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ABSTRACT

IZA DP No. 11864 SEPTEMBER 2018

Bounds on Average and Quantile Treatment 
Effects on Duration Outcomes under 
Censoring, Selection, and Noncompliance*

We consider the problem of assessing the effects of a treatment on duration outcomes using data from a 

randomized evaluation with noncompliance. For such settings, we derive nonparametric sharp bounds for 

average and quantile treatment effects addressing three pervasive problems simultaneously: self-selection 

into the spell of interest, endogenous censoring of the duration outcome, and noncompliance with the 

assigned treatment. Ignoring any of these issues could yield biased estimates of the effects. Notably, the 

proposed bounds do not impose the independent censoring assumption - which is commonly used to 

address censoring but is likely to fail in important settings - or exclusion restrictions to address endogeneity 

of censoring and selection. Instead, they employ monotonicity and stochastic dominance assumptions. 

To illustrate the use of these bounds we assess the effects of the Job Corps (JC) training program on its 

participants’ last complete employment spell duration. Our estimated bounds suggest that JC participation 

may increase the average duration of the last complete employment spell before week 208 after 

randomization by at least 5.6 log points (5.8 percent) for individuals who comply with their treatment 

assignment and experience a complete employment spell whether or not they enrolled in JC. The estimated 

quantile treatment effects suggest the impacts may be heterogeneous, and strengthen our conclusions 

based on the estimated average effects.
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1 Introduction

From an economic and policy making perspective, evaluating the effectiveness of interventions

(treatments) is of utmost interest. In numerous empirical settings, the relevant outcome variable

represents the duration of an event. Estimating causal effects on duration variables, however,

is challenging. Even when employing data from an experimental evaluation, assessing the treat-

ment’s impact on duration outcomes is often complicated by at least three identification problems:

censoring, sample selection, and noncompliance. Censoring arises because the complete duration

spell is fully observed only if this spell is completed before the end of the observation period, with

the extent of censoring potentially affected by the treatment. Sample selection occurs because,

even when individuals are randomized into the treatment, their decision to experience a spell post-

randomization is endogenous and potentially affected by the treatment. Finally, noncompliance

occurs because some individuals assigned to undergo the treatment do not take it up, while some

assigned not to undergo the treatment take it up. In this paper, we derive nonparametric sharp

bounds on average and quantile treatment effects on duration outcomes in the presence of these

three pervasive identification problems. For quantile treatment effects, our bounds are on the

effects on pre-specified quantiles (i.e., pointwise), and not on the corresponding quantile function

(e.g., Firpo and Ridder, 2008). The proposed bounds do not require exclusion restrictions or con-

ditional independence assumptions to address the endogeneity of selection and censoring, and do

not impose distributional assumptions. Combinations of those assumptions, which are potentially

strong in relevant empirical settings, are employed by most existing methods that focus on point

identification. Instead, our bounds are based on weak monotonicity and stochastic dominance

assumptions that are potentially weaker and are common in the growing partial identification lit-

erature (e.g., Manski, 1997; Manski and Pepper, 2000; Zhang and Rubin, 2003; Imai, 2007, 2008;

Blundell et al., 2007; Lee, 2009; Lechner and Melly, 2010; Bhattacharya et al., 2012; Flores and

Flores-Lagunes, 2010, 2013; Chen and Flores, 2015; Frandsen and Lefgren, 2016). We address

noncompliance by employing the randomized treatment assignment as an instrumental variable for

treatment receipt.

To motivate and illustrate the use of our bounds, we consider the evaluation of the effects

of an important training program for disadvantaged youth in the U.S.—Job Corps or JC—on

the duration of its participants’ last complete employment spell, using data from a randomized

evaluation that was subject to noncompliance. The methodological and empirical work in the

existing literature on the evaluation of active labor market programs mainly focuses on estimating

average effects of an intervention on outcomes such as earnings and employment (for a review see

Heckman et al., 1999 and Imbens and Wooldridge, 2009). While estimating the effects of labor

market programs on employment rates is important, it is also crucial from a policy point of view

to analyze their effects on labor market duration outcomes. For example, as discussed by Ham and

LaLonde (1996), such programs may improve employment rates by helping unemployed individuals

find jobs faster (e.g., by improving their job search skills) or by helping employed individuals keep

their jobs longer (e.g., by improving their work habits). Hence, estimating program effects on

the duration of employment spells, for example, can shed light into how the program affects
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employment rates, providing valuable information for policy makers. The proposed bounds are

not specific to the analysis of the effects of training programs on employment durations. More

generally, they can be employed in quasi-experimental studies and randomized experiments with

noncompliance in which researchers are interested in analyzing the effects of a treatment on an

outcome that is censored and is realized (or observed) only for a non-random subpopulation. This

setting often arises in important applications. For example, when analyzing the effects of a welfare

program on the duration of future welfare participation spells; when analyzing the effect of an

intervention on future income, with the income variable being affected by censoring and non-

response; or when analyzing the effects of a new drug or medical procedure on the duration of a

given event that is not experienced by every individual (e.g., the effect of influenza vaccination

on the length of flu-related hospitalizations). In addition, researchers can employ the proposed

bounds to inform the sensitivity of results obtained with existing methods that rely on potentially

stronger assumptions to achieve point identification.

To derive our bounds, we employ principal stratification (Frangakis and Rubin, 2002). Principal

stratification—which has its roots in the instrumental variables analysis by Angrist et al. (1996)—

provides a framework for analyzing treatment effects when controlling for variables that have been

affected by treatment assignment: in our case, the indicators for treatment receipt, selection, and

censoring. The key insight of principal stratification is that causal effects can be obtained by

comparing individuals who share the same potential values of the post-treatment variable(s) one

wants to adjust for under both values of the assigned treatment indicator, since membership to

these groups (called principal strata) is not affected by treatment assignment. Thus, focusing

on principal strata provides a way to control for unobserved confounders that correlate with the

treatment, post-treatment variables, and the outcome. Bounds have been previously used in the

literature to analyze the effects of training programs within this framework. Zhang et al. (2008) and

Lee (2009) adjusted for sample selection when analyzing training effects on average wages (as wages

are observed only for employed individuals). Lee (2009) and Blanco et al. (2013a, 2013b) employed

these bounds to analyze the wage effects of JC, with the latter papers also employing Imai’s (2008)

extension of these bounds to quantile treatment effects. These papers, however, did not consider

noncompliance. Imai (2007) and Chen and Flores (2015) derived bounds accounting for both

noncompliance and selection. The latter paper used these bounds to analyze the wage effects of

JC. Both Imai (2007) and Imai (2008) also considered quantile treatment effects. Importantly, none

of the above papers considered duration or censored outcomes. This paper extends those bounds

to the important case when the outcome is censored. Recently, Shepherd et al. (2007) employed

principal stratification to propose bounds on the effects of a treatment on a censored outcome in

the presence of sample selection. However, they do not consider noncompliance and impose the

independent censoring assumption (discussed below), as well as parametric assumptions.

There is a large literature dealing with censoring, some of which also addresses endogeneity (in

our case, noncompliance). For example, building on the work of Powell (1986) and Chernozhukov

and Hong (2002)—among others—on censored quantile regression, Hong and Tamer (2003), Blun-

dell and Powell (2007), Chernozhukov et al. (2015), Frandsen (2015) and Arellano and Bonhomme
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(2017) also deal with an endogenous regressor by employing instrumental variables. In a similar

setting with censoring and endogeneity, Sant’Anna (2016) proposes an alternative two-step instru-

mental variable estimator based on Kaplan-Meier integrals. A common assumption in these papers

is that the censoring variable is conditionally independent of the latent outcome (a notable excep-

tion is Fan and Liu (2018), who model censoring using an Archimedean copula). While common,

this assumption is likely to fail in important settings, where it leads to bias and loss of point iden-

tification (Khan and Tamer, 2009; Frandsen, 2018). One setting in which independent censoring

is likely to fail is when the censoring points in the sample vary across observations (Frandsen,

2018). In our empirical illustration, while there is an administratively given end of the follow-up

period that determines censoring (week 208 after randomization), individuals start their employ-

ment spells endogenously at different times, making it possible that unobserved characteristics of

individuals confound both the latent duration outcome and the censoring indicator, rendering the

independent censoring assumption dubious. Frandsen (2018) proposed a test of this assumption

and applied it to unemployment duration data from three commonly-used data sets, finding that

the assumption frequently fails. The same test rejects the independent censoring assumption in the

data of our empirical illustration. An important contribution of our proposed bounds is to allow

for endogenous censoring, in addition to endogenous sample selection, thus providing an additional

tool for applied research.

Another relevant related literature is that of duration models (e.g., Heckman and Singer, 1984;

Ham and LaLonde, 1996; Eberwein et al., 1997, 2002; Abbring and Van den Berg, 2003; Van

den Berg et al., 2016, Ba et al., 2017). This literature usually addresses censoring, selection, and

sometimes noncompliance/endogeneity, by imposing parametric, separability, or proportionality

assumptions. Some standard duration models also rely on the conditional independent censoring

assumption. Recent work by Vikström et al. (2018) constructs bounds on transition probabilities

using a different framework from ours, although they do not allow for noncompliance. The methods

developed in this paper complement this literature by constructing nonparametric bounds for

treatment effects on average durations and quantiles of the duration distribution using a different

framework and set of assumptions. Our approach, however, does not provide bounds on hazard or

transition probabilities, which are often the objects of interest in duration models and are more

difficult to estimate because of dynamic selection. Our focus on effects on the duration of spells

avoids the dynamic selection problem (Vikström et al., 2018). Nevertheless, even when focusing

on the duration of spells, there may be post-randomization variables (confounders) affected by

randomization and correlated with compliance, selection, censoring, and the outcome. These are

the confounders we address through principal stratification.

To illustrate the use of the proposed bounds, we evaluate the effects of JC on the duration of its

participants’ last complete employment spell. The JC is America’s largest and most comprehensive

education and job training program enrolling disadvantaged youth, ages 16 to 24, at no out-of-

pocket cost to them. During 1995-96, the US Department of Labor funded the National Job Corps

Study (NJCS), whose main feature was the randomization of eligible participants into treatment

and control groups. Using data from the NJCS, various studies have examined the effects of
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being randomly assigned to enroll in JC (rather than actual enrollment) mostly on non-duration

outcomes such as earnings, employment, and wages (e.g., Schochet et al., 2001; Schochet et al.,

2008; Lee, 2009; Zhang et al., 2009; Flores-Lagunes et al., 2010; Flores and Flores-Lagunes, 2010,

2013; Blanco et al., 2013a, 2013b). These estimated intention-to-treat effects do not capture the

actual effect of receiving training when there is noncompliance with the assigned treatment, as

it was the case in the NJCS. Commonly, to address noncompliance the treatment assignment

indicator is employed as an instrumental variable for actual participation, which identifies actual

training effects for individuals who comply with their treatment assignment, or compliers (Imbens

and Angrist, 1994; Angrist et al., 1996). Studies analyzing the effects of actual JC participation on

earnings, employment, and wages include Schochet et al. (2001), Schochet et al. (2008), Frumento

et al. (2012), Eren and Ozbeklik (2014), Chen and Flores (2015), and Chen et al. (2018). However,

to the best of our knowledge, despite the importance of analyzing the effects of training programs

on duration outcomes (as previously discussed), no study has assessed the effects of this major

program on such outcomes.

Our estimated bounds suggest that JC training has a plausible positive average effect on the

duration (in weeks) of the last complete employment spell before week 208 after randomization for

individuals who comply with their treatment assignment and who would experience a complete

employment spell whether or not they enrolled in JC. The causal effect for this latent subpopu-

lation (stratum) is the one bounded by our approach. It represents at least 21.3 percent of our

sample–which excludes Hispanics–and at least 31 percent of all compliers. Following the principal

stratification literature, this is the only stratum for which causal effects can be estimated without

imposing further assumptions, since it is the only stratum for which complete employment dura-

tions are observed for individuals who participated and did not participate in JC. Bounding effects

for other subpopulations would require adding likely stronger assumptions. Under our preferred

set of assumptions, this effect is bounded between 5.6 and 55 log points (5.8 and 73.3 percent). De-

spite our consistent finding of positive estimated lower bounds for this mean effect across different

demographic groups, the corresponding confidence intervals include zero at traditional significance

levels. In addition, the results suggest that the effect may be heterogeneous across the quantiles

analyzed of the employment duration distribution. In some of the lower quantiles the effect is

positive and statistically significant. In contrast, while positive effects are observed at the upper

part of the employment spell distribution, the confidence intervals include zero for most quantiles

above the median (although they rule out plausible positive and negative values).

We complement our analysis by estimating the effect of JC on the log wages in those employment

spells. This is an important feature of the proposed approach: it allows bounding not only the

effects of training on employment duration but also on the wages (or other characteristics) of

those employment spells, since the bounds we employ address noncompliance and selection into

employment, which are the identification problems for estimating wage effects. We find that, for the

same subpopulation for which the effects on employment duration were estimated, JC statistically

significantly increases their average log wages in those employment spells by between 5.9 and 21.2

log points (6.1 and 23.6 percent). This finding suggests that JC may not only help these individuals
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to maintain their jobs longer, but also that those jobs are better paid. In contrast to previous work

that also analyzed wage effects of JC under noncompliance and sample selection for a different

subpopulation from ours (Chen and Flores, 2015), we also consider quantile treatment effects. Our

results again suggest that the effects may be heterogeneous across the quantiles analyzed of the

wage distribution, with quantiles above the median ruling out zero effects more frequently than

lower quantiles.

2 Econometric Methods

2.1 Motivating Example: Job Corps

To motivate and discuss the assumptions underlying the bounds to be introduced, we consider

inference on average and quantile treatment effects of JC participation on the duration of the

last complete employment spell. The JC program was established in 1964 under the Economic

Opportunity Act, and today is a key pillar of the Workforce Innovation and Opportunity Act

(WIOA), signed in 2014. The program is America’s largest and most comprehensive education and

job training program. The goal of JC is to help disadvantaged young people, ages 16 to 24, improve

the quality of their lives by enhancing their labor market opportunities and educational skill set,

which is achieved through the offering of academic instruction, career technical training, residential

living, health care, counseling, and job placement assistance. In a typical year, about 60,000 eligible

students enroll in one of the 119 JC centers located nationwide, where participants typically reside.

Eligibility is based on several criteria, including age, legal US residency, economically disadvantage

status, living in a disruptive environment, in need of additional education or training, and be judged

to have the capability and aspirations to participate in JC. The average length of enrollment in

the program is about eight months.

During the mid-nineties, the Department of Labor funded the National Job Corps Study (NJCS)

to determine the program’s effectiveness. The main feature of the study was its randomization:

individuals were taken from nearly all JC’s outreach and admissions agencies located in the 48

contiguous states and the District of Columbia and randomly assigned to treatment and control

groups. From a randomly selected research sample of 15,386 first time eligible applicants, 9,409

were assigned to the treatment group–permitted to enroll in JC–and the remainder 5,977 to the

control group–embargoed from enrollment for three years. After recording their data through a

baseline interview for both treatment and control groups, a series of follow up interviews were

conducted at weeks 52, 130, and 208 after randomization (Schochet et al., 2001). By week 208

after randomization, about 74% of individuals in the treatment group had enrolled in JC (about

96% of them within 6 months after randomization), while about 4.7% of individuals in the control

group had enrolled in JC.

To our knowledge, no study has assessed the effects of JC participation on the duration of

employment or unemployment spells. Our illustration will focus on the duration of the last em-
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ployment spell by week 208 after randomization as an outcome because it represents a long-term

outcome and to avoid potentially serious threats to some of our assumptions. One of them relates to

the fact that JC participants cannot hold employment while in the program, a phenomenon known

as a locking-in effect. Another potential threat consists of the possibility that JC participants raise

their reservation wage, declining job offers that would be accepted under no participation. Given

that most participants enroll shortly after randomization and train for an average of 8 months, the

consequences of the locking-in effect and a higher reservation wage are likely diminished in the long

run. This would not be the case if we were to focus on a short-term outcome. In this illustration,

our bounds will account for noncompliance with the random assignment, the selection into the last

employment spell by week 208 after randomization, and the censoring of the duration that occurs

when the employment spell continues beyond week 208 after randomization.

2.2 Notation and Principal Strata

Consider a random sample of size n from a large population. Let Zi ∈ {0, 1} indicate whether

unit i is randomly assigned to the treatment group (Zi = 1) or the control group (Zi = 0) at

baseline, with i = 1, ..., n. Let Di ∈ {0, 1} be the treatment receipt indicator, i.e., whether unit i

actually takes the treatment (Di = 1) or not (Di = 0). In our application, Zi denotes whether i is

randomly assigned to participate or not in JC, while Di is an indicator for actual JC participation.

Let Y ∗i be the latent duration of the employment spell of interest. In our application, Y ∗i denotes

the latent duration of the last employment spell by the end of the follow-up observation period,

which is week 208 after randomization. Let Si ∈ {0, 1} indicate whether unit i selects into the

spell of interest (Si = 1) or not (Si = 0), and let Ci denote the time from the start of the spell

of interest until censoring takes place for individual i. Not all individuals may experience the

spell of interest; for example, in our application some individuals may remain unemployed from

randomization until the end of the observation period. If individual i experiences the spell of

interest, i.e., Si = 1, then the observed spell duration is Yi = min(Y ∗i , Ci). Let Wi be the censoring

indicator variable, so Wi = 1 if Yi = Ci, and Wi = 0 if Yi = Y ∗i ; or Wi = 1{Yi = Ci} with 1{·} the

indicator function. If Si = 0, then Y ∗i , Ci, and thus Yi and Wi are not defined since no related spell

exists (the analysis below is unaffected if we were to allow these variables to be defined since the

causal parameters of interest consider only individuals who would experience the spell of interest

under both random assignment arms; see the related discussion in Chen and Flores, 2015, p. 525).

We follow the principal stratification literature and assign them the value ∗ (e.g., Zhang and Rubin,

2003; Shepherd et al., 2007; Imai, 2007, 2008; Zhang et al., 2008, 2009; Frumento et al., 2012).

Using the potential outcomes framework, we define the following potential variables: Di(z),

Si(z), Y
∗
i (z), Ci(z), Yi(z), and Wi(z) for z = 0, 1. Thus, for instance, Di(1) and Di(0) denote

the treatment individual i would actually receive under assignment to treatment (z = 1) or no

treatment (z = 0), respectively. Note that Y ∗i (z), Ci(z), Yi(z), and Wi(z) are defined only if Si(z) =

1 for z = 0, 1. If Si(z) = 0, we let Y ∗i (z) = Ci(z) = Yi(z) = Wi(z) = ∗. Since both treatment

assignment and treatment receipt can potentially affect the post-treatment variables we consider,
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we also define the composite potential variables Si(z, d), Y ∗i (z, d), Ci(z, d), Yi(z, d), and Wi(z, d) for

z, d = 0, 1, where the last four are defined only if Si(z, d) = 1, while Y ∗i (z, d) = Ci(z, d) = Yi(z, d) =

Wi(z, d) = ∗ if Si(z, d) = 0. We observe {Zi, Di, Si} for all individuals, where Di = Di(Zi), and

Si = Si(Zi, Di). We also observe {Yi,Wi} if Si = 1, where Yi = min{Y ∗i (Zi, Di), Ci(Zi, Di)}
and Wi = 1{Yi = Ci(Zi, Di)}. If Si = 0, we have Yi = ∗ and Wi = ∗. In this context, causal

effects of treatment receipt on the duration of the spells of interest are comparisons of the latent

potential outcomes Y ∗i (z, 0) and Y ∗i (z, 1). In line with the potential outcomes framework, this

notation implicitly assumes the stable unit treatment value assumption (SUTVA) (Rubin, 1978,

1980, 1990).

We study identification of the effects of interest in the presence of three post-randomization

complications: censoring, selection, and noncompliance. To this end, we employ principal strat-

ification (Frangakis and Rubin, 2002), which provides a useful framework for analyzing causal

effects when adjusting for post-randomization variables that have been affected by the randomized

treatment assignment (Z), as in our setting. The key insight is that causal effects can be obtained

by comparing individuals within principal strata, which are subpopulations whose members share

the same potential values of the post-randomization variables one wants to adjust for. The reason

is that membership to a particular principal stratum is not affected by treatment assignment, im-

plying that it can be treated as any other baseline covariate: just as one can obtain causal effects

by comparing individuals with a given value of a baseline covariate (e.g., gender), one can obtain

causal effects within principal strata. A familiar example of principal stratification is the use of

random assignment as an instrumental variable for an endogenous treatment as in Imbens and An-

grist (1994) and Angrist et al. (1996). In that situation with one post-randomization complication

(endogeneity of treatment or noncompliance), the principal strata are the so-called “compliance

types” and causal effects are obtained by comparing outcomes of individuals belonging to the same

stratum. The effect that is point identified is the causal treatment effect for the subpopulation of

compliers. As we add two more post-randomization complications (selection and censoring), the

causal effect that will be partially identified will be for a more specific subpopulation.

Given the three identification issues we address, we partition the population based on the

joint potential values of the treatment receipt (D), selection (S), and censoring (W ) indicator

variables under the two values of treatment assignment (z = 0, 1): {Di(0), Di(1)}×{Si(0), Si(1)}×
{Wi(0),Wi(1)}. The stratification with respect to {Di(0), Di(1)}, done to address noncompliance

using treatment assignment as an instrument for treatment receipt, is the same as that in Angrist

et al. (1996). Define the following four subpopulations: a = {i : Di(0) = Di(1) = 1}, individuals

who always take the treatment regardless of treatment assignment, or always takers; n = {i :

Di(0) = Di(1) = 0}, individuals who never take the treatment regardless of treatment assignment,

or never takers; c = {i : Di(0) = 0, Di(1) = 1}, individuals who take the treatment only if assigned

to take it, or compliers; and d = {i : Di(0) = 1, Di(1) = 0}, individuals who take the treatment

only if assigned not to take it, or defiers.

The stratification with respect to {Si(0), Si(1)} is analogous to that used to address sample

selection in Zhang and Rubin (2003), Zhang et al. (2008), Lee (2009) and Imai (2008), among
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others. In our application, the particular selection we address is into the employment spell of inter-

est. Define the following four subpopulations based on the joint potential values of {Si(0), Si(1)}:
EE = {i : Si(0) = Si(1) = 1}, individuals who always select into the employment spell of interest

regardless of treatment assignment, or always selected; NN = {i : Si(0) = Si(1) = 0}, individuals

who never select into the employment spell of interest regardless of treatment assignment, or never

selected; NE = {i : Si(0) = 0, Si(1) = 1}, individuals who select into the employment spell of

interest only if assigned to treatment; EN = {i : Si(0) = 1, Si(1) = 0}, individuals who select into

the employment spell of interest only if not assigned to treatment.

To address endogenous censoring, we propose to also stratify with respect to the joint potential

values of {Wi (0) ,Wi (1)}. Contrary to the previous cases, this stratification has the peculiarity

that Wi(z) is defined only if Si(z) = 1, for z = 0, 1: if Si(z) = 1 then Wi(z) can take the values of 0

or 1, while if Si(z) = 0 then Wi(z) = ∗. Hence, which subpopulations can be defined as a function

of the vector {Wi (0) ,Wi (1)} depends on the values of Si(z). For the always selected subpopulation

(EE), we can define the following four subpopulations: CC = {i : Wi(0) = Wi(1) = 1}, individuals

whose spells of interest are always censored regardless of treatment assignment, or always censored;

UU = {i : Wi(0) = Wi(1) = 0}, individuals whose spells of interest are never censored regardless of

treatment assignment, or never censored (or “always uncensored”); UC = {i : Wi(0) = 0,Wi(1) =

1}, individuals whose spells are censored only if assigned to treatment; and CU = {i : Wi(0) =

1,Wi(1) = 0}, individuals whose spells are censored only if not assigned to treatment. For the

NE, EN , and NN groups, Wi(z) is not defined under at least one treatment assignment arm, so

we define the following subpopulations. For NE: ∗C = {i : Wi(0) = ∗,Wi(1) = 1}, censored under

assignment to treatment; and ∗U = {i : Wi(0) = ∗,Wi(1) = 0}, uncensored under assignment to

treatment. For EN : C∗ = {i : Wi(0) = 1,Wi(1) = ∗}, censored under assignment to control; and

U∗ = {i : Wi(0) = 0,Wi(1) = ∗}, uncensored under assignment to control. For NN , Wi(z) is

undefined under both treatment assignment states, so we assign them the value ∗.

After combining the four compliance types with the subpopulations previously defined in terms

of their potential response to selection and censoring, we have that the principal stratification

defined by the joint potential values of {Di(0), Di(1)} × {Si(0), Si(1)} × {Wi(0),Wi(1)} consists

of the following 36 principal strata: hEECC, hEEUU , hEEUC, hEECU , hNE ∗ C, hNE ∗ U ,

hENC∗, hENU∗, and hNN ∗ ∗ for h = a, n, c, d. Hence, for instance, the principal stratum

aEECC is given by the always takers who always select into the spell of interest and whose

outcomes are always censored regardless of treatment assignment.

Since the values of the potential variables Di(z), Si(z), and Wi(z) under both values of z for

the same individual are unobservable, principal strata are latent subpopulations. Thus, while it

is possible to obtain causal effects by comparing individuals within the same principal strata with

different values of the randomized treatment assignment (Z), it is not generally possible to observe

the stratum each individual belongs to. Hence, in order to identify causal effects, assumptions

need to be made, some of which imply that certain principal strata are empty.

8



2.3 Basic Instrumental Variable Assumptions and Causal Parameters

This and the next subsection present the main assumptions used to partially identify the effects

of interest. To simplify notation, in what follows we omit the subscript i unless deemed necessary

for clarity. We address noncompliance by using the randomized treatment assignment indicator

as an instrumental variable (IV) for treatment receipt. Following Imbens and Angrist (1994) and

Angrist et al. (1996), we impose the following assumptions:

Assumption 1 (Randomized Instrument). {D(z), S(z, d), Y ∗(z, d), C(z, d)} is independent of Z

for all z, d = 0, 1.

Assumption 2 (Non-Zero Average Effect of Z on D). E[D(1)−D(0)] 6= 0.

Assumption 3 (Exclusion Restriction of Z). Y ∗i (0, d) = Y ∗i (1, d) = Y ∗i (d), Si(0, d) = Si(1, d) =

Si(d), and Ci(0, d) = Ci(1, d) = Ci(d) for all i and d = 0, 1.

Assumption 4 (Individual-Level Monotonicity of D in Z). Di(1) ≥ Di(0) for all i.

Assumption 1 states that the IV (Z) is as good as randomly assigned. It holds by design

in our empirical illustration, as assignment to JC was randomized. Assumption 2 requires the

IV—treatment assignment—to have a non-zero average effect on treatment receipt (D). This

is also the case in our application. Assumption 3 requires that any effect of the IV on S(z, d),

Y ∗(z, d) and C(z, d) (and thus Y (z, d) and W (z, d)) is only through treatment receipt. Note that

this exclusion restriction is required to hold for three post-randomization variables: the selection

indicator, the time from start of the spell of interest until censoring, and the latent duration

outcome. This assumption allows writing the composite potential outcomes as a function of d

only. In the application, Assumption 3 implies that randomization into JC can only affect the

latent employment duration, the indicator for experiencing the employment spell of interest, and

the censoring indicator, through its effect on JC participation. Exclusion restriction assumptions

have been used in the JC literature to analyze various outcomes, such as employment, earnings,

wages, health, crime and welfare receipt (e.g., Schochet et al., 2001; Schochet et al., 2008; Frumento

et al., 2012; Chen and Flores, 2015; Chen et al., 2018). The assumption seems also plausible in

our context. However, it could fail, for instance, if being embargoed from JC affects individual

job search behavior relative to what it would be under having the option to enroll (although

this possibility is decreased by our focus on the last employment spell, a longer-term outcome).

Finally, Assumption 4 states that the IV cannot have a negative effect on treatment receipt for

any individual. This assumption has also been widely used in the JC literature (e.g., in the papers

mentioned above), as it seems improbable that an individual would participate in JC only if denied

access to it.

Assumptions 3 and 4 imply that some strata are empty. Given that Z cannot affect S or W

through channels other than D, Assumption 3 sets to zero the population proportion of the strata

of always takers or never takers that have different potential selection or censoring status under

the two treatment assignment arms because for them there is a direct effect of Z on S or W . The

twelve strata that are eliminated by Assumption 3 are: aEEUC, aEECU , aNE ∗ C, aNE ∗ U ,
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aENC∗, aENU∗, nEEUC, nEECU , nNE ∗C, nNE ∗U , nENC∗, and nENU∗. Assumption 4

sets to zero the proportion of defiers, thus eliminating nine of the remaining strata. Thus, under

Assumptions 1 to 4, the number of remaining strata is 15.

In settings without sample selection and censoring, Imbens and Angrist (1994) and Angrist et

al. (1996) show that, under Assumptions 1 to 4, IV estimators point identify the average treatment

effect for the subpopulation of compliers. In the presence of sample selection and censoring, how-

ever, those assumptions are not enough to point identify an effect of D on Y ∗. This is the case we

analyze next. We begin by defining our parameters of interest. Table 1 shows the relationship be-

tween the remaining 15 strata under Assumptions 1 to 4 and the observed values of {Zi, Di, Si,Wi}.
This table makes it clear that the only stratum for which the outcome of interest Y ∗ is observed

under both treatment receipt (D = 1) and no treatment receipt (D = 0), is the cEEUU stratum

(in bold). This implies that the data does not contain information about the causal effects for other

principal strata. The cEEUU stratum is comprised of individuals who, regardless of treatment

assignment, comply with their assignment and always select into an employment spell of interest

that is uncensored.

In the spirit of the principal stratification literature (e.g., Angrist et al., 1996; Frangakis and

Rubin, 2002; Zhang et al., 2008, 2009; Imai, 2007, 2008; Lee, 2009; Frumento et al., 2012; Chen and

Flores, 2015), we focus on (partial) identification of effects for the cEEUU stratum. The reason is

that for other principal strata the latent outcome Y ∗ is censored or is not well-defined (i.e., S = 0)

in at least one of the treatment-receipt arms. Even if one were willing to define the outcome

when S = 0, additional assumptions than those needed for identification of effects for the cEEUU

stratum are required to deal with outcomes that are censored, or outcomes that are never observed

and are thus “entirely hypothetical” (Rubin, 1990) (e.g., the latent duration of nNN ∗∗ individuals

if we could “force” them to enroll in JC and experience an employment spell). Examples of such

assumptions include distributional or independent censoring assumptions to deal with censored

outcomes (e.g., Shephered et al., 2007), or assuming the outcome has bounded support to deal

with never-observed outcomes (e.g., Huber and Mellace, 2015; Chen et al., 2018). Thus, in this

paper we focus on partial identification of causal effects for the stratum for which latent outcomes

are well-defined and observed under both treatment-receipt arms (the cEEUU stratum). These

results can serve as a building block to derive bounds on the effects for other subpopulations by

introducing additional assumptions.

To formally define our parameters of interest, let fk|z denote the probability distribution function

of the latent potential outcome Y ∗(z) for stratum k, and let its α−quantile be given by qk|z(α) ≡
inf{y : Fk|z(y) ≥ α} for 0 < α < 1, where Fk|z(y) denotes the cumulative distribution function

(CDF) of Y ∗(z) for stratum k evaluated at y. The parameters we consider are given by the following

stratum-specific average and quantile treatment effects of D on Y ∗:

SATEcEEUU = E[Y ∗(1)|cEEUU ]− E[Y ∗(0)|cEEUU ](1)

SQTEαcEEUU = qcEEUU |1(α)− qcEEUU |0(α).(2)
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Table 1: Principal Strata under Assumptions 1 to 4 (Employment Duration Outcome)

Z = 0 Z = 1
S = 0 S = 1 S = 0 S = 1
W = ∗ W = 0 W = 1 W = ∗ W = 0 W = 1

D = 0

nNN ∗ ∗
cNN ∗ ∗
cNE ∗ C
cNE ∗ U

nEEUU
cEEUU
cEEUC

cENU∗†

nEECC
cEECC

cEECU‡

cENC∗†
D = 0 nNN ∗ ∗ nEEUU nEECC

D = 1 aNN ∗ ∗ aEEUU aEECC D = 1

aNN ∗ ∗
cNN ∗ ∗
cENC∗†
cENU∗†

aEEUU
cEEUU
cEECU‡

cNE ∗ U

aEECC
cEECC
cEEUC
cNE ∗ C

†: Strata cENC∗ and cENU∗ are ruled out by Monotonic Selection (Assumption 5 in Section 2.4.1).
‡: Stratum cEECU is ruled out by Monotonic Censoring (Assumption 6 in Section 2.4.2).

In our application, SATEcEEUU and SQTEαcEEUU give, respectively, the average and quantile

treatment effects of participation in JC on the duration of the last complete employment spell by

week 208 after randomization (our spell of interest) for the cEEUU stratum. This stratum is given

by those individuals who complied with their treatment assignment and experienced an uncensored

last employment spell by the end of week 208 after randomization, regardless of treatment receipt

(since for compliers Z = D). Hence, SATEcEEUU and SQTEαcEEUU can also be interpreted,

respectively, as the average and quantile treatment effects of participation in JC on the duration of

the last complete employment spell by week 208 after randomization for the cEEUU stratum. We

note that in the definition of SQTEαcEEUU we compare, for the cEEUU stratum, the unconditional

α−quantile of the outcome’s marginal distributions under each of the treatment-receipt arms.

2.4 Partial Identification Results

It is possible to derive bounds on SATEcEEUU and SQTEαcEEUU under only Assumptions 1

to 4; however, these bounds are typically wide and uninformative in practice. This is also the

case when constructing bounds in other settings; for example, when addressing sample selection

using only the random assignment assumption (e.g., Zhang and Rubin, 2003; Lee, 2009; Blanco

et al., 2013a; Huber and Mellace, 2015), or when addressing sample selection and noncompliance

using only the standard IV assumptions in Angrist et al. (1996) (e.g., Imai, 2007). Therefore, the

partial identification results below make use of additional monotonicity and stochastic dominance

assumptions to obtain tighter bounds beyond using the information contained in the data under

only Assumptions 1 to 4.

2.4.1 Bounds under Monotonic Selection

In this and the following subsection, we construct bounds on SATEcEEUU and SQTEαcEEUU

under two additional monotonicity assumptions similar to Assumption 4. Individual-level mono-

tonicity assumptions are commonly used in the partial identification literature (e.g., Manski and

Pepper, 2000; Zhang et al., 2008; Imai, 2007, 2008; Lee, 2009; Chen and Flores, 2015). However,
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they are not innocuous, and their plausibility in a particular application has to be judged carefully.

The first additional monotonicity assumption we consider is:

Assumption 5 (Individual-Level Monotonicity of S in D for c). Si(1) ≥ Si(0) for all compliers.

Assumption 5 states that there is no individual complier who has a negative effect of treatment

receipt (D) on the selection into the spell of interest (S). A testable implication of adding As-

sumption 5 is that E[S(1)− S(0)|c] ≥ 0, i.e., the IV estimate of D on S using Z as an IV for D is

non-negative. In the context of addressing sample selection, this assumption is similar to that used

in Chen and Flores (2015), but differs from a similar assumption used by Imai (2007) and others

(e.g., Zhang et al., 2008; Lee, 2009) in that it is imposed only for compliers (as opposed to all

individuals) and on treatment receipt (as opposed to treatment assignment). In the context of our

application, it states that there is a non-negative effect of participation in JC on the probability

of experiencing an employment spell by week 208 after randomization for every complier. In other

words, it assumes no individual complier would be continually unemployed from baseline to week

208 after randomization if she enrolled in JC, and would experience an employment spell in that

same period if she did not enroll. One potential threat to this assumption relates to the locking-in

effect described in Section 2.1, which precludes initiating employment spells for those receiving

training. Another potential threat consists of the possibility that JC participants raise their reser-

vation wage, declining job offers that would start employment spells. However, we believe that

the relatively long period between randomization and the end of the follow-up observation in our

application (208 weeks or 4 years), lessens the plausibility of those potential threats. Similar as-

sumptions have been used in the JC literature (e.g., Lee, 2009; Blanco et al., 2013a, 2013b; Chen

and Flores, 2015).

Assumption 5 sets the population proportions of the strata cENC∗ and cENU∗ to zero. The

distribution of the remaining 13 principal strata under Assumptions 1 to 5 in the observed data

{Di, Si,Wi, Zi} can be seen in Table 1 (see note to table). We start by analyzing identification

of the stratum proportions, in particular, that of our stratum of interest (cEEUU), which will

be partially identified. Let πk denote the proportion of stratum k in the population. Also, let

pdsw|z ≡ Pr(D = d, S = s,W = w|Z = z), where d, s, z ∈ {0, 1} and w ∈ {0, 1, ∗}, and let fdsw|z

denote the conditional distribution of the observed outcome Y in the cell {D = d, S = s,W =

w,Z = z}. Note that pdsw|z and fdsw|z are observed in the data. Under Assumptions 1 to 5, we

can point identify the six stratum proportions for always takers and never takers, as well as the

stratum proportion for cNN ∗ ∗, as (e.g., see Table 1):

πaNN∗∗ = p10∗|0 πaEEUU = p110|0 πaEECC = p111|0(3)

πnNN∗∗ = p00∗|1 πnEEUU = p010|1 πnEECC = p011|1(4)

πcNN∗∗ = p10∗|1 − p10∗|0(5)

In addition, under the current assumptions, we can obtain five equations relating the proportions

of the other strata of compliers to observed conditional probabilities and other point-identified
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stratum proportions:

πcNE∗C + πcNE∗U = p00∗|0 − p00∗|1 − p10∗|1 + p10∗|0(6)

πcEEUU + πcEEUC = p010|0 − p010|1(7)

πcEECC + πcEECU = p011|0 − p011|1(8)

πcEEUU + πcEECU + πcNE∗U = p110|1 − p110|0(9)

πcEECC + πcEEUC + πcNE∗C = p111|1 − p111|0(10)

Although the remaining six stratum proportions are not point identified, it is possible to construct

bounds on the proportion of our stratum of interest, πcEEUU . The equations above imply that the

possible range of πcEEUU under Assumptions 1 to 5 is: πcEEUU ∈ Π1 ≡ [max{0, p111|0 + p010|0 −
p010|1 − p111|1},min{p010|0 − p010|1, p110|1 − p110|0}]. Given that all seven strata of compliers can

be non-empty, equations (5) to (10) provide six testable implications: that all of their proportions

should be non-negative, with at least one being strictly positive by Assumption 2.

We now proceed to construct bounds on SATEcEEUU and SQTEαcEEUU in (1) and (2), re-

spectively. Our bounds are derived following the approach in Horowitz and Manski (1995) and

Imai (2007, 2008). We first consider partial identification of the distribution of Y ∗(1) and Y ∗(0)

for the cEEUU stratum (fcEEUU |1 and fcEEUU |0, respectively), from which SATEcEEUU and

SQTEαcEEUU can be bounded. From Table 1, under Assumptions 1 to 5 the distributions of the

observed outcomes Y in the cells {D = 1, S = 1,W = 0, Z = 1} and {D = 0, S = 1,W = 0, Z = 0}
(f110|1 and f010|0, respectively) are weighted averages of the distributions fcEEUU |1 and fcEEUU |0,

respectively, and the distributions of the latent potential outcomes of other strata. Specifically:

f110|1 =
πaEEUU
p110|1

faEEUU |1 +
πcEEUU
p110|1

fcEEUU |1 +
πcEECU
p110|1

fcEECU |1(11)

+
πcNE∗U
p110|1

fcNE∗U |1

f010|0 =
πnEEUU
p010|0

fnEEUU |0 +
πcEEUU
p010|0

fcEEUU |0 +
πcEEUC
p010|0

fcEEUC|0,(12)

where p110|1 = πaEEUU+πcEEUU+πcEECU+πcNE∗U and p010|0 = πnEEUU+πcEEUU+πcEEUC . The

distributions of the observed outcomes above are mixtures of more strata than those corresponding

to the cells of interest in cases with only sample selection (e.g., Zhang and Rubin, 2003; Lee, 2009;

Imai, 2008) or sample selection and noncompliance (e.g., Imai, 2007; Chen and Flores, 2015), as

would be expected given the additional complication we address (censoring). From the right hand

side of equations (11) and (12), only the distributions of latent potential outcomes of aEEUU and

nEEUU are point identified: faEEUU |1 = f110|0 and fnEEUU |0 = f010|1. Therefore, without further

assumptions, it is not possible to point identify fcEEUU |1 and fcEEUU |0, and thus any of the terms

in SATEcEEUU and SQTEαcEEUU . However, it is possible to bound them.

Using the point-identified faEEUU |1 = f110|0 and fnEEUU |0 = f010|1, along with equations (3),

(4), (7) and (10), which use themselves the point-identified stratum proportions, we can rewrite
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equations (11) and (12) as:

f1 =
πcEEUU

p110|1 − p110|0
fcEEUU |1 +

πcEECU
p110|1 − p110|0

fcEECU |1 +
πcNE∗U

p110|1 − p110|0
fcNE∗U |1(13)

f0 =
πcEEUU

p010|0 − p010|1
fcEEUU |0 +

πcEEUC
p010|0 − p010|1

fcEEUC|0,(14)

where

f1 ≡
f110|1p110|1 − f110|0p110|0

p110|1 − p110|0
(15)

f0 ≡
f010|0p010|0 − f010|1p010|1

p010|0 − p010|1
.(16)

Note that equations (13) and (14) provide the additional testable implications that f1 and f0 must

be non-negative and integrate to one, as they are valid probability distributions.

To provide the intuition for the trimming bounds we derive, consider partially identifying

fcEEUU |1 from (13). If πcEEUU were point identified, the upper (lower) bound for fcEEUU |1 would be

given by the best-case (worst-case) scenario in which the largest (smallest) πcEEUU/(p110|1−p110|0)

fraction of values of Y in the probability distribution f1 belong to the cEEUU stratum. Analogous

bounds for fcEEUU |0 could be derived using equation (14). After this, the upper (lower) bound

on SATEcEEUU and SQTEαcEEUU would be obtained by using the bounds on fcEEUU |1 to con-

struct the upper (lower) bound for the first term of SATEcEEUU and SQTEαcEEUU in equations

(1) and (2), and subtracting the lower (upper) bound for the second term in equations (1) and (2)

constructed using the bounds on fcEEUU |0.

Since πcEEUU is not point identified, however, we use the bounds on πcEEUU obtained be-

fore, Π1 = [max{0, p111|0 + p010|0 − p010|1 − p111|1},min{p010|0 − p010|1, p110|1 − p110|0}]. To obtain

the upper (lower) bound for SATEcEEUU and SQTEαcEEUU , we need to write the upper (lower)

trimming bound previously described as a function of πcEEUU , and then maximize (minimize)

it with respect to πcEEUU over Π1. In a setting with only sample selection, Huber and Mellace

(2015) considered trimming bounds similar to those above, and showed that numerical optimiza-

tion is not necessary because the bounds are monotonic functions of the trimming proportions.

Their conclusion also applies to the trimming bounds we derive here: the trimming bounds on

SATEcEEUU and SQTEαcEEUU are obtained when πcEEUU reaches its minimal positive value in

Π1, p111|0 + p010|0 − p010|1 − p111|1, as shown in the Internet Appendix.

To present the bounds, let the α−quantile of f1 and f0 in equations (13) and (14) be given by

rz(α) ≡ inf{y : Fz(y) ≥ α} for 0 < α < 1 and z = 0, 1. Also, define the distributions Lγ|z and Uγ|z
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as follows:

Lγ|z[−∞, y] ≡
{ Fz(y)

γ , if y < rz(γ)

1 , if y ≥ rz(γ)

Uγ|z[−∞, y] ≡
{

0 , if y < rz(1− γ)
Fz(y)+γ−1

γ , if y ≥ rz(1− γ)
,

where γ ∈ (0, 1) is the trimming proportion used to construct bounds on fcEEUU |1 or fcEEUU |0, as

described above.

Proposition 1 Suppose τ = p111|0 + p010|0 − p010|1 − p111|1 > 0. Under Assumptions 1 through 5,

the bounds LB1A ≤ SATEcEEUU ≤ UB1A, and LB1Q
α ≤ SQTEαcEEUU ≤ UB1Q

α are sharp,

where:

LB1A =

∫
ydLτ/(p110|1−p110|0)|1 −

∫
ydUτ/(p010|0−p010|1)|0

UB1A =

∫
ydUτ/(p110|1−p110|0)|1 −

∫
ydLτ/(p010|0−p010|1)|0

LB1Q
α = r1

(
ατ

p110|1 − p110|0

)
− r0

(
1− (1− α)τ

p010|0 − p010|1

)
UB1Q

α = r1

(
1− (1− α)τ

p110|1 − p110|0

)
− r0

(
ατ

p010|0 − p010|1

)
.

Proof. See Internet Appendix.

2.4.2 Bounds under Monotonic Censoring

In this subsection we add the following assumption.

Assumption 6 (Individual-Level Monotonicity of W in D for cEE). Wi(1) ≥ Wi(0) for all

i ∈ cEE.

This assumption states that there is a non-negative individual effect of treatment receipt on

censoring for the cEE subpopulation. That is, no individual who is an always-selected complier

would have a censored latent outcome under no treatment receipt and an uncensored latent outcome

under treatment receipt. Hence, Assumption 6 implies that the cEECU stratum is empty. A

testable implication of Assumption 6 is that E[W (1) −W (0)|cEE] ≥ 0. While this conditional

expectation is not point identified because of the presence of sample selection and non-compliance,

bounds can be constructed on it under Assumptions 1 to 5 as in Imai (2007) or Chen and Flores

(2015) to falsify Assumption 6. If such estimated bounds imply statistically negative effects of D

on W for the cEE, this would be strong evidence against Assumption 6.

In our application, this assumption states that there are no always-selected compliers who would

have a censored last employment spell by week 208 after randomization if they did not participate

in JC and would have an uncensored last employment spell by week 208 after randomization if they
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participated in JC. Recall that always-selected compliers are those individuals who, regardless of

treatment assignment, always comply with their assignment and experience an employment spell

by week 208 after randomization. A justification for this assumption in our application comes

from the insight that, for always-selected compliers, whether or not the duration of their last

employment spell by week 208 after randomization is censored equals their employment status at

week 208 after randomization. If they are employed at week 208 after randomization, then the

duration of their last employment spell is censored, whereas the duration of the last employment

spell is uncensored if they are unemployed at week 208 after randomization. Thus, Assumption 6

implies a positive effect of participation in JC on employment at week 208 after randomization for

the always-selected compliers. Consequently, the plausibility of Assumption 6 in this application

is threatened by at least the same factors discussed in the context of Assumption 5: the lock-in

effect and the possibility of increased reservation wage by participants. As before, we believe that

the relatively long follow-up period of 208 week works towards decreasing the concerns of these

particular factors. Similar assumptions of a non-negative individual effect of JC assignment or

participation on employment at week 208 after randomization have been previously used when

estimating bounds for the wage effects of JC (Lee, 2009; Blanco et al., 2013a, 2013b; Chen and

Flores, 2015). While those assumptions are required to hold for all individuals or for compliers,

Assumption 6 is required to hold only for a subset of the compliers (the cEE).

Under Assumptions 1 to 6, we have 12 strata left. Their relationship to the observed values

of {Di, Si,Wi, Zi} can be seen in Table 1 (see note to table). Under these assumptions, we can

further point identify πcEECC = p011|0 − p011|1, and equations (9) and (10) become:

πcEEUU + πcNE∗U = p110|1 − p110|0(17)

πcEEUC + πcNE∗C = p111|1 − p111|0 − p011|0 + p011|1(18)

Adding Assumption 6 provides one more testable implication: p111|1 − p111|0 − p011|0 + p011|1 ≥ 0,

from equation (18). The bounds on the stratum proportion πcEEUU are given by: πcEEUU ∈ Π2 ≡
[max{0, p111|0 + p010|0 + p011|0 − p010|1 − p111|1 − p011|1},min{p010|0 − p010|1, p110|1 − p110|0}].

The derivation of the bounds on SATEcEEUU and SQTEαcEEUU follows the same approach as

in Section 2.4.1. Under Assumption 6, equations (11) and (13) are simplified because πcEECU = 0.

Equation (13), relating fcEEUU |1 to the data and point-identified objects, now becomes:

(19) f1 =
πcEEUU

p110|1 − p110|0
fcEEUU |1 +

πcNE∗U
p110|1 − p110|0

fcNE∗U |1.

As before, trimming bounds on SATEcEEUU and SQTEαcEEUU are obtained when πcEEUU reaches

its minimal positive value in Π2.

Proposition 2 Suppose τ = p111|0 +p010|0 +p011|0−p010|1−p111|1−p011|1 > 0. Under Assumptions

1 through 6, the bounds LB2A ≤ SATEcEEUU ≤ UB2A, and LB2Q
α ≤ SQTEαcEEUU ≤ UB

2Q
α
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are sharp, where:

LB2A =

∫
ydLτ/(p110|1−p110|0)|1 −

∫
ydUτ/(p010|0−p010|1)|0

UB2A =

∫
ydUτ/(p110|1−p110|0)|1 −

∫
ydLτ/(p010|0−p010|1)|0

LB2Q
α = r1

(
ατ

p110|1 − p110|0

)
− r0

(
1− (1− α)τ

p010|0 − p010|1

)
UB2Q

α = r1

(
1− (1− α)τ

p110|1 − p110|0

)
− r0

(
ατ

p010|0 − p010|1

)
.

Proof. See Internet Appendix.

The expressions of the bounds on SATEcEEUU and SQTEαcEEUU in Proposition 2 are similar

to those in Proposition 1, with the difference being the trimming proportion. Adding Assumption

6 provides identifying information by increasing the (non-zero) lower bounding function of πcEEUU

from (p111|0 +p010|0−p010|1−p111|1) to (p111|0 +p010|0 +p011|0−p010|1−p111|1−p011|1) (the difference

equals πcEECC = p011|0−p011|1 ≥ 0). Since the bounds in Proposition 2 are obtained when πcEEUU

reaches a larger minimal positive value, they are tighter than those in Proposition 1.

It is important to note that, contrary to the cases previously considered in the literature under

sample selection (e.g., Zhang and Rubin, 2003; Lee, 2009) and under sample selection and non-

compliance (e.g., Imai, 2007; Chen and Flores, 2015), under the additional censoring complication

the stratum proportions are not point identified even after imposing individual-level monotonicity

of treatment receipt on the three corresponding post-randomization variables. It is known that

trimming bounds constructed in settings where the stratum proportions are not point identified

are generally wider than those in which all the stratum proportions are point identified, sometimes

resulting in uninformative bounds in practice (e.g., Blanco et al., 2013a; Huber and Mellace, 2015).

In our setting, point identification of all stratum proportions would require making an additional

stratum proportion zero (out of the 12 strata under Assumptions 1 to 6). In the context of the

empirical illustration, however, such an assumption would seem strong and thus we do not pursue

this strategy. As an alternative, we consider a stochastic dominance assumption.

2.4.3 Bounds under Stochastic Dominance

Assumptions imposing weak inequality of means or CDFs of potential outcomes across different

subpopulations are common in the partial identification literature (e.g., Manski and Pepper, 2000;

Zhang and Rubin, 2003; Blundell et al., 2007; Bhattacharya et al., 2012; Flores and Flores-Lagunes,

2010, 2013; Frandsen and Lefgren, 2016; Chen et al., 2018). The intuition behind such assumptions

is that some subpopulations are likely to have characteristics that make them more likely to have

higher potential outcomes than others. We consider such type of assumptions where, following the

principal stratification literature, those subpopulations are given by strata (e.g., Zhang and Rubin,

2003; Imai, 2007, 2008; Zhang et al., 2008; Blanco et al., 2013a, 2013b; Chen and Flores, 2015).
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Assumption 7 (Stochastic Dominance). (a) FcEEUU |0(y) ≥ FcEEUC|0(y) for all y ∈ Y; (b)

FcEEUU |1(y) ≤ FcNE∗U |1(y) for all y ∈ Y.

Assumption 7(a) states that the distribution of the potential latent outcome Y ∗(0) for the

cEEUC stratum weakly stochastically dominates that of the cEEUU stratum, whereas Assump-

tion 7(b) requires that the distribution of the potential latent outcome Y ∗(1) for the cEEUU

stratum weakly stochastically dominates that of the cNE ∗ U stratum. In other words, Assump-

tion 7(a) (7(b), respectively) implies that the latent potential outcomes Y ∗(0) (Y ∗(1)) of the

cEEUU stratum at any rank of their distribution is less (greater) than or equal to those of the

cEEUC (cNE ∗U) stratum. For partial identification of SATEcEEUU only a less-restrictive weak

mean dominance version of Assumption 7 is needed: (a) E[Y ∗(0)|cEEUU ] ≤ E[Y ∗(0)|cEEUC]; (b)

E[Y ∗(1)|cEEUU ] ≥ E[Y ∗(1)|cNE∗U ]. Since we are also considering identification of SQTEαcEEUU ,

in what follows, we keep the stronger version for simplicity.

In our application, Assumption 7(a) states that the distribution of the potential latent employ-

ment spell durations under no participation in JC (Y ∗(0)) of the always-selected compliers whose

last employment spell by week 208 after randomization is censored only under JC participation

(cEEUC stratum) weakly stochastically dominates that of the always-selected-and-uncensored

compliers (cEEUU). Informally, it implies that, under no participation in JC, cEEUU mem-

bers generally have shorter last employment spells by week 208 after randomization than cEEUC

members. The intuition behind this assumption is based on the equality of the censoring indicator

and the employment indicator at week 208 after randomization for these strata. Since cEEUU

individuals are unemployed at week 208 after randomization regardless of JC participation, while

cEEUC individuals are employed at week 208 under JC participation, we postulate that the latter

have characteristics that would lead them to have better labor market outcomes than the former,

including longer employment duration spells. Similarly, Assumption 7(b) requires that the dis-

tribution of the potential latent employment duration under participation in JC (Y ∗(1)) of the

always-selected-and-uncensored compliers (cEEUU) weakly stochastically dominates that of the

compliers who, under no participation in JC, do not select into a last employment spell and, under

participation in JC, select into an uncensored last employment spell (cNE ∗ U). Informally, it

implies that, under participation in JC, cEEUU members generally have longer last employment

spells than cNE ∗ U members. Under treatment, both strata experience a last employment spell

between randomization and week 208, and are unemployed at week 208 (since their outcome is

uncensored). However, under no treatment, cNE ∗ U individuals are continuously unemployed

during the same time frame, while cEEUU experience at least one employment spell. Hence, we

postulate that the characteristics of the cEEUU stratum are such that they are more likely to

have better labor market outcomes and thus higher latent potential outcomes under participation

in JC than the cNE ∗ U stratum.

Based on their implications, both parts of Assumption 7 lead to a positive correlation between

the employment status at week 208 after randomization and the duration of the last employment

spell. Such a positive correlation between employment and its duration is supported by standard

economic models of the labor market (e.g., Hall, 1979; Caliendo et al., 2013). Still, it can be seen
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based on the previous intuition that similar potential threats (i.e., the locking-in effect and reser-

vation wages) to those casting shadow on Assumption 5 and Assumption 6 can affect Assumption

7. In a similar way, though, the relatively long time between randomization and week 208 works

towards potentially eliminating those threats. Also, related assumptions have been considered in

the JC literature. For example, in the context of analyzing the wage effects of JC, Blanco et al.

(2013a, 2013b) assume that the potential wages under treatment of the always-employed individu-

als at week 208 after randomization stochastically dominate those of the individuals who would be

employed only under assignment to JC, while Chen and Flores (2015) impose an analogous mean

dominance assumption within the complier subpopulation.

Assumptions like Assumption 7 are not directly testable since the distributions are not point

identified. To gather indirect evidence about their plausibility, the literature has suggested an-

alyzing baseline characteristics of the strata that are closely related to the outcome of interest

such as pre-treatment outcomes (e.g., Flores and Flores-Lagunes, 2010, 2013; Blanco et al., 2013a,

2013b; Chen and Flores, 2015). The idea is to assess whether some strata indeed appear to have

more favorable characteristics than others, so that it is plausible that those strata have better

outcomes. In our current setting, however, this analysis is not possible because the corresponding

stratum proportions are not point identified, and thus neither are their baseline characteristics.

Alternatively, note that the implicit ranking of the three strata underlying Assumption 7 presumes

that the cEEUC stratum has the most favorable labor market outcomes and average baseline

characteristics, whereas the cNE ∗ U stratum has the worst and the cEEUU stratum lies in the

middle. This implies that if Assumption 7 holds, we would expect the baseline characteristics of

the subpopulation given by the set {cEEUU, cEEUC} to be more favorable than those of the sub-

population given by the set {cEEUU, cNE ∗ U}. Those characteristics are point identified under

Assumptions 1 to 6 from equations analogous to those in (14) and (19). Assumption 7 would be

less likely to hold if the baseline characteristics of the {cEEUU, cNE ∗U} subpopulation are more

favorable than those of the {cEEUU, cEEUC} subpopulation.

Proposition 3 presents bounds on SATEcEEUU and SQTEαcEEUU under Assumptions 1 to 7.

Proposition 3 Suppose τ = p111|0 + p010|0 + p011|0 − p010|1 − p111|1 − p011|1 > 0, and let Y
zdsw

=

E[Y |Z = z,D = d, S = s,W = w]. Under Assumptions 1 through 7, the bounds LB3A ≤
SATEcEEUU ≤ UB3A, and LB3Q

α ≤ SQTEαcEEUU ≤ UB
3Q
α are sharp, where:

LB3A =
p110|1Y

1110 − p110|0Y
0110

p110|1 − p110|0
−
p010|0Y

0010 − p010|1Y
1010

p010|0 − p010|1

UB3A =

∫
ydUτ/(p110|1−p110|0)|1 −

∫
ydLτ/(p010|0−p010|1)|0

LB3Q
α = r1 (α)− r0(α)

UB3Q
α = r1

(
1− (1− α)τ

p110|1 − p110|0

)
− r0

(
ατ

p010|0 − p010|1

)
,

Proof. See Internet Appendix.
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Compared to the bounds in Proposition 2, Assumption 7 provides identifying information that

tightens the lower bounds of SATEcEEUU and SQTEαcEEUU . Consider bounding SQTEαcEEUU .

By integrating both sides of equations (14) and (19), it is clear that both equations hold with the

probability distribution functions being replaced by their corresponding CDFs. Using the CDF

version of equation (14) along with Assumption 7(a), we obtain FcEEUU |0(y) ≥ F0(y), which implies

an upper bound for the α−quantile of Y ∗(0) for the cEEUU stratum. Similarly, the CDF version

of equation (19) combined with Assumption 7(b) yields FcEEUU |1(y) ≤ F1(y), which implies a lower

bound for the α−quantile of Y ∗(1) for the cEEUU stratum. A lower bound for SQTEαcEEUU is

obtained by combining those two bounds; it equals the α−quantile of the distribution f1 in (15)

minus the α−quantile of the distribution f0 in (16). The bounds for SATEcEEUU are obtained in

an analogous way, with the resulting lower bound equal to the mean of the distribution f1 minus

the mean of the distribution f0. In this case, the lower bounds for SATEcEEUU and SQTEαcEEUU

do not depend on τ .

2.4.4 Estimation and Inference

We estimate the bounds derived in Propositions 1 to 3 using their sample analogs. Specifically,

we employ the following procedure to construct estimates of our bounds, after checking that τ

from those propositions is strictly positive. First, we use the indicator function 1(Yi ≤ ỹ), and M

different values of ỹ spanning the support of the observed outcome, to estimate the conditional

CDF of the observed outcome Yi evaluated at the different values of ỹ, F̂dsw|z(ỹ). In particular, we

are interested in the sample analog CDF versions of f110|1, f110|0, f010|0, and f010|1 appearing in f1

in (15) and f0 in (16). Second, we estimate the conditional probabilities pdsw|z using their sample

analogs, p̂dsw|z, e.g., p̂110|1 = [
∑n

i=1Di · Si · (1−Wi) · Zi] / [
∑n

i=1(Zi)]. Third, the estimates of

the conditional CDFs (F̂dsw|z(ỹ)) and conditional probabilities (p̂dsw|z) are plugged into the CDF

version of equations (15) and (16) to construct estimates F̂1(ỹ) and F̂0(ỹ), respectively. Next,

the estimates F̂1(ỹ), F̂0(ỹ), and p̂dsw|z are used to compute the expected values and α-quantiles

(obtained by inverting the corresponding CDFs) needed to estimate the bounds in Propositions 1

to 3.

To undertake inference, standard errors are obtained via bootstrapping, while confidence in-

tervals that contain the true value of the parameter with a given probability can be constructed

following Imbens and Manski (2004; IM hereafter). Sample analog estimators of the type of trim-

ming bounds we consider are known to be consistent and asymptotically normally distributed,

as they are smooth functions of conditional probabilities, means, quantiles, and trimmed means

and quantiles. Based on standard results in Newey and McFadden (1994), Lee (2009) provided

asymptotic normality results for sample analog estimators of trimming bounds that deal with sam-

ple selection under similar monotonicity assumptions. The asymptotic normality of our bounds,

combined with the fact that, by construction, our upper bounds are always larger than our lower

bounds, justifies the use of Imbens and Manski’s (2004) confidence intervals by Lemma 3 of Stoye

(2009). Lastly, we note that the proposed inference based on the estimated bounds on quantile
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treatment effects is pointwise, that is, for the corresponding effect on the α-quantile specified.

As a consequence, statistical statements about the quantile treatment effect function cannot be

directly made due to the problem of testing multiple hypothesis. Alternatively, uniform inference

on the entire quantile treatment effect function could be undertaken, for example, by extending

the approach of Chernozhukov et al. (2013), which is not pursued here.

2.5 Remarks

Remark 1. As a by-product of our approach, it is possible to bound the effect of treatment

receipt on other characteristics of the spells of interest (besides duration) in the presence of selection

and noncompliance, for the same subpopulation we estimated the effects on duration (the cEEUU

stratum). This is done by simply replacing the outcome variable in the bounds in Propositions 1

to 3. As an example, in the next section we also consider the effect of JC on the log wages paid in

those same employment spells for the cEEUU stratum, which provides a more complete picture

of the effects of JC on those employment spells.

Remark 2. A setting that recently has received attention in the literature is one with a censored

outcome, an endogenous binary treatment, and a binary instrumental variable to address treatment

endogeneity (Frandsen, 2015; Sant’Anna 2016). This setting is the same as ours in the absence of

selection into the spells of interest, i.e., when Si(0) = Si(1) = 1 for all i. We present bounds for this

case in the Internet Appendix. In the setting with only censoring and noncompliance (or treatment

endogeneity), Frandsen (2015) and Sant’Anna (2016) consider point identification of treatment

effects employing conditional independent censoring assumptions. These assumptions, however,

may not hold in relevant applications (as illustrated by Frandsen, 2018). Hence, our bounds for

this setting offer a possible alternative for applications in which those assumptions fail and point

identification is lost. Other important differences are as follows. The parameter estimated in those

papers differs from the one we consider. Frandsen (2015) and Sant’Anna (2016) consider treatment

effects for all compliers, while the bounds presented in the Internet Appendix for this setting bound

treatment effects for the always-uncensored compliers (i.e., those compliers whose outcomes are

uncensored regardless of the value of the instrument). Also, Frandsen’s (2015) approach imposes

support restrictions that prevent estimation of average treatment effects and quantile treatment

effects at all quantiles of the outcome distribution for compliers. Thus, Frandsen’s (2015) approach

estimates quantile treatment effects for all compliers for a subset of all quantiles, while our bounds

are for quantile treatment effects on all quantiles (as well as average effects) for a subset of all

compliers. Still, as discussed in Section 2.3, it is possible to construct bounds for the average and

quantile treatment effects for all compliers (as well as other subpopulations) if one is willing to define

“entirely hypothetical” latent durations for some individuals and impose further assumptions.

Remark 3. As more post-treatment complications are added, estimation and inference is

based on finer cells defined by the observed values of treatment assignment (Z) and the corre-

sponding post-treatment variables (e.g., D, S, W ). This negatively affects the precision of the

estimates. For instance, when only selection is present, trimming bounds for the mean of Y ∗(1)
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for always-selected individuals are constructed based on the cell {Z = 1, S = 1}; in our case with

three complications, trimming bounds for the mean of Y ∗(1) for always-selected-and-uncensored

compliers are constructed based on the finer cell {Z = 1, D = 1, S = 1,W = 0}. Similarly, note

that the greater the censoring is, the smaller the number of observations in those cells. This is a

reflection of the challenging nature of the problem at hand rather than of the approach used, and

in some applications it may point to the need to impose more assumptions.

Remark 4. The general approach followed to construct bounds on employment durations can

be followed to construct bounds on unemployment durations. The resulting bounds are different

from those on employment durations since the direction of the monotonicity assumptions change in

accordance to the nature of the unemployment spells. For example, the direction of the monotonic-

ity assumption of the treatment on the censoring indicator of the unemployment spell is reversed

relative to the case of employment spells. The ability to choose the direction of the monotonicity

and stochastic dominance assumptions to match the requirements of a particular application is a

feature of our approach. The bounds on unemployment duration, a discussion of the corresponding

assumptions, and their illustration in the context of JC are contained in the Internet Appendix.

Remark 5. Trimming bounds, such as those developed here, can be narrowed using a pre-

randomization covariate that is correlated with the outcome of interest. This is done by obtaining

the bounds within sub-samples defined based on the pre-randomization covariate and subsequently

averaging the bounds across those sub-samples. The reason narrowing occurs relates to a property

of means of truncated distributions. For details, including how this can be implemented, see Lee

(2009) and Blanco et al. (2013a).

3 Employment Duration Effects of Job Corps

We illustrate the use of the bounds presented in Section 2 by assessing the effect of JC on the

duration of employment. Section 3.1 discusses some details on the JC program and the data, and

provides a preliminary analysis of the effects of JC on the observed duration outcomes. Section

3.2 presents the estimated bounds, and Section 3.3 offers a discussion of the results.

3.1 National Job Corps Study Data and Preliminary Analysis

The data for our empirical illustration comes from the NJCS, briefly described in Section 2.1.

Following the previous JC literature, and since part of our analysis also bounds the wage effects

of JC on the employment spells of interest, our sample is restricted to individuals who have

non-missing values for weekly earnings and hours worked for every week after randomization.

These are the same sample restrictions employed by Lee (2009) and Blanco et al. (2013a). In

addition, the sample is restricted to individuals with information on actual enrollment, captured

by a binary indicator of whether the individual was ever enrolled in JC during the 208 weeks after

randomization. Chen and Flores (2015) employed the same set of restrictions to analyze the effects
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of enrolling in JC on wages. As those papers do, we also assume that the information is missing

completely at random (in principle, the bounds in Section 2 could be extended to deal with missing

data). Similar to Blanco et al. (2013a) and Chen and Flores (2015), we analyze a sample of 7,531

individuals that excludes Hispanics to increase the plausibility of Assumption 5 and Assumption

6. Hispanics were the only demographic group in the NJCS for which negative but statistically

insignificant effects of JC on employment and earnings were found (Schochet et al., 2001), thus

making those assumptions harder to justify for them. The Internet Appendix presents separate

analyses for Whites, Blacks, (Non-Hispanic) Males, and (Non-Hispanic) Females. We employ the

NJCS design weights throughout the analysis, since different subgroups in the population had

different probabilities of being included in the research sample (for details on the NJCS design

weights see Schochet, 2001).

Our duration outcome of interest is the log of the observed number of weeks in employment

for the last spell by week 208 after randomization. We focus on the last employment spell in

order to consider a longer-term outcome and to increase the plausibility of our assumptions (see

section 2.1). Note that not every individual may experience an employment spell during the

follow-up period—a consequence of the selection into who may experience a spell of interest. In

addition, the employment duration is censored for individuals who are employed at week 208 after

randomization. Since the timing of the start of an employment spell of interest (if it takes place)

is endogenous, opening the door for unobserved characteristics of individuals to confound both the

latent duration outcome and the censoring time, the independent censoring assumption is likely

invalid. Indeed, applying Frandsen’s (2018) test to these data soundly rejects this assumption (p-

value= 0.00 for the non-Hispanic sample). We also analyze the average log wages received during

the corresponding employment spells to complement the analysis of durations.

Table 2 presents some preliminary estimates (summary statistics are given in Table D1 of

the Internet Appendix). The main sample of Non-Hispanics contains 7,531 individuals: 4,554

and 2,977 assigned to treatment and control groups, respectively. Roughly 74 and 4.7 percent

of the individuals in the treatment and control group enrolled in JC within the 208 weeks after

randomization, respectively. Randomization into JC increases the probability of employment at

week 208 by a statistically significant 4.9 percentage points, and it also increases the length of the

observed employment spells by a statistically significant 6.5 log points (ITT ). Estimates of the

local average treatment effect for the compliers (LATE) that employ random assignment as an IV

for treatment receipt is larger (9.5 log points) and also statistically significant. While the latter

estimate controls for noncompliance, both the ITT and LATE ignore selection and censoring

and they are thus likely biased. Estimates of quantile treatment effects (QTE) that compare

points of the employment duration distributions by treatment assignment (Koenker and Bassett,

1978) show statistically significant effects of randomization on the 25th and 50th quantiles. These

estimates are similar in magnitude, at around 8.7 log points. Analogous to the LATE estimates,

we compute estimates from the instrumental variable quantile treatment effect (IV QTE) of Abadie

et al. (2002). The estimated effects on the 25th and 50th quantiles of the employment duration for

compliers are 16.7 and 11.8 log points, respectively, and statistically significant. Estimates based
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on QTE and IV QTE are also likely biased since they ignore selection and censoring.

3.2 Estimated Nonparametric Bounds

We now present our estimated nonparametric bounds that address noncompliance, selection,

and censoring. We start by verifying the testable implications of our assumptions and assessing

indirect evidence on their plausibility. Then, we present estimates of the bounds to do inference

on the impact of JC on the duration of the last complete employment spells and the average log

wages earned by individuals during those spells.

3.2.1 Assessment of the Plausibility of the Assumptions

The plausibility of the basic IV assumptions was discussed in Section 2.3, so we do not consider

them further. As for the monotonicity and stochastic dominance assumptions in Assumptions 5, 6,

and 7 are not innocuous and have to be judiciously assessed in any application. When introducing

those assumptions in section 2.4, we advanced arguments for why we regard them plausible in the

context of analyzing the effects of JC on employment duration and also discussed potential threats

to their validity. In this subsection, we empirically assess the plausibility of Assumptions 5, 6, and

7 by analyzing their testable implications and the indirect evidence that can be gathered, discussed

in Section 2.4.

A testable implication of Assumption 5 is that the IV estimate of D on S using Z as an

instrument for D is non-negative (see Section 2.4.1). We find a positive and highly statistically

significant estimate of 0.017 (standard error of 0.007). As shown in Table 3, under Assumptions 1

to 5, estimates for the principal stratum proportions for all the always takers and the never takers

are positive and statistically significant. Another testable implication is that one of the stratum

proportions involving compliers in equations (5) to (10) is strictly positive: the stratum proportion

πcNN∗∗ is statistically positive at 0.030 (= 0.032−0.002, with a standard error of 0.003), while the

estimates of equations (6) to (10) are all statistically positive. A testable implication of Assumption

6 is that the parameter E[W (1)−W (0)|cEE] is non-negative (see Section 2.4.2). Employing Imai’s

(2007) bounds under Assumptions 1 to 5, the estimated lower and upper bounds for that parameter

are .058 and .077, respectively, with the 90 percent Imbens and Manski (2004) confidence interval

excluding zero. Also, under Assumptions 1 to 6, we find that the estimated stratum proportion

πcEECC is statistically positive: 0.547 − 0.160 = 0.386 (standard error of 0.011). Finally, the

implied testable inequality in equation (18) has a positive and statistically significant estimate of

0.049 (standard error of 0.011). In sum, the empirical evidence on the testable implications of

Assumptions 1 to 6 does not falsify those assumptions.

One way to assess the plausibility of Assumption 7 (stochastic dominance) is by providing

indirect evidence for the assumption’s implied weak ranking of the strata’s average labor market

outcomes, whereby cEEUC has the most favorable average outcomes, followed by cEEUU and

cNE ∗ U (see Section 2.4.3). The assessment compares average baseline characteristics of the

24



subpopulations {cEEUU, cEEUC} and {cEEUU, cNE ∗ U}, since averages for each stratum are

not point identified. The estimates of E[X|cEEUU, cEEUC] and E[X|cEEUU, cNE∗U ], where X

denotes relevant baseline characteristics, are consistent with the implied weak ranking (numerical

results are presented in Table E6 in the Internet Appendix). On average, the former group is

older, more educated and with better labor market experiences at baseline (e.g., months employed,

yearly and weekly earnings). The estimated differences are not statistically significant, which is still

consistent with the implied weak ranking. Hence, this exercise does not provide indirect evidence

against Assumption 7, with the sign of the point estimates being consistent with the assumption.

3.2.2 Estimated Bounds on SATEcEEUU

We now analyze the average effect of JC on the duration of the last complete employment

spell before week 208 after randomization for compliers who experience a complete employment

spell whether or not they participate in JC (SATEcEEUU ). Estimates under Proposition 1 are not

presented because the lower bound for the stratum proportion πcEEUU is zero (i.e., τ ≤ 0). Column

1 in Table 4 presents the estimated bounds in Propositions 2 and 3 for SATEcEEUU , along with

their IM confidence intervals, for the Non-Hispanic sample. Under Proposition 2 (Assumptions 1

to 6), the first row shows an estimated minimal positive value in the domain of πcEEUU (τ) of

0.213. Given that the fraction of compliers is 0.69, this implies the cEEUU stratum is at least

31 percent of all compliers. The estimated lower and upper bounds on SATEcEEUU are -0.426

and 0.550, respectively. Based on these estimated bounds, it is plausible that the effects for the

stratum of interest are considerably larger or smaller than those based on the ITT and LATE

estimates, implying that these point estimates fall inside the estimated bounds. Inference based

on the bounds, however, is likely to be more reliable because, contrary to the ITT and LATE

estimates, they address selection and censoring.

Table 4, column 1 also presents the estimated bounds for SATEcEEUU under Proposition 3

(adding stochastic dominance in Assumption 7), which are considerably narrower due to a tighter

lower bound. The estimated lower bound is now positive, suggesting an average training effect

of at least a 5.6 log points increase on the duration of the last complete employment spell for

compliers who experienced a complete employment spell regardless of JC participation. Based on

the 90 percent IM confidence interval, however, the true effect could be zero. At the same time,

with 90 percent confidence, negative effects larger than 2.8 log points of JC on the duration of the

last complete employment spells for cEEUU individuals are ruled out. In addition to analyzing

the sample of Non-Hispanics, we provide estimates for other demographic groups in the Internet

Appendix (Table G1). An interesting finding is that the lower bounds for Males and Blacks are

relatively small, where the estimate for the former group is negative. Hinted by their smaller

estimates, we found that after excluding Black male individuals from the sample of Non-Hispanics,

the estimated lower bound increases to 0.108 log points with a 90 percent IM confidence interval

that rules out zero effects.

Analysis of Wages During the Employment Spells of Interest.
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To complement the previous analysis, we estimate bounds on the average effect of JC on the

average wage in the last complete employment spell for cEEUU individuals. We employ the same

bounds used to analyze employment duration, but using the outcome of log wages during the

spells (see Remark 1 in Section 2.5). These results are reported in column 2 of Table 4. The

estimated bounds under Proposition 2 do not identify the sign of the average log wage effect for

Non-Hispanics. Estimates under Proposition 3 indicate that the average effects of JC training on

the average log wage during the employment spells of interest is bounded between 5.9 and 21.2

log points, where the lower bound statistically excludes zero based on the IM confidence intervals.

Taken together, these results suggest that, for the cEEUU stratum, training in JC may increase

the average duration of the last complete employment spells for Non-Hispanics, along with their

average wages in those employment spells (and that these log wage effects can potentially be high).

While we cannot rule out zero average effects on the duration of the last complete employment

spells for this stratum at conventional significance levels, it is important to note that average log

wages during these spells significantly increase due to training in JC. A similar conclusion applies

to the samples of Whites and Males. The analysis of average log wages for Females and Blacks

are suggestive of positive effects, however, their 90 percent IM confidence intervals do not exclude

zero. These results can be found in Table G2 in the Internet Appendix.

3.2.3 Estimated Bounds on SQTEαcEEUU

Figure 1 presents our estimated bounds on SQTEαcEEUU for the duration of the last complete

employment spells. The estimated upper and lower bounds are denoted by a short dash, while

their respective (pointwise) 90 percent IM confidence intervals are denoted by a long dash at the

end of the dashed vertical line. The numerical results for all figures can be found in Tables I1

to I4 in the Internet Appendix. Similar to the estimated bounds for average effects, Figure 1(a)

shows that the estimates of the lower and upper bounds for SQTEαcEEUU on the duration of the

last complete employment spells under Proposition 2 are not informative about the sign of the

effect of interest on any of the analyzed quantiles. Relative to the bounds on SATEcEEUU , the

bounds on the median are narrower: estimates are -0.32 and 0.43 for the lower and upper bound,

respectively. As shown in Figure 1(b), the estimated lower bounds under Proposition 3 become

tighter and positive on all the quantiles we consider. However, only the (pointwise) 90 percent

IM confidence intervals on the 10th and 30th quantiles exclude zero. In contrast to the positive

estimated lower bound for SATEcEEUU , the estimated lower bound on the median is zero. Still,

plausible values for the effects on the quantiles analyzed can be ruled out based on the estimated

bounds. For instance, the (pointwise) 90 percent IM confidence interval on the median rule out

negative effects larger than 11 log points on the duration of the spell of interest. Point estimates

based on the IV QTE (for the compliers), presented in Table 2, are inside the estimated bounds

for SQTEαcEEUU on the 25th and 50th quantiles, but on the 75th quantile the estimated lower

bound is larger in magnitude than the estimated IV QTE. As shown in Figure I2 in the Internet

Appendix, containing the estimates for different demographic groups, we only find positive and

statistically significant effects on lower quantiles analyzed for the sample of Females. This finding
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stands in contrast with prior literature that has documented smaller effects for females on earnings

and employment relative to other groups (e.g., Flores et al., 2012; Blanco et al., 2013a; Eren and

Ozbeklik, 2014).

Analysis of Wages During the Employment Spells of Interest.

The analysis of effects on selected quantiles of the distribution of average log wages for the

cEEUU stratum during the same employment spells is presented in Figure 2 for Non-Hispanics.

Figure 2(a) shows that the estimated lower bounds under Proposition 2 are negative on all the

quantiles considered. Under Proposition 3, as shown in Figure 2(b), all the estimated lower bounds

become positive, and the corresponding (pointwise) 90 percent IM confidence intervals exclude

zero for most quantiles above the first quartile. Furthermore, effects can be considerably large

on quantiles analyzed beyond the 75th quantile. In combination with the results for the duration

of employment, the log wage results suggest the insight that JC training has a likely positive

impact on quantiles analyzed in the bottom of the distribution of employment duration and also a

positive impact on most of the analyzed quantiles beyond the 25th quantile of the wage distribution

during the employment spells of interest. A similar pattern as the one noted for Non-Hispanics is

evident when analyzing the samples of Whites and Males (Figure I4 in the Internet Appendix).

We also find that wage impacts are positive and significant on several quantiles analyzed below the

median for the sample of Blacks, but small and not statistically significant on quantiles analyzed

in the upper part of their wage distribution. In contrast to the positive effects found for their

employment durations, the sample of Females is the only one where we do not rule out zero wage

effects throughout most of the analyzed quantiles of the average log wage distribution, consistent

with earlier results in Blanco et al. (2013a).

3.3 Discussion of Results

The evidence presented above suggests that JC training may have a positive average effect

on the duration of the last complete employment spell before week 208 after randomization for

compliers who would experience a complete employment spell whether or not they participate in

JC (the cEEUU stratum). This stratum represents at least 21.3 percent of Non-Hispanics, and at

least 31 percent of all compliers. Under our preferred set of assumptions, those used in Proposition

3, the estimated bounds suggest that the increase in the duration of the last complete employment

spells is between 5.6 to 55 log points (5.8 and 73 percent). However, the 90 percent IM confidence

intervals do not statistically rule out a zero effect. The analysis for other samples reveals that,

while the 90 percent IM confidence intervals do not rule out zero for any sample, the groups of

Males and Blacks have the smallest estimated lower bounds. Indeed, when excluding Black male

individuals from our main sample, the estimated lower bound increases from 5.6 to 10.8 log points

(from 5.8 to 11.4 percent) and the corresponding 90 percent IM confidence interval excludes zero.

Our own interpretation is that there can exist statistically significant average employment duration

effects for at least some non-Hispanics. This effect could be heterogeneous over the quantiles of

the distribution of the last complete employment spells’ duration, since the estimated bounds are
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consistent with larger effects on the upper quantiles analyzed. Nevertheless, only on some of the

lower quantiles considered the (pointwise) IM confidence intervals rule out zero effects and, in

general, the confidence intervals largely overlap across the analyzed quantiles. We also find that

the estimated bounds of JC training on the average log wages received during those spells analyzed

are consistent with positive values and their (pointwise) IM confidence intervals exclude zero.

4 Conclusions

We derive nonparametric sharp bounds for average and quantile effects of a treatment on du-

ration outcomes. Even when employing data from a randomized evaluation, three common com-

plications in such settings are noncompliance with the assigned treatment, selection into the spell

of interest, and censoring of the duration outcome. Ignoring any of these issues could yield bi-

ased estimates of the effects. Conventional techniques require exclusion restrictions, distributional

assumptions, and/or conditional independence assumptions to address endogenous selection and

censoring. Instead, the proposed nonparametric bounds employ weak monotonicity and stochastic

dominance assumptions, while requiring an instrumental variable to address noncompliance. These

assumptions are potentially weaker in relevant empirical settings. The bounds are on the causal

effects for the latent subpopulation of individuals that comply with their treatment assignment,

and have an uncensored spell of interest regardless of random assignment.

The derived bounds are illustrated in an analysis of the effect of Job Corps (JC) on the log

duration (in weeks) of the last complete employment spell using data from a randomized evaluation

of JC. To our knowledge, this is the first analysis to shed light on the program’s impact on an

important duration outcome. Evidence based on the estimated bounds suggests that JC partici-

pation may increase the average duration of the last complete employment spell before week 208

after randomization by at least 5.6 log points (5.8 percent) and up to 55 log points (73 percent).

However, the 90 percent confidence intervals of these estimated bounds include zero. This effect is

bounded for the compliers (with their random assignment to JC) who would experience a complete

employment spell by week 208 after randomization regardless of JC participation. The estimated

bounds on the quantile treatment effects on the duration of the last complete employment spell

for the same subpopulation are also suggestive of positive effects of JC, with the (pointwise) con-

fidence intervals of some of the quantiles analyzed excluding zero. We complement the analysis on

employment spell durations by estimating bounds for the average and quantile treatment effects

on the average log wage during the same spells and for the same subpopulation, where, in general,

we find statistically positive wage effects. We interpret these findings as suggesting that JC can

help these individuals to maintain their jobs longer and that those jobs are better paid.

Areas to extend the present work remain. For example, it is of interest to build on the bounds

presented herein to derive bounds on other subpopulations that may be of interest, such as those

that include individuals with censored durations. This could follow work that has been done in

other settings (e.g., Huber and Mellace, 2015; Chen et al., 2018). It is also relevant to consider
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the derivation of uniform bounds (e.g., Firpo and Ridder, 2008) and methods to undertake uni-

form inference on the quantile function (e.g., Chernozhukov et al., 2013; Fan and Liu, 2018) to

complement the pointwise approach employed here.
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Table 2: Preliminary Analysis for the Non-Hispanic Sample

Treatment Control Difference
Zi = 1 Zi = 0

At week 208:
Enrollment 0.737 0.047 0.689∗∗∗

(0.008)
Employed 0.613 0.564 0.049∗∗∗

(0.011)
Ever experienced:
Employment spell 0.953 0.942 0.011∗∗

(0.005)
Intention to Treat Effect (ITT)
Log Employment duration 0.065∗∗

(0.032)
Local Average Treatment Effect (LATE)
Log Employment duration 0.095∗∗

(0.047)
Observations 4554 2977

α-quantiles
0.25 0.50 0.75

Quantile Treatment Effect (QTE)
Log Employment duration 0.087∗∗ 0.090∗ 0.036

( 0.039 ) ( 0.049 ) ( 0.037 )
Intrumental Variable QTE (IVQTE)
Log Employment duration 0.167 ∗∗ 0.118∗ 0.048

( 0.071 ) ( 0.061 ) ( 0.050 )

Note: Standard errors are in parentheses. ∗, ∗∗, and ∗∗∗ denote statistical
significance at a 90, 95 and 99 percent confidence level. Computations
use design weights.
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Table 3: Estimates of Principal Stratum Proportions under Assumptions 1 to 6, Non-Hispanic
Sample

Z = 0 Z = 1
S = 0 S = 1 S = 0 S = 1
W = ∗ W = 0 W = 1 W = ∗ W = 0 W = 1

D = 0

nNN ∗ ∗
cNN ∗ ∗
cNE ∗ C
cNE ∗ U

0.057
(0.004)

nEEUU
cEEUU
cEEUC

0.350
(0.009)

nEECC
cEECC

0.547
(0.009)

D = 0
nNN ∗ ∗

0.015
(0.002)

nEEUU

0.088
(0.004)

nEECC

0.160
(0.005)

D = 1
aNN ∗ ∗

0.002
(0.001)

aEEUU

0.027
(0.003)

aEECC

0.018
(0.002)

D = 1
aNN ∗ ∗
cNN ∗ ∗

0.032
(0.003)

aEEUU
cEEUU
cNE ∗ U

0.252
(0.006)

aEECC
cEECC
cEEUC
cNE ∗ C

0.453
(0.007)

Note: Bootstrapped standard errors, based on 1000 replicates, are reported within parentheses
Computations use design weights.

Table 4: Estimated Bounds on the Average Treatment Effect of JC on the Duration of the Last
Complete Employment Spell and its Average Wage for the cEEUU stratum, Non-Hispanic Sample

Duration Average wage
Bounds under Proposition 2

(Assumptions 1 to 6)
Minimal positive value
in the domain of πcEEUU , τ 0.213
(Standard error) ( 0.009 )

[LB2A, UB2A] [-0.426, 0.550] [-0.097, 0.212]
(90% IM confidence intervals) (-0.574, 0.709) (-0.137, 0.258)

Bounds under Proposition 3
(Assumptions 1 to 7)
[LB3A, UB2A] [0.056, 0.550] [0.059, 0.212]
(90% IM confidence intervals) (-0.028, 0.709) (0.027, 0.258)

Observations 7531

Note: Bootstrapped standard errors to compute the Imbens and Manski (IM, 2004)
confidence intervals are based on 1000 replications. Computations use design weights.
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Figure 1. Estimated bounds on SQTEcEEUU on the duration of the last complete employment 
spells for the Non-Hispanic sample. Upper and lower bounds are denoted by a short dash, while 
the 90 percent Imbens and Manski (2004) confidence intervals are denoted by a long dash at the 
end of the dashed vertical line. 
 
 
 
 
 
 
	

	
Figure 2. Estimated bounds on SQTEcEEUU on log wages during the last complete employment 
spells for the Non-Hispanic sample. Upper and lower bounds are denoted by a short dash, while 
the 90 percent Imbens and Manski (2004) confidence intervals are denoted by a long dash at the 
end of the dashed vertical line. 
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