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1 Introduction

This survey aims to (re-)introduce applied labor economists to nonparametric regression tech-

niques. Speci�cally, we discuss both spline and kernel regression, in an approachable manner.

We present an intuitive discussion of estimation and model selection for said methods. We also

address the use of nonparametric methods in the presence of endogeneity, a common issue in

the labor literature, but seldom accounted for in applied nonparametric work.

Accounting for endogeneity is well understood in the parametric literature once a suitable

instrument is obtained. Standard methods have been around for some time, but these methods

do not always transfer in a straightforward manner in the nonparametric setting. This has

caused many to shy away from their use, even with the knowledge that this can lead to additional

insight (Henderson and Parmeter [2015]).

To showcase these methods, we will look at the relationship between experience, education

and earnings. We will begin by ignoring the endogeneity of education and then will discuss

how to control for this via a nonparametric control function approach. While nonparametric

estimation may seem like a choice, it should be stated that the parametric alternative requires

strict functional form assumptions, which if false, likely lead to biased and inconsistent estima-

tors. In practice, the functional relationship between education and earnings as well as between

education and its instruments is typically unknown. By using nonparametric regression, we

relax these functional form restrictions and are more likely to uncover the causal relationship.

To empirically illustrate these methods, we use individual-level data obtained from the March

Current Population Survey (CPS) to highlight each concept discussed. To eliminate additional

complications, we primarily focus on a relatively homogeneous sub-group, speci�cally, working

age (20 to 59 years old) males with four-year college degrees.

In what follows, we �rst slowly introduce the fundamentals of spline and kernel estimators

and then discuss how to decide upon various options of each estimator. This should build the

foundation for understanding the more advanced topic of handling endogenous regressors. By

illustrating these techniques in the context of labor-speci�c examples, we hope that this helps

lead to widespread use of these methods in labor applications.

2 Nonparametric Regression

In a parametric regression model, we assume which functional form best describes the relation-

ship between the response and explanatory variables. If this form is correct, and the remaining

Gauss-Markov assumptions hold, we will have unbiased and e�cient estimators. However, if

these assumptions do not hold, these estimators are likely biased and inconsistent. Nonlin-

ear parametric models exist, but are often complicated to estimate and still require a priori
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knowledge of the underlying functional form.

Nonparametric regression o�ers an alternative. The methods discussed here estimate the

unknown conditional mean by using a �local� approach. Speci�cally, the estimators use the

data near the point of interest to estimate the function at that point and then use these local

estimates to construct the global function. This can be a major advantage over parametric

estimators which use all data points to build their estimates (global estimators). In other

words, nonparametric estimators can focus on local peculiarities inherent in a data set. Those

observations which are more similar to the point of interest carry more weight in the estimation

procedure.

This section will introduce two commonly used nonparametric techniques, and will provide

the notation and concepts that will be used for the remainder of this review. Speci�cally, we

discuss spline and kernel regression estimation. To help bridge gaps, we make connections to

well-known techniques such as ordinary and weighted least-squares.

2.1 Spline Regression

Spline regression can be thought of as an extension of ordinary least-squares (OLS). Consider

the basic univariate linear model:

yi = β0 + β1xi + εi, i = 1, 2, . . . , n, (1)

where for a sample of n observations, y is our response variable, x is our explanatory variable,

ε is our usual error term and we have two parameters: a constant and a slope (α and β,

respectively). The right-hand side of (1) can be thought of as a linear combination of 1 and

x, we call them the �bases� of the model. One popular way to transform (1) into a nonlinear

function is to add higher-order polynomials. A quadratic model would add one extra basis

function x2 to the model, which corresponds to adding the term β2x
2
i to (1). In matrix form,

the number of bases would correspond to the number of columns in the matrix X:

y = Xβ + ε, (2)

where

X =


1 x1

1 x2
...

...

1 xn


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for the linear case (2 bases), and

X =


1 x1 x21

1 x2 x22
...

...
...

1 xn x2n


for the quadratic case (3 bases).

These two cases are illustrated in Figure 1 where x is years of experience and y is the log

wage (adjusted for in�ation). To highlight a relatively homogeneous group, we restrict our

sample to college-educated (16 years of schooling) males working in personal care and service

(or related occupations) between 2006 and 2016.1 For each panel, the solid line represents white

males and the dashed line non-whites. Our linear model (i.e., OLS) shows a strong wage gap

between whites and non-whites which seems to remain constant (in percentage terms) as the

sale workers gain experience (i.e., similar slopes). Adding experience squared to the model

(quadratic model) allows us to better capture the well-known nonlinear relationship between

log wage and experience. As workers gain experience, we expect their log wage to increase,

but at a decreasing rate. The quadratic model (bottom-left panel) shows a large increase in

log wages early in a career with a slight downfall towards the end. Also, this model tends to

suggest that the wage gap between white and non-white males working in personal care and

service varies with experience. Non-white workers appear to have a more constant and slower

increase in their predicted log wages.

2.1.1 Linear Spline Bases

In our example, we could argue that although wages should increase with experience (increase in

competence/knowledge), there may be a point where more experience will not increase wages or

perhaps even decrease it (slower cognitive ability/decreases in e�ciency). Suppose we created a

model with the equivalent of two linear regression: one for the �rst 20 years of experience, and

another for the latter years. This would be equivalent of adding the following basis function to

our linear model:

(x− 20)+,

where the + sign indicates that the function is set to zero for all values of x where (x− 20)

is negative. This model is sometimes called the broken stick model because of its shape, but

more generally is referred to as a linear spline base model with 3 knots. The 3 knots are at 0

(minimum value), 20, and 37 (maximum value) years of experience. Note that the maximum

and minimum values of x will always be consider to be knots. For example, the linear model in

equation (9) has two knots. Here we arbitrarily �xed the middle knot at 20 years of experience.

1Fixing the sample to college educated males allows us to plot these �gures in two dimensions.
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Figure 1: Log-wages versus Experience for White versus Non-white College-educated Males
Working in Personal Care and Service

We will discuss which knots to select and how many to select in Section 3.

The broken stick model with a break at x = 20 is written as

yi = β0 + β1xi + β2(xi − 20)+ + εi (3)

and is illustrated in upper-right panel of Figure 1. We see a similar result to the quadratic

model, that is, for white workers, we see a strong increase in wages in the �rst part of their

career followed by a smaller decrease towards the end of their career. That being said, we

arbitrarily �xed the middle knot at 20 years of experience. Without strong reasons to do so,

it is premature to say anything about when the increase in the log wage stops and when the

decrease begins. Noting the aforementioned issue, we also observe the wage gap widen at �rst

with experience, but then converge at higher levels of experience.

Figure 2 illustrates how adding knots at di�erent values can change the results. We present

a model with 5 knots at x = 0, 10, 20, 30, 37, and a model with 20 knots (every 2 years) at
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Figure 2: Log-wage versus Experience for White versus Non-white College-educated Males
Working in Personal Care and Service

x = 0, 2, 4, ..., 34, 36, 37. In matrix form, equation (2), the X matrix with 5 knots is given as

X =


1 x1 (x1 − 10)+ (x1 − 20)+ (x1 − 30)+ (x1 − 37)+

1 x2 (x2 − 10)+ (x2 − 20)+ (x1 − 30)+ (x2 − 37)+
...

...
...

...
...

1 xn (xn − 10)+ (xn − 20)+ (x1 − 30)+ (xn − 37)+


and with 20 knots,

X =


1 x1 (x1 − 2)+ ... (x1 − 36)+ (x1 − 37)+

1 x2 (x2 − 2)+ ... (x1 − 36)+ (x2 − 37)+
...

...
...

...
...

1 xn (xn − 2)+ ... (x1 − 36)+ (xn − 37)+


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Adding knots at 10 and 30 years of experience allows the model to account for the commonly

seen mid-career �attening period. However, the function is still not very smooth and it is hard

to tell from this model when log wages start to �atten out. Adding more knots allows for more

�exibility, but this can potentially lead to over�tting. For example, in the linear base model

with 20 knots (upper-right panel of Figure 2), the �tted line is appears to be modeling noise.

2.1.2 Quadratic Spline Bases

The linear spline base model is a combination of linear bases. The quadratic spline base model

is a combination of quadratic bases. In other words, we simply add the corresponding squared

function for each of the linear base functions. Consider our previous broken stick model with a

middle knot at x = 20, we can transform it into a quadratic spline base model with a knot at

x = 20 by replacing (x− 20)+ with the following bases:

x2, (x− 20)2+.

This quadratic spline base model is represented by the following equation

yi = β0 + β1xi + β2x
2
i + β3(xi − 20)2+ + εi, (4)

and is illustrated in the bottom-right panel of Figure 1. We can see that the quadratic spline

base model suggests a slightly di�erent relationship between experience and log wage. The

predicted log wage increases more dramatically for the �rst 5 years of work experience, but

�attens out thereafter. The racial gap seems to be small at �rst, but widens greatly over the

�rst 5 years. Non-white workers appear to slowly catch up over the course of their careers.

One of the main advantages of the quadratic over the linear spline base model is that it

does not have any sharp corners (i.e., unde�ned gradients). It follows that for any number of

knots, the resulting function will have continuous �rst derivatives. This is both a useful and

aesthetically pleasing property. Adding more knots (lower-right panel of Figure 2) to the model

adds more variability. It appears that for this example, 5 knots would be su�cient.

An important concept in economics (typically of secondary importance in statistics text-

books) is recovery of the gradients. In the linear case, the gradient is simply the estimated

coe�cient between two particular knots. In the quadratic (or higher-order) case, we use the

same method to get the gradient as in a simple quadratic OLS model. The di�erence is that we

calculate it between each knot. That is, to estimate a particular gradient for any type of spline

model, we can simply take the partial derivative with respect to the regressor x. In its general
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form, our estimated gradient β̂(x) for a particular regressor x is

β̂(x) =
∂ŷ(x)

∂x
. (5)

For our linear spline base example with 3 knots, this is

β̂(x) = β1 +

β2, if x ∈ [20, 37)

0, otherwise
(6)

and for our quadratic spline base example with 3 knots

β̂(x) = β1 + 2β2xi +

2β3(xi − 20), if x ∈ [20, 37)

0, otherwise
(7)

2.1.3 B-Splines

We introduced linear and quadratic spline models with the truncated power basis function.

Using the same truncated power functions, those models can be generalized to

y = β0 + β1x+ · · ·+ βpx
p +

K∑
k=1

βpk(x− κk)p+ + εi, (8)

where p is the degree of the power basis (truncated power basis of degree p). This generalizes

our model by allowing for (1) other spline models (using p degrees), and (2) other bases for a

given spline model (using K knots). This function has p − 1 continuous derivatives and thus

higher values of p should lead to �smoother� spline functions. Similar to before, the general

form of the gradient is de�ned as

β̂(x) = β1 + · · ·+ pβpx
p−1 +

K∑
k=1

pβpk(x− κk)p−1+ . (9)

While this general form seems reasonable, splines computed from the truncated power bases

in equation 8 may be numerically unstable. The values in the X-matrix may become very large

(for large p), and the columns of the X-matrix may be highly correlated. This problem will only

become worse with a higher number of knots. Therefore, (8) is rarely used in practice, but is

instead typically transformed into equivalent bases with more stable numerical properties. One

of the most popular is the B-spline basis.

This can be relatively di�cult to present and code, but luckily there exist regression packages

to easily transform the X-matrix into the more numerically stable version. Formally, we can
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Figure 3: Truncated and B-Spline Corresponding Bases with Knots at 0, 20, and 37 Years of
Experience

compute the equivalence as

Xb = XtLp,

where Xt is a matrix of the bases (explanatory variables) used in (8) and Lp is a squared

invertible matrix. The most commonly used transformation in the linear case is

B(x)j =


x−κj

κj+1−κj , if x ∈ [κj, κj+1)

κj+2−x
κj+2−κj+1

, if x ∈ [κj+1, κj+2)

0, otherwise

for j = −1, 2, 3, ...,K.

To better illustrate this, consider our broken stick example from Figure 1: the linear-spline

with one middle knot at 20 years of experience. The corresponding bases for this model are 1, x

and, (x− 20)+ and are shown in the upper-left panel of Figure 3. The B-spline transformation
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of the second knot (20 years of experience) for this example is

B(x)j=2 =


x−0
20−0 , if x ∈ [0, 20)

37−x
37−20 , if x ∈ [20, 37)

0, otherwise

The corresponding bases of this transformation are shown in the upper-right panel of Figure 3.

B(x)j=2 corresponds to the inverse V-shaped function which equals 1 when experience equals

20. The other two functions can be computed similarly using j = −1, and 3. Adding a higher

degree to our model will change the shape of our basis functions. The two bottom panels of

Figure 3 show the equivalent truncated spline basis and B-spline basis for the cubic case (p = 3).

While other basis functions exist (for example, radial basis functions), practitioners may

prefer B-splines as they are both numerically more stable and relatively easy to compute. Both

R and Stata packages are available. We used the now defunct bs (·) function in the splines

package2 in R. The bspline module is available in Stata for B-splines.

2.2 Kernel Regression

Instead of assuming that the relationship between y and x come from a polynomial family, we

can state that the conditional mean is an unspeci�ed smooth function m(·) and our model will

be given as

yi = m (xi) + εi, i = 1, 2, . . . , n, (10)

where the remaining variables are described as before. In much the same way spline regression

can be thought of as an extension of OLS, kernel regression can be seen as an extension of

WLS. That is, we are still minimizing a weighted residual sum of squares, but now we will

weight observations by how close they are to the point of interest (i.e., a �local� sample). With

spline regression, our local sample is de�ned as all the points included between two knots,

where each point within that sample is weighted equally. Kernel regression goes a step further

by estimating each point using a weighted local sample that is centered around the point of

interest. The local sample is weighted using a kernel function, which possess several useful

properties.

A kernel function de�nes a weight for each observation within a (typically) symmetric pre-

determined bandwidth. Unlike an OLS regression which makes no distinction of where the data

are located when estimating the conditional expectation, kernel regression will estimate the

point of interest using data within a bandwidth.

2See https://stat.ethz.ch/R-manual/R-devel/library/splines/html/bs.html and the seemingly equivalent
bSpline (·) function in the splines2 package.
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Before introducing the kernel estimators, let us �rst derive a kernel function. Consider x

our point of interest; we can write an indicator function such that data fall within a range h

(our bandwidth) around x:

nx =
n∑
i=1

1

{
x− h

2
≤ xi ≤ x+

h

2

}
,

The corresponding probability of falling in this box (centered on x) is thus nx/n. This indicator

function can be rewritten as

nx =
n∑
i=1

(
1

2

)
1

{ ∣∣∣∣xi − xh

∣∣∣∣ ≤ 1

}
. (11)

This function is better known as a uniform kernel and is more commonly written as

k(ψ) =

1/2, if |ψ| ≤ 1

0, otherwise

where we have written k(ψ) for convenience, where ψ is de�ned as (xi − x)/h and represents

how �local� the observation xi is relative to x. Though very simple and intuitive, the uniform

kernel is not smooth. It is discontinuous at −1 and 1 (when the weight switches from 1/2 to

zero) and has a derivative of 0 everywhere except at theses two points (where it is unde�ned).

Table 1: Commonly used Second-order Kernel Functions

Kernel k(ψ) κ2(k)

Uniform (s = 0) 1
2
1{|ψ| ≤ 1} 1/3

Epanechnikov (s = 1) 3
4
(1− ψ2)1{|ψ| ≤ 1} 1/5

Biweight (s = 2) 15
16

(1− ψ2)21{|ψ| ≤ 1} 1/7

Triweight (s = 3) 35
32

(1− ψ2)31{|ψ| ≤ 1} 1/9

Gaussian (s =∞) 1√
2π
e−(1/2)ψ

2
1

This kernel is rarely used, but it does possess some basic properties that we typically require
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of kernel functions. More formally, if we let the moments of the kernel be de�ned as

κj(k) =

∫ ∞
−∞

ψjk(ψ)dψ, (12)

these properties are

1. κ0(k) = 1 (k(ψ) integrates to one),

2. κ1(k) = 0 (k(ψ) is symmetric), and

3. κ2(k) <∞ (k(ψ) has a �nite variance).

These are known as second-order kernels. In addition to the uniform kernel, several commonly

known kernel functions can be found in Table 1 (with their second-moments) and Figure 4.

Each of them are derived from the general polynomial family:

ks(ψ) =
(2s+ 1)!!

2s+1s!
(1− ψ2)s1{|ψ| ≤ 1}, (13)

where !! is the double factorial. The most commonly used kernel function in econometrics is the

Gaussian kernel as it has derivatives of all orders. The most commonly used kernel function in

statistics is the Epanechnikov kernel function as it has many desirable properties with respect to

mean squared error. We will discuss how to choose the kernel function and smoothing parameter

(h) in Section 3.

Figure 4: Commonly used Second-order Kernel Functions
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2.2.1 Local-Constant Least-Squares

The classic kernel regression estimator is the local-constant least-squares (LCLS) estimator (also

known as the Nadaraya-Watson kernel regression estimator, see Nadaraya [1964] and Watson

[1964]). While it has fallen out of fashion recently, it is useful as a teaching tool and still useful

in many situations (e.g., binary left-hand-side variables).

To begin, recall how we construct the OLS estimator. Our objective function is

min
α,β

n∑
i=1

(yi − α− xiβ)2,

which leads to the slope and intercept estimators, β̂ and α̂.

Suppose instead of a linear function of x, we simply regress y on a constant (a). Our objective

function becomes

min
a

n∑
i=1

[yi − a]2,

which leads to the estimator â = (1/n)
∑n

i=1 yi = ȳ. A weighted least-squares version of this

objective function can be written as

min
a

n∑
i=1

[yi − a]2W (xi),

where W (xi) is the weighting function, unique to the point xi. If we replace the weighting

function with a kernel function, minimizing this objective function yields the LCLS estimator

â = m̂(x) =

∑n
i=1 yik

(
xi−x
h

)∑n
i=1 k

(
xi−x
h

) . (14)

This estimator represents a local average. Essentially, we regress y locally, on a constant,

weighting observations via their distance to x.

While equation 14 gives us the �t, economists are typically interested in the marginal e�ects

(i.e., gradients). To estimate a particular gradient, we simply take the partial derivative of m̂(x)

with respect to the regressor of interest, x. Our estimated gradient β̂(x) is thus

β̂(x) =

(∑n
i=1 yi

∂k
(

xi−x

h

)
∂x

)(∑n
i=1 k

(
xi−x
h

))
−
(∑n

i=1 yik
(
xi−x
h

))(∑n
i=1

∂k
(

xi−x

h

)
∂x

)
(∑n

i=1 k
(
xi−x
h

))2 , (15)

where, for example,
∂k(xi−x

h )
∂x

=
(
xi−x
h2

)
k
(
xi−x
h

)
for the Gaussian kernel. Higher-order derivatives
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can be derived in a similar manner.

2.2.2 Local-Linear Least-Squares

While the LCLS estimator is intuitive, it su�ers from biases near the boundary of the support of

the data. As an alternative, most applied researchers use the local-linear least-squares (LLLS)

estimator. The LLLS estimator locally �ts a line as opposed to a constant.

The local-linear estimator is obtained by taking a �rst-order Taylor approximation of equa-

tion (10) via

yi ≈ m(x) + (xi − x)β(x) + εi,

where β(x) is the gradient. Similar to the LCLS case, by labeling m(x) and β(x) as the

parameters a and b, we get the following minimization problem

min
a,b

n∑
i=1

[yi − a− (xi − x)b]2k

(
xi − x
h

)
,

which, in matrix notation (with q regressors) is

min
δ

(y −Xδ)′K(x)(y −Xδ),

where δ = (a, b)′, X is a n× (q+ 1) matrix with its ith row equal to (1, (xi− x)) and K(x) is a

n×n diagonal matrix with its ith element equal to k
(
xi−x
h

)
. This leads to the LLLS estimators

of the conditional expectation (m̂(x)) and gradient (β̂(x)) as

δ̂(x) =

(
m̂(x)

β̂(x)

)
= (X ′K(x)X)−1X ′K(x)y,

Notice that we can obtain the OLS estimator by replacingK(x) by an identity matrix (giving

all observations equal weight, i.e., bandwidth tending towards in�nity), the weighted least-

squares (WLS) estimator by replacing it with some other weighting function, and the generalized

least-squares (GLS) estimator by replacing it with the inverse of the variance-covariance matrix

of the errors (Ω).

Figure 5 gives both the LCLS and LLLS estimates for white (solid line) and non-white

(dashed line) college-educated males working in personal care and service. The gradients for

each level of experience are also shown. Compared to the LCLS model, the LLLS model captures

a stronger increase in log wage during the �rst 5 years of work experience with gradients ranging

from 0.10 to 0.17. If taken literally, after only a year of working in personal care and service,

white college-educated males wages increases by almost 17% on average while non-white college-

educated males' wages increases by about 7%. The LCLS model, while showing a similar overall
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Figure 5: Log-wage versus Experience for White versus Non-white College-educated Males
Working in Personal Care and Service

shape, shows a much slower increase in those �rst few years of work experience with less than

4% increases in wages for non-whites and 5% to 8% increases for whites. Both models suggest

that while white workers have much higher percent increases in their wages in the �rst few

years, those year-to-year percent increases in their wages fall below non-white workers after 10

years of experience.

2.2.3 Local-Polynomial Least-Squares

The derivation of the LLLS estimator can be generalized to include higher-order expansions.

The resulted family of estimators are called local-polynomial least-squares (LPLS) estimators.

For the general case, if we are interested in the pth-order Taylor expansion, and we assume that

the (p+ 1)th derivative of the conditional mean at the point x exists, we can write our equation

as

yi ≈ m(x) + (xi − x)
∂m(x)

∂x
+ (xi − x)2

∂2m(x)

∂x2
1

2!
+ ...+ (xi − x)p

∂pm(x)

∂xp
1

p!
+ εi.
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Replacing the parameters by (a0, ..., ap), our kernel weighted least-squares problem can be writ-

ten as

min
a0,...,ap

n∑
i=1

[yi − a0 − (xi − x)a1 − (xi − x)2a2 − ...− (xi − x)pap]
2k

(
xi − x
h

)
.

In matrix notation, our objective function becomes

min
δ

(y −Xδ)′K(x)(y −Xδ)

where the only di�erence from the LLLS case (p = 1) is that the ith row of X is de�ned as

[1, (xi − x), (xi − x)2, ..., (xi − x)p] and δ = (a0, a1, ..., ap)
′. Minimizing the objective function

leads to the local-polynomial least-square estimator

δ̂(x) =

(
m̂(x),

∂m̂(x)

∂x
,
∂2m̂(x)

∂x2
, ...,

∂pm̂(x)

∂xp

)′
= (X ′K(x)X)−1X ′K(x)y

The �rst question then becomes, how many expansions should we take? More expansions

lead to less bias, but increased variability. This becomes a bigger problem when the number of

covariates (q) is large and the sample size (n) is small. One promising data driven method to

determine the number of expansions is considered in Hall and Racine [2015].

As is the case for splines, there exist options to employ these methods in popular software

packages. In R we recommend the np package (Hay�eld and Racine [2008]) and in Stata we

recommend the npregress command.

3 Model Selection

For both spline and kernel regression, many seemingly arbitrary choices can greatly in�uence

�t. The typical trade-o� is between bias and variance. We want to make selections such that

we avoid over�tting or under�tting. In this section, we �rst discuss penalty selection, knot

selection, and degree selection in spline models; and then, kernel and bandwidth selection in

kernel models.

3.1 Spline Penalty and Knot Selection

In Section 2.1, we saw that the �t is in�uenced by both our choice of degree of the piecewise

polynomials, and by the number and locations of knots we include. However, in spline models,

there is a third, more direct way, to in�uence �t: add an explicit penalty. In short, we want to

select the degree of the piecewise polynomials, the knot locations, and the smoothing parameter

16



λ (penalty) which best capture the underlying shape of our data. Though we will brie�y discuss

the selection of all three, it is easy to show that the choices of degree and knots are much less

crucial than the choice of λ, the smoothing parameter (we will see a similar result for kernel

regression). That is, when using a high enough number of knots and degrees, the �smoothness�

of our �t can be controlled by λ. Hence, we will focus most of our discussion on the choice of λ

when the degree and number of knots are �xed. Although there exist several ways to select our

parameters in a data-driven manner, we will concentrate on one of the most commonly used

approaches: cross-validation (CV).

3.1.1 Penalty Selection using Cross Validation

There are several ways to impose a penalty, but here we focus on a method that avoids extreme

values (and hence too much variability). In a univariate setting using a linear spline, this penalty

is ∑
β2
1k < C,

where β2
1k is the coe�cient on the kth knot3. In matrix form, our constrained objective function

can thus be written as

min
β
|| y −Xβ ||2 s.t. β′Dβ ≤ C,

and leads to Lagrangian4

L(β, λ) = min
β,λ
|| y −Xβ ||2 +λ2β′Dβ, (16)

where D is a (K + 2) × (K + 2) matrix with diagonal (0, 0, 11, ..., 1K). Note that consistency

will require that λ tends towards zero as the sample size (n) tends towards in�nity.

The second term of (16) is called a roughness penalty because it penalizes through the value

of the smoothing parameter (λ) the curvature of our estimated function. This type of regression

is referred to as a penalized spline (p-spline) regression and yields the following solution and

�tted values:

β̂λ = (X ′X + λ2D)−1X ′y

ŷ = X(X ′X + λ2D)−1X ′y.

To generalize these results to the pth degree spline model (equation (8)), we replace λ2 by

λ2p5 and transform the D-matrix: D = diag(0p+1, 1K). A penalized B-spline (PB-spline) would

3The matrix of the coe�cients being β = [β0, β1, β11, ..., β1K]
′

4Note that the last term −λ2C disappears as it does not in�uence the solution
5We raise λ to the power of 2p because the way we add bases. Intuitively, raising λ to the power of 2p can be

explained by the following example: if we transform X into αX for any α > 0, we want to have the equivalent
transformation done on the smoothing parameter λ→ αλ to get the same �t.
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simply include the transformation done to X (i.e., the square invertible matrix Lp) into the

penalty term as well:

ŷ = XB(X ′BXB + λ2pL′pDL
′
p)
−1X ′By.

As λ2p → ∞ (in�nite smoothing), the curvature penalty becomes predominant and the

estimate converges to OLS. As λ2p → 0, the curvature penalty becomes insigni�cant. In this

case, the function will become rougher (we will see a similar result with the bandwidth parameter

for a LLLS regression). Figure 6 illustrates this e�ect using linear p-spline estimates for college-

educated males working in personal care and service. The knots have been �xed at every �ve

years of experience (0,5,10,...). As the penalty (λ) increases, it is clear that the �t becomes

smoother and converges to an OLS estimate.

Figure 6: Log-wage versus Experience for College-educated Males Working in Personal Care
and Service with Di�erent Penalty (λ) Factors

Figure 6 shows an intuitive �t of the data for a value of λ around 10. However, using a more

systematic method to select λ would lead to less subjective and more comparable results. If we

let m̂(xi;λ) be our nonparametric regression estimate at the point x with smoothing parameter
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λ, we can write a residual sum of squares objective function as

RSS(λ) =
n∑
i=1

[yi − m̂(xi;λ)]2 . (17)

The problem with this approach, is that m̂(xi;λ) uses yi as well as the other observations

to predict yi. This objective function is minimized when λ = 0. This problem can be avoided

by using a leave-one-out estimator. Least-Squares Cross-Validation (LSCV) is the technique

whereby we minimize equation 17, where the �t is replaced by a leave-one-out estimator

CV (λ) =
n∑
i=1

[yi − m̂−i(xi;λ)]2 , (18)

where m̂−i (·) is our leave-one-out estimator, and is de�ned as our original nonparametric re-

gression estimator m̂ (·) applied to the data, but with the point (xi, yi) omitted. We will thus

choose a smoothing parameter λ̂CV that will minimize CV (λ) over λ ≥ 0.

Using the same number of knots, the top panel of Figure 7 shows the corresponding CV

and RSS curves at di�erent values of λ. We can see that the RSS curve is strictly increasing as

theory predicts and would choose a lambda of zero. The CV curve, on the other hand, decreases

at �rst and reaches a minimum when λ = 7. The resulting �t (bottom panel of Figure 7) is

smoother than what the RSS criterion would provide.6

3.1.2 Knots and Degree Selection

Using an �optimal� lambda and CV criterion, we can compare p-spline models that use di�erent

numbers (and location) of knots and di�erent bases (degrees). From experimenting with the

number of knots and degrees, the literature �nds that (1) adding more knots only improves the

�t for a small number of knots (2) when using many knots, the minimum CV for linear and

quadratic �ts become indistinguishable. In general, we suggest using quadratic or cubic basis

functions.

Though there exist more formal criterion to select the number and location of knots, Ruppert

et al. [2003] provide simple solutions which often work well. Their default choice of K is

K = min{(1/4)× number of unique xi, 35},
6Note that to compute our CV statistics, we transformed equation 18 to avoid the high computational cost of

calculating n versions of m̂−i(xi;λ) (i.e., the order-n
2 algorithm) using fast order-n [Hutchinson and De Hoog,

1985].
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Figure 7: Objective Functions for Choosing Penalty Factors for Linear P-splines for College-
educated Males Working in Personal Care and Service

where K is the number of knots. For knot locations they suggest

κK =

(
k+ 1

K+ 2

)
th sample quantile of the unique xi

for k = 1, ...,K.

Eilers and Marx [1996, 2010] argue that equally spaced knots are always preferred. Eilers

and Marx [2010] present an example where equally spaced knots outperform quantile spaced

knots. The best type of knot spacings is still under debate and both methods are still commonly

used.7

7Montoya et al. [2014] use a simulation to test the performance of di�erent knot selection methods with
equidistant knots in a p-spline model. Speci�cally, they compare the methods presented in Ruppert et al. [2003]
with the myopic algorithm knot selection method, and the full search algorithm knot selection method. Their
results show that the default choice method performs just as well or better than the other methods when using
di�erent commonly used smoothing parameter selection methods.
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While knots' location and degree selection usually have little e�ect on the �t when using

a �su�ciently� large amount of knots, they may become important when dealing with more

complex problems. For example, when trying to smooth regression functions with strong varying

local variability or with sparse data. In these cases, using a more complex algorithm to make

your selection may be more appropriate.

3.2 Kernel and Bandwidth Selection

Choosing a kernel function is similar to choosing the degree of the piecewise polynomials in

spline models, and choosing the size of the bandwidth (h) is similar to choosing the number

and location of knots. There exist equivalents to having a direct penalty (λ) incorporated in

a kernel model, but those are rarely used in applied kernel estimation. We will therefore focus

our discussion on kernel and bandwidth selection.

Figure 8: Log-wage versus Experience for College-educated Males Working in Personal Care
and Service when Varying the Bandwidth (h) Parameter

Similar to adding more knots or decreasing the penalty λ in a spline model, decreasing the
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bandwidth will lead to less bias, but more variance. Figure 8 illustrates this e�ect using LLLS

and a Gaussian kernel for college-educated males working in personal care and service. As the

size of the bandwidth (h) increases, the �t becomes smoother and converges to OLS.

Choice of bandwidth and kernel can be chosen via the asymptotic mean square error (AMSE)

criterion (or more speci�cally, via asymptotic mean integrated square error). In practice, the �t

will be more sensitive to a change in bandwidth than a change in the kernel function. Reducing

the bandwidth (h), leads to a decrease in the bias at the expense of increasing the variance.

In practice, as the sample size (n) tends to in�nity, we need to reduce the bandwidth (h)

slowly enough so that the amount of �local� information (nh) also tends to in�nity. In short,

consistency requires that

as n→∞, we need h→ 0 and nh→∞.

The bandwidth is therefore not just some parameter to set, but requires careful consideration.

While many may be uncomfortable with an estimator that depends so heavily on the choice of

a parameter, remember that this is no worse than pre-selecting a parametric functional form to

�t your data.

3.2.1 Cross-Validation Bandwidth Selection

In practice, there exist several methods to obtain the �optimal bandwidth� which di�er in the

way they calculate asymptotic mean square-error (or asymptotic mean intergrated square-error).

Three typical approaches to bandwidth selection are: (1) reference rules-of-thumb, (2) plug-in

methods and (3) cross-validation methods. Each has its distinct strengths and weaknesses

in practice, but in this survey we will focus on the data driven method: cross-validation.8

Henderson and Parmeter [2015] provide more details on each of these methods.

LSCV is perhaps the most popular tool for cross-validation in the literature. This criterion

is the same as the one described in Section 3.1.1 to select the penalty parameter in spline

regression. That is, we use a leave-one-out estimator

CV (h) =
n∑
i=1

[yi − m̂−i(xi)]2 , (19)

whereby we minimize the objective function with respect to h instead of λ and the (LCLS)

8While there is no theoretical justi�cation for doing so, it is common to use rule-of-thumb methods designed for
density estimation as a form of exploratory analysis. In fact, we used a rule-of-thumb to compute the bandwidth
in our previous examples (Section 2). In its general form, the bandwidth (designed for Gaussian densities with
a Gaussian kernel) is hrot = 1.06σ2

xn
−1/5. For the remainder of the article, we will use bandwidths selected via

cross-validation.
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leave-one-out estimator is de�ned as

m̂−i(xi) =

n∑
j=1
j 6=i

yjKh(xj, xi)

n∑
j=1
j 6=i

Kh(xj, xi)
.

Figure 9: Objective Functions for Choosing Bandwidths for Kernel Estimators for College-
educated Males Working in Personal Care and Service

In the top panel of Figure 9, we show an analogous �gure to that presented in Section 3.1.1.

It shows the corresponding CV and RSS curves for di�erent bandwidths. When failing to use

the leave-one-out estimator, the RSS curve is strictly increasing (i.e., the optimal bandwidth is

zero). Using the leave-one-out estimator, the objective function is minimized at h = 1.62. The

resulting �t, (bottom panel of Figure 9) shows more variation than the linear p-spline (Figure

7). This is not surprising as the linear p-spline forces a linear �t between each knot. The two

graphs would have looked more similar if we had used a cubic p-spline, allowing for curvature
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between knots.

3.2.2 Kernel Function Selection

Kernel selection is typically considered to be of secondary performance as it is believed that

it makes minor di�erences in practice. The optimal kernel function, in the AMISE sense, is

the Epanechnikov kernel function. However, as stated previously, it may not be useful in some

situations as it does not posses more than one derivative. Gaussian kernels are often used in

economics as they possess derivatives of any order, but there are losses in e�ciency. In the

univariate density case, the loss in e�ciency is around 5%. However, Table 3.2 of Henderson

and Parmeter [2015] shows that this loss in e�ciency increases with the dimension of the data

(at least in the density estimation case). In practice, it may make sense to see if the results of

a study are sensitive to the choice of kernel.

3.3 Splines versus Kernels

In these single-dimension cases, our spline and kernel estimates are more or less identical. Spline

regressions have the advantage that they are much faster to compute. While it is uncommon to

have an economic problem with a single covariate, if that were the case, we likely would suggest

splines.

In a multiple variable setting, the di�erence between the two methods are more pronounced.

The computation time for kernels increases exponentially with the number of dimensions. The

additional computational time required for splines is minor. On the other hand, kernels handle

interactions and discrete regressors (see Ma et al. [2015] for using discrete kernels with splines)

well (both common features in economic data). It is also relatively easier to extract gradients

with kernel methods.

In reality there are camps: those who use kernels and those who use splines. However, the

better estimator probably depends upon the problem at hand. Both should be considered in

practice.

4 Instrumental Variables

Nonparametric methods are not immune to the problem of endogeneity. A �rst thought about

how to handle this issue would be to use some type of nonparametric two-stage least-squares

procedure. However, this is not feasible as there exists an ill-posed inverse problem (to be

discussed below). It turns out that this problem can be avoided by using a control function

approach much like that in the parametric literature (e.g., see Cameron and Trivedi [2010]).
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To motivate this problem, consider a common omitted-variable problem in labor economics:

ability in the basic compensation model. A correctly speci�ed wage equation could be described

as:

log(wage) = β0 + β1educ+ β2z1 + β3abil + ε (20)

where educ is years of education, abil is ability, and z1 is a vector of other relevant characteristics

(e.g., experience, gender, race, marital status). However, in applied work, ability (abil) cannot

be directly measured/observed.

If we ignore ability (abil), it will become part of the error term

log(wage) = β0 + β1educ+ β2z1 + u, (21)

where u = ε+ β3abil and abil is correlated with both u and with educ. Our resulting estimated

return to education (β1) will be biased and inconsistent. We can resolve this problem if we

can �nd an instrumental variable (IV) which is uncorrelated with u (and so uncorrelated with

ability), but correlated with educ. Several IVs have been considered in the literature for this

particular model,9 each with their own strengths and weaknesses, but for the purpose of this

illustration, we will use spouse's wage. That is, we assume that spouse's wage is correlated with

education, but not with ability.

In the parametric setting, the control function (CF) approach to IVs is a two-step procedure.

In the �rst step, we regress the endogenous variable on the exogenous vector z:

educ = γ0 + γ1z + v,

where z = (z1, spwage) and spwage is the spouse's wage, and obtain the reduced form residuals

v̂. In the second step, we add v̂ to equation 21 and regress

log(wage) = β0 + β1educ+ β2z1 + β3v̂ + u.

By directly controlling for v, educ is no longer viewed as endogenous.

4.1 The Ill-Posed Inverse Problem and Control Function Approach

Let us �rst go back and consider the general nonparametric regression setting

y = m(x) + u, (22)

9Those IVs include, but are not limited to: minimum school-leaving age, quarter of birth, school costs,
proximity to schools, loan policies, school reforms, spouse's and parents' education/income.
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where E[u|x] 6= 0, but there exists a variable z such that E[u|z] = 0. For the moment, assume

that x and z are scalars.

Using the condition

E[u|z] = [y −m(x)|z] = 0,

yields the conditional expectation

E[y|z] = [m(x)|z] =

∫
m(x)f(x|z)dx. (23)

Although we can estimate both the conditional mean of y given z (E[y|z]) as well as the

conditional density of x given z (f(x|z)), we cannot recover m(x) by inverting the relationship.

That is, even though the integral in equation 23 is continuous in m(x), inverting it to isolate

and estimate m(x) does not represent a continuous mapping (discontinuous). This is the so-

called ill-posed inverse problem and it is a major issue when using instrumental variables in

nonparametric econometrics.

Luckily, we can avoid this problem by placing further restrictions on the model (analogous

to additional moment restrictions in a parametric model). Here we consider a control function

approach. Similar to the parametric case above, we consider the triangular framework

x = g(z) + v, (24)

y = m(x) + u (25)

with the conditions E[v|z] = 0 and E[u|z, v] = E[u|v]. The �rst condition implies that z is a

valid instrument for x and the second allows us to estimate m(x) and avoid the ill-posed inverse

problem. It does so by restricting u to depend on x only through v. More formally,

E[y|x, v] = m(x) + E[u|x− v, v]

= m(x) + E[u|z, v]

= m(x) + E[u|v]

= m(x) + r(v),

and hence

m(x) = E[y|x, v]− r(v), (26)

where both E[y|x, v] and r(v) can be estimated nonparametrically. In short, we control for v

through the nonparametric estimation of the function r(v).
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4.2 Spline Regression with Instruments

Now that we have the basic framework, we can discuss nonparametric estimation in practice.

Consider our previous compensation model, but without functional form assumptions:

log(wage) = m(educ, z1) + u (27)

where ability (abil) is unobserved. It is known that abil will be correlated with both the error

u and the regressor educ (i.e., E[u|educ] 6= 0). Similar to the parametric setting, if we have an

instrument z such that

E[u|z] = [log(wage)−m(educ, z1)|z] = 0,

we can avoid the bias due to endogeneity. We again de�ne z = (z1, spwage), where our excluded

instrument, spwage, is the spouse's wage. This yields

E[log(wage)|z] = [m(educ, z1)|z].

Our problem can now be written via the triangular system attributable to Newey et al.

[1999]:

educ = g(z) + v (28)

log(wage) = m(educ, z1) + u, (29)

where E[v|z] = 0 and E[u|z, v] = E[u|v]. Similar to the parametric case, we �rst estimate the

residuals from the reduced-form equation (i.e., v̂). We then include the reduced-form residuals

nonparametrically as an additional explanatory variable:

log(wage) = w(educ, z1, v̂) + u, (30)

where w (educ, z1, v̂) ≡ m (educ, z1) + r (v̂) and m̂ (educ, z1) can be recovered by only extracting

those terms that depend upon educ and z1. Note that we need to use splines that do not allow

for interactions between educ or z1 and u (interactions between educ and z1 are allowed).

In what follows, we will use cubic B-splines (the default for most R packages) with K =

min{(1/4)× number of unique xi, 35} equi-quantile knots (see Section 3) in both stages. Figure
10 shows the �tted results for the �rst stage. In the left panel, we see that as individuals'

experience increases, the level of education slowly decreases, with a signi�cant drop after 35 years

of work experience. In the right panel, we observe a quadratic relationship between education

level and spouse's wage. That is, the higher the spouse's wage, the higher the individual's

education, but for individuals whose spouse have a high level of income, the relationship becomes
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negative.

Figure 10: First-stage Estimates for Education for College-educated Males Working in Personal
Care and Service versus Experience and Spousal Income

Figure 11: Second-stage Estimates for Log-wage for College-educated Males Working in Personal
Care and Service versus Experience and Education Level

The �tted plots from the second stage are given in Figure 11. Controlling for education,10

men's log wage seems to increase in the �rst few years on the job, stabilizes mid-career, and

then decreases towards the end of their career in personal care and service. Education seems to

a�ect log wage positively only after 10-12 years of schooling (high-school level).

10Recall that in our previous examples, the level of education is �xed at 16 years � college degree.
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4.3 Kernel Regression with Instruments

Estimation via kernels is relatively straightforward given what we have learned above. We

again use a control function approach, but with local-polynomial estimators. Kernel estimation

of this model was introduced by Su and Ullah [2008] and is outlined in detail in Henderson

and Parmeter [2015]. In short, the �rst stage requires running a local-p1th order polynomial

regression of the endogenous regressor on z, obtaining the residuals and then running a local-p2th

order polynomial regression of y on the endogenous regressor, the included exogenous regressors

and the residuals from the �rst stage.

More formally, our �rst stage regression model for our example is

educ = g (z) + v, (31)

and the residuals from this stage are used in the second stage regression

log(wage) = w(educ, z1, v̂) + u, (32)

where w (educ, z1, v̂) ≡ m (educ, z1) + r (v̂) .

In spline regression, we simply took the estimated components not related to v̂ from ŵ (·) in
order to obtain the conditional expectation m̂ (educ, z1). However, disentangling the residuals

is a bit more di�cult in kernel regression. While it is feasible to estimate additively separable

models, we follow Su and Ullah [2008] and remove them via counterfactual estimates in con-

junction with the zero mean assumption on the errors. Under the assumption that E(u) = 0,

we recover the conditional mean estimate via

m̂ (educ, z1) =
1

n

n∑
i=1

ŵ (educ, z1, v̂i) , (33)

where ŵ (educ, z1, v̂i) is the counterfactual estimator of the unknown function using bandwidths

from the local-p2 order polynomial regression in the second step (derivatives can be obtained

similarly, but summing over the counterfactual derivatives of ŵ (·)).11

Bandwidth selection and order of the polynomials (p1 and p2) are a little more complicated.

Here we will give a brief discussion, but suggest the serious user consult Chapter 10 (which

includes a discussion of weak instruments) of Henderson and Parmeter [2015].

Bandwidth selection is important in both stages. In the �rst-stage, v is not observed and

we want to make sure that the estimation of it does not impact the second-stage. If we observe

11Multiple endogenous regressors can be handled by running separate �rst stage regressions and putting the
residuals from each of those regressions into the second stage regression and �nally summing over i to obtain
the conditional mean estimates.
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the conditions in Su and Ullah [2008], it allows for the following cross-validation criterion

CV (h2) = min
h2

1

n

n∑
i=1

[yi − m̂−i (educi, z1i)]2 , (34)

and the �rst-stage bandwidths can be constructed as

ĥ1 = ĥ2n
−γ, (35)

where the acceptable values for γ depend upon the order of the polynomials in each stage.12

Henderson and Parmeter [2015] give the admissible combinations of polynomial orders for

the Su and Ullah [2008] estimator with a single endogenous variable and a single excluded

instrument. In practice, they suggest using a local-cubic estimator in the �rst stage (local-

linear in the �rst stage is never viable) and a local-linear estimator in the second stage for

a just-identi�ed model with a single endogenous regressor. For other cases, the conditions of

Assumption A5 in Su and Ullah [2008] need to be checked.

Figure 12: Second-step Gradients of Log-wage with Respect to Education for College-educated
Males Working in Personal Care and Service

Using the methods outlined above, Figure 12 shows the impact of controlling for endogeneity.

The upper-left panel gives density plots for the gradient estimates across the sample for returns

to education both with and without using instrumental variables. Most college-educated men

working in personal care and service have a wage increase of about 5 to 15% for each additional

year they spend in school. However, the distribution is skewed to the left suggesting that a few

12The acceptable range for γ is between (2 (p2 + 1) + q1 + 1)
−1

max
[
p2+1
p1+1 ,

p2+3
2(p1+1)

]
and

(2 (p2 + 1) + q1 + 1)
−1 p2+q1

q1+q2
, where q1 and q2 represent the number of elements in the �rst and second

stage regressions, respectively.
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men have seen their investment in education yield no returns or even negative returns (for a

similar result in a nonparametric setting see Henderson et al. [2011]).

Comparing those results with the gradients without instruments, we clearly see that failing

to control for endogeneity would overestimate the returns to education (as expected). That is,

the distribution of gradients without using IV is more concentrated around 10 to 15% returns

and fewer low returns.

To try to swing back to the examples from before, the upper-right panel of Figure 12 gives

densities of gradient estimates controlling for endogeneity for whites versus non-whites. The

�gure seems to suggest that non-whites have higher rates of return to education. This is com-

monly found in the literature, but is often attributed to lower average years of education. To

try to compare apples to apples, in the bottom two panels we plot the densities of returns to

education for �xed levels of education (high school and college, respectively). Here we see while

the general shape is similar, whites tend to get more mass on the higher returns and less mass

on lower returns, especially for college graduates.13
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