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Abstract

Berry phases impart an elegant interpretation of fundamental condensed-matter phe-
nomena as a direct consequence of the electrons’ adiabatic evolution under the varia-
tion of control parameters. This thesis develops advanced ab initio methods based on
density functional theory and applies them to investigate Berry phase effects in com-
plex magnets, rooting in the global properties of two distinct types of phase spaces.

The non-trivial geometry of momentum space manifests in intrinsic contributions
to the anomalous Hall effect as well as orbital magnetism in solids. While the for-
mer has been subject to intensive research in the past decades, our understanding of
orbital magnetism in periodic systems is still at a rather premature stage. Even its
quantum-mechanical description was elusive until the recent advent of a rigorous but
involved Berry phase theory, the overall importance of which is unclear. To resolve
this open question, we implement the modern theory of orbital magnetization within
the full-potential linearized augmented-plane-wave method that is known for its high
precision. By comparing to a commonly applied but simple local approximation,
we uncover in this thesis that the Berry phase theory is crucial to predict reliably
orbital magnetism in systems studied extensively in spintronics, including thin mag-
netic heterostructures and topological magnets. Remarkably, we demonstrate that
the emergent magnetic field due to the chiral spin structure of non-coplanar anti-
ferromagnets constitutes an efficient mechanism to lift the orbital degeneracy even
in the absence of spin-orbit coupling. In a new class of materials to which we refer
as topological orbital ferromagnets, the macroscopic magnetization originates solely
from pronounced orbital magnetism due to non-local charge currents. We identify
promising candidates of film and bulk systems that realize the predicted topological
orbital magnetization, without any reference to correlation or spin-orbit effects.

Paving the road towards innovative device architectures, the burgeoning research
field of spin-orbitronics exploits relativistic phenomena to control electrically mag-
netism by means of spin-orbit torques. Only recently, these torques and the related
Dzyaloshinskii-Moriya interaction were recognized as innately geometrical effects that
originate from the global properties of a mixed phase space entangling the crystal mo-
mentum with the magnetization direction. However, the efficient treatment of such
complex higher-dimensional phase spaces sets a central challenge for ab initio theory,
calling for advanced computational methods. This demand is met by a generalized
Wannier interpolation that we develop here in order to describe Berry phase effects
in generic parameter spaces precisely. Using the scheme for spin torques and chiral
interactions in magnetic heterostructures, we correlate their microscopic origin with
the electronic structure, and elucidate the role of chemical composition and disorder.
In addition, the developed formalism enables us to evaluate efficiently the dependence
of these phenomena on the magnetization direction, revealing large anisotropies in the
studied systems. Considering the interplay of magnetism and topology, we uncover
that magnetically induced band crossings manifest in prominent magneto-electric re-
sponses in magnetic insulators. We introduce the concept of mixed Weyl semimetals
to establish novel guiding principles for engineering large spin-orbit torques in topo-
logically complex ferromagnets. Moreover, we show that topological phase transitions
in these materials are accompanied by drastic changes of the local orbital chemistry.





Kurzfassung

Berry-Phasen ermöglichen eine elegante Deutung physikalischer Effekte in Festkör-
pern basierend auf der adiabatischen Evolution der Elektronen, wenn Kontrollpara-
meter variiert werden. Diese Arbeit entwickelt fortgeschrittene ab initio Methoden für
die Dichtefunktionaltheorie, um Eigenschaften komplexer Magneten durch die geome-
trischen Merkmale von zwei unterschiedlichen Phasenräumen zu beschreiben.

Die Geometrie des Impulsraums manifestiert sich in intrinsischen Beiträgen zum
anomalen Hall-Effekt und zur Orbitalmagnetisierung von Kristallen. Dabei ist im Ge-
gensatz zum anomalen Transport das allgemeine Verständnis von Orbitalmagnetis-
mus in periodischen Systemen unvollständig. Eine quantenmechanische Beschreibung
des Phänomens fehlte sogar bis zur kürzlichen Entwicklung einer aufwendigen Berry-
Phasen-Theorie, deren Relevanz jedoch unbekannt ist. Um diese offene Frage zu be-
antworten, implementieren wir die moderne Theorie der Orbitalmagnetisierung inner-
halb der präzisen full-potential linearized augmented-plane-wave Methode. Durch den
Vergleich mit einer häufig verwendeten Näherung zeigen wir, dass die Berry-Phasen-
Theorie essentiell ist, um Orbitalmagnetismus in heutigen Materialien der Spintronik
(z.B. dünne Heterostrukturen oder topologische Magneten) verlässlich vorherzusagen.
Wir zeigen zudem, dass die chirale Spinstruktur nicht-koplanarer Antiferromagneten
als emergentes magnetisches Feld wirkt und somit die orbitale Entartung effizient auf-
hebt, sogar in Abwesenheit der Spin-Bahn-Wechselwirkung. Durch diesen Mechanis-
mus ist die makroskopische Magnetisierung in einer neuen Materialklasse, die wir als
topologische Orbitalferromagneten bezeichnen, allein durch starken Orbitalmagnetis-
mus infolge nicht-lokaler Ströme verursacht. Wir identifizieren vielversprechende Film-
und Bulksysteme, die eine solche topologische Orbitalmagnetisierung aufweisen.

Das aufstrebende Forschungsfeld der Spin-Orbitronik eröffnet neue Möglichkeiten
in der Konzeption magnetischer Bauelemente, da es relativistische Phänomene wie
Spin-Orbit-Torques zur elektrischen Kontrolle von Magnetismus nutzt. Seit Kurzem
werden diese Torques sowie die Dzyaloshinskii-Moriya-Wechselwirkung als geometri-
sche Effekte eines gemischten Phasenraums aus Kristallimpuls und Magnetisierungs-
richtung betrachtet. Jedoch stellt die effiziente Beschreibung von solchen komplexen
Phasenräumen eine zentrale Herausforderung für die ab initio Theorie dar, was neuar-
tige Methoden erfordert. Um entsprechende Berry-Phasen-Effekte präzise zu beschrei-
ben, entwickeln wir in dieser Arbeit eine verallgemeinerte Wannier Interpolation. Wir
wenden den Formalismus auf Spin-Orbit-Torques und die chirale Austauschwechsel-
wirkung an, deren mikroskopischen Ursprung wir in magnetischen Filmen mit der
Elektronenstruktur korrelieren und die Rolle von chemischer Zusammensetzung sowie
Unordnung betrachten. Zudem ermöglicht die entwickelte Methode die effiziente Be-
rechnung der teilweise deutlichen Anisotropie dieser Phänomene bezüglich der Magne-
tisierungsrichtung. Wir untersuchen ebenfalls das Zusammenspiel von Magnetismus
und Topologie, wodurch magnetisch induzierten Kreuzungspunkten in der Bandstruk-
tur von isolierenden Systemen eine starke magneto-elektrische Antwort zugeschrieben
werden kann. Um dies als Leitfaden zur Erzeugung großer Spin-Orbit-Torques in to-
pologischen Ferromagneten zu etablieren, führen wir das Konzept von mixed Weyl
semimetals ein. Wir zeigen, dass entsprechende topologische Phasenübergänge von
drastischen Veränderungen der orbitalen Chemie begleitet werden.





“The thing that doesn’t fit is the thing that’s the
most interesting: the part that doesn’t go according
to what you expected.”

– Richard P. Feynman

“You can’t start a fire, you can’t start a fire
without a spark.”

– Bruce Springsteen
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Chapter 1

Introduction

All along in the history of mankind the ability to write, store, and read information
has been an integral driving force for the development of human civilization. Starting
from the very first simple picture drawings carved into rock during the premechanical
age, information technology has evolved remarkably until today. Present-day devices
utilize innately quantum-mechanical effects based on fundamental degrees of freedom
of the electrons in order to process data. Especially, the discovery of the giant mag-
netoresistance (GMR) effect by Peter Grünberg et al. [1] and Albert Fert et al. [2] in
1988 revolutionized information technology and substantiated the fascinating research
field of spintronics by uncovering the key role of the exchange interaction between
spins. In heterostructures composed of alternating ferromagnetic and non-magnetic
conductive layers, the GMR effect converts spin information to electrical signals as
it manifests in a drastic change of the electrical resistance with the relative orienta-
tion of the magnetization in adjacent ferromagnetic layers. Soon after this seminal
finding, standard electronics footing on the electric charge was advanced to encode
information using the spin degree of freedom of the electrons as well. Being two of the
technologically most important phenomena in spintronics, the GMR and the related
tunneling magnetoresistance (TMR) effect [3–5] facilitated thereby the realization of
magnetic storage media with prominently high data densities. Ever since, represent-
ing data based on the orientation of magnetic bits became a guiding principle for
modern information technology that is implemented in present computer hard drives
and non-volatile magnetoresistive random-access memories (MRAMs).

Controlling reliably the magnetization direction of single magnetic domains is ab-
solutely vital in order to write information, e.g., into MRAMs, which is typically
achieved using magnetic fields created by applied electric currents. However, this
process of magnetization reversal lacks generally efficiency, speed, and scalability ow-
ing to the large required current densities, which impedes recently progress towards
improved magnetic storage devices. Exploiting the ideas of spintronics as laid out
by the aforementioned magnetoresistive effects, a much more attractive mechanism
for switching is the spin-transfer torque (STT) as anticipated by Slonczewski [6] and
Berger [7]. That is, a spin-polarized current may transfer spin angular momentum
between two adjacent ferromagnetic layers that are separated by a thin insulating
layer in a magnetic tunnel junction. By coupling via the exchange interaction to the
local magnetic moments, the spin current exerts a spin torque known as STT on the
macroscopic magnetization of the free ferromagnet, which is eventually reversed if
the current density exceeds a relatively low threshold. Therefore, the STT mecha-
nism is perceived to hold bright promises for energy-efficient and fast magnetization
switching, which is also beneficial for novel concepts of ultradense memory devices
based on non-uniform magnetic textures [8]. In 2016, the first commercial MRAM
chips that incorporate STT tunnel junctions as key units became available. On-going
substantial efforts in theory and experiment are devoted to understanding and opti-
mizing the material design of magnetic heterostructures in order to achieve large spin
torques under minimal current densities. But even beyond their doubtless technolog-
ical potential in non-volatile magnetic storage media [9–11], spin torques are of great
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1 Introduction

scientific interest in basic research as they probe fundamental magnetic interactions
and magnetization dynamics.

While classical spintronic devices utilize the exchange interaction to generate and
detect spin-polarized currents, the burgeoning field of spin-orbitronics exploits in-
stead the spin-orbit interaction in non-magnetic materials to manipulate adjacent
nanomagnets through injected spin currents. Stemming from bulk or interfacial spin-
orbit phenomena, these spin currents give rise to spin-orbit torques (SOTs) that were
demonstrated only recently to mediate very efficient electrical control of magnetism in
single ferromagnetic layers [12,13] and antiferromagnets [14]. Experiments distinguish
between antidamping and field-like torques as two qualitatively different contributions
to the SOT. Using the intrinsic spin-orbit coupling to create spin currents contrasts
favorably from the STT mechanism in magnetic tunnel junctions as it renders the
presence of a ferromagnetic polarizer unnecessary. In particular, this facilitates ver-
satile switching geometries in devices with enhanced durability and easily separable
lines for writing and reading. Intimately connected to the phenomenon of current-
induced SOT is the Dzyaloshinskii-Moriya interaction (DMI) [15,16] that can stabilize
localized chiral magnetic textures known as skyrmions in non-centrosymmetric bulk
crystals or at surfaces. Realizing these topologically protected spin whirls and mov-
ing them on “racetracks” in innovative magnetic memories [17] by relativistic spin
currents is a central motivation for extensive materials research in spin-orbitronics.
Driven by striking advances in the synthesis of complex spin systems composed of di-
verse chemical elements, functionalized materials with unprecedented properties can
be conceived and controlled experimentally at the nanoscale. Supplementing exper-
iments fruitfully, electronic structure theory contributes essentially to the design of
such functional devices as it provides a powerful means to uncover the microscopic
origins of emergent phenomena rooting in the first-principles electronic structure.

Condensed matter physics experienced a revolutionary twist when topology as a
branch of mathematics entered the stage, establishing an elegant interpretation of
precisely quantized transport phenomena based on universal arguments (see, e.g.,
Refs. [18,19]). These celebrated concepts have pioneered the theoretical classification
of solids according to global properties of momentum space, as a consequence of which
the transition between two topologically distinct phases of matter necessitates dras-
tic changes of the electronic structure. The quest for realizing ever-new topological
materials including quantum anomalous Hall insulators, Weyl and Dirac semimet-
als, certain photonic crystals, correlated Kitaev materials, and topological insulators
opened up prosperous research fields at the frontline of science. In these topologi-
cal phases, the fundamental interplay of symmetry, spin-orbit coupling, and exchange
interaction manifests in characteristic hallmarks, e.g., protected band crossings or per-
fectly conducting edge states. Exploiting such unique phenomena in future memory
and logic devices may open up auspicious avenues towards green information tech-
nology that dissipates hardly any energy. For example, the peculiar spin-momentum
locking of the robust surface states of topological insulators renders these systems
efficient sources of spin currents, which can be injected into an adjacent ferromagnet
to control its macroscopic magnetization by current-induced spin torques. Strikingly,
Pancharatnam [20] and Berry [21] discovered in their groundbreaking works that the
non-trivial geometrical properties of momentum space promote a “geometrical mem-
ory” of the electron as revealed by the so-called Berry phase, which is acquired upon
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quantum adiabatic transport under external forces. These gauge-invariant phases are
physically relevant as they describe a plethora of Berry phase properties such as the
intrinsic anomalous Hall effect, the electric polarization [22,23], and the phenomenon
of orbital magnetization (OM) in its modern Berry phase framework [24–27]. Anti-
damping spin torques as well as the closely related DMI originate analogously from
the complex geometry of a mixed phase space that entangles the crystal momen-
tum with the magnetization direction [28]. Emphasizing their geometrical nature,
the corresponding Berry phase theory facilitates the efficient calculation of the latter
effects based on the ferromagnetic electronic structure. In addition, it outlines bright
prospects for using the ubiquitous arguments of topology to understand and design
magneto-electric coupling phenomena in magnetic insulators.

The vital role of topology and geometry as unifying principles in spin-orbitronics
has inspired this thesis to investigate anomalous transport, orbital magnetism and
magneto-electric effects in periodic systems by theoretical means. In particular, com-
putational ab initio methods are developed and applied in order to determine the
electronic structure of complex solids based solely on the charges and positions of the
nuclei, without any reference to adjustable parameters.

Owing to the exponentially increasing number of elements in the Hilbert space, the
rigorous solution of the intricate many-body problem by quantum mechanics relies
on feasible but accurate approximations. In this context, one of the most successful
and widely pursued approaches is parameter-free density functional theory (DFT) as
developed by Hohenberg and Kohn [29], and Kohn and Sham [30]. By replacing the
many-body wave function with charge and spin densities, this theory maps the many-
body problem onto effective single-particle ones where all of the complexity of the
original many-electron system manifests in the exchange and correlation potential.
While an exact form of the latter is still unknown, experience has shown that this
potential is described surprisingly well by exchange and correlation effects in a homo-
geneous electron gas, rendering DFT practical even for large and complex systems.
In addition, due to on-going developments of continually improved exchange and cor-
relation functionals, material-specific DFT became a powerful computational tool for
predicting qualitatively the electronic structure and derived phenomena. Therefore,
first-principles theory can supplement and assist substantially the experimental ef-
forts in functionality-inspired material design by advancing our understanding of the
structure-property relation. Among the zoo of different DFT implementations, the
full-potential linearized augmented-plane-wave (FLAPW) method used in this thesis
is appreciated for its high precision that is accompanied, however, by heavy compu-
tational burden and conceptual complexity. Accounting for the full nuclear potential,
this all-electron method is well-suited to describe bulk solids, surfaces and interfaces,
one-dimensional wires, and open geometries formed by any chemical element of the
periodic table. Realistic force calculations including the spin-orbit interaction support
the structural optimization of the atomic positions. The method allows us further to
study ferromagnetic and antiferromagnetic structures as well as complex magnetism.

Despite of mapping the many-body problem to effective single-particle ones, Kohn-
Sham DFT remains computationally very demanding, which applies in particular to
the FLAPW implementation that adopts no shape approximations for the potential.
Due to this considerable intricacy, first-principles theory is supplemented routinely by
an efficient tight-binding representation of the electronic structure based on Wannier
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1 Introduction

functions [31], which facilitate an accurate interpolation of energy bands and transport
phenomena. In contrast to the wave-like Bloch states, Wannier functions are localized
in real space whereby they impart intuitive insights into the character of chemical
bonds. This basis constitutes additionally an ideal starting point for constructing
model Hamiltonians that aim at the description of correlated solid-state systems with
prominent electron-electron interactions. Moreover, as the action of the position
operator on the localized Wannier functions is well-defined, the quantum-mechanical
theories of electric polarization and OM are formulated most naturally in this basis.

Being one of the most elementary quantum-mechanical phenomena in condensed
matter, magnetism stems generally not only from the electrons’ spin but also from
circulating charge currents that manifest in an orbital moment. The latter effect is at
the heart of the complex concurrence of spin-orbit interaction, electronic correlations,
and crystal-field effects in periodic crystals. Since the magnitude of the quenched or-
bital moment is usually strongly overshadowed by the spin part, the overall relevance
of orbital magnetism is debated vividly, even though fascinating phenomena such as
the gyrotropic magnetic effect rely sensitively on the orbital moments at the Fermi
surface. This controversy roots primarily in the yet premature understanding of or-
bital magnetism as compared to its spin counterpart, which can be ascribed partially
to the lack of a rigorous quantum-mechanical description until the recent advent of
the Berry phase theory of OM [24–27]. However, a clear justification for the involved
first-principles methodology associated with this Berry phase theory has been missing
so far. In this thesis, we implement an efficient Wannier scheme for interpolating the
OM according to its modern Berry phase theory, and apply the developed computa-
tional method to bulk ferromagnets, heterostructures, and topological materials. By
comparing to a commonly adopted local approximation, we clarify the crucial role
of the truly quantum-mechanical treatment to describe reliably orbital magnetism in
condensed matter. Our results emphasize the relevance of the Berry phase theory
in order to link to experiments on extensively scrutinized systems in spintronics and
spin-orbitronics. We further outline the intriguing concept of topological orbital mag-
netism, which is driven by chiral spin textures rather than the spin-orbit interaction.
The corresponding unconventional orbital moments are demonstrated to amount to
colossal values in non-collinear antiferromagnets, and promising material candidates
are identified based on symmetry analysis.

Intrinsic antidamping SOTs and the DMI were recognized lately as innately geo-
metric effects that originate from global properties of the higher-dimensional phase
space entangling crystal momentum and magnetization direction. As a consequence,
knowledge about the variation of the wave functions with respect to the magnetic
orientation constitutes a key ingredient in the corresponding Berry phase theory [28].
Since such information is not readily available in current electronic structure codes,
we develop and implement in this thesis the formalism of higher-dimensional Wan-
nier functions (HDWFs), which provides efficiently the necessary ingredients. Our
generic method is ideally suited to study anisotropic Berry phase properties based
on the first-principles electronic structure of ferromagnetic systems. We verify the
efficiency and correctness of this technique in predicting SOTs and DMI in magnetic
heterostructures. In particular, we uncover the microscopic origin and the compo-
sition dependence of these effects in alloyed Co-based trilayers, where we identify
characteristic sign changes of the DMI. Additionally, we investigate the anisotropy of
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spin torques with respect to the magnetization direction, which affects the dynamical
properties of chiral magnetic textures. Ultimately, using the universal arguments of
topology, we introduce the concept of mixed Weyl semimetals to explain unambigu-
ously pronounced magneto-electric effects in magnetic insulators, where emergent
monopoles close to the Fermi level are of central importance. Thereby, we bring the
field of current-induced torques to the realm of topology, promoting novel guidelines
for the design of large SOTs in insulating magnets. We identify from first principles
the two examples of magnetically doped graphene and functionalized magnetic films
as promising realizations of the class of mixed Weyl semimetals that reveal non-trivial
Berry phase properties. Our results pave the road towards low-dissipation magneti-
zation control by electric fields.

The thesis is organized as follows: in Chapters 2 and 3, we outline how to solve the
quantum-mechanical many-body problem by density functional theory, and discuss
the FLAPW method. Chapter 4 introduces the concept of Berry phases relating to
solid-state phenomena that are currently under intensive scrutiny in spin-orbitronics.
We describe in Chapter 5 the method of Wannier interpolation and present our imple-
mentation of the modern theory of orbital magnetism in the Jülich DFT code fleur.
Applying this computational method, we present in Chapter 6 a comprehensive study
on the relevance of the Berry phase theory for describing reliably orbital magnetism.
Further, we elucidate the emergent phenomenon of topological orbital moments that
originate solely from chiral non-coplanar spin textures. In Chapter 7, we develop the
framework of HDWFs and motivate a generalized Wannier interpolation. Chapter 8
applies this technique to the efficient ab initio description of SOTs and DMI in metal-
lic heterostructures. In Chapter 9, we explore the universal arguments of topology
to understand and design magneto-electric coupling effects in topologically complex
magnets. The thesis is concluded in Chapter 10.
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Chapter 2

Density functional theory

Contents
2.1 Many-body problem in quantum mechanics . . . . . . . . . . . . 7

2.2 The Thomas-Fermi model . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The seminal theorems by Hohenberg and Kohn . . . . . . . . . . 10

2.4 Towards practical schemes: The Kohn-Sham equations . . . . . . 11

2.5 Treatment of spin-polarized systems . . . . . . . . . . . . . . . . 13

2.6 Exchange and correlation effects . . . . . . . . . . . . . . . . . . . 15

In this chapter, we provide a concise introduction to the electronic-structure problem
and its quantum-mechanical solution in terms of density functional theory. Starting
from the interacting many-body Hamiltonian, we motivate the Born-Oppenheimer ap-
proximation and discuss approaches to the solution of the corresponding many-electron
Schrödinger equation. The Thomas-Fermi model as a first example of a density-based
method is reviewed, followed by the formulation of the two seminal theorems by Ho-
henberg and Kohn, which underlie modern density functional theory. Based on these
theorems, we formulate the Kohn-Sham equations of effectively non-interacting par-
ticles in the case of non-magnetic, collinear, and non-collinear systems. Finally, we
turn to the intricate treatment of exchange and correlation effects that render practical
approximations obligatory.

2.1 Many-body problem in quantum mechanics

The predictive theoretical description of fundamental phenomena in condensed-matter
systems relies substantially on using the rigorous machinery of quantum mechanics.
Consequently, the complex many-body problem of mutually interacting nuclei and
electrons forming the solid sets a central challenge for electronic structure theory. This
key challenge amounts to solving an eigenvalue problem in terms of the stationary
Schrödinger equation [32] to the Hamiltonian H, which reflects the quantum nature
of the many-electron system:

HΨ(r1, . . . , rN , τ1, . . . , τM) = EΨ(r1, . . . , rN , τ1, . . . , τM) , (2.1)

where the state of the system is represented by the many-body wave function Ψ that
depends on the coordinates ri of all N electrons as well as on the positions τµ of the
M ions, and E is the corresponding energy of the system. In general, the many-body
Hamiltonian entering the Schrödinger equation assumes in atomic coordinates the
form

H = −1

2

∑
i

∇2
i −

1

2

∑
µ

1

Mµ

∇2
µ −

∑
iµ

Zµ
|τµ − ri|

+
1

2

∑
ij

1

|ri − rj|
+

1

2

∑
µν

ZµZν
|τµ − τν |

.

(2.2)

7



2 Density functional theory

Here, the first two terms track the kinetic energy of electrons and nuclei, respectively,
the third contribution represents the attractive interaction between a nucleus of charge
Zµ at τµ and an electron at ri, and the two remaining parts correspond to the repulsion
among electrons and nuclei, respectively.

Since the massive nuclei are much heavier than the light electrons, the kinetic energy
of the nuclei in Eq. (2.2) can often be neglected, leading to an effective decoupling
of electronic and ionic coordinates, and thus to an important simplification of the
many-body problem. In this Born-Oppenheimer approximation [33], electronic prop-
erties can be evaluated while considering the nuclei fixed as the fast electrons adapt
instantaneously to slow changes of the ionic positions. This leads to the electronic
Schrödinger equation[
−1

2

∑
i

∇2
i +

1

2

∑
ij

1

|ri − rj|
−
∑
iµ

Zµ
|τµ − ri|

]
Ψ(r1, . . . , rN) = EΨ(r1, . . . , rN) ,

(2.3)
where we suppress for sake of simplicity the parametric dependence of the electronic
wave function on the fixed ionic positions. The atomic nuclei of the solid constitute
an external potential with which the electrons interact. Other single-body effects
arising from the interaction of electrons with electric or magnetic fields could easily
be added to the above expression. Moreover, if spin-orbit coupling is included, the
non-relativistic formulation (2.3) of the electronic problem becomes spin-dependent
and its solutions are described by spinors.

It is remarkable that any electronic property can in principle be derived from solv-
ing the electronic Schrödinger equation, given just the (fixed) coordinates τµ and the
charges Zµ of the nuclei. However, the electronic problem is still of vast complex-
ity due to the dramatically increasing size of the Hilbert space with the number of
electrons1, causing a direct solution of Eq. (2.3) to be impossible for many-electron
systems. Besides, the long-range Coulomb interaction between two electrons ren-
ders the problem particularly intricate. As already pointed out by Dirac in the late
1920’s [34], this makes further practical approximations indispensable in order to solve
eventually the electronic structure problem. On one side, approximate many-body
wave functions can be found by systematically expanding them in terms of Slater
determinants [35,36] that describe the non-interacting system exactly2. For example,
taking into account only a single Slater determinant as wave function of the fully-
interacting system results in the so-called Hartree-Fock approximation [35, 37, 38].
Motivated by specific physical effects, one could alternatively approximate the many-
body Hamiltonian to reduce complexity by keeping only the relevant ingredients of
the Hamiltonian that govern the sought effects. This amounts usually to restricting
the number of electrons, or to treating the long-range electron-electron interaction as
local.

1If V is the system size and N is the number of electrons, the dimension of the Hilbert space of
the wave functions Ψ(r1, . . . , rN ) grows like V N . Since frequently V ∝ N , the dimension of the
Hilbert space scales with NN in this case.

2In absence of any electron-electron interactions, the Hamiltonian in Eq. (2.3) becomes a simple
sum of single-particle terms such that the electronic many-body wave function is an antisymmet-
ric linear combination of the corresponding single-particle solutions, which is known as Slater
determinant.
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2.2 The Thomas-Fermi model

In fact, the primary ambition of electronic structure methods is not the hunt for an
exact wave function – which is anyhow not directly observable – but rather the reliable
prediction of physical expectation values 〈Ψ|O|Ψ〉 of quantum-mechanical operators
O. Using appropriate approximations as those discussed before, these methods aim at
describing only information necessary for the accurate evaluation of expectation values
while reducing the burden associated with the many-body problem. Establishing an
effective single-particle description, a powerful method that follows this line of thought
is density functional theory.

2.2 The Thomas-Fermi model

A first density-based approach to the electronic structure was developed by Thomas
and Fermi [39–41] who found explicit expressions of the kinetic energy, the electron-
electron interaction, and the nuclear potential in Eq. (2.3) in terms of the electronic
many-body density n(r). In the Thomas-Fermi model, the electrons are treated
as independent particles with a purely electrostatic mutual interaction – known as
Hartree term that reads

VH[n(r)] =
1

2

∫∫
n(r)n(r′)

|r − r′|
d3rd3r′ . (2.4)

The external potential formed by the nuclei is easily written as functional of the
density:

Vext[n(r)] = −
∫ ∑

µ

Zµ
|τµ − r|

n(r) d3r . (2.5)

Thomas and Fermi addressed the central challenge to obtain an adequate represen-
tation of the kinetic energy by considering a locally uniform electron gas of indepen-
dent non-interacting particles. Within this local density approximation (LDA) [30,
42, 43], the kinetic energy density assumes the form t[n(r)] = 3/10 (3π2)2/3n2/3(r)
such that the kinetic energy functional is given by

T [n(r)] =

∫
t[n(r)]n(r) d3r =

3

10
(3π2)

2
3

∫
n

5
3 (r) d3r , (2.6)

which completes the total energy functional E[n(r)] = T [n(r)]+Vext[n(r)]+VH[n(r)]
in the Thomas-Fermi model. Then, under the condition that the overall number of
electrons N =

∫
n(r) d3r remains constant, which is taken care of via the Lagrange

multiplier λ, the total energy functional can be minimized to arrive at the Thomas-
Fermi equation

1

2
(3π2)

2
3n

2
3 (r) +

∫
n(r′)

|r − r′|
d3r′ −

∑
µ

Zµ
|τµ − r|

+ λ = 0 . (2.7)

To include, at least to some extent, exchange effects due to the Pauli exclusion
principle, Dirac suggested later to add to Eq. (2.7) a correction term Wx[n(r)] ∝∫
n4/3(r) d3r originating from the exchange energy of a homogeneous electron liquid.

Still, the Thomas-Fermi model suffers from the particularly poor representation of
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2 Density functional theory

the kinetic energy3, errors in the exchange energy, and neglecting completely any
correlation effects. As a consequence, the Thomas-Fermi approach cannot predict the
binding of molecules or solids, does not lead to an atomic shell structure, and never
develops ferromagnetism. Irrespective of these drawbacks, the mathematically well-
defined model was frequently studied since it becomes exact in the limit of Zµ →∞,
and yields reasonable total energies for atoms.

2.3 The seminal theorems by Hohenberg and

Kohn

The modern density functional theory (DFT) is based on two ground-breaking the-
orems by Hohenberg and Kohn [29] that provide the firm theoretical framework for
substituting the many-body wave function with the electronic many-body density

n(r) = 〈Ψ|
∑

i
δ(r − ri)|Ψ〉 (2.8)

in order to investigate quantum-mechanical systems. Here, we discuss first the case
of a non-magnetic material with spin degeneracy but return to the extension to spin-
polarized systems later.

When we consider the many-body Hamiltonian H = T+Vext +Vee that contains the
kinetic energy T , the external potential Vext (e.g., due to the nuclei), and the electron-
electron interaction Vee, the first theorem by Hohenberg and Kohn states that there
exists a unique functional relation between the total energy and the electronic density
of the many-body system.

Theorem 1 The external potential Vext is determined by the electronic many-body
density n(r) up to a trivial constant. As a consequence, the total energy of the system
is a unique functional of the density:

E[n(r)] = T [n(r)] + Vext[n(r)] + Vee[n(r)] . (2.9)

The indirect proof by Hohenberg and Kohn is based on the assumption that two
different external potentials lead to the very same density, which is then shown to
contradict the Rayleigh-Ritz variational principle. Thus, different external potentials
must give rise to different ground-state electronic densities. Since specifying the exter-
nal potential also specifies the Hamiltonian, the many-body wave function4 and any
measurable quantity such as the total energy are unique functionals of the electronic
density as well.

Exploiting this knowledge about the ground-state wave function and applying once
again the variational principle, Hohenberg and Kohn were able to formulate their
second theorem that is valuable from the viewpoint of practical DFT calculations.

3In sharp contrast, the predictive method by Kohn and Sham, which is discussed below, improves
substantially the representation of the kinetic energy.

4The ground-state density fully determines the many-body Hamiltonian and thus not only the
ground-state wave function but also excited states of the system.
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2.4 Towards practical schemes: The Kohn-Sham equations

Theorem 2 The total energy functional E[n(r)] is minimized for the exact ground-
state density n0(r) under the constraint that the total number of electrons is kept
fixed:

E[n0(r)] ≤ E[n(r)] . (2.10)

In principle, the electronic density n0(r) and the total energy E[n0(r)] of the many-
body ground state are obtained by following the Hohenberg-Kohn theorems if the
functional E[n(r)] would be given. However, the explicit functional form of the total
energy is unknown and thus has to be approximated in DFT calculations of the
electronic structure.

2.4 Towards practical schemes: The Kohn-Sham

equations

Based on the variational principle of the total energy functional, Kohn and Sham [30]
proposed a set of single-particle Schrödinger-like equations of N non-interacting elec-
trons propagating in an effective potential Veff(r), where the electronic density is
forced to reproduce the one of the genuine many-body problem. In contrast to the
Thomas-Fermi model, no explicit shape of the kinetic energy is assumed such that
this formalism – which underlies most modern DFT implementations, and won Kohn
and Sham the Nobel Prize in chemistry – has truly predictive power. As the Kohn-
Sham reference system is non-interacting, the ground state is represented by a single
Slater determinant of the set of single-particle wave functions ψi with i = 1, . . . , N .
Each of these single-particle states obeys a Schrödinger-like equation[

−1

2
∇2 + Veff(r)

]
ψi(r) = Eiψi(r) , (2.11)

which are known as Kohn-Sham equations, the solutions ψi are the Kohn-Sham wave
functions, and Ei are the Kohn-Sham eigenvalues. The corresponding ground-state
density nKS(r) of the reference system is found by occupying the lowest-lying solutions
of Eq. (2.11), which amounts to nKS(r) =

∑
i |ψi(r)|2. The total energy functional

reads in this case

EKS[nKS(r)] = TKS[nKS(r)] +

∫
Veff(r)nKS(r) d3r , (2.12)

and provides an alternative approach to find the ground-state density of the Kohn-
Sham reference system when following the variational principle5.

The formalism by Kohn and Sham converts the intricate many-body problem of
interacting electrons into simpler single-particle problems that are solvable (at least
approximately) but still allow for the efficient calculation of the exact ground-state
energy of the interacting system. However, in order to satisfy the bridging condition
that the electronic densities of the two systems are the same, i.e., n(r) = nKS(r), the

5In fact, we can derive the set of single-particle Schrödinger equations (2.11) if we minimize the
energy functional EKS[nKS], where the constraint of a fixed number of electrons is accounted for
by the Lagrange multipliers Ei.
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2 Density functional theory

effective potential Veff(r) of the non-interacting reference system has to be adjusted
adequately. To proceed, we rewrite the total energy functional (2.10) of the complex
many-body system as6

E[n(r)] = TKS[n(r)]+

∫
vext(r)n(r) d3r+

1

2

∫∫
n(r)n(r′)

|r − r′|
d3rd3r′+Exc[n(r)] , (2.13)

where the third term on the right-hand side is the Hartree term VH (known already
from the Thomas-Fermi model) taking into account explicitly electrostatic interac-
tions between the electrons, and the exchange-correlation functional

Exc[n(r)] = W [n(r)] + T [n(r)]− TKS[n(r)] (2.14)

contains corrections to the kinetic energy as well as the remaining electron-electron
interaction W = Vee − VH. While the first three contributions on the right-hand side
of Eq. (2.13) can be calculated numerically, an exact expression for the exchange-
correlation part remains elusive until now. Consequently, the complexity of the in-
teracting many-body problem is mapped to finding reliable approximations to Exc in
the Kohn-Sham approach. The minimization of the energy functional (2.13) leads to
a second set of Schrödinger-like equations, which becomes identical to Eq. (2.11) if
the effective potential is chosen as

Veff(r) = vext(r) +

∫∫
n(r′)

|r − r′|
d3r′ +

δExc[n(r)]

δn(r)
, (2.15)

which establishes the equality of the ground-state densities of the non-interacting
reference system and the interacting one.

Since the effective potential entering the Kohn-Sham equations depends on the
electronic density, the equations (2.11), (2.15), and n(r) =

∑
i |ψi(r)|2 constitute

a non-linear system of equations that need to be solved self-consistently (see also
Fig. 2.1): Starting from an initial density, the effective potential is set up, followed by
the solution of the Schrödinger-like equation (2.11), which serves to compute the new
ground-state density. This output density – or possibly a mixture of input and output
densities – is used to determine again the effective potential, and iterated until input
and output densities are the same. By combining within the Kohn-Sham formalism
the Eqs. (2.11), (2.13), and (2.15), we arrive at the sought ground-state total energy
of the interacting many-body system:

E =
∑
i

Ei −
1

2

∫∫
n(r)n(r′)

|r − r′|
d3rd3r′ −

∫
δExc

δn(r)
n(r) d3r + Exc , (2.16)

where the simple sum of the occupied Kohn-Sham eigenvalues Ei of the auxiliary
reference system needs to be corrected for the double counting of the electron-electron
interactions. Notably, it cannot be expected that the Kohn-Sham orbitals and energies
have a direct physical meaning on their own as they form solutions to an ancillary
single-particle problem7. Nevertheless, experience has shown that these eigenstates

6As the densities n(r) and nKS(r) are required to be the same, the subscript is suppressed in the
following.

7An exception is the highest occupied Kohn-Sham eigenvalue, which determines the ionization
potential.
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Figure 2.1: Self-consistency circle of density functional theory to determine the charge
density n(r) based on the Kohn-Sham approach (2.11).

and eigenvalues often describe the true electronic structure of the interacting many-
electron system exceptionally well, which lends credibility to electronic band structure
calculations based on the approach by Kohn and Sham. The ground-state Kohn-Sham
wave functions can even serve as a starting point for advanced perturbative schemes
aiming at the description of excitations.

2.5 Treatment of spin-polarized systems

Although it was originally introduced for non-magnetic systems, DFT can also be
applied to spin-polarized systems [44] that may be subject to an external magnetic
field Bext. By following an analogous reasoning, the total energy in the magnetic case
can be proven to be a unique functional of both the electronic many-body density n(r)
and the spin, or, magnetization density m(r). Because of the additional magnetic
field, the many-body Hamiltonian is modified as H = T + U + Vee, where

U =

∫
[vext(r)n(r)−Bext(r) ·m(r)] d3r , (2.17)

which represents the single-particle potential arising from the interaction of the elec-
trons with the nuclear field vext and the magnetic field Bext. Based on the Rayleigh-
Ritz variational principle, it follows by reductio ad impossibilem that two different
external potentials U and U ′ lead to different densities n(r) 	= n′(r) and m(r) 	=
m′(r). An equivalent formulation of DFT in spin-polarized systems is obtained
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2 Density functional theory

by using instead of electronic and magnetization densities the 2 × 2 density matrix
ρ(r) = 1

2
[n(r)I +m(r) · σ] as an alternative representation. Here, σ is the vector of

Pauli matrices, and I denotes the unit matrix.

To generalize the Kohn-Sham equations (2.11), N occupied single-particle spinor
wave functions ψi(r) = (ψi+(r), ψi−(r))T are introduced such that the densities read

n(r) =
∑
i

∑
α=±

|ψiα(r)|2 , (2.18)

m(r) =
∑
i

ψ†i (r)σψi(r) . (2.19)

If we apply the variational principle for the total energy functional E[n(r),m(r)] in
the spin-polarized case, we arrive at a set of Schrödinger-Pauli-like equations that
describe the effective single-particle problem:[

−1

2
∇2 + Veff(r) + σ ·Beff(r)

]
ψi(r) = Eiψi(r) . (2.20)

The effective magnetic fieldBeff = Bext +Bxc contains the external field as well as the
so-called exchange field, which arises from the variation of the exchange-correlation
term with the magnetization density:

Bxc(r) =
δExc[n(r),m(r)]

δm(r)
. (2.21)

Since effective potential and effective magnetic field in the Schrödinger-Pauli-like
equations rely on spin and electron densities, Eq. (2.20) has to be solved iteratively
until self-consistency is reached.

The spin-polarized Kohn-Sham equations in the general form (2.20) are well-suited
to investigate non-collinear magnetism. In the case of collinear magnetism, for which
the direction of the magnetic field is constant in space, e.g., Beff(r) = Beff(r)êz, the
Schrödinger-Pauli-like equations decouple for the two spinor components into[

−1

2
∇2 + Veff(r) +Beff(r)

]
ψi+(r) = Ei+ψi+(r) ,[

−1

2
∇2 + Veff(r)−Beff(r)

]
ψi−(r) = Ei−ψi−(r) ,

(2.22)

which can be solved independently for the two spin directions. As a result, observable
quantities such as the total energy are functionals of the electronic density and the
magnitude of the magnetization m(r) rather than its direction. Therefore, an equiv-
alent representation of the electronic structure problem in collinear magnets uses
the densities of spin-up and spin-down electrons that read n+(r) =

∑
i |ψi+(r)|2

and n−(r) =
∑

i |ψi−(r)|2, respectively, from which the electron density n(r) =
n+(r) + n−(r) and the magnetization density m(r) = n+(r) − n−(r) can be con-
structed. Most of the spin-polarized DFT calculations have been performed within
this framework, where the effort of the collinear magnetic calculation (2.22) is twice
that of a non-magnetic one.
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2.6 Exchange and correlation effects

Remarkably, the above density-based formalism is an exact theory since it can repro-
duce in principle all ground-state properties of any interacting many-electron system
if the exchange-correlation term Exc[n(r),m(r)] was known. As this is not the case,
however, approximations to account for exchange and correlation effects are oblig-
atory. The great success of modern DFT for electronic structure calculations roots
primarily in the observation that various elementary properties of interacting many-
electron systems are described surprisingly well within relatively simple and thus
practical approximations to the functional form of Exc[n(r),m(r)].

One routinely applied example is the local spin density approximation (LSDA) [30,
43, 45–51], which is conceptually similar to the Thomas-Fermi approximation in re-
placing Exc[n(r),m(r)] locally with the exchange-correlation energy of a homoge-
neous electron gas. Thus, the approximate functional assumes the form

Exc[n(r),m(r)] =

∫
εxc(n(r),m(r))n(r) d3r , (2.23)

where the exchange-correlation energy density εxc is just a function of the electron
density and the magnitude m(r) of the spin density. Due to this local definition, the
exchange field is always aligned with the magnetization direction m̂ according to

Bxc(r) = n(r)
∂εxc(n(r),m(r))

∂m(r)
m̂ . (2.24)

Accordingly, the Kohn-Sham equations in LSDA are simplified to the form of Hartree
equations. While the exchange energy of the uniform electron liquid has been calcu-
lated by Dirac, the general correlation energy of this system is not known analytically.
Therefore, the exchange-correlation density εxc is usually accounted for using specific
parameterizations such as those given by von Barth and Hedin [45] based on the
random phase approximation, by Vosko, Wilk and Nusair [48] rooting in quantum
Monte-Carlo simulations, or by Perdew and Zunger [49] that mixes the latter two.
Although the LSDA may be anticipated to be restricted to the case of slowly varying
densities, it has been applied quite successfully even to inhomogeneous systems.

The generalized gradient approximation (GGA) denotes the next level of complex-
ity in treating the unknown exchange-correlation term, which is expressed in this
approach as

Exc[n+, n−] =

∫
f(n+, n−,∇n+,∇n−) d3r . (2.25)

In contrast to the LSDA, for which the basic ingredient εxc(n+, n−) is directly related
to the uniform electron liquid with spin densities n+ and n−, there is no such guiding
principle to derive a unique function f(n+, n−,∇n+,∇n−). As a result, a vast number
of GGA exchange-correlation functionals exists, also termed semi-local functionals as
they hinge on the gradient of the density. Among them is the parametrization by
Perdew, Burke, and Ernzerhof (PBE), which is one of the most widely used semi-
local functionals [52].

Particular many-body systems may call for the use of more specialized approx-
imations beyond LSDA and GGA in order to describe ground-state properties re-
liably. For example, the latter two functional types tend to represent poorly the
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2 Density functional theory

electronic structure of systems such as transition-metal oxides that comprise pre-
dominantly localized or strongly correlated electrons. An improved treatment of
exchange-correlation effects in these systems is realized in the so-called self-interaction
correction (SIC) [49] or the LDA+U method [53–56], which introduces an adjustable
orbital-dependent interaction U in the calculations. Alternatively, the free parameter
U can also be obtained self-consistently from DFT calculations [57–59]. Furthermore,
the approach of exact exchange [60] is in order if spectral properties of insulators need
to be determined to high precision.
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Full-potential linearized
augmented-plane-wave method
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We present the foundations of the full-potential linearized augmented-plane-wave
(FLAPW) method that provides a suitable set of basis states for the solution of the
electronic-structure problem laid out in the previous chapter. In the beginning, we
highlight the origins of this framework rooting in augmented-plane-wave and linearized
methods that typically employ shape approximations for the effective potential. Con-
sidering the full crystal potential, we formulate the generalized Kohn-Sham eigenvalue
problem by constructing the Hamiltonian matrix in the non-orthogonal FLAPW basis,
including possible contributions that arise from the adequate treatment of thin films
and surfaces. Starting from the Dirac equation, we elaborate on how relativistic ef-
fects on valence electrons can be taken into account. Finally, the implementation of
non-collinear magnetism within the FLAPW method is discussed.

3.1 Basis sets for density functional theory

3.1.1 Augmented plane-waves

The Kohn-Sham equations (2.11), or their general spin-polarized analog given by
Eq. (2.20), can be solved following various strategies. A common approach is to ex-
pand the single-particle wave functions into suitable basis functions that adapt to the
physical problem at hand. For example, the choice of an orthogonal plane-wave basis
is convenient as these functions are simple, they diagonalize the kinetic energy term
−1

2
∇2, and are suggested by the Bloch theorem as solutions of a periodic system [61].
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3 Full-potential linearized augmented-plane-wave method

MT1

INT MT2

Figure 3.1: In the augmented-plane-wave method, the real space is partitioned into non-
overlapping spheres (here MT1 and MT2) around the nuclei, known as muffin
tins, and the interstitial region (INT). The different basis functions in these
real-space regions are adapted to describe adequately the wave functions either
near the nuclei or in between them. The unit cell of the depicted cubic lattice
is indicated by black lines.

Owing to the translational invariance in solids, the Kohn-Sham wave functions may
be written accordingly as Bloch states that read ψk(r) = eik·ruk(r) at any point k
of the crystal-momentum Brillouin zone. The lattice-periodic functions uk(r) are ex-
panded into plane-waves with the reciprocal-lattice vector G as characteristic wave
vector:

ψk(r) =
∑
G

cGk φ
G
k (r) with φGk (r) =

1√
V

ei(k+G)·r , (3.1)

where V is the unit-cell volume. In order to derive the expansion coefficients cGk , the
eigenvalue problem of the single-particle Hamiltonian in the basis of the plane waves
has to be formulated and solved.

Obviously, when aiming at the numerical solution of the Kohn-Sham problem, we
need to restrict the size of the basis set in the plane-wave expansion (3.1) by taking
into account only a finite but large enough number of vectors G. Although this
approach is successful in describing non-interacting electrons in a sufficiently smooth
potential, it cannot capture rapid oscillations of charge density and wave functions
that arise close to the ions. As an enormous amount of vectors G would be required
for this to work, the use of a plane-wave basis is rendered highly inefficient in the light
of the strong 1/r-divergence of the Coulomb potential. This calls either for replacing
the full nuclear field with an effective potential, also referred to as pseudopotential,
that is smooth enough to be treated with a small number of plane waves, or for a
better basis-set choice inspired by the underlying physics.

Along the latter line of reasoning, Slater proposed originally the augmented-plane-
wave (APW) method [62], where real space is partitioned into muffin-tin spheres
centered around the nuclei, and the remaining interstitial region in between the ions
as shown in Fig. 3.1. Frequently, implementations of the APW method adopt so-called
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3.1 Basis sets for density functional theory

shape approximations by treating the potential inside the muffin tins as spherically
symmetric, while the interstitial potential is set to a constant value. This suggests
to use plane-wave basis functions in the interstitial region but spherical harmonics
times a radial wave function for an expansion of the single-particle solutions within
the muffin tins:

φGk (r) =


1√
V

ei(k+G)·r in interstitial∑
L

aµGLk u
µ
l (rµ)YL(r̂µ) in muffin tin µ

, (3.2)

where rµ = rµr̂µ = r − τµ is the position vector relative to the ionic position τµ,
and the angular-momentum quantum numbers are contained in L = (l,m). The
coefficients aµGLk of the expansion into spherical harmonics have to be determined such
that the wave functions at the muffin-tin boundary are continuous. Inside the muffin
tin µ, the functions uµl (rµ) are solutions of the radial Schrödinger equation1[
−1

2

∂2

∂r2
µ

+
1

2

l(l + 1)

r2
µ

+ V 0
µ (rµ)− Eµ

l

]
rµu

µ
l (rµ) =

[
Hµ

sph − E
µ
l

]
rµu

µ
l (rµ) = 0 (3.3)

to a given energy parameter Eµ
l , where V 0

µ (rµ) denotes the spherical part of the
nuclear potential, and Hµ

sph is the spherical part of the non-relativistic Hamiltonian.
Selecting the optimal energy parameters to obtain an adequate basis for the single-
particle Hamiltonian is subtle: if these parameters are fixed during the construction
of the basis, the electronic structure problem amounts to a generalized eigenvalue
problem, which can be solved numerically. However, fixing Eµ

l strongly restricts the
variational freedom of the APW basis (3.2) such that an accurate description is only
recovered if the energy parameters are identical to the true (initially unknown) band
energies. As the radial solutions hinge on the choice of Eµ

l , the electronic structure is
not found from a simple diagonalization of the Hamiltonian matrix but invokes the
iterative solution of a non-linear, computationally much more challenging problem.

Going beyond the shape approximation of a spherically symmetric potential inside
the muffin tins makes this issue in the APW method even more intricate since the
optimal energy parameters are not anymore the band energies in this case. In addi-
tion, the basis set (3.2) may suffer from the so-called asymptote problem if the radial
functions uµl (rµ) become tiny or vanish at the muffin-tin boundary, which renders the
mentioned boundary conditions difficult to meet.

3.1.2 Linearized augmented-plane-waves

As the APW method does not offer enough variational freedom for fixed energy
parameters and entails a non-linear energy dependence of the Hamiltonian for the
optimal choice of Eµ

l , Andersen [63] as well as Koelling and Arbman [64] proposed
the linearized augmented-plane-wave (LAPW) method. Here, additional variational
freedom is introduced in the muffin tins by considering linear combinations of the
radial functions and their energy derivatives u̇µl (rµ). In order to appreciate the inclu-
sion of this additional contribution, a Taylor expansion of the radial functions around

1When including relativistic effects, the radial functions are found from solving the scalar relativistic
Dirac equation (3.36) instead of the Schrödinger equation (3.3).
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3 Full-potential linearized augmented-plane-wave method

Eµ
l can be performed, which reads up to first order

uµl (rµ, E) ≈ uµl (rµ, E
µ
l ) + u̇µl (rµ, E

µ
l )(E − Eµ

l ) , (3.4)

where the dependence of the radial functions on the band energy E is written out
explicitly, and u̇µl = ∂uµl /∂E is the energy derivative. This linearization introduces
errors in the wave function that are quadratic with respect to the energy difference
E − Eµ

l , which implies according to the variational principle an error on the order
of (E − Eµ

l )4 for the resulting band energies. Therefore, the LAPW method works
usually very well even for a broad energy range of the valence bands2.

The linearization motivates the use of the following LAPW basis states:

φGk (r) =


1√
V

ei(k+G)·r in interstitial∑
L

[
aµGLk u

µ
l (rµ) + bµGLk u̇

µ
l (rµ)

]
YL(r̂µ) in muffin tin µ

, (3.5)

where the expansion coefficients aµGLk and bµGLk are determined via the constraint that
the basis states and their first real-space derivatives are continuous at the muffin-tin
boundary3. Typically, the normalization condition 〈uµl |u

µ
l′〉 =

∫ Rµ
0

uµl u
µ
l′r

2
µdrµ = δll′ is

adopted, where Rµ is the muffin-tin radius around the µth ion, which entails that the
radial functions and their energy derivatives are mutually orthogonal, i.e., 〈uµl |u̇

µ
l′〉 =

0. The latter states are proper solutions to a Schrödinger-like equation that is found
by taking the derivative of Eq. (3.3) with respect to the energy parameter:[
−1

2

∂2

∂r2
µ

+
1

2

l(l + 1)

r2
µ

+ V 0
µ (rµ)− Eµ

l

]
rµu̇

µ
l (rµ) =

[
Hµ

sph − E
µ
l

]
rµu̇

µ
l (rµ) = rµu

µ
l (rµ) .

(3.6)
Implementing the linearized basis states (3.5), the LAPW method overcomes the

major drawbacks of the APW basis discussed before: first and foremost, an accurate
treatment does not rely anymore on choosing the energy parameters Eµ

l as the band
energies that are thus determined from a standard secular equation of the Hamilto-
nian. These linearized basis states also do not suffer from the asymptote problem
as the radial and energy derivatives are often non-zero even if uµl (rµ) vanishes at the
muffin-tin boundary. And finally, the increased variational freedom in the muffin tins
offers the powerful option to include rather easily potential contributions beyond the
spherically symmetric one, which results in the full-potential linearized augmented-
plane-wave (FLAPW) method.

However, we remark that the problem of the non-linear energy dependence of the
Hamiltonian in the APW approach is avoided by the LAPW method at the cost of
a larger number of plane waves to be taken into account in the interstitial region in
order to realize eventually the extra variational freedom in the muffin tins. Although
it might be surprising at first sight, this connection originates from the coupling of
plane waves and muffin-tin basis functions mediated by the boundary conditions.

2While the use of a single set of energy parameters is typically sufficient, the energy range to be
described could also be split into several energy windows with separate sets of energy parameters.

3Consequently, the LAPW basis set has to obey more constraints as compared to the APW one,
where only the continuity of the basis states is required.
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3.1 Basis sets for density functional theory

3.1.3 Extending the basis set by local orbitals

In order to improve the treatment of semi-core states such as the 3s and 3p orbitals in
Ti, and thereby boost the convergence with respect to the number of basis functions,
local orbitals (LOs) have been suggested [65–67] to supplement the above APW and
LAPW basis sets. A given LO is restricted locally in space to the muffin-tin sphere of
the particular atom the semi-core states of which it should represent. Inside the µth
muffin tin, the basis states become linear combinations of radial semi-core solutions
uµLO
l of the Schrödinger-like equation to the energy parameter EµLO

l and the functions
uµl and u̇µl that describe the valence electrons:

φµLO
k (r) =

∑
L

[
aµLO
L uµl (rµ) + bµLO

L u̇µl (rµ) + cµLO
L uµLO

l (rµ)
]
YL(r̂µ) . (3.7)

The expansion coefficients are chosen such that the basis functions and their radial
derivatives vanish at the muffin-tin boundary.

3.1.4 Potential-shape approximations

Most of the calculations based on the APW and LAPW method adopt shape approx-
imations for the external potential, in which the electrons move. For example, the
potential in the unit cell V (r) is often approximated by

V (r) =

{
V 0

int = const. in interstitial

V 0
µ (rµ) in muffin tin µ

, (3.8)

which assumes the potential in the interstitial region to be constant but a spherically
symmetric shape of the potential inside the muffin tins. Still, V 0

µ (rµ) is in principle
specific to each muffin tin µ in order to account for the effect of different atom types.
While using the shape approximation (3.8) could be motivated for simple metals with
densely packed structure, the reliable prediction of electronic properties in complex
solid-state systems such as perovskites or at surfaces would in general contradict the
physical intuition.

A rigorous handling of the full potential without resorting to any shape approxi-
mation has been developed [68–70], and led in combination with an implementation
of the total energy [71] to the FLAPW method. Dropping any shape approximation,
this method extends the spherical muffin-tin potential by non-spherical contributions
from l > 0, and it further includes the warped interstitial potential:

V (r) =


∑
G

V Ginte
iG·r in interstitial∑

L

V L
µ (rµ)YL(r̂) in muffin tin µ

. (3.9)

The charge density can be represented analogously. Apparently, Eq. (3.9) relies on ac-
curate methods to determine the warping part V Gint and the non-spherical contribution
V L
µ (rµ) to the potential.
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3 Full-potential linearized augmented-plane-wave method

3.2 Construction of Hamiltonian matrix

3.2.1 Generalized eigenvalue problem

Since the plane waves in Eq. (3.5) are not defined for the whole space but are confined
to the interstitial, they are not orthogonal when integrated over this region. In the
muffin tins, the basis states exhibit a finite overlap due to the coupling to the plane-
waves via the boundary conditions, even though the muffin-tin functions uµl YL and
u̇µl YL are mutually orthogonal. As a result, the electronic structure problem in the
LAPW basis assumes the form of a generalized eigenvalue problem:

[Hk − EknSk] ckn = 0 , (3.10)

where ckn is the vector of coefficients in the expansion ψkn(r) =
∑
G c

G
knφ

G
k (r) of the

nth eigenstate with the crystal momentum k in terms of non-orthogonal basis states
φGk (r). The Hamiltonian matrix Hk and the non-diagonal overlap matrix Sk in this
basis are found from the expressions

HGG′

k = 〈φGk |H|φG
′

k 〉 =

∫
φG∗k (r)HφG

′

k (r) d3r , (3.11)

SGG
′

k = 〈φGk |φG
′

k 〉 =

∫
φG∗k (r)φG

′

k (r) d3r . (3.12)

By using the Cholesky factorization of the Hermitian, positive-definite overlap matrix,
the generalized eigenvalue problem (3.10) reduces to a standard eigenvalue problem,
which can be solved efficiently.

3.2.2 Muffin-tin and interstitial contributions

Due to the augmentation of the LAPW basis states, the Hamiltonian consists of two
separate parts originating from the muffin tins and the interstitial region, respectively.
According to Eq. (3.3), the spherical term Hµ

sph of the full Hamiltonian in the µth

muffin tin contains the kinetic energy −1
2
∂2

∂r2µ
, which has to be symmetrized by

− 1

2

∂2

∂r2
µ

−→ −1

4

 ⇐
∂ 2

∂r2
µ

+

⇒
∂ 2

∂r2
µ

 (3.13)

in order to arrive eventually at a Hermitian Hamiltonian matrix representation. Here,
the double arrows indicate whether the derivative is acting to its right (as convention-
ally) or to its left. Thus, the matrix elements of the spherical Hamiltonian assume
the form4

Hµ,GG′

sph =
∑
L

∫
r2
µ

[
aµGL uµl + bµGL u̇µl

]∗
Hsph
µ

[
aµG

′

L uµl + bµG
′

L u̇µl

]
drµ

=
∑
L

{(
aµGL

)∗
aµG

′

L Eµ
l +

1

2

[(
aµGL

)∗
bµG

′

L +
(
bµGL

)∗
aµG

′

L

] (
bµGL

)∗
bµG

′

L Eµ
l N

µ
l

}
(3.14)

4Here and in the following, we suppress the explicit k-dependence of the expansion coefficients.
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3.2 Construction of Hamiltonian matrix

that follows from Eqs. (3.3), (3.6), and 〈u̇µl |u̇
µ
l 〉 = Nµ

l . Any spherically symmetric
term in the Hamiltonian couples only spherical harmonics with the same angular
momentum L.

The non-spherical part of the potential encompasses the remaining contributions
from spherical harmonics with l > 0, which realizes a coupling between radial basis
functions with different angular-momentum quantum numbers, in contrast to the
spherically symmetric case. This manifests in the appearance of the so-called Gaunt
coefficients G(L,L′, L

′′
) when setting up the matrix elements of the non-spherical

Hamiltonian that read

Hµ,GG′

non =
∑
LL′L′′

∫ [
aµGL uµl + bµGL u̇µl

]∗
Y ∗LV

L
′′

µ YL′′

[
aµG

′

L′ u
µ
l′ + bµG

′

L′ u̇
µ
l′

]
YL′ d3rµ

=
∑
L,L′

[ (
aµGL

)∗
aµG

′

L tµ,uuLL′ +
(
aµGL

)∗
bµG

′

L tµ,uu̇LL′

+
(
bµGL

)∗
aµG

′

L tµ,u̇uLL′ +
(
bµGL

)∗
bµG

′

L tµ,u̇u̇LL′

]
,

(3.15)

where the coefficients

tµ,uuLL′ =
∑
L′′

Iµ,uu
ll′L′′G(L,L′, L

′′
) ,

tµ,uu̇LL′ =
∑
L′′

Iµ,uu̇
ll′L′′G(L,L′, L

′′
) ,

tµ,u̇uLL′ =
∑
L′′

Iµ,u̇u
ll′L′′G(L,L′, L

′′
) ,

tµ,u̇u̇LL′ =
∑
L′′

Iµ,u̇u̇
ll′L′′G(L,L′, L

′′
)

(3.16)

are contractions of the Gaunt coefficients with integrals of the radial muffin-tin func-
tions and the radial part of the non-spherical potential:

Iµ,uu
ll′L′′ =

∫
r2
µu

µ
l (rµ)uµl′(rµ)V L

′′

µ (rµ) drµ ,

Iµ,uu̇
ll′L′′ =

∫
r2
µu

µ
l (rµ)u̇µl′(rµ)V L

′′

µ (rµ) drµ ,

Iµ,u̇u
ll′L′′ =

∫
r2
µu̇

µ
l (rµ)uµl′(rµ)V L

′′

µ (rµ) drµ ,

Iµ,u̇u̇
ll′L′′ =

∫
r2
µu̇

µ
l (rµ)u̇µl′(rµ)V L

′′

µ (rµ) drµ .

(3.17)

Because of the summations over additional sets of angular-momentum quantum num-
bers, the calculation of the matrix elements (3.15) of the non-spherical Hamilto-
nian are computationally more expensive as compared to the spherical contribu-
tions (3.14). While only matrix elements between LAPW basis functions are con-
sidered in Eqs. (3.14) and (3.15), the treatment of semi-core states by LOs yields
further contributions LO-LO, LO-LAPW, and LAPW-LO, which are evaluated anal-
ogously to the LAPW-LAPW ones described above.
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3 Full-potential linearized augmented-plane-wave method

Setting up the Hamiltonian matrix in the interstitial region is straightforward due
to the simple plane-wave basis. Once again, the kinetic energy in the Hamiltonian
−1

2
∇2 + V (r) is symmetrized such that the matrix elements are given by

HGG′

int =
1

V

∫
int

e−i(G+k)·r
[
−1

4

⇐
∇2 − 1

4

⇒
∇2 + V (r)

]
ei(G′+k)·r d3r

=
1

4

[
(G+ k)2 + (G′ + k)2

]
ΘG−G′ +

∑
G′′

V G
′′

int ΘG−G′−G′′ ,
(3.18)

where ΘG =
∫

Θint(r)eiG·rd3r is the Fourier transform of the real-space Heaviside
step function that cuts out the interstitial region. The last term on the right-hand
side is a convolution of the Fourier coefficients V Gint of the warped potential with ΘG.

To solve the generalized eigenvalue problem of the Hamiltonian matrix in the non-
orthogonal LAPW basis, the overlap matrix S has to be constructed. Inside the µth
muffin tin, the corresponding matrix elements read

Sµ,GG
′

=
∑
L

[(
aµGL

)∗
aµG

′

L +
(
bµGL

)∗
bµG

′

L Nµ
l

]
, (3.19)

and the interstitial contribution amounts to

SGG
′

int =
1

V

∫
int

e−i(G−G′)·r d3r = ΘG−G′ . (3.20)

3.2.3 Describing thin films and surfaces

Recently, thin films and surfaces came into focus of condensed-matter physics because
of exotic properties originating partly from the reduced dimensionality of these sys-
tems. To predict such properties reliably from first principles without the increased
computational burden associated with large super-cell calculations, Krakauer, Poster-
nak, and Freeman [72] developed a truly two-dimensional version of the FLAPW
method. In their approach, real space is partitioned into the muffin tins, the inter-
stitial, and two vacuum regions above and below the film as shown in Fig. 3.2. Even
though the translational symmetry is lost along the z-direction, i.e., perpendicular
to the film plane, the muffin-tin basis functions are the same as before, and also the
expansion of the interstitial wave-function into plane waves remains valid. While the
interstitial region extends from −D/2 to D/2 in z-direction, the plane-wave vectors
perpendicular to the film are defined in terms of the parameter D̃ > D to gain larger
variational freedom5. As a consequence, the plane waves read

φ
G‖G⊥
k‖

(r) = ei(k‖+G‖)·r‖eiG⊥z , (3.21)

where the wave vector G⊥ perpendicular to the film is an integer multiple of 2π/D̃,
G‖ and k‖ are the two-dimensional reciprocal-lattice and Bloch vectors, and r‖ is the
parallel component of r.

5The interstitial wave-function that follows from this construction is usually non-zero at the bound-
ary to the vacuum region, whereby a proper matching at z = D is possible.
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Vacuum

Vacuum

z

MT

 kn

+
D

2

�D

2

Figure 3.2: In addition to the muffin tins (MT) and the interstitial region, FLAPW cal-
culations of truly two-dimensional geometries introduce vacuum regions for
|z| > D/2, where z denotes the direction perpendicular to the film plane. The
wave function ψkn of the illustrated three-layer system decays exponentially
into the vacuum regions.

The basis in the newly introduced vacuum regions, which stretch from ±D/2 to
±∞, is adapted ideally to describe the wave-function decay into the vacua. Inspired
by the muffin-tin functions, the basis states in these regions consist of plane waves
parallel to the film, and linear combinations of a z-dependent function u(z) and its
energy derivative u̇(z). These functions are solutions to one-dimensional Schrödinger-
like equations:[

−1

2

∂2

∂z2
+ V 0(z)− Evac +

(
G‖ + k‖

)2

2

]
u
G‖
k‖

(z) = 0 , (3.22)[
−1

2

∂2

∂z2
+ V 0(z)− Evac +

(
G‖ + k‖

)2

2

]
u̇
G‖
k‖

(z) = u
G‖
k‖

(z) , (3.23)

with the planar averaged part V 0(z) of the vacuum potential, and Evac is the vacuum
energy parameter. In order to increase the variational freedom in treating the vacua,
the energy parameter can be replaced with a series of G⊥-dependent parameters
Evac − 1

2
G2
⊥ if necessary. Thus, the basis for expanding the wave function in two-

dimensional geometries assumes the form

φGk‖(r) =


1√
V

ei(k‖+G‖)·reiG⊥z in interstitial∑
L

[
aµGLk‖u

µ
l (rµ) + bµGLk‖u̇

µ
l (rµ)

]
YL(r̂µ) in muffin tin µ[

aGk‖u
G‖
k‖

(z) + bGk‖u̇
G‖
k‖

(z)
]

ei(k‖+G‖)·r‖ in vacuum

(3.24)

where G = (G‖, G⊥)T.
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3 Full-potential linearized augmented-plane-wave method

The vacuum regions yield extra contributions to the elements of the Hamiltonian
matrix, the form of which is reminiscent of their muffin-tin correspondents. As the
basis functions in the vacuum diagonalize the non-corrugated planar averaged part
of the Hamiltonian that contains the z-dependent potential and the (symmetrized)
kinetic energy, the according matrix elements are given by

HGG′

vac = δG‖G
′
‖

[
aG∗aG

′
Evac +

1

2

(
aG∗bG

′
+ bG∗aG

′
)

+ bG∗bG
′
EvacN

G‖
vac

]
, (3.25)

where N
G‖
vac = 〈u̇G‖ |u̇G‖〉vac, and the explicit dependence on k‖ is suppressed. In

addition to the planar averaged part, the Hamiltonian contains the non-corrugated
vacuum potential Vco(r) that is expanded into z-dependent functions and plane waves
within the film plane:

Vco(r) =
∑
G‖

V G‖(z)eiG‖·r . (3.26)

Introducing the one-dimensional integrals

I
G‖G

′
‖

uu =

∫
vac

uG‖(z)uG
′
‖(z)V G‖−G′

‖(z) dz ,

I
G‖G

′
‖

uu̇ =

∫
vac

uG‖(z)u̇G
′
‖(z)V G‖−G′

‖(z) dz ,

I
G‖G

′
‖

u̇u =

∫
vac

u̇G‖(z)uG
′
‖(z)V G‖−G′

‖(z) dz ,

I
G‖G

′
‖

u̇u̇ =

∫
vac

u̇G‖(z)u̇G
′
‖(z)V G‖−G′

‖(z) dz

(3.27)

of the vacuum basis functions with the z-dependent non-corrugated potential over the
respective vacuum region, the corresponding contribution to the Hamiltonian matrix
assumes the form

HGG′

vac,co = aG∗aG
′
I
G‖G

′
‖

uu + aG∗bG
′
I
G‖G

′
‖

uu̇ + bG∗aG
′
I
G‖G

′
‖

u̇u + bG∗bG
′
I
G‖G

′
‖

u̇u̇ . (3.28)

Finally, the elements of the overlap matrix in the non-orthogonal vacuum basis read

SGG
′

vac = δG‖G
′
‖

[
aG∗aG

′
+ bG∗bG

′
N
G‖
vac

]
. (3.29)

3.3 Relativistic calculations of valence electrons

A satisfactory description of core and valence electrons close to the nuclei relies on
the correct treatment of relativistic effects as the kinetic energy becomes large in
the vicinity of the ions, especially for heavy elements. While this affects essentially
only the muffin-tin regions, a non-relativistic handling of interstitial and vacua is still
reasonable6. Relativistic effects are particularly important to capture the coupling

6At the muffin-tin boundary, only the so-called large component of the four-component relativistic
wave function will be matched to the (two-component) non-relativistic wave function outside of
the muffin-tins. This approximation is reasonable as the small component is (i) overshadowed
by the large one, and (ii) strongly suppressed at this distance from the nucleus.
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3.3 Relativistic calculations of valence electrons

between spin orientation and crystal lattice that is mediated by the so-called spin-orbit
interaction, which also underlies conventionally other prominent phenomena such as
orbital magnetism7, spin-orbit torques, and Dzyaloshinskii-Moriya interaction. In a
fully relativistic framework, also mass-velocity and Darwin terms are accounted for
in addition to the spin-orbit interaction.

3.3.1 Kohn-Sham-Dirac equation

The fundamental Kohn-Sham wave equations of relativistic density functional theory
have the form of massive-single-particle Dirac equations:[

c

3∑
i=1

αipi + (β − 1)m0c
2 + Veff(r)

]
ψ(r) = Eψ(r) , (3.30)

where c is the speed of light, pi is the ith Cartesian component of the electron’s
momentum, m0 is its rest mass, and Veff(r) is the effective potential that comprises the
attractive Coulomb interaction between electrons and ions, the electrostatic Hartree
potential, and the exchange-correlation potential. The effective potential becomes
spin-dependent for spin-polarized calculations. The 4 × 4-matrices αi and β in the
Dirac equation are given by

αi =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
, (3.31)

where σi is the ith 2× 2 Pauli matrix, and I denotes the 2× 2 unit matrix. The rela-
tivistic solutions ψ(r) of Eq. (3.30) are four-component, or bi-spinor, wave functions.

However, solving the Kohn-Sham-Dirac equation is a delicate problem: if all four
components of the relativistic wave function were expanded using the LAPW basis,
four times as many basis functions would be necessary as compared to the non-
relativistic treatment such that the overall computing time for diagonalizing the
Hamiltonian would increase by a factor of 43 = 64. This renders a direct approach
usually unfeasible, and motivates the introduction of approximate methods for effi-
cient relativistic calculations. For example, in the scalar relativistic approximation
that is discussed below, the spin-orbit interaction – and with it any coupling between
spin and spatial coordinates – is neglected, which leads to two separate matrices
of half the original size, saving an overall factor of four in computing time during
diagonalization.

3.3.2 Scalar relativistic approximation

Since the relativistic corrections are most prominent close to the nuclei, only the
part of the electronic wave-function inside the muffin-tin spheres has to be treated
relativistically, which sets the construction of the radial function as a first challenge.
The starting point for this is the above Kohn-Sham-Dirac equation, where the effective

7We propose in Section 6.4 an alternative mechanism for orbital magnetism that does not root in
the spin-orbit interaction but in the topology of chiral spin textures.
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3 Full-potential linearized augmented-plane-wave method

potential is replaced with its spherical average, i.e., Veff(r)→ V (r) in Eq. (3.30). The
solutions to the accordingly modified Dirac equation assume the form

ψκµ =

(
gκ(r)χκµ

ifκ(r)χ−κµ

)
, (3.32)

where gκ(r) is the large component, and fκ(r) is the small component. The spinor χκµ
is an eigenfunction of the projection jz of the total angular momentum j = l+ s and
the operator K = β(σ · l+ 1) with the eigenvalues µ and κ, respectively. As the spin
operator s and the orbital angular momentum l do no longer provide valid quantum
numbers because of spin-orbit coupling, the solutions (3.32) need to be labeled by κ
and µ. The κ-dependent radial functions can be shown to obey coupled equations
that read in matrix form [64](

−κ+1
r
− ∂

∂rµ
2mc

V (r)−Eκ
c

κ−1
r
− ∂

∂r

)(
gκ(r)
fκ(r)

)
= 0 , (3.33)

with the enhanced mass m = m0 + [Eκ − V (r)]/(2c2) of the relativistic electrons
moving in the spherically symmetric potential V (r), and Eκ is the energy parameter.

In order to motivate the scalar relativistic approximation, Koelling and Harmon [64]
proposed to rewrite the above equations by introducing the function

ωκ(r) =
κ+ 1

2mcr
gκ(r) + fκ(r) (3.34)

such that Eq. (3.33) assumes the form(
− ∂
∂r

2mc
κ(κ+1)
2mcr2

+ V (r)−Eκ
c
− κ+1

2mcr

(
∂
∂r
− m′

m

)
κ−1
r
− ∂

∂r

)(
gκ(r)
ωκ(r)

)
= 0 , (3.35)

where m′ = ∂m/∂r stands for the radial derivative of m. Keeping in mind that κ is
the eigenvalue of the operator K ∝ (l · σ + 1), the term (κ + 1)m′/(2m2cr) can be
identified with the spin-orbit interaction. This is the only term that couples spin-up
and spin-down contributions, and dropping it is the essence of the scalar relativistic
approximation. Then, κ is replaced with l, and Eq. (3.35) can be rewritten as

Hsph

(
gl(r)
ωl(r)

)
= El

(
gl(r)
ωl(r)

)
(3.36)

with the scalar relativistic Hamiltonian containing only the spherically averaged po-
tential:

Hsph =

(
l(l+1)
2mr2

+ V (r) −2c
r
− c ∂

∂r

c ∂
∂r

−2m0c
2 + V (r)

)
. (3.37)

In the scalar relativistic approximation, spin-up and spin-down problems decouple
and can thus be solved independently. The scalar relativistic LAPW basis set for
each spin direction in the bulk case is

φGk (r) =


1√
V

ei(k+G)·r in interstitial∑
L

aµGLk

(
gl(rµ)

ωl(rµ)

)
YL(r̂µ) + bµGLk

(
ġl(rµ)

ω̇l(rµ)

)
YL(r̂µ) in muffin tin µ

,

(3.38)
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3.4 Non-collinear magnetism

where the energy derivatives of the radial functions in the muffin tins are made to
be orthogonal to the normalized radial functions. The energy derivatives ġl and ω̇l
satisfy scalar relativistic equations that are found from the variation of Eq. (3.36)
with energy. In general, a second-variation scheme [73] based on perturbation theory
can be applied after a scalar relativistic calculation to still account for the spin-orbit
interaction.

3.4 Non-collinear magnetism

In analogy to the representation of the density matrix in spin-polarized density func-
tional theory (DFT) calculations, the potential of a non-collinear magnetic system
can be written as

V (r) =
[
V (r)I + B̄(r) · σ

]
=

(
V (r) + B̄z(r) B̄x(r)− iB̄y(r)
B̄x(r) + iB̄y(r) V (r)− B̄z(r)

)
, (3.39)

where B̄ = µB (Bxc +Bext) comprises the exchange field and a possible external
magnetic field times the Bohr magneton µB. The fleur computer program [74]
implements an approximation of non-collinear magnetism by considering this full
potential matrix only in the interstitial region, where the magnetization is treated
as continuous vector field [75]. In a given muffin tin, however, the magnetization
direction is not allowed to change and intra-atomic non-collinearity is neglected, which
is motivated by the intuition that a well-defined magnetic moment is carried by each
atom8. To represent the spin degrees of freedom inside the µth muffin tin, a local
spin-coordinate frame is introduced such that the z-axis is parallel to the direction
êµ of the local magnetic moment. This allows for constructing the muffin-tin basis
functions exactly the same way as in the collinear situation based on two potentials V+

and V−, which refer now to spin-up and spin-down components in the local frame. In
other words, the exchange field inside the muffin tins is calculated using the collinear
spin density mµ(rµ) found from projecting the full non-collinear spin density m(r)
onto the local spin-quantization axis êµ:

mµ(rµ) = m(r) · êµ . (3.40)

As the global spin-coordinate frame used in the interstitial region is generally different
from the local one, changes come into play when matching the spinor wave functions at
the muffin-tin boundary9. Notably, the approximation of neglecting the intra-atomic
non-collinearity often renders the potential to be discontinuous at the boundary.

Vectors and spinors in the local frame of the µth muffin tin can be transformed
into the global frame via the unitary rotation matrix Rgl

µ and the Hermitian matrix

8Nordström et al. [76] proposed the first approach that enables the magnetization to change mag-
nitude and direction even within an atom, allowing them to study intra-atomic non-collinearity.

9Each component of the spinor in the interstitial region is matched to spin-up and spin-down basis
functions in the muffin tin.
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Ugl
µ , respectively, that are given by

Rgl
µ =

cosϕ cos θ − sinϕ cosϕ sin θ
sinϕ cos θ cosϕ sinϕ sin θ
− sin θ 0 cos θ

 , (3.41)

Ugl
µ =

(
e−iϕ

2 cos θ
2
−e−iϕ

2 sin θ
2

eiϕ
2 sin θ

2
eiϕ

2 cos θ
2

)
, (3.42)

where the local spin-quantization axis êµ = (cosϕ sin θ, sinϕ sin θ, cos θ) is specified by
the azimuthal angle ϕ and the polar angle θ, which vary generally for different muffin
tins. Determined by the transpose and adjoint, respectively, the inverse operations
Rlg
µ and U lg

µ transform from global coordinates into the local-coordinate frame:

Rlg
µ =

cosϕ cos θ sinϕ cos θ − sin θ
− sinϕ cosϕ 0

cosϕ sin θ sinϕ sin θ cos θ

 , (3.43)

U lg
µ =

(
eiϕ

2 cos θ
2

e−iϕ
2 sin θ

2

−eiϕ
2 sin θ

2
e−iϕ

2 cos θ
2

)
. (3.44)
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Chapter 4

Berry phase effects in complex magnets
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In this chapter, we introduce the celebrated concept of Berry phases that caused
a true revolution of our understanding of many elementary properties in periodic
solids, and has initiated ever-growing interest in predicting and exploiting new topo-
logical states of matter. Following the classic derivations by Berry, we motivate the
emergence of these geometric phases as a direct consequence of an adiabatic Hamil-
tonian evolution, and provide several educational examples of non-trivial phase-space
topology. We elaborate on the universal role of Berry phases for electronic properties
such as (quantum) anomalous Hall effect and orbital magnetism in metallic and insu-
lating systems. Furthermore, we demonstrate that the geometry of the “mixed” phase
space of crystal momentum and magnetization direction governs the phenomenon of
spin-orbit torques (SOTs) as well as the Dzyaloshinskii-Moriya interaction (DMI).
Finally, we introduce the material class of chiral magnets as an ideal playground to
realize all of these geometric effects at once.

4.1 What is the Berry phase?

4.1.1 Adiabatic time evolution

Although the geometric, or, Berry phase [20, 21, 77, 78] surely is the most prominent
concept that underlies the evolution of Bloch electrons in topological band theory,
it was originally discussed by Berry to elucidate how the wave function of a particle
may change under quantum adiabatic transport in slowly varying fields [21]. In
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4 Berry phase effects in complex magnets

this context, the Hamiltonian H(λ) is said to depend on a set of tunable abstract
parameters λ = (λ1, λ2, . . .), which mediate the coupling of the isolated system to its
environment, for example, due to electric or magnetic fields. Aiming at the adiabatic
evolution of the system, we consider the time-dependent parameters λ = λ(t) to vary
slowly along a path C, and seek for instantaneous basis states of the Hamiltonian at
each fixed point on that path by solving the Schrödinger equation

H(λ)|nλ〉 = En(λ)|nλ〉 , (4.1)

where the normalized instantaneous solutions |nλ〉 are specified up to a phase due
to the gauge freedom. While it is convenient to choose the phase to be smooth and
single-valued along C, this is not always possible1 and requires typically to divide the
path into overlapping segments or patches, on each of which a smooth and single-
valued gauge can be defined.

The time evolution of the system in the state |ψ(t)〉 is given by the time-dependent
Schrödinger equation

H(λ(t))|ψ(t)〉 = ih̄∂t|ψ(t)〉 , (4.2)

where ∂t = ∂/∂t is the time derivative. The solution of the above equation can be
expanded generally in terms of the instantaneous basis, |ψ(t)〉 =

∑
m cm(t)|mλ(t)〉,

where cm(t) are time-dependent expansion coefficients. Substituting this into Eq. (4.2)
and multiplying from the left by 〈nλ(t)| yields a set of coupled equations that deter-
mine these coefficients:

∂tcn(t) = −i
1

h̄
En(λ(t))cn(t)− cn(t)〈nλ(t)|∂t|nλ(t)〉 −

∑
m6=n

cm(t)Γ−1
mn(t) , (4.3)

where we introduced the transition rate Γ−1
mn from the instantaneous solution |mλ(t)〉

to the state |nλ(t)〉. In absence of degeneracies in the eigenspectrum of the Hamil-
tonian at any point along the parameter path2, the transition rate can be expressed
as

Γ−1
mn(t) = 〈nλ(t)|∂t|mλ(t)〉 =

〈nλ(t)|∂tH(t)|mλ(t)〉
Em(t)− En(t)

. (4.4)

After the system has been prepared in an initial state |nλ(0)〉, which corresponds
to setting all but the expansion coefficient cn(0) to zero, the system stays always in
the instantaneous eigenstate of the Hamiltonian under an adiabatic evolution in time,
i.e., |ψ(t)〉 = cn(t)|nλ(t)〉. According to Eqs. (4.3) and (4.4), this notion of adiabatic
transport along a certain parameter path is valid for states that are well-separated
in energy and for Hamiltonians that vary slower in time than the intrinsic time-scale
set by quantum transitions between the states. If the adiabatic transport is assumed,
Eq. (4.3) is decoupled and can be solved easily by integration:

cn(t) = exp

(
− i

h̄

∫ t

0

En(τ) dτ

)
exp

(
i

∫ t

0

i〈nλ(τ)|∂τ |nλ(τ)〉 dτ
)

= exp(−iαdyn(t)) exp(iγn(t)) ,

(4.5)

1For instance, systems with a non-zero first Chern number constitute examples for which the phase
cannot be defined globally as a smooth and single-valued function in the whole Brillouin zone.

2The presence of degeneracies would lead to the concept of the non-Abelian Berry phase, or,
Wilczek-Zee phase [79], which we do not discuss here however. Importantly, the Berry con-
nection (4.7) becomes a matrix in the degenerate subspace.
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where the wave function acquires in addition to the well-known dynamical phase
αdyn(t) the so-called geometric, or, Berry phase γn(t):

γn(t) =

∫ t

0

i〈nλ(τ)|∂τ |nλ(τ)〉 dτ =

∫
C

i〈nλ|∇λ|nλ〉 · dλ , (4.6)

which is a real number defined modulo 2π since the basis states are normalized.
The Berry phase is a direct consequence of the coupling to the environment through
slowly varying parameters and accounts for changes in the wave function during the
respective evolution of the system under external “forces”. In 1986, Tomita et al. [80]
confirmed experimentally the manifestation of Berry phases in the rotation of linearly
polarized light in an optical fiber. A classical analogue of the geometric phase, known
as Hannay’s angle [81], is the Foucault pendulum, whose plane of rotation undergoes
parallel transport due to the Earth’s rotation [77]. The parallel transport of a tangent
vector on the sphere, which is illustrated in Fig. 4.1, is a closely related example.

4.1.2 Handbook of geometric quantities

In the last step in Eq. (4.6), we removed the explicit time dependence and recast the
expression into a purely geometrical representation based on the Berry connection,
or, Berry vector potential along the path C:

An(λ) = i〈nλ|∇λ|nλ〉 . (4.7)

Similarly to its analog in electromagnetism, the real-valued Berry connection depends
on the gauge choice in such a way that the gauge transformation3 |nλ〉 → eiξ(λ)|nλ〉
results in the new vector potential An′(λ) = An(λ)−∇λξ(λ). Until the paramount
work of Berry, people were eager to conclude that the geometric phase (4.6) could be
canceled by a clever choice of the gauge ξ(λ), which is however not true. If a closed
path in the parameter space is considered, the deep geometrical origin of the Berry
phase manifests in the fact that γn(C) is a purely gauge-invariant property measuring
the local geometry along the closed loop C:

γ′n(C) =

∮
C
An′ · dλ =

∮
C
An · dλ−

∮
C
∇λξ(λ) · dλ = γn(C) . (4.8)

where
∮
C∇λξ(λ) · dλ = ξ(λf )− ξ(λi) = 0 since the final parameters λf are the same

as the initial ones λi. Therefore, the Berry phase of a closed path cannot be canceled
by a smart gauge choice, which can be shown to hold also for more general gauge
transformations. Remarkably, there exist many situations where the Berry phase
γn(C) is unchanged under smooth deformations of the closed loop C, i.e., the path
may be distorted but not cut open at any point. In this case, the gauge-invariant
Berry phase is of topological nature.

3We assume for sake of simplicity that a single patch is sufficient to define a proper gauge but the
drawn conclusions can be shown to hold in more general situations as well.
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N

A
B

�

Figure 4.1: The parallel transport of a tangent vector on the sphere along a closed path
from the north pole N over A and B and back to N results in a misalignment
between original (dark red) and transported (dark blue) vector, owing to the
non-trivial curvature on the sphere. The opening angle γ can be viewed as a
geometric phase that manifests under parallel transport.

Stokes’ theorem can be applied to rewrite the integral (4.6) along the closed path
C as an integral over the surface S that the loop C encompasses4:

γn(C) =

∮
C
An(λ) · dλ =

∫
S

Ωn(λ) · dS , (4.9)

where we introduced an effective “magnetic field” Ωn = ∇λ×An that is in the spirit
of electromagnetics given by the curl of the Berry vector potential. This “magnetic
field” is known as the Berry curvature, or more precisely, the Berry curvature field.
Clearly, the Berry curvature field is identically zero everywhere on the manifold S if
the Berry vector potential is the gradient field of a smooth and unique function. As a
consequence of this so-called pure gauge, the Berry phase vanishes, indicating trivial
geometrical properties of the underlying parameter space. More interestingly and in
the focus of this thesis are situations in which the pure gauge does not apply such
that non-trivial geometrical or even topological phases may manifest. Equation (4.9)
provides a clear interpretation of the Berry phase as the flux of the Berry curvature
field through the surface S.

Commonly, the Berry curvature is expressed as an antisymmetric rank-2 tensor –

4In differential geometry Stokes’ theorem states that the integral of the Berry connection (a differ-
ential 1-form) over the boundary C = ∂S of an orientable manifold S is equal to the integral of
the corresponding Berry curvature (a differential 2-form) over the whole manifold S.
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known as Berry curvature tensor – with the components

Ωn
ij(λ) =

∂

∂λi
Anj (λ)− ∂

∂λj
Ani (λ) = −2Im

〈
∂

∂λi
nλ

∣∣∣∣ ∂∂λj nλ
〉
, (4.10)

where the indices i and j refer to Cartesian coordinates. If the parameter space is
three-dimensional, the ith component of the Berry curvature field Ωn can be obtained
from the tensor elements (4.10) via [Ωn]i = (1/2)

∑
jk εijkΩ

n
jk with the antisymmetric

Levi-Civita symbol εijk. Adopting the so-called parallel transport gauge5 is par-
ticularly useful to evaluate locally gauge-invariant objects in differential geometry
such as the elements (4.10) of the Berry curvature tensor. Based on the resulting
perturbation-theory expression for the derivative of the wave functions

∂λi|nλ〉 =
∑
m6=n

〈mλ|∂λiH(λ)|nλ〉
En(λ)− Em(λ)

|mλ〉 , (4.11)

the following expression is recovered:

Ωn
ij(λ) = −2Im

∑
m6=n

〈nλ|∂λiH(λ)|mλ〉〈mλ|∂λjH(λ)|nλ〉
(En − Em)2 , (4.12)

which is notably valuable for practical Berry-phase calculations independent of the
specific gauge since the derivatives have been moved from the wave functions to the
Hamiltonian. In other words, Eq. (4.12) can be evaluated using any eigenstates that
a computer code produces, regardless of whether the corresponding phases are single-
valued and smooth over the parameter manifold or not. Additionally, the importance
of band degeneracies as sources or drains [82] of the Berry curvature in their vicinity
becomes evident from Eq. (4.12), which also highlights that the Berry phase γn can be
viewed as an effect of transitions of the state |nλ〉 to all other states |mλ〉 mediated
by the adiabatic interaction ∇λH.

4.1.3 Example 1: Spin-1/2 and magnetic monopoles

Berry himself [21] considered an educational but relevant example of geometric phases
in quantum physics, which is the problem of a spin-1/2 particle in a slowly varying
magnetic field [83]:

H(n̂)| ± n̂〉 = Bσ · n̂| ± n̂〉 = E±| ± n̂〉 , (4.13)

where B is the fixed magnitude of the magnetic field with direction n̂ that takes
the role of the external parameter in the Hamiltonian. The spin follows adiabat-
ically the direction of the field, which is represented in spherical coordinates as
n̂ = (cosϕ sin θ, sinϕ sin θ, cos θ) using the polar angle θ and the azimuthal angle
ϕ. The eigenvalues of the two-level system are E± = ±B, and the instantaneous
eigenstates | ± n̂〉 are easily found by solving the problem first in local coordinates,

5Although the Berry phase is physical and gauge-invariant, it can be removed along segments of
the closed path C via the parallel transport gauge 〈nλ|∇λ|nλ〉 = 0.
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where the local z-axis coincides with n̂, followed by a rotation of the two spinors to
the global frame using the transformation matrix

U(θ, ϕ) = e−iϕσz/2e−iθσy/2eiϕσz/2 =

(
cos θ

2
e−iϕ sin θ

2

−eiϕ sin θ
2

cos θ
2

)
, (4.14)

which yields the solutions

|+ n̂〉 =

(
cos θ

2

−eiϕ sin θ
2

)
, | − n̂〉 =

(
e−iϕ sin θ

2

cos θ
2

)
. (4.15)

Obviously, every quantum state in the Hilbert space of the two-level system is in
one-to-one correspondence with a point on the sphere S2. Since the above eigenstates
are smooth and single-valued for any parameter n̂ but not at the south pole θ = π,
the gauge transformation | ± n̂〉 → e∓iϕ| ± n̂〉 has to be applied in order to cure the
problem at that point. However, this second gauge is not well-behaved at the north
pole θ = 0, which leads to the general conclusion that at least two patches are required
to define a smooth gauge for the entire parameter manifold of the Hamiltonian (4.13).

The only non-vanishing component of the Berry connection on the first patch reads

A±ϕ = i〈±n̂|∂ϕ| ± n̂〉 = ∓1− cos θ

2
, (4.16)

and accordingly A±ϕ → A±ϕ±1 for the above gauge transformation on the second patch.
As the Berry curvature tensor is locally gauge-invariant, its non-trivial element

Ω±θϕ = ∂θA
±
ϕ = ∓sin θ

2
(4.17)

is the same for both patches. Using the well-known expressions for gradient and curl in
spherical coordinates, we arrive at the following vector quantities in three-dimensional
space in which the parameter space of H(n̂) is naturally embedded:

A± = ∓1− cos θ

2r sin θ
êϕ , (4.18)

Ω± = ± 1

2r2
êr , (4.19)

where êϕ and êr denote unit vectors in the spherical coordinate system, and r is the
radial distance (which is fixed since the magnitude of the field is constant). The Berry
phase of the spin-1/2 problem amounts to

γ±(C) = ±1

2
ω(C) , (4.20)

which is not of topological but of geometrical nature as the phase is determined by
the solid angle ω(C) that the magnetic field direction n̂ describes along the closed
parameter path C during the Hamiltonian evolution of the two-level system. Inter-
estingly, the Berry phase (4.20) depends on the projection of the spin onto n̂ (given
by ±1/2) rather than on the magnitude of the spin itself.

In order to elucidate the perception of sources and drains of the Berry curvature as
condensed-matter realizations of magnetic point charges, we draw an analogy with the
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magnetic field of a so-called Dirac monopole. This amounts to solving the modified
Maxwell’s equation ∇ · B = 4πgδ(r) that contains a fictitious source term due to
a magnetic point charge of magnitude g located at the origin. The form of the
resulting magnetic field B = (g/r2)êr is identical to the Berry curvature field (4.19)
if g = ±1/2, that is, if the magnetic charge is quantized6. Just like the magnetic
monopole field is singular at the location of the point charge, the Berry curvature
diverges at the origin since the eigenvalues E− and E+ would become degenerate for
r = 0. Acting as a source of the Berry curvature around it, this degeneracy is formally
equivalent to a magnetic monopole that manifests eventually in the magnetic field B.

4.1.4 Example 2: Aharonov-Bohm effect and topology

The prominent Aharonov-Bohm effect [85] arises for charged particles that envelop
during their propagation in a strictly field-free region an infinitely long flux tube
that carries the magnetic flux Φ. Berry provided a geometrical interpretation of
this effect [21] by considering electrons that are confined to a box, which in turn is
dragged around the tube if the position parameter R of the box is tuned, see Fig. 4.2.
Consequently, the parameter space is equal to the real space without the region of the
flux tube, rendering the parameter manifold multiply connected. While the magnetic
field B is restricted to the inside of the tube, the vector potential A is generally
non-zero at the electron’s position such that the following Schrödinger equation has
to be solved:

1

2
(ih̄∇− eA(r))2 |nR〉 = En|nR〉 , (4.21)

where ∇ = ∇r denotes the gradient with respect to the electronic coordinates r, and
e is the elementary positive charge. A standard approach to this problem is to rewrite
the solutions |nR〉 of the full system in terms of normalized wave functions |ψ0

n〉 in
absence of the vector potential:

〈r|nR〉 = exp

(
−i
e

h̄

∫ r

R

A(r′) · dr′
)
ψ0
n(r −R) = exp(ig(r))ψ0

n(r −R) , (4.22)

where the integration is performed along a path inside the box, and the unperturbed
states satisfy the free-particle Schrödinger equation7 −(h̄2/2)∇2ψ0

n(r) = Enψ0
n(r),

which motivates why the eigenvalues in Eq. (4.21) do not depend on R. In addition,
the eigenvalues are independent of the vector potential since the latter can always be
made to vanish within finite regions of space such as the box containing the electrons
by a clever gauge choice although the vector potential cannot be removed globally.

As the expectation value of ∇R vanishes in the free system, it follows that

An(R) = i〈nR|∇R|nR〉 = − e
h̄
A(R) , (4.23)

Ωn(R) = ∇R ×An(R) = − e
h̄
B(R) , (4.24)

6Dirac derived a quantization condition [84] that relates the electric charge to any yet to be observed
magnetic charge. In fact, g = ±1/2 is the minimal non-trivial solution of this constraint. This
logic can also be turned around to derive Dirac’s constraint from the Berry phase calculated over
two physically equivalent surfaces excluding either north or south pole.

7This follows from [ih̄∇− eA(r)] 〈r|nR〉 = i exp(ig(r))∇ψ0
n(r−R) according to the ansatz (4.22).
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Figure 4.2: Setup for the Aharonov-Bohm effect. The magnetic field is restricted in real
space to an infinitely long solenoid around which the box of the electrons (red
sphere) is dragged. Due to the magnetic flux Φ piercing the encompassed
region, a topological Berry phase manifests in the electronic wave function.

which means that the Berry connection An and the Berry curvature field Ωn are
determined by the vector potential A and the physical magnetic field B, respectively.
Since the latter is confined to the tube region, the Berry curvature field is zero every-
where outside of the tube. The Berry phase describing Aharonov-Bohm interference
effects due to the magnetic flux Φ is given by

γn(C) =

∮
C
An(R) · dR = −N(C) e

h̄
Φ , (4.25)

where N(C) is the winding number that counts how often the closed path C winds
around the flux tube. In this example, the Berry phase does not depend on n, and is
topological as it is independent of the path if only loops that envelop the flux tube
the same number of times are compared. If the electrons do not move in a strictly
field-free region but the magnetic field is allowed to be present everywhere in space,
the Berry phase returns to its geometric nature γn(C) = −(e/h̄)Φ(C), where Φ(C) is
the path-dependent magnetic flux through the surface enclosed by the loop C.

Finally, we point out that since 〈nR|∇R|mR〉 = 0 for any n 6= m, the adiabatic
assumption that reads Γ−1

nm � 1, where Γ−1
nm is defined by Eq. (4.4), is always satisfied

here [86], irrespective of how fast the electrons’ box is dragged around the flux tube.

4.2 Geometric effects due to momentum-space

curvature

4.2.1 Berry curvature in momentum space

In general, the Berry phase manifests as a consequence of the Hamiltonian evolution
under slow variations of a set of universal parameters λ = (λ1, λ2, . . .). If electrons
move now in the periodic potential of a solid, the role of these abstract parameters is
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4.2 Geometric effects due to momentum-space curvature

played by the crystal momentum k, the variation of which can be ascribed to external
“forces” facilitated by, for example, electric and magnetic fields or other perturbations.
The generic instantaneous solutions entering the above mathematical framework of
quantum adiabatic transport are identified in this case with the lattice-periodic Bloch
functions |ukn〉 that satisfy the Schrödinger equation of the HamiltonianHk for a given
crystal momentum:

Hk|ukn〉 = e−ik·rHeik·r|ukn〉 = Ekn|ukn〉 . (4.26)

Typically, the Hamiltonian Hk = e−ik·rHeik·r is referred to as crystal-momentum
representation of H, which allows us to exactly apply the machinery of Berry phases
that was developed in the previous section. When translating the abstract definitions
of the Berry connection and the Berry curvature tensor to the situation of Bloch
electrons where λ = k, we arrive at the following realizations of Eqs. (4.7) and (4.10):

An(k) = i〈ukn|∇kukn〉 , (4.27)

as well as

Ωn
ij(k) = −2Im

〈
∂

∂ki
ukn

∣∣∣∣ ∂∂kj ukn
〉

= −2Im
∑
m6=n

〈ukn|∂kiHk|ukm〉〈ukm|∂kjHk|ukn〉
(Ekn − Ekm)2 .

(4.28)

Numerous fascinating phenomena in condensed matter root in the non-trivial na-
ture of the momentum-space Berry curvature (4.28), promoting the deep connection
between physical response effects and genuinely geometrical properties of the un-
derlying phase space. Before turning to such geometric solid-state phenomena, we
comment briefly on the symmetry properties of the Berry curvature in momentum
space: while Ωn

ij(k) = Ωn
ij(−k) holds in the presence of spatial inversion symmetry,

the Berry curvature is an odd function of k if time-reversal symmetry is preserved8,
i.e., Ωn

ij(k) = −Ωn
ij(−k). Consequently, the Berry curvature vanishes everywhere in

the Brillouin zone if the solid is symmetric with respect to both spatial and time in-
versions, which underlines that breaking at least one of the two symmetries is crucial
for a non-trivial Berry curvature to emerge. Finally, the overall shape of the rank-2
Berry curvature tensor composed out of the individual elements (4.28) is determined
typically by the (magnetic) point group of the system.

4.2.2 Hall effects

In 1879, Edwin Hall measured a transverse voltage drop as a response to longitudinal
electric currents flowing in conducting samples that are subject to an external mag-
netic field [87]. This so-called ordinary Hall effect originates from the Lorentz force
−ev × B, which acts on charged particles moving with velocity v in the magnetic
field B, leading thereby to an asymmetric charge distribution at the opposite sam-
ple edges, which builds up an electric field that obstructs the migration of further
charges and establishes eventually a steady electric potential. The phenomenon is

8This is easily verified by recalling that (i) time reversal transforms |ukn〉 into (|u−kn〉)∗, and (ii)
spatial inversion symmetry relates |ukn〉 and |u−kn〉.
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(a) Ordinary Hall e↵ect (b) Anomalous Hall e↵ect
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Figure 4.3: (a) Ordinary and (b) anomalous Hall effect due to the charge current I. While
the transverse Hall voltage VH in (a) originates from the applied magnetic
field B, the magnetization m of a ferromagnet drives the anomalous Hall
effect in (b). In the latter case, the resulting asymmetric charge distribution
at the sample edges is accompanied by a finite spin polarization due to spin-
dependent scattering processes.

characterized by the ratio of induced electric field and applied magnetic field times
current density, which is also known as Hall coefficient that depends on material-
specific parameters like type and density of the charge carriers. At low temperatures
and potent magnetic fields that give rise to discrete Landau levels, two-dimensional
systems exhibit exactly quantized plateaus [88–90] of the Hall conductance

I

VH

= ν
e2

h
, (4.29)

where I is the longitudinal charge current, VH is the transverse Hall voltage drop
across the sample, and the filling factor ν takes integer (or certain fractional9) values.

While the ordinary Hall effect relies fundamentally on the application of a mag-
netic field, which breaks time-reversal symmetry, it has been realized already in 1881
by Hall [92] that the magnetization in ferromagnets like Fe mediates an anomalous
Hall effect independent of any external magnetic field. Footing on the combination
of magnetic polarization and relativistic spin-orbit interaction, this extraordinary
phenomenon overshadows frequently the ordinary Hall effect by one to two orders of
magnitude [92]. Remarkably, the anomalous Hall effect can be decomposed into (i) an
intrinsic contribution that roots solely in the geometry of reciprocal space [19,93–95],
and (ii) extrinsic parts termed side-jump and skew-scattering, which take into con-
sideration the spin-dependent scattering of the charge carriers [96], and are therefore
characteristic to the type and strength of disorder in the studied material. A detailed
discussion of the intricate first-principles treatment of the extrinsic effects is provided
in Refs. [97,98].

In order to motivate the deep connection between momentum-space geometry and
intrinsic anomalous Hall effect, we consider the explicit expression for the velocity
of Bloch electrons in an electric field E = −∂tA that is written as variation of the
time-dependent vector potential A with time t. Effectively, the electric field shifts the

9The fractional Hall effect stems from repulsive electron-electron interactions and can be interpreted
as quantum Hall effect of so-called composite fermions (see, for example, the classic Ref. [91]).
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4.2 Geometric effects due to momentum-space curvature

crystal momentum that enters the Hamiltonian according to k = −i∇+ (e/h̄)A such
that ∂tk = −(e/h̄)E. Going beyond the simple adiabatic assumption by including
first order corrections in the time-evoluted wave functions, we arrive eventually at an
equation for the electron’s velocity in the nth band [99]:

vn(k) = 〈ψ̃kn|v|ψ̃kn〉 =
1

h̄
〈ukn|∇kHk|ukn〉 =

1

h̄
∇kEkn −

e

h̄
E ×Ωn(k) , (4.30)

where the wave functions |ψ̃kn〉 are obtained from evolving the instantaneous solu-
tions |ukn〉 in time. In addition to the usual group velocity relating to the gradient
of the dispersion, obviously, the Bloch electrons acquire an anomalous velocity [100]
transverse to the electric field if the Berry curvature field Ωn is finite. Recalling that
crystal momentum, velocity, and electric field change sign under inversion symme-
try whereas time reversal inverts only the first two, we can confirm the previously
motivated symmetries of the Berry curvature in momentum space using Eq. (4.30).

The intrinsic anomalous Hall effect describes the linear response to an applied
electric field in terms of an induced current J = −e

∫ ∑occ
n vn(k) ddk/(2π)d that roots

purely in the geometrical properties of the d-dimensional phase space as encoded in
the Berry curvature (4.28):

J = σE with σij =
e2

h̄

∫ occ∑
n

Ωn
ij(k)

ddk

(2π)d
. (4.31)

Here, the response matrix is the anomalous Hall conductivity, the components σij of
which are antisymmetric with respect to the Cartesian indices i and j. Analogously
to the ordinary transport phenomenon, the anomalous Hall effect relies on broken
time-reversal symmetry since the integral in Eq. (4.31) of the Berry curvature over
the whole Brillouin zone vanishes otherwise. If the magnetization of a ferromagnet is
reversed, the response σij changes sign. As an intriguing consequence of its beautiful
geometric origin, the anomalous Hall conductivity (4.31) is a genuine bulk property
of the periodic crystal without any boundaries, even though the relevant physical
processes that support the intrinsic anomalous Hall effect are inherent to the surface.

Theoretical predictions (see Refs. [19, 101, 102] among many others) of an exotic
topological variant of the anomalous Hall effect in two-dimensional insulators have
triggered tremendous experimental efforts devoted to uncovering such a phase in real
materials. Only recently, this quantum anomalous Hall effect was discovered experi-
mentally at cryogenic temperatures [103]. One hallmark of this topological phase is
the precise quantization of the transport coefficient σxy in magnetic insulators [18]:

σxy =
e2

h
C , (4.32)

where C =
∑occ

n Cn = 1/(2π)
∑occ

n

∫
Ωn
xy dkxdky is the Chern number, which is guar-

anteed to be an integer if the unoccupied and occupied states are separated by a finite
energy gap. Thus, the Chern number may only change if the global band gap closes
and the system becomes metallic. From a mathematical point of view, the Chern
number Cn of the nth band is a topological invariant over the two-dimensional Bril-
louin zone, which is a well-behaved compact manifold without boundaries. Since the
Chern number does not vanish whenever at least two gauge patches are required, we
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may interpret C as a hindrance from choosing a smooth and single-valued gauge over
the entire parameter manifold10. Insulating materials with a non-vanishing Chern
number of the occupied states are given the name Chern insulators as they display
fascinating properties such as the quantization (4.32) that roots in the non-trivial
topology of momentum space. The quantum anomalous Hall effect is accompanied
by the appearance of perfectly conducting edge states that cross the bulk band gap
in the case of a Chern insulator of finite sample size. Because of their topological
protection from scattering, these robust states are believed to hold great prospects
for energy-efficient spintronic applications. However, promising material candidates
suffer so far from either small band gaps or too low Curie temperatures, both of which
obstruct the desirable operation of spintronic devices at room temperature.

Finally, we mention only briefly that another member of the family of Hall effects
– referred to as the spin Hall effect – was suggested by Dyakonov and Perel [104,105],
who predicted in 1971 the spin accumulation along the edges of current-carrying
paramagnets11 due to the spin-orbit interaction. A topical overview of this charge-to-
spin current conversion is provided in Ref. [107]. In particular, the quantum spin Hall
effect receives substantial attention as it constitutes a unique response characteristic of
topological insulators, where it manifests in helical edge states that are protected from
scattering off non-magnetic impurities. Similarly to the anomalous Hall effect, the
non-trivial topology of the underlying momentum phase space gives rise to an intrinsic
contribution to the spin Hall effect that is driven by the “spin” Berry curvature, where
one of the velocities in Eq. (4.12) is replaced with the spin current density, i.e., the
anticommutator of velocity and spin operators.

4.2.3 Orbital magnetism

Being one of the most fundamental quantum-mechanical phenomena in solids, mag-
netism is typically decomposed into the intrinsic spin magnetic moment of electrons
and an orbital contribution mediated by circulating electric currents. While the con-
cept and understanding of the spin magnetization, which is the spin magnetic mo-
ment per unit volume, has been advanced substantially during the course of the past
decades, the overall relevance of orbital magnetism in periodic systems is vividly de-
bated these days. In part, this controversy arises from the fact that the spin moment
usually overshadows its orbital counterpart by far due to the quenching of the or-
bital moment. Orbital magnetism is generally ascribed to either correlation effects
that result in orbital moments following Hund’s second rule of atomic physics, or the
spin-orbit interaction if electron correlations are negligible or not taken into account.
Although spin-orbit coupling lifts partially the exact degeneracy of left- and right-
propagating currents in the crystal field, Fig. 4.4, this mechanism is rather inefficient
in generating a large net orbital moment in most solids as is shown in Chapter 6.

Nevertheless, in particular systems the orbital magnetization (OM) becomes as
important as the spin contribution, which can even lead to a spin-orbital compensa-

10In the spin-1/2 problem, where two gauge patches are necessary, the Chern number amounts to
C± = ±1 when integrating the curvature (4.19) over the entire parameter manifold of θ and ϕ.

11In general, also systems with broken time-reversal symmetry can host the spin Hall effect if the
combined action of time inversion and another crystalline symmetry restores Kramer’s degener-
acy. For example, this is the case for an antiferromagnetic texture on the square lattice [106].
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Figure 4.4: If electrons circulate with a certain rotational sense around the nucleus, an
orbital angular momentum +L emerges. In the crystal field, however, this
state is energetically equivalent to the situation with the opposite rotational
sense, which leads to a cancellation and no net orbital moment. Only when
coupling the spin degrees of freedom to the crystal lattice via the spin-orbit
interaction, we break this orbital degeneracy such that a finite orbital moment
may manifest.

tion of the total macroscopic magnetization [108–110]. Apart from these rather rare
instances, its general influence on spin-dependent transport [111–114], magnetic sus-
ceptibility and magneto-electric response [114–117], magnetic anisotropy [118], and
Dzyaloshinskii-Moriya interaction (DMI) [15, 16] renders the OM crucial for under-
standing basic properties of complex magnets. Consequently, deeper insight into the
orbital magnetism of solids is deemed to be of outstanding relevance. However, as
we shall see below, the rigorous description of orbital magnetism sets a surprisingly
formidable challenge for theory and has remained elusive until only recently. In con-
trast to theory, experimental techniques to distinguish the individual spin and orbital
contributions to the overall magnetization of crystals are readily available since several
decades [119–122]. Among these probing methods, X-ray magnetic circular dichroism
(XMCD) measurements in terms of the difference in the absorption spectra under
left- and right-circularly polarized light in a magnetic field are particularly popular
to extract information on the magnetic properties. In transition metals, such X-ray
absorption spectra are conventionally taken at the so-called L2 and L3 edges12 where
photons excite, for example, 2p electrons of Fe into the 3d states that define the
magnetic attributes of the considered material.

From the viewpoint of theory, the phenomenon of orbital magnetism has remained
difficult to grasp primarily due to the subtle theoretical treatment of the orbital
angular momentum operator L = r × p in condensed-matter systems. As the po-
sition operator is unbounded in crystals, applying r to any Bloch wave function
takes us outside of the Hilbert space. Consequently, the vast majority of previous
first-principles calculations assessing the role of orbital magnetism took advantage
of an atom-centered approximation (ACA) which tames the position operator by lo-

12In XMCD, the X-ray absorption edge reports the orbital of the electron that absorbs the photon.
For example, the atomic orbitals 2p1/2 and 2p3/2 are identified with the L2 and L3 absorption
edge, respectively.
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cally restricting the evaluation of the operator L to finite spherical regions around the
atoms. Within the full-potential linearized augmented-plane-wave (FLAPW) method,
these regions in real space are naturally identified with the muffin tins such that
mµ
kn = − e

2m0
〈ψkn|rµ × p|ψkn〉µ denotes the local orbital moment associated with the

state |ψkn〉 in the µth muffin tin, and e > 0 is the positive elementary charge of
the electron with mass m0. Based on the ACA, the OM amounts to summing up
the individual contributions over all occupied states and atoms in the unit cell, and
dividing subsequently by the unit cell volume V :

maca =
1

NkV

occ∑
kn

∑
µ

mµ
kn , (4.33)

where Nk is the number of k-points. However, it is a priori unclear whether this
approach captures the physically relevant contributions to the orbital magnetism
when neglecting strictly all regions of real space but the muffin tins. Especially,
non-local currents circulating around several atoms are not fully accounted for.

Only recently, a complete theory aiming at the proper description of orbital mag-
netism was established through three independent approaches [24–27]. (i) A fruitful
way to circumvent the problematic definition of r for extended Bloch states is to use
localized Wannier functions (see Chapter 5) instead. Starting from finite samples, it
was proven that the magnetization comprises a “local circulation” of bulk-like Wan-
nier functions and an “itinerant circulation” that stems from a net current carried
by Wannier functions near the surface [24, 25]. Although the gauge-invariant sum
converges in the thermodynamic limit to a boundary-insensitive property involving a
Brillouin zone integral of the Bloch states, we emphasize that the itinerant circulation
is non-negligible even in the bulk case. (ii) Alternatively, a semiclassical picture of
Bloch electrons modeled by wave packets can be used to derive a semiclassical formula
for the OM [26]. Here, the intrinsic orbital moment 〈∇kukn|× (Hk−Ekn)|∇kukn〉 due
to the rotation of the nth wave packet around its center of mass is complemented with
a term that originates from variations of the density of states with magnetic field.
(iii) Finally, a full quantum-mechanical derivation based on perturbation theory in
the external magnetic field can be performed to uncover additionally the explicit tem-
perature dependence of the OM [27]. All three approaches result in the Berry phase
theory of orbital magnetism [99,123–125], which is also referred to as modern theory
in analogy to the corresponding framework for calculating the electric polarization in
inversion-asymmetric crystals [22, 23, 124]. The OM in the modern theory amounts
to a genuine bulk property that is evaluated from the ground-state wave functions:

m =
e

2h̄
Im

occ∑
n

∫
[dk] 〈∇kukn| × (Hk + Ekn − 2EF) |∇kukn〉 , (4.34)

where k is the crystal momentum, [dk] stands for dk/(2π)3 in three dimensions, |ukn〉
is an eigenstate of the lattice-periodic Hamiltonian Hk to the band energy Ekn, and
EF is the Fermi energy. Since we are interested in the behavior at zero temperature,
the summation has been restricted to all occupied states below the Fermi energy.
Note that both Hk and Ekn enter Eq. (4.34) with the same sign in contrast to the
semiclassical expression for the orbital moment of a wave packet given before.

As compared to the rather crude approximation discussed before, Eq. (4.34) ac-
counts naturally and unambiguously also for contributions to the OM from non-local
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electric currents [126], however, at the expense of a much more challenging computa-
tion. Moreover, the physically intuitive real-space resolution of local orbital moments
as provided by Eq. (4.33) is abandoned in the Berry phase theory of OM. In order to
connect to experiments on orbital magnetism, we write m = mlc +mic with

mlc =
e

2h̄
Im

occ∑
n

∫
[dk] 〈∇kukn| × (Hk − EF) |∇kukn〉 , (4.35)

mic =
e

2h̄
Im

occ∑
n

∫
[dk] 〈∇kukn| × (Ekn − EF) |∇kukn〉 , (4.36)

referring to the aforementioned local and itinerant circulation13, respectively. On the
other hand, XMCD measurements endeavor conventionally the dichroic f -sum rule to
disentangle spin and orbital contributions from the differential absorption spectrum.
Based on this sum rule, the XMCD spectrum can be shown [127] to probe not all
contributions to orbital magnetism but only one specific part of it that links to the
integral of 〈∇kukn| × (Hk − Ekn)|∇kukn〉, missing thus the term 2mic associated
with the itinerant circulation. The quantitative relevance of the latter contribution
is largely unexplored and debated in the electronic-structure community [124].

Remarkably, the Berry phase expression (4.34) comprises a geometric motive of
orbital magnetism, which motivates us to perceive this phenomenon at least partly
as a geometric effect stemming from the Berry curvature in momentum space. For
example, if we consider the variation of the non-vanishing component mz with the
Fermi level in a two-dimensional insulator14, this fact becomes even more explicit:

∂mz

∂EF

=
e

h

1

2π

(
−2Im

occ∑
n

∫ 〈
∂ukn
∂kx

∣∣∣∣∂ukn∂ky

〉
dkxdky

)
=
e

h
C , (4.37)

which means that the z-component of the OM changes linearly with energy through-
out the band gap of Chern insulators, and the according (positive or negative) slope
is determined by the integer Chern number C of all occupied valence bands. In other
words, Eq. (4.37) correlates the emergence of conducting edge states in topologically
non-trivial insulators with the orbital magnetism in these systems. Apparently, the
OM stays constant within energy regions of trivial band gaps for which C = 0.

It is commonly known that derivatives of the total magnetization M can determine
characteristic physical properties such as the magnetic susceptibility [114], which sig-
nalizes variations ∂Mi/∂Bj of the magnetization with an external magnetic field B,
or the magneto-electric polarizability ∂Mi/∂Ej [115–117], which specifies the induced
magnetization due to an electric field E in insulators with broken time-reversal and
inversion symmetries15. Therefore, since the total magnetization contains the orbital
contribution m, derivatives of the latter quantity can be substantial to describe the

13It should be kept in mind that the difference between the simple ACA and the modern theory is
not just the itinerant circulation as pointed out in Ref. [126].

14In metals, the derivative of the step-like Fermi distribution provides an extra Fermi-surface term,
which supplements the integral of the Berry curvature over the whole Brillouin zone [124].

15Based on Maxwell’s relations, the induced magnetization due to an applied electric field can be
viewed alternatively as the response of the electric polarization to an external magnetic field.
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previously mentioned response effects although the magnitude of the orbital magne-
tization itself might be negligible as compared to the spin counterpart. In addition,
the orbital magnetic moment is of crucial importance for other response phenomena
such as the gyrotropic magnetic effect [128], current-induced OM [129], and orbital
Hall effects [130,131]. Consequently, as we demonstrate in Chapter 6, advancing our
yet premature understanding of orbital magnetism by employing the predictive Berry
phase theory is fundamental to accomplish a qualitative and quantitative description
of relevant electronic and magnetic effects in condensed-matter systems.

4.3 Geometric effects due to mixed-space

curvature

4.3.1 Berry curvature in mixed space

The momentum-space curvature that rules the previously discussed geometric phe-
nomena of anomalous Hall effect and orbital magnetism is only one component of a
more general Berry curvature tensor Ω [26,132], which assumes in the presence of the
crystal momentum k and additional tunable parameters λ the form

Ω =

(
Ωkk Ωkλ

Ωλk Ωλλ

)
. (4.38)

Here, Ωkk corresponds to the Berry curvature tensor of all occupied states in mo-
mentum space, Ωkλ and Ωλk denote mixed Berry curvatures that entangle the usual
reciprocal space with the abstract λ-manifold, and Ωλλ describes the curvature orig-
inating purely from the parameter space of λ (see also Fig. 4.5(b)). Depending on
the choice of the nature of λ, different physical effects can be understood from the
underlying phase-space geometry mediated by Eq. (4.38).

The present thesis has its focus on situations in which the role of the additional
parameter is played by the magnetization direction m̂ = (cosϕ sin θ, sinϕ sin θ, cos θ),
which is represented in spherical coordinates using the polar angle θ and the azimuthal
angle ϕ as illustrated in Fig. 4.5(a). As will be shown below, such a setting enables
us to interpret antidamping spin-orbit torques (SOTs) and the Dzyaloshinskii-Moriya
interaction (DMI) in inversion-asymmetric magnets as geometric phenomena that root
in the mixed Berry curvature tensor Ωm̂k. This quantity intertwines the phase spaces
of crystal momentum and magnetization direction in the following way [28]:

Ωm̂kij = −2Im
occ∑
n

êi ·
(
m̂×

〈
∂ukn
∂m̂

∣∣∣∣∂ukn∂kj

〉)
= −2Im

occ∑
n

êi ·
(
êϕ

〈
∂ukn
∂θ

∣∣∣∣∂ukn∂kj

〉
− 1

sin θ
êθ

〈
∂ukn
∂ϕ

∣∣∣∣∂ukn∂kj

〉)
,

(4.39)

where the explicit magnetization dependence of the wave functions |ukn〉 is sup-
pressed to simplify the notation. To arrive at the second line, we expressed the
gradient in spherical coordinates using the unit vectors êϕ = (1/ sin θ)∂m̂/∂ϕ =
(− sinϕ, cosϕ, 0) and êθ = ∂m̂/∂θ = (cosϕ cos θ, sinϕ cos θ,− sin θ). Based on first
order perturbation theory, Eq. (4.39) can be recast into a numerically advantageous
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Figure 4.5: (a) The magnetization direction m̂ can be represented in spherical coordinates
using the polar angle θ (blue) and the azimuthal angle ϕ (green). (b) Illustra-
tion of the complex phase space that entangles the crystal momentum k with
the dynamical magnetization direction m̂, resulting eventually in a non-trivial
general Berry curvature Ω(k, m̂).

shape that may be evaluated under an arbitrary gauge of the wave functions. In ad-
dition to the usual velocity operator h̄v(k) = ∇kHk given by Eq. (4.30), we employ
for this purpose the torque operator

T = m̂×Bxc = m̂× ∂H

∂m̂
=
∂H

∂θ
êϕ −

1

sin θ

∂H

∂ϕ
êθ , (4.40)

whereBxc stands for the exchange field. An equivalent formulation of the torque oper-
ator T is obtained by replacing H in the above equation with the crystal-momentum
representation Hk. Then, the mixed Berry curvature assumes the form

Ωm̂kij = −2Im
occ∑
n

∑
m6=n

〈ukn|Ti|ukm〉〈ukm|h̄vj(k)|ukn〉
(Ekn − Ekm)2

, (4.41)

where Ti and vj(k) refer to the ith and jth Cartesian component of torque operator
and velocity operator, respectively.

As compared to the Berry curvature Ωkk in momentum space, Eq. (4.28), which
correlates two polar vectors (velocities), the geometry of the mixed phase space is
measured by the coupling of the axial vector T to the polar vector v(k), as a conse-
quence of which the symmetry properties of the mixed Berry curvature are thoroughly
distinct from Ωkk. Notably, the axial and polar vectors may only couple if the in-
version symmetry is broken. Moreover, the mixed Berry curvature is even under
magnetization reversal in contrast to the pure curvature in momentum space. While
the antisymmetric tensor shape in the latter case is due to the Onsager reciprocity
relations, the structure of the mixed curvature tensor roots solely in the allowed sym-
metry operations in the considered system. For instance, in perpendicularly magne-
tized films such as Mn/W(001) and Co/Pt(111) [133], the existence of a rotational
symmetry C⊥n with n > 2 around the axis perpendicular to the film plane dictates an
antisymmetric tensor shape, i.e., Ωm̂kij = −Ωm̂kji . However, this relation does not hold
anymore once the magnetization is rotated away from the out-of-plane direction.
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4.3.2 Spin-orbit torques

Controlling and manipulating the magnetization of magnetic materials is of utter rel-
evance for the innovative design of future high-speed, non-volatile, energy-efficient,
and scalable spintronic devices. Since the involved currents are much smaller, magne-
tization switching of nanomagnets due to injected (spin-polarized) charge currents or
applied electric fields is perceived as highly promising and contrasts favorably from
utilizing external magnetic fields to set the magnetic state. Thus, the electrical control
via spin torques acting on the macroscopic magnetization opens bright technological
perspectives for the integration and miniaturization of functionalized magnetic units
in electronic circuits such as novel random-access memories [9–11].

Slonczewski [6] and Berger [7] were the first in 1996 to formulate independently
the physical principle of exploiting spin-polarized currents to exert torques on the
magnetization. These so-called spin-transfer torques (STTs) drive non-uniform mag-
netic textures like domain walls [134] and facilitate the switching of free ferromagnetic
layers in spin valves and magnetic tunnel junctions. A charge current that flows per-
pendicular to the film plane of a spin valve, for example, becomes spin-polarized in
the first ferromagnetic layer due to the spin-filtering effect16 before entering the non-
magnetic spacer. At the interface between the spacer and the second magnetic layer
with local magnetization m, a non-equilibrium spin polarization δs accumulates due
to the different conductivities for spin-up and spin-down electrons in the ferromagnet.
As a consequence of the exchange interaction m · δs of the local magnetization with
this accumulated spin polarization at the interface, spin angular momentum is trans-
ferred between the spin current and the macroscopic magnetization if δs is misaligned
with m. If the magnitude of the local ferromagnetic moment is assumed to remain
constant, only the perpendicular contribution δs⊥ = am × δs + b(m × δs) ×m of
the spin current manifests in a torque, where the parameters a and b carry distinct
dependencies on the applied current density, the relative angle between m and δs,
and details of the interface geometry. The time rate of change of spin angular mo-
mentum is then quantified by the spin-transfer torque acting on m, i.e., the cross
product of the macroscopic magnetization with the effective exchange field mediated
by the non-equilibrium spin polarization [135,136]:

T ∝m× δs⊥ = am× (m× δs) + bm× δs . (4.42)

While the out-of-plane field-like torque (bm×δs) causes the magnetization to precess
around the effective exchange field, the in-plane antidamping torque (am× (m× δs))
rotates the magnetization towards δs due to the absorption of the transverse part
of the spin current, switching eventually the magnetization if the applied current is
large enough. In typical spin-transfer torque geometries, the critical current densities
necessary for magnetization reversal amount to about 108 A/cm2.

The magnetization dynamics is described by the Landau-Lifshitz-Gilbert equation

ṁ = −γm×Heff +
α

m
m× ṁ+ ηadm× (m× δs) , (4.43)

where ṁ = ∂m/∂t is the variation of m = mm̂ with time, γ characterizes the pre-
cession around the effective field Heff consisting of external magnetic and intrinsic

16The spin-filtering effect originates from the difference in transmission and reflection for spin-up
and spin-down electrons in typical ferromagnets.

48



4.3 Geometric effects due to mixed-space curvature

exchange fields, α is the Gilbert damping parameter, and the importance of the anti-
damping torque is controlled by ηad, which hinges on the applied current magnitude.
In order to achieve magnetization switching, the antidamping torque has to overcome
the magnetic damping. Remarkably, while spin torques describe the phenomenon of
spin-polarized currents rotating the magnetization, exciting externally the dynamics
of the magnetization induces spin currents because of the inverse effect known as
spin pumping [137–140]. Since magnetic damping dissipates during the magnetiza-
tion dynamics spin angular momentum into the conduction electrons, a spin current is
pumped out of a ferromagnet like permalloy into an adjacent non-magnetic conductor
such as Pt.

Albeit the spin-transfer torque offers an exciting prospect to orient the free layer
in spin valves and magnetic tunnel junctions, practical technology that foots on this
effect is limited by the wear-out, or, dielectric breakdown from which these magnetic
heterostructures suffer. Spin valves and magnetic tunnel junctions might be dam-
aged if large currents flow across the device, which is, however, necessary to switch
the magnetization. Additionally, reading out the magnetic information reliably in
the spin-transfer torque geometries without inducing any switching requires partic-
ular care. Facing these challenges, we elucidate in the following an advantageous
mechanism based on fundamental relativistic phenomena to generate spin-polarized
currents and thereby exert so-called spin-orbit torques (SOTs) on the magnetization.

The SOTs are ascribed to two contributing effects that usually coexist in the studied
systems [141]: (i) When an in-plane current is passed through a heavy-metal film like
Pt, the strong spin-orbit coupling converts the charge current into a transverse spin
current via the spin Hall effect, whereby a non-equilibrium spin accumulation at the
interface to an adjacent ferromagnet such as Co is generated. This spatially non-
uniform spin polarization interacts with the magnetization of the ferromagnet and
exerts a spin torque on the local magnetic moment. (ii) In general, the spin-orbit
interaction can be represented as Hso(k) = −m ·Bso(k) using the spin-orbit effective
magnetic field Bso(k). If crystals with broken spatial inversion symmetry are subject
to a charge current, the states with k and −k are populated unevenly, leading to a
net average of the spin-orbit field. It manifests in the inverse spin galvanic effect,
or, Edelstein effect by creating through the exchange interaction with the spin of the
conduction electrons a homogeneous spin polarization, which eventually reorients the
local magnetic moment in a ferromagnet. In this case, the current-induced spin torque
inherits the symmetries associated with the spin-orbit field that is occasionally but
not necessarily of Rashba or Dresselhaus type.

Overall, the phenomenon of SOTs offers a highly efficient means of electrical control
of the magnetization in crystals that combine broken spatial inversion symmetry
and strong spin-orbit coupling17 [133, 142–145], and facilitates to separate write and
read lines in spin valves and magnetic tunnel junctions. These spin torques were
demonstrated to enable switching of single ferromagnetic layers [12, 13] and even
antiferromagnets [14] via the transfer of orbital angular momentum from the lattice
to the spin system. Experiments on ferromagnetic trilayers have identified to lowest

17In Chapter 9 we uncover an intriguing mechanism for large magneto-electric effects that roots not
in the spin-orbit interaction itself but in the global topology of the mixed phase space.
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Figure 4.6: If an electric field E (or, equivalently, a charge current j) is applied to an
inversion-asymmetric magnetic heterostructure, the magnetization reorients
its direction m̂ as a response to the resulting spin-orbit torques. These torques
can be decomposed into an antidamping (even) and a field-like (odd) contri-
bution according to Eqs. (4.44) and (4.45).

order in m̂ two qualitatively distinct torques acting on the magnetization18:

T even = tevenm̂× [(êz ×E)× m̂] , (4.44)

T odd = todd(êz ×E)× m̂ , (4.45)

where E is an in-plane electric field, teven and todd are m̂-independent constants, and
êz is the unit vector perpendicular to the film (see Fig. 4.6). While the antidamping
torque T even is even under magnetization reversal, the field-like torque T odd is an odd
function of m̂.

From the viewpoint of theory, the torque T due to spin-polarized currents is natu-
rally described as a linear response to the applied electric field E:

T = τE , (4.46)

where the so-called torkance tensor τ mediates the electric-field response of the sys-
tem [133]. Here we restrict ourselves to the case of ferromagnets that are characterized
by a position-independent magnetization direction. Within the Kubo formalism, the
torkance tensor relates to the imaginary part of the retarded torque-velocity corre-
lation function, which can be calculated conveniently by the Matsubara technique
of analytical continuation [146]. This yields a Green function representation of the
energy-resolved torkance tensor that assumes at zero temperature the form [133]

ϑij(E) =
e

h
δ(E − EF)Tr〈TiGR(E)vjG

A(E)〉 − e

h
δ(E − EF)ReTr〈TiGR(E)vjG

R(E)〉

+
e

h
θ(EF − E)ReTr

〈
TiGR(E)vj

dGR(E)

dE
− Ti

dGR(E)

dE
vjG

R(E)

〉
,

(4.47)

where GR(E) = h̄[E −H+iη]−1 and GA(E) = h̄[E −H− iη]−1 denote the retarded and
the advanced Green function, respectively, H is the single-particle Hamiltonian, and

18In AlOx/Co/Pt corrections by terms of higher order in m̂ are relevant to account for the anisotropy
of the SOTs with magnetization direction [145].
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η > 0 originates from the Matsubara construction. When integrating ϑij(E) over the
full energy range, we find the element τij of the torkance tensor entering Eq. (4.46):

τij =

∫
ϑij(E) dE , (4.48)

which comprises in general contributions from both Fermi surface and Fermi sea
according to Eq. (4.47). Remarkably, the Bastin equation [147] for the conductivity
tensor (derived from the current-current correlation) provides a formally equivalent
expression if the current density operator −evi/V is replaced therein with −Ti.

Although the limit of zero temperature is considered here, the presumably most
dominant effect of disorder-induced smearing of the energy bands can still be modeled.
For this purpose, we introduce a constant broadening Γ of the bands19 in the eigen-
state representation of the Green functions, e.g., 〈ukn|GR(E)|ukn〉 = h̄[E−Ekn+iΓ]−1.
Plugging this into Eq. (4.48) and grouping those parts that hinge either on the real
part or on the imaginary part of 〈ukn|Ti|ukm〉〈ukm|vj(k)|ukn〉, we recover the decom-
position of the torkance into an even term

τ even
ij =

eh̄

2πNk

∑
kn

∑
m6=n

Im(〈ukn|Ti|ukm〉〈ukm|vj(k)|ukn〉)

×
{

Γ(Ekm − Ekn)

[(EF − Ekn)2 + Γ2][(EF − Ekm)2 + Γ2]

+
2Γ

(Ekn − Ekm)[(EF − Ekm)2 + Γ2]

+
2

(Ekn − Ekm)2
Im ln

Ekm − EF − iΓ

Ekn − EF − iΓ

}
,

(4.49)

and into an odd contribution that changes sign under magnetization reversal:

τ odd
ij =

eh̄

πNk

∑
kn

∑
m

Γ2Re(〈ukn|Ti|ukm〉〈ukm|vj(k)|ukn〉)
[(EF − Ekn)2 + Γ2][(EF − Ekm)2 + Γ2]

. (4.50)

While the odd torkance that characterizes the field-like SOT is purely due to the
Fermi surface terms in Eq. (4.47), the antidamping torque as represented by the even
torkance originates from both the Fermi surface and the Fermi sea. Equations (4.49)
and (4.50) can be used to evaluate based on the electronic structure the SOTs as an
electric-field response in (disordered) inversion-asymmetric systems. As the torkance
tensor τ roots in the coupling of the axial vector T and the polar vector v(k), its shape
is not determined by Onsager reciprocity relations but by the crystal symmetries.

In the limit of vanishing disorder Γ → 0, i.e., in clean samples, the odd torkance
diverges like 1/Γ:

τ odd
ij =

eh̄

2ΓNk

∑
kn

〈ukn|Ti|ukn〉〈ukn|vj(k)|ukn〉δ(EF − Ekn) . (4.51)

19A more sophisticated approach towards treating disorder coherently, e.g., within the Gaussian
disorder model, requires the evaluation of so-called vertex corrections.
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However, the even torkance assumes a scattering-independent value for Γ→ 0:

τ even
ij =

2eh̄

Nk

occ∑
kn

∑
m6=n

Im
〈ukn|Ti|ukm〉〈ukm|vj(k)|ukn〉

(Ekn − Ekm)2

= − e

Nk

∑
k

Ωm̂kij (k) ,

(4.52)

which is determined by the integral of the mixed Berry curvature (4.41) of all occu-
pied states over the Brillouin zone. Consequently, the latter intrinsic contribution to
the antidamping SOT in clean samples reveals strong formal analogies to the anoma-
lous Hall conductivity (4.31), which motivates us to interpret antidamping SOTs as
manifestly geometric phenomena that are governed by the non-trivial properties of
the combined phase space of crystal momentum and magnetization direction.

4.3.3 Dzyaloshinskii-Moriya interaction

The exchange interaction between two indistinguishable electrons comprises an anti-
symmetric part referred to as Dzyaloshinskii-Moriya interaction (DMI) [15,16], which
gains recently ever-growing attention as it stabilizes fascinating chiral spin struc-
tures [148]. This interaction is particularly important for the condensed-matter real-
ization of localized soliton solutions known as magnetic skyrmions [132,149–151] that
are topologically protected magnetic whirls. Moreover, the DMI manifests in chiral
magnetic domain walls, which are perceived to hold promises for novel memory de-
vices as they can be driven very efficiently by current-induced spin torques [152–156].
Originating from the interplay between spin-orbit coupling and broken inversion sym-
metry in non-centrosymmetric bulk crystals or at interfaces, the antisymmetric ex-
change energy Dij ·(Si×Sj) between the two spins Si and Sj favors a canting of these
magnetic moments. This amounts to the formation of a non-collinear spin structure
with a particular handedness, or, chirality that is determined by the DMI vectors
Dij, which are constrained by the crystal symmetries.

One of the common approaches to predict from ab initio the vectors Dij mediating
the DMI is to perform non-collinear calculations of spin spirals with finite wave vectors
q, where spin-orbit coupling is added as a small perturbation [157–161]. As a conse-
quence, the chiral interaction manifests in the q-linear contribution to the dispersion
E(q), i.e., the total energy as a function of the spin-spiral wave vector. Alternative
computational techniques extract the DMI from derivatives of the spin correlation
function [162], intrinsic spin currents [163], a tight-binding representation of the en-
ergy bands [164], or from multiple-scattering theory [165]. A subset of these methods
employs computationally demanding frameworks associated either with the calcu-
lation of non-collinear spin structures20 or with the full-relativistic Kohn-Korringa-
Rostoker (KKR) method. In addition, some of the approaches rely on restrictive
assumptions on the magnitude of exchange and spin-orbit interactions, which renders
the accuracy of such methods in particular for materials that contain heavy metals

20As the Hamiltonian is block-diagonal in the collinear case, the diagonalization scales like 2n3, where
n is the dimension of a single spin block. In the non-collinear case, however, the diagonalization is
more expensive and scales like (2n)3 since the spin-up and spin-down problems become coupled.
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with strong spin-orbit coupling controversial. In contrast, a Berry phase theory was
developed in Ref. [28] that evaluates the DMI from the electronic structure of the
collinear ferromagnetic ground state with self-consistent spin-orbit coupling.

Within the latter Berry phase theory, the pairwise DMI vectors Dij are replaced
with the micromagnetic spiralization tensor D, which relates to the atomistic quan-
tities via [161]

D =
2π

V

∑
i

D0i ⊗Ri , (4.53)

where Ri is the ith lattice vector, and the outer product “⊗” illustrates the tensorial
nature of the 3 × 3 spiralization matrix D. Equivalently, the micromagnetic D can
be represented by the outer product of the rotation vector of a spin spiral and the
gradient of the total energy with respect to the spin-spiral wave vector [161].

Quantifying the DMI, the spiralization tensor D reflects the change of the micro-
magnetic free energy density F as a response to chiral perturbations ∂m̂/∂rj. This
energy change assumes up to first order in gradients of the magnetization direction
m̂ the form [28]

δF (r) =
∑
ij

Dij(m̂)êi ·
(
m̂(r)× ∂m̂(r)

∂rj

)
, (4.54)

where êi denotes the ith Cartesian unit vector, Dij is an element of the 3× 3 spiral-
ization tensor, and r is the position. In the present work, we focus on the DMI in
ferromagnetic systems, for which the magnetization direction m̂ depends only weakly
on the position r in real space. Consequently, an explicit expression for the matrix
elements of the spiralization tensor is obtained if the free energy change due to small
spatial oscillations of the magnetization direction is equated with the free energy
change according to Eq. (4.54).

We employ in the following the torque operator T = m̂ × Bxc with the ex-
change field Bxc, and the velocity operator in crystal momentum representation,
h̄v(k) = ∂k(e−ik·rHeik·r), where H is the single-particle Hamiltonian of the ferro-
magnetic system. Following the detailed derivations given in Ref. [28], we arrive at
an expression for the spiralization at finite temperatures T :

Dij =
1

NkV

∑
kn

[
f(Ekn)Anij(k) +

1

β
ln
(
1 + e−β(Ekn−µ)

)
Bn
ij(k)

]
, (4.55)

where V is the unit cell volume, f(Ekn) is the Fermi distribution function with the
band energy Ekn, β = 1/(kBT ), and µ is the chemical potential. The intrinsic
scattering-independent nature of Eq. (4.55) is encoded in the k-dependent quanti-
ties Anij and Bn

ij that hinge on matrix elements of the torque and velocity operators:

Anij(k) = −Im
∑
m6=n

〈ukn|Ti|ukm〉〈ukm|h̄vj(k)|ukn〉
Ekn − Ekm

, (4.56)

and

Bn
ij(k) = −2Im

∑
m6=n

〈ukn|Ti|ukm〉〈ukm|h̄vj(k)|ukn〉
(Ekn − Ekm)2

, (4.57)
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which is the momentum- and band-resolved mixed Berry curvature.

In order to elucidate the deep geometric origin of Eq. (4.55), we rewrite again
the torque operator as gradient of the Hamiltonian with respect to the magnetization
direction, i.e., T = m̂×(∂H/∂m̂), and represent the magnetization direction as m̂ =
(cosϕ sin θ, sinϕ sin θ, cos θ) using the azimuthal angle ϕ and the polar angle θ shown
in Fig. 4.5. Based on these definitions, we obtain at zero temperature an alternative
formulation of the spiralization in terms of derivatives of the wave functions with
respect to the crystal momentum and the magnetization direction:

Dij =
1

NkV

occ∑
kn

[
Anij(k)− (Ekn − EF)Bn

ij(k)
]

=
êi
NkV

· Im
occ∑
kn

[
m̂×

〈
∂ukn
∂m̂

∣∣∣∣Hk + Ekn − 2EF

∣∣∣∣∂ukn∂kj

〉]
=

êi
NkV

· Im
occ∑
kn

[
êϕ

〈
∂ukn
∂θ

∣∣∣∣hkn∣∣∣∣∂ukn∂kj

〉
− êθ

sin θ

〈
∂ukn
∂ϕ

∣∣∣∣hkn∣∣∣∣∂ukn∂kj

〉]
,

(4.58)

where the sum is restricted to all occupied states, µ was replaced with the Fermi level
EF, and hkn = (Hk + Ekn − 2EF). Obviously, the DMI spiralization tensor exhibits a
manifestly geometric contribution originating from the adiabatic Hamiltonian evolu-
tion of the ferromagnetic system under slow variations of the crystal momentum and
the magnetization direction. Notably, the Berry phase expression (4.58) is strongly
reminiscent of Eq. (4.34) that lays out the modern theory of orbital magnetization,
leading us to refer analogously to the above formalism as the modern theory of DMI.
However, as compared to Eq. (4.34), one of the momentum derivatives was substituted
with the derivative of the wave function with respect to the magnetization direction.

In passing, we note that antidamping torkance and DMI spiralization are mutually
connected via the non-trivial geometry of the mixed phase space of k and m̂ just like
intrinsic anomalous Hall conductivity and orbital magnetization are related.

Using the energy-resolved torkance ϑij(E) given by Eq. (4.47), we may express the
spiralization tensor at zero temperature in Kubo linear-response theory as [28]

Dij =
1

eV

∫
(E − EF)ϑij(E) dE , (4.59)

which underlines the intimate correlation with (parts of) the torkance tensor that is
given in the Kubo formalism by Eq. (4.48). Due to the prefactor (E − EF) the Fermi
surface terms in the energy-resolved torkance do not contribute, and we are left with

Dij =
1

hV

∫ EF
−∞

(E − EF)Re Tr

〈
TiGR(E)vj

dGR(E)

dE
− Ti

dGR(E)

dE
vjG

R(E)

〉
dE . (4.60)

To model the effect of disorder, we extend this Kubo expression of the spiralization
tensor in the clean limit such that the eigenstate representation of the retarded Green
function GR includes a constant band broadening Γ. This yields the following formula
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describing the disorder dependence of the DMI spiralization (see Appendix B):

Dij =
h̄

2πNkV

∑
kn

∑
m6=n

Im [〈ukn|Ti|ukm〉〈ukm|vj(k)|ukn〉]

×
[
Ekn + Ekm − 2EF

(Ekn − Ekm)2
Im log

Ekm − EF − iΓ
Ekn − EF − iΓ

− 2Γ

(Ekn − Ekm)2
Re log

Ekm − EF − iΓ
Ekn − EF − iΓ

]
,

(4.61)

where the summation is not restricted to the occupied manifold but has to be per-
formed in principle over all electronic states. In the clean limit of Γ→ 0+, the second
term in Eq. (4.61) vanishes as a consequence of which the scattering-independent
Berry phase expression (4.58) is recovered as proven in Appendix B. Since time
reversal inverts not only the magnetization but transforms also 〈ukn|Ti|ukm〉 into
(〈ukn|Ti|ukm〉)∗ and 〈ukm|vj(k)|ukn〉 into −(〈ukm|vj(k)|ukn〉)∗, the DMI spiralization
tensor is even in the magnetization direction just like the antidamping torkance τ even

ij .

4.4 Geometric effects due to real-space curvature

Time reversal and spatial inversion constitute generally the two primary symmetry
operations that govern the emergence of the relativistic phenomena introduced in this
chapter. Hence, non-centrosymmetric bulk magnets and thin magnetic heterostruc-
tures are ideal candidates to study anomalous charge or spin transport, orbital mag-
netism, current-induced magnetization switching, and chiral exchange interactions
in a single system. These crystals are prototypical representatives of the material
class of chiral magnets that lack both time and spatial inversions, resulting often in
twisted magnetic textures in real space (e.g., spin spirals or magnetic skyrmions),
which emanate from non-zero chiral interactions. As a consequence, chiral magnets
feature naturally real-space Berry phases that root in the curvature Ωrr of the under-
lying complex phase space and manifest ultimately in unique texture-driven transport
properties of chiral magnets such as the topological Hall effect [150,166,167].

For example, when an electron propagates through the slowly varying magnetic
structure of a large skyrmion in a thin magnetic film, its spin follows adiabatically
the local magnetization of the texture if the exchange coupling is strong enough. Ef-
fectively, the impact of the non-collinear magnetic structure can be represented as an
emergent magnetic field that affects the electron’s dynamics and changes the electrical
response of the system. To achieve such a mapping onto an effective problem in elec-
trodynamics, the topological charge or skyrmion winding number is conventionally
employed:

nsk =
1

4π

∫
m̂(r) ·

[
∂m̂(r)

∂x
× ∂m̂(r)

∂y

]
dxdy , (4.62)

where m̂(r) is the spatially varying magnetization direction of the texture, and the
integration is performed in the xy film plane. Using Eq. (4.62), one can predict
the magnitude of the fictitious magnetic field originating from the smooth magnetic
structure as well as the induced topological Hall signal. In Chapter 6, we follow
analogous ideas to interpret unconventional orbital magnetism based on the emergent
magnetic field of chiral magnetic structures but on a discrete lattice.
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In this chapter, we present an alternative and practical representation of the elec-
tronic structure in terms of so-called Wannier functions (WFs) that enable us to
determine efficiently the electronic structure at any point in the phase space of crystal
momentum. Emphasizing the mutual influence of gauge choice of the Bloch states and
real-space localization of WFs, we discuss the Marzari-Vanderbilt algorithm to obtain
maximally-localized Wannier functions (MLWFs), and outline a routinely employed
implementation of this scheme. Finally, we motivate the accurate interpolation of
the electronic structure as well as of transport and magnetic properties based on the
constructed MLWFs.

5.1 Basic definition and properties

The electronic structure of periodic crystals is commonly represented by single-particle
Bloch waves |ψkn〉 = eik·r|ukn〉 that diagonalize the Hamiltonian and the lattice trans-
lation operators simultaneously [61]. As a consequence of their delocalized wave char-
acter in real space, however, Bloch states obstruct the development of an intuitive
picture of local chemical and physical processes that underlie, for example, the nature
of crystal bonding. In addition, Bloch waves are not well-suited to describe efficiently
phenomena that originate from local electron correlations or other spatially localized
entities such as impurities.

In contrast to the Bloch representation of the electronic structure, localized Wannier
functions (WFs) as introduced by Gregory Wannier [31] are a conceptual extension of
orthogonal atomic orbitals to the case of solids, which allows us to grasp the chemist’s
notion of atomic bonds in the context of condensed-matter physics. Likewise, the
concept of electric polarization, which relates to the Berry phase in the language
of Bloch states, acquires a transparent interpretation based on the displacement of
the centers of WFs. From a more technical perspective, WFs are attractive since
they are adapted ideally to describe rapidly decaying interactions in real space1, and

1For example, screened short-ranged electron-electron interactions can be represented efficiently
using the localized WFs, resulting in sparse matrices as compared to the Bloch basis.
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(a)  k1n(r)

 k2n(r)

 k3n(r)

eik2·r

(b)
WR1n(r)

WR2n(r)

WR3n(r)

Figure 5.1: Real-space representation of the electronic structure of a periodic crystal in
terms of (a) Bloch functions ψkn(r) and (b) Wannier functions WRn(r) for
various values of the crystal momentum k and the direct lattice vector R.
While the Bloch states are delocalized in real space, the localized Wannier
functions exhibit well-defined centers. The black lines in (a) indicate the phase
factor eik·r of the Bloch functions. Figure inspired by [168].

thereby enable us to efficiently formulate the electronic structure problem in such a
situation. Figure 5.1 compares schematically the fundamentally different behavior of
Bloch states and WFs in real space. The WF |WRn〉 of the nth isolated energy band
is a discrete Fourier transformation of the according Bloch state:

WRn(r) =
1

Nk

∑
k

e−ik·Rψkn(r) , (5.1)

where R is a real-space lattice vector, the summation runs over crystal momenta from
the first Brillouin zone, and Nk denotes the number of k-points.

Several remarks regarding the properties of these functions are in order. While
the Bloch states are normalized with respect to the unit cell, the WFs form an or-
thonormal basis over the so-called super cell, which has the volume NkV of Nk unit
cells:

〈WRn|WR′m〉 =

∫
NkV

W ∗
Rn(r)WR′m(r) d3r = δRR′δnm , (5.2)

which is beneficial for expressing the Hamiltonian in the Wannier basis. Already
Gregory Wannier was well aware of the importance of the orthogonality to represent
the electronic structure: “It would no doubt be more satisfactory for insulating crys-
tals, to discuss the Hamiltonian using atomic functions. But this line of attack has
been hampered by the fact that atomic functions are not orthogonal” [31]. Further-
more, WFs inherit their real-space periodicity from the Bloch states, i.e., if |WRn〉 is
translated by the super-cell vector L, its functional form is unaffected:

TLWRn(r) = WRn(r +L) = WRn(r) , (5.3)

where the action of the translation operator TL shifts the position argument of the
WF. Since the Wannier basis is a unitary transformation of the Bloch states, it is easy
to show that 〈r|WRn〉 can be interpreted as the translated reference WF 〈r+R|W0n〉:

TRW0n(r) = W0n(r +R) = WRn(r) . (5.4)
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At the core of the efficient description of the electronic structure is the presumably
most striking property of WFs, that is, their localization in a certain unit cell as
indicated by the real-space label R. Starting with the seminal work by Kohn [169]
on solutions of the one-dimensional Schrödinger equation, studies of these localiza-
tion properties [170–173] have proven the existence of exponentially localized WFs
in topologically trivial insulators2, for which the Bloch states evolve smoothly in
reciprocal space. This statement about the Wannier basis can be formalized as
limr→∞W0n(r)eαr = 0, where α is a strictly positive constant. In metallic systems
and insulators with non-zero Chern number, however, the optimally localized WFs
of the group of occupied bands display only a polynomial decay with the distance r
due to topological obstructions [173].

As the Bloch states of isolated energy bands are only defined up to an arbitrary
phase, Eq. (5.1) does not provide a unique set of WFs. In fact, while no physical
effects are altered when multiplying the Bloch states by the phase eiϕk , where ϕk is
an analytic real-valued function of the crystal momentum, the localization properties
of the Wannier basis are usually affected drastically by this gauge transformation. In
the case of an isolated group of M energy bands – also called composite band – the
gauge transformation of the Bloch states is mediated by the unitary M ×M matrix
U (k) such that Eq. (5.1) generalizes to

WRn(r) =
1

Nk

∑
k

M∑
m=1

e−ik·RU (k)
mnψkm(r) . (5.5)

In the case of entangled energy bands that do not form an isolated group, the trans-
formation matrix U (k) becomes in general rectangular (and thus non-unitary) since
the number of Bloch states at k can be larger than the target number of WFs. Choos-
ing a smoother gauge for the Bloch states in reciprocal space implies that the WFs
become more localized in real space due to fundamental properties of the Fourier
transformation.

5.2 Maximally-localized Wannier functions

Despite the mathematically proven and widely accepted existence of strongly local-
ized WFs, they were hardly used in practice to support electronic structure theory
as systematic methods to construct a unique Wannier basis with good localization
properties were elusive until the late 1990’s. Only then, tremendous progress towards
practical applications of WFs was made by Marzari and Vanderbilt [174], who de-
veloped the notion of maximally-localized Wannier functions (MLWFs). In order to
treat not only composite but also entangled energy bands adequately, the notion of
MLWFs was later extended by Souza, Marzari and Vanderbilt [175]. Leading to a
unique Wannier basis set, the imposed constraint of maximal localization fixes an
optimally smooth gauge for the Bloch states. The spatial extent, or, spread of the

2In these systems, the exponentially localized WFs are real-valued (expect for a global phase) if
the Hamiltonian is real, e.g., in absence of spin-orbit coupling.
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5 Wannier functions

WFs is given by the sum of their second moments

Ω =
∑
n

[
〈W0n|r2|W0n〉 − 〈W0n|r|W0n〉2

]
=
∑
n

[
〈r2〉n − 〈r〉2n

]
, (5.6)

where 〈·〉n = 〈W0n| · |W0n〉 is the expectation value with respect to the nth ref-
erence WF, and the sum runs over all Wannier orbitals that are constructed from
the considered group of energy bands. While the spatial extent (5.6) depends on
the gauge transformation U (k) via Eq. (5.5), the sum of the Wannier centers 〈r〉n
is gauge-invariant modulo a lattice translation in the case of an isolated manifold
of Bloch bands. The optimal gauge choice is obtained by minimizing the spread of
the WFs, which reveals remarkable equivalence to the definition of Boy’s localized
orbitals known in quantum chemistry [176,177].

The iterative minimization algorithm proposed by Marzari and Vanderbilt trans-
lates the real-space spread (5.6) into an expression in reciprocal space using the iden-
tities [174,178]

〈WRn|r|W0m〉 = i
V

(2π)3

∫
BZ

eik·R〈u(W)
kn |∇ku

(W)
km 〉 d

3k , (5.7)

〈WRn|r2|W0m〉 = − V

(2π)3

∫
BZ

eik·R〈u(W)
kn |∇

2
ku

(W)
km 〉 d

3k , (5.8)

where the integration is over the whole Brillouin zone, and |u(W)
kn 〉 =

∑
m U

(k)
mn|ukm〉

stands for the evolution of the lattice-periodic part of the Bloch state during the
iterative refinement of the gauge transformation. While these identities hold in the
continuum-limit, in practice, relations for uniform but discrete k-meshes are needed.
This is achieved by replacing the gradients in Eqs. (5.7) and (5.8) with finite-difference
expressions [174], which result in practical identities that rely on the overlaps between
the lattice-periodic parts of the Bloch states at nearest-neighboring points k and k+b:

M (k,b)
mn = 〈ukm|uk+bn〉 . (5.9)

Based on these overlaps, which are an input provided by first-principles methods, the
key ingredients in Eq. (5.6) evaluate to3

〈r〉n = − 1

Nk

∑
kb

wbb Im ln M̃ (k,b)
nn , (5.10)

and

〈r2〉n =
1

Nk

∑
kb

wb

[
1−

∣∣∣M̃ (k,b)
nn

∣∣∣2 +
(

Im ln M̃ (k,b)
nn

)2
]
, (5.11)

3Although the expressions are non-unique as many finite-difference formulas approximate the gra-
dient ∇k correctly up to first order in b, the ones used here display desirable transformation
properties when shifting the WFs [174]. To render the finite differences precise to first order,
the bond weights wb need to satisfy the condition

∑
b wbbαbβ = δαβ , which accounts for the

underlying lattice structure.
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5.2 Maximally-localized Wannier functions

Figure 5.2: The maximally-localized Wannier functions extracted from the four valence
bands of diamond reveal the covalent nature of the chemical bonding between
the carbon atoms (yellow spheres). Red and blue colors denote positive and
negative isosurface values, respectively.

where the bond weight wb associated with b = bb̂ originates from the finite-difference
approximation of the gradient ∇k, and the overlap matrix is updated during the
iterative minimization process according to

M̃ (k,b)
mn =

∑
m′n′

[
U

(k)
m′m

]∗
M

(k,b)
m′n′ U

(k)
n′n . (5.12)

The efficient procedure suggested by Marzari and Vanderbilt is implemented in the
scientific computer code wannier90 [179] that uses a steepest-descent algorithm to
minimize the spread (5.6). In this thesis, the fleur interface [180] with wannier90

is employed to obtain the necessary input for the minimization process. Besides
the overlaps M

(k,b)
mn , the wannier90 program expects as an input the projections

A
(k)
mn = 〈Ψkm|gn〉 of the Bloch states onto localized trial orbitals |gn〉, which are

essential to construct so-called first-guess WFs as a starting point for the optimization
process. Based on these projections, the Löwdin transformations of the reference
states

∑
mA

(k)
mn|ψkm〉 are plugged into Eq. (5.1) to set up an initial set of WFs.

Usually, the trial orbitals are chosen as atomic-like orbitals centered around the ionic
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5 Wannier functions

positions. Although the first-guess Wannier basis hinges on the trial orbitals, it
converges ideally to the unique set of MLWFs during the steepest descent, irrespective
of the initial choice for |gn〉. Instead of arriving at the global spread minimum,
however, the localization procedure may get trapped in local minima if the first-guess
WFs are not optimal. To improve the convergence and reduce the effort in finding
the global minimum considerably, the trial orbitals should be chosen deliberately to
be as close as possible to the expected MLWFs. Figure 5.2 illustrates as an example
the covalent MLWFs of diamond that originate from the four valence energy bands.

Finally, we remark that after the maximal localization procedure has been carried
out with the wannier90 code, the resulting MLWFs might not exhibit all of the crys-
tal symmetries. While this originates from the implemented minimization algorithm
rather than physical effects and has frequently no severe consequences, it can manifest
in a more involved analysis of electronic properties in certain systems, e.g., in topo-
logical insulators. An approach to overcome this numerical problem is to reinstate
the full crystal symmetries via so-called symmetry-adapted Wannier functions [181].

5.3 Wannier interpolation

5.3.1 Band structure

The Wannier interpolation, Fig. 5.3, is a classic technique to extract efficiently single-
particle operators such as the Hamiltonian at any desired point in reciprocal space,
even though the key ingredients of this scheme – namely, the MLWFs – are con-
structed only from a coarse sampling of the Brillouin zone. To motivate the seemingly
miraculous performance of this interpolation, it is rewarding to scrutinize the relation
between Eq. (5.1) and its extension to the continuum limit, which assumes the form

WRn(r) =
V

(2π)3

∫
BZ

e−ik·Rψ
(W)
kn (r) d3k , (5.13)

where the integration is performed over the first Brillouin zone of the crystal, and the
superscript “W” is used to indicate that the gauge transformation is hidden in |ψ(W)

kn 〉.
As the Fourier transformation is invertible, the Bloch state can be determined at any
k-point once the “true” orbital |WRn〉 is known, by using the inverse of Eq. (5.13):

ψ
(W)
kn (r) =

∑
R

eik·RWRn(r) , (5.14)

with the infinite sum running over all lattice vectors R. The surprising performance
of the Wannier interpolation roots now in the central observation that the shape
of the Wannier orbital |WRn〉 defined by Eq. (5.1) converges rapidly to the “true”
function (5.13) with an increasing but discrete number of k-points entering in the
construction of |WRn〉. Since the function |WRn〉 is approximated excellently by its
little sister |WRn〉, the Bloch state in Eq. (5.14) can be obtained in principle at any
k-point based just on the electronic-structure information known on the coarse mesh.
However, a minor difference between the two types of orbitals |WRn〉 and |WRn〉 is that
the latter functions display by construction spurious periodic images (see Eq. (5.3)).
In order to establish the equivalence with the “true” functions, these well-separated
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k R

Maximal localization Wannier interpolation

H(k) H(k)H(R)

Figure 5.3: Illustration of the Wannier interpolation scheme. Starting from the electronic
structure as encoded in the Hamiltonian H(k) on a coarse k-grid, we construct
Wannier functions that are localized in real space at the positions R. Using
these functions to represent efficiently the electronic structure in terms of the
hoppings H(R), we obtain ultimately the Hamiltonian on a much denser mesh
of k-points via an inverse Fourier transformation. Figure inspired by [168].

images need to be cut away in practice, for example, by setting |WRn〉 to zero in all
but one super cell.

Starting from the Kohn-Sham eigenvalues Ekn that are known on the coarse first-
principles mesh, we can deduce the single-particle Hamiltonian on an ultra-dense
interpolation mesh via the Wannier interpolation. The matrix elements of the Hamil-
tonian in the Wannier basis, which are also referred to as hoppings4, read

Hnm(R) = 〈W0n|H|WRm〉 =
1

Nk

∑
k

e−ik·R
[
U

(k)
n′n

]∗
Ekn′U

(k)
n′m , (5.15)

where U (k) carries the maximal-localization gauge, and the sum runs over the coarse
grid that samples the Brillouin zone. As a consequence of the translational symmetry
of the system, the hoppings depend only on the distance vector R, which separates
the two Wannier orbitals. With increasing distance |R|, the matrix elements (5.15)
decay swiftly since the MLWFs are strongly localized in real space and do not overlap
appreciably. By applying an inverse Fourier transformation, we arrive at

H(W)
nm (k) = 〈u(W)

kn |Hk|u
(W)
km 〉 =

∑
R

eik·RHnm(R) , (5.16)

which interpolates the single-particle Hamiltonian for any arbitrary point k even if
this point is not contained in the original coarse mesh used to construct the MLWFs.
Although the finite sum in Eq. (5.16) takes into consideration all lattice vectors, it can
be performed even more efficiently by keeping in mind that the hoppings decay rapidly
with distance. The sought interpolated band energies Ekn are found by diagonalization
of the Hamiltonian:

〈u(H)
kn |Hk|u

(H)
km〉 =

[
V (k)†H(W)(k)V (k)

]
nm

= Eknδnm , (5.17)

where V (k) is the unitary matrix of eigenstates |u(H)
kn 〉 =

∑
m |u

(W)
km 〉V

(k)
mn . The inter-

polation is guaranteed to reproduce exactly the Kohn-Sham eigenvalues at all points

4The explicit tight-binding formulation H =
∑
RR′

∑
nn′ Hnn′(R−R′)|WRn〉〈WR′n′ | of the Hamil-

tonian emphasizes the role of Eq. (5.15) as hopping integral between localized orbitals.
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5 Wannier functions

contained in the original coarse mesh. If this initial mesh is fine enough, for exam-
ple, an 8 × 8 × 8 grid of k-points, then the Wannier interpolation is very accurate.
As the technique represents the Hamiltonian with a strongly reduced number of basis
functions as compared to the complete full-potential linearized augmented-plane-wave
(FLAPW) basis set, this method is profoundly efficient: in fact, the Wannier interpo-
lation can provide the electronic structure with an accuracy of first-principles methods
at the computational cost of a tight-binding approach.

The Wannier interpolation emphasizes the fundamental role of nearest-neighbor in-
teractions for the electronic structure in a spirit similar to the Slater-Koster interpola-
tion that is based on the linear combination of atomic orbitals (LCAO) method [182].
However, in sharp contrast to the Wannier interpolation, the approach by Slater and
Koster resorts to disposable parameters5 to approximate the most relevant hopping
integrals.

5.3.2 Intrinsic anomalous Hall conductivity

Apart from an interpolation of the single-particle Hamiltonian, the Wannier method
facilitates the calculation of transport properties since it provides an efficient means
to extract analytically the gradient of the interpolated Hamiltonian, Eq. (5.16), with
respect to the crystal momentum:

∇kH
(W)
nm (k) =

∑
R

iReik·RHnm(R) . (5.18)

By supplementing this information with matrix elements of the position operator in
the Wannier basis, we can compute the velocity operator properly and thereby access
geometric properties of the underlying momentum phase space as determined by
Eq. (4.28). Consequently, it is not surprising that a scheme to evaluate efficiently the
pure Berry curvature Ωkkij of all occupied states as well as the scattering-independent
contribution to the anomalous Hall conductivity σij has been suggested [183, 184].
The computation of these quantities foots primarily on the ab initio band energies
and the overlaps M

(k,b)
mn that enter already in the construction of MLWFs. As we

review the proposed scheme later in Section 7.4 against a much broader background,
we remark at this stage only that the Wannier technique is particularly valuable as it
achieves easily an ultradense sampling of the Brillouin zone, which is desirable when
integrating the Berry curvature in Eq. (4.31).

5.3.3 Orbital magnetization

Clearly, the same benefits apply as well to the Wannier interpolation of the orbital
magnetization (OM) in the modern theory, Eq. (4.34), for which an according com-
putational machinery has been established in Ref. [184]. While we generalize this
framework explicitly to the chiral exchange interaction in Section 7.4, we briefly
point out here the origins of the scheme and the main ingredients that are required

5The Slater-Koster parameters are adjusted by fitting the first-principles bands at high-symmetry
points or determined from group theory, revealing an at least to some extent universal character
of these parameters.

64



5.3 Wannier interpolation

to calculate the OM from first-principles theory. For this purpose, we start from the
definitions P(k) =

∑occ
n |ukn〉〈ukn| and Q(k) =

∑unocc
n |ukn〉〈ukn| of the projection

operators onto the occupied and unoccupied manifold of the electronic Hilbert space,
respectively. Constituting a complete basis set (which implies that P +Q = 1), the
lattice-periodic states |ukn〉 satisfy the relation

Im
occ∑
n

∑
m

〈∂iukn|ukm〉〈ukm|∂jukn〉 = Im
occ∑
n

unocc∑
m

〈∂iukn|ukm〉〈ukm|∂jukn〉 , (5.19)

where ∂i = ∂/∂ki. Following the derivations in Refs. [25,184], we can rewrite thus the
momentum Berry curvature of the occupied states as well as Eqs. (4.35) and (4.36)
for the OM to arrive at

Ωkkij = −2Im
occ∑
n

〈∂iukn|∂jukn〉 = −2ImFij , (5.20)

mlc = − e

2h̄

∫
[dk] [−2Im(Gij − EFFij)] , (5.21)

mic = − e

2h̄

∫
[dk] [−2Im(Hij − EFFij)] . (5.22)

Here, we introduced the k-dependent and antisymmetric tensors Fij, Gij, andHij that
are further gauge-invariant as they are given by the trace of the projection operators
and the Hamiltonian over the full Hilbert space of electronic wave functions:

Fij = Tr [(∂iP)Q(∂jP)] , (5.23)

Gij = Tr [(∂iP)QHkQ(∂jP)] , (5.24)

Hij = Tr [Hk(∂iP)Q(∂jP)] . (5.25)

Although these equations are manifestly invariant with respect to the gauge choice,
it is particularly convenient to evaluate them in the Wannier gauge of non-orthogonal
states |u(W)

kn 〉. The resulting expressions [184] are formally identical to those in Chap-
ter 7 for the chiral exchange interaction, Eqs. (7.69)–(7.71), and allow for investigating
orbital magnetism by means of the efficient Wannier scheme. While the interpolation
of the anomalous Hall effect reckons on band energies and wave-function overlaps
as the main input from ab initio, the Wannier interpolation of the OM relies on
additional matrix elements that need to be provided by the first-principles code:

〈uk+b1n|Hk|uk+b2m〉 , (5.26)

where the Hamiltonian at k is sandwiched between wave functions at different neigh-
boring points k+b1 and k+b2. The following subsection presents the computationally
demanding FLAPW implementation of these important quantities that underlie the
interpolation of the Berry phase theory of orbital magnetism in periodic solids, which
is achieved accurately only if the ingredients (5.26) are accounted for.

5.3.4 Orbital magnetism within FLAPW

We elucidate the FLAPW implementation of the matrix elements 〈uk+b1n|Hk|uk+b2m〉
that are necessary ingredients to interpolate the OM according to its modern Berry
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phase theory. The lattice-periodic states |ukn〉 are eigenstates of Hk = e−ik·rHeik·r,
where H is the first-principles Hamiltonian of the considered system, and k + b1

and k + b2 are neighboring points of k. Already at this stage, we stress that it is
not sufficient for the accurate computation of the above matrix elements to resort
to the eigenstate representation Hk =

∑
n Ekn|ukn〉〈ukn|, where Ekn are the band

energies. Since the computationally accessible set of states |ukn〉 is only of finite
size, a projection error would inevitably be the consequence of using this approach in
setting up the overlaps. In order to overcome this challenge, we derive in the following
explicit computational expressions for the matrix elements that assume in the basis
of the Bloch states |ψkn〉 = eik·r|ukn〉 the form

〈uk+b1n|Hk|uk+b2m〉 = 〈ψ[k+b1]n|eib1·rHe−ib2·r|ψ[k+b2]m〉 , (5.27)

where [k] = k −G(k) and G(k) folds back k to the first Brillouin zone. According
to the FLAPW methodology, different regions in real space contribute to Eq. (5.27).

Interstitial region The Hamiltonian consists of the symmetrized kinetic energy
and the potential V (r) in the interstitial region:

H(r) = −1

4

(⇐
∆ +

⇒
∆
)

+ V (r) , (5.28)

where the Laplacians
⇐
∆ and

⇒
∆ act to the left and to the right, respectively. Adapted

to the physics in the interstitial region, the wave functions can be expanded into plane
waves with wave vector G and expansion coefficients cGkn:

ψkn(r) =
1√
V

∑
G

cGknei(k+G)·r . (5.29)

After introducing the abbreviations K = k+G−G(k+b1), K′ = k+G′−G(k+b2),
and G = K′−K, we arrive at a suitable computational expression for the interstitial
contribution to Eq. (5.27):

〈uk+b1 n|Hk|uk+b2m〉 =
1

V

∑
GG′

(
cGk+b1n

)∗
cG

′

k+b2m

∫
int

e−iK·rH(r) eiK′·r dr

=
∑
GG′

(
cGk+b1n

)∗
cG

′

k+b2m

{
K2 + K′2

4
Θ(G) + V (G)

}
. (5.30)

Here, V (G) and Θ(G) are the Fourier transformations of the interstitial potential and
the step function that cuts out the interstitial region, respectively:

V (G) =
1

V

∫
int

eiG·r V (r) dr , Θ(G) =
1

V

∫
int

eiG·r dr , (5.31)

with the integration over real space restricted to the interstitial.

Muffin tins In the muffin-tin spheres, the wave functions are given by

ψkn(r) =
∑
Lµ

[AµLn(k)uµl (rµ) +Bµ
Ln(k)u̇µl (rµ)]YL(r̂µ) , (5.32)
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where L stands for the angular momentum quantum numbers (l,m), and rµ is the
position vector relative to the µth muffin tin. The wave functions uµl are chosen as
eigenstates of the spherical term of the muffin-tin Hamiltonian, and u̇µl is the energy
derivative of uµl . In total, the muffin-tin Hamiltonian H consists of a spherical part
with l = 0 (including the kinetic energy), the non-spherical potential (terms with
l 6= 0), and the spin-orbit interaction that corresponds formally also to l = 0. In
the following paragraphs, we consider each of these individual contributions to the
overlaps 〈uk+b1n|Hk|uk+b2m〉. But before, we write down the general expressions for
these matrix elements in the muffin tins:

〈uk+b1n|Hk|uk+b2m〉 =
∑
LL′

∑
µ

{
(AµLn(k + b1))∗AµL′m(k + b2)Iµ,uuLL′ (b1, b2)

+ (AµLn(k + b1))∗Bµ
L′m(k + b2)Iµ,uu̇LL′ (b1, b2)

+ (Bµ
Ln(k + b1))∗AµL′m(k + b2)Iµ,u̇uLL′ (b1, b2)

+ (Bµ
Ln(k + b1))∗Bµ

L′m(k + b2)Iµ,u̇u̇LL′ (b1, b2)
}
,

(5.33)

where

Iµ,uuLL′ (b1, b2) =

∫
Y ∗L (r̂µ)eib1·ruµl (rµ)H(rµ)YL′(r̂µ)e−ib2·ruµl′(rµ) drµ , (5.34)

Iµ,uu̇LL′ (b1, b2) =

∫
Y ∗L (r̂µ)eib1·ruµl (rµ)H(rµ)YL′(r̂µ)e−ib2·ru̇µl′(rµ) drµ , (5.35)

with the muffin-tin Hamiltonian H, the spherical harmonic YL, and analogously for
the other I-coefficients. To evaluate explicitly the above integrals, we use the well-
known Rayleigh expansion6 for the plane-wave factors eib1·r and e−ib2·r that yields,
e.g., for the coefficient Iµ,uu the following:

Iµ,uuLL′ (b1,b2) = (4π)2ei(b1−b2)·τµ
∑
L̄L̄′

(−1)l̄
′
il̄+l̄

′
YL̄(b̂1)YL̄′(b̂2)

×
∫
Y ∗L (r̂µ)Y ∗L̄ (r̂µ)uµl (rµ)jl̄(b1rµ)H(rµ)YL′(r̂µ)Y ∗L̄′(r̂µ)uµl′(rµ)jl̄′(b2rµ) drµ ,

(5.36)

where jl is the spherical Bessel function, and τµ is the position of the µth ion. When
introducing the so-called Gaunt coefficients GL1L2L3

=
∫
Y ∗L1

YL2
YL3

dΩ as the angular
integral of three spherical harmonics, we can recast the product of YL2 and YL3 using
the spherical harmonic YL1 :

Iµ,uuLL′ (b1, b2) = (4π)2ei(b1−b2)·τµ
∑
L̄L̄′

(−1)l̄
′
il̄+l̄

′
YL̄(b̂1)YL̄′(b̂2)

∑
LL′

GLLL̄GL′L̄′L′

×
∫
Y ∗L (r̂µ)uµl (rµ)jl̄(b1rµ)H(rµ)YL′(r̂µ)uµl′(rµ)jl̄′(b2rµ) drµ ,

(5.37)

and similar expressions follow for the other I-coefficients. We note that the above
formula contains summations with respect to the four angular momentum variables

6The Rayleigh expansion reads e∓ib·r = 4πe∓ib·τµ
∑
L(∓1)liljl(rµb)YL(b̂) (YL(r̂µ))

∗
, where τµ is

the position of the µth atom and jl is the spherical Bessel function.
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5 Wannier functions

L̄, L̄′, L, and L′, which renders the evaluation of the muffin-tin contribution to
Eq. (5.27) computationally demanding. Consequently, exploiting the constraints on
these quantum numbers set by the Gaunt coefficients is crucial.

Spherical muffin-tin Hamiltonian Computing the integrals I for the spherical
part of the Hamiltonian H would be straightforward if both b1 and b2 were zero
since the wave functions ul are eigenstates of the spherical Hamiltonian. However,
the integration contains in general also the spherical Bessel functions that stem from
finite b1 and b2. Therefore, we need to calculate explicitly the necessary matrix
elements in the scalar-relativistic approximation, in which the spherical Hamiltonian
assumes the form (see also Section 3.3)

Hsphul = Hlul =

(
1

2m
l(l+1)
r2µ

+ V (rµ) − 2c
rµ
− c ∂

∂rµ

c ∂
∂rµ

−2m0c
2 + V (rµ)

)(
fl
gl

)
. (5.38)

Here, fl and gl are the large and small component of the wave function ul, respectively,
V (rµ) is the spherically averaged potential, m = m0 + (El− V (rµ))/(2c2), c ≈ 1/137,
and m0 = 1. Since the spherical term may only couple spherical harmonics to the
very same angular momentum, it follows that

Iµ,uuLL′ (b1, b2) = (4π)2ei(b1−b2)·τµ
∑
L̄L̄′

(−1)l̄
′
il̄+l̄

′
YL̄(b̂1)YL̄′(b̂2)

∑
L

GLLL̄GL′L̄′L

×
∫
r2
µ u

µ
l (rµ)jl̄(b1rµ)H`(rµ)uµl′(rµ)jl̄′(b2rµ) drµ ,

(5.39)

where ` is one of the quantum numbers grouped in L. Since the scalar-relativistic
Hamiltonian is not symmetric in the above formulation, we explicitly symmetrize the
corresponding radial integrals as follows. The matrix elements (5.27) need to satisfy
the conjugation rule 〈un|Hk|um〉 = (〈um|Hk|un〉)∗, which directly implies that

Iµ,αβLL′ (b1, b2) =
(
Iµ,βαL′L (b2, b1)

)∗
, (5.40)

where α and β represent u and u̇. To guarantee that this relation is satisfied, we
explicitly symmetrize the scalar-relativistic Hamiltonian by applying half of it to the
right hand-side and half of it to the left hand-side in the radial integrals in Eq. (5.39).

Non-spherical muffin-tin Hamiltonian In the muffin tins, the non-spherical part
of the Hamiltonian with l 6= 0 assumes the form

Hnon(rµ) =

l 6=0∑
L

Vl(rµ)YL(r̂µ) , (5.41)

which has to be substituted into Eq. (5.37) to obtain the corresponding contribution
to the matrix elements (5.27). As a consequence, the spherical harmonics YL and YL′
to different angular momenta are now coupled in Eq. (5.37), which manifests in a
substantially increased computational effort as compared to the spherical term. This
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5.3 Wannier interpolation

becomes also obvious from the final expression that contains three Gaunt coefficients:

Iµ,uuLL′ (b1, b2) = (4π)2ei(b1−b2)·τµ
∑
L̄L̄′

(−1)l̄
′
il̄+l̄

′
YL̄(b̂1)YL̄′(b̂2)

∑
LL′

l̃ 6=0∑
L̃

GLLL̄GL′L̄′L′GLL′L̃

×
∫
r2
µ u

µ
l (rµ)jl̄(b1rµ)Vl̃(rµ)uµl′(rµ)jl̄′(b2rµ) drµ .

(5.42)

Contribution from the spin-orbit interaction The overall shape of the spin-
orbit Hamiltonian is formally equivalent to the spherical term in coupling only spher-
ical harmonics with the same angular momentum l:

Hso(rµ) = Hso(rµ) = Vso(rµ)L · S . (5.43)

Substituting this Hamiltonian into Eq. (5.37) leads to the spin-orbit contribution to
the matrix elements that underlie the interpolation of orbital magnetism:

Iµ,uuLL′ (b1, b2) = (4π)2ei(b1−b2)·τµ
∑
L̄L̄′

(−1)l̄
′
il̄+l̄

′
YL̄(b̂1)YL̄′(b̂2)

∑
LL′

GLLL̄GL′L̄′L′ [L · S]σσ
′

LL′

×
∫
r2
µ u

µ
l (rµ)jl̄(b1rµ)Vso(rµ)uµl′(rµ)jl̄′(b2rµ) drµ ,

(5.44)

where σ and σ′ refer to the spin7 of ul and ul′ , respectively, and [L · S]σσ
′

LL′ stands for
the matrix elements 〈Lσ|L · S|L′σ′〉 of the spin-orbit interaction between spin and
angular momentum eigenstates |Lσ〉. Thus, the sets of quantum numbers L and L′
can only differ in their magnetic quantum number (e.g., m and m′) but not in the
angular momentum `.

Vacuum contribution in film calculations When treating truly two-dimensional
geometries, additional vacua are introduced that contribute also the the matrix ele-
ments (5.27). The corresponding wave functions assume the form (see also Section 3.2)

ψk+bn(r) =
∑
G

(
aGnk+bu

G‖
k+b(z) + bGnk+bu̇

G‖
k+b(z)

)
ei(k+b‖+G‖)·x‖eibzz (5.45)

where k = (kx, ky, 0) is the crystal momentum, and b = (bx, by, bz) = (b‖, bz). In the
vacuum region, the Hamiltonian is given by

H(r) = h(z) +
∑
G‖ 6=0

VG‖(z)eiG‖·x‖ , (5.46)

which consists of a non-warping, planar averaged part h and a warping term that

relates to VG‖ . The functions u
G‖
k are eigenstates of the non-corrugated part that

includes the z-dependent potential to G‖ = 0 and the kinetic energy, i.e.,

h(z)u
G‖
k (z) =

[
−1

2

∂2

∂z2
+ VG‖=0(z) +

1

2

(
G‖ + k

)2
]

= Evacu
G‖
k (z) , (5.47)

7Note that we suppressed for sake of clarity the dependence of the I-coefficients on the spin indices
σ and σ′ of the two participating wave functions uµl and uµl′ (or their energy derivatives).
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5 Wannier functions

and analogously for the energy derivative u̇
G‖
k . Before evaluating the vacuum contri-

bution to the matrix elements (5.27), we symmetrize the action of h such that

h(z) −→
[
−1

4

(⇐
∂2
z +

⇒
∂2
z

)
+ VG‖=0(z) +

1

4

(
G‖ + k + b1‖

)2
+

1

4

(
G‖ + k + b2‖

)2
]
.

(5.48)
Then, the matrix elements (5.27) can be expressed as

〈uk+b1n|Hk|uk+b2m〉 =
∑
GG′

(
aGnk+b1

)∗
aG

′m
k+b2
IuuG‖G

′
‖
(b1, b2) +

(
aGnk+b1

)∗
bG

′m
k+b2
Iuu̇G‖G

′
‖
(b1, b2)

+
(
bGnk+b1

)∗
aG

′m
k+b2
I u̇uG‖G

′
‖
(b1, b2) +

(
bGnk+b1

)∗
bG

′m
k+b2
I u̇u̇G‖G

′
‖
(b1, b2) ,

(5.49)

where we introduced the abbreviation

IuuG‖G
′
‖
(b1, b2) = S‖

[
δg‖g′‖I

uu
1 + Iuu2

]
, (5.50)

and analogously for the other I-coefficients. Here, S‖ is the area of the in-plane unit
cell, g‖ = G‖ + k − G‖(k + b1), and g′‖ = G′‖ + k − G‖(k + b2). The important
ingredients I1 and I2 are defined by integrals of the vacuum Hamiltonian and the
wave functions with additional phases that originate from finite b1 and b2:

Iuu1 =

∫ ±∞
±D/2

uG‖(k + b1, z)e
iGz(k+b1)zh(z)uG′

‖
(k + b2, z)e

−iGz(k+b2)z dz , (5.51)

Iuu2 =

∫ ±∞
±D/2

uG‖(k + b1, z)e
iGz(k+b1)zVgz−g′z(z)uG′

‖
(k + b2, z)e

−iGz(k+b2)z dz , (5.52)

where the integration is performed in both vacuum regions above and below the
film. Obviously, I1 relates to the planar averaged Hamiltonian while I2 roots in the
warping part of the potential in the vacuum. Finally, we point out that the treatment
of truly one-dimensional geometries in the FLAPW method [185] results in similar
computational expressions for the necessary matrix elements (5.27).
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Chapter 6

Orbital magnetism in periodic crystals
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Using density functional theory calculations of the electronic structure, we uncover
in this chapter the crucial role of the Berry phase theory for a satisfactory description
of orbital magnetism in general periodic systems. We compare first a widely applied
atom-centered approximation (ACA) to the Berry phase theory in elementary ferro-
magnets, where the latter formalism improves agreement with experiment. Next, we
investigate orbital magnetism in a heterostructure of a manganese monolayer on a
tungsten (001) substrate as example of structurally and chemically complex systems,
for which using the Berry phase theory is indispensable for a predictive theoretical
treatment of orbital magnetism. Approaching the field of topological condensed mat-
ter, we reveal then the intimate relation between orbital magnetism and Chern number
in topologically non-trivial insulators of magnetically doped Graphene. Ultimately, we
discover and elucidate a thoroughly distinct type of orbital magnetism that roots in
the emergent field associated with chiral spin textures rather than the conventional
spin-orbit mechanism. As an intriguing consequence, we predict the manifestation
of giant “topological” orbital ferromagnetism in non-coplanar spin structures without
any reference to spin-orbit coupling or strong correlation effects. We conclude with
identifying promising material candidates on the basis of symmetry arguments.

The results presented in this chapter have already been published:

J.-P. Hanke, F. Freimuth, A. K. Nandy, H. Zhang, S. Blügel, and Y. Mokrousov
Physical Review B 94, 121114(R) (2016)

J.-P. Hanke, F. Freimuth, S. Blügel, and Y. Mokrousov
Scientific Reports 7, 41078 (2017)

6.1 Elementary ferromagnets Fe, Co, and Ni

To assess the importance of the modern theory of orbital magnetization (OM) in
materials that are relevant to spintronics and spin-orbitronics, we start off with the
three elementary bulk ferromagnets bcc Fe, hcp Co, and fcc Ni. In all cases, the
magnetization direction is oriented along the experimentally verified easy axis of the
system, which is [001] in bcc Fe, [0001] in hcp Co, and [111] in fcc Ni (see Appendix A.1
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Figure 6.1: (a) Easy-axis orbital magnetization (OM) in the elementary bulk ferromagnets
fcc Ni, hcp Co, and bcc Fe, either according to the modern theory (solid lines)
or according to the atom-centered approximation (ACA, dashed lines). The
OM is given in units of Bohr magneton per atom, and the shift of the Fermi
level is measured with respect to the true Fermi energy. (b,c) Distribution
of the k-resolved OM mz(k) in bcc Fe based on the modern theory and the
ACA, where the plane of kx = 0 is considered, and Γ = (000), H = (001), and
H ′(010) in units of 2π over lattice constant.

for comprehensive computational details). We compare in Fig. 6.1 the OM that
is obtained from the modern theory to results based on the simple atom-centered
approximation (ACA) for varying values of the Fermi level. Among all systems, the
quantitative agreement between the two different approaches is rather good, although
we notice deviations in Fe that are manifest in the vicinity of the true Fermi level.
These discrepancies could possibly be attributed to a larger degree of delocalization of
the Bloch wave functions in Fe, the nearly half-filled 3d shell of which comprises one
electron less than Co and two electrons less than Ni. Thus, non-local orbital currents
that are not fully accounted for by the ACA may be expected to yield important
contributions to the OM, which gives rise to visible deviations between the ACA
and the rigorous Berry phase theory. This indicates that the predictive power of the
simple yet routinely employed ACA is limited, and an adequate description of orbital
magnetism in solids calls for the modern theory.

Exactly at the Fermi energy of the respective material, the OM along the easy axis
amounts to the values shown in Table 6.1. Indeed, applying the Berry phase formalism
leads to an improved agreement between the theoretical predictions and experimen-
tal values [119] extracted from X-ray magnetic circular dichroism (XMCD) measure-
ments. In particular, the ACA result of 0.045µB per Fe atom is corrected by more
than 50% in the modern theory to 0.069µB/atom, which is substantially closer to the
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Easy axis ACA Modern theory Ref. [184] Experiment [119]

Fe [001] 0.045 0.069 0.076 0.081
Co [0001] 0.077 0.073 0.084 0.133
Ni [111] 0.050 0.046 0.047 0.053

Table 6.1: Orbital magnetization in the elementary bulk ferromagnets bcc Fe, hcp Co, and
fcc Ni with the magnetization aligned along the easy axis. Our FLAPW results
obtained either in the atom-centered approximation (ACA) or in the modern
theory are compared to the Berry phase results based on pseudo potentials [184]
as well as to XMCD experiments [119]. All values are given in units of Bohr
magneton per atom.

experimental result of 0.081µB per Fe atom1. As evident from Fig. 6.1(b,c), also the
distribution of the momentum-resolved OM in the Brillouin zone (shown here for the
plane with kx = 0 of Fe) reflects clear differences between the two approaches. Since
the integrated values that we obtain within the full-potential linearized augmented-
plane-wave (FLAPW) method agree well for all systems with theoretical calculations
that rely on pseudo potentials [184], we are confident that our FLAPW implemen-
tation of the Berry phase theory of OM works properly. Nevertheless, the general
relevance of the rigorous Berry phase theory for orbital magnetism in solids is still
questionable at this stage as the predicted orbital moments on the order of less than
0.08µB are largely overshadowed by the spin magnetic moments in the considered
ferromagnets, which amount to 2.1µB in Fe, 1.5µB in Co, and 0.6µB in Ni.

6.2 Structurally and chemically complex systems

After studying pristine bulk ferromagnets, we turn now to condensed-matter systems
that are heterogeneous with respect to their crystal structure or their chemical com-
position. In such heterostructures as thin magnetic films, which are perceived to be
promising candidates for implementing basic spintronic concepts, the local orbital
moments can vary strongly in real space. That is, the orbital moments of adjacent
atomic layers can differ drastically or may even compensate each other. Since local
contributions to orbital magnetism become small, non-local effects are expected to
play a more significant role for the OM in these heterogeneous systems, suggesting
that a treatment based on the Berry phase is needed. In order to confirm this intu-
ition, we consider as a prime example of a heterogeneous two-dimensional material the
chiral magnet Mn/W(001), which is an inversion-asymmetric slab of a Mn monolayer
deposited on nine atomic layers of bcc W. We adopt the computational parameters
presented in Appendix A.2, and study orbital magnetism in the collinear ferromag-
netic case with magnetization perpendicular to the film plane although Mn/W(001)
hosts in reality a long-wavelength chiral spin texture [158].

In sharp contrast to the previously discussed bulk ferromagnets, our first-principles
calculations of the out-of-plane OM mz in Mn/W(001), Fig. 6.2, reveal profound

1Recall that the technique of XMCD probes the magnetic properties only locally. As we discussed
in Chapter 4, it is not sensitive to the itinerant circulation of the OM wherefore deviations
between theory and experiment are not surprising.
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Figure 6.2: (a) Crystal structure and (b) band structure of a Mn monolayer on nine atomic
layers of W(001). (c) Orbital magnetization perpendicular to the film plane
of Mn/W(001). The dependence of mz on the position of the Fermi level
is presented within the modern theory (red solid line) and the atom-centered
approximation (ACA, black squares), where the orbital magnetization is given
in units of Bohr magneton per in-plane unit cell. In addition, the local orbital
moments in the muffin tins of Mn and theW at the interface (W1) are indicated
by blue circles and green triangles, respectively.

discrepancies between the modern theory and the localized picture that is provided
by the ACA. Beyond just altering the magnitude of the computed OM, the modern
theory predicts even the opposite sign as compared to the ACA over wide regions
of energy. Figure 6.2 shows additionally the local orbital moments in the first two
layers, i.e., the Mn overlayer and the first layer of W, which dominate the total
orbital moment in the ACA. As these local moments nearly cancel, the simple ACA
typically underestimates the magnitude of the orbital magnetism in the heterogeneous
system. Notably, this oversight is pronounced near the Fermi level where the OM is
anticipated to be thoroughly diminished by one order of magnitude as compared
to its value in the full Berry phase theory. Still, the OM in the latter approach
amounts to a rather small value of merely 0.04μB per in-plane unit cell. While
magnetism originates primarily from the Mn atoms2, it is W that grants strong spin-
orbit coupling as necessary ingredient to lift the orbital degeneracy in the crystal
field. Therefore, contributions from non-local effects become important in order to
describe orbital magnetism in Mn/W(001) correctly, as a consequence of which the
ACA performs particularly poorly with respect to the Berry phase theory. Finally,
we remark that the non-trivial and rapidly oscillating energy dependence of the OM
in the modern theory is well known from transport properties that are driven by the
Berry curvature in momentum phase space. Such a manifestly complex behavior of
the orbital magnetism in magnetic multilayers calls for revisiting our understanding
of orbital physics at interfaces and surfaces in general.

2The magnitude of the magnetic moment induced in W falls off rapidly away from the interface.
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6.3 Chern insulators

6.3 Chern insulators

To continue with our exploration of orbital magnetism in periodic solids, in the follow-
ing, we reach out to topological states of matter, the hallmarks of which we uncover
in the OM. Working towards this ultimate goal, we evaluate first the significance of
the modern theory for describing orbital magnetism in two-dimensional Chern insu-
lators that feature topologically non-trivial band gaps in their spectrum. The nature
of these gaps is characterized by the integer Chern number C = 1/(2π)

∫
Ωkkxy dkxdky,

where Ωkkxy denotes the momentum Berry curvature of all occupied states below the re-
spective gap. It has been shown in previous works [186] that graphene decorated with
5d transition-metal adatoms supports strong magneto-electric responses and Chern
insulator characteristics due to the spin-orbit interaction. Following these ideas, we
consider here the example of ferromagnetically coupled W adatoms with a resulting
spin moment of 1.6µB deposited in a 4 × 4 supercell geometry on graphene. Using
the computational parameters from Appendix A.3, we place the W adatoms at the
hollow sites of free-standing graphene, with the magnetization oriented perpendicu-
lar to the film plane, i.e., along the z-axis. The complex hybridization between the
d states of W and the p states of graphene induces a global band gap directly at
the Fermi level as well as approximately 0.27 eV below it, both of which arise from
the prominent spin-orbit coupling. The topological origin of these gaps manifests in
the finite Chern numbers C = +2 and C = −2, respectively, and the corresponding
(quantized) anomalous Hall conductivity amounts to σxy = (e2/h)C. As we discussed
earlier in Chapter 4, the out-of-plane component mz of the OM is expected to satisfy
the relation dmz/dEF = (e/h)C in a Chern insulator [123].

Figure 6.3 presents the performance of the Berry phase theory of OM with respect
to the simple ACA, where our initial focus lies on the shaded areas that highlight
the topologically non-trivial gaps of the Chern insulator. In the modern theory, the
out-of-plane OM varies indeed linearly with the Fermi energy, where the slope is
determined by the finite Chern number of the corresponding band gap. Remarkably,
this even manifests in a characteristic sign change of mz around the true Fermi level
as shown in Fig. 6.3(b). On the other hand, the local probe of ACA fails completely
as it anticipates the OM to remain constant throughout the band gaps with non-zero
Chern numbers. When replacing the W adatoms with other 5d transition metals, for
instance Ir, we note that this breakdown of the ACA is not specific to a particular
material realization but persists for the band gaps of any Chern insulator, Fig. 6.3(c).
Due to the poor predictive power of the ACA as compared to the modern theory,
the microscopic distribution of the OM mz(k) in the Brillouin zone is fundamentally
distinct within the two approaches as shown in Fig. 6.3(d,e) for the case of W adatoms.

Aside from the topologically non-trivial gaps in the spectrum of these systems, the
dependence of mz on the Fermi level reveals that the local approximation is inferior
to the rigorous Berry phase theory over a broad energy range. Similar to the thin
magnetic films in the previous section, the ACA tends to underestimate generally
the magnitude of orbital magnetism, which amounts to as much as 1.2µB per in-
plane unit cell in the modern theory. Although spin magnetism and strong spin-orbit
coupling originate from the very same species of atoms (here W), non-local effects are
still important, especially in the vicinity of the topologically non-trivial gaps as the
latter form due to strong mutual interactions between the states of graphene and W.
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Figure 6.3: (a) Energy dependence of the out-of-plane orbital magnetization mz in mag-
netically doped graphene with W adatoms. Red solid lines and blue dashed
lines indicate the results based on the modern theory and the atom-centered
approximation (ACA), respectively. The gray shaded areas highlight the band
gaps with the non-zero Chern numbers C = ±2. (b) Zoom to the marked re-
gion around the Fermi level. (c) The behavior of mz for Ir adatoms deposited
in 2× 2 geometry on graphene reveals unique fingerprints of the topologically
complex band gap with C = +2 about 2.65 eV below the Fermi level. (d,e) Dis-
tribution of mz(k) in momentum space according to the modern theory and
the ACA in the case of W adatoms. Note the different color scales.

Finally, while the Chern number connects orbital magnetism and anomalous Hall
effect within band gaps of Chern insulators, we remark that the behavior of OM and
anomalous Hall conductivity outside of these energy regions is overall not correlated
in the considered realizations of magnetically doped graphene.

6.4 Topological orbital ferromagnetism

In all of the systems discussed so far, the orbital magnetism develops as a direct
consequence of the spin-orbit interaction that lifts at least partially the quenching of
the orbital moment. On the evidence of the tiny magnitude of the resulting orbital
magnetism as compared to the spin magnetism, however, the spin-orbit coupling
presents obviously not an efficient mechanism to break the orbital degeneracy in
these materials. To realize large orbital moments that can even exceed the spin
magnetic moments, we consider in the following magnetic systems with a chiral spin
texture, the effect of which can be ascribed to a fictitious magnetic field influencing
electrons that propagate through the structure [187,188]. If an electron hops between
different lattice sites, its spin follows adiabatically the local direction determined by
the underlying spin structure, which can be interpreted as local magnetic fields acting
on the electron’s spin. As we demonstrate below, depending on the symmetries of the
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crystal, these local fields either cancel over the unit cell or add up to a net magnetic
field. Without referring to the spin-orbit interaction or any electron correlations, this
magnetic field may manifest in a topological orbital moment by coupling to the orbital
degrees of freedom and lifting thereby the orbital degeneracy. Consequently, the
resulting topological orbital moment roots purely in the non-trivial spin arrangement
in real space [189–191]. In order to quantify the emergent magnetic field and the
corresponding topological orbital magnetism, we utilize the scalar spin chirality [188]

χijk = Si · (Sj × Sk) , (6.1)

which correlates three neighboring spins Si, Sj, and Sk. If these three spins do not
lie in a single plane, i.e., if the spin texture is non-coplanar, the scalar spin chirality
χijk associated with the spin triangle is finite as well as the local magnetic field

bijk ∝ tijtjktkiχijkn̂ijk , (6.2)

where tij is the hopping amplitude between the ith and jth site, and n̂ijk is the unit
vector perpendicular to the plane spanned by the lattice sites i, j, and k, with the
orientation of the plane being consistent with the ordering of the spins in Eq. (6.1).
Rooting in the non-coplanarity of the neighboring spins, the presence of such an
emergent magnetic field plays also a crucial role in the interpretation of transport
effects in chiral magnetic skyrmions [150,151,166,167,192,193] as outlined at the end
of Chapter 4.

At this point, it is natural to envisage prototypical materials in which this unconven-
tional type of orbital magnetism could be realized and investigated comprehensively.
Hosting diverse complex spin textures in real space, non-collinear bulk antiferromag-
nets such as Mn5S3 [194–196], Nd [197–200], Mn3GaN [201, 202], Mn3Ir [203], and
Mn3Ge [204] provide generally an exciting and rich playground to study unique elec-
tronic phenomena. Especially, the antiferromagnetic compounds Mn3X came recently
into prominence since band crossings in the electronic structure affect the transport
and thermal properties of these systems [205–207]. As the non-collinear texture in
the latter compounds is coplanar, however, the scalar spin chirality χijk cannot give
rise to a topological orbital moment. On the other hand, a spin state that potentially
manifests in topological orbital magnetism based on the emergent magnetic field is the
3Q spin structure illustrated in Fig. 6.4, which forms due to the linear combination
of three spiral spin-density waves with distinct wave vectors Q. Thus, bulk and film
systems that exhibit the chiral and non-coplanar 3Q spin texture in real space are
ideal candidates to study the nature and the magnitude of the sought unconventional
orbital magnetism.

6.4.1 Monolayer of Mn on Cu(111) substrate

We begin with considering the two-dimensional system Mn/Cu(111) that refers to a
magnetic Mn monolayer deposited on a Cu(111) substrate, for which the chiral spin
structure of the ground state is indeed the above 3Q texture [208]. While chiral mag-
netic structures in interfacial systems with spin-orbit coupling are usually mediated
by the Dzyaloshinskii-Moriya interaction (DMI) [15, 16], the non-coplanar 3Q mag-
netic texture originates here not from the DMI but from the competition of isotropic
higher-order exchange interactions. As a consequence, the frustrated spin structure of
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Figure 6.4: Non-coplanar 3Q spin texture on the triangular lattice formed by Mn atoms
(blue balls) on a Cu(111) substrate (not shown). The red parallelogram de-
notes the magnetic unit cell of four atoms, and green arrows indicate the
individual spin moments, which compensate over the entire unit cell.

Mn/Cu(111) is hardly altered3 upon including the spin-orbit interaction. Figure 6.4
visualizes that the total spin magnetization in the unit cell containing four Mn atoms
vanishes for the 3Q structure. If the orbital moment is assumed to follow locally the
direction of the spin moment, which is reasonable in the presence of spin-orbit cou-
pling, also the total OM is expected to be zero. However, we demonstrate below that
this naive picture is not realized as a sizable topological orbital moment perpendicular
to the film plane arises.

Since the electronic structure of Cu near the Fermi level is predominantly due to
the s electrons, and the 3d-3d hybridization between the magnetic overlayer and the
Cu substrate is negligible, we model the considered system as an unsupported Mn
monolayer at the lattice constant of Cu(111). Appendix A.4 provides the compu-
tational details of the first-principles calculation. Taking into account also the Cu
substrate, we generally find that our qualitative conclusions are completely unaf-
fected even though the magnitude of the predicted effects is slightly diminished. We
present in Fig. 6.5 the first-principles results for the energy dependence of the only
non-vanishing component of the OM, which is normal to the Mn plane. Most strik-
ingly, the direction of the orbital moment is not required to coincide with the direction
of the spin magnetic moment, but its orientation is determined by the symmetry of
the two-dimensional material. Comparing the two different approaches to calculate
orbital magnetism in solids, we note that the ACA serves as a particularly crude ap-
proximation to the OM in that large differences to the modern theory become evident

3In Mn/Cu(111), the constituents are light atoms, which renders the electronic structure rather
insensitive to the presence of the weak spin-orbit interaction.
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in Fig. 6.5. Especially close to the Fermi energy, the ACA largely underestimates the
orbital magnetism in Mn/Cu(111) by predicting an OM that is four times smaller
as compared to the full Berry phase theory that anticipates an extraordinarily large
OM of −1.5µB per unit cell. Moreover, as opposed to the ferromagnetic systems
discussed before, we observe that the energy dependence of the out-of-plane OM in
this non-coplanar magnet is much stronger correlated with that of the anomalous Hall
conductivity.

While anomalous Hall effect and orbital magnetism are phenomena that are conven-
tionally ascribed to the spin-orbit interaction, remarkably, we demonstrate in Fig. 6.5
that both properties do not at all rely on this relativistic effect but stem purely from
the non-coplanar chiral spin texture of the 3Q state in Mn/Cu(111). In contrast to
the previously reported spin lattice of Fe/Ir(001) [190], for which a fraction of the
OM is also present without spin-orbit coupling, we observe that the spin-orbit inter-
action has hardly any visible influence on the orbital magnetism and the anomalous
Hall conductivity. Even though the chiral 3Q spin texture is a topologically trivial
structure as compared to, e.g, a magnetic skyrmion, we may still identify the trans-
verse Hall effect in the system as a purely topological Hall effect [166, 190, 204] since
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it springs from the real-space configuration of the spin magnetic moments. As such
it also manifests in a non-trivial distribution of the Berry curvature Ωkkxy in the mo-
mentum phase space (see Fig. 6.5(c)). Despite the lack of a topological protection
of the spin structure, we refer similarly to the accompanying texture-driven orbital
magnetism as topological orbital magnetism. Exceptionally, the overall net magne-
tization is determined by the non-zero topological OM since the spin magnetization
vanishes in the considered antiferromagnet Mn/Cu(111), which renders the system a
representative of a new class of materials to which we refer as topological orbital ferro-
magnets, Fig. 6.5(c). In these ferromagnets, the macroscopic magnetization is solely
arising from orbital magnetism originating explicitly from the non-trivial topology of
the spin distribution in real space rather than the spin-orbit interaction. Stemming
from manifestly non-local circulating currents, the topological orbital magnetism in
this class of complex spin structures, but also orbital magnetism in multi-Q states
and skyrmions in general, calls for a proper description based on the rigorous Berry
phase theory.

As orbital moments couple to external magnetic fields, optical perturbations, and
orbital currents, the predicted ferromagnetic ordering in terms of a large topologi-
cal orbital moment in these spin-antiferromagnets opens an intriguing path to new
physics. For example, we expect that the long-range ferromagnetism in topological
orbital ferromagnets can survive above the spin-ordering temperature since chiral cor-
relations in the spin nematic phase as mediated by order parameters comprising mul-
tiple spins are known to be particularly stable with respect to fluctuations [209,210].
Moreover, our discovery of prominent topological orbital magnetism in non-collinear
antiferromagnets implies that effective spin Hamiltonians that aim at describing the
phase diagrams of these materials in an external magnetic field need to be amended
by a Zeeman energy arising from the interaction of the emergent orbital moment with
this field. Due to the direct correlation between the scalar spin chirality and the topo-
logical orbital moment, coupling to the orbital degrees of freedom by external means
provides an interesting opportunity to control the chirality of the spin texture. Strik-
ingly, this interplay could also be useful for detecting and characterizing efficiently
complex magnetic structures (e.g., skyrmions) as set apart by their unique signature
imprinted on orbital magnetism [191].

6.4.2 Bulk antiferromagnet γ-FeMn

Neutron diffraction experiments [211,212] and first-principles calculations of the elec-
tronic structure [213–215] suggest that the disordered bulk compound γ-FexMn1−x
has a 3Q ground state4 over a wide range of composition ratios x (see Fig. 6.6). Re-
vealing a non-coplanar spin texture, these alloys serve to assess the efficiency of the
emergent magnetic field originating from the scalar spin chirality as an alternative
mechanism that breaks the orbital degeneracy. For this purpose, we study topolog-
ical contributions to the Berry phase theory of orbital magnetism and its transport
companion, namely, the anomalous Hall effect.

4In the case of γ-FeMn with simple cubic unit cell containing four atoms as shown in Fig. 6.6,
the corresponding wave vectors are Q1 = (2π/a, 0, 0), Q2 = (0, 2π/a, 0), and Q3 = (0, 0, 2π/a),
where a is the lattice constant.

80



6.4 Topological orbital ferromagnetism

✓

✓

'

'

[111]
[1̄1̄1]

[11̄1̄]
x

y
z

(b) � > 1

(c) � < 1

(a)
[111]

[111]
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applied, the distance between adjacent (111) planes changes.

While the spin structure of the 3Q state gives rise to a finite scalar spin chirality
χijk = ±χ0 between any three neighboring spins Si, Sj, and Sk as can be understood
from Fig. 6.6, the individual fictitious magnetic fields bijk cancel over the magnetic
unit cell of four atoms. Since the net emergent field is zero, the cubic FeMn alloys
display no topological orbital magnetism in the absence of spin-orbit coupling. This
is consistent with the symmetries of the 3Q state on the fcc lattice forming the mag-
netic point group m-3m′, which obstructs the system from showing any macroscopic
magnetization. Consequently, texture-driven contributions to orbital magnetism and
anomalous Hall effect cannot develop unless the crystal symmetries are reduced, for
example, by applying strain along the [111] direction of the cube [189]. Lacking
some of the mirror operations, the magnetic point group -3m′ in the strained case is
admissible5 and supports the formation of a net magnetic moment.

In practice, we use the ratio δ = d′/d to characterize such deformations of the
crystal, where d and d′ correspond to the distance between adjacent (111) planes in
the undistorted and distorted structure, respectively (see Fig. 6.6). As the imposed
spin texture is kept fixed in our calculations, the only effect of δ is to tune the
intra-layer hopping between different (111) planes that manifests ultimately in a net
magnetic field Bem under strain, which we estimate as

Bem =
∑
〈ijk〉

bijk ∝ χ0t
3

[
1− 1

δ

]1
1
1

 , (6.3)

5While only 31 out of 122 magnetic point groups are admissible and thus allow for ferromagnetism,
the remaining groups forbid any net (spin or orbital) magnetization.
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where the sum is over all four spin triangles in the magnetic unit cell, χ0 is the
scalar spin chirality, and t denotes the inter-layer hopping. To arrive at the simple
estimate (6.3) for the net field, we assumed additionally that the intra-layer hopping
is given by t/δ. While the emergent field Bem indeed vanishes in the unstrained
cubic case with δ = 1, finite strain along the [111] direction generates effectively
a net magnetic field that roots in the chiral spin texture and is opposite in sign for
compressive and tensile strain. Thus, in strained FeMn alloys we expect the emergence
of a topological orbital moment, the orientation of which is determined purely by the
symmetries of the magnetic system.

Using moderate compressive strain as characterized by the parameter δ = 0.95,
we present in Fig. 6.7(a) the calculated energy dependence of OM (in the modern
theory) and anomalous Hall conductivity in selected antiferromagnetic γ-FexMn1−x

alloys in absence of any spin-orbit coupling. The computational details that underlie
the first-principles calculations are discussed in Appendix A.5. If the alloy compo-
sition x is varied from pure Mn over Fe0.5Mn0.5 to pure Fe, the dependence of the
OM on the Fermi energy is qualitatively not altered apart from a global shift towards
lower energies as can be seen from the marked peaks in Fig. 6.7(a). As the electron
configurations of Fe and Mn atoms greatly resemble each other, the electronic struc-
tures of the corresponding γ-FexMn1−x alloys are quite similar, in particular within
the used method of virtual crystal approximation (VCA). Thus, it is not surprising
that the band structures of the various systems shown in Fig. 6.7(b) match each
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other very well except for a global shift in energy. Although the Berry phase theory
links orbital magnetism and anomalous Hall effect intimately via the Berry curvature
in momentum phase space, we find that the variations of OM and anomalous Hall
conductivity with the position of the Fermi level are not at all correlated in these dis-
ordered bulk antiferromagnets, Fig. 6.7(a). As compared to the orbital magnetism,
the anomalous Hall effect reveals a more vivid energy dependence with non-trivial
oscillations, emphasizing its strong sensitivity to the electronic structure. Notably,
the different curves in Fig. 6.7(a) for the anomalous Hall conductivity at various alloy
compositions are not mapped onto a single curve by a plain energy shift. Finally, we
stress that the values of both OM and transverse conductivity, shown in Fig. 6.7(a),
have been verified to be faintly affected by including the spin-orbit interaction in our
calculations.

Figure 6.8(a) presents the variation of OM and transverse conductivity evaluated
at the actual Fermi energy of γ-FexMn1−x when changing the composition ratio x of
the compound. In the case of moderate compressive strain with δ = 0.95, the net
emergent magnetic field in the pure Mn crystal generates an OM of 0.1µB per unit cell
of four atoms, which gradually decreases with increasing Fe concentration, changes
sign around x ≈ 0.5 − 0.6, and eventually amounts to a value of about −0.1µB
per unit cell in the case of pure Fe. Remarkably, this overall behavior is reversed
qualitatively if we expand the lattice (δ > 1) instead of contracting it, whereby the
emergent magnetic field flips its sign according to the simple estimate (6.3). In the
experimentally confirmed region of concentrations that lead to the 3Q ground state
in cubic γ-FeMn (see dashed lines in Fig. 6.8(a)), depending on the applied strain the
OM ranges from −0.05 to 0.1µB per unit cell, which is comparable to the magnitude
of orbital magnetism in elementary bulk ferromagnets. Reinforcing the emergent
magnetic field by using stronger compressive or tensile strain, or in other words,
increasing the degree of symmetry-breaking along the [111] direction, we generally
observe that both the OM and the anomalous Hall conductivity are enhanced.

In particular for tensile strain, the anomalous Hall effect follows in its dependence
on the concentration x qualitatively the trend set by the orbital magnetism. The mag-
nitude of the transverse conductivity in the antiferromagnetic bulk materials amounts
to striking values of up to 1000 S/cm in the experimentally confirmed region of the 3Q
spin state, and even higher values are reached in the pure systems. Such anomalous
Hall effect of outstanding magnitude in a spin-compensated material is remarkable,
and we motivate experimental studies aimed at its detection. Again, we verified that
OM and anomalous Hall conductivity shown in Fig. 6.8(a) are hardly influenced by the
spin-orbit interaction, which promotes the non-coplanarity of the chiral spin texture
as driving mechanism for these phenomena in the bulk antiferromagnet γ-FeMn.

Focusing on the (111) plane including the Γ-point, Figure 6.8(c) depicts the mo-
mentum distribution of OM and Berry curvature of all occupied bands for the case of
the pure Mn compound in the 3Q state under compressive strain (δ = 0.95). These
k-resolved properties carry distinct sharp features due to the Fermi surface lines (see
Fig. 6.7(b)), and both reveal further the six-fold rotational symmetry that is associ-
ated with the considered plane of the distorted lattice. While large negative contribu-
tions to the OM (circle around the Γ-point) root in the group of parabolic bands that
intersect the Fermi level close to Γ along the paths ΓM and ΓK in Fig. 6.7(b), large
areas of the Brillouin zone provide small but positive contributions to the net positive
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OM. Similarly to the energy dependence discussed above, the Berry curvature reveals
generally a richer and more complex distribution in momentum space as compared
to the k-resolved OM.

Finally, we scrutinize unambiguously the key role of the non-zero scalar spin chiral-
ity of the antiferromagnetic texture for orbital magnetism and anomalous Hall effect.
While keeping the angle ϕ of the spin structure fixed to 45◦ as in the calculations
reported above, we vary the other characteristic angle θ (see Fig. 6.6), which enables
us to effectively control the value of the scalar spin chirality. The latter quantity
depends on θ according to the following relation:

χ0(θ) ∝ cos θ sin2 θ . (6.4)

As shown by the dotted line in Fig. 6.8(b), obviously, the chirality χ0(θ) vanishes
for the coplanar cases of θ = 0◦, which is known as the 1Q state, and θ = 90◦, also
known as the 2Q state, but it becomes maximal for θ = 54.74◦ in the 3Q structure.
Figure 6.8(b) presents additionally the dependence of the OM and the anomalous Hall
conductivity on θ, or alternatively, on the scalar spin chirality for the pure Mn system
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under compressive strain (δ = 0.95). Reaching its decent maximum of about 0.1µB
per unit cell in the 3Q state, the predicted θ-dependence of the OM matches almost
perfectly the curve of χ0(θ), where we ascribe the remaining tiny differences to changes
of fine details of the electronic structure as the antiferromagnetic spin texture is varied.
The remarkable correlation between the OM and χ0(θ) in γ-FeMn clearly suggests
that the orbital magnetism in this class of compounds is directly proportional to the
net emergent magnetic field rooting in the scalar spin chirality, where the constant
of proportionality can be viewed as a topological orbital susceptibility. Variations of
the anomalous Hall effect with the polar angle θ, however, do not mirror directly the
simple angular dependence of χ0(θ) but originate rather from higher-order terms that
manifest in a more complex behavior. In particular, the anomalous Hall conductivity
has a local minimum for the 3Q spin structure, which is contrary to the OM that
is maximized at that point. In order to substantiate that both orbital magnetism
and anomalous Hall effect are purely driven by the spin arrangement in real space,
we perform calculations including the effect of spin-orbit coupling. Our calculations
uncover that the OM barely varies when considering the spin-orbit interaction, and
similarly the anticipated changes of the anomalous Hall conductivity due to the effect
of spin-orbit coupling on the electronic structure are insignificant, see Fig. 6.8(b).

While the θ-dependence of the anomalous Hall effect relates to higher-order terms,
the correlation between the topological OM and the scalar spin chirality is particularly
intimate, which motivates us to speculate that an inverse effect could be observable
in terms of an enhanced magneto-structural coupling in non-coplanar antiferromag-
nets [216,217]. That is, we propose that materials of the present type may be subject
to a striking topological orbital magnetostriction mediated by the interaction of the
topological orbital moment with an external magnetic field, resulting in changes of
the crystallographic structure such as to maximize the energy gain due to this interac-
tion. In particular, owing to the opposite sign of the topological orbital moment with
respect to either compressive or tensile strain along the [111] direction in γ-FeMn, it
could be possible to expand or compress the crystal along the [111] axis by reverting
the applied magnetic field along this axis.

In resemblance to the previous system Mn/Cu(111), our results truly identify the
non-coplanar bulk antiferromagnet γ-FeMn as a prototypical topological orbital ferro-
magnet. The spin-orbit interaction is completely replaced with the emergent magnetic
field associated with the 3Q spin texture as efficient mechanism lifting the orbital de-
generacy. In the discussed type of topological orbital ferromagnets, non-vanishing
orbital and charge currents arise from the scalar spin chirality in the distorted crystal
that results in thoroughly topological contributions to the orbital magnetism and the
anomalous Hall effect. Analogously, we anticipate non-coplanar magnets to display a
topological spin Hall effect (see also Ref. [218]) owing to the non-trivial geometry of
the spin structure, without referring to the spin-orbit interaction.

Topological orbital ferromagnets constitute a distinct class of materials as the non-
trivial orbital magnetism originates directly from the complex spin configuration
in real space. As a consequence, the properties of these materials are tunable by
modifying the spin distribution, for instance, by means of electrically induced spin
torques [14] or by altering the strength of the spin-spin interactions. Despite the
smaller OM in γ-FeMn as compared to Mn/Cu(111), our calculations demonstrate
that magnitude and sign of the topological orbital magnetism can be controlled via
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adequate electronic-structure engineering through alloy composition or strain. To
outline the role of orbital magnetism in a broader context, we emphasize that the
orbital degrees of freedom offer higher flexibility as to their internal structure and the
size of the resulting orbital moments in contrast to the spin of the electrons. As such,
orbital moments in general can be envisioned as versatile operational building blocks
and information carriers in the burgeoning field of orbitronics.

6.4.3 Material candidates and experimental verification

Despite of the developed theoretical understanding of topological orbital moments
that are linked explicitly to the chiral spin texture, an experimental verification of
the phenomenon can be expected to set an intricate challenge. In order to assist
experiments in detecting the effect, we summarize at this stage the key requirements
for a net fictitious magnetic field to manifest, provide a list of promising material
candidates that reveal potentially topological orbital magnetism, and propose ideas
how to measure the phenomenon in experiment.

Clearly, the scalar spin chirality χijk = Si · (Sj × Sk) is only finite if the involved
spins do not lie in a single plane, which promotes the non-coplanarity of the spin
structure as a necessary ingredient to realize texture-driven orbital magnetism. As
we unraveled in the analysis of γ-FeMn, however, this is not a sufficient condition since
the local emergent fields that originate from a finite χijk might compensate depending
on the symmetries of the system, which renders the adequate crystal symmetry an
additional prerequisite. In fact, a net orbital moment in absence of spin-orbit coupling
may develop only in non-coplanar magnetic structures that are characterized by one
of the 31 admissible magnetic point groups. In particular, this excludes (amid others)
all chiral magnetic materials that have cubic symmetry.

Equipped with these two constraints, we screened a crystallographic database of
magnetic structures [219–221] to identify plausible candidate systems, a selection of
which we collect in Table 6.2. Besides frustrated chiral antiferromagnets that consti-
tute the presumably most promising class of materials to detect topological orbital
ferromagnetism, also ferro- and ferrimagnetic systems with complex non-collinear spin
textures are likely to show the anticipated effect. However, in the latter materials a
prominent spin magnetization could overshadow the unconventional orbital moment
and hamper its detection. Many of the systems shown in Table 6.2 are experimentally
readily available such as the antiferromagnet Mn5Si3 [195], the compound MgCr2O4

that reveals a 3Q spin structure [222], and the weak ferromagnet Mn3CuN, whose
transition temperature of 143 K [223] is one of the highest among the materials in
Table 6.2. The list is complemented by the layered insulator K0.5RhO2, which was
already predicted based on density functional theory to host a quantized topologi-
cal Hall effect driven by a complex spin configuration in real space [224]. Although
non-collinear but coplanar antiferromagnets (e.g., Mn3Ir) are missing in Table 6.2,
these systems have the potential to display topological orbital magnetism as well if
an external magnetic field is used to tilt the spins out of the plane (see, for instance,
the discussion in Ref. [225]).

In theory, one can distinguish rather easily the usual orbital magnetism from its
topological cousin either (i) by comparing the cases with and without taking into
account the spin-orbit interaction, or (ii) by performing two calculations but with
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Candidate FM/AFM magnetic point group Reference

Mn5Si3 AFM admissible [194,195]
K0.5RhO2 AFM admissible [224]
HoNiO3 AFM 2 [226]

MgCr2O4 AFM -42′m′ [222]

Nd2Mo2O7 FM admissible [188]
Nd2NaRuO6 FM 2/m [227]

NiN2O6 FM -3 [228]
U3As4 FM 3m′ [229]

MnV2O4 FM 4/m [230]
Mn3CuN FM 4/m [223]

Ho2Ru2O7 FM 4/mm′m′ [231]

Table 6.2: Candidate systems with non-coplanar spin structure and proper crystal symme-
tries, allowing possibly for the experimental observation of topological orbital
ferromagnetism in real materials. The list encompasses both antiferromagnets
(AFM) and systems with a finite spin magnetization (FM). We provide the
admissible magnetic point group of the system as well as the reference that
predicts (theoretically or experimentally) a complex spin texture.

the emergent magnetic field reversed in the second run, e.g., by modifying the spin
structure adequately. On the other hand, tracing the experimental fingerprints of
texture-driven orbital magnetism in XMCD measurements6 poses a highly non-trivial
problem and requires careful analysis. When following similar ideas as in theory, one
might try to correlate two XMCD data sets taken on the very same sample but with
opposite emergent magnetic fields, and thereby extract the signal of the topological
orbital magnetism that reverses sign correspondingly. To invert the emergent field, a
straightforward but practical approach would be to rotate the sample properly. An
even more promising path towards uncovering topological orbital moments would be
to monitor their stability upon heating the sample beyond the spin-ordering tem-
perature. Originating from the three-spin correlation function Si · (Sj × Sk), the
phenomenon of topological orbital magnetism should be still detectable above the
Curie temperature, where the signal of the spin texture itself is paramagnetic.

6Although XMCD probes the magnetic properties only locally and might thus underestimate the
topological orbital moments (like the ACA in theory), this experimental technique should still
allow for capturing signatures of the predicted unconventional orbital magnetism.
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Higher-dimensional Wannier functions
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Building onto the framework laid out in Chapter 5, here, we generalize systemat-
ically the Wannier representation to describe higher-dimensional phase spaces that
comprise not only the crystal momentum but also additional abstract parameters. We
motivate that this situation is frequently met in the description of various condensed-
matter phenomena, which renders our extension particularly valuable. Starting ini-
tially from an orthogonality problem, we derive the concept of higher-dimensional
Wannier functions (HDWFs). The localization of these functions is achieved using a
generalized algorithm to minimize iteratively the spread in the composite real space. In
close analogy to the usual Wannier interpolation, we develop ultimately an interpola-
tion technique based on HDWFs that is ideally suited to study efficiently the electronic
structure in complex phase spaces. Consequently, this method enables us to investigate
on an equal footing the anisotropy of transport phenomena, magneto-electric coupling
effects, and the Dzyaloshinskii-Moriya interaction (DMI) in magnetic materials.

The concepts presented in this chapter have already been published:

J.-P. Hanke, F. Freimuth, S. Blügel, and Y. Mokrousov

Physical Review B 91, 184413 (2015), Editor’s suggestion

J.-P. Hanke, F. Freimuth, S. Blügel, and Y. Mokrousov

J. Phys. Soc. Jpn. 87, 041010 (2018)
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7 Higher-dimensional Wannier functions

7.1 Why to go beyond Wannier functions?

Although the usual Wannier interpolation grants efficient access to such Berry phase
properties as anomalous Hall conductivity and orbital magnetization, this technique is
restricted to describe phenomena that root in the variation of the wave functions with
the crystal momentum. As we have seen in Chapter 4, the non-trivial geometry of
the higher-dimensional phase space of the crystal momentum and additional abstract
parameters λ can give rise to further fascinating effects, for example, current-induced
spin torques and chiral exchange interactions. To account for these phenomena, the
response of the wave functions to changes in λ has to be known, which is, however,
generally not available in any standard first-principles scheme so far. Therefore, the
computation of geometric properties of complex phase spaces would benefit consid-
erably from a generalized technique beyond the usual Wannier interpolation that
provides the multiparameter Hamiltonian H(k,λ) at any point (k,λ). With this aim,
we develop below the concept of higher-dimensional Wannier functions (HDWFs) by
performing Fourier transformations with respect to both k and λ. After construct-
ing such HDWFs from the electronic structure known on a coarse (k,λ)-grid, we
represent the Hamiltonian by means of short-ranged hoppings, which enable us to
interpolate H(k,λ) at any desired point (k,λ) of the higher-dimensional phase space.

Rather than starting in medias res with the mathematical derivations, we highlight
first the conceptual value of such a generalized technique. Depending on the partic-
ular nature of the additional parameter, a wide range of possible physical situations
where the approach could be notably rewarding may be anticipated: (i) While the
anomalous Hall effect is routinely extracted from maximally-localized Wannier func-
tions (MLWFs), evaluating its dependence on the magnetization direction m̂ [232]
can be time-consuming since it relies on the construction of individual sets of MLWFs
for every considered direction. In contrast, using the generalized interpolation with
λ = m̂, we could obtain the complete anisotropy information simply from a single set
of HDWFs. (ii) Likewise, the accurate prediction of Heisenberg exchange constants
based on derivatives of the dispersion E(q) render many non-collinear calculations of
spin spirals with different wave vectors q necessary [233]. The tremendous computa-
tional burden associated with the ab initio calculation of exchange constants could be
reduced when applying the technique of HDWFs to interpolate E(q) and its deriva-
tives with respect to the spin-spiral wave vector λ = q. (iii) Mixed Berry curvatures in
position and momentum space are perceived to be of crucial quantitative importance
in chiral magnets like MnSi, where they manifest in stable magnetic structures with
finite electric charge [132]. As the generalized technique is ideally suited to study the
geometry of complex phase spaces, the technique might trace fingerprints of generic
Berry curvatures in transport properties, and thereby contribute to the topological
characterization of non-trivial magnetic textures. (iv) Along this line, originating
from the response of the wave functions upon changing the crystal momentum and
the magnetization direction m̂ [28], the phenomena of spin-orbit torques (SOTs) and
Dzyaloshinskii-Moriya interaction (DMI) could be described efficiently based on the
higher-dimensional interpolation with λ = m̂. (v) Ultimately, the formalism of HD-
WFs could provide an alternative tool for force calculations in first-principles methods
or for calculating the ferroelectric polarization [22, 23, 234], where the parameter λ
would describe the atomic displacements in both cases. (vi) Considering the com-
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position ratio x as a parameter, finally, we anticipate that the generalized Wannier
interpolation could allow for an unambiguous treatment of alloys like FexCo1−x (same
period in periodic table) or even BixSb1−x (same group in periodic table) within the
so-called virtual crystal approximation (VCA) [235].

7.2 Orthogonality problem and its solution

In the presence of an additional periodic1 parameter λ, we assume the translationally
invariant system to be characterized by a whole set of Hamiltonians, where each
member H(λ) of this family represents the electronic structure for a particular value
of λ. As usual, the eigenstates of H(λ) are Bloch states |ψkλn〉 carrying an explicit
dependence on λ:

H(λ)(r)ψkλn(r) = Ekλnψkλn(r) , (7.1)

where Ekλn is the energy dispersion of the nth band. Since the Hamiltonians H(λ)

and H(λ′) at different values of the parameter are often completely independent, the
eigenstates at λ and λ′ are not at all guaranteed to be orthogonal, which amounts to

〈ψkλn|ψk′λ′m〉 6= Nkδkk′δλλ′δnm . (7.2)

Only if the two Bloch states are eigenstates of the very same Hamiltonian H(λ) the
conventional orthogonality with respect to the crystal momentum is present, i.e.,
〈ψkλn|ψk′λm〉 = Nkδkk′δnm. As a consequence of Eq. (7.2), it is not sufficient to
perform discrete Fourier transformations of these Bloch states with respect to k and
λ in analogy to the case of MLWFs since this procedure would not lead to orthonormal
Wannier functions (WFs). On one side, non-orthogonal WFs can of course be defined
[236] and may even be advantageous from the viewpoint of a stronger real-space
localization [172]. On the other side, in the setup considered here already the Bloch
states are not orthogonal for different parameters λ and λ′, which results in conceptual
complications when extending the definition of WFs. Especially, if we attempt to
generalize the hoppings (5.15) to the case of these non-orthogonal WFs, we encounter
formally matrix elements 〈ψkλn|H|ψkλ′m〉. As it is not obvious which member of the
family of Hamiltonians to consider, the handling of these elements is ambiguous for
λ 6= λ′.

7.2.1 Transition to higher dimensions

In order to resolve these conceptual difficulties and to obtain well-localized orthonor-
mal HDWFs, we introduce an auxiliary space ξ as the reciprocal of the λ-space.
Instead of taking the usual Bloch states in the construction of HDWFs, we consider
orthogonal states Φkλn(r, ξ) in the higher-dimensional real space (r, ξ). Being key
ingredients in the construction, the states Φkλn(r, ξ) are defined as the products of
the physical Bloch states and auxiliary orbitals ζλ(ξ) that mediate the orthogonality:

Φkλn(r, ξ) = ψkλn(r)ζλ(ξ) or |Φkλn〉 = |ψkλn〉 ⊗ |ζλ〉 . (7.3)

1As will become obvious below, the Bloch states need to be periodic functions of the parameter λ
such that Fourier transformations of these states with respect to λ are well defined.
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7 Higher-dimensional Wannier functions

Obviously, the Bloch states and the auxiliary orbitals act individually on distinct real
spaces. We enforce the necessary orthogonality of the product states by choosing the
auxiliary orbitals as an orthogonal basis, i.e., 〈ζλ|ζλ′〉 = Nλδλλ′ , where Nλ denotes
the number of λ-points on a coarse grid.

When constructing explicitly the auxiliary orbitals, we consider them to be solutions
of the Schrödinger equation with a periodic potential in the auxiliary space, which is
schematically shown in Fig. 7.1. That is, the auxiliary orbitals |ζλ〉 are chosen to be
the lowest-energy eigenstates of a corresponding Hamiltonian H̄:

H̄(ξ)ζλ(ξ) = Ēλζλ(ξ) , (7.4)

where Ēλ represents the lowest energy band dispersing with λ. Based on the im-
posed translational invariance in the auxiliary real space, one of the most natural and
convenient choices for the shape of the auxiliary orbitals are Bloch waves:

ζλ(ξ) = eiλ·ξρλ(ξ) , (7.5)

where ρλ(ξ) = 〈ξ|ρλ〉 are lattice-periodic functions that are normalized to the unit
cell in the auxiliary real space: 〈ρλ|ρλ′〉 = δλλ′ . By construction, it follows that the
resulting auxiliary orbitals are indeed orthogonal, i.e., 〈ζλ|ζλ′〉 = Nλδλλ′ , where the
integration is performed in a supercell of Nλ unit cells in the auxiliary space.

As depicted in Fig. 7.1, the regular lattice in the auxiliary space is modeled using a
series of potential wells of finite depth V̄0. Since an extension to higher dimensions is
straightforward, we restrict the following discussion to the case of a one-dimensional
lattice as described in atomic units by the single-particle Hamiltonian

H̄(ξ) = −1

2

d2

dξ2
− V̄0

∑
Ξ

[
Θ
(
ξ − Ξ + b̄/2

)
−Θ

(
ξ − Ξj − b̄/2

)]
. (7.6)

Here, the scalar ξ is the auxiliary real-space position in one dimension, and the
combination of Heaviside step functions Θ cuts out the potential-well region of width
b̄ centered around the position Ξ, where the coordinate Ξ = nā is defined by the lattice
constant ā measured along the chain axis and an integer n. We can solve numerically
the one-dimensional Schrödinger equation of the effective Hamiltonian (7.6) for the
auxiliary orbital ζλ using a plane-wave basis, with the potential depth V̄0 chosen to
suppress strongly any tunneling between different wells. Alternatively, we can also
arrive analytically at the expression for the lowest-energy eigenstate of (7.6) in the
deep-well limit V̄0 → ∞ by starting from the solution of the problem of a single
potential well at the origin, which assumes the form

w(ξ) =


√

2

b̄
cos

πξ

b̄
, if |ξ| < b̄/2

0 , else

. (7.7)

Then, the auxiliary orbital is obtained as the inverse Fourier transformation of the
Wannier-like function w(ξ) with respect to the lattice positions Ξ. Building onto the
expected Bloch shape, we find that the lattice-periodic part in Eq. (7.5) is given by

ρλ(ξ) = e−iλξ
∑

Ξ

eiλΞw(ξ − Ξ) . (7.8)
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⇠

V̄ (⇠)

V̄0

ā

b̄

Figure 7.1: Periodic potential V̄ (ξ) in the auxiliary real space ξ. As discussed in the main
text, the potential landscape of the one-dimensional chain of virtual atoms
(red balls) is defined as series of finite potential wells of depth V̄0, well width
b̄, and lattice constant ā.

As will be shown below, the overlaps between these lattice-periodic functions at
different values λ and λ+β of the additional parameter are some of the key ingredients
for constructing the sought HDWFs. Thus, we note for later reference that

〈ρλ|ρλ+β〉 = 8π2 sin
(
βb̄/2

)
βb̄(4π2 − β2b̄2)

= 1 +
β2b̄2

24π2
(6− π2) +O(β4) , (7.9)

where the integration is performed over one unit cell in the auxiliary real space, and
β plays a similar role like the vector b in Eq. (5.9) connecting neighboring grid points.
Remarkably, while the overlaps (7.9) hinge explicitly on β, they are independent of
the parameter λ itself. Moreover, it follows from the above Taylor expansion of the
overlaps that 〈ρλ|∂λρλ〉 = 0 and 〈ρλ|∂2

λρλ〉 = (6 − π2)b̄2/(12π2), which we use at a
later stage in the expressions for the centers of HDWFs.

7.2.2 Product states and composite Hamiltonian

Before defining eventually generalized tight-binding functions, we turn now to the
higher-dimensional product states |Φkλn〉 given by the usual Bloch states and the
auxiliary orbitals that we elucidated earlier. Exploiting Eq. (7.5), we rewrite the
product states in Eq. (7.3) as

Φkλn(r, ξ) = eik·reiλ·ξφkλn(r, ξ) , (7.10)

where

φkλn(r, ξ) = ukλn(r)ρλ(ξ) or |φkλn〉 = |ukλn〉 ⊗ |ρλ〉 (7.11)

denotes a lattice-periodic function in the higher-dimensional real space (r, ξ). Ow-
ing to the introduced auxiliary orbitals, the product states are guaranteed to be
orthogonal in k, in λ, and in the band index: 〈Φkλn|Φk′λ′m〉 = NkNλδkk′δλλ′δnm. In
addition, these functions are periodic with respect to both the crystal momentum and
the abstract parameter λ.

At this point the logical question arises to which Hamiltonian H the product
states (7.10) are eigenstates in the higher-dimensional real space. Clearly, due to
the product shape of these functions, the sought Hamiltonian decomposes into two
additive terms. If H̄ stands for the single-particle Hamiltonian in the auxiliary space
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7 Higher-dimensional Wannier functions

(see Eq. (7.4)), the corresponding operator of the full system is given by

H(r, ξ) = H(r) + H̄(ξ) or H = H ⊕ H̄ . (7.12)

Here, the Hamiltonian H that carries no explicit dependence on the abstract param-
eter λ can formally be expressed based on the individual members H(λ) as

H(r) =

∫
H(λ)(r)δ(λ̂− λ) dλ , (7.13)

where λ̂|ψkλn〉 = λ|ψkλn〉. Upon acting with this Hamiltonian on the usual Bloch
state |ψkλn〉, the Delta function selects from the family of Hamiltonians the member
H(λ) that corresponds to the particular parameter value of the Bloch state. Conse-
quently, it follows from Eq. (7.1) that H|ψkλn〉 = Ekλn|ψkλn〉, meaning that the Bloch
states are eigenstates of H. The product states satisfy therefore the equation

H(r, ξ)Φkλn(r, ξ) =
(
Ekλn + Ēλ

)
Φkλn(r, ξ) , (7.14)

with Ēλ representing the energy of the auxiliary orbital at the parameter value λ.
Due to the additional energy dispersion Ēλ entering in Eq. (7.14), the eigenvalues of
the higher-dimensional Hamiltonian H = H ⊕ H̄ differ generally from the ab initio
band energies, which we would like to interpolate ultimately. In order to achieve
the identity between the two sets of eigenvalues, we study the deep-well limit for the
Hamiltonian H̄, in the case of which the energy level Ēλ becomes independent of λ.
Thus, by choosing the zero of energy properly, we can render Ēλ drop out of Eq. (7.14)
such that

H(r, ξ)Φkλn(r, ξ) = EkλnΦkλn(r, ξ) . (7.15)

Therefore, a generalized technique that interpolates the higher-dimensional Hamil-
tonian H grants also directly access to the interpolated electronic structure of the
physical Hamiltonian H of interest.

7.3 Definition and maximal localization

We establish an efficient generalization of WFs for higher-dimensional phase spaces
by performing Fourier transformations of the orthogonal product states discussed
above with respect to both k and λ. The sought objects that originate from such a
construction are referred to as higher-dimensional Wannier functions (HDWFs):

WRΞn(r, ξ) =
1

Nk

1

Nλ

∑
kλm

e−ik·Re−iλ·ΞU (k,λ)
mn Φkλm(r, ξ) . (7.16)

Analogously to the case of standard MLWFs, the HDWFs are labeled by an orbital
index n and the direct lattice vector R. However, these functions are distinguished by
an additional lattice vector Ξ that is related to λ just like the direct lattice vector R
is conjugate to the crystal momentum k. The localization properties of HDWFs are
mediated by the unitary gauge transformations U (k,λ), and Nk and Nλ stand for the
number of mesh points used to sample the phase space of k and λ, respectively. Owing
to the fact that the product states |Φkλn〉 are orthogonal, the constructed orbitals
|WRΞn〉 constitute an orthonormal basis, i.e., 〈WRΞn|WR′Ξ′m〉 = δRR′δΞΞ′δnm, where
the integration is performed over the supercell in the higher-dimensional real space.
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7.3.1 Centers and spread in real space

To develop an initial interpretation of the orbitals |WRΞn〉 given by Eq. (7.16), we
begin by considering the expressions for the centers of these functions in r and ξ.
The centers of HDWFs in the physical real space r can be directly related to the
Brillouin-zone sum of the Berry connection in crystal momentum space:

〈W00n|r|W00n〉 =
i

NkNλ

∑
kλ

〈φ(W)
kλn|∇k|φ

(W)
kλn〉 =

i

NkNλ

∑
kλ

〈u(W)
kλn|∇k|u

(W)
kλn〉 , (7.17)

which is the generalization of the expression for the centers of MLWFs, and it can be
derived easily by taking into account the form of the Bloch-like lattice-periodic parts
|φ(W)
kλn〉 =

∑
m U

(k,λ)
mn |φkλm〉 and |u(W)

kλn〉 =
∑

m U
(k,λ)
mn |ukλm〉 that include the unitary

gauge transformation U (k,λ). Remarkably, Eq. (7.17) is independent of the auxiliary
orbitals as the momentum gradient does not act on |ρλ〉. We obtain similarly the
centers in the auxiliary space if we start from Eq. (7.16) and evaluate the expectation
value of ξ in the HDWF basis, which yields

〈W00n|ξ|W00n〉 =
i

NkNλ

∑
kλ

〈φ(W)
kλn|∇λ|φ

(W)
kλn〉

=
i

NkNλ

∑
kλ

[
〈u(W)
kλn|∇λ|u

(W)
kλn〉+ 〈ρλ|∇λ|ρλ〉

]
.

(7.18)

Although this expression appears to depend explicitly on the auxiliary orbitals, the
according contribution 〈ρλ|∇λ|ρλ〉 vanishes in the deep-well limit (see Eq. (7.8)) such
that

〈W00n|ξ|W00n〉 =
i

NkNλ

∑
kλ

〈u(W)
kλn|∇λ|u

(W)
kλn〉 . (7.19)

Consequently, the centers in the auxiliary space are given by the Brillouin-zone sum of
the Berry connection of the Bloch-like periodic parts in the phase space of the generic
parameter λ. The expectation values for the squared position operators amount to

〈W00n|r2|W00n〉 =
−1

NkNλ

∑
kλ

〈φ(W)
kλn|∇

2
k|φ

(W)
kλn〉 =

−1

NkNλ

∑
kλ

〈u(W)
kλn|∇

2
k|u

(W)
kλn〉 , (7.20)

as well as

〈W00n|ξ2|W00n〉 =
−1

NkNλ

∑
kλ

〈φ(W)
kλn|∇

2
λ|φ

(W)
kλn〉

=
−1

NkNλ

∑
kλ

[
〈u(W)
kλn|∇

2
λ|u

(W)
kλn〉+ 〈ρλ|∇2

λ|ρλ〉
]
.

(7.21)

Contrary to the center coordinates in ξ that are independent of the auxiliary orbitals,
the expectation value of ξ2 acquires a finite contribution from the overlap 〈ρλ|∇2

λ|ρλ〉.
In connection with Eqs. (7.17) and (7.19) for the centers, the above expressions can

be used to determine the generalized spread functional Ω̃ that evaluates the spatial
extent of HDWFs in the higher-dimensional real space:

Ω̃ =
∑
n

(
〈W00n|r2|W00n〉 − 〈W00n|r|W00n〉2

)
, (7.22)
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where we introduced the generalized position operator r = (r, ξ) in order to simplify
the notation. As we explained in Sec. 5.2, the constraint of minimal real-space spread
defines the usual MLWFs unambiguously up to a global phase factor. Analogously,
the unitary gauge transformations U (k,λ) that enter in the definition of HDWFs,
Eq. (7.16), can be fixed by imposing the condition of minimal spread Ω̃ in the higher-
dimensional real space. This renders the resulting states |WRΞn〉 not only localized
but also unique up to a global phase factor.

7.3.2 Iterative spread minimization

The procedure of maximal localization by means of the wannier90 program is con-
ventionally carried out in the three-dimensional real space. When constructing the
HDWFs, however, it is necessary to extend this scheme by including the auxiliary
variable ξ into the picture. Therefore, we extend the wannier90 program to higher
dimensions in order to minimize systematically the spread Ω̃ given by Eq. (7.22) in the
combined real space of r and ξ. Owing to the auxiliary space, obviously, the centers
of HDWFs possess the additional coordinates (7.19). To define the composite lattice
structure in the (r, ξ)-space, we employ the higher-dimensional but block-diagonal
Bravais matrix

A =

(
A1 0
0 A2

)
, (7.23)

where A1 denotes the usual 3 × 3 Bravais matrix of the solid, and the rank of A2 is
identical to the dimension of the auxiliary space ξ that we intend to study. Associated
with the direct lattice defined by the Bravais matrix A is a reciprocal lattice in the
higher-dimensional phase space (k,λ), which entangles the crystal momentum and
the abstract parameter. Just like the Brillouin zone of the crystal momentum is
sampled uniformly by a Monkhorst-Pack grid, the considered values of λ constitute an
equidistant mesh. Based on the expressions (7.17)–(7.21) for the real-space properties
of HDWFs, we can exploit analogous finite-difference expressions to those in Ref. [174]
to evaluate the spread Ω̃. However, we point out that the role of the periodic parts
|ukn〉, which enter conventionally the calculation of the spread, is now played by
their higher-dimensional analogs |φkλn〉 defined by Eq. (7.11). To apply the finite
differences, we are required to set up all necessary neighbors (k + bk,λ + bλ) of
a point (k,λ), where the vectors bk and bλ connect the two points in the higher-
dimensional reciprocal space. In general, our specific choice of the Bravais matrix
facilitates this step since only those neighbors with either bk = 0 or bλ = 0 need to
be taken into account.

Using the overlaps 〈φkλm|φk+bk λ+bλ n〉 of the lattice-periodic wave functions at
neighboring points in the composite phase space (k,λ), we can compute the cen-
ters and spreads of HDWFs. As we select the directions of k and λ to be orthogonal
in the higher-dimensional reciprocal lattice, the overlaps consist of two contributions:

M (k,b)
mn (λ) = 〈φkλm|φk+bλn〉 , (7.24)

M̄ (λ,b)
mn (k) = 〈φkλm|φkλ+bn〉 , (7.25)

depending on whether we are concerned with neighboring k-points for fixed values of
λ or vice versa. Owing to the shape of the periodic states |φkλm〉 in terms of products,
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Eq. (7.11), the overlaps are simplified further to yield

M (k,b)
mn (λ) = 〈ukλm|uk+bλn〉 , (7.26)

M̄ (λ,b)
mn (k) = 〈ukλm|ukλ+bn〉〈ρλ|ρλ+b〉 =M(λ,b)

mn (k)〈ρλ|ρλ+b〉 , (7.27)

where the lattice-periodic functions |ukλn〉 of the usual Bloch states and |ρλ〉 of the
auxiliary orbitals enter. Implementing the overlaps (7.26) within the full-potential lin-
earized augmented-plane-wave (FLAPW) method is straightforward and can be done
analogously to the procedure outlined in Ref. [180]. In contrast, the overlaps (7.27)
for different values of the abstract parameter λ are conceptually distinct as they rely
(i) on the integrals 〈ρλ|ρλ+b〉, for which analytic or numerical expressions may be

used, and (ii) on the overlaps M(λ,b)
mn (k) = 〈ukλm|ukλ+bn〉 between periodic parts of

the Bloch states. In particular, any implementation aiming at the computation of
M(λ,b)

mn depends on the physical nature that is assigned to the generic parameter λ.
We present below a comprehensive overview of the implementation of these matrix
elements within the FLAPW method for the example of the magnetization direction
as the parameter λ.

Apart from the previously described overlaps, the typical projections of Bloch states
onto localized trial orbitals gn(r) = 〈r|gn〉 are also replaced in the systematic con-
struction of maximally-localized HDWFs by projections of the product states onto
new trial functions pn(r, ξ) that are localized in the higher-dimensional real space.
These projections mark the starting point for minimizing the spread Ω̃ iteratively.
Recalling the product shape of the wave functions |Φkλn〉, Eq. (7.5), we make the
ansatz pn(r, ξ) = gn(r)h(ξ) or |pn〉 = |gn〉 ⊗ |h〉 for the trial functions to arrive at

A(k,λ)
mn = 〈Φkλm|pn〉 = 〈ψkλm|gn〉〈ζλ|h〉 . (7.28)

Thus, the projections onto the localized trial functions factorize into the usual pro-
jections of Bloch states and the auxiliary projection 〈ζλ|h〉. While the computation
of the projections 〈ψkλm|gn〉 within the FLAPW method is the same as in Ref. [180],
the auxiliary ingredients 〈ζλ|h〉 can be found either numerically or analytically by
choosing an appropriate |h〉. In practice, we find that the convergence of the HDWFs
is often insensitive to the specific choice that is made for the localized function 〈ξ|h〉.

7.3.3 HDWFs for the magnetization direction

In the case of MLWFs, the expressions to construct within the FLAPW method
the necessary ingredients M

(k,b)
mn and A

(k)
mn are provided in Ref. [180]. Aiming at the

generation of HDWFs, we need to evaluate additionally Eq. (7.27), i.e., new overlaps
of the wave functions at neighboring points in the higher-dimensional phase space
are required. Although the proposed scheme applies to generic periodic parameters
that drive the adiabatic Hamiltonian evolution, we restrict ourselves in this thesis
to realizations of this scenario where the magnetization direction specified by the
angle θ plays the role of the abstract parameter. In the following, we provide the
computational expressions to compute the overlaps 〈uσkθm|uσ

′

kθ+bθn
〉, where σ and σ′

label the spin of the θ-dependent spinor wave functions |ukθn〉 in the corresponding
local spin coordinate frame that is specified by the magnetization direction in the
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7 Higher-dimensional Wannier functions

used second-variation scheme [73]. Therefore, we transform these overlaps at the end
into the global coordinate frame with the spin-quantization axis along z according to

M(θ,bθ)
mn (k) =

∑
σ

〈ugl,σ
kθm|u

gl,σ
kθ+bθn

〉 =
∑
σσ′

[
χ†(θ)χ(θ + bθ)

]
σσ′ 〈uσkθm|uσ

′

kθ+bθn
〉 . (7.29)

where the spinor |ukθn〉 that is given in the local frame was transformed to the global
one via |ugl

kθn〉 = χ(θ)|ukθn〉 with χ(θ) given by Eq. (3.42) with ϕ = 0◦. Based on
the FLAPW partitioning, the overlaps on the far right hand-side in the local frame
acquire various contributions originating from different regions of real space.

Interstitial region Using the standard expansion of the wave function into plane
waves with wave vectorG (see also Chapter 3), we note that the expansion coefficients
in the interstitial region carry now a dependence on the angle θ:

ψσkθn(r) =
1√
V

∑
G

cGσkn (θ)ei(k+G)·r . (7.30)

Consequently, the overlaps of the lattice-periodic parts in the local coordinate frame
assume the form

〈uσkθm|uσ
′

kθ+bθn
〉 =

∑
GG′

(
cGσkm(θ)

)∗
cG

′σ′

kn ([θ + bθ])Θ(G′ −G) , (7.31)

where the Fourier transformation Θ(G) of the step function cutting out the interstitial
region has been defined in Eq. (5.31), and the neighboring point [θ + bθ] lies in the
“first Brillouin zone” of values for θ2. Although the above expression is reminiscent of
the implementation of the usual overlaps M

(k,b)
mn [180], we point out that plane-wave

coefficients to different magnetization directions are necessary to evaluate Eq. (7.31).

Muffin tins In the case of a variable magnetization direction, the coefficients in
the expansion of the muffin-tin wave functions hinge on θ such that the Bloch states
in the local spin frame are given by

ψσkθn(r) =
∑
Lµ

[
Aµ,σLn (k, θ)uµ,σl (rµ) +Bµ,σ

Ln (k, θ)u̇µ,σl (rµ)
]
YL(r̂µ) , (7.32)

where L stands for the set of angular momentum quantum numbers (l, lz), rµ is
the position vector relative to the µth muffin tin, and the spinors uµl and u̇µl are a
radial solution of the spherical Hamiltonian and its energy derivative, respectively.
Exploiting the orthogonality of the spherical harmonics, the overlaps between the
lattice-periodic parts at different magnetization directions read

〈uσkθm|uσ
′

kθ+bθn
〉 =

∑
Lµ

[
(Aµ,σLm(k, θ))∗Aµ,σ

′

Ln (k, [θ + b])tµ,L11 (σ, σ′)

+ (Aµ,σLm(k, θ))∗Bµ,σ′

Ln (k, [θ + b])tµ,L12 (σ, σ′)

+ (Bµ,σ
Lm(k, θ))∗Aµ,σ

′

Ln (k, [θ + b])tµ,L21 (σ, σ′)

+ (Bµ,σ
Lm(k, θ))∗Bµ,σ′

Ln (k, [θ + b])tµ,L22 (σ, σ′)
]
,

(7.33)

2In practice, we ensure that the Bloch states are periodic in θ by choosing the latter from the
interval [0, 4π). Alternatively, it is possible to explicitly account in the Fourier transformations
for the minus that the Bloch spinors acquire under a full rotation of the spin-1/2 moments.
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7.3 Definition and maximal localization

where the coefficients tij represent θ-independent integrals of the radial solutions and
their energy derivatives:

tµ,L11 (σ, σ′) =

∫
r2
µ u

µ,σ
l (rµ)uµ,σ

′

l (rµ) drµ , (7.34)

tµ,L12 (σ, σ′) =

∫
r2
µ u

µ,σ
l (rµ)u̇µ,σ

′

l (rµ) drµ , (7.35)

and analogously for t21 and t22. As compared to the implementation of the usual
overlaps M

(k,b)
mn [180], the calculation of the above t-integrals is computationally less

expensive as they do not include the Gaunt coefficients. However, we need to con-
tract expansion coefficients to different values of θ in order to evaluate the muffin-tin
contribution to the new overlaps (7.29). If the basis set is supplemented with local
orbitals (LOs), the above expressions are easily generalized.

Vacuum contribution in film calculations In the study of two-dimensional ge-
ometries using the film implementation of the fleur program, an additional con-
tribution to the overlaps arises from two semi-infinite vacua [72]. The Bloch states
in each of the vacua, which extend from −∞ to −D/2 as well as D/2 to ∞, are
represented by

ψσkθn(r) =
∑
G

(
aGn,σk (θ)u

G‖,σ

k (z) + bGn,σk (θ)u̇
G‖,σ

k (z)
)

ei(k+G‖)·x‖

=
∑
G

ΨGn,σ
k (θ, z) ei(k+G‖)·x‖ ,

(7.36)

where the function ΨGn
k contains the one-dimensional solutions u

G‖
k of the Schrödinger

equation in the corresponding vacuum region as well as their energy derivatives. In
addition, G = (G‖, Gz) and r = (r‖, z), and k = (kx, ky, 0) is considered to reside in
the two-dimensional Brillouin zone associated with the film plane, which is supposed
to be perpendicular to the z-axis. Introducing for convenience the abbreviation

βGG
′,σσ′

kmn (θ, [θ + bθ], z) =
(

ΨGm,σ
k (θ, z)

)∗
ΨG′n,σ′

k ([θ + bθ], z) , (7.37)

we arrive at the final expression for the vacuum contribution to the sought overlaps
in the local spin frame:

〈uσkθm|uσ
′

kθ+bθn
〉 = S‖

∑
GG′

δG‖−G′
‖

∫ ±∞
±D/2

βGG
′,σσ′

kmn (θ, [θ + bθ], z) dz , (7.38)

where the area of the in-plane unit cell is denoted as S‖. The other contribution from
the second vacuum region is derived analogously. When treating one-dimensional
geometries within the FLAPW methodology [185], we find similarly contributions
from the corresponding vacuum region to the matrix elements (7.29).

Projections onto trial functions In order to generate first-guess HDWFs, the
projections of the Bloch states onto localized trial orbitals gn need to be evaluated
within the FLAPW method according to Eq. (7.28). We choose these trial orbitals
to be zero everywhere but near the µth muffin-tin sphere to which the correspond-
ing first guess should be associated. The angular character of the trial functions is
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7 Higher-dimensional Wannier functions

controlled via the coefficients in the expansion gn(r) =
∑

L cLnũl(rµ)YL(r̂µ), and the
radial function ũl can be chosen, e.g., as the first-principles states uµl of the radial
Schrödinger equation. If the orthogonality of the spherical harmonics is exploited,
the necessary projections amount to

〈ψkθm|gn〉 =
∑
Lσ

[
(Aµ,σLm(k, θ))∗ cσLn

∫
r2
µ u

µ,σ
l (rµ)ũσl (rµ) drµ

+ (Bµ,σ
Lm(k, θ))∗ cσLn

∫
r2
µ u̇

µ,σ
l (rµ)ũσl (rµ) drµ

]
.

(7.39)

Apart from the explicit θ-dependence of the expansion coefficients, these computa-
tional expressions are analogous to those provided in Ref. [180] for the usual MLWFs.

7.4 Higher-dimensional Wannier interpolation

By separating explicitly the real-space positions r and ξ, the direct lattice vectors R
and Ξ, and the variables k and λ in reciprocal space, so far, we emphasized the con-
ceptual differences that arise from integrating an abstract parameter into the Wannier
formalism. In the remainder of this chapter, however, we adopt a simplified notation
(i) to imitate for clarity the well-known terminology of the standard WFs, and (ii) to
stress the strong formal analogies between a higher-dimensional Wannier interpolation
based on HDWFs (see Fig. 7.2) and the conventional interpolation technique.

For this purpose, we introduce the following quantities in higher dimensions:

K = (k,λ) , r = (r, ξ) , R = (R,Ξ) (7.40)

as the generalized momentum vector K, the generalized position vector r, and the
generalized lattice vector R, respectively. If we define in addition NK = NkNλ, the
definition (7.16) of HDWFs assumes the compact form

WRn(r) =
1

NK

∑
Km

e−iK·RU (K)
mnΦKm(r) , (7.41)

which is formally identical to the definition of MLWFs although it should be kept in
mind that the key ingredients are fundamentally different for the two cases.

7.4.1 Multiparameter Hamiltonian

After generating a single set of HDWFs via the adapted procedure of maximal local-
ization, we can calculate the periodic parts of Bloch-like functions by inverting the
above Fourier transformation:

|φ(W)
Kn 〉 =

∑
R

e−iK·(r−R)|WRn〉 = |u(W)
Kn 〉 ⊗ |ρλ〉 , (7.42)

which belong to the so-called Wannier gauge as indicated by the superscript “W”.
Inside of the energy window that is spanned by the constructed HDWFs, the single-
particle HamiltonianH describing the electronic system of interest can be interpolated
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Figure 7.2: Scheme of the higher-dimensional Wannier interpolation. (a) Initially, the elec-
tronic structure is known on a coarse mesh of few K-points, where the variable
K = (k,λ) encompasses the crystal momentum k and the abstract parameter
λ. (b) Based on this information, we construct a set of higher-dimensional
Wannier functions that are localized at positions R = (R,Ξ) in the extended
real space. (c) Using the generalized hoppings H(R), we establish by means
of an inverse Fourier transformation an efficient but accurate interpolation of
the Hamiltonian onto a much denser K-grid.

with respect to K. As in the usual method, the matrix elements of H in the basis of
HDWFs initiate the higher-dimensional Wannier interpolation (see Fig. 7.2):

Hnm(R) = 〈W0n|H|WRm〉 =
1

NK

∑
K`

e−iK·R
(
U (K)
`n

)∗
EK` U

(K)
`m , (7.43)

where the K-sum is over the ab initio mesh that underlies the maximal-localization
procedure. These generalized hopping elements decay rapidly with the distance |R|,
and depend further solely on the difference vector connecting the two HDWFs:

〈WR′n|H|WRm〉 = 〈W0n|H|WR−R′m〉 = Hnm(R−R′) . (7.44)

Since the hoppings Hnm(R) converge quickly with the number of mesh points, they
can be calculated from the electronic structure known on a relatively coarse grid of K-
points. Through an inverse Fourier transformation one obtains a particularly efficient
interpolation of the Hamiltonian at any desired point K in the higher-dimensional
phase space, even though this point might originally not be contained in the coarse
mesh used for constructing the set of HDWFs:

H(W)
nm (K) = 〈φ(W)

Kn |Hk|φ
(W)
Km 〉 =

∑
R

eiK·R〈W0n|H|WRm〉 . (7.45)

Due to the strong localization of the HDWFs in real space, only few lattice vectors R
need to be considered in the summation. The interpolated band energies are readily
accessible after the Hamiltonian matrix (7.45) was diagonalized using an appropriate
unitary matrix V (K) such that

H(H)
nm (K) =

[(
V (K)

)†
H(W)(K)V (K)

]
nm

= EKnδnm . (7.46)

Similarly, the periodic parts of the interpolated wave functions assume the form

|φ(H)
Kn 〉 =

∑
m

|φ(W)
Km 〉V

(K)
mn = |u(H)

Kn 〉 ⊗ |ρλ〉 , (7.47)

where the superscript “H” denotes the so-called Hamiltonian gauge, in which the
matrix of the interpolated Hamiltonian becomes diagonal.
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7 Higher-dimensional Wannier functions

7.4.2 Pure and mixed Berry curvatures

Beyond the interpolation of the electronic structure, our generalized technique based
on HDWFs grants the pure Berry curvatures Ωkk and Ωλλ as well as the mixed
Berry curvatures Ωkλ and Ωλk, all of which determine the general Berry curvature
tensor (4.38). Thereby, the generalized interpolation contributes to a complete char-
acterization of the geometry of the underlying higher-dimensional phase space. The
scheme that we propose to calculate these geometric objects is rather analogous to
the conventional approach for the momentum-space Berry curvature [183] in that all
quantities are eventually evaluated under the Hamiltonian gauge. While the method
in Ref. [183] is restricted to the phase space of crystal momentum, however, we are
able to study by means of the higher-dimensional interpolation the aforementioned
(otherwise hidden) Berry curvatures that drive intriguing geometric phenomena, for
example, the antidamping spin-orbit torques (4.52) in inversion-asymmetric magnets.
In addition, the anisotropy of transport properties such as the anomalous Hall con-
ductivity is readily available as a beneficial “side effect” of our general approach.

To begin with, we consider the well-known expression of the Berry curvature matrix

Ω
(H)
nm,αβ(K) = ∂αA

(H)
nm,β(K)− ∂βA(H)

nm,α(K)

= −2Im〈∂αu(H)
Kn |∂βu

(H)
Km〉 ,

(7.48)

where A
(H)
nm,α(K) = i〈u(H)

Kn |∂αu
(H)
Km〉 is the Berry connection matrix of the lattice-periodic

parts |u(H)
Kn 〉 of the Bloch states, and ∂α = ∂/∂Kα with Kα as αth entry of K. The

total Berry curvature of all occupied states is locally gauge-invariant and given by

Ωαβ(K) =
∑
n

f
(H)
Kn Ω

(H)
nn,αβ(K) , (7.49)

where the occupation numbers f
(H)
Kn are either zero or one at zero temperature. On the

one hand, pure Berry curvatures are obtained if α and β refer to the same parameter
type. For instance, we recover from Eq. (7.49) the pure momentum Berry curvature
that gives rise to the anomalous Hall effect if α = ki and β = kj. On the other hand,
if α and β refer to distinct variable types, we obtain mixed Berry curvatures. These
geometric objects determine, e.g., magneto-electric coupling effects in clean materials
with broken inversion symmetry [28,237], given that the abstract parameter λ in the
Hamiltonian plays the role of the magnetization direction m̂, Eq. (4.52).

The total Berry curvature (7.49) can be rewritten by evaluating the derivative of

the wave functions |u(H)
Kn 〉 that are defined through Eq. (7.47):

|∂αu(H)
Kn 〉 =

∑
m

|∂αu(W)
Km 〉V

(K)
mn +

∑
m

|u(W)
Km 〉

(
∂αV

(K)
mn

)
. (7.50)

Next, we introduce for every matrix O the abbreviation Ō(H) = V †O(W)V , which we
utilize to reformulate the second term above since ∂αV

(K) = V (K)D
(H)
α (K) where

D(H)
mn,α(K) =


H̄

(H)
mn,α

EKn − EKm
, if n 6= m

0 , if n = m

, (7.51)
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which follows from standard perturbation theory with respect to α. In the previous
definition H̄

(H)
α = V †∂αH

(W)V with H(W) given by Eq. (7.45). As a consequence, we
arrive at an alternative expression for Eq. (7.50):

|∂αu(H)
Kn 〉 =

∑
m

|∂αu(W)
Km 〉V

(K)
mn +

∑
m

|u(H)
Km〉D

(H)
mn,α(K) . (7.52)

The adopted simplified notation renders the wave-function derivatives formally iden-
tical to Eq. (26) of Ref. [183], which provides derivatives with respect to the crystal
momentum only. However, we emphasize that the above equation is generalized to
the higher-dimensional case, and thus it enables us to compute on an equal footing
the response of the wave functions upon changing the abstract parameter λ. Based
on Eq. (7.52), we may carry out similar algebra as in Ref. [183] using the relation

A(H)
nm,α(K) = Ā(H)

nm,α(K) + iD(H)
nm,α(K) (7.53)

to obtain the final result for the K-dependent Berry curvature of all occupied states:

Ωαβ(K) =
∑
n

f
(H)
Kn Ω̄

(H)
nn,αβ + i

∑
nm

(f
(H)
Km − f

(H)
Kn )D(H)

nm,αD
(H)
mn,β

+
∑
nm

(f
(H)
Km − f

(H)
Kn )

[
D(H)
nm,αĀ

(H)
mn,β −D

(H)
nm,βĀ

(H)
mn,α

]
,

(7.54)

which grants access to pure or mixed Berry curvatures, depending on the explicit
physical nature of the variables that are associated with the labels α and β.

Except for the occupation numbers, all quantities that enter Eq. (7.54) are first cal-
culated in the Wannier gauge and then rotated using the unitary transformation V (K)

that diagonalizes the interpolated Hamiltonian. Thus, in order to evaluate by means
of the higher-dimensional Wannier interpolation Ω̄

(H)
αβ (K), Ā

(H)
α (K), and D

(H)
α (K), the

corresponding quantities are needed first in the Wannier gauge. From Eqs. (7.42)
and (7.45), and from the condition3 〈ρλ|∂αρλ〉 = 0, it follows that

H(W)
nm,α(K) =

∑
R

iRαeiK·R〈W0n|H|WRm〉 , (7.55)

A(W)
nm,α(K) =

∑
R

eiK·R〈W0n|rα|WRm〉 , (7.56)

Ω
(W)
nm,αβ(K) =

∑
R

ieiK·R [Rα〈W0n|rβ|WRm〉 −Rβ〈W0n|rα|WRm〉] . (7.57)

Clearly, the hoppings 〈W0n|H|WRm〉 and the matrix elements of the generalized po-
sition operator in the HDWF basis, 〈W0n|rα|WRm〉, are required to determine the
sought quantities. These ingredients are obtained by inverting Eqs. (7.45) and (7.56)
on the coarse ab initio mesh. While the hoppings relate to the band energies accord-
ing to Eq. (7.43), the matrix elements of the higher-dimensional position operator
amount to

〈W0n|rα|WRm〉 =
i

NK

∑
K

e−iK·R〈φ(W)
Kn |∂αφ

(W)
Km 〉 . (7.58)

3Recall that 〈ρλ|∂k|ρλ〉 = 0 trivially, and 〈ρλ|∂λ|ρλ〉 = 0 can be achieved by proper choice of the
auxiliary orbitals, e.g., by considering the deep-well limit, Eq. (7.9).
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Using for the wave-function derivative in Eq. (7.58) the finite-difference formula [174]

|∂αφ(W)
Km 〉 =

∑
b

wbbα

(
|φ(W)

K+bm〉 − |φ
(W)
Km 〉

)
+O(b2) , (7.59)

where b connects neighboring K-points and wb are appropriately chosen weights,
we realize that the higher-dimensional positions (7.58) along the αth direction are
determined by the overlaps at neighboring grid points K and K + b:

〈W0n|rα|WRm〉 =
i

NK

∑
Kb

e−iK·Rwbbα

[
〈φ(W)

Kn |φ
(W)
K+bm〉 − δnm

]
=

i

NK

∑
Kb

e−iK·Rwbbα

[{(
U (K)

)†
M (K,b)U (K+b)

}
nm
− δnm

]
,

(7.60)

where M
(K,b)
nm = 〈φKn|φK+bm〉 denotes the overlap of the ab initio wave functions |φKn〉,

which constitute the key objects in the construction of maximally-localized HDWFs.

7.4.3 Spiralization tensor

Considering now situations where the abstract parameter λ is the magnetization di-
rection m̂, we apply the higher-dimensional Wannier interpolation to extract the DMI
spiralization, Eq. (4.58), by resorting to the analogies with the orbital magnetization
noted earlier. The orbital magnetization of periodic systems at zero temperature can
be evaluated based on a gauge-invariant formulation of the usual Wannier interpola-
tion [184], which we generalize here to calculate the spiralization Dij from HDWFs.
To begin with, we decompose the spiralization Dij into a local circulation Dlc

ij and an
itinerant circulation Dic

ij that read

Dlc
ij =

êi
NV
· Im

occ∑
kn

m̂×
〈
∂uKn
∂m̂

∣∣∣∣Hk − EF

∣∣∣∣∂uKn∂kj

〉
, (7.61)

Dic
ij =

êi
NV
· Im

occ∑
kn

m̂×
〈
∂uKn
∂m̂

∣∣∣∣EKn − EF

∣∣∣∣∂uKn∂kj

〉
, (7.62)

such that Dij = Dlc
ij + Dic

ij. After introducing the operator P(K) =
∑occ

n |uKn〉〈uKn|
and its complement Q(K) = 1−P(K) that project onto the manifold of all occupied
and unoccupied states, respectively, we may define the “geometric” objects4

Fαβ(K) = Tr [(∂αP)Q(∂βP)] , (7.63)

Gαβ(K) = Tr [(∂αP)QHkQ(∂βP)] , (7.64)

Hαβ(K) = Tr [Hk(∂αP)Q(∂βP)] , (7.65)

where the dependence of P and Q on K is implied, α and β denote possibly distinct
types of phase-space variables, and Tr denotes the trace over the full electronic Hilbert

4As both Gαβ and Hαβ rely explicitly on the Hamiltonian Hk, only the term Fαβ related to the
Berry curvature is a strictly geometric property of the underlying phase space.
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space of all states. Since the trace is invariant under unitary basis transformations,
the above quantities are gauge-invariant.

As in the case of the orbital magnetization [184], the two contributions (7.61)
and (7.62) of the spiralization can be rewritten as ground-state properties that are
individually gauge-invariant:

Dlc
ij =

êi
NV
· Im

∑
k

m̂×
(
Gm̂kj − EFFm̂kj

)
, (7.66)

Dic
ij =

êi
NV
· Im

∑
k

m̂×
(
Hm̂kj − EFFm̂kj

)
, (7.67)

where the short-hand vector notation Fm̂kj , for instance, stands for the geometric
quantity of Eq. (7.63) with ∂α = ∂m̂ being the gradient with respect to the mag-
netization direction m̂ and ∂β = ∂kj as the derivative in the jth component of the
crystal momentum. Consequently, Fm̂kj mediates the mixed Berry curvature Ωm̂k in
the higher-dimensional phase space, and we remark in passing that this framework
provides an alternative expression to compute the torkance (4.52), which quantifies
the antidamping SOTs:

τij =
2e

N
êi · Im

∑
k

m̂×Fm̂kj . (7.68)

Using that Im Tr [(∂αP)P(∂βP)] = 0 and plugging the definition (7.63) into Eq. (7.68),
we easily verify that the above formula is indeed identical to Eq. (4.52). Similarly,
we can prove that the sum of Eqs. (7.66) and (7.67) is identical to the expression for
the DMI in the modern theory, Eq. (4.58).

So far, we did not specify any gauge choice (i.e., no superscript was given to
the wave functions) under which Fαβ, Gαβ, and Hαβ are evaluated. Even though
these phase-space quantities are in principle gauge-invariant, it is most convenient to
calculate them from wave functions in the Wannier gauge (with “W” as superscript).
Then, the projection operator onto the manifold spanned by the M Bloch-like states
in the Wannier gauge, Eq. (7.42), assumes the form P =

∑M
nm |φ

(W)
Kn 〉f

(W)
nm 〈φ

(W)
Km |, where

the non-diagonal matrix f (W) is obtained by transforming the diagonal occupation
matrix f (H) into the Wannier gauge via the Hermitian conjugate of V (K). We introduce
also g(W) = 1− f (W), where “1” stands for the identity matrix in the considered M -
dimensional subspace. In strong formal analogy to the derivations in Ref. [184] for
the orbital magnetization, we arrive at the following expressions for the phase-space
objects that underlie the DMI spiralization:

ImFαβ =− 1

2
Re tr

[
f (W)Ω

(W)
αβ

]
+ Im tr

[
f (W)A(W)

α g(W)J
(W)
β + f (W)J (W)

α g(W)A
(W)
β

]
+ Im tr

[
f (W)J (W)

α g(W)J
(W)
β

]
, (7.69)
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ImGαβ =− 1

2
Re tr

[
f (W)Λ

(W)
αβ

]
+ Im tr

[
f (W)H(W)f (W)A(W)

α f (W)A
(W)
β

]
+ Im tr

[
f (W)(J (W)

α g(W)B
(W)
β − J (W)

β g(W)B(W)
α )

]
+ Im tr

[
f (W)J (W)

α g(W)H(W)g(W)J
(W)
β

]
, (7.70)

ImHαβ =− 1

2
Re tr

[
f (W)H(W)f (W)Ω

(W)
αβ

]
− Im tr

[
f (W)H(W)f (W)A(W)

α f (W)A
(W)
β

]
+ Im tr

[
f (W)H(W)f (W)

(
A(W)
α g(W)J

(W)
β + J (W)

α g(W)A
(W)
β

)]
+ Im tr

[
f (W)H(W)f (W)J (W)

α g(W)J
(W)
β

]
. (7.71)

Here, all ingredients depend on K, and tr stands for the trace over the Bloch-like
states, which is distinct from the trace Tr that underlies Eqs. (7.63)–(7.65).

The relevant matrices H
(W)

, A
(W)
α , and Ω

(W)
αβ in the Wannier gauge have already

been defined by Eqs. (7.45), (7.56), and (7.57), respectively, based on the generalized
hoppings and position elements of the HDWFs. Additionally, the above expressions
contain the matrix objects J

(W)
α = iV D

(H)
α V †, where D

(H)
α is given by Eq. (7.51), as

well as further matrices that enter only in the computation of ImGαβ:

B(W)
nm,α =

∑
R

eiK·R〈W0n|Hr′α|WRm〉 , (7.72)

where r′ = r−R, and Λ
(W)
αβ = i

[
C

(W)
αβ − C

(W)†
αβ

]
with

C
(W)
nm,αβ =

∑
R

eiK·R〈W0n|rαHr′β|WRm〉 . (7.73)

Within the present formalism, the DMI spiralization can be evaluated in periodic sys-
tems at the expense of extra matrix elements of Hr′ and rHr′ in the basis of HDWFs
that are necessary to perform the higher-dimensional Wannier interpolation. This
is in contrast to the interpolation of generic Berry curvatures discussed previously,
where such information is not needed. By inverting the Fourier transformations in
Eqs. (7.72) and (7.73) on the coarse ab initio mesh of K-points, we arrive at explicit
expressions for the sought matrix elements:

〈W0n|Hr′α|WRm〉 =
i

NK

∑
K

e−iK·R〈φ(W)
Kn |Hk|∂αφ

(W)
Km 〉 , (7.74)

〈W0n|rαHr′β|WRm〉 =
1

NK

∑
K

e−iK·R〈∂αφ
(W)
Kn |Hk|∂βφ

(W)
Km 〉 . (7.75)

We employ the finite-difference formula (7.59) to express the derivatives of the wave
functions, and we realize that Eq. (7.74) is determined by the band energies and the

overlaps M
(K,b)
nm = 〈φKn|φK+bm〉, i.e., information that is already available at the stage

of generating HDWFs. However, the matrix elements of rĤr′ given by Eq. (7.75) rely

on new information encoded in the integrals Z
(K,b1,b2)
nm = 〈φK+b1n|Hk|φK+b2m〉 of the

Hamiltonian at K in between states at neighboring points K+b1 and K+b2. Although
these quantities do not enter in the construction of HDWFs, they are important in
the scheme as they allow us to perform the higher-dimensional Wannier interpolation
of the DMI spiralization. Therefore, we discuss in the following the implementation
of these matrix elements in the FLAPW method.
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7.4 Higher-dimensional Wannier interpolation

7.4.4 Spiralization within FLAPW

In close formal analogy to the discussion in Section 5.3.4, we outline briefly the com-
putational expressions for evaluating the matrix elements 〈uk+bθn|Hkθ|ukθ+bθm〉 within
the FLAPW method. These matrix elements of the Hamiltonian at (k, θ) between
states at neighboring phase-space points (k+b, θ) and (k, θ+bθ) are important ingre-
dients in the higher-dimensional Wannier interpolation of the spiralization according
to its modern Berry phase theory. Here, |ukθn〉 denote the lattice-periodic eigenstates
of Hkθ = e−ik·rH(θ)eik·r with H(θ) as the Hamiltonian for the given magnetization
direction specified by θ. Using the Bloch states |ψkθn〉 = eik·r|ukθn〉, we arrive at

〈uk+bθn|Hkθ|ukθ+bθm〉 = 〈ψ[k+b]θn|eib·rH(θ)|ψkθ+bθm〉 , (7.76)

which is different from Eq. (5.27) as only a single phase arising from b enters in the
above equation. Following the notation of Section 5.3.4, we introduce G(k) to shift
the crystal momentum k into the first Brillouin zone, i.e., [k] = k −G(k).

Interstitial region The contribution to Eq. (7.76) that results from the interstitial
region is derived similarly as in Section 5.3.4, and the final expression is in fact
formally identical to Eq. (5.30) except for minor modifications:

〈uk+bθn|Hkθ|ukθ+bθm〉 =
∑
GG′

(
cGk+b1n

(θ)
)∗
cG

′

km(θ + bθ)

{
K2 + K′2

4
Θ(G) + V (G)

}
,

(7.77)
where V (G) and Θ(G) are the Fourier transformations of the potential and the step
function, respectively, and the plane-wave vectorsG andG′ enter in the abbreviations
K = k +G −G(k + b1), K′ = k +G′, and G = K′ −K. Note that K′ is defined
differently than in Section 5.3.4.

Muffin tins Based on the specific form of the spinor wave functions in the muffin
tins (see also Chapter 3), the matrix elements (7.76) assume the form

〈uk+b1θn|Hkθ|ukθ+bθm〉 =
∑
LL′

∑
µ

{
(AµLn(k + b1, θ))

∗AµL′m(k, θ + bθ)I
µ,uu
LL′ (b1, b2)

+ (AµLn(k + b1, θ))
∗Bµ

L′m(k, θ + bθ)I
µ,uu̇
LL′ (b1, b2)

+ (Bµ
Ln(k + b1, θ))

∗AµL′m(k, θ + bθ)I
µ,u̇u
LL′ (b1, b2)

+ (Bµ
Ln(k + b1, θ))

∗Bµ
L′m(k, θ + bθ)I

µ,u̇u̇
LL′ (b1, b2)

}
,

(7.78)

where the I-coefficients

Iµ,uuLL′ (b) =

∫
Y ∗L (r̂µ)eib·ruµl (rµ)H(rµ)YL′(r̂µ)uµl′(rµ) drµ , (7.79)

Iµ,uu̇LL′ (b) =

∫
Y ∗L (r̂µ)eib·ruµl (rµ)H(rµ)YL′(r̂µ)u̇µl′(rµ) drµ , (7.80)

are defined analogously to Section 5.3.4 but they contain only one phase factor due
to b (instead of two phases stemming from b1 and b2 in Section 5.3.4). Exploiting
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7 Higher-dimensional Wannier functions

again the Rayleigh expansion of the plane-wave factor and introducing the Gaunt
coefficients, we arrive at the final expression

Iµ,uuLL′ (b) = 4πe−ib·τµ
∑
L̄

(−1)l̄il̄YL̄(b̂)
∑
L

GLLL̄

×
∫
Y ∗L (r̂µ)uµl (rµ)jl̄(brµ)H(rµ)YL′(r̂µ)uµl′(rµ) drµ ,

(7.81)

and analogously for all other I-integrals. As the original expression includes just a
single phase factor eib·r, only one Gaunt coefficient appears and the evaluation of the
muffin-tin contribution to the matrix elements (7.76) is much less expensive than the
according task in the calculation of orbital magnetism.

Spherical muffin-tin Hamiltonian Since the spherically averaged potential and
the kinetic energy couple only spherical harmonics to the same angular momentum,
we arrive at the following contribution arising from the spherical Hamiltonian:

Iµ,uuLL′ (b) = 4πe−ib·τµ
∑
L̄

(−1)l̄il̄YL̄(b̂)
∑
L

GLLL̄δL′L

×
∫
r2
µ u

µ
l (rµ)jl̄(brµ)H`(rµ)uµl′(rµ) drµ ,

(7.82)

where the angular momentum ` enters in the set of quantum numbers L. Evidently,
the spherical contribution is independent of the magnetization direction as long as the
spherical potential does not depend on θ, which holds for calculations that resort to
the magnetic force theorem. As in the case of Section 5.3.4, the above radial integrals
are symmetrized by applying half of H` to the right and half of it to the left.

Non-spherical muffin-tin Hamiltonian The contribution from the non-spherical
part Vl of the scalar potential amounts to

Iµ,uuLL′ (b) = 4πe−ib·τµ
∑
L̄

(−1)l̄il̄YL̄(b̂)
∑
L

l̃ 6=0∑
L̃

GLLL̄GLL′L̃

×
∫
r2
µ u

µ
l (rµ)jl̄(brµ)Vl̃(rµ)uµl′(rµ) drµ ,

(7.83)

which is also independent of θ as in the case of the spherical muffin-tin Hamiltonian.

Contribution from the spin-orbit interaction Coupling only spherical har-
monics of the same angular momentum, the spin-orbit interaction contributes the
following term to the I-coefficients that are necessary to evaluate Eq. (7.76):

Iµ,uuLL′ (b) = 4πe−ib·τµ
∑
L̄

(−1)l̄il̄YL̄(b̂)
∑
L

GLLL̄δL′L [L · S]σσ
′

LL′

×
∫
r2
µ u

µ
l (rµ)jl̄(brµ)Vso(rµ)uµl′(rµ) drµ ,

(7.84)

where we used the same definitions as in Section 5.3.4. While this expression ap-
pears to be independent of the magnetization direction at first sight, in fact, it relies
implicitly on the angle θ since both L (locked to the lattice) and S (locked to the mag-
netization direction) need to be referred to within a common frame. Consequently,
the spin-orbit part of the I-coefficients has to be recalculated for every magnetization
direction.
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7.4 Higher-dimensional Wannier interpolation

Vacuum contribution in film calculations In analogy to Section 5.3.4, the vac-
uum contribution for truly two-dimensional geometries reads

〈uk+bθn|Hkθ|ukθ+bθm〉 =
∑
GG′

(
aGnk+b(θ)

)∗
aG

′m
k (θ + bθ)IuuG‖G

′
‖
(b)

+
(
aGnk+b(θ)

)∗
bG

′m
k (θ + bθ)Iuu̇G‖G

′
‖
(b)

+
(
bGnk+b(θ)

)∗
aG

′m
k (θ + bθ)I u̇uG‖G

′
‖
(b)

+
(
bGnk+b(θ)

)∗
bG

′m
k (θ + bθ)I u̇u̇G‖G

′
‖
(b) ,

(7.85)

where we introduced the magnetization-independent coefficient

IuuG‖G
′
‖
(b) = S‖

[
δg‖g′‖I

uu
1 + Iuu2

]
, (7.86)

and analogously for all other I-integrals. Again, S‖ is the area of the in-plane unit
cell, g‖ = G‖+k−G‖(k+b), and g′‖ = G′‖+k, which is different from the definition
used previously in Section 5.3.4. The factors I1 and I2 are defined by integrals of the
vacuum Hamiltonian and the wave functions with an additional phase:

Iuu1 =

∫ ±∞
±D/2

uG‖(k + b, z)eiGz(k+b)zh(z)uG′
‖
(k, z) dz , (7.87)

Iuu2 =

∫ ±∞
±D/2

uG‖(k + b, z)eiGz(k+b)zVgz−g′z(z)uG′
‖
(k, z) dz . (7.88)

Transformation to the global coordinate frame Eventually, to be consistent
with the construction of HDWFs for the magnetization direction, we aim at the matrix
elements (7.76) but given in the global coordinate frame with the spin-quantization
axis along z, i.e., 〈ugl

k+bθn|H
gl
kθ|u

gl
kθ+bθm

〉, where the superscript “gl” indicates that
these quantities are given with respect to a global coordinate frame oriented along
the z-axis. However, when reading in at each magnetization direction the potential
and the eigenvectors, these quantities are usually referred to in a local coordinate
frame defined by the corresponding magnetization direction (here θ). Thus, the ex-
pressions provided in the previous paragraphs are given in the local frame, rendering
the following transformation obligatory:

〈ugl
k+bθn|H

gl
kθ|u

gl
kθ+bθm

〉 = 〈uk+bθn|χ†(θ)χ(θ)Hkθχ
†(θ)χ(θ + bθ)|ukθ+bθm〉

= 〈uk+bθn|Hkθχ(bθ)|ukθ+bθm〉 .
(7.89)

where the quantities in the last line are referred to in the local coordinate frame
determined by θ or θ+ bθ, and the unitary matrix χ(θ) is the transformation defined
by Eq. (3.42) with ϕ = 0◦, i.e.,

χ(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
. (7.90)

This matrix transforms a spinor wave function with spin components σ from the local
frame specified by θ to the global frame oriented along the z-axis, which results in∑

σσ′

〈ugl,σ
k+bθn|H

gl,σσ′

kθ |ugl,σ′

kθ+bθm
〉 =

∑
σσ′σ′′

〈uσk+bθn|Hσσ′

kθ χ
σ′σ′′

(bθ)|uσ
′′

kθ+bθm
〉 . (7.91)
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7 Higher-dimensional Wannier functions

7.4.5 Velocity and torque operator

An alternative approach towards the torkance τij and the spiralization Dij is to inter-
polate explicitly the matrix elements of the velocity operator h̄−1∂kHk and the torque
operator m̂×∂m̂H, followed by evaluating Eqs. (4.52) and (4.58) on the basis of these
quantities. The higher-dimensional Wannier interpolation is ideally suited to achieve
this goal since derivatives of the Hamiltonian with respect to the crystal momentum
and the magnetization direction are treated accurately on an equal footing. That is,
we need to evaluate the matrix elements 〈u(H)

Kn |∂αHk|u
(H)
Km〉 in the Hamiltonian gauge,

where ∂α denotes the variation either in the crystal momentum or in the additional
parameter λ = m̂, which stands for the magnetization direction in this case. By
taking into account the Hellmann-Feynman theorem and Eq. (7.53), it follows that

〈u(H)
Kn |∂αHk|u

(H)
Km〉 = H̄(H)

nm,α − i(EKm − EKn)Ā(H)
nm,α . (7.92)

Building onto this expression for the matrix elements of the general adiabatic inter-
action ∂αHk, the interpolated velocity (where ∂α = ∂k) assumes the form

h̄vnm(K) = 〈u(H)
Kn |∂kHk|u

(H)
Km〉 = H̄

(H)
nm,k − i(EKm − EKn)Ā

(H)
nm,k , (7.93)

and analogously for the torque operator (where ∂α = ∂m̂):

T nm(K) =

〈
u

(H)
Kn

∣∣∣∣m̂× ∂H

∂m̂

∣∣∣∣u(H)
Km

〉
= m̂×

[
H̄

(H)
nm,m̂ − i(EKm − EKn)Ā

(H)
nm,m̂

]
=
[
H̄

(H)
nm,θ − i(EKm − EKn)Ā

(H)
nm,θ

]
êϕ −

1

sin θ

[
H̄(H)
nm,ϕ − i(EKm − EKn)Ā(H)

nm,ϕ

]
êθ ,

(7.94)

where we defined m̂ in spherical coordinates as m̂ = (cosϕ sin θ, sinϕ sin θ, cos θ).
Remarkably, the higher-dimensional Wannier interpolation of velocity and torque

operators is possible using solely the generalized hoppings (7.43) and the position
elements (7.58) in the basis of HDWFs, which are also the key ingredients for inter-
polating Berry curvatures. In contrast to the interpolation technique for the DMI
spiralization that is presented above, information on the operators Hr′ and rHr′ is
not required. Nevertheless, we find that Dij obtained through this approach agrees
well with the full scheme discussed before, which interpolates the DMI spiralization
formally analogously to the Berry phase theory of orbital magnetism.
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Chapter 8

Spin-orbit torques and the
Dzyaloshinskii-Moriya interaction in
metallic heterostructures

Contents
8.1 Chiral magnet Mn/W(001) . . . . . . . . . . . . . . . . . . . . . 111

8.2 Co-based trilayer systems . . . . . . . . . . . . . . . . . . . . . . 115

8.2.1 Dependence on the overlayer composition . . . . . . . . . 115

8.2.2 Anisotropy with the magnetization direction . . . . . . . 119

By applying the previously developed formalism to the magnetization direction m̂,
we elucidate in this chapter the microscopic origin and the magnitude of spin-orbit
torques (SOTs) and Dzyaloshinskii-Moriya interaction (DMI) in ferromagnetic het-
erostructures that lack inversion symmetry. In particular, we verify the predictive
power of the higher-dimensional Wannier interpolation by comparing the calculated
anisotropy of the considered phenomena in Mn/W(001) to an equivalent but more
cumbersome approach. Additionally, we scrutinize the correlations of torques and
chiral exchange interactions with the electronic structure in Co-based trilayers that
constitute an ideal playground to tailor the DMI, for instance, by means of alloying.
Based on our methodology, we easily extract the anisotropy of the SOTs with the mag-
netization direction and outline its general consequences for controlling the dynamical
properties of magnetic skyrmions.

Some of the results presented in Section 8.2 have already been published:

J.-P. Hanke, F. Freimuth, S. Blügel, and Y. Mokrousov
J. Phys. Soc. Jpn. 87, 041010 (2018)

8.1 Chiral magnet Mn/W(001)

While the concept of the higher-dimensional Wannier interpolation applies to any set
of generic parameters λ that drive the adiabatic Hamiltonian evolution, we devote
the rest of this thesis to the special but highly relevant situation where the abstract
parameter is the magnetization direction m̂ = (cosϕ sin θ, sinϕ sin θ, cos θ). In order
to confirm that our method operates correctly and facilitates the accurate prediction
of spin torques and chiral exchange interactions based on their Berry phase theory, at
first, we revisit the ferromagnetic Mn monolayer on the (001) surface of a W substrate,
Fig. 6.2(a), which we studied already from the viewpoint of orbital magnetism. Ap-
pendix A.2 summarizes the computational details of our first-principles calculations
of the spin-orbit torques (SOTs) and the Dzyaloshinskii-Moriya interaction (DMI) in
Mn/W(001) based on higher-dimensional Wannier functions (HDWFs).

Figure 6.2(b) illustrates the complex electronic structure of the perpendicularly
magnetized ferromagnet along high-symmetry directions of the square-shaped Bril-
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8 SOTs and DMI in metallic heterostructures

642 1282 2562 5122 10242

τyx (ea0) 0.8081 0.8897 0.8675 0.8622 0.8623
Dyx (meVa0/uc) 51.14 45.08 45.50 45.28 45.37

Table 8.1: Convergence of the torkance τyx and the spiralization Dyx with the number
of k-points that sample the Brillouin zone in the higher-dimensional Wannier
interpolation in clean Mn/W(001) with perpendicular magnetization. The in-
plane unit cell containing ten atoms is denoted as “uc”.

louin zone. The magneto-crystalline anisotropy in the metallic heterostructure pro-
motes the direction perpendicular to the film as the easy axis. If the magnetization is
normal to the film plane, the four-fold rotational symmetry associated with the par-
ticular surface orientation of the bcc substrate dictates an antisymmetric tensor shape
for the even torkance and the spiralization, whereas the odd torkance is proportional
to the identity matrix1:

τ even =

(
0 −τyx
τyx 0

)
, τ odd =

(
τyy 0
0 τyy

)
, D =

(
0 −Dyx

Dyx 0

)
. (8.1)

Rooting in the electronic structure, the three quantities τyx, τyy, and Dyx are thus suf-
ficient to characterize uniquely the SOTs and the DMI in perpendicularly magnetized
Mn/W(001). However, the structure of the torkance tensor assumes a more general
shape for an arbitrary magnetization direction that breaks the rotational symmetry
of the crystal. On the other hand, the overall form of the spiralization tensor is always
determined by the symmetries of the crystal lattice, irrespective of m̂.

Since the entries of torkance and spiralization tensors originate from integrals over
the Brillouin zone of momentum space, in the beginning, we comment on the con-
vergence of these Berry phase properties with respect to the number of k-points that
are employed in the higher-dimensional Wannier interpolation. As suggested by the
results in Table 8.1, the spiralization converges more quickly with the number of
mesh points than τyx in the clean limit, which alludes to the possibility of estimating
roughly Dyx directly from the first-principles calculation of the electronic structure on
a coarse grid [28]. Drawing analogies with Berry phase effects that originate from the
current-current correlation, we note that this behavior is reminiscent of the orbital
magnetization (OM) that is described adequately already for relatively small sizes
of the interpolation mesh [184]. In order to obtain well-converged values for both
torkance and spiralization, we choose an interpolation k-mesh of 1024×1024 points,
which guarantees high accuracy.

Employing the higher-dimensional Wannier interpolation, we present in Fig. 8.1
the dependence of torkance and spiralization in Mn/W(001) on disorder as medi-
ated by the constant band broadening Γ. Additionally, the individual contributions
from the two terms in Eq. (4.61) are depicted in the case of Dyx. While the odd
torkance τyy diverges in the clean limit, Eq. (4.51), the even torkance τyx and the
spiralization Dyx amount to constant intrinsic values for small Γ, stemming from
scattering-independent geometrical properties of the underlying complex phase space,
see Eqs. (4.52) and (4.58). Although the magnitude of these phenomena reduces gen-
erally with increasing Γ and vanishes eventually for strong disorder, the spiralization

1This statement holds always if the system exhibits an n-fold rotational symmetry with n > 2.
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Figure 8.1: Dependence of (a) the torkance and (b) the spiralization on the constant band
broadening Γ applied to the electronic structure of Mn/W(001). The behavior
of τyx and τyy (dark solid lines) is compared in (a) to the disorder dependence
obtained in Ref. [133] (light dotted lines). Additionally, the spiralization in (b)
is decomposed into the two contributions entering Eq. (4.61), which are labeled
accordingly as “Im log” and “Re log”. Dashed horizontal lines illustrate the
Berry phase limit to which τyx and Dyx converge for Γ→ 0.

Dyx in Mn/W(001) is particularly robust with respect to moderate disorder, keeping
its intrinsic value up to at least Γ = 25 meV. If the band broadening is increased fur-
ther, the two terms that contribute to Dyx in Eq. (4.61) become sizable but opposite
in sign, which leads to an exact cancellation for large Γ. In order to benchmark our
higher-dimensional Wannier interpolation, we compare in Fig. 8.1(a) the obtained
disorder dependence of τyx and τyy to an alternative approach [133] that represents
the torque operator in the expressions (4.49) and (4.50) based on the ferromagnetic
exchange field. Since the latter quantity is readily available in the first-principles
code, the conventional Wannier interpolation is sufficient to evaluate the torkance
for a fixed magnetization direction in this approach. As we show in Fig. 8.1(a), our
results for the Γ-dependence of the torkance agree excellently with the obtained val-
ues from the described formalism based on the ab initio exchange field [133], which
demonstrates that the higher-dimensional Wannier interpolation allows indeed for an
accurate prediction of SOTs and DMI in metallic heterostructures.

However, when we aim at evaluating the anisotropy of current-induced torques and
chiral exchange interactions with respect to the magnetization direction, the higher-
dimensional Wannier interpolation is advantageous as it grants efficient access to the
torkance and the spiralization at any desired magnetization direction based on just
a single set of HDWFs. Considering the illustrative case of ϕ = 0◦, we display in
Fig. 8.2(a,b) the behavior of τyx, τyy, and Dyx in Mn/W(001) upon varying the po-
lar angle that determines the magnetization direction m̂ = (sin θ, 0, cos θ). In the
clean system without any disorder, both torkance and spiralization exhibit a promi-
nent anisotropy with θ, where the non-monotonic dependence of τyx on the magnetic
orientation is particularly complex. Additionally, we compare our results for Dyx to
values [238] obtained within the above exchange-field approach that necessitates the
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Figure 8.2: Anisotropy of (a) torkance and (b) spiralization with respect to the magneti-
zation direction m̂ = (sin θ, 0, cos θ) in Mn/W(001). While τyx and Dyx are
shown in the clean limit as well as for Γ = 25 meV, the anisotropy of τyy is
studied only for moderate disorder. The behavior of Dyx is compared in (b)
to data points (black diamonds) each of which was extracted from a separate
set of maximally-localized Wannier functions [238]. (c,d) Distribution of mo-
mentum Berry curvature Ωkkxy and mixed Berry curvature Ωm̂kyx throughout the
Brillouin zone for an out-of-plane magnetization.

construction of individual sets of maximally-localized Wannier functions (MLWFs)
for every magnetization direction, rendering the calculation for many angles θ cum-
bersome and time-consuming. Irrespective of an overall shift, our prediction based on
the generalized interpolation scheme follows qualitatively the global trend of the con-
ventional exchange-field approach, which proves that the higher-dimensional Wannier
interpolation facilitates the accurate evaluation of anisotropic Berry phase properties.

We contrast further in Fig. 8.2(c,d) the reciprocal-space distribution of the momen-
tum Berry curvature Ωkkxy that underlies the intrinsic anomalous Hall effect and the

mixed Berry curvature Ωm̂kyx , which gives rise to the antidamping SOT in perpendicu-
larly magnetized Mn/W(001). While Ωkkxy follows the rotational symmetry originating
from the specific (001) surface orientation of the bcc substrate, the behavior of the
mixed curvature of all occupied states is naturally distinct as it contains the variation
of the wave function only with respect to one of the momentum coordinates. More-
over, although both quantities exhibit characteristic features due to the Fermi surface,
the Berry curvature of momentum space reveals a much more rich texture as com-
pared to the curvature of the higher-dimensional phase space of crystal momentum
and magnetization direction.

Incorporating the constant broadening Γ = 25 meV of the energy bands, finally, we
elucidate the role of decent disorder for the dependence of spiralization and torkance
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on the magnetization direction, Fig. 8.2(a,b). While the anisotropy curves are pri-
marily smoothened, the magnitude of τyx is significantly flattened as compared to
the clean limit. Figure 8.2(a) presents further the behavior of the torkance τyy with
varying θ, which is generally smaller in magnitude than τyx and considerably robust
if the magnetization is tilted only slightly away from the out-of-plane direction. As
the metallic heterostructure is symmetric with respect to reflections at the plane per-
pendicular to the magnetization direction if θ = 90◦, the torkance τyy vanishes in the
case of m̂ lying in the film plane.

In conclusion, providing a powerful tool to determine the anisotropy of current-
induced spin torques and chiral exchange interactions with respect to the magne-
tization direction, the framework of HDWFs enables us to efficiently predict these
phenomena in complex magnets based on the first-principles electronic structure.
Moreover, the generic method is ideally suited to investigate the behavior of other
electronic, magnetic, or transport effects, e.g., the Gilbert damping that relates to
the torque-torque correlation function [239,240].

8.2 Co-based trilayer systems

Recently, the interfacial DMI was shown to be tunable in magnetic heterostructures
of Co sandwiched between different heavy metals such as Pt and Ir [241–243], holding
therefore bright prospects for the observation of small magnetic skyrmions at room
temperature. In this context, current-induced SOTs can be envisaged to provide an
efficient means for controlling and manipulating the dynamical properties of such chi-
ral nano-scale objects. While the symmetric system Pt/Co/Pt exhibits locally chiral
exchange interactions that are of equal magnitude but opposite in sign at the two in-
terfaces, the manifestation of a non-zero DMI in Ir/Co/Pt or Au/Co/Pt is often inter-
preted from the perspective of additive interfacial contributions to the chiral exchange
interaction (see, e.g., [242]). Starting from the first-principles electronic structure, we
elucidate in the following the microscopic origin of DMI and SOTs in thin Co-based
multilayers, where we scrutinize the anisotropy of these phenomena with respect to
the magnetization direction. In particular, using the advanced Wannier interpolation
(see Chapter 7), we evaluate the Berry phase expressions of spiralization and torkance
in the alloyed materials IrδPt1−δ/Co/Pt and AuγPt1−γ/Co/Pt with the crystal struc-
ture as illustrated in Fig. 8.4(a). Based on the virtual crystal approximation (VCA),
we vary the compositions δ and γ of the overlayer, and analyze their effect on DMI
and SOTs. A comprehensive overview of the computational parameters that underlie
the first-principles calculations are provided in Appendix A.6.

8.2.1 Dependence on the overlayer composition

Figure 8.3 presents the complex electronic structure of the three stoichiometric com-
pounds (a) Ir/Co/Pt, (b) Pt/Co/Pt, and (c) Au/Co/Pt in the vicinity of the Fermi
level along the high-symmetry lines of the hexagonal Brillouin zone. At this stage, the
magnetization direction is always oriented perpendicular to the film plane of the fer-
romagnetic heterostructures. While the band structure of the symmetric compound
Pt/Co/Pt is identical for +k and −k, the absence of spatial inversion symmetry ren-
ders the band dispersions of Ir/Co/Pt and Au/Co/Pt intrinsically distinct around
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Figure 8.3: Electronic band structure along the high-symmetry lines of the hexagonal
Brillouin zone (see inset of the middle panel) in the three stoichiometric het-
erostructures of (a) Ir/Co/Pt, (b) Pt/Co/Pt, and (c) Au/Co/Pt. The energy
scale is relative to the corresponding Fermi level. In all of these cases, the Co
layer is magnetized perpendicular to the film plane, which corresponds to the
polar angle θ = 0.

the two valleys K and K ′.

Due to the three-fold rotational symmetry around the axis normal to the mag-
netic trilayers lacking inversions, the shape of the response tensors D and τ that
characterize spiralization and torkance, respectively, is dictated by Eq. (8.1), i.e., the
only non-trivial entries amount to Dyx, τ

even
yx , and τ oddyy . Figure 8.4(b) illustrates the

variation of Dyx upon tuning the composition ratio of the Pt overlayers by substitu-
tional doping either with Ir (controlled by δ) or with Au (mediated by γ). Strikingly,
the DMI spiralization exhibits an intricate non-monotonic behavior when changing
the alloy composition, and even inverts its sign for moderate doping with Ir near
δ = 0.25. We proclaim these doped systems as promising materials for experiments
to investigate in more detail. Turning to the regime of strong doping instead, we
find that the magnitude of Dyx is comparable in the two limiting cases δ ≈ 1 and
γ ≈ 1 even though the compounds with Au-rich overlayers reveal larger values of
the spiralization as compared to the Ir complements. Principally, our results for the
perpendicularly magnetized heterostructures demonstrate that an adequate engineer-
ing of the electronic structure, e.g., via doping provides an efficient tool to design
magnitude and sign of the chiral exchange interaction in inversion-asymmetric het-
erostructures. Revealing the complex oscillatory correlation of the intrinsic torkance
with the composition ratio, Figure 8.7(a) shows that τyx is appreciably more sen-
sitive to fine chemical changes of the overlayers in the clean limit as compared to
the spiralization. Clearly, including the effect of disorder by means of the constant
band broadening Γ = 25meV smoothens generally the curves of both spiralization
and torkance in Figs. 8.4(b) and 8.7(a), respectively. However, while disorder hardly
affects the qualitative behavior of Dyx and preserves the overall trend in τyx, the latter
quantity is altered notably on a quantitative level. Remarkably, the even torkance
τyx is almost the same for the Ir-rich and Au-rich compounds with moderate disorder
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varying overlayer composition in IrδPt1−δ/Co/Pt and AuγPt1−γ/Co/Pt, re-
spectively, where the magnetization is perpendicular to the film plane. While
the solid red curve corresponds to the clean limit, the dotted lines include the
effect of disorder due to a finite broadening Γ of the energy bands by 25meV,
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“uc” stands for the in-plane unit cell. (c) Energy dependence of Dyx in the
clean limit for the different alloy concentrations that are marked in (b) by
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Fermi level. (d) Anisotropy of Dyx with respect to the magnetization direction
represented by the polar angle θ in the compounds Ir/Co/Pt and Au/Co/Pt
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whereas the odd torkance τyy is opposite in sign for the two cases, and its magnitude
exceeds thoroughly the one of τyx (see inset of Fig. 8.7(a)).
Utilizing the constant-Γ model, we present in Fig. 8.5 the disorder dependence of

torkance and spiralization in the perpendicularly magnetized compounds Ir/Co/Pt
and Au/Co/Pt. While both the even torkance τyx and the spiralization Dyx reach
constant intrinsic values in the regime of weak disorder, Eqs. (4.52) and (4.58), the odd
torkance τyy diverges like 1/Γ in the clean limit as evident from Eq. (4.51). Strikingly,
increasing the disorder enhances initially the even torkance in Ir/Co/Pt before it tends
to zero for larger values of Γ as in the case of all of the studied quantities.
In order to trace fingerprints of the underlying electronic structure that manifest

eventually in the chiral exchange interaction, we display in Fig. 8.4(c) how the spi-
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Figure 8.5: Behavior of (a) torkance and (b) spiralization with increasing band broadening
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the even torkance τyx and the odd torkance τyy, respectively. In addition to
the dependence of Dyx, we depict in (b) the contribution proportional to the
imaginary part of the logarithm in Eq. (4.61) using dotted lines.

ralization Dyx varies with the position of the Fermi level in selected compounds. The
predicted rapidly oscillating energy dependence is strongly reminiscent of the behav-
ior of the anomalous Hall conductivity and the OM in thin magnetic films (see, e.g.,
the results for Mn/W(001) in Chapter 6). As the states of d orbital character are
well-known to play a crucial role for the physics of DMI in the considered transition
metals [244], we can ascribe the peak structure in Fig. 8.4(c) to the positions of the
3d states of Co and the 5d states of the heavy metals as well as to their mutual hy-
bridization. In particular, since the relevant heavy-metal states with strong spin-orbit
coupling are located at smaller energies when altering the overlayers from Ir over Pt
to Au, also the characteristic features of the spiralization Dyx shift towards lower
energies. Due to the hybridization of these d orbitals with other available states, the
elaborate energy dependence of DMI is modified further. At energies higher than
1 eV above the actual Fermi level, the important d states are typically not accessible,
which leads to a strong suppression of the spiralization.

In order to uncover the microscopic origin of antidamping SOTs and DMI in the
Co-based trilayers, we map out in Fig. 8.6 the distributions of the mixed Berry curva-
ture Ωm̂kyx of all occupied bands, Eq. (4.41), and the momentum-resolved contributions
to the spiralization Dyx in the hexagonal Brillouin zone. Since these quantities relate
to the torque-velocity correlation, which differentiates only with respect to a single
component of the Bloch vector, both violate naturally the rotational symmetries of
the considered compounds (a) Ir/Co/Pt, (b) Pt/Co/Pt, and (c) Au/Co/Pt in momen-
tum space. Consequently, the obtained distributions at +k and −k are intrinsically
different and not at all linked by crystalline symmetries in general. However, the
privileged case of Pt/Co/Pt is an exception as the sustained inversion symmetry ren-
ders the mixed Berry curvature and the spiralization exactly opposite in sign at ±k,
which manifests in a consistent cancellation and thus no net SOT and DMI. While
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8.2 Co-based trilayer systems

Figure 8.6: Distribution of the mixed Berry curvature Ωm̂kyx (top) and the Dzyaloshinskii-
Moriya spiralization Dyx (bottom) of all occupied bands in the hexagonal
Brillouin zone for the three stoichiometric heterostructures (a,d) Ir/Co/Pt,
(b,e) Pt/Co/Pt, and (c,f) Au/Co/Pt. The Co monolayer in these thin films is
perpendicularly magnetized. In the labels, a0 denotes Bohr’s radius and “uc”
stands for the in-plane unit cell. Note the logarithmic color scale.

the mixed Berry curvature is sharply peaked in narrow regions owing to its strong
sensitivity to fine electronic-structure details, the distribution of Dyx reveals a richer
structure comprising important background contributions from broad regions of the
Brillouin zone. Nevertheless, the total DMI spiralization is determined by an integral
that contains as well rapidly altering large contributions at specific locations in mo-
mentum space, which opens an intriguing perspective to promote drastic changes of
the net spiralization by inducing a non-equilibrium population of the electronic states
using electric fields or charge currents.

8.2.2 Anisotropy with the magnetization direction

One of the major advantages of the Berry phase theory of SOT and DMI is the read-
ily available dependence of the corresponding response tensors – i.e., the torkance
and the spiralization – on the magnetic orientation of the ferromagnet. Being delib-
erately designed for this purpose, the higher-dimensional Wannier interpolation (see
Chapter 7) is ideally suited to extract efficiently this anisotropy with respect to the
magnetization direction m̂ = (cosϕ sin θ, sinϕ sin θ, cos θ). While the spiralization
and the even torkance are antisymmetric tensors if the magnetization is oriented per-
pendicular to the film plane of the considered heterostructures, Eq. (8.1), this is not
valid anymore if m̂ points into an arbitrary direction.

When keeping the azimuthal angle fixed to ϕ = 0◦, we find that the three tensor
elements Dyx, τ

even
yx , and τ odd

yy constitute by far the most important contributions to
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Figure 8.7: (a) Dependence of the even torkance τxy on the overlayer composition in per-
pendicularly magnetized Co-based trilayers in the clean limit (red solid line)
and for Γ = 25 meV (blue dotted line). In the latter case of decent disor-
der, the variation of the odd torkance τyy is shown in the inset. (b) Red and
blue lines illustrate the anisotropy of τyx with respect to the magnetization
direction in Ir/Co/Pt and Au/Co/Pt, respectively, for Γ = 0 meV (dark solid)
and Γ = 25 meV (light dotted). The inset reveals the behavior of τyy in the
moderately disordered compounds.

the effects in the Co-based trilayers even if the magnetization is tilted. Tuning the
remaining free angle θ, we display in Figs. 8.4(d) and 8.7(b) the dependence of these
non-trivial tensor entries on the magnetization direction in the two considered com-
pounds Ir/Co/Pt and Au/Co/Pt. Despite the fact that the DMI spiralization varies
with θ in both materials, its anisotropy is much more pronounced in the Au/Co/Pt
system as compared to the case of the Ir overlayers. In the former heterostructure,
the original value of Dyx = 26 meVa0/uc at θ = 0◦ is fairly diminished by about
one quarter to 20 meVa0/uc upon rotating the magnetization direction into the film
plane. Regarding the anisotropy of the torkance shown in Fig. 8.7(b), the magnitude
of τyx evolves only moderately with the polar angle θ in Au/Co/Pt. In sharp contrast,
the intrinsic torkance is prominently anisotropic in Ir/Co/Pt, where it rises from a
negligible value to as much as 0.4 ea0 if the magnetization direction resides in the film
plane. While including disorder effects via the constant band broadening Γ = 25 meV
merely modifies the curve of the DMI spiralization except for a small shift, the suscep-
tibility of the intrinsic torkance to subtle changes of the electronic structure manifests
in a particularly reduced anisotropy of τyx in both compounds. As a consequence, the
moderately disordered trilayers feature an almost isotropic τyx on the order of 0.3 ea0.
The scattering-dependent contribution τyy, however, varies strongly with the magne-
tization direction and vanishes eventually once the magnetic moments are oriented
in-plane due to the reflection symmetry at the plane perpendicular to m̂.

As uncovered in Fig. 8.7(b) by the efficient higher-dimensional Wannier interpo-
lation of the electronic structure, the torkance reveals a complex dependence on the
magnetic orientation of the Co layer in the considered two-dimensional heterostruc-
tures. This anisotropy of SOTs in trilayers with broken inversion symmetry plays
generally an important role for controlling and tailoring the dynamical properties of
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magnetic skyrmions in these sytems. In particular, the anti-damping SOT has been
shown to drive the dynamics of chiral skyrmions in interfacial film systems. Conse-
quently, precise knowledge of the local variation of the torkance with magnetization
direction is rendered crucial to evaluate accurately the forces that enter in the semi-
classical equations of motion of these chiral objects (see, e.g., Ref. [245]).
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Chapter 9

Topology for electrical magnetization
control in complex magnets
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Uncovering the deep connections between electrical control of magnetism and topol-
ogy, we describe in this chapter how the emergence of band crossings, or, monopoles in
the electronic structure can amplify magneto-electric coupling effects in metallic and
insulating phases of magnetic materials. Drawing close analogies with the quantum
anomalous Hall effect, we lay out the concept of “mixed” Weyl semimetals that pro-
vide the most natural interpretation of enhanced spin-orbit torques (SOTs) rooting in
the non-trivial topology of the complex phase space of crystal momentum and magne-
tization direction. As a proof of principle, we construct a simple tight-binding model
of a mixed Weyl semimetal that displays a strong electric-field response if magnetic
monopoles emerge in the underlying phase space. Using advanced density functional
theory methods, we then identify magnetically doped Graphene and functionalized bis-
muth films as promising realizations of this class of materials from first principles.
Strikingly, these insulating ferromagnets reveal much larger SOTs as compared to con-
ventional metallic heterostructures, and pave thus the road towards low-dissipation
magnetization control by electric fields.

The results presented in this chapter have already been published:

J.-P. Hanke, F. Freimuth, C. Niu, S. Blügel, and Y. Mokrousov
Nature Communications 8, 1479 (2017)

9.1 Prelude

Switching the magnetization with ultralow power consumption by electrically induced
spin-orbit torques (SOTs) is of outstanding relevance for designing and operating fu-
ture information devices that follow the fundamental principles of spintronics. In
particular, owing to their robustness against disorder details [133], the antidamp-
ing torques are perceived to hold promises for switching the magnetization reliably.

123



9 Topology for electrical magnetization control

While these torques are of intrinsically geometric origin in clean systems (see Chap-
ter 4), basic research on the electrical control of magnetism started to reach out to
topological condensed matter only recently – for instance, highly efficient magneti-
zation switching was achieved in metallic systems of magnetically doped topological
insulators [246]. Although in the latter conducting materials large torques can be gen-
erated, this electric-field response does not root in the global topological properties
of these overall trivial systems. Ever since the discovery of the quantum anomalous
Hall effect in magnetic insulators has revolutionized and unified our understanding
of elementary properties, many transport phenomena in insulating magnets are natu-
rally interpreted based on the non-trivial topology in momentum space [19,102,103].
By bridging analogously the field of electrical magnetization control by SOTs and
the domain of topological spintronics, in the following, we promote the ubiquitous ar-
guments of topology for designing magneto-electric coupling phenomena in magnetic
insulators in the absence of longitudinal dissipative charge currents.

To optimize the performance of magnetization switching in spintronic devices by
electrically induced SOTs, Fig. 9.1(a,b), insights into the microscopic origin of the
most vital contributions to the electric-field response are crucial. In this respect, it is
particularly rewarding to draw an analogy between the antidamping torque rooting in
the mixed Berry curvature Ωm̂k and the intrinsic anomalous Hall effect as determined
by the momentum Berry curvature Ωkk. Both of these Berry curvatures are compo-
nents of the general curvature tensor Ω in the complex phase space combining the
crystal momentum k and the magnetization direction m̂ [26, 133]. As we motivated
in Chapter 4, important sources or sinks of the momentum Berry curvature Ωkk are
degeneracies, i.e., points where at least two bands cross, which are also referred to as
magnetic monopoles in momentum space [82]. Following the very same rationale in
the case of current-induced torques, band crossings in the composite phase space can
be anticipated to manifest locally in a large mixed Berry curvature Ωm̂k, which in
turn yields the dominant microscopic contribution to the torkance and the spiraliza-
tion given by Eqs. (4.52) and (4.58), respectively. Therefore, materials that exhibit
such magnetic monopoles near the Fermi level can be expected to display profoundly
large SOTs and Dzyaloshinskii-Moriya interaction (DMI).

9.2 Mixed Weyl semimetals

In the field of topological condensed matter [247, 248], the recent advances in real-
izing Chern insulators that exhibit the quantum anomalous Hall effect have been
striking [102,103]. Similarly, the material class of topological semimetals raised lately
to great eminence due to their exceptional properties stemming from monopoles in
momentum space. Amid these halfmetallic systems are the three-dimensional mag-
netic Weyl semimetals, which host gapless low-energy excitations with linear disper-
sion – so-called Weyl fermions – close to non-degenerate band crossings at generic
k-points [249–252]. Acting as sources of the Berry curvature Ωkk, these degenera-
cies are also known as Weyl points. Conventionally, the Weyl fermions are described
by the Weyl Hamiltonian Hw =

∑
i vikiσi, where σ = (σx, σy, σz) is the vector of

Pauli matrices, and vi are coefficients of the band dispersion. In addition to the
current intensive ventures in predicting new type-I and type-II Weyl semimetals in
nature [251–253], scrutinizing the stability and symmetry protection of the Weyl
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Figure 9.1: Emergence of mixed Weyl points in the complex phase space of crystal momen-
tum and magnetization direction. (a) If an electric field E is applied, the mag-
netization m̂ of a topologically non-trivial insulator is subject to the antidamp-
ing torque T . (b) The resulting reorientation of m̂ by an angle θ can trigger a
topological phase transition to the trivial insulator. (c) Schematic evolution of
two energy bands in the complex phase space, where colors represent different
values of kx. If we tune ky, the electronic structure displays a monopole as
signalized by the change of the mixed Chern number Z. Indeed, such crossing
points are observed in (d) the model of magnetically doped graphene with hop-
ping t and atomic distance a, and (e) the functionalized bismuth film, where
colors indicate the magnetization direction m̂ = (sin θ, 0, cos θ) in both cases.
The value of ky is fixed to (d) ky = 0.41 · 4π/(3a) and (e) ky = 0.19 in internal
units.

points and uncovering exotic transport properties of the Weyl semimetallic phase are
subjects of ever-growing research interest [254].

In order to lay the firm ground for an interpretation of magneto-electric effects
using universal arguments of topology, we aim at generalizing the notion of the Weyl
point to the case of the complex phase space of crystal momentum and magnetization
direction. By replacing formally one of the momentum variables (kz) in the usual
Weyl Hamiltonian with the magnetization direction1 as specified by an angle θ, we
introduce the concept of a mixed Weyl semimetal, where crystal momentum and
magnetization are entangled. As a result, the low-energy behavior of the system in
this complex phase space is described by Hmw = vxkxσx + vykyσy + vθθσz, where θ
is the angle that the magnetization direction m̂ = (sin θ, 0, cos θ) encloses with the

1At this stage, we restrict ourselves to the case of a fixed azimuthal angle ϕ = 0.

125



9 Topology for electrical magnetization control

z-axis. Including explicitly the angle θ endows a mixed Weyl semimetal with distinct
physical properties – while it is insulating for general directions of the magnetization,
it features band crossings at the Fermi level for special values of θ. These values
are determined either by the symmetries of the magnet or by the interplay of spin-
orbit coupling and exchange interaction in low-symmetric situations. As illustrated in
Fig. 9.1(c), a mixed Weyl semimetal as described by the new Weyl Hamiltonian Hmw

hosts ergo magnetic monopoles, or, mixed Weyl points that give rise to prominent
contributions to the Berry curvatures Ωkk and Ωm̂k in the complex phase space of
k and θ. In analogy to conventional Weyl semimetals [249], we can classify the
underlying topology and detect such magnetic monopoles by tracking the flux of the
mixed Berry curvature through planes of constant ky as given by the integer mixed
Chern number Z = 1/(2π)

∫
Ωm̂kyx dθdkx, Fig. 9.1(c). Alternatively, we can identify

the topological structure of these degeneracies based on their monopole charge, which
is the flux of the Berry curvature field through a closed two-dimensional surface
that encompasses one of the monopoles2. Utilizing the dynamical magnetization in
topologically non-trivial materials, we demonstrate here the existence of mixed Weyl
semimetals and focus on the implications of the corresponding monopoles for magneto-
electric coupling phenomena. In particular, we uncover that a strong electric-field
response due to the magnetic monopoles in mixed Weyl semimetals is invaluable in
paving the road towards low-dissipation magnetization control by SOTs [255].

9.3 Tight-binding considerations

To scrutinize the nature of emergent monopoles in the complex phase space of mag-
nets, we begin with a tight-binding model of magnetically doped graphene [101]:

H =− t
∑
〈ij〉

∑
α

c†iαcjα + itso
∑
〈ij〉

∑
αβ

êz · (σ × dij)αβc
†
iαcjβ

+ λ
∑
i

∑
αβ

(m̂ · σ)αβc
†
iαciβ − λnl

∑
〈ij〉

∑
αβ

(m̂ · σ)αβc
†
iαcjβ ,

(9.1)

which is depicted in Fig. 9.2(a). Here, c†iα (ciα) denotes the creation (annihilation) of
an electron with spin α at the ith lattice site, 〈...〉 restricts the corresponding sums
to nearest neighbors, and the unit vector dij points from j to i. Apart from the
usual hopping with amplitude t, the first line in Eq. (9.1) contains the Rashba spin-
orbit coupling of strength tso originating from the surface potential gradient of the
substrate. The remaining two terms in Eq. (9.1) are the exchange energy due to the
local (λ) and non-local (λnl) exchange interaction between spin and magnetization.
Depending on the magnetic orientation m̂, the non-local exchange describes a hopping
process during which the spin can flip. Introducing four orthonormal basis states on
the bipartite honeycomb lattice, we represent this tight-binding model with tso = 0.3 t,
λ = 0.1 t, and λnl = 0.4 t as a 4×4 matrix that is diagonalized at every k-point to
obtain the electronic and topological properties.

2The concept of a monopole charge relies on working with an at least three-dimensional phase space
as spanned by kx, ky, and θ. Thus, if the magnetization direction is not taken into account, the
monopole charge is ill-defined in any two-dimensional system.
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Figure 9.2: Model of magnetically doped graphene. (a) Sketch of the tight-binding model
and the parameters therein. (b) Band structure with out-of-plane magnetiza-
tion and tso = 0.3 t, λ = 0.1 t, λnl = 0.4 t. (c) Evolution of the valence band
top (red circles) and conduction band bottom (blue squares) with ky, where
the depicted gap closing occurs for θ = −90◦ and k = (0.71a∗x, 0.09a∗y) with

a∗x = 2π/(
√

3a) and a∗y = 4π/(3a). Bold integers denote the mixed Chern
number Z in the insulating regions. (d)–(f) Energy dependence of the anoma-
lous Hall conductivity σxy = Ce2/h = e2/(2πh)

∫
Ωkkxy dkxdky, the torkance

τyx, and the spiralization Dyx, respectively, for an out-of-plane magnetization.
Insets show the corresponding momentum-space distributions summed over
all occupied states in the vicinity of the K-point.

Monitoring the variation of the mixed Chern number Z with ky, we evidence first
that the above model hosts indeed a mixed Weyl semimetallic state. As presented
in Fig. 9.2(c), the topological index Z changes from −2 to 0 at a certain value of
ky, heralding thereby the emergence of a band crossing in the complex phase space
that carries a topological charge of +2. While this band crossing appears near the
K ′-point off any high-symmetry line for θ = −90◦, another monopole of opposite
charge is located close to the K-point if the magnetization is oriented in-plane along
the +x-direction (see Fig. 9.1(d)). The fact that the quantum anomalous Hall effect
emerges not only for θ = 0◦ [101], Fig. 9.2(d), but over a broad range of magnetization
directions can be viewed as a key manifestation of the magnetic monopoles serving as
sources of the curvature Ωkk. In addition, large contributions to the mixed Berry cur-
vature Ωm̂k in the vicinity of one of the monopoles are visible in the momentum-space
distributions of the torkance and the spiralization shown in the insets of Figs. 9.2(e)
and 9.2(f), respectively. For an out-of-plane magnetization (θ = 0◦), the dominant
microscopic contribution to the phenomena roots in an avoided band crossing along
the line ΓK – a residue of the Weyl point in the extended phase space. As the expres-
sion for the mixed Berry curvature hinges only on the derivative of the wave function
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9 Topology for electrical magnetization control

with respect to one of the components of the Bloch wave vector (see Eq. (4.39)),
the symmetry between kx and ky in the distributions of torkance and spiralization is
broken naturally.

Stemming from the momentum-space distribution driven by the monopole, the
energy dependence of the torkance τyx in Fig. 9.2(e) reveals a modest size of 0.1 ea in
the insulating region (with a as interatomic distance), which remains constant through
the global band gap. Contrary to the integer Chern numbers C and Z, the height of
the torkance plateau in Fig. 9.2(e) is, however, sensitive to details of the electronic
structure such as model parameters and magnetization direction, i.e., the torkance
τyx is not guaranteed to be quantized to a robust value. Because of their intimate
relation in the Berry phase theory [28, 123], the constant torkance implies a linear
variation of the spiralization Dyx in the gap, changing from 8 mta/uc to −6 mta/uc
as shown in Fig. 9.2(f), where “uc” refers to the in-plane unit cell of two atoms.

9.4 First-principles theory

9.4.1 Magnetically doped Graphene

In order to identify realizations of the characteristic model predictions above, we in-
vestigate from ab initio systems of graphene decorated by transition-metal adatoms,
Fig. 9.4(a). As we discussed in Chapter 6, the complex hybridization of graphene p
states with transition-metal d states mediated by spin-orbit coupling renders these
systems one of the prototypical material classes that accommodate the quantum
anomalous Hall effect [186, 256–259]. Details on the first-principles calculations are
provided in Appendix A.3. Within the topologically non-trivial band gap of these
materials with the magnetization perpendicular to the graphene plane, depending on
the transition-metal adatom, both torkance and spiralization can attain vast magni-
tudes that originate from mixed Weyl points in the combined phase space. In the case
of W deposited in a 4×4-geometry on graphene, for instance, we predict an eminently
large value for the torkance of τyx = −2.9 ea0 (with a0 being Bohr’s radius), and the
spiralization Dyx ranges from −5 meVa0/uc to 60 meVa0/uc, Fig. 9.4(b–e). Thereby,
both monopole-driven phenomena surpass utterly the conventional values that are ob-
tained in metallic magnetic heterostructures [28, 133] and non-centrosymmetric bulk
magnets [167]. Since the details of the electronic structure can affect the value of the
torkance plateau in the gapped regions, when replacing W with other transition met-
als such as Ir, we find that the magnitude of SOT and DMI can be tailored according
to our calculations.

9.4.2 Functionalized bismuth bilayer

Alluding ultimately to room-temperature applications in spintronics, we aim at real-
izing pronounced magneto-electric coupling phenomena in magnetic insulators that
display a larger band gap as compared to the above examples. For this purpose, we
consider a semi-hydrogenated Bi(111) bilayer as shown in Fig. 9.3(a), which consti-
tutes a notable prototype of functionalized insulators that exhibit non-trivial topo-
logical properties and phases [259]. Below, we uncover that the semi-hydrogenated
bismuth bilayer is a mixed Weyl semimetal with complex topology in the compos-
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and a logarithmic color scale is used to display two of its components, where
dark red (dark blue) denotes large positive (negative) values. (e)–(g) Energy
dependence of σxy, τyx, and Dyx for a perpendicularly magnetized film. Insets
show the microscopic contributions in momentum space near the inequivalent
valleys K and K ′.

ite phase space of the crystal momentum k and the magnetization direction θ. If
the magnetization is perpendicular to the film plane, the system is a valley-polarized
quantum anomalous Hall insulator [260] with a magnetic moment of 1.0µB per unit
cell, a large band gap of 0.18 eV at the Fermi energy, and a prominent asymmetry
between the valleys K and K ′ depicted in Fig. 9.3(b). Appendix A.7 provides the
computational details that underlie our first-principles calculations.

By analyzing in Fig. 9.3(b) how the mixed Chern number Z evolves with ky, we
discover two magnetic monopoles of opposite charge ±1 that emerge right at the
transitions between the two topologically inequivalent phases that are distinguished
by the topological index Z = −1 or Z = 0. These crossing points and their topological
charges in the composite phase space could be extracted equivalently from monitoring
the evolution of the usual Chern number C with varying magnetization direction.
Strikingly, the monopoles occur at generic phase-space points near the valley K for
θ = 43◦ (see Fig. 9.1(e)) and close to the K ′-point for θ = 180◦ − 43◦ = 137◦,
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9 Topology for electrical magnetization control

respectively, which implies that the charge-neutral pair of mixed Weyl points is formed
by monopoles located at different magnetization directions. Thus, in sharp contrast to
their traditional cousins realized in three spatial dimensions, two-dimensional mixed
Weyl semimetals can host a single metallic point at the phase transition. As presented
in Fig. 9.3(c,d), the existence of such mixed Weyl points in the electronic structure
impacts drastically the shape of the general Berry curvature Ω in their vicinity, which
becomes obvious when representing Ω as a vector field in the complex phase space.
Displaying characteristic sign changes when moving through the monopoles in phase
space, the singular behavior of the Berry curvature encourages us to interpret the
mixed Weyl points as sources or drains of Ω. If the magnetization is oriented out
of the plane, the non-trivial topology of the electronic structure in momentum space
results in the quantization of C to +1, Fig. 9.3(e), which is primarily due to large
positive contributions near K, where the energy bands approach each other. The
energy dependence of the torkance and the spiralization in the insulating magnet,
shown in Figs. 9.3(f) and 9.3(g), herald the sublime magnitudes of these phenomena
of the order of 1.1 ea0 for τyx and 50 meVa0/uc for Dyx, surpassing by far the typical
magnitudes of these effects in magnetic metallic materials [28,133,167].

9.4.3 Torque due to magnetic anisotropy

Before turning to a clear proof that the predicted magneto-electric phenomena root
indeed in mixed Weyl points, we comment on the role of the magnetic anisotropy en-
ergy for the studied effects. Our calculations reveal that magnetically doped graphene
favors an in-plane magnetization while an out-of-plane orientation is preferred in the
functionalized bismuth film. In both cases, the respective magnetic state is stabilized
by a magnetic anisotropy barrier that is comparable to the values of the order of
1 meV in metallic heterostructures such as Co/Pt.

If m̂ is not aligned with the easy axis (or lies outside of the easy plane), the
magnetization is subject to an additional magnetic anisotropy torque [133] due to
the magnetic anisotropy energy. However, the qualitative behavior of this torque is
completely different from the electrically induced antidamping SOT since the former
roots not in the geometry of the complex phase space, thus being not responsive to
the mixed Weyl points. By performing explicit calculations, we estimate that for
the example of the functionalized bismuth film with θ = 30◦ the magnitude of the
antidamping SOT is larger than the magnetic anisotropy torque if the applied in-plane
electric field exceeds the rather small value of 5 mV/Å. To tailor the exact relation
between the magnetic anisotropy torque and the antidamping SOT, one can thus
either tune the magnitude of the applied in-plane electric field, or adapt the strength
of the magnetic anisotropy energy by applying an out-of-plane electric field [186].

9.5 Nature of the electric-field response

At this stage, the key question arises whether the striking magnitude of the SOT in
the considered magnetic insulators can be ascribed unambiguously to the presence
of the mixed Weyl semimetallic state. We address this point in the following by
explicitly unfolding the utter relevance of the emergent magnetic monopoles in giving
rise to a pronounced magneto-electric response. First, when removing the mixed
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Figure 9.4: Monopole-driven spin-orbit torques in mixed Weyl semimetals. (a) Crystal
structure of graphene decorated by W adatoms. (b) First-principles band
structure of the perpendicularly magnetized film. The topologically non-trivial
gap around the Fermi level and the trivial gap above are highlighted. (c)–
(e) Energy dependence of anomalous Hall conductivity σxy, torkance τyx, and
spiralization Dyx, respectively. In the latter case, the unit D0 stands for
meVa0 per unit cell. Insets show the microscopic contributions in momentum
space near the K-point. (f) Energy dependence of the torkance τyx in a GaBi
film upon applying an exchange field B = B0(sin θ, 0, cos θ) perpendicular to
the film plane, where the numbers denote B0. (g) Crystal structure of the
system. (h) Evolution of valence band top (squares) and conduction band
bottom (triangles) with varying θ for B0 = 0.1 eV (black dashed lines) and
B0 = 0.8 eV (red solid lines). (i) Band structures for θ = 0◦ and two different
values of B0, where colors illustrate the spin polarization normal to the film.

Weyl points from the electronic structure of the tight-binding model (9.1), e.g., by
including an intrinsic (on-site) spin-orbit coupling term, we confirm that the electric-
field response is strongly diminished in the insulating phase, which identifies the
monopoles as unique origin of large SOTs and DMI. To confirm this statement also
in the presented first-principles results, secondly, we study the electric-field response
within the topologically trivial gaps above the Fermi level that are highlighted in
Figs. 9.3(b) and 9.4(b). Since no mixed Weyl points manifest in the corresponding
energy regions, where the gaps remain opened for any value of θ, we obtain a greatly
suppressed magnitude of the antidamping torkance τyx as evident from Figs. 9.3(f)
and 9.4(d).

Finally, we clearly promote the exceptional role of these distinct points by consid-
ering an educational example of a thin film of GaBi with triangular lattice structure,
Fig. 9.4(g). The computational parameters of our electronic-structure calculations are
summarized in Appendix A.8. As the original system is a non-magnetic trivial insu-
lator, we artificially apply on top the exchange field B = B0(sin θ, 0, cos θ) to trigger
a topological phase transition as the field strength B0 is tuned in the exchange term
B ·σ. While varying B0 we carefully follow the evolution of the hybrid system from a
trivial magnetic insulator for |B0| ≤ 0.2 eV to a mixed Weyl semimetal as signalized
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9 Topology for electrical magnetization control

by the emergence of magnetic monopoles in the electronic structure. The quantum
anomalous Hall effect accompanies the latter phase over a finite range of directions θ,
e.g., if the exchange field is perpendicular to the film plane as shown in Fig. 9.4(h,i).
Comparing in Fig. 9.4(f) the electric-field response for these two distinct phases, we
identify drastic changes in sign and magnitude of the torkance τyx with the tran-
sition from the topologically trivial insulator to the mixed Weyl semimetal hosting
monopoles near the Γ-point for generic directions θ. This demonstrates uniquely the
crucial importance of emergent mixed Weyl points in inducing large magneto-electric
coupling effects in topologically non-trivial magnetic insulators.

9.6 Discussion and outlook

Since mixed Weyl semimetals manifest an intricate interplay between the magneti-
zation direction and the topology in momentum space, magnetization switching via
antidamping torques can mediate topological phase transitions in these systems from
a Chern insulator to a trivial magnetic insulator as illustrated in Fig. 9.1(a,b). The
case of the functionalized bismuth film serves as an ideal example, where the mate-
rial turns from a Chern insulator into a trivial magnetic insulator with a band gap
of 0.25 eV if the magnetization lies in the film plane. Nevertheless, the resulting
antidamping torkance in this trivial state is still very large, and also the DMI ex-
hibits a strong variation within the gap due to the presence of mixed Weyl points in
the complex phase space, Fig. 9.5(a). Therefore, we propose in particular quantum
anomalous Hall systems fabricated to date [103, 261–263] as promising candidates
for the experimental search and realization of large magneto-electric response and
topological phase transitions. Strikingly, mixed Weyl semimetals that consolidate a
prominent electric-field response and a large energy gap (such as, e.g., functionalized
bismuth films) hold extremely auspicious prospects for room-temperature applica-
tions of magneto-electric coupling effects in low-dissipation3 magnetization control –
a topic that is under ongoing intensive scrutiny (see, e.g., Refs. [255,264,265]). While
a large antidamping SOT in magnetic metallic bilayers (e.g., Co/Pt) stems primarily
from the spin Hall effect due to the strong spin-orbit interaction in the non-magnetic
substrate [145], the sizable SOT in the insulating phase of mixed Weyl semimetals
is of profoundly different origin. As this effect is driven by the presence of magnetic
monopoles rather than the spin-orbit coupling itself, mixed Weyl semimetals open
the intriguing perspective to achieve pronounced magneto-electric responses even in
materials consisting of light atoms with weak spin-orbit interaction.

Analogously to transport effects and SOTs, the phenomenon of orbital magnetism
is prominently susceptible to the mixed Weyl points in the electronic structure, owing
to its intimate relation to the Berry curvature in momentum space. In the function-
alized bismuth film, for example, the magnitude of the k-resolved out-of-plane OM in
Fig. 9.5(b) amounts to colossal values of as much as ±10µB/uc close to the monopole.
Although the integral of these competing local contributions over the neighborhood
of a single mixed Weyl point almost vanishes in equilibrium, these monopoles may
manifest in a particularly large current-induced OM if an electric field E is used to

3Here, “low-dissipation” refers to the vastly suppressed Ohmic losses in insulating systems as
compared to metallic magnets.
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repopulate the electronic states around the Fermi level as illustrated in Fig. 9.5(c,d).
Stemming from the complex geometry of the extended phase space, such monopole-
driven orbital Edelstein effect can have momentous consequences, especially for phe-
nomena that are associated with the orbital moment at the Fermi surface such as the
gyrotropic magnetic effect [128].

In the examples that we studied here, the non-trivial topology of the mixed Weyl
semimetals results in a DMI that takes values from broad range when passing the band
gap, which implies that proper electronic-structure engineering enables us to tailor
both strength and sign of the DMI in a given system. Exploiting such versatility by
doping or by applying strain could help to stabilize chiral magnetic structures like
magnetic skyrmions in insulating ferromagnets. In addition, very large antidamping
SOT in such textured materials would lay out exciting avenues to manipulate and
control the dynamical properties of chiral objects by magneto-electric coupling effects
under minimal energy consumption.

At this stage, we emphasize the overall significance of the discussed magnetic
monopoles in the complex phase space, which do not only govern the electric-field
response in insulating magnets but contribute also in metals, where they are hid-
den, however, in the background of myriad energy bands crossing the Fermi level. In
analogy to the (non-quantized) anomalous Hall effect in metals, this renders the anal-
ysis of SOT and DMI particularly tedious, owing to the competing effects associated
with the metallic bands. Furthermore, the reachable magnitude of response phenom-
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ena is limited as compared to magnetic insulators since the reachable electric-field
strength in metals is typically much smaller. Strikingly, the emergent Weyl points
in the electronic structure could provide an alternative explanation for the strong
SOT in magnetically doped topological insulators (see, e.g., Ref. [246]), which is as-
cribed so far to the peculiar spin-momentum locking of the helical surface states of
the topological insulator constituting a highly efficient source of spin currents.

Up next, we discuss the relevance of the outlined Berry phase physics for anti-
ferromagnets, where the reliable switching of the staggered magnetization by means
of current-induced spin torques has been demonstrated only lately [14]. Here, we
focus on antiferromagnets that reveal the combined symmetry of time reversal and
spatial inversion, for which the phenomenon of SOT is intimately related to the
physics of Dirac fermions as doubly-degenerate elementary excitations with linear
dispersion [266,267]. Similarly to the suggested notion of mixed Weyl semimetals, we
anticipate that the concept of mixed Dirac semimetals in the complex phase space
of crystal momentum and staggered magnetization direction will become invaluable
for grasping the microscopic origins of SOTs in insulating antiferromagnets. Adopt-
ing the very same viewpoint that we formulated above for ferromagnets, emergent
monopoles (mixed Dirac points) in the degenerate electronic structure of antiferro-
magnets can be expected to form the leading sources or sinks of the according general
non-Abelian Berry curvature. Analogously to the spin Berry curvature for quan-
tum spin Hall insulators and Dirac semimetals [268–270], the mixed band-diagonal
components of this curvature tensor manifest in sublattice-dependent antidamping
SOTs. Based on this rewarding microscopic understanding, applying the principles
of electronic-structure engineering for topological properties that rely on the stag-
gered magnetization could advance the use of pronounced magneto-electric response
in insulating antiferromagnets.

In order to conclude our pioneering expedition for the complex topology of the
combined phase space of the crystal momentum and the magnetization direction
m̂ = (cosϕ sin θ, sinϕ sin θ, cos θ), we elucidate briefly the influence of the azimuthal
angle ϕ that was set to zero so far. As an illustrative example, we start from the
mixed Weyl points in the functionalized bismuth film and study their dynamical
behavior in the four-dimensional space (kx, ky, θ, ϕ) as the magnetization direction
is varied. Following this procedure, we realize that these monopoles are robust but
move along a closed line through the combined phase space as shown in Fig. 9.6,
which reminds us of the physics of topological nodal-line semimetals discussed, e.g.,
in Refs. [271, 272]. Therefore, it is tempting to refer to these loops as mixed nodal
lines that are characterized by a non-trivial topological Berry phase around them.
Uncovering the effect of these intriguing mixed nodal lines on transport, magnetic
properties, and magneto-electric coupling is left for future studies.

In conclusion, accounting for the response of the electronic structure to the dynam-
ical magnetization holds bright promises for understanding and designing various
geometrical phenomena in insulating and metallic magnets such as strong magneto-
electric effects, magneto-crystalline anisotropy, magnetic damping, and prominent
current-induced orbital magnetism. The developed technique of generalized Wannier
interpolation is optimally adapted to describe efficiently these phenomena originating
from the complex geometry of the underlying higher-dimensional phase space.
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Chapter 10

Summary and conclusions

In the current work, we have presented a comprehensive first-principles analysis of ge-
ometric phenomena in complex magnetic systems based on the accurate full-potential
linearized augmented-plane-wave (FLAPW) method. In order to unify the efficient
description of anomalous charge transport, orbital magnetism, electrically induced
spin torques, and chiral exchange interactions, the Jülich density functional theory
code fleur has been supplemented by newly developed computational methods.

By implementing and applying a Wannier-based interpolation scheme for the or-
bital magnetization (OM) according to a recent Berry phase theory, we identified in
the first part of this thesis the key role of the so-called modern theory for the reli-
able treatment of orbital magnetism in density functional theory. While the modern
theory of OM was suggested so far to provide only non-critical corrections to orbital
magnetism as compared to a simple yet routinely employed atom-centered approx-
imation (ACA), we demonstrated that the predictive power of the latter approach
is limited to elementary bulk ferromagnets. When dealing with orbital magnetism
in material classes that are under extensive scrutiny in today’s spintronics such as
magnetic heterostructures and topologically complex systems, however, we showed
that the OM is described qualitatively only within the rigorous Berry phase theory.
For example, the ACA breaks down completely in Chern insulators, for which the
underlying non-trivial topology in momentum space manifests in an OM that varies
linearly with energy as predicted correctly by the modern theory. Thus, our results
substantiate unambiguously the use of the complete but computationally challenging
Berry phase formalism, and emphasize additionally the relevance of this modern the-
ory in order to link to experiments on orbital magnetism in novel spintronic devices.
Since most ab initio frameworks of density functional theory still resort to the simple
ACA, we further anticipate that our general conclusions will eventually motivate ef-
forts for implementing the Berry phase approach in other electronic-structure codes
as well.

The emergence of a spontaneous orbital moment in the crystal field of a periodic
solid is typically ascribed to the spin-orbit interaction, which breaks the degeneracy
between left- and right-circulating charge currents. Going beyond this well-known
and widely accepted explanation of orbital magnetism in ferromagnets, we promoted
the unconventional phenomenon of topological orbital magnetism that manifests even
in the absence of spin-orbit coupling due to the complex arrangement of spins in non-
collinear magnets. In these systems, the effect of the chiral spin texture is mapped to a
fictitious magnetic field that manipulates the electrons’ motion and lifts ultimately the
quenching of the orbital moment in the crystal field. Considering as prototypes bulk
and film antiferromagnets with 3Q spin structure, we pioneered the comprehensive
analysis of topological orbital magnetism, investigated the accompanying topological
Hall effect, and correlated the phenomena with the first-principles electronic struc-
ture. While the direction of the OM is determined solely by the symmetry of the
studied materials, its magnitude relies on the scalar spin chirality as determined by
the non-trivial spin texture. Being tunable by means of adequate engineering of the
electronic structure as uncovered by our calculations, the topological OM can amount
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to remarkably sizable values of as much as −1.6µB per unit cell in the case of the
two-dimensional antiferromagnet Mn/Cu(111), which puts the considered systems on
one level with conventional ferromagnets. As a consequence, these spin-compensated
magnets are prototypical examples of a new class of materials coined topological or-
bital ferromagnets, i.e., systems for which the macroscopic magnetization is purely
due to the orbital magnetism that is present without any reference to the spin-orbit
interaction or electron-electron correlations. Originating from the chiral spin texture,
the resulting topological orbital moments are rather robust, which holds intriguing
promises to use them as fundamental operational units and reliable information car-
riers in the burgeoning field of chiral orbitronics. Finally, we proposed potential ma-
terial realizations based on an analysis of the corresponding magnetic point groups,
and outlined a protocol to detect topological orbital magnetism in experiments on
magnetic circular dichroism.

Developing the new formalism of higher-dimensional Wannier functions (HDWFs),
we established in the second part of this thesis an accurate but efficient Wannier in-
terpolation of Hamiltonians that depend on a set of abstract parameters besides the
crystal momentum. Since this generalized interpolation scheme resembles formally
the usual technique based on maximally-localized Wannier functions (MLWFs), the
former is directly accessible to the large community of physicists that employ routinely
the conventional Wannier interpolation. The scope of scientific problems to which our
advanced method can be applied is particularly broad, including but not limited to
the computation of exchange constants, the efficient description of anisotropic trans-
port effects, and the accurate evaluation of magneto-electric coupling phenomena. In
this thesis, we focused on spin-orbit torques (SOTs) and the Dzyaloshinskii-Moriya
interaction (DMI) in ferromagnetic systems, both of which are interpreted naturally
as geometric responses in the curved phase space of crystal momentum and magne-
tization direction. Given this setting, we elucidated the FLAPW implementation of
the necessary first-principles input for constructing HDWFs, and specified also the
higher-dimensional Wannier interpolation for the Berry phase theory of torkance and
spiralization.

We verified that our advanced ab initio scheme interpolates torkance and spiral-
ization accurately, and facilitates moreover the calculation of the anisotropy of these
Berry phase properties with the magnetization direction as compared to an alternative
but cumbersome approach based on the exchange field. Additionally, our technique
was applied to unravel efficiently the microscopic origins of the studied phenomena of
SOT and DMI as well as their mutual connection in metallic heterostructures. Scru-
tinizing as highly relevant example the system of a Co monolayer on Pt(111) covered
by alloyed overlayers of 5d transition metals, we discovered a complex non-monotonic
dependence of the spiralization on the composition ratio. Remarkably, we predicted
characteristic sign changes of the spiralization under moderate doping of the Pt over-
layer with Ir, which constitute thus promising systems for experiments to study in
more detail. Ultimately, we outlined the consequences of the prominently anisotropic
spin torques in the Co-based heterostructures on the dynamical properties of chiral
magnetic skyrmions. As demonstrated by our first-principles calculations exploiting
the valuable higher-dimensional Wannier interpolation, proper electronic-structure
engineering constitutes overall an auspicious tool to tailor SOTs and DMI as well as
their anisotropy in complex metallic magnets.
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When topology as a branch of mathematics reached out to the field of physics, our
understanding of many elementary solid-state phenomena was revolutionized, mani-
festing eventually in a classification of matter based on global geometrical properties of
the underlying momentum space. Following analogous logic, we proposed in this thesis
to utilize the ubiquitous arguments of topology to explain prominent magneto-electric
phenomena and magnetization switching in insulating ferromagnets. In particular,
we introduced the concept of mixed Weyl semimetals, for which the combined phase
space of crystal momentum and magnetization direction hosts magnetic monopoles
that manifest in large antidamping torques and DMI. Using a tight-binding model
and first-principles calculations of realistic materials based on the developed technique
of HDWFs, we confirmed our theoretical ideas and identified unambiguously the key
role of the emergent monopoles. Strikingly, the magnitude of electrically induced spin
torques in the insulating phase of the considered mixed Weyl semimetals can easily
exceed the size of SOTs in the conventional metallic heterostructures studied before.
This opens fascinating perspectives for designing the electric-field control of mag-
netism in novel low-dissipation spintronic devices that may operate ultimately even
at room temperature owing to the decent bulk band gap in these materials. Moreover,
efficient magnetization switching by large antidamping torques can mediate topolog-
ical phase transitions owing to the complex interplay of magnetization direction and
topology in mixed Weyl semimetals. Our pioneering first-principles expedition to
the higher-dimensional phase space entangling Bloch wave vector and magnetization
direction was complemented by an assessment of the importance of the suggested
concepts for controlling magnetism or generating spin currents in insulating antifer-
romagnets, metals, and doped topological insulators. Eventually, we discovered that
the geometric phenomenon of orbital magnetism is enhanced locally in the vicinity
of the magnetic monopoles, which can manifest in a prominent non-equilibrium OM
due to external electric fields or charge currents.

In conclusion, this thesis has combined developments of versatile computational
methods for density functional theory with applications in spin-orbitronics to advance
the understanding of fundamental properties of complex magnetic systems, and to
predict new emergent phenomena based on the universal arguments of topology.

139





Appendices

141





Appendix A

Computational details

In the following, we present the computational details of our self-consistent density
functional calculations that were performed within the FLAPW code fleur [74].
After converging initially the electronic charge density with the computational pa-
rameters chosen to guarantee predictive power, we collected information on the wave
functions and the band energies on a coarse grid that samples the Brillouin zone. De-
pending on whether we construct MLWFs or HDWFs, we forwarded this information
as input either to the conventional wannier90 program [273] or to our generalized ver-
sion of the code. In a final post-processing step, the resulting tight-binding functions
were used to achieve an efficient but accurate Wannier interpolation of the considered
electronic properties on a dense mesh.

In most of the calculations, we employed the generalized gradient approximation
(GGA) based on the functional by Perdew, Burke, and Ernzerhof (PBE) [52], un-
less stated explicitly. Conventionally, the temperature smearing of the Fermi-Dirac
distribution that enters the evaluation of the Fermi energy was set to 1 mHtr. The
MLWFs were constructed from the wave-function information on a uniform mesh of
8×8×8 (bulk) or 8×8 (film) k-points sampling the full Brillouin zone. Additionally,
we considered 8 different angles θ in [0◦, 360◦) when we aimed at generating HDWFs.
To interpolate the Brillouin-zone integrals to high accuracy, we used a dense k-mesh
of 200× 200× 200 (bulk) and 1024× 1024 (film) points when invoking the Wannier
interpolation. The developed technique based on HDWFs allows us to determine
these integrals for any desired value of θ.

A.1 Elementary bulk ferromagnets

When assessing orbital magnetism in the elementary bulk ferromagnets, we used the
lattice constant 5.417 a0 (with a0 as Bohr’s radius) for bcc Fe, 6.662 a0 for fcc Ni, and
the lattice parameters a = 4.718 a0 and c = 7.617 a0 for hcp Co. In the case of Fe and
Co, the plane-wave cutoff was chosen as 4.5 a−1

0 and the muffin-tin radius was 2.28 a0,
whereas these parameters were 3.7 a−1

0 and 2.29 a0 for Ni. In order to disentangle
18 MLWFs from 30 Bloch states, we utilized three d orbitals and six sp3d2 hybrid
orbitals per spin direction as first-guess projections. The frozen window extended up
to 5 eV above the Fermi level in Fe, and 10 eV above the Fermi energy in Co and Ni.

A.2 Mn/W(001)

In our first-principles study of the chiral magnet Mn/W(001) with a square in-plane
unit cell, we adopted the structural parameters from Ref. [274] with the lattice con-
stant 5.981 a0. The spacing between Mn and the first W layer was 2.85 a0, and
subsequent W layers had an interlayer distance of 2.99 a0. We chose a plane-wave
cutoff of 4.1 a−1

0 , and the muffin-tin radii of Mn and W were both set to 2.42 a0. To
generate 180 MLWFs (or HDWFs) out of 252 energy bands, three d orbitals and six
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sp3d2 hybrids were used a trial orbitals, and the upper bound of the frozen window
was set to 2 eV above the Fermi level.

A.3 Magnetically doped graphene

When decorating graphene with various magnetic transition-metal adatoms, we em-
ployed the atomic coordinates and computational parameters from Ref. [186]. In
the case of W adatoms placed in a hexagonal 4 × 4 geometry at the hollow sites
of graphene, the in-plane lattice constant was 18.643 a0, and the buckling amounted
to ∆z = 3.288 a0. The plane-wave cutoff was chosen as 4.0 a−1

0 , and the muffin-tin
radii of W and C were 2.7 a0 and 1.2 a0, respectively. Using nine trial functions per
spin on each transition-metal adatom (s, p, and d orbitals) and three sp2 hybrids on
C, we generated 82 MLWFs or HDWFs from the electronic structure obtained on a
coarse 6 × 6 k-mesh (supplemented by 8 different angles in the higher-dimensional
framework). The frozen window stretched up to 4 eV above the Fermi energy.

Similarly, we used in the case of Ir adatoms a 2 × 2 geometry with the lattice
constant 9.321 a0, a buckling of ∆z = 3.383 a0, and a coarse mesh of 8 × 8 k-points
to generate the tight-binding representation.

A.4 Mn/Cu(111)

Non-collinear calculations of the Mn monolayer at the lattice constant of Cu(111)
with the antiferromagnetic 3Q spin texture [208] were performed within the local
density approximation (LDA) using a parametrization due to Moruzzi, Janak, and
Williams [275]. The interatomic distance on the triangular lattice was chosen as
4.830 a0, the plane-wave cutoff was 4.0 a−1

0 , and a muffin-tin radius of 2.29 a0 was
used. Starting from three d orbitals and six sp3d2 hybrids, we generated 72 MLWFs
out of 102 Bloch states with a frozen window up to about 5 eV above the Fermi
energy. When including in addition 5 atomic layers of the Cu(111) substrate with
an interlayer distance of the order of 4.0 a0 and a muffin-tin radius of 2.29 a0, we
constructed 432 MLWFs from 604 energy bands.

A.5 γ-FeMn

We modeled the cubic system with imposed 3Q spin structure as hexagonal (111)
planes in ABC stacking such that strain modifies the interlayer spacing between
different (111) planes. To account phenomenologically the Poisson effect, i.e., the
transverse strain response to axial strain, we included lateral lattice modifications via
the Poisson ratio ν = 0.27. In the unstrained case, the cubic crystal has a lattice
constant of 6.862 a0, which changes under strain as indicated in the main text. The
plane-wave cutoff was 3.8 a−1

0 , and we further used a muffin-tin radius of 2.29 a0 of the
constituents. Adopting the virtual crystal approximation (VCA) [235], we occupied
the lattice sites by virtual atoms that interpolate between the physical properties of
Fe and Mn, depending on the composition ratio. Finally, we projected onto 9 trial
functions (three d and six sp3d2 hybrids) per atom and spin direction in order to ex-

144



A.6 Co-based trilayers

tract 72 MLWF from 102 energy bands, where the frozen window extend up to 5 eV
above the Fermi energy.

A.6 Co-based trilayers

Starting from the experimental lattice parameters for hexagonal Pt/Co/Pt with an
in-plane lattice constant of 5.211 a0, we relaxed the two interface layers and kept
the resulting atomic positions fixed even when doping the Pt overlayer with Ir or
Au. Apart from the Co layer where the muffin-tin radius was set to 2.23 a0, we
chose the muffin-tin radii of all atoms as 2.29 a0, and used 4.0 a−1

0 as plane-wave
cutoff. Although exchange and correlation effects were treated by a revised PBE
functional [276], we verified that similar results can be obtained when using LDA
as parametrized, e.g., by Vosko, Wilk, and Nusair [48]. To account for the effect of
substitutional alloying of the top Pt layers with Ir or Au, we employed the simple
technique of VCA [235]. Using projections onto dxy, dyz, dxz, and sp3d2, we applied
our extension of the wannier90 program [273] to compute a single set of 162 HDWFs
from a manifold of 228 Bloch states, with the upper bound of the frozen window at
about 2 eV above the Fermi level.

A.7 Semi-hydrogenated Bi(111) bilayer

The hexagonal in-plane unit cell of the H-functionalized bismuth bilayer had a lattice
constant of 10.315 a0. We chose a plane-wave cutoff of 3.8 a−1

0 , and the muffin-tin
radii of H and Bi were 1.21 a0 and 2.80 a0, respectively. Using s-like trial functions on
hydrogen and p orbitals on bismuth, we generated 14 HDWFs out of 28 Bloch bands,
where the frozen window extended up to 2 eV above the Fermi energy. We obtained
the mixed Chern number discussed in Chapter 9 by integrating the mixed Berry
curvature Ωm̂kyx on a uniform mesh of 1024 kx-values and 512 angles θ in [0◦, 360◦).

A.8 GaBi film with an exchange field

The hexagonal lattice of the intrinsically non-magnetic GaBi film with an in-plane
lattice constant of 8.543 a0 shares the crystalline symmetries of the functionalized
bismuth bilayer. In the former case, we employed 4.0 a−1

0 as plane-wave cutoff and
chose a muffin-tin radius of 2.45 a0 for both Ga and Bi. We used projections onto s
and p orbitals on these atom types and a frozen window 2 eV higher than the Fermi
level in order to extract iteratively 16 MLWF from a group of 32 energy bands. After
computing the matrix elements of the vector σ of Pauli matrices in this Wannier
basis, we added to the constructed tight-binding Hamiltonian an according exchange
term B ·σ to study the dependence of the electronic structure on the direction of the
exchange field B.
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Appendix B

Dzyaloshinskii-Moriya interaction and
disorder

In order to derive the dependence of the Dzyaloshinskii-Moriya interaction (DMI)
on the constant band broadening Γ that models disorder, we start from the Kubo
linear-response expression of the DMI spiralization tensor [28]:

Dij =
1

hV

∫ EF
−∞

(E − EF) Re Tr

〈
TiGR(E)vj

dGR(E)

dE
− Ti

dGR(E)

dE
vjG

R(E)

〉
dE ,

(B.1)
where GR(E) = h̄/(E −H + iη) is the retarded Green function of the single-particle
Hamiltonian H, and η > 0 is small. Using the eigenstate representation and replacing
η with the band broadening Γ, we arrive at

Dij =
1

hV

1

Nk

∫ EF
−∞

(E − EF) Re
∑
knm

Tnm,ivmn,j
[
GR
m(E)

dGR
n (E)

dE
− (n↔ m)

]
dE

=
h̄

2πV

1

Nk
Re
∑
knm

Tnm,ivmn,j
∫ EF
−∞

(E − EF)(Ekm − Ekn)

(E − Ekn + iΓ)2(E − Ekm + iΓ)2
dE

=
h̄

2πV

1

Nk
Re
∑
knm

Tnm,ivmn,jYnm(Γ) , (B.2)

where Tnm,i = 〈ukn|Ti|ukm〉 and vmn,j = 〈ukm|vj|ukn〉 denote the matrix elements
of torque and velocity operator, respectively, and GR

n (E) = h̄/(E − Ekn + iΓ) with
the band energy Ekn. The abbreviation Ynm(Γ) stands for the Γ-dependent energy
integration that yields for n 6= m

Ynm(Γ) =

∫ EF
−∞

(E − EF)(Ekm − Ekn)

(E − Ekn + iΓ)2(E − Ekm + iΓ)2
dE

=
2

Ekm − Ekn
− Ekn + Ekm − 2(EF + iΓ)

(Ekn − Ekm)2
log
Ekm − EF − iΓ

Ekn − EF − iΓ

=
2

Ekm − Ekn
− Ekn + Ekm − 2(EF + iΓ)

(Ekn − Ekm)2
Lnm(Γ) . (B.3)

Here, we introduced Lnm(Γ) for the complex logarithm:

Lnm(Γ) = log
Ekm − EF − iΓ

Ekn − EF − iΓ
. (B.4)

Obviously, both Ynm(Γ) and Lnm(Γ) reverse sign if n and m are interchanged, i.e.,
they constitute antisymmetric matrices. In combination with the fact that the imag-
inary part of Tnm,ivmn,j also changes sign while Re [Tnm,ivmn,j] is invariant under per-
mutations of n and m, it follows that

Dij = − h̄

2πV

1

Nk

∑
knm

Im [Tnm,ivmn,j] ImYnm(Γ) . (B.5)
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Since the imaginary part of Ynm(Γ) amounts to

ImYnm(Γ) = −Ekn + Ekm − 2EF

(Ekn − Ekm)2
ImLnm(Γ) +

2Γ

(Ekn − Ekm)2
ReLnm(Γ) , (B.6)

we arrive at the final expression for the disorder dependence of the DMI spiralization
tensor in the case of a constant band broadening Γ:

Dij =
h̄

2πV

1

Nk

∑
kn

∑
m6=n

Im [Tnm,ivmn,j]

×
[
Ekn + Ekm − 2EF

(Ekn − Ekm)2
ImLnm(Γ)− 2Γ

(Ekn − Ekm)2
ReLnm(Γ)

]
, (B.7)

which coincides with Eq. (4.61) of the main text when taking into account Eq. (B.4).
In the clean limit of Γ → 0+, the second part in Eq. (B.6) vanishes. In order to

evaluate the remaining term, we represent the logarithm of the complex argument as

log
Ekm − EF − iΓ

Ekn − EF − iΓ
= log (α + iβ) = log

(
reiφ
)
, (B.8)

with the absolute value r =
√
α2 + β2, the phase φ = Arg(α + iβ), and

α =
E2

F − EFEkm − EFEkn + EkmEkn + Γ2

(Ekn − EF)2 + Γ2
−→ (EF − Ekm)

(EF − Ekn)
, (B.9)

β = Γ
Ekm − Ekn

(Ekn − EF)2 + Γ2
−→ Γ

Ekm − Ekn
(Ekn − EF)2

, (B.10)

where we consider Γ to be small but still finite. The relevant non-zero contributions
to ImLnm(Γ) in the clean limit (for which β → 0) originate from the two different
cases φ = arctan(β/α) + π if α < 0, β ≥ 0, and φ = arctan(β/α)− π if α < 0, β < 0,
which translates to

Im log (α + iβ) = φ −→


+π if n occupied and m unoccupied,

−π if m occupied and n unoccupied,

0 otherwise.

(B.11)

Using additionally that Im [Tnm,ivmn,j] changes sign if n and m are interchanged, we
end up with an overall factor 2π in the DMI spiralization such that

Dij =
h̄

2πV

1

Nk
2π

occ∑
n

unocc∑
m

Im [Tnm,ivmn,j]
Ekn + Ekm − 2EF

(Ekn − Ekm)2

=
h̄

V

1

Nk

occ∑
n

unocc∑
m

Im [Tnm,ivmn,j]
{

−1

Ekn − Ekm
+ 2

Ekn − EF

(Ekn − Ekm)2

}
, (B.12)

which is equivalent to Eq. (4.58) of the main text if the summation over m is modified
to run over all states m 6= n. However, the contributions where both n and m are
occupied cancel out.
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[59] Şaşıoğlu, E., Friedrich, C. & Blügel, S. Effective Coulomb interaction in tran-
sition metals from constrained random-phase approximation. Phys. Rev. B 83,
121101 (2011).
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[67] Sjöstedt, E., Nordström, L. & Singh, D. J. An alternative way of linearizing
the augmented plane-wave method. Solid State Commun. 114, 15–20 (2000).

[68] Hamann, D. R. Semiconductor Charge Densities with Hard-Core and Soft-Core
Pseudopotentials. Phys. Rev. Lett. 42, 662–665 (1979).

[69] Wimmer, E., Krakauer, H., Weinert, M. & Freeman, A. J. Full-potential self-
consistent linearized-augmented-plane-wave method for calculating the elec-
tronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 24,
864–875 (1981).

[70] Weinert, M. Solution of Poisson’s equation: Beyond Ewald-type methods. J.
Math. Phys. 22, 2433–2439 (1981).

[71] Weinert, M., Wimmer, E. & Freeman, A. J. Total-energy all-electron density
functional method for bulk solids and surfaces. Phys. Rev. B 26, 4571–4578
(1982).

[72] Krakauer, H., Posternak, M. & Freeman, A. Linearized augmented plane-wave
method for the electronic band structure of thin films. Phys. Rev. B 19, 1706–
1719 (1979).

[73] Li, C., Freeman, A., Jansen, H. & Fu, C. Magnetic anisotropy in low-
dimensional ferromagnetic systems: Fe monolayers on Ag (001), Au (001), and
Pd (001) substrates. Phys. Rev. B 42, 5433–5442 (1990).

[74] See http://www.flapw.de.

[75] Kurz, P. Non-Collinear Magnetism at Surfaces and in Ultrathin Films. Ph.D.
thesis, RWTH Aachen (2000).

[76] Nordström, L. & Singh, D. J. Noncollinear Intra-atomic Magnetism. Phys. Rev.
Lett. 76, 4420–4423 (1996).

[77] Berry, M. Anticipations of the geometric phase. Phys. Today 43, 34–40 (1990).

[78] Bernevig, B. A. & Hughes, T. L. Topological insulators and topological super-
conductors (Princeton University Press, 2013).

[79] Wilczek, F. & Zee, A. Appearance of gauge structure in simple dynamical
systems. Phys. Rev. Lett. 52, 2111–2114 (1984).

159



Bibliography

[80] Tomita, A. & Chiao, R. Observation of Berry’s Topological Phase by Use of an
Optical Fiber. Phys. Rev. Lett. 57, 937–940 (1986).

[81] Hannay, J. H. Angle variable holonomy in adiabatic excursion of an integrable
Hamiltonian. J. Phys. A. Math. Gen. 18, 221–230 (1985).

[82] Fang, Z. The Anomalous Hall Effect and Magnetic Monopoles in Momentum
Space. Science 302, 92–95 (2003).

[83] Solem, J. C. & Biedenharn, L. C. Understanding geometrical phases in quantum
mechanics: An elementary example. Found. Phys. 23, 185–195 (1993).

[84] Dirac, P. A. M. Quantised Singularities in the Electromagnetic Field. In Proc.
R. Soc. A Math. Phys. Eng. Sci., vol. 133, 60–72 (The Royal Society, 1931).

[85] Aharonov, Y. & Bohm, D. Significance of Electromagnetic Potentials in the
Quantum Theory. Phys. Rev. 115, 485–491 (1959).

[86] Bohm, A., Mostafazadeh, A., Koizumi, H., Niu, Q. & Zwanziger, J. The Geo-
metric Phase in Quantum Systems: Foundations, Mathematical Concepts, and
Applications in Molecular and Condensed Matter Physics (Springer Science &
Business Media, 2003).

[87] Hall, E. H. On a New Action of the Magnet on Electric Currents. Am. J. Math.
2, 287 (1879).

[88] Ando, T., Matsumoto, Y. & Uemura, Y. Theory of Hall Effect in a Two-
Dimensional Electron System. J. Phys. Soc. Japan 39, 279–288 (1975).

[89] Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy de-
termination of the fine-structure constant based on quantized hall resistance.
Phys. Rev. Lett. 45, 494–497 (1980).

[90] Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B
23, 5632–5633 (1981).

[91] Laughlin, R. B. Anomalous quantum Hall effect: An incompressible quantum
fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398
(1983).

[92] Hall, E. H. On the “Rotational Coefficient” in nickel and cobalt. Philos. Mag.
12, 157–172 (1881).

[93] Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall Effect in Ferro-
magnetic Semiconductors. Phys. Rev. Lett. 88, 207208 (2002).

[94] Onoda, M. & Nagaosa, N. Topological Nature of Anomalous Hall Effect in
Ferromagnets. J. Phys. Soc. Japan 71, 19–22 (2002).

[95] Nagaosa, N. Anomalous Hall Effect –A New Perspective–. J. Phys. Soc. Japan
75, 42001 (2006).

160



Bibliography

[96] Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous
Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

[97] Lowitzer, S., Ködderitzsch, D. & Ebert, H. Coherent description of the intrinsic
and extrinsic anomalous Hall effect in disordered alloys on an ab-initio level.
Phys. Rev. Lett. 105, 266604 (2010).

[98] Weischenberg, J., Freimuth, F., Sinova, J., Blügel, S. & Mokrousov, Y. Ab
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