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ABSTRACT

The Twin Instrument:
Fertility and Human Capital Investment’

Twin births are often used to instrument fertility to address (negative) selection of women
into fertility. However recent work shows positive selection of women into twin birth.
Thus, while OLS estimates will tend to be downward biased, twin-IV estimates will tend
to be upward biased. This is pertinent given the emerging consensus that fertility has
limited impacts on women'’s labour supply, or on investments in children. Using data for
developing countries and the United States, we demonstrate the nature and size of the
bias in the twin-IV estimator of the quantity-quality trade-off and estimate bounds on the
true parameter.
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1 Introduction

Following Becker (1960), fertility has been modeled jointly with investments in children and
with women’s labour force participation. In line with the average tendency for negative
selection into fertility, linear least squares estimates of associations of fertility with children’s
human capital, and with women’s employment tend to be upward biased. Since the pioneering
work of Rosenzweig and Wolpin (1980a,b), a considerable literature has attempted to address
selection by using twins to instrument fertility (see Appendix Table A1). The premise is that
twin births are quasi-random, so that the event of a twin birth constitutes a “natural” natural
experiment (Rosenzweig and Wolpin, 2000).

In a recent paper (Bhalotra and Clarke, forthcoming), we presented new population-level
evidence that challenges this premise. Using individual data for 17 million births in 72 coun-
tries, we demonstrated that indicators of the mother’s health, her health-related behaviours,
and the prenatal health environment are systematically positively associated with the prob-
ability of a twin birth. The estimated associations are large, evident in richer and poorer
countries, evident even among women who do not use IVF, and hold for sixteen different
measures of health. We provided evidence that selective miscarriage is the likely mechanism.
The upshot of our findings is that women who have twin births are positively selected on
unobservables related to health. If; as is plausible (and we will demonstrate), those unob-
servables are correlated with child human capital or with women’s labour force participation,
then twin-instrumented estimates of the relationship between fertility and child outcomes, or
women’s labour supply will tend to be upward biased, moving towards a null-estimate.

This is pertinent as it could resolve the ambiguity of the available evidence on these
relationships. Recent studies using the twin instrument reject the presence of a quantity—
quality (QQ) fertility trade-off (Black et al., 2005; Angrist et al., 2010), challenging a long-
standing theoretical prior of Becker (1960); Becker and Lewis (1973); Becker and Tomes (1976).

Similarly, research using the twin instrument finds that additional children have relatively little



influence on women’s labour market participation, at least after the first few years (Rosenzweig
and Wolpin, 1980a; Bronars and Grogger, 1994; Jacobsen et al., 1999; Vere, 2011). In principle,
addressing the omission of maternal health related variables could adjust for the downward
bias in these studies, and provide a true estimate of the trade-offs. In practice, maternal health
is multi-dimensional and almost impossible to fully measure and adjust for. To take a few
examples, foetal health is potentially a function of whether pregnant women skip breakfast
(Mazumder and Seeskin, 2015), whether they suffer bereavement in pregnancy (Black et al.,
2016), and fetal exposure to air pollution (Chay and Greenstone, 2003).

In this paper we investigate how inference in a literature concerned with causal effects
of fertility on human capital can proceed with partial adjustment and bounding. We first
illustrate the hypothesized direction of the bias of the twin-IV estimator, by introducing
available controls for maternal health in the estimation. Since this adjustment is necessarily
partial, we proceed to estimate bounds on the IV estimates. Given that the first stage (twins
predicting fertility) is powerful, we follow Conley et al. (2012) in estimating bounds on the
premise that twin births are plausibly if not strictly exogenous. In a sensitivity check, we also
estimate bounds under the different assumptions of Nevo and Rosen (2012), again using twin
births as an “imperfect instrumental variable”.

We provide estimates for the US using about 225,000 births, drawn from the US National
Health Interview Surveys (NHIS) for 2004-2014, and for a pooled sample of developing coun-
tries, containing more than 1 million births in 68 countries over 20 years, available from the
Demographic and Health Surveys, or DHS. These data are chosen because they contain infor-
mation on child outcomes and maternal health. Consistently using these two samples allows
us to assess the generality of our findings, and it allows that the relationship of interest, as
well as the violation of the exclusion restriction that concerns us, are different in richer vs.
poorer countries.

We start by briefly demonstrating, on the particular data samples used in this analysis,



our earlier result that the probability of twin birth is significantly positively associated with
indicators of maternal health. We then set the stage by showing the routine OLS and twin-IV
estimates on our data samples. The OLS estimates suggest a fertility-human capital trade-off
and, following (Altonji et al. (2005)) to gauge the importance of unobservables, we conclude
that accounting for unobservables is unlikely to dissolve the trade-off. The twin-IV estimates
replicate, in our samples, the finding in recent studies that there is no discernible trade-off.
However, adjusting for available maternal health related characteristics, even though these are
only a small subset of the range of relevant indicators, leads to emergence of a QQ trade-off.
This finding generalizes to recent non-linear models of the QQ trade-off (Brinch et al., 2017;
Mogstad and Wiswall, 2016), holding even when the impact of fertility is allowed to vary by
parity. For instance, in samples with at least three births, an additional child is associated
with lower human capital outcomes for the first two births: this is estimated as 0.05 s.d. for
years of education in developing countries, and 0.06 s.d. for an index of child health in the
US, and in the sample with at least two births it is 0.10 s.d. for grade progression in the US
(or 0.22 fewer grades progressed).

The bounds also confirm the presence of a trade-off at certain parities for education or
health outcomes.The lower bound is -0.05 to -0.06 s.d. for education in developing countries,
-0.13 to -0.24 s.d. for education in the USA and -0.02 to -0.10 of a s.d. for child health in the
USA.! Observe that the trade-off is no smaller in the USA than in developing countries. This is
important given that the recent studies arguing there is no trade-off are set in richer countries,
and a natural reconciliation of these results with earlier studies proposed is that the trade-off
may exist but only in poorer countries where a larger share of families is credit constrained.
This said, the US sample is considerably smaller than the developing country sample and
bounds are correspondingly wider. As a result, bounds are uniformly more informative in the

developing country sample.

'Bach is a range because the coefficient varies with whether twins occur at the second, third or fourth birth order.
We place these effect sizes in perspective in section 5.2.4.



The results indicate that marginal increases in fertility often lead to diminished investments
in the human capital of children, and the trade-off is not negligibly small. This is important,
especially in view of growing evidence of the long run dynamic benefits of childhood invest-
ments (Heckman et al., 2013). These estimates put back on the stage the issue of a potential
human capital cost to fertility. Governments actively devise policies to influence fertility, for
instance, countries like China have penalized fertility, while many countries including Italy
and Canada have incentivized it, often with non-linear rules.? Moreover, advocates of policies
encouraging smaller families rest their case on larger families investing less in the quality of
each child, limiting human capital accumulation and living standards (Galor and Weil, 2000;

Moav, 2005).

2 The Fertility-Investment Trade-off and the Twin Instrument

A long-standing theoretical result in the literature on human capital formation is the existence
of a quantity-quality (QQ) trade-off (Becker, 1960; Becker and Lewis, 1973; Willis, 1973;
De Tray, 1973; Becker and Tomes, 1976). The essential idea of these studies is that the
shadow price of child quality is increasing in child quantity and vice versa. This provides
behavioural micro-foundations consistent with an empirical regularity that has been noted in
cross-sectional and time series data, which is that children from large families have weaker
educational outcomes (Hanushek, 1992; Blake, 1989; Galor, 2012). We replicate this pattern
using our data samples from the USA and developing countries (see Appendix Figures A1 and
A2).

However, empirical evidence of a QQ trade-off is ambiguous. Early work including Hanushek

(1992) and Rosenzweig and Wolpin (1980a) documented significant negative effects of addi-

2 As discussed in Mogstad and Wiswall (2016), families with children receive special treatment under the tax and
transfer provisions in 28 of the 30 Organization for Economic Development and Cooperation countries (OECD (2002)).
Many of these policies are designed such that they reduce the cost of having a single child more than the cost of having
two or more children, in effect promoting smaller families. For example, welfare benefits or tax credits are, in many
cases, reduced or even cut off after reaching a certain number of children.



tional births within a family on average child educational outcomes. Using IV or difference-in-
differences approaches, recent studies include estimates of a significantly positive relationship
(Qian, 2009), a significant negative relationship (Grawe, 2008; Ponczek and Souza, 2012; Lee,
2008; Bougma et al., 2015) and no significant relationship (Black et al., 2005; Angrist et al.,
2010; Fitzsimons and Malde, 2010), see the review in Clarke (2018). It has been argued that
where the usual twin-IV approach identifies no significant relationship, allowing for non-linear
and non-monotonic effects of family fertility on children’s education leads to emergence of a
negative relationship (Brinch et al., 2017; Mogstad and Wiswall, 2016). In this paper, we
assess twin-IV estimates on two different data samples, examining sensitivity to adjustment
for maternal health in linear and non-linear models, and to (small or signed) violations of
the exclusion restriction.® In this paper we focus nearly exclusively on the internal validity of
twins estimates (IV consistency). In recent work, Aaronson et al. (2017); Bisbee et al. (2017)
examine the external validity of the twin instrumented or sex-mix instrumented estimates of

the impact of fertility on female labour supply.*

3 Methodology

3.1 Estimating The Quantity—Quality Trade-off with Twins

Analyses of the QQ trade-off attempt to produce consistent estimates of a; in the following

population-level equation:
quality;; = ao + arquantity; + X ag + €i;. (1)

Here, quality is a measure of human capital attainment of, or investment in, child ¢ in family 7,

and quantity is fertility or the number of siblings of child 7. A significant QQ trade-off implies

3The twin instrument has also been used to estimate varying effects of childbearing on women’s labour force
participation (Rosenzweig and Wolpin, 1980b; Jacobsen et al., 1999; Angrist and Evans, 1998), and the consequences
of out of wedlock births on marriage market outcomes, poverty and welfare receipt (Bronars and Grogger, 1994).

“We note that like Aaronson et al. (2017), our estimates suggest considerable heterogeneity by country income
levels. We also observe heterogeneity by child gender.



that a; < 0. Relevant family and child level controls are included, denoted X. As has been
extensively discussed in a previous literature, estimation of a; using OLS will result in biased
coefficients given that child quality and quantity are jointly determined (Becker and Lewis,
1973; Becker and Tomes, 1976), and unobservable parental behaviours and attributes influence
both fertility decisions, and investments in children’s education (Qian, 2009). The direction
of the OLS bias is determined by the sign on the conditional correlation between quantity;
and the unobserved error term: Elquantity; - €;;|X]|. If mothers with weaker preferences for
child quality have more children, OLS estimates will overstate the true QQ trade-off.
Following the seminal work of Rosenzweig and Wolpin (1980a), fertility has been instru-
mented with the incidence of twin births on the premise that they constitute an exogenous

shock to family size. The 2SLS specification can be written as:

quantity; = my + mtwin; + X e + vij, (2a)
quality;; = Po + 51qmyj + X Bz + nij- (2b)

where twin; is an indicator for whether the n'* birth in family j is a twin birth. As described
further in section 4, a series of samples are constructed, referred to as the n+ groups, and
consisting of children born before birth n in families with at least n births. The idea is that
children born prior to birth n (subjects) are randomly assigned either one sibling (and make
up the control group) or two siblings (and make up the treatment group) at the n'* birth,
and this allows us to estimate causal impacts of the additional birth on investments in, or
outcomes of, these children. The twins themselves are excluded from the estimation sample.’
If twins are a valid instrument, the parameter ; is consistent and hence in limit equal to the

parameter oy from the population equation 1.

5This takes care of the concern that since twins tend to be born with weaker endowments (e.g. birth weight), they
will tend to have systematically different quality outcomes. Using data from the US, Almond et al. (2005) document
that twins have substantially lower birth weight, lower APGAR scores, higher use of assisted ventilation at birth and
lower gestation period than singletons. We document similar endowment differences in our data samples (Appendix
Figure A3 and A4).



Bhalotra and Clarke (forthcoming) provide evidence that omitted variables for maternal
health may contaminate 7;;, and in Section 5.1 we document this for the data used in this
paper. If mothers who invest more in their pregnancies (for instance by averting smoking
before birth) also invest more in their children after birth, then the twin-IV estimates will be
inconsistent. There is some evidence for instance in Uggla and Mace (2016) that healthier
mothers (indicated by health measures such as used in our earlier work) invest more in children

in a range of domains. Positive selection of mothers of twins implies:

N
. 1 . : 5
plimy_, N E twin; -n; > 0 < plimy_, 81 > Bi.

=1

We can partition the stochastic error term from equation 2b into a vector of observable
measures of mother’s health capital (H), socioeconomic variables (S), and all other unob-
served components, as 7;; = H + S + nj;. Assuming a positive (or zero) covariance between
the three components of the error term,’ the step-by-step removal of selection predictors will

result in the estimated coefficient becoming continually closer to the true parameter. Thus:
plim 8; > plim #7 > plim g77 > g, (3)

The coefficients Bfl and Bf TH yefer to coefficients in a model augmented to control for observ-
able health capital H, and then also observable socioeconomic status S. Since, as discussed
further in section 5.1, all determinants of twin birth are virtually impossible to account for,
twin-IV will under-estimate the magnitude of the QQ trade-off, although addition of predictors

of twins as controls will lead to the estimate approaching the true value from above.

3.2 Estimating IV Bounds with an Imperfect Instrument

Given that we can never fully control for maternal health even with the full set of observable

controls, point estimation of the QQ trade-off is not possible. However, under additional

5Given that the covariance between elements of S and H is found to be positive, and given that the covariance
between each of these and other unobserved variables which positively affect child quality are also likely to be positive,
it is very likely that each covariance term is positive. This is tested later in this paper when examining IV estimates.



assumptions relating to the failure of the IV exclusion restriction, or correlations between the
IV, the endogenous variable, and unobservables we can bound the QQ trade-off. In order to
proceed based on IV even in the presence of twin selection, we follow two procedures to bound
the QQ trade-off using the (potentially imperfect) twin instrument.

The first of these is the Nevo and Rosen (2012) “Imperfect IV” procedure. This procedure
is ideally suited to the context examined here, as it suggests that if twins are positively selected
and if fertility is negatively selected, and if twinning and fertility are positively correlated,
then the true parameter will be bounded by the OLS and the IV estimate discussed above.”
If we are willing to additionally assume that the twin instrument is “less endogenous” than
fertility (Nevo and Rosen’s assumption 4), we can further tighten the bounds by forming
a compound instrument based on the endogenous fertility variable, and the imperfect twin

instrument. This instrument, (V' = oguantity L win; — oryinquantity;), where o refers to the

standard deviation, can provide tighter bounds on the §; parameter where B}/V <6 < Bﬁ‘}m,

suggesting end points for a series of IV bounds on the parameter (;.

The Nevo and Rosen (2012) procedure is straightforward and relies on quite weak assump-
tions. Namely, to produce bounds in this case, the only additional assumptions we require are
that there is negative selection into fertility, a widely accepted stance in the literature (Qian,
2009), and one that is verified in surveys querying fertility preferences, which show that less
educated women desire more children (e.g. Bhalotra and Cochrane (2010)); that twins are
positively selected, which is shown in Bhalotra and Clarke (forthcoming), that twin births
are positively associated with fertility, which we show in the first stage regressions below, and
that there is less selection into twin birth than into fertility, which seems reasonable.

The upper bound in the case of Nevo and Rosen is the upper end of the 95% confidence

"We can follow the notation of Nevo and Rosen (2012) precisely if we multiply twins by -1, as their assumptions
and lemmas are based on identically signed correlations between the endogenous variable and unobservables, and the
IV and unobservables. In our case, once twins is multiplied by -1, assumption 3 is met assuming negative fertility
selection and positive twin selection: pgupz. < 0, where p denotes correlation. In the notation of our paper, x refers
to quantity in equation 1, z refers to twin in equation 2a, u refers to the unobservable stochastic term €;; in 1. Then,
under Nevo and Rosen (2012, Lemma 1), 05, < 0, or the negative of twins and fertility will be negatively correlated,
and as such B}“‘}m <p1 < BOLS.



interval on the original twin IV estimate A?{jm From equation 3 we know that positive selection
of twins inflates this IV estimate upwards. As such, to offer a more informative identification
region at the upper bound, we also implement an alternative approach to inference for IV
models developed by Conley et al. (2012) for cases when the instrument is plausible but fails the
exclusion restriction. They provide an operational definition of plausibly (or approximately)

exogenous instruments, defining a parameter v that reflects how close the exclusion restriction

is to being satisfied in the following model (adapted to the QQ model for this paper):

quality;; = 0y + d1quantity; + ytwin; + X g + vU;;. (4)

Since the parameters ¢; and =~ are not jointly identified, prior information or assumptions
about v are used to obtain estimates of the parameter of interest, ;. The IV exclusion
restriction is equivalent to imposing ex-ante that v is precisely equal to zero. Rather than
assuming this holds exactly, one can define plausible exogeneity as a situation in which ~
is nearly, but not precisely equal to zero. Estimating or imposing some (weaker) restriction
on vy buys the identifying information to bound the parameter of interest, even when the IV
exclusion restriction does not hold exactly.®

Conley et al.’s methods are ideally suited to the empirical application of this paper because
they show that their bounds are most informative when the instruments are strong, and the
twin instrument is strong (evidence below). In section 5.1, we provide evidence that leads us to
suspect that v will not equal zero. Specifically, v will reflect the effect of unobserved maternal
health on child quality, interacted with the degree to which twin mothers are healthier than

. C
non-twin mothers.’

8Conley et al. (2012) state that “Manski and Pepper (2000) consider treatment effect bounds with instruments that
are assumed to monotonically impact conditional expectations, which is roughly analogous to assuming v € [0, c0]”.
The procedure we follow here is hence an extension of the Manski and Pepper procedure.

9If one or other of these conditional correlations is equal to zero, IV estimates will not be inconsistent. Section
5.1 only shows that twin mothers are healthier than mothers of singletons. To complement this, we also show below a
series of positive associations of maternal health and both investments in children and child outcomes. We also discuss
how this can be estimated in reduced form from natural experiments in particular settings.

10



Conley et al. (2012) show that bounds for the IV parameter f; from equation 2b can
be generated under a series of assumptions regarding . These include a simple assumption
regarding the support of 4 (their “Union of Confidence Intervals”, or UCI, approach), or a
fully specified prior for the distribution of  (their “Local to Zero”, or LTZ, approach). In the
latter case, a correctly specified prior often leads to tighter bounds. We follow both strategies,
the first is agnostic, placing little structure over the violation of the exclusion restriction by
simply allowing a large range for 7, and the second involves estimating v as a(n auxiliary)
model parameter.

In general, the Conley et al. (2012) procedure relies on additional assumptions, as we must
form a prior over the magnitude of the failure of the exclusion restriction, while in Nevo and
Rosen (2012) we only need to provide the sign.'’ The advantage of the Conley et al. procedure
that makes it worthwhile despite its stronger assumptions, is that it potentially returns tighter
bounds on both the upper and lower end, while Nevo and Rosen retains the original IV upper

bound and only tightens the lower bound using information from the original OLS estimates.

4 Data and Descriptive Statistics

We shall consistently estimate OLS and twin-IV estimates employing microdata from the US
and from a sample of 68 developing countries. In order to estimate the (health and SES
augmented) specification 1, we require information on sibling-linked births, measures of child
quality and characteristics of the mother that include indicators of her health in addition to
the more commonly available age, race and education. The data we use are chosen to satisfy
these requirements. These are the US NHIS, which have been fielded in an identical way
from 2004-2014, and the DHS for 68 countries, which have been applied over 20 years using a
broadly similar design.

In both data sets, children are included in the sample if aged between 6 and 18 years

107t is worth noting however, that Conley et al.’s procedure allows for cases where the prior over 7 is of indeterminate
sign, which Nevo and Rosen (2012) does not.

11



when surveyed. While ideally we would observe completed education, to our knowledge no
large datasets are available measuring child’s completed education, mother’s total fertility,
and a wide range of maternal health measures taken before the birth of the child. We would
have liked to use the data used in recent prominent studies of the QQ trade-off (Black et al.,
2005; Angrist et al., 2010; Mogstad and Wiswall, 2016), but the Israeli data do not contain
indicators of maternal condition or maternal behaviours, and the Norwegian data are not
publicly accessible, and additionally contain very few markers of maternal health.

A measure of child ‘quality’ available in both data sets is educational attainment. Since the
children are 6-18 and in the process of acquiring education, we use an age-standardized z-score.
In the DHS, the reference group consists of children in the same country and birth cohort, while
in the NHIS, it consists of children with the same month and year of birth. Thus coefficients
are expressed in standard deviations. While in the developing country setting relative school
progress is an appropriate measure of child human capital given high rates of dropout and/or
over-age school entry, this is not the case in the USA. In these data, grade-retention is a
relevant measure of educational progress. It is estimated that between 2 and 6% of children
are held back at least one grade in primary school (Warren et al., 2014). Grade retention has
also been documented to have substantial subsequent impacts on school drop-out and long
term attainment (Manacorda, 2012). The NHIS also provides a subjectively assessed binary
indicator of child health (excellent or not), which we model as an additional indicator of child
quality.'’ Case et al. (2002) have demonstrated that an identical self-reported measure of
health predicts mortality and morbidity in the US population. Further details on all variable
definitions are provided in Appendix B.

Appendix Table A2 provides summary statistics for the DHS and NHIS data. Fertility and

maternal characteristics are described at the level of the mother, while child education, and

"While we would also like to analyze a health measure in the developing country sample, anthropometrics are
only available for births that occur within five (or fewer) years of the survey, and infant mortality is unsuitable as the
twin-IV estimator involves analysing child quality for children born prior to twins who will have already been fully
exposed to infant mortality risk by the time the twins were born.

12



health outcomes are described at the level of the child. Twin births make up 1.98% of all births
in the DHS sample, and 2.57% in the NHIS sample. As expected, twin families are larger
than non-twin families. Figure 1 describes total fertility in twin and non-twin families. The
distribution of family size in families where at least one twin birth has occurred dominates the
distribution for all-singleton families in both the DHS sample (Figure 1a) and the US sample
(Figure 1b). This establishes the relevance (power) of the twin instrument for fertility, which

is formally assessed below.

Estimation Samples Studies that instrument fertility with the occurrence of a twin birth
leverage the unexpected additional child to study impacts on outcomes of siblings born before
the additional child. Define families with at least two birth events as 2+ families. In this group,
we shall compare families in which twins occur at the second birth event (treated group) with
families in which a singleton occurs at second order (control group). The subjects, for whom
we measure indicators of child quality (proxies for parental investment) are the first-born
children. Following Black et al. (2005), we similarly construct a 34+ sample which consists of
families with at least three birth events and then we compare outcomes for the first two births
across families that have a twin birth at order three (treated) and families that have a single
birth at order three (control). Many existing studies, such as Angrist et al. (2010), focus upon
the 2+ and 3+ samples. Given higher fertility rates in the developing country sample that we
analyse, we also include 4+ families in which twins occur at fourth order and outcomes are
studied for the first three births.

Restricting the sample to families with at least n births in this way primarily ensures that
we avoid selection on preferences over family size. It also addresses the potential problem
that, since the likelihood of a twin birth is increasing in birth order (see Appendix Figures A5
and A6), increasing family size raises the chances of having a twin birth. In the DHS sample,

42% of all children are in on of the 2+, 3+ or 4+ samples. In the US sample, this value is

13



45%. Children will be in none of these samples if they are either high birth order children, or

if they are low birth order children who do not have older siblings.

5 Results

5.1 Twin Births and Maternal Condition

In Bhalotra and Clarke (forthcoming) we document that mothers with greater health stocks
prior to conception or those who engage in more healthy behaviours or are in a healthier
environment during pregnancy are more likely to take twins to term. In other words, twins
are born to selectively healthy mothers. In order for this to invalidate twin-IV estimates,
two conditions must be satisfied. First, twins must be non-random conditional on observable
controls (non-independence) and second, twins must have an impact on the outcome of interest
beyond that mediated by fertility (non-excludability). Here we document that this is the
case in the two data samples used in this paper, and direct readers to Bhalotra and Clarke
(forthcoming) where additional evidence in other contexts is presented.

Using the two data sets analysed in this paper, we regress the probability of a twin birth
on indicators of maternal health, holding constant socioeconomic status and demographic
characteristics. In the US sample (which is much smaller, limiting statistical power, see
Table 1), twinning is positively associated with mother’s education and BMI, and negatively
associated with the mother’s smoking status prior to the birth. The smoking indicator is
statistically significant even in the pre-IVF period. In Bhalotra and Clarke (forthcoming)
we use the universe of births in the US, between 2010 and 2013, and after removing births
assisted by Artificial Reproductive procedures such as IVF, we document negative associations
of twinning with diabetes and hypertension before pregnancy, with smoking before and during

pregnancy and with being short or underweight before pregnancy.'?

1276 the extent that educated women exhibit healthier behaviours (Currie and Moretti, 2003; Lleras-Muney and
Lichtenberg, 2005), education may influence twin births via its impact on health-related behaviours that we do not
have the data to capture directly.

14



In the developing country sample (Table 2), we observe that, conditional on maternal
age and country and year of birth fixed effects, twin births are positively associated with the
mother’s education and health, proxied by her height and body mass index (BMI). This result
holds even in a period before IVF became available (column 5), and in both low and middle
income countries. We also identify a statistically significant positive impact of public health
availability on the likelihood of twinning (column 6).'3

We also investigated whether the source of twin non-randomness additionally has a direct
effect on the outcome of interest. This seems plausible since mothers with better health stocks
and mothers engaging in positive behaviours prior to pregnancy are likely to be healthier
themselves and have stronger preferences over health and educational investments in children
following pregnancy, with direct impacts on child outcomes. FEvidence of positive causal
effects of maternal health with child health or education is not so easy to find but evidence
of associations for health is in Uggla and Mace (2016) and Kahn et al. (2002). We document
similar associations using our analysis samples. The US results are in Table 3. We regress
available measures of child investment (whether the child has any type of health coverage)
and outcomes (whether the child has any health limits, the child’s standardised educational
achievement, and whether the child is classified by parents as being in excellent health), on
the maternal characteristics documented to predict twinning in this sample. In each case, we
observe that positive maternal health measures are correlated with a reduced likelihood of
having health limitations or not having insurance (columns 1-2), and correlated with positive
measures of human capital outcomes (education and self-informed health status; columns 3-
4). The developing country results are in Table 4. Maternal height, BMI and education are
all positively associated with the likelihood of making more positive antenatal investments
in child outcomes (the number of appointments, and the likelihood of giving birth at home

rather than in a medical centre). We also see impacts of the same maternal health indicators

13We include indicators of prenatal care by doctors or nurses in the mother’s DHS cluster, rather than the mother’s
uptake, as this is potentially endogenous to birth type.
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on the child’s education.™

In summary, there is compelling evidence that mothers of twins are selectively healthy.
There is also suggestive evidence that healthier women make greater investments in children
and that their children have better human capital outcomes. We will test this more formally

when progressively introducing controls in IV models in the following section.

5.2 The QQ Trade-off

We now turn to estimates of the QQ trade-off. We initially present the routine OLS and twin-
IV estimates since, under the assumptions about selection into fertility discussed in section 3.1,
these provide bounds on the true parameter. In each case, we show how these estimates are
modified upon addition of available controls for the mother’s health. So as to ascertain that
the indicators of health are not simply proxying for socio-economic status, we also introduce
controls for mother’s education. Our expectation is that the introduction of controls will
tighten the bounds, diminishing the size of the trade-off estimated by OLS and increasing
the size of the IV estimated trade-off. The former would confirm the hypothesis of negative
selection into fertility and the latter would confirm positive selection into twin birth, affording
a direct test of our hypothesis that the twin-IV estimator is biased downward by virtue of

twins being born to healthier mothers.

5.2.1 OLS Estimates

OLS results for both samples are in Table 5. We consistently control for fixed effects for
age of the child, age of the mother at birth, and the year of the survey. In the developing
country sample we also condition on country fixed effects, and in the US sample on census
region and mother’s race fixed effects. We additionally show results with birth order controls.

The available controls for mother’s health are height, BMI and cluster-level health service

4The maternal health indicators are also all positively associated with infant survival; the reason this is not
displayed is that we do not analyse infant survival as an outcome for the reasons indicated in footnote *' above.
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availability in the developing country sample, and BMI and a self-reported assessment of own
health on a Likert scale in the US sample. In both samples, the control for socioeconomic
status is years of education of the mother (see Table A2 for summary statistics of these
variables) and in the developing country sample we also control for the wealth quintile of the
family:.

The introduction of observable controls, first for mother’s health and then also for her
education progressively reduces the estimated trade-off to nearly half of the initial value in
both samples, consistent with negative fertility selection. The adjusted estimates for education
in developing countries are between 6.6 and 8.5% of a standard deviation. In the US they are
between 1 and 2.5% for education and between 0.3 and 1.7% for health status. The Altonji
et al. (2005) statistic for the DHS sample suggests that unobservable characteristics of the
mother would need to be about 1 to 1.2 times as important as observables for these estimate
of the QQ trade-off to be entirely driven by selection into fertility. The corresponding ratio in
the US varies from between 1 to 3. In developing countries, the estimated education-fertility
trade-off is decreasing in the birth order at which twins (the additional child) occur, i.e. it is
largest in the 24 sample and smallest in the 44 sample. In the US, the trade-off is similar for
the 24+ and 3+ samples and smaller and insignificant in the 44 sample. However, for health,
this “gradient” is reversed and the largest child health—fertility trade-off is in the 4+ sample
and the smallest in the 2+ sample. In contrast to the case in Black et al. (2005), the controls

for birth order do not eliminate the trade-off (Appendix Tables A3 and A4).

5.2.2 IV Estimates with the Twin Instrument

IV estimates using the twin instrument are in Tables 6 (DHS) and 7 (US), the first-stage
estimates are in panel A and the second stage in panel B. In these Tables we present coefficients

on the variable of interest (fertility), however provide full output of all coefficients in Appendix

Tables A5, A6 and AT.
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IV Estimates: Developing Countries. The first stage estimates demonstrate the well-
known power of the twin instrument. It consistently passes weak instrument tests (the
Kleibergen-Paap rk statistic and its p-value are presented in panel A). The point estimates
indicate that the incidence of twins raises total fertility by about 0.7 to 0.8 births. That
this estimate is always less than one is in line with other estimates in the twin literature
and is evidence of partial reduction of future fertility following twin births (compensating
behaviour). Consistent with this, the first stage coefficient is increasing in parity. In panel
B, the first column (“Base”) for each parity group presents estimates of Bl from equation 2a
using the current state of the art twin-IV 2SLS estimator. In each of the three samples, in line
with the findings of recent studies (Angrist et al., 2010; Black et al., 2005; Caceres-Delpiano,
2006; Fitzsimons and Malde, 2014; Aslund and Grénqvist, 2010), we find no significant QQ
trade-off. This is not simply because IV estimates are less precise than OLS estimates (as
emphasized in Angrist et al. (2010)), rather, the coefficients are much smaller.

Consistent with our hypothesis and the evidence we present in section 5.1 that twin mothers
are positively selected on health (and education), we see that upon introducing controls for
maternal selectors of twinning, a QQ trade-off emerges in the 34+ and 4+ samples, even though
the available controls are almost certainly a partial representation of the range of relevant
facets of maternal health stocks, health-related behaviours and environmental influences on
foetal health. The bias adjustment is meaningful and statistically significant. In the 3+
sample, the commonly estimated specification produces a point estimate of 2.8% which is
not statistically significant, and partial bias adjustment raises this to 4.1% (conditional on
maternal health indicators) or 4.6% (if mother’s education is also included). In the 4+ sample,
the corresponding figures are 2.7% and 3.7%.

While one way to compare the base and full control specifications is to test whether each
coefficient differs from zero, an alternative test is to compare the estimated coefficients (and

standard errors) to each other. We thus also test each coefficient compared to the “Base”
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coefficient, and present the p-values of this test as “Coefficient Difference” at the foot of
panel B. We can often reject equality of the coefficients in the specifications with and without
controls for maternal health. Implementing these tests requires that we take account of the
correlations between error terms in each model. In order to do this we replicate IV estimates
using GMM, which allows us to estimate models simultaneously and hence compare coefficients
across models. Additional details related to this test are provided in Appendix C.
IV Estimates: United States The first stage estimates for the US sample (Table 7) are
similar to those for the developing country sample, with a twin birth at parity 2, 3 or 4 leading
to an additional 0.7 to 0.8 total births. The second stage estimates also follow a similar pattern
insofar as the baseline specification indicates no significant relationship between twin-mediated
increases in fertility and either the indicator of school progression, or the indicator of child
health. However, upon the introduction of controls for maternal health and education, the
coefficient describing the QQ trade-off tends to increase in magnitude. In the case of education,
it grows more negative in each sample and is statistically significant in the 2+ sample, with a
point estimate of 10.2%. When child quality is indicated by health, the point estimate in the
2+ sample remains insignificant but in the 3+ and 44 samples it grows more negative and
in the 3+ sample it is statistically significant at 5.9%. Notice that the USA samples range
between about 21,000 and 61,000 individuals while the developing country data samples range
between about 260,000 and 400,000, so we have more limited statistical power with the US
data. As discussed earlier in this section, it is well recognised that twin-IV estimates are often
not precise. So it is quite striking that we find a significant trade-off for education and health.
Overall, partial bias adjustment reveals a statistically significant QQ trade-off for education
in the 2+ sample (comprising about 50% of the total sample) and for health in the 3+ sample
(comprising about a third of the total sample).

Recent work suggests that focusing on monozygotic (MZ) rather than dizygotic (DZ) twins

may resolve issues related to the heritability of twinning and relationships between twinning
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and some maternal characteristics (Farbmacher et al., 2016). While we cannot observe whether
a twin pair are MZ or DZ in either of our data sources, when we use only same sex twins to
construct the twin instrument, as they are considerably more likely to be MZ, we observe a
similar pattern, where once again estimates diverge from zero and become significant when
controls for maternal health are included. Results for the DHS are in Table A8 and for the

NHIS in Table A9.

5.2.3 Non-Linear Models

Theoretical statements of the QQ model tend to assume, for simplicity, that all children in
a family have the same endowments and receive the same parental investments. More recent
work, for example the theoretical work of Aizer and Cunha (2012), and empirical papers by
Rosenzweig and Zhang (2009); Brinch et al. (2017); Mogstad and Wiswall (2016); Bagger et al.
(2013) relax this assumption. Among other things, this allows for reinforcing or compensating
behaviours in parental investment choices (Almond and Mazumder, 2013). This implies that
we should allow the coefficient [3; to vary across children in the family.

Using DHS data for which we have a sufficiently large sample to split instruments, we
re-estimate our regressions following the non-linear marginal fertility models of Brinch et al.
(2017); Mogstad and Wiswall (2016). We provide a full discussion of the methodology in
Appendix D, and in the analysis below we follow the procedure laid out by Mogstad and
Wiswall (2016) precisely. Models of this type loosen the linear marginal effects estimated on
fertility, and allow for a one-unit shift in fertility at different birth orders to have potentially
varied impacts on existing children.

We report the restricted (linear) and non-restricted (non-linear) IV models in Table 8, and
the corresponding first stage results in Appendix D (Appendix Table A14). We report results
by the same parity samples as the main IV results presented in Table 6.

In Table 8 we observe, firstly, that as described in Table 6, the linear specifications are
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universally lower, and often become statistically distinguishable from zero when partially
controlling for the selection of twins as compared to the baseline estimate not controlling for
twin selection. These results only differ from those reported earlier in that we now restrict
the sample to families with 6 children or fewer in line with results reported in Mogstad and
Wiswall (2016), which involves a loss of between 5 and 18 percent of the sample depending
on the parity sample used. For full descriptives on family size in each parity group refer to
Appendix Figure A7. Turning to panel B, we observe a similar non-linear dynamic as that
reported in Mogstad and Wiswall (2016). For example, in the two-plus sample, we observe that
the twin instrumented estimate of the effect of moving from one to two siblings is large and
positive, while the impact of moving from two to three siblings is large and negative. However,
most interestingly for the present analysis, the non-linear impacts are nearly universally larger
in absolute terms when partially controlling for twin selection. As was the case with the linear
model, we observe that the marginal fertility effects become nearly everywhere more negative,
and in certain cases become statistically different from zero. Thus, our finding that the twin-
IV estimator tends to under-estimate the causal effect of fertility on child human capital holds

in the linear and non-linear specifications.

5.2.4 1V effect sizes in perspective

Since the QQ trade-off has been called into question, it is important to consider the size of
the partially-bias-adjusted estimates and not just their sign and statistical significance. Our
results (in the linear model) imply that an additional birth in a family is associated with 0.17
fewer years of completed education (developing countries) or 0.22 fewer grades progressed
(USA). In a widely cited study, Jensen (2010) shows that providing students with information
on the returns to secondary school in their area led, on average, to their completing 0.20-0.35
more years of school over the next four years. In a similarly high-profile experiment, Baird

et al. (2016) find that de-worming in school led to an increase of 0.26 years of schooling and
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Bhalotra and Venkataramani (2013) find that a 1 s.d. decrease in under-5 diarrheal mortality
(11 deaths per 1000 live births) is associated with girls growing up to achieve an additional 0.38
years of schooling, while both studies find no increase in school years for boys. Almond (2006)
finds that foetal exposure to influenza in 1918 was associated with 0.126 years (1.5 months)
less schooling at the cohort-level and Bhalotra and Venkataramani (2014) show that exposure
to antibiotic-led reductions in pneumonia in infancy resulted in individuals completing 0.7
additional years of education in adulthood relative to unexposed cohorts. The PROGRESA
cash transfer in Mexico is estimated to have generated a 0.66 increase in years of schooling
(Schultz, 2004).

If we consider grade retention in the US, our estimates suggest that an additional birth
results in 0.22 fewer years completed. This is of similar magnitude to estimates of the effect
of an additional 1,000 grams of birthweight over the normal birthweight range (a 0.31 increase
in years of schooling) in Royer (2009), and estimates of the impact of historical exposure to
high rather than low malaria rates (a 0.4 year reduction) in Barreca (2010). Turning to the
effects on health, we find that an additional birth (at order 3 or 4) reduces the likelihood that
siblings are in excellent health by between 3-6%. Almond and Mazumder (2005) document
that in the long-run, the 1918 influenza pandemic increased the likelihood of being in poor or
fair health (the inverse of our health measure) by 10%. Overall, the adjusted estimates are
of a size that it is not prudent to dismiss. Moreover, our estimates indicate the change in
investment (education or health) for one additional birth but, as fertility rates remain high in

many developing countries, the total effect can be large.

5.3 Bounding the QQ Trade-off
5.3.1 Generalised Bounds

The adjusted twin-IV results will not provide consistent estimates of 3; as there are almost

certainly omitted indicators of maternal health. Although documenting that observable mea-
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sures of health (which also impact child quality) are correlated with the instrument does not
prove instrumental invalidity, it does suggest that it is highly likely that similar non-observable
factors will also be correlated, thus resulting in invalidity. A recent study proposes a formal
test of instrument invalidity (Kitagawa, 2015). Using the 24 sample for the DHS data this
test rejects the validity of the twin instrument — see Appendix Figure A8 and Table A10;
however this test is sensitive to curse of dimensionality considerations, and so to implement
it we had to simplify the specification of controls.'® We do not report results for the NHIS
data because the sample is too small to obtain informative confidence intervals.

Rather than discard the twin-IV estimator altogether, we harness its power in predicting
fertility using IV bounds to assess the empirical significance of the omitted variables. As
outlined in section 3.2, we begin by estimating Nevo and Rosen (2012) bounds. These are
based on the assumptions that twins are positively selected and fertility is negatively selected.
Evidence for both of these assumptions is in Tables 5 and 6-7 where it is observed that
controlling for education and health results in the OLS coefficients on fertility growing less
negative and the IV coefficients on twins growing more negative. It is further assumed that
twins is a less endogenous variable than fertility. The bounds are in Table 9 (columns 2-3; TV
point estimates are presented for comparison in column 1). These estimates provide a lower
bound on the QQ parameter estimated in Tables 6-7 of approximately 5-8% of a standard
deviation across the DHS and NHIS samples.'® As discussed in section 3.2, the upper bound in
Nevo and Rosen’s bounding procedure is determined by the upper bound of the 95% confidence
interval of the original twin IV estimates. As such, estimates which are not significant at 95%
confidence levels in Tables 6-7 will once again be non-informative when using the Nevo and

Rosen (2012) procedure.

'5In particular, the inclusion of a large number of fixed effects is prohibitive, and so we replace country and mother
year of birth fixed effects with continent and decade of birth fixed effects respectively.

The NHIS data contain only 21,000-61,000 observations (depending on the parity sample), about 10-15% of the
DHS sample. As highlighted by Angrist et al. (2010), the twin IV estimator is typically under-powered. When we
construct bounds, we further challenge statistical power. So the bounds for the NHIS sample are often imprecise,
irrespective of whether we use Conley or Nevo Rosen bounds. As a result, in general here we focus on bounds in the
developing country sample, although we present bounds from both settings.
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In order to gain additional precision in bounds estimates at the upper bound, we also
estimate Conley et al. (2012) bounds. As discussed, we need to define a prior belief over the
sign and magnitude that the coefficient on twin birth () would take in equation 4. To begin,
we assume a range of values for v from 0 to 0.05, or 5% of a standard deviation, in which case
instrument validity is violated, and having a twin mother has a positive effect on child quality
conditional on fertility. The results are in Figure 2 for developing countries and Figure 3 for
the US for the 34+ samples; results for the 2+ and 4+ samples are in Appendix Figures A9 and
A10. We assume v ~ U(0,6) with § displayed on the z-axis. Thus, when § = 0, 7 is exactly
0, and the bounds collapse to the 95% confidence interval for the traditional IV estimate.

Given that twin IV estimators tend to produce wide confidence intervals (Angrist et al.,
2010), Conley et al. (2012) bounds will also tend to be wide. As ¢ increases, the violation of
the exclusion restriction increases. We observe, firstly, a widening of the estimated bounds as
the size of the violation increases,'” and secondly that the upper bound becomes increasingly
negative, moving in the direction of finding a QQ trade-off.'® In both figures the vertical red
line displays our preferred estimate for 7, the estimation of which we discuss further below.

For developing countries and for the US (when the outcome is a measure of child health,
but not for education, where the estimates are considerably less precise) we observe baseline
IV results with bounds that are not informative of the sign of the trade-off when the exclusion
restriction is assumed to hold exactly. However, as v grows, the bounds do quickly become
informative, suggesting that with a v as low as 0.002 in the US or 0.008 in developing countries,
a significant QQ trade-off emerges. While using an interval of values for v has the advantage
of being unrestrictive (0.05 is a very large value for the exclusion restriction), the bounds are
quite wide.

With a view to improving the precision and relevance of these bounds, we estimate rather

17As Conley et al. (2012) discuss, the degree of failure of the exclusion restriction is analogous to sampling uncertainty
related to the IV parameter 81. As the exclusion restriction is increasingly relaxed, the “exogeneity error” (in Conley
et al.’s terminology) related to the instrument inflates the traditional variance-covariance matrix.

18This is in line with the twin-IV estimates becoming more negative upon including controls that mitigate the
omitted variable bias which leads to violation of the exclusion restriction.
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than assume ~, the measure of the extent of the violation of the exclusion restriction. This
is (as usual) the product of two relationships which, here, are the relationship between the
probability of a twin birth and maternal health, and the relationship between maternal health
and investments in children. The data requirements for this are non-trivial—we need data
on two generations, with an exogenous shock to maternal health in the first generation, and
measures of child quality in the second generation. For this, we exploit natural experiments
in the US and Nigeria. This is in line with Conley et al. (2012) who illustrate their estimator
with examples involving back of the envelope calculations of v for each case. In Appendix E
we detail how we leverage two historical natural experiments involving a shock to the health
of women, namely, the Biafra war in Nigeria and the introduction of the first antibiotics to the
US, to estimate v.' We also conduct a number of back of the envelope plausibility tests. In
general these suggest that « is around 0.004-0.006, or that having a (positively-selected) twin
mother has a direct effect of around 0.4 to 0.6% of a standard deviation in quality outcomes.

As we outline at more length in Appendix E.1 and E.2, the generation of this estimate
for v is based on particular shocks which impact maternal health. We present evidence
supporting the assumptions for these estimates in Appendix E.3, and put these in the context
of Conley et al.’s methods in Appendix FE.4. These reduced form estimates of v based on
exogenous events provide a well founded estimate to use in the Conley et al. (2012) procedure,
but one may be concerned about external validity of these estimates, given that they are
derived from 1930s America (sulfa drugs) and 1970s Nigeria (Biafra war). We can, however,
show that estimates of v from contemporary DHS data (which are used in the main analysis
and hence relevant for estimates of 7) are in fact of the same order of magnitude as our
estimates from America and Nigeria. Consider Appendix Table A1l, which shows that a

one standard deviation change in maternal BMI is associated with a 0.070 s.d. increase in

9We are agnostic about intermediate variables (“mediators”) and simply show what is key to the violation of the
twin instrument, which is that the exogenous shock to maternal health impacts on an indicator of child quality. We
then scale this estimate by the difference in health between women who give birth to twins and women who give birth
to singletons.
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the child’s educational Z-score (column 4). We observe that twin mothers in the same data
sample have BMI 0.050 s.d. higher than non-twin mothers. Scaling (multiplying) this by
the estimated association (0.070x0.050) produces an estimate of gamma (a measure of the
violation in the exclusion restriction, or the twin-mediated effect of maternal BMI on child
outcomes) of 0.0035 s.d. This is of the same order of magnitude as the value of v that we
estimate from the Biafra (0.0040) and Sulfa (0.0062) case studies. We can calculate a range
of such estimates using education and height (as well as BMI), and find values of 0.025 for
education (0.215x0.0121) and 0.00196 for height (0.019x0.103). Importantly, all of these
values fall within the estimated distributions of v used to calculate Conley et al. bounds,
displayed in Appendix Figure A13.

It is important to note that while degree of the violation of the exclusion restriction is
estimated to be relatively small (at 0.4 or 0.6 percent of a standard deviation of the child
quality measure, education), 7 is obtained after scaling the estimated impact of maternal
health shocks/characteristics (that predict twinning) on the final outcomes of interest (child
quality indicators). The scaling factor is the difference in the maternal health indicator be-
tween mothers of twins and mothers of singletons — this is 0.050 in the BMI example above, it
is 0.125 in the sulfa experiment, and 0.267 in the Biafra experiment (all figures from Appendix
Table A15). Thus v is in fact much smaller than the measure of violation that is of interest.

Using these estimates of v, we are able to pin down the bounds described in Figures 2-
3. See Table 9, columns 4-5, where we present the UCI approach in which we assume that
v € [0,2%]. This assumption is chosen such that the true 4 described in Appendix E in each
case will lie precisely in the middle of the confidence interval, following Conley et al. (2012)’s
empirical example. For the LTZ approach, we use estimates of both v and its distribution,
which allow uncertainty for our estimates of v and assume that v is distributed precisely
according to the estimated empirical distribution (refer to Appendix E.5).

Our preferred bounds estimates are those in the right-hand columns of Table 9, as these are
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more efficient, being based on the estimated bootstrap distribution. For the developing country
sample, estimates of the QQ trade-off in determining educational attainment, in the 34+ and
4+ samples, are bounded between slightly less than zero and 6% of a standard deviation and
the mid-point of these bounds falls at 2.6% and 3.7% of a standard deviation respectively. An
additional sibling thus does appear to depress a child’s educational attainment.

For the US sample we see that while the mid-point of the bounds is virtually always
negative (health in the 2+ group is the only exception), the bounds are most informative for
the 24 (education) and 3+ (health) samples. These indicate that an additional birth reduces
the grade progression of an older sibling by 16.6% of a s.d. (upper bound), or 8.3% of a s.d.
(mid point), and their likelihood of being reported as being in excellent health by 7% (upper
bound) or 3.5% (mid point).

In Figure 4 we plot the estimated coefficients and bounds for the developing country sample
altogether so they are readily compared. The corresponding plot of all estimates for the (much
smaller) US sample is in Appendix Figure A11). The figures show the OLS and IV estimates,
with base controls, health, and health and socioeconomic controls and we show the Nevo—
Rosen and Conley et al. bounds for each of the 2+, 34+ and 4+ groups. The informativeness
of the bounds is evaluated against the criteria laid out by Hotz et al. (1997): firstly do the
bounds enable us to determine if the effect is negative or positive, secondly can we reject the
point estimates of linear IV, and thirdly do our bounds allow us to reject the OLS estimate
of the causal effect. In general, for the 34+ and 4+ samples in the DHS data, the bounds are
informative of the (negative) sign of the trade-off, but not for the 24 sample. In terms of the
second and third criteria, we can never exclude the point estimate of the original IV estimate
from our bounds, however we often can reject the original OLS estimate, which is important
given recent evidence that many IV estimates are inaccurate, and frequently include OLS
point estimates in their confidence intervals (Young, 2018).

Using summary statistics from Table A2, we can convert standardised estimates from these
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bounds into years of education. The effect on education of first and second-borns from having
a fertility shock at the third birth, or on first to third-borns from a fertility shock at the fourth
birth is estimated to be approximately 5% of a standard deviation in the developing country
sample.?’ Using the standard deviation in the sample of 3.8 years, this implies an average
effect of around 0.19 years of education per additional sibling at the age of 13 years (the
average age in the sample). In the case of the US estimates, for the same 2+ and 3+ groups
the average estimated effect based on the midpoint of bounds estimates is 8% of a standard
deviation in grade retention, which equates to a marginal effect of 0.22 years of education by
the age of 11 years. On average the likelihood of being reported as being in excellent health
falls by 4.2% according to the midpoint of bounds following an additional birth among the
same group. Overall, these are quite large effects relative to the marginal effects of different

policy interventions considered in the literature (see section 5.2.4).

Conclusion and Discussion

This paper demonstrates that twin-IV estimates of the fertility- human capital trade-off tend
to be biased downward on account of positive selection of women into twin birth, a problem
that has not been previously recognized. We show that even partially correcting for twin
endogeneity is sufficient to push estimates of the trade-off up by about 3%-5% of a standard
deviation. Using partial identification to bound the effect of child quantity on child quality
suggests that the true effect size may be as high as 8% of a standard deviation, though it is
typically centered around 3%-5% of a standard deviation.

We conclude that additional unexpected births do have quantitatively important effects on
their siblings’ educational outcomes. The estimated 4%-5% of a standard deviation increase
is equivalent to an additional 0.15 to 0.19 years in the classroom in the developing country

sample, and estimates of approximately 8% of a standard deviation in the US account for 0.22

20This estimate is the average midpoint if the bound estimates from the three plus and four plus samples in Table
9 and can be calculated as:§ x [(0.0646 — 0.0067)/2 + 0.0067 + (0.0748 + 0.0235)/2 + 0.0235].
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more grades progressed on average. As detailed in the Introduction, the implications of these
findings are far-reaching, not only in terms of vindication of Beckerian theory but because
they guide fertility control policies.

Any human capital costs of fertility are naturally of greater concern not only when fertility
is high but also when a large share of it is unwanted. In 2015 the average number of births per
woman in low income countries was five and, comparing actual with stated desired fertility,
we estimate the share of unwanted births is as high as 60 per cent in some countries, with
a mean of 27 per cent. Unwanted fertility is not unique to poorer countries. For instance,
despite access to contraceptive methods, 21 percent of all pregnancies in 2011 in the US ended
in elective abortion (Guttmacher Institute, 2016). Moreover, there is a strong trend in IVF
use, and up to 40% of IVF successes result in multiple births to women who wanted one child
(Kulkarni et al., 2013), creating a growing set of unwanted children. This might exacerbate

impacts of additional births on investments in preceding births.
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Tables

Table 1: Probability of Giving Birth to Twins USA (NHIS)

Twinx100 All Time
1982-1990 1991-2013
Mother’s Education (Years) 0.060** 0.115 0.056**
(0.025) (0.096) (0.026)
Mother’s Height (Inches) 0.012 0.049 0.008
(0.025)  (0.087)  (0.026)
Mother’s BMI 0.010** 0.025 0.009%*
(0.004)  (0.016)  (0.005)
Smoked Prior to Birth -0.285%*  -1.336** -0.183
(0.137)  (0.526)  (0.142)
Observations 103,589 6,391 96,698
R-Squared 0.004 0.031 0.004

This table presents regressions of whether each birth is a twin or a singleton

on a number of maternal characteristics. All specifications include a full set of

mother’s age, survey year, region of birth, and mother’s race dummies and are

estimated as linear probability models. T'win is multiplied by 100 for presentation.

Height is measured in inches and BMI is weight in kg divided by height in metres

squared. Heteroscedasticity-robust standard errors are included in parentheses.

% 5 <0.01, ** p<0.05, * p<0.1
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Table 3: Maternal Health and Child Investments/Outcomes (NHIS)

No Health Health Education  Excellent

Insurance Limits Z-Score Health

Mother’s Education (Years) -0.016*** -0.001***  0.019***  0.020%**
(0.001) (0.000) (0.002) (0.001)

Mother’s Height (Inches) -0.001%*  -0.002***  0.005*** 0.008***
(0.000) (0.000) (0.002) (0.001)

Mother’s BMI 0.000 0.000*** 0.000 -0.002***
(0.000) (0.000) (0.000) (0.000)

Smoked Prior to Birth 0.008***  0.031***  -0.046***  -0.058***
(0.002) (0.003) (0.009) (0.004)

Observations 103,589 103,589 74,777 103,589
R-Squared 0.047 0.013 0.019 0.033

Regressions are presented of child investments or child outcomes on a number of maternal charac-

teristics. All specifications and variable definitions follow Table 1 and include a full set of mother’s

age, survey year, region of birth, and mother’s race dummies. No Health insurange, health limits

and excellent health are binary variables, and models are estimated as linear probability models.

Education Z-Score is a standardized score of the child’s completed years of education compared with

his or her birth year and birth month cohort. Height is measured in inches and BMI is weight in

kg divided by height in metres squared. Heteroscedasticity-robust standard errors are included in

parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Figures

Figure 1: Twins shift the fertility distribution outward

total children ever born

total children ever born

,,,,, Twin Family Singleton Family

‘ 77777 Twin Family Singleton Family ‘

(a) Developing Countries (b) United States

Note to Figure 1: Densities of family size come from the full estimation samples from DHS and NHIS data. Kernel
densities are plotted (bandwidth equals two in all cases), and present the frequency of the total number of children per

family by family type.

Figure 2: Plausibly Exogenous Bounds: School Z-Score (Developing Countries 3+)
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Methodology described in Conley et al. (2012)

Note to Figure 2: Confidence intervals and point estimates are calculated according to Conley et al. (2012) using
DHS data and specifications described in section 5.3. Estimates reflect a range of priors regarding the validity of the
exclusion restriction required to consistently estimate Bfert using twinning in a 2SLS framework. The local to zero
(LTZ) approach applied here assumes that v, the sign on the instrument when included in the structural equation, is
distributed v ~ U(0, ). The vertical dashed line indicates the point at which the preferred estimate 4 lies precisely at
the centre of the assumed support for . Further discussion is provided in section 3.2 and Table 9.
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Figure 3: Plausibly Exogenous Bounds: (USA 3+)
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Notes to Figure 3: See notes to Figure 2. An identical approach is employed, however now using USA (NHIS) data.

Figure 4: Parameter and Bound Estimates of the Q—Q Trade-off
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Note to Figure 4: Each set of estimates refer to the 95% confidence intervals on parameter bounds of the impact of
fertility on child education. Two-Plus, Three-Plus and Four-Plus refer to parity specific groups. Base IV refer to the
IV estimate most closely following the existing literature, with +H and +S&H presenting IV estimates controlling
for maternal health and socioeconomic variables. OLS point estimates are presented along with their 95% confidence
intervals, which are quite narrow. OLS estimates include all maternal controls (corresponding to base, and +S&H).
Versions without maternal controls are even more negative. The final two sets of bounds in each group are estimated
following Nevo and Rosen (2012) and Conley et al. (2012) procedures, and do not have a corresponding point estimate.
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A Appendix Figures and Tables

Figure Al: Education and Fertility Trends (USA)
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Note to figure Al: Trends in fertility and education are compiled from the World Bank databank and the American Community
Surveys (ACS), respectively. Trends in fertility are directly reported by the World Bank as completed fertility per woman were
she exposed to prevailing rates in a given year for her whole fertile life. Education is calculated using all women aged over 25 years
in the ongoing ACS (2001-2013) collected by the United States Census Bureau. The figure presents average completed education
for all women aged 25 in the year in question.

Figure A2: Education and Fertility (Developing Countries)
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Mother's year of birth N A . . . :
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(a) Trends in Fertility (b) Trend in Education

Note to figure A2: Cohorts are made up of all individuals from the DHS who are aged over 35 years (for fertility), and over 15
years (for education). In each case the sample is restricted to those who have approximately completed fertility and education
respectively. Full summary statistics for these variables are provided in table A2, and a full list of country and survey years are
available in table A12.
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Figure A3: Birth Size of Twins versus Singletons (Developing Countries)
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Note to figure A3 Estimation sample consists of all surveyed births from DHS countries occurring within 5 years prior to the date
of the survey. For each of these births, all mothers retrospectively report the (subjective) size of the baby at the time of birth.

Figure A4: Birth Weight of Twins versus Singletons (USA)
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Note to figure A4 Estimation sample consists of all non-ART births from NVSS data between 2009 and 2013. Birthweights below
500 grams and above 6,500 grams are trimmed from the sample.
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Figure A5: Proportion of Twins by Birth Order (United States)

Fraction Twins

1 2 3

4
Birth Order

Note to figure A5 The fraction of twin births are calculated from the full sample of non-ART users in NVSS data from 2009-2013.
The solid line represents the average fraction of twins in the full sample (2.89%), while the dotted line presents twin frequency by
birth order. The dotted line joins points at each birth order. Birth orders greater than 6 are removed from the sample given that

these account for less than 0.5% of all recorded births.

Figure A6: Proportion of Twins by Birth Order (Developing Countries)

Fraction twins
0
1
\

0 2 4

6
Birth Order

8 10

Note to figure A6 The fraction of twin births are calculated from the full sample of DHS data. The solid line represents the average
fraction of twins in the full sample (1.85%), while the dotted line presents twin frequency by birth order. The dotted line joins
points at each birth order € {1,...,10}. The fraction of singleton births is 1—frac(twin).
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Figure A8: Density Test of Instrumental Validity from Kitagawa (2015)

School Z-Score, Treated Outcome

density
0.1 0.2 0.4

0.0

—— Z=1:Twin Birth

---- Z=0:Singleton Birth

Note to figure A8: Kernel density plots document the sub-densities of the outcome variable of interest in IV regressions (school
Z-score) for children preceding twins and for children not preceding twins in the 2+ sample. “Treated” refers to families with at
least 3 children, and so both densities document frequencies only for this group. The Kitagawa (2015) test consists of determining
whether the two densities intersect, with intersection being evidence of instrumental invalidity. We follow Kitagawa in using a
Gaussian kernel and bandwidth of 0.08. Outliers are suppressed from the graph to ease visualisation of the sub-densities. Results
for the full version of the test including controls along with p-values associated with instrumental invalidity are presented in table

Al0.

Figure A9: Plausibly Exogenous Bounds: School Z-Score (Developing Countries 2+ and 4+)
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Methodology described in Conley et al. (2012)
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(b) Four Plus

Note to figure A9: Refer to notes to figure 5 of the main text.
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Figure A10: Plausibly Exogenous Bounds: (USA 2+ and 4+)
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Figure A11: Parameter and Bound Estimates of the Q-Q Trade-off (USA)
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Note to Figure All: Refer to notes to Figure 4. Identical bounds are presented, but in this case based on NHIS data (with
considerably fewer observations).
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Table A2: Summary Statistics

Developing Countries

United States

Single Twins All Single  Twins All
Mother’s Characteristics
Fertility 3.592 6.489 3.711 1.925 3.094 1.955
(2.351) (2.724) (2.436) (1.002) (1.185) (1.024)
Age 31.18 35.49 36.16 37.24 36.19
(8.095) (7.385) (8.113) (8.423) (8.069) (8.415)
Education 4.823 3.582 4.772 12.57 12.74 12.58
(4.721)  (4.330) (4.712)  (2.310) (2.220) (2.308)
Height 155.6 157.4 155.7 - - -
(7.075) (7.050) (7.083) - - -
BMI 23.31 23.69 23.32 27.65 28.12 27.66
(4.819) (5.004) (4.827) (6.715)  (7.326) (6.732)
Pr(BMI)<18.5 0.124 0.100 0.123 0.0197  0.0159 0.0196
(0.330) (0.300) (0.329) (0.139) (0.125) (0.139)
Excellent Health - - - 0.318 0.324 0.318
- - - (0.465) (0.468) (0.465)
Children’s Outcomes
Age 11.55 11.67 11.56 11.19 10.77 11.18
(3.287) (3.278) (3.286) (3.891) (3.901) (3.891)
Education (Years) 3.584 3.174 3.556 5.151 4.650 5.139
(3.152) (3.022) (3.145) (3.851) (3.769) (3.850)
Education (Z-Score) 0.00423  -0.100 0.000 0.00274 -0.110 0.0000
(0.982) (0.981) (1.000) (1.001)  (0.950) (1.000)
Infant Mortality 0.0587 0.137 0.0592 - - -
(0.235) (0.137) (0.236) - - -
Excellent Health - - - 0.531 0.541 0.531
- - - (0.499) (0.498) (0.499)
Fraction Twin 0.0203 0.0257
(0.139) (0.158)
Birth Order Twin 4.448 2.196
(2.457) (1.064)
Observations 2,046,879 41,547 2,005,332 221,381 5,832 227,213

NoTES: Summary statistics are presented for the full estimation sample consisting of all children 18 years of age
and under born to the 874,945 mothers responding to any publicly available Demographic and Health Survey or the
88,178 mothers responding to the National Health Interview Survey from 2004 to 2014. Group means are presented
with standard deviation below in parenthesis. Education is reported as total years attained, and Z-score presents
educational attainment relative to birth and country cohort for DHS, and birth quarter cohort for NHIS (mean O,
std deviation 1). Infant mortality refers to the proportion of children who die before 1 year of age. Maternal height
is reported in centimetres, and BMI is weight in kilograms over height in metres squared. For a full list of DHS

country and years of survey, see Appendix Table A12.

A10



669°%CT°T  669°SCT'T  669°%CT°'T  669°9CT'T  669°SCT'T  669°%CT°T  669°STT‘T SUOI}RAIIS( ()
(¢10°0) (910°0) (910°0) (¥10°0)

w4x€9T°0  54x890°0  54xG6€°0  5%49S8°0- 0T < 10pIQ YHIg
(€10°0) (¥10°0) (¥10°0) (210°0)

ek VG0°0  5xx€TT0  54x900°0  5546€8°0- 6 19pI0 YHIg
(110°0) (210°0) (210°0) (010°0)

ek T€0°0  54x990°0  54x8€T°0  5x498L°0- § IPIO YIIIg
(010°0) (010°0) (0T0°0) (600°0)
¥10°0- C00°0-  %%x1G0°0  s%x0GL°0" L 19pI1Q YaIIg
(800°0) (600°0) (600°0) (800°0)

***ﬂﬁo.ol ***hmo.ou **wﬁo.ol ***www.ou 9 H@@MQ qing
(L00°0) (L00°0) (L00°0) (L00°0)

#xxLG0°0- 55468070~  5%4890°0-  5xx96C°0- G 10pI0 YHIg
(900°0) (900°0) (900°0) (900°0)

*%*@NOO| ***hﬁﬁ@u ***@@OO- *%*M@ﬂ@u 14 H@U.HO g
(¢00°0) (€00°0) (2¢00°0) (€00°0)

***ﬂho.ou ***@Oﬁ.ou ***@@0.0u *%*Nmm.ou S .Ho.@po qiang
(£00°0) (£00°0) (¥00°0) (¥00°0)

***Oﬁ@.ol ***H@0.0l **%Nmo.o| ***th.Ou N H@U.HO &pﬁmﬁ
(100°0) (100°0) (100°0) (100°0) (100°0) (100°0)

***NN0.0l ***@OH.Ou ***mmﬁ.ou ***hwo.ou ***Hoﬁ.ou ***Nﬁﬁ.ol %ﬁﬂﬁ@b
H+S+ S+ oseq  Amaog oN  H+S+ S+ oseq

(L) (9) () (¥) (€) (¢) (1)

SHA 1OpI0 UM

SEA 10PI0 ML ON

(eye SHA Po1oOd) S[OTIUOD I0PIQ) YHIF IMOYIM PUR [ITm s0ewISH §TO €V O[qRl,

All



1€6°€9T 1€6°€9T 1€6°€9T 1€6°€9T1 1€6°€9T 1€6°€9T 1€6°€9T SUOI}RAIIS( ()
(890°0) (¥<0°0) (950°0) (¥<0°0)

**wwH.Ou ***wwﬁ.ou **%H@H.Ou *%*ﬁmvdu OH N H@U.HO Qpﬁm
(e€1°0) (€g1'0) (G11°0) (L0T'0)
2020~ **Dmm.ou **@mm.cl ***O@ﬂ.ou 6 Hwﬁmo qyng
(¢6¥%°0) (G6%°0) (L67°0) (86%°0)
0220 9610 1610 2100 § I0PIQO YpIg
(861°0) (9¢1°0) (L81°0) (L81°0)
LV0°0- 290°0- 6,0°0- 9€3°0- L 10p10 g
(180°0) (180°0) (180°0) (€80°0)
€50°0- 1G0°0- ¢90°0- ++P61°0" 9 PIO YIIg
(e%0°0) (670°0) (¢%0°0) (9%0°0)
810°0 z10°0 2000 +%G60°0" G BPIQ YIIg
(¢20°0) (¢g0°0) (¢20°0) (¢z0°0)

%@ﬂoﬁul **Om@@- %*mmO©| *%*ﬂNH.Ou 14 H@U.HO g
(¢T0°0) (c10°0) (c10°0) (c10°0)

***@mo.ou ***O@0.0u ***H@0.0u *%*moﬁ.ou ¢ .Ho.@po g
(800°0) (800°0) (800°0) (800°0)

***mm0.0l ***mmo.ol **%NM0.0| ***mwodu N H@U.HO &pﬁmﬁ
(¥00°0) (¥00°0) (¥00°0) (¥00°0) (¥00°0) (¥00°0)

***ON0.0l ***ﬂmo.ou ***MN0.0u ***MN0.0u ***NN0.0u ***@N0.0l %ﬁﬂﬁ@b
H+S+ S+ oseq A oN  HASH+ S+ oseq

(L) (9) () (¥) (€) (¢) (1)

SHA 1OpI0 UM

SEA 10PI0 ML ON

(VSQ) S[013u0) 1pI0 [Ig JNOYIM Pue THa so3etnsy STO FV o1q8L

Al12



Table A5: Full Output on Health and Socioeconomic Controls from IV Estimates (Developing Countries)

Dependent Variable 2+ 3+ 4+
School Z-Score +H +S&H +H +S&H +H +S&H
Fertility -0.015 -0.012 -0.041* -0.046** -0.038* -0.037**
(0.027) (0.026) (0.021) (0.020) (0.021) (0.019)
Mother’s Height 0.009***  0.003***  0.009***  0.003***  (0.008***  (0.003***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Mother’s BMI 0.026***  0.012***  0.027***  0.013*%**  (0.028%**  (0.014***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Doctor Availability 0.203*** -0.029 0.189***  _0.056***  0.194***  _0.048***
(0.024) (0.019) (0.020) (0.016) (0.020) (0.017)
Nurse Availability 0.103***  (0.113***  (0.122%**  0.114*%**  (0.156***  (0.120%**

(0.013)  (0.012)  (0.013)  (0.012)  (0.014)  (0.013)
No Prenatal Care Available -0.457*** -0.259%** _0.483*** _(0.302*** -0.523*** _(.364***

(0.022)  (0.019)  (0.019)  (0.017)  (0.019)  (0.017)

Poorest Quintile -0.275%** -0.265%** -0.246%**
(0.014) (0.011) (0.011)
Quintile 2 -0.114%** -0.114%%* -0.088%**
(0.011) (0.010) (0.010)
Quintile 3 -0.037F** -0.030%** 0.002
(0.011) (0.010) (0.010)
Quintile 4 0.026** 0.058*** 0.116***
(0.010) (0.010) (0.010)
Richest Quintile 0.155*** 0.229%** 0.327***
(0.012) (0.011) (0.012)
Observations 259,958 259,958 395,687 395,687 409,576 409,576
R-Squared 0.075 0.153 0.078 0.158 0.071 0.154

Notes: Full output is presented from IV regressions displayed in Table 6 on health and socioeconomic controls
from models denoted “+H” (adding health controls) and “+S&H” (adding health and socioeconomic controls).
Additionally, fixed effects for years of education of the mother are included in regressions though are not displayed in
the interests of space. These fixed effects show a positive gradient with higher education associated with additional
child education. Full notes are available in Table 6.
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Table A6: Full Output on Health and Socioeconomic Controls from IV Estimates (USA Education)

Dependent Variable 2+ 3+ 4+
School Z-Score +H +S&H +H +S&H +H +S&H
Fertility -0.099 -0.101* -0.015 -0.017 -0.134 -0.142

(0.061)  (0.060)  (0.067) (0.067) (0.152)  (0.149)

Excellent Health 0.139 0.131 0.047  -0.027  0.325 0.353
(0.181)  (0.178)  (0.228)  (0.230)  (0.602)  (0.606)

Very good Health 0.141 0.134 -0.049 -0.028 0.293 0.322
(0.181) (0.178) (0.228)  (0.229) (0.602) (0.606)

Good Health 0.080 0.086 0102 -0.066  0.247 0.289
(0.181)  (0.178)  (0.228)  (0.230) (0.602)  (0.606)

Fair Health 0.006 0024  -0.186  -0.140  0.200 0.249
(0.181)  (0.179)  (0.229)  (0.230)  (0.602)  (0.606)

Poor Health -0.098 0.070  -0.293  -0.232  -0.020  0.047
(0.186)  (0.183)  (0.235)  (0.236) (0.609)  (0.612)

Mother’s Height 0.079 0.061 0187  0.168  0.123 0.128
(0.102)  (0.102)  (0.139)  (0.138) (0.239)  (0.240)

Mother’s Height Squared -0.001 -0.000 -0.001 -0.001 -0.001 -0.001
(0.001) (0.001) (0.001)  (0.001) (0.002) (0.002)

Smoked Prior to Pregnancy -0.047+¥% -0.041%%% _0.051%* -0.046%* -0.055  -0.051
(0.015)  (0.015)  (0.020)  (0.020) (0.040)  (0.041)

No Response to Smoking 0.046* 0.041 0.062* 0.052 0.094* 0.079
(0.026)  (0.025)  (0.034)  (0.033) (0.055)  (0.054)

Observations 61,267 61,267 47,308 47,308 21,352 21,352
R-Squared 0.000 0.003 0.003 0.008 -0.005 -0.004

Notes: Full output is presented from IV regressions displayed in Table 7 on health and socioeconomic controls
from models denoted “+H” (adding health controls) and “+S&H” (adding health and socioeconomic controls).
Additionally, fixed effects for years of education of the mother are included in regressions though are not displayed
in the interests of space. These fixed effects show a positive gradient with higher education associated with

additional child education. Full notes are available in Table 7.
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Table A7: Full Output on Health and Socioeconomic Controls from IV Estimates (USA Health)

Dependent Variable 2+ 3+ 4+
Excellent Health +H +S&H +H +S&H +H +S&H
Fertility 0.027 0.026 -0.058*  -0.057* -0.025 -0.031
(0.021) (0.021) (0.032) (0.032) (0.053) (0.052)
Excellent Health 0.501%FF%  (0.499%F*  (0.451%**  (.455%** 0.089 0.090
(0.090) (0.090) (0.136) (0.136) (0.134) (0.128)
Very good Health -0.022 -0.023 -0.076 -0.071  -0.435%*F  -(.434%**
(0.090) (0.090) (0.136) (0.136) (0.134) (0.128)
Good Health -0.112 -0.107 -0.172 -0.164  -0.547%HF  _(.541%**
(0.090) (0.090) (0.136) (0.136) (0.134) (0.128)
Fair Health -0.096 -0.087 -0.146 -0.136  -0.492%**  _(.485%**
(0.090) (0.090) (0.137) (0.136) (0.134) (0.128)
Poor Health -0.097 -0.085 -0.132 -0.119  -0.598%**  _(.588***
(0.092) (0.091) (0.139) (0.138) (0.138) (0.132)
Mother’s Height -0.018 -0.024 -0.001 -0.003 0.013 0.022
(0.046) (0.046) (0.068) (0.068) (0.120) (0.121)
Mother’s Height Squared 0.000 0.000 0.000 0.000 -0.000 -0.000
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)
Smoked Prior to Pregnancy  0.016**  0.019***  0.008 0.011 0.008 0.010
(0.007) (0.007) (0.010) (0.010) (0.019) (0.019)
No Response to Smoking 0.001 -0.001 -0.004 -0.005 -0.025 -0.027
(0.011) (0.011) (0.016) (0.016) (0.027) (0.027)
Observations 70,277 70,277 53,393 53,393 24,358 24,358
R-Squared 0.295 0.298 0.295 0.296 0.304 0.306

Notes: Full output is presented from IV regressions displayed in Table 7 on health and socioeconomic controls

from models denoted “+H” (adding health controls) and “+S&H” (adding health and socioeconomic controls).

Additionally, fixed effects for years of education of the mother are included in regressions though are not displayed

in the interests of space. These fixed effects show a positive gradient with higher education associated with

additional child education. Full notes are available in Table 7.

Al5



10°0>d,., ‘c0°0>d,, ‘1°0>d, I9yj0wW AQ POI9ISN[O IR SIOLI® pIepue]§ "Iopued oures ayj Jo are sired wiml Jjo % T1§9 ‘SH o2 Ul

"SUIM) [[B JO PEBSISUI JUSWIILIJSUL Uk Se PISN oI SUIM] XOS oes A[UO MOU ISAIMOY ‘SUOr1eoyIoads [ed1juapl SMO[[O] S[qe) SIY], 9 9[qe]} 0} S9I0U 09 IJY

66€°0 es0 00 100°0 €1e0 c0T°0 OOURIORL( JUSLIYR0))
€LG°60F  €L9°60F  €LG°60F  €69°G6E  €69°G6E  €69°G6E  TE6'6SC  ¥S6'65C  V96°6ST SUOI}RAI0SG ()

(820'0)  (zeo'0)  (geo0)  (teo0)  (geo0)  (9g00)  (ev00)  (gv0'0)  (9%0°0)
000°0- 900°0 €100 +x0L0°0-  xG90°0-  6£0°0- L00°0- 900°0- L0070 NN (GREE |
9100G-7 [00YDG = o[qrLIRA Juopuado(]
synsey Al :d [oued

000°0 000°0 000°0 000°0 000°0 000°0 000°0 000°0 000°0 o1IsIIR)S 1 Jo onea-d
887¥¢ 6V°L1¢ 6€°¢4S 19194 16°L74 ¥6°909 VraLy L6°0¥¥ 19617  OTsne)s 1 deeJ-ue3moqoIy]

(ve00)  (ve00)  (gg00)  (0g00)  (0€00)  (1€000)  (€€0°0)  (P€O°0)  (¥€0°0)
,xkE8L°0  xxx9LL°0 44k C€LLO0  4xxk€TL0 4xk00L°0  5xxl8I'0  sxexlTL0 5xxETL0  5xxE0L°0 SULAJ, XofF omes
A0 = o[qeLreA juspuedo(]
o3de)g )sI1q VY [puRdg

HZS+ H+ osed HZS+ H+ osed HZS+ H+ osed

+7 +¢ +2

A[u( SuImJ, XoGQ oaweg Fuis() sojewn)sy A A1uno)) surdopas(] QY 9[qe],

Al6



10°0>d,,, ‘c0'0>d,, ‘1:0>d, -10yjow £q poIv)sn[d oIe SIOLD pIepuUR}G "IOPULS owes o) Jo o1e sired uimy Jo 9%0°99 ‘STHN 9Y) U] "Suimj [[e

JO PeolSsUl JULWILIISUT Uk Sk PISIl ol SUIM) XoS oures %MQO MOU I9AMOT stOmPﬁU@MUQQm Teorjuapt SMO[[OJ 9[qe) SIY T, "L 9[qe} Ul sojou 0} I9JoY :SHLON

€200 €80°0 SAN0 eerT o 0L0°0 9¢0°0 QOUSIOHI(] JUSIIFOO))
8CETE 8GE'TT 8GE'TT €6£'€S €6£°6S €6£'€S  LLT0L LLT0L  LLT0L SUOTRAIIS( ()
(¥c00)  (gs0'0)  (290°0)  (2e00) (2000  (9v00)  (czo0)  (ggo0)  (0€0°0)
700°0- 100°0- 7200 «190°0-  x290°0-  0T0°0- 1€0°0 2€0°0 £00°0 A[aeq
ﬂﬁmwm ungooxm = 2@@?@\/ pﬁ@@ﬁ@&@g
9¢¥°0 9€6°0 zLT 0 1270 TLL O €96°0 QOUBIOPI(] JUSIDLPOO))
T8e1T TSeTe ose'1e S0€° LY S0E‘ LY S0€ LY 19219 19219 19219 SUOIIRAIIS( ()
(¢11°0)  (91T°0)  (611°0)  (€80°0)  (280°0)  (280'0)  (090°0)  (090°0)  (190°0)
7800 680°0 960°0 920°0- 220°0- 810°0- €90°0- £90°0- €90°0- Araoq
mmoom|N MOOQOM = wﬁﬂﬁﬂﬁ\/ HQQ@QQQQD
mﬁﬂ—mwm >H "m— ﬁwﬂﬁn._”
000°0 000°0 000°0 000°0 000°0 000°0 000°0 000°0 000°0 O13sTyRYS NI Jo onfea-d
2099 7G29 10°19 L9°€FT €0'6€3 L€°GET 9¢°%59 29°L€9 €z°0€9  omsiess 1 deeJ-uoSI0qOy]
(vo1'0)  (g0t'0)  (g01°0)  (0c00)  (0c0'0)  (1s00)  (0ogo0)  (0g00)  (0€0°0)
#xk V80 5xxI68°0  4xxEC8°0  5x4E8L°0 44k I8L0  %xx08L°0  4xxGGL°0  #xxVGL'0  44xCGL°0 SUIM T, Xof duwes
Awmﬁm Ppu029g Yo p:mv:ooxmv A13a9,] = 9rqerreA juspuada(]
000°0 000°0 000°0 000°0 000°0 000°0 000°0 000°0 000°0 O19sTyR)S NI Jo onpea-d
9¢°6S 1¢°9¢ 98°GS 8¢202 Ce 661 L8961 8 TS 92926 C0geS  omsiess 1 deeJ-uoSIoqry]
(1110)  (grr0)  (g110) (PS00)  (PS0'0)  (ggo0)  (1€00)  (1€0°0)  (1€£0°0)
4k4€G8°0  45xCF80  wxx0FS'0  55x0LL°0  5x529L°0  55x29L°0  5548TL°0  5xxLTL°0  5%4GTL°0 SUIM T, X908 oureg
Awwdpm @QOU@@ QHOUmlN ﬁooﬁﬂomv .\QSGLOH.H = mﬁﬂﬁﬁd\/ u«gmﬁgmgwa
@M.mam am&mh n< ﬁwﬂﬁnﬁ
H29S+ H+ oseq H29S+ H+ oseq H29S+ H+ oseq]
+¥ +¢ +z

AU suimJ, Xog aureg Suis) sojewnIsi Al SN 6V 219l

A17



Table A10: Results for Kitagawa (2015) Tests with Controls (DHS)

Baseline Socioeconomic  Socioeconomic
plus Health
Kitagawa Test Statistic 14.559 15.963 16.558
Instrumental Validity (p-value) 0.028 0.224 0.462
Coefficient (IV model) -0.013 -0.032 -0.042
(0.073) (0.068) (0.068)
Observations 251,831 251,831 251,831

Notes: Results are presented for the Kitagawa (2015) test of instrumental validity. This
test exists for a binary endogenous variable, and as such rather than estimate a model
with fertility as the endogenous variable, we estimate a model with the binary variable
“greater than 2 births” as the endogenous variable. The instrument considered is twinning
at birth order 2. The estimation results of a typical IV model using this specification are
presented and indicated as “IV model”. Instrumental validity can not be proven, but can
be disproven, with low p-values being evidence against instrumental validity. The first row
shows the value for the variance weighted test statistic proposed by Kitagawa (2015), and
the second row displays the p-values associated with the Kitagawa test. Baseline controls
consist of mother year of birth fixed effects, continent fixed effects, child sex, and decade of
birth fixed effects. Socioeconomic controls add indicators for mother’s education (0 years,
1-6 years, 7-11 years, or 124 years), and Health controls add indicators for overweight
or underweight mothers, and whether the majority of births in the mother’s region were
attended by doctors, nurses or unattended. A trimming constant of 0.07 is used for the
instrumental validity test, (as laid out in Kitagawa (2015)), and 500 bootstrap replications

are run to determine the p-value.
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Table A12: Full Survey Countries and Years (DHS)

Survey Year

COUNTRY INCOME 1 2 3 4 5 6
Albania Middle 2008

Armenia Low 2000 2005 2010

Azerbaijan Middle 2006

Bangladesh Low 1994 1997 2000 2004 2007 2011
Benin Low 1996 2001 2006

Bolivia Middle 1994 1998 2003 2008
Brazil Middle 1991 1996

Burkina Faso Low 1993 1999 2003 2010
Burundi Low 2010

Cambodia Low 2000 2005 2010

Cameroon Middle 1991 1998 2004 2011
Central African Republic Low 1994

Chad Low 1997 2004

Colombia, Middle 1990 1995 2000 2005 2010
Comoros Low 1996

Congo Brazzaville Middle 2005 2011

Congo Democratic Republic Low 2007

Cote d Ivoire Low 1994 1998 2005 2012
Dominican Republic Middle 1991 1996 1999 2002 2007
Egypt Low 1992 1995 2000 2005 2008
Ethiopia Low 2000 2005 2011

Gabon Middle 2000 2012

Ghana Low 1993 1998 2003 2008
Guatemala, Middle 1995

Guinea Low 1999 2005

Guyana Middle 2005 2009

Haiti Low 1994 2000 2006 2012
Honduras Middle 2005 2011

India Low 1993 1999 2006

Indonesia Low 1991 1994 1997 2003 2007 2012
Jordan Middle 1990 1997 2002 2007
Kazakhstan Middle 1995 1999

Kenya Low 1993 1998 2003 2008
Kyrgyz Republic Low 1997

Lesotho Low 2004 2009

Liberia Low 2007

Madagascar Low 1992 1997 2004 2008
Malawi Low 1992 2000 2004 2010
Maldives Middle 2009

Mali Low 1996 2001 2006

Moldova Middle 2005

Morocco Middle 1992 2003

Mozambique Low 1997 2003 2011

Namibia Middle 1992 2000 2006

Nepal Low 1996 2001 2006 2011
Nicaragua Low 1998 2001

A20



Niger Low 1992 1998 2006

Nigeria Low 1990 1999 2003 2008
Pakistan Low 1991 2006

Paraguay Middle 1990

Peru Middle 1992 1996 2000
Philippines Middle 1993 1998 2003 2008
Rwanda Low 1992 2000 2005 2010
Sao Tome and Principe Middle 2008

Senegal Middle 1993 1997 2005 2010
Sierra Leone Low 2008

South Africa Middle 1998

Swaziland Middle 2006

Tanzania Low 1992 1996 1999 2004 2007 2010 2012
Togo Low 1998

Turkey Middle 1993 1998 2003
Uganda Low 1995 2000 2006 2011
Ukraine Middle 2007

Uzbekistan Middle 1996

Vietnam Low 1997 2002

Yemen Low 1991

Zambia Low 1992 1996 2002 2007
Zimbabwe Low 1994 1999 2005 2010
NOTES: Country income status is based upon World Bank classifications described

at  http://data.worldbank.org/about/country-classifications and available for download at
http:/ /siteresources.worldbank.org/DATASTATISTICS/Resources/OGHIST.xls (consulted 1 April,
2014). Income status varies by country and time. Where a country’s status changed between DHS
waves only the most recent status is listed above. Middle refers to both lower-middle and upper-middle

income countries, while low refers just to those considered to be low-income economies.
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B Data Definitions

All outcome and control variables used in principal IV and OLS analyses are described in the following table.
As well as variable definitions, units and any functional forms are indicated, which refer to the way variables
enter IV or OLS models.

Table A13: Variable Definitions

Variable

Definition

Panel A: DHS Data
School Z-score

Male Child

Country

Year of Birth

Child’s Age

Contraceptive Intent
Mother’s Age

Mother’s Age at First Birth
Mother’s Education

Family Wealth

Mother’s Height
Mother’s BMI
Prenatal Doctor Availability

Prenatal Nurse Availability
No Prenatal Care

Panel B: NHIS Data
Education Z-Score

Excellent Health

Male Child

Survey Year

Child Age

Region

Mother’s Race
Mother’s Age

Mother’s Age at First Birth
Mother’s Education
Mother’s Health Status
Mother’s Height
Smoking Status
Smoking Status Missing

Z-score of years of schooling, standardised relative to country and year of birth
cohort.

Binary measure, one for boy, zero for girls

Fixed effect for country of survey

Fixed effect for year of birth

Fixed effect for child’s age

Fixed effect for mother’s use of contraceptive methods

Fixed effect for mother’s age at child birth

Inferred from age at survey time and age of child

Fixed effect for total years of education achieved

Fixed effect for DHS-assigned wealth quintile. Where not recorded a separate
fixed effect for “no wealth quintile” is included

Measured in centimetres

Measured in units (weight in kilograms divided by height in metres squared)
Proportion of births in the same DHS cluster which received a prenatal check-
up from a doctor

Proportion of births in the same DHS cluster which received a prenatal check-
up from a nurse

Proportion of births in the same DHS cluster which received no prenatal check-
ups from health professionals

Z-score of grade progression, standardised relative to month and year of birth
cohort

Indicator of whether a child is classified by the family as being in “excellent
health” (chosen from a categorical list)

Binary measure, one for boy, zero for girls

Fixed effect for year NHIS wave was run

Fixed effect for age at interview in months and years

Fixed effect for census bureau region of residence

Fixed effect for mother’s race

Fixed effect for mother’s age in years

Inferred from age at survey time and age of child

Fixed effects for mother’s highest completed year of education

Self-reported based on categorical list

Mother’s Height in Inches

Binary variable indicating whether the mother smoked prior to pregnancy
Binary variable indicating no response to the mother’s smoking status
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C Testing for Equality of Coefficients Between 1V Models

When estimating subsequent IV models with the progressive inclusion of controls to capture maternal se-
lection, our point is really that column 1 (“Base”) is not distinguishable from 0, while column 3 (“+S&H”)
often is, as this is the important thing in considering the literature and in showing that partial bias adjustment
recovers the trade-off. We have nevertheless added a formal test of coefficients between IV models in all IV ta-
bles. This is added as a row called “Coefficient Difference” at the bottom of Tables 6 and 7. This computation
is not entirely trivial, as these tests must take account of correlations between variance-covariance matrices
of each IV regression in the style of seemingly unrelated regression. Thus, we calculate these test statistics
by jointly estimating the models with GMM (seemingly unrelated regression is an Feasible Generalised Least
Squares technique, and hence not suitable for IV models). To do this we form two equations which are the
two models we wish to compare in the following format:

quality;; = bo + by X quantity; + baseline;; x by, (A1)
quality;; = co+ c1 X quantity; + baseline;; x c, + health]; x c;. (A2)

Our goal is to test the equality of coefficients by = ¢;. Given that we are using instruments for endogenous
quantity (fertility) in each case, we can thus form the following population moment conditions which hold
under the null of instrumental validity in each case (ie, replicate the specifications we are estimating in the

paper):

twin(quality;; — bo — by X quantity; — baseline;; x by) = 0 (A3)
twin(quality;; — co — c1 X quantity; — baseline;; x ¢, — healthi; x c;) = 0. (A4)

Using the sample analogues of these moments, we can then estimate the parameters b and ¢ via GMM.
Denoting the two moments as the 2 element vector g(bAc), we then estimate the parameters band ¢ using the
GMM objective function J (bAc) = ng(l;\c)’ Wg(bAc) An unadjusted weight matrix is used which assumes that
the moment conditions are independent, which replicates all parameters and standard errors from the original
IV model, but now the estimates can be formally tested for equality against one-another using a x? test
which also considers the correlation between the observations in the two models when estimating the eventual
variance-covariance matrix.

D Loosening the Linear Effect Specification of the Q—Q Trade-off

Theoretical statements of the QQ model tend to assume, for simplicity, that all children in a family have the
same endowments and receive the same parental investment. More recent work (for example the theoretical
work of Aizer and Cunha (2012) and empirical papers by Rosenzweig and Zhang (2009); Brinch et al. (2017);
Mogstad and Wiswall (2016); Bagger et al. (2013) relax this assumption. Among other things, this allows for
reinforcing or compensating behaviours in parental investment choices (Almond and Mazumder, 2013). This
implies allowing the coefficient 3; to vary across children in the family.!

Using DHS data for which we have sufficient power to split instruments, we re-estimate our regressions
following the non-linear marginal fertility models of Brinch et al. (2017); Mogstad and Wiswall (2016), and
find that as is the case with the linear models reported in Tables 6 and 7, the inclusion of twin predictors nearly
universally increases the size of the estimated QQ trade-off in non-linear models, and in some specifications,
the trade-off is statistically significant. Thus the emergence of a trade-off following partial correction for twin
non-randomness is not sensitive to functional form and, in particular, holds when the impact of fertility is
allowed to vary by parity.

'In this paper we focus nearly exclusively on the internal validity of twins estimates (IV consistency). In recent work, Aaronson
et al. (2017) examine the external validity of twin instrumented estimates of the impact of fertility on female labour supply.
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As laid out in Mogstad and Wiswall (2016), this consists of the following 2SLS procedure (for the two-plus
sample):

quantitys; = Agtwing; + )\sgth’ngj + )\s4twin2j + )\s5twin§j + X Axs + Vsj, for s =2,3,4,5 (A5)
quality;; = PBo+ Prquantityy; + Brquantitys; + Biquantity,; + Birquantitys; + X Bx + nij, (A6)

where (A5) is a series of first stages for the likelihood effect of moving from the s to (s+ 1) child, and (A6)
is the second stage estimate of the effect of an additional child after s births on the human capital of the first
born child. As the estimation sample consists of families with at least two births, twing;: a binary variable
for a twin at the second birth, is defined for all families. However, when moving to higher birth orders, twins;
is not defined for families with only two births. We thus follow Mogstad and Wiswall (2016) in replacing
higher-order twin birth indicators with:

. 0, iij <c
twin; =
| twine — Eltwing|Xj,¢; > ¢, if ¢j >
WiN; [twing| Xj,¢; > ¢, ifc;>c¢

where, as described in Mogstad and Wiswall (2016) Eftwing;|X;,¢; > ¢| is a non-parametric estimate of
the conditional mean of the probability of twin birth in the non-missing subsample. We similarly follow
Mogstad and Wiswall (2016) in considering family sizes up to 6 children. The above specification (A5 and
A6) is estimated for the two-plus sample, however we also estimate analogous specifications for the three-plus
sample, and four-plus sample, where in each case we only consider the marginal impacts of fertility at birth
orders greater than the birth orders of the children included in the estimation sample.

As our interest is in examining the impact of non-random twin births, we estimate the above specifications
in two circumstances: the first, following exactly the procedure laid out in Mogstad and Wiswall (2016) where
twins are assumed to be exogenous, and the second where we additionally control for observable health and
socioeconomic predictors of twins in A5 and A6. These results are presented and discussed in Section 5.2.3 of
the paper.

A24



Table A14: First Stages for Non-Linear IV Estimates

Instrument twing; twins, twin twins;

Panel A: Two Plus Sample

Siblings > 2 0.296%** (.213%** (.121*%** (.032%**
(0.005) (0.012) (0.010) (0.007)

Siblings > 3 -0.011  0.429*%** (0.189***  (.077***
(0.008) (0.007) (0.013) (0.010)

Siblings > 4  -0.014* -0.012  0.525%HF  (.174***
(0.008) (0.017) (0.008) (0.017)

Siblings > 5 -0.001 -0.023 -0.009  0.653%**
(0.009) (0.021) (0.034) (0.012)

Panel B: Three Plus Sample

Siblings > 3 0.393%F*  0.199%%*  (.075%*
(0.004)  (0.009)  (0.007)
Siblings > 4 0.014  0.518%FF  (.186+**
(0.009)  (0.006)  (0.011)
Siblings > 5 0.007  0.008  0.645%**

(0.011)  (0.020)  (0.008)

Panel C: Four Plus Sample

Siblings > 4 0.480%%%  (.190%**
(0.004)  (0.009)
Siblings > 5 0.009  0.634%%*

(0.012)  (0.005)

Each row reports the first stage estimate of the number of children on
twin births from the IV regressions displayed in table 8. In each case
we report the first stages for the baseline specification of the Non-
Linear IV, although results are quantitatively similar in the case
of the +S&H specification. Standard errors are clustered by fam-
ily(three plus and four plus samples), or robust to heteroscedasticity
when only one child from each family is included in the regressions

(two plus sample).
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E Estimating Values for v

We propose a number of methods of arriving to a non-arbitrary prior regarding v in the Conley et al. (2012)
method, where «y is the violation of the exclusion restriction when using twins as an instrument in the QQ
model. From equation 4, « represents the conditional effect of being born of a twin mother on child quality:

_ Oquality;;

~ Otwin, x
In practice, bounds identification based on 7 only pushes the identification problem back by one step, as
consistent bounds rely on having an unbiased estimate of +, which is not trivial. In this appendix we first
discuss a proposed manner to causally estimate v, and then present a number of consistency checks based on
the data used in the QQ models of the paper which support estimated values of

So as to obtain a consistent estimate of v, albeit from different samples, we exploit quasi-experimental
changes in maternal health (health;) and use these to obtain consistent estimates of the impact of maternal
health on (a) child quality and (b) the probability of a twin birth. We then ‘scale’ the first by the second.
First, we estimate

Oquality;;
Ohealth,;

Under the assumption that the change in health is quasi-experimental, this is a causal estimate of a 1 unit
change in health; on child quality. Since 7y is the effect of maternal health scaled by the difference in health
between twin and non-twin mothers we also estimate:

Ohealth,;
8twinj

_ ¢q~

X

= 1.

X

With these two parameters in hand, we obtain a causal estimate of v as:

_ Oquality;;

_ Oquality;;
«  Ohealth;

Ohealth,;
x Otwin;

= (z)q X ¢t‘ (A7)

X

Otwin

As it involves the estimated quantities ggq and <$q, ~ will be subject to sampling uncertainty: 5 = $q X ggt.
Thus, the estimate 7 will have a distribution. If we can estimates both 4 and its distribution, this gives us
the consistent prior for the full distribution of v required in Conley et al.’s LTZ approach. We estimate the
distribution using resampling (bootstrap) methods, using which we can compare the analytical distribution
with a series of known distributions?, or indeed use the analytical distribution of 4 directly in the bounds
estimate of 31.> We provide a summary of the assumptions underlying our bounds estimates and evidence in
their favour in appendix E.4 and a full description of the resampling process in appendix E.5.

Implementing this approach imposes fairly strong data requirements. We require data that capture differen-
tial exposure of women to a quasi-experimental change in their pre-pregnancy health, together with measures
of the quality of their children. In addition, we need information on the prevalence of twin births in this sample
of women. In the following subsections, we describe two studies, one set in the United States, and the other in
Nigeria, which offer a large and representative sample of women with birth data and intergenerational linkage,
and in which we observe the incidence of a quasi-experimental shock to maternal health. In the United States
the shock is the introduction of antibiotics in 1937 and in Nigeria it is the Biafra war that raged through
1967-1970. We show how we exploit these cases to estimate v and its distribution. We observe that bounds

2If, for example, we determine that + is normally distributed, estimation then proceeds by imposing the prior distribution for
v as: y ~ N(fiy, 33).

3Conley et al. (2012) discuss a simulation-based algorithm (p. 265) for estimation which can be used given any prior, including
non-normal priors, for the distribution of +. In practice, our preferred estimates are based on the entire empirical distribution,
and we proceed using Conley et al. (2012)’s suggested simulation method.
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estimates of this type are necessarily case specific (see, for instance, the examples provided in the Conley et al.
paper) so, although our approach is of general interest in suggesting a process for bounding when violation of
the exclusion restriction is small, the estimates produced here are only representative of the cases examined.

E.1 Estimating 7: A case from the United States

The first antibiotics, sulfonamide drugs, were introduced across the United States in 1937, following clinical
trials in London and New York and there was nothing else on the stage until penicillin was introduced during
the Second World War. There was immediate and widespread uptake and the drugs were hailed as a “miracle”
(Lesch, 2006). Their arrival was associated with a sharp drop in a range of infectious diseases that were
treatable by these drugs (Jayachandran et al., 2010). In particular, pneumonia, the leading cause of death
among children after congenital causes, fell sharply and this decline was largest among infants (Bhalotra and
Venkataramani, 2014). Although there are no direct measures of the adult health of individuals exposed to
the antibiotics at birth, it is plausible that infant health improvements persist and generate improvements in
adult health; some evidence of this is in (Almond et al., 2011; Butikofer and Salvanes, 2015; Hjort et al., 2016;
Bhalotra et al., 2015).

What is pertinent for our purposes is whether any improvements in the adult health of women are such as
to influence the quality of their children.* We therefore estimate this reduced form using the identification
strategy of Bhalotra and Venkataramani (2014) but with outcomes of the children of exposed women rather
than the outcomes of the women themselves as dependent variables. Identification exploits the timing of this
shock to health at birth together with the fact that the largest drops in pneumonia occurred in states with the
highest initial burdens of disease. This assumes that states with high vs low burdens of pneumonia did not
have different trends in the outcomes before the introduction of antibiotics. To demonstrate that this is the
case we estimated an event study (see Figure A12).

Let m signify the mother, and m + 1 signify her children. Using the United States micro-census files, we
estimate:

m—+1
stc

quality = a+ ¢1(Post; x basePneumonia') + Ors + nre + X0 + Ape + (05 X t) + €5tc (A8)
where ¢{ is an estimate of the change in child quality associated with the mother’s exposure to antibiotics in her
infancy. The pre-intervention mean pneumonia mortality rate at the state level, s, is denoted basePneumonial’
and interacted with (Post;), which indicates birth cohorts 1937 and after. We control for race-specific fixed
effects for census year ¢, mother’s birth cohort ¢, and mother’s birth state s as well as state-specific linear
time trends. The coefficient of interest is of similar size and significance conditional upon the state and time
varying controls (health and education infrastructure, state income) and upon a vector of rates of mortality

from control diseases (diseases not treatable with sulfonamides) interacted with the indicator post.

The second step is to estimate the association of the health shock experienced by women at their birth with
the probability that they have a twin birth. This is an experimental analogue of the twin non-randomness
associations we present in the paper. We take the conditional average rate of baseline pneumonia in the state
of residence for all women who give birth to a twin, and the similar conditional rate for non-twin mothers,
using the same controls as in equation A8. In other words, we calculate

ObP,
Otwing |y

P __
¢1 = sttwinj=1‘X - bPStwinj:O|X =

“Results from (Bhalotra and Venkataramani, 2014) show that on a range of outcomes, scarring dominates selection — ie Sulfa
exposure improves all socioeconomic outcomes. This suggests that selection due to survival of weaker births is small, and that the
arrival of Sulfa drugs is appropriately viewed as a positive health shock.

®Bhalotra and Venkataramani (2014) demonstrate parallel trends for first generation outcomes; we demonstrate this for second
generation outcomes.
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In view of our findings related to twin selection, our expectation is that women with lower exposure to
pneumonia at birth will be more likely to have twins, and hence ¢} < 0.

As discussed, with these two quantities in hand, we can estimate - by taking their product:

Oquality;; " ObP
ObP; Otwin,;

dquality;;
6 % 64 = - Oality,

=YUS- (Ag)

¥  Otwin; |y
We can plug this into our estimates of the bounds on f; using following Conley et al. (2012), as described

earlier.

E.2 Estimating v in Nigeria

Since we shall proceed to analyse alternative estimators of the QQ trade-off in developing countries and
not only in the US, we obtained an estimate of v from Nigeria. Here, we exploit the exposure of individuals
through their growing years to the Nigerian civil war. This was the first modern war in sub-Saharan Africa
after independence and one of the bloodiest. It raged in Biafra, the secessionist region in the South-East of
Nigeria from 6 July 1967 to 15 January 1970, killing between 1 to 3 million people and causing widespread
malnutrition and devastation. The war created a virtual famine in the Southeast, where it was fought, and
the effects of under-nutrition were potentially reinforced by trauma and the increased incidence of infections.
Akresh et al. (2012, 2016) investigate long run effects of war exposure, exploiting the differential exposure of
the Christian Igbo community resident in Biafra relative to other ethnic groups (in other states), interacted
with the timing of the war. They show that women exposed to the war were shorter as adults, and more likely
to be over-weight. As height and obesity are measures of health, they thus establish that the war was a shock
to maternal health. We use their identification strategy to estimate impacts on children’s education of the
mother being exposed to the war in utero, using a continuous measure for the number of months exposed.

The estimated equation is:
quality;?;gl = a+ ¢war]l + oy + e + As + et + Uites (A10)

for woman ¢ of ethnicity e born in year ¢ and state s. The indicator of quality is a z-score (standardized
by age and gender) for the years of education of children in generation m + 1 and ¢3 is the reduced form
effect on this of the maternal health shock created by the war. Analogous to the US case, we thus estimate

@b = WaTpin—1 — WaT tyin—0 = gﬁﬂ% , so that we can estimate v, the twin-mediated effect of maternal health
X

on child-quality as:
_ Oquality;;

_ Oquality;; " owar,

¢% X (Z% = = YNigeria- (All)

dwars Otwin; X_ Otwing |y

E.3 Estimated Values for v in US and Nigeria

The United States. In panel A, we use quasi-experimental variation in the exposure of women to antibiotics
in their birth year in early twentieth century America to estimate impacts of mother’s health on children’s
education, cast as a Z-score, with the standardization using the birth cohort distribution. Following equation
A8 (and Bhalotra and Venkataramani (2014)), we estimate that the reduced form effect of the mother’s
exposure is an increase in the child’s completed education of 4.97% of a standard deviation, or approximately
0.15 years of education.® This estimate is the quantity ¢{ in equations A8 and A9. In the second column,

5The results from Bhalotra and Venkataramani (2014) suggest that exposure to sulfa drugs increased schooling of the first
generation (the mothers) by 0.7 years. Our estimates suggest that the trickle down to the next generation was smaller (by more
than a factor of four), but still significant.
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we show estimates that imply that, conditional upon health and fertility controls, mothers who produce twin
births are, on average, in states with 12.5% lower rates of pneumonia. This augments the evidence presented
in twin non-randomness tests of this paper, adding a further case of twin births being a function of health
conditions.

Following equation A9, in column 3 we interact ng and g/b\t to form a consistent estimate for v of 0.62% of a
standard deviation. Bootstrapping this distribution results in an estimated variance of 0.0027. The empirical
distribution estimated from 100 bootstrap replications is displayed in Figure A13a, overlaid with an analytical
normal distribution with the same mean and variance. When comparing our estimate of v to IV estimates
discussed in section 5.2, we see that the direct effect of having a (healthier) twin mother on child quality
(the violation) is considerably smaller than the point estimates of the effect of fertility on child outcomes (the
parameter of interest). While it is reassuring that the violation of the exclusion restriction is estimated as small,
in that it implies that the instrument is “close to” being exogenous (in Conley et al. (2012)’s terminology),
the evidence we provide shows that it is nevertheless sufficient to generate substantively different conclusions
regarding the QQ trade-off.

Nigeria. We repeat the procedure for estimating the violation of the exclusion restriction using quasi-
experimental variation in the mother’s foetal exposure to the Biafra war that was fought in Nigeria in 1967-1970.
Results are in panel B of Table A15. The first column presents an estimate of ¢4 from equation A10. Chil-
dren of mothers exposed to the war in utero have 1.54% of a standard deviation less education, equivalent
to 0.052 years (compared to children of mothers unexposed to the war in utero).” The second column shows
that, on average, twin mothers come from states and cohorts that are 26.7% less likely to have suffered war.
Together these estimates imply a positive estimate for v of 0.4% of a standard deviation in education, not
dissimilar to the value estimated using a different shock to maternal health in early twentieth century America.
The bootstrapped distribution of v based on 100 replications is displayed in Figure A13b (bootstrap variance
0.0022).

E.4 Assumptions and Evidence Underlying the Calculation of Plausibly Exogenous Bounds

The calculation of bounds using Conley et al. (2012)’s plausibly exogenous methodology relies on a number of
assumptions relating to the exclusion restriction. We provide a full list of these assumptions, their precedence
(be it from Conley et al. (2012)’s methodology or our extension to estimating v and its empirical distribution),
and supporting evidence for each.

1. There exists prior information that implies v (the violation of the exclusion restriction) is near 0 but
perhaps not exactly 0. Precedence: Conley et al. (2012), p. 262. Evidence: Tables 1-2 of our paper
documents that twins occur more frequently to healthy women. This renders the exclusion restriction
on which the twin-IV rests invalid if, in addition, earlier children of healthy women are higher quality
children. Nevertheless, it is unlikely that the violation of the exclusion restriction is very large given that
maternal health is only a small part of the production function of child quality.

2. The prior which is assumed for v ~ F is correct. Precedence: Conley et al. (2012), p. 265. Evidence:
Refer to subpoints below.

(a) The average value of v for a particular contert can be estimated using a single maternal health
shock as a mediator to examine both elements of the violation of the exclusion restriction (twin
non-randomness and the effect of maternal health on child quality). Precedence: This paper,
equation A7. Evidence: the particular maternal health shock examined is a common factor in both
effects. In the simplest case, if we scale a maternal health shock by a fixed parameter (for example

"This is not directly relevant here but, again, notice that the second-generation effect is smaller than the impact on the first
generation, which is 0.6 years of education (Akresh et al., 2016).
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Table A15: Estimates of v Using Maternal Health Shocks

Hhitn W 2= B Ooots)
Panel A: United States
Estimate 0.0497*F%  (.125%*** 0.0062 0.0062
(0.0181) (0.0181) (0.0027)
Observations 943,038 943,038
R-squared 0.011 0.069
Panel B: Nigeria
Estimate -0.0154**  -0.267** 0.0040 0.0040
(0.00637)  (0.00637) (0.0022)
Observations 26,205 26,205
R-squared 0.022 0.991

NoOTES: Regression results for panel A use the 5% sample of 1980 US census data and follow the

specifications in Bhalotra and Venkataramani (2014). Regression results from panel B are based

on all Nigerian DHS data in which children can be linked to their mothers. Specifications and

samples are identical to those described in Akresh et al. (2012). The estimate of v is formed by

taking the product of the column 1 and column 2 estimates. A full description of this process,

along with the non-pivotal bootstrap process to estimate the standard error of + is provided in

this Appendix.

Figure A12: Test of Parallel Trends of Second Generation Sulfa Effects for
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Note to Figure A12: Graph replicates specification (A8), however now interacting base Pneumonia with each mother’s birth year,
rather than a single Post dummy starting from 1937. Each coefficient and confidence interval displays the differential effect of a
child’s mother being born in a high- or low-pneumonia state by birth year surrounding the sulfa reform. The year preceding the
arrival of sulfa reform is omitted (1936) and post sulfa estimates and confidence intervals represent the differential impact of sulfa
drugs on second generation (educational) outcomes of children of affected women. Standard errors are clustered by state.
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Figure A13: Bootstrap Estimates of ¥
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NoOTES TO FIGURE A13: The empirical distribution is generated by performing J=100 bootstrap replications to estimate ¢’ and
@7 for each of Nigeria and USA (see complete discussion in section 3.2). The overlaid analytical distribution in each figure is a
normal distribution ~ A (us,05). The estimates for ¢' and ¢? and + are displayed in Table A15.

considering the effect of being exposed to a 1% reduction in rates of pneumonia or the effect of
being exposed to a 10% reduction in pneumonia) these scale effects will be perfectly canceled out in
the numerator and denominator of equation A7. To the degree that a large or small health shock
impacts maternal health and rates of twinning by a similarly large or small amount, the particular
mediator used will produce an identical value for . This assumption would be violated if different
health shock have different relative effects on twinning and on child quality, for example a shock
which is particularly important for child quality but not for twinning. We return to this point in
the caveat below.

(b) The true distribution of v around its mean can be approximated by a resampling algorithm. Prece-
dence: Conley et al. (2012), p. 265. Evidence: Conley et al. (2012) demonstrate that a simulation-
based estimate for the confidence intervals of 5 can be generated based on resampling of the un-
derlying distribution of interest. In this paper we propose the use of an analytical distribution.
This follows if we view our sample of data as the population, and resample from the population,
as is typical in bootstrap methods. In both cases (USA and Nigeria) our resampling is based on a
representative sample of the full population of mothers, leading to a valid bootstrapped distribution.

Caveat: If the above assumptions are not met, particularly assumption 2 or any of its parts, our estimate
of the bounds on  will no longer be correct. However, as Conley et al. (2012) point out:

“It [this method]| will produce valid frequentist inference under the assumption that the prior is
correct and will provide robustness relative to the conventional approach (which assumes v = 0)
even when incorrect.”

In the case that the above assumptions are not correct, we provide a full set of bounds over a wider range of
values in Figures 2 and 3, to determine the robustness of bounds estimates to (even non-conservative) changes
in assumptions of ~.
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E.5 Bootstrap Confidence Intervals

The methodology to estimate 7 in equations (A9) and (A11) is described in previous sub-sections of this
Appendix. In the case of Conley et al.’s UCI approach, this estimate is then sufficient to produce bounds
on f31, assuming that: + € [0,29]. We scale 4 by the factor of 2 in order for this value to fall precisely in
the middle of the range. Conley et al. (2012) provide a similar example to calculate the returns to education
using the UCI approach. In the case of the more precise LTZ approach (our preferred method) the logic is
similar, however now we must form a prior over the entire distribution of . Calculating the variance of ~
is not as straightforward as using the variance-covariance matrix corresponding to each of the estimates <;3t
and gZ;q. In this case however we can use bootstrapping to calculate J replications of q@t X gzgq, and from these
estimates construct an estimated distribution of 4, which allows us to determine our prior for the distribution
of . From this empirical distribution, we observe the estimated mean and standard deviation, and finally test
whether the distribution is normal using a Shapiro Wilk test for normality. We also use Kolmogorov-Smirnov
tests for equality of distributions to test whether the distribution is more likely to be log normal, uniform,
and a number of other known analytical distributions. In order to do this, we first estimate the empirical
distribution as described previously. We then observe the mean ji and the standard deviation &, and run a
one-sample test to determine whether the observed empirical distribution is is significantly different to each
analytical distribution N (f1,62), U(j1,52%) or In N (i, 62).

Estimates of the full distribution of = are presented in Figures A13a and A13b. These are the estimated
4; from j € {1,...,100} bootstrap replications for v in Nigeria and the United States. In all cases, when the
underlying empirical distribution is tested for equality against the overlaid analytical distribution (uniform,
normal, log normal, x?), the normal distribution provides the best fit of the analytical with the empirical
distribution.®

However, the underlying distribution appears to not be perfectly normal, and it appears doubtful that this
would be the case asymptotically. Fortunately, Conley et al. (2012) describe a simulation-based estimation
method to calculate v in the case of a non-normal distribution for v. We have followed this methodology using
the empirical distribution calculated bootstrapping for . This code has been publicly released as plausexog
for Stata (Clarke, 2014). The simulation-based estimation procedure is described fully in Conley et al. (2012)
p- 265 as a five step algorithm. The procedure consists of taking repeated draws from the variance-covariance
matrix estimated using IV with the plausibly exogenous instrument, and in each case adding to it a draw from
the distribution of ~, scaled by a quantity which depends on the strength of the instrument. Conley et al. refer
to the underlying distribution of v as F, and the scale parameter as A, where A = (X'Z(Z'2)"'Z'X)~"1(X'Z).
These repeated draws then lead to a large number of estimates for 3, the parameter of interest, and a 95%
confidence interval is taken by forming [,5’ — Cl_qg /2,B + ¢qo/2], where c are percentiles of the distribution of
simulated estimates.

Thus, as well as estimating the LTZ case where we assume that v is distributed ~ N (j5, 0%), we can estimate
a version fully utilizing the bootstrapped distribution of 4 described in the previous sub-section. In this case,
we use as F', the distribution of ~, the empirically estimated distribution of . The simulation based algorithm
then consists of taking b € 1,..., B draws from the empirically estimated F', as well as B draws from the
variance-covariance matrix, and defining the 95% confidence interval based on the 2.5 and 97.5% quintiles of

the resulting simulated values for 5.

8In the US, We cannot reject that + is normal with a p-value of 0.782. In this case, although we can’t reject that v is log
normal, the p-value is much lower, at 0.203. Values for Nigeria suggest a quantitatively similar result.
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