in frequent situations where the data used to

estimate the structural model does not include beliefs, but such beliefs are observed in another

dataset. From a methodological point of view, our approach based on minimal deviations shares

some similarities with the sensitivity analysis methods recently proposed by Andrews et al.

(2017), Armstrong and Kolesár (2018) and Bonhomme and Weidner (2018), in that they study

the robustness of a model to local deviations. In these papers, however, such deviations are

assumed to become negligible as the sample size grows, whereas our deviations do not.

The remainder of the paper is organized as follows. In Section 2, we present the set-up and discuss

the main theoretical equivalences that we use to build our testing procedure. In Section 3, we

present the statistical tests for rational expectations, and establish their asymptotic properties.

Section 4 introduces and studies the properties of minimal deviations from rational expectations

that can be rationalized by the data. Section 5 illustrates the finite sample properties of our

tests and estimators through Monte Carlo simulations. Section 6 applies our framework to

expectations about future earnings. Finally, Section 7 concludes. The appendix collects various

theoretical extensions, additional simulation results, additional material on the application, and

all the proofs. A companion R package (RationalExp) and its user guide (D’Haultfœuille et al.,

2018) are available on https://github.com/cgaillac/RationalExp. This package performs

the test of RE and computes the estimator of minimal deviations.

2 Set-up and main theoretical equivalences

2.1 Set-up

We assume that the researcher has access to a first dataset containing the individual outcome

variable of interest, which we denote by Y . She also observes, through a second dataset, the

elicited individual expectation on Y , denoted by ψ. Throughout the paper, we focus on sit-

uations where the researcher has access to elicited beliefs about mean outcomes, as opposed

to probabilistic expectations about the full distribution of outcomes. The type of subjective

expectations data we consider in the paper has been collected in various contexts, and used in

a number of prior studies (see, among others, Delavande, 2008; Zafar, 2011b; Arcidiacono et al.,

2012, 2014; Hoffman and Burks, 2017).

Formally, ψ = E [Y |I], where I denotes the σ-algebra corresponding to the agent’s information

set and E [·|I] is the subjective expectation operator (i.e. for any U , E [U |I] is a I-measurable

random variable). We are interested in testing the rational expectations (RE) hypothesis

ψ = E[Y |I], where E [·|I] is the conditional expectation operator generated by the true data

generating process. Importantly, we remain agnostic throughout most of our analysis on the

information set I. Our analysis therefore complements several studies which primarily focus on
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testing for different information sets, while maintaining the rational expectations assumption

(see Cunha and Heckman, 2007, for a survey).

It is easy to see that the RE hypothesis imposes restrictions on the joint distribution of realiza-

tions Y and beliefs ψ. In this data combination context, the relevant question of interest is then

whether one can rationalize RE, in the sense that there exists a triplet (Y ′, ψ′, I ′) such that (i)

the pair of random variables (Y ′, ψ′) are compatible with the marginal distributions of Y and

ψ; and (ii) ψ′ correspond to the rational expectations of Y ′, given the information set I ′, i.e.,

E(Y ′|I ′) = ψ′. Hence, we consider the test of the following hypothesis:

H0 : there exists a pair of random variables (Y ′, ψ′) and a sigma-algebra I ′ such that

σ(ψ′) ⊂ I ′, Y ′ ∼ Y, ψ′ ∼ ψ and E
[
Y ′
∣∣I ′] = ψ′,

where ∼ denotes equality in distribution. Rationalizing RE does not mean that the true realiza-

tions Y , beliefs ψ and information set I are such that E [Y |I] = ψ. Instead, it means that there

exists a triplet (Y ′, ψ′, I ′) consistent with the data and such that E [Y ′|I ′] = ψ′. In other words,

rejecting H0 implies that RE does not hold, in the sense that the true realizations, beliefs, and

information set do not satisfy RE (E [Y |I] 6= ψ). The converse, however, is not true.

2.2 Equivalences

2.2.1 Main equivalence

Let δ = E [Y ] − E [ψ], Fψ and FY denote the cumulative distribution functions (cdf) of ψ and

Y , x+ = max(0, x), and define

∆(y) =

∫ y

−∞
FY (t)− Fψ(t)dt.

Throughout most of our analysis, we impose the following regularity conditions on the distribu-

tions of realized outcomes (Y ) and subjective beliefs (ψ):

Assumption 1 E (|Y |) < +∞ and E (|ψ|) < +∞.

The following preliminary result will be useful subsequently.

Lemma 1 Suppose that Assumption 1 holds. Then H0 holds if and only if there exists a pair

of random variables (Y ′, ψ′) such that Y ′ ∼ Y , ψ′ ∼ ψ and E [Y ′|ψ′] = ψ′.

Lemma 1 states that in order to test for H0, we can focus on the constraints on the joint

distribution of Y and ψ, and ignore those related to the information set. This is intuitive given

that we impose no restrictions on this set. Our main result is Theorem 1 below. It states

that rationalizing RE (i.e., H0) is equivalent to a set of many moment inequality and equality

constraints.
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Theorem 1 Suppose that Assumption 1 holds. The following statements are equivalent:

(i) H0 holds;

(ii) (FY is a mean-preserving spread of Fψ) ∆(y) ≥ 0 for all y ∈ R and δ = 0;

(iii) E
[
(y − Y )+ − (y − ψ)+] ≥ 0 for all y ∈ R and δ = 0.

The implication (i) ⇒ (iii) and the equivalence between (ii) and (iii) are simple to establish.

The key part of the result is to prove that (iii) implies (i). To show this, we first use Lemma 1,

which states that H0 is equivalent to the existence of (Y ′, ψ′) such that Y ′ ∼ Y , ψ′ ∼ ψ and

E [Y ′|ψ′] = ψ′. Then the result essentially follows from Strassen’s theorem (Strassen, 1965,

Theorem 8).

It is interesting to note that Theorem 1 is related to the theory of risk in microeconomic theory.

In particular, using the terminology of Rothschild and Stiglitz (1970), (ii) states that realizations

(Y ) are more risky than beliefs (ψ). The main value of Theorem 1, from a statistical point of

view, is to transform H0 into the set of moment inequality (and equality) restrictions given by

(iii). We show in Section 3 how to build a statistical test of these conditions.

Comparison with alternative tests of rational expectations We now compare our test

with alternative ones that have been proposed in the literature. In the following discussion, as

in this whole section, we reason at the population level and thus ignore statistical uncertainty.

Accordingly, the tests we consider here are formally deterministic, and we compare them in

terms of data generating processes violating the null hypothesis associated with each of them.

Our test can clearly detect many more violations of rational expectations than the “naive” test of

rational expectations simply based on the equality E(Y ) = E(ψ). It also detects more violations

than a test based on the restrictions E(Y ) = E(ψ) and V(Y ) ≥ V(ψ) (variance test), which has

been considered in particular in the macroeconomic literature on the accuracy and rationality

of forecasts (see in particular Patton and Timmermann, 2012).2 On the other hand, and as

expected since it relies on the joint distribution of (Y, ψ), the “direct” RE test of E(Y |ψ) = ψ

can detect more violations of rational expectations than ours.

To better understand the differences between these four different tests (“naive”, variance, “di-

rect” tests, and our test), it is helpful to consider important particular cases. Of course, if

ψ = E [Y |I], individuals are rational and none of the four tests reject their null hypothesis.

2We also refer the reader to Elliott et al. (2005), Jin et al. (2017) and references therein, for other recent

contributions to the literature on the accuracy and rationality of forecasts. The framework in this literature

differs however from ours in a number of aspects, and in particular by focusing on the evolution over time of

forecasts.
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Next, consider departures from rational expectations of the form ψ = E [Y |I] + η, with η inde-

pendent of E [Y |I]. If E(η) 6= 0, subjective beliefs are biased, and individuals are on average

either over-pessimistic or over-optimistic. It follows that E(Y ) 6= E(ψ), implying that all four

tests reject their null hypothesis.

More interestingly, if E(η) = 0, individuals’ expectations are right on average, and the naive

test does not reject the null. However, it is easy to show that, as long as deviations from RE

are heterogeneous in the population (V(η) > 0), the direct test always leads to a rejection. In

this setting, our test constitutes a middle ground, the rejection of which depends on the degree

of dispersion of the deviations from RE (η) relative to the uncertainty shocks (ε = Y −E(Y |I)).

In other words and intuitively, we reject the null hypothesis with our test whenever departures

from rational expectations dominate the uncertainty shocks affecting the outcome. Formally,

and using similar arguments as in Proposition 4 in Subsection 2.2.4, one can show that if ε is

independent of E [Y |I], our test rejects H0 as long as the distribution of the uncertainty shocks

stochastically dominates at the second-order the distribution of the deviations from RE.

Specifically, if ε ∼ N (0, σ2
ε) and η ∼ N (0, σ2

η), our test rejects if and only if σ2
η > σ2

ε . In such a

case, our test boils down to the variance test mentioned above: we reject whenever V(ψ) > V(Y ).

But interestingly, if the discrepancy (η) between beliefs and rational expectations is not normally

distributed, we can reject H0 even if V(ψ) ≤ V(Y ). Suppose for instance that ε ∼ N (0, 1) and

η = a (−1{U ≤ 0.1}+ 1{U ≥ 0.9}) , U ∼ U [0, 1] and a > 0.

In other words, 80% of individuals are rational, 10% are over-pessimistic and form expectations

equal to E [Y |I] − a, whereas 10% are over-optimistic and expect E [Y |I] + a. Then one can

show that our test rejects when a ≥ 1.755, while for a = 1.755, V(η) ' 0.616 ≤ V(ε) = 1.

Finally, in one particular case, our test reduces to the naive test of E(Y ) = E(ψ). Indeed,

when Y is a binary outcome and ψ ∈ [0, 1], one can easily show that as long as E(Y ) = E(ψ),

the inequalities E
[
(y − Y )+ − (y − ψ)+] ≥ 0 automatically hold for all y ∈ R. This applies to

expectations about binary events, such as, e.g., being employed or not at a given date. This also

applies to situations where expectations about the distribution of continuous outcomes Y are

elicited through questions of the form “what do you think is the percent chance that [Y] will be

greater than [y]?”, for different values y. We refer the reader to Manski (2004) for discussions

of papers analyzing this type of probabilistic expectations data. In such cases, one can still

apply our analysis after replacing, for the different values y at which the subjective beliefs were

elicited, Y by 1{Y > y}, and defining ψ as the subjective survival function evaluated at y.

Interpretation of the boundary condition Finally, to shed further light on our test and

on the interpretation of H0, it is instructive to derive the distributions of Y |ψ that correspond
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to the boundary condition (∆(y) = 0). The proposition below shows that, in the presence of

rational expectations, agents whose beliefs ψ lies at the boundary of H0 have perfect foresight,

i.e. ψ = E[Y |I] = Y .3

Proposition 1 Suppose that (Y, ψ) satisfies RE, u 7→ F−1
Y |ψ(τ |u) is continuous for all τ ∈ (0, 1),

and ∆(y0) = 0 for some y0 in the interior of the support of ψ. Then Y |ψ = y0 is degenerate.

2.2.2 Equivalence with covariates

In practice we may observe additional variables X ∈ RdX in both datasets. Assuming that X is

in the agent’s information set, we modify H0 as follows:4

H0X : there exists a pair of random variables (Y ′, ψ′) and a sigma-algebra I ′ such that

σ(ψ′, X) ⊂ I ′, Y ′|X ∼ Y |X, ψ′|X ∼ ψ|X and E
[
Y ′
∣∣I ′] = ψ′.

Adding covariates increases the number of restrictions that are implied by the rational ex-

pectation hypothesis, thus improving our ability to detect violations of rational expectations.

Proposition 2 below formalizes this idea and shows that H0X can be expressed as a system of

many conditional moment inequalities and equalities.

Proposition 2 Suppose that Assumption 1 holds. The following two statements are equivalent:

(i) H0X holds;

(ii) Almost surely, E
[
(y − Y )+ − (y − ψ)+

∣∣X] ≥ 0 for all y ∈ R and E [Y − ψ|X] = 0.

Moreover, if H0X holds, H0 holds as well.

2.2.3 Equivalence with unpredictable aggregate shocks

There may be cases where the restriction E [Y |ψ] = ψ (or, in the presence of covariates,

E [Y |ψ,X] = ψ) is too strong, in the sense that such a restriction may be violated, even though

the rational expectations hypothesis holds. This occurs in particular in frequent situations where

the outcome Y is affected by unpredictable, aggregate shocks.

These types of shocks arise in a variety of contexts, but for concreteness we consider in the

following the case of individual income. Suppose that the logarithm of income of individual i at

period t, denoted by Yit, satisfies a Restricted Income Profile model:

Yit = αi + βt + εit,

3For any cdf F , we let F−1 denote its quantile function, namely F−1(τ) = inf{x : F (x) ≥ τ}.
4See complementary work by Gutknecht et al. (2018), who use subjective expectations data to relax the rational

expectations assumption, and propose a method allowing to test whether specific covariates are included in the

agents’ information sets.
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where βt capture aggregate (macroeconomic) shocks, εit follows a zero-mean random walk, and

αi, (βt)t and (εit)t are assumed to be mutually independent. Let Iit−1 denote individual i’s

information set at time t−1, and suppose that Iit−1 = σ (αi, (βt−k)k≥1, (εit−k)k≥1). If individuals

form rational expectations on their future outcomes, their beliefs in period t − 1 about their

future log-income in period t are given by

ψit = E [Yit|Iit−1] = αi + E [βt|(βt−k)k≥1] + εit−1.

Thus, Yit = ψit+ ct+ εit− εit−1, with ct = βt−E [βt|(βt−k)k≥1]. Therefore, although individuals

form rational expectations, we have

E [Yit|Iit−1, ct] = ψit + ct 6= ψit.

Note that we condition on ct here since it is an aggregate shock that is common to all individ-

uals. This implies that we can only identify the distributions of Yit and ψit conditional on ct.

Equivalently, ct may be considered as non-random here.

In such context, dropping indexes i and t and maintaining the conditioning on the aggregate

shocks implicit, rationalizing RE does not correspond to E [Y |I] = ψ, but instead to E [Y |I] =

c0+ψ for some c0 ∈ R. A similar reasoning applies to multiplicative instead of additive aggregate

shocks. In such a case, the null takes the form E [Y |I] = c0ψ, for some c0 > 0. In these two

examples, c0 is identifiable: by c0 = E(Y )− E(ψ) in the additive case, and by c0 = E(Y )/E(ψ)

in the multiplicative case. Formally, we consider the following null hypothesis for testing RE in

the presence of aggregate shocks:

H0S : there exist random variables
(
Y ′, ψ′

)
, a sigma-algebra I ′ and c0 ∈ R such that

σ(ψ′) ⊂ I ′, Y ′ ∼ Y, ψ′ ∼ ψ and E
[
q
(
Y ′, c0

)∣∣I ′] = ψ′.

where q(., .) is a known function supposed to satisfy the following restrictions.

Assumption 2 E (|ψ|) < +∞ and for all c, E (|q (Y, c) |) < +∞. Moreover, E [q(Y, c)] = E[ψ]

admits a unique solution, c0.

In the previous examples of additive and multiplicative aggregate shocks, we have, respectively,

q(y, c) = y − c and q(y, c) = y/c. Then Assumption 2 holds under Assumption 1 above. By

applying our main equivalence result (Theorem 1) to q(Y, c0) and ψ, we obtain the following

result.

Proposition 3 Suppose that Assumption 2 holds. Then the following statements are equivalent:

(i) H0S holds;

(ii) E
[
(y − q (Y, c0))+ − (y − ψ)+] ≥ 0 for all y ∈ R.
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Note that with aggregate shocks, the null hypothesis does not involve a moment equality re-

striction anymore; the corresponding moment is used instead to identify c0. Related, a clear

limitation of the naive test (E(Y ) = E(ψ)) is that, unlike our test, it is not robust to aggre-

gate shocks. In this case, rejecting the null could either stem from violations of the rational

expectation hypothesis, or simply from the presence of aggregate shocks.

2.2.4 Measurement errors

We have assumed so far that Y and ψ were perfectly observed; yet measurement errors in survey

data are pervasive (see, e.g. Bound et al., 2001). We explore in the following the extent to which

our test is robust to measurement errors. Specifically, assume that the true variables (ψ, Y ) are

unobserved. Instead, we only observe ψ̂ and Ŷ , which are affected by classical measurement

errors.5 Namely:

ψ̂ = ψ + ξψ with ξψ ⊥⊥ ψ, E[ξψ] = 0

Ŷ = Y + ξY with ξY ⊥⊥ Y, E[ξY ] = 0.
(1)

Then one can show that if RE holds (and assuming away aggregate shocks, for simplicity), so that

E [Y |ψ] = ψ, it is nevertheless the case that E
[
Ŷ
∣∣∣ψ̂] 6= ψ̂, as long as Cov(ξY , ψ̂) =Cov(ξψ, Y ) = 0

and V(ξψ) > 0. In other words, the direct test is not robust to any measurement errors on the

subjective beliefs ψ. Even if individuals have rational expectations, the direct test will reject

the null in the presence of even a small degree of measurement errors on the elicited beliefs. The

following proposition shows that our test, on the other hand, is robust to a certain degree of

measurement errors on the beliefs. As above, we let ε = Y − ψ denote the uncertainty shocks.

Proposition 4 Suppose that Y and ψ satisfy H0 and let
(
ψ̂, Ŷ

)
be defined as in (1). Suppose

also that ε+ ξY ⊥⊥ ψ and Fξψ dominates at the second order FξY +ε. Then Ŷ and ψ̂ satisfy H0.

The key condition is that Fξψ dominates at the second order FξY +ε, or, equivalently here,

that FξY +ε is a mean-preserving spread of Fξψ . Recall that in the case of normal variables,

ξψ ∼ N (0, σ2
1) and ξY +ε ∼ N (0, σ2

2), this is in turn equivalent to imposing σ2
1 ≤ σ2

2. Thus, even

if there is no measurement error on Y , so that ξY = 0, this condition may hold provided that

the variance of measurement errors on ψ is smaller than the variance of the uncertainty shocks

on Y . More generally, this allows elicited beliefs to be - potentially much - noisier than realized

outcomes, a setting which may be relevant in practice. Overall, these results support the use of

our test rather than the direct test even in cases where realizations and beliefs are observed in

the same dataset.
5See Zafar (2011a) who do not find evidence of non-classical measurement errors on subjective beliefs elicited

from a sample of Northwestern undergraduate students.
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2.2.5 Other extensions

We conclude this section by briefly discussing other relevant directions in which Theorem 1 can

be extended. Another potential source of uncertainty on ψ is rounding. Rounding practices by

interviewees are common in the case of subjective beliefs. Under additional restrictions, it is

possible in such a case to construct bounds on the true beliefs ψ (see, e.g., Manski and Molinari,

2010). We show in Appendix B that our test can be generalized to accommodate this rounding

practice.

Finally, we have implicitly maintained the assumption so far that subjective beliefs and realized

outcomes are drawn from the same population. In Appendix C, we relax this assumption and

show that our test can be easily extended to allow for sample selection under unconfoundedness,

through an appropriate reweighting of the observations.

3 Statistical tests

In this section we propose a testing procedure for H0X , which can be easily adapted to the

case where no covariate common to both datasets is available to the analyst. To simplify

notation, we use a potential outcome framework to describe our data combination problem.

Specifically, instead of observing (Y, ψ), we suppose to observe only, in addition to the covariates

X, Ỹ = DY + (1 −D)ψ and D, where D = 1 (resp. D = 0) if the unit belongs to the dataset

of Y (resp. ψ). We assume that the two samples are drawn from the same population, which

amounts to D ⊥⊥ (X,Y, ψ) (see Assumption 3-(i) below). In order to build our test, we use the

characterization (ii) of Proposition 2:

E
[
(y − Y )+ − (y − ψ)+

∣∣X] ≥ 0 ∀y ∈ R and E [Y − ψ|X] = 0.

Equivalently but written more compactly with Ỹ only,

E
[
W
(
y − Ỹ

)+
∣∣∣∣X] ≥ 0 ∀y ∈ R and E

[
WỸ

∣∣∣X] = 0,

where W = D/E(D)− (1−D)/E(1−D). This formulation of the null hypothesis allows us to

apply the instrumental functions approach of Andrews and Shi (2017, AS), who consider the issue

of testing many conditional moment inequalities and equalities. We then build on their results to

establish that our test controls size asymptotically and is consistent over fixed alternatives.6 The

initial step is to transform the conditional moments into the following unconditional moments

conditions:

E
[
W
(
y − Ỹ

)+
h(X)

]
≥ 0, E [(Y − ψ)h(X)] = 0.

6Other testing procedures could be used to implement our test, such as that proposed by Chernozhukov et al.

(2018).
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for all y ∈ R and h belonging to a suitable class of non-negative functions.

We suppose to observe a sample (Di, Xi, Ỹi)i=1...n of n i.i.d. copies of (D,X, Ỹ ). For notational

convenience, we let X̃i denote the nontransformed vector of covariates, and redefine Xi as:

Xi = Φ0

(
Σ̂
−1/2

X̃,n

(
X̃i − X̃i

))
,

where, for any x = (x1, . . . , xdX ), we let Φ0(x) = (Φ(x1), . . . ,Φ (xdX ))>. Here Φ denotes the

standard normal cdf, Σ̂
X̃,n

is the sample covariance matrix of
(
X̃i

)
i=1...n

and X̃n its sample

mean.

Now that Xi ∈ [0, 1]dX , we consider instrumental functions h that are indicators of belong-

ing to specific hypercubes within [0, 1]dX . Namely, we consider the class of functions Hr =

{ha,r, a ∈ Ar}, with Ar = {1, 2, . . . , 2r}dX (r ≥ 1), ha,r(x) = 1l {x ∈ Ca,r} and, for any a =

(a1, ..., adX )> ∈ Ar,

Ca,r =

dX∏
u=1

(
au − 1

2r
,
au
2r

]
.

Finally, to define the test statistic T , we need to introduce additional notation. First, we define,

for any given y,

m
(
Di, Ỹi, Xi, h, y

)
=

 m1

(
Di, Ỹi, Xi, h, y

)
m2

(
Di, Ỹi, Xi, h, y

)  =

 wi

(
y − Ỹi

)+
h (Xi)

wiỸih (Xi)

 , (2)

where wi = nDi/
∑n

j=1Dj−n(1−Di)/
∑n

j=1(1−Dj). Letmn(h, y) =
∑n

i=1m
(
Di, Ỹi, Xi, h, y

)
/n

and define similarly mn,j for j = 1, 2. For any function h and any y ∈ R, we also define, for

some ε > 0,

Σn(h, y) = Σ̂n(h, y) + εDiag
(
V̂
(
Ỹ
)
, V̂
(
Ỹ
))

,

where Σ̂n(h, y) is the sample covariance matrix of
√
nmn (h, y) and V̂

(
Ỹ
)

is the empirical

variance of Ỹ . We then denote by Σn,jj(h, y)(j = 1, 2) the j-th diagonal term of Σn(h, y).

Then the (Cramér-von-Mises) test statistic T is defined by:

T = sup
y∈Ŷ

rn∑
r=1

(2r)−dX

(r2 + 100)

∑
a∈Ar

(
(1− p)

(
−
√
nmn,1 (ha,r, y)

Σn,11(ha,r, y)1/2

)+2

+ p

(√
nmn,2 (ha,r, y)

Σn,22(ha,r, y)1/2

)2
)
,

where Ŷ =

[
min

i=1,...,n
Ỹi, max

i=1,...,n
Ỹi

]
, p is a parameter that weights the moments inequalities versus

equalities and (rn)n∈N is a deterministic sequence tending to infinity.

To test for rational expectations in the absence of covariates, we set the instrumental function

equal to the constant function h(X) = 1, and the test statistic is simply written as:

T = sup
y∈Ŷ

(1− p)
(
−
√
nmn,1(y)

Σn,11(y)1/2

)+2

+ p

(√
nmn,2(y)

Σn,22(y)1/2

)2

,
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where, using the notations introduced above, mn,j(y) = mn,j(1, y) and Σn,jj(y) = Σn,jj(1, y)

(j = 1, 2).

Whether or not covariates are included, the resulting test is of the form ϕn,α = 1l
{
T > c∗n,α

}
where the estimated critical value c∗n,α is obtained by bootstrap using as in AS the Generalized

Moment Selection method. Specifically, we follow these three steps:

1. Compute the function ϕn (y, h) =
(
ϕn,1 (y, h) , 0

)>
for (y, h) in Ŷ × ∪rnr=1Hr, with

ϕn,1 (y, h) = Σ
1/2
n,11Bn1l

{
n1/2

κn
Σ
−1/2
n,11 mn,1(y, h) > 1

}
,

and where Bn = (b0 ln(n)/ ln(ln(n)))1/2, b0 > 0, κn = (κ ln(n))1/2, and κ > 0. To compute

Σn,11, we fix ε to 0.05, as in AS.

2. Let
(
D∗i , Ỹ

∗
i , X

∗
i

)
i=1,...,n

denote a bootstrap sample, i.e., an i.i.d. sample from the empirical

cdf of
(
D, Ỹ ,X

)
, and compute from this sample the bootstrap counterparts of mn and

Σn, m∗n and Σ
∗
n. Then compute the bootstrap counterpart of T , T ∗, replacing Σn (y, ha,r)

and
√
nmn (y, ha,r) by Σ

∗
n (y, ha,r) and

√
n (m∗n −mn) (y, ha,r) + ϕn (y, ha,r), respectively.

3. The threshold c∗n,α is the quantile (conditional on the data) of order 1 − α + η of T ∗ + η

for some η > 0. Following AS, we set η to 10−6.

Note that, despite the multiple steps involved, the testing procedure remains computationally

easily tractable. In particular, for the baseline sample we use in our application (see Section 6.1),

the RE test only takes 2 min.7

We now turn to the asymptotic properties of the test. For that purpose, it is convenient to

introduce additional notation. Let Y and X denote the support of Y and X respectively, and

LF =

{
(y, ha,r) : y ∈ Y, (a, r) ∈ Ar × N : EF

[
W
(
y − Ỹ

)+
ha,r(X)

]
= 0

}
,

where, to make the dependence on the underlying probability measure explicit, EF denotes the

expectation with respect to the distribution F of
(
D, Ỹ ,X

)
. Finally, let F denote a subset of

all possible cumulative distribution functions of
(
D, Ỹ ,X

)
and F0 be the subset of F such that

H0X holds. We impose the following conditions on F and F0:

Assumption 3

(i) For all F ∈ F , D ⊥⊥ (X,Y, ψ);

7This CPU time is obtained using our companion R package, on an Intel Xeon CPU E5-2643, 3.30GHz with

256Gb of RAM.
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(ii) There exists M > 0 such that Ỹ ∈ [−M,M ] for all F ∈ F . Also, infF∈F VF
(
Ỹ
)
> 0 and

0 < infF∈F EF [D] ≤ supF∈F EF [D] < 1;

(iii) For all F ∈ F0, KF , the asymptotic covariance kernel of n−1/2Diag
(
VF
(
Ỹ
))−1/2

mn is

in a compact set K2 of the set of all 2×2 matrix valued covariance kernels on Y ×∪r≥1Hr
with uniform metric d defined by

d(K,K ′) = sup
(y,h,y′,h′)∈(Y×∪r≥1Hr)

2

∥∥K(y, h, y′, h′)−K ′(y, h, y′, h′)
∥∥ .

The main result of this section is Theorem 2. It shows that, under Assumption 3, the test ϕn,α

controls the asymptotic size and is consistent over fixed alternatives.

Theorem 2 Suppose that rn →∞ and Assumption 3 holds. Then:

(i) lim supn→∞ supF∈F0
EF [ϕn,α] ≤ α;

(ii) If there exists F0 ∈ F0 such that LF0 is nonempty and there exists (j, y0, h0) in {1, 2}×LF0

such that KF0,jj(y0, h0, y0, h0) > 0, then, for any α ∈ [0, 1/2),

lim
η→0

lim sup
n→∞

sup
F∈F0

EF [ϕn,α] = α.

(iii) If F ∈ F\F0, then limn→∞ EF (ϕn,α) = 1.

Theorem 2 (i) is closely related to Theorem 5.1 and Lemma 2 in AS. It shows that the test ϕn,α

controls the asymptotic size, in the sense that the supremum over F0 of its level is asymptoti-

cally lower or equal to α. To prove this result, the key is to establish that, under Assumption 3,

the class of transformed unconditional moment restrictions that characterize the null hypothesis

satisfies a manageability condition (see Pollard, 1990). Using arguments from Hsu (2016), we

then exhibit cases of equality in Theorem 2 (ii), showing that, under mild additional regularity

conditions, the test has asymptotically exact size (when letting η tend to zero). Finally, The-

orem 2 (iii), which is based on Theorem 6.1 in AS, shows that the test is consistent over fixed

alternatives.

Extension to account for aggregate shocks This testing procedure can be easily modified

to accommodate unanticipated aggregate shocks. Specifically, using the notation defined in

Section 2.2.3, we consider the same test as above after replacing Ỹ by Ỹĉ = Dq(Y, ĉ) + (1 −
D)ψ, where ĉ denotes a consistent estimator of c0. The resulting test is given by ϕn,α,ĉ =

1l
{
T (ĉ) > c∗n,α

}
(where T (ĉ) is obtained by replacing Ỹ by Ỹĉ in the original test statistic).

Such tests have the same properties as those above under some mild regularity conditions on

q(·, ·), which hold in particular for the leading examples of additive and multiplicative shocks

(q(y, c) = y − c and q(y, c) = y/c). We refer the reader to Appendix A for a detailed discussion

of this extension.
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4 Minimal deviations from rational expectations

In this section we introduce the concept of minimal deviations from rational expectations, and

build on optimal transport methods to provide conditions under which these minimal deviations

exist and are unique. We first consider in Section 4.1 such deviations while remaining agnostic

on the information set of the agents. Then, in Section 4.2, we characterize such deviations when

the information set is known, as is typically the case in structural models. Finally, we show

how these deviations can be used to assess the sensitivity of structural models to violations of

rational expectations.

4.1 Unconstrained information set

4.1.1 Existence and uniqueness

For the cases where H0 is rejected, we propose a way to quantify the degree to which subjective

expectations differ from rational expectations. To do so, we consider the minimal modifications

- in a sense to be made precise below - to the distribution of subjective beliefs ψ that are such

that the modified distribution of beliefs is compatible with the rational expectations hypothesis.

We refer to the discrepancy between the true beliefs and the modified beliefs as the minimal

deviations from rational expectations. We first consider such deviations without imposing any

constraints on the information set of the agents.

Formally, we define the set:

Ψ =
{

(Y ′, ψ′, ψ′′) : Y ′ ∼ Y, ψ′ ∼ ψ and E(Y ′|ψ′′) = ψ′′
}
. (3)

In this set, (Y ′, ψ′) corresponds to a vector that is compatible with the data, whereas ψ′′ corre-

spond to alternative individual expectations, in a counterfactual situation where people would

form rational expectations on their future outcomes. Thus, in view of Lemma 1, the subset of

Ψ for which ψ′ = ψ′′ corresponds to the set of random variables (Y ′, ψ′) that are compatible

with the data and with the rational expectations hypothesis. However, if H0 does not hold -

which is the relevant situation here - such a subset is, by definition, empty. The idea is then to

try and find a vector (Y ′, ψ′, ψ′′) ∈ Ψ such that ψ′ and ψ′′ are closest, in the sense of a family

of metrics defined below.

The following theorem shows that there exists a solution to this problem. Importantly, this

solution turns out to be, for a large class of metrics, independent of the specific metric considered.

The solution is also unique.

Assumption 4 E(Y 2) < +∞, E(ψ2) < +∞, and Fψ has no atom.
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Theorem 3 Suppose that Assumption 4 holds. Then there exists a unique function g∗ such

that:

(i) g∗(ψ) is consistent with RE (namely, there exists Y ′ such that (Y ′, ψ, g∗(ψ)) ∈ Ψ);

(ii) for any convex function ρ : R+ → R+ satisfying ρ(0) = 0,

E[ρ(|ψ − g∗(ψ)|)] = inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)]. (4)

Moreover, g∗ is non-decreasing.

Theorem 3 shows that there exists a unique transformation of the subjective beliefs ψ such that

(i) the transformed beliefs g∗(ψ) are consistent with RE, and, remarkably, (ii) this transformation

is minimal for all metrics (indexed by ρ) used to measure the distance between the true and

modified beliefs distributions. Moreover, the modified beliefs are obtained as a monotonically

increasing change of the original beliefs. These minimal modifications can be geometrically

interpreted as the projections from the true subjective beliefs onto the set of beliefs that are

consistent with RE.

The proof of Theorem 3 can be summarized as follows. We first show, using our main equivalence

result (Theorem 1 above) and Proposition 3.1 in Gozlan et al. (2018), that

inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)] = inf
(Y ′,ψ′):Y ′∼Y, ψ′∼ψ

E
[
ρ
(∣∣ψ′ − E

[
Y ′|ψ′

]∣∣)] .
The optimization problem on the right-hand side is an optimal transport problem, in the sense

that it corresponds to an optimization over probability measures whose marginals are fixed.

Though non-standard, as it involves E [Y ′|ψ′], this problem has been recently studied by Gozlan

et al. (2018). In particular, it follows from their results that there exists a cdf G∗ such that the

problem can be rewritten as

inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)] = inf
(ψ′,ψ′′):ψ′∼ψ,ψ′′∼G∗

E
[
ρ
(
|ψ′ − ψ′′|

)]
.

Then, by a strict convexity argument based on Theorem 1 again and Pass (2013), we show

that such a G∗ is unique. Finally, using standard results in optimal transport, we show that

g∗ = G∗−1 ◦ Fψ is the unique function satisfying (4).

4.1.2 Consistent estimation

While g∗ does not have a simple form in general, we propose a simple procedure to construct a

consistent estimator of it, based on i.i.d. copies (Yi)i=1...nY and (ψi)i=1...nψ of the realizations Y

and subjective beliefs ψ. For simplicity, we suppose in the following that the two samples have

equal size, which we denote (with a slight abuse of notation) by n.8

8If both samples do not have equal size, one can first apply our analysis after taking a random subsample of

the larger one, with the same size as the smaller one. Then we can compute the average of the estimates over a

large number of such random subsamples.
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To define our estimator, it is useful to note first that, from the proof of Theorem 3, we have

g∗ = arg min
g∈G0

E
[
(ψ − g(ψ))2

]
, (5)

where the set G0 is defined by

G0 =
{
g non-decreasing : E

[
(y − Y )+ − (y − g(ψ))+

]
≥ 0 ∀y ∈ R, E[g(ψ)] = E[Y ]

}
.

By Theorem 1, g ∈ G0 means that we can rationalize E(Y |g(ψ)) = g(ψ). Among such functions

g, g∗(ψ) is then defined as being closest to ψ for the L2 norm.

To estimate g∗, the idea is to replace expectations and cdfs by their empirical counterpart,

both in (5) and in the set G0. Denoting by (Y(i))i=1...n and (ψ(i))i=1...n the ordered statistics

of (Yi)i=1...n and (ψi)i=1...n, we first focus on the estimation of
(
g∗(ψ(1)), ..., g

∗(ψ(n))
)
. The

empirical counterpart Ĝ0 of G0 is

Ĝ0 =

{(
ψ̃(1), ..., ψ̃(n)

)
: ψ̃(1) < ... < ψ̃(n),

n∑
i=1

(y − Y(i))
+ −

(
y − ψ̃(i)

)+
≥ 0 ∀y ∈ R,

n∑
i=1

Y(i) − ψ̃(i) = 0

}
. (6)

Note that here we consider vectors
(
ψ̃(1), ..., ψ̃(n)

)
instead of functions g as in G0, since g may

be assimilated with a vector when ψ has a finite support. On the surface, the set Ĝ0 appears

to be complicated because of the infinitely many inequalities. However, one can show, using

Proposition 2.6 in Gozlan et al. (2018), that Ĝ0 boils down to the following set, which only

involves a finite number of inequalities:

Ĝ0 =

(ψ̃(1), ..., ψ̃(n)

)
: ψ̃(1) < ... < ψ̃(n),

n∑
i=j

Y(i) − ψ(i) ≥ 0 j = 2, ..., n,
n∑
i=1

Y(i) − ψ̃(i) = 0

 .

Then, as the empirical counterpart of (5), our estimator of
(
g∗(ψ(1)), ..., g

∗(ψ(n))
)

satisfies:

(
ĝ∗(ψ(1)), ..., ĝ

∗(ψ(n))
)

= arg min
ψ̃(1)<···<ψ̃(n)

n∑
i=1

(
ψ(i) − ψ̃(i)

)2
s.t.

n∑
i=j

Y(i) − ψ̃(i) ≥ 0, j = 2...n,

n∑
i=1

Y(i) − ψ̃(i) = 0. (7)

Finally, for any t ∈ R, we let

ĝ∗(t) = ĝ∗
(
min{(ψi)i=1...n : ψi ≥ min{t, ψ(n)}}

)
.

Theorem 4 shows that ĝ∗ is a consistent estimator of the transformation g∗.
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Theorem 4 (Convergence of empirical minimal deviations) Suppose that Assumption 4

holds. Then, for all t that is a continuity point of g∗ and such that Fψ(t) ∈ (0, 1), we have, as

n→∞,

ĝ∗(t)→ g∗(t) a.s.

Program (7) is a particular convex quadratic programming problem, which turns out to be

solvable very efficiently. The algorithm below, devised by Suehiro et al. (2012), shows that(
ĝ∗(ψ(1)), ..., ĝ

∗(ψ(n))
)

can be obtained with only O(n2) elementary operations. The idea is to

rely on the first-order conditions of the program, which have a simple form. Using our R package

and for the baseline sample we use in the application, the estimation of the minimal deviations

from RE takes less than a minute.

Computation of
(
ĝ∗(ψ(1)), ..., ĝ

∗(ψ(n))
)
.

1. Let t = 0 and i0 = 0.

2. While it < n:

(a) Let t = t+ 1.

(b) Let Ct(i) =
∑n−it−1

k=n+1−i
(
Y(k) − ψ(k)

)
/(i − it−1), for i = it−1 + 1, ..., n and let it =

argmini∈{it−1+1,...,n}C
t(i). If there are multiple minimizers, choose the largest one as

it.

(c) Set ĝ∗(ψ(k)) = ψ(k) + Ct(it), for k ∈ {n+ 1− it, ..., n− it−1}.

4.2 Constrained information set and sensitivity analysis in structural models

4.2.1 Existence and uniqueness

We now consider minimal deviations from rational expectations in the presence of constraints

on the information set. Such constraints are typically imposed in structural models, along

with the rational expectations hypothesis. An important motivation for considering minimal

deviations from RE in this setting, then, is to assess the sensitivity of structural models to

the RE hypothesis. A more direct way of evaluating how critical the rational expectations

hypothesis is for a given model would be to solve the model and estimate it, using elicited

beliefs about future outcomes both on and off the agents’ actual choice paths. However, the

data requirements are formidable, and, as a consequence, this approach has only been pursued in

a handful of studies (see, e.g., Arcidiacono et al., 2014; Stinebrickner and Stinebrickner, 2014a,b;

Wiswall and Zafar, 2015, 2018). Our approach can be used more broadly. Notably, it applies to

the frequent cases where the model cannot be solved and estimated using available subjective

beliefs data, the only requirement being that the beliefs are observed in an auxiliary dataset.
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Specifically, consider a structural model that imposes both a rational expectations formation

process and an information set IM of the agents, such that individual expectations about the

outcome Y are given by E
[
Y |IM

]
. In the following, we refer to this assumption (ψ = E

[
Y
∣∣IM])

as the restricted RE hypothesis. Note that with auxiliary data on the subjective beliefs, we can

test for the restricted RE hypothesis by simply testing whether Fψ = FE[Y |IM ].

Suppose that the restricted RE hypothesis is rejected. Then, consider the set

ΨM =
{

(ψ′, ψ′′) : ψ′ ∼ ψ, ψ′′ ∼ E
[
Y
∣∣IM]} .

As with the set Ψ in the unconstrained case, if we reject RE, there is no pair of the form

(ψ′, ψ′) in ΨM .9 The goal here is then to find a pair (ψ′, ψ′′) ∈ ΨM such that ψ′ is as close

to ψ′′ as possible. The discrepancy between the restricted model-based RE and the beliefs ψ′

corresponds to the minimal deviations from RE that are consistent with the data on subjective

beliefs.10 Similarly to Theorem 3 in the absence of constraints on the information set, Theorem

5 below shows that there exists a solution to this problem, which is moreover independent of

the metric. To define this solution, we introduce hM = F−1
ψ ◦ FE[Y |IM ].

Theorem 5 Suppose that FE[Y |IM ] has no atom. Then, for any convex function ρ : R+ → R+

satisfying ρ(0) = 0, we have(
hM

(
E
[
Y
∣∣IM]) ,E [Y ∣∣IM]) ∈ arg min

(ψ′,ψ′′)∈ΨM
E[ρ(|ψ′ − ψ′′|)]. (8)

Moreover, if ρ is strictly convex, hM
(
E
[
Y
∣∣IM]) is unique in the sense that for any other ψ′

such that (ψ′,E
[
Y
∣∣IM]) ∈ ΨM satisfying (8), ψ′ = hM

(
E
[
Y
∣∣IM]) almost surely.

Theorem 5 implies that among all random variables that are consistent with the true subjective

beliefs, hM
(
E
[
Y
∣∣IM]) is closest to the rational expectations E

[
Y
∣∣IM], for any metric indexed

by ρ. Theorem 5 relies on results on optimal transport on the real line. In such a case, the

optimal map has been shown to be independent of the cost function (see, e.g., Rachev and

Rüschendorf, 1998, Chapter 3), which is why again here, the minimal deviations from RE do

not depend on the specific metric considered.

A couple of remarks are in order. First, hM
(
E
[
Y
∣∣IM]) is IM -measurable, which implies that

it is compatible with the information set IM imposed by the model. Second, by construc-

tion, hM
(
E
[
Y
∣∣IM]) is consistent with the observed subjective beliefs, since their marginal

9In this context, the distribution of rational expectations E
[
Y
∣∣IM] is identified. It follows that the set ΨM

only involves the distribution of expectations, in contrast to the set Ψ in the unconstrained case, which also

depends on the distribution of realizations.
10At a high level, it is interesting to note that our approach to measuring the deviations from RE is similar in

spirit to the approach proposed by Hansen and Jagannathan (1997) to quantify specification error when estimating

stochastic discount factors in the context of GMM asset pricing models.
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distributions coincide. Hence, given the data and the constraints imposed by the model on

the information set, we can rationalize that ψ = hM
(
E
[
Y
∣∣IM]).11 For this reason, we refer

to hM
(
E
[
Y
∣∣IM]) as pseudo-beliefs. We use the term pseudo-beliefs here to emphasize that,

even though both sets of beliefs are observationally equivalent, hM
(
E
[
Y
∣∣IM]) does in general

not coincide with the true subjective expectations ψ. By construction, the pseudo-beliefs are

identifiable.

Finally, since hM = F−1
ψ ◦ FE[Y |IM ], the pseudo-beliefs are simply obtained by an equipercentile

mapping from the distribution of rational expectations to the distribution of the true subjective

beliefs. It follows that the pseudo-beliefs can also be easily estimated, as discussed in more detail

below.

Next, having computed the pseudo-beliefs for a given structural model, we can compare the

results obtained with these pseudo-beliefs with those obtained under the baseline RE model.

Importantly, this provides a way to assess the sensitivity of the findings to violations of RE,

holding fixed the restrictions on the information set implied by the model. Findings from

the baseline model that exhibit significant sensitivity to these minimal deviations should be

interpreted with caution.

We conclude this discussion by noting that, in certain models, the parameters or predictions of

interest may also involve subjective beliefs about additional features of the distribution of fu-

ture outcomes, such as, e.g., subjective variances. In these cases, one can still use our approach

to evaluate the sensitivity of the model predictions to minimal deviations from rational expec-

tations, after replacing rational expectations by pseudo-beliefs about future outcomes, while

leaving the higher-order moments unchanged.12

4.2.2 Consistent estimation

Estimation of hM is simpler than that of g∗ in the absence of restrictions on the information set,

given its simple, explicit form. Specifically, for a given vector of parameters θ of the structural

model, we can estimate hM by

ĥM = F̂−1
ψ ◦ FE[Y |IM ],θ, (9)

where FE[Y |IM ],θ denotes the distribution of E
[
Y
∣∣IM] when the true value of the parameter

vector is θ, and F̂−1
ψ is the empirical quantile of the subjective beliefs. For a fixed θ, it follows

11On the other hand, it is generally impossible to rationalize the model-free beliefs generated from g∗, namely

(g∗)−1
(
E
[
Y
∣∣IM]). Their distribution does not coincide with the distribution of the observed subjective beliefs

in general.
12Of course, in a richer data environment where elicited beliefs about higher moments of the outcome distribution

are available to the analyst, one can also use our method to compute the pseudo-beliefs associated with each of

these moments, and then incorporate the corresponding departures from RE in the model.
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from the asymptotic normality of quantiles (see, e.g. Van der Vaart, 2000, Corollary 21.5) that

this estimator is root-n consistent and asymptotically normal.

Recall, however, that the primary motivation behind the estimation hM is to conduct a sensitiv-

ity analysis on the structural model. In other words, hM is usually not the parameter of interest.

Instead, the parameters (or predictions) of interest are generally a function of θ, and possibly of

the beliefs too. In the modified model where rational expectations are replaced by the pseudo-

beliefs hM (E
[
Y
∣∣IM]), it follows that such a parameter of interest is given by φ = f(θ, Fψ), for

some function f . This parameter can be estimated in two steps. First, θ is estimated in the

modified model. Letting θ̂ denote the corresponding estimator, we then estimate in a second step

φ by φ̂ = f(θ̂, F̂ψ), where F̂ψ denotes the empirical cdf. of the subjective beliefs. In particular,

if θ is estimated by maximum likelihood or GMM, θ̂ can be represented as a GMM estimator

including a first-step estimator (that of Fψ). Since the estimator of Fψ is root-n consistent,

θ̂ is also root-n consistent and asymptotically normal, under mild regularity restrictions (see,

e.g. Chen et al., 2003). Root-n consistency and asymptotic normality of φ̂ follows, as long as

f is (Hadamard) differentiable. Importantly for practical purposes, bootstrap will also be valid

under standard regularity conditions (Chen et al., 2003).

5 Monte Carlo simulations

In this section we study the finite sample performances of the test without covariates through

Monte Carlo simulations. The finite sample performances of the version of our test that accounts

for covariates are reported and discussed in Appendix D.

We suppose that the outcome Y is given by

Y = ρψ + ε,

with ρ ∈ [0, 1], ψ ∼ N (0, 1) and

ε = ζ (−1l{U ≤ 0.1}+ 1l{U ≥ 0.9}) ,

where ζ, U and ψ are mutually independent, ζ ∼ N (2, 0.1) and U ∼ U [0, 1].

In this setup, E(Y |ψ) = ρψ and expectations are rational if and only if ρ = 1. But since we

observe Y and ψ in two different datasets, there are values of ρ 6= 1 for which our test cannot

reject the null hypothesis. More precisely, we can show that as the sample size n grows to infinity,

we reject the null if and only if ρ ≤ ρ∗ ' 0.616. Besides, given this data generating process, the

naive test E(Y ) = E(ψ) always fails to reject RE, while the RE test based on variances is only

able to detect a subset of violations of RE that correspond to ρ < 0.445.

Results reported in Figure 1 show the power curves of the test ϕα for five different sample sizes

(nY = nψ = n ∈ {400; 800; 1, 200; 1, 600; 3, 200}) as a function of the parameter ρ, using 800
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simulations for each value of ρ. We use 500 bootstrap simulations to compute the critical values

of the test. The test statistic T involves the three tuning parameters b0, κ, and p (see Section 3

for definitions). As described p.643 in Andrews and Shi (2013), there exists in practice a large

range of admissible values for these parameters. Following Section 4.2 of Beare and Shi (2018),

we set them equal to the smallest (resp. highest) value such that the rejection rate under the

null is below the nominal size 0.05, and obtain b0 = 0.3, κ = 0.001, and p = 0.05.

Notes: The vertical line at ρ ' 0.616 corresponds to the theoretical limit for the rejection of the null

hypothesis using our test. The dotted horizontal line corresponds to the 5% level.

Figure 1: Power curves.

Several remarks are in order. First, as expected, under the alternative (i.e. for values of ρ ≤
ρ∗ = 0.616), rejection frequencies increase with the sample size n. In particular, for the largest

sample size n = 3, 200, our test always results in rejection of the RE hypothesis for values of

ρ as large as .45. Second, in this setting, our test is conservative in the sense that rejection

frequencies under the null are smaller than α = 0.05, for all sample sizes. This should not

necessarily come as a surprise since the test proposed by AS has been shown to be conservative

in alternative finite-sample settings (see, e.g. Table 1 p.22 in AS for the case of first-order

stochastic dominance tests). However, for the version of our test that accounts for covariates

and for the data generating process considered in Appendix D, rejection frequencies under the

null are very close to the nominal level.

Next, we report in Figure 2 below the estimated minimal deviations from rational expectations.

Specifically, we plot the differences between the beliefs ψ and the modified beliefs ĝ∗(ψ), where

the transformation ĝ∗ is computed using the estimator of Section 4.1.2, for ρ = 0.3 and n = 800.

In the same figure, we also report the true minimal deviations ψ − g∗(ψ), obtained by solving

23



(7) with a large number of observations (n = 10, 000), as g∗ does not have a closed form

representation in this setting.

Note: The plain black curve corresponds to the average of ψ − ĝ∗(ψ) over 1, 000 simulations (with

n = 800), and the light dotted black curves are the 2.5% and 97.5% quantiles of ψ − ĝ∗(ψ).

Figure 2: Estimation and true value of ψ − g∗(ψ).

Comparing these two curves shows that the estimator g∗ exhibits a fairly small bias over the

support of ψ. The 2.5% and 97.5% quantiles of ψ − ĝ∗(ψ), in light dotted black lines, are

also reasonably close to each other, showing that the estimator is already fairly accurate with

a sample of size n = 800.13 Finally, we computed the coverage of the bootstrap confidence

intervals of g∗(ψ), which is very close to the nominal rates for most values of ψ in [−3, 3]. For

ρ = 0.3 and n = 800, the mean coverage rates over values of ψ in [−3, 3] are equal to 98.6% and

95.4% for nominal rates of 99% and 95%, respectively. Overall, these findings support the use

of bootstrap to construct confidence intervals around the estimated minimal deviations.

6 Application to earnings expectations

6.1 Data

Using the tests discussed in Section 3, we now investigate whether household heads form rational

expectations on their future earnings. We use for this purpose data from the Survey of Con-

13We obtain very similar patterns on the accuracy of the estimator for alternative values of ρ.
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sumer Expectations (SCE), a monthly household survey that has been conducted by the Federal

Reserve Bank of New York since 2012 (see Armantier et al., 2017, for a detailed description

of the survey, and Kuchler and Zafar, 2017; Conlon et al., 2018; Fuster et al., 2018 for recent

articles using the SCE). The SCE is conducted with the primary goal of eliciting consumer ex-

pectations about inflation, household finance, labor market, as well as housing market. It is a

rotating internet-based panel of about 1,200 household heads, in which respondents participate

for up to twelve months.14 Each month, the panel consists of about 180 entrants, and 1,100

repeated respondents. While entrants are overall fairly similar to the repeated respondents, they

are slightly older and also have slightly lower incomes (see Table 1 in Armantier et al., 2017).

Of particular interest for this paper is the supplementary module on labor market expectations.

This module is repeated every four months since March 2014. Since March 2015, respondents

are asked the following question about labor market earnings expectations (ψ) over the next

four months: “What do you believe your annual earnings will be in four months?”. In this

module, respondents are also asked about current job outcomes, including their current annual

earnings (Y ), through the following question: “How much do you make before taxes and other

deductions at your [main/current] job, on an annual basis?”.

Specifically, we use for our baseline test the elicited earnings expectations (ψ), which are available

for three cross-sectional samples of household heads who were working either full-time or part-

time at the time of the survey, and responded to the labor market module in March 2015,

July 2015, and November 2015, respectively. We combine this data with current earnings (Y )

declared in July 2015, November 2015 and March 2016 by the respondents who are working

full-time or part-time at the time of the survey.15 This leaves us with a final sample of 2,993

observations, which is composed of 1,565 earnings expectation observations, and 1,428 realized

earnings observations (see Table 4 in Appendix E.1 for descriptive statistics).16

6.2 Are earnings expectations rational?

In Table 1 below, we report the results from the naive test of RE (E(Y ) = E(ψ)), and our

preferred test (“Full RE”), where we allow for multiplicative aggregate shocks. Several remarks

are in order. First, using our test, we reject for the whole population, at any standard level, the

hypothesis that agents form rational expectations over their future earnings. Second, we also

14Each survey takes on average about fifteen minutes to complete, and respondents are paid $15 per survey

completed.
15Throughout our analysis (with the exception of the number of observations reported in Table 1) we use the

monthly survey weights of the SCE in order to obtain an estimation sample that is representative of the population

of U.S. household heads. See Armantier et al. (2017) for more details on the construction of these weights. We

also Winsorize the top 5 percentile of the distributions of realized earnings and earnings beliefs.
1651% (1,536) of these observations correspond to the sub-sample of respondents who are reinterviewed at least

once.
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reject RE (at the 5% level) when we apply our test separately for white (non-Hispanics) and

minorities, as well as low vs. high numeracy test scores.17 Third, the results from our test point

to beliefs formation being heterogeneous across schooling (college degree vs. no college degree)

and tenure (more or less than 6 months spent in current job) levels. In particular, we cannot

rule out that the beliefs about future earnings of individuals with more schooling experience

correspond to rational expectations with respect to some information set. Similarly, while we

reject RE at any standard level for the subgroup of workers who have accumulated less than

6 months of experience in their current job, we can only marginally reject at the 10% level

RE for those who have been in their current job for a longer period of time. As such, these

findings complement some of the recent evidence from the economics of education and labor

economics literatures that individuals have more accurate beliefs about their ability as they

progress through their schooling and work careers (see, e.g., Stinebrickner and Stinebrickner,

2012; Arcidiacono et al., 2016).

Table 1: Tests of RE on annual earnings

E(Y − ψ)/E(Y ) Naive RE Full RE Number of obs.

(p-val) (p-val) ψ Y

All 0.034 0.23 < 0.001∗∗ 1,565 1,428

Women 0.059 0.13 < 0.001∗∗ 730 649

Men 0.025 0.48 0.210 835 779

White 0.032 0.31 0.021∗ 1,200 1,097

Minorities 0.046 0.43 0.006∗∗ 365 331

College degree -0.001 0.96 0.130 1,106 1,053

No college degree 0.093 0.04∗ 0.013∗ 459 375

High numeracy 0.033 0.28 0.012∗ 1,158 1,070

Low numeracy 0.055 0.27 0.022∗ 407 358

Tenure ≤ 6 months 0.105 0.24 0.001∗∗ 271 180

Tenure > 6 months 0.007 0.81 0.091† 1,294 1,248

Notes: significance levels: †: 10%, ∗: 5%, ∗∗: 1%. “Naive RE” denotes the naive

RE test of equality of means between Y and ψ. “Full RE” denotes the test without

covariates, where we test H0S with q(y, c) = y/c. We use 5,000 bootstrap simulations

to compute the critical values of the Full RE test. Distributions of realized earnings

(Y ) and earnings beliefs (ψ) are both Winsorized at the 95% quantile.

Fourth, using the naive test of equality of means between earnings beliefs and realizations, one

would instead generally not reject the null at any standard levels. The only exception is the

17Respondents’ numeracy is evaluated in the SCE through five questions involving computation of sales, interests

on savings, chance of winning lottery, of getting a disease and being affected by a viral infection. Respondents

are then partitioned into two categories: “High numeracy” (4 or 5 correct answers), and “low numeracy” (3 or

fewer correct answers).
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subgroup of workers without a college degree, for whom the naive test yields rejection of RE

at the 5% level. But, as discussed before, one cannot rule out that such a rejection is due to

aggregate shocks.

Even though individuals in the overall sample form expectations over their earnings in the

near future that are realistic, in the sense of not being significantly biased, the result from our

preferred test shows that earnings expectations are nonetheless not rational. Taken together,

these findings highlight the importance of incorporating the additional restrictions of rational

expectations that are embedded in our test, using the full distributions of subjective beliefs and

realized outcomes to detect violations of rational expectations.

We do not report in this table the results of the direct test of RE. Beyond the obvious implication

that restricting to the subsample of individuals who are followed over four months results in a

loss of statistical power, there are a couple of important issues associated with the direct test.

First, as already discussed in Section 2.2.4, the direct test is not robust to measurement errors on

the subjective beliefs ψ. Second, attrition from the survey may be endogenous. To explore this

possibility, we report in Table 2 the estimation results from a logit model of attrition on earnings

beliefs, gender, race/ethnicity, college degree attainment, numeracy test score, and tenure.

Table 2: Logit model of attrition

Population Intercept ψ Male White Coll. Degree Low Num. Tenure > 6

All 1.054∗∗ -5.279e-06∗∗ 0.091 -0.249 -0.069 -0.110 -0.559∗∗

(0.264) (1.341e-06) (0.108) (0.170) (0.119) (0.125) (0.141)

Notes: 1,565 observations. Significance levels: †: 10%, ∗: 5%, ∗∗: 1%.

The main takeaway from this table is that earnings beliefs ψ are significantly associated with

attrition, even after controlling for this extensive set of characteristics. This result suggests that

individuals for whom we observe both earnings expectations and realizations are likely to earn

more than those who are not followed across the two waves. Along the same lines, a Kolmogorov-

Smirnov test rejects at the 1% level the equality of the distributions of realized earnings between

the whole sample and the subsample that would be used for the direct test. Similarly, we reject

the equality of the distributions of expected earnings between these two samples. These results

indicate that, in this context, the direct RE test is likely to be misleading.

Finally, going beyond testing, Figure 3 offers additional insights regarding the deviations from

rational expectations on earnings. We focus on the whole population, for which, using our test,

we strongly reject (at the 0.1% level) the hypothesis of rational expectations. This figure shows

that deviations from rational expectations are in fact primarily due to the coexistence of over-

pessimistic (i.e., individuals for whom earnings beliefs are smaller than the RE constructed from
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minimal deviations) and over-optimistic individuals.

Notes: pointwise confidence intervals are obtained by percentile bootstrap, with 200 bootstrap samples.

All results are in 2015 US dollars.

Figure 3: Minimal deviations from RE

Both types of deviations from rational expectations largely offset one another when computing

the average across all observations, so that the naive test fails to detect this pattern of violations

from rational expectations. In contrast, our test, which exploits the full distributions of earnings

beliefs and realizations, is able to detect these deviations. We observe similar patterns within

sub-populations for which we reject RE. In particular, we report in Figure 6 in Appendix E the

minimal deviations from RE for the subsample of workers without a college degree. This graph

points again to a substantial degree of over-pessimism for low values of ψ, and over-optimism

for larger values of ψ, with even larger deviations (in relative terms) from rational expectations

than in the whole population.

6.3 Deviation from RE in a life-cycle consumption model

In this section, we examine the sensitivity of a standard life-cycle incomplete markets (SIM)

model of consumption to the relaxation of the assumption that individuals form rational ex-

pectations about their future earnings. In the baseline SIM model, as in the vast majority of

life-cycle consumption models, the rational expectations hypothesis is maintained. However,

if a substantial fraction of the individuals do not have rational expectations on their future

earnings, some of the conclusions that are drawn from this model may be misleading. In the

following, we address this issue by conducting a sensitivity analysis along the lines of Section 4.2.
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Specifically, we use a benchmark SIM model as a starting point, which we modify to account for

the fact that individuals may not have rational expectations about their income process. Using

this framework, we then illustrate how the minimal deviations from rational expectations that

are consistent with the SCE data impact partial insurance mechanisms, and in particular the

predicted effects of transitory and permanent income shocks on consumption.

6.3.1 Benchmark model and deviation

The SIM model we consider closely resembles that of Kaplan and Violante (2010, KV), who also

focus on the responsiveness of consumption to income shocks. Time is assumed to be discrete,

t ∈ {1, ..., T}. The economy is constituted of agents (household heads) who work for T ret − 1

periods, before retiring. Their unconditional probability of surviving until period t is denoted

by ξt, and we assume that ξt = 1 for all t < T ret (and ξT+1 = 0). Agents are assumed not to be

altruistic. At each period t, consumption, income and assets of agent i are denoted respectively

by Ci,t, Yi,t and Ai,t, with Ai,1 = 0. The assets are made of a tradable risk-free one-period bond

with a rate of return r. Assuming perfect annuity markets, the budget constraint can be written

as follows:

Ci,t +

(
ξt
ξt+1

)
Ai,t+1 = (1 + r)Ai,t + Yi,t. (10)

We also assume that agent i faces at each period a constraint on the level of her assets,

Ai,t ≥ A. (11)

Agents are forward-looking, and choose at the beginning of period t, if still alive and before

observing their income, their sequence of consumption. They do so by sequentially maximizing

the present value of subjective expected lifetime utility given their information set, denoted by

Ii,t−1 for agent i, and given the constraints in (10)-(11). This present value at period t is equal

to

E

[
T∑
t′=t

βt
′−t ξt′

ξt
u
(
Ci,t′

)∣∣∣∣∣Ii,t−1

]
, (12)

where β denotes the discount factor and u(.) is the flow utility of consumption. E [·|Ii,t−1] denotes

the (conditional) subjective expectation operator. In order to make the problem tractable, we

assume that this operator shares the same properties as the conditional expectation operator

E [·|Ii,t−1], the key difference being that it integrates over the subjective - rather than the true

- conditional distribution of the data.

During worklife (t < T ret), the log income ln(Yi,t) is supposed to be the sum of a deterministic

experience profile, κi,t, a permanent component, zi,t−1, a permanent shock, ηi,t, and a transitory
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shock, εi,t:

ln (Yi,t) = κi,t + zi,t + εi,t,

zi,t = zi,t−1 + ηi,t.

We also assume that εi,t and ηi,t are normally distributed with mean zero and variances σ2
ε and σ2

η

respectively. They are mutually independent and independent over time and across agents. The

initial permanent shock zi,0 is also normally distributed with mean zero and variance σ2
z0 . As in

KV, we assume that the information set at date t, It, is composed of the permanent component

zi,t−1, as well as past transitory shocks. Finally, when t ≥ T ret, the post-retirement social

security transfers Yi,t are computed as a piecewise constant function of the lifetime individual

income, following the procedure described pp.64-65 in KV.

We adopt the following specification for the model. As in KV, we suppose that agents start

working in the first period (t = 1), at age 25; we then set T ret = 35 and T = 70 (years). We fix

the interest rate r at 3% and consider two extreme cases for A: a natural borrowing constraint

(NBC) economy, with A = −108, and a zero borrowing constraint (ZBC) economy, with A = 0.

Following, e.g., Hall and Mishkin (1982), we use a quadratic specification for the flow utility of

consumption, namely u(C) = −(C∗ − C)2/2, with C∗ = 200, 000. Finally, as in KV and given

the model in hand, the discount factor β is set to match an aggregate wealth-income target ratio

of 2.5.

Finally, we consider two alternative specifications regarding the subjective expectations. First,

in the benchmark model, all individuals form rational expectations on their future income.

Second, we consider an alternative specification in which individual beliefs deviate from rational

expectations, and replace the rational expectations on Yit by the pseudo-beliefs, following the

approach described in Section 4.2.18 Specifically, using our previous notation, the pseudo-beliefs

on income are computed as a function of the rationally expected income as follows:

E [Yi,t|Ii,t−1] = hM (E [Yi,t|Ii,t−1]) . (13)

where the function hM is estimated using the empirical counterpart of (denoting by ψt the

subjective beliefs at period t < T ret):

hM (y) =
1

T ret − 1

T ret−1∑
t=1

F−1
ψt
◦ FE[Yt|It−1](y). (14)

We provide additional details regarding the specification of the model, in particular the income

process, as well as the estimation of the pseudo-beliefs in Appendix E.2.

18Given the specification of the model, and in particular the quadratic specification of the utility of consumption,

one can show that the optimal consumption path depends on the subjective expectations on Yit only.
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6.3.2 Results

A Kolmogorov-Smirnov test rejects at the 1% level the equality of the distributions of rationally

expected income and the pseudo income beliefs obtained using (13), with a p-value lower than

10−5. This indicates that, consistent with the earlier findings discussed in Section 6.2, RE does

not hold in this context. Figure 4 displays ĥM used in equation (13) to compute the pseudo-

beliefs from the rational expectations. We return to this graph below when we discuss the

sources and consequences of departures from RE in the context of our model.

Notes: pointwise confidence intervals are obtained by percentile bootstrap, with 200 bootstrap samples.

All results are in 2015 US dollars.

Figure 4: Estimate of hM

Next, and following KV, we simulate the model both in the zero borrowing constraint case and in

the natural borrowing constraint case, for an artificial panel of 10,000 households for 70 periods.

Our main object of interest is the partial insurance coefficient, namely the share of the variance

of the income shock xi,t (with x ∈ {η, ε}) that does not translate into consumption growth:

φx = 1− Cov(∆ ln(Ci,t), xi,t)

V(xi,t)
,

where the covariance and variance are computed cross-sectionally over the entire population

of agents between ages 25 and 60. We also consider and discuss below φxt , which is the same

quantity but computed conditionally on being of age 24 + t.

We report the partial insurance coefficients to permanent income shocks (φη) and transitory

income shocks (φε) in Table 3 below. We first display the coefficients under rational expectations,
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and then the estimates obtained under our minimal deviations from RE. The changes in the

insurance coefficients across both scenarios reflect the changes in the income expectations (RE

vs. pseudo beliefs), combined with the change in the discount factor β which, in both cases,

is set to match an aggregate wealth-income target ratio of 2.5. Specifically, β decreases from

around 97% to 94-95%, depending on the borrowing constraints assumption (ZBC or NBC).19

Table 3: Insurance coefficients under RE or deviations from RE.

Zero borrowing constraint Natural borrowing constraint

φη φε β φη φε β

Model with RE 0.223 0.757 0.971 0.100 0.938 0.973

Model with deviations 0.425 0.539 0.938 0.568 0.728 0.947

from RE (0.019) (0.019) (0.003) (0.068) (0.038) (0.003)

Notes: we use σ2
η = 0.02, σ2

ε = 0.05, σ2
z0 = 0.15, and an aggregate wealth-income ratio of 2.5.

Standard errors in parentheses.

Turning to our main parameters of interest, we find that consumption responses to both tran-

sitory and permanent income shocks are significantly affected by the minimal deviations from

RE. In particular, consumption is found to be significantly less responsive to permanent income

shocks when we relax RE, with substantial increases in the partial insurance coefficient φη for

both ZBC and NBC specifications. In that sense, accounting for deviations from RE with our

pseudo-beliefs takes the model predictions further away from those obtained with a canonical

permanent income hypothesis model (in which φη = 0). Conversely, accounting for deviations

from RE also results in consumption being more responsive to transitory income shocks (i.e.,

lower insurance coefficient φε). The age profile of the insurance coefficients is also sensitive to the

type of beliefs that are used to simulate the consumption paths. Figure 7 in Appendix E.2 shows

that, in particular, household heads between the ages of 35 and 50 tend to smooth permanent

(transitory) income shocks significantly more (less) when we allow for deviations from RE.

It is interesting to discuss the findings from Table 3 in light of previous empirical estimates that

have been obtained in the consumption literature. In particular, in the presence of borrowing

constraints (ZBC), the partial insurance coefficient to permanent shocks implied by the model

under RE (φη = 0.22) is lower than the estimated coefficient obtained by Blundell et al. (2008,

BPP) (φη = 0.36) using US data on income and consumption.20 Accounting for minimal de-

19The direction of the change is consistent with prior evidence from lab and field experiments (see, e.g. Andersen

et al., 2008; Andreoni and Sprenger, 2012; Belzil et al., 2017), which generally points to discount factors lower

than 97%.
20While BPP provide a range of estimates for the insurance coefficient, the estimate 0.36 is obtained when labor
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viations from RE using our method, the insurance coefficient increases substantially, to about

φη = 0.43. Hence, relaxing the assumption that agents form rational expectations about their

future incomes reduces the gap between the partial insurance coefficient to permanent shocks

implied by the SIM model, and the empirical estimates obtained by BPP. This suggests that

part of the over-insurance phenomenon to permanent income shocks that has been documented

in the literature (see, e.g., Blundell et al., 2008) may in fact be attributable to departures from

the RE hypothesis that is typically maintained in consumption models. Note that in the nat-

ural borrowing constraint (NBC) economy, the model with deviations from RE also results in

significantly larger insurance coefficients to permanent shocks than in the baseline RE model

(0.57 vs. 0.10). While the estimated coefficient that accounts for deviations from RE is larger

than the BPP estimate, the discrepancy remains smaller than in the benchmark RE model.

Turning to the transitory income shocks, we find that relaxing RE results in a significant de-

crease, of about 20 pp. for both ZBC and NBC cases, in the insurance coefficients φε. This

suggests that departures from RE also play a role in accounting for the excess sensitivity of

consumption to transitory shocks that has been documented in some of the literature using

standard realized data on income and consumption (see, e.g., Hall and Mishkin, 1982), and,

more recently, in Kaufmann and Pistaferri (2009), using subjective expectations data from the

Survey of Household Income and Wealth in Italy.

In order to shed light on the underlying mechanisms, it is instructive to examine the lifetime

net worth profiles that are implied by the model with RE, versus the model where we relax RE

using the pseudo-beliefs. These profiles are plotted in Figure 8 in Appendix E.2. A couple of

comments are in order. First, household heads below 40 are less indebted in the model with

deviations from RE. This is due to the fact that, for more than half of them, their expected

income is between 40,000$ and 100,000$ and thus, from Figure 4, they tend to be over-pessimistic

(i.e., pseudo-beliefs are smaller than RE). It follows that they tend to insure more than in the

RE model against permanent shock. Second, later in the life-cycle, household heads tend to

be over-optimistic. This translates into a lower propensity to insure against transitory shocks

compared with the RE environment, which, in turn, results in a stepper decay of the assets after

retirement in Figure 8.21

Taken together, the findings from this analysis show that accounting for minimal deviations

from rational expectations results in significant and sizable changes in the predicted consump-

income is defined as household earnings after tax and transfers, and, as such, is arguably the relevant benchmark

here.
21The model with deviations from RE fits the data substantially better than the benchmark model, comparing

the worth profiles for both models to the local linear regression obtained from the 1992 Survey of Consumer

Finance (SCF) data (the dotted curves in Figure 8). This is true in particular around and after retirement age.

Over the life cycle, the average prediction error decreases by about 16.5% in both ZBC and NBC cases when we

allow for deviations from RE.
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tion responses to both transitory and permanent income shocks. As such, they highlight the

importance of collecting subjective expectations data in order to analyze consumption dynamics

while allowing for departures from rational expectations.

7 Conclusion

In this paper, we develop a new test of rational expectations that can be used in a broad

range of empirical settings. In particular, our test only requires having access to the marginal

distributions of realizations and subjective beliefs, and, as such, can be applied in frequent

cases where realizations and beliefs are observed in two separate datasets. We establish that

whether one can rationalize rational expectations is equivalent to the distribution of realizations

being a mean-preserving spread of the distribution of beliefs, a condition which can be tested

using recent tools from the moment inequalities literature. We show that our test can easily

accommodate covariates and aggregate shocks, and, importantly for practical purpose, is robust

to some degree of measurement errors on the elicited beliefs.

Going beyond testing, we also introduce the concept of minimal deviations from rational ex-

pectations that can be rationalized by the data. Using recent tools from the optimal transport

literature, we show that, under mild regularity conditions, these deviations exist, are unique,

and are also easily estimated. In the context of structural models, these deviations offer a novel

and tractable way to conduct a sensitivity analysis on the assumed form of expectations.

We apply our method to test and quantify deviations from rational expectations about future

earnings. While individuals tend to be right on average about their future earnings, our test

strongly rejects rational expectations. Using the deviations from rational expectations within a

standard life-cycle incomplete markets, we then provide evidence that the behavioral responses

of consumers to income shocks are sensitive to departures from rational expectations. In partic-

ular, our results suggest that part of the over-insurance to permanent income shocks that has

been documented in the literature is attributable to departures from the rational expectations

hypothesis.
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A Statistical tests in the presence of aggregate shocks

In this appendix, we show how to adapt the construction of the test statistic and obtain similar

results as in Theorem 2 in the presence of aggregate shocks. As explained in Section 2.2.3, we

mostly have to replace Ỹ by Ỹc = Dq
(
Ỹ , c

)
+ (1−D)ψ. Because we include covariates here, as

in Section 3, c is actually a function of X. Also, the true function c0 has to be estimated. We

let ĉ denote such a nonparametric estimator, which is based on E(q(Y, c0(X))|X) = E(ψ|X).

When q(y, c) = y − c or q(y, c) = y/c, we get respectively c0(X) = E(Y |X) − E(ψ|X) and

c0(X) = E(Y |X)/E(ψ|X), and ĉ is easy to compute using nonparametric estimators of E(Y |X)

and E(ψ|X).

Because in Proposition 3 (ii) we do not test for a moment equality anymore, m
(
Di, Ỹi, Xi, h, y

)
reduces to m1

(
Di, Ỹc,i, Xi, h, y

)
. We let hereafter mn(h, y) =

∑n
i=1m1

(
Di, Ỹc,i, Xi, h, y

)
/n.

In the test statistic T , we replace, for (y, h) ∈ Y × ∪r≥1Hr, Σn(h, y) by Σn(h, y) = Σ̂n(h, y) +

εDiag
(
V̂
(
Ỹĉ

)
, V̂
(
Ỹĉ

))
, where Σ̂n(h, y) and V̂

(
Ỹĉ

)
are respectively the sample covariance ma-

trix of
√
nmn (h, y) and the empirical variance of Ỹĉ. The last difference with the test considered

in Section 3 is that when using the bootstrap to compute the critical value, we also have to re-

estimate c0 in the bootstrap sample.

We obtain in this context a result similar to Theorem 2 above, under the regularity conditions

stated in Assumption 5. We let hereafter Cs
(
[0, 1]dX

)
denote the space of continuously differen-

tiable functions of order s on [0, 1]dX that have a finite norm ‖c‖s,∞ = max
|k|≤s

supx∈[0,1]dX

∣∣c(k)(x)
∣∣.

We also let, for any function f on a set H, ‖f‖H = supx∈H |f(x)|. Finally, when the distribution

of
(
D, Ỹ ,X

)
is F , KF denotes the asymptotic covariance kernel of n−1/2Diag

(
V
(
Ỹc0

))−1/2
m.

Assumption 5 (i) ĉ and c0 belong to Cs
(
[0, 1]dX

)
, with s ≥ dX . Moreover, ‖ĉ− c0‖[0,1]dX =

oP (1).

(ii) For all y ∈ Y, q is Lipschitz on Y × [−C,C] for some C > ‖c0‖[0,1]dX . Moreover,

sup(y,c)∈Y×[−C,C] |q(y, c)| ≤M0;

(iii) For all c ∈ R, the function q(·, c) : Y → Y is bijective and its inverse qI(·, c) is Lipschitz

on Y;

(iv) Fψ|X(·|x), FY |X(·|x) are Lipschitz on Y uniformly in x ∈ [0, 1]dX with constants QF,1 sat-

isfying supF∈F0
QF,1 ≤ Q1 < +∞. Alson Fq(ψ,c(X)), Fq(Y,c(X)) are Lipschitz on [−M0,M0]

with constants QF,2 satisfying supF∈F0
QF,2 ≤ Q2 < +∞;

(iv) infF∈F VF
[
Ỹ 2
c

]
> 0 and ε0 ≤ infF∈F EF [D] ≤ supF∈F EF [D] ≤ 1 − ε0 for some ε0 ∈

(0, 1/2). Also, V̂F
[
Ỹ 2
ĉ

]
is a consistent estimator of VF

[
Ỹ 2
c

]
.
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Part (i) imposes some regularity conditions on c0 and its nonparametric estimator ĉ. It is

possible to check such regularity conditions on ĉ with kernel or series estimators of E(Y |X) and

E(ψ|X). Parts (ii) and (iii) also hold when q(y, c) = y − c and q(y, c) = q(y)/c, by imposing in

the second case that c belongs to a compact subset of (0,∞). Proposition 5 shows that under

these conditions, the test has asymptotically correct size.

Proposition 5 Suppose that rn →∞ and that Assumptions 3 and 5 hold. Then (i) in Propo-

sition 2 holds, replacing ϕn,α by ϕn,α,ĉ.

Results like (ii) and (iii) in Proposition 2 could also be obtained under the conditions of Propo-

sition 5, modifying directly the proof of Proposition 2.

B Tests with rounding practices

We have considered in Section 2.2.4 the possibility of measurement errors on ψ. Another source

of uncertainty on ψ is rounding. Rounding practices by interviewees are common. A way to

interpret these practices is that in situations of ambiguity, individuals may only be able to bound

the distribution of their future outcome Y (Manski, 2004). If individuals round at 5% levels,

for instance, an answer ψ = 0.05 for the beliefs about percent increase of income should then

only be interpreted as ψ ∈ [0.025, 0.075]. Another case where only bounds on ψ are observed is

when questions to elicit subjective expectations take the following form: “What do you think

is the percent chance that your own [Y ] will be below [y]?”, for a certain grid of y. If 0 and

100 are always observed, or if we assume that the support of subjective distributions is included

in [y, y], we can still compute bounds on ψ.22 In such cases, we only observe (ψL, ψU ), with

ψL ≤ ψ ≤ ψU . For a thorough discussion of this issue, and especially of how to infer rounding

practices, see Manski and Molinari (2010).

In this setting, rationalizing rational expectations is less stringent than in our baseline set-up

since the constraints on the distribution of ψ are weaker. Formally, the null hypothesis takes

the following form:

H0B : ∃(Y ′, ψ′, I ′) : σ(ψ′) ⊂ I ′, Y ′ ∼ Y, FψU ≤ Fψ′ ≤ FψL and E(Y ′|I ′) = ψ′.

To obtain an equivalent formulation to H0B, a natural idea would be to fix a candidate cdf F ∈
[FψU , FψL ] for Fψ and apply Theorem 1 with this F . Then, letting ∆F (y) =

∫ y
−∞ FY (t)−F (t)dt

and δF = E(Y ) −
∫
udF (u), H0B would hold as long as for some F ∈ [FψU , FψL ], ∆F (y) ≥ 0

for all y ∈ R and δF = 0. In practice though, directly checking whether such a distribution

exists would be very difficult. Fortunately, we show in the following proposition that it is in fact

22Note however that in this case, our approach does not take into account all the information on the subjective

distribution.
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sufficient to check that these conditions hold for a specific candidate distribution. To define the

cdf of this distribution, we introduce, for all b ∈ R, the random variables

ψb = ψU1l{ψU < b}+ max(b, ψL)1l{ψU ≥ b}.

We also let ψ−∞ = ψL and ψ+∞ = ψU . The cdf of ψb is then F b(t) = FψU (t)1l{t < b} +

FψL(t)1l{t ≥ b}, for all b ∈ R. We let FB = {F b, b ∈ R} denote the set of all such cdfs.

Assumption 6 E(|Y |) < +∞, E(|ψL|) < +∞ and E(|ψU |) < +∞.

Proposition 6 Suppose that Assumption 6 holds. First, if E[ψL] ≤ E[Y ] ≤ E[ψU ], there exists

a unique F ∗ ∈ FB such that δF ∗ = 0. Second, the following statements are equivalent:

(i) H0B holds.

(ii) E[ψL] ≤ E[Y ] ≤ E[ψU ] and ∆F ∗(y) ≥ 0 for all y ∈ R.

This test shares some similarities with the test in the presence of aggregate shocks. Specifically,

if E[ψL] ≤ E[Y ] ≤ E[ψU ], we first identify b0 ∈ R such that the candidate belief ψb0 , which

plays a similar role as the modified outcome q(Y, c0) in the test with aggregate shocks, satisfies

the equality constraint E[ψb0 ] = E[Y ]. Noting that the inequality ∆F ∗(y) ≥ 0 can be rewritten

as E
[
(y − Y )+ −

(
y − ψb0

)+] ≥ 0, it follows from (ii) that rationalizing RE in this context

(i.e., H0B) is then equivalent to a set of many moment inequality constraints involving the

distributions of realizations Y and candidate belief ψb0 .

C Tests with sample selection in the datasets

We consider here cases where the two samples are not representative of the same population, or

formally, D is not independent of (Y, ψ). This may arise for instance because of oversampling of

some subpopulations or differences in nonresponse between the two surveys that are used. We

assume instead that selection is conditionally exogenous, that is to say:

D ⊥⊥ (Y, ψ)|X. (15)

We show how to use a propensity score weighting to handle such a selection. Denote by p(x) =

P (D = 1|X = x) = E [D|X = x] the propensity score and by

W (X) =
D

p(X)
− 1−D

1− p(X)
.

The law of iterated expectations combined with Proposition 2 directly yields the following propo-

sition:
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Proposition 7 Suppose that (15) and Assumption 1 hold. Then H0X is equivalent to

E
[
W (X)

(
y − Ỹ

)+
|X
]
≥ 0

for all y ∈ R and E
[
W (X)Ỹ |X

]
= 0.

This proposition shows that under sample selection, we can build a statistical test of H0X akin

to that developed in Section 3, by merely estimating nonparametrically p(X). We could consider

for that purpose a series logit estimator, for instance. Validity of such a test would follow using

very similar arguments as for the test with aggregate shocks considered above.

D Simulations with covariates

We consider here simulations including covariates. The DGP is similar to that considered in

Section 3. Specifically, we assume that

Y = ρψ +
√
Xε,

with ρ ∈ [0, 1], ψ ∼ N (0, 1), X ∼ Beta(0.1, 10) and

ε = ζ (−1l{U ≤ 0.1}+ 1l{U ≥ 0.9}) ,

where ζ ∼ N (2, 0.1) and U ∼ U [0, 1]. (ψ, ζ, U,X) are supposed to be mutually independent.

Like in the test without covariates, we can show that the test with covariates is able to reject

RE if and only if ρ < 0.616. On the other hand, by construction E [Y |X] = E [ψ|X], so the naive

conditional test has no power. The test based on conditional variances rejects only if ρ < 0.445.

Finally, we can show that without using X, our test has power only for ρ < 0.52. Hence, relying

on covariates allows us to gain power for ρ ∈ [0.521, 0.616).

Again, we consider hereafter nψ = nY = n ∈ {400, 800, 1200, 1600, 3200}, use 500 bootstrap

simulations to compute the critical value, and rely on 800 Monte-Carlo replications for each

value of ρ and n. We use the same parameters p = 0.05 and b0 = 0.3 as above. Figure 5 shows

that the RE test with covariates asymptotically outperforms the RE test without covariates.

The test exhibits a similar behavior as that without covariates, though, as we could expect, the

power converges less quickly to one as n tends to infinity.
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Notes: the dotted vertical lines correspond to the theoretical limit for the rejection of the null hypoth-

esis for test based on variance (ρ ' 0.445), our test without covariates (ρ ' 0.521) and our tests with

covariates (ρ = 0.616). The dotted horizontal line corresponds to the 5% level.

Figure 5: Power curves for the test with covariates.

E Additional material on the application

E.1 Descriptive statistics and minimal deviations for non-college graduates

Table 4: Descriptive statistics of the SCE sample

Mean Std. dev.

Male 0.53 0.50

White 0.74 0.43

College degree 0.49 0.46

Low numeracy 0.33 0.47

Tenure ≤ 6 months 0.17 0.38

Age 45.8 13.0

ψ (Earnings beliefs) $50,592 $40,889

Y (Realized earnings) $52,354 $38,634
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Notes: the pointwise confidence intervals are obtained by percentile bootstrap. All results are in 2015

US dollars.

Figure 6: Minimal deviations for individuals without a college degree

E.2 Additional details and results on the life-cycle consumption model

The income process is specified as follows. First, we estimate the deterministic trend κi,t as a

smooth function of age (second-order polynomial) using the dataset of Blundell et al. (2008)

built from the PSID.23 We use the same value as in the baseline specification of KV for σ2
ε and

σ2
z0 , namely σ2

ε = 0.05 and σ2
z0 = 0.15. We choose σ2

η = 0.02 as it is in the range of Blundell

et al. (2008) and appears to fit the 1989 and 1992 Survey of Consumer Finances data better

than the baseline value used by KV. Our main results remain qualitatively unchanged when we

use the same values as in BPP for both variances σ2
ε (0.037) and σ2

η (0.019).

To estimate hM , we rely on (14). Given the specification of our model, E [Yi,t|Ii,t−1], when

t < T ret, is lognormally distributed with parameters κi,t + (σ2
η + σ2

ε )/2 and σ2
z0 + (t− 1)σ2

η. To

estimate F−1
ψt

, we use the subjective beliefs of individuals between 25 and 60 measured in the SCE

survey. Since in KV, Yi,t is interpreted as household income after taxes and transfers, whereas

we only observe subjective expectations on individual labor earnings, we use an equipercentile

mapping based on the two distributions of realized (expected) individual labor earnings and

realized (expected) household income. We estimate this equipercentile mapping using the dataset

from Blundell et al. (2008), built from the PSID, where both realized individual labor earnings

and household income are observed from 1989 to 1992. Finally, we assume that the quantile of

income expectations is linear in age, and thus estimate F−1
ψt

by a quantile regression of subjective

23Results are robust to the use of a more flexible fourth-order polynomial for κi,t.
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expectations on age. We finally estimate hM using (14), replacing F−1
ψt

by the quantile regression

estimator.

Figure 7: Age profiles of insurance coefficients.

(a) With borrowing constraints

(b) Without borrowing constraints

Notes: the curves in gray (resp. in black) correspond to insurance coefficients under RE (resp. minimal deviations

from RE). The dotted black curves are the 2.5 and 97.5 quantiles of bootstrap simulations, taking into account

the randomness of ĥM . They are obtained using 200 bootstrap samples.
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Figure 8: Average lifetime net worth (in $00,000) profiles.

(a) Zero borrowing constraint (b) Natural borrowing constraint

Notes: SCF stands for the 1992 Survey of Consumer Finance. The dotted black curve is the estimated non-

parametric regression function of net worth of households in this dataset on age using local polynomials and a

bandwidth selected via cross-validation. The confidence intervals on ĥM are obtained with 200 bootstrap samples.

F Proofs

F.1 Notation and preliminaries

For any set H, let us denote by l∞(H) the collection of all uniformly bounded real functions on

H equipped with the supremum norm ‖f‖H = supx∈H |f(x)|. Denote by L2(F ) the square inte-

grable space with respect to the measure associated with F , and let ‖·‖F,2 be the corresponding

norm. We let N(ε, T , L2(F )) denote the minimal number of ε-balls with respect to ‖·‖F,2 needed

to cover T . An ε-bracket (with respect to F ) is a pair of real functions (l, u) such that l ≤ u

and ‖u− l‖F,2 ≤ ε. Then, for any set of real functions M, we let N[](ε,M, L2(F )) denote the

minimum number of ε-brackets needed to cover M. We denote by H = (∪r≥1Hr). For x ∈ Rd,
d > 1, we denote by ‖x‖∞ = maxj=1,...,d |x|.

For a sequence of random variable (Un)n∈N and a set F0, we say that Un = OP (1) uniformly in

F ∈ F0 if for any ε > 0 there exist M > 0 and n0 > 0 such that supF∈F0
PF (|Un| > M) < ε

for all n > n0. Similarly we say that Un = oP (1) uniformly in F ∈ F0 if for any ε > 0,

supF∈F0
PF (|Un| > ε)→ 0.
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Finally, we add stars to random variables whenever we consider their bootstrap versions, as

with T ∗ versus T . We define oP ∗ and OP ∗ as above, but conditional on
(
Ỹi, Di, Xi

)
i=1...n

.

Convergence in distribution conditional on
(
Ỹi, Di, Xi

)
i=1...n

is denoted by →d∗ .

F.2 Proof of Lemma 1

Under H0, there exists Y ′, ψ′ and I ′ such that Y ′ ∼ Y , ψ′ ∼ ψ, σ(ψ′) ⊂ I ′ and E(Y ′|I ′) = ψ′.

Then, by the law of iterated expectations,

E[Y ′|ψ′] = E
[
E
[
Y ′
∣∣I ′]∣∣ψ′] = E

[
ψ′|ψ′

]
= ψ′.

Conversely, if there exists (Y ′, ψ′) such that Y ′ ∼ Y , ψ′ ∼ ψ and E[Y ′|ψ′] = ψ′, let I ′ = σ (ψ′).

Then ψ′ = E [Y ′|ψ′] = E [Y ′|I ′] and H0 holds.

F.3 Proof of Theorem 1.

(i) ⇔ (iii). By Strassen’s theorem (Strassen, 1965, Theorem 8), the existence of (Y, ψ) with

margins equal to FY and Fψ and such that E [Y |ψ] = ψ is equivalent to
∫
fdFψ ≤

∫
fdFY

for every convex function f . By, e.g., Proposition 2.3 in Gozlan et al. (2018), this is, in turn,

equivalent to (iii).

(ii) ⇔ (iii). By Fubini-Tonelli’s theorem,
∫ y
−∞ FY (t)dt = E

[∫ y
−∞ 1l{t ≥ Y }dt

]
= E [(y − Y )+] .

The same holds for ψ. Hence, ∆(y) ≥ 0 for all y ∈ R is equivalent to E
[
(y − Y )+] ≥ E

[
(y − ψ)+]

for all y ∈ R. The result follows.

F.4 Proof of Proposition 1.

First, by Jensen’s inequality,

E[(y0 − Y )+|ψ] ≥ (y0 − E(Y |ψ))+ = (y0 − ψ)+.

Moreover, ∆(y0) = 0 implies that E((y0 − Y )+) = E((y0 − ψ)+). Hence, almost surely,

E[(y0 − Y )+|ψ] = (y0 − ψ)+.

Equality in the Jensen’s inequality implies that the function is affine on the support of the

random variable. Therefore, for almost all u, we either have S(Y |ψ = u) ⊂ [y0,+∞) or S(Y |ψ =

u) ⊂ (−∞, y0]. Because E [Y |ψ] = ψ, S(Y |ψ = u) ⊂ [y0,+∞) for almost all u > y0 and

S(Y |ψ = u) ⊂ (−∞, y0] for almost all u < y0. Then, for all τ ∈ (0, 1), F−1
Y |ψ(τ |u) ≥ y0 for almost

all u ≥ y0 and F−1
Y |ψ(τ |u) ≤ y0 for almost all u ≤ y0. Thus, for all τ ∈ (0, 1), by continuity of

F−1
Y |ψ(τ |·), F−1

Y |ψ(τ |y0) = y0. This implies that Y |ψ = y0 is degenerate.
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F.5 Proof of Proposition 2.

We first prove that H0X is equivalent to the existence of (Y ′, ψ′) such that DY ′+(1−D)ψ′ = Ỹ ,

D ⊥⊥ (Y ′, ψ′)|X and E((Y ′|ψ′, X) = ψ′. First, under H0X , there exists (Y ′, ψ′, I ′) such that

DY ′ + (1−D)ψ′ = Ỹ , D ⊥⊥ (Y ′, ψ′)|X, σ(ψ′, X) ⊂ I ′ andE((Y ′|I ′) = ψ′. Then

E[Y ′|ψ′, X] = E
[
E
[
Y ′
∣∣I ′]∣∣ψ′, X] = E

[
ψ′|ψ′, X

]
= ψ′.

Conversely, if there exists (Y ′, ψ′) such that DY ′ + (1 − D)ψ′ = Ỹ , D ⊥⊥ (Y ′, ψ′)|X and

E(Y ′|ψ′, X) = ψ′, let I ′ = σ (X ′, ψ′). Then ψ′ = E(Y ′|ψ′, X) = E(Y ′|I ′) and H0X holds.

The proposition then follows as Theorem 1.

F.6 Proof of Proposition 4

For all y, ξ 7→ E[(y − ψ − ξ)+] is decreasing and convex. Then, because Fξψ dominates at the

second order FξY +ε,∫
E
[
(y − ψ − ξ)+

]
dFε+ξY (ξ) ≥

∫
E
[
(y − ψ − ξ)+

]
dFξψ(ξ).

As a result, for all y,

E
[(
y − Ŷ

)+
]

=

∫
E
[
(y − ψ − ε− ξY )+ |ε+ ξY = ξ

]
dFε+ξY (ξ)

=

∫
E
[
(y − ψ − ξ)+

]
dFε+ξY (ξ)

≥
∫

E
[
(y − ξ − ψ)+

]
dFξψ(ξ)

=E
[
(y − ψ̂)+

]
.

Moreover, E
(
Ŷ
)

= E
(
ψ̂
)

. By Theorem 1, Ŷ and ψ̂ satisfy H0.

F.7 Proof of Theorem 2.

(i) This is a particular case of Proposition 5 below, with q(Y, c0) = Y . The proof is therefore

omitted.

(ii) We show that equality holds for F0 ∈ F0 satisfying the conditions stated in (ii). The proof

is divided in three steps. We first prove convergence in distribution of T to S defined below,

and conditional convergence of T ∗ towards the same limit. Then we show that the cdf H of S

is continuous and strictly increasing in the neighborhood of its quantile of order 1− α, for any

α ∈ (0, 1/2). The third step concludes.

1. Convergence in distribution of T and T ∗.
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First, let us introduce some notation. Let Kj,j (j ∈ {1, 2}) be the j-th diagonal element

of the covariance kernel K, S : (ν,K) 7→ (1 − p)
(
−ν1/K

1/2
1,1

)+2
+ p

(
ν2/K

1/2
2,2

)2
, q(r) =(

r2 + 100
)−1

(2r)−dX , and

νn,F0(y, h) =
1√
n

n∑
i=1

Diag
(
VF0

(
Ỹ
))−1/2 (

m
(
Di, Ỹi, Xi, h, y

)
− EF0

[
m
(
Di, Ỹi, Xi, h, y

)])
.

Finally, we define kn,F0(y, h) = n1/2Diag
(
VF0

(
Ỹ
))−1/2

EF0

[
m
(
Di, Ỹi, Xi, h, y

)]
,

Kn,F0(y, h, y′, h′) = Diag
(
VF0

(
Ỹ
))−1/2

Ĉov
(√
nmn(y, h),

√
nmn(y′, h′)

)
Diag

(
VF0

(
Ỹ
))−1/2

Kn,F0(y, h, y′, h′) = Kn,F0(y, h, y′, h′) + εDiag
(
VF0

(
Ỹ
))−1/2

Diag
(
V̂
(
Ỹ
))

Diag
(
VF0

(
Ỹ
))−1/2

and use the notations Kn,F0(y, h) = Kn,F0(y, h, y, h) and Kn,F0(y, h) = Kn,F0(y, h, y, h).

With this notation, we have, by definition of T ,

T = sup
y∈Y

∑
(a,r):r∈{1,...,rn},a∈Ar

q(r)S
(
νn,F0(y, ha,r) + kn,F0(y, ha,r),Kn,F0(y, ha,r)

)
.

To characterize the distribution of T (resp. T ∗), we first prove the convergence of νn,F0 and

Kn,F0(y, ha,r) (resp. ν∗n,F0
and K∗n,F0

(y, ha,r)). For those purposes, we use a class of functions

which is a general form taken by m1 defined in (2), namely for any 0 < N1 < M1, the class of

functions

M0 = {fy,φ1,φ2,h (ỹ, x, d) =
(
dφ1 (y − ỹ)+ − (1− d)φ2 (y − ỹ)+)h(x),

(y, φ1, φ2, h) ∈ Y × [N1,M1]2 ×H}.

Remark first that this class is a particular case of classes M defined in (25) below. Then, by

the proof of Proposition 5 below, Assumptions PS1 and PS2 in AS are satisfied. Thus the

assumptions of Lemma D.2 in AS hold as well. This entails that Assumptions PS4 and PS5 in

AS hold. Namely, there exists a Gaussian process νF0 such that

- νn,F0 →d νF0 and ν∗n,F0
→d∗ νF0 ;

- For all r ∈ N and (y, h) ∈ Y × Hr, Kn,F0(y, h) →P KF0(y, h) + εI2 and K∗n,F0
(y, h) →P ∗

KF0(y, h) + εI2, where I2 is the 2× 2 identity matrix.

Moreover, letting kF0(y, h) denote the limit in probability of kn,F0(y, h), we have kF0(y, h) = 0

if (y, h) ∈ LF0 and +∞ otherwise. Note that by assumption, the set LF0 is nonempty.
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Thus, using Equation (D.11) in the proof of Theorem D.3. in AS, which is based on the uniform

continuity of the function S in the sense of Assumption S2 therein, we have, under F0,

T →d sup
y∈Y

∑
(a,r)∈Ar×N

S (νF0(y, ha,r) + kF0(y, h),KF0(y, ha,r) + εI2)

= S := sup
y∈Y

∑
(a,r):(y,ha,r)∈LF0

q(r)S (νF0(y, ha,r),KF0(y, ha,r) + εI2) ,

where the equality follows by definition of S and kF0(y, h). Similarly, using Assumption PS5

and (D.11) in AS, replacing T by T ∗ and quantities νn,F0(y, ha,r) and Kn,F0(y, ha,r) by their

bootstrap counterparts (see the proof of Lemma D.4 in AS) we have T ∗ →d∗ S.

2. The cdf H of S is continuous and strictly increasing in the neighborhood of any

of its quantile of order 1− α > 1/2.

First, the cdf H of S is a convex functional of the Gaussian process νF0 . Then, as in the proof

of Lemma B3 in Andrews and Shi (2013), we can use Theorem 11.1 of Davydov et al. (1998)

p.75 to show that H is continuous and strictly increasing at every point of its support except

r = inf{r ∈ R : H(r) > 0}. Moreover, for any r > 0,

H(r) ≥ P

sup
y∈Y

∑
(a,r):(y,ha,r)∈LF0

q(r)S (νF0(y, ha,r),KF0(y, ha,r) + εI2) < r


≥ P

(
sup

j∈{1,2},(y,a,r):(y,ha,r)∈LF0

∣∣∣(K2,F0,j,j(y, ha,r) + ε)−1/2νF0,j(y, ha,r)
∣∣∣ < √

r/2

Q

)
> 0,

where Q =
∑

(a,r):(y,ha,r)∈LF0
q(r) < ∞ and we use Problem 11.3 of Davydov et al. (1998) p.79

for the last inequality. Thus, r > r and H is continuous and strictly increasing on (0,∞).

Then, we show that for any α ∈ (0, 1/2), the quantile of order 1− α of the distribution of S is

positive. By assumption, there exists (y0, h0) ∈ LF0 such that either either KF0,11(y0, h0) > 0

or KF0,2(y0, h0) > 0. Then

P (S > 0) = 1− P

sup
y∈Y

∑
(a,r):(y,ha,r)∈LF0

q(r)S (νF0(y, ha,r),KF0(y, ha,r) + εI2) = 0


≥ 1− P (νF0,1(y0, h0) ≤ 0, νF0,2(y, h0) = 0)

≥ 1−min {P (νF0,1(y0, h0) ≤ 0) ,P (νF0,2(y0, h0) = 0)}

≥ 1/2. (16)

The first inequality holds by definition of the supremum and because S is nonnegative. To

obtain the last inequality, note that either νF0,1(y0, h0) is non-degenerate, in which case the
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first probability is 1/2 (since νF0,1(y0, h0) is normal with zero mean), or νF0,2(y0, h0) is non-

degenerate, in which case the second probability is 0.

Finally, using that H is strictly increasing on (0,∞), (16) ensures that any quantile of S of

order 1 − α with α ∈ [0, 1/2) is positive. Hence, H is continuous and strictly increasing in the

neighborhood of any such quantiles.

3. Conclusion.

Using T ∗ →d∗ S in distribution, Step 2 and Lemma 21.2 in Van der Vaart (2000), we have that

for η > 0, c∗n,α →d∗ c(1 − α + η) + η, where c(1 − α + η) is the (1 − α + η)-th quantile of the

distribution of S. Because T →d S and H is continuous at c(1− α+ η) + η > 0, we obtain that

lim
η→0

lim sup
n→∞

PF0

(
T > c∗n,α

)
= α.

Combined with the inequality of Part (i) above, this yields the result.

(iii) This results Theorem E.1 in AS. First, Assumption SIG2 in AS holds for σ2
F = VF

(
Ỹ
)

,

following the proof of Lemma 7.2 (b) under Assumption 3-(ii). Second, Assumptions PS4 and

PS5 are satisfied using the point (ii) above. Third, Assumptions CI, MQ, S1, S3, S4 in AS are

also satisfied by construction of the statistic T . Thus, we can apply Theorem E.1 in AS and the

result follows. �

F.8 Proof of Theorem 3.

For any positive convex function ρ, we let

Wρ(F,G) = inf
FU,V :U∼F,V∼G

E [ρ (|U − V |)] .

We also define

G =

{
G cdf :

∫ y

−∞
G(t)dt ≤

∫ y

−∞
FY (t)dt ∀y ∈ R,

∫
ydG(y) =

∫
ydFY (y)

}
.

The proof is divided in three steps. First, we prove that the initial infimum is equal to

infG∈GWρ(Fψ, G). Second, we prove that there is a unique G∗ that reaches this infimum for

all convex function ρ : R+ → R+ such that ρ(0) = 0. Third, we prove that there is a unique

function g∗ such that (4) holds, and that this function is increasing.

1. inf(Y ′,ψ′,ψ′′)∈Ψ E[ρ(|ψ′ − ψ′′|)] = infG∈GWρ(Fψ, G).

First, by definition of Wρ and because for all (Y ′, ψ′, ψ′′) ∈ Ψ Fψ′ = Fψ, we have

inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)] = inf
G:∃(Y ′,ψ′,ψ′′)∈Ψ:Fψ′′=G

Wρ(Fψ, G).
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Thus, it remains to prove that G′ = G, with G′ defined by

G′ =
{
G : ∃(Y ′, ψ′, ψ′′) ∈ Ψ : Fψ′′ = G

}
. (17)

First, let G ∈ G′. Let (Y ′, ψ′, ψ′′) ∈ Ψ be such that Fψ′′ = G. By definition of Ψ, we have

E(Y ′|ψ′′) = ψ′′ and FY ′ = FY . Therefore, by implication (i)⇒ (ii) of Theorem 1 applied to Y ′

and ψ′′, G = Fψ′′ ∈ G. Hence, G′ ⊂ G. Conversely, let G ∈ G. Then, by implication (ii)⇒ (i)

of Theorem 1, there exists (Y ′, ψ′′) such that Y ′ ∼ Y , Fψ′′ = G and E(Y ′|ψ′′) = ψ′′. Define

ψ′ = ψ. Then (Y ′, ψ′, ψ′′) ∈ Ψ and G ∈ G′. Equation (17) follows.

2. There exists a unique G∗ such that for all ρ, Wρ(Fψ, G
∗) = infG∈GWρ(Fψ, G) .

Because Fψ has no atom, the distribution of H−1 ◦ Fψ(ψ) is H, for any cdf H. Hence, the set{
Fg(ψ), g measurable

}
is actually the set of all cdf’s. Then, by Proposition 3.1 and Remark 3.2

in Gozlan et al. (2018), we have, for any convex function ρ : R+ → R+ such that ρ(0) = 0,

inf
G∈G

Wρ(Fψ, G) = inf
FY ′,ψ′ : FY ′=FY ,Fψ′=Fψ

E
[
ρ
(∣∣ψ′ − E

[
Y ′|ψ′

]∣∣)] . (18)

Third, by Theorem 1.4 in Gozlan et al. (2018), there exists a distribution G∗ such that

1. For all f convex,
∫
fdG∗ ≤

∫
fdFY ;

2. for any convex function ρ : R+ → R+ such that ρ(0) = 0,

inf
FY ′,ψ′ : FY ′=FY ,Fψ′=Fψ

E
[
ρ
(∣∣ψ′ − E

[
Y ′|ψ′

]∣∣)] = Wρ(Fψ, G
∗). (19)

By, e.g., Proposition 2.3 in Gozlan et al. (2018), Point (1) is equivalent to G∗ satisfying (iii) in

Theorem 1. Therefore, in view of Theorem 1, we have G∗ ∈ G. Combining (18) and (19), we

obtain:

G∗ ∈ arg min
G∈G

Wρ(Fψ, G).

Now, G is convex. Moreover, by Lemma 3.2.1 of Pass (2013) and because Fψ has no atom,

G 7→ Wρ(Fψ, G) is strictly convex for ρ(x) = x2. Therefore, G∗ is the unique minimizer of

G 7→Wρ(Fψ, G) for this ρ. It is therefore the unique G ∈ G minimizing Wρ(Fψ, G) for all convex

function ρ : R+ 7→ R+ such that ρ(0) = 0.

3. There exists a unique g∗ such that E[ρ(|ψ − g∗(ψ)|)] = inf(Y ′,ψ′,ψ′′)∈Ψ E[ρ(|ψ′ − ψ′′|)]
and g∗ is increasing.

Let g∗ = G∗−1 ◦Fψ. g∗ is increasing. We now prove that it satisfies the equality above. First, by

construction, Fg∗(ψ) = G∗. Moreover, by e.g., Theorem 5.26 of Villani (2008), g∗ is the unique

function satisfying

E [ρ(|ψ − g∗(ψ)|)] = Wρ(Fψ, G
∗). (20)
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This equation, together with the first and second steps, imply that

E [ρ(|ψ − g∗(ψ)|)] = inf
(Y ′,ψ′,ψ′′)∈Ψ

E[ρ(|ψ′ − ψ′′|)]. (21)

Now, consider g 6= g∗ such that Fg(ψ) = G∗. By unicity of g∗ satisfying (20), we have

E [ρ(|ψ − g(ψ)|)] > Wρ(Fψ, G
∗). Finally, if g 6= g∗ is such that Fg(ψ) = G 6= G∗ for some

G ∈ G, we have, taking ρ(x) = x2,

E [ρ(|ψ − g(ψ)|)] ≥Wρ(Fψ, G) > Wρ(Fψ, G
∗).

Therefore, g∗ is the unique function satisfying (21) for all convex function ρ : R+ 7→ R+ such

that ρ(0) = 0.

F.9 Proof of Theorem 4.

First, in Step 1 of the proof of their Theorem 1.4, Gozlan et al. (2018) show that Ĝ∗n, defined as

the empirical distribution of
(
ψ̃1, ..., ψ̃n

)
satisfies

Ĝ∗n = arg min
G∈G

W2(F̂ψ, G),

where F̂ψ denotes the empirical cdf of ψ and for any q ≥ 1, Wp(F,G) = Wρq(F,G)1/q with

ρq(x) = |x|q. Given the definition of g∗, we also have ĝ∗ = Ĝ∗−1
n ◦ F̂ψ. Moreover, F̂ψ(x)

converges almost surely to Fψ(x).

Let us focus hereafter on the event of probability one for which F̂ψ and F̂Y converges to Fψ and

FY , respectively, for the W2 distance. On this event, consider any subsequence of
(
Ĝ∗n

)
n∈N

.

Following Step 2 of the proof of Theorem 1.4 in Gozlan et al. (2018), but replacing |x| by x2

and using the fact that E(ψ2) < +∞ and E(Y 2) < +∞, there exists a further subsequence

converging for the W2 distance. Moreover, the corresponding limit G̃ satisfies, for all convex

function ρ : R+ → R+ such that ρ(0) = 0,

Wρ

(
Fψ, G̃

)
= inf

FY ′,ψ′ : FY ′=FY ,Fψ′=Fψ
E
[
ρ
(∣∣ψ′ − E

[
Y ′|ψ′

]∣∣)] .
Hence, by the proof of Theorem 3, Wρ

(
Fψ, G̃

)
= Wρ(Fψ, G

∗). Because

G∗ = arg min
G∈G

W2(Fψ, G),

we have G̃ = G∗. Hence, any subsequence of
(
Ĝ∗n

)
n∈N

admits a converging further subsequence

converging to G∗. This implies that almost surely,
(
Ĝ∗n

)
n∈N

converges to G∗ for the W2 distance.

Because convergence for the W2 distance implies weak convergence,
(
Ĝ∗n

)
n∈N

converges weakly
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toG∗, almost surely. But then, by Lemma 21.2 in Van der Vaart (2000),
(
Ĝ−1∗
n (x)

)
n∈N

converges

almost surely to G∗−1(x), for all x that is a continuity point of G∗−1.

Finally, let us prove the almost sure convergence of ĝ∗(t) to g∗(t) for all t that is a continuity

point of g∗ and such that Fψ(t) ∈ (0, 1). Fix ε > 0 and let us prove that for all n large enough,

|ĝ∗(t)−g∗(t)| < ε with probability one. Because Fψ(t) is a continuity point of G∗−1, there exists

δ > 0 such that for all u satisfying |u − Fψ(t)| < δ, |G∗−1(u) − G∗−1(Fψ(t))| < ε/2. It is easy

to see that the set of points of discontinuity of G∗−1 is at most countable. Thus, there exists

η ∈ (0, δ) such that Fψ(t) + η and Fψ(t) − η are continuity points of G∗−1. Moreover, with

probability one and for all n large enough, |F̂ψ(t)−Fψ(t)| ≤ η. Then, for all n large enough and

with probability one,

Ĝ∗−1
n ◦ F̂ψ(t) ≤ Ĝ∗−1

n ◦ [Fψ(t) + η] .

Because Fψ(t) + η is a continuity points of G∗−1, we have by what precedes that for all n large

enough and with probability one,

Ĝ∗−1
n ◦ F̂ψ(t) ≤ Ĝ∗−1

n ◦ [Fψ(t) + η]

≤ G∗−1 ◦ [Fψ(t) + η] + ε/2

≤ G∗−1 ◦ Fψ(t) + ε.

Similarly, for all n large enough and with probability one, Ĝ∗−1
n ◦ F̂ψ(t) ≥ G∗−1 ◦Fψ(t)− ε. The

result follows by definition of ĝ∗(t).

F.10 Proof of Theorem 5.

Note first that because FE[Y |I] is continuous, FE[Y |I](E [Y |I]) is uniformly distributed (see,e.g.

Van der Vaart, 2000, p.305). In turn, this implies that the cdf of hM (E [Y |I]) is Fψ. Hence,

(hM (E [Y |I]) ,E [Y |I]) ∈ ΨM . If for all (ψ′, ψ′′), E(ρ(|ψ′ − ψ′′|)] = +∞, Equality (8) holds. If

not, let (ψ′, ψ′′) ∈ ΨM be such that E(ρ(|ψ′−ψ′′|)] < +∞. Because ρ is convex, we have, for all

x′ ≥ x and y′ ≥ y,

ρ(|x′ − y′|)− ρ(|x− y′|)− ρ(|x′ − y|) + ρ(|x− y|) ≤ 0.

Then, by Theorem 3.1.2 in Rachev and Rüschendorf (1998),

E[ρ(|ψ′ − ψ′′|)] ≥
∫ 1

0
ρ
(∣∣∣F−1

ψ (u)− F−1
E(Y |IM )

(u)
∣∣∣) du.

=

∫
ρ
(∣∣∣F−1

ψ ◦ FE[Y |I](v)− F−1
E[Y |I] ◦ FE[Y |I](v)

∣∣∣) dFE[Y |I](v)

= E
[
ρ
(∣∣∣hM (E [Y |I])− F−1

E[Y |I] ◦ FE[Y |I](E [Y |I])
∣∣∣)] . (22)
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Finally, note that F−1
E[Y |I] ◦ FE[Y |I](v) < v only if v is in the interior or at the right end of a

“flat” of FE[Y |I] (see, e.g., lemma 21.1 in Van der Vaart, 2000). Because the set of such right end

points is countable and FE[Y |I] has no atom, F−1
E[Y |I] ◦ FE[Y |I](E [Y |I]) = E [Y |I] almost surely.

Combined with Equation (22), this implies (8).

Now, let us suppose that ρ is strictly convex and let (ψ′,E [Y |I]) ∈ ΨM satisfy (8). We can apply

the first part of the proof of Theorem 2.2.1 in Santambrogio (2015), remarking that it does not

rely on the asssumption of compact supports. This implies that the distribution of (ψ′,E [Y |I])

is equal to that of (hM (E [Y |I]),E [Y |I]). Hence, conditional on E [Y |I], ψ′ is degenerate and

equal to hM (E [Y |I]). The result follows.

F.11 Proof of Proposition 5

We introduce EF,c = EF
[
m
(
Di, Ỹc,i, Xi, h, y

)]
and

νn,F (y, h) =
1√
n

n∑
i=1

Diag
(
V̂F
(
Ỹĉ

))−1/2 (
m
(
Di, Ỹĉ,i, Xi, h, y

)
− EF,ĉ

)
,

νn,F (y, h) =
1√
n

n∑
i=1

Diag
(
VF
(
Ỹc0

))−1/2 (
m
(
Di, Ỹc0,i, Xi, h, y

)
− EF,c0

)
.

The proof is based on Theorem 5.1 in AS, hence we have to check that the corresponding

assumptions PS1, PS2, and SIG1 hold. Namely, we have to ensure that

- PS1: for all sequence F ∈ F and all (d, y′, x, h, y, c) ∈ {0, 1} × Y × [0, 1]dX × Hr × Y ×
Cs
(
[0, 1]dX

)
∣∣∣∣∣∣m(d, y′, x, h, y)

VF
(
Ỹc,i

)
∣∣∣∣∣∣ ≤M(d, y′, x, h, y) and EF

[
M
(
Di, Ỹc,i, Xi, h, y

)2+δ
]
≤ C <∞,

where δ > 0 and for some function M ;

- PS2: for all sequence Fn ∈ F , the i.i.d triangular array of processes

T 0
n =

{m(Di, Ỹn,c(Xn,i), Xn,i, h, y
)

VFn
(
Ỹn,c(Xn,i)

) , (c, y, h) ∈ Cs
(

[0, 1]dX
)
× Y ×H, i ≤ n, n ≥ 1

}

is manageable with respect to some envelope function U1 (see Pollard, 1990, p.38 for the

definition of a manageable class);

- SIG1: for all ζ > 0, supF∈F ,c∈Cs([0,1]dX ) P
(∣∣∣V̂F (Ỹi,c) /VF (Ỹi,c)− 1

∣∣∣ > ζ
)
→ 0.

We proceed in two steps, to handle the fact that c0 and Diag
(
VF
(
Ỹc0

))−1/2
are estimated:
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1. We first show that

sup
F∈F0

sup
h∈∪r≥1Hr,y∈Y

‖νn,F (y, h)− νn,F (y, h)‖∞ =oP (1), (23)

sup
F∈F0

sup
h∈∪r≥1Hr,y∈Y

∥∥ν∗n,F (y, h)− ν∗n,F (y, h)
∥∥
∞ =oP ∗(1). (24)

2. Next, we show that m satisfies assumptions PS1, PS2, and that SIG1 in AS also holds for

σ2
F = VF

(
Ỹc0

)
, where F ∈ F and σ̂2

n = n−1
∑n

i=1

(
Ỹĉ,i − n−1

∑n
j=1 Ỹĉ,j

)2
.

1. Proof of (23)-(24).

We apply the uniform version over F ∈ F0 of Theorem 3 in Chen et al. (2003) to a general

class of functions to which pertain the moment condition m (see (2), with Ỹ replaced here by

Ỹc = Dq
(
Ỹ , c

)
+(1−D)ψ and without the moment equality m2). Hence, it suffices to verify that

Assumptions (3.2) and (3.3) of Theorem 3 in Chen et al. (2003) are satisfied. Let us introduce,

for any 0 < N1 < M1, the classes of functions

M1 =
{
fc,y,φ,h (ỹ, x) = φ (y − q (ỹ, c(x)))+ h(x), (c, y, φ, h) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1]×H

}
,

(25)

M2 =
{
fc,y,φ,h (ỹ, x) = φ (y − ỹ)+ h(x), (c, y, φ, h) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1]×H

}
,

M ={fc,y,φ1,φ2,h (ỹ, x, d) = (dgc,y,φ1,h − (1− d)qc,y,φ2,h) (ỹ, x) , g ∈M1, q ∈M2,

(c, y, φ1, φ2, h) ∈ Cs
(

[0, 1]dX
)
× Y × [N1,M1]2 ×H}.

Note that φ1, φ2, and c in the class M denote components of m that are estimated.

Consider the space Cs
(
[0, 1]dX

)
× Y × [N1,M1]2 ×H equipped with the norm

‖(c, y, φ1, φ2, h)‖ = max
{
‖c‖[0,1]dX , |y| , |φ1| , |φ2| , ‖h‖[0,1]dX

}
.

For v = (c, y, φ1, φ2, h), v′ = (c′, y′, φ′1, φ
′
2, h
′) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1]2 ×H and (ỹ, x, d) ∈

Y × [0, 1]dX × {0, 1}, we have, by the triangular inequality and Assumptions 5-(i) and 5-(v),

|fv (ỹ, x, d)− fv′ (ỹ, x, d)| ≤
∣∣∣gc,y,φ1,h (ỹ, x)− gc′,y′,φ′1,h′ (ỹ, x)

∣∣∣
+
∣∣∣qc,y,φ2,h (ỹ, x)− qc′,y′,φ′2,h′ (ỹ, x)

∣∣∣
≤(M +M0)

(∣∣φ1 − φ′2
∣∣+
∣∣φ2 − φ′2

∣∣)
+ 2M1

[∣∣y − y′∣∣+
∣∣q (ỹ, c(x))− q

(
ỹ, c′(x)

)∣∣]
+ 2M0M1

[ ∣∣1l {q(ỹ, c(x)) ≤ y} − 1l
{
q(ỹ, c(x)) ≤ y′

}∣∣
+
∣∣1l{q (ỹ, c(x)) ≤ y′

}
− 1l

{
q
(
ỹ, c′(x)

)
≤ y′

}∣∣
+
∣∣h(x)− h′(x)

∣∣ ].
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Since q(ỹ, .) is Lipschitz and by convexity of x 7→ x2, we obtain

|fv (ỹ, x, d)− fv′ (ỹ, x, d)|2 /7 ≤(M +M0)2
(∣∣φ1 − φ′1

∣∣2 +
∣∣φ2 − φ′2

∣∣2)
+ 4M2

1

[∣∣y − y′∣∣2 +Kq

∥∥c− c′∥∥2

[0,1]dX

]
+ 4(M0M1)2

[ ∣∣1l {q(ỹ, c(x)) ≤ y} − 1l
{
q(ỹ, c(x)) ≤ y′

}∣∣
+
∣∣1l{q (ỹ, c(x)) ≤ y′

}
− 1l

{
q
(
ỹ, c′(x)

)
≤ y′

}∣∣
+
∥∥h− h′∥∥2

[0,1]dX

]
.

for some constant Kq > 0. Fix δ > 0. If ‖v − v′‖ ≤ δ, then

|fv (ỹ, x, d)− fv′ (ỹ, x, d)|2 /7 ≤δ2
(
2(M +M0)2 + 4M2

1 (1 +Kq) + 4(M0M1)2
)

+ 4(M0M1)2
[
1l {q(ỹ, c(x)) ≤ y + δ} − 1l {q(ỹ, c(x)) ≤ y − δ}

+
∣∣1l{ỹ ≤ qI (y′, c(x)

)}
− 1l

{
ỹ ≤ qI

(
y′, c′(x)

)}∣∣ ].
Next, by Assumption 5-(iv),

E
[
1l
{
q
(
Ỹ , c(X)

)
≤ y + δ

}
− 1l

{
q
(
Ỹ , c(X)

)
≤ y − δ

}]
=F

q(Ỹ ,c(X)) (y + δ)− F
q(Ỹ ,c(X)) (y − δ)

≤2Q2δ.

Finally,

E
[∣∣1l{Y ≤ qI (y′, c(X)

)}
− 1l

{
ỹ ≤ qI

(
y′, c′(X)

)}∣∣]
≤E

[
1l
{
Y ≤ qI

(
y′, c(X)

)
−QF,2δ

}
− 1l

{
ỹ ≤ qI

(
y′, c(X)

)
+QF,2δ

}]
≤E

[
FY |X

(
qI
(
y′, c(X)

)
−QqI δ

∣∣X)− FY |X (qI (y′, c(X)
)

+QqI δ
∣∣X)]

≤2QF,1QqI δ,

where QqI is the Lipschitz constant of qI . Thus, by Assumption 5, there exists Q > 0 such that

sup
F∈F0

E

[
sup

‖v−v′‖≤δ

∣∣∣fv (Ỹ , X,D)− fv′ (Ỹ , X,D)∣∣∣2
]
≤ Qδ. (26)

Therefore the classM satisfies Condition (3.2) of Theorem 3 in Chen et al. (2003) uniformly in

F ∈ F0. Moreover, the class H is manageable and thus Donsker (see Lemma 3 in Andrews and

Shi, 2013). Finally, by Remark 3 (ii) in Chen et al. (2003), Cs
(
[0, 1]dX

)
is also Donsker. Then,

Cs
(
[0, 1]dX

)
, Y, [N1,M1], and H satisfy Condition (3.3) of Theorem 3 in Chen et al. (2003). The

result follows by Theorem 3 in Chen et al. (2003).

2. m satisfies PS1 and PS2 of AS and SIG1 of AS also holds for σ2
F and σ̂2

n.

59



From Assumption 5 (iii) and the proof of Lemma 7.2 (a) in AS, PS1 is satisfied replacing B by

max(M,M0) in the proof of Lemma 7.2-(a) in AS.

We now show that PS2 in AS also holds. As the result is uniform over F0, we have to consider

sequences for the cdfs Fn of (Dn,i, Yn,i, Xn,i)i=1...n (with Fn ∈ F0). We also define

Ỹn,c(Xn,i) = Dn,iq (Yn,i, c(Xn,i)) + (1−Dn,i)ψn,i,

Wn,i = Dn,i/EFn [Dn,i]− (1−Dn,i)/EFn [1−Dn,i] ,

σ2
Fn = VFn

(
Ỹn,c(Xn,i)

)
.

Note that by Assumption 3 (iii), σ2
Fn
≥ σ > 0 for all Fn ∈ F . Let (Ω,F, Fn) be a probability

space and let ω denote a generic element in Ω. Showing Assumption PS2 in AS then boils down

to prove that for any 0 < N1 < M1 := 1/ infF σ
2
F , the i.i.d triangular array of processes

T1,n,ω =

{
Wn,iφ

(
y − Ỹn,c(Xn,i)

)+
h(Xn,i), (c, y, φ, h) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1]×H,

i ≤ n, n ≥ 1

}
is manageable with respect to some envelope function U1. Lemma 3 in Andrews and Shi (2013)

shows that the processes {h(Xn,i), h ∈ H, i ≤ n, n ≥ 1} are manageable with respect to the

constant function 1. Then, using Lemma D.5 in AS, it remains to show that

T ′1,n,ω =

{
Wn,iφ

(
y − Ỹn,c(Xn,i)

)+
, (c, y, φ) ∈ Cs

(
[0, 1]dX

)
× Y × [N1,M1], i ≤ n, n ≥ 1

}
,

is manageable with respect to some envelope. For such an envelope, we can consider U ′1(ω) =

(M0 +M)/(σε0). We now prove the manageability of T ′1,n,ω. Let us define

M′ =
{
fc,y,φ1,φ2 (ỹ, x, d) = dφ1 (y − q (ỹ, c(x)))+ − (1− d)φ2 (y − ỹ)+ ,

(c, y, φ1, φ2) ∈ Cs
(

[0, 1]dX
)
× Y × [N1,M1]2

}
.

Reasoning as for the classM defined in (25), and using the last equation of the proof of Theorem

3 in Chen et al. (2003), p.1607, we have that for ε > 0,

N[·]
(
ε,M′, ‖ · ‖2

)
≤ N

(
ε′, [N1,M1]2, |·|

)
×N

(
ε′,Y, |·|

)
×N

(
ε′, Cs

(
[0, 1]dX

)
, ‖ · ‖[0,1]dX

)
,

with ε′ = (ε/(2Q))2 and Q defined in (26). Using Theorem 2.7.1 page 155 in Van der Vaart and

Wellner (1996), there exists a constant Q2 depending only on s, dX , and [0, 1]dX such that

ln
(
N
(
ε′, Cs([0, 1]dX ), ‖ · ‖[0,1]dX

))
≤ Q2ε

′−dX/s.

Moreover, because Y and [N1,M1] are compact subsets of two Euclidean spaces, there exist Q3,

Q4 such that

N
(
ε′, [N1,M1]2, |·|

)
≤ Q3ε

′−4 and N
(
ε′,Y, |·|

)
≤ Q4ε

′−2. (27)
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This yields

ln
(
N[·]

(
ε,M′, ‖ · ‖2

))
≤ (6 +Q2) max

(
− ln(ε′), ε′−dX/s

)
+ ln(Q3Q4). (28)

Let � denote element-by-element product and D
(
ε |α� U ′1(ω)| , α� T ′1,n,ω

)
denote random pack-

ing numbers. By (A.1) in Andrews (1994, p.2284), we have

sup
ω∈Ω,n≥1, α∈Rn+

D
(
ε
∣∣α� U ′1(ω)

∣∣ , α� T ′1,n,ω) ≤ sup
F∈F0

N
( ε

2
,M′, ‖ · ‖2

)
≤ sup

F∈F0

N[·]
(
ε,M′, ‖ · ‖2

)
, (29)

where the second inequality follows as in e.g., Van der Vaart and Wellner (1996, p.84). Then,

(28) ensures (see Definition 7.9 in Pollard (1990), p.38) that

sup
ω∈Ω,n≥1, α∈Rn+

D
(
ε
∣∣α� U ′1(ω)

∣∣ , α� T ′1,n,ω) ≤ λ(ε),

where λ(ε) = exp
(

(6 +Q2) max
(
−2 ln (ε/(2Q)) , (ε/(2Q))−2dX/s

)
+ ln(Q3Q4)

)
. Moreover, by

using
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0,∫ 1

0

√
ln(λ(ε))dε ≤

√
6 +Q2

∫ 1

0

[
max

(
−2 ln (ε/(2Q)) , (ε/(2Q))−2dX/s

)]1/2
dε+

√
ln(Q3Q4)

<∞.

Thus, T ′1,n,ω hence T1,n,ω are manageable. Therefore, m satisfies PS2 in AS.

Finally, in order to show that SIG1 in AS is satisfied, we use Assumption 5 (iii) and follow the

proof of Lemma 7.2 (b) in AS where we replace Y by q(Y, c(X)) and B by max(M,M0). The

result follows.

F.12 Proof of Proposition 6

We first prove that if E[ψL] ≤ E[Y ] ≤ E[ψU ], there exists a unique F ∗ ∈ FB such that δF ∗ = 0.

First, suppose that F b 6= F b
′

and, without loss of generality, b > b′. Then ψb ≤ ψb
′
, implying

that F b(y) ≤ F b
′
(y) for all y. Moreover, the inequality is strict for at least one y. As a result,

E(ψb) > E(ψb
′
). In other words, there is at most one F ∗ ∈ FB such that δF ∗ = 0. If E[ψL] = E[Y ]

or E[ψU ] = E[Y ], such a solution also exists by taking b = −∞ and b = +∞, respectively. Now,

suppose that E[ψL] < E[Y ] < E[ψU ]. For all +∞ > b > b′ > −∞,

ψb − ψb′ =
(
ψU −max(ψL, b

′)
)

1l{ψU ∈ [b′, b)}+ (b− b′)1l{ψL < b′, ψU ≥ b}

+ (b− ψL)1l{ψL ∈ [b′, b), ψU ≥ b}.

As a result, |ψb − ψb
′ | ≤ |b − b′|. This implies that δ̃ : b 7→ E[ψb] is continuous. Moreover,

limb→−∞ δ̃(b) = E[ψL] < E(Y ) and limb→+∞ δ̃(b) = E[ψU ] > E(Y ). By the intermediate value
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theorem, there exists b∗ such that δ̃(b∗) = E(Y ). Hence, there exists F ∗ ∈ FB such that δF ∗ = 0.

The first part of Proposition 6 follows.

Let us turn to the second part of the proposition. First, if (ii) holds, there exists b0 ∈ R
such that F ∗ = F b0 . Then, by construction and Theorem 1, Y and ψb0 satisfy H0. Moreover,

F b0 ∈ [FψU , FψL ]. Therefore, H0B holds as well.

Now, let us prove that (i) implies (ii). Let us denote by D the set of all the cdfs for ψ such that

H0B holds. By Theorem 1, these are cdfs F satisfying FψU ≤ F ≤ FψL , δF = 0 and dominating

at the second order FY . We show below that all F ∈ D are dominated at the second order by

F ∗. Then, because FψU ≤ F ∗ ≤ FψL and
∫
ydF ∗(y) =

∫
ydFY (y), D is not empty only if F ∗

dominates at the second order FY . The result then follows by Theorem 1.

Thus, we have to show that for all t ∈ R,

F ∗ = argminFψ∈D

∫ t

−∞
Fψ(y)dy. (30)

First, if F ∗ = F−∞, we have for all F 6= F ∗, F (y) ≤ FψL(y) = F ∗(y) for all y, with strict

inequality for some y. Then δF > δF ∗ = 0 and D = {F ∗}, implying that (30) holds. Similarly,

(30) holds if F ∗ = F+∞.

Suppose now that F ∗ = F b0 for some b0 ∈ R. Because FψU (y) ≤ Fψ(y) for all y < b0 and

all Fψ ∈ D, (30) holds for all t < b0. We now prove that (30) holds also for t ≥ b0. First

suppose that t ≥ max(b0, 0). For all Fψ ∈ D,
∫
ydFY (y) =

∫
ydFψ(y)dy. As a result, by Fubini’s

theorem,

−
∫ 0

−∞
F ∗(y)dy +

∫ t

0
(1− F ∗(y)) dy +

∫ ∞
t

(1− F ∗(y)) dy

= −
∫ 0

−∞
Fψ(y)dy +

∫ t

0
(1− Fψ(y)) dy +

∫ ∞
t

(1− Fψ(y)) dy.

Because Fψ ≤ FψL = F ∗ on [b0,+∞], this implies that

−
∫ 0

−∞
F ∗(y)dy +

∫ t

0
(1− F ∗(y)) dy ≥ −

∫ 0

−∞
Fψ(y)dy +

∫ t

0
(1− Fψ(y)) dy

and thus (30) holds for t ≥ max(b0, 0). Now, if b0 < 0 and t ∈ (b0, 0), we have

−
(∫ t

−∞
F ∗(y)dy +

∫ 0

t
F ∗(y)dy

)
+

∫ ∞
0

(1− F ∗(y)) dy

= −
(∫ t

−∞
Fψ(y)dy +

∫ 0

t
Fψ(y)dy

)
+

∫ ∞
0

(1− Fψ(y)) dy.

Using again Fψ ≤ FψL = F ∗ on [t,+∞) yields

−
∫ 0

t
F ∗(y)dy +

∫ ∞
0

(1− F ∗(y)) dy ≤ −
∫ 0

t
Fψ(y)dy +

∫ ∞
0

(1− Fψ(y)) dy.

Therefore, the result also follows in this case.
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