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ABSTRACT
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Productivity: Does Aggregate Demand 
Matter?

Rapid technological progress in artificial intelligence (AI) has been predicted to lead to mass 

unemployment, rising inequality, and higher productivity growth through automation. In 

this paper we critically re-assess these predictions by (i) surveying the recent literature and 

(ii) incorporating AI-facilitated automation into a product variety-model, frequently used in 

endogenous growth theory, but modified to allow for demand-side constraints. This is a 

novel approach, given that endogenous growth models, and including most recent work 

on AI in economic growth, are largely supply-driven. Our contribution is motivated by two 

reasons. One is that there are still only very few theoretical models of economic growth 

that incorporate AI, and moreover an absence of growth models with AI that takes into 

consideration growth constraints due to insufficient aggregate demand. A second is that 

the predictions of AI causing massive job losses and faster growth in productivity and GDP 

are at odds with reality so far: if anything, unemployment in many advanced economies 

is historically low. However, wage growth and productivity is stagnating and inequality is 

rising. Our paper provides a theoretical explanation of this in the context of rapid progress 

in AI.
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1 Introduction

‘Will Humans Go the Way of Horses?’ is the title of a paper by Brynjolfsson and McAfeeBrynjolfsson and McAfee
(20152015) asking whether recent innovations in technology, particularly in Artificial Intelligence
(AI) will make human labour obsolete. This reflects a growing fear and obsession with potential
mass technological unemployment. For instance a headline in the popular media claimed
that ‘AI will Put 10 million Jobs at High Risk More Than Were Eliminated by the Great
Recession’ 11. Moreover fears about technological unemployment and the ‘Future of Work’ is
taken seriously by by governments and global development organizations. Amongst others, in
2017 the International Labour Organization (ILO) established the ‘Global Commission on the
Future of Work’ to ensure ‘social justice in the 21st century’22 . The World Trade Report 2017
of the WTO dealt with ‘Trade, Technology and Jobs’, while the World Development Report
2019 is focused on the topic of ‘The Changing Nature of Work’. It addresses what it describes
as ‘anxiety about the sweeping impact of technology on employment’ (World BankWorld Bank, 20182018, p.1).

As many have justifiably pointed out, these are not new anxieties. Concerns that technology
will adversely impact jobs and ‘social justice’ have been around. As a result, economic theory
has built up a significant scholarship dealing with the relationship between technology, growth
and development, employment, inequality and productivity. In this, it is well appreciated
that technology can possibly be a cause of unemployment and inequality. In theories of skill-
biased technological change (SBTC) technology and capital raise the demand for high-skilled
workers, and hence their wage premium, causing increasing wage inequality (Autor et al.Autor et al., 20032003).
Technology can also substitute for labour, leading to higher unemployment and polarization of
jobs (Autor and DornAutor and Dorn, 20132013).

While past anxieties and doomsday scenarios have so far not been realized, the current wave
of anxiety about the impact of AI on jobs is often claimed to be different than before. ‘This
time is different’ is a refrain that is often heard. The main reason it is different this time is said
to be due to the fast, exponential nature of technological change driven by AI. As FriedmanFriedman
(20162016, p.38) who describes the current age as one of ‘accelerations’ laments, ‘one of the hardest
things for the human mind to grasp is the power of exponential growth’. Chiacchio et al.Chiacchio et al. (20182018)
cite the McKinsey Global Institute that has calculated the disruption presently caused by new
exponential technologies is ten times faster and 300 times the scale of that caused by technologies
during the Industrial Revolution in the 18th century, thus having ‘3000 times the impact’ (p.3)
compared to the past.

As a result, a number of reports of possible mass unemployment to be caused by AI-
facilitated automation, have received huge media coverage. The reports in question include
Frey and OsborneFrey and Osborne (20132013, 20172017) and BowlesBowles (20172017) who estimated that up to 47 per cent and 54
per cent respectively of USA and EU jobs could be automated in 10 to 20 years and Frey et al.Frey et al.
(20162016) who concluded that up to 66 per cent of all jobs in developing countries are susceptible
to automation.

It is not just jobs that may be disrupted. Labour productivity and income distribution are also
likely to be affected. Brynjolfsson et al.Brynjolfsson et al. (20172017) argue that the impact of new technologies like AI
is subject to an ‘implementation lag’. As the implementation of AI progresses, it is expected that
‘economic growth will accelerate sharply as an ever-increasing pace of improvements cascade
through the economy’ (NordhausNordhaus, 20152015, p.2). To the extent that technology would complement

1 see : https://www.cbinsights.com/research/jobs-automation-artificial-intelligence-risk
2 See http://www.ilo.org/global/topics/future-of-work
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certain types of labour and replace others, some workers would see their productivity and
wages increase, while others may experience the opposite. The net outcome may be faster
GDP and productivity growth, but also sharp increases in income and wealth inequality
(Korinek and StiglitzKorinek and Stiglitz, 20172017).

In this paper we critically re-assess these predictions of the impacts of AI on jobs, inequality and
productivity, and on overall economic growth. We do so for two reasons. One is that there are
still very few theoretical growth models that incorporates AI, and virtually none that considers
demand side constraints. A second is that the predictions of AI causing massive job losses and
faster growth in productivity and GDP are at odds with reality: if anything, unemployment
in many advanced economies are at historical lows. However, wage growth and productivity is
stagnating and inequality rising. Our model is attempt to provide a theoretical explanation of
this in the context of rapid progress in AI.

As far as the current state of formal theoretical modelling of AI in growth is concerned, a
small recent fluttering of papers include work by Acemoglu and RestrepoAcemoglu and Restrepo (2017a2017a); Aghion et al.Aghion et al.
(20172017); Agrawal et al.Agrawal et al. (20182018); BessenBessen (20182018); NordhausNordhaus (20152015) and SachsSachs (20182018). These
innovative papers each tend to focus on a salient aspect of AI in relation to economic growth,
productivity and/or inequality; for instance Acemoglu and RestrepoAcemoglu and Restrepo (2017a2017a) elaborates a key
feature of AI, namely its ability to substitute for labour in production; Aghion et al.Aghion et al. (20172017)
identifies constraints on growth due to Baumol’s cost-disease type of effects; SachsSachs (20182018)
recognises that as AI progresses, it may shift income from workers to the owners of ‘business
capital’; and BessenBessen (20182018) make the important point of stressing the potential importance of
the prince and income elasticity of demand in assessing the impacts of AI (see also our discussion
of this aspect in section 2.1 below).

The contribution of our paper is to incorporate AI-facilitated automation into a standard
product variety-model, frequently used in endogenous growth, and moreover to modify the
model to allow demand-side constraints to affect outcomes. This is a novel approach, given
that endogenous growth models, and including most of the papers mentioned dealing with AI
in economic growth in the previous paragraph, tend to be supply-driven.

The rest of the paper is structured as follows. In section 2 we survey the relevant literature
on the impact of technological innovation on jobs, inequality and productivity, highlighting the
importance of taking the effect of aggregate demand into account. In section 3 we introduce an
endogenous growth model based on (GriesGries, 20182018) that is potentially demand constrained. In
section 4 we use this model to provide a theoretical evaluation the impact of progress in AI on
jobs, inequality, productivity and growth. Given assumptions on the elasticity of substitution
between AI and human labour services, the results predicted by the model is consistent with
the recent experience of advanced countries in terms of sluggish labour productivity and wage
growth, and increasing inequality. Section 5 concludes.

2 Relevant Literature

In this section we survey the extant literature on the relationship between AI and automation,
and jobs, inequality and productivity growth.
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2.1 Impact on Jobs

There has been a number of much quoted initial reports which predicted that a significant
percentage of the human labour force may be replaced by automation of jobs and tasks. In a
much quoted report, Frey and OsborneFrey and Osborne (20132013, 20172017) predicted that up to 47 per cent of USA jobs
could be automated in 10 to 20 years. Using a similar methodology, BowlesBowles (20172017) estimated
that in case of the EU this could be even higher, at up to 54 per cent of jobs automated in 10
to 20 years.

Acemoglu and RestrepoAcemoglu and Restrepo (2017b2017b) calculated that one additional robot per 1,000 workers reduces
the employment: population ratio in the USA by 0,37 per cent and wages by 0,25 to 0,5 percent
on average. Using a similar approach Chiacchio et al.Chiacchio et al. (20182018) who models the impact of robotics
on employment in six EU countries, finding that one additional robot per 1,000 workers ’reduces
the employment rate by 0,16 to 0,20 percentage points’.

Scary as these predictions may be, the bulk of subsequent theoretical and empirical work have
suggested that the impact of AI-automated job losses may be greatly overestimated. Recent
theoretical refinements, for instance by BessenBessen (20172017, 20182018) show that theoretically, there is the
possibility that employment will actually increase as a result of automation, depending on the
elasticity of demand for the product in question. If the demand is elastic (>1) then there is the
possibility of an increase in employment.

Consistent with these theoretical expectations are newer empirical studies that shows that (i) the
methods used to calculate potential job losses in initial reports are sensitive to assumptions used;
(ii) while some jobs and sectors may be at risk from automation, the impact is heterogeneous
and moreover many new jobs and tasks may be created in other sectors; (iii) automation may
affect tasks, rather than jobs; (iv) the tempo of innovation in AI is slowing down, and (v) the
diffusion of AI may be much slower than thought previously.

Because of these reasons, we think it unlikely that the pessimistic scenarios of large jobs losses
due to new technological innovations will materialize. Rather, the challenge for theory is to
explain the co-existing of progress in AI with stagnating wages and productivity - which is
what we attempt to do in sections 3 and 4. For now however, let us consider each the empirical
results that we just mentioned, in more detail.

First, methodological issues in predicting future jobs losses as a result of automation. The
initial and much-quoted report of Frey and OsborneFrey and Osborne (20132013) has been subject to criticism of
their methodology. Arntz et al.Arntz et al. (20162016, 20172017) refines the Frey and OsborneFrey and Osborne (20132013) method for
predicting possible job losses due to automation in the USA for 21 OECD countries. They
find a much lower likelihood of job losses in the OECD: only 9 per cent. And for the USA
Atkinson and WuAtkinson and Wu (20172017) presents data to show that the changes in jobs lost and gained has
actuallly declined in recent years, and that since 2000 the levels of job churn in the USA has been
only 42 percent of the levels the country experienced between 1850 and 2000. They conclude
that the much feared disruption of labour markets by technology is ‘false alarmism’.

Second, job displacement rather than job replacement by AI may be more likely. Thus, many
new jobs or tasks are likely to be created by AI, including jobs that may not at present
exist. Empirical evidence seems to bear out that this is already happening. For example,
Dauth et al.Dauth et al. (20172017) finds in the case of Germany no net jobs losses as a result of automation.
Berriman and HawksworthBerriman and Hawksworth (20172017) similar reckon that in the UK there will be jobs at risk
from automation (they estimate around 30 percent) but conclude that overall the net impact
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of automation on jobs will be neutral as a result of new jobs being created elsewhere in the
economy. These new jobs elsewhere in the economy are more likely to be created due to a rise in
the demand for products, which may be the result of new technological innovation establishing
new products that consumers want, or making products much cheaper so that the demand for
them rises sufficiently to spur production, and hence indirectly, labour demand.

Thirdly, automation may affect tasks more directly rather than jobs themselves. AutorAutor (20152015)
has argued that claims of mass unemployment due to automation or robotics are exaggerated
because automation tends rather to change the nature and content of jobs, such as the tasks
that a job consist of, rather than eliminate a job altogether.

Fourth, automation is not likely to lead to mass unemployment due to the fact that that the
pace of innovation may be declining. In fields directly relevant for automation, such as in
artificial intelligence (AI) there are fears that ICT progress is slowing down, as a result for
instance of declining computer processing power (declines in Moores Law) and the declining
marginal cost-benefit ratio of obtaining large dataset used for developing AI through deep
learning (House of LordsHouse of Lords, 20182018). GordonGordon (20182018) finds that automation is having a ‘evolutionary’
rather than a ‘revolutionary’ impact on jobs in the USA, replacing workers ‘slowly’ and ‘only
in a minority of sectors’ (p.1).

Fifth, the diffusion of AI technology is much slower than is thought (and may even be slowing
down), thereby limiting the impact of automation on jobs (OECDOECD, 20152015).

Thus, the employment impact of automation is not likely to be as negative as predicted (and
may even be positive). Ultimately it may be an empirical issue for different countries, depending
on the extent and sizes of elasticities between AI and labour, on demand elasticities and the
extent to which AI can result in product innovations that fosters growth in demand. Stagnating
demand may explain why we see progress in AI, but neither huge job losses nor significant wage
and productivity growth.

2.2 Impact on Inequality

The impact of AI on income inequality may be negative due to the differential impact it has
on different jobs and different workers. Chiacchio et al.Chiacchio et al. (20182018) for instance found from a study
of six EU countries that younger workers, men, and those with mid-level education are more
likely to be displaced by automation. More generally, Korinek and StiglitzKorinek and Stiglitz (20172017) identify two
major channels through which AI-automation will worsen income distribution: one is through
the growing ’innovation rents’ from AI for instance the benefits to AI may only accrue to a
small number of companies; and a second channel is through AI changing the relative demand
for labour, and thus change relative wages.

However, as in the case of the impact of AI on jobs, AI may also, perhaps counter-
intuitively, improve the distribution of income. One positive impact may be due to what is
known as ’Moravec’s Paradox’. This explains that ‘high-level reasoning requires very little
computation while low-level sensor-motor skills require enormous computational resources’
(Van de Gevel and NoussairVan de Gevel and Noussair, 20132013, p.17). Thus, it will be hardest for new technology to replace
the tasks and jobs that workers in the lower-skill level occupations perform, such as security
staff, cleaners, gardeners, receptionists, chefs, and the like. A second positive impact of AI on
income distribution may be, as Acemoglu and RestrepoAcemoglu and Restrepo (2017a2017a) illustrated, that AI may lead
reduce the wage gap due to ‘high-skill automation’. In their model of automation there are both
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high-skill labour and low-skilled labour with the possibility that if only high-skilled automation
occur that the consequence may be neither productivity nor inequality increases. The intuition
behind their result is that automation of high-skilled labour would reduce high-skilled wages
and raise the price of capital (at least over the short-term, as more firms replace workers with
machines) and hence reduce productivity gains.

In conclusion, given the nature of current AI technologies and their applications it is not certain
that at least over the short to medium term, that increases in inequality due to AI automation
will be significant. It is rather more likely, as Naudé and NaglerNaudé and Nagler (20182018) found for the case of
Germany, that reductions in social security, erosion of the bargaining power of labour unions,
and labour market deregulation will contribute more towards wage inequality. Stagnating
aggregate demand, perhaps due to a declining share of labour in aggregate income (see e.g.
SachsSachs (20182018)) or a declining working population, will reduce innovation, growth and put further
pressure on public resources that can be used in redistribution.

2.3 Impact on Productivity

In the USA and most of Western Europe there has been a long-run decline in labour productivity
growth over the past seventy years. For instance in the USA average labour productivity growth
per decade since the 1950 was 2,3 percent (in the 1950s), 2,5 percent (1960s), 1,03 percent
(1970s), 1,8 percent (1980s), 2,5 percent (1990s), 1,8 percent (2000s) and since 2010 it was on
average 1,8 percent per annum. In European countries such as the UK, Germany and France it
was even more sluggish, at respectively 0,43 percent, 0,44 and 0.54 percent on average per year
since 2010. LewisLewis (20182018) depicts labour productivity growth in the UK since 1761, showing that
the UK’s ten-year average labour productivity growth since 2007 was the lowest since the late
18th century.

From the labour productivity growth rates cited in the first paragraph it can be seen that
the USA experienced a decline in average annual labour productivity until the 1990s, when it
achieved an almost historically high labour productivity growth rate of 2,5 percent on average
for the decade, after which it has declined to currently historically low rates. The 1990s
upsurge in labour productivity in the USA has been ascribed by some to be a (short-lived)
result of the impact of the 1980s ICT revolution in the country (Byrne et al.Byrne et al., 20132013; GordonGordon,
20182018). That the slowdown in labour productivity growth has taken place over the period when
technological innovation has been robust in the USA and many European countries in terms of
patents registered and R&D expenditure (GordonGordon, 20182018), has been labelled as the ‘productivity
paradox’.

The ‘productivity paradox’ is implicated in the ‘secular stagnation’ that many advanced
economies such as the USA, European countries and Japan experienced since roughly the 1980s
(Teulings and BaldwinTeulings and Baldwin, 20142014). The term ‘secular stagnation’ has been traced back to HansenHansen
(19391939) and is defined by EichengreenEichengreen (20152015, p.1) as a ‘downward tendency of the real interest
rate, reflecting an excess of desired saving over desired investment, resulting in a persistent
output gap and/or slow rate of economic growth’. The slowing down in economic growth in the
USA is discussed by GordonGordon (20182018) who emphasizes a particular ‘deceleration’ in USA economic
growth after 2006, noting that between 1920 and 1970 average annual growth in the USA was
3,7 percent, which then slightly declined between 1970 and 2006 to 3,1 percent but then slowed
down much significantly in the decade after 2006 to just 1,35 percent per year. Economic
growth also declined in European countries, for instance between 2006 and 2016 average annual
GDP growth in Germany and the UK was respectively 1,5 and 1,3 percent, down from 1,9
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percent and 2,6 percent over the period 1970 to 2006. A significant proportion - almost half -
of this slowdown in economic growth is ascribed to the slowdown in labour productivity growth
(GordonGordon, 20182018).

For purposes of the present paper, we are particularly interested in the causes of the
‘productivity paradox’, and how the emergence of new technologies such as AI may in the
near future affect labour productivity growth. In the economics literature there is no consensus
on these matters, however.

One one side there are those, such as GordonGordon (20182018), CowenCowen (20162016) and Bloom et al.Bloom et al. (20172017)
who believes that the ICT revolution as reached ‘maturity’ and that despite much innovative
activity we are in an age of ‘diminished impact of ongoing innovation’ (GordonGordon, 20182018, p.20).
According to GordonGordon (20182018) the ICT revolution has reached maturity so that innovations have
less and less impact on productivity. Other authors, such as CowenCowen (20162016, p.43) shares in
this pessimistic diagnosis of the current state of innovation stating that ‘most new technologies
today generate only marginal improvements in well-being’. For JonesJones (20092009) the difficulty for
researchers and innovators to move beyond the current maturity ICT technologies are reflected
in what he calls the ‘burden of knowledge’.

GordonGordon (20182018) argues that slower growth in educational attainment, lower investment and slower
population growth and labour market participation are more important causes of the slowdown
in productivity and economic growth stating that ‘productivity growth depends not only on
innovation but also on the rate of increase in physical and human capital’ (Ibid, p.2).

As for how new technologies such as AI will affect near future labour productivity growth,
GordonGordon (20182018) is not very optimistic, concluding that ‘... robots and artificial intelligence are
likely to evolve gradually rather than suddenly causing a sharp jump in productivity growth’
(GordonGordon, 20182018, p.23).

Not all economists are in agreement with (GordonGordon, 20182018). Some have argued that the impact
of new technologies are not only mis-measured but un-measured, given that many ICT services
add to consumer surplus without being measured, and that TFP (total factor productivity)
growth is not a a good indicator of innovation anymore (MokyrMokyr, 20142014, 20182018). Others such
as Aghion et al.Aghion et al. (20172017) have invoked Baumol’s cost disease to argue that the sectors of the
economy where productivity growth has been fastest have seen their overall share in the economy
decline, so that the average productivity growth is dragged down. A further contrary view
is that it is not that the impact of technological innovation on labour productivity is being
mismeasured (SyversonSyverson, 20172017) or that the innovation engine has run out of steam, but rather
that the impact of technological progress on labour productivity is subject to an ‘implementation
lag’ and that hence the full effects of recent technologies on productivity is still to be experienced
(Brynjolfsson et al.Brynjolfsson et al., 20172017).

MokyrMokyr (20182018) concurs with Brynjolfsson et al.Brynjolfsson et al. (20172017) that the impacts of new technological
innovations will take some time to be felt, arguing that ‘the twenty-first century productivity
slow-down described by Gordon is temporary, until new General Purpose Technologies such
artificial intelligence (AI) and genetic editing have fully been incorporated into production lines’
(Ibid, p. 13). One reason why it can take time for the incorporation of new technologies into
production lines is that the ‘diffusion machine’ has been less effective to spread new technologies
to all firms and countries (OECDOECD, 20152015). Evidence33 suggest that this is the result of inefficient

3 For instance for Italy, Spain and Portugal it has been estimated that inefficient management practices
contributed between a quarter and a third of the difference in labour productivity growth with a country
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management practices (Schivardi and SchmitzSchivardi and Schmitz, 20182018) and skills mismatches in labour markets
(OECDOECD, 20152015).

Once new technologies are more widely adopted the impacts on labour productivity are predicted
to be significant. For instance Krishnan et al.Krishnan et al. (20182018) predict that as AI diffuse through the
USA labour productivity growth would average 2 per cent per year for a decade or so, which
would be around four times higher than in the recent past. However, this is dependent on
the diffusion actually taking place. Tuuli and BattenTuuli and Batten (20152015, p.3) argue in this regard that the
spectre of secular stagnation will remain and that the principal danger is not lack of progress
in AI technologies, but rather ‘the inability to exploit future opportunities by failing to invest
in new technologies today, as well as in new skills required in the future’, and that with the
potential inherent in AI, that ‘the opportunity costs of not investing in new technologies and
skills becomes even larger’.

In conclusion, it can be concluded from this section that AI in itself will not affect productivity
significantly unless it is much more thoroughly diffused and complemented by appropriately
skilled workers. Understanding the factors that determine the speed of diffusion necessitates an
understanding of how demand side constraints can reduce incentives to spend on adoption of
new technologies or invest in human skill upgrading.

2.4 The Role of Demand

Subsections 2.1 to 2.3 surveyed the extant literature on the relationship between AI-automation
and jobs, inequality and productivity. Summarising this literature, we may conclude that AI
has the potential to reduce jobs (substitute for labour), to raise inequality (as the share of
GDP going to labour decline) and speed-up productivity growth (and GDP growth). However,
none of this will be automatic, and existing empirical evidence corroborates that at least until
present, AI did not cause massive job losses, or productivity increases, and neither is it likely
to carry the blame for rises in inequality. One of the factors that mediates and/or qualifies the
impact of AI on these macro-variables, we argued, is aggregate demand.

Aggregate demand has mostly been neglected in predictions and analysis of the impacts of AI so
far. The literature surveyed earlier in this section tends to take an overtly supply-side approach.
While the supply side is of great importance, because innovations in AI technologies improve
the capacity of the economy and determines potential economic growth, the demand side can
restrict the actual growth process. If AI-automation generates economic growth from which
labour does not earn income, then consumption demand will not grow sufficiently to absorb the
additional production capacity.

Furthermore, even if wage and price adjustments take place, a lack of aggregate demand will
continue to restrict the growth process if: (i) AI and human labour are highly substitutable,
so that labour’s income shares decline; and (ii) other economic agents, who gain income shares
from AI - like technology providers or financial wealth holders - do not spend their new income to
absorb the growing potential production. Both conditions imply that growth could potentially
be higher if it were not restricted by a lack of demand.

While a lack of demand is excluded in standard growth theory due to the assumption of Say’s

such as Germany during the 1990s (Schivardi and SchmitzSchivardi and Schmitz, 20182018). And in the OECD countries, around 25
percent of workers are mismatched to their jobs in terms of skills, i.e they are either over-or-under qualified for
their job (OECDOECD, 20152015).
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Law and the use of the Euler Equation, we will show in our novel theoretical model in the next
section that the demand side can indeed be a long-term constraint and that this can explain
the empirical facts discussed earlier this section.

3 Theoretical Model

In this section we set out a theoretical, endogenous growth model where aggregate demand
can act as constraint on growth, and hence affect the impact of AI on jobs, inequality, and
productivity. We start out by providing an intuitive explanation of our model.

3.1 Intuitive Explanation

Our model elaborates on and extends the growth models introduced by RomerRomer (19871987, 19901990).
Apart from the nested production of human capital, it is roughly similar to textbook types of
the product variety model as e.g. described by AghionAghion (20092009).

We assume that final goods are produced with the human service good H and a number of
innovative intermediate goods x. Final goods firms sell their output to a competitive final
goods market. Entrepreneurs bring innovative ideas and new technologies to the market in
the form of intermediate goods. They are not always successful, because irrespective of their
innovation and effort, there may be no market demand for their product. The human service is
produced by labour and a technology which can substitute labour in a quasi-labour-augmenting
way. This technology is in fact the AI service, which has the potential to substitute for a very
broad range of labour, both for high and low skilled labour.

In the initial steady state we start with pure product innovation, and at first do not allow for
progress in AI (which is largely a process innovation). In the initial steady state all factors
of production share symmetrically in the gains from product innovations. We show that a
decoupling of investments from saving and the introducing the concept of no expectation-error
equilibrium , where as a result of stochastic shocks affecting the market effective or real sales of
final goods may be lower than potential sales, we can model the impact of demand constraints.
Under such conditions we show that effective GDP may be below potential GDP, and effective
productivity growth may be less than potential productivity growth.

If we allow for progress in AI then we allow for AI to substitute for labour in the production
or generation of the human service good. If the elasticity of substitution in this production
process is high, labour is replaced and wages will fall. We show that under normal conditions
AI progress will still allow for a net (but relatively low) growth in labour productivity and wages.
Wage growth however, will be slow and the income share of labour will decline. Financial wealth
owners, who finance the innovative intermediate firms can realize a large productivity gain and
am increase of their factor rewards. As a result inequality increases. With a slow increase
in labour income and consumption, and thus a slow growth in aggregate demand, total GDP
growth will also be affected and will be slower. If progress in AI technologies do not allow
labour to share in income growth the slowdown in aggregate demand growth will restrict total
economic growth as well. The results predicted by the model seem to be consistent with recent
observations in some advanced economies, such as sluggish labour productivity and wage growth
and increasing inequality.
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3.2 Final-goods-producing firms

The first set of economic agents to introduce are the firms that produce final consumption
goods. They do so using human services, AI-services, and intermediate inputs. Their potential
production output may fall short of effective or actual production output, due to frictions and
shocks in final good markets. They will spend resources to sell as much as possible, and pay
labour, the providers of AI and the entrepreneurs that provide the intermediate goods, for these
inputs.

Potential and effective final output: Let firm i ∈ F be a representative firm that produces
final goods using human service inputs Hi and Ni (t) of differentiated intermediate inputs xji (t)
offered by N (t) intermediate input producing firms. Qpi (t) represents total production by firm
i of final goods:

Qpi (t) = H1−α
i

Ni∑
j=1

xαji (t) = Ni (t)H1−α
i xαj (t) (1)

with xj (t) being a representative variation of the intermediate goods xji (t). Total production
is also the potential output of final goods Qpi in the final goods markets.

Firms are aware that, due to what can be categorised broadly as market frictions, not all of their
final production will be sold to final consumers. Thus, they will spend θi (t) on promotional
activities in order to ensure more of their products are sold. Their eventual output, which
can differ from their potential output, is termed the effective output (or effective sales) of final
goods, and can be written as:

Qi (t) = H1−α
i Ni (t)xαi (t) (1− θi (t)) (2)

Market frictions and effective sales: Market frictions can be denoted by δi (t) and the
share of total potential production sold to final consumers as Φi (t) < 1 . We assume that this
share decreases as market frictions δi becomes more prevalent, and that the share increases with
more promotional expenditures θi:

Φi = Φi (δi, θi) , with
∂Φi

∂δi
< 0,

∂Φi

∂θi
> 0.

Effective sales44 can be specified as:

4 At this point it would be sufficient to suggest that the expectations function Φ(θi, δi) is monotonic increasing in
θi and decreasing in E [δi]. Taking expectations for (33) we obtain E [Φ] = 1−E

[
(δi)

2]+E [δi] θi, and applying

E
[
(δi)

2] = E [δi]E [δi] + V ar(δi) we arrive at (44). For specification (33), ∂E[Φi]
∂E[δi]

= −2E [δi] + θi < 0, as long as

V ar(δi) ≤ 2E [δi] + E [δi]E [δi] at the sales maximizing θi (see 55). With the specific random distribution (3434)
we ensure this condition holds.
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Φi (t) = 1− (δi (t))2 + (δi (t)) θi (t) (3)

E [Φ (t)] = 1− E [δi (t)]E [δi (t)]− V ar (δi (t)) + E [δi (t)] θi (t) (4)

Here E [Φi (δi, θi)] is the expected share of potential final output that is sold and (1− θi) is the
share that is supplied. Firms will increase their spending θi on the promoting their products
to a level where they expect that all goods will indeed be sold. The expected effective sales
equilibrium is (1− θi)− E [Φi (δi, θi)] = 0, and the promotional spend to maximizing sales is:

θi (t) =
E [δi (t)]E [δi (t)] + V ar (δi (t))

(1 + E [δi (t)])
(5)

For the moment the promotional spend θi is a function of subjectively expected market frictions;
later we will link these expectations, and hence the promotional spend, to the state the aggregate
economy, specifically aggregate demand.

Demand for labour and wages: A central contribution of our model is that we allow for
a production process in which labour can be automated. This takes place when labour is
substituted for by AI in the production of the human service input Hi. Formally we model the
human service input Hi as being produced according to a Constant Elasticity of Substitution
(CES) production function. This function contains labour and AI inputs, the latter represented
by ALi (t). The human service input production function can be written as:

Hi =
(
βL−ρi + (1− β)A−ρLi

)− 1
ρ
,−1 < ρ < 0 : high substitution (6)

with ρ indicating the degree of substitution. The relation of ρ and the elasticity of substitution
is σ = 1

1+ρ . If σ > 1 (−1 < ρ < 0) the elasticity of substitution is high and AI can easily
substitute for labour; if σ < 1 (0 < ρ < ∞) the elasticity of substitution is low and AI can
substitute for some labour, but not as easily. In this case technology and labour tend to be
more complementary.

Including Hi in the final good production process we derive the factor demand and factor
rewards for the profit maximizing firm:

max
Li,xi

: Qi (t) = Ni (t)H1−αxαi (t) (1− θi (t))− wLLi (t)− wA(t)AL −Ni (t) px (t)xi (t) (7)

The above means that real wages wL (t) are determined by the marginal productivity of labour.
From the first-order-conditions we can derive wages as:55

5 F.O.C.: dQ
dLi

= Ni
(
− 1−α

ρ

)
xαi

(
βL−ρi + (1− β)A−ρLi

)− 1−α
ρ
−1
β (−ρ)L−ρ−1

i − w = 0

⇔ wL = (1− α)Nix
α
i H

1−α (
β + (1− β)LρiA

−ρ
Li

)−1
Lρi βL

−ρ−1
i

10



wL (t) = (1− α)βQpi (t) (1− θi (t))

(
β + (1− β)

(
Li
AL

)−ρ)−1

L−1
i . (8)

Income of the provider of the AI: The factor reward, or income, of the economic agent
that provides the AI can be derived from the above in a symmetrical manner as in (88) and can
thus be specified as:66

wA (t) = (1− α) (1− β)Qpi (t) (1− θi (t))

([
β

(
AL
Li

)ρ
+ (1− β)

])−1

A−1
L (9)

Demand for intermediate goods: Firms’ demand for intermediate goods is similarly
determined. We assume that the prices of the intermediate inputs are set by the entrepreneurs
that offer these as unique, monopoly-like intermediate goods (see section 3.3 below). Using the
first-order-conditions the demand for each intermediate input is77, namely

xi (t) =

(
α (1− θi (t))

px (t)

) 1
1−α

Hi. (10)

3.3 Intermediate-goods-producing firms

The second set of economic agents in our model are entrepreneurs who provide intermediate
inputs to the final good producing firms. These entrepreneurs each provide a unique
intermediate input, through being innovative, and as a result enjoy being a monopolist.
However, not all new intermediate innovative products are successful: this depends as we show
in this subsection, inter alia on market conditions, specifically the total effective demand in the
economy.

Market entry of new monopolistic firms: The intermediate good-supplying
entrepreneur establishes a monopoly firm because it sells an unique product which is the outcome
of entrepreneurial (product) innovation. The costs (denominated in units of final output) to
produce one unit of x is cx and the profits this result in is πx = (px − cx)x.

Using the demand function (1010) and plugging in px = α (1− θi)H1−αx−(1−α) we obtain:

πx (t) = α (1− θi (t))H1−αx (t)−(1−α) x (t)− cxx (t) (11)

From the first-order-conditions, and using (1010) and (1313) we can determine88 the optimal price
px and optimal production of x (t):

6 F.O.C.: dQ
dAL

= Ni
(
− 1−α

ρ

) (
βL−ρi + (1− β)A−ρL

)− 1−α
ρ
−1
xαi (1− θi) (1− β) (−ρ)A−ρ−1

L − wA = 0

⇔ wA = (1− α) (1− θi)NixαH1−α ([
βL−ρi AρL + (1− β)

])−1
AρL (1− β)A−ρ−1

L
7 F.O.C is dΠi

dxi
= α (1− θi)xα−1

i H1−α
i − px = 0, thus px = α (1− θi)H1−α

i x
−(1−α)
i ⇔ x1−α

i = α (1−θi)
px

H1−α
i .

8 F.O.C. is ∂πx
∂x

= α2 (1− θi)H1−αxα−1 − cx = 0, thus cx = α2 (1− θi)H1−αxα−1 ⇔ x1−α =

(cx)−1 α2 (1− θi)L1−α.
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px =
cx
α
. (12)

x (t) = α
2

1−α (1− θi (t))
1

1−α (cx)−
1

1−α H, (13)

With (1313) and (1212) we derive the expression for maximum profits πx (t) as:

πx (t) =

(
1

α
− 1

)
(cx)

−α
1−α α

2
1−α (1− θi (t))

1
1−α H (14)

The present value of this infinite profit flow, discounted at the steady-state interest rate r is:

Vx(t) =
1

r
πx (t) =

∫ ∞
t

πx (t) e−r(v,t)(v−t)dv. (15)

Here 1
rπx is the present value of profits per innovation and 1

rπxṄ are the total profits of the

start-up firm of introducing Ṅ(t) new goods. In addition to costs of innovation, the new firm also
has to cover the costs of market entry (e.g. commercialization costs) for the new intermediate
good, which is νx. Thus, total entry costs of the start-up with innovation rate Ṅ is Ṅνx = Ix.
With competitive market entry the net rents of a new firm turns to zero, and the net present
value of the new firm just about covers its total start-up costs:

1

r
πx(t)Ṅ(t)− Ix(t) = 0. (16)

With Ṅνx = Ix the steady-state interest rate is:

r =
πx(t)

νx(t)
(17)

Market entry of new technologies and goods: Because we are more interested in this
paper in the impacts of technology (AI) and not in its creation or innovation, we assume that

initial innovation in the intermediate goods market is exogenously given with Ȧ (t) = dA(t)
dt

the exogenous number of innovative intermediate products invented at t. These innovative
intermediate products are however not automatically successful in the market. We model the
process of market entry as an aggregate matching process.99

New, innovative intermediate goods Ȧ (t) are offered on the market and entrepreneurs try to
find buyers amongst the final goods producing firms. The number of new intermediate products
successfully entering the market Ṅ is a function of two elements: (i) the given number of new,
innovative intermediate products Ȧ (t) potentially ready for market entry, and (ii) the number
of opportunities for market entry that entrepreneurs (start-ups) discover. These opportunities

9 For a micro-foundation of this process see Gries and NaudéGries and Naudé (20112011) .
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are determined by the capacity of the market. Absorption capacity for intermediate goods is a
function of total effective demand of intermediate goods in the economy XeD (t).

In an aggregate matching function we can combine these two elements and describe the resulting

process of market entry as Ṅ = f
(
Ȧ,XeD

)
. For simplicity, we assume a matching technology

with constant economies to scale so that the number of new products in the market will be
given by:

Ṅ(t) =
(
XeD(t)

)γ
(Ȧ(t))1−γ (18)

where γ is the contribution of market opportunities. Although the assumption of a macro-
matching process is basic it represents the main idea behind the mechanism. Given (1818) the
growth of new products in the economy is a semi-endogenous process because the number of new
products Ȧ is fixed, but the number of new technologies implemented to establish intermediate
products Ṅ is endogenous.

3.4 Aggregate production and income distribution

Having specified final goods and intermediate goods production in our stylized economy in
the previous two subsections, we can now add these, including the financing of the costs of
production and innovation to obtain an expression of and decomposition of aggregate production
(GDP). We can also specify the distribution of income to the various agents in the economy.

Calculating and Decomposing GDP: From the subsections above, it is clear that effective
output of the total economy has to be divided amongst intermediate goods x, labor L and the
technology service provider AL. The budget constraint for effective output is therefore:

Q(t) = N(t)H1−αxα(t) (1− θ(t)) = N(t)px(t)x(t) + wL(t)L+ wA(t)AL (19)

Note that effective output is not the same as GDP or aggregate income. As x is produced by
using cx units of final goods, net final output, and thus income is

Y (t) = Q(t)−N(t)x(t)cx. (20)

Further, from (1919) and (2020) we obtain Q−Nxcx = Npxx−Nxcx + wLLi. With the definition
of profits in the intermediate goods sector (1111), the income constraint becomes:

Y (t) = N(t)πx(t) + wL(t)L+ wA(t)AL (21)

According to (2121) total income in the economy is composed of profits, labour and technology
income. Given equation (1717) we obtain Y = rNνx + wL + wAAL.
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As Nνx is the value of all debt ever issued (Nνx = F ), and all new products are financed by
newly issued debt, Ṅ(t)νx = Ḟ (t) profits are channelled to financial investors who finance the
process

N (t)πx (t) = r (t)F (t) . (22)

Value added generated by innovative intermediate firms generates an income to the owners of
financial assets r (t)F (t). The growth process is thus essentially a process of financial wealth
accumulation through the financing of new products (innovation), which we can label a ‘Silicon-
Valley’ model of growth.

Finally, using (2222) we arrive at the familiar income decomposition of GDP:

Y (t) = r (t)F (t) + wL (t)L+ wA(t)AL. (23)

In addition to income of financial wealth owners, value added generated by the human service
input is distributed to labour (wL (t)L) and the providers of the AI-technology (wA(t)AL).

Income distribution: Because we are interested in the distributional aspects of asymmetrical
technical change (AI), we derive the income shares of the three input and resource providing
agents in our model, namely labour (wLL), AI-service providers (wAAL) and financial investors
(rF ).

The income share of labour is derived by using (88), (1313) and (2020) and is described by:

wL (t)L

Y (t)
=

(1− α)β

[1− ι]

[
β + (1− β)

(
L

AL

)ρ]−1

< 1 (24)

with ι = α2 < α, denoting the share of the intermediate good of total production Nxcx/Q.
1010

The income share of providers of the AI-service is

wA (t)AL
Y (t)

=
(1− α) (1− β)

[1− ι]

[
β

(
AL
Li

)ρ
+ (1− β)

]−1

. (25)

For details of the calculation see appendix 6.16.1.

Income share of financial investors can be determined using (2020), (2222) and (1111), so that we
arrive at

N (t)πx (t)

Y (t)
=
α− ι
1− ι

. (26)

Details of the calculation are contained in appendix 6.16.1.

10 For details see appendix 6.16.1.
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3.5 Specifying the aggregate demand side

In section 2 of this paper we argued that what happens to aggregate demand as AI-technology
progresses will be an important mediator of the eventual impact and progression of AI in the
economy. Therefore, in order to understand and analyse the role of aggregate demand we need to
specify in our model the consumption and savings behaviour of the agents in our model. Using
a representative intertemporal choice approach based on a representative household’s ‘Euler
Equation’1111 as is the standard case in endogenous growth models, is however not adequate for
the task. Instead, we follow the Keynesian tradition by assuming that some households only
earn wage income wL, and another group of households earn only financial income from assets
rF . Each group will have its own consumption preferences and patterns.

Consumption expenditure and labour income: According to (2424) the share of labour

income is wL
Y = (1−α)β

[1−ι]

[
β + (1− β)

(
L
AL

)ρ]−1
.

We assume that total wage income will be fully consumed, and that total wage income is the
only source of consumption expenditure. Given these simplifying assumptions total effective
consumption in the economy is given by:

Ce (t) = w (t)L = cY e (t) , (27)

with c =
(1− α)β

[1− ι]

[
β + (1− β)

(
L

AL

)ρ]−1

(28)

the economy’s marginal (and average) rate of consumption.

Investment expenditure and innovation: Innovation requires investment. We assume
that such investments are identical for each innovation ν = νx. Thus total start-up investments
Ie(t) are given by:

Ie(t) = νṄ(t). (29)

Effective demand and Keynesian income-expenditure equilibrium: Effective income
Y e can be used for effective consumption Ce and investment Ie. Thus, effective demand is
given by Y eD ≡ Ce + Ie. While the consumption rate is determined by (2727) and a constant
fraction of total effective income, investments are driven only by the market entry of new goods
(innovation) Ṅ . With the consumption rate (2828) given, the Keynesian income-expenditure
mechanism can be applied to determine effective total demand, Y eD.

In income-expenditure equilibrium we have:

Y e(t)
!

= Y eD(t) ≡ Ce (t) + Ie(t), (30)

11 Ċ
C

= fracr − ρηU with ρ denoting the time representative agents preference rate and ηU the intertemporal
elasticity of substitution.
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From this we can derive the well-known Keynesian income-expenditure multiplier. Defining

µ =
ν

1− c
(31)

as the standard multiplier gives:

Y eD(t) =
1

1− c
Ie(t) = µṄ(t). (32)

3.6 Solving the model

Solving the model that we have outlined in the preceding sections requires finding values for
the variables which will result in a stationary equilibrium for the economy. Such a stationary
equilibrium will exist if firm behaviour is stationary, which will be the case if all the firm’s
expected values are equal to effective values, so that there is no need for change. We label this
the ‘no expectation-error equilibrium’ (n-e-ee) to indicate that expectations are in accordance
with effective values (i.e. there is no ‘error’ or deviance).

Definition 11 formally defines this equilibrium concept, first from the perspective of each firm,
and second from the perspective of the aggregate economy:

Definition 1
For each firm ”no expectation-error equilibrium” (n-e-ee) is defined as the condition for which
(i) firm i’s expected output sold in the market E [Qi(t)] is indeed firm i’s effective output absorbed
by the market Qei (t), and (ii) this holds for all firms

(i) : E [Qi(t)] = Qei (t), (33)

(ii) : E [Q(t)] = Qe(t).

From each firm i’s perspective the only stochastic variable is market frictions δi. In order to
counter these stochastic market frictions and promote its sales firms will determine the expected
level E [δi] , and variance V ar (δi) of these frictions and spend a fraction θi of real output to
maximize the expected sales ratio E [Φi (δi(t), θi(t))] (see 55).

We need to say more about market frictions. For the random distribution of market frictions
facing each firm we assume an exponential distribution with

Pr (δi(t) > ε) = e
− ε
υi(t) ε ≥ 0. (34)

E [δi(t)] = υi(t), V ar (δi(t)) = υ2
i (t)

Thus, the mean of the random distribution of market frictions δi for each firm is υi and the
expected value of the required promotional spend is (according to 44 and 55 ) θi. Thus, in n-e-ee
(defined by 3333) the effective sales ratio of each firm is given by:
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λi(t) = 1− θi(t) = E [Φi (δi(t), θi(t))] = 1− E [δi(t)]E [δi(t)] + V ar(δi(t))

(1 + E [δi(t)])
. (35)

This indicates that when in equilibrium (n-e-ee 3333) all planning at firm level is consistent with
mean market conditions. Firm i’s expected sales are indeed the effective sales so that

E [Qi(t)] = Qei (t) = H1−α
i Ni(t)x

α
i (t)λi(t)

There is thus no need for a revision of production plans. We can now offer the solution to the
model.

Solution: First, assume that firm i is representative of all firms, and δi(t) are i.i.d for i ∈ I.
This implies λ(t) = λi(t) = E [Φi (δi(t), θi(t))] and results in aggregate effective output being:

E [Q(t)] = Qe(t) = N(t)H1−αxα(t)λ(t). (36)

Second, because the market conditions that determine the properties of the exponential random
distribution of frictions δi (3434), and δi are i.i.d for i ∈ I, we obtain from (3636) for the aggregate
economy a relation between the ratio of effective sales λ and the parameter υ of the random
distribution of frictions as:

λ(t) =
1 + υ(t)− 2υ2(t)

1 + υ(t)
. (37)

In order to determine the ratio of effective sales λ we can use the equilibrium condition of
the aggregate final goods market. From the Keynesian income-expenditure mechanism (3232) we
have established that effective aggregate demand is ν

1−cṄ . In n-e-ee (3333 ii), expected sales in the
market are equal to effective sales and thus, in aggregate goods market equilibrium, effective
demand Y eD is equal to effective supply of final goods Y eS = Qe −Nxcx,

effective demand Y eD︷ ︸︸ ︷
ν

1− c
Ṅ(t) = Y e(t) =

effective supply Y eS︷ ︸︸ ︷
λ(t)N(t)H1−α (x(t))α −N(t)x(t)cx, (38)

with xj(t) = α
2

1−α (λ(t))
1

1−α H (cx)−
1

1−α and gN =
Ṅ(t)

N(t)
.

Before we can eventually solve the system (see proposition 11), we have to determine the
endogenous growth rate of new products successfully entering and remaining in the market
Ṅ/N. Equation (1818) describes the aggregate matching process for successful new intermediate
products (product innovations) entering the market. Thus, the growth rate of implemented
product innovations is1212

12 From (1818) and (1313) we obtain XeD = Nx = Nα
2

1−α (λ))
1

1−α (cx)−
1

1−α L. and Ṅ =
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gN =
Ṅ(t)

N(t)
=
(
α

2
1−α (λ(t))

1
1−α (cx)−

1
1−α H

)γ
(gA)1−γ (39)

Thus in n-e-ee we have three equations, (3737), (3838), and (3939) to solve for the three variables,
the effective sales ratio λ, parameter υ of the random distribution of market frictions, and the
semi-endogenous growth rate gN . The result is stated in the following proposition:

Proposition 1 No expectation-error equilibrium (definition 11 equation 3333) and equations (3737),
(3838), and (3939) determine

(i) the equilibrium ratio of effective sales and effective production:

λ̃ = µ
1−α
1−γ

gA
(1−α)

H1−α (1− α2)
1−α
1−γ

,
dλ̃

dµ
> 0, (40)

(ii) the equilibrium value of the mean and variance of the distribution of aggregate market
frictions δ :

E [δ] = υ̃ =

[(
1 + 8

(
1− λ̃

)−1
) 1

2

+ 1

]
1

4

(
1− λ̃

)
, V ar (δ) = υ̃2, (41)

(iii) the growth rate of effective income (GDP) :

gY =
Ẏ e (t)

Y e (t)
= gN =

(
α

2
1−α λ̃

1
1−α c

− 1
1−α

x H

)γ
(gA)1−γ , (42)

and (iv) the effective income at each point in time and hence the growth path:

Ỹ e(t) = Y eD(t) = N(t)
νx

1− c

(
α

2
1−α λ̃

1
1−α (cx)−

1
1−α H

)γ
(gA)1−γ (43)

For a proof see appendix 6.26.2.

In addition to the standard steady state values stated in proposition 11 we are also interested in
the wages wL (t) and the earnings of the providers of AI-services AL, wA (t). We first determine
the wage rate by plugging (1313) in (88)

wL (t) = N (t) (1− α)
[
α2c−1

x

] α
1−α λ̃

1
1−α

[
β + (1− β)

(
L

AL

)ρ]− 1+ρ
ρ

β (44)

(
α

2
1−α (λ)

1
1−α (cx)−

1
1−α L

)γ
Nγ(Ȧ))1−γ . Rearranging gives Ṅ(t)

N(t)
=

(
α

2
1−α (λ)

1
1−α (cx)−

1
1−α L

)γ
( Ȧ(t)
A(t)

)1−γ for

N(t) = A(t).
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For providing the AI service, providers of AL are rewarded according to their marginal
productivity, and by plugging (1313) in (99) we obtain

wA (t) = N (t) (1− α)
(
α2c−1

x

) α
1−α λ̃

1
1−α

[
β

(
AL
Li

)ρ
+ (1− β)

]− 1+ρ
ρ

(1− β) , (45)

4 Modelling the Impact of AI

In section three of this paper we proposed a theoretical model with which we can identify effects
of AI that cannot be considered in the standard neoclassical model and/or (semi-)endogenous
growth approach. In this section we will use the model to study the impact of AI on jobs,
inequality and productivity, in order to enrich the discussion of the current state of the literature
that we provided in section 2.

The essence of our model, as far as AI is concerned, is to have included in the production of the
human service input a technological parameter AL that describes the AI-facilitated automation
technology. In section 3 we established a steady state equilibrium for a given level of AL.
Proposition 11 states the result.

In order to model the impact of AI, we can for instance consider a once-off change in AI,
and perform a comparative static analysis, i.e. analyse the impact of dλ̃/dAL . However, AI-
technologies are more likely to diffuse into the economy gradually over time, as we stressed in
the literature review. Thus we rather model the impact of AI as a sequence of steady-state

changes in a continuous process, describing this as ȦL
AL

=→ λ̇
λ .

The impacts on jobs, productivity (and wages), inequality and the growth rate, are set out in
the subsections that follow. First, we note the interaction between AI and labour in providing
human service inputs, and emphasise the role of demand constraints.

4.1 Impact on human service production, H

The impact of AI most directly is on the human service input H. Given the labour supply and
a given technology AL will determine a given level of human service in this economy. However,
now we assume that at least for a while AI will exogenously improve ȦL > 0, so that the owners
of this technology can supply continuously more (or a better service) to the market. As a result
of this additional technology growth the supply of the human service will continuously increase
as long as process innovations continue1313

Ḣ

H
=

(1− β)

β
(
L
AL

)−ρ
+ (1− β)

ȦL
AL

> 0 (46)

If this process continues for a long time L
AL

will change noticeably and lim
t→∞

Ḣ
H = ȦL

AL
for −1 <

ρ < 0.

13 For calculations see the appendix 6.46.4.
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4.2 The demand constraint

In our model, labour income is the only income that consumes, so if labour income does not
profit from productivity gains, consumption may stagnate and restrict growth from the demand
side. In order to evaluate this potential mechanism we can calculate the impact of continuous
AI progress ȦL on the effective sales ratio and obtain1414

λ̇

λ
=

(1− α) (1− β)

β
(
L
AL

)−ρ
+ (1− β)

(−)
ρ

(1− γ)

α+ (1+α)(1−β)
β

(
L
AL

)ρ − 1

 ȦL
AL

< 0. (47)

Thus, the effect of AI-progress and automation undoubtedly tightens the demand constraint as
long as the elasticity of substitution between AI technologies and labour is high, −1 < ρ < 0. If

the process continues for a while L
AL

will change noticeably, and lim
t→∞

λ̇
λ = − (1− α) ȦLAL < 0 for

−1 ≤ ρ < 0. Changes in the effective sales ratio have further implications for other variables
like wages or GDP growth, which we will discuss below.

4.3 Impact on wages and labour productivity

Wages are equal to marginal labour productivity. Thus the effects of AI-progress on wage and
labour productivity growth is:

ẇL (t)

wL (t)
=

(i)︷ ︸︸ ︷
Ṅ (t)

N (t)
+

(ii)︷ ︸︸ ︷
1

1− α
λ̇ (t)

λ (t)
+

(iii)︷ ︸︸ ︷
Ḣ (t)

H (t)
+ ρ

(
L

AL

)ρ [
β + (1− β)

(
L

AL

)ρ]−1
ȦL (t)

AL (t)
(48)

This equation shows that the wage rate is affected by product innovation Ṅ(t)
N(t) in intermediate

good production. A growing number of intermediate goods has a positive impact on wages. In
the final good Cobb-Douglas production function (11) the number of intermediate goods improves
total factor productivity and labour can share in this [see (i) in 4848]. However, if the elasticity of
substitution is high (−1 < ρ < 0) the effective sales ratio λ (t) declines, and negatively affects
wage growth. This reflects demand constraints because aggregate demand is not adequately
growing to absorb additional supply [see (ii) in 4848].

Another influence on the wage rate is due to an increase in the human service input Ḣ(t)
H(t) which

may raise productivity and wages. Growth in human service input is driven by IT and AI
growth, and is described by (4646). However, if the elasticity of substitution is high (−1 < ρ < 0)
wage income growth is reduced and labour cannot participate in the positive effects of . Thus,
IT and AI technologies affect labour productivity growth through various positive and negative
channels.

The total effect on marginal labour productivity and wage growth is:

14 For a proof and the respective conditions see appendix 6.46.4.
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ẇL (t)

wL (t)
=

Ṅ (t)

N (t)
+ ηw,AL

ȦL
AL
6= 0, and (49)

ηw,AL =

(−)
ρ (1− β)

β
(
L
AL

)−ρ
+ (1− β)

 1

1− γ
1

α+ 1+α
β (1− β)

(
L
AL

)ρ + 1

 < 0 (50)

with ηw,AL < 0 1515 being the wage elasticity of IT and AI automation technology. ηw,AL < 0 is
fully due to the assumption of a high elasticity of substitution between AI and labour (−1 <
ρ < 0).

Finally, equation (4949) indicates that while product innovations (in intermediate production)
raises labour productivity and wage growth, as far as AI-innovation is concerned, the net effect
on labour productivity and wage growth is negative.

4.4 Impact on inequality and jobs

Income share of labour: If we take the labour share of income as a measure of income
distribution and inequality, we identify a continuously worsening of the labour share of income
as long AI innovation continues and there is high substitutability of labour.

dwL(t)L
Y (t)

dt

1
wL(t)L
Y (t)

=
(−)
ρ

(1− β)

β
(
AL
L

)ρ
+ (1− β)

ȦL
AL

< 0 for − 1 < ρ < 0 (51)

For a proof of (5151) see appendix 6.46.4. If the process continues, and L
AL

will change noticeably

lim
t→∞

d
wL(t)L

Y (t)

dt
1

wL(t)L

Y (t)

= ρ, and the income share of labour approaches

lim
t→∞

wL (t)L

Y (t)
= 0 for − 1 ≤ ρ < 0.

What does this process, described by wage development (4949) and the development of the income
share of labour income (5151) mean for jobs?

In the regime of high substitutability AI will substitute labour and cause unemployment. Higher
unemployment will drive wages down. If labour tried to establish a wage growth at a level
of GDP growth (5353) or a level that keeps the income share of labour constant, this would
imply growing unemployment - an effect consistent with predictions of rising technological
unemployment.

15 For a proof and the respective conditions see appendix 6.46.4.

If the process continues for a while L
AL

will change noticeably, and lim
t→∞

ẇL(t)
wL(t)

= Ṅ(t)
N(t)

+
(−)
ρ ȦL
AL

for −1 ≤ ρ < 0.
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Income share of technology providers: The income share of the technology providers
increases when there is high substitutability of labour, as can be seen from:

dwA(t)AL(t)
Y (t)

dt

1
wA(t)AL(t)

Y (t)

= −
(−)
ρ

β
(
AL(t)
Li

)ρ
β
(
AL(t)
Li

)ρ
+ (1− β)

ȦL(t)

AL(t)
> 0. (52)

In the long term, if the process continues, and L
AL

will change noticeably lim
t→∞

d
wAAL
Y (t)

dt
1

wAAL
Y (t)

= 0,

and the income share of technology providers will approach

lim
t→∞

wA(t)AL(t)

Y (t)
=

(1− α)

1− ι
for − 1 ≤ ρ < 0

4.5 Impact on GDP growth

Considering the drivers of GDP we obtain from 4242

ġY
gY

=
γ

1− α

(i)

λ̇

λ
+

(ii)

Ḣ

H
(53)

This shows a clearly positive impact of AI-automation on GDP growth.

So far, in the original steady state GDP growth was determined only by the rate of new
innovative intermediate products entering the market. With the additional AI technology
innovation a second engine of growth is introduced. Due to a continuing quasi-factor-augmenting

technology growth ȦL
AL

> 0 the GDP growth rate will increase.

However, the extent of this increase is demand constrained. In an extreme case GDP growth
may even be negative. The change in GDP growth rate in (5353) is due to the standard supply-
side effect which leads to growth in the human service inputs and raises production capacity.
However, due to a decline in the labour share of income the consumption rate will decline, so
that the effective sales ratio declines. The net effect in GDP is ambiguous. It will be positive
when (−1 < ρ < 0) is sufficiently large (see 5454), in other words if the substitutability between
labour and AI is not too high (σ = 1

1+ρ)1616

ġY
gY

=

ρ (1− β)2

(1− γ)2

γ
(1−α)β

[1−ι]

(
β + (1− β)

(
L
AL

)ρ)
− 1

+ 1

 (1− γ) (1− β)−1

β
(
L
AL

)−ρ
+ (1− β)

ȦL
AL

> 0(54)

with :
(−)
ρ > −

[
β

(1 + α)

(
β + (1− β)

(
L

AL

)ρ)
− 1

]
(1− γ)2

γ (1− β)2 .

16 For a proof see appendix 6.46.4.
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If the substitutability is very high and ρ is close to −1 demand constraints may dominate the
supply effects and GDP may even shrink.

5 Concluding Remarks

Rapid technological progress in artificial intelligence (AI) has been predicted to lead to mass
unemployment, rising inequality, and higher productivity growth through automation. In this
paper we critically re-assessed these predictions by (i) surveying the recent literature and
(ii) incorporating AI-facilitated automation into a product variety-model, frequently used in
endogenous growth theory, but modified to allow for demand-side constraints. This is a novel
approach, given that endogenous growth models, including most recent work on AI in economic
growth, are largely supply-driven.

Our contribution was motivated by two reasons. One is that there are still only very few
theoretical models of economic growth that incorporate AI, and moreover an absence of growth
models with AI that takes into consideration growth constraints due to insufficient aggregated
demand. A second is that the predictions of AI causing massive job losses and faster growth
in productivity and GDP are at odds with reality so far: if anything, unemployment in many
advanced economies is at historical lows. However, wage growth and productivity is stagnating
and inequality is rising.

Our paper provided a theoretical explanation of this in the context of rapid progress in AI,
showing that if labour income does not profit from the economic gains generated by progress
in AI, consumption may stagnate and restrict growth. We incorporated AI into the model as a
technology service that can substitute (or complement) labour and that diffuse into the economy
gradually over time. As such the substitutability between labour and AI is a vital parameter.
At high elasticities of substitution we illustrated that this will lead to a decline in employment,
a decline in wages and the labour share of income, and greater inequality with a larger share of
income accruing to the providers of the AI. Because the latter do not consume, the effect is that
the consumption rate declines, which in turn mean less sales for final good producing firms.

The outcomes include sluggish GDP growth (even shrinking GDP), a declining rate of product
innovation, and slower productivity growth. With slow diffusion of AI (and slowing innovation
in AI), we will not see an immediate rise in unemployment, but rather slower growth in GDP
and productivity as the economy does not benefit much from the supply-side driven capacity
expansion potential that this technology can deliver; wages can however decline in line with
slower GDP and productivity growth in order to maintain employment levels.

In short, our model is consistent with the recent empirical literature that suggests that due
to slow diffusion and a slowdown in innovation rates that doomsday scenarios in terms of
technological unemployment and inequality is unlikely to materialise soon, and it is also
consistent with the reality that whilst AI-technologies are offering many potential applications,
its lack of diffusion has so far not yet boosted either GDP or productivity growth, with the result
that most advanced economies have been experiencing slow growth and stagnating wages, even
in the face of stable employment. Humans will not go the way of horses any time soon. However
to ensure that this does not happen eventually, the suggestions from this paper are that more
research is needed to understand the sizes and determinants of the substitutability between AI
and labour, and to understand the diffusion and applications of AI as an input into production.
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6 Appendix

6.1 Income share of labour, technology owners and financial wealth

Income share of labour

wL (t)L = N (t) (1− α)xα (t) (1− θi (t))

[
β + (1− β)

(
L

AL

)ρ]− 1−α+ρ
ρ

βL1−α

= N (t) (1− α)xα (t) (1− θi (t))H1−α
[
β + (1− β)

(
L

AL

)ρ]−1

β

wL (t)L

Y (t)
=

(1− α)Q (t)β
[
β + (1− β)

(
L
AL

)ρ]−1

Q(t)−N(t)x(t)cx

=
(1− α)β

[
β + (1− β)

(
L
AL

)ρ]−1

1−N(t)x(t)cx
1

Q(t)

and applying (1313) gives ι = N(t)x(t)cx
Q(t) = Ncx

NH1−αα
−(1−α)2

1−α (1−θi)
−(1−α)

1−α (cx)
−−(1−α)

1−α H−(1−α)(1−θi)
=

cx
α−2cx

= α2.
Thus,

wL (t)L

Y (t)
=

(1− α)β

(1− ι)

[
β + (1− β)

(
L

AL

)ρ]−1

=
β

(1 + α)

[
β + (1− β)

(
L

AL

)ρ]−1

If AL is time dependent AL (t) and would continuously increase, and we find that in the long
term

lim
t→∞

wL (t)L

Y (t)
=

(1− α)β

(1− ι)
[β + (1− β) ∗∞]−1 = 0.

Income share of technology owners:

wAAL = Ni (1− α)xα (1− θi)
[
β

(
AL
Li

)ρ
+ (1− β)

]− 1−α+ρ
ρ

(1− β)A1−α
L

= N (t) (1− α)xα (1− θi)H1−α
[
β

(
AL
Li

)ρ
+ (1− β)

]−1

(1− β)

wAAL
Y (t)

=
(1− α)Q (t) (1− β)

[
β
(
AL
Li

)ρ
+ (1− β)

]−1

Q(t)−N(t)x(t)cx

=
(1− α) (1− β)

1− ι

[
β

(
AL
Li

)ρ
+ (1− β)

]−1

=
(1− β)

(1 + α)

[
β

(
AL
Li

)ρ
+ (1− β)

]−1

If AL is time dependent AL (t) and would continuously increase, we will find that over the long
term

lim
t→∞

wA(t)AL(t)

Y (t)
=

(1− α) (1− β)

1− ι
[β ∗ 0 + (1− β)]−1 =

(1− α)

1− ι
.
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Income share of financial wealth owners: From (33), (1313) an (2020) we know

N (t)πx (t)

Y (t)
=

N
(

1
α − 1

)
(cx)

[
α

2
1−α (λ)

1
1−α (cx)−

1
1−α H

]
NH1−αxαλ−Nxcx

=

(
1
α − 1

)
Ncxx

NH1−αxαλ−Nxcx

=
N
(

1
α − 1

)
cxx(

1− Nxcx
Q

)
NH1−αxαλ

=
(1− α) 1

αα
2

(1− ι)
=

(α− ι)
(1− ι)

=
α

(1 + α)

6.2 Proof of proposition 11

Determine λ : Equation (3838) and (3939) determine the two variables, λ and gN :

gN =
(
α

2
1−α (λ)

1
1−α (cx)−

1
1−α H

)γ
(gA)1−γ

µgN =
(
λH1−αxα − xcx

)
,

with (1313) x = α
2

1−α (λ)
1

1−α H (cx)−
1

1−α

and plugging in for x and gN results in:

µgN = λλ
α

1−αH1−α
(
α

2
1−αH (cx)−

1
1−α
)α
− λ

1
1−α

(
α

2
1−αH (cx)−

1
1−α
)
cx

µ
(
α

2
1−α (cx)−

1
1−α H

)γ
(gA)1−γ =

[
H1−α

(
α

2
1−αH (cx)−

1
1−α
)α
−
(
α

2
1−αH (cx)−

1
1−α
)
cx

]
λ

1
1−α−

γ
1−α

λ
1−γ
1−α = µ

(
α

2
1−α (cx)−

1
1−α H

)γ
(gA)1−γ[

cx

(
α

2
1−αH (cx)−

1
1−α
)

(α−2 − 1)
]

λ = µ
1−α
1−γ

(
α

2
1−α (cx)−

1
1−α H

) γ
1−γ (1−α)

(gA)(1−α)[
cx

(
α

2
1−αH (cx)−

1
1−α
)

(α−2 − 1)
] 1−α

1−γ

= µ
1−α
1−γ

gA
(1−α)

α2H1−α [(α−2 − 1)]
1−α
1−γ

λ̃ = µ
1−α
1−γ

gA
(1−α)

α2H1−α (α−2 − 1)
1−α
1−γ
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Determine υ̃ : With the effective sales ratio λ̃ we can determine the equilibrium υ̃ using
(3737) and the assumption that δi are i.i.d for i ∈ I

λ̃ =
1 + υ − 2υ2

1 + υ

λ (1 + υ) = 1 + υ − 2υ2

0 = − (λ+ λυ) + 1 + υ − 2υ2(
υ − 1

4
(1− λ)

)2

=

(
1

4
(1− λ)

)2

+
1

2
(1− λ)

υ = ±
[
1 + 8 (1− λ)−1

] 1
2 1

4
(1− λ) +

1

4
(1− λ)

υ̃ =

[(
1 + 8

(
1− λ̃

)−1
) 1

2

+ 1

]
1

4

(
1− λ̃

)

GDP growth rate: Using (2020) and taking the time derivative in equilibrium, with λ = λ̃

and x = x̃ we obtain Ẏ (t) = Ṅ (t)
(
λH1−αx̃α − x̃cx

)
and thus gY = Ẏ (t)

Y (t) = Ṅ(t)
N(t) .

6.3 Dynamic consistency:

- Consistent motion of the demand and supply side in n-e-ee:
From (3838) we know

effective demand︷ ︸︸ ︷
ν

1− c
Ṅ(t) = Y e(t) =

effective supply︷ ︸︸ ︷
N(t)

(
λ(t)H1−αxα − xcx

)
,

with x(t) = α
2

1−α (λ(t))
1

1−α H (cx)−
1

1−α → xj .

and in equilibrium x̃j = α
2

1−α
(
λ̃
) 1

1−α
H (cx)−

1
1−α and ν

1−cṄ(t) = N(t)
(
H1−αx̃αλ̃− x̃cx

)
. A

change over time is described by

1

1− c
νN̈(t) = Ṅ(t)

(
H1−αx̃αλ̃− x̃cx

)
1

1− c
ν
N̈(t)

Ṅ(t)
=

(
H1−αx̃αλ̃− x̃cx

)
.

Second, the growth rate of innovation related investments is N̈
Ṅ

= gN for exponential growth

(N(t) = egN t)) and
1

1− c
νgN =

(
H1−αx̃αλ̃− x̃cx

)
.

q.e.d.

26



- Consistent start values of Financial and Technology stocks:
As the last step we can show consistency by deriving the savings, and show that these savings

indeed can finance the process from the start. Financial wealth income is rF (t) . We have
assumed that only labour income will be consumed. Income of financial asset holders only
serve for savings and these savings are financing investments into newly introduced (innovative)
goods.

rF (t) + wA (t)AL = S (t) = Ḟ (t) = Ṅ (t) νx

Defining wA (t) = N (t) (1− α)
(
α2c−1

x

) α
1−α (1− θi)

1
1−α

[
β
(
AL
Li

)ρ
+ (1− β)

]− 1+ρ
ρ

(1− β) =

N (t) z we can write

rF (t) +N (t) zAL = Ṅ (t) νx

rF (t) +N (t) zAL = N (t)
Ṅ (t)

N (t)
νx

rF (0) e(gN )t +N (0) egN tzAL = N (0) egN tgNνx

r
F (0)

N (0)
+ zAL = gNνx

F (0)

N (0)
=

gNνx − zAL
r

For this debt and technology growth mechanism we need to show that savings in deposits and
financing investments are consistent in their stock and flow mechanism, and we can derive a
relation for the start period F (0) /N (0) that leads to this consistent growth process 1717

r
F (t)

N (t)
= ν

Ṅ (t)

N (t)
⇐⇒

rF (0) e(gN )t = νN (0) egN tgN ⇐⇒
rF (0) = νN (0) gN

F (0)

N (0)
=
ν

r
gN

q.e.d.

6.4 Modelling the impact of AI

Effects on human service H: From the production of H and a given labour L and
technology supply AL we obtain

H =

(
β

(
AL
L

)ρ
+ (1− β)

)− 1
ρ

AL

H =

(
β + (1− β)

(
L

AL

)ρ)− 1
ρ

L

17 r F (t)
N(t)

= ν Ṅ(t)
N(t)

⇐⇒ rF (0) e(gN )t = νN (0) egN tgN ⇐⇒ rF (0) = νN (0) gN
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Ḣ = −1

ρ

(
β + (1− β)

(
L

AL

)ρ)− 1
ρ
−1

(−ρ)L (1− β)

(
L

AL

)ρ−1 L

AL

ȦL
AL

=

(
β + (1− β)

(
L

AL

)ρ)− 1
ρ
−1

L (1− β)

(
L

AL

)ρ ȦL
AL

Ḣ

H
=

(
β + (1− β)

(
L

AL

)ρ)− 1
ρ
−1

L (1− β)

(
L

AL

)ρ ȦL
AL

(
β + (1− β)

(
L

AL

)ρ) 1
ρ

L−1

=

(
β + (1− β)

(
L

AL

)ρ)−1

(1− β)

(
L

AL

)ρ ȦL
AL

Continuous innovation and effects of asymmetric technologies:

Ḣ

H
=

(1− β)

β
(
L
AL

)−ρ
+ (1− β)

ȦL
AL

, lim
t→∞

Ḣ

H
=
ȦL
AL

Effects on effective sales ratio: λ̇
λ

µ =
ν

1− c
, c =

(1− α)β

[1− ι]

[
β + (1− β)

(
L

AL

)ρ]−1

λ̃ = µ
1−α
1−γ

gA
(1−α)

α2H1−α (α−2 − 1)
1−α
1−γ

F1 = µ
1−α
1−γ , F2 =

gA
(1−α)

α2H1−α (α−2 − 1)
1−α
1−γ
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(1)
dF1

dAL
=

1− α
1− γ

µ
1−α
1−γ−1

(−)
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[1−ι]
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)2 (−)
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=
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=
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(2)
dF2
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= −(1− α)
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(1−α)
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∂H

∂AL
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β
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(
L
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bring
dF1

dAL
and

dF2

dAL
together:
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ȦL
AL
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Effect on income share of the technology providers
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] ȦL(t)

AL(t)
> 0

lim
t→∞

dwA(t)AL(t)
Y (t)

dt

1
wA(t)AL(t)

Y (t)

= −
(−)
ρ

β ∗ 0

[β ∗ 0 + (1− β)]
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Effects on the income share of financial wealth holders: N(t)πx(t)
Y (t) According to (2626) is
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thus, the income share of financial wealth holders will not change over time.
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