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In theory, there is no difference between theory 
and practice. But, in practice, there is.  

Jan L. A. van de Snepscheut 
_____________________ 
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Introduction 
The continuous miniaturization of electronics has led to smaller and more powerful devices in 
our everyday life, such as smart phones and tablet computers. This process is substantiated by 
Moore’s law, which predicts shrinking of electronic devices by a factor of two every two years 
[1]. While this model described the development over the last decades astonishingly well, it has 
come clear that it will break down in the near future [2, 3, 4, 5], which results from technical 
challenges in the fabrication of such small devices. However, even if the fabrication technology 
would not be the limiting factor, it is clear that at some point a fundamental size-limit for a 
classical transistor is reached – a single-atom transistor [6]. 
Generally, transistors consist of areas of differently doped semiconductors, mainly silicon (Si). 
The doping is the result of atomic defects within this host lattice of Si atoms. The positioning 
of the dopants in the Si lattice is a random process, such that for ultra-small devices, in the limit 
where the doping of the Si is determined by only a few doping atoms, small variations in the 
local dopant configuration can have large effects on the resulting device properties.  The same 
is true for unintentional lattice defects, such as lattice vacancies, interstitial atoms, domain 
boundaries and step edges on the sample surface. In large devices, the exact number of such 
defects often is not too critical because the device properties are average over a large volume. 
In a device consisting of only few atoms however, e.g. an unintended atomic vacancy almost 
certainly leads to a failure of the device. As a result, the search for alternative concepts for 
future electronics is flourishing. Recent developments show that spintronics (spin-based 
electronics) [7] and quantum computing [8] could be a next big step in computer technology. 
At the forefront of these two topics are three-dimensional topological insulators (3D TIs), which 
have been first proposed in 2005 [9] by C. L. Kane and E. J. Mele. What makes these materials 
promising candidates for future electronic devices are their two-dimensional surface states, 
where the spin of the charge carriers is locked to their momentum. Furthermore, the 
corresponding dispersion relation has the form of a linear dependence of the energy on the 
impulse, resulting in the so-called Dirac cone [10]. As a result, new pathways for the realization 
of spintronics are opened, where the spin polarization of a current can be controlled simply its 
current direction. Furthermore, it has been shown that TIs in combination with superconductors 
can lead to the formation of Majorana fermions [11], which are theoretically predicted to be 
suitable for the preparation of quantum bits [12, 13]. The combination of multiple of such 
quantum bits into quantum computers has the potential to solve certain problems much faster 
than any classical computers [14]. However, for these new materials to find their ways into 
applications, a miniaturization of the corresponding devices is required. Here, again the 
fabrication of ultra-small devices depends crucially on the behavior of defects in such systems. 
Due to this ultimate importance, the fundamental properties of defects under current flow have 
acquired an increasing interest in the research community and also electronics industry [15, 16, 
17, 18, 19]. 
On a macroscopic level, inducing defects into a sample material in general changes the 
conductivity of the sample under investigation. A widely used method to experimentally 
determine the electrical conductivity of a sample with high accuracy is a four-probe 
measurement [20]. Hereby, two contacts are used to drive a current through the sample and two 
contacts are used to measure the voltage drop across the sample. The resulting electrical 
conductivity is 𝜎~𝐼/𝑉 according to Ohm’s law. Performing such conductivity measurements 
under the influence of an external electric or magnetic field gives access to further sample 
properties due to a different response of the defect conductivity on the external field than the 
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host lattice. Hereby, the resulting effect of the defects on the sample conductivity is typically 
expressed in terms of the charge carrier mobility 𝜇, which is a measure of ‘how easy can the 
charge carriers in the sample move’. Such transport measurements, like Hall measurements and 
measurement of universal conductance fluctuations, however access the properties of the 
ensemble of defects in the sample, averaged over the entire sample volume under investigation. 
The influence of individual defects in a sample can be better accessed by locally resolved 
transport measurement, such as scanning tunneling potentiometry (STP), which allows to 
perform nano-scale transport measurements [17, 21]. STP is based on the working principle of 
a scanning tunneling microscope (STM), which allows highly resolved lateral profiling of a 
conducting sample surface, down to atomic scale. STP maps the local potential of the sample 
under investigation and thereby allows a direct correlation of the sample surface structure, i.e. 
its topography, and transport properties, such as local conductivity. As a result, this method is 
well suited for the investigation of the influence of individual defects with sizes ranging from 
the atomic scale up to microns.  
Depending on the samples and types of defects, due the large span of defect sizes which can be 
investigated by the STP technique, one can investigate classical transport effects, as well as 
quantum mechanical effects at defects [19].  
In order to fully understand the observed features, in STP generally a rigorous analysis of the 
sample system under investigation is of importance. For example, in many samples several 
parallel conduction channels can participate in electrical transport, not only the surface which 
is investigated by STP. Hereby, especially the transport through the sample bulk has also to be 
considered. The disentanglement of the different conduction channels is therefore generally a 
prerequisite for a detailed analysis of a sample under investigation. For TI samples this problem 
becomes rather complex, because of a multitude of possible parallel conduction channels [22]. 
The use of a four-tip STM [23] allows to combine the macroscopic measurement of the sample 
properties by four-probe measurements, as well as STP measurement on the nanoscale in a 
single measurement setup. A further advantage of transport measurements performed with a 
multi-tip STM is that the measurements can be performed under ultra-high vacuum (UHV) 
conditions, directly after the preparation of samples. Hereby, the contacting of the sample is 
controlled e.g. via a scanning electron microscope and allows flexible positioning of the 
individual tips with high accuracy. As a result, in contrast to usual transport measurements, no 
lithographic patterning under ambient conditions is required, which results in the contamination 
of the sample surface [24, 25].  
 
The present thesis describes the implementation of STP and a newly developed method for 
four-probe measurements into a four-tip STM setup in chapter 1 and 2. These methods are then 
used to analyze the electrical resistance of individual defects in a TI ultra-thin film as described 
in chapter 3. Chapter 4 describes the superposition of the multiple conduction channels in TI 
ultra-thin films in detail, where it is possible to disentangle the contributions of the individual 
channels by gate dependent transport measurements. Another parallel conduction channel in 
such sample is given by the interface layer which is formed between the TI film and the Si(111) 
substrate during the sample growth. The conductivity of this interface layer and resulting 
influence in the transport in TI films is analyzed in chapter 5. The STP method was further 
applied to Bi ultra-thin films which prove to be a promising candidate for the investigation of 
the transition between the diffusive and ballistic transport regime due to their large mean free 
path at room temperature, as described in chapter 6. Finally, chapter 7 describes details of the 
resistor network models which have been a crucial theoretical tool throughout this thesis for the 
analysis of the STP data. 
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Chapter 1 Scanning tunneling potentiometry 
implemented into a multi-tip setup by software 
 

1.1 Introduction 
Scanning tunneling potentiometry (STP) is an intriguing tool when it comes to investigating the 
fundamentals of charge transport in real space. It provides direct access to the local 
electrochemical potential in a sample surface which allows to analyze transport phenomena 
such as Ohm’s law on a nanoscopic scale. STP is based on scanning tunneling microscopy, in 
which an atomically sharp metal tip is scanned across the sample surface point-by-point. The 
tip-sample distance is kept constant by application of a voltage difference between tip and 
sample and maintaining a constant tunneling current by adjusting the tip height. The resulting 
measurement signal is the topography of the sample – a map of the tip height in which the 
current set point is met. In addition to this topography measurement, STP allows to measure the 
local electrochemical potential quasi-simultaneously. The result is a map of the electrochemical 
potential at the sample surface. By application of a lateral current through the sample, the 
electric potential has a slope according to the voltage drop across the sample, the so-called 
transport field. STP allows to analyze the local potential variations with respect to the 
topographic features. 

In principle two different STP implementations have been reported in literature which are based 
on two possibilities to separate the topography and potential feedback loops – either temporal, 
by performing the individual feedbacks after each other [21], or by use of an AC signal for 
topography feedback and DC signal for potential feedback [26]. In general, the voltage 
measured by STP is the superposition of the local electrochemical potential, thermovoltage and 
photovoltage, where the latter can be excluded in typical experimental setups. Thermovoltage 
effects between the tip and sample however can be a large parasitic signal. Here small 
temperature differences of tip and sample can be sufficient to result in large relative signals and 
therefore have to be controlled carefully when performing local transport measurements where 
one is interested in the transport field. 

We report here the implementation of the STP technique into a four-tip STM setup by use of a 
temporal separation of the topography and potential feedback which allows an implementation 
into existing setups only by software changes. The resulting setup allows flexible in situ 
contacting of the sample under investigation in order to inject a lateral current such that also 
molecular beam epitaxy grown films and nanostructures can be analyzed without additional 
sample processing as shown in the following article. In detail, locally resolved transport 
measurements on Ag/Si(111) − (√3 × √3) and Si(111) − (7 × 7) surfaces are demonstrated. 
Here, the resistivity of steps and terraces on the sample surfaces could be determined and the 
results are in agreement with literature and prove the functionality of the present 
implementation. After verification of the setup, further local transport experiments were 
performed on a variety of samples, addressing intricate problems on the atomic and mesoscopic 
scale as shown in the following chapters. 
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1.2 Scanning tunneling potentiometry implemented into a 
multi-tip setup by software 
The following article has been published in the journal Review of Scientific Instruments: 

• F. Lüpke, S. Korte, V. Cherepanov, and B. Voigtländer, Scanning tunneling 
potentiometry implemented into a multi-tip setup by software, Rev. Sci. Instrum. 86, 
123701 (2015) 

(Reproduced with the permission of AIP Publishing) 

Author contributions: 
F.L., S.K., V.C. and B.V. conceived the experiments. F.L. performed the measurements and 
analyzed the experimental data. F.L., S.K., V.C. and B. V. wrote the paper. All authors 
discussed and commented on the manuscript. 

 

Note that parts of the material contained in the article Scanning tunneling potentiometry 
implemented into a multi-tip setup by software in combination with additional measurements 
were presented also in the following review articles: 

• B. Voigtländer, V. Cherepanov, and P. Coenen, The Multimeter at the Nanoscale, 
Vakuum in Forschung und Praxis 28, 38–42 (2016) 

• B. Voigtländer, The Multimeter at the Nanoscale, Imaging and Microscopy 18, 31-33 
(2016)  
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Chapter 2 Four-probe measurements using current 
probes with voltage feedback to measure electric 
potentials 
 

2.1 Introduction 
In this chapter a newly developed multi-probe measurement method is presented which allows 
a non-invasive sample characterization. This new measurement method is a further 
development based on the previous STP implementation which utilizes the multiple tips of the 
present setup to perform four-point measurements in combination with a potential feedback 
loop for the voltage sensing tips. In addition to the advantages of previous four-probe 
measurement implementations in multi-tip STMs, such as flexible positioning of the tips and 
in situ measurement, the resulting setup simplifies the required measurement electronics and 
allows non-invasive multi-probe measurements. 

In general, independent from scanning probe measurement capabilities multi-probe 
measurements setups, such as commercially available parameter analyzers have two current 
injecting tips to which a bias voltage is applied and the resulting lateral current through the 
sample is measured. Two further tips are then used for the measurement of the potential drop 
across the sample which is typically performed by a voltage follower circuit [27]. In the 
implementation presented here however, we use the potential feedback as described in the 
previous chapter of this thesis instead of voltage follower circuits. The most striking advantage 
is that the new implementation allows the measurement of the voltage drop across the sample 
non-invasively which means the sample is not damaged in the course of the measurement, 
because all measurement contacts can be realized with tunneling contacts. The potential 
measurement is hereby performed as described in chapter 1, with the measurement tips a few 
tenths of nanometers above the sample surface, while current injection takes place in tunneling 
contact as in usual constant-current STM experiments. 

Non-invasive in situ four-probe measurements in combination with scanning tunneling 
potentiometry make the here reported four-tip STM a powerful tool for the characterization of 
fragile materials which are of interest for electronic applications. Transport measurements 
which span the length scale from millimeter to nanometer without changes in the experimental 
setup – even the same set of tips can be used for all the different measurements. As a result, the 
same setup can be used for macroscopic transport measurements, but also for the 
characterization of nanoscale defects. 

Furthermore, the technique is also combinable with magnetic fields and low temperatures 
which, in combination with the gating, allows to perform the whole spectrum of classical 
transport measurements in situ and non-invasive. 
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2.2 Four-probe measurements using current probes with 
voltage feedback to measure electric potentials 
The following article has been accepted for publication in Journal of Physics: Condensed 
Matter: 

• F. Lüpke, D. Cuma, S. Korte, V. Cherepanov, and B. Voigtländer, Four-probe 
measurements using current probes with voltage feedback to measure electric potentials. 

Author contributions: 
F.L., S.K., V.C. and B.V. conceived the experiments. F.L. and D.C. performed the 
measurements and analyzed the experimental data. F.L., D.C., S.K., V.C. and B. V. wrote the 
paper. All authors discussed and commented on the manuscript. 
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In the following the ternary material (Bi1-xSbx)2Te3 with 𝑥~0.5 is investigated. This compound 
is optimized for low bulk conductivity such that an electrical current through the sample is 
mainly transmitted by the TSS. As a result, the current flow through the TSS at the sample 
surface can be assessed in real space by STP in order to understand the implications resulting 
from the band structure in experiments and ultimately in devices. 

We present in the following a detailed analysis of the influence of different kinds of defects 
(step edges, domain boundaries, void defects) on an electric current transmitted through a (Bi1-

xSbx)2Te3 thin film sample. For these transport measurements, we used the methods reported in 
chapter 1 and 2 of this thesis. 
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3.2 Electrical resistance of individual defects at a topological 
insulator surface 
The following article has been published in the journal Nature Communications: 

• F. Lüpke, M. Eschbach, T. Heider, M. Lanius, P. Schüffelgen, D. Rosenbach, N. von 
den Driesch, V. Cherepanov, G. Mussler, L. Plucinski, D. Grützmacher, C. M. 
Schneider and B. Voigtländer, Electrical resistance of individual defects at a topological 
insulator surface, Nat. Commun. 8, 15704 (2017) 

Author contributions: 
F.L., M.E., T.H., M.L. and N.v.d.D. performed the experiments. F.L., V.C. and B.V. designed 
the STP experiment. M.E., T.H., L.P. and C.M.S. designed the photoemission experiment. 
M.L., P.S., D.R., N.v.d.D., G.M. and D.G. developed and fabricated the samples. The 
manuscript was written by F.L., M.E., T.H., M.L. and B.V. All authors discussed and 
commented on the manuscript.
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3.3 Electrical resistance of individual defects at a topological 
insulator surface – supplemental material 
The following supplementary information has been published alongside the article Electrical 
resistance of individual defects at a topological insulator surface in the journal Nature 
Communications: 

• F. Lüpke, M. Eschbach, T. Heider, M. Lanius, P. Schüffelgen, D. Rosenbach, N. von 
den Driesch, V. Cherepanov, G. Mussler, L. Plucinski, D. Grützmacher, C. M. 
Schneider and B. Voigtländer, Electrical resistance of individual defects at a topological 
insulator surface, Nat. Commun. 8, 15704  (2017) 
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Chapter 4 Disentangling in situ top and bottom 
surface state transport of a topological insulator 
ultra-thin film by gating 
 

4.1 Introduction 
Three-dimensional topological insulators (3D-TI), due to the unique electronic properties of 
their topological surface states (TSS), are prime candidates for application in future electronic 
devices [30, 31]. Among the most promising materials for applicability at room temperature 
due to their pronounced band gap of up to 300 meV are the compounds Bi2Se3, Bi2Te3 and 
Sb2Te3 [30, 32].  

It has become clear though that the aforementioned binary materials often suffer from 
unintentional doping by crystal lattice defects such as vacancies and anti-site defects [30, 33, 
34]. This doping can shift the Fermi energy into the bulk conduction/valence bands and result 
in highly conductive bulk transport channels, bypassing the auspicious TSS [35]. One way to 
reduce such bulk conductivity is to alloy different binary TIs into ternary or even quaternary 
compounds [35, 36, 37]. The underlying mechanism is the compensation of the unintentional 
defects which allows to shift the Fermi energy back into the bulk band gap [38]. However, the 
electronic bands on the surface of the TI are typically shifted with respect to the bulk due to 
surface band bending [24, 37]. This effect renders it difficult to achieve both, a low conducting 
bulk and a surface electronic configuration, where the Fermi energy only cuts the TSS, 
simultaneously. On the other hand, the use of thin films reduces the influence of bulk 
conduction and due to the large dielectric constant of TIs [39, 40, 41], can result in a large 
screening length in comparison to the film thickness, which means that the bands throughout 
such ultra-thin films are rather flat [42, 43]. The ternary compound (Bi1-xSbx)2Te3 with 𝑥~0.5 
has proven to have low bulk conductivity while on its surface the Fermi energy is cutting only 
the TSS [22, 36, 44]. Furthermore, possible conduction channels at the substrate interface can 
be excluded [45], which makes BiSbTe3 a promising candidate material for further application, 
as a lateral current through the sample is expected to be transmitted predominantly by the TSS. 

The characterization of samples by transport measurements typically requires sample 
processing under ambient conditions, such as lithography to apply electric contacts prior to the 
measurements. However, the exposure of TI samples to air is reported to alter their electronic 
properties [24, 25, 46, 47, 48]. As a result, the comparison of in situ sample characterization, 
for instance by photoemission experiments, and subsequent ex situ transport measurements of 
the same sample needs to be taken with a grain of salt because the samples are altered in 
between the measurements. Recent in situ investigations [17, 32, 49, 50, 51, 52] overcome this 
general limitation by transport measurements, where the sample is under UHV conditions at all 
times allowing direct comparison of the different characterization methods. 

Especially ultra-thin films close to the thickness limit of TIs (~5 QL), where the TSS at the top 
and bottom surface begin to overlap and hybridize [34, 53], are of particular interest for 
applications due to their strongly suppressed bulk conductance. In such ultra-thin films, the 
capacitive coupling of the TSS at the top and bottom surface via the TI film bulk, acting as a 
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4.4 Transport Model 
The conduction in a TI thin film is described in general by three parallel conduction channels – 
one channel for the TSS on each side of the film and one channel resembling the interior (bulk) 
of the film (in the following referred to as ‘film bulk’). To disentangle these parallel conduction 
channels is typically a difficult task because transport measurements in general measure the 
superposition of all parallel channels 𝜎total such that information about the individual channels 
can only be extracted from their different response to an external stimulation, e.g. by a magnetic 
field, or as in the present case, an electric field. The analysis of the resulting dependence of 
𝜎total on the external electric field requires a suitable transport model to conclude about the 
properties of the individual channels.  

Here, we will use in a first step a simple two channel transport model, where we assume only 
gating of the TSS closest to the back gate in order to get a basic understanding of the present 
system. Subsequently, we perform a more detailed analysis in form of a three channel transport 
model where we consider the gating throughout the film in a detailed model, including the 
capacitive coupling of the TSS on the top and bottom of the film. 

The sample conductivity is measured by means of a four-probe measurement with a tip spacing 
of 50 µm for which we used a home-built four-tip STM at room temperature. Two of the four 
STM tips inject a lateral current through the conductive TI layer while the remaining two tips 
are used to measure the voltage drop across the surface resulting from the current. The resulting 
four-point conductivity is an average conductivity of the sample surface in the region of 
measurement. Positioning of the electro-chemically etched tungsten tips is monitored by an 
SEM. 

4.4.1 Two channel model 
In the two channel model, we assume that only the TSS closest to the gate electrode is affected 
by the application of a gate voltage, while the conductivity of the other channel remains 
constant, as also found in the literature [44, 55]. In the present sample geometry, the channel 
influenced by the gate is the TSS channel at the bottom of the film with a corresponding 
conductivity 𝜎bot, while the conductivity of the constant channel 𝜎background is a superposition 
of TI film bulk conductivity 𝜎film and the top TSS channel conductivity 𝜎top. The resulting total 
conductivity is 𝜎total = 𝜎bot + 𝜎background, where we determine 𝜎background = 𝜎film + 𝜎top =
0.34 mS □−1 directly from the plateau in the conductivity in the experimental data below 
𝑉gate = −60 V.  

The bottom channel at zero gate voltage has a conductivity 𝜎bot(𝑉gate = 0 V) = 𝜎bot0  as a result 
of a carrier concentration 𝑛bot0 . The additional gate induced charge carriers in the bottom 
channel 𝑛bot are determined by a plate capacitor model with the gate induced charge carrier 
concentration 

𝑛gate =
𝐶gate𝑉gate

𝑒
. (4.1) 

Hereby, the gate capacitance 𝐶gate we calculate from the sample geometry after  



50 
 

 

𝐶gate = ((
3.9𝜀0
300 nm

)
−1

+ (
11.7𝜀0
70 nm

)
−1

)

−1

= 11 nF/cm2. 

The resulting conductivity of the bottom channel, after Drude, is 𝜎bot = 𝜇bot(𝑒𝑛bot0 +

𝐶gate𝑉gate). Hereby, 𝜇bot is the mobility of charge carriers in the bottom channel. Fitting eq. 
(4.1) to the experimentally observed increase of the conductivity 𝜎bot(𝑉gate) via 𝑛bot = 𝑛gate 
around zero gate voltage results in 𝜇bot = 210 cm2/Vs and 𝑛bot0 = 2.5 ⋅ 1012 cm−2. The 
corresponding charge carriers are electrons as a result of the positive slope of the graph. 

From the fit, it results that at a gate voltage of Vgate = −38 V the charge carrier density in the 
bottom TSS in minimized. We interpret this voltage to be the point where the Fermi energy in 
the bottom channel is located at the Dirac point of the TSS. Further gating of the bottom channel 
below Vgate = −38 V results in the generation of holes in the bottom channel.  While it has 
been reported that Dirac holes have approximately the same mobility as the corresponding 
Dirac electrons [37], we find from ARPES that the Dirac point is located directly at the valence 
band edge and due to the large number of available states in the valence band, the generated 
holes are predominantly of bulk character such that we cannot address Dirac holes in the present 
transport experiments.  

From the experimentally observed plateau in the total TI film conductivity we can only estimate 
the mobility of the generated holes in the bottom channel below Vgate = −38 V to be <
2 cm2/Vs, which is lower than the corresponding TSS mobility by two orders of magnitude. 
While the mobility of bulk holes in BiSbTe3 was reported earlier to be one order of magnitude 
lower than the corresponding TSS mobility [55] we explain the finding by the bulk mobility in 
the present measurements to be further decreased due to the phonon scattering at room 
temperature. 

Owing to this low bulk carrier mobility, in combination with typical carrier concentrations 
~1013 cm−2 in similar films [44], results in a low conductivity of the interior of the TI film, as 
we also show in the following. We conclude that 𝜎background is dominated by the conductivity 
of the top TSS. As a result, at 𝑉gate = 0 V the fraction of the total current transmitted by the top 
TSS we find to be 𝜎background/𝜎total ≈ 80%, as indicated in Fig. 4.3 (b). In combination with 
the carrier concentration in the top TSS 𝑛t0, obtained from ARPES, the mobility of the top TSS 
can be determined to be 𝜇top = 𝜎background/(𝑛t0𝑒)  = 534 cm2V−1s−1, which is in good 
agreement with literature values [22, 56]. 

Although the above simple two channel model already gives a conclusive result of the TI 
properties of the present sample, in agreement with earlier literature reports [22, 44], it has to 
be taken with a grain of salt, because this model has several limitations. On the one hand, in the 
ultra-thin film limit the capacitive coupling between top and bottom TSS can generally not be 
neglected [39, 40, 41]. On the other hand, the TI bulk can in principle contribute significantly 
to the conduction, especially at room temperature [57] such that it has to be analyzed in general 
with more detail. 

We therefore introduce in the following a more general gating and transport model which 
includes the capacitive coupling of the TSS at the top and bottom surface of the thin film. 
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Furthermore, this refined transport model includes a separate conduction channel for the film 
bulk for which we perform band bending calculations in order to get a better understanding of 
the band configuration throughout the film. 

4.4.2 Three channel model 
In the three channel transport model, the total TI sheet conductivity is given by 𝜎total = 𝜎top +
𝜎bot + 𝜎film. No longer assuming that the gate affects only the bottom TSS channel and 
inclusion of the capacitive coupling between the TSS at the top and the bottom results in a gate 
dependent carrier concentration in the top TSS channel and furthermore in the film bulk. The 
total film conductivity results as 

𝜎total(𝑉gate) = (𝑛top
0 + 𝑛top(𝑉gate)) 𝑒𝜇top + (𝑛bot

0 + 𝑛bot(𝑉gate)) 𝑒𝜇bot

+ 𝜎film(𝑉gate), 
(4.2) 

where 𝜇top (𝜇bot) is the mobility of charge carriers, 𝑛top0  (𝑛bot0 ) is the initial carrier 
concentration in the top (bottom) TSS channel without gating, and 𝑛top (𝑛bot) is the 
corresponding gate induced charge carrier concentration. 

The initial carrier concentrations 𝑛top0  and 𝑛bot0  are a priori unknown. For an ideal topological 
insulator, the position of the Fermi level relative to the Dirac point and therefore charge carrier 
concentration in both top and bottom TSS channel, should be identical. However, it has become 
clear that this is typically not the case in experiments [22, 56], due to the different environments 
the top and bottom TSS are exposed to and which result in different amounts of unintentional 
doping on either surface. Hereby, the TSS channel at the interface to the substrate is expected 
to be more pristine than that at the top of the TI film due to the susceptibility of surface 
adsorbates and evaporation of material there. 

Here, again the ARPES measurement determines 𝑛top0  which decreases the number of free 
parameters in eq. (4.2) when fitting it to the experimental data. In contrast, 𝑛bot0  is difficult to 
access experimentally and is typically determined from theoretical models. The same applies 
for the gate induced charge carrier concentrations 𝑛top and 𝑛bot. 

4.4.3 Quantum capacitance 
Quantum capacitance effects occurs in capacitors when at least one of the capacitor plates, e.g. 
in a parallel-plate capacitor with corresponding geometric capacitance  

𝐶geom = 𝜀/𝑑,  

has a low density of states 𝜌. Hereby, 𝜀 is the dielectric constant of the material between the 
plates and 𝑑 is the plate distance. This case is observed e.g. in field effect transistors, where a 
gate voltage 𝑉gate is used to control the charge concentration in the channel of the device. As a 
result of the low density of states, the application of a voltage 𝑉gate to the device leads not to 
the typical charging behavior 𝑄 = 𝐶geom𝑉gate, but the amount of induced charges is attenuated. 
The reason is that due to the low density of states, the induced charge carriers need to be lifted 
into higher energy levels, for which additional energy is required. This correction to the 
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the quantum capacitance 𝐶qc in comparison to the case when the capacitance is given only by 
𝐶geom. 

 

When investigating gate-dependent transport properties of samples with only one transport 
channel, this circuit diagram can be directly used to determine the gate-dependent charge carrier 
concentrations in the channel [58]. However, topological insulator thin films are a sample 
system where two parallel transport channels can both be subject to quantum capacitance effects 
resulting from a single gate electrode, such that the analysis of gate-dependent carrier 
concentrations in the individual transport channels becomes a more complex task. In the 
following, we therefore deduce the corresponding equivalent circuit diagram from a basic 
parallel-plate capacitor, in order to give a fundamental understanding of the system. 

In a simple parallel plate capacitor with metallic plates having high 𝜌, as shown in Fig. 4.6 (a), 
a negative voltage applied to the bottom plate via the gate contact results in the polarization of 
the dielectric 𝜀 between the capacitor plates and induces the same amount of positive and 
negative charge on the top and bottom capacitor plates, respectively. The resulting polarity of 
the induced charges on the respective capacitor plates is indicated by ‘+’ and ‘-‘. The 
capacitance for the shown geometry calculates after the geometric capacitance 𝐶geom = 𝜀/𝑑. 

With an additional metal plate inserted in the parallel-plate capacitor, as shown in Fig. 4.6 (b), 
and the distance between the capacitor plates increased corresponding to the thickness of the 
metal plate in order to compensate its effect on the geometrical capacitance, results in the same 
capacitance as in Fig. 4.6 (a). The explanation is that as a result of the electric field charges are 
accumulated at the surface of the intermediate plate which counteract the electric field in the 
capacitor plate such that it vanishes inside of the metal. Hereby, the intermediate plate does not 
acquire a net charge. 

In contrast to this behavior, when the intermediate metal plate is connected to ground, a net 
positive charge is induced on the bottom side of the intermediate plate corresponding to the 
charge on the bottom capacitor plate (Fig. 4.6 (c)). As a result, the electric field above the 
bottom of the intermediate plate is fully screened, such that no charges are induced in the top 
capacitor plate. The resulting capacitance between the bottom capacitor plate and the 
intermediate metal plate is double the value as in the previous models (Fig. 4.6 (a) and (b)).  

When the intermediate plate is conducting but with low 𝜌 and is connected to ground via the 
corresponding quantum capacitance 𝐶bq (Fig. 4.6 (d)), the electric field between the top and 
bottom capacitor plates is only partially screened, resulting in a net positive charge of the 
intermediate plate, however lower than the case depicted in Fig. 4.6 (c). In detail, the exact 
amount of net charges on the capacitor plates and intermediate metal plate depends on the 
capacitances of the individual capacitors and can be calculated via the respective equivalent 
circuit diagram. In the limit of 𝐶bq ≫ 𝐶geom the behavior approaches the case as if the metal 
plate is directly connected to ground, corresponding to Fig. 4.6 (c), while for 𝐶bq vanishing, the 
behavior is as if there was no connection of the intermediate plate to ground as in the case 
depicted in Fig. 4.6 (b). 

Figure 4.6 (e) shows the schematic which includes quantum capacitance effects of the 
intermediate metal plate, 𝐶bq, as well as the top plate 𝐶tq, which further reduces the amount of 
charge carriers induced in the top plate as function of the gate voltage in comparison to the 
previous geometry. This schematic corresponds to the experimental setup of the gated TI thin 
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𝑛gate =
𝐶gate(𝑒𝑉gate − Δ𝐸bot)

𝑒2
 

𝑛TI =
𝐶TI(Δ𝐸top − Δ𝐸bot)

𝑒2
 

(4.4) 

and 

Δ𝐸bot = −𝑒
2𝑛bot/𝐶bq 

Δ𝐸top = −𝑒
2𝑛top/𝐶tq 

(4.5) 

 

The quantum capacitances however generally are a function of the carrier concentrations 
themselves 𝐶tq(𝑛top) and 𝐶BQ(𝑛bot). A rigorous analysis of the effect of gating on the system 
therefore requires a more detailed description. For the case of the linear dispersion of the TSS, 
the charge carrier density in the TSS is well defined as a function of the energy level with 
respect to the Dirac point [33] 

𝐸top = √𝑛top4𝜋ℏ
2𝑣F
2 ≡ 𝑎√𝑛top, (4.6) 

and in the same way 𝐸bot = 𝑎√𝑛bot. The general formulation of the quantum capacitance is 

[39] 𝐶Q = 𝑒2𝑛/𝐸, which result with eq. (4.6) in 𝐶tq =
𝑒2√𝑛top

0 +𝑛top

𝑎
 under the presence of initial 

charge carriers 𝑛top0  prior to gating and accordingly for 𝐶bq. This formulation of the quantum 
capacitance is consistent with eq. (4.5) and (4.6). Note that for the case of the Dirac cone this 
expression differs by a factor of two from the approximation of the quantum capacitance 𝐶𝑄 ≈

𝑒2
𝜕𝑛

𝜕𝐸
, which is also commonly used [39, 40], typically when one expects only small changes in 

𝐸.  

The initial energy level of the top TSS (without an applied gate voltage) is 𝐸top0 = 𝑎√𝑛top
0 . A 

change in the carrier concentration 𝑛top0 → 𝑛top
0 + 𝑛top will therefore result in a change of the 

energy level by Δ𝐸top according to 𝐸top0 + Δ𝐸top = 𝑎√𝑛top
0 + 𝑛top, where we find that 

Δ𝐸top = 𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 ). (4.7) 

Note that this term significantly differs from eq. (4.5), which shows a linear dependence 
between 𝐸 and 𝑛 in contrast to a square root dependence. Combining equations (4.3) - (4.7) we 
find the explicit equations 
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𝑛top ≃ ((
𝐶TI𝑎

𝑒2
)
−1

 (−𝑛bot +
𝐶TI𝑎

𝑒2
(√𝑛bot

0 + 𝑛bot −√𝑛bot
0 +√𝑛top

0 )

−
𝐶gate𝑉gate

𝑒
))

2

− 𝑛top
0  

(4.8) 

and 

𝑛bot = ((
𝐶TI𝑎

𝑒2
)
−1

 (−𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 )))

2

− 𝑛bot
0  (4.9) 

(For intermediate steps see appendix F.1) 

For this set of non-linear equations, we cannot find a simple analytical solution, such that we 
evaluate equation (4.8) and (4.9) numerically. The resulting values of 𝑛top (𝑛bot) as a function 
of the gate voltage we will use in the three channel transport model as given in eq. 2. 

Equation (4.8) and (4.9) are valid as long as the Fermi energy only cuts the TSS on both, top 
and bottom surface as depicted in fig. 4.7 (b). However, doping or gating of the TI film can 
result in the case where on one surface the Fermi energy is located within the band gap, only 
cutting the TSS while on the other surface the Fermi energy lies within the film valence band 
or conduction band (fig. 4.7 (c)). Due to the presence of many available states in these bands, 
the quantum capacitance on the corresponding surface, in the present case 𝐶bq, becomes very 
large [39].  

In detail, when shifting the bands by applying a gate voltage, as soon as the valence band edge 
reaches the Fermi level, the gate induced charge carriers are induced exclusively in the 
corresponding valence bands and the gate induced electric field is completely screened by the 
bottom channel [59]. Further decreasing the gate voltage will not lead to a further shift of the 
bands with respect to the Fermi energy, but only to an increase of the gate induced charge 
carriers in the valence bands - the Fermi level is pinned at the valence band edge. In terms of 
the replacement diagram in Fig. 4.7 (a) a large value of 𝐶bq leads to all the gate induced charge 
carriers being placed on this capacitor rather than on 𝐶TI, which results in the carrier 
concentration in the top TSS channel to be unchanged. 

To include the behavior of the bulk conductivity into our model, we perform in the following a 
detailed analysis of the band bending on the TI film as a function of the film bulk doping and 
the applied gate voltage. For this we model a 10 nm thin TI film as a small bandgap 
semiconductor (𝐸gap = 260 meV), in agreement with our ARPES results. For the band bending 
calculations we solve the Schrödinger-Poisson equation in the Boltzmann approximation [60] 
for which we use an effective mass 𝑚∗ = 0.15𝑚e, which we extract from the ARPES 
measurements by fitting a parabolic dispersion to the valence band edge and which is 
comparable to literature values [55, 61]. A further parameter in the calculations is the TI doping 
level as it would be observed in a bulk crystal, far away from the surface space charge layer. 
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In this mode, we find that at 𝑉gate = 0 V the portion of the total current through the bulk, top 
TSS and bottom TSS are 90% and 10%, respectively. For the bottom TSS this is half of the 
value obtained from the simplified two channel model. Furthermore, at 𝑉gate = −32 V the 
current through the sample is almost exclusively transmitted by the top TSS, as the bottom TSS 
and the film bulk conductivity are minimized. 

Figure 4.9 (b) further shows the band positions relative to the Fermi energy for the top and 
bottom channel. Here we observed that while the bottom channel band positions are shifted 
considerably as a function of gate voltage, the band positions in the top channel change only by 
an amount of Δ𝐸 ≈ 30 meV. 

This observation is in agreement with the screening of the gate induced electric field by the 
bottom TSS. Furthermore, the larger initial filling level of the top channel results in a slower 
change of the band positions as charges are induced, due to the square-root dependence of the 
𝐸top  with respect to 𝑛top. 

4.6 Discussion 
While the simple two channel transport model allows to estimate the conduction through the TI 
film, the more general three channel model allows to explain the experimental data better. In 
detail, only the three channel model, can reproduce the experimentally observed slight negative 
curvature of the conductivity graph above Vgate = −32 V, which is the result of the quantum 
capacitances and the capacitive coupling of the top and bottom TSS channel. 
As mentioned before, contrary to the principle of capacitive coupling of the top and bottom 
TSS, there are literature reports, where gating of TI ultra-thin films with a single gate electrode 
results in only the TSS closest to the gate electrode to be shifted with respect to the Fermi 
energy, while the other TSS remains unchanged [22, 44] corresponding to our two channel 
model. Such a behavior, we explain to be due to the TSS on the corresponding surface further 
away from the gate being pinned, e.g. by bulk bands. In the corresponding references [22, 44] 
significant filling of the corresponding TSS channels are reported, which suggests that the 
Fermi level might indeed be located at the conduction band edge. As a result, the filling of the 
corresponding TSS and therefore its transport properties do not change significantly by 
application of a gate voltage, because the additional charges are induced predominantly in the 
bulk bands, while the transport properties of the corresponding TSS channel are unchanged. 
Likewise, impurity states within the bulk band gap, as reported in Ref. [62] can also result in a 
Fermi level pinning.  
Furthermore, even when the capacitive coupling is considered certain configurations of initial 
filling levels in the top and bottom channel, due to e.g. surface doping, can result in the case 
where the filling level of one of the two channels only changes insignificantly. This effect can 
also lead to the interpretation that generally only one of the channels is affected by the gate. 
We conclude that the TSS at the top and bottom surface are generally coupled and only by 
certain configurations of Fermi level pinning it can occur that only the TSS filling of one of the 
two surface states changes by application of a gate voltage, as described in our two-channel 
model. Even more, when there is a large density of states present at the TI film surface closest 
to the gate electrode, then the effect of the gate on the TSS can be largely screened such that 
the top and bottom TSS channel filling both are mostly independent of the gate voltage. This 
effect also explains often reported problems in first generation TI samples where heavy doping 
results in the Fermi energy being located well within the valence/conduction bands [38]. As a 
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result, the overall conductivity of such TI films does not change significantly when applying a 
gate voltage. 
For this reason, we find that for the comprehensive interpretation of transport measurements at 
TIs it is of utter importance to perform a detailed analysis of the filling levels of the TSS 
channels in combination with the bulk bands, as provided by the present model. While the gate 
voltages applied in the present work are rather large, the observed behavior of the TI film can 
be reproduced in the range of a few volts, as typically used in devices, by use of a suitable gate 
dielectric [22]. 

4.6.1 Constant quantum capacitance approximation 
For small changes in the Fermi energy corresponding to small amounts of gate induced charge 
carriers, the quantum capacitance terms can be assumed to be constant, as long as the initial 
number of charge carriers is much larger than the gate induced carrier concentration. In this 
case, the quantum capacitance is given by the initial carrier concentrations: 

𝐶tq,bq
0 =

𝑒2√𝑛top,bot
0

𝑎
 

and Eq. (4.3) becomes 

Δ𝐸top = 𝑒
2 ( 
𝑛top
0 + 𝑛top

𝐶tq
−
𝑛top
0

𝐶tq
0 ) ≈ 𝑒

2 ( 
𝑛top
0 + 𝑛top

𝐶tq
0 −

𝑛top
0

𝐶tq
0 ) =

𝑒2𝑛top

𝐶tq
0 . 

 

This expression is again consistent with eq. (4.2) and results in the equations 

 

𝑛bot = −
1

(1 + 𝐶gate/𝐶bq
0 + 𝐶TI/𝐶bq

0 )
(
𝐶gate𝑉gate

𝑒
+
𝐶TI𝑛top

𝐶tq
0 ). (4.10) 

and 

𝑛top = 𝑛TI =
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 ⇔  𝑛top =

𝐶TI/𝐶bq
0

(1 + 𝐶TI/𝐶tq
0 )
𝑛bot. (4.11) 

(For intermediate steps see appendix F.2) 

The analytical solution of this system of linear equations (4.10) and (4.11) is 

 

𝑛top =
𝐶TI/𝐶bq

0

1 + 𝐶TI/𝐶bq
0 + 𝐶gate/𝐶bq

0 + 𝐶TI/𝐶tq
0 + 𝐶TI𝐶gate/(𝐶bq

0 𝐶tq
0 ) 
⋅
𝐶gate

𝑒
𝑉gate 

𝑛bot =
(1 + 𝐶TI/𝐶tq

0 )

1 + 𝐶TI/𝐶bq
0 + 𝐶gate/𝐶bq

0 + 𝐶TI/𝐶tq
0 + 𝐶TI𝐶gate/(𝐶bq

0 𝐶tq
0 ) 
⋅
𝐶gate

𝑒
𝑉gate 

(4.12) 
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These equations directly give the amount of charge carriers induced in the top and bottom TSS 
by the back gate with the only parameters being 𝐶TI and initial carrier concentrations in each 
channel. Furthermore, from equation (4.11) it directly follows 

⇒ 
𝑛top

𝑛bot
=

𝐶TI
𝐶bq
0

𝐶TI
𝐶tq
0 + 1

. (S6) 

This result is in accordance with previous reports [40] and describes that the ratio of the gate 
induced charge carriers in top and bottom surface depends on the ratio of quantum capacitances 
of top and bottom TSS. Note that from this expression it is even possible to have 𝑛top

𝑛bot
> 1 which 

means that the majority of the back gate induced charge carriers are located in the top TSS 
rather than the bottom TSS.  

4.6.2 Maximum applicable gate voltages 
For large positive gate voltages 𝑉gate > 45 V the measured conductivity in the experiments 
becomes noisy such that no further data acquisition was possible in this range. From the 
calculations this is also the value we expect the top TSS to come close to the bulk conduction 
band edge. In combination with the clear transition of the transport regime at 𝑉gate = −32 V 
we have experimental indications of the actual size of the band gap 𝐸gap ≈ 260 meV. On the 
other hand, for gate voltages below 𝑉gate < −175 V the leakage current through the SOI 
substrate limits further data acquisition. In the gate voltage range shown in the main text the 
experiments were reproducible. 

4.6.3 Comparison of different samples 
In total, for the current studies we have investigated three different samples with respect to their 
gate-dependent conductivity in the four-tip STM (see Table 4.1). Hereby, sample #1 is the one 
we focus on in the main text. Figure 4.10 shows the full range of experimental data acquired 
for this sample. In detail, for large positive gate voltages 𝑉gate > 45 V the measured 
conductivity becomes very noisy such that no further data acquisition was possible in this range. 
On the other hand, for gate voltages below 𝑉gate < −175 V the leakage current through the SOI 
substrate limits further data acquisition. This behavior was very similar for all samples we 
investigated, indicating the SOI to be limiting factor. In the viable gate-voltage range shown 
the experiments were reproducible for all samples. 

 

Sample # Thickness Composition Transferred via 𝜎total(𝑉gate = 0 V) 

1 10 nm (Bi0.53Sb0.47)2Te3 UHV 0.44 mS □−1 

2 21 nm (Bi0.54Sb0.46)2Te3 UHV 0.98 mS □−1 

3 9 nm (Bi0.66Sb0.34)2Te3 Air 0.40 mS □−1 

Table 4.1. Summary of the different samples analyzed with respect to their gate-dependent 
sheet conductivity in the four-tip STM. 
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Figure 4.10. Full range of experimental gate-dependent conductivity of sample #1. 

 

Figure 4.11 shows the gate-dependent conductivity of a 21 nm thin film of (Bi0.54Sb0.46)2Te3, 
where we find that below 𝑉gate ≈ 35 V the gate-dependent sheet conductivity saturates, while 
for higher gate voltages we see an increase in the conductivity. Hereby, the absolute 
conductivity of this TI film is larger in comparison to sample #1, which we address to the 
composition of sample #2 to be more towards the inherently 𝑛-doped Bi2Te3 and which results 
in even larger carrier concentration than in the already 𝑛-type sample #1. The relative change 
in conductivity of sample #2 in the applicable gate voltage range is however much smaller than 
that of sample #1. This observation would be explained by the bottom channel valence band 
edge to be located close to the Fermi energy already without gating, which seems to be counter-
intuitive due to the expected larger amount of 𝑛-type doping. However, due to the larger film 
thickness, band bending in this sample may play in increased role in the distribution of charges 
throughout the film, possibly explaining this result. Furthermore, the increased thickness of the 
film weakens the capacitive coupling of the top channel with respect to the back gate, which 
can also explain why we do not see the negative curvature of the graph at 𝑉gate > −30 V as 
evident for sample #1 in Fig. 4.10 and which is a direct evidence of the coupled gating of the 
transport channels. 

 

 
Figure 4.11. Experimental gate dependent conductivity of sample #2 (21 nm thin 
(Bi0.54Sb0.46)2Te3, UHV transferred). 

 

Sample #3 is an even more 𝑛-type sample which was transferred through air to the four-tip 
STM. As evident in Fig. 4.12, we do not observe a saturation in the conductivity below a certain 
gate voltage in the applicable gate voltage range which is in contrast to sample #1 and #2. We 
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explain this finding by a large doping of the sample as result of its composition and the exposure 
to ambient conditions on the time scale of a few hours, in agreement with literature  [24, 25, 
46, 47, 48]. In detail, the resulting higher carrier concentration in the film is expected to result 
in the conduction band to cut 𝐸F such that shifting the bands requires larger gate voltages with 
respect to the other samples. In this way, the range of applicable gate voltage resulting from the 
SOI substrate is not sufficient to shift the bands until the Fermi energy coincides with the bottom 
channel valence band edge like in the other samples. The hump in the graph, located at 𝑉gate ≈
−20 V in this course can be explained as the position of the conduction band edge in the bottom 
channel being shifted above 𝐸F. In agreement with this explanation is the higher conductivity 
of this sample in comparison to sample #1 as a result of the larger 𝑛-type carrier concentration 
of sample #3. 

 

 
Figure 4.12. Experimental gate dependent conductivity of sample #3 (10 nm thin 
(Bi0.66Sb0.34)2Te3, transported through air). We do not observe a saturation of the conductivity 
as function of the gate voltage in contrast to sample #1 and #2. 

 

4.7 Conclusion 
From gate-dependent transport measurements, we are able to disentangle the transport through 
different conduction channels of a (Bi0.53Sb0.47)2Te3 thin film, namely the top and the bottom 
TSS channel, as well as the interior of the TI film, in form of a bulk conductivity. Hereby, the 
combination of in situ transport measurements in combination with photoemission 
spectroscopy on the same sample, without exposition to ambient condition, allow us to deduce 
the carrier concentration, and respective mobility, in each of the three channels. The present 
gating and transport models are applicable for a wide range of samples including also thicker 
films. TI samples with a Dirac point located well in the band gap, typically show a local 
minimum in the film conductivity at the transition from n- to p-type transport in the TSS [22], 
which we do not observe in the present sample due to the Dirac point coinciding with the 
valence band edge. Such a behavior can also be reproduced by the present gating and transport 
model and would be of interest for further application of the model in order to determine charge 
carrier properties without the necessity of an external magnetic field. Furthermore, the gating 
effect can in principle depend on the temperature, e.g. due to a temperature dependent screening 
of charges by the film bulk and corresponding measurements could clarify this issue. 
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Chapter 5 Chalcogenide based van der Waals 
epitaxy: Interface conductivity of Tellurium on 
Si(111) 
 

5.1 Introduction 
For the application of TI films in future electronic devices it is important that their TSS, which 
governs the promising electronic properties of TIs, can be addressed individually in devices. In 
the first generation of chalcogenide based van-der Waals TIs (Bi2Se3, Bi2Se3 and Sb2Te3) defect 
induced doping, due to anti-site defects and Te/Se vacancies led to large charge carrier 
concentrations in the crystal bulk, such that bulk conductivity was dominant in these samples 
[38]. This problem has been overcome by refining the crystal preparation methods [63] and use 
of ternary (e.g. BiSbTe3) and quaternary materials (e.g. BiSbTe2Se), in which the defects 
compensate [38], resulting in low bulk carrier concentrations and conductivity. Furthermore, 
the use of ultra-thin films further allows to reduce the influence of the TI bulk on transport.  

For the application of TIs in electronic devices large-scale preparation processes have to be 
established, with the most suitable process being molecular-beam epitaxy (MBE) [64]. A 
prerequisite for MBE growth hereby is a suitable substrate on which the TI films can be grown 
in high quality, where amongst others Si(111) has proven to fulfill this requirement [64]. For 
the growth on Si(111) the substrate surface is however typically passivated to form a template 
for the subsequent van-der Waals growth. As a result, besides the conductivity of the substrate 
itself and the transport channels of TI films, which chapter 4 of this thesis dealt with, the 
substrate interface resulting from the passivation prior to the TI film growth can result in an 
additional parallel conductance channel which potentially bypasses the TSS and undermines its 
application in devices. 

While the Si(111) substrate bulk can be readily optimized to be low conducting by choosing a 
low-doped substrate, the passivation of the Si(111) surface prior to the TI film growth can result 
in a highly conducting interface layer, depending on the used material and exact preparation 
parameters. To name an example, one possible termination of the Si(111) surface is the 
Bi/Si(111)−(√3 × √3) reconstruction [63] which is reported to have a conductivity of up to 
𝜎 = 4 ⋅ 10−3 S/□ [54]. This amount of conductivity is in the range of typical TSS 
conductivities [17] and therefore impracticable for the analysis and further application of the 
TSS properties. The samples used in this thesis are grown on Si(111) substrates which are 
saturated with Te to form a template for the TI film growth. The corresponding conductivity of 
Te on Si(111) is therefore of great interest but we find it not to be reported in literature.  

In this chapter, we report the investigation of the structural, electronic and transport properties 
of the Te saturated Si(111) surface by means of scanning transmission electron microscopy 
(STEM), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and 
four-probe conductivity measurements in the four-tip STM. 
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5.2 Chalcogenide based van der Waals epitaxy: Interface 
conductivity of Tellurium on Si(111) 
The following article has been published in the journal Physical Review B: 

• F. Lüpke, S. Just, G. Bihlmayer, M. Lanius, M. Luysberg, J. Doležal, E. Neumann, V. 
Cherepanov, I. Ošt’ádal, G. Mussler, D. Grützmacher, and B. Voigtländer, 
Chalcogenide based van der Waals epitaxy: Interface conductivity of Tellurium on 
Si(111), Phys. Rev. B 96, 035301 (2017) 

Author contributions: 
F.L., S. J., M.La., M.Ly, V.C., E.N., G.M., D.G. and B.V. conceived the experiments. F.L., 
S.J., J.D., M.L., E.N., M.L and performed the measurements and analyzed the experimental 
data. G.B. performed the theoretical calculations. F.L., M.L., G.B., J.D. wrote the manuscript. 
All authors discussed and commented on the manuscript. 
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Chapter 6 Scanning tunneling potentiometry at 
ultra-thin Bismuth films 
 

6.1 Introduction 
The continuous optimization of electronic devices leads to ever new material designs, e.g. in 
order to make transistors smaller and less power consuming. Hereby, a fundamental limit of the 
power consumption of a transistor is given by its on-off ratio which is limited by defects in the 
corresponding materials and which results in residual resistivity dipoles [65]. 

Considering a single defect, application of a lateral electric field which leads to a net current 
through the sample, leads to a scattering of mobile charge carriers at the defects and thereby to 
the formation of a residual resistivity dipole [65]. While resistivity dipoles can occur at defects 
of different dimensionalities [19, 66, 67], in general quasi-zero-dimensional defects, such as 
atomic vacancies, are the most difficult to control considering the application in devices [68]. 

The underlying mechanism of the formation of resistivity dipoles is the flow of charge carriers 
past the defect with some of the charge carriers are scattered at the defect. The result is an 
equilibrium state where and additional electric field with the shape of a dipole is superimposed 
on the otherwise linear voltage slope across system [19, 65]. The polarity of the superimposed 
electric field is counteracting the transport field and leads to a macroscopically observed 
increase in resistance [19, 52]. Depending on the scattering mechanism involved, the amplitude 
of the resulting resistivity dipoles, and therefore the increase in resistivity, varies. In the 
following, we differentiate between two sources of scattering at the defect [19]: 

• Diffusive transport, corresponding to classical transport 
• Ballistic transport, as described by quantum mechanics. 

While, the evaluation of the dipole amplitude in the diffusive regime leads to a description in 
terms of electrostatics according to Ref. [69], the scattering of ballistic charge carriers was 
described by Rolf Landauer in his commendable paper in 1957 [65]. In detail, the dominant 
transport regime is determined by the relative size of the defect, with radius 𝑎, with respect to 
the mean free path of the charge carriers 𝜆. For 𝜆 ≫ 𝑎 the transport dipole is of quantum 
mechanical nature, and for 𝑎 ≫ 𝜆 the classical limit applies. This concept is depicted 
schematically in Fig. 6.1. As a result, in a sample with defects of different sizes and a suitable 
carrier mean free path, it is possible to investigate the crossover from the classical to the 
quantum transport limit. 

In the present work, we use Bi ultra-thin films in order to investigate the dependence of the 
amplitude of the resistivity dipoles as function of the defect sizes, as Bi bulk crystals are 
reported to have a large mean free path of up to several 100 nm at room temperature. Although, 
this value is reduced in thin films [19, 70], we find Bi films grown on Si(111) to be an excellent 
candidate for the rigorous study of transport around defects, not only due to the proposed large 
mean free path in Bi, but also due to its structural properties when grown on Si(111) resulting 
in a flat film with well-defined scattering centers [19]. We use scanning tunneling potentiometry 
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mask for the resistor network calculations by setting the resistance inside of the voids to be 
infinite, whereas on the terrace surrounding the defect the resistors have values according to the 
film resistivity 𝜌Bi. No additional parameters are required for the calculation of the resulting 
potential distribution. The source code of the calculations can be found in the appendix C.1.2 
of this thesis. The result of the resistor network calculation is shown in Fig. 6.5 (c) with the 
used mask shown in Fig. 6.5 (d). Figure 6.5 (e) shows a section of the sample topography and 
the corresponding measured and calculated potential at the position of a defect, indicated in the 
corresponding maps as white line. The lateral size of the dipole 2𝑎 = 13 nm and the dipole 
amplitude 𝑉dipole = 0.4 mV are determined as the maximum voltage difference of the potential, 
parallel to the current direction which occurs at the boundary of the defects. For this defect, the 
dipole amplitude in the experiments 𝑉dipole and resistor network calculation 𝑉diffusive are in 
very good agreement without any fit parameters included. Thus, we conclude that the transport 
around this defect is in the classical transport regime.  

The next step is the analysis of a several defects of different sizes with respect to their potential 
deviation from the expected diffusive transport behavior. Such a deviation would be an 
indication of a quantum mechanical contribution to the observed resistivity dipole, i.e. the 
Landauer dipole. However, on the one hand the fact that the holes are not circular requires a 
procedure which allows to map the resistivity dipole which we obtain from the resistor network 
calculations and experimental results to the theory of circular defects. One way to do this is the 
calculation of a corresponding defect size 𝑎∗ which one would expect for a hole with the 
calculated diffusive resistivity dipole 𝑉dipole after  

𝑎∗ =
𝑉dipole

𝐸0
. 

To validate this analysis method, one requires e.g. to characterize holes for which one is certain 
that the classical transport regime applies. For such data, the size-dependent resistivity dipoles 
should represent the expected diffusive behavior given by eq. (6.1).  

Another problem in the data analysis is that the mask extracted from the topographic data 
depends on the chosen threshold in the automated void detection and as a result the void size 
which enters the calculations varies. The reason for this is that the hole edges are not perfectly 
sharp in the topographic data but are somewhat rounded as evident in Fig. 6.5 (e). This effect 
we address mainly to the finite radius of the scanning tip. An analysis of the effect of variations 
in the threshold on the resulting diffusive transport data which we calculated from the resistor 
networks, shows that an underestimation of the actual hole size can in principle result in a 
spurious deviation from the diffusive transport model. To exclude the different possible error 
sources in the analysis of the experimental data is an ongoing task which we plan to address by 
additional experiments. In this way, we are confident that it is possible to extract the 
experimental signature of the Landauer dipole around a single hole in the sample surface, which 
would be the first direct experimental evidence of this effect since its prediction 70 years ago. 

6.5 Conclusion 
We have shown that a detailed analysis of transport dipoles at void defects can give access to 
different transport regimes (classical and quantum mechanical). In detail, the two regimes can 
be distinguished in local transport measurements by the dependence of the amplitude of the 
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transport dipoles as a function of the defect size. However, the detailed analysis of the dipole 
amplitudes with the corresponding analytic models turn out to be difficult because these 
theories consider only circular defects and small variations in the defect shapes and sizes can 
have large effects on the resulting expected dipoles. To analyze the experimentally observed 
resistivity dipoles we facilitate resistor network calculations, which are a versatile tool to 
describe the diffusive transport around arbitrary defect geometries and allows us to determine 
the diffusive contribution in the experimentally observed resistivity dipoles. Deviations from 
the expected diffusive resistivity dipoles we expect to be due to the contributions of the 
Landauer dipole.  

While we have obtained promising results in STP experiments in Bi thin films, still some work 
has to be done to establish the understanding of the system under investigation and the 
corresponding theoretical analysis. Especially the detailed analysis of possible error sources in 
the data analysis is an important task. For this purpose, additional experiments such as low 
temperature STP measurements, where the mean free path of the charge carriers is larger, are 
planned. In combination with recent theoretical work [83, 84] these results could further provide 
a model the transition of the scattering at defects between the diffusive and quantum mechanical 
transport regime.  

The establishment of local transport measurements in the ballistic regime opens the route for 
intriguing future experiments. For example, the measurement of an orifice promises the 
investigation of the principles of a quantum point contact in real space [85]. Furthermore, in 
this experiment it is predicted that the Fermi surface can be studied in real space [86, 87, 88]. 
In order to perform such an analysis, measurement at low temperatures are administrable, due 
to the increase in the carrier mean free path [19], better STP measurement resolution [81] and 
reduced thermal broadening. 
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voltages. In detail, a system with 𝑛 × 𝑛 nodes has 2𝑛2 − 𝑛 unknown resistors (without 
considering the boundaries). 

In this chapter, first the mathematical concept of the resistor network is introduced in detail. 
Subsequently, the inverse conductivity problem is discussed and different possibilities which 
allow to find a unique solution to the problem are presented. 

7.2 Forward direction 
The resistance between two neighboring nodes 𝑉𝑞 and 𝑉𝑞′ {𝑞 𝜖 𝑛 × 𝑚} is 𝑅𝑞 𝑞′ with a 
corresponding conductance 𝑆𝑞,𝑞′ = 1/𝑅𝑞,𝑞′ = 𝑆𝑞′,𝑞. As a result, at each node the incoming and 
outgoing currents are 

• 𝐼𝑞−1,𝑞 = (𝑉𝑞−1 − 𝑉𝑞)𝑆𝑞−1,𝑞 
• 𝐼𝑞+1,𝑞 = (𝑉𝑞+1 − 𝑉𝑞)𝑆𝑞+1,𝑞  
• 𝐼𝑞−𝑚,𝑞 = (𝑉𝑞−𝑚 − 𝑉𝑞)𝑆𝑞−𝑚,𝑞  
• 𝐼𝑞+𝑚,𝑞 = (𝑉𝑞+𝑚 − 𝑉𝑞)𝑆𝑞+𝑚,𝑞  

After Kirchhoff’s current law it holds 

𝐼𝑞−1,𝑞 + 𝐼𝑞+1,𝑞 + 𝐼𝑞−𝑚,𝑞 + 𝐼𝑞+𝑚,𝑞 = 𝐼𝑞 = 0 A 

corresponding to 

(𝑉𝑞−1 − 𝑉𝑞)𝑆𝑞−1,𝑞 + (𝑉𝑞+1 − 𝑉𝑞)𝑆𝑞+1,𝑞 + (𝑉𝑞−𝑚 − 𝑉𝑞)𝑆𝑞−𝑚,𝑞 + (𝑉𝑞+𝑚 − 𝑉𝑞)𝑆𝑞+𝑚,𝑞 = 0 A 

which in matrix notation is 

𝑆 𝑽 = 𝑰 = 𝟎 (7.2) 

 

corresponds to Ohm’s law. Hereby, 𝑆 is a sparse matrix with less than 4𝑚𝑛 finite entries and 
the respective matrix dimensions in eq. (7.2) are as follows: 

dim(𝑆) = (mn)2 

dim(𝑽) = mn 

dim(𝑰) = mn 

Note that Kirchhoff’s law is only valid in the interior of the resistor network. If we would not 
allow any current to flow in or out of our resistor network, the result will only be a trivial 
solution of the system which has a constant potential at all nodes of the network as results. 
Therefore, at the boundary of the resistor network we allow finite currents to occur, typically 
on one side of the network incoming and on the opposite side outgoing. Hereby, the number of 
nodes where the current is injected is arbitrary but is typically one of two cases: A single node, 
corresponding to a point contact, or an entire side of the resistor network, corresponding to a 
parallel current flow. In either case, the sum of all incoming and outgoing currents has to vanish, 
according to Kirchhoff’s law.  
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7.2.1 𝟑 × 𝟑 Resistor Network 
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Note how in the sparse matrix the individual conductivities appear at the position in the matrix 
according to their numeration, e.g. 𝑆2,5 is in row 2, column 5 of the matrix. On the diagonal the 
sum of the adjacent conductivities to that respective node are entered with negative sign. As a 
result, each line and each row of the matrix adds up to zero, which corresponds again to 
Kirchhoff’s law. The voltage distribution resulting for this system is readily found by entering 
the corresponding values of 𝑆𝑞,𝑞′ into the matrix, inverting it numerically and calculating the 
right side of the equation system according to eq. (7.1). The result for all resistors of 
conductivity 𝑆𝑞,𝑞′ =

3

2
 Ω−1 is shown in Fig. 7.3 

 

Figure 7.3. Voltage drop across the 3 × 3 resistor network resulting from the system shown in 
Fig. 7.2 with 𝑆𝑞,𝑞′ =

3

2
Ω−1 . 

 

7.2.2 Resistor network with quasi-one-dimensional defects 
The application of the above scheme for larger resistor networks and with resistor distributions 
corresponding to a current flow around circular defects was shown in chapter 3 and 6 of this 
thesis. However, one can also calculate the potential distributions resulting from quasi-one-
dimensional defects corresponding to e.g. steps on a sample surface [16]. An example of the 
voltage drop at a corresponding test structure, in this case a step which results in an increased 
resistance along a line with a bulge, is given in Fig. 7.4 (a). From this resistor network one can 
further extract the local current in the two spatial dimensions 𝑗𝑥 and 𝑗𝑦, the local absolute current 
𝑗abs = √𝑗𝑥

2 + 𝑗𝑦
2 and the local current direction 𝜔 = arctan(𝑗𝑦/𝑗𝑥) which are shown in Fig. 7.4 

(b)-(e). This makes resistor network a powerful tool for the analysis of coresponding 
experimental data, as these quantities are typically not directly accessible otherwise. 
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network are given but the voltages at the nodal points. For addressing this problem, we need to 
rewrite eq. (7.1): 

𝑉 𝑺 = 𝑰 (7.3) 

 

Namely, 𝑺 is now the vector of unknown conductivities and 𝑉 is the matrix where we enter the 
known node potentials. The problem can then be solved by inverting 𝑉, such that 

𝑺 = 𝑉−1𝑰. 

The problem hereby is, as mentioned before, that due to the underdetermined system, the 
inverse of 𝑉 is generally not unique. Graphically speaking, after entering all the equations we 
receive from applying Kirchhoff’s current law to the system, the matrix 𝑉 has more columns 
than it has rows. In order to make the system uniquely solvable, there are two possibilities: 

• Decrease the number of unknown parameters by putting further restrictions on the 
system, e.g. by fixing some of the conductivities, 

• Increase the number of linearly independent equations which describe the system, e.g. 
by additional measurements. 

In general, the stronger the restrictions on the system are, the easier it is to solve. For example, 
using the symmetry of a two-dimensional system to reduce it to a one-dimensional problem 
results in a system which can be readily solved as demonstrated e.g. in Ref. [90]. However, in 
order to keep the solution as general as possible, the smallest possible amount of restrictions 
should be put on the system. In this way, instead of introducing further conditions, here it is 
possible to find a unique solution for the problem without further restrictions, by combining 
two measurements of the same system [91]. 

In detail, one needs to record another set of voltages 𝑉 which fulfil eq. (7.3) with the same set 
of conductivities 𝑺. Experimentally speaking, this corresponds to another measurement of the 
same sample area. However, because to get additional information about the system, this 
additional set of equations must be linearly independent from the first set of equations. This 
means that multiple measurements with the same current direction, with different absolute 
amount of current, will not give additional information about the underlying set of 
conductivities. Instead, one requires a measurement at a different current direction through the 
sample under investigation. In principle, the relation of the current directions is arbitrary as long 
as they are not identical, however, experimentally it makes sense to choose perpendicular 
current directions in order to minimize the overlap of the two data sets. Furthermore, in two 
dimensions additional data sets beyond two current directions, again will not add new 
information about the system because all current directions can be written as a linear 
combination of the first two. Additional measurements of linearly dependent data sets will 
therefore only decrease statistical measurement errors, which is however typically better done 
by fewer but therefore more precise measurements.  

Below we present the corresponding MATLAB script, which performs the calculation of a 
conductivity map from two previously simulated potential maps of perpendicular overall 
current direction. The script is applied to two different problems: 

• A conductivity profile originally proposed by Wang et al. [91], corresponding to e.g. an 
island on a thin film. 
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calculations to real experiments was not successful up to this point. The reaction of the 
calculations upon errors in the measurement data can be determined by the so-called condition 
number of the matrix 𝑉 [92] which is defined as 

𝜅(𝑉) = ||𝑉|| ⋅ ||𝑉−1 ||. 

The condition number gives an estimate of the maximum error in the vector 𝑆 when the 
measurements in 𝑉 are subjected to errors. In mathematical terms: Be ||𝑒|| the error of the exact 
solution ||𝑆|| for eq. (7.3). Then for errors in the matrix 𝑉, with �̃� an approximate solution for 
the disturbed matrix �̃�, meaning 

�̃��̃� = 𝑰, 

the relative error of the solution is  

||𝒆||

||𝑺||
= 𝜅(𝑉)

||𝑉 − �̃�||

||𝑉||
+ Ο(||𝑉 − �̃�||2), 

for ||𝑉 − �̃�|| → 0 [93]. Simply speaking, for an ideal system 𝜅(𝑉) = 1, which means that the 
relative error in the solution equals the relative error in the data [93]. Hereby, the condition 
number can be interpreted as a factor by which the relative error in the measurement is scaled 
with respect to the final result. 

In order to optimize the solution of the inverse conductivity problem one should therefore 
minimize the condition of the respective matrix, which however varies for different problems 
and therefore sets of equations. For example, for systems like the Ag/Si(111)−(√3 × √3) 
surface reconstruction, where the resistivity of the sample surface is dominated by step edges 
the voltage slope across the terraces is very small. In such systems, small amounts of noise in 
the measured potential maps lead to large variations in the local potential slope and therefore 
typically result in large relative errors when trying to compute the corresponding conductivity 
on the terraces. 

Furthermore, 𝑉 is typically non-square as a result of the structure of the resistor network. In this 
case, the inverse matrix 𝑉−1 can be determined by a singular value decomposition 

𝑉 = 𝐴Σ𝐵∗ 

⇔ 𝑉−1  = 𝐵Σ−1𝐴∗, 

where Σ is a diagonal matrix with its diagonal elements being the singular values of 𝑉 [94]. The 
singular value matrix Σ has the same condition as 𝑉 and 𝐴 and 𝐵 are unitary matrices, meaning 
that the inverse of 𝐴 and 𝐵 is equal to their conjugate transpose 𝐴∗ and 𝐵∗, which makes the 
calculation of the inverse of 𝑉 and therefore also its condition easy. 

Below we show the effect of noise in the measurement data on the resulting conductivity 
distribution by introducing an artificial relative noise of 1% rms on the voltage maps in the test 
system from chapter 7.3.1. The resulting noise in the calculated conductivity is 15% rms with 
respect to the conductivity resulting from the voltage data without noise added on top. The 
results of this calculation are shown in Fig. 7.8. Hereby, the system size is 21 × 21 nodes and 
𝑐𝑜𝑛𝑑(𝑉) ≈ 35. 
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Figure 7.8. Conductivity distribution resulting from 𝟏% 𝐫𝐦𝐬 noise in the voltage data. (a) 
and (b) input voltage data with added 1% rms on top of the data. System size 21 × 21 nodes. 
(c) and (d) resulting conductivity distributions from (a) and (b). The noise level is 15% rms 
with respect to the result from the voltage data without noise. 

 

In order to enhance the noise performance of the inverse conductivity calculation, without 
putting further restrictions on the system, the condition of the matrix 𝑉 should be enhanced. To 
do so, there are different methods reported in literature, such as the Tikhonov regularization 
which can in principle be readily applied in terms of the singular value matrix [95]. These 
optimizations of the present work are planned for the near future with the ultimate goal of a 
successful application on experimental data. The present calculation method is of great interest 
for the application to STP data, because it allows to deduce unprecedented information directly 
from the experimental data. 

7.4 Conclusion 
Resistor network calculations are a versatile tool when it comes to the analysis of locally 
resolved transport measurements of nanostructures. In detail, they can provide a toolset to 
overcome the problem that potential maps along are a priori not sufficient to determine the 
exact current paths in the sample under investigation. However, by fitting a resistor network 
with the corresponding geometry to the experimental data one can deduce local current 
direction and amplitudes. By such an analysis different kinds of defect geometries can be 
analyzed with great detail, providing important information about the sample material 
properties. The successful application of the technique was demonstrated in chapter 3 of this 
thesis. 

An ultimate goal would be the direct calculation of the resistivity profile throughout the sample 
from voltage maps, acquired by STP experiments, by inverse conductivity calculations. For the 
application of the inverse method to experimental data Bi thin films on Si(111) would be a 
promising system. In this sample, under the correct preparation procedure [42], highly 
conducting domains can be embedded in an otherwise low conducting film and vice versa. 
Furthermore, Bi thin films have proven to be excellent candidates to perform STP 
measurements due to high measurement resolution and good contact stability with the current 
injecting tips.  

As a further outlook, higher-dimensional resistor networks are possible to implement in the 
same way as presented here. Just to name one example of a possible application: A three-
dimensional resistor network allows to calculate the potential distribution at the sample surface 
for a defect which is buried underneath. While details will not be discussed here, the code 
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required for calculations in three-dimensional resistor networks can also be found in the 
appendix. 

All MATLAB codes for the calculations shown in this thesis can be found in appendix C. 
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Chapter 8 Conclusion and Outlook 
 

As shown in this thesis, in situ transport measurements by STP are a powerful tool which allows 
the characterization of samples, e.g. epitaxial thin films, with unprecedented spatial and 
potential resolution. By only changing the software of the electronic controller, we reported 
here the successful implementation of STP into a four-tip STM setup. As a result, a 
corresponding ‘upgrade’ of similar experimental setups can be performed in a very simple and 
cost-efficient way. 

Based on this technique we have further developed a four-probe measurement method where 
all the contacts required to perform a multi-probe measurement can be held in tunneling contact. 
This novel measurement technique enables truly non-invasive in situ transport measurements, 
which are of interest especially for fragile samples, e.g. surface terminations of reconstructed 
semiconductor surface. This technique is furthermore promising for applications in electronics 
industry, e.g. to control products between individual processing steps without damaging them. 
For this reason, we have filed the application for a corresponding patent. 

A major advantage of the resulting experimental setup compared to traditional approaches are 
the possibility of in situ combination of different surface analysis tools such as LEED and 
ARPES. Hereby, the general limitation of comparability between in situ spectroscopic 
measurements and ex situ transport measurements, due to the altering of samples under ambient 
condition and lithography steps can be overcome. 

This approach is applied to topological insulator thin films, where we performed STP in 
combination with ARPES to get a thorough understanding of the conductance through the film 
under investigation, as shown in chapter 3 of the thesis. In detail, by performing ARPES we are 
able to determine the filling level of the TSS on the top of the sample which is an important 
factor in the corresponding transport measurements, because in this way we are able to identify 
the fraction of the current transmitted by the TSS on the top surface of the thin film, which is 
important to analyze the STP data. Furthermore, spin-polarized ARPES measurements ensure 
that the surface state inherits the spin-momentum locking expected for a topological insulator. 
When performing STP measurements we find three different kinds of defects to result in a local 
voltage drop: Step edges, domain boundaries and void defects. Hereby, we find the resistance 
of the domain boundaries to be almost four times larger than that of the step edges and thereby 
the dominant defect induced contribution to the transport. The resistance of void defects we 
determined by use of resistor network calculation where we find their contribution to the overall 
resistance to be small compared to the other defects. In total, the defects make up 44% of the 
total voltage drop across the sample. The remaining 56% occur on the flat terraces and are 
attributed to electron-phonon scattering and defects below the resolution of our transport 
experiments. 

In general, it is important to analyze all the conduction channels with respect to their 
contribution to the overall conduction through the sample. Such a detailed analysis we presented 
in chapter 4 of the thesis, where we used again a full in situ approach and combine ARPES and 
transport measurements on a TI thin film. For the transport measurements we facilitated a newly 
developed sample design which enables gating of the sample while performing transport 
measurements. The results of these measurements we analyze with respect to a model we 
developed and which in combination with the ARPES results allows us to deduce transport 
properties of the individual transport channels in the TI film, such as carrier concentrations with 
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and without gating as well as the carrier mobilities in the two TSS channels. In this context we 
have performed band bending calculations, from which we find that due to the high dielectric 
constant in the TI film and the presence of two surfaces, in which the position of the bands 
relative to the Fermi energy depends on the filling of the Dirac cones, the bands throughout the 
film are rather flat. To calculate the effect of the application of a gate voltage on the TSS channel 
at the top and bottom of the film in unprecedented detail, we have further performed 
calculations based on a gating model which includes the quantum capacitance of the TSS, which 
results due to the respective low density of states, and the coupling between the top and bottom 
surface state. Analyzing the gate dependent transport data with this model gives us a conclusive 
picture of the transport properties in these TI thin films. 

We have further analyzed another transport channel of TI thin film samples which is formed at 
the substrate interface during the epitaxial growth of the films. In detail, we have shown by a 
combination of STEM, LEED and DFT calculations that the Te passivation of the Si(111) 
substrate results in a Te/Si(111)−(1 × 1) termination of the substrate as shown in chapter 5 of 
the thesis. Due to the Te atoms forming one bond to the directly underlying Si atom, an a priori 
net positive charge, corresponding to a two-dimensional hole-gas is expected to be present at 
the substrate surface. This consideration is reflected in a metallic band structure as determined 
from DFT calculations. Preparation of the sole Te/Si(111)−(1 × 1) substrate termination and 
analysis by in situ distance dependent transport measurements in the four-tip STM results in a 
conductivity which is relatively low compared to the typical conductivity of the TSS transport 
channels, despite the predicted metallic bands. We explain this finding by the relatively high 
surface roughness which we observe in STM measurements and which is the result of an initial 
HF etching procedure of the sample substrate. Nevertheless, the TI films grown on the substrate 
are very smooth and of high crystalline quality. 

As shown in chapter 6 of the thesis it is possible to further disentangle classical transport and 
quantum mechanical transport in a sample by measurement of void defects of different sizes. 
To do so we performed STP measurements on Bi ultra-thin films, which host naturally such 
defects with a variety of sizes. A lateral current through the sample then results in the formation 
of resistivity dipoles at the defects, their amplitude depends on the transport regime at the 
respective defect – classical transport if the defect size is larger than the carrier mean free path 
and quantum mechanical when the defect size is smaller than the mean free path. In this way 
we are able to characterize the transition between the two transport regimes by measurement 
different sizes of defects. This furthermore allows us to extract parameters like the mean free 
path and 𝑘F from the measurements. 

For the detailed analysis of the size dependent resistivity dipoles, resistor network calculations 
are an important tool because a previous analytic theory only considers circular defects and 
variations in the defect shape can result in significant changes in the respective dipole 
amplitudes. 

Chapter 7 of the thesis documents the basic principle of the resistor network calculations used 
throughout the thesis, which is based on Kirchhoff’s current law and results in a linear equation 
system. As a result, it is possible to calculate the potential distribution resulting from an 
arbitrary distribution of resistances in a system under flow of a current in up to three-
dimensions. The resulting potential distributions can be compared to transport measurements 
and pose an important tool for the understanding and analysis of experimental transport data as 
evident in chapter 3 and 6 of the thesis. While the calculation of a potential distribution from a 
given set of resistors and a current is relatively straight forward, it only allows to fit 
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experimental data by adjusting the resistor distribution and then comparing the resulting 
potentials to those observed in the experiments. More convenient would be the straight-forward 
determination of the sample resistivity from a given potential distribution – the so called inverse 
conductivity problem.  

The aim of the inverse conductivity problem is to determine the distribution of resistances in a 
structure under investigation only from the potentials measured at its surface which, without 
constraining the system, results in an underdetermined problem. Our approach to solve this 
problem for a two-dimensional resistor network is the measurement of the same resistor 
distribution under two different, ideally perpendicular, current directions which gives enough 
information to solve the corresponding linear equation system. While we have proven that this 
procedure works in theory, it is susceptible to noise in the potential data sets, which quickly 
leads to a divergence of the solution and thereby to unphysical results. To address this problem, 
it is planned to condition the equation system such that noise will have less influence on the 
solution. After that, the application of the procedure to experimental data, e.g. from STP 
measurements of Bi thin films on Si(111) in planned. 

Plans for future in situ transport studies include the utilization of a low-temperature four-tip 
STM which will be operational soon and allows to perform four-probe measurements and STP 
at a temperature of down to 4 K. The low temperatures freeze out bulk charge carriers in 
semiconductor substrates as well as the interior of TI samples, reducing drastically their impact 
in transport measurements. In this way the transport properties of interest will be better 
accessible allowing even more detailed studies of their properties. In detail, the phonon 
scattering at low temperatures is much lower than at room temperature, leading to increase 
mean free path of the charge carriers, giving better access to quantum mechanical effects. To 
determine e.g. the Fermi wave vector 𝑘F by studying the size dependent residual resistivity 
dipoles would therefore be much easier. Furthermore, low temperatures generally result in a 
more stable system concerning the drift of the STM units but also the stability of the tunneling 
tips and the achievable energy resolution. As a result, on the one hand spatially more precise 
measurements can be realized (smaller scan areas, slower scan speed) and much sharper 
spectroscopic features can be analyzed e.g. in tunneling spectroscopy due to the Fermi 
distribution in tip and sample being much narrower as at room temperature. Concerning the 
STP measurements, the low temperature results in a decrease in the noise of the measured 
voltage, which enhances the potential resolution even further. 

The low temperature four-tip STM setup contains also a magnet, which allows application of a 
magnetic field perpendicular to the sample plane of up to 8 T. In this way it will be possible to 
cover the full spectrum of magneto-transport measurements under UHV conditions, including 
measurements of the Hall effect, weak (anti-)localization, Shubnikov-de-Haas oscillations and 
many more. In STP measurements, the combination of large mean-free paths and magnetic 
fields should further lead to the opportunity to directly observe spatial variations at the sample 
surface due to the Aharonov-Bohm effect. 
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9.1 Resulting from the present thesis 
The numbering is according to the chapters of this thesis from which the publications result, 
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1. F. Lüpke, S. Korte, V. Cherepanov, and B. Voigtländer, Scanning tunneling 
potentiometry implemented into a multi-tip setup by software. Rev. Sci. Instr. 86, 
123701 (2015) 
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Submitted to Journal of Physics: Condensed Matter 
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quantum to classical transport imaged in real space. In preparation. 

 

9.2 Others 
• F. Lüpke, S. Manni, S. C. Erwin, I. I. Mazin, P. Gegenwart, and M. Wenderoth. Highly 

unconventional surface reconstruction of Na2IrO3 with persistent energy gap. Phys. Rev. 
B 91, 041405(R) (2015) 
 

• T. Druga, M. Wenderoth, F. Lüpke, and R. G. Ulbrich, Graphene-metal contact 
resistivity on semi-insulating 6H-SiC(0001) measured with Kelvin probe force 
microscopy Appl. Phys. Lett. 103, 051601 (2013) 



98 
 

 

 

 

 

 

  



99 
 

Bibliography 
 

[1]  G. E. Moore, Cramming more components onto integrated circuits, Electronics 38, 8 
(1965) 

[2]  G. E. Moore, Progress in digital integrated electronics, IEEE Solid-State Circuits Society 
Newsletter 20 (2015) 

[3]  T. Bradshaw, Intel chief raises doubts over Moore’s Law, Financial Times (2015)  

[4]  R. Waters, As Intel co-founder's law slows, a rethinking of the chip is needed, Financial 
Times (2015) 

[5]  J. Niccolai, Intel pushes 10 nm chip-making process to 2017, slowing Moore's Law, 
Infoworld (2015)  

[6]  M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. L. 
Hollenberg, G. Klimeck, and M. Y. Simmons, A single-atom transistor, Nat. 
Nanotechnol. 7, 242-246 (2012) 

[7]  T. Schäpers, Semiconductor spintronics, Walter de Gruyter GmbH & Co KG (2016) 

[8]  D. P. DiVincenzo, Quantum computation, Science 270, 255-261 (1995) 

[9]  C. L. Kane and E. J. Mele, Z2 Topological order and the quantum spin hall effect, Phys. 
Rev. Lett. 95, 146802 (2005) 

[10]  C. Jozwiak, Y. L. Chen, A. V. Fedorov, J. G. Analytis, C. R. Rotundu, A. K. Schmid, and 
J. D. Denlinger, Y.-D. Chuang, D.-H. Lee, I. R. Fisher, R. J. Birgeneau, Z.-X. Shen, Z. 
Hussain, and A. Lanzara, Widespread spin polarization effects in photoemission from 
topological insulators, Phys. Rev. B 84, 165113 (2011)  

[11]  L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions, Phys. 
Rev. Lett. 100, 096407 (2008)  

[12]  M. B. Hastings and A. Geller, Reduced space-time and time sonsts using dislocation 
codes, Quantum Information and Computation 15, 962-986 (2015) 

[13]  A.Yu. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2–
30 (2003) 

[14]  E. Gibney, Quantum computer gets design upgrade, Nature 541, 447-448 (2017) 

[15]  P. Willke, T. Druga, R. G. Ulbrich, M. A. Schneider, and M. Wenderoth, Spatial extend 
of Landauer resistivity dipole in graphene quantified by scanning tunnelling 
potentiometry, Nat. Commun. 6, 6399 (2015)  

[16]  J. Homoth, M. Wenderoth, T. Druga, L. Winking, R. G. Ulbrich, C. A. Bobisch, B. 
Weyers, A. Bannani, E. Zubkov, A. M. Bernhart, M. R. Kaspers, and R. Möller, Electron 
transport on the nanoscale: ballistic transmission and Ohm’s law, Nano Lett. 9, 1588–
1592 (2009) 

[17]  S. Bauer and C. A. Bobisch, Nanoscale electron transport at the surface of a topological 
insulator, Nat. Commun. 7, 11381 (2016) 



100 
 

 

[18]  R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic 
conduction, IBM Journal of Research and Development 1, 223-231 (1957)   

[19]  R. M. Feenstra and B. G. Briner, The search for residual resistivity dipoles by scanning 
tunneling, Superlattices and Microstructures 23, 699-709 (1998)  

[20]  D. K. Schroder, Semiconductor material and device characterization, John Wiley & Sons 
(2006) 

[21]  T. Druga, M. Wenderoth, J. Homoth, M. A. Schneider, and R. G. Ulbrich, A versatile 
Scanning tunneling potentionmetry implemetation, Rev. Sci. Instr. 81, 083704 (2010) 

[22]  L. He, X. Kou, M. Lang, E. S. Choi, Y. Jiang, T. Nie, W. Jiang, Y. Fan, Y. Wang, F. Xiu, 
and K. L. Wang, Evidence of the two surface states of (Bi0.53Sb0.47)2Te3, Sci. Rep. 3, 3406 
(2013) 

[23]  V. Cherepanov, E. Zubkov, H. Junker, S. Korte, M. Blab, P. Coenen, and Bert 
Voigtländer, Ultra compact multitip scanning tunneling microscope with a diameter of 50 
mm, Rev. Sci. Instr. 83, 033707 (2012) 

[24]  J. G. Analytis, J.-H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and Ian R. 
Fisher, Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison 
of photoemission and Shubnikov–de Haas measurements, Phys. Rev. B 81, 205407 (2010)  

[25]  D. Kong, J. J. Cha, K. Lai, H. Peng, J. G. Analytis, S. Meister, Y. Chen, H.-J. Zhang, I. 
R. Fisher, Z.-X. Shen, and Y. Cui, Rapid surface oxidation as a source of surface 
degradation factor for Bi2Se3, ACS Nano 5, 4698-4703 (2011) 

[26]  P. Muralt and D. W. Pohl, Scanning tunneling potentiometry, Appl. Phys. Lett. 48, 514 
(1986) 

[27]  R. Hobara, N. Nagamura and S. Hasegawa, Variable temperature independently driven 
four-tip STM, Rev. Sci. Instr. 78, 053705 (2007) 

[28]  D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological 
Dirac insulator in a quantum spin hall phase, Nature 452, 970-974 (2008)  

[29]  M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 
3045 (2010) 

[30]  Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. 
Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Experimental 
realization of a three-dimensional topological insulator, Bi2Te3, Science 325, 178-181 
(2009)  

[31]  P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D Qian, A Richardella, M. Z. 
Hasan, R. J. Cava, and A. Yazdani, Topological surface states protected from 
backscattering by chiral spin texture, Nature 460, 1106-1109 (2009)  

[32]  H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators 
in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5, 438-
442 (2009) 

[33]  D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. 
Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. 



101 
 

Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport 
regime, Nature 460, 1101-1105 (2009)  

[34]  Y. Jiang, Y. Wang, M. Chen, Z. Li, C. Song, K. He, L. Wang, X. Chen, X. Ma, and Q.-
K. Xue, Landau quantization and the thickness limit of topological insulator thin films of 
Sb2Te3, Phys. Rev. Lett. 108, 016401 (2012)  

[35]  Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Yoichi Ando, Large bulk resistivity and 
surface quantum oscillations in the topological insulator Bi2Te2Se, Phys. Rev. B 82, 
241306(R) (2010) 

[36]  D. Kong, Y. Chen, J. J. Cha, Q. Zhang, J. G. Analytis, K. Lai, Z. Liu, S. S. Hong, K. 
J. Koski, S.-K. Mo, Z. Hussain, I. R. Fisher, Z.-X. Shen, and Y. Cui, Ambipolar field 
effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning, Nat. 
Nanotechnol. 6, 705-709 (2011) 

[37]  A. A. Taskin, Z. Ren, S. Sasaki, K. Segawa, and Yoichi Ando, Observation of Dirac holes 
and electrons in a topological insulator, Phys. Rev. Lett. 107, 016801 (2011)  

[38]  J. Zhang, C.-Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. 
Chen, Q.-K. Xue, X. Ma, and Y. Wang, Band structure engineering in (Bi1-xSbx)2Te3 
ternary topological insulators, Nat. Commun. 2, 574 (2011)  

[39]  D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, S. Adam, J. Paglione, and M. S. 
Fuhrer, Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3, Nat. 
Phys. 8, 459-463 (2012) 

[40]  F. Yang, A. A. Taskin, S. Sasaki, K. Segawa, Y. Ohno, K. Matsumoto, and Y. Ando, 
Dual-gated topological insulator thin-film device for efficient Fermi-level tuning, ACS 
Nano, 9, 4050-4055 (2015) 

[41]  V. Fatemi, B. Hunt, H. Steinberg, S. L. Eltinge, F. Mahmood, N. P. Butch, K. Watanabe, 
T. Taniguchi, N. Gedik, R. C. Ashoori, and P. Jarillo-Herrero, Electrostatic coupling 
between two Surfaces of a topological insulator Nanodevice, Phys. Rev. Lett. 113, 206801 
(2014) 

[42]  N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New 
York (1976)  

[43]  M. Eschbach, E. Młyńczak, J. Kellner, J. Kampmeier, M. Lanius, E. Neumann, C. 
Weyrich, M. Gehlmann, P. Gospodarič, S. Döring, G. Mussler, N. Demarina, M. 
Luysberg, G. Bihlmayer, T. Schäpers, L. Plucinski, S. Blügel, M. Morgenstern, C. M. 
Schneider, and D. Grützmacher, Realization of a vertical topological p–n junction in 
epitaxial Sb2Te3/Bi2Te3 heterostructures, Nat. Commun. 6, 8816 (2015)  

[44]  C. Weyrich, M. Drögeler, J. Kampmeier, M. Eschbach, G. Mussler, T. Merzenich, T. 
Stoica, I. E. Batov, J. Schubert, L. Plucinski, B. Beschoten, C. M. Schneider, C. Stampfer, 
D. Grützmacher, and T. Schäpers, Growth, characterization, and transport properties of 
ternary (Bi1−xSbx)2Te3 topological insulator layers, J. Phys. Condens. Matter 28, 495501 
(2016) 

[45]  F. Lüpke, S. Just, G. Bihlmayer, M. Lanius, M. Luysberg, J. Doležal, E. Neumann, V. 
Cherepanov, I. Ošt'ádal, G. Mussler, D. Grützmacher, and Bert Voigtländer, 



102 
 

 

Chalcogenide-based van der Waals epitaxy: Interface conductivity of tellurium on 
Si(111), Phys. Rev. B 96, 035301 (2017)  

[46]  J. G. Analytis, J.-H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and Ian R. 
Fisher, Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison 
of photoemission and Shubnikov–de Haas measurements, Phys. Rev. B 81, 205407 (2010)  

[47]  C. Durand, X.-G. Zhang, S. M. Hus, C. Ma, M. A. McGuire, Y. Xu, H. Cao, I. 
Miotkowski, Y. P. Chen, and An-Ping Li, Differentiation of surface and bulk 
conductivities in topological insulators via four-probe spectroscopy, Nano Lett. 16, 2213-
2220 (2016)  

[48]  M. Brahlek, Y. S. Kim, N. Bansal, E. Edrey, and S. Oh, Surface versus bulk state in 
topological insulator Bi2Se3 under environmental disorder, Appl. Phys. Lett. 99, 012109 
(2011) 

[49]  S. H. Park, S. Y. Hamh, J. Park, J. S. Kim, and J. S. Lee, Possible flat band bending of 
the Bi1.5Sb0.5Te1.7Se1.3 crystal cleaved in an ambient air probed by terahertz emission 
spectroscopy, Sci. Rep. 6, 36343 (2016) 

[50]  R. R. Biswas and A. V. Balatsky, Scattering from surface step edges in strong topological 
insulators, Phys. Rev. B 83, 075439 (2011) 

[51]  M. Alos-Palop, R. P. Tiwari, and M. Blaauboer, Suppression of conductance in a 
topological insulator nanostep junction, Phys. Rev. B 87, 035432 (2013) 

[52]  J. Seo, P. Roushan, H. Beidenkopf, Y. S. Hor, R. J. Cava, and A. Yazdani, Transmission 
of topological surface states through surface barriers, Nature 466, 343-346 (2010) 

[53]  F. Lüpke, M. Eschbach, T. Heider, M. Lanius, P. Schüffelgen, D. Rosenbach, N. van den 
Driesch, V. Cherepanov, G. Mussler, L. Plucinski, D. Grützmacher, C. M. Schneider, and 
B. Voigtländer, Electrical resistance of individual defects at a topological insulator 
surface, Nat. Commun. 8, 15704 (2017) 

[54]  Y. Zhang, K. He, C.-Zu Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. 
Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, 
Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional 
limit, Nat. Phys. 6, 584-588 (2010) 

[54]  S. Just, M. Blab, S. Korte, V. Cherepanov, H. Soltner, and Bert Voigtländer,  Surface and 
step conductivity on Si(111) surfaces, Phys. Rev. Lett. 115, 066801 (2015) 

[55]  L. He, F. Xiu, X. Yu, M. Teague, Wanjun, Jiang, Y. Fan, X. Kou, M. Lang, Y. Wang, G. 
Huang, N.-C. Yeh, and K. L. Wang, Surface-Dominated Conduction in a 6 nm thick 
Bi2Se3 Thin Film, Nano Lett. 12, 1486-1490 (2012)  

[56]  X. He, T. Guan, X. Wang, B. Feng, P. Cheng, L. Chen, Y. Li, and K. Wu, Highly tunable 
electron transport in epitaxial topological insulator (Bi1-xSbx)2Te3 thin films, Appl. Phys. 
Lett. 101, 123111 (2012) 

[57]  L. Barreto, L. Kühnemund, F. Edler, C. Tegenkamp, J. Mi, M. Bremholm, B. B. Iversen, 
C. Frydendahl, M. Bianchi, and P. Hofmann, Surface-dominated transport on a bulk 
topological insulator, Nano Lett. 14, 3755-3760 (2014) 



103 
 

[58]  S. Datta, Lessons from nanoelectronics: a new perspective on transport, World Scientific 
Publishing Company (2012) 

[59]  S. Luryi, Quantum capacitance devices, Appl. Phys. Lett. 52, 501 (1988) 

[60]  S. Just, H. Soltner, S. Korte, V. Cherepanov, and Bert Voigtländer, Surface conductivity 
of Si(100) and Ge(100) surfaces determined from four-point transport measurements 
using an analytical N-layer conductance model, Phys. Rev. B 95, 075310 (2017) 

[61]  F. Xiu, L. He, Y. Wang, L. Cheng, L.-T. Chang, M. Lang, G. Huang, X. Kou, Y. Zhou, 
X. Jiang, Z. Chen, J. Zou, A. Shailos, and K. L. Wang, Manipulating surface states in 
topological insulator nanoribbons, Nat. Nanotech. 6, 216-221 (2011) 

[62]  G. Gupta, M. B. A. Jalil, and G. Liang, Evaluation of mobility in thin Bi2Se3 topological 
insulator for prospects of local electrical interconnects, Sci. Rep. 4, 6838 (2014)  

[63]  N. Fukui, R. Hobara, T. Hirahara, S. Hasegawa, Y. Miyatake, H. Mizuno, T. Sasaki, and 
T. Nagamura, In situ microfabrication and measurements of Bi2Se3 ultrathin films in a  
multichamber system with a focused ion beam, molecular beam epitaxy, and four-tip 
scanning tunneling microscope, e-J. Surf. Sci. Nanotech. 12, 423-430 (2014) 

[64]  S. Borisova, J. Krumrain, M. Luysberg, G. Mussler, and D. Grützmacher, Mode of growth 
of ultrathin topological insulator Bi2Te3 films on Si(111), Cryst. Growth Des. 12, 6098-
6103 (2012) 

[65]  R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic 
conduction, IBM J. Res. Dev. 1, 223-231 (1957) 

[66]  A. Knäbchen, Electron transport through planar defects: a new description of grain 
boundary scattering, J. Phys.: Condens. Matter 3, 6989-6999 (1991) 

[67]  S. Datta, Electronic transport in mesoscopic systems, Cambridge University Press (1997) 

[68]  P. Ehrhart, Properties and interactions of atomic defects in metals and alloys, Springer 
(1991)  

[69]  J. D. Jackson, Classical Electrodynamics, Wiley (2007) 

[70]  T. Hirahara, I. Matsudab, S. Yamazakib, N. Miyata, and S. Hasegawa, Large surface-state 
conductivity in ultrathin Bi films, Appl. Phys. Lett. 91, 202106 (2007) 

[71]  T. Nagao, S. Yaginuma, M. Saito, T. Kogure, J. T. Sadowski, T. Ohno, S. Hasegawa, and 
T. Sakurai, Strong lateral growth and crystallization via two dimensional alotropic 
transformation of semi-metal Bi film, Surf. Sci. 590, 247-522 (2005) 

[72]  S. Yaginuma, T. Nagao, J. T. Sadowski, M. Saito, K. Nagaoka, Y. Fujikawa, T. Sakurai, 
and T. Nakayama, Origin of flat morphology and high crystallinity of ultrathin bismuth 
films, Surf. Sci. 601, 3593-3600 (2007) 

[73]  K. Romanyuk, Influence of the step properties on submonolayer growth of Ge and Si at 
the Si(111) surface, Dissertation, RWTH Aachen University (2009) 

[74]  B. J. Gibbons, Electromigration induced step instabilities on silicon surfaces, Dissertation, 
The Ohio State University (2006) 



104 
 

 

[75]  The Knudsen cell power supply is off by factor of two such that the display shows 
T=850°C with thermocouple setting ‘R’  

[76]  S. Yaginuma, K. Nagaoka, T. Nagao, G. Bihlmayer, Y. M. Koroteev, E. V. Chulkov, and 
T. Nakayama, Electronic structure of ultrathin bismuth films with A7 and black-
phosphorus-like structures,  J. Phys. Soc. Jpn. 77, 014701 (2008) 

[77]  T. Nagao, J. T. Sadowski, M. Saito, S. Yaginuma, Y. Fujikawa, T. Kogure, T. Ohno, Y. 
Hasegawa, S. Hasegawa, and T. Sakurai, Nanofilm allotrope and phase transformation of 
ultrathin Bi film on Si(111)-7x7, Phys. Rev. Lett. 93, 105501 (2004)   

[78]  G. Bian, X. Wang, T. Miller, T.-C. Chiang, P. J. Kowalczyk, O. Mahapatra, and S. A. 
Brown, First-principles and spectroscopic studies of Bi(110) films : Thickness-dependent 
Dirac modes and property oscillations, Phys. Rev. B 90, 195409 (2014) 

[79]  Y. M. Koroteev, G. Bihlmayer, E. V. Chulkov, and S. Blügel, First-principles 
investigation of structural and electronic properties of ultrathin Bi films, Phys. Rev. B 77, 
045428 (2008) 

[80]  R. S. Sorbello and C. S. Chu, Residual resistivity dipoles, electromigration and electric 
conduction in metallic microstructures, IBM Journal of Research and Development 32, 
58-62 (1988)  

[81]  F. Lüpke, S. Korte, V. Cherepanov, and B. Voigtländer, Scanning tunneling 
potentiometry implemented into a four-tip setup by software, Rev. Sci. Instr. 86, 123701 
(2015) 

[82]  S.-H. Ji, J. B. Hannon, R. M. Tromp, V. Perebeinos, J. Tersoff, and F. M. Ross, Atomic-
scale transport in epitaxial graphene, Nat. Mater. 11, 114-119 (2012) 

[83]  D. K. Morr, Scanning tunneling potentiometry, charge transport, and Landauer's 
resistivity dipole from the quantum to the classical transport regime, Phys. Rev. B 95, 
195162 (2017) 

[84]  D. K. Morr, Crossover from quantum to classical transport, Contemp. Phys. 57, 19-45 
(2016) 

[85]  M. L. C. Steven G. Louie, Conceptual foundations of materials: a standard model for 
ground- and excited-state properties, Elsevier (2006) 

[86]  P. B. Allen, Contemporary concepts of condensed matter science: electron transport, 
Elsevier, 165-218 (2006) 

[87]  Y. V. Sharvin, A possible method for studying Fermi surfaces, J. Exp. Theor. Phys. 21, 
655-656 (1965) 

[88]  G. Wexler, The size effect and the non-local Boltzmann transport equation in orifice and 
disk geometry, Proc. Phys. Soc. 89, 927-941 (1966) 

[89]  T. Druga, M. Wenderoth, F. Lüpke, R. G. Ulbrich, Graphene-metal contact resisitivity on 
semi-insulating 6H-SiC(0001) measured with Kelvin probe force microscopy, Appl. Phys. 
Lett. 103, 051601 (2013) 

[90]  H. Zhang, X. Li, Y. Chen, C. Durand, A.-P. Li, and X.-G. Zhang, Conductivity map from 
scanning tunneling potentiometry, Rev. Sci. Instr. 87, 083702 (2016) 



105 
 

 

 

 

  

[91]  W. Wang and M. R, Beasley, Local sheet conductivity and sheet current density mapping 
using a single scanning voltage probe, arXiv:1309.4540 (2013) 

[91]  D. A. Belsley, E. Kuh and R. E. Welsch, Regression diagnostics: identifying influential 
data and sources of collinearity, John Wiley & Sons, New York (1980) 

[92]  E. W. Cheney and D. R. Kincaid, Numerical mathematics and computing, Cengage 
Learning (2012) 

[93]  L. Hogben, Handbook of linear algebra, CRC Press (2006)  

[94]  H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, Springer 
Science & Business Media (2000) 

[95]  A. N. Tikhonov, V. Y. Arsenin. Solution of ill-posed problems. Washington: Winston & 
Sons. (1977) 

[96]  C. Kittel, Introduction to Solid State Physics (7th ed.), Wiley (1996) 
 

  
  
  
  
  
  



106 
 

 

  



107 
 

Acknowledgements 
 

This thesis is the result of the PhD program in the group of Prof. Dr. Bert Voigtländer at the 
Peter Grünberg Institut (PGI-3) at Forschungszentrum Jülich. At this point I would like to thank 
the people who supported me during the time of the PhD and who made this work possible in 
the first place. In detail, I would like to thank 

• Prof. Dr. Stefan Tautz for enabling the conduction of this thesis in his institute. 

• Prof. Dr. Bert Voigtländer for the excellent supervision and support, regarding the 
PhD itself, but also his dedicated help concerning my future plans. Thanks for the many 
discussions we had and valuable time it took to get where we are now. 

• Prof. Dr. Markus Morgenstern for being the associate supervisor of this PhD work 
and inspiring work. 

• Dr. Vasily Cherepanov for technical assistance, many fruitful discussions and much 
appreciated critical opinions. 

• Dr. Richard Spiegelberg for technical assistance, many fruitful discussions and also 
fun outside of work. 

• Dr. Stefan Korte for introduction to the four-tip STM and many fruitful discussions. 

• Sven Just for the fruitful collaborations and for being a good office partner. 

• Dipl.-Ing. Franz-Peter Coenen for technical assistance and conception of the 
experimental setups. 

• Helmut Stollwerk for technical assistance, especially with the four-tip STM and 
construction of the vacuum suitcase which made many measurements possible in the 
first place. 

• Collaborators for contribution to the success of the work presented here, in detail G. 
Bihlmayer, M. Lanius, M. Luysberg, J. J. Doležal, E. Neumann, I. Ošt’ádal, G. Mussler, 
M. Eschbach, T. Heider, M. Lanius, P. Schüffelgen, D. Rosenbach, N. von den Driesch, 
L. Plucinski, D. Grützmacher, C. M. Schneider, S. Manni, S. C. Erwin, I. I. Mazin, P. 
Gegenwart, and M. Wenderoth. 

• PGI-3 for the positive environment making working here a breeze. Connected with that 
I would like to thank for organization of conferences, Christmas parties, barbeque, etc. 
which I was a part of and which were fun. Especially Matthew Green, Sonja, Caroline 
Henneke, Taner Esat, Janina Felter, Francois Posseik, Sven Wien, Claudia Klamandt, 
Christian Wagner. I would also like to thank especially Markus Franke for teaming up 
with me to manage the institute’s coffee supplies, and Markus Blab who did this job 
before Markus. 

• Last but not least my parents, sister and partner for their strong support for whatever 
I do and the trust in me. 

  



108 
 

 

  



109 
 

Appendix A Createc box startup via ethernet 
connection 
 

The new electronics is based on the new TMS320C6657 DSP from TI. Communication between 
the PC and the electronics is based on a Gigabit Ethernet connection. It is expected that the PC 
is running the 64bit Version of Windows 7. In the standard configuration the software running 
on the DSP board is loaded from the PC after startup of the electronics. It is therefore necessary 
to install a TFTP and DHCP Server on the PC.  

In more detail: Install an Ethernet adapter in the host PC, which is dedicated to communication 
with the Electronics. A Gigabit Ethernet switch is needed between the electronics and the PC. 
Disconnect or deactivate all other network connections during the installation process. The 
address of this adapter has to be 192.168.1.2. Subnet Mask: 255.255.255.0 Gateway 
192.168.1.1 (see images below). A suitable TFTP and DHCP Server is TFTPD64. A suitable 
‘.ini’ file will be supplied to the DSP as below: The name file downloaded is C6657le.bin 
(rename it if it has a different name) and has to be located in the current directory of TFTP64 
(see image). Start TFTP64 using the settings given in the Graphs below first, then start the 
electronics. After a few seconds the DSP downloads the ‘.ini’ file resulting in the log viewer to 
respond as shown in the image below. After a successful boot the new electronics appears with 
address 192.168.1.102. Test it by using “ping 192.168.1.102” in the windows command 
window. Then you can finally start the PSTMAFM program on the PC. In the initialization you 
have to select hardware 5:C6657 save and restart the program. 

If the boot is successful the STMAFM.log file should read  

 
Afterwards, the TFTP server is not needed anymore. In the following, the settings in the 
corresponding windows are shown. 

09.04.2014 10:35:23: Start STMAFM_Init 
09.04.2014 10:35:23: Enter DSPInit 
09.04.2014 10:35:23: Flashboot is false 
09.04.2014 10:35:23: C6657 Boot Start 
09.04.2014 10:35:23: Leave dspinit 
09.04.2014 10:35:23: Check pc32addamode 
09.04.2014 10:35:23: Create Registry file 
09.04.2014 10:35:24: Registry Access finished 
09.04.2014 10:35:24: Open STMAFM.cfg 
09.04.2014 10:35:24: Close STMAFM.cfg 
09.04.2014 10:35:24: Check Ramp Slider 
09.04.2014 10:35:24: Set FBControl 
09.04.2014 10:35:24: Open Datalogger 
09.04.2014 10:35:24: Finish stmafminit 
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Optional: 

To change the IP address from the default value of 192.168.1.102: (not for 4pp yet, 2014.04.09). 
In Initialization change the IP address and press ‘Save to Flash’ button. Afterwards quit the 
STM Program. Change the IP address of the network card if you changed the subnet and change 
the corresponding parameters in the TFTP Server. Reboot the DSP. Upon restart of the STM 
program the DSP will appear under the new address. 
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Appendix B Potentiometry software manual 
 

• Prerequisite for a potentiometry scan is a stable tunneling contact 
• The potential resolution of a STP scan depends strongly on the tunneling resistance  

o Values below 200 MOhm (e.g. 5-500 mV; 0.05-1 nA) are typical scanning 
parameters. The feedback parameters need to be set according to the tunneling 
parameters and voltage divider (1:1, 1:10, …). Good starting points are 
Integrator2=0.0001 (1:1); 0.01 (1:100); 0.1 (1:1000).  

o P-Gain2 should be set to 1 independent of measurement parameters and is 
typically not required to be adjusted. 

• The ADC offset needs to be calibrated to be zero – otherwise the measurement results 
will be flawed. This is true especially for thermovoltage and surface photovoltage 
measurements. 

The contact resistance of the two current injecting tip can vary during the measurements. To 
compensate the variation a voltage reference tip can be used. This tip should be contacted to 
the sample surface close to the scan tip and on the same equipotential line as the scan tip. The 
potentiometry measurement can then be calculated as the difference of the scanning tip and the 
reference tip to cancel out offsets in the sample voltage due to the fluctuations in the current 
injection contact resistances. The method of utilizing a voltage reference tip is however often 
not required, because small offset fluctuations in the sample voltage can be corrected in the 
potentiometry scan in post-processing by a line subtraction. For larger fluctuations the 
potentiometry measurement itself typically becomes so instable that also the voltage reference 
tip does not help to achieve a good measurement. 

B.1 Software settings 
Aux1: This channel contains the measured potential data by the scanning tip. It can be renamed 
in the ‘Initialization’ tab of the software. 

Aux2: This channel contains the current of the scanning tip after performing the potential 
feedback. This value should be zero when the feedback functions properly. It can be renamed 
in the ‘Initialization’ tab of the software. 

ADCs: One should always also acquire the map of one of the ADCs of the current injecting 
tips, such that the injected current throughout the scan can be related to the potential map 
afterwards. If present, the ADC channel of the voltage reference tip should be recorded. 
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• Activate the z-limiter of that tip (z-Limit retract 100 nm) 
• Set that tips bias voltage to ~10 mV 
• Set that tips preamp gain to 106 
• Activate the feedback loop of that tip with maximum current set point (~8 ⋅ 10−6 A) 
• Manually approach the tip to the sample surface by clicking the slider of the z-limiter 

and moving the tip forward with the arrow keys on the computer keyboard until a stable 
current of ~1 µA flows 

• Set the tip voltage to 0 mV and repeat the approaching procedure with the other current 
injecting tip 
 

• When both current injecting tip are in contact to the sample surface disconnect the 
sample’s connection to ground 

• Set the voltage of the two current injecting tips such that the desired lateral current is 
flowing – the absolute current measured at both current injecting tips should be 
identical. 

 (Optional) Contact voltage reference tip 

• Auto-approach the voltage reference tip to the surface 
• Activate the feedback of the tip 
• Activate the z-limiter of that tip (z-Limit retract 100 nm) 
• Switch that tip to voltage probe mode 
• Manually approach the tip to the sample surface by clicking the slider of the z-limiter 

and moving the tip forward with the arrow keys on the computer keyboard until the 
voltage at the tip jumps to 0 V. 

Approach scanning tip 

• Activate the feedback of the scanning tip with bias voltage larger than the bias voltage 
of the current injecting tips 

• Start a potentiometry scan and determine the approximate potential at the position of 
the scanning tip 

• Adjust the current injecting tips’ bias voltage such that the potential at the position of 
the scanning tip is approximately 0 V 
 

• Retract the tip by setting the set point to 0 A 
• Insert the voltage divider (if required), set the appropriate bias voltage and null the ADC  
• Re-approach the tip 
• Start the potentiometry scan 
• Adjust the scan parameters until the desired scan quality is achieved (typically best 

visible in the ‘LineScanForm’ with activated ‘Display current ScanProfile’) 

B.4 Opening Potentiometry Files in Gwyddion 
When a potentiometry scan is imported in Gwyddion, the z-scale of current and potential 
images is wrong due to the fact that all z-scales are recomputed using the corresponding piezo 
constants and Gain values when imported into Gwyddion. 



117 
 

The correct data scale can be retrieve from the original dataset by loading the file into Gwyddion 
and rescaling the potential/current images under “Data Process->Basic Operations-
>Dimensions and units” by a factor of 

𝑠 =
10 ⋅ 109

GainZ ⋅ ZPiezoconst
, 

as a result of the piezo constant being in units Å/V. For example, if GainZ=5 and ZPiezoconst= 
48.00 scaling by a factor of 

𝑠 = 0.0417 ⋅ 109 = 41.7 ⋅ 106 

yields the correct z-scale. To make sure the z-scale is correct, compare it to the original data in 
PSTMAFM! 

Note: If a voltage divider was used in the measurements, it can be directly factored in when 
rescaling the data: 

Zpiezoconst [Å/V] Z gain Voltage divider Scaling factor 𝑠 in Gwyddion 
48 5 1 4,167E+07 
48 5 10 4,167E+06 
48 5 100 4,167E+05 
48 5 1000 4,167E+04 
48 20 1 1,042E+07 
48 20 10 1,042E+06 
48 20 100 1,042E+05 
48 20 1000 1,042E+04 
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Appendix C Resistor network MATLAB codes 
 

C.1 Forward direction 
The following source code calculates the potential distribution from a given distribution of 
resistors, corresponding to the ‘forward direction’ of calculation. The type of defect can be 
chosen by uncommenting the corresponding function which are explained below.  

Source code of ‘Resistor_network_forward.m’ 

 

clear; tic; close all; 
x=51; y=51;                         %Pixel dimensions 
U1=10; U2=-10;                      %Potential at boundaries 
[Sx,Sy,Sz,I]=deal(sparse(x*y,1));   %Predefine for quicker calculation 
R=spalloc(x*y,x*y,6*x*y); k=0;           

  
Rho=1;          %bulk resistivity in Ohm*cm 
R_defect=10;    %Defect resistivity 
  

 
noise=0;       %swtich noise on/off 
T=[]; 
r=1; n=20;                              %radius of circular defects and 

number of defects in the random array                                          
% [T] = T_generator_circle(x,y,r);      %circular defect 
% [T] = T_generator_step(x,y);      %step defect 
% [T] = T_generator_array(x,y);  %array of circular defects 
[T] = T_generator_random(x,y,n);  %random distribution of 

circular defects 

% R_defect=T_generator_kidney(x,y);[T] = zeros(x,y);k=1;  %kidney defect 

 
t=find(T==0);                           %find the resistors to be 

replaced 

  
if x>1 
    Rx=Rho*ones(y,x);                   %resistors in x-direction 
    Rx(t)=Rstufex;                      %set resistor to step resistance 
    for i=1:numel(t) 
        if t(i)<(x-1)*y && k<1                  
    Rx(t(i)+y)=Rstufex;                 %set also resistors after node 

to step resistance 
        end 
    end 
    Rx(:,1)=[]; 
    Sx=1./Rx';                          %calculate conductivity 
end 

  
if y>1 
    Ry=Rho*ones(x,y);                   %resistors in y-direction 
    Ry(t)=Rstufey;                      %set resistor to step resistance 
    for i=1:numel(t) 
        if mod(t(i),x)>0 && k<1 
    Ry(t(i)+1)=Rstufey;                 %set also resistors after node 

to step resistance 
        end 
    end 
Ry(1,:)=[]; 
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    Sy=1./Ry';                          %calculate conductivity 
end 

  
for a=1:x*y                             %filling of resistance matrix 
        if mod(a,y)>0                   %connection to nodes in +x-

direction, if applicable 
            R(a,a+1)=Sx(a-floor((a-1)/y)); 
            R(a,a)=R(a,a)-Sx(a-floor((a-1)/y)); 
        end 
        if mod(a-1,y)>0                 %connection to nodes in -x-

direction, if applicable 
            R(a,a-1)=Sx(a-1-floor((a-1)/y)); 
            R(a,a)=R(a,a)-Sx(a-1-floor((a-1)/y)); 
        end 
        if  a-1<(x-1)*y                 %connection to nodes in +y-

direction, if applicable 
            R(a,a+x)=Sy(a); 
            R(a,a)=R(a,a)-Sy(a); 
        end 
        if a-1>=x                       %connection to nodes in -y-

direction, if applicable 
            R(a,a-x)=Sy(a-x); 
            R(a,a)=R(a,a)-Sy(a-x); 
        end 
end 

  
% ______________________data set 1______________________________________ 
I(1:y)=1;                               %current source 1 
I(y*(x-1)+1:x*y,1)=1;                   %current source 2 

  
Rb=R; 
for i=[(x*(y-1)+1):x*y] 
R(i,:)=0;                               %set potential at boundary 1 

independent of reistances 
R(i,i)=1/U1;%                           %instead use U1 for voltage at 

that boundary 
end 
for i=[1:y] 
R(i,:)=0;                               %set potential at boundary 2 

independent of reistances 
R(i,i)=1/U2;                            %instead use U2 for voltage at 

that boundary 
end 
tic; 

  
V1=full(R\I);                           %solve linear equation system 

  

V1=reshape(V1,x,y);                     %matrix representation of 

potentials 
V1=permute(V1,[2 1]) ;                  %put in corresct order 
  

 
% _________________________________data set 2___________________________ 
I(:,:)=0; 
I(1:x:(x-1)*y+1)=1;                     %current source 1                   
I(x:x:x*y)=1;                           %current source 2  
 

R=Rb; 
for i=[1:x:(x-1)*y+1] 
R(i,:)=0;                               %set potential at boundary 1 

independent of reistances 
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R(i,i)=1/U2;                            %instead use U2 for voltage at 

that boundary 
end 
for i=x:x:x*y 
R(i,:)=0;                               %set potential at boundary 2 

independent of reistances 
R(i,i)=1/U1;                            %instead use U1 for voltage at 

that boundary 
end 

  
V2=full(R\I);                           %solve linear equation system 
V2=reshape(V2,x,y);                     %matrix representation of 

potentials 
V2=permute(V2,[2 1]) ;                  %put in corresct order 

  
Vn1=V1;Vn2=V1;Vn3=V2;Vn4=V2; 
% ____________________________________end of data set 2________________ 
DeltaV=1; 
for i=[1:x*y]                           %add noise to potential data 
    Vn1(i)=V1(i)+noise*(rand-0.5)/DeltaV/100;         
    Vn2(i)=V2(i)+noise*(rand-0.5)/DeltaV/100; 
    Vn3(i)=V1(i)+noise*(rand-0.5)/DeltaV/100;                      
    Vn4(i)=V2(i)+noise*(rand-0.5)/DeltaV/100; 
end 

  
PaperSize=[50 10]; 
h=figure; 
set(h,'PaperSize', PaperSize, 'Resize', 'off', 

'units','centimeters','outerposition',[0 5 PaperSize(1)+0.2 

PaperSize(2)+2.2]);  

  
subplot(1,5,1); 
surf(Vn2) 
xlabel('x'); 
ylabel('y'); 

  
subplot(1,5,2); 
surf(Vn1) 
xlabel('x'); 
ylabel('y'); 

  
subplot(1,5,3); 
imagesc(flipud(Rx)) 
xlabel('x'); 
ylabel('y'); 
axis square; 
title('Rx') 

  
subplot(1,5,4); 
imagesc(flipud(Ry)) 
xlabel('x'); 
ylabel('y'); 
axis square; 
title('Ry') 

  
dlmwrite('V_1.txt',Vn1,'delimiter',' ','precision',100); 
dlmwrite('V_2.txt',Vn2,'delimiter',' ','precision',100); 
dlmwrite('V_3.txt',Vn3,'delimiter',' ','precision',100); 
dlmwrite('V_4.txt',Vn4,'delimiter',' ','precision',100); 
dlmwrite('S_x.txt',Sx,'delimiter',' ','precision',100); 
dlmwrite('S_y.txt',Sy,'delimiter',' ','precision',100); 
toc 
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C.1.1 Generating different defect geometries 
The MATLAB code presented in chapter C.1 can define different defect geometries by loading 
different ‘T_generator’ functions at its beginning. In the following are given some example 
source codes of structures which were investigated in the course of the thesis. 

Step with a bulge 
Source code of ‘T_generator_step.m’

 

Circular Hole 
Source code of ‘T_generator_circle.m’

 
 

function [ T ] = Tgenerator( x,y ) 
s=0; 
T=ones(x,y); 
for(i=[ceil(2*x/5.)]) 
    for j=1:floor(size(T,2)/5.+1) 
    T(i,j)=0; 
    end 
    for j=floor(size(T,2)/5.)+1:floor(2*size(T,2)/5.) 
    T(i+j-floor(size(T,2)/5.),j+1)=0; 
    end 
    for j=floor(2*size(T,2)/5.)+1:floor(3*size(T,2)/5.) 
    T(i+floor(size(T,2)/5.),j)=0; 
    end 
    for j=floor(3*size(T,2)/5.)+1:floor(4*size(T,2)/5.) 
    T(i-j+floor(4*size(T,2)/5.)+1,j)=0; 
    end 
    for j=floor(4*size(T,2)/5.)+1:size(T,2) 
    T(i,j)=0; 
    end 
    T=flipud(T); 
end 
end 

  

 

 

function [ T ] = Tgenerator( x,y,r ) 
s=0; 
T=ones(x,y); 
x0=ceil(x/2); 
y0=ceil(y/2); 
for i=1:x 
    for j=1:y 
        if (i-x0)^2+(j-y0)^2<r^2 
            T(i,j)=0; 
        end 
    end 
end 
end 
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Regular array of holes 
Source code of ‘T_generator_array.m’

 

Random distribution of holes 
Source code of ‘T_generator_random.m’

 

Kidney 
Source code of ‘T_generator_kidney.m’

 

  

function [ T ] = Tgenerator( x,y,r ) 
s=0; 
T=ones(x,y); 
for i=1:x      
    for j=1:y 
        if mod(i,8)==0 && mod(j,8)==0 
            T(i-1,j-1)=0; 
        else 

             
        end 
    end 
end 
end 

  

 

 

function [ T ] = Tgenerator( x,y,n ) 
i=0; 
T=ones(x,y); 
while i<n      
        x0=ceil(rand*(x-1))+1; 
        y0=ceil(rand*(y-1))+1; 
        if x0<x && y0<y && T(x0,y0)==1 && T(x0+1,y0)==1 && T(x0-1,y0)==1 

&& T(x0,y0+1)==1 && T(x0,y0-1)==1 
            T(x0,y0)=0; 
            i=i+1; 
        end 
end 
end 

  

 

 

function [ R ] = Tgenerator( x0,y0 ) 
a=1.2;                          %size in x-direction   
b=1.2;                          %size in y-direction   
dx=(x0+2)/a;                    %step-size in x-direction 
dy=(x0+2)/b;                    %step-size in y-direction 

  
for i=1:x0 
    for j=1:y0 
        x=7*(i/(dx))-3.4*a;     %re-scaling of x 
        y=7*(j/(dy)-0.6*b);     %re-scaling of y 
        sigma(i,j)=(1+5*exp(-(x-y)^2-2*(x+y)^2)+3*exp(-3*(x-1)^2-

(y+1)^2))^-1; 
    end 
end 
R=1./sigma';    %Inversion and rotation of the matrix 
end 
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C.1.2 Calculations for Bi thin films 
Source code of ‘Resistor_network_Bi.m’ 

 

clear; tic; close all; 

  
M = dlmread('A151119.193814.Poti100.markup_490nm.txt');  %load mask file 

  
M=M(1:end,1:end)'; 

  
x=size(M,1); y=x;           %Pixel Dimensions 
U1=-0.05e-3; U2=10e-3;      %Potential at left and right boundary 
[Sx,Sy,Sz,I]=deal(sparse(x*y,1)); 
R=spalloc(x*y,x*y,6*x*y);   %Predefine to increase speed 

  

Rs=1;                       %Sheet resistance in Ohm/sq. 
Rdefekt=1e10; 

  
t=find(M~=0); 

  
if x>1 
    Rx=Rs*ones(y,x);             %Resistors in x-direction     
    Rx(t)=Rdefekt; 
    Rx(:,1)=[]; 
    Sx=1./Rx'; 
end 

  
if y>1 
    Ry=Rs*ones(x,y);             %Resistors in y-direction     
    Ry(t)=Rdefekt; 
    Ry(1,:)=[]; 
    Sy=1./Ry'; 
end 

  
for a=1:x*y                               %fill resistance matrix 
        if mod(a,y)>0                     %connection to nodes in +x-

direction, if applicable 
            R(a,a+1)=Sx(a-floor((a-1)/y)); 
            R(a,a)=R(a,a)-Sx(a-floor((a-1)/y)); 
        end 
        if mod(a-1,y)>0                   %connection to nodes in -x-

direction, if applicable 
            R(a,a-1)=Sx(a-1-floor((a-1)/y)); 
            R(a,a)=R(a,a)-Sx(a-1-floor((a-1)/y)); 
        end 
        if  a-1<(x-1)*y                   %connection to nodes in +y-

direction, if applicable 
            R(a,a+x)=Sy(a); 
            R(a,a)=R(a,a)-Sy(a); 
        end 
        if a-1>=x                         %connection to nodes in -y-

direction, if applicable 
            R(a,a-x)=Sy(a-x); 
            R(a,a)=R(a,a)-Sy(a-x); 
        end 
end 

  
I(1:y)=1;                                           %current source 1               
I(y*(x-1)+1:x*y)=1;                                 %current source 2 
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Rb=R; 
for i=1:y 
R(i,:)=0;                                           %set potential at 

boundary 1 independent of reistances 
R(i,i)=1/U1;                                        %instead use U1 for 

voltage at that boundary 
end 
for i=y*(x-1)+1:x*y 
R(i,:)=0;                                            %set potential at 

boundary 2 independent of reistances 
R(i,i)=1/U2;                               %instead use U2 for 

voltage at that boundary 
end 

  
V=full(R\I);                                         %solve linear 

equation system 

  
V=reshape(V,x,y);                                    %matrix 

representation of potentials 
 

%______subtract background slope______ 
S=ones(x,y);       E=(U2-U1)/((x-1)); 
for n=1:x 
S(:,n)=U2+E*(n-1); 
end 
D=V-S; 

 

%_______plot________ 
PaperSize=[30 10]; 
h=figure(1); 
set(h,'PaperSize', PaperSize, 'Resize', 'off', 

'units','centimeters','outerposition',[0 15 PaperSize(1)+0.2 

PaperSize(2)+2.2]);  

  
subplot(1,3,1); 
imagesc(D) 
xlabel('x'); 
ylabel('y'); 
axis square; 
dlmwrite('CalcPot.txt',D,'delimiter',' ','precision',100); 

  
subplot(1,3,2); 
imagesc(Sx) 
xlabel('x'); 
ylabel('y'); 
axis square; 
title('Sx') 

  
subplot(1,3,3); 
imagesc(Sy) 
xlabel('x'); 
ylabel('y'); 
axis square; 
title('Sy') 
toc 
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C.1.3 Three-dimensional resistor network 
Source code of ‘Resistor_network_3D.m’  

 

clear; tic; close all; 
x=50; y=x; z=3;   %pixel dimensions 
d=1;             %size of simulation in meter 
dx=d/x;          %mesh spacing in meter 
U1=1; U2=-1;     %potential at current injection points 
[Sx,Sy,Sz,I]=deal(sparse(x*y*z,1)); %Predefine for quicker calculation  
R=spalloc(x*y*z,x*y*z,6*x*y*z);     %Predefine for quicker calculation 

  
Rs=1e-5;          %surface sheet resistance in Ohm/sq. 
Rho=1;           %Bulk resistance in Ohm*cm 
Rkoppel=1;     %coupling resistance between surface and bulk in Ohm 

cm^2 
Tx=0.5;         %relative x-position of current injection 
Ty=0.3;         %relative y-position of current injection 

  
if x>1 
    Rx=Rho*x^2/d*ones(y,x,z);           %calculate resistors values in 

x-direction 
    Rx=permute(Rx,[2 1 3]);             %bring resistor values in 

correct order 
    Sx=reshape(1./Rx,[],1);             %calculate x-conductivity 
end 

  
if y>1 
    Ry=Rho*x^2/d*ones(y,x,z);           %calculate resistors values in 

y-direction 
    Ry=permute(Ry,[2 1 3]);             %bring resistor values in 

correct order 
    Sy=reshape(1./Ry,[],1);             %calculate y-conductivity 
end 

  
if z>1 
    Rz(:,:,1)=Rkoppel*x^2/(x*y*d)*ones(y,x,1);  %calculate resistor 

values 
    Rz(:,:,2:z)=Rho*x^2/d*ones(y,x,z-1);        %resistors in z-

direction 
    Rz=permute(Rz,[2 1 3]);                     %bring values in correct 

order 
    Sz=reshape(1./Rz,[],1);                     %calculate z-

conductivity 
end 

 

for a=1:x*y*z                               %filling of resistance 

matrix 
        if(mod(a,x)>0)                      %connection to nodes in +x-

direction, if applicable 
            R(a,a+1)=Sx(a,1); 
            R(a,a)=R(a,a)-Sx(a,1); 
        end 
        if(mod(a-1,x)>0)                    %connection to nodes in -x-

direction, if applicable 
            R(a,a-1)=Sx(a-1); 
            R(a,a)=R(a,a)-Sx(a-1); 
        end 
        if(mod(a-1,x*y)<x*y-x)              %connection to nodes in +y-

direction, if applicable 
            R(a,a+x)=Sy(a+x); 
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        R(a,a)=R(a,a)-Sy(a+x); 
        end 
        end 
        if(mod(a-1,x*y)>=x)                 %connection to nodes in -y-

direction, if applicable 
            R(a,a-x)=Sy(a-x); 
            R(a,a)=R(a,a)-Sy(a-x); 
        end 
        if(a<=x*y*z-x*y)                    %connection to nodes in +z-

direction, if applicable 
            R(a,a+x*y)=Sz(a); 
            R(a,a)=R(a,a)-Sz(a); 
        end 
        if(a>x*y)                           %connection to nodes in -z-

direction, if applicable 
            R(a,a-x*y)=Sz(a-x*y); 
            R(a,a)=R(a,a)-Sz(a-x*y); 
        end 
end 

  
Tipx=round(Ty*y*x)+round(Tx*x);              %position of current 

injection 1 
Tipy=round((y-Ty*y-1)*x)+round(Tx*x);        %position of current 

injection 2 

  
I(Tipx,1)=1;                                 %current source 1           
I(Tipy,1)=1;                                 %current source 2 

  
Rb=R; 

  
R(Tipx,:)=0;            %set potential at boundary 1 independent of 

surrounding reistors 
R(Tipx,Tipx)=1/U1;      %instead use U1 for voltage at the position of 

current source 1 
R(Tipy,:)=0;            %set potential at boundary 2 independent of 

surrounding reistors 
R(Tipy,Tipy)=1/U2;      %instead use U2 for voltage at the position of 

current source 2 

  
V=full(R\I);            %solve linear equation system 

  
I=Rb(Tipx,:)*V(:) 

  
V=reshape(V,x,y,z);     %matrix representation of potentials 
V=permute(V,[2 1 3]) ;  %put in corresct order 

  
PaperSize=[40 10]; 
h=figure; 
set(h,'PaperSize', PaperSize, 'Resize', 'off', 

'units','centimeters','outerposition',[0 5 PaperSize(1)+0.2 

PaperSize(2)+2.2]);  

  
subplot(1,2,1); 

  
for i=1:size(V,3)      %plot matrix as stacked potential planes 
[~,h] = contourf(V(:,:,i),x*2,'LineStyle','none'); 
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hold on; 
hh = get(h,'Children');             
for j=1:numel(hh) 
    zdata = ones(size(get(hh(j),'XData')));  %shift z values to plot 

stacked planes 
    set(hh(j), 'ZData',1*(1-i*zdata)); 
end 
end 
title('Local Potential') 
colorbar; 
cb = colorbar('vert'); 
zlab = get(cb,'ylabel'); 
set(zlab,'String','Potential (V)'); 
caxis([U2 U1]); 
hold off; 
view(80,20); 
axis('square'); 

  
subplot(1,2,2); 
plot(permute(V(:,ceil(0.5*x),:),[1 3 2]))   %plot sections of the 

potential planes 
title('Section') 
xlabel('x (a.u.)'); 
ylabel('Potential (V)'); 

 
toc 
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C.2 Inverse conductivity calculation 
Source code of ‘Resistor_network_inverse.m’ 

 

clear; close all; tic; 
V1= dlmread('V_1.txt'); %load potential distribution 1 
V2= dlmread('V_2.txt'); %load potential distribution 2 
Sx_ref= dlmread('S_x.txt'); %load original resistivity distribution 1 
Sy_ref= dlmread('S_y.txt'); %load original resistivity distribution 1 
x=size(V2,1);               %x-size of the loaded data set 
y=size(V2,2);               %x-size of the loaded data set 
dV=spalloc(2*numel(V2),numel(V2),4*numel(V2)); %predefine for quicker 

calculation 

  

  
for i=1:size(V1,1)-1 
for j=1:size(V1,1)-1 
    V1(i+1,j)-V1(i,j) + V1(i+1,j+1)-V1(i+1,j) + V1(i,j+1)-V1(i+1,j+1) + 

V1(i,j+1)-V1(i,j) 
end 
end 
% ______________________data set 1________________________________ 

[dV] = dVmatrix(V1,x,y); %set up matrix V  

  
double ddV1; 
ddV1=dV;                    
% ______________________data set 2________________________________ 
[dV] = dVmatrix(V2,x,y); %set up matrix V  

  
double ddV2; 
ddV2=dV;            
%_______________________combine data sets_________________________ 
ddV=[ddV1; ddV2];  %combine the potentials of the two data set  

  
Sx=ones((x-1)*y,1);     %predefine vector of vertical resistors 
Sy=ones(x*(y-1),1);     %predefine vector of horizontal resistors 
Rt=[Sx(1:end)' Sy(1:end)']'; %combine x- and y-conductivities  

  
%_______________________Left side of LEQ__________________________ 

  
C1=ddV1*Rt;     
C1=reshape(C1,x,y); 
C1(2:x-1,:)=0; 
C1=reshape(C1,numel(C1),1); 
C2=ddV2*Rt; 
C2(x+1:(x-1)*y)=0; 
C=[C1;C2]; 

  
A=-1*eye(size(ddV,2),size(ddV,2)); 
b=zeros(size(ddV,2),1)'; 

  
f=zeros(size(ddV,2),1); 

  
S = linprog(f,A,b,ddV,C); 
size(S) 
  

%_____solved LEQ -> analyze data__________   
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Sx=S(1:x*y); 
Sy=S(x*y+1:end); 
Rt=[Sx(1:end)' Sy(1:end)']'; 

  
l=reshape(Rt(1:(x-1)*y),x,y-1); 
m=reshape(Rt(((x-1)*y+1):end),x-1,y); 

  
Sx_ref=flipud(Sx_ref'); 
DeltaSx=(Sx_ref-l).^2; 
DeltaSx=sum(sum(DeltaSx)); 

  
Sy_ref=flipud(Sy_ref'); 
DeltaSy=(Sy_ref-m).^2; 
DeltaSy=sum(sum(DeltaSy)); 

  
sigmaS=sqrt(1/(2*x*y-1)*(DeltaSy+DeltaSx)) 

  
d=(V1(end,1)-V1(1,1))/(x-1); 

  
for i=1:x 
    D1(i,:)=V1(i,:)-d*i; 
end 

  
%_____Plot_______________________________ 
PaperSize=[40 10]; 
h=figure; 
set(h,'PaperSize', PaperSize, 'Resize', 'off', 

'units','centimeters','outerposition',[0 5 PaperSize(1)+0.2 

PaperSize(2)+2.2]);  

  
subplot(1,4,1); 
surf(V1); 
xlabel('x'); 
ylabel('y'); 
axis square; 

  
subplot(1,4,2); 
surf(V2); 
xlabel('x'); 
ylabel('y'); 
axis square; 

  
subplot(1,4,3); 
imagesc(flipud(l)) 
xlabel('x'); 
ylabel('y'); 
set(gca, 'Clim', [0 1]) 
title('Rx') 
axis square; 
  

subplot(1,4,4); 
imagesc(flipud(m)) 
xlabel('x'); 
ylabel('y'); 
set(gca, 'Clim', [0 1]) 
title('Ry') 
axis square; 
toc 
 

 

 



131 
 

C.1.2 Function to set up matrix 𝑽 
Source code of ‘dVmatrix.m’ which is used for the calculation of the inverse problem.

 

 

 

 

  

function [ dV ] = dVmatrix( V, x, y ) 
dVx=zeros(x*y,x*(y-1));                 %horizontal voltage differences 
dVy=zeros(x*y,x*(y-1));                 %vertical voltage differences 
kill=[]; 

  
for(j=1:numel(V)) 

     
    if j+1<=numel(V)                     %connection to nodes in +y-

direction, if applicable 
        dVy(j,j)=V(j+1)-V(j); 
    end 
    if j-1>0                             %connection to nodes in -y-

direction, if applicable 
        dVy(j,j-1)=V(j-1)-V(j); 
    end 
    if mod(j,x)==0 && j<x*y 
        kill=[kill j]; 
    end 

     
    if j>0 && j<=numel(V)-y              %connection to nodes in +x-

direction, if applicable 
        dVx(j,j)=V(j+x)-V(j); 
    end 

     
    if j>y && j<=numel(V)                %connection to nodes in -x-

direction, if applicable  
        dVx(j,j-x)=V(j-x)-V(j); 
    end 
end 
dVy(:,kill)=[]; 
dV=[dVx dVy]; 
end 
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Appendix D Electrostatics of a current around a 
sphere or cylinder 
 

D.1 Current around a sphere  
This geometry corresponds to a three-dimensional defect embedded in a conductor. For a 
conductivity inside/outside of the sphere 𝜎𝑖/𝜎𝑜 we solve the Laplace equation for finite 
potentials at the origin 

ΔΦ(r, θ) = 0 

Ansatz: 

Φ𝑖 =∑𝑎𝑛 ⋅ (
𝑟

𝑅
)
𝑛

∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃)) 

Φ𝑜 = 𝐸∞ ⋅ 𝑟 ⋅ cos(𝜃) +∑𝑏𝑛 ⋅ (
𝑟

𝑅
)
−(𝑛+1)

∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃)) 

boundary conditions 

Φ𝑖(𝑟 = 𝑅, 𝜃) = Φ𝑜(𝑟 = 𝑅, 𝜃) 

𝜎𝑖
𝜕

𝜕𝑟
 Φ𝑖(𝑟 = 𝑅, 𝜃) = 𝜎𝑜

𝜕

𝜕𝑟
Φ𝑜(𝑟 = 𝑅, 𝜃) 

Which equals to 

 

∑𝑎𝑛

∞

𝑛=0

⋅ 𝑃𝑛(cos(𝜃)) = 𝐸∞ ⋅ 𝑅 ⋅ cos(𝜃) +∑𝑏𝑛

∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃)) 

𝜎𝑖∑𝑎𝑛 ⋅
𝑛

𝑅
(
𝑟

𝑅
)
𝑛−1

∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃))|𝑟=𝑅

= 𝜎𝑜𝐸∞ ⋅ cos(𝜃) + 𝜎𝑜∑𝑏𝑛 ⋅
−(𝑛 + 1)

𝑅
(
𝑟

𝑅
)

−𝑛∞

𝑛=0

⋅ 𝑃𝑛(cos (𝜃))|𝑟=𝑅 

and results in 

𝑎0 + 𝑎1 ⋅ 𝑃1(cos(𝜃)) + 𝑎2𝑃2(cos(𝜃))…

= 𝑏0 + (𝐸∞ ⋅ 𝑅 + 𝑏1) ⋅ 𝑃1(cos(𝜃)) + 𝑏2𝑃2(cos (𝜃)… 

 

𝜎𝑖 (
𝑎1
𝑅
⋅ 𝑃1(cos(𝜃)) +

2𝑎2
𝑅
𝑃2(cos(𝜃)) + ⋯)

= −𝜎𝑜 (
𝑏0
𝑅
+ (−𝐸∞ +

2𝑏1
𝑅
) ⋅ 𝑃1(cos(𝜃)) +

3𝑏2
𝑅
𝑃2(cos(𝜃))… ). 
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Comparison of coefficients: 

𝑎0 = 𝑏0 

𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 

𝑎𝑛 = 𝑏𝑛, 𝑓ü𝑟 𝑛 > 1 

and 

𝑏0
𝑅
= 0 ⇒ 𝑎0 = 0 

𝜎𝑖𝑎1
𝑅
= 𝜎𝑜 (𝐸∞ −

2𝑏1
𝑅
) 

𝜎𝑖𝑎𝑛𝑛

𝑅
= −

𝜎𝑜𝑏𝑛(𝑛 + 1)

𝑅
, for n > 1 

𝜎𝑖𝑎𝑛  
𝑛

(𝑛 + 1)
= −𝜎𝑜𝑏𝑛, for n > 1 

From this and 𝑎𝑛 = 𝑏𝑛, 𝑓ü𝑟 𝑛 > 1 results  

𝑎𝑛 = 𝑏𝑛 = 0, 𝑓ü𝑟 𝑛 > 1 

The only remaining coefficients are 

𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 

𝜎𝑖𝑎1
𝑅
= 𝜎𝑜 (𝐸∞ −

2𝑏1
𝑅
) 

Solving for 𝑏1 

𝑎1 = 𝑅
𝜎𝑜
𝜎𝑖
(𝐸∞ −

2𝑏1
𝑅
) = 𝐸∞ ⋅ 𝑅 + 𝑏1 

⇒ 𝐸∞ ⋅ 𝑅 (
𝜎𝑜
𝜎𝑖
− 1) = (

2𝜎𝑜
𝜎𝑖
+ 1)𝑏1 

⇒ 𝑏1 = 𝐸∞ ⋅ 𝑅
(
𝜎𝑜
𝜎𝑖
− 1)

(
2𝜎𝑜
𝜎𝑖
+ 1)

  

and therefore 
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⇒ 𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 = 𝐸∞ ⋅ 𝑅 (
(
𝜎𝑜
𝜎𝑖
− 1)

(
2𝜎𝑜
𝜎𝑖
+ 1)

+ 1). 

Or in a different representation 

𝑏1 =
𝜎𝑜 − 𝜎𝑖
2𝜎𝑜 + 𝜎𝑖

𝐸∞ ⋅ 𝑅 𝑎𝑛𝑑 𝑎1 =
3𝜎𝑜

2𝜎𝑜 + 𝜎𝑖
𝐸∞ ⋅ 𝑅  

 

Φ𝑖(𝜃 = 0) =
3𝜎𝑜

2𝜎𝑜 + 𝜎𝑖
𝐸∞ ⋅ 𝑟 

Φ𝑜(𝜃 = 0) = 𝐸∞ ⋅ 𝑟 +
𝜎𝑜 − 𝜎𝑖
2𝜎𝑜 + 𝜎𝑖

𝐸∞ ⋅
𝑅3

𝑟2
  

Infinite resistance of the sphere: 

 

𝑏1
𝜎𝑖→0
→   

1

2
𝐸∞𝑅 and 𝑎1

𝜎𝑖→0
→   

3

2
𝐸∞𝑅 

Φ𝑖(𝜃 = 0) =
3

2
𝐸∞ ⋅ 𝑟 

Φ𝑜(𝜃 = 0) = 𝐸∞ ⋅ 𝑟 +
1

2
𝐸∞ ⋅

𝑅3

𝑟2
 

Infinite conductance of the sphere: 

𝑏1
𝜎𝑖→∞
→   −𝐸∞ ⋅ 𝑅 and 𝑎1

𝜎𝑖→∞
→   0 

 

D.2 Current around an infinite cylinder 

This calculation determines the electric field around an infinite cylinder embedded in a 
conductor. The problem geometry corresponds to a quasi-two-dimensional system.  

Ansatz: 

Φ𝑖(𝑟, 𝜃) = ∑𝑎𝑛 ⋅ (
𝑟

𝑅
)
𝑛

∞

𝑛=0

⋅ cos (𝑛 ⋅ 𝜃) 

Φ𝑜(𝑟, 𝜃) = 𝐸∞ ⋅ 𝑟 ⋅ cos(𝜃) +∑𝑏𝑛 ⋅ (
𝑟

𝑅
)
−𝑛

∞

𝑛=0

⋅ cos (𝑛 ⋅ 𝜃) 

boundary conditions 

Φ𝑖(𝑟 = 𝑅, 𝜃) = Φ𝑜(𝑟 = 𝑅, 𝜃) 
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𝜎𝑖
𝜕

𝜕𝑟
 Φ𝑖(𝑟 = 𝑅, 𝜃) = 𝜎𝑜

𝜕

𝜕𝑟
Φ𝑜(𝑟 = 𝑅, 𝜃) 

Which equals to 

∑𝑎𝑛

∞

𝑛=0

⋅ cos (𝑛 ⋅ 𝜃) = 𝐸∞ ⋅ 𝑅 ⋅ cos(𝜃) +∑𝑏𝑛

∞

𝑛=0

⋅ cos (𝜃) 

𝜎𝑖∑𝑎𝑛 ⋅
𝑛

𝑅
(
𝑟

𝑅
)
𝑛−1

∞

𝑛=0

⋅ cos(𝑛 ⋅ 𝜃) |𝑟=𝑅  

= 𝜎𝑜𝐸∞ ⋅ cos(𝜃) + 𝜎𝑜∑𝑏𝑛 ⋅
−𝑛

𝑅
(
𝑟

𝑅
)
−(𝑛−1)

∞

𝑛=0

⋅ cos (𝑛 ⋅ 𝜃) |𝑟=𝑅 

and results in 

𝑎0 + 𝑎1 ⋅ cos (𝜃) + 𝑎2cos (2𝜃)… = 𝑏0 + (𝐸∞ ⋅ 𝑅 + 𝑏1) ⋅ cos (𝜃) + 𝑏2cos (2𝜃)… 

 

𝜎𝑖 (
𝑎1
𝑅
⋅ cos (𝜃) +

2𝑎2
𝑅
cos (2𝜃) + ⋯) = −𝜎𝑜 ((−𝐸∞ +

𝑏1
𝑅
) ⋅ cos (𝜃) +

2𝑏2
𝑅
cos (2𝜃)…). 

Comparison of coefficients: 

𝑎0 = 𝑏0 

𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 

𝑎𝑛 = 𝑏𝑛, 𝑓ü𝑟 𝑛 > 1 

and 

𝜎𝑖𝑎1
𝑅
= 𝜎𝑜 (𝐸∞ −

𝑏1
𝑅
) 

𝜎𝑖𝑎𝑛𝑛

𝑅
= −

𝜎𝑜𝑏𝑛𝑛

𝑅
, 𝑓𝑜𝑟 𝑛 > 1 

Boundary condition Φ𝑜(𝑟 → ∞, 𝜃) = 𝐸∞𝑟 yields 

𝑎0 = 𝑏0 = 0 

such that the only remaining coefficients are 

𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝑏1 

𝜎𝑖𝑎1
𝑅
= 𝜎𝑜 (𝐸∞ −

𝑏1
𝑅
). 
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Solving for 𝑏1: 

𝜎𝑖𝑎1
𝜎𝑜

= 𝐸∞ ⋅ 𝑅 − 𝑏1 

𝑏1 = 𝐸∞ ⋅ 𝑅 −
𝜎𝑖𝑎1
𝜎𝑜

 

And therefore 

⇒ 𝑎1 = 𝐸∞ ⋅ 𝑅 + 𝐸∞ ⋅ 𝑅 −
𝜎𝑖𝑎1
𝜎𝑜

 

⇔ 𝑎1 (1 +
𝜎𝑖
𝜎𝑜
) = 2𝐸∞ ⋅ 𝑅 

⇔ 𝑎1 =
2

(1 +
𝜎𝑖
𝜎𝑜
)
 𝐸∞ ⋅ 𝑅 

Resulting in 

⇒ 𝑏1 = 𝐸∞ ⋅ 𝑅 −
𝜎𝑖
𝜎𝑜

2

(1 +
𝜎𝑖
𝜎𝑜
)
 𝐸∞ ⋅ 𝑅 

⇔ 𝑏1 = 𝐸∞ ⋅ 𝑅 −
2𝜎𝑖

(𝜎𝑜 + 𝜎𝑖)
 𝐸∞ ⋅ 𝑅 

⇔ 𝑏1 =
𝜎𝑜 − 𝜎𝑖
𝜎𝑜 + 𝜎𝑖

 𝐸∞ ⋅ 𝑅 

Infinite resistance of the cylinder:  

 

𝑏1
𝜎𝑖→0
→   𝐸∞𝑅 and 𝑎1

𝜎𝑖→0
→   2𝐸∞𝑅 

Φ𝑖(𝜃 = 0) = 2𝐸∞ ⋅ 𝑟 

Φ𝑜(𝜃 = 0) = 𝐸∞ ⋅ 𝑟 + 𝐸∞ ⋅
𝑅2

𝑟
 

Infinite conductance of the cylinder: 

 

𝑏1
𝜎𝑖→∞
→   −𝐸∞ ⋅ 𝑅 and 𝑎1

𝜎𝑖→∞
→   0 
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Appendix E Deduction of carrier concentration in 
the Dirac cone 
 

The linear dispersion of the Dirac cone in two dimensions is given by 

𝐸 = ℏ𝑣𝐹√𝒌𝑥
2 + 𝒌𝑦

2 ≡
1

𝑎
𝑘  ⇔   𝑘 = 𝑎 ⋅ 𝐸 

(E.1) 

  

Furthermore, in a two-dimensional system, the density of states is given by the two-dimensional 
density of states per unit volume 𝜌 without spin degeneracy, due to the spin-polarized nature of 
the TSS [96]: 

𝜌(𝑘)𝑑𝑘 =
𝑘

2𝜋
 𝑑𝑘, 

which with eq. (E.1) becomes 

𝜌(𝐸)𝑑𝐸 =
𝑎2𝐸

2𝜋
𝑑𝐸. 

Integration yields 

𝑛2𝐷(𝐸) = ∫𝜌(𝐸)𝑑𝐸 =
𝑎2𝐸2

4𝜋
. 

Rewriting again with eq. (E.1), the carrier concentration in the Dirac cone, which is filled up to 
the Fermi energy 𝐸F, can be determined from the corresponding Fermi wave vector 𝑘F after 

𝑛2𝐷(𝐸F) =
𝑘F
2

4𝜋
. 
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Appendix F Deduction of gate formulas 
 

F.1 Full description 
This appendix documents the deduction of eq. (4.8) and (4.9) in chapter 4 of the thesis. In 
detail, combination of eq. (4.3) to (4.5) in this thesis results in 

𝑛bot = −𝑛TI − 𝑛gate 

⇔ 𝑛bot = −
𝐶gate(𝑒𝑉gate − 𝜇bot)

𝑒2
−
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
+ 
𝐶gate𝜇bot

𝑒2
−
𝐶𝑇𝐼𝜇top

𝑒2
+
𝐶𝑇𝐼𝜇bot
𝑒2

 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
+ 

𝐶gate𝑎 (√𝑛bot
0 + 𝑛bot −√𝑛bot

0 )

𝑒2
−

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2

+

𝐶TI𝑎 (√𝑛bot
0 + 𝑛bot −√𝑛bot

0 )

𝑒2
 

⇔ 𝑛bot + (−
𝐶gate𝑎

𝑒2
−
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) +

𝐶gate𝑉gate

𝑒

+

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2
= 0  

⇔

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2

= −𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
 

⇔
𝐶TI𝑎

𝑒2
√𝑛top

0 + 𝑛top −
𝐶TI𝑎

𝑒2
√𝑛top

0

= (−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
) 

⇔
𝐶TI𝑎

𝑒2
√𝑛top

0 + 𝑛top

= (−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
)

+
𝐶TI𝑎

𝑒2
√𝑛top

0  
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⇔ √𝑛top
0 + 𝑛top

= (
𝐶TI𝑎

𝑒2
)
−1

((−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 )

−
𝐶gate𝑉gate

𝑒
) +

𝐶𝑇𝐼𝑎

𝑒2
√𝑛top

0 ) 

⇔ 𝑛top
0 + 𝑛top

= ((
𝐶TI𝑎

𝑒2
)
−1

((−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶TI𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot −√𝑛bot
0 )

−
𝐶gate𝑉gate

𝑒
) +

𝐶𝑇𝐼𝑎

𝑒2
√𝑛top

0 ))

2

 

⇔ 𝑛top = ((
𝐶TI𝑎

𝑒2
)
−1

((−𝑛bot + (
𝐶gate𝑎

𝑒2
+
𝐶gate𝑎

𝑒2
) (√𝑛bot

0 + 𝑛bot − √𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
)

+
𝐶𝑇𝐼𝑎

𝑒2
√𝑛top

0 ))

2

− 𝑛top
0 , 

where 𝐶gate = 11 nF/cm2 ≪ 𝐶TI = 8 µF/cm2 and therefore 

𝑛top ≈ ((
𝐶TI𝑎

𝑒2
)
−1

((−𝑛bot +
𝐶TI𝑎

𝑒2
(√𝑛bot

0 + 𝑛bot −√𝑛bot
0 ) −

𝐶gate𝑉gate

𝑒
)

+
𝐶TI𝑎

𝑒2
√𝑛top

0 ))

2

− 𝑛top
0  

⇔ 𝑛top ≈ ((
𝐶TI𝑎

𝑒2
)
−1

 (−𝑛bot +
𝐶TI𝑎

𝑒2
(√𝑛bot

0 + 𝑛bot −√𝑛bot
0 +√𝑛top

0 ) −
𝐶gate𝑉gate

𝑒
))

2

− 𝑛top
0  

 

Furthermore 

𝑛top = 𝑛TI =
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 

⇔ 𝑛top =
𝐶TI𝜇top

𝑒2
−
𝐶TI𝜇bot
𝑒2

 

⇔ 𝑛top =

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2
−

𝐶TI𝑎 (√𝑛bot
0 + 𝑛bot −√𝑛bot

0 )

𝑒2
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⇔

𝐶TI𝑎 (√𝑛bot
0 + 𝑛bot −√𝑛bot

0 )

𝑒2
= −𝑛top +

𝐶TI𝑎 (√𝑛top
0 + 𝑛top −√𝑛top

0 )

𝑒2
 

⇔
𝐶TI𝑎

𝑒2
√𝑛bot

0 + 𝑛bot −
𝐶TI𝑎

𝑒2
√𝑛bot

0 = −𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 ) 

⇔
𝐶TI𝑎

𝑒2
√𝑛bot

0 + 𝑛bot = −𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 ) +

𝐶TI𝑎

𝑒2
√𝑛bot

0  

⇔
𝐶TI𝑎

𝑒2
√𝑛bot

0 + 𝑛bot = −𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 ) 

⇔ √𝑛bot
0 + 𝑛bot = (

𝐶TI𝑎

𝑒2
)
−1

(−𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 )) 

⇔ 𝑛bot
0 + 𝑛bot = ((

𝐶TI𝑎

𝑒2
)
−1

(−𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 )))

2

 

⇔ 𝑛bot = ((
𝐶TI𝑎

𝑒2
)
−1

 (−𝑛top +
𝐶TI𝑎

𝑒2
(√𝑛top

0 + 𝑛top −√𝑛top
0 +√𝑛bot

0 )))

2

− 𝑛bot
0  

 

F.2 Limit of constant quantum capacitances 

𝑛bot = −𝑛TI − 𝑛gate 

⇔ 𝑛bot = −
𝐶gate(𝑒𝑉gate − 𝜇bot)

𝑒2
−
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
+ 
𝐶gate𝜇bot

𝑒2
−
𝐶TI𝜇top

𝑒2
+
𝐶TI𝜇bot
𝑒2

 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
−

𝑎

√𝑛bot
0

𝐶gate𝑛bot

𝑒2
+

𝑎

√𝑛top
0

𝐶TI𝑛top

𝑒2
−

𝑎

√𝑛bot
0

𝐶TI𝑛bot
𝑒2

 

With 𝑎

𝑒2√𝑛top
0
= (𝐶tq

0 )
−1
 and 𝑎

𝑒2√𝑛bot
0
= (𝐶bq

0 )
−1

 

⇔ 𝑛bot = −
𝐶gate𝑉gate

𝑒
−
𝐶gate𝑛bot

𝐶bq
0 +

𝐶TI𝑛top

𝐶tq
0 −

𝐶TI𝑛bot

𝐶bq
0  

⇔ 𝑛bot +
𝐶gate𝑛bot

𝐶bq
0 +

𝐶TI𝑛bot

𝐶bq
0 = −

𝐶gate𝑉gate

𝑒
+
𝐶TI𝑛top

𝐶tq
0  

⇔ 𝑛bot (1 +
𝐶gate

𝐶bq
0 +

𝐶TI

𝐶bq
0 ) = −

𝐶gate𝑉gate

𝑒
+
𝐶TI𝑛top

𝐶tq
0  
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⇔ 𝑛bot = −
1

(1 +
𝐶gate
𝐶bq
0 +

𝐶TI
𝐶bq
0 )

(
𝐶gate𝑉gate

𝑒
+
𝐶TI𝑛top

𝐶tq
0 ) 

 

Furthermore, it follows 

𝑛top = 𝑛TI =
𝐶TI(𝜇top − 𝜇bot)

𝑒2
 

⇔ 𝑛top =
𝐶TI𝜇top

𝑒2
−
𝐶TI𝜇bot
𝑒2

 

⇔ 𝑛top = −
𝐶TI𝑛top

𝐶tq
0 +

𝐶TI𝑛bot

𝐶bq
0  

⇔ 𝑛top +
𝐶TI𝑛top

𝐶tq
0 =

𝐶TI𝑛bot

𝐶bq
0  

⇔ 𝑛top (1 +
𝐶TI

𝐶tq
0 ) =

𝐶TI𝑛bot

𝐶bq
0  

⇔ 𝑛top =

𝐶TI
𝐶bq
0

(1 +
𝐶TI
𝐶tq
0 )

𝑛bot  

⇔
𝑛top

𝑛bot
=

𝐶TI
𝐶bq
0

(1 +
𝐶TI
𝐶tq
0 )

. 
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