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1.1 Introduction:  Why Scattering? 
 
In this chapter, we will start with a very gentle qualitative introduction entirely without 
formula to give you an idea what the course is all about. The details will follow in 
subsequent chapters.  
Imagine you leave this lecture hall, some mean looking guys dressed entirely in black 
follow, kidnap and take you to the medieval castle of Nideggen in the close-by Eifel 
mountains. There you are being thrown into a pitch dark dungeon. You cannot see 
anything, but you hear some noises. Are there rats? Are there other prisoners? Are there 
dragons? Luckily you remember that you have some matches in your pocket. You light 
a match, you can see everything around you and everything becomes clear to you… 
What I have just described is essentially like a scattering experiment: figuratively it 
sheds light into darkness and helps us understand the world around us. Let’s analyse 
what you did in the dungeon: first when you light the match, you start a source of 
radiation. Here the radiation is light. This light then gets scattered (reflected, 
transmitted) from the surrounding objects. In a scientific scattering experiment, we will 
call this object a “sample”. Back to the dungeon: some of this radiation gets scattered 
into your eye. Your eye serves as very special radiation detector: with its lens, it is able 
to even make an image of the objects on the retina, which in the language of a physicist 
would be called an “area position sensitive pixel detector”. This image contains lots of 
information: the colour of the backscattered light tells you something about the 
absorption of certain components of the light and therefore gives information about the 
material the light is scattered from. The position of the signal on the retina gives you 
information about the spatial arrangement of the objects around you. And finally the 
time dependence of the signal tells you that the monster is actually crawling towards 
you, ready to attack. All this information has to be treated and interpreted. This is done 
by our brain, an extremely powerful computer to analyse this wealth of data.  
This little example shows you the importance of scattering for our understanding of the 
world: nearly all information that we as individuals have about the world in which we 
live comes from light scattering and imaging through our eyes. It is only natural that 
scientists mimic this process of obtaining information in well controlled scattering 
experiments: they build a source of radiation, direct a beam of radiation towards a 
sample, detect the radiation scattered from a sample, i. e. convert the signal into an 
electronic signal, which they can then treat by means of computers. In most cases one 
wants an undisturbed image of the object under investigation and therefore chooses the 
radiation, so that it does not influence or modify the sample. Scattering is therefore a 
non-destructive and very gentle method, if the appropriate type of radiation is chosen 
for the experiment.  
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have a well adapted wavelength of about 1 Å for studies on such a microscopic scale. 
They also have a large penetration power as everybody knows from the medical x-ray 
images.  
Classical physics describes electromagnetic radiation as propagation of electromagnetic 
waves. For a scattering experiment, we select waves of a certain wavelength and 
propagation direction, so-called plane waves, since all points on a plane in space have 
the same phase. If such a wave impinges on two point-like scattering centers (in a solid 
these could be atoms), spherical waves are being emitted from these scattering centers. 
This is nothing but Huygens principle for wave propagation. The emitted waves can 
superimpose and lead to either enhancement or cancellation of the signal in certain 
directions as depicted in figure 1.2.  
 

  
 
Fig. 1.2: Moiré pattern for concentric circles with equal distances representing a planar 

cut through spherical waves emitted from two scattering centers. The circles 
represent surfaces of constant phase relationship. Linear superposition of the 
waves gives enhancement or cancellation of the wave amplitudes along certain 
directions. This interference effect is mimicked by the depicted Moiré pattern. 
If the distance between the scattering centers is increased, the distance in the 
interference maxima decreases and vice versa: distances in the image created 
by scattering are inverse proportional – or reciprocal - to distances in the 
original objects which motivates the introduction of a reciprocal space to 
describe scattering events compared to the real space of the object under 
investigation.  

 
As becomes clear from figure 1.2, scattering can be described as an interference 
phenomenon of the radiation waves. However, since de Broglie and Einstein, we know 
that quantum objects have a dual nature: the particle-wave-dualism. In the case of 
electromagnetic waves, the quanta carrying certain energy are called photons and in the 
detector, which registers the scattering pattern, we count single x-ray photons. This is 
characteristic for the quantum mechanical description: during propagation of radiation a 
wave picture is appropriate, while for the interaction with matter a particle is the 
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the European organisation for nuclear research. Many accelerators are located on the 
CERN site of which the LHC, the Large Hadron Collider, is the world’s largest and 
highest energy particles accelerator. The LHC lies in a tunnel 27 km in circumference as 
deep as 175 m beneath ground level. This huge accelerator serves nothing but a 
scattering experiment, where opposing particle beams e. g. protons at energy of 7 TeV 
collide in certain interaction points, which are surrounded by huge detectors built by 
large international collaborations. In inelastic scattering events, new particles can be 
created and the hope is that this huge investment helps us to address some of the most 
fundamental questions of physics advancing the understanding of the deepest laws of 
nature. At Research Centre Jülich we have a smaller version of such a particle 
accelerator, the so-called COSY synchrotron for Hadron physics. These large 
accelerators are needed to achieve high particles energies corresponding to short 
wavelengths, which allow one to study fine structures within nucleons. Large detectors 
are needed because at these scales no imaging is possible but if all scattered particles are 
being traced a reconstruction of the scattering event in the computer can take place. 
While at the LHC new particles are being created during deep inelastic scattering 
events, the connection to x-ray diffraction is more evident for the former HERA 
accelerator, which had been in operation at DESY in Hamburg until a few years ago. 
There, electrons were being scattered from protons in head-on collisions and the inner 
structure of the proton consisting of quarks and gluons could be resolved.  
 

1.4 Why Neutrons? 
 
Coming back to condensed matter science: if x-rays are so successful for structure 
determination, why do we need neutrons? Neutrons have some very specific properties 
which make them extremely useful for condensed matter studies:  

1. Neutrons are neutral particles. They are thus highly penetrating, can be used as 
non-destructive probes and to study samples in severe environment such as 
cryomagnets or furnaces.  

2. The wavelengths of neutrons are similar to atomic spacings - just as is the case 
for x-rays. Therefore they can provide structural information from the picometer 
to the 100 µm range.  

3. The energies of thermal neutrons are similar to the energies of elementary 
excitations in solids. Therefore neutrons can determine molecular vibrations, 
lattice excitations and the dynamics of atomic motion.  

4. Neutrons interact with the nuclei in contrast to x-rays or electrons which interact 
with the electron cloud, see Figure 1.5. They are very sensitive to light atoms 
like hydrogen, which is difficult to detect by x-rays since hydrogen in bonds has 
often less than one surrounding electron. They can also distinguish between 
neighbouring elements in the periodic table like manganese, iron and chromium, 
for which x-rays are insensitive since these elements have nearly the same 
number of electrons. Also one can exploit isotopic substitution. A famous 
example is contrast variation in soft matter or biological macromolecules by 
replacing deuterium for hydrogen in certain molecules or functional groups. 
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Similar to tinting in light microscopy, the location and movement of these 
functional groups can then be observed on the background of the other 
molecules.  

5. Neutrons have a magnetic moment. This dipolar moment is due to the nuclear 
spin. Therefore neutrons can be used to study microscopic magnetic structures 
but also the magnetic excitations in solids, which have similar energies than the 
neutrons.  
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Fig. 1.5: Comparison of x-ray and neutron scattering from single atoms for a few 

elements of the periodic table.  The filled circles represent a measure of the 
total cross section, i,e, of the probability for scattering.  For x-rays, which are 
scattered from the electron cloud, this probability goes up with the number 
square of electrons.  Therefore Hydrogen is hardly visible for x-rays in the 
presence of heavier atoms.  The situation is quite different for neutrons, which 
are scattered from the atomic nucleus. Here the scattering varies not 
monotonically throughout the periodic table and is different for different 
isotopes of the same atom.  Blue and green circles distinguish scattering with 
and without 180° phase shift, respectively. 

 
Figure 1.6 shows the extreme range of applicability of neutrons for condensed matter 
studies based on these special properties. Different scattering techniques have to be used 
for different applications, as indicated in the figure. 
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Fig. 1.6: Huge range of length (left side) and time (right side) scales covered by 

research with neutrons. Also indicated is the corresponding neutron technique.  
 
Due to the huge impact of neutron scattering for condensed matter studies, it is no 
surprise that the Nobel prize in physics was awarded to two of the pioneers of neutron 
diffraction and inelastic neutron scattering, which Clifford G. Shull and Bertram 
Brockhouse received in 1994. The famous quote “neutrons tell us where atoms are and 
how they move” is due to Clifford Shull.  
If you got the impression so far that neutrons are the ideal and most universal probe for 
condensed matter studies on an atomic scale, you are right in principle.  However, as 
with everything in life, there are also some drawbacks. While neutrons are everywhere - 
without neutrons we would not exist - they are extremely difficult to produce as free 
particles not bound in nuclei. Free neutrons are produced by nuclear physics reactions, 
which require rather large and high-tech installations. Two main routes to produce free 
neutrons are being followed today:  
(1) Fission of the uranium 235 nuclei in a chain reaction; this process happens in 

research reactors.  
(2) Bombarding heavy nuclei with high energetic protons; the nuclei are “heated up” 

when a proton is absorbed and typically 20 - 30 neutrons are being evaporated. This 
process is called spallation and requires a spallation source with a proton 
accelerator and a heavy metal target station.  

 
Since installations to produce free neutrons are rather expensive to build and to operate, 
there exist only a few sources worldwide. JCNS is present in some of the world best 
sources as shown in figure 1.7.  
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Fig. 1.7: Major neutron research centres worldwide which have sources of appreciable 

flux and a broad instrumentation suite for condensed matter research.  JCNS is 
present at four of the leading sources worldwide: the neutron research reactor 
FRM II in Garching, Germany, the Institute Laue-Langevin ILL in Grenoble, 
France, the Spallation Neutron Source SNS in Oak Ridge, USA and the 
Chinese Advanced Research Reactor CARR close to Beijing, China. JCNS also 
has a leading involvement in the European Spallation Source project, Lund, 
Sweden. 

 
The fact that there are only a few sources worldwide implies that neutron scattering 
experiments have to be organised quite different from normal lab-based experiments. 
Users have to be trained in special schools (our JCNS school is one of them) and access 
to the experiments has to be organised (see below).  
Not only the neutron research centres are rare but also free neutrons by themselves are 
rare. In a high flux reactor the neutron flux i. e. the number of neutrons passing through 
a given area in a given time is in the order of 1015 neutrons/cm2·s. If one compares this 
value with particle fluxes in gases, the neutron density in high flux sources corresponds 
to high vacuum conditions of about 10-6 mbar pressure. The neutrons have to be 
transported from the source to the experimental areas, which can either be done by 
simple flight tubes or so called neutron guides.  These are evacuated tubes with glass 
walls (often covered with metal layers to increase the performance), where neutrons are 
transported by total reflection from the side, top, and bottom walls in a similar manner 
like light in glass fibers.  The neutron flux downstream at the scattering experiments is 
then even much lower than in the source itself and amounts to typically 106 - 108 
neutrons/cm2·s. This means that long counting times have to be taken into account to 
achieve reasonable statistics in the neutron detector. Just for comparison: the flux of 
photons of a small Helium-Neon laser with a power of 1 mW (typical for a laser 
pointer) amounts to some 1015 photons/s in a beam area well below 1 mm2.  
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However, it is not only the low flux that limits neutron scattering experiments, but also 
the fact that neutron sources are not very bright, i. e. neutron beams are rather large in 
the order of a few cm2 and therefore require in general rather large samples. Typical 
sample sizes are again in the order of a few cm2 and have masses of a few grams. 
However, this does not mean that we cannot study nanosized objects with neutrons as 
you will see in the subsequent lectures. However, for neutron scattering techniques, we 
have to have many of such objects and we will obtain ensemble averages.  
 

1.5 The Social Practice of Neutron Scattering 
 
The fact that neutron sources are rare leads to a particular social practice for neutron 
scattering: there are only a few major sources in Europe and worldwide and the 
operation of each one of these sources costs several million Euro per year. Therefore 
efforts have to be made to use the existing sources as efficient as possible. This means 
(i) continuous and reliable operation of the source during a large fraction of the year; (ii) 
many highly performing instruments, which can run in parallel, located around every 
source; (iii) professional instrument operation with highly qualified staff and a stringent 
risk management to keep the downtime of instruments and auxiliary equipment as low 
as possible; (iv) and access for as many scientists as possible.  
There is no commercial market for neutron scattering instruments. Therefore these 
instruments are being built by research centres, where usually one or a few staff 
scientists work closely with engineers and technicians to realise an instrument for a 
certain application of research with neutrons. These highly experienced scientists will 
then later-on operate the instruments located at a certain neutron source. The Jülich 
Centre for Neutron Science JCNS has such staff scientists located at the outstations at 
FRM II, ILL and SNS. However, neutron facilities are way too expensive to be operated 
just for a small number of scientists. Beamtime is offered to external users from 
universities, research organisations (such as Max-Planck or Fraunhofer in Germany) 
and industry. In order for these users to obtain access to a neutron scattering instrument, 
the user will obtain information from the internet on available instruments, contact the 
instrument scientist and discuss the planned experiments with the instrument scientist. 
Once a clear idea and strategy for an experiment has been worked out, the user will 
write a beamtime proposal where he describes in detail the scientific background, the 
goal of the planned experiment, the experimental strategy and the prior work. The 
facility issues a call for proposals in regular intervals, typically twice a year. The 
proposals received are distributed to members of an independent committee of 
international experts, which perform a peer review of the proposals and establish a 
ranking. Typically overload factors between 2 to 3 on the neutron instruments exist, i. e. 
2 to 3 times the available beam time is being demanded by external users. Once the best 
experiments have been selected, the beamtime will be allocated through the facility, 
where the directors approves the ranking of the committee, the beamline scientist 
schedules the experiments on her or his instrument and the user office sends out the 
invitations to the external users. Many facilities will pay travel and lodging for 1 up to 2 
users per experiment. It is now up to the user to prepare his experiment as well as 
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possible. If the experiment fails because it was not well prepared, it will be very 
difficult to get more beamtime for the same scientific problem. Typical experiments last 
between 1 day and up to 2 weeks. In this time lots of data will be collected which users 
take home and usually spend several weeks or months to treat the data and model it.  
A typical neutron scattering facility will run about 200 days a year with a few hundred 
visits of user from all over the world. This is also what makes research with neutrons so 
attractive to young scientists: early-on in their career they will learn to work in large 
international collaborations, get the opportunity to work on state-of-the-art high-tech 
equipment and learn to organise their research as efficient as possible. You have 
therefore chosen well to attend this laboratory course! 
 
After this simple introduction, you can now look forward to many interesting lectures, 
where more details will be explained and where you will learn the basic principles to 
enable you to perform neutron experiments. Have lots of fun and success working with 
this special gift of nature, the free neutron! 
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Exercises 
 

E1.1  Multiple Choice 
 

• Electromagnetic radiation with a wavelength of 500 nm corresponds to: 
□  microwaves 
□  visible light 
□  ultraviolet 
□  X-rays 
 

• The typical distance between atoms in a solid amounts to: 
□  10 nm 
□  1 nm 
□  0.1 nm 
□  0.01 nm 

• An atomic nucleus has a typical size of: 
□  1 Å 
□  0.1 nm 
□  1 pm 
□  10 fm 

• The typical wavelength of thermal neutrons is: 
□  10 nm 
□  1 nm 
□  0.1 nm 
□  0.01 nm 

• Which type of radiation would you use to distinguish iron and manganese 
atoms in a given compound? 
□  X-rays 
□  neutrons 
□  electrons 
□  light 
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• Which type of radiation would you use to determine the charge density 
distribution in a solid? 
□  X-rays 
□  neutrons 
□  electrons 
□  light 

• How many neutrons per second impact on a sample with typical lateral 
dimensions of 1x1 cm in a typical neutron scattering experiment? 
□  103 
□  107 
□  1012 
□  1016 
 

• Which type of radiation would you use to determine the charge density 
distribution in a solid? 
□  X-rays 
□  neutrons 
□  electrons 
□  light 
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E1.2  Comprehension 
 

a. What is the difference between a scattering and an imaging experiment? When 
would you choose one over the other? 
 

b. Why does one observe Laue spots when a “white” beam of X-rays is scattered 
from a single crystal?  How about scattering from glass? 

 
c. Why are neutrons sensitive to the magnetic order in a crystal? 

 
d. Neutron scattering allows us to determine “where the atoms are and how the 

atoms move” in a condensed matter system. Other scattering probes include: 
light, x-rays, electrons, α-particles. Discuss qualitatively the strengths and 
weakness of these probes in comparison to neutron scattering.   
 

e. CO2 has a bad reputation as green-house gas in the atmosphere. Could it, 
however, be useful as a scattering probe to replace neutrons? (A high flux of 
CO2 molecules could e.g. be obtained by an expansion of pressurised CO2 gas 
from a gas bottle through a nozzle - a flux many orders of magnitude higher than 
the neutron fluxes used in neutron scattering experiments!)  
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E1.3  Arithmetic Problem (optional): 
Huygens principle and coherence 

 

A plane wave of wavelength λ is incident on a pair of identical scatterers, which are 
separated by a distance L perpendicular to the wave propagation, see figure:  
 
 
 
 
 
 
 
According to the Huygens principle, spherical waves will be emitted from the two 
scatterers. In certain directions, these waves interfere constructively, i.e. the two 
scattered waves are in phase.  

a) Calculate the angles θ, where interference maxima occur in the far field limit.  
b) What happens to the interference maxima, if there is a broad distribution of 

wavelength in the incident wave, but the propagation direction remains well 
defined?  

c) What happens to the interference maxima, if the wavelength of the incident wave is 
well defined, but there are many waves of different directions impinging on our 
scatterers? 

d) How would you design an instrument to measure the distance L between the two 
scatterers, if light from a normal light bulb is being used as radiation? Which 
requirement does L have to fulfil in this case? 

e) According to b) and c) monochromatization and collimation are important to obtain 
well resolved interference pattern. The corresponding requirements for the radiation 
are called longitudinal (b) and transverse (c) coherence, respectively. Discuss 
qualitatively the relation between coherence and resolution, i.e. in our example the 
ability of the apparatus designed in d) to determine the distance L between the 
scatterers.  

 

L θ 
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Here we assume the so-called Fraunhofer approximation, where the size of the sample 
is much smaller than the distance between sample and source and the distance between 
sample and detector, respectively. This assumption holds in all cases discussed in this 
lecture. In addition, we assume that the source emits radiation of one given energy, i. e. 
so-called monochromatic radiation. Then the wave field incident on the sample can be 
considered as a plane wave, which is completely described by a wave vector k. The di-
rection of k indicates the propagation direction of the wave. The same holds for the 
wave incident on the detector, which can be described by a vector k'. In the case of elas-
tic scattering (diffraction) we have (-with λ as wavelength): 

  2' 'k k π
λ

= = = =k k  (2.1) 

Let us define the so-called scattering vector by 

  '= −Q k k  (2.2) 

ħQ represents the momentum transfer during scattering, since according to de Broglie, 
the momentum of the particle corresponding to the wave with wave vector k is given by 
p=ħk. The magnitude of the scattering vector can be calculated from wavelength λ and 
scattering angle 2θ as follows 

  2 2 4' 2 'cos 2 sinQ k k kk Q πθ θ
λ

= = + − ⇒ =Q  (2.3) 

A scattering experiment comprises the measurement of the intensity distribution I(Q) as 
a function of the scattering vector Q. The scattered intensity is proportional to the so-
called cross section, where the proportionality factors arise from the detailed geometry 
of the experiment. For a definition of the scattering cross section, we refer to Figure 2.2.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.2: Geometry used for the definition of the scattering cross section.  

If n' particles are scattered per second into the solid angle dΩ seen by the detector under 
the scattering angle 2θ and into the energy interval between E' and E' + dE', then we 
can define the so-called double differential cross section by:  
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2 '

' '
d n

d dE jd dE
σ

=
Ω Ω

 (2.4) 

Here j refers to the incident beam flux in terms of particles per area and time. If we are 
not interested in the change of the energy of the radiation during the scattering process, 
or if our detector is not able to resolve this energy change, then we will describe the 
angular dependence by the so-called differential cross section: 

  ( )
2

0

d d dE 'd d dE '

∞

θ

σ σθ =
Ω Ω∫  (2.5) 

Note that the integral has to be taken for the constant scattering angle of the detector. 
Finally, the so-called total scattering cross section gives us a measure for the total scat-
tering probability independent of changes in energy and scattering angle:  

  
4

0

d d
d

π σσ = Ω
Ω∫  (2.6) 

For elastic scattering our task is to determine the arrangement of the atoms in the sam-
ple from the knowledge of the scattering cross section /d dσ Ω . The relationship be-
tween scattered intensity and the structure of the sample is particularly simple in the so-
called Born approximation, which is often also referred to as kinematic scattering theo-
ry. In this case, refraction of the beam entering and leaving the sample, multiple scatter-
ing events and the attenuation of the primary beam due to scattering within the sample 
are neglected. For simplicity, we assume that the incident beam is ideally collimated 
(i.e. has no angular spread) and monochromatized (i.e. has no wavelength spread) and 
describe it as a plane wave.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.3:  A sketch illustrating the phase difference between a ray scattered at the ori-

gin of the coordinate system and a ray scattered at the position r.  

 

k k' 
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Following Figure 2.3, the phase difference between a wave scattered at the origin of the 
coordinate system (A) and at position r (D) is given by 

  
( )

2 '
AB CD

π
λ

−
DΦ = ⋅ = ⋅ − ⋅ = ⋅k r k r Q r  (2.7) 

Here we see the other meaning of the scattering vector Q : besides the momentum trans-
fer Q ("particle picture"), it determines the phase shift ⋅Q r  during scattering ("wave 
picture").  
The amplitude of the scattered beam at position r depends on the type of radiation used 
and the interaction of this radiation with the sample. In fact, the probability for a scatter-
ing event to occur is directly proportional to the interaction potential V, as will be 
shown in paragraph 2.3. The total scattering amplitude is given by a coherent superposi-
tion (i.e. taking the phase DΦ  into account) of the scattering from all points within the 
sample, i. e. by the integral 

  ( ) ( ) 3
0

S

i

V

A A V e d r⋅⋅ ⋅∫

Q rQ r  (2.8) 

Here A0 denotes the amplitude of the incident wave field. (2.8) demonstrates that the 
scattered amplitude is connected with the interaction potential ( )V r by a simple Fourier 
transform. Knowledge of the scattering amplitude A for all scattering vectors Q allows 
us to determine via a Fourier transform the potential ( )V r uniquely. This is the com-
plete information on the sample, which can be obtained by an elastic scattering experi-
ment. Unfortunately, nature is not so simple. On one hand, there is the more technical 
problem that one is unable to determine the scattering cross section for all values of 
momentum transfer ħQ. The more fundamental problem, however, is that normally the 
amplitude of the scattered wave is not measurable. Instead only the scattered intensity  

  ( ) ( ) 2
~I AQ Q  (2.9) 

can be determined. Therefore, the phase information is lost and the simple reconstruc-
tion of the scattering potential via a Fourier transform is no longer possible. This is the 
so-called phase problem of scattering. There are ways to overcome the phase problem, 
e. g. by use of reference waves (e. g. holography). Then the scattering potential becomes 
directly accessible. The question, which information we can obtain from a conventional 
scattering experiment despite the phase problem will be addressed below. 
Which wavelength do we have to choose to obtain the required real space resolution? 
For information on a length scale L, a phase difference of about Q⋅L ≈ 2π has to be 
achieved. Otherwise according to (2.7) k' and k will not differ significantly. According 
to (2.3) Q ≈ 2π/λ for typical scattering angles (2θ ~ 60°). Combining these two esti-
mates, we end up with the requirement that the wavelength λ has to be in the order of 
the real space length scale L under investigation. To give an example: with the wave-
length in the order of 1Å = 0.1nm, atomic resolution can be achieved in a scattering 
experiment. 
 



2.6  Th. Brückel 

2.3 Fundamental scattering theory: The Born series 
In this chapter, we will give a simple formulation of scattering theory. Our purpose is to 
derive (2.8) from fundamental principles. The conditions under which (2.8) holds and 
the limitations of kinematical scattering theory will thus become clearer. The derivation 
will be done for particle beams – in particular neutrons - for which the Schrödinger 
equation holds. This is bonus-material: Beginners can skip this chapter and continue 
with chapter 2.4.  
In quantum mechanics, neutrons are described as particle wave through the Schrödinger 
equation: 

  
2

2
H V i

m t
  ∂

Ψ = − D + Ψ = Ψ  ∂ 



  (2.10) 

ψ is the probability density amplitude, V the interaction potential. In case of purely elas-

tic scattering E = E', the time dependence can be described by the factor exp - Ei t 
 
 

. 

Assuming this time dependence, a wave equation for the spatial part of the probability 
density amplitude ψ can be derived from (2.10):  

  ( )2 0kDΨ + Ψ =r  (2.11) 

In (2.11) we have introduced a spatially varying wave vector with the magnitude 
square:  

  ( ) ( )( )2
2

2mk E V= −


r r  (2.12) 

Solutions of (2.10) in empty space (i. e. V ≡ 0) can be guessed immediately. They are 

given by plane waves 0 exp Ei t  Ψ = Ψ ⋅ −    

k r with 2
2

2mk E=


. The relations be-

tween magnitude of the wave vector k, wave length λ, and energy of the neutron E can 
be written in practical units:  

  

[ ]
[ ]

[ ]

1

2

0.695

9.045 /

81.8 /

k Å E meV

Å E meV

E meV Å

λ

λ

−  ≈ 

  ≈ 
≈   

 (2.13) 

To give an example, neutrons of wavelength λ=2.4Å=0.24nm have an energy of 
E=14.2 meV with a magnitude of the neutron wave vector of k = 2.6 Å-1.  
To obtain solutions of the wave equation (2.11) in matter, we reformulate the differen-
tial equation by explicitly separating the interaction term:  

  ( )2
2

2 :mk V χD + Ψ = ⋅Ψ =


 (2.14) 

Here k denotes the wave vector for propagation in empty space. The advantage of this 
formulation is that the solutions of the left-hand side are already known. They are the 
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plane waves in empty space. Equation (2.14) is a linear partial differential equation, i.e. 
the superposition principle holds: the general solution can be obtained as a linear com-
bination of a complete set of solution functions. The coefficients in the series are deter-
mined by the boundary conditions. To solve (2.14) one can apply a method developed 
for inhomogeneous linear differential equations. For the moment, we assume that the 
right-hand side is fixed (given as χ). We define a Greens-function by:  

  ( ) ( ) ( )2 , ' 'k G δD + = −r r r r  (2.15) 

A solution of (2.15) is given by: 

  ( )
'

, '
4 '

ikeG
π

−

=
−

r r

r r
r r

 (2.16) 

The physical meaning of (2.16) is immediately clear: the scattering from a point-like 
scatterer (δ-potential) gives an emitted spherical wave. In a schematic graphical repre-
sentation: 
 
 
 
Using the Greens-function G(r,r'), we can write down a formal solution of the wave 
equation (2.14):  

  ( ) ( ) 3, ' ' 'o G d rχΨ = Ψ + ∫ r r r  (2.17) 

Here, we have taken the initial conditions of an incident plane wave oΨ into account. 
(2.17) is indeed a solution of (2.14) as can be easily verified by substituting (2.17) into 
(2.14). If we finally substitute the definition of χ, one obtains the so-called Lippmann-
Schwinger equation: 

  ( ) ( ) ( ) ( ) ( ) 3
2

2 , ' ' ' '
S

o

V

m G V d rΨ = Ψ + Ψ∫


r r r r rr  (2.18) 

 
 
 
 

(2.18) has a simple interpretation: the incident plane wave ( )oΨ r  is superimposed by 
spherical waves emitted from scattering at positions r'. The amplitude of these spherical 
waves is proportional to the interaction potential V(r') and the amplitude of the wave 
field at the position r'. To obtain the total scattering amplitude, we have to integrate 
over the entire sample volume Vs.  
However, we still have not solved (2.14): our solution Ψ  appears again in the integral 
in (2.18). In other words, we have transformed differential equation (2.14) into an inte-
gral equation. The advantage is that for such an integral equation, a solution can be 
found by iteration. In the zeroth approximation, we neglect the interaction V completely. 
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This gives oΨ = Ψ . The next higher order approximation for a weak interaction poten-
tial is obtained by substituting this solution in the right-hand side of (2.18). The first 
non-trivial approximation can thus be obtained:  

  ( ) ( ) ( )1 ' 3
2

exp '2 ' '
4 '

ik r iikme V e d r
π

⋅ −
Ψ = +

−∫


krr r
r r

r r
 (2.19) 

(2.19) is nothing else but a mathematical formulation of the well-known Huygens prin-
ciple for wave propagation.  
The approximation (2.19) assumes that the incident plane wave is only scattered once 
from the potential V(r'). For a stronger potential and larger sample, multiple scattering 
processes will occur. Again, this can be deduced from the integral equation (2.18) by 
further iteration. For simplification we introduce a new version of equation (2.18) by 
writing the integral over the "Greens function" as operator G :  

  

o VΨ = Ψ + ΨG  (2.20) 

The so-called first Born approximation, which gives the kinematical scattering theory is 
obtained by substituting the wave function   Ψ on the right hand side by   oΨ : 

  

1 o oVΨ = Ψ + ΨG  (2.21) 
This first approximation can be represented by a simple diagram as a sum of an incident 
plane wave and a wave scattered once from the potential V: 
 
 
 
The second approximation is obtained by substituting the solution of the first approxi-
mation (2.21) on the right-hand side of equation (2.20):  

     

2 1o o o oV V V VΨ = Ψ + Ψ = Ψ + Ψ + ΨG G G G  (2.22) 

Or in a diagrammatic form:  
 
 
I.e. in the second approximation, processes are being taken into account, in which the 
neutron is scattered twice by the interaction potential V. In a similar manner, all higher 
order approximations can be calculated. This gives the so-called Born series.1 For weak 
potential and small samples, this series converges rather fast. Often, the first approxima-
tion, the kinematic scattering theory, holds very well. This is especially the case for 
neutron scattering, where the scattering potential is rather weak, as compared to x-ray- 
or electron- scattering. Due to the strong Coulomb interaction potential, the probability 
for multiple scattering processes of electrons in solids is extremely high, making the 

1 Note that Born approximation or the Born series violates energy conservation: scattered waves are cre-
ated without weakening of the incident plane wave. Born series can therefore only be applied in the limit 
of very weak scattering potentials. 
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interpretation of electron diffraction experiments difficult. But even for neutrons, the 
kinematic scattering theory can break down, for example in the case of Bragg scattering 
from large ideally perfect single crystals, where the Born series does not converge. The 
wave equation has to be solved exactly under the boundary conditions given by the 
crystal geometry. For simple geometries, analytical solutions can be obtained. This is 
then called the dynamical scattering theory. Since for neutrons, the kinematical theory 
holds in most cases, or multiple scattering events can often be corrected for, we will no 
longer discuss dynamical theory in what follows and refer to [3, 7].  
Let us return to the first Born approximation (2.19). In a further approximation, the 
Fraunhofer approximation, we assume that the size of the sample is significantly smaller 
than the distance sample-detector. The geometry to calculate the far field limit of (2.19) 
is given in Figure 2.4. Under the assumption 'rR >> , we can deduce from Figure 2.4 
the following approximation for the emitted spherical wave:  

  
( ) ( )( ) ' '

exp 'exp ' exp( )
'

i
ik Rik ikR e

R R
− ⋅

− ⋅−
≈ ≈ ⋅

−
k r

r Rr r
r r

 (2.23) 

The probability density amplitude for the scattered wave field in the limit of large dis-
tances from the sample is thus given by:  

  ( ) ( )1 ' 3
2

2 ' '
4

ikR
i im ee V e d r

Rπ
⋅ ⋅⇒ Ψ = + ∫



k R Q rR r  (2.24) 

 
 
 
 
 
 
 
 
Fig. 2.4:  Scattering geometry for the calculation of the far field limit at the detector. In 

the Fraunhofer approximation, we assume that |R| >> |r'|. 
 
This is just the sum of an incident plane wave and a spherical wave emitted from the 
sample as a whole. The amplitude of the scattered wave is given according to (2.24):  

  ( ) ( ) ( )3
2 ~

2
imA V e d r F V

π
⋅  =  ∫



Q rQ r r  (2.25) 

The integral in the above equation is nothing but the transition matrix element of the 
interaction potential V between the initial and final plane wave states, therefore: 

  
2 2

2 '
2

d m Vd
σ

π
 =  Ω  

k k  (2.26) 
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This formula corresponds to Fermi’s Golden Rule from time-dependent perturbation 
theory, where the transition probability per time interval from state k to states k' is given 
by:  

  ( )
2

' '
2 'k k kW k V k Eπ ρ= ⋅


 (2.27) 

Here, ( )'kEρ  denotes the density of states for the final states k’. 

With this exact derivation of the scattering cross section, we can now confirm by com-
parison with (2.8) that the scattering probability in the simple derivation of chapter 2.2 
is given by ( )22

m V
π

r  for particle beams governed by the Schrödinger equation. 

We now allow for inelastic processes, where the sample undergoes a change of its state 
from α to α' (α denotes a set of quantum numbers characterizing an eigenstate of the 
sample). In this case, due to the different length of the wavevectors for incoming and 
outgoing waves, we have to introduce factors k' and k, which arise from the density of 
states factor in (2.27). Since the scattering event must fulfill energy and momentum 
conservation, we arrive at the double differential cross section (without detailed deriva-
tion):  

  ( )
22 2

'2
'

' ', ' ,
2

d k m p V E Ed d k α α α
α α

σ α α δ ωω π
 = ⋅ + − Ω   ∑ ∑ 



k k  (2.28) 

The first summation is carried out over all possible initial states α of the system, 
weighted with their thermodynamic occupation probability pα. The sum over α' is the 
sum over all final states allowed by energy conservation, which is guaranteed through 
the δ-function. ω  denotes the energy transfer of the neutron to the system. This double 
differential cross section will be discussed in the following lectures on inelastic scatter-
ing. 
 

2.4 Coherence 
In the above derivation, we assumed plane waves as initial and final states. For a real 
scattering experiment, this is an unphysical assumption. In the incident beam, a wave 
packet is produced by collimation (defining the direction of the beam) and monochro-
matization (defining the wavelength of the incident beam). Neither the direction k , nor 
the wavelength λ have sharp values but rather have a distribution of finite width about 
their respective mean values. This wave packet can be described as a superposition of 
plane waves. As a consequence, the diffraction pattern will be a superposition of pat-
terns for different incident wavevector k  and the question arises, which information is 
lost due to these non-ideal conditions. This instrumental resolution is intimately con-
nected with the coherence of the beam. Coherence is needed, so that the interference 
pattern is not significantly destroyed. Coherence requires a phase relationship between 
the different components of the beam. Two types of coherence can be distinguished. 
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Together, the longitudinal and the two transversal coherence lengths (in two directions 
perpendicular to the beam propagation) define a coherence volume. This is a measure 
for a volume, in which the amplitudes of all scattered waves superimpose within the 
sample to produce an interference pattern. Normally, the coherence volume is signifi-
cantly smaller than the sample size, typically a few 100 Å for neutron scattering, up to 
µm for synchrotron radiation. Scattering between different coherence volumes within 
the sample is no longer coherent, i.e. instead of the amplitudes the intensities of the con-
tributions to the scattering pattern have to be added. This limits the real space resolution 
of a scattering experiment to the extension of the coherence volume. 

2.5 Pair correlation functions 
After having clarified the conditions under which we can expect a coherent scattering 
process, let us now come back to the question, which information is accessible from the 
intensity distribution of a scattering experiment. From (2.9) we see that the phase in-
formation is lost during the measurement of the intensity. For this reason the Fourier 
transform of the scattering potential is not directly accessible in most scattering experi-
ments (note however that phase information can be obtained in certain cases).  
Substituting (2.8) into (2.9) and applying the variable substitution R=r’-r, we obtain for 
the magnitude square of the scattering amplitude, a quantity directly accessible in a 
scattering experiment: 

  ( ) ( ) ( )2 3 ' 3 *~ ~ ' ' i iI A d r V e d r V e⋅ − ⋅∫ ∫Q r Q rQ r r ( ) ( ) ( )'3 3 *' ' id r d r V V e ⋅ −= ∫∫
Q r rr r  

  ( ) ( )3 3 * id Rd rV V e ⋅= +∫∫ Q RR r r  (2.31) 

This shows that the scattered intensity is proportional to the Fourier transform of a func-
tion P(R): 

  ( ) ( )3~ iI d R P e ⋅∫ Q RQ R  (2.32) 

This function denotes the so-called Patterson function in crystallography or more gen-
eral the static pair correlation function:  

  ( ) ( ) ( )3 *P d r V V= +∫R r r R  (2.33) 

P(R) correlates the value of the scattering potential at position r with the value at the 
position r+R, integrated over the entire sample volume. The Patterson function P(R) 
vanishes, if no correlation exists between the values of the potential at position r and 
r+R, when averaged over the sample. If, however, a periodic arrangement of a pair of 
atoms exists in the sample with a difference vector R between the positions, then the 
Patterson function will have an extremum for this vector R. Thus, the Patterson function 
reproduces all the vectors connecting one atom with another atom in a periodic ar-
rangement. Quite generally, in a scattering experiment, pair correlation functions are 
being determined. In a coherent inelastic scattering experiment, we measure the scatter-
ing law S(Q,ω), which is the Fourier transform with respect to space and time of the 
spatial and temporal pair correlation function: 

  ( ) ( )
2

31, ,
2

i t id S dt e d r e G t
d d

ωσ ω
ω π

+∞
− ⋅

−∞

=
Ω ∫ ∫



Q rQ r  (2.34) 
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With (2.37), we have separated the scattering from within the single particles from the 
interference between different particles. tot

jV  denotes the total scattering power of the 
particle. The form-factor f(Q) is defined as the normalized amplitude of scattering from 
within one particle2 (it describes the “form” of the particle):  

  ( )
( )

( )
0

0

3

3
j

j

i '

V

V

d r' V ' e

f
d r' V '

⋅

≡
∫

∫

Q rr

Q
r

 (2.38) 

For a homogeneous sphere 

  ( )
0 R

V
C R
 >=  ≤

r
r

r
 (2.39) 

, the form-factor can be calculated by using spherical co-ordinates:  

  ( ) 3

sin cos3
( )

QR QR QRf Q
QR
− ⋅

⇒ = ⋅  (2.40) 

The function (2.40) is plotted in Figure 2.8. In forward direction, there is no phase dif-
ference between waves scattered from different volume elements within the sample 
(note: we assume the Fraunhofer approximation and work in a far field limit): the form-
factor takes its maximum value of one. For finite scattering angles 2θ, the form-factor 
drops due to destructive interference from waves scattered from various parts within 
one particle and finally for large values of the momentum transfer shows damped oscil-
lations around 0 as a function of QR.  
 
 
 
 
 

 
 
 
Fig. 2.8: Form-factor for a homogeneous sphere according to (2.40).  

2 For simplicity we now drop the index j 
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2.7 Scattering from a periodic lattice in three dimen-
sions 

As an example for the application of (2.8) and (2.9), we will now discuss the scattering 
from a three dimensional lattice of point-like scatterers. As we will see later, this situa-
tion corresponds to the scattering of thermal neutrons from a single crystal. More pre-
cisely, we will restrict ourselves to the case of a Bravais lattice with one atom at the 
origin of the unit cell. To each atom we attribute a “scattering power3” β. The single 
crystal is finite with N, M and P periods along the basis vectors a, b and c. The scatter-
ing potential, which we have to use in (2.8) is a sum over δ-functions for all scattering 
centers:  

  ( ) ( )( )
1 11

0 00

M PN

m pn
V n m pβ δ

− −−

= ==

= ⋅ − ⋅ + ⋅ + ⋅∑∑∑r r a b c  (2.41) 

The scattering amplitude is calculated as a Fourier transform:  

  ( )
1 1 1

0 0 0
~

N M P
in im ip

n m p
A e e eβ

− − −
⋅ ⋅ ⋅

= = =
∑ ∑ ∑Q a Q b Q cQ  (2.42) 

Summing up the geometrical series, we obtain for the scattered intensity:  

  ( ) ( )
2 2 2

2 2

2 2 2

1 1 1sin sin sin2 2 2
1 1 1sin sin sin2 2 2

N M P
I ~ A β

⋅ ⋅ ⋅
= ⋅ ⋅ ⋅

⋅ ⋅ ⋅

Q a Q b Q c
Q Q

Q a Q b Q c
 (2.43) 

The dependence on the scattering vector Q is given by the so-called Laue function, 
which factorizes along to the three directions in space. One factor along one lattice di-
rection a is plotted in Figure 2.9.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.9:  Laue function along the lattice direction a for a lattice with five and ten peri-

ods, respectively.  

3 We will later see that this „scattering power“ is connected to the so-called scattering length of the atom. 
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The main maxima occur at the positions Q=n⋅2π/a. The maximum intensity scales with 
the square of the number of periods N2, the half width is given approximately by DQ = 
2π/(N⋅a). The more periods contribute to coherent scattering, the sharper and higher are 
the main peaks. Between the main peaks, there are N-2 side maxima. With increasing 
number of periods N, their intensity becomes rapidly negligible compared to the intensi-
ty of the main peaks. The main peaks are of course the well-known Bragg reflections, 
which we obtain for scattering from a crystal lattice. From the position of these Bragg 
peaks in momentum space, the metric of the unit cell can be deduced (lattice constants 
a, b, c and unit cell anglesα, β, γ). The width of the Bragg peaks is determined by the 
coherently scattering volume (parameters N, M, and P) - and some other factors for real 
experiments (resolution, mosaic distribution, internal strains, ...). 
 

2.8 Probes for scattering experiments in condensed 
matter science 

In this chapter, we will discuss which type of radiation is suitable for condensed matter 
investigations. For neutron beams, we will then discuss the relevant interaction process-
es with matter in detail.  
A list of requirements for the type of radiation used in condensed matter investigations 
looks as follows:  

(1) The achievable spatial resolution should be in the order of the inter-particle dis-
tances, which implies (see section 2.2) that the wavelength λ is in the order of 
the inter-particle distance L.  

(2) If we want to study volume effects, the scattering has to originate from the bulk 
of the sample, which implies that the radiation should be at most weakly ab-
sorbed within matter.  

(3) For a simple interpretation of the scattering data within the Born approximation 
(see section 2.2), multiple scattering effects should be negligible, i. e. the inter-
action of the radiation with matter should be weak.  

(4) For the sake of simplicity, the probe should have no inner degrees of freedom, 
which could be excited during the scattering process (i. e. avoid beams of mole-
cules, which have internal vibrational or rotational degrees of freedom).  

(5) To study magnetic systems, we need a probe which interacts with the atomic 
magnetic moments in the sample. 

(6) If, in addition to structural studies, we want to investigate elementary excita-
tions, we would like the energy of the probe to be in the order of the excitation 
energies, so that the energy change during the scattering process is easily meas-
urable. 

This list of requirements leads us to some standard probes in condensed matter research. 
First of all, electromagnetic radiation governed by the Maxwell equations can be used. 
Depending on the resolution requirements, we will use x-rays with wavelength λ of 
about 0.1 nm to achieve atomic resolution or visible light (λ ~ 350 - 700 nm) to investi-
gate e. g. colloidal particles in solution. Besides electromagnetic radiation, particle 
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waves can be used. It turns out that thermal neutrons with a wavelength λ~0.1nm are 
particularly well adapted to the above list of requirements. The neutron beams are gov-
erned by the Schrödinger equation of quantum mechanics. An alternative is to use elec-
trons, which for energies of around 100keV have wavelengths in the order of 0.005nm. 
As relativistic particles, they are governed by the Dirac equation of quantum mechanics. 
The big drawback of electrons as a condensed matter probe is the strong Coulomb inter-
action with the electrons in the sample. Therefore, neither absorption, nor multiple scat-
tering effects can be neglected. However, the abundance of free electrons and the rela-
tive ease to produce optical elements makes them very suitable for imaging purposes 
(electron microscopy). Electrons, but also atomic beams, are very powerful tools for 
surface science: due to their strong interaction with matter, both types of radiation are 
very surface sensitive. Low Energy Electron Diffraction LEED and Reflection High 
Energy Electron Diffraction RHEED are both used for in-situ studies of the crystalline 
structure during thin film growth, e.g. with Molecular Beam Epitaxy MBE. In what fol-
lows we will concentrate on neutron scattering as one of the probes, which is best suited 
for bulk studies on an atomic scale. We will introduce the properties of the neutron, 
discuss the absorption of neutrons in matter and derive the scattering cross sections for 
the main interaction processes with matter. 
 

2.9 Properties of the neutron 
We mentioned in the introduction that neutron beams provide a particularly useful 
probe for condensed matter investigations. The neutron is an elementary particle, a nu-
cleon, consisting of three valance quarks, which are hold together by gluons (see Fig. 
2.10). It thus has an internal structure, which, however, is irrelevant for condensed mat-
ter physics, since the energy scales involved in its internal excitations are much too 
high. Keeping in mind the difference in lengths scales (diameter of an atom: about 
0.1nm=10-10m; diameter of a neutron: about 1fm=10-15m), we can safely consider the 
neutron as a point-like particle without internal structure for our purposes. Due to the 
weak interaction, the neutron is not a stable particle. A free neutron undergoes a β-
decay into proton p, electron e- and electron-antineutronino eν after an average lifetime 
of about 15 minutes:  

  15minn p e ν−→ + + e  (2.44) 

This leaves ample time for scattering investigations. In contrast to the massless photon, 
the neutron has a mass m of about one atomic mass unit ~ 1.675 ⋅ 10-27 kg. The finite 
neutron mass is comparable to the mass of a nucleus and thus an appreciable amount of 
energy can be transferred during the scattering process. The neutron is a neutral particle 
and thus does not show the strong Coulomb interaction with matter. This results in large 
penetration depths. Finally, the neutron has a nuclear spin 1/2 giving rise to a magnetic 
dipolar moment of  

  27; 1.91; 5.05 10 /n N N J Tµ γµ γ µ −= = = ⋅  (2.45) 

Due to this magnetic moment, the neutron can interact with the magnetic field of un-
paired electrons in a sample leading to magnetic scattering. Thus, magnetic structures 
and excitations can be studied by neutron scattering. 
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Fig. 2.10: Schematics of the neutron being composed of three quarks and gluons and 

the main quantities characterizing the neutron as a particle.  
To calculate the interference effects during the scattering process, a neutron has to be 
described as a matter wave with momentum 

  ; /m p h λ= ⋅ = =p v k  (2.46) 

and energy 
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Here v is the velocity of the neutron and Teq defines the temperature equivalent of the 
kinetic energy of the neutron. In practical units:  
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Let us consider the example of so-called thermal neutrons from a moderator at ambient 
temperature corresponding to a temperature equivalent of Teq~300K. According to 
(2.47), their wavelength is 0.18nm, matching perfectly the distance between atoms. The 
energy of thermal neutrons is around 25meV, which matches well the energy of elemen-
tary excitations, such as spin waves (magnons) or lattice vibrations (phonons). Together 
with the usually large penetration depths (charge = 0) and the magnetic interaction, 
these properties make neutrons so extremely useful for condensed matter investigations.  
In the elementary scattering theory of chapter 2.3, we saw that the relevant quantity is 
the interaction potential V(r) of the probe with the system from which the probe is scat-
tered. This potential enters in the cross-section in kinematical theory derived either from 
Born approximation or from Fermi's golden rule. To determine this interaction potential, 
we will look in more detail at the interaction of neutrons with matter. For neutrons there 
exist two dominant interactions: the interaction of the neutron with nuclei and its inter-
action with the magnetic field in the sample. The nuclear interaction results from the so-
called strong interaction of particle physics, which is also responsible for the binding of 
neutrons and protons in the atomic nuclei. The interaction with the magnetic field is 
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Mass        ~ 1u   1.67495⋅10-27 kg 
Charge        0    (-0.4±1.1)·10-21 e 
Magnetic monopole moment 0   (0.85 ± 2.2)·10-20 e/2α 
Electric dipole moment      0         (-0.1 ± 0.36)·10-25 e·cm 
Spin        1/2 
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nothing but the magnetic dipole interaction of the neutron due to its dipolar moment 
with the magnetic field of unpaired electrons. There are other interactions, which are 
significantly weaker. One is the interaction of the neutron with the electric fields in the 
sample due to the neutrons magnetic dipole moment. This is a purely relativistic effect. 
Another is the magnetic dipole interaction of the neutron with the magnetic field pro-
duced by the nuclei. Since such interactions are several orders of magnitude weaker 
than the nuclear and magnetic interaction, they can usually be neglected and we will not 
discuss them further in this lecture.  
 

2.10 Nuclear interaction: Scattering and absorption 
To evaluate the cross section (2.26) for nuclear scattering, we have to specify the inter-
action potential with the nucleus. To derive this interaction potential from first princi-
ples is one of the fundamental challenges of nuclear physics. Instead, Fermi has pro-
posed a phenomenological potential based on the argument that the wavelength of 
thermal neutrons is much larger than the nuclear radius. This means that the nuclei are 
point-like scatterers which leads to isotropic, Q-independent, (so-called s-wave) scat-
tering. We will therefore use the so-called Fermi-pseudo-potential:  

  ( ) ( )
22V b

m
π δ= −
r r R  (2.49) 

to evaluate the cross section (2.26).  
Despite the fact that the strong interaction of high energy physics is responsible for the 
scattering of the neutron with the nucleus, the scattering probability is small due to the 
small nuclear radius. Therefore, we can apply the first Born approximation. The quanti-
ty b introduced in (2.49) is a phenomenological quantity describing the strength of the 
interaction potential and is referred to as the scattering length. Tabulated values of b can 
be found in [8] or at http://www.ncnr.nist.gov/resources/n-lengths/. The total cross sec-
tion of a given nucleus is 24 bσ π= , corresponding to the surface area of a sphere with 
radius b. Since the interaction potential obviously depends on the details of the nuclear 
structure, b is different for different isotopes of the given element and also for different 
nuclear spin states. This fact gives rise to the appearance of so-called coherent and in-
coherent scattering, see section 2.12. Figure 2.11 shows the variation of the scattering 
amplitude as a function of atomic weight throughout the periodic table. The scattering 
length is mostly positive but can also adopt negative values. Since -1 = exp(iπ) this 
negative sign corresponds to a phase shift of π (or 180°) during the scattering process. 
The scattering length roughly follows the dashed line labeled potential scattering con-
tribution, despite the fact that there are rather large excursions from this line.  
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dius b = R, which is plotted in Figure 2.11 as a dashed line: the potential scattering con-
tribution. The marked deviations from this overall behavior are due to so-called reso-
nance scattering. In a simplified picture, such resonances occur, when the neutron ener-
gy is such that absorption of the neutron in the nucleus produces a bound excited state. 
This can lead to a resonant absorption process, but it can also lead to resonance scatter-
ing, a typical second order perturbation process: in the initial state, the nucleus is in its 
ground state and the interaction with the neutron can be described as a virtual transition 
into an excited state of the compound nucleus and back with a re-emission of the neu-
tron, where the nucleus decays back from the excited compound system into its ground 
state. This process n+K→C*→K+n has a cross-section given by the famous Breit-
Wigner-formula:  

  
  

2

4 1
2

R
R

constR
E E i

σ π= +
− + Γ

 (2.51) 

Here R is the radius of the nucleus, E the neutron energy, ER the resonance energy and 
Γ a damping term connected with the life-time of the excited state. As one can see, this 
formula describes a very strong energy dependence with a pronounced maximum when 
the neutron energy equals the resonance energy. Moreover, the resonance amplitude has 
an imaginary part, which describes the resonance absorption. In the resonant absorption 
process, the neutron is captured by the nucleus, leading to a compound nucleus in an 
excited state, containing one more neutron then the original nucleus. In a subsequent 
nuclear reaction, the compound nucleus gets rid of its excess energy. Examples for such 
absorption reactions will be given in the subsequent section. Finally, the Breit-Wigner-
formula gives an indication that the scattering length can be negative whenever the res-
onant term is negative (i. e. E < ER), and its magnitude is larger than the contribution 
from potential scattering.  
 

2.11 Neutron absorption 
As explained above, neutron absorption can occur during nuclear reactions. Far away 
from the resonance, the absorption cross section is given by 

  1~ ~a v
σ λ  (2.52) 

This proportionality to the wavelength λ or the inverse velocity 1/ν is a result of the 
density of states appearing in Fermi's golden rule. One can argue that wavelength and 
neutron velocity v are inversely proportional and thus, for longer wavelength i. e. small-
er velocity, the neutron remains correspondingly longer close to the nucleus, which 
leads to a higher absorption cross-section. Table 2.1 gives examples for neutron absorp-
tion processes connected with nuclear reactions.  
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Tab. 2.1: Examples for neutron absorption processes due to nuclear reactions. The ab-

sorption cross-section is given for neutrons of energy 25 meV in barn = 10-28 
m2 = 100 fm2.  

As an example, there is a high probability of neutrons to be absorbed by 3He nuclei, 
because the 4He or α-particle is very stable since it corresponds to a closed nuclear 
shell. However, during the absorption of the neutron, the 4He nucleus is produced in an 
excited state. It gets rid of its surplus energy by decay into a proton and a triton4 3T. 
Since these two particles have very high energies of about 0.5 MeV due to the nuclear 
reaction, charged particles are created during this decay, which can be used for neutron 
detection in a proportional counter. In a similar manner, the reaction with 6Li, 10B or 
235U can be used to build neutron detectors. It should be mentioned, however, that the 
neutron absorption in 3He is very strongly dependent on the relative orientation of the 
nuclear spins of both particles. While for antiparallel spin direction (singlet state), the 
absorption cross-section is ≈ 6000 barn, it reduces to 2 barn for parallel spin direction 
(triplet state). This effect can be used to build efficient neutron polarization filters. By 
optical pumping with laser light, the nuclear moment of the 3He nuclei can be aligned 
along one direction (so-called hyperpolarized 3He gas). If an unpolarized neutron beam 
passes a filter cell filled with hyperpolarized 3He, the neutrons with spin moment anti-
parallel to the nuclear moment of the 3He have a high probability to be absorbed, while 
neutrons with the other spin direction have a high probability to be transmitted. For an 
appropriate thickness of the filter cell, a very high neutron beam polarization can be 
achieved in this manner.  

Another class of absorption processes are so-called (n, γ)-resonances. Examples are 
given in Table 2.2. In these processes, a nucleus is produced, which contains one addi-
tional neutron and this compound nucleus decays into the ground state by emission of γ-
radiation. Prominent (n,γ)-resonances occur for Cadmium or Gadolinium where, de-
pending on the isotope, the absorption cross-section can be very high, see Table 2.2. 
These metals are often used as neutron absorbers in shieldings or diaphragms, which 
define the size of the neutron beam. One should, however, be aware that in these reac-
tions, γ-radiation of very high energy is being released, which requires additional lead 
shielding for radiation protection.  
 
 
 
 

4 The triton 3T nucleus is a hydrogen isotope with one proton and 2 neutrons. 

Examples: 
σa (25 meV) [barn]

5333 n + 3He → 4He* → p + 3T
940 n + 6Li → 7Li* → 3T + 4He

3837 n + 10B → 11B* → 4He + 7Li + γ
681 n + 235U → fission

neutron
detection
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Tab. 2.2: Examples for (n, γ)-resonances with the cross-section in barn and the reso-

nance energy in meV.  
As described by the Breit-Wigner-Formula, these resonance absorption cross-sections 
have very strong energy dependences. The simple proportionality to the wavelength 
given in equation (2.52) no longer holds close to the resonance energies. As an example, 
we show the energy dependence of the absorption cross-section for Cadmium in Figure 
2.13. Such data can be found in the compilation [9].  
 
 
 
 
 
 
 
 
 

 
Fig. 2.13: Absorption cross-section of the element Cadmium as a function of energy in 

a double logarithmic representation (adopted from 9).  
Figure 2.13 shows that for lower energies, i. e. long wavelengths, the proportionality of 
the absorption cross-section to the wavelength holds to very good approximation. How-
ever, there is a strong resonance for a wavelength of 0.64 Å, where the cross-section 
attains a maximum of about 20 kbarn. Above this energy, i. e. for shorter wavelengths, 
the absorption cross-section drops drastically. At a wavelength of 0.2 Å, it attains a val-
ue of only 8 barn. This shows that in the thermal energy range, Cadmium can be used as 
an efficient neutron absorber. However, one has to be careful and not use it for the same 
purpose in case of hot neutrons, where Cadmium becomes virtually transparent. There 
are many more resonances for higher neutron energies, which are not relevant for neu-
tron scattering, where only hot ( 2000 )eqT K≈ , thermal ( 300 )eqT K≈ and cold 
( 20 )eqT K≈ neutrons are being used.  

(n, γ)-resonances: 

nucleide σγ[barn] Eresonance[meV]
113Cd 20600 178
151Eu 9200 321
155Gd 60900 26.8
157Gd 254000 31.4

  

(compare photoel. 
abs. of x-rays!)

(n, γ)-resonances: 

nucleide σγ[barn] Eresonance[meV]
113Cd 20600 178
151Eu 9200 321
155Gd 60900 26.8
157Gd 254000 31.4

  

(compare photoel. 
abs. of x-rays!)

 31.4 

 

λ = 0.64 Å 
σ ~ 20 kbarn 

λ = 0.2 Å 
σ ~ 8 barn 
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A similar strong energy dependence occurs for the element Gadolinium. Usually, neu-
tron scatterers try to avoid samples containing Gadolinium since it is the most absorbing 
element, especially the isotope 157Gd. However, the resonances lay right in the thermal 
neutron energy range. If the scattering experiment is performed with hot neutrons, the 
absorption cross-section of Gadolinium becomes much smaller and scattering experi-
ments become feasible5. 

2.12 Coherent and incoherent scattering 
As mentioned above, the nuclear interaction potential depends on the details of the nu-
clear structure and thus, the scattering length b is different for different isotopes of a 
given element and also for different nuclear spin states. In this section, we will discuss 
the effects of these special properties of the interaction of neutrons and nuclei for the 
scattering from condensed matter.  
Let us assume an arrangement of atoms with scattering lengths bi on fixed positions Ri. 
For this case, the scattering potential writes:  

  ( )
22( ) i i

in

V b
m
π δ= −∑r r R  (2.53) 

The scattering amplitude is obtained from a Fourier transform:  

  ( ) ii
i

i
A b e ⋅= ∑ Q RQ  (2.54) 

When we calculate the scattering cross section, we have to take into account that the 
different isotopes are distributed randomly over all sites. Also the nuclear spin orienta-
tion is random, except for very low temperatures in high external magnetic fields. 
Therefore, we have to average over the random distribution of the scattering length in 
the sample:  

  ( ) ( ) 2 *~ ji ii
i j

i j

d A b e b e
d
σ −⋅= ⋅
Ω ∑ ∑ QRQ RQ Q   (2.55) 

In calculating the expectation value of the product of the two scattering lengths at sites i 
and j, we have to take into account that according to the above assumption, the distribu-
tion of the scattering length on the different sites is completely uncorrelated. This im-
plies that for i ≠ j, the expectation value of the product equals to the product of the ex-
pectation values. Only for i = j a correlation occurs, which gives an additional term de-
scribing the mean quadratic deviation from the average:  

  ( )





=−+=

≠=
=

jibbbb

jibbb
bb ji 222

2

 

The line for i = j results from the identity:  

5 Another possibility is to use isotope enriched Gadolinium. While the isotope 157Gd with natural abun-
dance 15.7% has a thermal absorption cross section of 259000 barn, the isotope 158Gd, which is the most 
abundant with 24.8%, has an absorption cross section of only 2.2 barn. 

                                                 



A neutron primer  2.25 

  ( ) 222222 bbbbbbbb −=+−=−  (2.56) 

Therefore, we can write the cross section in the following form:  
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( ) " "
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d b e coherent
d

N b b incoherent

σ ⋅=
Ω

+ −

∑ Q RQ
 (2.57) 

The scattering cross section is as a sum of two terms. Only the first term contains the 
phase factors eiQ⋅R, which result from the coherent superposition of the scattering from 
pairs of scatterers. This term takes into account interference effects and is therefore 
named coherent scattering. The scattering length averaged over the isotope- and nuclear 
spin- distribution enters this term. The second term in (2.57) does not contain any phase 
information and is proportional to the number N of atoms (and not to N2 as for coherent 
scattering in fully constructive interference!). This term is not due to the interference of 
scattering from different atoms. As we can see from (2.56) (line i = j), this term corre-
sponds to the scattering from single atoms, which subsequently superimpose in an inco-
herent manner (adding intensities, not amplitudes!). This is the reason for the intensity 
being proportional to the number N of atoms. Therefore, the second term is called inco-
herent scattering. Coherent and incoherent scattering are illustrated in Figure 2.14. 

 
Fig. 2.14:  Two-dimensional schematic illustration of the scattering process from a 

lattice of N atoms of a given chemical species, for which two isotopes (small 
dotted circles and large hatched circles) exist. The area of the circle repre-
sents the scattering cross section of the single isotope. The incident wave 
(top part of the figure for a special arrangement of the isotopes) is scattered 
coherently only from the average structure. This gives rise to Bragg peaks 
in certain directions. In the coherent scattering only the average scattering 
length is visible. Besides these interference phenomena, an isotropic back-
ground is observed, which is proportional to the number N of atoms and to 
the mean quadratic deviation from the average scattering length. This in-
coherent part of the scattering is represented by the lower part of the figure.  

Scattering from the  

 

regular mean lattice 
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The most prominent example for isotope incoherence is elementary nickel. The scatter-
ing lengths of the nickel isotopes are listed together with their natural abundance in Ta-
ble 2.3 [8]. The differences in the scattering lengths for the various nickel isotopes are 
enormous. Some isotopes even have negative scattering lengths. This is due to resonant 
bound states, as compared to the usual potential scattering. 
 

Isotope Natural Abundance Nuclear Spin Scattering Length [fm] 
58Ni 68.27 % 0 14.4(1) 
60Ni 26.10 % 0 2.8(1) 
61Ni 1.13 % 3/2 7.60(6) 
62Ni 3.59 % 0 -8.7(2) 
64Ni 0.91 % 0 -0.37(7) 

Ni   10.3(1) 

 
Tab. 2.3: The scattering lengths of the nickel isotopes and the resulting scattering 

length of natural 28Ni [8].  
Neglecting the less abundant isotopes 61Ni and 64Ni, the average scattering length is cal-
culated as:  

  ( )[ ] fmfmb 2.107.804.08.226.04.1468.0 ≈−⋅+⋅+⋅≈  (2.58) 

, which gives the total coherent cross section of:  

  24 bcoherent πσ =⇒ ))3(3.13:(1.13 barnexactbarn≈  (2.59) 

The incoherent scattering cross section per nickel atoms is calculated from the mean 
quadratic deviation:  

  ( ) ( ) ( )2 2 2 24 0.68 14.4 10.2 0.26 2.8 10.2 0.04 8.7 10.2

5.1 ( : 5.2(4) )

Isotope
incoherent fm

barn exact barn

σ π  = ⋅ − + ⋅ − + ⋅ − − 
≈

 (2.60) 
Values in parentheses are the exact values taking into account the isotopes 61Ni and 64Ni 
and the nuclear spin incoherent scattering (see below). From (2.59) and (2.60), we learn 
that the incoherent scattering cross section in nickel amounts to more than one third of 
the coherent scattering cross section.  
The most prominent example for nuclear spin incoherent scattering is elementary hy-
drogen. The nucleus of the hydrogen atom, the proton, has the nuclear spin I = ½. The 
total nuclear spin of the system H + n can therefore adopt two values: J = 0 and J = 1. 
Each state has its own scattering length: b- for the singlet state (J = 0) and b+ for the 
triplet state (J = 1) - compare Table 2.4.  
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Total Spin Scattering Length Abundance 

J = 0 
(singlet: mJ = 0) 

b- = - 47.5 fm 
4
1  (one mJ state) 

J = 1 
(triplett: mJ = -1, 0, +1) 

b+ = 10.85 fm 
4
3  (three mJ states) 

 <b> = - 3.739(1) fm  

 
Tab. 2.4: Scattering lengths for hydrogen [8].  
Just as in the case of isotope incoherence, the average scattering length can be calculat-
ed:  

  ( ) ( ) fmfmb 74.385.10
4
35.47

4
1

−=



 ⋅+−=  (2.61) 

This corresponds to a coherent scattering cross section of about ≈ 1.76 barn [8]:  

  barnbcoherent )10(7568.124 ==⇒ πσ  (2.62) 

The nuclear spin incoherent part is again given by the mean quadratic deviation from 
the average:  

  ( ) ( ) 2274.385.10
4
3274.35.47

4
14 fmspinnuclear

incoherent 



 +++−= πσ barn2.80=  

            (exact: 80.26(6) barn) (2.63) 
Comparing (2.62) and (2.63), it is immediately clear that hydrogen scatters mainly in-
coherently. As a result, we observe a large background for all samples containing hy-
drogen. We should avoid all hydrogen containing glue for fixing our samples to a sam-
ple stick. Finally, we note that deuterium with nuclear spin I = 1 has a much more fa-
vorable ratio between coherent and incoherent scattering:  

  barnbarn D
inc

D
coh )3(05.2;)7(592.5 .. == σσ  (2.64) 

The coherent scattering lengths of hydrogen (-3.74 fm) and deuterium (6.67 fm) are 
significantly different. This can be used for contrast variation by isotope substitution in 
all samples containing hydrogen, i. e. in biological samples or soft condensed matter 
samples, see corresponding chapters.  
A further important element, which shows strong nuclear incoherent scattering, is vana-
dium. Natural vanadium consists to 99,75 % of the isotope 51V with nuclear spin 7/2. By 
chance, the ratio between the scattering lengths b+ and b- of this isotope are approxi-
mately equal to the reciprocal ratio of the abundances. Therefore, the coherent scattering 
cross section is very small and the incoherent cross section dominates [8]: 

  barnbarn V
incoh

V
coh )6(08.5;)12(01838.0 == σσ  (2.65) 
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For this reason, Bragg scattering from vanadium is difficult to observe above the large 
incoherent background. However, since incoherent scattering is isotropic, the scattering 
from vanadium can be used to calibrate multi-detector arrangements.  
Here, we will not discuss scattering lengths for further elements and refer to the values 
tabulated in [8]. 
 

2.13 Magnetic neutron scattering 
So far, we have only discussed the scattering of neutrons by the atomic nuclei. Apart 
from nuclear scattering, the next important process is the scattering of neutrons by the 
magnetic field created within the sample from the moments of unpaired electrons. This 
so-called magnetic neutron scattering comes about by the magnetic dipole-dipole inter-
action between the magnetic dipole moment of the neutron and the magnetic field of the 
unpaired electrons, which has spin and orbital angular momentum contributions. This 
magnetic neutron scattering allows us to study the magnetic properties of a sample on 
an atomic level, i. e. with atomic spatial- and atomic energy- resolution. Here we do not 
discuss magnetic neutron scattering any further and refer to the corresponding chapter 
on "Spin Dependent and Magnetic Scattering".  
 

2.14 Comparison of probes 
In this lecture, we have so far introduced the elementary formalism to describe the scat-
tering process and discussed the interaction of neutrons with matter. We now want to 
ask the question, for which problems in condensed matter research neutrons can be uti-
lized successfully also in comparison to other probes, such as x-ray scattering or elec-
tron microscopy and electron scattering. To answer this question, we have to look at the 
ranges of energies, wavelengths or scattering vectors, which can be covered by various 
probes as well as the different contrast mechanisms.  
 
Figure 2.15 shows a double logarithmic plot of the dispersion relation "wavelength ver-
sus energy" for the three probes neutrons, electrons and photons. The plot demonstrates 
how thermal neutrons of energy 25 meV are ideally suited to determine interatomic dis-
tances in the order of 0.1 nm, while the energy of x-rays or electrons for this wavelength 
is much higher. However, with modern techniques at a synchrotron radiation source, 
energy resolutions in the meV-region become accessible even for photons of around 10 
keV corresponding to a relative energy resolution DE/E≈ 10-7! The graph also shows 
that colloids with a typical size of 100 nm are well suited for the investigation with light 
of energy around 2 eV. These length scales can, however, also be reached with thermal 
neutron scattering in the small angle region. While Figure 2.15 thus demonstrates for 
which energy-wave-length combination a certain probe is particularly useful, modern 
experimental techniques extend the range of application by several orders of magnitude.  
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Fig. 2.15: Comparison of the three probes - neutrons, electrons and photons - in a 

double logarithmic energy-wavelength diagram.  
It is therefore useful to compare the scattering cross sections as it is done in Figure 2.16 
for x-rays and neutrons. Note that the x-ray scattering cross sections are in general a 
factor of 10 larger as compared to the neutron scattering cross sections. This means that 
the signal for x-ray scattering is stronger for the same incident flux and sample size. But 
caution has to be applied that the conditions for kinematical scattering are fulfilled. For 
x-rays, the cross section is proportional to the square of the number of electrons and 
thus varies in a monotonic fashion throughout the periodic table. Clearly it will be diffi-
cult to determine hydrogen positions with x-rays in the presence of heavy elements such 
as metal ions. Moreover, there is a very weak contrast between neighboring elements as 
can be seen from the transition metals Mn, Fe and Ni in Figure 2.16. However, this con-
trast can be enhanced by anomalous scattering, if the photon energy is tuned close to the 
absorption edge of an element. For neutrons the cross section depends on the details of 
the nuclear structure and thus varies in a non-systematic fashion throughout the periodic 
table. For example, there is a very high contrast between Mn and Fe. With neutrons, the 
hydrogen atom is clearly visible even in the presence of such heavy elements as Urani-
um. Moreover there is a strong contrast between the two Hydrogen isotopes H and D. 
This fact can be exploited for soft condensed matter investigations by selective deuter-
ation of certain molecules or functional groups. This will vary the contrast within the 
sample.  
Finally, both neutrons and x-rays allow the investigation of magnetism on an atomic 
scale. Magnetic neutron scattering is comparable in strength to nuclear scattering, while 
non-resonant magnetic x-ray scattering is smaller than charge scattering by several or-
ders of magnitude6. Despite the small cross sections, non-resonant magnetic x-ray 
Bragg scattering from good quality single crystals yields good intensities with the bril-
liant beams at modern synchrotron radiation sources. While neutrons are scattered from 
the magnetic induction within the sample, x-rays are scattered differently from spin and 

6 Typically between 6 to 9 orders of magnitude. 
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orbital momentum and thus allow one to measure both form factors separately. Inelastic 
magnetic scattering e.g. from magnons or so called quasielastic magnetic scattering 
from fluctuations in disordered magnetic systems is a clear domain of neutron scatter-
ing. Finally, resonance exchange scattering XRES of synchrotron x-rays allows one not 
only to get enhanced intensities, but also to study magnetism with element- and band 
sensitivity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.16: Comparison of the coherent scattering cross-sections for x-rays and neu-

trons for a selection of elements. The area of the colored circles represent 
the scattering cross section, where in the case of x-rays a scale factor 10 has 
to be applied. For neutrons, the blue and green circles distinguish the cases 
where the scattering occurs with or without a phase shift of π. For 1H and 
28Ni, scattering cross sections for certain isotopes are given in addition to 
the averaged values for the natural abundancies.  

With appropriate scattering methods, employing neutrons, x-rays or light, processes in 
condensed matter on very different time and space scales can be investigated. Which 
scattering method is appropriate for which region within the "scattering vector Q - ener-
gy E plane" is plotted schematically in Figure 2.17. A scattering vector Q corresponds 
to a certain length scale, an energy to a certain frequency, so that the characteristic 
lengths and times scales for the various methods can be directly determined from the 
figure. Examples for applications and information on instrumentation will follow in 
subsequent lectures. 
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Fig. 2.17: Regions in frequency v and scattering vector Q or energy E and length d, 

which can be covered by various scattering methods.  
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Exercises 
 

Multiple choice 
 

1. The typical diameter of an atom is closest to 
   1µm 
   1nm 
   1pm 
   1fm 

 
2.  The typical diameter of a neutron is closest to 

   1µm 
   1nm 

   1pm 
   1fm 
 

3. Neutrons are neutral particles, neutron counting is done electronically, i.e. an 
electronic pulse has to be generated in a neutron detector. What would you use 
as counting gas in order to build a neutron detector: 
   3He 
   4He 
   H 
   D 
 

4. You have to build a slit in order to define a beam size for neutrons of wave-
length 1 Å. Which material could you use: 
   Pb 
   Gd 
   Cd 
   Al 

 
5. For a scattering experiment on Ni, you need a sample with strong coherent scat-

tering, but as little background as possible. Which isotope mixture would you 
chose? 
   100 % 58Ni 
   100 % 61Ni 
   100 % 64Ni 
   57 % 62Ni + 43 % 61Ni 
 

6. Kinematic scattering theory takes into account 
   refraction 
   attenuation 
   multiple scattering 
   none of the above 
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b) What is the disadvantage of such a sample chamber? 
 

 
 

E2.13 Neutron absorption 
 
Aluminium has a face centred cubic crystal structure (cubic close packed lattice) with a 
lattice constant of a0 = 4.04959 Å. The absorption cross section for neutrons of velocity 
2200 m/s amounts to 0.231 barn.  
 

a) Calculate the absorption cross section of Aluminium for neutrons of wavelength 
λ = 1 Å.  
 

b) Besides pure absorption, do we have to take into account other processes when 
calculating the total attenuation? 
 

The following exercise parts c and d are optional! 
 

c) Due to absorption, the neutron beam is attenuated according to dI=-µ⋅I⋅dx or 
I=I0⋅e-µ⋅x, where µ is the linear absorption coefficient. Calculate µ for neutrons 
of wavelength 1 Å for Aluminum.(Hint: Calculate the absorption cross section 
per unit cell and compare to the unit cell dimensions).  
 

d) Determine the attenuation of a 1 Å neutron beam in an Al slab of 10 cm thick-
ness due to absorption only in percentage of the incident flux.  

nuclid natural abun-
dance 

scattering 
length b (fm) nuclid natural abun-

dance 
scattering 
length b (fm) 
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3.1 Introduction

Neutrons are an extremely versatile probe to investigate the fundamental properties of matter.
The possible applications range from fundamental questions (e.g. electrical dipole moment
of the neutron) over condensed matter physics and chemistry to material science and life
sciences. The reason for this is threefold:

• The neutron is electrically neutral: hence it can penetrate deeply into matter and prove
truly the bulk properties. If you use other massive particles to investigate the properties
of matter such as α particles or electrons, you probe usually only the regions close to
the surface. Even for x-ray, which is also considered as a bulk technique in general,
you penetrate only several hundreds of nm, if you use the wavelength delivered by a
laboratory x-ray tube.

• The neutron interacts with the sample via nuclear forces: hence the interaction cross
section depends on the internal structure of the nuclei in your sample and not on the
mass or electric charge of the whole atom. Neutrons are sensitive more or less equally
to heavy and light atoms, making them an ideal probe for samples containing hydrogen,
carbon or oxygen next to any other heavier atom.

• The neutron has a large magnetic moment: hence it is extremely sensitive to the mag-
netic properties of your sample. The magnetic field created by the sample scatters the
neutron and the analysis of the direction, into which the neutrons are scattered, and the
number of scattered neutrons provides the information about the magnetic structure,
the size of the magnetic moments and the coupling between different magnetic sites.

Neutrons are in particular useful, because the wavelength corresponds very well with the in-
teratomic distances and the energy is similar to the energy of typical excitations in condensed
matter problems. We calculate the kinetic energy of a free neutron

Ekin = 1
2
m|v|2 (3.1)

= |p|2
2m

(3.2)

= h2

2mλ2
, (3.3)

using the de Broglie relation, that expresses the wavelength of a quantum mechanical particle
with momentum p:

λ =
h

|p|
(3.4)

If we insert the natural constants, we get

E(λ) = 81.805 meVÅ
2 ×λ−2 (3.5)

v(λ) = 3956 ms−1Å ×λ−1 (3.6)

In other words, if we provide neutrons with a wavelength 0.8 < λ < 20 Å suitable for
resolving interatomic distances in condensed matter, these neutrons are also ideally suited to
study the dynamics in the energy range 0.001 < E < 100 meV.



Neutron Sources 3.3

Apparently the properties of the neutrons make them an attractive probe for a wide variety

of applications. In the reminder of the lecture I will try to answer the question, what the

providers of neutrons, e.g. JCNS, FRM II, ILL, SNS..., can do to make their users happy.

Therefore we first need do understand, what users want. We consider an generic neutron

spectrometer, that allows to measure transfer of energy and momentum between neutron and

the sample, see Fig. 3.1. How this is done, you will learn in the other lectures of the

course and mainly during the practical part. The signal you get finally at the detector of your

Fig. 3.1: Generic layout of a
neutron spectrometer

instrument can be expressed in the following way:

Idet = I0εprεsecεdetσsampleVsample + background (3.7)

I0 is the incident neutron brilliance, i.e. the number of neutrons per second emitted from

the source normalized by area, solid angle and energy or wavelength interval, εx denotes the

efficiencies of the primary and the secondary spectrometer and the detector, σsample, Vsample

is the cross section and the volume of the sample, respectively. If you have an interesting

scientific question that has not been answered yet, usually the both the cross section and

volume are small. Hence to get good data, you need first an efficient instrument with a good

signal to noise ratio, which detects ideally all and only the neutrons scattered by the sample.

Second you need a low background that allows you to distinguish also tiny signals. And last

but not least you need an intense source of neutrons, that brings a lot of useful neutrons to

the instrument.

3.2 How do we get free neutrons?

The free neutron has a mean lifetime of about 900 s, hence it is necessary to produce the free

neutrons as you run your experiment. While most nuclei are constituted to more then 50 %

by neutrons, nuclear forces confine them and hence it is rather difficult to set neutrons free.

Nowadays free neutrons for scientific applications are released by nuclear reactions mainly in

fission reactors or in spallation sources. Both routes require large scale facilities, that operate
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the source and provide state-of-art instrumentation. One example for the nuclear research
reactor is the FRM II, where you will perform the practical part of the Laboratory Course.
The most powerful spallation source today is the SNS installed at the Oak Ridge National
Laboratory in the USA.

The neutron as a free particle was discovered by James Chadwick in 1932, when he inves-
tigated the radiation from Beryllium illuminated with α particles. Finally he described the
ongoing reaction as

4
2α +9

4 Be→12
6 C +1

0 n. (3.8)

The uncharged particle in this equation was called neutron. The flux of free neutrons released
by the reaction was about 100 n cm−2s−1. Such a small number would prevent any scattering
experiment.

3.2.1 Nuclear fission reactors

With the development of nuclear fission reactors in the 1940ies the situation changed. Using
the fission reaction

235U +1
0 n→ fission fragments + 2.52×1

0 n+ 180MeV (3.9)

the first experimental reactors released about 107 n cm−2s−1. Beside the investigation of the
nuclear reaction, such a flux enabled the first scattering experiments with neutrons. In the
following the thermal neutron flux increased dramatically until it saturated in the mid fifties.
The still most powerful research reactor at the ILL became critical in 1974. The modern
FRM II reactor has 0.5 × the flux of the ILL, but the thermal reactor power is lower by a
factor 0.33 due to special core design. Furthermore, the flux of cold neutrons (see Sec. 3.3)
is more or less the same.

In the nuclear fission reaction eq. (3.9) a slow neutron is captured by an 235U nucleus, which
then splits into two fragments releasing 2 or 3 prompt neutrons, which carry an energy of
1.29 MeV. Each of this instantaneously (within 10 ns) emitted neutrons can fission another
nuclei so that each of them will emit another 2 to 3 neutrons. The process is called chain
reaction. If the mass of the fissile material is larger than the so called critical mass MC

the number of neutrons will increase exponentially, leading to an uncontrollable reaction. If
the mass of the fissile material is smaller than MC the number of neutrons will decrease
over time and the nuclear chain reaction stops. If you want to sustain the nuclear reaction
for a long time it is necessary to control the neutron flux such that the number of neutrons
that drive the chain reaction remains constant. The control of the reactor is possible, if the
nuclear reaction is not only triggered by the prompt neutrons. The fission fragments are
also highly excited nuclei and relax to their ground state by the emission of neutrons among
other nuclear reactions. Concerning only the prompt neutrons, the reactor is operated below
its critical mass MC , but the delayed neutrons, which are comprised by the prompt neutrons,
which are moderated in the cooling medium and the secondary neutrons from the fission
fragments, sustain the chain reaction. The number of delayed neutrons is controlled by rods
of neutron absorbing material (usually Boron), which can be inserted in the reactor core.
Beside the control rods, which are used to steer the reactor, additional rods exist to fully stop
the flux of neutrons and shut down the reactor.
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Fig. 3.2: Left) Schematic presentation of the fission process of 235U. Right) Controlled chain
reaction in the nuclear reactor. Control rods reduce the number of slow neutrons to the amount
just as necessary for the selfsustaining chain reaction. By the proper adjustment of the control
rods position, the reaction may remains critical only with the inclusion of the delayed by a few
seconds neutrons. From http://en.wikipedia.org/wiki/Nuclear fission.

With the development of the nuclear research reactors the thermal neutrons flux increased

rapidly until it reached a flux Φ = 1015 n/cm2/s at the end of the 1960ties. An increase

in neutron flux goes simultaneously with an increase in the thermal power of the reactor.

However, the installations for extracting the neutrons suffers strongly by heat and radiation

damage. Therefore the development of more powerful research reactors has stopped with the

design of ILL reactor. The modern FRM II reactor has a very compact reactor core, which

provides half of the thermal neutron flux using only one third of reactor power as compared

to the ILL.

3.2.2 Spallation neutron source

As an alternative to nuclear fission reactors a large number of neutrons can be released from

the nucleus via spallation reactions.Here, high energy protons (E ≈ 1GeV ) are accelerated

onto a target made of a neutron rich material. Due to the large energy, the de Broglie wave-

length

λ =

√
h2

2mE
(3.10)

is so short, that the protons interacts with the single nucleons instead of the nucleus as a

whole. The kicked nucleon may either leave the nucleus leading to an inter-nuclear cascade

or may be scattered by other nucleons leading to an intra-nuclear cascade. However, as a

result of stage 1 of the spallation process, the nucleus is in a highly excited state. In stage

2 this energy is released by evaporation of a whole particle zoo, including neutrons. The

neutron yield per spallation event depends on the target material. For typical materials 20-50
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neutrons are released per spallation event. The deposited heat depends on the target material,

too, and is on the order of 20 to 50 MeV/10n.

Concerning safety, the spallation source can never run out of control as no chain reaction

is running. Neutrons are only produced, as long as the protons are accelerated onto the

target. Even better, this feature can be used to impose a precise time structure on the neutron

spectrum. The spallation process happens on a time scale of 10−15 s. Therefore the length

of the proton pulse determines the length of the neutron pulse. If one measures the time of

flight of a neutron from the source to the detector at your instrument, the neutron velocity

can be determined, as the flight path is also known. You will learn more about time-of-

flight spectroscopy and diffraction in the remaining lectures. Among the spallation source

a)

b)

Fig. 3.3: Schematic of a long pulse and a short pulse spallation source.

on distinguishes so called long pulse spallation sources (LPSS) and short pulse spallation

sources. Using a linear accelerator a proton bunch with a width of several ms can be tailored.

If the neutron pulse should be shorter, the protons have to be compressed. This is done by

feeding the protons from the Linear accelerator into a synchrotron. The next bunch is then

feed in, when the former one has revolved once, to make a denser proton bunch. Using

the compressor, the 1μs duration pulses. While the latter type provides a higher peak flux,

i. e., more neutrons in a short time intervall, the former type yields a significantly higher

average neutron flux, in particular in the energy range that is typically used for diffraction

experiments. Therefore certain experiments are better of at a SPSS, while the LPSS provides

a more versatile spectrum and clearly is superior for ’slow’ neutrons. The most powerful

existing spallation source, the 1.4 MW SNS at Oak Ridge is a SPSS, while the planned ESS

in Lund, Sweden, will be a LPSS with 5 MW power.
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3.2.3 Compact Neutron Sources

Recently we observe a trend to explore ’low’ energy nuclear reactions for the realisation
of low to medium flux sources, which are supposed to be scalable both in power and in
cost [6, 7]. They are also accelerator driven, but since the particle energy ranges from 5 <
E < 100 keV, the target monolith can become much more compact. A variety of potential
reactions exist , e.g. protons or deuterons on Be or Li or electrons on Tungsten. The lower
projectile energy enables more compact target-moderator assemblies (see below), so that a
larger fraction of the produced neutrons can be made useful for the actual thermal or cold
neutron experiment.
For the low energy accelerator commercial solutions often exist already, e.g. for medical
applications. This makes the construction and the operation of such a facility an easier task
compared to reactors or spallation sources. Therefore it is envisioned to create a network
of such low power sources, which provide sufficient flux to perform the experiments, which
are not very flux demanding, but rely on a close distance and immediate access, e.g. when
feedback for the sample preparation is needed. Furthermore such source could be extremely
valuable for the education of future neutron users, as students could acquire there much more
experience than on a lab course like this one.

3.2.4 Comparison of the different sources

Comparing the different sources, we have to consider a number of features:

Neutron Flux Nowadays reactor sources still provide the highest average neutron flux. This
flux is still higher as the flux at the 1.4 MW SPSS. The 5 MW spallation source will
actually reach a similar average flux. However, for most experiments it is necessary, to
select only a narrow range in energy or wavelength, respectively. At a pulsed source
this can be done natively using time-of-flight monochromatization. Then not the aver-
age flux, but the peak flux, i. e., the flux during the proton pulse, counts. In that case,
the monochromatic intensity at the spallation source can be higher. For the compact
sources the flux dependes strongly on the accelerator power and hence the budget of
the operating facility. Small sources with less than 10 KW power have a sample flux 20
to 100 times smaller than spallation sources. For the high power compact sources with
100 KW power, the sample flux is expected to be comparable to nowadays medium
flux reactors.

Safety While the fissile material inside the reactor core of a research reactor is only a small
fraction of the amount in a nuclear power plant, there is still a nuclear chain reaction
ongoing, which in principle can run out of control. The spallation sources and the
compact sources rely on the operation of the accelerator and are therefore inherently
safe.
As all sources use nuclear reactions and create high energy particles, they both produce
radioactive waste, which must be treated or stored after the operation of the facility. In
case of the spallation source the waste has generally shorter life times. Concerning
radiation safety, the energy spectrum of spallation neutrons contains more very fast
neutrons, compared to the reactor spectrum and the spectrum of the low energy nuclear
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reaction. Hence spallation sources require heavier and more complex shielding around
the target and around the beamlines, which is an important cost driver of a spallation
facility. In particular for the low power compact sources, the radiation level is rather
low, so that compact shielding assemblies enable a close access to the source and easy
operation.

Stability In fact, the operation of a GeV proton accelerator is quite delicate. As already
mentioned this makes the source very safe. On the other hand, sometimes it may
also happen, that the proton beam is not available for quite some time during your
allocated beam time. The neutron reactor runs usually very stable without interruption.
Additionally the neutron flux is more stable at the reactor making it easier to compare
individual measurements.

Technical feasibility The source neutron flux at a reactor could be increased only by an in-
crease of the thermal power. There have been attempts to build a more powerful reactor
in the US in the nineties, which have been abandoned for economical reasons. The heat
removal from the core becomes extremely complex and also the radiation damage to
the installations necessary for the extraction of the neutron is a severe issue. For the
SPSS exist similar arguments. The intense proton beam implants a large amount of
heat in a very short time interval. Again the major problem is the removal of this heat.
There seems to be a technological limit also for the short pulse spallation sources to
increase their power far beyond the present state. For the long pulse spallation sources,
the situation seems to be slightly relaxed. Since the heat is implanted during a longer
time interval, the heat removal is facilitated. The 5 MW of power for the ESS could
possibly increased up to 10 MW. There exist even estimates, that one could design a
long pulse spallation target running at 20 MW. However, these are plans for the very
far future, as already the ESS will be operational in the 2020ies only. For the compact
sources, the accelerator issue is relaxed. For the realisation of the high power version,
the requested beam currents are on the edge of today’s technology. Still the pressing
question is the heat that has to be removed. For 3.1 it is clear, that this reaction pro-
duces the same heat for 60 times less neutrons as compared to the spallation reaction.

Reaction Energy (GeV) Neutron yield Deposited heat (MeV)
per event per event per neutron

235U fission 1 180
Pb spallation 1 20 23
9Be(d,n) 0.025 0.006 1200

Table 3.1: Comparison of neutron producing reactions

3.3 How do we make free neutrons useful?

After the nuclear reaction the released neutrons have energies in the MeV range correspond-
ing to a wavelength according to eq. (3.10) λ ≈ 10−5 Å. The energies we are interested
in solid state physics, chemistry or biology rather range from the µeV range for relaxation
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phenomena to the eV range for the bonding of the valence electrons in molecules. One my
also compare the energy scale to the corresponding temperatures via

Etherm = kBT. (3.11)

From here we see that 1 meV is equivalent to a temperature of 11.6 K or vice versa 300 K
are equivalent to 25.6 meV.

The distances we want to resolve in a neutron scattering experiment are on a atomic or
molecular length scale and range from 1 Å to 1µm and therefore the neutrons should have
comparable wavelength to have an appropriate resolution. If we use again the expression
for the de Broglie wavelength eq. (3.10), we find that a neutron with an energy E = 25.6
meV has a wavelength λ = 1.8 Å, fulfilling both requirements simultaneously. This is also
the reason, why neutron scattering is so versatile for studies of the dynamics of crystalline
materials, because all atoms in a crystal show coherent motions due to their arrangement and
bonding.

How can we change the neutron energy to the range, we are interested in? The best way is,
if they collide elastically with other partners of much lower energy and spread this energy
in a large volume ( don’t forget, that 1 MeV= 1.6 × 10−13 J). The energy loss per collision
depends on the mass of the colliding partners: The highest energy transfer is achieved, if the
mass of both partners is equal. Therefore 1H or 2H are the best partners, making water an
ideal choice for the moderator. Since protons like to react with neutrons, the moderator often
contains heavy water, i.e. D2O, which has a smaller absorption cross section. For the FRM
II the reactor core is surrounded by the heavy water tank. The outer area of the water tank
is filled with light water, hence the flux of neutrons hitting the biological shielding outside
the tank is already reduced.

Typically it takes several tens of µs to moderate the neutron to the temperature of the sur-
rounding water. This process is therefore called thermalization. Within this time the neutron
travel away from the reactor core, where they are produced. On the other hand, there is a
finite probability for the absorption of a neutron, if the flight path inside the water is too
long. The maximum of the thermal neutron flux density is displaced from the reactor core
with the fuel element by 10 to 15 cm, as shown in Fig. 3.4 a).

For an experiment it is now of main interest to collect as many useful neutrons from the
reactor, but not to get the fast neutrons or the Γ radiation that are created in the nuclear
reactions into the experimental area. Therefore the beam tubes, as indicated in Fig. 3.4
b) don’t face the reactor core, but tangentially look onto the maximum of the thermal flux
distribution.

In the end of the thermalization process the neutrons are in thermal equilibrium with the
surrounding medium. The energy distribution takes the form of the Maxwell distribution:

Φ(E) =
2
√
E√

π(kbTM)3
exp−

(
E

kbTM

)
(3.12)

The neutrons are commonly classified for certain energy and wavelength ranges according to
the position of the maximum of the Maxwell distribution for a given moderator temperature
TM :
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a) b)

Fig. 3.4: a) Radial distribution of the thermal neutron flux density in the reactor vessel. The
green line indicates the distribution, where the full thermalization is reached, the blue line
indicates that the absorption decreases the neutron flux. b) Schematic of the reactor vessel
of the FRM II showing the reactor core and the beam tubes extracting the neutrons to the
experiments. The reactor tank with internal diameter approx. 5m is filled with light water (1).
In the centre of the arrangement the reactor core is situated. The experimental installations as
horizontal beam tubes (2), a cold (3) and a hot (4) neutron source are arranged in the heavy
water tank (5) around the fuel element (6).

Energy range(meV) Wavelength range (Å)

Ultra cold E < 0.0005 λ > 400

Very cold 0.0005 < E < 0.005 40 < λ < 400

Cold 0.05 < E < 5 4 < λ < 40

Thermal 5 < E < 100 0.9 < λ < 4

Hot 100 < E < 1000 0.3 < λ < 0.9

To access the respective energy range the moderator should again effectively moderate the

neutrons but also be transparent for the neutrons. A liquid hydrogen vessel fulfills the re-

quirements for cold neutrons. A more effective but also more difficult technique employs

solid methan as a moderator in a cold source. A carbon block heated to a temperature above

1000 K is used in reactors to provide an intense source of hot neutrons . In Fig. 3.5 the

spectra for the different moderator temperatures show clearly, that the maximum is shifted

towards shorter wavelength, when the temperature is increased. In a short pulse spallation

source usually a different route is used to yield an intense beam of hot neutrons: All neutrons

are released during the very short period, when the proton beam interacts with the target. Be-

fore the thermal equilibrium is reached, the epithermal neutron flux is therefore even higher

than the flux at a hot source. Extracting the neutron in this transient state very intense ep-

ithermal neutron beams can be realized. The time structure of the source might then be used

to discriminate the eventually increased background.
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Fig. 3.5: Neutron wave-
length distribution for dif-
ferent moderator tempera-
tures.Cold spectrum, T =
20 K, blue line, thermal
spectrum, T = 300 K,
green line, hot spectrum,
T = 2000 K, red line.

3.4 How do we bring the neutrons to the experiment?

The angular distribution of the thermal flux distribution at the end of the thermalization pro-

cess is fully isotropic. To calculate the flux at the exit of a beam tube approximately one has

to divide the thermal flux at the maximum by the surface area of the sphere with the respec-

tive radius, in the case of the FRM II 2.5 m, see Fig. 3.4 b). Already at this distance the flux

is reduced by 6 orders of magnitude. If the distance required to build an actual instrument is

added, the flux is lowered by 8 orders of magnitude.

c)

Fig. 3.6: a) Schematic of a light wave guide. External total reflection occurs, because the
fibre is optically denser than the air. b) Schematic of a neutron guide. Total reflection occurs,
because the index of refraction of the mirror coating is smaller than 1. c) Picture of a super
mirror neutron guide, taken from www.swissneutronics.ch.
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To overcome this problem, neutron guides are used. These consist of 4 neutron mirrors,
enclosing the flight path of a neutron. The principle of the neutron guide is similar to light
wave guides: External total reflections prevents the neutrons from leaving the guide and they
are transported to the end of the guide. In the case of the light wave guide, the fibre has
a larger index of refraction than the surrounding air, giving rise to typical critical angles
θC ≈ 45◦. For the neutron guide, the vacuum inside has a larger index of refraction and the
critical angle is given by

θC = λ

√
2ρbc
π

(3.13)

with the particle density ρ and the coherent scattering length bc. The element with the largest
critical angle is Nickel and for the element the critical angle can simply be approximated
θC = 0.1◦Å

−1
. If we install such a neutron guide behind a beam tube, all neutrons, that

impinge on the Ni surface under a shallower angle than the critical angle, will be guided to
the instrument. If we calculate for λ = 5 Å neutrons we loose only 4 orders of magnitude
independent of the distance from the reactor core. Hence such a neutron guide can be used
to provide more space for instruments by going further away from the reactor. Nowadays
so called supermirrors consisting of thin layers of e.g. Ni and Ti increase the critical angle
of Ni by a factor up to 7. In that case it becomes possible to build neutron guides not only
for cold neutrons but also for thermal neutrons. Furthermore complex focusing optics can be
realized by neutron guides to increase the number of useful neutrons at the spectrometer and
simultaneously keep the background low.

At least as important as gaining space is the fact, that the direct sight from the instrument
onto the reactor core can be omitted. Fast neutrons and Γ radiation leave the moderator
through the holes for the neutron beamlines. They go mainly in a straight line from where
they have been created, because their scattering cross section is very small. When these
particles are captured they release a shower of secondary particles, the higher the energy
of the primary particle is. In the case of the neutron reactor, the spectrum of high energy
particles is limited by the energy of the nuclear reaction, ca. 200 MeV. At spallation source
neutrons can be generated up to the energy of the proton beam, i.e. 3 GeV.

The primary and the secondary particles contribute mainly to the radiation background
around the instruments. They can of course also contribute to the background in your detec-
tor. The particles are kept away from users and detectors by massive shielding, containing a
lot of concrete (for fast neutrons) or lead (for Γ radiation). If a neutron guide is bend with
a large radius, the direct line of sight hits the wall of the neutron guide at a position, that
cannot be seen from the sample position and the background of the instrument can be further
suppressed. Of course your shielding must then be strongest in the direct line of sight.

3.5 How do we detect neutrons?

On of the strongest advantages of the neutrons is their neutrality. It allows to probe deeply
into matter. On the other hand, this makes the detection of a neutron difficult, as it penetrates
large volumes of matter without interaction. Luckily there exists a hand full of isotopes that
have a large absorption cross section for thermal or cold neutrons, such as 3He 10B, Gd or
235U. The nuclear reactions create charged particles, which can be analyzed by interaction
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with the electric fields. Since the absorption cross section in the thermal to cold energy
range increases more or less linearly with the wavelength, the detection of cold neutrons is
more effective than the absorption of thermal neutrons.

One type of detector is the gas proportional counter filled either with 3He gas or gaseous
10BF3. The absorption process releases a certain number of photons, which create secondary
electrons by Compton scattering or the photo effect, or high energetic charged particles. The
particles are accelerated onto the cathode or anode according to their charge and the resulting
current can be related to the neutron absorption event. A refinement of the apparatus allows
also the localization of the absorption event yielding a position sensitive detector. Features
of the gas proportional counter are a high detection probability, which can be tuned by the
filling pressure, and a low sensitivity to Γ radiation. Disadvantages are a limited count rate
before the detector saturates and a position sensitivity > 1 cm.

Due to the shortage of 3He and the toxicity of 10BF3 alternative detector concepts have been
developed, where the neutron is absorbed in a thin 10B layer evaporated on a thin Al sub-
strate. The neutron absorbing layer must be thin enough (< 10µm) for the charged particles
to leave the layer and achieve the signal amplification in the counting gas. As the absorption
probability within a single layer is low, several films are stacked behind each other to improve
the detection efficiency. As a result, the detector provides an additional depth information,
which might in future be applied to improve the signal quality.

A szintillation detector provides a much higher spatial resolution. Here the neutron absorp-
tion at a neutron absorber embedded in the solid szintillation material yields photons that
are detected by the photo electric effect. This detectors provides a higher spatial and timing
resolution but has also a larger Γ sensitivity.

3.6 The take home messages

Today, intense neutron beams are available a nuclear research reactors and spallation sources.
Reactors deliver a very stable continuous beam, while spallation sources provide a very high
peak flux that can be effectively used by time-of-flight methods. And the compact (and
cheap) neutron sources aim at bringing neutrons close to user and revolutionise the access
scheme to analysis methods with neutrons.
Neutrons are extremely useful for condensed matter research, if the wavelength and kinetic
energy match the length scale and energy scale of e.g. magnetic compounds, polymers or
biological samples. The neutron spectrum is shaped by moderating the fast neutrons released
in the nuclear reaction in a volume containing a lot light elements, e.g. water for thermal
neutrons, liquid hydrogen or solid methan for cold neutrons or heated graphite for hot neu-
trons. The most important quantity describing a moderator/source complex is the spectral
brilliance, i.e the number of neutrons per energy or alternatively wavelength, solid angle,
area and time.
Neutron guides are used to transport neutrons with only small losses quite far away from
the actual neutron source. This gives more space for instruments, improves the background
conditions and may even be used to tailor the neutron beam properties using complex optics
similar to light optics.
At present we observe a revolution in the neutron detection technology. With the shortage
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of the traditional neutron detection gas 3He novel concepts have been conceived, which go
now from area detectors to volume detectors. The exact of route of the developments is still
open, but we can see exciting new properties of the detectors, which will improve the signal
quality yielded by neutron scattering instruments.
The developments at all stages of the neutron instrumentation will provide new opportunities
for science, that you will hopefully explore during your career.

Further reading

1. G.R. Bauer (1993) Neutron sources. In: A.Furrer (ed.) Neutron Scattering, pp. 331–
357. PSI-Proceedings No. 93-01, ISSN 1019-6447, Paul Scherrer Institute, Villigen.

2. J.M. Carpenter and W.B. Yelon (1986) Neutron sources. In: K. Sköld and D.L. Price
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Exercises

E3.1 How are neutrons characterized?*

Write down the kinetic energy of a free neutron as a function of its momentum!
What is the velocity in ms−1 and energy in meV of neutrons with a wavelength λ = 1, 1.8, 5
Å, respectively?

mn = 1.675× 10−27kg
h = 6.626× 10−34Js
e = 1.602× 10−19As

E3.2 How many neutrons are produced?**

Calculate the neutron flux density of a 20 MW reactor, assuming that the flux maximum
is displaced 10 cm from a point-like reactor core! What would be the flux density of a
hypothetical spallation source with the same thermal power?

E3.3 How do the neutrons come to your experiment?

Why is the neutron flux reduced, when you build the diffractometer/spectrometer at larger
distance without a neutron transport system? When is it advantageous to have the instrument
close to the neutron source? What reasons can you imagine to separate the instrument from
the neutron source?
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4.1 Introduction to part 1 

 
The term “crystal” derives from the Greek κρύσταλλος, which was first used as a de-
scription of ice and later - more generally - of transparent minerals with regular mor-
phology (regular crystal faces and edges). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1:  Example: Quartz (SiO2), mineral specimen from the Gotthard-Massif.  

 
Matter is usually classified into three states: gaseous – liquid – solid. Crystals are repre-
sentatives of the solid state. Crystalline solids are thermodynamically stable in con-
trast to glasses and are characterised by a regular three-dimensional periodic ar-

rangement of atoms (ions, molecules) in space. In this chapter we discuss basic con-
cepts which are used to describe the structure of crystals. 

 

4.2 Crystal lattices 

 
The three-dimensional periodicity of crystals can be represented by the so-called crystal 
lattice. The repeat unit in form of a parallelepiped - known as the unit cell – is defined 
by 3 non-linear basis vectors a1, a2, and a3, whose directions form the reference axes X, 
Y, and Z of the corresponding right-handed crystallographic coordination system. The 6 
lattice parameters are given as the lengths of the basis vectors a = a1, b = a2, c = 
a3 and the angles between the basis vectors: angle (a1,a2) = γ, angle (a2,a3) = α, angle 
(a3,a1) = β. The faces of the unit cell are named as face (a1,a2) = C, face (a2,a3) = A, 

face (a3,a1) = B. 

If the vertices of all repeat units (unit cells) are replaced by points, the result is the crys-
tal lattice in the form of a point lattice. Each lattice point is given by a vector a = 

ua1+va2+wa3, with u, v, w being integers. a acts as the symmetry operation of parallel 
displacement also known as a translation and maps the atomic arrangement of the crys-
tal (crystal structure) onto itself. 
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Fig. 4.2:  Unit cell with basis vectors, point lattice, and notation for: lattice point 210, 
lattice direction [121] and lattice plane (211) 

A lattice point is named “uvw”, according to the coefficients (integers) of the transla-
tion vector a = ua1+va2+wa3 from the origin to the lattice point. A lattice direction - 
given by the symbol [uvw] - is defined by the direction of the corresponding translation 
vector. 

A plane passing through three lattice points is known as a lattice plane. Since all lattice 
points are equivalent (by translation symmetry) there will be infinitely many parallel 
planes passing through all the other points of the lattice. Such a set of equally spaced 
planes is known as a set of lattice planes. If the first plane from the origin of a set of 
lattice planes makes intercepts a/h, b/k, c/l on the X, Y, Z axes, respectively, where h, k, l 
are integers, then the Miller indices of this set of lattice planes are (hkl), the three fac-
tors h, k, l being enclosed in parentheses. 

The equation of lattice planes can be written in intercept form as 

(hx/a) + (ky/b) + (lz/c) = n, (4.1) 
where n is an integer. If n = 0 the lattice plane passes through the origin; if n = 1 the 
plane  makes  intercepts  a/h,  b/k,  c/l  on  the  X,  Y,  Z  axes  respectively; if  n = 2  the 
intercepts are 2a/h, 2b/k, 2c/l; and so on.  

The line of intersection of any two non-parallel lattice planes is a row of lattice-points 
common to both planes. This lattice point row defines a lattice direction [uvw] which is 
known as zone axis. All lattice planes intersecting in a common lattice-point row are 
said to lie in the same zone. The condition for lattice planes to be parallel to a lattice 
vector a = ua1+va2+wa3 is the zone equation  

uh + vk + wl = 0 (4.2) 
The zone axis symbol [uvw] for the zone containing the two planes (h1k1l1) and (h2k2l2) 
is obtained by solving the simultaneous equations uh1 + vk1 + wl1 = 0 and uh2 + vk2 + 
wl2 = 0, 

[uvw] = [k1l2-k2l1, l1h2-l2h1, h1k2-h2k1] (4.3) 

210 

[121] 

(211) 
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4.3 Crystallographic coordinate systems 

 
The first step in the description of a crystal structure is to choose the basis vectors of a 
unit cell as the smallest repeat unit of the crystal. While in physics and chemistry, Car-
tesian coordinate systems are commonly used, crystallography uses symmetry adapted 
coordinate systems. In this way a crystal-specific coordinate system is defined which 
is then used to localize all the atoms in the unit cell. Crystal symmetry requires, in 3 
dimensions, 7 different crystal systems and hence 7 crystallographic coordinate sys-
tems to be defined: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The choice of the origin of the coordinate system is arbitrary, but for convenience it is 
usually chosen at a centre of symmetry (inversion centre), if present, otherwise at a 
point of high symmetry. 

In order to complete the symmetry conventions of the coordinate systems it is necessary 
to add to the 7 so-called primitive unit cells of the crystal systems (primitive lattice 
types with only one lattice point per unit cell) 7 centred unit cells with two, three or 
four lattice points per unit cell (centred lattice types). These centred unit cells are con-
sequently two, three or four times larger than the smallest repeat units of the crystal. 
The resulting 14 Bravais lattice types with their centrings are compiled in figure 4.3. 

 

a = b = c; α=β=γ=90° 
four triads  –  3 or   

(‖space diagonals of cube) cubic 

a = b ≠ c; α=β=90°, 
γ=120° 

one hexad  –  6 or  (‖Z) hexagonal 

a = b ≠ c; α=β=90°, 
γ=120° 

one triad  –  3 or  (‖Z) 
trigonal 

(hexagonal cell) 

a = b ≠ c; α=β=γ=90° one tetrad  –  4 or  (‖Z) tetragonal 

a ≠ b ≠ c; α=β=γ=90° 
three mutually perpendicular 

diads –  2 or m (‖X, Y and Z) orthorhombic 

a ≠ b ≠ c; α=γ=90°, β>90°  one diad  –  2 or m (‖Y)  
monoclinic 

(unique axis b) 

a ≠ b ≠ c; α ≠ β ≠ γ 1 or  triclinic 

Conventional Unit Cell Minimum Symmetry System Name 
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Fig. 4.3:  The 14 Bravais lattices consisting of the 7 primitive lattices P for the 7 crystal  
systems with only one lattice point per unit cell and the 7 centred (non- primi-
tive) lattices A, B, C, I, R and F with 2, 3 and 4 lattice points per unit cell.  
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A set of lattice planes (hkl) is separated by a characteristic interplanar spacing d(hkl). 
According to the different crystallographic coordinate systems these d(hkl) values are 
calculated in a specific manner: 

For the cubic lattice (a = b = c, α = β = γ = 90°) 

( )
1

2 2 2 2( )d hkl a h k l
−

= ⋅ + +  (4.4) 

For the hexagonal lattice (a = b, c, α = β = 90°, γ = 120°) 

1
2 2 2 2

2 2

4
( )

3

h k hk l
d hkl

a c

−
 + += + 
 

 (4.5) 

For the tetragonal lattice (a = b, c, α = β = γ = 90°) 

1
2 2 2 2

2 2
( )

h k l
d hkl

a c

−
 += + 
 

 (4.6) 

For the orthorhombic lattice (a, b, c, α = β = γ = 90°) 

1
2 2 2 2

2 2 2
( )

h k l
d hkl

a b c

−
 

= + + 
 

 (4.7) 

For the monoclinic lattice (a, b, c, α = γ = 90°, β > 90°) 

1
2 2 2 2

2 2 2 2 2 2

2 cos
( )

sin sin sin

h k l hl β
d hkl

a β b c β ac β

−
 

= + + − 
 

 (4.8) 

For the triclinic lattice (a, b, c, α, β, γ), the most general case, 

( )

( ) ( ) ( )

1
2 2 2 2

1
2 2 2 2

2 2 2

2 2 2

2 2 2

( ) 1 cos cos cos 2cos cos cos

sin sin sin

2 2 2
cos cos cos cos cos cos

d hkl α β γ α γ

h k l
α β γ

a b c
kl lh hk

c α c β c γ
bc ca ab

β

β γ α

−

= − − − + ⋅ ⋅

 
+ + 

 
 + ⋅ − + ⋅ − + ⋅ −  

 (4.9) 
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4.4 Crystallographic symmetry-operations and sym-

metry-elements 

 

The symmetry operations of a crystal are isometric transformations or motions, i.e. 
mappings in space which preserve distances and, hence, also angles and volumes. An 
object and its transformed object superpose in a perfect manner, they are indistinguisha-
ble. 

The simplest crystallographic symmetry operation is the translation, which is a parallel 
displacement of the crystal by a translation vector a (see chapt. 4.2). There is no fixed 
point, the entire lattice is shifted and therefore the crystal lattice is considered to be infi-
nite. 

Crystallographic rotations n around an axis by an angle ϕ = 360°/n (n-fold rotations) 
and rotoinversions (combination of rotations and inversions)n are called point sym-
metry operations because they leave at least one point in space invariant (at least one 
fixed point). An important fact of crystallographic symmetry is the restriction of the 
rotation angles to ϕ = 360° (n = 1), 180° (n = 2), 120° (n = 3), 90° (n = 4), 60° (n = 6). 
This derives from the assumption of three-dimensional translational symmetry. Only for 
such crystallographic rotations the space can be covered completely without gaps and 
overlaps. The rotoinversionn =1 is an inversion at a point,n =2 ≡ m (mirror) de-
scribes a reflection through a plane. 

The combination of n-fold rotations with (m/n)⋅a translation components (m < n) paral-
lel (‖) to the rotation axis leads to the so-called screw rotations nm, e.g. 21, 32, 42, 65. 
These symmetry operations have no fixed points.  

The combination of a reflection through a plane (glide plane) with translation compo-
nents (glide vectors) of a1/2, a2/2, a3/2, (a1+a2)/2, … ‖ to this plane are known as glide 

reflections a, b, c, n, …, d. Again no fixed points exist for these symmetry operations.  

The objects which actually mediate to the symmetry operations are the symmetry ele-

ments. They form the geometrical locus, oriented in space, of the symmetry operation 
(a line for a rotation, a plane for a reflection, and a point for an inversion) together with 
a description of this operation. Symmetry elements are mirror planes, glide planes, rota-
tion axes, screw axes, rotoinversion axes and inversion centres. The geometrical de-
scriptions of selected crystallographic symmetry operations are illustrated in Figs. 4.4 - 
4.6.  

A symmetry operation transforms a point X with coordinates x, y, z (corresponding to 
a position vector X = xa1 + ya2 + za3) into a symmetrically equivalent point X’ with 
coordinates x’, y’, z’ mathematically by the system of linear equations  

x’ = W11x + W12y + W13z + w1 

y’ = W21x + W22y + W23z + w2 

z’ = W31x + W32y + W33z + w3 

(4.10) 
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Fig. 4.4:  Rotations: n=1 (identity), n=2 (angle 180°), n=3 (120°), n=4 (90°),n=6 (60°). 
Rotoinversions:1 (inversion),2 ≡ m (reflection), 3 = 3 +1,4,6 = 3/m.  

 

inversion 

Point symmetry operations 

rotations rotoinversions 

1=identity 

2-fold = 180°-rotation 
2-fold rotation combined 

with inversion = reflection 
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Fig. 4.5:  Screw rotations nm: combination of rotations n and translation components 
(m/n)⋅a ‖ to the rotation axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 4.6:  Examples of reflections and glide reflections.  
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Symmetry operation in matrix notation:  
















+
































=

















3

2

1

333231

232221

131211

w

w

w

z

y

x

WWW

WWW

WWW

z'

y'

x'

� ;  X’ = W°X + w = (W, w)°X (4.11) 

The (3×3) matrix W is the rotation part and the (3×1) column matrix w the translation 
part of the symmetry operation. The two parts W and w can be assembled into an aug-
mented (4×4) matrix W according to 





































=



















1

z

y

x

1000

wWWW

wWWW

wWWW

1

z'

y'

x'

3333231

2232221

1131211

�  = W°X (4.12) 

Since every symmetry transformation is a “rigid-body” motion, the determinant of all 
matrices W and W is det W = det W = ± 1 (+ 1: preservation of handedness; - 1: change 
of handedness of the object). 

The sequence of two symmetry operations (successive application) is given by the 
product of their matrices W1 and W2: 

W3 = W1°W2 (4.13) 

where W3 is again a symmetry operation.  

 

 

4.5 Crystallographic point groups and space groups 

 

The symmetry of a macroscopic crystal and of its crystal structure can be described by 
mathematical group theory. The symmetry operations are the group elements of a crys-
tallographic group G and the combination of group elements is the successive execution 
of symmetry operations. All possible combinations of crystallographic point-symmetry 
operations in three-dimensional space lead to exactly 32 crystallographic point groups 
(≡ crystal classes) which all are of finite order (order: number of elements, maximum 

order: 48 for the cubic crystal class m3m ). For the different crystal systems they are 
represented by stereographic projections in figure 4.7. There are two types of group 
symbols in use: for each crystal class the corresponding Schoenflies symbol is given at 
the bottom left and the Hermann-Mauguin (international) symbol at the bottom right. 
A maximum of 3 independent main symmetry directions (“Blickrichtungen”) is suffi-
cient to describe the complete symmetry of a crystal. These Blickrichtungen are specifi-
cally defined for the 7 crystal systems and they define the sequence in which the sym-
metries are listed in the Hermann-Mauguin symbols. As an example the Blickrichtungen 
of the cubic system are shown in figure 4.8.  
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Fig. 4.7:  The 32 crystallographic point groups (crystal classes) in three-dimensional 
space represented by their stereographic projections. The group symbols are 
given according to Schoenflies (bottom left) and to Hermann-Mauguin (bottom 
right).  
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Fig. 4.8: Symmetry directions (“Blickrichtungen”) of the cubic lattice (a=b=c, 
α=β=γ=90°). Along [100]: 4/m, along [111]:3, along [110]: 2/m.  

 

The point-group symmetries determine the anisotropic (macroscopic) physical prop-

erties of crystals, i. e. mechanical, electrical, optical and thermal properties. The crystal 
class can be deduced from a diffraction experiment, however, as diffraction introduces 
an (additional) centre of symmetry, only the 11 centrosymmetric Laue classes can be 
distinguished: 
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1 2/m 1 = 2/m monoclinic 

 triclinic 

Laue Class Crystal System 
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In three dimensions all possible combinations of the point symmetries of the 32 crystal-

lographic point groups with the lattice translations of the 14 Bravais lattices lead to 
exactly 230 space groups, all of infinite order. As already mentioned, the combination 
of point symmetry operations with translations results in new symmetry operations: 
screw rotations and glide reflections. The conventional graphical symbols for the three 
dimensional space group symmetry elements according to the International Tables for 
Crystallography Vol. A (ITA, 2002 [1]) are shown in figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9:  Conventional graphical symbols for symmetry elements: 
Left: axes (a) perpendicular, (b) parallel, and (c) inclined to the image  plane; 
Right: planes: (d) perpendicular and (e) parallel to the image plane.  

 

In the International Tables for Crystallography Vol. A [1] all space groups are described 
in detail with their Hermann-Mauguin symbols and corresponding crystal classes, the 
relative locations and orientations of the symmetry elements with respect to a chosen 
origin and the crystal-specific basis vectors, a listing of the general and all special posi-
tions (with their symmetrically equivalent points) and the related reflection conditions. 
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4.6 Example of the crystal structure description of 

YBa2Cu3O7-δ using the ITA 

 

The crystal structure determination with atomic resolution is achieved by diffraction 
experiments with X-rays, electron or neutron radiation. As an example, the results of a 
structure analysis by neutron diffraction on a single crystal of the ceramic high-TC su-

perconductor YBa2Cu3O7-δ with TC = 92 K are presented. The atomic arrangement of 

the orthorhombic structure, space group Pmmm, and the temperature-dependent electri-
cal resistivity is shown in figure 4.10. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10: Crystal structure (unit cell) of YBa2Cu3O7-δ with the CuOx-polyhedra (left) 
and the electrical resistivity as a function of temperature ‖ and ⊥ to the 
[001] direction (right).  

 

Information from ITA on the relative locations and orientations of the symmetry ele-
ments (symmetry operations 1, 2z, 2y, 2x,1, mz, my, mx) of the orthorhombic space 
group Pmmm, together with the choice of the origin (in an inversion centre), is shown in 
figure 4.11. The general position (site symmetry 1) of multiplicity 8 (symmetry produc-
es 7 additional copies of this atom in the unit cell) and all special positions with their 
site symmetries are listed in figure 4.12. There are no special reflection conditions for 
this space group. 
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Fig. 4.11: Description of the orthorhombic space group Pmmm in [1].  
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Fig. 4.12: General and special positions (coordinates of all symmetrically equiva-
lent positions) of space group Pmmm with their site symmetries and multiplici-
ties as well as reflection conditions [1]. The special positions occupied in the 
YBa2Cu3O7-δ -structure are indicated by frames.  
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The atomic parameters for YBa2Cu3O6..96 obtained from the structure refinement of sin-
gle crystal neutron diffraction data taken at room temperature [2] are given in the fol-
lowing Table: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

0 ½ 0 2/m 2/m 2/m 1 O4/O2- 

0.37631(2) 0 ½ m m 2 2 O3/O2- 

0.37831(2) ½ 0 m m 2 2 O2/O2- 

0.15863(5) 0 0 m m 2 2 O1/O2- 

0.18420(6) ½ ½ m m 2 2 Ba/Ba2+ 

½ ½ ½ 2/m 2/m 2/m 1 Y/Y3+
 

0.35513(4) 0 0 m m 2 2 Cu2/Cu2+ 

0 0 0 2/m 2/m 2/m 1 Cu1/Cu2+ 

z y x site symmetry multiplicity atom/ion 

Atomic positions of YBa2Cu3O6.96 
orthorhombic, space group type P 2/m 2/m 2/m 

a = 3.858 Å, b = 3.846 Å, c = 11.680 Å (at room temperature) 



4.18  G. Roth 

4.7 Introduction to part 2 

Each scattering experiment performed with any type of radiation - regardless of whether 
it involves massive particles like neutrons and electrons or electromagnetic waves like 
x-rays or visible light - has a total of four attributes which altogether characterize the 
type of the scattering experiment as well as the information that can be obtained from 
such an experiment. These attributes and their characteristics are:  

Elastic scattering, which involves the conservation of the energy of the particle or 
quantum during the scattering process, inelastic scattering, corresponding to a loss or 
gain of particle or quantum energy during the scattering event, coherent scattering 
which involves the interference of waves (recall that, according to the particle-wave 
dualism first stated by de Broglie (1924), each particle may also be described by a wave 
which can interfere with other particle waves) and finally incoherent scattering which 
is scattering without interference. 

This chapter will deal exclusively with neutron diffraction which is, in the above no-
menclature of a general scattering experiment, equivalent to elastic, coherent scattering 

of neutrons.   

It is assumed that most of the readers of this chapter will be familiar with x-ray diffrac-
tion from crystals, which has been demonstrated for the first time by Laue in 1912 and, 
since then, has developed into the most powerful method for obtaining structural infor-
mation on crystalline materials. Diffraction - in sharp contrast to imaging techniques 
like optical or electron microscopy - has no principal limitation as to the spatial resolu-
tion, expressed in units of the wavelength of the radiation used for diffraction or imag-
ing: While the resolution of imaging is limited to half the wavelength (recall the Abbe 
diffraction limit) diffraction can yield useful information, for instance, on bond dis-
tances between atoms on a length scale that is by two to three orders of magnitude 
smaller than the wavelength. On the other hand, diffraction, other than imaging, re-
quires 3-dimensional periodicity (see chapter 4.2). 

This chapter will discuss the basics and some peculiarities of neutron diffraction from 
either single- or polycrystalline matter. We will start by discussing the geometry of 

diffraction from crystals, treat the subject of diffraction intensities and end with a 
discussion of a few experimental issues connected to the instruments which will be 
used in the practical part of the course. Examples of applications of these methods will 
be given in a later chapter on “Structural Analysis”. The subject of magnetic neutron 
diffraction and scattering will be discussed in a separate chapter. 

 

4.8 Diffraction geometry 

For purely elastic scattering, the scattering function S(Q,ω) reduces to the special case 
without energy transfer (E0 = E1 and ħϖ   = E0 – E1 = 0) and equal length of the wave 
vectors of the incident and scattered beams (k0 = k1). S(Q,ω = 0). The scattering 
intensity then only depends on the scattering vector Q = k0 - k1. The coherent elastic 
neutron scattering ( ≡  neutron diffraction) yields information on the positions (distribu-
tion) of the atomic nuclei and the arrangement of the localised magnetic spins in crystal-
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line solids, the pair correlation function of liquids and glasses, and the conformation of 
polymer chains. 

Figure 4.13 shows a sketch of a general diffraction experiment. More specifically, it 
is a typical setup of a constant wavelength, angular dispersive diffraction experiment. 
There are other methods to perform a diffraction experiment (e.g. time of flight- (TOF-
), Laue-, energy-dispersive diffractometers etc.) but these are outside the scope of this 
introductory lecture.  

For constant wavelength diffraction, the energy (wavelength) and direction (collima-
tion) of the incident neutron beam needs to be adjusted. For that purpose, the diffrac-
tometer is equipped with a crystal monochromator to select a particular wavelength 
band (λ ± ∆λ/λ) out of the “white” beam. Collimators are used to define the beam direc-
tion and divergence pretty much as it is done in x-ray diffraction. 

In the case of a crystalline sample, the diffraction geometry is most conveniently de-
scribed by the concepts of the reciprocal lattice and the Ewald construction which are 
both well-known from x-ray-diffraction. 

 

Fig. 4.13:  Schematic representation of a constant wavelength diffractometer. 
 

Reciprocal lattice 

The characteristic feature of the crystalline state (see chapter 4.2) is its periodic order, 
which may be represented by a (translation) lattice. In the 3D case, three basis vectors 

a1, a2, a3 define a parallelepiped, called unit cell. Each lattice node of the crystal lattice 
can be addressed by a general lattice vector 

a = u a1 + v a2 + w a3.  (4.14)
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which results from a linear combination of the basis vectors with coefficients u, v, and w 
(positive or negative integers, including 0).  

The position of atom j in the unit cell is given by the vector  

rj = xj a1 + yj a2 + zj a3. (4.15)

The coefficients xj, yj, and zj are called atomic coordinates (0≤xj<1; 0≤yj<1; 0≤zj<1). 

For an ideal crystal and an infinite lattice with the basis vectors a1, a2, a3 there is only 
diffraction intensity I(τ) at the vectors 

τ = h τ1 + k τ2 + l τ3. (4.16)

of the reciprocal lattice. h,k,l are the integer Miller indices andτ1, τ2, τ3 are the basis 
vectors of the reciprocal lattice, satisfying the two conditions 

                τ1⋅a1 = τ2⋅a2 = τ3⋅a3 = 1 and τ1⋅a2 = τ1⋅a3 = τ2⋅a1 = ... = 0 (4.17)

 or in terms of the Kronecker symbol with i, j and k = 1, 2, 3 

δij = 0 for i ≠ j and δij = 1 for i = j with δij = τI ⋅ τj.  (4.18)

The basis vectors of the reciprocal lattice can be calculated from those of the unit cell in 
real space 

τi = (aj ×ak)/Vc,  (4.19)

where × means the cross product, and Vc = a1⋅(a2×a3) is the volume of the unit cell. 

In solid state physics,  

 Q = 2π τ   (4.20)

is used instead of τ   

Here is a compilation of some properties of the reciprocal lattice: 
• Each reciprocal lattice vector is perpendicular to two real space vectors: τI ⊥ aj and ak 
(for i ≠ j, k) 
• The lengths of the reciprocal lattice vectors are |τi| = 1/Vc⋅|aj|⋅|ak|⋅sin∠(aj,ak). 
• Each point hkl in the reciprocal lattice refers to a set of planes (hkl) in real space. 
• The direction of the reciprocal lattice vector τ is normal to the (hkl) planes and its 
length is reciprocal to the interplanar spacing dhkl:  |τ| = 1/dhkl. 
• Duality principle: The reciprocal lattice of the reciprocal lattice is the direct lattice. 

Performing a diffraction experiment on a single crystal actually means doing a Fouri-

er transform of the 3D-periodic crystal (see chapter diffraction 1) followed by taking 
the square of the resulting (complex) amplitude function. The Fourier transform of the 
(infinite) crystal lattice is essentially the reciprocal lattice derived above and yields 
directly the positions of the reflections in space (directions of the diffracted beams). The 
Fourier transform of the unit cell contents (kind and positions of all atoms) deter-
mines the reflection intensities. These reflection intensities may be envisaged as a 
weight attached to the nodes of the reciprocal lattice. Doing a (single crystal) diffraction 
experiment therefore corresponds to measuring the positions and weights of the recipro-
cal lattice points.  
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Ewald construction 

The concept of reciprocal lattice (reciprocal space) also provides a handy tool to express 
geometrically the condition for Bragg diffraction in the so-called Ewald construction. In 
this way geometrical aspects of the different diffraction methods can be discussed. 

We consider the reciprocal lattice of a crystal and choose its origin 000. In Fig. 4.14 the 
wave vector k0 (defined in the crystallographers’ convention with |k0| = 1/λ) of the inci-
dent beam is marked with its end at 000 and its origin at P. We now draw a sphere of 
radius |k0| = 1/λ around P passing through 000. Now, if any point hkl of the reciprocal 
lattice lies on the surface of this “Ewald sphere”, then the diffraction condition for the 
(hkl) set of lattice planes is fulfilled: The wave vector of the diffracted beam k (with its 
origin also at P) for the set of planes (hkl), is of the same length as k0 (|k| = |k0|) and the 
resulting vector diagram satisfies k = k0 + τ. Introducing the scattering angle 2θ (and 
hence the Bragg angle θhkl), we can deduce immediately from 2|k|⋅sinθ = |τ| the Bragg 
equation 2dhkl⋅sinθhkl = λ.      

 

Fig. 4.14: Ewald construction in reciprocal space, showing the diffraction 
condition for reflection (hkl). 

 

In the case of single crystal diffraction a rotation of the crystal and therefore also of the 
corresponding reciprocal lattice (which is rigidly attached to the crystal) is often used to 
set the diffraction conditions for the measurement of intensities I(τ). 

If |τ| > 2/λ (then dhkl < λ/2) the reflection hkl cannot be observed. This condition defines 
the so called limiting sphere, with center at 000 and radius 2/λ: only the points of the 
reciprocal lattice inside the limiting sphere can be rotated into the diffraction position. 
Vice versa if λ > 2dmax, where dmax is the largest interplanar spacing of the unit cell, then 
the diameter of the Ewald sphere is smaller than |τ|min. Under these conditions no node 
of the reciprocal lattice can intercept the Ewald sphere. That is the reason why diffrac-
tion of visible light (wavelength ≅ 5000 Å) can never be obtained from crystals. λmin 
determines the amount of information available from a diffraction experiment. Under 
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ideal conditions, λmin should be short enough to measure all points of the reciprocal lat-
tice with significant diffraction intensities. 

For a real crystal of limited perfection and size the infinitely sharp diffraction peaks 
(delta functions) evolve into broadened reflections. One reason can be the local varia-
tion of the orientation of the crystal lattice (mosaic spread) implying some angular split-
ting of the vector τ. A spread of interplanar spacings ∆d/d, which may be caused by 
inhomogeneities in the chemical composition or by inhomogeneous strain in the sample, 
gives rise to a variation of its magnitude |τ|. The previously assumed ideal diffraction 
geometry also needs to be modified: In a real experiment the primary beam has a non-
vanishing divergence and wavelength spread. The detector aperture is also finite. A gain 
of intensity, which can be accomplished by increasing the angular divergence and wave-
lengths bandwidth, has to be paid for by some worsening of the resolution function (see 
below) and hence by a limitation of the ability to separate different Bragg reflections. 

All of these influences can also be studied by the Ewald construction. As an example, 
the influence of a horizontal beam divergence on the experimental conditions for a 
measurement of Bragg-intensities of a single crystal is illustrated in Fig. 4.15. Strictly 
monochromatic radiation (only one wavelength λ with ∆λ/λ = 0) is still assumed. To 
collect the complete intensity contained in the spread out reflection, a so-called ω-scan, 
where the crystal is rotated around the sample axis perpendicular to the diffraction 
plane, needs to be used. The summation over the whole reflection profile yields the so-
called integral diffraction intensities. 

 

Fig. 4.15: Ewald-construction: Influence of the horizontal beam divergence on the 
experimental conditions for the measurement of Bragg-intensities.              
Inset: A typical ω-scan of a reflection. 
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As a final example, the geometry of powder diffraction experiments can also be dis-
cussed in terms of the Ewald-construction: 

 

Fig. 4.16: Ewald construction for a powder diffraction experiment. 
 

An ideal polycrystalline sample is characterised by a very large number of arbitrarily 
oriented small crystallites. Therefore, the reciprocal lattice points hkl are smeared out 
on a sphere and the 3D-information contained in vector τ is reduced to only 1D-
information contained in |τ|. In Figure 4.16 the corresponding sphere with radius |τ| = 
1/dhkl is drawn around the origin of the reciprocal lattice at 0,0,0. For each Bragg-
reflection the circle of intersection of the “reciprocal lattice sphere” with the Ewald-
sphere yields a diffraction cone. These cones (Fig. 4.17) are recorded on a point or posi-
tion sensitive detector. The resulting information is plotted as an intensity vs. diffraction 
angle (or Q) diagram. All reflections with equal interplanar spacing dhkl are perfectly 
superimposed and cannot be separated experimentally. 

 

 
Fig. 4.17: Sketch of a powder diffraction experiment, diffraction cones are recorded 
          on a 2D- or 1D- detector (reproduced from [3]). 
  

 



4.24  G. Roth 

4.9 Diffraction intensities 

As stated in chapter 4.8, a scattering experiment is equivalent to performing a Fourier 
transform of the scattering object followed by taking the square of the resulting complex 
amplitude. The latter step is very simply due to the fact, that our detectors can measure 
the magnitude (the absolute value) of a diffracted wave but are completely insensitive to 
its phase. This results in an intrinsic loss of information and poses the so-called “phase 
problem of crystallography”. There are methods to reconstruct the missing phase infor-
mation from the measured magnitudes and from a-priori information about the scatter-
ing object (e.g. the so-called direct methods of structure determination), but these 
methods are again outside the scope of this lecture. The first step of a diffraction exper-
iment - the Fourier transform - needs some further elaboration: In a diffraction (elastic, 
coherent scattering) experiment we can safely ignore time as a variable and concentrate 
only on the spatial Fourier transform of the scattering object (here: the crystal). For 
those who are not particularly familiar with the Fourier transform, figure 4.18 shows a 
very simple one-dimensional analogue. The transformation from A to E (labelled FT, ||) 
corresponds to the diffraction experiment: Fourier-transform (harmonic analysis) plus 
calculation of the absolute value. If we could also retrieve the phases φ, the inverse Fou-
rier transform (labelled FT-1, φ) would lead directly to the structure of the scattering 
object A (harmonic synthesis).  

 

Fig. 4.18: 1D illustration of the Fourier transform, A: scattering object: 1D-density 
function, assumed: periodic in 1D, B-D: decomposition of A into 3 harmon-
ic (co-)sine waves, F: synthesis of A (red curve) via summation of B-D with 
the correct phases, E: “diffractogramm” of A: Fourier transform, only the 
magnitudes of waves in B to D are plotted, figures taken from[4]. 
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Without the phase information, we need an approximate model of the crystal structure 
and a formula to calculate diffraction intensities from the model. In the kinematical 
scattering approximation we use the so called structure factor formula for that purpose 
(see below). The model is then iteratively improved to give an optimum match between 
observed and calculated intensities. This is referred to as the structure refinement. 

 

Structure factor and Bragg intensities 

In the kinematical approximation, which assumes that the magnitude of the incident 
wave is the same at all points in the specimen (this implies a small sample size, weak 
interaction between radiation and matter, no multiple diffraction and negligible absorp-
tion) and that the diffracted beams are much weaker than the primary beam, the dif-
fracted intensity is proportional to the square of the amplitude of the scattered wave for 
each individual reflection; it can be regarded as a weight ascribed to the reciprocal-
lattice nodes. 

I(τ) ∼ |F(τ)|2. (4.21)

The structure factor F(τ) is the Fourier transform of the scattering density within the 
unit cell. For a 3D-periodic scattering density function composed of discrete atoms (the 
crystal), the threefold spatial integral describing the Fourier transform in its most gen-
eral form, simplifies to a sum over all atoms j in the unit cell The structure factor F(τ) 
contains the complete structural information, including the atomic coordinates rj = xj a1 
+ yj a2 + zj a3 (see eqn. 4.15), site occupations and the thermal vibrations contained in 
Tj. 

F(τ) = ∑ ��� ·exp[2πi(τ·rj)]·Tj(τ) = |F(τ)|·exp[iϕ(τ)]. (4.22)

In the case of nuclear scattering of neutrons the structure factor has the dimension of a 
length, as has the scattering length bj(τ) = bj = const. of nucleus j. Tj(τ) is the Debye-
Waller factor which takes into account dynamical and static displacements of the nucle-
us j from its average position rj in the unit cell. With the fractional coordinates xj, yj and 
zj, the scalar product in the exponential function can be written as 

τ ⋅ rj = hxj + kyj +lzj  (4.23)

In a diffraction experiment normally only relative Bragg intensities are measured. A 
scale factor SCALE takes into account all parameters which are constant for a given set 
of diffraction intensities. Additional corrections have to be applied, which are a function 
of the scattering angle. For nuclear neutron diffraction from single crystals the inte-
grated relative intensities are given by 

I(τ) = SCALE ⋅ L ⋅ A ⋅ E ⋅ |F(τ)|2   (4.24)

The Lorentz factor L is instrument specific. The absorption correction A depends on the 
geometry and linear absorption coefficient of the sample and the extinction coefficient 
E takes into account a possible violation of the assumed conditions for the application 
of the kinematical diffraction theory. 

Information on the crystal system, the Bravais lattice type and the basis vectors a1, a2, 
a3 of the unit cell (lattice parameters a, b, c, α, β, γ) may be directly deduced from the 
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reciprocal lattice. Systematic absences (zero structure factors) can be used to determine 
non-primitive Bravais lattices or detect the presence of symmetry operations with trans-
lation components (screw axes, glide planes).  

As an example, consider a body centered cubic lattice with atoms at 0,0,0 and ½,½,½. 
Using eqn. 4.22 and dropping the Debye-Waller factor for the moment, the structure 
factor equation may be rewritten as:  

F(hkl) = ∑ ��� ·exp[2πi(hxj + kyj +lzj)] =  

b . exp[2πi(h.0 + k.0 +l.0)] + b . exp[2πi(h/2 + k/2 +l/2)] )   
(4.25)

For this simple structure, index j just runs over the two equivalent atoms with scattering 
length b within the unit cell. For a centrosymmetric structure, F is a real quantity (in-
stead of being complex), the exponentials in (4.25) reduce to cosines and the phase fac-
tor assumes only the values + or -1.  

Thus we get:  

[ ] [ ])2/2/2/(2cos000(2cos)( lkhblkhbhklF ++⋅+⋅+⋅+⋅⋅= ππ  (4.26)

The first term cos(0) = 1 and we therefore have: 

[ ] )])(cos[1()2/2/2/(2cos)( lkhblkhbbhklF +++⋅=++⋅+= ππ  (4.27)

 
If h+k+l is even, the cosine term is +1, otherwise it is -1. 

Reflections with h+k+l=2n+1 are therefore systematically absent.  

These statements apply equally well to x-ray and neutron diffraction and to powder as 
well as to single crystal diffraction data. 
 
In the case of a powder sample, orientational averaging leads to a reduction of the di-
mensionality of the intensity information from 3D to 1D: Diffraction intensity I is rec-
orded as a function | τ  | = 1/dhkl  or, by making use of Bragg’s law, of sin(θ)/λ or just as 
a function of 2θ. For powders, two additional corrections (M and P in eqn. 4.28) need to 
be applied in order to convert between the measured intensities I and the squared struc-
ture factor magnitudes F2: 

I(|τ |) = SCALE ⋅ L ⋅ A ⋅ E ⋅ M ⋅ P ⋅ |F(|τ |)|2   (4.28)

M is the multiplicity of the individual reflections and takes into account how many 
symmetrically equivalent sets of lattice planes correspond to a given hkl. In the cubic 
crystal system, for instance, M111=8 (octahedron) while M100=6 (cube). P is the so-
called preferred orientation parameter which corrects the intensities for deviations from 
the assumption of randomly oriented crystals in the powder sample. 
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4.10 Diffractometers 

 

Single Crystal Neutron Diffractometry 

 

 

Fig. 4.19:  Principle components of a constant wavelength single crystal diffractome-
ter. 

 

 

Monochromator and collimator 

For constant wavelength diffraction, the energy (wavelength) and direction (collima-
tion) of the incident neutron beam needs to be adjusted. For that purpose, the diffrac-
tometer is equipped with a crystal monochromator to select a particular wavelength 
band (λ ± ∆λ/λ) out of the “white” beam according to the Bragg condition for its scat-
tering plane (hkl) 

2dhkl⋅sinθhkl = λ,  (4.29)

with the interplanar spacing dhkl and the monochromator scattering angle 2θhkl = 2θM. 
The width of the wavelengths band ∆λ/λ, which is important for the Q-resolution, de-
pends on the divergences of the beam before and after the monochromator (collimations 
α1 and α2), on the mosaic spread of the monochromator crystal, and on the monochrom-
ator angle 2θM. In order to increase the intensity of the monochromatic beam at the 
sample position the monochromator crystal is often bent in vertical direction perpendic-
ular to the diffraction plane of the experiment. In this way the vertical beam divergence 
is increased leading to a loss of resolution in reciprocal space. The diffracted intensity 
from the sample is measured as a function of the scattering angle 2θ and the sample 
orientation (especially in case of a single crystal). 2θ is again defined by collimators.  

As there is no analysis of the energy of the scattered beam behind the sample, the ener-
gy resolution ∆E/E of such a 2-axes diffractometer is not well defined (typically of the 
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order of some %). In addition to the dominant elastic scattering also quasi-elastic and 
some inelastic scattering contributions are collected by the detector.  

 

Neutron filters and the problem of λ/2 contamination 

Unfortunately, the monochromator crystals not only “reflect” the desired wavelength λ 
by diffraction from the set of lattice planes (hkl) but also the higher orders of λ/2 or λ/3 
etc. from 2h,2k,2l or 3h,3k,3l to the same diffraction angle:   

sinθ=λ/dhkl = (λ/2)/d2h 2k 2l  = (λ/3)/d3h 3k 3l (4.30)

The only requirement is, that the higher order reflection (2h,2k,2l) or (3h,3k,3l) has a 
reasonably large structure factor. Higher order contamination causes sizeable reflection 
intensities at “forbidden” reflection positions and in addition to that can modify intensi-
ties at allowed positions. Thus it can very much affect the correct determination of the 
unit cell as well of the space group symmetry (from systematically absent reflections). 
The solution to this problem is to minimize the λ/2 contamination by using filters which 
suppress the higher orders stronger than the desired wavelength. One such type of filters 
uses resonance absorption effects - completely analogous to the suppression of the Kβ 
line in x-ray diffractometers. Another way to attenuate short wavelengths is to use the 
scattering from materials like beryllium or graphite. These filters use the fact that there 
is no Bragg diffraction if λ > 2dmax, where dmax is the largest interplanar spacing of the 
unit cell. As we have shown above, for such long wavelengths the Ewald sphere is too 
small to be touched by any reciprocal lattice point. Below this critical wavelength, the 
neutron beam is attenuated by diffraction and this can be used to suppress higher order 
reflections very effectively. Frequently used materials are polycrystalline beryllium and 
graphite. Due to their unit cell dimensions, they are particularly suitable for experiments 
with cold neutrons because they block wavelengths smaller than about 3.5 A and 6 A 
respectively.  

 

Resolution function: 

An important characteristic of any diffractometer is its angular resolution. Fig. 4.20 
shows (on the right) the resolution function (reflection half width as a function of scat-
tering angle) for the four circle single crystal neutron diffractometer HEiDi at FRM II 
shown on the left. The resolution depends on a number of factors, among them the col-
limation, the monochromator type and quality, the 2θ and (hkl) of the reflection used for 
monochromatization etc. 
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Fig. 4.20: Left: Experimental setup of the four circle single crystal diffractometer 

HEiDi at FRM II. Right: Resolution function of HEiDi for different colli-
mations, monochromator: Cu (220), 2ΘMono = 40° → λ = 0.873 Å. 

 
 

Powder Neutron Diffractometry: 
 

 

 

 

 

 

 

 

 

 

 

Fig. 4.21: Left: Typical setup of a (constant wavelength) powder neutron diffractom-
eter with position sensitive detector (PSD). Right: Neutron powder diffrac-
tometer SPODI at FRM II  
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Neutron Rietveld analysis: 

The conversion from 3D- to 1D-intensity data caused by the averaging over all crystal-
lite orientations in a powder sample severely restricts the informative value of powder 
neutron (or x-ray) diffraction experiments and makes the resolution function of the in-
strument even more important than in the single crystal case. Even with optimized reso-
lution, the severe overlap of reflections on the 2θ-axis often prohibits the extraction of 
reliable integrated intensities from the experiment. Instead, the Rietveld method, also 
referred to as full pattern refinement, is used to refine a given structural model against 
powder diffraction data. The method, which is widely used in powder x-ray diffraction, 
has actually been invented by Hugo Rietveld in 1966 for the structural analysis from 
powder neutron data. Full pattern refinement means that along with the structural pa-
rameters (atomic coordinates, thermal displacements, site occupations) which are also 
optimized in a single crystal structure refinement, additional parameters like the shape 
and width of the reflection profiles and their 2θ-dependence, background parameters, 
lattice parameters etc. need to be refined.  

 

Fig. 4.22: Results of a Rietveld refinement at the magnetic phase transition of Co-
GeO3 [5], red: measured intensity, black: calculated from model, blue: 
difference, green: tick-marks at allowed reflection positions. The figure 
shows the low-angle part of two diffractograms measured at SPODI at 
35K and 30K. Note the strong magnetic reflection appearing below the 
magnetic ordering transition (in the inset).   
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Exercises Diffraction 1  

 

E4.1  Lattice points, lattice directions and lattice planes 

 

A projection of an orthorhombic lattice on the lattice plane (001) is given in the following 
figure (this means a projection parallel to the c-axis). The dots represents the lattice points 
(not atoms) according to the translation symmetry of a crystal with the general translation 
vector a = ua1+va2+wa3 (a1, a2, and a3 are the basis vectors of the unit cell and u, v, w being 
integers) 

Please indicate in the figure 

a)  The lattice points uvw = 030, -120, 1-20, and 450, 

b)  The lattice directions [uvw] = [100], [210], [-2-10] and [-250], 

c)  The traces of the lattice planes (hkl) = (100), (210), (-210), and (140). 

 

 

 
 

a1 

a2 
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E4.2  Crystal structure of YBa2Cu3O7-δ: 

 
 
The following figure reproduces the upper left projection (of fig. 4.11) of the arrangement of 
the symmetry elements in the unit cell (from the international tables). 

 
 
 
 
 
 
Make sure you understand the meaning of the symbols for the symmetry elements.  
(see fig.4.9) 
 
a) Draw the positions of all atoms (Y, Ba, Cu, O) into the above given projection.  
(Take the coordinates from the table of the atomic positions given in the lecture book; mark 
the heights (z-coordinates) of the atoms along the projection direction by attaching the corre-
sponding coordinates to the atoms.) 
 

b 

a 

c 
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b) Given the space group P2/m2/m2/m: What is the crystal system (refer to the conditions for 
the lattice parameters on page 4.17) and the Bravais lattice type (see the space group symbol) 
of YBa2Cu3O7-δ?  
 
 
 
c) How many formula units are in one unit cell of YBa2Cu3O7-δ?  
 (refer to fig. 4.10) 
 
 
 
d) Give the coordination numbers and describe the polyhedra of oxygen around atoms Cu1 
and Cu2 (refer, for simplicity, to fig. 4.10). 
 
 
 
e) For all atoms: Check if the atom sits on an inversion centre (either from the above plot or 
from fig. 4.10 or from the table on page 4.17.) 
 

Cu1:           Cu2:           Y:            Ba:          O1:           O2:           O3:           O4:    
 
 
 
f) Calculate the interplanar spacings d(hkl) (choose the appropriate formula on page 4.6) for 
the lattice planes (100), (200), (020), (002), (00-2). 
 
 
 
g) List all symmetry equivalent lattice planes with identical d-spacing (including all different 
orientation possibilities) for the following types of lattice planes of YBa2Cu3O7-δ: 

  (h00), (00l), (0kl), and (hkl)  

Example for (h0l) in the orthorhombic crystal system: d(h0l) = d(-h0l) = d(-h0-l) = d(h0-l).  
 
 
h) How many symmetry equivalent lattice planes result in each case? (This is the multiplicity 
factor M of reflections needed as a correction factor in powder diffraction.) 
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Exercises Diffraction 2 

 

 

E4.3  Types of Scattering Experiments 

 
a) Discuss/define the following terms:  

A. Elastic scattering, B. Inelastic scattering,  

C. Coherent scattering, D. Incoherent scattering 

 
b) What does the term “diffraction” correspond to in this context? 

 

E4.4  Ewald Construction 

 

The Ewald-construction serves as a tool to visualize a number of geometrical aspects of dif-
fraction. 

 

a) Sketch the Ewald-construction for a single crystal experiment (figure & caption) 

 
b) Starting from the idealized geometry in fig. 4.14 and the modification for non-vanishing 
beam divergence in fig. 4.15: Do the Ewald-construction for a  beam with zero divergence but 
non-vanishing wavelength-spread ∆λ / λ. 

 

E4.5  Filtering 
 

a) What is the purpose of a beryllium (or graphite) filter for neutron diffraction?  

 
b) To discuss how it works: Use the Ewald construction for a given reciprocal lattice and a 
very short / very long wavelength. 
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E4.6  Structure determination & refinement 

 

Diffraction data – irrespective of whether it has been collected in an x-ray, electron or neutron 
diffraction experiment - is notoriously incomplete. 

 

a) Describe, in simple terms, in which respect it is incomplete and how this leads to the 
“phase problem of crystallography” 
 

b) What does the term “structure refinement” (as opposed to “structure determination”) 
mean? 

 

E4.7  Structure factor equation: 
 

The structure factor equation is the central formula that allows us to calculate diffracted inten-
sities from structural parameters. It corresponds to a Fourier-transform of the unit cell con-
tents. 

a) Write down the structure factor equation 
 
b) Identify and discuss all parameters in the formula. 
 
c) Under which conditions does this formula hold (kinematical diffraction conditions)? 

 

E4.8  Neutron diffractometers 

 
a) What is the purpose of a monochromator? 
 
b) How does it work? 
 
c) What does the term “collimation” mean? 
 
d) What is the resolution function of a diffractometer? (sketch) 
 
e) Why is it important? 
 
f) What is the purpose of a hot neutron source? 
 
g) How does it work? 
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E4.9  Rietveld refinement 

 
a) Discuss the basic problem of refining crystal structures from powder diffraction data  
(as opposed to single crystal data).  
 
 
b) Describe in simple words the fundamental idea (by Rietveld) to solve this problem. 

 
 
c) Name the kind of data that can be obtained from a Rietveld refinement? 
(Collect a list and sort into categories: Structural parameters and instrumental parameters) 
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5.1 Introduction

Small angle neutron scattering aims at length scales ranging from nanometers to microme-

ters [1, 2]. This is the typical mesoscale where often atomistic properties can be neglected

but structurally systems self-organize, i.e. self-assemble. The structural information about the

mesoscale is therefore indispensible for the understanding of the macroscopic behavior. Funda-

mental concepts of many materials are verified by small angle neutron scattering which supports

the finding of new materials for the future. Especially for formulations with many substances,

the individual role of each of them is often unclear. The use of theoretical models helps to

understand the mechanism of additives. Using these concepts, the system behavior for remote

parameter ranges can be predicted which overcomes tedious trial and error concepts.

The simplest molecules which leave the atomistic scale are chain like. Model polymers chem-

ically string identical monomers linearly. These macromolecules have a lot of internal degrees

of freedom which practically leads to the formation of coils. Studying the structure of these

coils is a typical application for small angle neutron scattering. In this way, the coil size can be

related to the monomer structure. The high entropy of polymers is responsible for rubber elas-

ticity. The deformation of polymers under stress is an important question of nowadays research.

The often used solid filler particles complicate the physical behavior of the polymers and not

all details are finally understood. The larger particles strengthen the mechanical behavior, but

there are also nanoparticles which cause the opposite behavior.

Proteins are important building blocks of biological systems. Often, they are characterized as

crystals by x-ray scattering. These structures are roughly corresponding to the natural state, but

often specific properties cannot be explained completely. It is known that the aqueous envi-

ronment changes the structure of proteins. The parallel structural characterization of dissolved

proteins in water is a typical application for small angle neutron scattering. Another point of

criticism is the dynamics of proteins. While the crystalline structures are rather rigid and do not

reflect the highly dynamical properties, the dissolved proteins include such effects. In combina-

tion with neutron spin echo spectroscopy aiming at the dynamics explicitly the fluctuations of

protein shapes are also explained on the basis of small angle neutron scattering experiments. All

these details explain the function of proteins in their natural environment of biological systems.

When molecules include groups which tend to separate often microdomains are formed. While

macroscopic phase separation is inhibited the self-organization of the molecules leads to highly

ordered structures. Examples are liquid crystals – more generally one speaks of liquid crys-

talline order. The microdomains are again of nanometer size and are well characterized by

small angle neutron scattering. Aligned single crystals and ‘powder’ samples are also of inter-

est. Important questions range from optical to mechanical properties.

Membranes represent the field of surface science. In biology, many questions arise about the

function of cell membranes. The major molecules are lipids with a hydrophilic head and a hy-

drophobic tail. These molecules form bilayers with the hydrophobic moiety in the middle. The

bilayer has a thickness of a few nanometers and, thus, fits perfectly to small angle neutron scat-

tering. On larger scales the membranes form closed vesicles or membrane stacks for example.

Biologically embedded proteins and smaller molecules such as cholesterol enrich the behavior

of the simple membranes. While these examples are rather biologically motivated, surfactant

molecules resemble the lipids, but are often used as soaps and detergents. A microemulsion
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dissolves oil and water macroscopically by adding certain amounts surfactant. Microscopically,

oil and water stay demixed and form microdomains which ideally suit the length scales of a

neutron small angle scattering experiment. Certain polymers as additives allow for increasing

the surfactant efficiency dramatically. This application is environmentally friendly and saves

resources.

So, small angle neutron scattering experiments connect fundamental physics with chemical and

biological aspects and finally lead to industrial applications. May the reader find enlightening

ideas for new applications of small angle neutron scattering.

5.2 Overview about the SANS technique

At the research reactor FRM 2 in Garching, the neutron radiation is used for experiments. In

many cases, materials are examined in terms of structure and dynamics. The word neutron radi-

ation already contains the wave-particle duality, which can be treated theoretically in quantum

mechanics. By neutron we mean a corpuscle usually necessary for the construction of heav-

ier nuclei. The particle properties of the neutron become visible when classical trajectories

are describing the movement. The equivalent of light is obtained in geometrical optics, where

light rays are described by simple lines, and are eventually refracted at interfaces. However,

for neutrons the often neglected gravity becomes important. A neutron at a (DeBroglie) wave-

length of 7Å (= 7 × 10−10m) has a velocity of v = h/(mnλ) = 565m/s. Over a distance

of 20m this neutron is therefore falling by 6.1mm. Thus, the design of neutron instruments is

oriented to straight lines with small gravity corrections. Only very slow neutrons show signifi-

cant effects of gravitation, such as the experiment of H. Meier-Leibnitz described at the subway

station ‘Garching Forschungszentrum’. The wave properties of neutrons emerge when there is

an interaction with materials and the structural size is similar to the neutron wavelength. For

the neutron wavelength 7Å these are about 5 atomic distances of carbon. For a Small Angle

Neutron Scattering (SANS) experiment we will see that the typical structural sizes investigated

are in the range of 20 to 3000Å. The coherence of the neutron must, therefore, be sufficient to

examine these structural dimensions. Classically, this consideration will be discussed in terms

of resolution (see below). The scattering process appears only due to the wave properties of the

neutron.

A scattering experiment is divided into three parts. First, the neutrons are prepared with regard

to wavelength and beam alignment. The intensity in neutron experiments is much lower than in

experiments with laser radiation or x-rays at the synchrotron. Therefore, an entire wavelength

band is used, and the divergence of the beam is limited only as much as necessary. The prepared

beam penetrates the sample, and is (partly) scattered. For every neutron scattering experiment

elastic and inelastic scattering processes occur. The typical length scales of small angle scatter-

ing focus on the nanometer (up to micrometer). The corresponding movements of such large

volumes are slow and the scattering processes are called quasi elastic in this Q-range. For sim-

plicity, we assume elastic scattering processes as the idealized condition. So, there is virtually

no energy transferred to the neutron. However, the direction changes in the scattering process.

The mean wave vector of the prepared beam ki (with |ki| = 2π/λ) is deflected according to

the scattering process to the final wave vector kf . The scattered neutrons are detected with an

area detector. The experimental information is the measured intensity as a function of the solid
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Fig. 5.1: Scheme of a small angle neutron scattering instrument. The neutrons pass from the left

to the right. The incident beam is monochromated and collimated before it hits the sample. Non-

scattered neutrons are absorbed by the beam stop in the center of the detector. The scattered

neutron intensity is detected as a function of the scattering angle 2θ.

angle Ω. This solid angle is defined relatively to an ideally small sample and for large detector

distances.

In practice, the classical small-angle neutron scattering apparatus including the source looks

like this: In the reactor a nuclear chain reaction takes place. A uranium nucleus 235U captures

a free neutron, and fission to smaller nuclei takes place. Additionally, 2.5 neutrons (on aver-

age) are released, which are slowed down to thermal energy by the moderator. One part of the

neutrons keeps the chain reaction going, while the remaining part can be used for neutron ex-

periments. The cold source is another moderator, which cools the neutrons to about 30K. Here,

materials with light nuclei (deuterium at FRM 2) are used to facilitate the thermalization. The

cold neutrons can easily be transported to the instruments by neutron guides. Rectangular glass

tubes are used with a special mirror inside. The neutron velocity selector works mechanically

(Fig. 5.1 shows scheme). A rotating cylinder with tilted lamellae allows only neutrons with a

certain speed to pass (Fig. 5.2). The wavelengths distribution is ideally triangular with a rela-

tive half-width of ±5% or ±10%. The collimation determines the divergence of the beam. The

entrance aperture and the sample aperture have a distance LC , and restrict the divergence of the

beam. The sample is placed directly behind the sample aperture (Fig. 5.3). Many unscattered

neutrons leave the sample and will be blocked by an absorber at the front of the detector. Only

the scattered neutrons are detected by the detector at a distance LD. The sensitive detector de-

tects about 93% of the scattered neutrons, but the huge primary beam cannot be handled, and,

therefore, is absorbed by an absorber. In the instruments KWS-1 and KWS-2, the beam stop

contains a small counter to measure the unscattered neutrons in parallel. The classic small-angle

neutron scattering apparatus is also known as pin-hole camera, because the entrance aperture is

imaged to the detector by the sample aperture. The sample aperture may be opened further if

focusing elements maintain (or improve) the quality of the image of the entrance aperture. By

focusing elements the intensity of the experiment may be increased on the expense of needing

large samples. Focusing elements can be either curved mirrors or neutron lenses made of MgF2.

Both machines KWS-1 & KWS-2 have neutron lenses, but for this lab course they will not be

used.
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5.2.1 The scattering vector Q

In this section, the scattering vector Q is described with its experimental uncertainty. The

scattering process is schematically shown in Fig. 5.4, in real space and momentum space. In real

space the beam hits the sample with a distribution of velocities (magnitude and direction). The

neutron speed is connected to the wavelength, whose distribution is depending on the velocity

selector. The directional distribution is defined by the collimation. After the scattering process,

the direction of the neutron is changed, but the principal inaccuracy remains the same. The

scattering angle 2θ is the azimuth angle. The remaining polar angle is not discussed further

here. For samples with no preferred direction, the scattering is isotropic and, thus, does not

depend on the polar angle. In reciprocal space, the neutrons are defined by the wave vector

k. The main direction of the incident beam is defined as the z-direction, and the modulus is

determined by the wavelength, so |ki| = 2π/λ. Again, k is distributed due to the selector and

the collimation inaccuracies. The wave vector of the (quasi) elastic scattering process has the

same modulus, but differs in direction, namely by the angle 2θ. The difference between both

wave vectors is given by the following value:

Q =
4π

λ
sin θ (5.1)

For isotropic scattering samples, the measured intensity depends only on the absolute value of

the scattering vector Q = |Q|. For small angles, the common approximation of small angle

(neutron) scattering is valid:

Q =
2π

λ
· 2θ (5.2)

The typical Q-range of a small angle scattering instrument thus follows from the geometry. The

detector distances LD vary in the range from 1m to 20m. The area detector is active between

rD = 2cm and 35cm from the center. The angle 2θ is approximated by the ratio rD/LD and

the wavelength λ varies between 4.5 and 20Å (typically 7Å). For the instruments KWS-1 and

KWS-2, a typical Q-range from 10−3 to 0.6Å−1 is obtained.

The Q-vector describes which length scales � are observed, following the rule � = 2π/Q. If

a Bragg peak is observed, the lattice parameters can be taken directly from the position of the

peak. If the scattering shows a sudden change at a certain Q-value, we obtain the length scale

of the structural differences. There are characteristic scattering behaviors that can be described

by so called scattering laws that are simple power laws Qα with different exponents α.

5.2.2 The Fourier transformation in the Born approximation

This section deals with the physical explanation for the appearance of the Fourier transforma-

tion in the Born approximation. In simple words, in a scattering experiment one observes the

intensity as the quadrature of the Fourier amplitudes of the sample structure. This is consider-

ably different from microscopy where a direct image of the sample structure is obtained. So the

central question is: Where does the Fourier transformation come from?
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Fig. 5.2: The neutron velocity se-

lector of the small angle scatter-

ing instrument KWS-3 at the re-

search reactor Garching FRM-2.

This selector was especially man-

ufactured for larger wavelengths

(above 7Å).

Fig. 5.3: View on the sample position of the small

angle scattering instrument KWS-1 at the research

reactor Garching FRM-2. The neutrons come from

the left through the collimation and sample aperture

(latter indicated). A sample changer allows for run-

ning 27 samples (partially colored solutions) in one

batch file. The silicon window to the detector tube is

seen behind.

Fig. 5.4: Above: the neutron speed and its distribution in real space, before and after the

scattering process. Bottom: The same image expressed by wave vectors (reciprocal space). The

scattering vector is the difference between the outgoing and incoming wave vector.
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Fig. 5.5: The principle of a pin-hole camera transferred to the pin-hole SANS instrument. Top:

The pin-hole camera depicts the original image (here consisting of three numbers). For sim-

plicity, the three points are represented by three rays which meet in the pin-hole, and divide

afterwards. On the screen, a real space image is obtained (upside down). Bottom: The pin-hole

SANS instrument consists of an entrance aperture which is depicted on the detector through the

pin-hole (same principle as above). The sample leads to scattering. The scattered beams are

shown in green.

The classical SANS instruments are also called pin-hole instruments. Historically, pin-hole

cameras were discovered as the first cameras. They allowed to picture real sceneries on blank

screens – maybe at different size, but the image resembled the original picture. The components

of this imaging process are depicted in Fig. 5.5. Let’s assume the following takes place with

only one wavelength of light. The original image is then a monochromatic picture of the three

numbers 1, 2 and 3. The corresponding rays meet in the pin-hole, and divide afterwards. On

the screen, the picture is obtained as a real-space image, just appearing upside down. From

experience we know that the screen may be placed at different distances resulting in different

sizes of the image. The restriction of the three beams through the pin-hole holds for the right

space behind the pin-hole. In front of the pin-hole the light propagates also in other directions

– it is just absorbed by the wall with the pin-hole.

So far, we would think that nothing special has happened during this process of reproduction.

But what did happen to the light in the tiny pin-hole? We should assume that the size of the pin-

hole is considerably larger than the wavelength. Here, the different rays of the original image

interfere and inside the pin-hole a wave field is formed. The momentum along the optical z-axis

indicates the propagation direction, and is not very interesting (because is nearly constant for

all considered rays). The momenta in the x-y-plane are much smaller and indicate a direction.

They originate from the original picture and remain constant during the whole process. Before

and after the pin-hole the rays are separated and the directions are connected to a real-space

image. In the pin-hole itself the waves interfere and the wave field looks more complicated.

The information about the original scenery is conserved through all the stages. That means that
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also the wave field inside the pin-hole is directly connected to the original picture.

From quantum mechanics (and optics), we know that the vector of momentum is connected

to a wave vector. This relation describes how the waves inside the pin-hole are connected

to a spectrum of momenta. In classical quantum mechanics (for neutrons), a simple Fourier

transformation describes how a wave field in real space (pin-hole state) is connected with a wave

field in momentum space (separated beams). In principle, the interpretation is reversible. For

electromagnetic fields (for x-rays), the concept has to be transferred to particles without mass.

Overall, this experiment describes how the different states appear, and how they are related.

The free propagation of a wave field inside a small volume (pin-hole) leads to a separation of

different rays accordingly to their momentum.

Now we exchange the original image by a single source (see yellow spot in lower part of Fig.

5.5). This source is still depicted on the image plate (or detector). If we insert a sample at

the position of the pin-hole, the wave field starts to interact with the sample. In a simplified

way we can say that a small fraction of the wave field takes the real space structure of the

sample while the major fraction passes the sample without interaction. This small fraction

of the wave field resulting from the interaction propagates freely towards the image plate and

generates a scattering pattern. As we have learned, the momenta present in the small fraction of

the wave field give rise to the separation of single rays. So the real space image of the sample

leads to a Fourier transformed image on the detector. This is the explanation, how the Fourier

transformation appears in a scattering experiment – so this is a simplified motivation for the

Born approximation. A similar result was found by Fraunhofer for the diffraction of light at

small apertures. Here, the aperture is impressed to the wave field (at the pin-hole), and the far

field is connected to the Fourier transformation of the aperture shape.

Later, we will see that the size of wave field packages at the pin-hole is given by the coherence

volume. The scattering appears independently from such small sub-volumes and is a simple

superposition.

5.2.3 Remarks on focusing instruments

We have described the resolution function of the pin-hole SANS instrument very well. This

design comes to its limits if very large structures (of ∼ μm) need to be resolved. Usually

focusing instruments take over because they provide higher intensities at higher resolutions.

Focusing instruments have the same motivation as photo cameras. When the pin-hole camera

does not provide proper intensities any more, focusing elements – such as lenses – allow for

opening the apertures. Then the resolution is good while the intensity increases to a multiple

of its original value. For focusing SANS instruments this means that the sample sizes must be

increased accordingly to the lens or mirror size.

There are two possible ways for focusing elements: Neutron lenses are often made of MgF2.

Large arrays of lenses take an overall length of nearly one meter. This is due to the low refractive

index of the material for neutrons. A disadvantage of the lenses is the dispersion relation which

leads to strong chromatic aberrations. So it is hardly possible to focus the full wavelength band

of classical neutron velocity selectors on the detector. Other ways like magnetic neutron lenses

have to deal with similar problems.
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Fig. 5.6: How a Fourier transformation is obtained with refractive lenses. The real space

structure in the focus of the lens is transferred to differently directed beams. The focusing lens

is concave since for neutrons the refractive index is smaller than 1.

The focusing mirror does not show chromatic aberration. So this focusing element provides the

highest possible resolution at highest intensities. The small angle scattering instrument KWS-

3 is a unique instrument which uses this technique. The mirror technique was motivated by

satellite mirrors. The satellite ROSAT carried an x-ray camera for scanning the whole horizon.

The mirror roughness needed to stay below a few Ångström over large areas.

Practically, the entrance aperture may be closed to a few millimeters while the sample aperture

takes a few square centimeters accordingly to the mirror size. This setup images the entrance

aperture on the detector. So, the primary beam profile has sharp edges in comparison to the

triangular shapes of the pin-hole camera. This narrower distribution of intensity means that the

beam stop might be slightly smaller than for a similar pin-hole instrument and so the focusing

instrument improves the intensity-resolution problem by a rough factor of two.

For a symmetric set-up (collimation and detector distance equal, i.e. LC = LD) the focusing

optic is in the middle at the sample position. The focus f is half the collimation distance, i.e.

f = 1
2
LC = 1

2
LD. Now the places where exact Fourier transforms are obtained (from the

entrance aperture and from the sample structure) do not agree anymore. The sample is still

considered as a small volume and from there the waves propagate freely to the detector, and the

already known relation between sample structure and scattering image holds.

For focusing elements, the places of Fourier transformations differ (see Fig. 5.6). The original

structure is placed in the focus, and the resulting distinctive rays are obtained at the other side

of the lens in the far field. So for focusing SAS instruments, the places of appearing Fourier

transformations for the entrance aperture and the sample structure differ.

The historical development of cameras can be seen in parallel. The first cameras were pin-hole

cameras, but when lenses could be manufactured lens cameras replaced the old ones. The direct

advantage was the better light yield being proportional to the lens size. Another effect appeared:

The new camera had a depth of focus – so only certain objects were depicted sharply, which was

welcomed in the art of photography. The focusing SAS instrument depicts only the entrance

aperture, and the focusing is not a difficult task. The higher intensity or the better resolution are

the welcome properties of the focusing SAS instrument.
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5.2.4 Measurement of the macroscopic cross section

In this section, the macroscopic scattering cross section is connected to the experimentally mea-

sured intensity. The experimental intensity is dependent on the instrument at hand, while the

macroscopic scattering cross section describes the sample properties independent of instrumen-

tal details. The absolute calibration allows to compare experimental data between different

measurements. In theory, the intensity and the cross section are connected by:

ΔI

ΔΩ
(Q) = I0 · A · Tr · t · dΣ

dΩ
(Q) (5.3)

The intensity ΔI for one detector channel is measured as a function of the scattering angle.

Each detector channel covers the solid angle ΔΩ. The experimental intensity is proportional

to: (a) the intensity at the sample position I0 (in units of neutrons per second per area), (b) of

the irradiated area A, (c) the transmission of the sample (the relative portion of non-scattered

neutrons), (d) of the sample thickness t, and (e) the macroscopic scattering cross section dΣ/dΩ.

In most practical cases, the primary intensity cannot be detected by the same detector. By a

calibration measurement of a substance with known scattering strength the primary intensity

is measured indirectly. At KWS-1 and KWS-2 we often use plexiglass, which scatters only

incoherently (due to the hydrogen content). The two measurements under the same conditions

will be put in relation, which thereby eliminates the identical terms. One writes:

ΔI(Q)
ΔΩ

∣∣∣
sample

ΔI(Q)
ΔΩ

∣∣∣
plexi

=
I0 · A · Tr,sample · tsample

I0 · A · Tr,plexi · tplexi ·
dΣ(Q)
dΩ

∣∣∣
sample

dΣ(Q)
dΩ

∣∣∣
plexi

(5.4)

The macroscopic scattering cross section of the plexiglass measurement does not depend on

the scattering vector. The measured intensity of the plexiglass is also a measure of the detector

efficiency, as different channels can have different efficiency. The plexiglass specific terms are

merged to μplexi = Tr,plexi · tplexi · (dΣ/dΩ)plexi. So, finally the macroscopic scattering cross-

section reads:

dΣ(Q)

dΩ

∣∣∣∣
sample

=
μplexi

Tr,sample · tsample

ΔI(Q)|sample

ΔI(Q)|plexi
·
(
LD,sample

LD,plexi

)2

(5.5)

Essentially, formula 5.5 follows directly from equation 5.4. The last factor results from the solid

angles of the two measurements, which in principle can be done at different detector distances

LD. Plexiglass is an incoherent scatterer, and therefore can be measured at smaller detector

distances to obtain an increased intensity. Nonetheless, the collimation setting must be the

same as for the sample measurement.

5.2.5 Incoherent background

The macroscopic cross section usually has two contributions: the coherent and incoherent scat-

tering. For small angle neutron scattering the incoherent scattering is mostly Q-independent

and does not contain important information:
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dΣ

dΩ
(Q)

∣∣∣∣
total

=
dΣ

dΩ
(Q)

∣∣∣∣
coh

+
dΣ

dΩ

∣∣∣∣
incoh

(5.6)

We therefore tend to subtract the incoherent scattering. It is well determined at large Q when

the coherent scattering becomes small. The origin of the incoherent scattering is the spin-

dependent scattering length. Especially for hydrogen 1H the neutron spin and the nuclear spin

form a singlet or triplet state with different scattering lengths. The average scattering length

of these two states contributes to the coherent scattering. The variance of the scattering length

gives rise to the incoherent scattering. Here, each of the nuclei appears as an independent point

scatterer which in reciprocal space means a Q-independent scattering signal. The dependence

of the scattering on the neutron spin means that neutron spin polarization and analysis yields

another method to determine the incoherent scattering independently from the coherent signal.

5.2.6 Resolution

The simple derivatives of equation 5.2 support a very simple view on the resolution of a small

angle neutron scattering experiment. We obtain:

(
ΔQ

Q

)2

=

(
Δλ

λ

)2

+

(
2Δθ

2θ

)2

(5.7)

The uncertainty about the Q-vector is a sum about the uncertainty of the wavelength and the

angular distribution. Both uncertainties result from the beam preparation, namely from the

monochromatization and the collimation. The neutron velocity selector selects a wavelength

band of either ±5% or ±10%. The collimation consists of an entrance aperture with a diameter

dC and a sample aperture of a diameter dS . The distance between them is LC .

One property of eq. 5.7 is the changing importance of the two contributions at small and large

Q. At small Q the wavelength spread is nearly negligible and the small terms Q and θ dominate

the resolution. This also means that the width of the primary beam is exactly the width of the

resolution function. More exactly, the primary beam profile describes the resolution function

at small Q. Usually, the experimentalist is able to change the resolution at small Q. At large

Q the resolution function is dominated by the wavelength uncertainty. So the experimentalist

wants to reduce it – if possible – for certain applications. This contribution is also an important

issue for time-of-flight SANS instruments at spallation sources. The wavelength uncertainty is

determined by the pulse length of the source and cannot be reduced without intensity loss.

A more practical view on the resolution function includes the geometrical contributions ex-

plicitely [3]. One obtains:

(
σQ

Q

)2

=
1

8 ln 2

((
Δλ

λ

)2

+

(
1

2θ

)2

·
[(

dC
LC

)2

+ d2S

(
1

LC

+
1

LD

)2

+

(
dD
LD

)2
])

(5.8)

Now the wavelength spread is described by Δλ being the full width at the half maximum. The

geometrical terms have contributions from the aperture sizes dC and dS and the spatial detector
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resolution dD. The collimation length LC and detector distance LD are usually identical such

that all geometric resolution contributions are evenly large (dC = 2dS then). This ideal setup

maximizes the intensity with respect to a desired resolution.

The resolution function profile is another topic of the correction calculations. A simple approach

assumes Gaussian profiles for all contributions, and finally the overall relations read:

dΣ(Q̄)

dΩ

∣∣∣∣
meas

=

∞∫
0

dQ R(Q− Q̄) · dΣ(Q)

dΩ

∣∣∣∣
theo

(5.9)

R(Q− Q̄) =
1√
2πσQ

exp

(
−1

2

(Q− Q̄)2

σ2
Q

)
(5.10)

The theoretical macroscopic cross section is often described by a model function which is fit-

ted to the experimental data. In this case the computer program only does a convolution of

the model function with the resolution function R(ΔQ). Alternatively, there are methods to

deconvolute the experimental data without modeling the scattering at first hand.

The here described resolution function is given as a Gaussian. This is true for relatively narrow

distributions. The reason for using a Gaussian function although the original distributions of λ
and θ are often triangular is: The central limit theorem can be applied to this problem because

we have seen from eq. 5.8 that there are four contributions to the resolution function, and the

radial averaging itself also smears the exact resolution function further out. Thus, the initial

more detailed properties of the individual distributions do not matter anymore. Equations 5.9

and 5.10 are a good approximation for many practical cases.

We now want to describe the connection between the resolution function and the coherence of

the neutron beam at the sample position. From optics we know about the transverse coherence

length:

�coh,transv =
λLC

2dC
is similar to ΔQ−1θ =

λLC

πdC
(5.11)

It can be compared well with the geometric resolution contribution that arises from the entrance

aperture only. Small differences in the prefactors we can safely neglect. For the longitudinal

coherence length we obtain:

�coh,long =
1

4
λ

(
Δλ

λ

)−1
is similar to Δk−1 =

1

2π
λ

(
Δλ

λ

)−1
(5.12)

This coherence length can be well compared to the wavevector uncertainty of the incoming

beam. If we look back on Figure 5.4 we see that the coherence volume exactly describes the

uncertainty of the incoming wave vector. The two contributions are perpendicular which sup-

ports the vectorial (independent) addition of the contributions in eq. 5.8 for instance. The co-

herence volume describes the size of the independent wave packages which allow for wave-like

properties such as the scattering process. So the coherence volume describes the maximum size
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Fig. 5.7: The coherence volume is usually much smaller than the sample volume (left). So the

overall scattering appears as an incoherent superposition of the scattering from many coher-

ence volumes (right).

of structure that is observable by SANS. If larger structures need to be detected the resolution

must be increased.

The understanding how the small coherence volume covers the whole sample volume is given

in the following (see also Fig. 5.7). Usually the coherence volume is rather small and is many

times smaller than the irradiated sample volume. So many independent coherence volumes

cover the whole sample. Then, the overall scattering intensity occurs as an independent sum

from the scattering intensities of all coherence volumes. This is called incoherent superposition.

5.3 The theory of the macroscopic cross section

We have seen that the SANS instrument aims at the macroscopic cross section which is a func-

tion of the scattering vector Q. In many examples of isotropic samples and orientationally

averaged samples (powder samples) the macroscopic cross section depends on the modulus

|Q| ≡ Q only. This measured function has to be connected to important structural parameters

of the sample. For this purpose model functions are developed. The shape of the model func-

tion in comparison with the measurement already allows to distinguish the validity of the model.

After extracting a few parameters with this method, deeper theories – like thermodynamics –

allow to get deeper insight about the behavior of the sample. Usually, other parameters – like

concentration, temperature, electric and magnetic fields, ... – are varied experimentally to verify

the underlying concepts at hand. The purpose of this section is to give some ideas about model

functions.

When the Born approximation was developed several facts and assumptions came along. The

scattering amplitudes of the outgoing waves are derived as perturbations of the incoming plane

wave. The matrix elements of the interaction potential with these two wave fields as vectors

describe the desired amplitudes. The interaction potential can be simplified for neutrons and the

nuclei of the sample by the Fermi pseudo potential. This expresses the smallness of the nuclei

(∼1fm) in comparison to the neutron wavelength (∼Å). For the macroscopic cross section we
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immediately obtain a sum over all nuclei:

dΣ

dΩ
(Q) =

1

V

∣∣∣∣∣∑
j

bj exp(iQ · rj)
∣∣∣∣∣
2

(5.13)

This expression is normalized to the sample volume V because the second factor usually is pro-

portional to the sample size. This simply means: The more sample we put in the beam the more

intensity we obtain. The second factor is the square of the amplitude because we measure inten-

sities. While for electromagnetic fields at low frequencies one can distinguish amplitudes and

phases (without relying on the intensity) the neutrons are quantum mechanical particles where

experimentally such details are hardly accessible. For light (and neutrons) for instance holo-

graphic methods still remain. The single amplitude is a sum over each nucleus j with its typical

scattering length bj and a phase described by the exponential. The square of the scattering

length b2j describes a probability of a scattering event taking place for an isolated nucleus. The

phase arises between different elementary scattering events of the nuclei for the large distances

of the detector. In principle, the scattering length can be negative (for hydrogen for instance)

which indicates an attractive interaction with a phase π. Complex scattering lengths indicate

absorption. The quadrature of the amplitude can be reorganized:

dΣ

dΩ
(Q) =

1

V

∑
j,k

bjbk exp
(
iQ(rj − rk)

)
(5.14)

Here we find then self-terms with identical indices j and k without any phase and cross terms

with phases arising from distances between different nuclei. Here it becomes obvious that only

relative positions of the nuclei matter which is a result of the quadrature. The overall phase of

the sample does not matter because of the modulus in eq. 5.13. We will use this expression for

the polymer scattering.

Apart from this detailed expression a simplified view is allowed for small angle scattering ex-

periments. Firstly, we know that the wavelength is typically 7Å which is much larger than

the atom-atom distance of ca. 1.5Å. Secondly, the SANS experiment aims at structures at the

nanoscale. So the scattering vector aims at much larger distances compared to the atomistic

distances (i.e. 2πQ−1 � 1Å). This allows for exchanging sums by integrals as follows:

∑
j

bj · · · −→
∫
V

d3r ρ(r) · · · (5.15)

Such methods are already known for classical mechanics, but reappear all over physics. The

meaning is explained by the sketch of Figure 5.8. The polymer polyethylene oxide (PEO)

contains many different nuclei of different species (hydrogen, carbon and oxide). However, the

SANS method does not distinguish the exact places of the nuclei. The polymer appears rather

like a homogenous worm. Inside, the worm has a constant scattering length density which

reads:

ρmol =
1

Vmol

∑
j∈{mol}

bj (5.16)
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Fig. 5.8: The concept of the scattering length density. On the left the atomic structure of a

polyethylene oxide polymer (PEO) is depicted. For small angle scattering the wavelength is

much larger than the atomic distance. So for SANS the polymer appears like a worm with a

constant scattering length density inside.

So, for each molecule we consider all nuclei and normalize by the overall molecule volume. Of

course different materials have different scattering length densities ρ. The initial equation 5.13

reads then:

dΣ

dΩ
(Q) =

1

V

∣∣∣∣∣∣
∫
V

d3r ρ(r) exp(iQr)

∣∣∣∣∣∣
2

(5.17)

=
1

V

∣∣∣F [ρ(r)]
∣∣∣2 =

1

V

∣∣∣ρ(Q)
∣∣∣2 (5.18)

The single amplitude is now interpreted as a Fourier transformation of the scattering length

density ρ(r) which we simply indicate by ρ(Q). The amplitude simply is defined by:

ρ(Q) =

∫
V

d3r ρ(r) exp(iQr) (5.19)

Again, equation 5.17 loses the phase information due to the modulus. While we focused on the

scattering experiment so far, another view on this function will provide us with further insight.

We define the correlation Γ as follows:

Γ(Q) =
1

V

∣∣∣ρ(Q)
∣∣∣2 =

1

V
ρ∗(Q)ρ(Q) =

1

V
ρ(−Q)ρ(Q) (5.20)

The modulus is usually calculated via the complex conjugate ρ∗(Q) which in turn can be ob-

tained by changing the sign of the argument Q. Now the correlation function is a simple product

of two Fourier transformed functions. They can be interpreted on the basis of a convolution in

real space:

Γ(r) =
1

V
ρ(r)⊗ ρ(r) =

1

V

∫
V

d3r′ ρ(r+ r′) · ρ(r′) (5.21)

The underlying correlation function Γ(r) arises from the convolution of the real space scattering

length density with itself. The mathematical proof is carried out in Appendix A. For imagining
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Fig. 5.9: On the left the meaning of the convolution is depicted. Two identical shapes are

displaced by a vector r. The convolution volume is the common volume (dark grey). This

consideration leads for three-dimensional spheres to the correlation function Γ(r) shown on

the right (see eq. 5.22).

the convolution assume you have two foils with the same pattern printed on. The vector r
describes the relative displacement of the two foils. Then you calculate the product of the two

patterns and integrate over V . For patterns of limited size it becomes clear that the function turns

to ‘zero’ at a finite distance r. For simple compact patterns the function monotonically decays.

The example of spheres is depicted in Fig. 5.9. In the left the meaning of the convolution

is indicated. The darkest area in the center is the considered volume of the convolution for

the vector r. In three dimensions this consideration leads to the correlation function (see also

Appendix A and references [4, 5]):

Γ(r) = φspheres ·Δρ2 ·
{

1− 3
2
|r|/(2R) + 1

2
|r|3/(2R)3 for |r| ≤ 2R

0 for |r| > 2R

}
+ 〈ρ〉2 (5.22)

The concentration φspheres accounts for many independent, but diluted spheres. The value Δρ
is the scattering length density difference between the sphere and the surrounding matrix (i.e.

solvent). The constant 〈ρ〉2 is the average scattering length density of the overall volume. Apart

from these simple rationalizations we can formally calculate the limits for small and large dis-

tances r:

Γ(r → 0) = 〈ρ2〉 Γ(r → ∞) = 〈ρ〉2 (5.23)

At this stage the reasons for the limits are based on mathematics. The brackets 〈· · · 〉 indi-

cate an averaging of a locally defined function ρ2(r), ρ(r) over the whole volume. For small

distances the averaging over squares of the scattering length density usually leads to higher val-

ues compared to the average being squared afterwards. So the correlation function often is a

monotonically decaying function. A very simple realization is given by:

Γ(r) =
〈(

ρ− 〈ρ〉)2〉 exp
(−|r|/ξ)+ 〈ρ〉2 (5.24)
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Fig. 5.10: Strategies for calculating the

scattering function on the basis of the real

space structure. Either way, there needs

to be done one Fourier transformation.

On the right wing, there remains a simple

quadrature. On the left wing, a convolu-

tion needs to be done first.

Fig. 5.11: Strategies for calculating the

real space structure form the measured

scattering function. Either way, the phase

problem needs to be overcome. On the

right wing, it is the first step where one

faces the phase problem. On the left wing,

the Fourier transformation can carried

out first and one arrives at the real space

correlation function.

The shape of the decay is usually described by an exponential decay and can be motivated

further in detail [1]. The first addend is proportional to the fluctuations of the scattering length

density. This finding already indicates that scattering experiments are sensitive to fluctuations.

The correlation length ξ indicates over which distance the correlations are lost. The current

picture does not allow for a complete decay (in comparison to the single sphere which finds

Γ(r) = 0 for r > 2R). This means that the current discussion treats scattering length density

fluctuations which fill the full 3-dimensional space. The Fourier transformation of eq. 5.24

leads to the following expression:

Γ(Q) ∝
〈(

ρ− 〈ρ〉)2〉 ξ3

1 + ξ2Q2
(5.25)

The scattering intensity in this case is proportional to the scattering length density fluctuations,

to the coherence volume ξ3 and the Q-dependent Lorentz peak. The latter has to be interpreted

as a kind of expansion. So different details of the decaying correlation function (eq. 5.24)

might lead to differently decaying scattering functions. The current Lorentz function is typical

for Ornstein-Zernicke correlation functions. Further discussions of the correlation function are

given in Appendix A.

For the fluctuations of the scattering length density we would like to consider a two phase sys-

tem, i.e. the whole space is taken by either component 1 or 2. The concentration of phase 1

is φ1, and the scattering length density is ρ1 (correspondingly ρ2 is defined). For the average

scattering lenght density we clearly obtain 〈ρ〉 = φ1ρ1 + (1 − φ1)ρ2. For the scattering length

density fluctuations we obtain similarly 〈(ρ − 〈ρ〉)2〉 = φ1(1 − φ1)(ρ1 − ρ2)
2. The latter re-

sult describes the concentration fluctuations of the two phase system and the scattering length

density contrast. For the following considerations the contrast will reappear in many examples.

One important message of this section is the correlation function that is finally measured by

the scattering experiment in reciprocal space. The main question is at which stage the Fourier
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transformation is done. For this we also have a look on Fig. 5.10. Starting from the real space

structure ρ(r), the Fourier transformation can be done immediately. After this, only the quadra-

ture needs to be taken. This is, of course, the simplest way of calculating the scattering function

dΣ/dΩ = Γ(Q). The alternative is taking the convolution in real space first, i.e. ρ(r) ⊗ ρ(r),
that will be Fourier transformed afterwards. Either way, there is one Fourier transformation to

be done. In the simpler case, there remains a quadrature, and otherwise there is the convolution.

For the reverse way, one wants to measure the scattering function that leads to a real space

structure. We have already mentioned that there is a phase problem in principle. Again, we have

a look on Fig. 5.11 first. The simplest way of the forward direction now appears hardest, because

we need to take the square root of the scattering function. In principle the solution can be written

as: ρ(Q) =
√
dΣ/dΩ · exp(iφ(Q)) with an arbitrary phase function φ. So here, we get stuck

already at the first stage, and only high degrees of particle symmetry might solve the problem

further. The other way around, there needs the Fourier transformation to be done first (inverse

and direct Fourier transformations are nearly the same). For this step, there exist programs in

the literature [4, 5]. The second step of the deconvolution still bares a principal phase problem.

The functions now can be considered as real functions, but for the deconvolution, the areas of

differing signs can be highly complicated – at least in theory. Practical solutions of finding real

space structures are nonetheless given by programs of Svergun [6]. Here, the phase problem

was overcome by other practical assumptions about proteins.

5.3.1 Spherical colloidal particles

In this section we will derive the scattering of diluted spherical particles in a solvent. These

particles are often called colloids, and can be of inorganic material while the solvent is either

water or organic solvent. Later in the manuscript interactions will be taken into account.

One important property of Fourier transformations is that constant contributions will lead to

sharp delta peaks at Q = 0. This contribution is not observable in the practical scattering

experiment. The theoretically sharp delta peak might have a finite width which is connected

to the overall sample size, but centimeter dimensions are much higher compared to the largest

sizes observed by the scattering experiment (∼μm). So formally we can elevate the scattering

density level by any number −ρref :

ρ(r) −→ ρ(r)− ρref leads to ρ(Q) −→ ρ(Q)− 2πρrefδ(Q) (5.26)

The resulting delta peaks can simply be neglected. For a spherical particle we then arrive at the

simple scattering length density profile:

ρsingle(r) =

{
Δρ for |r| ≤ R

0 for |r| > R
(5.27)

Inside the sphere the value is constant because we assume homogenous particles. The reference

scattering length density is given by the solvent. This function will then be Fourier transformed

accordingly:
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ρsingle(Q) =

2π∫
0

dφ

π∫
0

dϑ sinϑ

R∫
0

dr r2 Δρ exp
(
i|Q| · |r| cos(ϑ)) (5.28)

= 2π Δρ

R∫
0

dr r2
[

1

iQr
exp

(
iQrX

)]X=+1

X=−1

(5.29)

= 4π Δρ

R∫
0

dr r2
sin(Qr)

Qr
(5.30)

= Δρ
4π

3
R3

(
3
sin(QR)−QR cos(QR)

(QR)3

)
(5.31)

In the first line 5.28 we introduce spherical coordinates with the vector Q determining the z-

axis for the real space. The vector product Qr then leads to the cosine term. In line 5.29 the

azimutal integral is simply 2π, and the variable X = cosϑ is introduced. Finally, in line 5.30

the kernel integral for spherically symmetric scattering length density distributions is obtained.

For homogenous spheres we obtain the final result of eq. 5.31. Putting this result together for

the macroscopic cross section (eq. 5.18) we obtain:

dΣ

dΩ
(Q) =

N

V
·
∣∣∣ρsingle(Q)

∣∣∣2 = (Δρ)2 φspheres Vsphere F (Q) (5.32)

F (Q) =

(
3
sin(QR)−QR cos(QR)

(QR)3

)2

(5.33)

We considered N independent spheres in our volume V , and thus obtained the concentration

of spheres φspheres. Furthermore, we defined the form factor F (Q), which describes the Q-

dependent term for independent spheres (or the considered shapes in general). The function is

shown in Figure 5.12. The first zero of the form factor is found at Q = 4.493/R. This relation

again makes clear why the reciprocal space (Q-space) is called reciprocal. We know the limit

for small scattering angles is F (Q→ 0) = 1 − 1
5
Q2R2. So the form factor is normalized to 1,

and the initial dependence on Q2 indicates the size of the sphere. For large scattering angles the

form factor is oscillating. Usually the instrument cannot resolve the quickest oscillations and

an average intensity is observed. The asymptotic behavior would read F (Q→∞) = 9
2
(QR)−4.

The obtained power law Q−4 is called Porod law and holds for any kind of bodies with sharp

interfaces. So, sharp interfaces are interpreted as fractals with d = 2 dimensions, and the

corresponding exponent is 6− d. The general appearance of the Porod formula reads then:

dΣ

dΩ
(Q) = P ·Q−4 (5.34)

The amplitude of the Porod scattering P tells about the surface per volume and reads P =
2π(Δρ)2Stot/Vtot. Apart from the contrast, it measures the total surface Stot per total vol-

ume Vtot. For our shperes, the Porod constant becomes P = 2π(Δρ)24πR2/(4πR3/(3φ)) =
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Fig. 5.12: The form factor of a homoge-

nous sphere in a double logarithmic plot.

Fig. 5.13: Experimental scattering curve

of spherical SiO2 colloids in the deuter-

ated solvent DMF [7]. The resolution

function (eq. 5.9) is included in the fit (red

line).

6πφ1(Δρ)2/R. The surface to volume ratio is smaller the larger the individual radius R is.

The remaining scaling with the concentration φ1 and the contrast (Δρ)2 arises still from the

prefactor which we discussed in context with eq. 5.32.

When comparing the theoretical description of the spherical form factor with measurements one

finds a good agreement (Fig. 5.13). Many fringes are seen, but after the third or fourth peak the

function does not indicate any oscillation any more. Furthermore, the sharp minima are washed

out. All of this is a consequence of the resolution function (eq. 5.9) which has been taken into

account for the fitted curve. For many other examples one also needs to take the polydispersity

into account. The synthesis of colloids usually produces a whole distribution of different radii.

In our example the polydispersity is very low which is the desired case. Polydispersity acts in

a similar way compared to the resolution function. The sharp minima are washed out. While

the resolution appears as a distribution of different Q-values measured at a certain point the

polydispersity integrates over several radii.

Another general scattering law for isolated (dilute) colloids is found for small scattering angles.

The general appearance of the Guinier scattering law is:

dΣ

dΩ
(Q→0) =

dΣ

dΩ
(0) · exp

(
−1

3
Q2R2

g

)
(5.35)

When comparing the scattering law of a sphere and the Guinier formula we obtain Rg =
√

3
5
R.

The radius of gyration Rg can be interpreted as a momentum of inertia normalized to the total

mass and specifies the typical size of the colloid of any shape. The Guinier formula can be seen

as an expansion at small scattering angles of the logarithm of the macroscopic cross section

truncated after the Q2 term. Further details are discussed in Appendix B.

Another general appearance for independent colloids shall be discussed now using equation
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5.32. The macroscopic cross section is determined by several important factors: The contrast

between the colloid and the solvent given by Δρ2, the concentration of the colloids, the volume

of a single colloid, and the form factor. Especially for small Q the latter factor turns to 1, and

the first three factors dominate. When knowing two factors from chemical considerations, the

third factor can be determined experimentally using small angle neutron scattering.

When comparing this expression for isolated colloids with the Ornstein-Zernicke result we see

in parallel: The contrast stays for both kinds of interpretations. The particle volume corresponds

to the correlation volume (i.e. V ∼ ξ3). The concentration of the correlation volumes comes

close to 1 (i.e. φ ∼ 1). Finally, F is a measure for the correlations inside the correlation volume.

So, for independent colloids the correlation volume must fully cover the single particle but two

neighbored particles are found in distinct correlation volumes. Finally, the overall experimental

correlation length is limited by the sample and the radiation coherence. So, for the transversal

correlation length one would obtain ξ−2eff,transv = ξ−2 + �−2coh,transv.

5.3.2 Contrast variation

For neutron scattering the method contrast variation opens a wide field of possible experiments.

For soft matter research the most important labelling approach is the exchange of hydrogen
1H by deuterium 2H. Since in a single experiment the phase information is lost completely

the contrast variation experiment retrieves this information partially. Relative positions of two

components are obtained by this method.

The scattering length density of the overall sample is now understood to originate from each

component individually. So the specific ρj(r) takes the value of the scattering length density of

component j when the location points to component j and is zero otherwise. We would then

obtain the following:

ρ(Q) =

∫
V

d3r

(
n∑

j=1

ρj(r)

)
exp(iQr) (5.36)

n specifies the number of components. The assumption of incompressibility means that on

every place there is one component present, and so all individual functions ρj(r) fill the full

space. Furthermore, we would like to define component 1 being the reference component, i.e.

ρref = ρ1 (see eq. 5.26). This means that on each place we have a Δρj(r) function similar to

eq. 5.22. Then, we arrive at:

ρ(Q) =
n∑

j=2

Δρj1(Q) (5.37)

The macroscopic cross section is a quadrature of the scattering length density ρ(Q), and so we

arrive at:

dΣ

dΩ
(Q) =

1

V
·

n∑
j,k=2

Δρ∗j1(Q) ·Δρk1(Q) (5.38)
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Fig. 5.14: One dimensional

contrast variation with so-

lute of unknown scattering

length density.

Fig. 5.15: One dimensional contrast variation on poly-

mer micelles. The core is protonated and the shell

is deuterated. For normal water the shell contrast is

achieved, and for heavy water the core contrast. Zero-

average contrast is found in the middle.

=
n∑

j,k=2

(Δρj1Δρk1) · Sjk(Q) (5.39)

=
n∑

j=2

(Δρj1)
2 · Sjj(Q) + 2

∑
2<j<k≤n

(Δρj1Δρk1) · 
 Sjk(Q) (5.40)

In line 5.39 the scattering function Sjk(Q) is defined. By this the contrasts are separated from

the Q-dependent scattering functions. Finally, in line 5.40 the diagonal and off-diagonal terms

are collected. There are n−1 diagonal terms, and 1
2
(n−1)(n−2) off-diagonal terms. Formally,

these 1
2
n(n − 1) considerably different terms are rearranged (the combinations {j, k} are now

simply numbered by j), and a number of s different measurements with different contrasts are

considered.

dΣ

dΩ
(Q)

∣∣∣∣
s

=
∑
j

(Δρ ·Δρ)sj · Sj(Q) (5.41)

In order to reduce the noise of the result, the number of measurements s exceeds the number

of independent scattering functions considerably. The system then becomes over-determined

when solving for the scattering functions. Formally one can nonetheless write:

Sj(Q) =
∑
s

(Δρ ·Δρ)−1sj · dΣ
dΩ

(Q)

∣∣∣∣
s

(5.42)
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Fig. 5.16: Two dimensional contrast variation for a droplet microemulsion with polymers

attached. The matrix is the water component (no. 1). The oil droplets are surrounded by a

surfactant film (components no. 2 and 3). The forths component is the polyer – it is an additive.

The amphiphilic polymer is attached to the droplet. The situations of bulk, film and polymer

contrast are indicated.

The formal inverse matrix (Δρ ·Δρ)−1sj is obtained by the singular value decomposition method.

It describes the closest solution of the experiments in context of the finally determined scattering

functions.

The use of the contrast variation method will now be discussed in several stages with growing

number of components. In the simplest case, we have a solvent the scattering length density

of which will be varied. The other component has an unknown scattering length density that

shall be determined experimentally. The principle of the experiment is shown in Fig. 5.14. The

top and bottom indicate the situations of full protonation and deuteration. Usually, there is a

good contrast achieved and the scattering signal is high. For a middle degree of deuteration the

contrast is lowest, and basically no scattering is observed. Since the contrast is a square, one

usually plots the sqare root of a typical intensity (for a typical low Q-value) as a function of the

solvent scattering length density. One obtains a linear function with a kink (like the absolute

value function), and reads off the zero-contrast at the minimum intensity. The experimental

residual intensity at this point arises from internal inhomogeneities of the unknown component.

For instance, natural clay particles do not all have the same chemistry and therefore give rise to

residual scattering.

The next more complicated case treats particles with desired inhomogeneities inside. Polymer

micelles are usually made from diblock copolymers. One linear end consists of hydrophobic

monomers. The other end is made of hydrophilic monomers. The hydrophobic blocks collapse

in the solvet water, and form aggregates (micelle formation). The hydrophilic blocks form a

water soluble corona around the compact core. Usually, one block is hydrogenous, and the
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Fig. 5.17: Scheme of scattering functions

for the cross terms within the microemul-

sion. There are the film-polymer scatter-

ing SFP, the oil-film scattering SOF, and

the oil-polymer scattering SOP. The real

space correlation function means a con-

volution of two structures.

Fig. 5.18: A measurement of the

film-polymer scattering for a bicontinu-

ous microemulsion with a symmetric am-

phiphilic polymer. The solid line is de-

scribed by a polymer anchored in the

film. The two blocks are mushroom-like

in the domains. At low Q the overall do-

main structure (or size) limits the ideal-

ized model picture. Reprinted from [8],

with the permission of AIP Publishing.

other block is deuterated. Varying the degree of deuteration in the solvent water one observes

the following situations (Fig. 5.15): With normal water, the corona is fully visible while the

core is hidden. With heavy water, the core is fully visible. The compact core appears much

smaller and therefore the Guinier scattering extends to larger Q than for the expanded corona.

The dry or compact volumes of the core and the shell finally decide which forward scattering

dominates the other (at same contrast). The zero-average contrast is achieved when the particle

does not provide visible contrast with the matrix (solvent). Then, the forward scattering (or low

Q scattering) is ideally vanishing. Since there are still inhomogeneities in the sample, scattering

is observed at finite Q. A peak in the scattering function describes oscillations in real space.

The scattering length density profiles along the cross section do so (Fig. 5.15).

The simplest multidimensional contrast variation experiment deals with four components (see

Fig. 5.16). The considered microemulsion consists of water, oil, surfactant and a polymer as

additive. Oil droplets are formed. The surfactant surrounds the oil. The minority component

polymer is anchored in the droplet because of its amphiphilicity. By changing the oil con-

trast (vertical direction) and surfactant contrast (horizontal direction) many situations can be

achieved. In the centre the polymer contrast is indicated where ideally the polymer is the only

visible component. When the film scattering is strong (the polymer scattering does not need to

be completely zero), the film contrast ist achieved. The polymer scattering usually is negligible,

since the polymer is a minority component in the system. When the overall droplet scattering

is strong, the bulk scattering is achieved. The polymer scattering is even more negligible here.
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The overview of the whole Figure 5.16 is discussed very close to the polymer contrast. Around

this ideal point many experiments usually serve for highest accuracy of this weakest scattering.

The bulk and film contrast experiments usually employ fully deuterated water and protoneous

surfactant (and oil). In this way, the two shots deal with higher intensities and have much better

statistics.

Now, the practical example discusses a microemulsion with a different domain topology [8].

The microemulsion consists of oil and water domains which have a sponge structure. So the

water domains host the oil and vice versa. This domain structure is called bicontinuous there-

fore. The surfactant film covers the surface between the oil and water domains. The symmetric

amphiphilic polymer position and function was not clear beforehand. From phase diagram

measurements it was observed that the polymer increases the efficiency of the surfactant dra-

matically. Much less surfactant is needed to solubilize equal amounts of oil and water. Fig.

5.17 discusses the meaning of the cross terms of the scattering functions. Especially the film-

polymer scattering is highly interesting to reveal the polymer role inside the microemulsion (see

Fig. 5.18). By the modeling it was clearly observed that the amphiphilic polymer is anchored

in the membrane and the two blocks describe a mushroom inside the oil and water domains. So

basically, the polymer is a macro-surfactant. The effect of the polymer on thermodynamics and

the microscopic picture is discussed in chapter 5.3.4.

5.3.3 The structure factor

In this section we develop the ideas about the structure factor – an additional factor for the

scattering formula (eq. 5.32) – which describes the effect of interactions between the colloids

or particles. We start from a rather simple interaction for colloids. It simply takes into account

that the particles cannot intersect. This interaction is called excluded volume interaction. Then

the general case will be discussed briefly and conceptually.

We start from the scattering length density for two spheres with different origins R1 and R2. In

this case the formula reads:

Δρ(Q) = Δρ · Vsphere ·
(
exp(iQR1) + exp(iQR2)

) ·K(Q,R) (5.43)

K(Q,R) = 3 · sin(QR)−QR cos(QR)

(QR)3
(5.44)

The main difference arises from the phases of the two origins of the two colloids. Otherwise the

result is known from eq. 5.31. For the macroscopic cross section we rearrange the amplitudes

in the following way:

dΣ

dΩ
(Q) = (Δρ)2 · 2Vsphere

Vtot
· Vsphere ·

∣∣ exp(iQR1)
∣∣2 ·〈1

2

∣∣1 + exp(iQΔR)
∣∣2〉

ΔR

·K2(Q,R)

(5.45)

There are factors for the contrast, the concentration, the single particle volume, one phase factor

which results in 1, one factor for the relative phases, and the form factor. In comparison to eq.
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5.32 all factors are known except for the factor about the relative phases. The brackets describe

an ensemble average known from statistical physics. We have to consider all possible relative

positions ΔR. This is done in the following:

S(Q) =

〈
1

2

∣∣1 + exp(iQΔR)
∣∣2〉

ΔR

=
〈
1 + cos(QΔR)

〉
ΔR

(5.46)

=
1

Vtot

(
Vtot + 2πδ(Q)− 4π

3
(2R)3K(Q, 2R)

)
(5.47)

The main result is found in line 5.47 which is obtained from the ensemble average. The prefactor

arises from the normalization. The constant term arises from integrating over the whole volume.

To be more precise the vector R has to omit a volume of a sphere with the radius 2R, because

this is the minimum distance of the two centers. For the integral of the constant contribution

we neglect this small difference. For the integral over the cosine function we have to do a trick

which is called the Babinet principle: The really allowed volume is the sum of the full volume

minus the sphere with the radius 2R. The cosine function integrated over the full volume is

again a delta function, and the subtracted term is the Fourier transformation of a sphere, i.e.

K(Q, 2R). We obtain the same result for the cosine-Fourier transformation and the complex

Fourier transformation because the volume is centro-symmetric. The Babinet principle actually

uses the inversion of the volume and states for squares of amplitudes, i.e. intensities, exactly

the same result as for the original structure. For the structure factor we have to keep in mind:

It arises from a single Fourier transformation and is not squared. The final result in brief is

(neglecting the delta function again):

S(Q) = 1− φ2R ·K(Q, 2R) (5.48)

dΣ

dΩ
(Q) = (Δρ)2 · φsphere · Vsphere · S(Q) ·K2(Q,R) (5.49)

So we obtain the well known factors for the macroscopic cross section – now with a structure

factor. The form and structure factor are compared in Fig. 5.19. The reduced intensity at small

scattering vectors due to the structure factor appears for repulsive interactions and means that

the possible fluctuations of the particles are reduced because they have less freedom. The first

maximum indicates a preferred distance between the colloids. Such a maximum becomes more

pronounced with higher concentrations. Note that for this example the maximum appears at a Q
where the form factor already has a downturn. There are many examples in the literature where

the form factor is still relatively close to 1 and then the structure factor is exposed very clearly.

So far we have derived the excluded volume structure factor for very dilute systems. The method

of Ornstein-Zernicke allows for a simple refinement by describing higher order correlations on

the basis of the simple pair correlation. Then – in the simplest way – one would obtain the

following expression:

S2(Q) =
(
1 + φ2R ·K(Q, 2R)

)−1
(5.50)
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Fig. 5.19: The structure factor S(Q) on top of the form factor F (Q) = K2(Q). Note that the

structure factor is smaller than 1 for small Q. This indicates a repulsive interaction. The first

maximum of the structure factor expresses a certain tendency for preferred distances. Of course

it only appears for rather strong concentrations.

A more rigorous treatment of the Ornstein-Zernicke formalism results in the Perkus-Yevick

structure factor [9] which is the best known approximation for hard spheres. On the basis of

this structure factor as the dominating term small corrections for additional interactions can be

included [10]. For colloidal systems this is the strategy of choice.

Nonetheless, we would like to understand the structure factor more generally. From equation

5.46 we have seen that the phases of two centers have to be considered. The ensemble average

finally took the distribution of possible distance vectors ΔR into account. So we can understand

the structure factor on the basis of a pair correlation function for the centers of the particles.

S(Q) = 1 + φ

∫
V

d3r
(
g(r)− 1

)
exp(iQr) (5.51)

The function g(r) is the pair correlation function and describes the probabilities for certain

distance vectors r, and the exponential function accounts for the phases. Again, for centro-

symmetric g(r) there is no difference between a cosine and a complex Fourier transformation.

The subtraction of the constant 1 accounts for delta peak contributions which we also obtained

in line 5.47. The added term 1 we also obtained in the beginning (line 5.46). It arises from the

self correlation of the particle with itself. For the pair distribution function we now can write:

g(r2 − r1) =
P (r1, r2)

P (r1) · P (r2)
, and φ = P (r1) (5.52)

and can be obtained theoretically with methods from statistical physics. It describes the proba-
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Fig. 5.20: The relation between the interaction potential V (r), the pair correlation function

g(r) in real space, and the structure factor S(Q).

bility for finding two particles at a distance r2−r1. A rather elementary example is discussed in

Fig. 5.20 starting from an interaction potential V (r). It has a repulsive short range interaction, a

weak minimum at a distance rnn, and a quickly decaying tail to long distances. The distance rnn
indicates the preferred distance of nearest neighbors. The pair correlation function then shows

an inhibited range at short distances – similar to an excluded volume interaction. The follow-

ing peak at rnn indicates a preferred nearest neighbor distance. The following oscillations for

larger distances indicate more remote preferred places. The limit of g(r) at large distances is

1 indicating the average concentration of particles. For the structure factor we obtain a rather

strong suppression at small Q. This means that the repulsive interactions lead effectively to a

more homogenous distribution of particles. The peak of the structure factor at Q = 2π/rnn in-

dicates the preferred distance of the nearest neighbors. Strong oscillations at higher Q indicate

a narrow distribution of the actual neighbor distances. The limit at high Q is again 1, and arises

from the self correlation of identical particles. This example describes a liquid-like behavior

which has historically been developed for liquids. In soft matter research this concept applies

for many systems ranging from colloids, over micelles to star-polymers. While the liquid-like

structure describes a near order, a perfect crystal would lead to a different behavior: The corre-

lation function g(r) would contain a lattice of separated delta peaks. The structure factor would

describe the reciprocal lattice with the well known Bragg peaks. In soft matter research there

exist many examples with liquid crystalline order. Very often they display a finite size of crys-

talline domains – so there is a grain structure – and the real state takes an intermediate stage

between the perfect crystalline and liquid-like order.
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Fig. 5.21: A real space picture of the

bicontinuous microemulsion according to

computer simulations [12]. Actually the

surfactant film is shown with the surface

color being red for oil facing surface and

yellow for water facing surface.

Fig. 5.22: The macroscopic cross sec-

tion of a bicontinuous microemulsion. The

peak indicates an alternating domain struc-

ture with the spacing d. The peak width is

connected to the correlation length ξ. The

grey line is the simple Teubner-Strey fitting

while the red line corresponds to eq. 5.55.

Reprinted with permission from [13]. Copy-

right 2007 American Chemical Society.

5.3.4 Microemulsions

In this section we will follow a very successful way of deriving the scattering formula for

bicontinuous microemulsions (see Fig. 5.21). Bicontinuous microemulsions consist of equal

amounts of oil and water. A certain amount of surfactant is needed to solubilize all components,

and a one phase system is obtained. The domain structure of the oil is a continuous sponge

structure which hosts the water and vice versa. The surfactant forms a film at the surface

between the oil and water domains.

The starting point is a thermodynamic model for such kind of system. The Landau approach

takes mesoscopic sub-volumes and assumes that the internal degrees of freedom are integrated

out, and there is a small number of order parameters describing the state of the sub-volume

very accurately. For microemulsions we stay with a single (scalar) order parameter φ(r) which

takes the values −1 for oil, 0 for surfactant, and +1 for water. Now the order parameter can

still be treated like a continuous function since the physical effects take place on larger length

scales than the sub-volume size. The (free) energy of the overall volume is now expressed as

a function of the order parameter. One still cannot be perfectly accurat, so an expansion with

respect to the order parameter is used. The expansion for microemulsions looks like:

F0

(
φ(r)

)
=

∫
d3r

[
c(∇2φ)2 + g0(∇φ)2 + ω2φ

2
]

(5.53)

This expansion does not only contain the order parameter itself, but there are derivatives in-
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cluded. These appear since this expression of the free energy is a functional expansion. Certain

orders (especially the odd orders) of the order parameter and its derivatives have been ruled out

due to the symmetry of the system. One important symmetry is the restriction to equal amounts

of oil and water. Another facilitating property is that the functional form only considers local

contributions in the functional form. For this free energy expression one can apply statistical

physics methods and derive a scattering function (done in Appendix C). In comparison with

the real space correlation function one can identify two important parameters: the correlation

length ξ and the wavevector of the domain spacing k = 2π/d. The obtained scattering function

looks like:

dΣ

dΩ
(Q)

∣∣∣∣
TS

= (Δρoil−water)
2 8πφoilφwater/ξ

(k2 + ξ−2)2 − 2(k2 − ξ−2)Q2 +Q4
(5.54)

This function is also known as the Teubner-Strey formula [11]. While the applied concept

approaches the reality as a long wavelength description, there are details missing. The described

domains have rather plain walls while in reality the domain walls also fluctuate quite heavily.

An empirical approach for the scattering function for the full Q-range is the following:

dΣ

dΩ
(Q) =

[
dΣ

dΩ
(Q)

∣∣∣∣
TS

+
G erf12(1.06 ·QRg/

√
6)

1.5 ·Q4R4
g

]
· exp (−σ2Q2

)
(5.55)

The error function erf(x) in the overall context describes a peak with a Porod behavior at large

Q. This additional Porod term accounts for the larger surface of the fluctuating membranes.

The final Gaussian factor describes a roughness of the surfactant film and often is not that

clearly observed due to the high incoherent background. An example fit of this function to

scattering data is discussed in Fig. 5.22. The pure Teubner-Strey function clearly shows a

downturn at higher Q and the real Porod scattering is not well described. Only the additional

Porod scattering allows for a realistic estimation of the averge surface of the domain structure.

From the structural parameters k = 2π/d and ξ one can make connections to the microscopic

parameters of the microemulsion. The Gaussian random field theory describes the thermody-

namics of a microemulsion by using a wave field that places the surfactant film at the zero

surfaces of the field. The theory makes a connection of the structural parameters to the bending

rigidity:

κ

kBT
=

5
√
3

64
· kξ (5.56)

The bending rigidity κ is an elastic modulus of the surfactant membrane. The overall underlying

concept only relies on the elastic properties of the membrane to describe the thermodynamics

of bicontinuous microemulsions. For symmetric amphiphilic polymers it was found that the

bending rigidity increases [8]. The reason is that the mushroom conformation (obtained by the

contrast variation measurements from chapter 5.3.2) exerts a pressure on the membrane. This

makes the membrane stiffer which in turn allows to form larger domains with a better surface to

volume ratio. So the much lower demand for surfactant is explained on the basis of small angle

neutron scattering experiments.
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Fig. 5.23: The sample position of the

SAXS instrument ID2 at the ESRF, Greno-

ble, France. The photons propagate from

the right to the left. The collimation guides

on the left and the detector tank window on

top of the cone on the left give an impres-

sion about the small beam size (being typi-

cally 1×1mm2).

Fig. 5.24: The complex dispersion curve for

gold (Au) at the L3 edge [14]. The overall

effective electron number f = f0+ f ′+if ′′

replaces the conventional electron number

Z = f0 in equation 5.57. On the x-axis

the energies of the x-rays is shown, with

indications for the experimentally selected

three energies (black, red, blue). In this

way, equal steps for the contrast variation

are achieved. c© IOP Publishing. Repro-

duced with permission. All rights reserved.

5.4 Small angle x-ray scattering

While a detailed comparison between SANS and SAXS is given below, the most important

properties of the small angle x-ray scattering technique shall be discussed here. The x-ray

sources can be x-ray tubes (invented by Röntgen, keyword Bremsstrahlung) and modern syn-

chrotrons. The latter ones guide fast electrons on undulators which act as laser-like sources for

x-rays with fixed wavelength, high brilliance and low divergence. This simply means that the

collimation of the beam often yields narrow beams, and the irradiated sample areas are con-

siderably smaller (often smaller than ca. 1×1mm2). A view on the sample position is given

in Fig. 5.23 (compare Fig. 5.3). One directly has the impression that all windows are tiny and

adjustments must be made more carefully.

The conceptual understanding of the scattering theory still holds for SAXS. For the simplest

understanding of the contrast conditions in a SAXS experiment, it is sufficient to count the

electron numbers for each atom. The resulting scattering length density reads then (compare

eq. 5.16):

ρmol =
re
Vmol

∑
j∈{mol}

Zj (5.57)

The classical electron radius is re = e2/(4πε0mec
2) = 2.82fm. The electron number of each

atom j is Zj . This means that chemically different substances have a contrast, but for similar

http://dx.doi.org/10.1088/0957-4484/20/50/505705
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substances (often for organic materials) it can be rather weak. Heavier atoms against light

materials are much easier to detect. Finally, the density of similar materials is also important.

Especially for organic materials (soft matter research), the high intensity of the source still

allows for collecting scattering data. Many experiments base on these simple modifications

with respect to SANS, and so the fundamental understanding of SAXS experiments does not

need any further explanation.

For completeness, we briefly discuss the scattering length density for light scattering. Here the

polarizability plays an important role. Without going into details, the final contrast is expressed

by the refractive index increment dn/dc:

ρmol =
2πn

λ2
· dn

dcmol

(5.58)

The refractive index increment dn/dc finally has to be determined separately experimentally

when the absolute intensity is of interest. The concentration cmol is given in units volume per

volume (for the specific substance in the solvent). The wavelength of the used light is λ.

5.4.1 Contrast variation using anomalous small angle x-ray scattering

While for contrast variation SANS experiments the simple exchange of hydrogen 1H by deu-

terium 2H ≡ D allowed for changing the contrast without modifying the chemical behavior, in

contrast variation SAXS experiments the applied trick is considerably different: The chemistry

is mainly dominated by the electron or proton number Z and isotope exchange would not make

any difference. The electron shells on the other hand have resonances with considerable disper-

sion curves. An example is shown in Fig. 5.24 with the real part f ′ (called dispersion) and the

imaginary part f ′′ (called absorption). The overall effective electron number f = f0 + f ′ + if ′′

replaces the conventional electron number Z = f0 in equation 5.57. Below the resonance en-

ergy the considered L3 shell appears only softer and effectively less electrons appear for f .

Above the resonance energy single electrons can be scattered out from the host atom (Compton

effect). This is directly seen in the sudden change of the absorption. Furthermore, the actual

dependence of the dispersion is influenced by backscattering of the free electrons to the host

atom (not shown in Fig. 5.57). This effect finally is the reason that the complex dispersion

curve can only theoretically be well approximated below the resonance (or really far above).

For this approximation it is sufficient to consider isolated host atoms.

For best experimental results the f -values have to be equally distributed. Thus, the energies are

selected narrower close to the resonance (see Fig. 5.57). The investigated sample consisted of

core-shell gold-silver nanoparticles in soda-lime silicate glass (details in reference [14]). By

the contrast variation measurement one wanted to see the whole particles in the glass matrix,

but also the core-shell structure of the individual particles. Especially, the latter one would

be obtained from such an experiment. First results of this experiment are shown in Fig. 5.25.

The most important result from this experiment is that the original scattering curves at first

hand do not differ considerably. The core-shell structure results from tiny differences of the

measurements. For contrast variation SANS experiments the contrasts can be selected close to

zero contrast for most of the components which means that tiniest amounts of additives can be

highlighted and the intensities between different contrasts may vary by factors of 100 to 1000.
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Fig. 5.25: Absolute calibrated scatter-

ing curves of different core-shell Ag/Au

nanoparticles in soda-lime silicate glass

[14]. The implantation sequence has been

changed for the three samples. Note that

the three scattering curves for the selected

energies (colors correspond to Fig. 5.24) do

only slightly differ due to the small changes

of the contrast. c© IOP Publishing. Repro-

duced with permission. All rights reserved.

Fig. 5.26: Further evaluated scattering

functions of a different system: A poly-

electrolyte with Sr2+ counterions in aque-

ous solution. The top curve (black) indi-

cates the overall scattering. The middle

curve (blue) displays the polymer-ion cross

terms being sensitive for relative positions.

The bottom curve (red) depicts the pure ion

scattering. Reprinted from [15], with the

permission from AIP Publishing.

So for contrast variation SAXS measurements the statistics have to be considerably better which

in turn comes with the higher intensities.

Another example was evaluated to a deeper stage [15]. Here, the polyelectrolyte polyacrylate

(PA) with Sr2+ counterions was dissolved in water. The idea behind was that the polymer is

dissolved well in the solvent. The charges of the polymer and the ions lead to a certain swelling

of the coil (exact fractal dimensions ν not discussed here). The counterions form a certain cloud

around the chain – the structure of which is the final aim of the investigation. The principles of

contrast variation measurements leads to the following equation (compare eq. 5.41):

dΣ

dΩ
= (ΔρSr−H2O)

2 ·SSr−Sr + (ΔρPA−H2O)
2 ·SPA−PA + ΔρSr−H2OΔρPA−H2O ·SSr−PA (5.59)

The overall scattering is compared with two contributions in Fig. 5.26. The scattering func-

tions of the cross term SSr−PA and the pure ion scattering SSr−Sr have been compared on the

http://dx.doi.org/10.1088/0957-4484/20/50/505705
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same scale, and so the contrasts are included in Fig. 5.26. Basically, all three functions de-

scribe a polymer coil in solvent – the different contrasts do not show fundamental differences.

Nonetheless, a particular feature of the ion scattering was highlighted by this experiment: At

Q ≈ 0.11nm−1 is a small maximum which is connected to the interpretation of effective charge

beads along the chains. The charge clouds obviously can be divided into separated beads. The

emphasis of the observed maximum correlates with the number of beads: For small numbers it

is invisible, and becomes more pronounced with higher numbers. The authors finally find that

the number of 5 beads is suitable for the description of the scattering curves: An upper limit

is also given by the high Q scattering where the 5 chain segments appear as independent sub-

coils. This example beautifully displays that the method of contrast variation can be transferred

to SAXS experiments. Difficulties of small contrast changes have been overcome by the good

statistics due to much higher intensities.

5.4.2 Comparison of SANS and SAXS

We have seen that many parallels exist between the two experimental methods SANS and

SAXS. The theoretical concepts are the same. Even the contrast variation method as a highly

difficult and tedious task could be applied for both probes. In the following, we will highlight

differences that have been discussed so far, and others that are just mentioned now.

The high flux reactors are at the technical limit of highest neutron fluxes. For SANS instruments

maximal fluxes of ca. 2×108 neutrons/s/cm2 have been reached at the sample position. Typical

sample sizes are of 1×1cm2. For coherent scattering fractions of ca. 10% this results in maximal

count rates of 107Hz, while practically most of the count rates stay below 106Hz. For long

collimations, the experimentalists deal often with 10 to 50Hz. The resolution for these count

rates has been relaxed. Wavelength spreads of either ±5% or ±10% are widely accepted, and

the collimation contributes equally, such that a typical resolution of ΔQ/Q of 7 to 14% is

reached. For many soft matter applications this is more than adequate. If one thinks of liquid

crystalline order, much higher resolution would be desired which one would like to overcome

by choppers in combination with time-of-flight analysis. A resolution of ca. 1% would be a

reasonable expectation. The continuous sources are highly stable which is desired for a reliable

absolute calibration.

The spallation sources deliver either continuous beams or the most advanced ones aim at pulsed

beams. Repetition rates range from ca. 14 to 60Hz. The intensity that is usable for SANS

instruments could reach up to 20 times higher yields (as planned for the ESS in Lund), i.e. up to

4×109 neutrons/s/cm2. Surely, detectors for count rates of 10 to 100 MHz have to be developed.

The new SANS instruments will make use of the time-of-flight technique for resolving the

different wavelengths to a high degree. Of course other problems with such a broad wavelength

band have to be overcome – but this topic would lead too far.

The synchrotron sources reach much higher photon yields which often makes the experiments

technically comfortable but for the scientist at work highly stressful. The undulators provide

laser-like qualities of the radiation which explains many favorable properties. Some num-

bers for the SAXS beam line ID2 at the ESRF shall be reported. The usable flux of 5×1015

photons/s/mm2 (note the smaller area) is provided which results for a typical sample area of ca.

1×0.02mm2 in 1014 photons/s. In some respect the smallness of the beam urges to think about
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the representativeness of a single shot experiment. At some synchrotron sources the beam is not

highly stable which makes absolute calibration and background subtraction difficult. The same

problem also occurs for the pulsed neutron sources where parts of the calibration procedure

become highly difficult.

For classical SANS experiments one can make some statements: The absolute calibration is

practically done for all experiments and does not take much effort – it is technically simple. Be-

tween different instruments in the world the discrepancies of different calibrations results often

in errors of 10% and less. Part of the differences are different calibration standards, but also

different concepts for transmission measurements and many details of the technical realization.

The nuclear scattering is a result of the fm small nuclei and results in easily interpretable scat-

tering data for even large angles – for point-like scatterers no corrections have to be made. In

this way all soft matter and biological researchers avoid difficult corrections. Magnetic struc-

tures can be explored by neutrons due to its magnetic moment. Magnetic scattering is about

to be implemented to a few SANS instruments. Ideally, four channels are experimentally mea-

sured (I++, I+−,I−+, and I−−) by varying the polarization of the incident beam (up/down) and

of the analyzer. Nowadays, the 3He technique allows for covering relatively large exit angles

at high polarization efficiencies. But also early magnetic studies have been possible with sim-

pler setups and reduced information. The unsystematic dependence of the scattering length

often opens good conditions for a reasonable contrast for many experiments. If the natural iso-

topes do not provide enough contrast pure isotopes might overcome the problem. The contrast

variation experiments have been presented for the SANS technique. By a simple exchange of

hydrogen by deuterium, soft matter samples can be prepared for complicated contrast variation

experiments. One advantage is the accessibility of the zero contrast for most of the components

which allows for highlighting smallest amounts of additives. The high demand for deuterated

chemicals makes them cheap caused by the huge number of NMR scientists. The low absorp-

tion of neutrons for many materials allows for studying reasonably thick samples (1 to 5mm

and beyond). Especially, for contrast variation experiments often larger optical path lengths

are preferred. The choice for window materials and sample containers is simple in many cases.

Neutron scattering is a non-destructive method. Espeically biological samples can be recovered.

Contrarily we observe for the SAXS technique: The demand for absolute calibration in SAXS

experiments is growing. Initial technical problems are overcome and suitable calibration stan-

dards have been found. The interpretation of scattering data at larger angles might be more

complicated due to the structure of the electron shells. For small angle scattering the possible

corrections are often negligible. Magnetic structures are observable by the circular magnetic

dichroism [16] but do not count to the standard problems addressed by SAXS. The high con-

trast of heavy atoms often makes light atoms invisible. For soft matter samples the balanced use

of light atoms results in low contrast but, technically, the brilliant sources overcome any inten-

sity problem. The ASAXS technique is done close to resonances of single electron shells and

opens the opportunity for contrast variation measurements. The achieved small differences in

the contrast still allow for tedious measurements because the statistics are often extremely good

– only stable experimental conditions have to be provided. The absorption of x-rays makes the

choice of sample containers and windows more complicated. The absorbed radiation destroys

the sample in principle. Short experimental times are thus favorable.

To summarize, the method of small angle neutron scattering is good-natured and allows to

tackle many difficult tasks. The small angle x-ray scattering technique is more often applied
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due to the availability. Many problems have been solved (or will be solved) and will turn to

standard techniques. So, in many cases the competition between the methods is kept high for

the future. Today, practically, the methods are complementary and support each other for the

complete structural analysis.

5.5 Summary

We have seen that small angle neutron scattering is a powerful tool to characterize nanostruc-

tures. Examples included colloidal dispersions and microemulsions. The structural parameters

are connected to thermodynamics and therefore the behavior is understood microscopically.

In many cases, small angle x-ray scattering can obtain the same results. Nonetheless, x-ray

samples need to be thinner due to the low transmission, amd radiation damage has to be taken

into account. The powerful method of contrast variation is restricted to heavier atoms, and is,

therefore, barely used in soft matter research.

Transmission electron microscopy (TEM) measures the structures in real space, and is as such

much easier to understand. Nowadays microscopes provide a spatial resolution of nanome-

ters and better. Nonetheless, usually surfaces or thin layers are characterized and the volume

properties need to be extrapolated. For statistics about polydispersity single particles need to

be counted while the scattering experiment averages over macroscopic volumes. The sample

preparation for TEM does not always produce reliable conditions and results.

The beauty of small angle neutron scattering has convinced in many applications ranging from

basic research to applied sciences. The heavy demand for SANS is documented by the large

over-booking factors at all neutron facilities. So, even in future we have to expect exciting

results obtained by this method.
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Appendices

A Further details about the correlation function

In this appendix we consider further details about the correlation function Γ. The first interesting

property is the convolution theorem. In equation 5.21 it was stated that the correlation function

in real space is a convolution while in reciprocal space the correlation function is a product (eq.

5.20). We simply calculate the Fourier transformation of Γ(r):

Γ(Q) = F [Γ(r)] (5.60)

=
1

V

∫
V

d3r

∫
V

d3r′ ρ(r+ r′) · ρ(r′) · exp(iQr) (5.61)

=
1

V

∫
V

d3r

∫
V

d3r′ ρ(r+ r′) · ρ(r′) · exp(−iQr′) exp(iQ(r′ + r)) (5.62)

=
1

V

∫
V

d3u ρ(u) exp(−iQu)

∫
V

d3u′ ρ(u′) exp(iQu′) (5.63)

=
1

V
ρ∗(Q)ρ(Q) with u = r′, u′ = r′ + r (5.64)

In line 5.62 we split the exponential according to the two arguments of the scattering length

density. These variables are finally used for the integration. For extremely large volumes V
the integration limits do not really matter and stay unchanged – otherwise surface effects would

play a role. Finally we arrive at the already known product of the scattering amplitudes.

The overlap of two displaced spheres has a lens shape and is calculated as a spherical segment

being proportional to the solid angle minus a cone. So the lens has the following volume:

Vlens =
4π

3
R3 · 2 ·

⎛
⎝ 1

4π

2π∫
0

dφ

α∫
0

dϑ sinϑ − 1

4
cosα sin2 α

⎞
⎠ (5.65)

=
4π

3
R3

(
1− 3

2

r

2R
+

1

2

( r

2R

)3
)

with cosα =
r

2R
(5.66)

The displacement is given by r and the radius of the sphere is R. The result is finally used in

equation 5.22.

The next topic aims at the real space correlation function with the model exponential decay in

one dimension (eq. 5.24). We simply consider the variable z. The Fourier transformation is

done in the following explicitly:
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Γ(Qz) =

∞∫
−∞

dz
(〈(

ρ− 〈ρ〉)2〉 exp
(−|z|/ξ)+ 〈ρ〉2

)
exp(iQzz) (5.67)

=
〈(

ρ− 〈ρ〉)2〉 · 2ξ

1 + ξ2Q2
z

+ 2π〈ρ〉2δ(Qz) (5.68)

We obtain a product of the scattering length density fluctuations, a size of the correlation ‘vol-

ume’, and a Lorentz function which is typical for Ornstein-Zernicke correlation functions. A

second addend appears due to the Q-independent term 〈ρ〉2. Constants Forier-transform to delta

functions which are infinitely sharp peaks at Q = 0. In the scattering experiment they are not

observable. The same calculation can be done in three dimensions (with similar results):

Γ(Q) =
〈(

ρ− 〈ρ〉)2〉 ·
∫
V

d3r exp
(−|r|/ξ) exp(iQr) + · · · (5.69)

=
〈(

ρ− 〈ρ〉)2〉 ·
2π∫
0

dφ

π∫
0

dϑ sinϑ

∞∫
0

dr r2 exp
(−r/ξ

)sin(Qr)

Qr
(5.70)

=
〈(

ρ− 〈ρ〉)2〉 · 4π · 2ξ3

(1 + ξ2Q2)2
(5.71)

This functional form appears for polymer gels on large length scales. The density of the polymer

network tends to fluctuations which are described by eq. 5.71. To make the looking of eq. 5.71

more similar to the Lorentz function the denominator is seen as a Taylor expansion which will

be truncated after the Q2 term. Then the Q-dependent term is Γ(Q) ∼ (1 + 2ξ2Q2)−1. Finally,

we can state that the functional form of eq. 5.25 is ‘always’ obtained.

B Guinier Scattering

The crucial calculation of the Guinier scattering is done by a Taylor expansion of the logarithm

of the macroscopic cross section for small scattering vectors Q. Due to symmetry considerations

there are no linear terms, and the dominating term of the Q-dependence is calculated to be:

R2
g = −1

2
· ∂2

∂Q2
ln
(
ρ(Q)ρ(−Q)

)∣∣∣∣
Q=0

(5.72)

= −1

2
· ∂

∂Q

2
(ρ(Q)
∫
d3r ρ(r)(−ir) exp(−iQr)

)
ρ(Q)ρ(−Q)

∣∣∣∣∣
Q=0

(5.73)
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= −
ρ(Q)
∫
d3r ρ(r)(−r2) exp(−iQr)

ρ(Q)ρ(−Q)

∣∣∣∣
Q=0

−

∫
d3r ρ(r)(ir) exp(iQr)

∫
d3r ρ(r)(−ir) exp(−iQr)

ρ(Q)ρ(−Q)

∣∣∣∣
Q=0

+ 0 (5.74)

= 〈r2〉 − 〈r〉2 (5.75)

=
〈(

r− 〈r〉)2〉 (5.76)

The first line 5.72 contains the definition of the Taylor coefficient. Then, the derivatives are

calculated consequently. Finally, we arrive at terms containing the first and second momenta.

The last line 5.76 rearranges the momenta in the sense of a variance. So the radius of gyration

is the second moment of the scattering length density distribution with the center of ‘gravity’

being at the origin. We used the momenta in the following sense:

〈r〉 =

∫
d3r rρ(r)

/∫
d3r ρ(r) (5.77)

〈r2〉 =

∫
d3r r2ρ(r)

/∫
d3r ρ(r) (5.78)

So far we assumed an isotropic scattering length density distribution. In general, for oriented

anisotropic particles, the Guinier scattering law would read:

dΣ

dΩ
(Q→0) =

dΣ

dΩ
(0) · exp

(
−Q2

x

〈(
x− 〈x〉)2〉−Q2

y

〈(
y − 〈y〉)2〉−Q2

z

〈(
z − 〈z〉)2〉)

(5.79)

Here, we assumed a diagonal tensor of second moment. This expression allows for different

widths of scattering patterns for the different directions. In reciprocal space large dimensions

appear small and vice versa. Furthermore, we see that Rg is defined as the sum over all second

momenta, and so in the isotropic case a factor 1
3

appears in the original formula 5.35.

C Details about Scattering of Microemulsions

The first step for the derivation of the scattering formula for microemulsions takes place on the

level of the free energy (and the order parameter). The overall free energy is an integral over

the whole volume, and contains only second order of the order parameter. So the derivatives

in expression 5.53 can be understood as an operator acting on the order parameter, and the

overall free energy is a matrix element of this operator – like in quantum mechanics. The wave

functions can now be tranferred to the momentum space, i.e. the reciprocal space:

F0

(
φ(k)

)
=

∫
d3k φ∗(k)

[
ck4 + g0k

2 + ω2

]
φ(k) (5.80)
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Now the order parameter appears with its Fourier amplitudes φ(k) and the operator becomes a

simple polynomial as a wavevector k. So the operator takes a diagonal form, because different

states are not mixed anymore. The macroscopic cross section for the scattering vector Q is

simply the expected value of the corresponding Fourier amplitude φ(Q). The statistical physics

simply consider all possible Fourier amplitudes:

dΣ

dΩ
(Q) ∝

∫
dnφ(k) φ∗(Q)φ(Q) exp

(
− 1

kBT
F0

(
φ(k)

))
∫
dnφ(k) exp

(
− 1

kBT
F0

(
φ(k)

)) (5.81)

= −kBT
∂

∂ω2

ln

∫
d2φ(Q) exp

(
− 1

kBT
F0

(
φ(Q)

))
(5.82)

= −kBT
∂

∂ω2
ln

⎛
⎝ 1√

1
kBT

(cQ4 + g0Q2 + ω2)

⎞
⎠2

(5.83)

=
kBT

cQ4 + g0Q2 + ω2
∝ Γ(Q) (5.84)

In line 5.82 the considered space of Fourier amplitudes has been reduced to the single important

one. There are only two amplitudes left, which can be understood as the real and imaginary part

of the complex amplitude. So the residual integral is 2-dimensional. The integral is Gaussian,

and the result is known well. In line 5.83 the important dependencies are kept and all constant

factors cancel out. The final result is the scattering function which is basically the recipro-

cal operator of line 5.80. This derivation is an explicit example of the fluctuation dissipation

theorem.

To interpret the meaning of the scattering function the real space correlation function is calcu-

lated. While before the absolute value of the scattering intensity stayed rather undefined, in this

representation absolute values have a meaning:

Γ(r) =
〈(

ρ− 〈ρ〉)2〉 · exp (−|r|/ξ) · sin(kr)
kr

+ 〈ρ〉2 (5.85)

Furthermore the coefficients get a meaning: There is a correlation length ξ describing the decay

of the correlations with the distance r. The oscillating term describes the alternating appearance

of oil and water domains. The domain spacing d is connected to the wavevector k = 2π/d. The

connection to the original coefficients is given by:

k =

[
1

2

√
ω2

c
− 1

4

g0
c

] 1
2

and ξ =

[
1

2

√
ω2

c
+

1

4

g0
c

]− 1
2

(5.86)

So the overall scattering formula takes the expression given in eq. 5.54. This example shows

clearly that the real space correlation function supports the interpretation of scattering formulas

obtained from a Landau approach with coefficients that are hard to connect to microscopic

descriptions.
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Exercises

E5.1 Simple absolute calibration

For very thin samples, the Born approximation is fulfilled very well. What is the essential

change for the absolute calibration if one only doubles the thickness in the limit of very thin

samples? Please discuss on the formula

ΔI

ΔΩ
(Q) = I0 · A · Tr · t · dΣ

dΩ
(Q)

For the transmission Tr we know a very simple approximation

Tr = exp(−tΣ) with Σ =

∫
dΣ

dΩ
dΩ

What is the second next important term to be considered when the thickness is doubled? How

would we judge that the Born approximation is valid?

E5.2 One dimensional problem

Consider a one-dimensional structure of finite length T = 2Z, for which we want to calculate

the scattering and its amplitude. We find two situations for neutrons and x-rays. For neutrons the

scattering length distribution is homogenous within the thickness T . For x-rays only the outer

rims at z = ±Z scatter. What would be the scattering amplitude in both cases? How does the

scattering function compare in terms of intensity zeros and intensity decay towards highest Q?

Draw the functions qualitatively! These two structures can also be translated to slit or aperture

structures. What would be the two corresponding one-dimensional aperture structures? Discuss

the Babinet principle in this context!

In a 3-dimensional world the considered functions appear for clay platelets with a thickness of

ca. 10Å and large dimensions in the other directions between 300 and 5000Å. It is obvious that

the considered functions appear for aligned platelets that all are parallel then. For random ori-

entations the structure along the large dimensions needs to be orientationally averaged, but the

scattering functions for the short dimension stay as an explicit factor exactly as our calculations.

E5.3 Structure factor

For repulsive spherical colloids we calculated a simple approximation for the structure factor

S(Q) (chapter 5.3.3 and Fig. 5.19). What does the suppression of intensity at smallest Q mean?

What does the first (weak) maximum of S(Q) mean? How would we obtain these two features

more pronounced?
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E5.4 Multiple choice questions

Which are essential elements of a SANS instrument to prepare the beam?

� velocity selector

� collimation

� sample

� detector

Which element, typically used for triple axis spectrometer, would dramatically confine the

wavelength spread compared to a classical SANS instrument?

� movable arms

� Bragg reflection of monochromator

� air flight paths

Why is the wavelength spread and the collimation rather relaxed in a typical SANS experiment?

� Soft Matter scientists do sloppy science

� the required intensity must be at this level

� the instrument resolution often is at the required level for Soft Matter experiments

The usual resolution of a SANS experiment

� smears out higher order fringes of the form factor.

� has direct impact on the smallest accessible Q.

� is much more important in the case of neutrons when compared to x-rays.

I thank my family and all my colleagues for supporting this .
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6.1 Introduction 
Macromolecules are an integral part of Soft and Living Matter. In Living Matter, 
macromolecule-based functional systems are built from molecular units consisting of 
only a few different building blocks: amino acids are assembled into proteins, which in 
turn function individually, or cooperatively in nano- and micro-machines. The secret of 
success is the intrinsic hierarchical structuring over a large range of length scales. In Soft 
Matter, synthetic macromolecules are of much simpler structure. Nevertheless, there is a 
vast variety of material properties that can be realized with synthetic macromolecules. 
Theoretical concepts have been developed, and are essential for the rational design of soft 
materials, that are of paramount importance in a multitude of technical applications. 
Synthetic polymers have crucially changed daily life since its development in the 1930ies. 
Modern polymers can be divided into two major classes (i) commodity polymers for daily 
life use which are produced in millions of tons per year and (ii) specialty polymers for 
high-performance applications which are niche products but highly profitable [1]. Typical 
commodity polymers are polyolefines like polyethylene (PE) or polypropylene (PP) used 
for packaging, films etc. Examples for specialty polymers are polydimethylsiloxane 
(PDMS) derivatives used in dental implants. 
Currently, both classes of polymers in use are based on petrochemical feedstock, thus 
considered not “carbon-neutral” and “environment-friendly”. Due to changing global 
conditions and growing concerns about the mounting disposal problems, research on 
sustainable commodity polymers has been intensified during the last decade, both on the 
level of fundamental research and applied science [2]. To find the required balance 
between material properties and bioavailability/-degradability is the key for establishing 
sustainable polymers on a large scale industrial level and therefore a major challenge of 
future polymer science. 
The development of new biomimetic specialty polymers is another major challenge. 
Biopolymers, like spider silk, are high-performance materials with material properties 
superior to any synthetic polymer. To transfer these properties to artificial biomimetic 
polymers, one has to fully understand, on the molecular level, the structure-property-
relationships and enzymatic synthesis processes in living organisms. 
In this lecture some recent applications of neutron scattering methods to characterize 
quantitatively on a microscopic length scale structure and interactions of synthetic 
macromolecules and its hierarchical structuring are given. A more comprehensive 
overview is found e.g. in [3]. 

6.2 Polymers in dilute solution 
6.2.1  Linear polymers 
A linear polymer is a sequence of molecular repetition units, the monomers, continuously 
linked by covalent bonds. The degree of polymerisation, Dp, i.e. the number of monomers 
constituting the polymer, the (weight average) molecular weight, Mw=Dp Mm, with Mm 
the molecular weight of the monomer, and the radius of gyration, ν

wg MR ~ , are the most 
important structural parameters of a polymer. On a coarse-grained level, structural details 
arising from the explicit chemical composition of the polymer like bond lengths and 
angles can be neglected and what remains is the so-called scaling relation given above 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=environment-friendly&trestr=0x804
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that links molecular weight to size and which is generally valid for all polymers [4]. The 
numerical value of the scaling exponent ν depends on the strength of interactions. In the 
so called θ-state, when monomer-monomer interactions are as strong as monomer solvent 
interactions, the polymer structure can be described by a random walk, therefore Gaussian 
chain statistics are valid and ν=1/2, see Appendix A6.1. When monomer solvent 
interactions are stronger than monomer-monomer interactions, so called excluded volume 
forces are effective, the polymer chain is “swollen” and ν=3/5. 
Here one has to emphasize that synthetic polymers, unlike biopolymers, always have an 
intrinsic polydispersity, i.e. there is a distribution of molecular weights. The 
polydispersity is given usually in terms of Mw/Mn, with Mn the number average molecular 
weight. Its precise number depends on the polymerisation reaction by which the polymer 
was synthesized. For a (theoretical) monodisperse polymer Mw/Mn=1 holds, the most 
monodisperse synthetic polymers with Mw/Mn=1.02 can be synthesized by “living” 
anionic polymerisation, classical polycondensation yields Mw/Mn =2, radical 
polymerisation can even result in extremely broad distributions, Mw/Mn >10. 
Although in technical applications polymers are mostly used as bulk materials, polymer 
characterisation is usually performed in (dilute) solution. Historically, light scattering was 
the method of choice to characterise synthetic polymers [5], but nowadays size exclusion 
chromatography (SEC), also called gel permeation chromatography (GPC), is the 
standard technique to characterize routinely polymers [6]. 
Neutron scattering, due do its limited accessibility and high experimental costs, usually 
is found in basic academic research, but here it played a crucial role in confirming 
fundamental theoretical concepts of polymers [3]. 
For macromolecules the measured intensity I(Q) can be expressed in first approximation 
as a product of particle form factor P(Q) given by the intramolecular architecture, i.e. the 
particle geometry, and structure factor S(Q) given by the intermolecular structure arising 
due to particle-particle interactions. Please note, that both P(Q) and S(Q) must be properly 
normalized, 𝑃𝑃(𝑄𝑄)𝑄𝑄=0 = 1 and 𝑆𝑆(𝑄𝑄)𝑄𝑄𝑄𝑄≫1 = 1, for details see chapter 5.3.4: 

 

𝐼𝐼(𝑄𝑄) =
∆𝜚𝜚2

𝑁𝑁𝑎𝑎
 𝜙𝜙 𝑉𝑉𝑤𝑤 𝑃𝑃(𝑄𝑄) 𝑆𝑆(𝑄𝑄)   (6.1)  

 

Here ∆𝜚𝜚
2

𝑁𝑁𝑎𝑎
 is the contrast factor (see equation 5.16), φ  is the polymer volume fraction and 

dMV ww = is the molecular volume and d the polymer density in [g/cm3]. 

To characterize properly the intramolecular form factor P(Q) one has therefore to 
investigate a concentration series in the dilute regime and extrapolate finally to infinite 
dilution. The form factor of a Gaussian chain (Debye function) is given by (for its 
derivation see Appendix A6.1). 

)1)(exp()( 2
2 xxxf
xD +−−=  (6.2)  

With x=Q2Rg
2 and Rg the radius of gyration describing the overall dimension of the single 

polymer chain. 
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The Debye function describes the (ideal) polymer scattering well from length scales of 
the overall coil down to length scales where the polymer becomes locally rigid. The 
corresponding asymptotic limits are: 
 

𝑃𝑃(𝑄𝑄)~𝑁𝑁 (1 −  1
3

 𝑄𝑄2 𝑅𝑅𝑔𝑔2) for small Q (6.3)  

~ 2𝑁𝑁 / (𝑄𝑄2 𝑅𝑅𝑔𝑔2) for large Q (6.4)  

Equation 6.3 describes the conventional Guinier scattering of the overall polymer 
(compare chapter 5, equation 5.35), equation 6.4 describes a power law. At these length 
scales, the sub-chains of different lengths are self-similar and so they reveal a fractal 
behaviour. The prefactor is connected to the magnitude Rg

2/N that is the effective segment 
size. From this magnitude, one can calculate back to the local rigidity that is responsible 
for the effective segments. 

 
Figure 6.1: The theoretical Debye function, equation 6.2, describes the polymer 
scattering of independent polymers without interaction. The two plots show the function 
on a linear and double logarithmic scale. 
 
Particle-particle interactions as seen in S(Q) are weak in the dilute regime, but still 
effective, so that one can apply the virial expansion. 
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++== φφ 22/1)0(/ AVQI w  (6.5)  

Equation 6.5 is formulated neglecting the contrast factor so it holds for all types of 
scattering experiments, i.e. SANS, SAXS and SLS. A crucial concentration separating 
dilute and semi-dilute regime is the so-called overlap concentration 𝜙𝜙∗ =
( 𝑉𝑉𝑤𝑤/𝑁𝑁𝑎𝑎)  (4 𝜋𝜋

3
 𝑅𝑅𝑔𝑔3 )� , which describes the “internal concentration” per volume of a single 

polymer chain.  
 
The value of the second virial coefficient A2 directly reflects particle-particle interactions, 
i.e. a positive A2 is found for repulsive interactions (good solvent i.e. excluded volume 
interactions), a negative one for attractive interactions (marginal/bad solvent) and finally 
A2=0 characterizes no interactions (θ-solvent). Without any data fitting, this distinction 
can easily be made by plotting the intensity data I(Q) of a concentration series normalized 
to the corresponding volume fractions I(Q)/φ  (Since scattering arises due to an exchange 
of a volume element of solvent by a volume element of polymer with different scattering 
contrast, the natural concentration unit for any scattering experiment should be volume 
fraction φ). This is schematically shown in Figure 6.2. If no particle-particle interactions 
are present all data for all Q-vectors exactly fall on top of each other. 
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Fig. 6.2:  Calculated scattering intensities in absolute units I(Q) (left) and normalized to 
polymer volume fraction I(Q)/ φ (right) for solutions of a linear polymer at 
different volume fractions given in percent, see legends, assuming a virial ansatz 
for particle interactions. From top to bottom: No interactions A2=0 (θ-solvent, 
repulsive interactions A2>0 good solvent, attractive interactions A2<0 marginal 
or bad solvent). 

 
Irrespective what kind of interactions are present this also holds for high Q-vectors, since 
high Q-vectors mean small length scales and the local (intramolecular) structure is not 
affected by particle-particle interaction (S(Q)=1). In contrary, at low Q-vectors there are 
crucial differences between the individual concentrations in this representation. For 
repulsive interactions the forward scattering is reduced by S(Q) therefore the lowest 
concentration shows the highest normalized intensity. For attractive interactions, on the 
other hand, the forward scattering is increased by S(Q), therefore the lowest concentration 
shows the lowest normalized intensity. This sequence can be easily understood, because 
attractive interactions finally result in clustering of the individual particles. 
For more details about synthesis and characterisation of macromolecules the interested 
reader is referred to standard textbooks e.g. [7], [8]. 
 

6.2.2  Branched polymers 
Branching crucially influences the mechanical properties of polymers therefore 
characterisation and control of branching reactions during polymerisation processes are 
of vital interest not only for polymer industry to tune semi-empirically material 
properties, but also for fundamental research to derive a proper quantitative structure 
property relationship. 
The simplest branched polymer is a regular star polymer, where f arms, each of same 
molecular weight Mw,arm , are emanating from a microscopic central branch point, the star 
core. Experimentally, such regular star polymers are nowadays most precisely realized 
by using chlorosilane dendrimers as branch points. The arms forming the star corona or 
shell are grafted to the dendrimer core by “living” anionic polymerisation [9]. The precise 
control of the dendrimer generation is reflected in the precise functionality of the final 
star polymer so that functionalities as high as f=128 can be achieved. However, with 
increasing functionality there is a polydispersity in functionality since the last arms are 
extremely difficult to graft since they have to diffuse through the already very crowded 
star polymer corona to react at the star core [10]. 
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Fig. 6.3:  Schematic illustration of different polymer architectures: a) linear 

homopolymer, b) linear block copolymer, c) regular mikto-arm star polymer 
(f=4), d) regular star polymer (f=8), and e) comb polymer. 

 
The form factor of a regular star polymer with Gaussian chain statistics has been derived 
by Benoit already in 1953 [11]. 
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(6.6)  

The overall size of the star polymer Rg,star is related to the size of the individual arm by 

armgstarg R
f

fR ,,
)23( −

= . 

There is no rigorous analytical formula for a star polymer with swollen chain statistics, 
but experimental data for star polymers in a good solvent can be nicely described either 
by the Dozier function [12] or the approach derived by Beaucage [13]. His equation can 
be viewed as a "universal form factor" for an arbitrary mass fractal that can also be applied 
to many other polymeric systems: 

P

g Q
BRQGQP 








+−⋅= ∗

1)3/exp()( 22

 
(6.7)  

with Q* = Q/[erf(QkRg/ 6 )]3. Here erf is the error function and G and B are amplitudes, 
which for mass fractals can be related to each other by )(/ PRPGB P

g Γ⋅⋅=  (polymeric 
constraint). P is the fractal dimension of the internal substructure, k an empirical constant 
found to be ≈ 1.06 and Γ is the Gamma function. The fractal dimension is related to the 
scaling exponent by P=1/ν. The Beaucage expression can be nicely extended to describe 
hierarchical structures over multiple levels i ∑=

i
i QPQP )()(  where Pi(Q) are given by 

Equation 6.7. Figure 6.4 shows form factors obtained for polybutadiene (PB) star 
polymers with varying functionality f  but same Rg≈50nm in d-cis-decalin.  

a) b) 

c) 

e) 

d) 
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Fig. 6.4:  SANS intensity I(Q) normalized by volume fraction φ  for regular polybutadiene 

star polymers with varying functionality f but same radius of gyration Rg≈50nm. 
The asymptotic power law observed at high scattering vectors I~Q-5/3 clearly 
indicates excluded volume interactions relevant in a good solvent , i.e. swollen 
chain statistics [14] (Reprinted by permission of Springer Nature: Springer, 
Appl. Physics A: Materials Science & Processing, partial structure factors in 
star polymer/colloid mixtures, J. Stellbrink et al., copyright 2007) 

At low Q-vectors, Q ≤ 8×10−3 Å−1, data could be modelled using the Benoit form factor, 
Equation 6.6 for a Gaussian star, which gives the explicit dependence on functionality f. 
For describing the complete data set we used the Beaucage form factor, Equation 6.7, 
which describes also the observed power law at high Q-vectors. One should note that this 
power law extends over more than one order of magnitude in Q and starts at the same Q-
value of ≈ 8×10−3 Å−1 for all f due to the same Rg. The observed power law slope of I(Q) 
~ Q−5/3 reflects the good solvent quality of cis-decalin for polybutadiene and decreases 
slightly with increasing f , indicating increasing arm stretching due to the increasing 
monomer density in the star corona. 
The effect of branching becomes easily visible by using a so called Kratky representation, 
I(Q) Q2 vs. Q. Whereas a linear polymer with Gaussian chain statistics reaches 
monotonically an asymptotic plateau, any branched structure shows a maximum. For the 
here discussed regular star polymer the height quantitatively depends on the arm number 
or functionality f, see figure 6.5. 
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Fig. 6.5:  Kratky representation I(Q) Q2 vs. Q for same data as in Figure 6.4. The 

increasing peak height with increasing functionality f due to branching becomes 
clearly visible as well as the discrepancy between experimental data (symbols) 
and Beaucage function used to model the data. The fact that no asymptotic 
plateau is observed results from the excluded volume interactions relevant in a 
good solvent, i.e. swollen chain statistics. 

 
6.2.3  In-situ experiments during polymerisation 
For understanding and controlling any chemical reaction a detailed understanding of 
reaction mechanism, type and role of intermediate species as well as reaction kinetics are 
prerequisite. How the microscopic structure of a growing polymer chain is evolving in 
the different steps of polymerisation reactions has to be resolved by non-invasive, real-
time measurements. The ideal tool is small angle neutron scattering (SANS), since the 
microscopic structure of polymer-based materials can be resolved on a micrometer-to- 
nanometer-level by modern neutron scattering techniques. In addition, contrast variation, 
i.e. H/D exchange, can even “stain” certain parts of the polymers giving access to 
unprecedented structural information. So neutron scattering is a unique and outstanding 
technique to investigate polymerising systems in real-time, in particular since new, more 
powerful neutron sources became available worldwide (FRM-2, SNS, J-PARC). But for 
a complete description of the polymerisation process additional information in terms of 
reaction kinetics etc. are prerequisite. Thus, in-situ SANS experiments have to be 
supported by complementary methods like NMR, SEC, UV/VIS and IR spectroscopy, 
favourably also in real-time mode. 
Recently we investigated reaction mechanism and kinetics of different polymerisation 
techniques like “living” anionic polymerisation [15] or post-metallocene catalyzed olefin 
polymerisation [16] by such an in-situ multi technique approach. Figure 6.6 shows time 
resolved SANS intensities I(Q) in absolute units obtained during the polymerisation of 1-
octene by a pyridylamidohafnium catalyst in toluene at 20°C. Experiments have been 
performed using the KWS-1 instruments at the former FRJ-2 reactor in Jülich which 
allowed a temporal resolution of about several minutes.  
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Fig. 6.6:  Time resolved SANS intensities I(Q) in absolute units obtained during the 

polymerisation of 1-octene by a pyridylamidohafnium catalyst in toluene at 20°C 
[16] (reprinted with permission from Macromolecules, 42, 1083, 2009. 
Copyright 2009, American Chemical Society) 

The monomer solution shows a Q-independent intensity over the whole accessible SANS 
Q-range typical for small molecules, which act as “incoherent scatterers”. Note by: the 
actual incoherent background for all components, as described in Chapter 5, can be 

estimated by  𝑑𝑑Σ(Q)
Ω

𝑖𝑖𝑖𝑖𝑖𝑖
= Σσ𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖

4π
𝑁𝑁𝐴𝐴
𝑉𝑉𝑤𝑤

  . After four minutes a polymer is already formed and the 
Q-dependence of the intensity can be described by a Beaucage form factor, equation 6.7. 
With ongoing polymerisation, increasing polymerisation time t the general shape of I(Q) 
does not change any further, only the forward scattering I(Q=0) is increasing due to the 
increasing molecular weight and concentration of the growing polymer chain. Finally, the 
polymerisation is almost finished after half an hour as can be seen by comparison with 
the terminated polymer. A detailed quantitative analysis of I(Q,t) reveals that during this 
type of polymerisation reaction no aggregation phenomena of the growing polymer chain 
are relevant. Similar experiments at high flux sources allow today temporal resolutions 
smaller than 1 second if experiments are repetitively performed using a stopped flow 
mixer. 
 

6.3 Block copolymer Micelles 
When amphiphilic block copolymers are dissolved in a selective solvent, i.e. a solvent 
which is good for one block but a precipitant for the other, they spontaneously self-
assemble into supramolecular aggregates known as micelles, in which the insoluble block 
forms the inner part or core, whereas the soluble block forms a solvent-rich shell or 
corona. The general behaviour of block copolymers in selective solvents has been subject 
of copious theoretical and experimental studies during the past decades. They are 
reviewed in several books [17] [18] and review articles [19][20] related to this topic. 
Extensive studies demonstrated that the micellar morphology can be tuned (going from 
spheres, cylinders, worms and vesicles) by varying the block-copolymer molecular 
weight, the chemical nature and the ratio of the blocks. One of the most extensively 
studied block-copolymers is poly(butadiene-ethylene oxide) (PB-PEO). As a function of 
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the hydrophilic block length (in term of PEO weight fraction wPEO) spherical micelles 
(wPEO >0.6), worm-like micelles, WLM (0.47 ≤wPEO ≤ 0.59) or bilayers (wPEO <0.47) are 
formed. Different theoretical studies contributed to define the scaling laws for the 
parameters of equilibrium structures. Among them, a quantitative theory defining the 
thermodynamic stability of different morphologies in selective solvents has been recently 
developed [21]. The theory expresses the free energy contributions of the core, the corona 
and the interface as a function of the blocks structural parameters and the interfacial 
tension between the solvent and the insoluble block for different micellar morphologies. 
Solvent selectivity can be more easily tuned than the above mentioned parameters 
(molecular weight, block ratio etc) and moreover in a continuous way by varying the 
solvent composition. Therefore, solvent composition is a very natural and easy parameter 
to control the micellar structures. The change in the morphology of the self-assembled 
structures can be attributed to a change of solvent selectivity, which influences the 
different energy contributions responsible for the morphology: core-chain stretching, 
corona-chain repulsion and interfacial tension between the core and the solution.  
The interest is to relate changes on the smallest relevant length scale, i.e. diameter and 
aggregation number per unit length, density profile in the corona, to changes in the 
macroscopic structure, i.e. the contour and persistence length of wormlike micelles and 
the transition from wormlike-to-spherical micelles etc. This molecular level 
understanding can help to elucidate the mechanisms involved in non-equilibrium 
conditions. Besides, it is expected that these quantities have a pronounced effect on the 
rheological behavior of the systems, and as such solvent composition could be used to 
tune the flow properties of micellar solutions. 
 
6.3.1  Form factor 
Figure 6.7 (left) shows the partial form factor normalized to volume fraction Φ, P(Q)/Φ, 
in shell and core contrast for micelles formed by a symmetric amphiphilic block 
copolymer poly(ethylene-alt-propylene)–poly(ethylene oxide), h-PEP4-dh-PEO4 (the 
numbers denote the block molecular weight in kg/mol) [22]. Already, a qualitative 
discussion of the data reveals important features of the micellar architecture. First, the 
forward scatterings, I(Q=0), in the two contrasts are the same. This is expected for 
micelles formed by a symmetric diblock copolymer in shell and core contrast (we should 
note that the two blocks have the same molar volume Vw) and is in this sense a proof of 
the applied contrast conditions. This means that the scattering profiles shown in figure 
6.7 are directly reflecting pure shell and core properties. Second, both scattering profiles 
show well defined maxima and minima, up to four in core contrast, which arise from 
sharp interfaces typical for a monodisperse, compact spherical particle, see chapter 5, 
equation 5.3. These minima occur whenever QR = tan(QR), i.e. at QR = 4.493, 7.725, … 
(n + 1/2) π (We should note that one has to consider that these oscillations are already 
smeared by the instrumental resolution function, so the data shown offer even more 
confirmation of the strong segregation between the core and corona and the low 
polydispersity of the micelles). 
 
Also shown is Porod’s law I ∼ Q−4, which describes the limiting envelope of all form 
factor oscillations. We should emphasize that in core contrast no blob scattering is visible 
[22]. This also corroborates the compact PEP core. A quantitative analysis in terms of a 
core–shell model gave the following micellar parameters: aggregation number P = 1600, 
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core radius Rcore = 145 Å and shell radius Rm = 280 Å with a polydispersity of ≈5%. The 
solvent fraction in the swollen shell is Φsolv = 60%. 
Figure 6.7 (right) shows the corresponding partial form factor data, P(Q)/Φ, in shell and 
core contrast for an asymmetric h-PEP1-dh-PEO20. The differences compared to figure 
6.7 (left) are obvious: the difference in forward scattering of the two contrasts is reflecting 
the asymmetry of the block copolymer. Moreover, no maxima or minima are visible (also 
not at high Q in core contrast) and the power law observed in shell contrast has a slope of 
only I ∼ Q−5/3, which is typical for a polymer chain in a good solvent and arises from the 
swelling of the PEO in the shell (blob scattering). A quantitative analysis gives the 
following micellar parameters: aggregation number P = 130, core radius Rcore = 34 Å and 
shell radius Rm = 260 Å. 
 

  
Fig. 6.7:  Form factors of block copolymer micelles with varying architecture in core 

(red) and shell contrast (blue). Left symmetric PEP4-PEO; right 
asymmetric PEP1-PEO20, the numbers denote the block molecular weight 
in kg/mole [22] (Reprinted by permission of IOP Publishing, copyright 
2004). 

 
6.3.2  Micellar exchange dynamics 
Polymeric micelles are macromolecular analogues of well-known low-molecular 
surfactant micelles. As a consequence of random stochastic forces, the constituting chains 
will continuously exchange between the micelles. From the theory of Halperin and 
Alexander (HA), this exchange kinetics is expected to be dominated by a simple 
expulsion or insertion mechanism where single chains (unimers) are required to overcome 
a defined potential barrier [23]. Higher order kinetics including fusion and fission is not 
expected to take place since these mechanisms are neither favoured energetically nor 
entropically [24]. Experimentally, relatively few studies have been devoted to the 
exchange kinetics of polymeric micelles in equilibrium. This is most likely related to the 
associated experimental difficulties. Recently, we used a newly developed time resolved 
small angle neutron scattering (TR-SANS) technique [25]. This technique is perfectly 
suited for determination of exchange kinetics in equilibrium as, unlike other techniques; 
virtually no chemical or physical perturbations are imposed on the system. The labelling 
is restricted to a simple hydrogen/deuterium (H=D) substitution using fully hydrogenated 
(h) and fully deuterated (d) polymers with identical molar volumes and compositions. By 
mixing the corresponding H- and D-type micelles in a solvent with a scattering length 
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corresponding to the average between the two, the kinetics can be determined. The 
average excess fraction of labelled chains residing inside the micelles is then simply 
proportional to the square root of the excess SANS intensity. The corresponding 
correlation function is given by [ ] [ ]{ } 2/1)0(/)()( ∞∞ −=−= ItIItItR  was measured from 
a reference sample where the polymers have been completely randomized and I(t=0) from 
the scattering of the reservoirs at low concentrations. 
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Fig. 6.8:  Left: Schematic illustration of the TR-SANS technique to follow micellar 

exchange kinetics. Right: Corresponding time-resolved SANS data forPEP1-
PEO20 micelles in H2O/DMF 7:3 showing slow exchange (5min, 2h @ 50°C) 
(Reprinted by permission of Springer Nature: Adv. Polymer Sci., 184, 1, 2013, 
Kinetics of Block Copolymer Micelles Studied by Small-Angle Scattering 
Methods, R. Lund et al., copyright 2013). 
 

6.3.3  Structure factor 
How the structure factor S(Q) can be derived from the pair correlation function g(r) by 
liquid state theory has been shown in Chapter 5.3.4. g(r) finally results from the effective 
pair potential V(r), which describes the direct interactions between the solute only, after 
eliminating the rapidly moving degrees of freedom of the solvent molecules. From the 
position Qmax of the first peak in S(Q) the average distance D between scattering particles 
can be derived by D= 2π/Qmax. 
We recently showed that micelles formed by the amphiphilic block copolymer 
poly(ethylene-alt-propylene)– poly(ethylene oxide) (PEP–PEO) provide an interesting 
system to conveniently tune the ‘softness’ in terms of particle interactions (intermolecular 
softness) and the deformability of the individual particle (intramolecular softness). This 
is achieved by changing the ratio between hydrophobic and hydrophilic blocks from 
symmetric (1:1, Hard Sphere-like) to very asymmetric (1:20, star-like). One must 
emphasize that to approach the star-like regime is not a trivial task. 

protonated deuterated t=0
 

t=∞ 

⇒ time-dependent intensity ■ 
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Due to this hybrid nature, soft colloids macroscopically show interesting (phase) 
behaviour resulting from its unique microscopic structure. The combination of polymer-
like properties, i.e. the formation of (transient) geometric constraints due to overlapping 
polymeric coronas and direct colloidal interactions due to the (hard) core in particular 
affects flow properties and non-equilibrium behaviour of soft colloids. Therefore soft 
colloids are frequently used in many technical applications (paints, shampoos, motor oils, 
polymer nano-composites etc.). 
More recently, the interest of colloid scientists in fundamental science has shifted towards 
the study of soft particles, among which star polymers have emerged as a model system 
for a wide class of soft spheres. For a star polymer, softness can be controlled by varying 
its number of arms (or functionality f), allowing to bridge the gap between linear polymer 
Gaussian chains (f = 2) and Hard Spheres (f =∞). Therefore, star polymers feature 
tuneable softness, which is responsible for the observation of anomalous structural 
behaviour and for the formation of several crystal structures [28]. Hence, mixtures of soft 
particles offer an even higher versatility with respect to their hard counterparts, both in 
terms of structural and rheological properties and of effective interactions. Recently, we 
confirmed experimentally by combining SANS and rheology the theoretical phase 
diagram of soft colloids [29] and mixtures of soft colloids with linear polymers [29]. As 
experimental realization again the previously described PEP-PEO star-like micelles have 
been used. Figure 6.11 shows the phase diagram in the functionality vs. packing fraction 
representation. We have to point out that quantitative agreement starting from 
experimental parameters is achieved without any adjustable parameter. For this the 
determination of the interaction length σ by SANS in core contrast was inevitable. 

 
 
Fig. 6.11: Phase diagram of ultra soft colloids (symbols experiment: ○  fluid, ■  bcc 

▲  amorphous solid;, lines theory) [28] (Reprinted by permission of American 
Physical Society, copyright 2005). 

0.0 0.2 0.4

40

60

80

100

120

glass
fcc

bcc

f

η

fluid



6.16  J. Stellbrink 

Appendices 
 
A6.1  Scattering of a polymer 
In this section we derive the scattering of a single (isolated) polymer coil. This model is 
the basis for many more complicated models of polymers in solution, polymeric micelles, 
polymer melts, diblock and multiblock copolymers and so on. So the understanding of 
these concepts is rather important for scattering experiments on any kind of polymer 
systems. 
 
This example starts apart from many other calculations from point-like monomers (see 
chapter 5, equation 5.14). These monomers are found along a random walk with an 
average step width of lK. We try to argue for non-ideal chain segments, but finally will 
arrive at an expression for rather ideal polymers. 
 
For the scattering function we obtain (definition of P(Q) in chapter 5, equations 5.39-41): 
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At this stage, we use statistical arguments (i.e. statistical physics). The first rearrangement 
of terms (equation 6.5) moves the ensemble average of the monomer positions (and 
distances ΔRjk) from the outside of the exponential to the inside. This is an elementary 
step which is true for polymers. The underlying idea is that the distance ΔRjk arises from 
a sum of |j-k| bond vectors which all have the same statistics. So each sub-chain with the 
indices jk is only distinguished by its number of bond vectors inside. The single bond 
vector bj has a statistical average of <bj>= 0 because there is no preferred orientation. The 
next higher moment is the second moment <bj

2>=lK
2. This describes that each bond vector 

does a finite step with an average length of lk. For the sub-chain we then find an average 
size <ΔRjk

2>=|j-k| lK
2. The reason is that in the quadrature of the sub-chain only the 

diagonal terms contribute because two distinct bond vectors show no (or weak) 
correlations. 
 
Back to the ensemble average: The original exponential can be seen as a Taylor expansion 
with all powers of the argument iQΔRjk. The odd powers do not contribute with similar 
arguments than for the single bond vector bj=0. Thus, the quadratic term is the leading 
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term. The reason why the higher order terms can be arranged that they finally fit to the 
exponential expression given in equation 6.5 is the weak correlations of two distinct bond 
vectors. The next line equation 6.6 basically expresses the orientational average of the 
sub-chain vector ΔRjk with respect to the Q-vector in three dimensions. 
This derivation can be even simpler understood on the basis of a Gaussian chain. Then 
every bond vector follows a Gaussian distribution (with a centre of zero bond length). 
Then the ensemble average has the concrete meaning 

jkkjk RdlkjR ∆−∆=∫ 322
2
3 )|(|/(exp . This distribution immediately explains the 

rearrangement of equation 6.4. The principal argument is the central limit theorem: When 
embracing several segments as an effective segment any kind of distribution converges 
to yield a Gaussian distribution. This idea came from Kuhn who formed the term Kuhn 
segment. While elementary bonds still may have correlations at the stage of the Kuhn 
segment all correlations are lost, and the chain really behaves ideal. This is the reason 
why the Kuhn segment length lK was already used in the above equations. 
 
In the following we now use the average length of sub-chains (be it Kuhn segments or 
not), and replace the sums by integrals which is a good approximation for long chains 
with a large number of segments N. 
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In this integral one has to consider the symmetry of the modulus. The result is basically 
the Debye function which describes the polymer scattering well from length scales of the 
overall coil down to length scales where the polymer becomes locally rigid. 
 

A6.2  The ultra-soft potential (Likos-Potential) 
The effective potential V(r)/kbT between star polymers as a function of functionality f and 
interaction length σ was derived by by Likos et al. [26]. The interaction length σ is the 
distance between two star centres when the outermost blob overlaps. For larger distances 
two stars interact via a screened Yukawa-type potential whereas at distances smaller than 
σ when there is overlap of the star coronas, the potential has an ultra-soft logarithmic 
form. 
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All numerical factors have been chosen in such a way that the potential as wells as its first 
derivative are smooth at crossover. Figure 6.12 shows the Likos-potential for different 
functionalities. At ∞=f  the Hard Sphere potential is recovered. 

 
Fig. 6.12: Effective potential V(r)/kbT between star polymers with varying 

functionality f. 
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Exercises 
 
E6.1*  Contrast or no contrast? 
Due to synthetic (and financial) limitations only protonated material is available for a SANS 
experiment, for both polymer (poly(ethylene propylene), PEP, and solvent dimethyl-
formamide, DMF. 

a) Calculate the contrast factor 
AN

2ρ∆  following equation 5.16 and 6.1. 

b) What is the necessary molecular weight Mw to achieve a signal-to-background ratio of 5 at 
Q=0 for a given polymer volume fraction φ =0.01? (Remember: The incoherent scattering 
contributes to the background too and there is an empirical “rule of thumb” that the 
experimental incoherent scattering is twice the theoretical value due to inelastic and multiple 
scattering!) 
c) At which Q-value the signal vanishes in the background? 
(Assuming good-solvent conditions with a prefactor 0.01 [nm] for the Rg-Mw-relation and 
assuming the Guinier approximation for P(Q)) 

d) For which combination of molecular weight and volume fraction φ the experiment could be 
performed in the dilute regime, i.e. φ≤0.1φ*? 
Given are sum formulae and densities 
h-PEP = C5H10, dPEP=0.84g/cm3 
h-DMF = C3H7NO, dPEO=0.95g/cm3 
and coherent and incoherent scattering lengths bcoh and binc in units [cm]: 
C: bcoh =6.65E-13, binc = 0 
H: bcoh =-3.74E-13, binc = 2.53E-12 
D: bcoh =6.67E-13, binc = 4.04E-13 
O: bcoh =5.80E-13, binc = 0 
N: bcoh =9.36E-13, binc = 0 
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E6.2  Contrast Variation Experiment on Micelles 

The three symbols □, ○ and  indicate the characteristic small angle scattering of spherical 
polymer micelles under different important contrast conditions. There are three conditions 
called: shell contrast, core contrast and zero average contrast. The shell contrast highlights the 
shell of the micelle (being hydrogenated) while the rest is deuterated. The core contrast 
highlights the core of the micelle (being hydrogenated) while the rest is deuterated. For the zero 
average contrast the average contrast of the deuterated core and the hydrogenated shell matches 
with the solvent. 
Which condition can be connected to which symbol (or curve)? 

A  -shell ○-core and □-zero 

B  ○-shell □-core and -zero 

C  □-shell -core and ○-zero 

Why? 
 

E6.3  Aggregation number of micelles 
In aqueous solution, the diblock copolymer poly(ethylene propylene-block-ethylene oxide), 

PEP-PEO, forms spherical micelles, with PEP the non-soluble and PEO the soluble block. In 

dilute solution using core contrast, i.e. the scattering length density of the solvent is matched to 

the scattering length density of the micellar shell (formed by the soluble block PEO), the first 

form factor minimum is observed at Q=0.12 Å-1. 

 
Calculate  
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a.) the aggregation number Nagg, i.e. the number of diblock copolymers forming a single 
micelle, assuming full segregation, i.e. a non-swollen micellar core. 
 
b.) How can Nagg derived in this way be cross-checked without performing another experiment? 
 
 
Known are the monomer sum formulae and densities 
h-PEP = C5H10, dPEP=0.84g/cm3 
h-PEO = C2H4O, dPEO=1.12g/cm3 
 
and the degree of polymerisation, Dp, of the blocks: 
Dp,PEP = 15 
Dp,PEO = 40 
 
 
 

E6.4  Interactions of Gaussian chains 
Calculate S(Q) for Gaussian chains at a volume fraction φ = φ∗. 

 
E6.5  Peak position in S(Q) 
A solution of compact spherical colloids, R=250Å, with volume fraction 0.25 should be 
characterised by SANS. At which Q-vector do you expect the first peak in the structure factor 
S(Q) to appear? 
 
E6.6  Structure factor contributions 
 
Which type of particle interactions can be determined from the total scattering intensity I(Q) at 
high scattering vectors only? 
 
A. Repulsive interactions 
B. Attractive interactions 
C. No interactions at all 
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Jülich Centre for Neutron Science

Forschungszentrum Jülich GmbH
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7.1 Introduction

Among the properties that make the neutron a unique and valuable probe for condensed
matter research, its spin and magnetic moment is of particular importance in the scattering
process. There are two aspects to consider, firstly, the strong nuclear interaction of the neu-
tron with an nucleus depends on the either parallel or antiparallel alignment of the spins of
neutron and nucleus, and secondly, the neutron’s magnetic moment interacts with the unfilled
electron shells of atoms or ions in magnetic scattering. The scattering process will also have
an impact on the spin state of the neutron probe. Hence, one may expect that controlling
the neutron spin in a scattering experiment will provide further valuable information, which
leads us to the subject of this lecture: polarized neutron scattering and polarization analysis.
Indeed, it is possible by working with polarized neutron and polarization analysis to separate
scattering terms with respect to their different structural or magnetic origins, and moreover,
to uncover scattering contributions that remain hidden in usual unpolarized scattering exper-
iments.

The method of polarized neutron scattering is mature and well developed. The theoretical
description of magnetic neutron scattering by Halpern and Johnson 1939 [1] was essentially
completed by the general theory by Blume and Maleyev, independently, in 1963 [2, 3]. The
first implementation of neutron polarization analysis by Moon, Riste and Koehler [4] laid
the foundation for experimental work and some of their examples will be discussed in this
lecture. In 1972, Mezei [5] developed the neutron spin echo technique, ten years later Schärpf
accomplished the XYZ polarization analysis on a multidetector spectrometer, the D7 at ILL
[6], and from 1988 Tasset and Brown developed neutron polarimetry [7, 8].

This lecture will give an introduction first to polarized neutrons, how they interact with mag-
netic fields and upon experimental devices. The following sections will cover the scattering
interaction of polarized neutrons with matter, the nuclear and magnetic scattering, followed
by applications.

7.2 Neutron spins in magnetic fields

Basic properties

The neutron has a spin S = ±1/2 with angular momentum L = ~S. The magnetic mo-
ment of the neutron results from the spins of the individual quarks and their orbital motions,
and the relation between spin and magnetic moment is given by the neutron g-factor, gn =
−3.8260837(18), in units of the nuclear magneton µN = e~

2mp
= 5.05078324(13) · 10−27JT−1

µn = gnSµN ' ∓1.913µN = ±γnµN ,

where γn = −gnS is the gyromagnetic factor of the neutron (see Refs. [9]) . Because of
the small ratio µn/µB = me/mp, the neutron magnetic moment µn is small compared to the
magnetic moment of the electron µe = geSµB ≈ 1µB, with the Bohr magneton µB = e~

2me

and the Lande-factor ge = 2(1 + α/2π − 0.328α2/π2) ≈ 2 (see Refs. [10] ), α is the fine
structure constant. A peculiarity to note is that different to the electron and proton, the
neutron magnetic moment is aligned opposite to its spin.
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Polarization

Next we consider the many particle ensemble of neutrons in a neutron beam. Polarization of
a neutron beam is defined by the normalized average over the neutron spins.

P = 2〈S〉 (7.1)

Applying a magnetic field H defines a quantization axis and the neutrons split in spin up and
down states, n↑ and n↓ respectively. Measuring the beam polarization will take the projection
of the spins in up- and down state states with proper normalization.

−1 < P =
n↑ − n↓
n↑ + n↓

< 1. (7.2)

7.2.1 Interaction of neutrons with magnetic fields

Zeeman splitting

The dipolar interaction potential of a neutron with the magnetic field is given by

Vm = −µn · B (7.3)

where B is the magnetic induction. For neutrons passing from zero-field into a magnetic field
the potential energy changes by the Zeeman term ±µnB depending on the relative orientation
of the magnetic moment. The according change in kinetic energy to conserve the total energy
is small, 0.06µeV/T, which in experimental practice is of relevance only in rare cases.

Equation of motion and Larmor precession

The characteristic motion of the neutron magnetic moment in a magnetic field is Larmor
precession, which for simplicity can be considered in a classical treatment. In fact, even the
quantum mechanical treatment, which introduces Pauli spin matrices σ̂ into the Schrödinger
equation, is effectively a classical treatment considering the origin of these matrices. Orig-
inally [11], they result from the problem of mapping three dimensions onto two by intro-
ducing a complex component describing the classical problem of a spinning top. [12] The
magnetic interaction tends to align the neutron moment with the magnetic induction in order
to minimize the interaction energy. The magnetic moment is related to the angular momen-
tum as

µ = γL, (7.4)

where γ is the gyromagnetic ratio given by γ = 2µn/~ = 2γnµN/~ = −1.83 · 108 s−1T−1

or, in cgs units, γ/2π = −2916 Hz/Oe. There is a torque µ × B = L̇ equal to the time
derivative of the angular momentum, which leads to the Bloch equation of motion:

µ̇ = γ µ ×B. (7.5)

Because of the cross product, the time derivative of the magnetic moment is always per-
pendicular to the moment itself. Therefore, the resulting motion is a precession, where the
angular momentum, the component Lz along the field, and the energy are constants of the
motion, see Fig.7.1. The precession frequency is the Larmor frequency ωL = −γB, and
~ω = 2µB, the Zeeman splitting energy.
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Fig. 7.1: Zeeman splitting (left) and Larmor precession (right). The motion of the neutron in a
constant magnetic field conserves energy and angular momentum.

Motion in time dependent fields

The polarization will behave like the individual neutron spin in a constant magnetic field

and will be a constant of motion. However, if we consider time-dependent fields, the finite

velocity distribution in a neutron beam will result in a different time dependence. Hence de-

phasing of neutrons spins and degrading of the polarization are possible experimental effects

and have to be taken into account.

Thermal neutrons move with a speed of thousands of meters per second. When passing

through spatially varying magnetic fields, the neutrons experience time-dependent field changes

in their reference system. Replacing the constant B by B(t), the differential equation Eq. (7.5)

can be used to calculate numerically the effect of all relevant field variations in an experi-

mental set-up.

Asymptotic cases

Usually, it is possible to work within two simple limiting cases of either (i) slow adiabatic
field variation , in which the non-precessing spin component parallel to the field smoothly

follows the field direction, or of (ii) sudden field reversal, in which the non-precessing spin

component has no time to reorient itself, when traversing abruptly from a parallel to anti-

parallel field or vice versa. Slow field variation means that the field B changes or rotates in

the coordinate system of the neutron with a frequency that is small compared to the Larmor

frequency, see Fig. 7.2.

7.2.2 Experimental devices

Polarizer and polarization analyzer

The most common methods to polarize neutrons are (i) using the total reflection from mag-

netic multi-layers, (ii) using Bragg reflection of polarizing single crystals (typically Heusler

crystals) and (iii) polarized He-3 filters, in which for anti-parallel spins the (n,3He)-compound
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Fig. 7.2: Neutron polarization can be best preserved in the asymptotic cases of either slowly
or suddenly varying fields. The second case is used in a cryoflipper to reverse the polarization
with respect to the external field.

has a large absorption cross-section while all neutrons with parallel spins may pass the fil-

ter cell. The first two methods use an interference effect of nuclear and magnetic scattering

amplitudes having the same absolute value as discussed below.

(i) Polarizing total reflecting supermirrors are an easy experimental tool to obtain a broad

wavelength band of cold polarized neutrons. The angle of total reflection for a single ferro-

magnetic (FM) layer is given by

Θ±
c = λ

√
n(b± p)/π. (7.6)

Hence, the critical angle may vanish for one orientation of the neutron spin and there is total

reflection for the other one. Here n denotes the particle density and b and p the nuclear and

magnetic scattering lengths, respectively. However, the critical angle can be further increased

by artificial multi-layers (supermirrors) of alternating FM and non-magnetic layers of varying

thickness [13], see Fig. 7.3. The λ dependence of the total reflectivity makes this type of

polarizer less favorable for thermal neutrons of shorter wave length as it reduces the accepted

divergence of the beam.

Fig. 7.3: Spin dependent reflectivity and polarisation of Fe/Si polarizing supermirror m = 5.5.
m=1 corresponds to the total reflectivity of Ni. (from SwissNeutronics.ch [14])
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(ii) Bragg reflection from a crystal monochromator with similar nuclear and magnetic
scattering amplitudes b and p, which yields constructive interference b + p for one spin
state and destructive interference b − p for the other. E.g. the (111) Bragg reflection of the
Cu2MnAl Heusler alloy gives 95 % polarization. However, the reflectivity of such crystals
is low compared to usual non-polarizing monochromators and a saturating field is required
over the entire monochromator, which makes it technically more complicated to combine
with focusing though this is feasible.

(iii) 3He filter cells, see Fig. 7.4, are of growing importance for polarizing neutrons, partic-
ularly for the more challenging case of thermal neutrons, although such cells are technically
rather demanding and still under development. In case of spin-exchange optical pumping
(SEOP) the spin polarization of 3He gas is achieved in several steps. The cell is filled with
additional Rb, K and N2 vapor. Rb electrons are polarized with a a circular polarized laser,
by collisions the spin is exchanged with K, which most efficiently exchanges spin with 3He.
Since polarization results from absorption, such a device does not interfere with the beam
divergence. One may note that requirements for field homogeneity are very high and it is
a kind of art and glass alchemy to make cells with small depolarization all determining the
lifetime of 3He polarization. The neutron polarization P raises with increasing 3He cell size
or pressure, while the transmission T decreases. The optimum in efficiency is usually chosen
by the maximum of a quality factor P 2T .

Si

⦰

= 9 cm
100 h 200 hdecay

steady state

Fig. 7.4: (left) 3He-cells made of Si-crystal (avoiding small angle scattering background) and
of glass (for wide angle diffraction). 3He in-situ polarization of a SEOP He-3 cell and measured
polarization of neutron beam in transmission. (from Babcock et al. [15])

Guide-fields

A magnetic guide field is used to maintain the direction of the spin and the polarization
of the neutron beam. The guide field preserves the quantization axis to which the neutron
moments have to align either parallel or anti-parallel. Typical guide fields in the order of 10
G are strong compared to earth field and other possible stray fields and usually sufficient to
prevent depolarization along the beam path. Such guide fields are usually too weak to have
any significant impact on the sample magnetization.

Depolarization effects may occur for an inhomogeneous distribution of field directions over
neutron beam cross-section, which is typically a few cm2. This can easily occur if a fer-
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romagnetic material is used close to the beam or if the sample itself is ferromagnetic. A
neutron beam passing through a ferromagnet is usually completely depolarized by differently
oriented ferromagnetic domains in the beam path, unless a saturating magnetic field is used
to align the domains. Depolarization will depend also on the path length through the sample,
therefore, usually such effects are negligible in neutron reflectometry of thin ferromagnetic
films.

XYZ-coils

In order to probe the orientation of the magnetic moments in the sample, it is desirable to
align the polarization to any desired direction at the sample position. This can be done with
a set-up of three orthogonal pairs of so-called xyz-coils. Fig. 7.5 illustrates the field setting
along x-direction. In the example, one can see that the z-coil has been used to compensate
the guide field at the sample position, and that the x-coils produce a field of a few Gauss. The
field needs to be sufficiently strong so that the neutron polarization can follow the smooth
variation of the field direction adiabatically, finally turning back into the z-direction of the
guide field outside the xyz-coils.

-40 0 40
d (cm)

0

5

B
  (

G
au

ss
) Bx Bz

By=0

Fig. 7.5: (left) Magnetic field setting in a xyz-coil system for an adiabatic nutation of the
polarization of cold neutrons in horizontal x-direction at the sample turning to a vertical (guide)
field Bz at further distance from the sample. (right) A photo of the xyz-coil system in the DNS
instrument at the FRM-2.

Flipper

The purpose of a π-flipper is to reverse the polarization and to detect whether the sample
causes spin-flip scattering.

When applying a magnetic field perpendicular to the polarized neutron beam, the polarization
immediately starts its Larmor precession. A flipper that reverses the neutron polarization with
respect to the guide field has to induce a well-defined field pulse so that the polarization
precesses by an angle π. For this purpose one can use the homogeneous field of a Mezei
flipper, a long rectangular coil, see Fig. 7.6. Neutrons see a sudden field change when they
enter and exit the coil, in between they precess around the perpendicular flipping field, whose
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magnitude is tuned with respect to the time of flight that the neutrons spend inside the coil.

Therefore, the device is λ-dependent and currents (fields) need to be proper tuned for a π-flip.

⊥

Fig. 7.6: Principle of a neutron π-spin flipper. The neutrons perform a Larmor-precession
of 180o inside a long rectangular coil. The field B is perpendicular to spin orientation and
adjusted to the speed of the neutrons.

The purpose of a π/2-flipper is to set the polarization in precession mode by turning the

polarization perpendicular to the guide field. A precessing polarization is used for instance

in high resolution Neutron Spin Echo spectroscopy and for Larmor diffraction, see below.

Both methods use the property of the neutron spin as an internal clock independent of the

scattering process itself and achieve highest resolution.

The classical experimental set-up of Moon, Riste and Koehler (1969) combines the above

discussed devices for polarized neutron scattering with so-called longitudinal polarization

analysis. Principles and examples from this study [4] will be discussed in the following

section.

Fig. 7.7: The scheme of the triple axis instrument equipped for polarization analysis as used
by Moon, Riste and Koehler (1969). Reprinted from [4]. Copyright (1969) by the American
Physical Society.
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7.3 Polarized neutron scattering and applications

7.3.1 Nuclear interaction of neutrons with matter

For thermal and cold neutrons, the range of the nuclear interaction is small compared to the
neutron wavelength and can be described by a point-like and isotope-specific Fermi potential,
which is proportional to the scattering length b,

V (r) =
2π~2

mn

b δ(r −R) (7.7)

The scattering amplitude NQ for an ensemble of nuclei is determined by the transition matrix
elements for the scattering potential VQ

NQ = 〈k′S′|VQ|kS〉 (7.8)

which in general depends on the scattering vector k − k′ = Q, the related energy transfer,
and the spin states before and after the scattering process.

First, we consider the scattering of nuclei of one element only and assume further that these
nuclei have zero spin ( e.g. 12C, 16O ..., and typically ”gg” isotopes with even number of
protons and neutrons ). The scattering length operator b̂ is a scalar and the scattering will be
independent of the neutron spin orientation. This leads to the scattering intensity, where we
replace the actual scattering length by the average bl and deviations, by including the mean
square deviations

dσ

dΩ
= N

∑
ll′

blbl′e
iQ(Rl−Rl′ ) = N(b2 − b2) + b

2∑
ll′

eiQ(Rl−Rl′ ). (7.9)

The first term on the right side is the isotopic incoherent scattering, it relates to random fluc-
tuations in the scattering length. In contrast, the second term, the coherent nuclear scattering,
is proportional to b

2
and contains phase information.

Next we consider that scattering nuclei may have a spin I 6= 0 and that the interaction is
spin-dependent. There are two possible spin states of the compound, coupling the neutron
spin with the spin of a nucleus, which are either J = J+ = I + 1/2 or J = J− = I − 1/2,
associated with different scattering lengths b+ and b−. The multiplicity of the spin states
2J + 1 equal 2I + 2 and 2I for parallel and anti-parallel spin alignment respectively. For an
equiprobable occupation of all states, the probabilities for the J+ and J− states are

p+ =
I + 1

2I + 1
, p− =

I

2I + 1
, (7.10)

defining the weights for the average coherent scattering length and its mean square average

b = p+b+ + p−b−, b2 = p+b
2
+ + p−b

2
−. (7.11)

Again this will lead to a scattering intensity as given by Eq.(7.9), only that the spin-incoherent
scattering term is now related to the randomness of spin states.
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In order to understand what will happen to the spin states of neutron and nuclei, we consider
the transition matrix element Eq. (7.8) for the scattering length operator, which is the sum of
the average, coherent part, A (= b), and the fluctuating spin-dependent part, B = b+−b−

2I+1
,

b̂ = A+B σ̂ · Î. (7.12)

Here, σ̂ is the Pauli spin operator given by Pauli spin matrices

σ̂ x =
(

0 1

1 0

)
, σ̂ y =

(
0 −i
i 0

)
, σ̂ z =

(
1 0

0 −1

)
. (7.13)

We choose the quantization axis z for the neutron polarization P = 2〈Ŝ〉 = 〈 σ̂〉, with
spin-up states |+〉 = (1

0
) and spin-down states |−〉 = (0

1
). With

σ̂x|+〉 = |−〉, σ̂ y|+〉 = i|−〉, σ̂ z|+〉 = |+〉
σ̂x|−〉 = |+〉, σ̂ y|−〉 = −i|+〉, σ̂ z|−〉 = −|−〉 (7.14)

we obtain the transition matrix elements

〈S′|b̂|S〉 =

〈+|b̂|+〉 = (A+BIz) 〈+|+〉 nsf

〈−|b̂|−〉 = (A−BIz) 〈−|−〉 nsf

〈+|b̂|−〉 = B(Ix − iIy) 〈+|+〉 sf

〈−|b̂|+〉 = B(Ix + iIy) 〈−|−〉 sf

(7.15)

for the non-spinflip (nsf) and spinflip (sf) scattering amplitudes, respectively. The non-
spinflip scattering is given by the coherent scattering and one third of the spin-incoherent
scattering, while two thirds of the spin-incoherent scattering is spinflip scattering. If we con-
sider only coherent scattering, the final polarisation P′ = P, whereas in case of only spin-
incoherent scattering P′ = −1

3
P. The combination of coherent and spin-incoherent scattering

may result in a change of magnitude and sign of polarization, however, the final polarization
will not deviate from the initial polarization axis. Furthermore, the obtained result is simply
independent of the direction of P with respect to Q. This is an important feature, which is
in contrast to the dipolar magnetic interaction that will be discussed below.

In summary, we can distinguish three contributions to the nuclear scattering |NQ|2 aris-
ing from the total nuclear scattering amplitude NQ =

∑
j bje

iQ·Rj , the average coherent
scattering, the isotopic, non-spin dependent part of the incoherent scattering, and the spin-
incoherent scattering

dσ

dΩ

N

Q
= |NQ|2 =

dσ

dΩ

N

spin−inc
+
dσ

dΩ

N

isotope−inc
+
dσ

dΩ

N

Q,coh
. (7.16)

The sum of the coherent and isotopic incoherent nuclear scattering can be separated from the
spin-incoherent scattering by measuring spin-flip and non-spin-flip scattering.

dσ

dΩ spin−inc
=

3

2

dσ

dΩ

SF

(7.17)

dσ

dΩ

N

Q,coh
+
dσ

dΩ

N

isotope−inc
=

dσ

dΩ

NSF

− 1

2

dσ

dΩ

SF

(7.18)
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Fig. 7.8: Left: Nuclear isotopic incoherent scattering from nickel obtained by rocking the
analyzer crystal through the elastic position, which is essentially all non-spin-flip scattering.
Right: Nuclear spin-incoherent scattering from vanadium show 2/3 and 1/3 contributions in the
spin-flip and non-spin-flip channel respectively. There is no dependence on the direction of P
relative to Q for all nuclear scattering. Reprinted from [4]. Copyright (1969) by the American
Physical Society.

There are two good examples of isotope and spin-incoherent scattering, Nickel and Vana-

dium respectively. Because Vanadium has essentially no coherent scattering, it is often used

as a reference sample to calibrate data for detector efficiencies. It consists to 99.75% of

the stable isotope 51V with a nuclear spin I = 7/2. Polarization analysis reveals that 2/3

of the spin-incoherent scattering is spinflip and 1/3 is non-spinflip scattering, see Fig. 7.8.

The second example Nickel consists of various isotopes, mostly with I = 0. As expected,

the related isotope incoherent scattering is purely non-spinflip scattering, as also shown in

Fig. 7.8. Note, the magnetic scattering vanishes for applying a saturating field H ‖ Q, see

also Fig. 7.7.

Applications to local order in disordered hydrogeneous materials

Typical soft matter samples contain hydrogen which causes a huge spin-incoherent back-

ground (σinc(H) = 80 b) in the wide-angle scattering that contains information about local

correlations (σcoh(H) = 1.76 b). Here, a precise determination of coherent scattering can

be achieved by measuring spin-flip and non-spin-flip scattering. It is particularly valuable to

combine this further with the method of contrast variation using H and D isotopes, having

rather distinct scattering lengths, bcoh(H) = −0.374 ·10−12cm and bcoh(D) = 0.667 ·10−12cm.

Fig. 7.9 shows the separated coherent scattering of a polymer glass. Such results provide

most useful information about local order that can be compared to molecular dynamics sim-

ulations of theoretical polymer models [17].



7.12 W. Schweika

Fig. 7.9: Neutron polarisation analysis separates coherent scattering from spin-incoherent
scattering, which is typically a disturbing large background in materials that contain hydro-
gen, while here it provides a precise intrinsic calibration. In addition, H/D contrast varies the
coherent scattering of a polymer glass PMMA. [17]

Applications to dynamics in liquids

Since in a liquid all atoms are moving around, the scattering is not elastic as in the case

of Bragg peaks from a solid, single crystal. Diffraction - the energy integrated scattering

- provides us with structural properties from a snap-shot of typical atomic configurations.

Since neutron energies are comparable to thermal energies involved in atomic motions, it is

relatively simple to achieve an adequate energy resolution to study the dynamics for instance

in liquids, see example in Fig. 7.10.

Fig. 7.10: Time-of-flight spectra of a) spin-incoherent and b) coherent scattering of liquid
sodium at T=840 K separated by polarization analyis (from O. Schärpf. [18]). The dotted
mesh corresponds to the coordinates of time-of-flight and scattering angles.

Therefore, a typical instrument set-up uses the time-of-flight technique: the monochromatic

beam is pulsed by a mechanical chopper and the measured time-of-flight of the neutrons can

be related to an energy transfer in the sample. Note, the separation by polarization analysis



Polarized Neutrons 7.13

in coherent scattering and spin-incoherent scattering distinguishes pair-correlations from
single particle correlations, respectively. The study of liquid sodium [18], see Fig. 7.10,
demonstrates instructively the complementary information that can be obtained. From simple
liquid models one expects that the incoherent scattering has a Lorentzian shape in energy at
constant Q, related to exponential relaxations in time, with a width that for the macroscopic
limit, Q → 0, is related to the diffusion constant. In contrast, the coherent scattering very
differently exhibits a pronounced peak related to typical nearest neighbor distances reflecting
precursors of Bragg peaks and crystalline order.

7.3.2 Magnetic interaction of neutrons with matter

Spin and orbital moments exert dipolar fields

BS = ∇× (
µe ×R

R3
), BL =

e

c
(
ve ×R

R3
) (7.19)

and result in a dipolar magnetic interaction potential for the neutron

Vm = − µ · (BS + BL). (7.20)

The derivation of the scattering law is lengthy and can be found in [16]; it leads to

dσ

dΩmag
= (γnr0)

2| 1

2µB

〈S ′Z |σ̂ · M̂⊥
Q|SZ〉|2, (7.21)

where r0 is the classical electron radius. M̂⊥
Q is the operator of the magnetic interaction

vector, defined in units of µB,

M⊥
Q = eQ ×MQ × eQ (7.22)

which is reduced to only the perpendicular components of MQ with respect to Q. MQ rep-
resents the total Fourier transform of the spin and orbital contribution to the magnetization
density. Consequently, and in fundamental contrast to nuclear scattering, the magnetic scat-
tering depends on a form factor, similarly to x-ray scattering. Because unpaired electrons
are typically in the outer shells, such as the 3d or 4d shell of transition elements or the 4f
shell of rare earth elements, the form factor drops typically faster than for the total electron
cloud as seen in the x-ray form factor. Measuring the form factor in detail can reveal the
relevant spin and orbital contributions to the magnetic moments.

The anisotropy of the interaction is due to the dipolar interaction of the neutron spin with
the magnetic moments, which is illustrated in Fig. 7.11. The components of a magnetic
dipole field parallel to the scattering vector Q cancel out. Therefore, in contrast to the spin-
incoherent scattering, magnetic scattering is anisotropic with respect to Q and only M⊥

Q, the
components perpendicular to Q can be observed.

In analogy to the spin-dependent nuclear interaction, we obtain the transition matrix elements
for the magnetic interaction, choosing z-polarization and x parallel to Q, M⊥

x,Q = 0, and

〈S′| σ̂ · M̂⊥
Q|S〉 =

〈+| σ̂ · M̂⊥
Q|+〉 = M⊥

z,Q , nsf

〈−| σ̂ · M̂⊥
Q|−〉 = −M⊥

z,Q , nsf

〈+| σ̂ · M̂⊥
Q|−〉 = −iM⊥

y,Q , sf

〈−| σ̂ · M̂⊥
Q|+〉 = iM⊥

y,Q , sf

(7.23)
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Fig. 7.11: Illustration why only M⊥
Q is measured. For M ⊥ Q, magnetic dipole field amplitudes

show constructive interference, for M ‖ Q destructive interference. Right: Polarized small
angle scattering (Q = 0 in centre) probing the magnetization of iron oxide nanoparticles. [19]

Hence, as illustrated in Fig. 7.12, the component of P parallel to M⊥
Q remains unchanged,

Fig. 7.12: Change of initial polarization P to final polarization P′: the component perpendic-
ular to M⊥

Q reverses sign, the parallel component of P is invariant.

while the component of P perpendicular to M⊥
Q reverses its sign. This selection rule com-

bined with the Q-dependence provides another simple rule: If P ‖ Q, the total magnetic

scattering will be spin-flip.

Therefore, as exemplified in Moon, Riste, Koehler’s seminal paper [4] nuclear and mag-

netic Bragg peaks can be separated from non-spin-flip and spin-flip scattering respectively

by scanning with P ‖ Q, see the separation for Fe2O3 in Fig. 7.13.

Fig. 7.13: Separation of magnetic and nuclear Bragg peaks for powder diffraction from Fe2O3

by non-spin-flip and spin-flip scattering with P ‖ Q. Reprinted from [4]. Copyright (1969) by
the American Physical Society.
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7.3.3 Scattering and polarization analysis, the Blume-Maleyev equations

However, turning from the individual expressions for the scattering amplitudes to scattering
and interference of nuclear and magnetic scattering amplitudes, we have to face more com-
plex expressions. A complete description of magnetic and nuclear neutron scattering has
been given by Blume [2] and Maleyev [3] by two master equations. The first equation gives
the scattering cross-section σQ, the second one describes the final polarization P′,

σQ = |NQ|2 + σisotope,inc + σspin,inc + |M⊥
Q|2 (7.24)

+P(N−QM
⊥
Q + M⊥

−QNQ) + iP(M⊥
−Q ×M⊥

Q)

P′σQ = |NQ|2P + σisotope,incP−
1

3
σspin,incP (7.25)

+M⊥
Q(PM⊥

−Q) + M⊥
−Q(PM⊥

Q)−PM⊥
QM

⊥
−Q

+M⊥
QN−Q + M⊥

−QNQ + iM⊥
Q ×M⊥

−Q + i(M⊥
QN−Q −M⊥

−QNQ)×P

The notation uses −Q to denote the complex conjugate. Here, for simplicity only the Q-
dependence is specified for Bragg scattering or diffuse scattering. However, in the more
general form the scattering cross sections apply to inelastic scattering and can be related to
van Hove correlation functions in space and time.

These equations readily show the different information that can be obtained from an unpo-
larized with respect to a polarized experiment. While unpolarized neutrons only measure
the sum of nuclear and magnetic intensities, for polarized neutrons additional intensity may
arise first, due to possible structural-magnetic (NM-terms) interference and second, due to
cross products of the magnetic interaction vector iM⊥

Q ×M⊥
−Q describing chiral correlations

in non-collinear spin systems. A look at the second equation for the final polarization re-
veals that we can identify such terms ”NM” and ”M×M” even with unpolarized neutrons,
because they may create final polarization (set P = 0).

Eq. 7.25 can be written as a tensor equation [8] (neglecting for brevity the incoherent parts)

P′σ = (|N |21 +R)P + P′′ (7.26)

in which the first term (|N |21 +R)P consists of the scalar nuclear scattering |N |2, 1 is the
unity matrix , the matrix R describes the rotation of P, and P′′ is the created polarization.

Using the common convention for the specific orthogonal setting x parallel to Q, and y and
z perpendicular to Q, horizontally and vertically set to the scattering plane respectively, R
and P” are obtained as

R =

 −|My|2 − |Mz|2 2 Im [NMz] 2 Im [NMy]

−2 Im [NMz] +|My|2 − |Mz|2 2Re [MyMz]

−2 Im [NMy] 2Re [MzMy] −|My|2 + |Mz|2

 (7.27)

P′′ = (−2 Im [MyMz] , 2Re[NMy] , 2Re [NMz]) (7.28)

The diagonal elements can be obtained by longitudinal polarization analysis, in which we
consider spin-flip and non-spinflip for either x, y or z direction of initial and final polariza-
tion. For measuring the off-diagonal elements, for example Ryz obtained by P = (0, Py, 0)
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and P′ = (0, 0, P ′z), the magnetic field needs to switch from y to z-direction, which can be
achieved by a zero-field at the sample. Alternatively, but so far not much used in practice,
one can work with precessing neutron polarization [20,21]. The conventional approach, how-
ever, is to access all elements of the tensor R by spherical neutron polarimetry (SNP).
Experimentally, a zero-field can be achieved with a CryoPad or MuPad device [22] using
superconducting material or a µ-metal [23] to shield the sample area from magnetic fields.
In particular, SNP allows to distinguish a rotation of P′ from a depolarization of the beam.
Depolarization may occur due to an incoherent superposition of intensities with different
polarization, this includes spin-incoherent scattering, and more important for determining
magnetic structures, intensity from different magnetic domains. See Ref. [8] for detailed
examples and analysis. The interested reader is also referred to the recent user software
Mag2Pol: a program for the analysis of spherical neutron polarimetry and flipping ratio data,
see below [24].

It is noteworthy that the information in the off-diagonal elements, related to nuclear-magnetic
interference and chirality, reappears in the diagonal elements in P′′ and can therefore also be
obtained by conventional longitudinal polarization analysis. Polarization reversal and consid-
ering the sum and differences of intensities will separate P′′ from the trace of R [25].

Next we consider two important cases, the so called (i) ”flipping ratio” or ”half-polarized”
experiments to determine the magnetic structure or spin density, and (ii) XYZ polarization
analysis with multi-detectors.

Magnetization and spin density distribution. The usual approach [26] is to measure the
”flipping ratio” of Bragg reflection, defined as the intensity ratio between spin-up and spin-
down neutrons with respect to a vertical applied magnetic field

and is given by

R =
I+

I−
=
NQN−Q + (NQM

⊥
−Q +N−QM

⊥
Q) + M⊥

QM
⊥
−Q

NQN−Q − (NQM⊥
−Q +N−QM⊥

Q) + M⊥
QM

⊥
−Q

. (7.29)

To illustrate the advantage of polarized neutrons consider the case of a weak magnetic ampli-
tude, Mz = 0.1N . For unpolarized neutrons the interference term NMz vanishes. Therefore,
the unpolarized intensity I is less interesting, but in contrast the ratio I+/I− is very sensitive:

I = 1.01|N |2, and
I+

I−
=

(1 + 0.1)N2

(1− 0.1)N2
=

1.21

0.81
≈ 1.5. (7.30)

In order to solve Eq. 7.29 for the magnetic amplitudes and the magnetic structure, we need
apriori an accurate crystallographic structure determination for the nuclear amplitudes N .

In the experiment a flipper is used to switch the polarization with respect to the applied field,
which led to the name ”flipping ratio”. The term could be misleading, since the scattering
process is purely non-spinflip as P||M⊥

Q||z. In such an experiment one uses polarized neu-
trons without polarization analysis, which has led to another deceptive term, describing this
as a ”half-polarized” set-up. Still, P is favorably large, close to one, just P′ does not matter.

With respect to applications, the samples could be ferromagnets, where the magnetization is
best near saturation using a strong field. However, one can also study paramagnets, and the
induced magnetic moments will represent the spin density distribution. An example is given
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in Figure 7.14 for the organic compound [Cu2(t−Bupy)4(N3)2](ClO4)2. Here, the two Cu

spins are the triplet ground state, and a part of the spin density is spreading from the Cu sites

to ligands. The contours of the map start at a level of 0.01 μB, which nicely demonstrates

the sensitivity of such measurements.

Fig. 7.14: [Cu2(t−Bupy)4(N3)2](ClO4)2 spin density map
(unit cell in ab, integration ±0.25 in c), adapted with per-
mission from [27]. Copyright 1998 American Chemical
Society.

One may also study the response with respect to different field directions, which yields the

susceptibility tensor on atomic scale. Strong anisotropies can be found for f -electrons of rare

earth ions. These are typical applications using Bragg intensities providing local information

on atomic scale. If we turn to low Q and small angle neutron scattering, the intensities relate

to the morphologies of magnetic structures, which refers to an example discussed already

before: Fig. 7.11 shows the interference pattern MN(Q) and contains the information on the

magnetic morphology of iron oxide nanoparticles [19].

Chirality. The last term in Eq. 7.24 refers to the vector product of spin components perpen-

dicular to Q, and therefore, iM⊥
−Q×M⊥

Q itself points in Q-direction. The magnetic moments

in real space are real quantities and the imaginary sign i says that this term is antisymmetric

in Q and relates to the sin-Fourier transform of chiral pair correlations Sy(R)Sz(R
′), which

also implies the characteristic chiral feature of point inversion symmetry. An example of the

scattering from cycloidal spin correlations is shown in Fig. 7.15. Depending on the propaga-
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Fig. 7.15: Magnetic scattering from CaBaCo2Fe2O7 at low T=4K; (left) contributions from
S · S′ and (right) the chiral contribution S× S′. The antisymmetry of the pattern perpendicular
to Q reveals cycloidal spin correlations of a few hundred Å periodicity. (see also [28])

tion direction parallel or perpendicular to Q, we can distinguish a helix from a cycloid spin

structure, respectively. The chiral intensity can be separated by polarized neutron scattering



7.18 W. Schweika

with measuring the intensity difference for P parallel and antiparallel to Q, which cancel

out other nuclear and magnetic intensities, while there are no NM terms parallel to Q. The

chiral interference is purely spinflip scattering, however, it can be separated without applying

polarization analysis, like the NM interference discussed before.

XYZ Polarization analysis with multi detectors
So far it has been implicitly assumed that the data are measured with a single detector related

to a single Q set parallel to x. Multi-detector systems can collect scattering data in a much

more efficient way and were used also for the previous example Fig. 7.15. The instrument D7

at ILL in Grenoble [29] was pioneering with covering a wide angle range with supermirror

based polarization analyzers in front of a multi-detector. A similar instrument DNS [30] is

operated by JCNS at the MLZ and FRM-2 in Munich, see Fig. 7.16.

|M⊥Q|2

Q

x′

y′

|Mx′ |2|My′ |2

λ

PXPY

Fig. 7.16: Polarization analysis on a time-of-flight multi-detector instrument, the DNS instru-
ment at FRM-2, see Ref. [25] for the specific setting of polarization.

Instead of measuring each data point with P ⊥ Q, using Pythagoras’ theorem, we can

construct the parallel and perpendicular components to Q from any two orthogonal settings

(x′, y′) in-plane and measure simultaneously with a multi-detector. Assuming isotropy, e.g.
for powders and paramagnets, the pure magnetic scattering contribution separated from nu-

clear scattering can be obtained by either of the two combinations of spin flip and non-

spinflip scattering, which is the ”XYZ-method” introduced by Otto Schärpf [32]:
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, (7.31)

The magnetic contribution is separated by the directional dependence with respect to P and

identifies the magnetic contribution, while all nuclear scattering is independent of the direc-

tion of P.

An application example for the XYZ-separation is given in Fig. 7.17 and identifies the weak

magnetic diffuse scattering from a Keplerate, a molecular magnet Mo72Fe30X of high sym-

metry with 30 magnetic vertex sites of Fe (X represents a larger number of H, C, and N
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Fig. 7.17: Mo72Fe30X molecule (magnetic Fe-ions at vertices, Mo-purple; X: O-black, H, C not
shown) and a 3-sublattice non-collinear spin model resulting from AF Heisenberg exchange
(left). XYZ-separation of weak magnetic intensities (middle). Comparison of the magnetic
intensity and the spin-model calculation (right). [33]

atoms). The magnetic intensity (right figure) agrees favorably with the predicted structure

resulting from a model with antiferromagnetic exchange between the Fe moments.

Of course, single crystals can be also measured efficiently with multi-detectors by rotating the

sample, i.e. by rotating the Ewald circle in the scattering plane. In the following example, see

also Fig. 7.18, a study [34] on the ”spin-ice” system Ho2Ti2O7, a cubic pyroclore structure,

the horizontal scattering plane has been mapped with measuring spin flip scattering and P
vertical, obtaining the in-plane magnetic scattering (plus some weak flat background from

spin-incoherent scattering). The tetrahedral network and Ising 〈111〉 spin-anisotropy leads to

strong frustration for ferro-type exchange. In the ordered state the local spin-correlations can

be described for each tetrahedra by a simple rule: two spins are pointing along the 〈111〉
cube diagonals towards the center of the tetrahedra and two spins point outwards. Actually

this rule is the perfect analogue to the ice rules in hexagonal ice, describing the hydrogen

bonds around the tetrahedral environment of the O ions.

Fig. 7.18: Spin-ice. left: Topological magnetic monopoles, middle: measured diffuse scattering
from Ho2Ti2O7 at T=1.7K with P‖ z in spin-flip mode; note pinch points at (002) and (111);
right: Monte Carlo simulations of based on a nearest neighbor exchange model. From [34].
Reprinted with permission from AAAS.
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Hence Pauling’s famous ice model also explains why there should be a residual entropy due
to remaining disorder in spin-ice, which is the origin of the broad diffuse scattering at low
temperatures.

The extraordinary features of this diffuse scattering are so-called pinch-points, the saddle-
points in intensity at (111) and (200) positions; on one hand the intensity variation radially,
along the modulus of Q, is rather smooth, involving short-range correlations, on the other
hand the transverse variation at constant Q is almost discontinuous and singular, which in-
volves many Fourier coefficients and long-range correlations. The explanation is that the
ice-topology creates effectively long-range interactions, – any local decision for a specific
two-in two-out spin configuration imposes far-reaching constraints for the other tetrahedra –,
an effective interaction that can be mapped to Coulomb interaction between monopoles and
provides a picture, where the dipole moments in their local sums over four tetrahedral sites
can be viewed as two separated monopoles. [34]

From the methodological point of view, for the case above, polarization analysis with mea-
suring spin flip intensities for P = Pz is simple and most appropriate to access correlation
of spin components in the scattering plane. However, for a rigorous and systematic sep-
aration the interested reader is referred to two important recent extensions of the classical
XYZ-method of Schärpf [32]: (i) for single crystals and multi-detectors separating all mag-
netic and nuclear contributions by including polarization reversal [25], (ii) for a separation
of out-of-plane scattering using 2D detector systems using two additional measurements with
orthogonal in-plane polarizations. [35]

7.4 Final remarks and outlook

Polarized neutrons certainly prove to be very useful and may reveal structural and dynamic
properties that are hidden to conventional neutron scattering. Applications are growing,
slowly, since experimental techniques are more challenging and also because of the addi-
tional time requests for experiments. While there has been little gain in the average bright-
ness of neutron sources since the early days, instrumentation has become much more effi-
cient. Looking at count rates of Ni of MRK in Fig. 7.8 a comparison to the instrument DNS
using multiple detectors shows a gain of about three orders of magnitude.

The most modern and intense neutron sources are the MW pulsed spallation sources SNS in
the USA, JPARC in Japan and in near future the European Spallation Source ESS. There
is a great challenge and potential gain in using a pulsed beam with wide wavelength band
rather than a monochromatic beam.

At ESS, there is currently a dedicated polarized instrument under construction called MAGIC.
Its scheme is depicted in Fig. 7.19.

Based on a time-of-flight Laue technique combined with position sensitive area detectors,
it gives access to large volumes in reciprocal space with favorable resolution. Characteristic
features are a 1.7 Å bandwidth of highly polarized neutrons within a spectrum of 0.6 to 6
Å wavelength from the peak fluxes of the thermal and cold moderators.
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Fig. 7.19: Scheme of the ESS instrument MAGIC

In virtual experiments, simulating instrument, sample and scattering, the performance of this

instrument has been studied and optimized. A few examples are shown in Fig. 7.20.

Fig. 7.20: Virtual experiments (McStas, Xavier Fabreges) on the ESS instrument MAGIC.
left: time-of-flight Laue diagram from a 1mm3 sample of C60;
middle: reconstructed spin density map (in μB) from a molecular nano-magnet
right: Ho2Ti2O7 spin-ice scattering with 3 dim mapping in Q space..

The first one shows a Laue pattern from a small mm3 crystal (C60). In contrast to normal

Laue diffraction, with measuring the time-of-flight of the pulsed white beam all Bragg peaks

are separated with a 3D access to reciprocal space. The gain compared to a conventional

monochromatic instrument with a single detector is of course very high. Considering the

determination magnetic structures with spin densities and weak moments, see Fig. 7.14 for

comparison, it took two weeks counting with a single detector, while the best current instru-

mentation with a multi-detector and monochromatic beam would require two days, and the

simulations, see middle of Fig. 7.20, show this will be possible with the same high quality

already in 15 minutes. The example Fig. 7.20 (right) shows the simulation of the spin-ice

scattering of Ho2Ti2O7 based on the model of [36]. Here, with shorter wavelength a larger

Q-range can be seen, compare Fig. 7.18 and again, with white beam and position sensitive

detectors the Q-space is explored in 3D. The gain in efficiency, which is about three orders

of magnitude will open capabilities to measure even very small samples and weak magnetic

features.
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Exercises

Exercise 1: How good is the polarization? Consider a few cases:

(i) Spins are evenly distributed within a cone of ±π/4 around z.a

b

a

b
Make first a good estimate and calculate Pz.

(ii) An initially ideally polarized beam scatters from a Vanadium sample. What is the polar-
ization after scattering? Next, looking more closely, if the sample is relatively thick and has
a 20% scattering probability, calculate the polarization for two consecutive scattering events.

(iii) Among the isotopes of Ni (see https://ncnr.nist.gov/resources/n-lengths/elements/ni.html),
you find few, which give spin-incoherent scattering causing a bit of spin-flip scattering. What
is the polarization after scattering from natural Ni?

(iv) Actually, Ni is a ferromagnet, so how can we explain the figure 7.8 (left) and would
one not expect also magnetic scattering and spin-flip scattering? However, by applying a
magnetic field, how could you avoid magnetic scattering?

Exercise 2: Which is the required field in a flipper coil to rotate the polarization by π with
respect to a external guide field Hz. Consider neutrons of 4 Å wavelength and a path of 1
cm in the flipper.

Exercise 3: Sprint competition of spin up and spin down neutrons. The course is 1 m and
neutrons start with a speed of 4000 m/s. Immediately after the start a field of 1 T is switched
on, when do the spin-up and spin-down neutrons arrive at the goal?

Exercise 4: Recall the rules about magnetic scattering:

(i) which component of the magnetic moments with respect to Q are not scattering?

(ii) which components with respect to P cause spinflip and non-spinflip scattering, respec-
tively.

Exercise 5:

a

b

a

b
The unit cell displays two sites of different atoms , whose spins are antiferromagnetically
ordered. This is an example of a so-called q=0 structure, where magnetic and the nuclear
crystallographic Bragg peaks coincide. a) How to distinguish the contributions with polar-
ization analysis and which Bragg peaks would you measure? b) Do you see a possibility to
distinguish magnetic from nuclear scattering without polarization analysis?
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8.1 Introduction 
 

The analysis of crystal structures and magnetic ordering is usually based on diffraction 
phenomena caused by the interaction of matter with x-rays, neutrons or electrons. Even 
though modern electron microscopy (HRTEM) can achieve atomic resolution, more 
detailed and quantitative information on the 3D atomic arrangement in crystals and on 
3D magnetic structures and spin densities requires diffraction methods. In a more 
general nomenclature, diffraction is equivalent to coherent, elastic scattering. The basic 
theory of diffraction used for structural analysis (the so called kinematical theory) is 
similar for all types of radiation. Due to the different properties of x-rays, neutrons and 
electrons and their specific interaction with matter, complementary information is 
obtained from experiments with different types of radiation. 
Considering only x-rays and thermal neutrons one finds that their wavelengths are 
similar (0.5 Å < λ < 2.4 Å) but they are scattered very differently by matter: While the 
electromagnetic x-radiation is scattered from the electrons and yields the total electron 
density distribution in the crystal, the nuclear scattering of neutrons is sensitive to the 
density distribution of the nuclei and the magnetic neutron scattering probes the 
magnetisation density of unpaired electrons. 
x-ray diffraction using conventional laboratory equipment and/or synchrotron 
installations is the most frequently used method for structure analysis. Neutrons are, 
however, indispensable in a number of applications. The purpose of this chapter is to 
discuss a few typical examples of structural analysis, for which, instead of or 
complementary to x-rays, neutrons are required to solve structural problems.  

 

8.2 Diffraction Contrast Variation 
 
A great advantage of neutrons over x-rays in the context of structural analysis is the 
very much different variation of the scattering length of atoms within the periodic 
system of the elements: The contrast in conventional x-ray diffraction is directly related 
to the ratio of the number of electrons Zj of the different atoms or ions j involved. The 
atomic scattering factor fj in the structure-factor formula, which represents the Fourier 
transform of the atomic electron density distribution, is proportional to Zj (fj = Zj for 
sinθ/λ = 0). Standard x-ray techniques can hardly differentiate between atoms/ions with 
a similar number of electrons (like Si and Al or Cr and Mn). Even if the atoms are fully 
ordered on different sites, x-ray diffraction just ‘sees’ the average structure.  
For neutrons the atomic scattering factor fj is replaced by the nuclear scattering length 
(or coherent scattering amplitude) bj, which is of the same order of magnitude for all 
nuclei but varies from nucleus to nucleus in a non-systematic way. bj values can be 
either positive or negative and depend on the isotopes and nuclear spin states of the 
element j (see previous chapters). 
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The combination of the overall occupation probabilities a and d - from conventional x-
ray studies – with the effective scattering lengths beff(2a) and beff(2d) determined in a 
neutron diffraction experiment allows the evaluation of the Cr and Mn concentrations 
on the different sites 2(a) and 2(d). 
It is evident, that the individual (Cr,Mn) distributions on the two crystallographically 
different sites 2(a) and 2(d) are not accessible merely by a chemical analysis. For most 
of the samples studied, the site 2(a) was found to be fully occupied: a ≈ 1.0. But the 
formula (Mn1-xCrx)1+δSb used normally is only correct for the special case of equal Cr : 
Mn ratios on both sites: 

x = y = z   and   1 + δ = a + d. 

Note that, in general, a statistical occupation of one crystallographic site with three 
kinds of scatterers - e.g. Mn, Cr and "vacancies" - requires at least two independent 
experiments with sufficiently different relative scattering power of the atoms involved 
to determine the fractional occupancies.  
The detailed information on the (Cr,Mn) distribution is needed to explain the magnetic 
properties of these intermetallic compounds, but we will not further elaborate on this. 
 
 

8.3 The hydrogen problem in structural analysis 
 
The determination of the structural parameters (coordinates, displacement parameters) 
of hydrogen atoms in crystals is a special problem involving again the different 
properties of x-rays and neutrons. It is obvious that H or D atoms with Z = 1 give only a 
small contribution to the electron density and, therefore, they are hardly visible in x-ray 
structure analysis, particularly if heavy atoms are also present in the structure. However, 
there is an even more fundamental problem: The single electron of H or D is engaged in 
the chemical bonding and is by no means localised at the proton/deuteron position. 
Therefore, bond distances from x-ray diffraction involving hydrogen are notoriously 
wrong and any comparison with quantum mechanical calculations is quite hard to 
perform. This lack of sound experimental information is in sharp contrast to the 
importance of hydrogen bonding in solids, particularly in biological molecules like 
proteins, where hydrogen bonds govern to a large extent structures and functionalities of 
these ‘bio-catalysts’. A combination with neutron diffraction experiments is important 
to determine the structural parameters of the H/D atoms properly. More generally, the 
structure analysis by neutron diffraction yields separately and independently from the x-
ray data the structure parameters of all atoms including the mean square displacements 
due to static and dynamic (even anharmonic) effects.  
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H/D ordering in ferroelectric RbH2PO4 (RDP): 
 
The hydrogen problem in crystal structure analysis is of special importance for 
structural phase transitions driven by proton ordering. KH2PO4 (KDP) is the most well-
known representative of hydrogen-bonded ferroelectrics. Here, we discuss the isotypic 
RbH2PO4 (RDP). The crystal structure consists of a three-dimensional network of PO4-
groups linked by strong hydrogen bonds (Fig. 8.2). 
 
 

 
         
Fig. 8.2: Crystal structure of the paraelectric phase of RDP  (RbH2PO4) with a split-

model representation of the hydrogen disorder [3].  
 
In the paraelectric phase at room temperature KDP as well as RDP crystallise in the 
tetragonal space group I�42d, where the H-atoms are dynamically disordered in 
symmetric O···H···O bonds, which are almost linear with short O–O distances, 
typically in the range of 2.5 Å. The disordered H-distribution may be interpreted as 
corresponding to a double-well potential [2].  
Figures 8.3 and 8.4 show the corresponding results for RDP, obtained from single 
crystal neutron diffraction [3]. 
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bonds. The electrical dipole moments are oriented ||z which give rise to a polarisation 
along the c-direction. 
 
 

 
 
Fig. 8.5: Ferroelectric, hydrogen-ordered structure of RDP close to the phase 

transition at TC – 1 K (major changes indicated by arrows, presentation as 
in Figure 8.3) [3].  

 
The phase transition temperatures of KDP-type compounds change drastically when H 
is substituted by D. For K(H,D)2PO4, for instance, the para- to ferroelectric TC changes 
from 122 K in the protonated to 229 K in the deuterated compound. This huge H/D-
isotope effect proves that hydrogen-ordering and -dynamics is the major factor 
controlling this phase transition. Another type of H/D-isotope effect was found for 
Tl(H,D)2PO4 (TDP/DTDP) and  Rb(H,D)2PO4 (RDP/DRDP), where a different poly-
morphism between the protonated and deuterated phases exists. 
Clearly, the use of neutron diffraction is detrimental to a better understanding of these 
compounds and their interesting physical properties. 
 

8.4 Atomic coordinates and displacement parameters 
 

As discussed above, neutron diffraction is very useful for obtaining precise atomic 
coordinates and displacement parameters. The improved accuracy (compared to x-rays) 
stems mainly from the absence of the form-factor fall-off. We will use measurements on 
Cobalt-olivine, Co2SiO4, (crystal size 3 x 2 x 2 mm) taken at the four-circle 
diffractometer HEiDi at the hot-neutron source of the FRM II reactor (λ = 0.552 Å) for 
demonstrating this advantage for the thermal displacements: 
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Fig. 8.6: Structure of Co2SiO4 olivine at room temperature, projected along c. Green: 

SiO4-tetrahedra, Dark blue: Co(1)O6-octahedra, light blue: Co(2)O6-
octahedra. Displacement ellipsoids are plotted at the 95% probability level 
(from [4]). 

The olivine structure (fig. 8.6) consists of chains of two types of edge-sharing CoO6-
octahedra connected by SiO4-tetrahedra. A large data set with 1624 independent 
reflections up to sin θ/λ = 1.05 Å-1 had been measured. The data were then successively 
cut off in shells of sin θ/λ and the resulting partial data sets were used to analyse the dis-
placement parameters. Figure 8.7 shows two interesting observations: First of all, the 
precision improves significantly with increasing (sin θ/λ)max, as is evident from the 
decreasing size of the error bars. In the x-ray case, high angle reflections are usually 
very weak and their measurement does often not lead to improved precision. Secondly, 
there is a systematic change of the displacement values themselves, resulting from 
systematic errors that vary with (sin θ/λ)max. 

 
 

 
 

 
 

 
 

Fig. 8.7: Left: Statistical (error bars) and systematic errors of isotropic displace-
ments parameters in Co2SiO4 as a function of measured sin θ/λ range from 
single-crystal neutron diffraction data at room temperature [4]. Right: 
Clinographic view of the CoO6 and SiO4 polyhedra in Co2SiO4 at room 
temperature [4]. 
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High dhkl-value resolution data from neutron diffraction is also useful to derive precise 
temperature dependent displacement parameters (fig. 8.8): 

 
Fig. 8.8: Temperature dependence of the isotropic displacement parameters of 

Co2SiO4 [4]. 

Just as in the case of high quality single crystal x-ray diffraction data, anisotropic 
displacement parameters can be determined as well. In addition to that, the quality of 
single crystal neutron data also often allows refining anharmonic displacement 
parameters. Anharmonic oscillations of atoms in crystals occur if the atoms are 
vibrating in a non-parabolic potential well. In such cases, the harmonic approximation, 
which is the basis of the description of thermal displacements by the Debye-Waller 
factor, fails. Analysis of the anharmonic displacements allows to reconstruct the non-
parabolic potential at the site of the vibrating atom.  
 

8.5 Magnetic structures from neutron diffraction 
Cobalt-Olivine, Co2SiO4, orders magnetically below about 50 K. The magnetic 
moments of the Co2+-ions turn from a paramagnetic phase with no long range order of 
the magnetic moments into an antiferromagnetically ordered arrangement. We use 
Co2SiO4 again to briefly demonstrate the application of neutron diffraction to the 
structural analysis of magnetic structures. This time, a powder neutron diffraction 
experiment has been performed at the diffractometer D20 (ILL, France) in its high-
resolution mode, at temperatures between 70K and 5K, with a neutron wavelength of λ 
= 1.87 Å and approximately 2 g of powdered Co2SiO4 [4]. 
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Fig. 8.9: Thermal evolution of the neutron powder diffraction pattern (low angle 

part) of Co2SiO4 [4]. 
 
At about 50 K, new magnetic reflections (001), (100), (110), (300) etc. appear (fig. 8.9). 
The nuclear reflections don’t change much at the magnetic phase transition. The new 
reflections can be indexed with the same unit cell as the nuclear reflections, but they 
were forbidden in the paramagnetic phase with space group P n m a. Obviously, the 
symmetry has changed at the magnetic ordering transition. The task is then - just as in 
‘ordinary’ structure determination - to find a structural model (that is: magnetic 
moments and their orientation on the magnetic ions, here Co2+) that fits the observed 
positions and intensities of the magnetic Bragg peaks. Magnetic structure determination 
is outside the scope of this chapter, but assumed such a model has been constructed, it 
can be refined - in the case of powder data by the Rietveld method (fig. 8.10). 

 
Fig. 8.10: Neutron powder diffraction pattern (dots), Rietveld fit (black line) and 

allowed Bragg reflections (green marks) at 5 K of Co2SiO4 [4]. 
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The lower trace (blue) is the difference Iobs - Icalc on the same scale.  The upper row of 
the green marks shows Bragg reflections corresponding to the nuclear phase and the 
lower row represents the allowed positions of the magnetic peaks. Some of the Bragg 
peaks are indexed. ‘N’ and ‘M’ denote the nuclear and magnetic contributions, 
respectively [4]. Note that the magnetic Bragg peaks are only visible at low diffraction 
angles. 

 
Fig. 8.11: Graphical representation of the magnetic structure of Co2SiO4 below 50 K. 

The non-magnetic atoms (Si and O) are excluded for simplicity. The figure 
shows the zigzag chains of Co(1) and Co(2) in layers perpendicular to the  c 
axis [4]. 

 
From the Rietveld refinements, one can derive the exact spin orientation (fig. 8.11) as 
well as parameters describing quantitatively the magnetic moments on the two 
symmetrically non-equivalent Co2+-sites (see table below). However, magnetic neutron 
diffraction from single crystals often gives additional and more accurate information: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The table shows cartesian (Mx, My and Mz) and spherical (M, φ and θ) components of 
the Co1 and Co2 magnetic moments according to the single-crystal neutron diffraction 
data at 2.5 K. The directions of the magnetic moments for other cobalt ions in the unit 
cell can be obtained by applying the symmetry operations of the magnetic space group 
(Schubnikov group) Pnma. 
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8.6 Electron densities from x-rays and neutrons 
 
Another advanced application of neutron diffraction in structural analysis is the 
determination of 3-dimensional high resolution maps of the electron density in the unit 
cell to study, for instance, details of the chemical bonding. The most involved method 
of electron density studies (called x-N-synthesis) uses a combination of high quality 
single crystal neutron and x-ray diffraction experiments. In the present case, a single 
crystal of Co2SiO4 with dimensions 3 x 2 x 2 mm, was measured on the four-circle 
diffractometer HEiDi at the hot-neutron source of the FRM II reactor (Garching) at λ = 
0.552 Å, the single crystal x-ray (synchrotron) experiment was performed on 
Diffractometer D3 at the synchrotron facility HASYLAB/DESY (Hamburg) with a 
Co2SiO4-sphere, diameter 150 µm as the sample and an x-ray wavelength of λ = 0.5 Å.  
The next step is to take the x-ray-data, do a Fourier-transform (Fourier-synthesis) to 
obtain the electron density map: 
 
 ρ(r) = 1/V ·      F(τ) · exp[2πi(τ ·r)],   with  F(τ) = |F(τ)|·exp[iϕ(τ)].  
 

The  phases ϕ(τ) are calculated from the atomic model (structure factor equation, see 
ch. 4), the moduli |F(τ)| are taken from the measured x-ray intensities. The result is a 3-
dimensional map of the total electron density ρ(r) within the unit cell: 
 

 
 
 
Fig. 8.12: Electron density distribution ρ(r) of Co2SiO4 at 12 K from Fourier synthesis 

of x-ray data. Contours range from −8 e/Å3 (blue) to 10 e/Å3 (red). A plane 
which intersects the Co1O6 octahedron and contains the Co1, O1 and O3 
atoms is shown together with a sketch of the crystal structure [4]. 

 

∑
τ  
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In favourable cases, such a map already shows interesting features of the (anisotropic) 
bonding electron density, however, the information content of the map can be very 
significantly improved by taking the coordinates and displacement parameters from the 
more accurate neutron diffraction experiment (see above for the reasons) and calculate, 
in a second step, the so called deformation density. This is done by subtracting from the 
total electron density ρ(r) the density ρ(r)spherical corresponding to a superposition of 
spherical atoms at the nuclear positions. More specifically: atomic positions xj, yj, zj and 
thermal displacements Tj of atoms j derived from the neutron experiment, ‘decorated’ 
with the calculated spherical single atom electron densities. 

ρ(r)deform = ρ(r) −  ∑ ρ(r)spherical, where the sum runs over all atoms in the unit cell.  
ρ(r)spherical corresponds to the expectation value of the electron density within the unit 
cell without any effects which are due to chemical bonding. The deformation density 
then represents the deformation of the charge distribution as a result of the formation of 
chemical bonds. Figure 8.13 shows such a deformation density map for Co2SiO4. In 
favourable cases, the electron density in the hybridized bonding orbitals (in this case of 
Co3d- and O2p character) can be directly observed. 
 

 
 
 
Fig. 8.13: Deformation density from the x-N-difference Fourier map of Co2SiO4  at  

300 K: Section through the O1–Co1–O3 plane  The difference density varies 
from −1.25 e/Å3  (blue) to 1.15 e/Å3  (red) [4]. 
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8.7 Magnetization densities from neutron diffraction 
As a final example for the application of neutron diffraction in structural analysis, we 
briefly sketch how a 3-dimensional map of the magnetization density, that is: the 
density of magnetic moments (spin- as well as orbital-moments) within the unit cell can 
be determined. These maps are sometimes lucidly called ‘spin density maps’, but in 
systems with non-vanishing orbital moments, the term magnetization density is really 
the correct one. 
The experiment is performed by polarized neutron diffraction on a single crystal using 
the flipping ratio method For details on the experimental method see the chapter on 
magnetic scattering. The flipping ratio method allows to separate nuclear and magnetic 
contributions to the diffracted intensities. It is performed above the magnetic phase 
transition in the paramagnetic state (in the case of Co2SiO4 above TN=50K) and the 
sample is in a strong external magnetic field (here: 7 T). 207 Bragg reflection flipping 
ratios were measured at diffractometer 5C1 of the ORPHÉE reactor (Laboratory Léon 
Brillouin, CEA Saclay, France) for Co2SiO4 at 70K up to sin θ/λ ≈ 0.62 Å−1 at a neutron 
wavelength of λ = 0.845 Å. Given the flipping ratios and the nuclear structure factors, 
the magnetic structure factors can be calculated which are then Fourier transformed to 
give the spatially resolved magnetization density shown in figure 8.14 in a section 
through the unit cell of Co2SiO4. 
 

 
 
Fig. 8.14: Reconstruction of the density (projected along the b axis) corresponding to 

the observed magnetization distribution of Co2SiO4 at 70 K with contours 
ranging from 0 µB/Å3 (blue) to 2 µB/Å3  (red) [4]. 
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Among the interesting features of this map is the observation of magnetization density 
on the, nominally non-magnetic, oxygen atoms coordinating the Co2+-ions. These 
‘transferred moments’ are direct experimental evidence for the hybridization of the 
oxygen 2p- with Co-3d-orbitals which is not only responsible for covalent bonding but 
also for the magnetic exchange interaction along the Co-O-Co-bond network. 
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Exercises 
 

E8.1  Displacement Parameters 
 
The Debye-Waller-factor Tj(τ) enters the structure factor formula as the exponential factor 
exp [ B . (sin2θ/λ2) ]. 
 
a) Discuss the physical origin of this factor. 
 
 
b) Describe the overall effect of this displacement factor on the diffracted intensities. 
 
 
c) It is generally said, that neutron diffraction yields much more precise displacement 
parameters than x-ray diffraction. Is that statement correct? If so: Why? 
 
 
d) What are anisotropic displacement parameters and how can they be visualized? 
 
 
e) Is it correct, that all atoms in cubic crystals have to vibrate isotropically? (Yes/No, Why?) 
 
 
f) Discuss the non-zero values of the displacements parameters in fig.8.8 for T => 0 K: 
(Is it real? An artefact? Why?) 

 
E8.2  Diffraction contrast & site occupancies 
 
 
a) Assume you have grown a compound containing both Pb and Bi. Which kind of diffraction 
experiment is better suited to distinguish Pb and Bi: X-ray or neutron? Why? 
 
Check http://webster.ncnr.nist.gov/resources/n-lengths/ for the coherent neutron scatterings 
lengths and use your knowledge of the PSE for the x-ray scattering lengths. 
 
 
b) Assumed Bi and Pb sit on the same site in your structure and this site is also supposed to 
contain vacancies. Is one diffraction experiment sufficient to uniquely determine the 
occupation probabilities? (Yes/No, Why?) 
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E8.3  Choice of neutron wavelengths 
 
a) Magnetic neutron diffraction experiments are usually done with rather long wavelengths 
(see chapter 8.7:  λ = 1.87 Å): Why? 
 
b) Diffraction experiments aiming at obtaining precise atomic coordinates and displacements 
are done with much shorter wavelengths (see chapter 8.8: λ = 0.552 Å): Why? 
 
c) Powder diffraction experiments usually use longer wavelengths than single crystal 
experiments: Why? 
 
Discuss this issue in terms of the competition between angular resolution (separation of 
reflections) and direct space resolution (separation of atoms). 
 
 

E8.4  Hydrogen bonded crystals 
 
Assume you have grown a new hydrogen-bonded compound in the form of a single crystal 
and you want to know how the hydrogen bonds are arranged within the structure. 
 
a) Collect arguments Pro & Con the usage of a single crystal x-ray- vs. single crystal neutron 
diffraction experiment to study your new crystal. 
 
Consider, for instance, factors like: Availability / costs of the experiment; time and effort 
required to get beam time; required size of the crystal; scattering power of hydrogen; 
expected precision of the H- position; absorption & incoherent scattering; additional effort 
needed for deuteration etc. 
 
 

E8.5  Density maps from diffraction experiments 
 
a) How can one obtain (from diffraction) the bonding electron density map? 
(discuss briefly the experiment(s), the necessary calculations and the information obtained) 
 
b) Discuss the difference between the bonding electron density map and a magnetization 
density map. (kind of data used, specific information the experiment will yield?) 
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Jülich Centre for Neutron Science 2

Forschungszentrum Jülich GmbH
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9.1 Introduction

Neutron reflectometry is a very efficient tool to determine the nuclear and magnetic density
profiles along the depth of nanometric thin films. It has been used a lot to solve soft matter
problems like the self organization of diblock copolymers, the structure of liquid-liquid in-
terfaces or the structure of biomembranes [1]. Those studies benefit a lot from the possibility
of contrast variaiton, i.e. the exchange of hydrogen by deuterium.

In the mid 1980’s a new field of application of neutron reflectometry emerged. Following the
discoveries of interlayer exchange coupling and giant magnetoresistance effect in magnetic
multilayers [2], there has been an interest to determine, depth-resolved, the magnetic profile
(see lecture 10 of this book).

More recently, the interest evolved towards the determination of the correlations of in-plane
fluctuations in thin films. Those fluctuations can be nuclear or magnetic, in the bulk of the
layers or at their interfaces, or nanometric objects deposited on a surface. The breaking of
in-plane invariance introduced by those fluctuations produce scattering of radiation out of the
specular direction, called grazing incidence small angle scattering (GISAS).

In this lecture, we will concentrate on neutron and x-ray reflectometry and GISAS for the
determination of nuclear and chemical profiles. Section 9.2 shows the calculation of specular
reflection at flat and homogeneous surfaces, introducing the concepts of scattering length
density, index of refraction and total external reflection. It then describes the reflectivity from
various types of layered structures and the effect of interfacial roughness and interdiffusion.
The two types of reflectometers one can encounter and the practical aspects of a reflectometry
experiment are discussed in section 9.3. Finally, an example of the application of grazing
incidence small angle x-ray scattering (GISAXS) for the depth-resolved investigation of the
lateral arrangement of nanoparticles is depicted (section 9.4).

9.2 Description of specular reflection1

A monochromatic, well collimated beam impinges under a well defined, small angle αi = θ
(in most cases θ � 5o) onto the surface of the sample. It is then partly reflected specularly
from the surface, i.e. the outgoing angle αf = θ as well, and partly refracted into the material
(See Fig. 9.1). As we will derive below, the reflection from a laterally homogeneous medium
can be treated according to classical optics. Only the proper index of refraction n has to be
used.

For most material, the index of refraction for neutrons is slightly smaller than 1, leading
to total external reflection for small angles of incidence θ < θc, where θc depends on the
material.

In the case of a single layer on the substrate, reflection and refraction take place at both the
surface and the interface (Fig. 9.2). Then, the reflected beams from the different interfaces
interfere with each other. Maximum intensity is received, when the path length difference
between the two reflected beams is an integer multiple of the wavelength.

1 A large part of this section is taken from Ref. [3–6].
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For the case of perfectly smooth surface and interfaces, an exact description of the reflected
and transmitted intensity can be deduced from quantum theory, as will be shown in the next
subsections.

When the in-plane invariance of the layers or interfaces is broken, some diffuse signal can
be observed out of the specular direction (Fig. 9.3). This is grazing incidence small angle
scattering (GISAS). Its theoretical description goes beyond the scope of this lecture [7, 8].

Fig. 9.1: Reflection and refraction from a free surface

Fig. 9.2: Reflection and refraction from a single layer on a substrate

9.2.1 Wave equation in homogeneous medium. Optical index

The starting point is the Schrödinger equation for the wave function of the neutron:

[
− ~2

2m
∆ + V (r)

]
ψ(r) = Eψ(r) (9.1)

The kinetic energy of the neutron is given by E = ~2k2/(2m) with the modulus k = 2π/λ
of the wave vector k.
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Fig. 9.3: Reflection, refraction and grazing incidence small angle scattering (GISAS) from a
single layer on a substrate showing broken in-plane invariance

Due to the small |Q| values that are probed, a reflectometry experiment does not resolve
the atomic structure of the sample in any of the three directions. Therefore, it is a valid
approximation to describe the potential V1 of the homogeneous material as

V1 =
2π~2

m
ρ (9.2)

where ρ if the scattering length density (SLD) defined by

ρ =
∑
j

Njbj (9.3)

where Nj is the number of nuclei per unit volume and bj is the coherent scattering length of
nucleus j. With that we receive

[
∆ +

(
k2 − 4πρ

)]
ψ(r) =

[
∆ + k2

(
1− λ2

π
ρ

)]
ψ(r) =

[
∆ + k21

]
ψ(r) = 0 (9.4)

with the wave vector k1 inside the medium. From this equation, it is justified to introduce
the index of refraction in the material

n =
k1
k

n ' 1− λ2

2π
ρ (9.5)

It is a number very close to 1 for thermal and cold neutrons. The quantity 1−n is of the order
of 10−6 to 10−5. For most materials it is positive (because the coherent scattering length bj
is positive for most isotopes), so that n is smaller than 1. This means that the transmitted
beam is refracted towards the sample surface, which is opposite to the daily experience with
light refracted at a glass or liquid surface.
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9.2.2 Solution for a sharp surface. Fresnel’s formulas

In analogy to classical optics, we can derive e.g. Fresnel’s formulas. For the solution of the
wave equation at a sharp surface between air and a semi-infinite medium, we assume the
surface of the sample to be at z = 0. The potential is then

V (z) =

{
0 for z > 0

V1 for z ≤ 0
(9.6)

As the potential V is independent of the in-plane coordinates x and y, the wave function in
the Schrödinger equation (9.4) is of the form

ψ(r) = ei(kxx+kyy)ψz(z) (9.7)

with the in plane components kx and ky of k independent of z. The Schrödinger equation
then reduces to the one dimensional equation

d2ψz(z)

dz2
+ k2z(z)ψz(z) = 0 (9.8)

with kz(z) depending on the medium. The general solution is given by

ψzl(z) = tle
ikzlz + rle

−ikzlz, (9.9)

where the index l distinguishes between vacuum (l=0) and medium (l=1). The unique so-
lution is determined by the boundary conditions. The incoming wave in the vacuum before
interaction with the sample is a plane wave of norm 1, i.e. t0 is equal to 1. In a half-infinite
medium, there is no reflected wave, because there is nothing to reflect from, i.e. r1 vanishes.
In addition, the wave function and its first derivative must be continuous at the interface. So
we receive the following boundary conditions:

t0 = 1 ; r1 = 0 ; ψz0(z = 0) = ψz1(z = 0) ;
dψz0
dz

(z = 0) =
dψz1
dz

(z = 0). (9.10)

When we insert (9.9) into (9.10) we receive the continuity equations for the wave function:

1 + r0 = t1 ; kz0(1− r0) = kz1t1. (9.11)

t1 is the amplitude of the transmitted wave and r0 is the amplitude of the reflected wave. The
reflectivity R is defined as the modulus squared of the ratio of the amplitudes or reflected and
incoming waves, the transmissivity T is defined as the modulus squared of the ratio of the
amplitudes or transmitted and incoming waves.

R = |r0|2 ; T = |t1|2 (9.12)
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In conclusion, we arrive at the Fresnel’s formulas for the reflection and the refraction at a
flat interface

Reflectivity : R =

∣∣∣∣kz0 − kz1kz0 + kz1

∣∣∣∣2 (9.13)

Transmissivity : T =

∣∣∣∣ 2kz0
kz0 + kz1

∣∣∣∣2 (9.14)

9.2.3 Snell’s law of refraction. Total external reflection

Taking into account the continuity relation for the wave vector component tangential to the
surface

kx0 = kx1 ky0 = ky1 (9.15)

together with k1 = k0n1 (Eq. 9.5), Snell’s law for refraction follows from trigonometry:

cos θ

cos θ1
=
k1
k0

= n1 (9.16)

The fact that in most cases the index of refraction is n1 < 1 means that the transmitted beam
is refracted towards the sample surface (θ1 < θ in Fig. 9.1). For angles of incidence θ below
the so called critical angle θc with

n1 = cos θc θc ' λ

√
ρ

π
(9.17)

total reflection is observed, i.e. all intensity is reflected and no wave propagating in z-
direction exists in the sample. Only an evanescent wave in the z-direction with propagation
parallel to the surface is induced. For angle of incidence above θc, the beam can partially
penetrate the sample and is only partly reflected.

From Snell’s law (Eq. 9.17) and the definition of the index of refraction in Eq. (9.4) one can
relate the normal components of the incoming and refracted wave vectors

k2z1 = k2z0 − k2z0,c with kz0,c =
2π

λ
sin θc =

√
4πρ. (9.18)

This confirms that, for angles of incidence θ below θc, kz1 becomes purely imaginary and
the refracted wave is an evanescent wave in the z-direction.

The last relation allows to express the Fresnel coefficients (Eq. 9.13 and 9.14) as a function
of one variable only. In general the measured reflectivity is represented as a function of θ or
the magnitude of the scattering wave vector Q = 2kz0:



Reflectometry and GISAS 9.7

R =

∣∣∣∣∣Q−
√
Q2 −Q2

c

Q+
√
Q2 −Q2

c

∣∣∣∣∣
2

(9.19)

When Q� Qc, the preceding equation reduces to:

R ' 1

16

Q4
c

Q4
(9.20)

which is the formula for the reflectivity within the Born approximation [9]. This shows that
the reflectivity above the critical angle decreases sharply with Q.

Once again, coming back to the wave function inside the surface, one finds using Eq. (9.18)
that, when θ < θc:

ψz1(z) = t1e
i(k2z0−k2z0,c)

1/2
z = t1e

− 1
2(Q2

c−Q2)
1/2

z. (9.21)

This result is very important, because it shows that when the energy of the particle normal
to the surface is smaller than the potential barrier, the wave still can penetrate the medium
on a characteristic depth of 2/

√
Q2
c −Q2. This evanescent wave propagates itself along the

surface with a wave vector equal to (kx, ky) and then leaves the volume in the specular
direction. For example for Ni (ρ = 9.41 × 10−6 Å−2), the penetration depth is of the order
of 200 Å at Q = 0; if one neglects absorption, it raises rapidly to infinity at Q = Qc.
No conservation rule is broken: the reflectivity equals 1 because this wave represent no
transmitted flux in the medium.

Fig. 9.4 represents, on a linear scale, the reflectivity and the transmissivity of a substrate
as a function of the angle of incidence θ. The reflectivity equals 1 for angles smaller than
the critical angle θc and decreases rapidly above this value (Eq. 9.20). The transmissivity
increases monotonously up to a value of 4 at θc and decreases to 1 at large angles. This result
might look very surprising at first sight. The value of 4 for the transmissivity comes from
the fact that the incident and the reflected waves in vacuum superpose to form a stationary
wave of amplitude exactly equal to 2 at the interface with the medium. For the intensity, we
obtain a factor of 4.

Fig. 9.4: Reflectivity and transmissivity of a substrate as a function of the angle of incidence
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9.2.4 Reflectivity from layered systems

In a layered system, the same Ansatz as in Eq. (9.9) can be written in each layer l. The co-
efficients of reflection rl and transmission tl can be deduced recursively from the continuity
relations of the wave function and its derivative at each interface. If N is the number of lay-
ers, and considering the vacuum on top of the multilayer and the substrate below, 2(N+2) co-
efficients have to be calculated. The number of interfaces being N+1, the continuity relations
lead to 2(N+1) equations. Two other equations are obtained considering that the transmission
into the vacuum is equal to one (t0 = 1) and that, in the substrate, there is no reflected wave
(rN+1 = 0), leading in total to a number of equations equal to the number of coefficients
to determine. The calculation of the coefficients of reflection and transmission in each layer
and, in particular, the calculation of the reflectivity in air are therefore possible [10].

Here we just want to demonstrate with very simple arguments how interference effects from
layered structures arise and how the intensity modulations in Q-space are related to real space
length scales.

Fig. (9.2) shows how interference can occur in a system composed of a single layer of
thickness d deposited on a substrate. Interference occurs between beams reflected from the
surface and those first transmitted in the layer, reflected from the interface between layer and
substrate and then leaving the layer into vacuum. To a good approximation, refraction at the
top surface can be neglected for incident angles twice the critical angle or total reflection. In
this case θ = θ1 in Fig. (9.2) holds. Since the index of refraction of the neutrons is very
close to one, this approximation is valid even for rather small angles of incidence. Then the
optical path length difference between the two beams is:

∆ = 2d sin θ (9.22)

We can now determine the distance between interference maxima from the condition that the
path length difference has to differ by one wavelength: λ = 2d · δ(sin θ) ' 2d · δθ. With
Q = 4π

λ
sin θ ' 4π

λ
θ we final obtain:

δQ ' 2π

d
(9.23)

We can see that the interference phenomena in Q-space are connected with real space length
scales in a reciprocal way. (9.23) tells us that there will be a number of interference maxima
at a distance in Q of 2π

d
. These interference phenomena are called “Kiessig fringes”. Fig.

9.5 shows calculations of the reflectivity of a Ni layer deposited on a Si substrate. One
observes that the reflectivities above the critical angle for total reflection decrease rapidly,
therefore the ordinate is on a logarithmic scale. The oscillations of the reflectivity due to the
above described interference effect can be observed. At small angles, due to the effect of
refraction, the interference maxima are a bit denser distributed than at higher angles where
formula (9.23) can be used to determine the layer thickness from the distance between the
interference maxima. The thinner layer corresponds to an interference scheme with a bigger
period. In both cases the minima of the interference scheme lay on the reflectivity of the Si
substrate.
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Fig. 9.5: Reflectivity of a Si substrate and reflectivity of a Ni layer (ρ = 9.41 × 10−6 Å−2) on
Si substrate (ρ = 2.15× 10−6 Å−2). Simulations are performed for two layer thicknesses d.

Note that for a 100 Å thick layer of Ni, that has a scattering length density (SLD) approx-
imately 4 times larger than the one of Si, the critical angle of total reflection is determined
by the SLD of Si and not by the one of Ni. This comes from the penetration depth of the
neutrons that is bigger than 100 Å. For a 400 Å thick Ni layer, the θc approaches the one of
Ni and the total reflection plateau is somewhat rounded.

Fig. 9.6: Reflectivities of a Ni/Ti bilayer and of a Ni/Ti multilayer on Si substrate. Simulations
are performed for Ni and Ti thicknesses of 70 and 30 Å respectively.

Fig. 9.6 shows the simulation of the neutron reflectivity from a multilayer on a Si substrate.
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This multilayer is composed of 10 double layers of 70 Å Ni and 30 Å Ti. On can clearly
see the pronounced maxima due to the periodicity of the Ni/Ti double layer of thickness 100
Å. In between, one observes many weaker oscillation (be attentive to the logarithmic scale)
with a period given by the total thickness of the multilayer.

9.2.5 Roughness and interdiffusion

Until now we assumed perfectly flat interfaces. A real interface will, however, always show a
certain roughness at the atomic level, as shown in Fig. 9.7. The height profile of the interface
is completely described by the parametrization z(x, y). Such a detailed information is not at
all interesting. Much more interesting are parameters that statistically describe the interface,
such as the mean squared deviation from an ideally flat interface, or the lateral correlation
length. Those parameters can be determined from reflectometry and scattering under grazing
incidence [7].

Fig. 9.7: Roughness of a real interface, characterized by the parametrization z(x, y) and de-
pendency of the refractive index on z.

As simplest model, we assume that the height coordinate z follows a random distribution
of values around the nominal value zj of the flat interface. The random distribution being
described by a Gaussian function

P (∆z) =
1

σ
√

2π
exp

(
−∆z2

2σ2

)
, (9.24)

the profile of index of refraction between layers j and j + 1 takes the form:

n(z) =
nj + nj+1

2
− nj − nj+1

2
erf
(
z − zj√

2σj

)
(9.25)

with the “Error” function:
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erf(z) =
2√
π

∫ z

0

e−t
2

dt. (9.26)

The reflectivity from such a rough interface is obtained from the average of the reflectivi-
ties from a sequence of layers that describe the profile of refraction index. This average is
performed in detail in Ref. [11]. As a result one obtains that the Fresnel coefficient for an
ideally flat interface has to be modified by an exponential damping factor in the following
way:

Rrough = Rflat · exp
(
−4σ2

jkzjkzj+1

)
. (9.27)

In this equation, σj is the root mean squared deviation from the nominal position of the flat
interface.

The effects of interfacial roughness on the neutron reflectivity from a Si substrate and from
a Ni layer on Si substrate have been simulated in Fig. 9.8. On the left side of Fig. 9.8 one
can observe that the effect of roughness is to decrease the reflectivity at large wave vector
transfers. The effect of roughness will be seen, if the value of the scattering wave vector
gets bigger than 1/σ. Therefore, if one wants to determine very small roughness amplitudes,
one has to measure the reflectivity till very large reflection angles and over a large dynamical
range.

The right side of Fig. 9.8 shows the effect of the roughness of a single layer. The simulations
have been performed for ideally flat interfaces, for a rough surface of the layer, for a rough
interface between layer and substrate and for the case where both interfaces are rough. One
can see that the four cases can be well differentiated. When only one of the two interfaces is
rough, the interference pattern due to the reflection on the top and bottom interfaces is sup-
pressed at large wave vectors. If both interfaces are rough, a faster decrease of the averaged
reflectivity takes place.

Fig. 9.8: Left: Neutron reflectivity at the interface between vacuum and Si. Right: Neutron
reflectivity from a 400 Å thick Ni layer on Si substrate. Effect of interfacial roughness.

Finally, one should point out that a specular reflectivity measurement can only describe the
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profile of scattering length density normal to the interface. This means that a reflectivity
measurement can not differentiate between interfacial roughness and interdiffusion, as inter-
diffusion will induce the same profile of refraction index as in Fig. 9.7. But what happens to
the intensity loss described by the exponential factor of Eq. (9.27)? In the case of a diffuse
interface, this intensity goes into the transmitted beam because there is no potential gradient
in a direction different than the one normal to the interface. On the other hand, in the case
of a rough interface, the intensity loss comes from scattering by lateral fluctuations of the
potential, leading to intensities that can be observed in directions other than the specular di-
rection: this is off-specular diffuse scattering. A statistical function like the height-height pair
correlation function can be determined from the measurement of off-specular scattering [7].

9.3 Measurement of neutron reflectivity

The principal components of a reflectivity experiment are (i) a radiation source, (ii) a wave-
length selector (monochromator, choppers), (iii) a collimation system, (iv) the sample and (v)
a detection system.

The aim of a neutron specular reflectivity experiment is to measure the reflectivity as a func-
tion of the scattering wave vector Q perpendicular to the sample surface:

Q =
4π

λ
sin θ (9.28)

The measurement can be done by changing either the angle of incidence θ on the sample or
the wavelength λ, or both.

9.3.1 Monochromatic instruments

At a nuclear reactor source, the measurements are usually performed at a fixed value of λ,
using θ-2θ scans (2θ being the detector angle). The wavelength selection can be obtained
by Bragg scattering on a monochromator crystal or by using a velocity selector. Fig. 9.9
describes such an instrument. This is the MARIA reflectometer of the JCNS located at the
FRM-II source in Garching [12]. The neutrons are brought from the cold source to the in-
strument using a supermirror coated guide (see lecture 2 of this book). A certain wavelength
with a spread of 10 % is chosen by adjusting the rotation speed of a velocity selector. The
wavelength spread can be reduced by using a Fermi chopper and time-of-flight detection.
The neutron beam is then collimated by a pair of slits in order to define the angle of inci-
dence of the neutrons relative to the sample surface with a certain precision. The neutrons
are then detected on a two dimensional position sensitive detector. Such a detector allows
to record at the same time not only the specular reflectivity signal but also the signals of
off-specular scattering and grazing incidence small angle scattering. The projection of the
spin of the neutron on a quantization axis can be selected before interaction with the sample
by using a polarizer and after interaction with the sample by using a polarization analyzer,
allowing to retrieve information about the norm and angle of the layer magnetizations in a
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magnetic sample (see lecture 10). The polarizer uses magnetic supermirrors and the analyzer
uses a nuclear polarized 3He gas to select the spin projection.

Fig. 9.9: A monochromatic instrument: MARIA of the JCNS at MLZ [12].

9.3.2 Time-of-flight instruments

At a spallation source, the measurements are performed at fixed values of θ and as a function
of λ. This is the time-of-flight technique, that consists in sending a pulsed white beam on
the sample. Since the speed of the neutron varies as the inverse of the wavelength, the latter
is directly related to the time t taken by the neutron to travel from the pulsed source to the
detector (over the distance L) by:

λ =
h

mL
t. (9.29)

For a reflectivity measurement, the angle is fixed and the reflectivity curve is obtained by
measuring the reflectivity signal for each wavelength of the available spectrum, each wave-
length corresponding to a different scattering wave-vector magnitude. Sometimes it is neces-
sary to use several angles of incidence because the Q range is not large enough.

An example of time-of-flight reflectometer is presented in Fig. 9.10. This is the magnetism
reflectometer of the Spallation Neutron Source (SNS) in Oak Ridge, USA [13]. Neutrons
coming from the moderator are first deflected by 2.5o using a channel beam bender, com-
posed of a stack of supermirrors, in order to achieve enough separation with the neighbour
instrument (a liquid reflectometer) and in order to deliver to the sample a “clean” neutron
beam, essentially free of fast neutrons and γ radiation. As much useful neutrons as possi-
ble are transported to the sample by using a supermirror coated tapered neutron guide that
focuses the beam horizontally and vertically to a size comparable to usual sample sizes, i.e.
several cm2. The bandwidth choppers are used to select a wavelength width (λ from 2 to 5
Å), in order to avoid frame overlap. A chopper is a rotating disk with windows transparent
to neutrons. When two choppers are mounted at a certain distance one with respect to the
other, the delay between the window openings and the width of the windows can be chosen
to achieve a transmission of only those neutrons having speeds contained in a certain range.
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The phenomenon of frame overlap happens when the slow neutrons of a pulse are overtaken
by the fast neutrons of the next pulse. A time-of-flight detection cannot differentiate between
those neutrons. Therefore, frame overlap has to be avoided. The function of the second of
the three choppers is to absorb the very slow neutrons. This instrument has also collimation
slits, a position sensitive detector and polarizing and analyzing devices whose functions are
the same as the ones explained in the preceding section.

Fig. 9.10: A time-of-flight instrument: The magnetism reflectometer of the SNS [13].

9.3.3 Resolution

The reflectivity signal decreases very rapidly above the critical angle of total reflection when
Q increases (see Eq. (9.20), R ∝ 1/Q4). In order to win some intensity, either the collimation
slits can be opened or the wavelength spread δλ can be increased, at the price of a loss in
resolution in scattering wave vector. The dispersion in Q is given by (for θ � 1 rad.):

δQ '

√(
4π

λ

δλ

λ
θ

)2

+

(
4π

λ
δθ

)2

(9.30)

where δθ is the beam angular divergence. The divergence of the incident beam is usually
determined by the two collimation slits if the beam is smaller than the effective width of the
sample seen by the neutron beam, or by the first slit and the sample itself if the sample is
small enough to be totally illuminated by the neutron beam. The experimental reflectivity
is then the calculated reflectivity convoluted by a resolution function whose width is given
by δQ. Experience shows that a Gaussian function works well to reproduce the resolution
effects. In Fig. 9.11 the reflectivity is calculated for a perfect instrument and by taking into
account the effects of angular divergence and wavelength spread. As can be inferred from
Eq. (9.30), angular divergence induces a loss of resolution independent of θ, and wavelength
spread degrades the resolution as θ increases. This example shows that, when preparing
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a reflectometry experiment and depending on the sample under study, a good compromise
between intensity and resolution has to be found.

Fig. 9.11: Effect of δθ and δλ. Comparison between a perfect instrument, an instrumental δθ,
and a δλ for a measurement on a 400 Å thick Ni layer on Si substrate

9.4 Crystallography at the nanoscale: GISAXS from a
nanoparticle assembly

The prime aim of this section is to emphasize on the added information provided by Graz-
ing Incidence Small Angle Scattering (GISAS) with respect to other surface characterization
techniques like Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM).
AFM and SEM give information on the in-plane fluctuations of the order parameter, while
GISAS allows a full 3 dimensionnal investigation, i.e. gives depth-resolved infomation on
those in-plane fluctuations.

The study reported here [14] concerns the investigation of the ordering in an assembly of
magnetic nanoparticles deposited on a surface. Those nanoparticles, of truncated cubic shape,
were deposited under an applied magnetic field, leading to the formation of mesocrystals, i.e.
columns (see Fig. 9.12), several hundreds nanometres high and several micrometres diameter,
composed of a single crystalline arrangement of nanoparticles (see insert of Fig. 9.13). The
whole assembly is a 2 dimensional orientational average of such mesocrystals.

The in-plane arrangement of the nanoparticles in each mesocrystal has been determined by
SEM and consists of a square lattice (see insert of Fig. 9.13) of lattice parameter 13.1 nm.
Only five different cubic and tetragonal Bravais lattices are compatible with this 2 dimen-
sional arrangement: simple cubic (sc), simple tetragonal (st), body centred cubic (bcc), body
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centred tetragonal (bct) and face centred cubic (fcc). Two (bcc and fcc) of those five lattices
can be excluded from packing and geometrical conditions.

The actual 3 dimensional Bravais lattice has been determined by GISAXS, the geometry
of the experiment being depicted in Fig. 9.12: a beam of x-rays, well collimated in both
directions perpendicular to ki, impinges on the surface under an angle of incidence αi and
the scattered x-rays are collected on a position sensitive detector. Each detector pixel is
defined by the values of the angles θ and αf . Taking into acount the smallness of those three
angles, the components of the scattering wave vector along the three axes depicted in Fig.
9.12 are given by:

Qx = k
(
α2
i − α2

f − θ2
)
/2, Qy = kθ, Qz = k (αi + αf ) , with k =

2π

λ
. (9.31)

Fig. 9.12: Atomic Force Microscopy (AFM) image of the assembly of magnetic nanoparticles
and geometry of the GISAXS experiment. GISAXS signal is collected on a 2 dimensional posi-
tion sensitive detector. Taken from [14].

The thus obtained GISAXS pattern at a certain angle of incidence αi of the incoming beam
close to the critical angle of total reflection is given in Fig. 9.13. This pattern shows a
whole bunch of local intensity maxima at positions in Qy and Qz that are characteristic of
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the crystalline stacking respectively in-plane and out-of-plane. A relation connecting all the
Qz coordinates of the local maxima to their Qy coordinates is obtained by a combination of
Snell’s law and Bragg’s law leading to an extinction rule and an out-of-plane lattice parame-
ter (17.8 nm) characteristic of a bct packing of the nanoparticle lattice.

Fig. 9.13: GISAXS pattern of the assembly of magnetic nanoparticles. Insert: Scanning Elec-
tron Microscopy (SEM) image of the top of a mesocrystal of nanoparticles; scale bar represents
100 nm. Taken from [14].

9.5 Conclusion

This chapter has given an overview of reflectometry and GISAS as a tool for the investi-
gation of thin films, their interfaces or mesocopic objects deposited on a surface. We have
presented a formalism which makes it possible to describe the specular reflectivity on non-
magnetic systems. The formalism of neutron reflectometry for the investigation of the mag-
netic moment orientations in magnetic multilayers is presented in the next chapter of this
book, together with several application examples.
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9.6 Take-Home Message

Reflectometry of X-rays and neutrons from thin films with thicknesses in the mesoscopic
range gives access to the scattering length density profile along their depth. The information
is an average over the in-plane coordinates. With GISAS, in-plane correlations of the scatter-
ing length density can be investigated. Moreover, depth resolution is accessed by interpreting
the GISAS signal as a function of αi or αf .
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(Schriften des Forschungszentrum Jülich, Materie und Material, Band 2, 1999). Kapitel
B3

[5] Th. Brückel in Laboratory course, Neutron Scattering (Schriften des Forschungszentrum
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Exercises

In the following the nuclear scattering length densities (in 10−6 Å−2) of several elements are
displayed:

Cu: 6.53; Ag: 3.5; Si: 2.15; Au: 4.5

E9.1 * Reflection and transmission by a flat substrate

The following figure shows the neutron reflectivity from a flat substrate.

Fig. 9.14: Reflectivity from a substrate.

• Determine the element of which this substrate is made of

• Explain why the amplitude of the wave transmitted in the substrate is equal to 2 at an
angle of incidence equal to the critical angle of total reflection



9.20 E. Kentzinger

E9.2 * Layers on substrate

The figure below shows two simulations of reflectivity from a Cu layer deposited on Ag
substrate. Determine for both cases (red and blue curves) the thickness of the Cu layer.

Fig. 9.15: Layer of Cu on Ag substrate

In the next figure, the reflectivity from a [Cu/Au]×n multilayer is depicted. Determine the
[Cu/Au] thickness, the total thickness of the multilayer and the number n of bilayers the
multilayer is composed of.

Fig. 9.16: Cu/Au multilayer on Ag substrate
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E9.3 * GISAXS from nanoparticles on surface

The figure below shows a simulation of GISAXS from a square lattice of cubic nanoparticles
of 5 nm edge length. The radiation wavelength is 1 Å and the plane of incidence of the
X-rays is parallel to one edge of the cubes. Determine the lattice parameter.

Fig. 9.17: GISAXS from a square lattice of cubic nanoparticles. The horizontal axis shows θ
and the vertical one αf as defined in Fig. 9.12. This simulation was performed by Asma Qdemat
(JCNS-2) using the BornAgain software [8].
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10.1 Introduction 
 
The physical properties of a layered structure of nanometer size, as it is shown schematically 
in Fig. 10.1, differ from the bulk properties of the constituents. There are several origins of 
new effects due to miniaturization: 
The ratio between surface and volume is much higher than in bulk. Therefore, the amount of 
atoms with reduced coordination is significant and can change the crystalline structure as well 
as the electronic structure of the whole layer. Boundary conditions, e.g. for the magnetic 
induction B become important, introducing shape anisotropies. The magnetization tends to 
align along the long edges of the magnetic nanostructure because the dipolar fields are smaller 
then. At the interface between two layers, the electronic structures and the crystal lattices have 
to be matched, which leads to structural stress, interfacial disorder and electronically to charge 
transfer (e.g. a Shottky barrier in semiconductor heterostructures) or splitting of the layers’ 
bandstructures. 
Nanostructures can be prepared in several dimensions: thin films with a thickness in the nm 
range are 2D nanostructures, stripes with thickness and width in the nm range are 1D nano-
structures, and dots or nanoparticles with all three dimensions in the nm range are 0D nano-
structures. The dimension number indicates, in how many directions the dimension remains 
macroscopic. 
Magnetic nanostructures are nanostructures which contain at least one magnetic constituent. 
Typical systems are layered structures with ferromagnetic and nonmagnetic layers or arrays of 
ferromagnetic dots on a nonmagnetic substrate. The interesting aspect of 2D magnetic 
nanostructures is the fact that two ferromagnetic (FM) layers with a nonmagnetic (NM) 
spacer in between have a connection between their electronic systems across the spacer layer. 
This connection influences as well the magnetic behaviour as the electron transport through 
the system. 
 
 

 
 

Fig. 10.1: Sketch of a layered structure of two materials 
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The first fundamental phenomenon found in magnetic layered structures has been the 
oscillating magnetic interlayer coupling in FM / NM / FM trilayer structures. Depending on 
the NM interlayer thickness, the magnetizations of the two FM layers tend to align parallel or 
antiparallel to each other [1]. It turned out that the coupling is mediated by electronic states in 
the NM interlayer close to the Fermi surface [2].  
Subsequently, the most important discovery followed, the Giant Magnetoresistance Effect 
(GMR) [3] [4]. For this discovery, P. Grünberg and A. Fert were honoured with the Nobel 
Prize for Physics 2007. They have found out that the resistivity of a layered structure 
containing more than one ferromagnetic layer depends on the mutual orientation of the 
magnetization directions, see Fig. 10.2. They used the antiferromagnetic coupling in 
Fe / Cr / Fe trilayer structures to be able to influence the mutual orientation of the magne-
tization of the Fe layers by changing the applied magnetic field.  
 

 
 

Fig. 10.2: Giant Magnetoresistance effect in an Fe / Cr / Fe trilayer compared to the aniso-
tropic magnetoresistance effect in a single Fe layer. Reprinted figure with per-
mission from G. Binasch et. al., Phys. Rev. B. 39 (1989), 4828 [3]. Copyright 
1989 by the American Physical Society. 

 
It turns out that the resistivity is highest in the case of antiparallel alignment of the two 
magnetization directions. This effect is much stronger and much more sensitive to changes in 
the magnetization direction of each ferromagnetic layer than the anisotropic magneto-
resistance effect in single ferromagnetic layers, which was known before. The microscopic 
origin of the GMR effect is the matching between the spin-split bandstructures of the two 
ferromagnetic layers.  The conductivity of the entire structure is the sum of the conductivities 
for the two spin channels. As the Fermi surface is different for the two spin channels, the 
matching between the FM and the NM layer is different. 

 

Fe/Cr/Fe 



10.4  U. Rücker 

           
 

Fig. 10.3: Different matching of the bandstructures between ferromagnetic and non-
magnetic layers changes the resistivity for the different spin channels 

 
As shown in Fig. 10.3, in the case of parallel alignment, the scattering probability of a con-
duction electron is the same at both interfaces. For one spin channel, the scattering probability 
is high while for the other one it is low. The conductivity is then dominated by the spin 
channel with the smaller scattering probability. The resistivity of the entire structure, which 
can be described as a parallel wiring of the two resistors for the two spin channels, is small. 
In the case of antiparallel alignment, the scattering probability for each spin channel is high in 
one of the FM layers. This results in a relatively low conductivity for both spin channel, so 
that the resulting resistivity is much higher compared to the case of parallel magnetization. 
As GMR structures are easy to prepare and easy to use, the sensor technology based on this 
effect quickly became standard in the readout system of computer harddisks and many other 
applications. Today, it has been replaced by Tunneling Magnetoresistance (TMR), where the 
nonmagnetic interlayer is insulating and electrons travel across this tunneling barrier while 
preserving their spin state. Then, the height of the tunneling barrier depends on the spin of the 
electron and the magnetization direction of both ferromagnetic layers. A detailed overview 
over the field of spin transport in layered systems is given in Ref. [5]. 
 

10.2 Why are neutrons useful to investigate magnetic 
nanostructures? 

 
For the investigation of magnetism, many methods are well known. In most cases the magne-
tization of a sample is measured. A different, but more indirect approach is the measurement 
of spin-dependent bandstructures by absorption and photoemission spectroscopy of polarized 
light or x-rays. 
The first (and oldest) approach is to measure the integral magnetization of a sample by 
classical magnetometry, e.g. by using a Vibrating Sample Magnetometer (which measures the 
induction when moving the magnetic sample in a coil), a Faraday balance (which measures 



Magnetic Nanostructures  10.5 

the force on the magnetic sample in a field gradient), or more recently a SQUID 
magnetometer (which measures the magnetic flux inside a superconducting loop). In case of 
magnetic nanostructures deposited on any macroscopic substrate, the small signal coming 
from the nanostructure is always superimposed by the signal from the substrate which is 
typically 10000 times larger in volume. Even if the nanostructure is ferromagnetic and the 
substrate only diamagnetic, the correction due to the substrate is in most cases much stronger 
then the signal itself. 
Better adapted to thin structures are methods that are surface sensitive. The magnetooptical 
Kerr effect (MOKE) measures magnetization with polarized light reflected from a magnetic 
surface. Due to the magnetization of the sample the polarization direction of the light is 
modified. This method is surface sensitive in the range of the penetration depth of the light 
used (typically some 10 nanometers). At synchrotron x-ray sources one can use X-ray Magne-
tic Circular Dichroism (XMCD). The energy dependence of the absorption of circularly 
polarized (soft) x-rays is measured at the absorption edges of the magnetic materials. Again, 
the information is integrated over the penetration depth of the x-ray photons used, but it is 
element specific due to the choice of the x-ray energy in resonance with the magnetic orbitals 
of a certain element. 
Magnetic domains can be imaged using e.g. Magnetic Force Microscopy (surface sensitive, 
measuring the stray fields above the sample), Lorentz microscopy (the transmission of 
electrons through a very thin sample is observed; due to the Lorentz forces the electrons are 
deviated according to the magnetization strength and direction), or Kerr microscopy 
(observing the MOKE using an optical microscope; again it integrates over the penetration 
depth of the light, with the lateral resolution of the optical microscope). Photoemission 
electron microscopy (PEEM) with soft x-rays can give an overview about the density of 
certain electronic states with a lateral resolution in the nanometer range and time resolution 
down to nanoseconds. In combination with XMCD, XMCD-PEEM can visualize the 
evolution of magnetic domains under variable magnetic fields. But again, the depth resolution 
is only determined by the penetration depth and the element specific absorption of the x-rays. 
What is missing is a method that can access the magnetism of buried layers using the depth 
information. Here, we need a probe that is sensitive to magnetic fields while having a spatial 
resolution (at least in depth) in the nm regime. Cold neutrons have a wavelength appropriate 
for resolving nm length scales and they carry a spin that interacts with the magnetic fields. 
For most of the magnetic investigations, the neutron’s spin has to be prepared in a certain 
state, so we use polarized neutrons for the investigation of magnetic nanostructures. 
Polarized neutron reflectometry with polarization analysis is a method for depth-resolved 
investigation of magnetic layered structures; I will introduce this method in the following 
chapter. Together with the analysis of off-specular scattering, lateral structures in the µm 
range can be investigated, allowing to access magnetic domains in buried layers. Polarized 
SANS reveals information about magnetic structures in the nm range perpendicular to the 
beam direction, while polarized GISANS (Grazing Incidence Small Angle Neutron Scatte-
ring) combines the possibilities of both methods and allows to access lateral magnetic 
structures in the nm range in buried layers. 
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10.3 Specular reflectivity of polarized neutrons 
 
In the previous lecture, you have learned about specular reflectivity of neutrons on layered 
structures with nuclear scattering contrast. For the investigation of magnetic layered 
structures, we have to remind that the neutron is a spin ½ particle and therefore interacts with 
the magnetic induction B.  
To treat the neutron’s spin properly, we have to work with wave functions in the 2-dimen-
sional quantum mechanical spin space, where the usual space-dependent functions, e.g. the 
potential, become operators on the neutron’s spin. 
In analogy to eq. (9.2), the potential of a homogeneous magnetic material in layer number l 
can be separated into two parts 
 

M
l

N
ll VVV ˆ1̂ˆ   (10.1)  

 

where V1
N is the nuclear interaction known from eq. (9.2), and 1̂  is the unity operator, which 

does not affect the spin state, so that the nuclear interaction is described independently on the 
neutron’s spin. The magnetic dipole interaction is described by the operator l

M
lV Bσ  ˆˆ

n  
which is a scalar product of the neutron magnetic moment operator σ̂n  and the magnetic 
induction Bl inside the material. 
For the description in coordinates, we need to define a coordinate system which is convenient 
to describe the experiment. Typically, the magnetic field H is applied in the plane of the 
sample. We choose this direction to be the x-direction of the coordinate system H = Hex and 
also as the quantization axis for the neutron spin. Under this assumption, the spin operator 
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In analogy to chapter 9.2, the Schrödinger equation can be solved in coordinate and spin 
space, where the eigenvectors   and   of the operator x0ˆ bσ  with the eigenvalues 
+1 and -1, respectively, define states of the neutron with “spin up” and “spin down”. The 
solution of the Schrödinger equation is the neutron wave function )(r , which is again a 
linear combination of those two spin states. 
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After some calculation which you can find in Ref [6] we end up with a set of two coupled 
one-dimensional linear differential equations for every layer, which are the analogue to 
equation (9.8).  
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In these formulae, you find the nuclear scattering length density N  that you know from 
eq. (9.3) together with its magnetic analogue M , the magnetic scattering length density. It is 
proportional to the net magnetization M of the material. In case of a ferromagnetic material, 
the magnetization vector M typically is aligned in some direction, which is described by the 
unit vector m = M / M.  
Now, we can have a closer look at the different terms in equation (10.4) and (10.5). As Non-
Spinflip (NSF) interaction, one finds in (10.4) for spin + (“spin up”) the sum of the nuclear 
interaction and the magnetic interaction with the magnetization along the quantization 
direction and in (10.5) for spin – (“spin down”) the difference. In case of a magnetically 
saturated layer (all the magnetization is aligned with the external field), the scattering length 
density for spin + neutrons is enhanced and for spin – neutrons is reduced compared to the 
nonmagnetic case.  

 
Fig. 10.4: The total reflection angle θc of the surface of a magnetized material is different 

for both spin directions 
This has an influence on the index of refraction, on the total reflection angle, and of course on 
the reflectivity, which is a function of the change of the index of refraction at a certain 
interface. Fig. 10.4 shows schematically the splitting of the total reflection angle. 
In case that the magnetization is not fully aligned with the field, the component along the field 
direction influences the scattering length density for NSF. The in-plane magnetization 
component perpendicular to the field induces a spin-flip (SF) interaction that is equally strong 
for both spin-flip channels +– and –+, as is described in the last term of eq. (10.5) or (10.4), 
respectively. 
Specular reflectivity of polarized neutrons is not sensitive to any magnetization component 
perpendicular to the layer plane. This is in agreement with the statement in lecture 7 (eq. 
(7.22) f.) that only the magnetization component M perpendicular to Q contributes to the 
magnetic interaction with the neutron’s spin. 

R+R- T- T+T- T+

θc
- θc

-θc
+ θc

+
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As an example, I would like to show the polarized neutron reflectivity of a [Co / Cu] multi-
layer. The respective nuclear and magnetic scattering length densities are 
 Co: ρN = 2.30 ∙10-6 Å-2       ρM = 4.24 ∙10-6 Å-2 
 Cu: ρN = 6.53 ∙10-6 Å-2       ρM = 0. 
Obviously, the sum of the magnetic and the nuclear scattering length density of Co is almost 
equal to the scattering length density of Cu. In the case of magnetic saturation, spin + neu-
trons will not feel any contrast at the Co / Cu interfaces because they see the sum of nuclear 
and magnetic scattering length density in the Co layer. The multilayer structure is invisible for 
spin + neutrons. In contrast, spin – neutrons experience the difference of nuclear and magnetic 
scattering length density (which is in fact negative), so that the contrast is huge. 
Fig. 10.5 makes the contrast situation visible by using colours representing the different 
scattering length densities. 

••
•

••
•
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Co

Co
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Cu

••
•

••
•

M


M


M


••
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

M


M


nuclear scattering
length density

nuclear + magnetic.
sc. length. density

nuclear – magnetic
sc. length density

n → n ←

 
 

Fig. 10.5: The contrast between Co and Cu depends on the magnetization state. It almost 
vanishes for spin up neutrons, but is strong for spin down. 

 
Fig. 10.6 shows the measured polarized neutron reflectivity of such a multilayer. The total 
reflection edge is identical for both spin channels, because the biggest scattering length 
density in the layered structure is the one of Cu, which is not magnetic. But the multilayer 
Bragg peaks at 2 = 3° and 2 = 6° are strongly spin split. For spin – neutrons, the Bragg 
peak is about 30 times stronger than for spin + neutrons. Here, one can see that the contrast is 
responsible for the reflectivity, not the strength of the scattering potential, as the scattering 
length density (which describes the scattering potential) is higher for spin +, but the contrast 
between the layers is much stronger for spin –.  
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Fig. 10.6: Specular reflectivity of polarized neutrons from a [Co/Cu] multilayer with 20 

periods at magnetic saturation 
 
 

10.4 Layer-by-layer magnetometry 
 
One important application of polarized neutron reflectometry with polarization analysis is 
layer-by-layer magnetometry. As an example, I present the magnetization evolution in 
exchange bias multilayers of the type [IrMn / CoFe]N with the number of periods [7]. The 
exchange bias effect is the coupling between a ferromagnetic layer and a neighbouring 
antiferromagnetic layer. If the antiferromagnet has been cooled below its Néel temperature 
with the ferromagnet being saturated, it conserves the interface magnetization without being 
sensitive to the applied magnetic field. This induces an additional unidirectional anisotropy on 
the ferromagnetic layer, i.e. the original magnetization direction is preferred over all others. 
The hysteresis loop is shifted away from H = 0. 
The green curve in Fig. 10.7 shows the exchange biased magnetization curve of a IrMn / 
CoFe double layer shifted left together with the magnetization loop of the NiFe buffer layer, 
which is not affected by exchange bias and therefore symmetric around H = 0 field. The CoFe 
layer shows a nice square hysteresis loop, indicating spontaneous magnetization flip at the 
coercive field. 
Strangely, the shape of the magnetization loop of the exchange biased CoFe layers changes, 
when the number of [IrMn / CoFe]N bilayers is increased. In addition, the strength of the 
exchange bias is increased. 
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Fig. 10.7: SQUID magnetization measurements (at room temperature, left) and AFM 

micrographs of the surface (right) of polycrystalline multilayers of the type  
SiO2 / 10 nm NiFe / [5 nm IrMn / 3 nm CoFe]N  with N = 1, 3, or 10, resp. 

 
An AFM study of the surfaces shows that the grain size of the polycrystalline layers is 
reduced from layer to layer during the preparation procedure, but no information could be 
found that justifies the slope of the magnetization curves and that could eventually explain the 
origin of a magnetization rotation process responsible for the gradual evolution of the 
magnetization as a function of the applied field. 
Therefore, a polarized neutron reflectivity study was performed, to investigate the individual 
behaviour of the ferromagnetic layers in the multilayer structure. As an example, Fig. 10.8 
shows the specular polarized neutron reflectivity at one of the coercive fields (i.e. the net 
magnetization vanishes) together with the fit.  
The polarized neutron measurement shows no spin flip signal at all, immediately excluding 
the idea of a magnetization rotation process. Furthermore, the fit of the measured data shows 
that the magnetization of the upper 5 CoFe layers is aligned antiparallel to the field while the 
magnetization of the lower 5 CoFe layers is still aligned along to the field. I.e., the exchange 
bias on the upper layers (with smaller grains) still can hold the magnetization in the preferred 
direction, while the magnetization of the lower layers already has followed the field.  
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Fig. 10.8: Polarized neutron reflectivity of the sample with N=10 at μ0H = -0.1 mT after 

positive saturation 
 
Together with measurements at several other magnetic field values on both branches of the 
hysteresis loop it turned out that every single layer has a square magnetization loop, but the 
strength of the exchange bias effect (i.e. the shift of the centre of the loop away from H = 0) 
increases with reduced grain size. The overlaying of the differently shifted square loops then 
results in the inclined net magnetization loop measured with magnetometry. 
 
 

10.5 Vector magnetometry 
 
The second important application of polarized neutron reflectometry with polarization 
analysis is vector magnetometry in layered structures. The ability to distinguish between SF 
and NSF channels offers an independent access to the in-plane magnetization components 
perpendicular and parallel to the field direction. As a magnetization direction perpendicular to 
the sample surface is rare (due to the shape anisotropy) one can determine the full 
magnetization vector in most cases. 
 

Fig. 10.9: Layer sequence of an epitaxially grown 
and antiferromagnetically coupled  
[Fe / Cr]N multilayer 

I would like to explain the power of vector magnetome-
try using the example of an epitaxially grown and 
antiferromagnetically (AF) coupled [Fe / Cr]N multi-
layer with an odd number of Fe layers [8]. Fig. 10.9 
shows the layer sequence of such a sample grown on  
a GaAs single crystal with a Ag buffer layer to improve  

. . . 
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the surface quality. The magnetic behaviour is determined by the competition between 3 
different interactions (see Fig. 10.10): The crystalline anisotropy in the single crystalline Fe 
layers tries to align the magnetization in every Fe layer along one of the in-plane [100] 
directions. This results in 4 equivalent easy axes. The antiferromagnetic coupling (mediated 
by the Cr interlayer) has the tendency to align the magnetization of two neighbouring Fe 
layers antiparallel to each other. The Zeeman term tries to align the magnetization of every 
ferromagnetic layer along the applied field. 

 

 
 
Fig. 10.10: The magnetic behaviour in an applied magnetic field is governed by 3 competing 

interactions 
As the multilayer under investigation has an odd number of Fe layers, the antiparallel 
orientation of the magnetization in remanence (where the Zeeman term is weak) will leave the 
magnetization of one layer uncompensated, so that the Zeeman energy does not vanish even 
at very small fields. This effect is supposed to align the remanent magnetization of all layers 
along or antiparallel to the field direction. 
Fig. 10.11 shows MOKE measurements of such samples with N = 7 or N = 19 Fe layers in the 
multilayer sequence. The MOKE signal is a function of the magnetization, but not 
proportional to it, because it is a superposition of the longitudinal Kerr effect (proportional to 
the magnetization along the field) and the transverse Kerr effect (proportional to the 
magnetization perpendicular to the field). Furthermore, the weight of the layers close to the 
surface is much higher than the weight of lower lying layers due to the limited penetration 
depth of the light. Therefore, one should not worry about the MOKE curve not being 
monotonous. Nevertheless, a jump in the MOKE curve always indicates a spontaneous 
change of the magnetization state. 
In addition, Fig. 10.11 shows a simulation of the integral magnetization component along the 
field based on a numerical minimization of the three energy terms mentioned above. This 
kind of simulation cannot reproduce effects of activation barriers leading to hysteresis. 
In the case of the multilayer with N = 7 Fe layers, the simulation and the MOKE measurement 
have a good qualitative agreement. In saturation, the magnetic moment of every layer is 

Fe single crystal layers: 4 easy axes 
[100] 

AF coupling through Cr interlayer 

Applied field: Zeeman energy 

H 
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aligned with the field. In the intermediate field range, the magnetization is alternatingly 
pointing left or right from the field direction, so that the magnetization component along the 
field is almost equal for every layer and the magnetization components perpendicular to the 
field fulfil as much as possible the AF coupling.  
At remanence, the magnetization of all layers is turned by 90°, so that 4 layers have the 
magnetization along the field and 3 layers antiparallel to the field. This configuration fulfils as 
well the AF coupling condition as the alignment of the net magnetization along the applied 
field. 
 

    

Fig. 10.11: MOKE measurement of [Fe / Cr]N  multilayers with N = 7 Fe layers (left) and  
N = 19 Fe layers (right). The simulation of the magnetization curve is based  
on minimization of the total energy. 

 
In contrast to that, the MOKE measurement of the multilayer with N = 19 Fe layers shows a 
smooth transition through H = 0 while the simulation proposes a step comparable to the case 
described previously. This behaviour is known from AF coupled multilayers with an even 
number of ferromagnetic layers, because there the net magnetization vanishes, so that there is 
no Zeeman energy that causes the rotation of the entire magnetic configuration at remanence. 
This contradiction cannot be resolved by magnetometry measurements only. 

Fig. 10.12 shows the polarized neutron reflectivity together with the offspecular scattering for 
the two samples at saturation field. One can see a structured signal with total reflection and 
several Bragg peaks according to the periodicity in the multilayer structure only in the R++ 
channel. For spin – neutrons the contrast between fully magnetized Fe and Cr vanishes, so the 
R– – shows only the total reflection (with a reduced critical angle compared to R++), but no 
Bragg peaks. As no magnetization component perpendicular to the field direction exists, there 
is no real spin flip signal. What you see in R+– and R –+ is a parasitic signal due to the 
limited efficiency of the polarizing equipment of the instrument. The Bragg sheets crossing 
the specular Bragg peaks are due to vertically correlated roughness of the Fe / Cr interfaces. 
No qualitative difference between the two samples can be observed except the fact that the 
Bragg peaks and Bragg sheets are sharper and more intense for the [Fe / Cr]19 sample because 
of the bigger number of periods. 
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Fig. 10.13 shows the same in the intermediate field range. Additional Bragg peaks of half 
order appear, which are stronger in SF compared to NSF. This is the indication of the 
alternation of the magnetization directions due to the antiferromagnetic coupling. Mainly the 
magnetization component perpendicular to the field oscillates while the component remaining 
along the field is modulated less. As the sample is no more saturated, the magnetization 
component in field direction is reduced, so that the contrast for spin – neutrons does not 
  

Fig. 10.12: Polarized neutron reflecti-
vity and offspecular scattering for two 
AF-coupled [Fe / Cr]N multilayers 
with N = 7 (top) and N = 19 (bottom) 
in saturation field of 300 mT.  

 Indicated are (1) the primary beam 
blocked by the beamstop, (2) the pla-
teau of total reflection, (3) the first, 
(4) second and (5) third order Bragg 
peak (giving information about the 
layer structure), and (6) the Bragg 
sheets (giving information about cor-
related roughness). 
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vanish any more. Therefore, the full order Bragg peaks also come up in R– –. They are now 
mainly induced by the nuclear structure while the magnetic contribution is collected in the 
half order signal. The strong off-specular signal around the half order Bragg peaks in the SF 
channels is a signature of magnetic domains. Again, no distinct qualitative difference between 
the two samples is observed. 
 

Fig. 10.13: Polarized neutron reflec-
tivity and offspecular scattering for 
two AF-coupled [Fe / Cr]N multi-
layers with N = 7 (top) in interme-
diate field of 30 mT and N = 19 (bot-
tom) in intermediate field of 25 mT.  

 Indicated are the AF superstructure 
Bragg peaks of the order ½ (1) and 
1½ (2). 
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This is very different at remanence, as shown in Fig. 10.14. The [Fe / Cr]7 sample has all half 
order peaks in the NSF channels while the [Fe / Cr]19 sample has all half order peaks in SF. 
The small contribution in the other channels can be explained due to the limited polarization 
of the neutron beam. This shows that the magnetization of all layers of the [Fe / Cr]7 sample is 
aligned alternatingly parallel and antiparallel to the field direction, as has been proposed by 
the simulation for the MOKE measurement. 

Fig. 10.14: Polarized neutron reflec-
tivity and offspecular scattering for 
two AF-coupled [Fe / Cr]N multi-
layers with N = 7 (top) and N = 19 
(bottom) in remanence field of 5 mT.  

 Indicated are the AF superstructure 
Bragg peaks of order ½ (1) in the 
NSF channels of the [Fe / Cr]7 system 
and (2) in the SF channels of the [Fe / 
Cr]19 system. 
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In the case of the [Fe / Cr]19 sample, all magnetization is now concentrated perpendicular to 
the field, no more difference between R++ and R– – can be observed. The measurement 
clearly shows that the Zeeman energy contribution equivalent to the magnetization of a single 
Fe layer is not sufficient to turn the entire magnetization of all 19 layers by 90° across the 
crystalline anisotropy barrier.  

In addition to the qualitative description presented here, a quantitative analysis of the 
measurements allows to determine the angle of the magnetization vector of every layer 
independently. This analysis is presented in Ref. [8].  

 

 

10.6 Conclusion 
 

Neutron reflectometry with polarized neutrons and polarization analysis is a tool to determine 
depth-dependent magnetization in layered magnetic nanostructures.  

Non-Spinflip (NSF) reflectivity contains information about the magnetization components 
along the field direction of the different layers inside the structure. As (in magnetic saturation) 
the spin + neutrons are sensitive to ρN + ρM and the spin – neutrons to ρN – ρM, the contrast 
seen by the neutrons with different spin is different due to the magnetized layers. 

Spinflip (SF) reflectivity is purely induced by magnetization components perpendicular to the 
field direction. This is a very sensitive tool to determine magnetization rotation or tilting 
processes in magnetic structures.  

Together with a quantitative modeling of the 4 reflectivity components, the user can 
determine size and direction of the in-plane components of the magnetization vector in all 
layers in a layered magnetic structure. 
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Exercises 
 

E10.1 Magnetic contrast 
 

We measure the polarized neutron reflectivity of a [Ni2Fe / Pt]N multilayer structure in 
magnetic saturation. The Ni2Fe alloy is ferromagnetic.  
 
* a)  Calculate the nuclear and magnetic scattering length densities for the two constituents 

of the multilayer:   
 Ni Fe Pt 
density [g/cm³] 8.90 7.86 21.4 
atomic weight [g/mol] 58.71 55.85 195.09 
nuclear scattering length [1E-14 m] 1.03 0.954 0.95 
magnetic scattering length density  
[1E-6 Å-2] 

1.52 5.12 0 

 
If you don’t want to calculate all the values yourself, you may continue with the tabulated 
values of the nuclear scattering length densities:  
Ni: 9.41E-6 Å-2, Fe: 8.09E-6 Å-2, Pt: 6.29E-6 Å-2. 
  

** b)  Which of the 5 reflectivity curves presented below is the one measured on this alloy? 
Think about the critical angle (has to do with the highest scattering length density in all 
layers) and the contrast between adjacent layers (influences the height of the diffraction 
peaks) for both spin directions parallel (R+ +) and antiparallel (R– – ) to the applied 
magnetic field (saturation!). 
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** c)  The other 4 curves have been measured on different samples. Which curve belongs to 
which sample? 

 
I. The sum of nuclear and magnetic scattering length density of the magnetic layers is 

equal to the nuclear scattering length density of the nonmagnetic layers 
II. The sample contains an additional nonmagnetic layer with a scattering length 

density higher than the sum of the magnetic and nuclear scattering length densities 
of Ni2Fe on top of the [Ni2Fe / Pt]N multilayer 

III. No layer is magnetic  
IV. The nuclear scattering length density of the nonmagnetic layers is somewhere 

between the sum and the difference of nuclear and magnetic scattering length 
density of the magnetic layers  

 

E10.2 Vector magnetometry 
 

** The following figures show polarized neutron reflectivity measurements with polarization 
analysis from a ferromagnetic single layer on a nonmagnetic substrate. Find out which figure 
belongs to which magnetization state: 
 

I. The sample is magnetized perpendicular to the field direction 
II. The sample is magnetized parallel to the field direction 

III. The magnetization of the sample is inclined by 45° against the field direction 
IV. This set of curves is wrong. (Why?) 
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11.1 Introduction

One of the most important benefits of neutron scattering is the possibility to do inelastic
scattering and by this way gain insight into the dynamics of materials as well as the structure.
Neutrons tell us where the atoms are and how they move [1]. Although this feature is shared
with inelastic x-ray scattering and dynamic light scattering, there is still a considerable range
of slow dynamics in molecular systems which can be studied exclusively by inelastic neutron
scattering.

This lecture can only present a short glimpse on the theoretical foundations and instrumental
possibilities of inelastic neutron scattering. For those who are interested in more details,
several textbooks can be recommended [2–6]. Also supplementary information on correlation
functions [7] and Fourier transforms [8] may be found in earlier editions of this school.

k

k'

2θ

Q

Fig. 11.1: Definition of the scattering vector Q in terms of the incident and final wave vectors k
and k′. The black (isosceles) triangle corresponds to elastic scattering. The blue and red ones
correspond to inelastic scattering with energy loss or gain of the scattered neutron, respectively.

11.2 Theory

11.2.1 Kinematics of neutron scattering

Up to this lecture it has always been assumed that the wavelength (or wave vector, or en-
ergy) of the neutrons is the same before and after scattering. The defining quality of inelastic
neutron scattering is that this is not anymore the case. The neutrons may lose or gain energy
in the collision with the nuclei implying that k′ 6= k. This implies that Q now does not any-
more result from the isosceles construction drafted in black in Fig. 11.1 but from scattering
triangles as those in blue and red. Application of the cosine theorem leads to the following
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Fig. 11.2: Scattering vectorsQ accessed by a neutron scattering experiment with the detector at
scattering angles 2θ = 10 . . . 170◦ vs. the energy transfer ~ω (incident wavelength λ = 5.1 Å).
For comparison the thermal energy kBT corresponding to 100 K is indicated by an arrow.

expression for Q in the inelastic situation:

Q =

√
k2 + k′2 − 2kk′ cos(2θ) (11.1)

=

√
8π2

λ2
+

2mω

~
− 4π

λ

√
4π2

λ2
+

2mω

~
cos(2θ) . (11.2)

Note that there is a fundamental difference to the simpler expression for elastic scattering,

Qel =
4π

λ
sin θ , (11.3)

used in the preceding lectures. Q now also depends on the energy transfer ~ω implying that
Q is not anymore constant for a single scattering angle. Fig. 11.2 shows the magnitude of
this effect for typical parameters of a neutron scattering experiment. It can be seen that it
is by no means negligible for typical thermal energies of the sample even at temperatures as
low as 100 K.

The other fundamental difference to elastic scattering to be considered is that the total scat-
tering cross section is not identical anymore to the bound scattering cross section read from
tables. In the extreme case of a free nucleus the scattering cross section is reduced to [2]

σ =
4πb2

(1 +m/M)2 (11.4)

where M is the mass of the scattering nucleus. It can be seen that in the worst case (scatter-
ing from a gas of atomic hydrogen) this is a reduction by 1/4.



11.4 R. Zorn

11.2.2 Scattering from vibrating atoms

The most important case of inelastic neutron scattering from vibrating atoms is that of scatter-
ing from phonons in crystals. In this field, inelastic neutron scattering is the most important
tool of research. At first, a short recapitulation of the phonon picture will be presented [9,10].

As a simplified model for the crystal one can consider a chain of N atoms with mass M
regularly spaced by a distance a and connected by springs with the spring constant K. For
this system the equations of motion can readily be written down:

d2uj
dt2

=
K

M
(uj+1 − 2uj + uj−1) . (11.5)

In addition, it has to be specified what the equations of motions are for the first and the last
atom (boundary condition). This is usually done by identifying the left neighbour of the first
atom with the last and vice versa, u0 = uN and uN+1 = u1, as in a closed necklace rather
than an open chain. This is the most natural choice for large N and called the Born-von-
Kármán boundary condition. The equation system (11.5) can be solved by the ansatz

uj(t) =
∑
k

Uk(t) exp

(
i
kj

N

)
(11.6)

with integer k (k ∈ Z). Here, Uk are the normal coordinates and each of them fulfils the
equation of motion of a single harmonic oscillator:

d2Uk
dt2

=
2K

M

(
cos

2πk

N
− 1

)
Uk . (11.7)

By introducing these normal coordinates, the system of differential equations (11.5) can be
decoupled into a set of differential equations which can be solved separately. The solutions
are

Uk(t) = Ak exp (iΩkt) with (11.8)

Ωk =

√
2K

M

(
1− cos

2πk

N

)
= 2

√
K

M

∣∣∣∣sin πkN
∣∣∣∣ . (11.9)

The second equation gives a relation between the index of the oscillator k and the frequency.
On the other hand, the index determines via equation (11.6) the wavelength of the vibration.
One wavelength covers N/k lattice positions, corresponding to λvib = Na/k in actual length.
The corresponding wave ‘vector’ is q = 2π/λvib = 2πk/Na1. This implies that there is a
relation between the wave vector and the frequency called the dispersion relation (Fig. 11.3):

Ω(q) = 2

√
K

M

∣∣∣sin qa
2

∣∣∣ . (11.10)

This relation does not contain the number of atoms anymore. For large N the points con-
stituting the curve in Fig. 11.3 will get closer and closer, finally leading to the continuous

1 As will be seen later, there is a close connection between this lower case q and the scattering vector upper case
Q. Nevertheless, they are not the same and care has to be taken not to mix up both q-s.
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ω

/ a+π/ a−π

Fig. 11.3: Dispersion relation in a linear chain with N = 40 atoms (Born-von-Kármán bound-
ary condition).

function (11.10). The individual positions of these points depend on the boundary condition.
But because they are getting infinitely dense for N → ∞ the exact boundary conditions do
not matter for a large system.

It can be seen that the dispersion relation (11.10) is periodic in q. On the other hand, there
are only N normal coordinates necessary to solve the N original equations of motion. This
is exactly the number of wave vectors found in a q interval of length 2π/a. The usual choice
is −π/a . . . π/a as a representative zone for the dispersion relation.

There are two modifications necessary when considering a real three-dimensional crystal in-
stead of this simplified model: (1) The crystal is periodic in three dimensions. (2) The vibra-
tions are governed by quantum mechanics. The first requirement leads to the consequence
that instead of a scalar, one has to use a real wave vector, q → q = (qx, qy, qz) in reciprocal
space. The interval defined in Fig. 11.3 changes into a polyhedron called the first Brillouin
zone (Fig. 11.4) [9, 10]. It is constructed in the same way as the Wigner-Seitz cell in real
space: The Brillouin zone contains all points which are closer to the origin than to any other
lattice point. Its surfaces are the bisecting planes between the origin and its neighbours (in
reciprocal space).

For every amplitude Ak equation (11.8) gives a valid solution of the equations of motion.
This means that in the classical picture the vibrations can have any energy. The quantum
mechanical treatment (which is too complex to be treated here in detail) leads to the result
that only certain energies with a distance of ~Ωk are allowed. This quantisation implies that
the vibrations can be treated as quasiparticles with the energy ~Ωk called phonons. The
increase of the vibrational amplitude corresponding to an energy change of +~Ωk is then
seen as a creation, the inverse process as an annihilation of a phonon. Then it makes sense
to define ~q as the momentum of the phonon. In this way the dispersion relation Ω(q) is
similar to the relations shown in Fig. 4.2 of lecture 4 for real particles.

The introduction of the quasiparticle (phonon) concept leads to the simple interpretation of



11.6 R. Zorn

Fig. 11.4: Brillouin zones for cubic lattices: (a) simple cubic, (b) face-centred cubic, (c) body-
centred cubic.

inelastic neutron scattering by vibrating lattices: The scattering process can be viewed as a
collision between phonons and neutrons. In this process the energy as well as the momentum
has to be conserved:

E ′ − E = ~ω = ±~Ω(q) , (11.11)
k′ − k = Q = ±q + τ . (11.12)

The second equation shows that the analogy with a two-particle collision is not complete.
A wave vector, changed by a lattice vector τ in reciprocal space, corresponds to the same
phonon. In the one-dimensional case, this can be seen from equation (11.6): If one adds
an integer multiple of N to k (corresponding to a multiple of 2π/a in q) all values of the
complex exponential remain the same. Analogously, in the three dimensional case adding a
lattice vector

τ = hτ1 + kτ2 + lτ3 (h, k, l ∈ Z) (11.13)

does not change anything and momentum has only to be conserved up to an arbitrary recip-
rocal lattice vector. The condition (11.12) can also be visualised by the Ewald construction
as done in lecture 4 for elastic scattering.

From the conservation laws (11.11) and (11.12) one expects that the scattering intensity has
sharp peaks at the positions where both conditions are fulfilled and is zero everywhere else.
This is indeed so for coherent scattering, unless effects as multi-phonon scattering and an-
harmonicity are strong (usually at higher temperatures). Therefore, inelastic scattering allows
the straightforward determination of the phonon dispersion relation as shown in Fig. 11.5 for
the example of NiO [11].

In this figure, it can be seen that some of the phonon ‘branches’ start at the origin (acoustic
phonons), as in the simple calculation of the one-dimensional chain. Others are ‘floating’
around high frequencies (optical phonons). The latter occur in materials with atoms of dif-
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g(ω)

ν
[T

H
z]

Fig. 11.5: Left: Phonon dispersion of NiO measured by inelastic neutron scattering. Frequen-
cies are expressed as ν = ω/2π and the wave vector is expressed in units of ζ = π/a. The lattice
is simple cubic, thus the symbols below the abscissa correspond to those in Fig. 11.4(a). Right:
Phonon density of states (see section 11.2.3) of NiO plotted to the same scale in frequency.

ferent weight or bond potential. (The one-dimensional chain would also produce these solu-
tions if the masses were chosen differently for even and odd j.) In this case, a mode, where
all atoms of a unit cell move roughly in phase, has the usual behaviour expected from the
monatomic chain. In particular the dispersion relation at low q is a proportionality:

Ω(q) = vq . (11.14)

This relation is typical for sound waves. v is the sound velocity, longitudinal or transverse
according to the type of phonons considered. In the polyatomic crystal or chain, there are
additional modes where the atoms move in anti-phase. This implies a much higher deforma-
tion of the bonds. These vibrations constitute the optical phonon branches. An interactive
simulation can be found at http://fermi.la.asu.edu/ccli/applets/phonon/
phonon.html [12] (Java required).

There is another difference between the one-dimensional chain and the three-dimensional
crystal visible. The atomic displacements are not simply scalars uj but vectors uj which
have a direction. This direction can be either parallel or perpendicular to to the wave vector
q. Depending on this, one speaks of longitudinal and transverse phonons. The usual no-
tation is LA, TA, LO, TO, where the first letter indicates the phonon polarisation and the
second whether it is acoustic or optical. An additional index as T1A is used for q directions
where the symmetry allows a distinction between the perpendicular orientations of uj . The
full mathematical expression for the phonon scattering [2] includes an intensity factor pro-
portional to |Q · uj|2. This factor obviously vanishes if Q and uj are perpendicular, implying
that purely transverse modes are unobservable in the first Brillouin zone where Q = q.

It has to be noted, that the above arguments only hold for coherent neutron scattering (see
equation (11.21) below) from crystalline materials. If the material is amorphous the coherent
scattering will be diffuse (as it is for incoherent scattering always). The readily understand-
able reason for this is that the definition of the phonon wave vector q requires a lattice.
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Finally, an indirect effect of vibrations on the elastic scattering should be mentioned. The
elastic scattering (also for x-ray scattering) is reduced by the Debye-Waller factor. This
reduction can be understood from a ‘hand-waving’ argument: Due to the thermal vibrations,
atoms are displaced by uj from their nominal lattice position. Although on the average 〈u〉
is zero, there will be a finite mean-square displacement 〈u2〉. The Debye-Waller factor can
be shown [2, 9] to be

exp (−〈(Q · u)〉) = exp
(
−Q2〈u2〉/3

)
(11.15)

where the second expression is only valid for isotropic conditions. It can be seen that the
attenuation of diffraction peaks increases with increasing Q and increasing mean-square dis-
placement, that is at higher temperature. Note, that this does not mean that elastic scattering
can observe dynamics, because a permanent static displacement of the atoms would have the
same effect.

The treatment of inelastic scattering by spin waves is very similar to that of deformation
waves above. In analogy to the phonon the quasiparticle “magnon” is introduced. Thereby,
the displacement uj is replaced by the orientation of the spin. The construction of normal
modes (Bloch waves) and the quantisation proceeds in the same way as for phonons. As
explained in lecture 7 neutrons interact with the nuclei as well as with the magnetic moments
of nuclei and electrons. Therefore, inelastic neutron scattering is also a tool for the detection
of magnons and this has been one of its first applications [13].

11.2.3 Scattering from diffusive processes

For the inelastic scattering from vibrational motions it was practical to consider the scattering
as a process between (quasi)particles, neutrons and phonons/magnons. But there are many
types of molecular motions, mostly irregular and only statistically defined, which cannot be
treated in this concept, e.g. thermally activated jumps or Brownian motion. For these motions
it is more adequate to use a concept of correlation functions to calculate the scattering.

Because these ‘diffusive’ processes are usually much slower than phonon frequencies it is in
most cases not necessary to treat them quantum-mechanically. Therefore, in this section, a
picture of the scattering material will be used where the positions of all scatterers are given
as functions of time rj(t) (trajectories)2. In this picture the double differential cross-section,
defined as the probability density that a neutron is scattered into a solid angle element dΩ
with an energy transfer ~ω . . . ~(ω + dω), is

dσ

dΩdω
=

1

2π

k′

k

∫ ∞
−∞

e−iωtdt
N∑

j,k=1

b∗jbk
〈
eiQ·(rk(t)−rj(0))

〉
. (11.16)

In order to derive a quantity similar to the structure factor S(Q) in lectures 4 and 5, one
assumes again a system of N chemically identical particles. Because the neutron scatter-
ing length is a nuclear property, there may still be a variance of scattering lengths. And
even in monisotopic systems, there may be such a variance due to disorder of the nuclear
spin orientations, since the scattering length also depends on the combined spin state of

2 This treatment also ignores that in the scattering process the trajectories of the scattering particles are modified,
i.e. recoil effects. The consequences of this approximation are outlined by the end of this section.
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the scattered neutron and the scattering nucleus3. Therefore, it is assumed that scatter-
ing lengths are randomly distributed with the average b = (1/N)

∑
j bi and the variance

|b|2 −
∣∣b∣∣2 =

∣∣b− b∣∣2 = (1/N)
∑

i

∣∣bj − b∣∣2. As will be seen later, this gives rise to the in-
coherent scattering contribution which is usually found in neutron scattering (in contrast to
x-ray scattering). The sum in expression (11.16) can be decomposed into one over different
indices and one over identical indices:

N∑
j,k=1

b∗jbke
iQ·(rk(t)−rj(0)) =

N∑
j 6=k=1

b∗jbke
iQ·(rk(t)−rj(0)) +

N∑
j=1

|bj|2eiQ·(rj(t)−rj(0)) . (11.17)

They have to be averaged in different ways with respect to the distribution of scattering
lengths. In the first term b∗j and bk can be averaged separately because the different particle
scattering lengths are uncorrelated: b∗ b = b

∗
b = |b|2. In the second term one has to average

after taking the absolute square:

=
N∑

j 6=k=1

|b|2eiQ·(rk(t)−rj(0)) +
N∑
j=1

|b|2eiQ·(rj(t)−rj(0)) . (11.18)

In order to avoid the sum over distinct particles, the first sum is complemented by the j = k
terms, |b|2eiQ·(rj(t)−rj(0)), and to compensate, these terms are subtracted in the second sum:

=
N∑

j,k=1

|b|2eiQ·(rk(t)−rj(0)) +
N∑
j=1

(
|b|2 − |b|2

)
eiQ·(rj(t)−rj(0)) . (11.19)

With this result it is possible to express the double differential cross section as

∂σ

∂Ω∂ω
= N

k′

k

(∣∣b∣∣2 Scoh(Q, ω) +
(
|b|2 −

∣∣b∣∣2)Sinc(Q, ω)
)

(11.20)

with

Scoh(Q, ω) =
1

2πN

∫ ∞
−∞

e−iωtdt
N∑

j,k=1

〈
eiQ·(rk(t)−rj(0))

〉
(11.21)

and

Sinc(Q, ω) =
1

2πN

∫ ∞
−∞

e−iωtdt
N∑
j=1

〈
eiQ·(rj(t)−rj(0))

〉
. (11.22)

The quantities defined by (11.21) and (11.22) are called coherent and incoherent scattering
function or dynamic structure factors. It is a peculiarity of neutron scattering that there is
also the incoherent term, which solely depends on the single particle dynamics due to the
variance of the scattering lengths.

The prefactors of the scattering functions in expression (11.20) are often replaced by the
scattering cross sections

σcoh = 4π
∣∣b∣∣2 , σinc = 4π

(
|b|2 −

∣∣b∣∣2) . (11.23)

3 In this section only nuclear non-magnetic scattering will be considered. For a full treatment of magnetic scattering
see lecture 7 or vol. 2 of ref. 2.
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They give the scattering into all directions, i.e. the solid angle 4π (for the incoherent part in
general and for the coherent in the limit Q→∞).

As demonstrated in ref. 2, it is also possible to use the concept of correlation functions
for phonons. In this way it is possible to calculate the scattering from phonons in terms
of Scoh(Q, ω) and Sinc(Q, ω). The result for the coherent scattering gives non-vanishing
contributions only for (Q, ω) combinations which fulfil the conservation laws (11.11) and
(11.12). This was already shown in section 11.2.2 but the explicit calculation gives also
the intensity of the phonon peaks, e.g. the mentioned result that transverse phonon peaks
vanish in the first Brillouin zone. But with this mathematical approach it is also possible to
calculate the incoherent scattering which is not bound to the momentum conservation (11.12).
The result is for inelastic incoherent neutron scattering from cubic crystals in the one-phonon
approximation [2]:

Sinc(Q, ω 6= 0) =
~Q2

2M
exp(−2W (Q))

g(|ω|)
ω

1

exp(~ω/kBT )− 1
(11.24)

high T limit−−−−−−→ exp(−2W (Q))
Q2kBT

2M

g(|ω|)
ω2

. (11.25)

(Here, exp(−2W (Q)) is a shorthand for the Debye-Waller factor (11.15).) From this expres-
sion it can be seen that the incoherent scattering is determined by the phonon density of states
g(ω) alone and does not depend on the full details of the phonon dispersion. The density
of states g(ω) is the projection of the phonon dispersion curves onto the frequency axis, as
demonstrated in Fig. 11.5. Besides nuclear inelastic scattering, which requires Mößbauer-
active nuclei, inelastic incoherent neutron scattering is the most important method to deter-
mine g(ω).

In some cases it is interesting to consider the part of expression (11.21) before the time-
frequency Fourier transform, called intermediate coherent scattering function:

Icoh(Q, t) =
1

N

∑
jk

〈
eiQ·(rk(t)−rj(0))

〉
. (11.26)

Its value for t = 0 expresses the correlation between atoms at equal times. A theorem on
Fourier transforms tells that this is identical to the integral of the scattering function over all
energy transfers:

Icoh(Q, 0) =
1

N

∑
jk

〈
eiQ·(rk−rj)

〉
= S(Q) =

∫ ∞
−∞

Scoh(Q, ω)dω . (11.27)

(S(Q) is the structure factor as derived in lectures 4 and 5 for the static situation.) This
integral relation has a concrete relevance in diffraction experiments. There, the energy of
the neutrons is not discriminated: The diffraction experiment implicitly integrates over all
~ω 4. Equation (11.27) shows that this integral corresponds to the instantaneous correlation

4 Strictly speaking, this is only an approximation. There are several reasons why the integration in the diffraction
experiment is not the ‘mathematical’ one of (11.27): (1) On the instrument the integral is taken along a curve of
constant 2θ in Fig. 11.2 while constant Q would correspond to a horizontal line. (2) The double differential cross-
section (11.20) contains a factor k′/k which depends on ω via (11.2). (3) The detector may have an efficiency
depending on wavelength which will introduce another ω-dependent weight in the experimental integration. All
these effects have been taken into account in the so-called Placzek corrections [8, 14, 15].
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of the atoms. The diffraction experiment performs a ‘snapshot’ of the structure. All dynamic
information is lost in the integration process and therefore it is invisible in a diffraction
experiment.

Similarly the incoherent intermediate scattering function is

Iinc(Q, t) =
1

N

N∑
j=1

〈
eiQ·(rj(t)−rj(0))

〉
(11.28)

with

Iinc(Q, 0) =
1

N

N∑
j=1

〈
eiQ·(rj−rj)

〉
= 1 =

∫ ∞
−∞

Sinc(Q, ω)dω . (11.29)

Note that this result is independent of the actual structure of the sample. Integration of the
double-differential cross section (11.20) over ω shows that also the static scattering contains
an incoherent contribution. But because of (11.29), this term is constant in Q. It contributes
as a flat background in addition to the S(Q)-dependent scattering. In some cases (e.g. small-
angle scattering) it may be necessary to correct for this, in other cases (e.g. diffraction with
polarisation analysis) it may even be helpful to normalise the coherent scattering.

In the paragraphs before it was shown, that the value of the intermediate scattering functions
at t = 0 corresponds to the integral of the scattering function over an infinite interval. This
is a consequence of a general property of the Fourier transform. There is also the inverse
relation that the value of S(Q, ω) at ω = 0 is related to the integral of I(Q, t) over all
times. The most important case is here when I(Q, t) does not decay to zero for infinite
time, but to a finite value f(Q). In that case the integral is infinite, implying that S(Q, ω)
has a delta function contribution at ω = 0. This means that the scattering contains a strictly
elastic component. Its strength can be calculated by decomposing the intermediate scattering
function into a completely decaying part and a constant for the coherent and the incoherent
scattering:

I[coh|inc](Q, t) = I inel
[coh|inc](Q, t) + f[coh|inc](Q) . (11.30)

Because the Fourier transform of constant one is the delta function this corresponds to

S[coh|inc](Q, ω) = Sinel
[coh|inc](Q, ω) + Sel

[coh|inc](Q)δ(ω) , (11.31)

where Sel
[coh|inc](Q) = f[coh|inc](Q), the elastic coherent/incoherent structure factor (EISF), can

be written as

Sel
coh(Q) =

1

N

N∑
j,k=1

〈
eiQ·(rk(∞)−rj(0))

〉
, (11.32)

Sel
inc(Q) =

1

N

N∑
j=1

〈
eiQ·(rj(∞)−rj(0))

〉
. (11.33)

Here, t =∞ indicates a time which is sufficiently long that the correlation with the position
at t = 0 is lost. For the EISF this lack of correlation implies that the terms with initial and
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final positions can be averaged separately:

Sel
inc(Q) =

1

N

N∑
j=1

〈
eiQ·rj

〉 〈
e−iQ·rj

〉
=

1

N

N∑
j=1

∣∣e−iQ·rj
∣∣2 (11.34)

=
1

N

N∑
j=1

∣∣∣∣∫
V

d3r exp (iQ · r) ρj(r)
∣∣∣∣2 . (11.35)

Here, ρj(r) denotes the ‘density of particle j’, i.e. the probability density of the individ-
ual particle j being at r. From (11.34) one can see that the normalisation of the EISF
is Sel

inc(0) = 1 (in contrast to that of the structure factor, limQ→∞ S(Q) = 1). One can
say that the EISF is the form factor of the volume confining the motion of the parti-
cles. E.g. for particles performing any kind of motion within a sphere, the EISF would
be Sel

inc(Q) = 9 (sin(QR)−QR cos(QR))2 /Q6R6 as derived in lecture 5.

As in the static situation, the scattering law can be traced back to distance distribution func-
tions. These are now (in the treatment of inelastic scattering) time-dependent. They are
called van Hove correlation functions:

G(r, t) =
1

N

〈
N∑

j,k=1

δ(r− rk(t) + rj(0))

〉
, (11.36)

Gs(r, t) =
1

N

〈
N∑
j=1

δ(r− rj(t) + rj(0))

〉
. (11.37)

Insertion into

I[coh|inc] =

∫
Vd

G[s](r, t) exp(iQ · r)d3r (11.38)

directly proves that the spatial Fourier transforms of the van Hove correlation function are
the intermediate scattering functions.

The two particle version can be reduced to the microscopic density,

ρ(r, t) =
N∑
j=1

δ(r− rj(t)) . (11.39)

Its autocorrelation function in space and time is

〈ρ(0, 0)ρ(r, t)〉 . (11.40)

The 0 is showing that translational symmetry is assumed. So the correlation function can be
replaced by its average over all starting points r1 in the sample volume:

〈ρ(0, 0)ρ(r, t)〉 =
1

V

∫
V

d3r1〈ρ(r1, 0)ρ(r1 + r, t)〉 . (11.41)
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Insertion of (11.39) gives

〈ρ(0, 0)ρ(r, t)〉 =
1

V

〈
N∑

j,k=1

∫
V

d3r1δ(r1 − rk(t))δ(r1 + r− rj(t))

〉
(11.42)

=
1

V

〈
N∑

j,k=1

δ(rk(t) + r− rj(t))

〉
. (11.43)

Together with (11.36) this implies

G(r, t) =
1

ρ0

〈ρ(0, 0)ρ(r, t)〉 . (11.44)

Again setting t = 0 results in the static scattering situation:

G(r, 0) =
〈ρ(0, 0)ρ(r, 0)〉

ρ0

= δ(r) + ρ0g(r) (11.45)

with g(r) as defined in lecture 5.

As in the case of static scattering there is an alternative way to derive the scattering function
by Fourier-transforming the density

ρQ(t) =

∫
d3reiQ·rρ(r, t) =

N∑
j=1

eiQ·rj(t) (11.46)

and then multiplying its conjugated value at t = 0 with that at t:

Icoh(Q, t) =
1

N

〈
ρ∗Q(0)ρQ(t)

〉
(11.47)

and
Scoh(Q, ω) =

1

2πN

∫ ∞
−∞

e−iωt
〈
ρ∗Q(0)ρQ(t)

〉
dt . (11.48)

(This is a consequence of the cross-correlation theorem of Fourier transform which is the
generalisation of the Wiener-Khintchine theorem for two different correlated quantities.)

Note that a reduction of the self correlation function Gs(r, t) to the density is not possible
in the same way. The multiplication ρ(0, 0)ρ(r, t) in equation (11.44) inevitably includes all
combinations of particles j, k and not only the terms for identical particles j, j. Therefore,
the incoherent scattering cannot be derived from the density alone but requires the knowledge
of the motion of the individual particles.

From the definitions (11.36) and (11.37) it is immediately clear that the van Hove correlation
functions (as defined here) are symmetric in time

G[s](r,−t) = G[s](r, t) . (11.49)

if the system is dynamically symmetric to an inversion of space. From (11.49) and general
properties of the Fourier transform it follows that I(Q, t) is real and that it is also symmetric
in time:

I(Q,−t) = I(Q, t) . (11.50)
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In turn this implies that the scattering functions are real and symmetric in energy transfer
~ω:

S(Q,−ω) = S(Q, ω) . (11.51)

It can be seen that this identity violates the principle of detailed balance. Up- and downscat-
tering should rather be related by

S(Q,−ω) = exp

(
~ω
kBT

)
S(Q, ω) . (11.52)

The reason for this is that (as mentioned in footnote 2) the influence of the neutron’s im-
pact on the motion of the system particles is neglected. This would be included in a full
quantum-mechanical treatment as carried out in ref. 2 or ref. 8 where the detailed balance re-
lation (11.52) emerges in a natural way. Note that equation (11.52) implies that both I(Q, t)
and G[s](r, t) are complex functions. (This is not ‘unphysical’ because they are no directly
measurable quantities in contrast to S(Q,ω) which is proportional to dσ/dΩdω. Even neu-
tron spin-echo measures only the real part of I(Q, t), see equation (11.69).)

Because the detailed balance relation (11.52) is also valid in classical thermodynamics (and
also recoil can be understood in the framework of classical mechanics) there should be a way
to derive a correct result from a classical treatment of the system too. This task is important
because only rather simple systems can be treated quantum-mechanically. Especially, results
from molecular dynamics computer simulations are classical results. The result for S(Q, ω)
derived here is obviously only a crude approximation. Better approximations can be obtained
by applying correction factors restoring (11.52) [17–19]. The exact classical calculation is
rather complicated [20] and requires knowledge of the system beyond just the trajectories of
the particles.

Inelastic scattering is often also called neutron (scattering) spectroscopy. That there is indeed
a relation to better-known spectroscopic methods as light spectroscopy, can be seen from the
dependence of the scattering function on a frequency ω. It can be said that inelastic neutron
scattering, for every Q, produces a spectrum, understood as the frequency dependence of a
quantity, here the scattering cross section. The optical methods Raman- and Brillouin spec-
troscopy are completely analogous in this respect, yielding the same S(Q, ω) but different
measured double-differential cross-sections because photons interact with matter differently.
Other methods, as absorption spectroscopy, impedance spectroscopy or rheology do not yield
a Q dependence and are thus insensitive to the molecular structure. They provide only in-
formation about the overall dynamics. The deeper reason for this analogy is that scattering
experiments as well as ‘ordinary’ spectroscopy can be explained by linear response theory
(appendix B of ref. 2 or ref. 16).

Example: diffusion

For simple diffusion the density develops in time following Fick’s second law,

∂ρ

∂t
= D∆ρ ≡ D

(
∂2ρ

∂x2
+
∂2ρ

∂y2
+
∂2ρ

∂z2

)
. (11.53)

The underlying mechanism is Brownian motion, i.e. random collisions with solvent
molecules. Therefore, it can be concluded from the central limit theorem of statistics that
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the density of particles initially assembled at the origin is a Gaussian in all coordinates:

ρ1 =
1√
2πσ

exp

(
− x2

2σ2

)
1√
2πσ

exp

(
− y2

2σ2

)
1√
2πσ

exp

(
− z2

2σ2

)
=

1

(2π)3/2σ3
exp

(
− r2

2σ2

)
. (11.54)

The index 1 should remind that the prefactor is chosen such that the total particle number∫
ρ1 d3r is normalised to one. The width of the distribution, σ has the dimension length. The

only way to construct a length out of D (dimension length2/time) and time is σ = c
√
Dt

where c is a dimensionless constant. Inserting this into (11.54) yields:

ρ1 =
1

c3(2πDt)3/2
exp

(
− r2

2c2Dt

)
. (11.55)

The derivatives of this expression with respect to t and x, y, z can be calculated and inserted
into (11.53):

√
2 (r2 − 3c2Dt)

8π3/2c5D5/2t7/2
exp

(
− r2

2c2Dt

)
=

√
2 (r2 − 3c2Dt)

4π3/2c7D7/2t7/2
exp

(
− r2

2c2Dt

)
. (11.56)

One can see that the right- and left-hand side are identical if c =
√

2. This proves that the
‘guess’ (11.54) is indeed a solution of Fick’s second law and also determines the unknown
c. With the value of c substituted, the ‘single particle density’ is

ρ1 =
1

(4πDt)3/2
exp

(
− r2

4Dt

)
. (11.57)

Diffusion-like processes are often characterised by the mean-square displacement 〈r2〉 5. Be-
cause of the statistical isotropy, the average displacement 〈r〉 is always zero. Therefore, the
characterisation of the mobility of a diffusional process has to be done using the second
moment, which is the average of the square of the displacement. For the simple Fickian
diffusion this can be calculated from (11.57):

〈r2〉 =

∫
ρ1r

24πr2d3r = 6Dt . (11.58)

For incoherent scattering the starting position r(0) is irrelevant. Therefore, expression (11.57)
is also Gs(r, t). Because the Fourier transform of a Gaussian function is a Gaussian itself,
the corresponding incoherent intermediate scattering function is

Iinc(Q, t) = exp
(
−DQ2t

)
, (11.59)

5 Here, the definition is “displacement from the position at t = 0” rather than “displacement from a potential
minimum” on page 8. This is an obvious choice because the diffusing particle is not subjected to a potential as
the atom in a crystal. Therefore, there is nothing like an ‘equilibrium position’. This difference is indicated by the
usage of 〈r2〉 instead of 〈u2〉. Because in the case of motion in a potential the displacement between time zero and
time t can be understood as the difference of the displacements at time zero from the equilibrium position and that
at time t, it follows that 〈r2〉 = 2〈u2〉
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and because the Fourier transform of an exponential decay is a Lorentzian the incoherent
scattering function is

Sinc(Q,ω) =
1

π

DQ2

ω2 + (DQ2)2 . (11.60)

This function is centred around ω = 0, and for that reason the scattering is called quasielas-
tic. This is typical for diffusionlike processes in contrast to vibrational processes which yield
(phonon) peaks at finite energy transfers. For this reason, many textbook authors distinguish
between inelastic and quasielastic neutron scattering instead of subsuming the latter under
the former as done here6.

From expression (11.59) one can see that Iinc(Q, t) decays faster with time for larger Q and
from (11.60) that Sinc(Q,ω) is getting broader. This is understandable because Q defines the
spatial resolution of a neutron scattering experiment in a reciprocal way. So a larger Q means
observation on shorter distances which can be travelled faster by the diffusing particle.

Finally, one can see that

Iinc(Q, t) = exp

(
−Q

2〈r2〉
6

)
. (11.61)

Because this expression is derived independently of the specific form of σ(t) in (11.54) it is
generally valid if the distribution of displacements Gs(r, t) is a Gaussian. Even if this is not
the case, equation (11.61) is often a good low-Q approximation called the Gaussian approx-
imation7 and is the dynamical analogue of to the Guinier approximation of static scattering.

In general, the incoherent intermediate scattering function cannot be derived from the mean-
square displacement alone. Because equation (11.61) is the first term of the cumulant expan-
sion exp(aQ2 + bQ4 + . . . ) of Iinc(Q, t) [21] the mean-square displacement can be calculated
as

〈r2〉 = − lim
Q→0

6

Q2
ln Iinc(Q, t) or (11.62)

〈r2〉 = − d ln Iinc(Q, t)

dQ2

∣∣∣∣
Q=0

. (11.63)

By replacing Iinc(Q, t) by its value at infinite time, the EISF Sel
inc(Q), the limiting mean-

square displacement of a confined motion can be obtained. This is the principle of the elastic
scan technique often used on neutron backscattering spectrometers [22].

6 There are two reasons for the choice made here: (1) The correlation function approach is also applicable to
phonons. So, if this method is used, there is no conceptual difference between the treatment of vibrations and
diffusion. (2) There are models as the damped harmonic oscillator which yield a continuous transition between
inelastic scattering in the underdamped case and quasielastic scattering in the overdamped case.
7 In the literature, denominators 1, 2, and 3 are also found in this expression. Most of these formulae are never-
theless correct. Some authors use 〈r2〉 as mean-square displacement from an average position (what is called 〈u2〉
here). Then, 3 is the correct denominator because of 〈r2〉 = 2〈u2〉 (footnote 5). If the displacement is considered
only in one coordinate (〈x2〉), then 2 is the right denominator.
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Fig. 11.6: Schematic setup of a triple-axis spectrometer.

11.3 Instrumentation

11.3.1 Triple axis spectrometer

The basic objective of inelastic neutron scattering is to measure the momentum transfer
q = k′ − k and the energy transfer ~ω = E ′ −E. This task in general requires a monochro-
mator for the incoming neutron beam and an analyzer for the scattered neutrons. In the
most straightforward setup, the triple-axis spectrometer (3AX), one uses the Bragg planes of
crystals similar to the diffracting grids in an optical spectrometer (figure 11.6).

Axis 1 turns the monochromator crystal. By doing this the neutron wavelength fulfilling the
Bragg condition can be changed. In this way the wave vector k = 2π/λ of the neutrons
impinging on the sample is determined. Axis 2 turns the arm carrying the analyser crystal
around the sample position. This defines the scattering angle 2θ. Finally, axis 3 turns the
analyser crystal around its own axis such that only the desired k′ is admitted to the detector.

For a given setting of axis 1 all points in the kinematically allowed (Q,ω) area (see Fig. 11.2)
can be addressed by suitable settings of axis 2 and 3. E.g., for the study of phonons usually
a ‘constant-Q scan’ is performed where Q = k′ − k is held constant and only ~ω = E ′ − E
is varied. For this purpose a coordinated change of the angles of axis 2 and 3 is required
which is accomplished by computer control.

Historically, the triple-axis spectrometer is the first inelastic neutron scattering instrument.
The first prototype was constructed in 1955 by Bertram N. Brockhouse. In 1994, Brockhouse
received the Nobel prize for this accomplishment (together with Clifford G. Shull for the
development of neutron diffraction).

The 3AX spectrometer is still widely in use for purposes where a high Q resolution is nec-
essary and only a small region in the (Q,ω) plane has to be examined. This is mostly the
study of phonons and magnons in crystals. In other fields, e.g. for ‘soft matter’ systems, it
has been replaced by instruments showing better performance. The most important ones will
be discussed here: time-of-flight (TOF) spectrometer, backscattering (BS) spectrometer, and
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Fig. 11.7: Schematic setup of a time-of-flight spectrometer with crystal monochromator.

neutron spin echo (NSE) spectrometer.

11.3.2 Time-of-flight spectrometer

The main disadvantage of the 3AX spectrometer is that it can only observe one (Q,ω) point
at a time. While for samples where the scattering is concentrated into Bragg peaks this may
be acceptable, for systems with diffuse scattering a simultaneous observation of a range of Q
vectors and energy transfers ~ω is desired. This is accomplished by surrounding the sample
position with an array of detectors (figure 11.7). In addition the energy of the scattered
neutrons E ′ is here measured by their time of flight: A chopper in the incident beam defines
the start time of the neutrons. The electronic pulse from their registration in the detector
gives the end of their flight through the spectrometer. From the time difference the velocity
of the neutrons can be calculated and from this in turn the energy transfer. The relation
between time-of-flight and energy transfer is given by

~ω =

 l1
2(

l0 −
√
E/mntflight

)2 − 1

E . (11.64)

The monochromatization of the incoming neutron beam can either be done by Bragg reflec-
tion from a crystal or by a sequence of choppers which are phased in order to transmit a
single wavelength only. The former principle usually yields higher intensities while the latter
is more flexible for the selection of the incident energy E and attains better energy resolution.
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Fig. 11.8: Left: raw data from TOF spectrometer: neutron counts in a time channel of 10µs
during one hour registration time. The sample is a mesoscopically confined glass-forming liq-
uid. The floating non-linear axis indicates the energy transfers calculated by equation (11.64).
Because of the strength of the elastic scattering that part of the spectrum has been reduced by
a factor of 200. Right: the same TOF data converted to S(Q,ω), elastic line reduced by factor
1000. The characteristic vibrational modes of the material at ~ω ≈ 1.7 meV (14 cm−1) become
only visible after the transformation.

Instrument Type λi [Å] Qmax [Å−1] ∆~ω [meV]
IN4 (ILL) TX 0.8–4 3–14 0.25–6
IN5 (ILL) CC 2–15 0.8–5.7 0.01–6
IN6 (ILL) CX 4.1–5.9 1.8–2.6 0.05–0.17
NEAT (HMI) CC 1.8–19 0.6–6.5 0.006–5
IRIS (RAL) CI λf = 3.3–20 0.6–3.7 0.001–0.055
BASIS (ORNL) CI λf = 6.27 2.0 0.0035

Table 11.1: Basic specifications of representative neutron time-of-flight spectrometers. Instru-
ment types: TX–thermal, crystal; CX–cold, crystal; CC–cold, chopper; CI–cold, inverse. The
maximal Q and the energy resolution ∆~ω depend on the incident wavelength; the upper limits
of their ranges correspond to the lower limit of the incident wavelength λi and vice versa.

Table 11.1 shows some representative TOF instruments with their basic specifications. De-
pending on the desired incident wavelength the instruments are constructed either using neu-
trons directly from the reactor moderator (thermal neutrons, λmax ≈ 1.8 Å) or a cold source,
where an additional moderation, e.g. by liquid hydrogen, takes place (λmax ≈ 4 Å). Thermal
neutrons make a larger Q range accessible while cold neutrons yield better energy resolu-
tion. Therefore, the choice of the instrument depends on the system to be observed but in
general ‘cold neutron’ instruments are preferred for inelastic neutron scattering in soft matter
systems.

A variant of the TOF spectrometer exists on spallation sources, the inverse time-of-flight
spectrometer. Because the neutrons are produced in pulses by a spallation source one can
use their creation time to start the TOF clock and in principle there is no need for a chopper.
In this way all neutrons can be used in contrast to conventional TOF spectrometers which
use only a few percent. Then usually the incident energy is measured by the time-of-flight
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and the final energy is kept constant by a fixed set of analyzer crystals (“inverse geometry”).
By putting those crystals into near backscattering postion (see next section for details) it is
possible to obtain a very good energy resolution already close to true backscattering spec-
trometers. Of course as a direct consequence of the good resolution function the count rates
are low, especially with current spallation sources which have total neutron production rates
significantly lower than reactors.

11.3.3 Backscattering spectrometer

A recurring problem of inelastic neutron scattering investigations is that processes are too
slow to be observed. Without resorting to extreme setups which lead to a loss of intensity,
the energy resolution of TOF spectrometers is limited to about 10µeV, which corresponds to
a maximal timescale of 200 ps. This is often not sufficient for e.g. the large scale motions
in polymers or the glass transition related relaxation. Therefore, instruments with highest
energy resolution are often needed, the backscattering (BS) and neutron spin echo (NSE)
spectrometer.

The energy resolution of a TOF spectrometer is limited by the selectivity of the monochro-
mator crystal8. If perfect crystals are used the spread of the selected wavelengths ∆λ/λ is
determined by the angular divergence ∆α of the reflected neutrons. Differentiating the Bragg
condition λ = 2 sin θ/d one obtains

∆λ/λ = cot θ ·∆θ . (11.65)

This expression becomes zero for 2θ = 180◦. In practice this means that the wavelength
spread becomes minimal if the neutron beam is reflected by 180◦, i.e. in backscattering con-
dition.

Figure 11.9 shows schematically the instrument based on this principle. The first crystal in
the beam is only a deflector with low wavelength selectivity. The actual monochromatiza-
tion takes place upon the second reflection by the crystal in backscattering position. The
monochromatized neutrons are then scattered by the sample which is surrounded by analyzer
crystals placed on a spherical surface. There they are again scattered under backscattering
condition. The reflected neutrons pass once more through the sample and finally reach the
detector.

It can be seen that the backscattering condition leads to technical problems in several places:
(1) The deflector must not accept all neutrons otherwise the monochromatized beam would
be scattered back into the source. This can be solved by reducing its size deliberately below
the neutron beam area or putting it on a rotating disk which removes it at the moment when
the neutrons come back from the monochromator. Of course all these measures are taken
at the expense of intensity. (2) The second passage of the scattered neutrons through the
sample causes additional multiple scattering and absorption. Both problems can be avoided
by leaving exact backscattering condition but with the consequence that the energy resolution
degrades.

8 For chopper spectrometers the limit is given by the pulse length which could in principle be arbitrary small. But
since the counted intensity decreases quadratically with pulse length the resolution limit of an efficient experiment
is in the same range.
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Fig. 11.9: Schematic setup of a backscattering spectrometer.

Instrument Type λ [Å] Qmax [Å−1] ∆~ω [µeV] ~ωmax [µeV]
IN16B (ILL) CD 6.27 1.8 0.75 31
IN10B (ILL) CH 6.29 2.0 1.5 120
IN13 (ILL) TH 2.23 5.5 8 300
SPHERES (JCNS) CD 6.27 1.8 0.7 30

Table 11.2: Basic specifications of representative neutron time-of-flight spectrometers. In-
strument types: CD–cold, Doppler monochromator; CH–cold, heated monochromator; TH–
thermal, heated monochromator. The maximal Q and the energy resolution ∆~ω depend on
the incident wavelength; the upper limits of their ranges correspond to the lower limit of the
incident wavelength λi and vice versa.

So far it seems that the backscattering instrument can only observe elastic scattering (E ′ =
E) if the same crystals are used for monochromator and analyzer. In order to do inelas-
tic scattering one has to change either E or E ′. It turns out that this is much easier for
the incident energy by either using a moving monochromator (Doppler effect) or a heated
monochromator (thermal expansion modifying the lattice plane distance d). The latter tech-
nique usually allows larger energy transfers. For very large energy transfers, different crys-
tals are used for monochromator and analyzer, yielding an offset of the whole ~ω range.
Table 11.2 comprises specifications of representative BS spectrometers.

11.3.4 Neutron spin echo spectrometer

In order to access even slower processes a very high resolution technique is needed allowing
to reach more than 100 nanoseconds corresponding to energy transfers in the neV range.
Such a technique is provided by neutron spin echo (NSE) spectrometers [23] which are able
to measure directly energy changes of the neutron due to scattering.
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Fig. 11.10: Schematic setup of a neutron spin echo spectrometer.

This distinguishes NSE from conventional inelastic neutron scattering techniques which pro-
ceed in two steps: (1) monochromatization of the incident beam to E, (2) analysis of the
scattered beam (E ′). The energy transfer is then determined by taking the difference E ′−E.
In order to achieve high energy resolutions with these conventional techniques a very narrow
energy interval must be selected from the relatively low-intensity neutron spectrum of the
source. Conventional high-resolution techniques therefore inevitably run into the problem of
low count rates at the detector.

Unlike these methods, NSE measures the individual velocities of the incident and scattered
neutrons using the Larmor precession of the neutron spin in a magnetic field. The neutron
spin vector acts as the hand of an internal clock, which is linked to each neutron and connects
the result of the velocity measurement to the neutron itself. Thereby the velocities before and
after scattering on one and the same neutron can be compared and a direct measurement of
the velocity difference becomes possible. The energy resolution is thus decoupled from the
monochromatization of the incident beam. Relative energy resolutions in the order of 10−5

can be achieved with an incident neutron spectrum of 20% bandwidth.

The motion of the neutron polarization P(t)—which is the quantum mechanical expectancy
value of the neutron spin—is described by the Bloch equation

dP

dt
=
γµ

~
(P×B) (11.66)

where γ is the gyromagnetic ratio (γ = −3.82) of the neutron, µ the nuclear magneton and B
the magnetic field. Equation (11.66) is the basis for manipulation of the neutron polarization
by external fields. In particular, if a neutron of wavelength λ is exposed to a magnetic field
B over a length l of its flight path, its spin is rotated by

φ =

(
2π|γ|µλm

h2

)
Bl . (11.67)

The basic setup of an NSE spectrometer is shown in figure 11.10. A velocity selector in the
primary neutron beam selects a wavelength interval of 10–20% width. In the primary and
secondary flight path of the instrument precession fields B and B′ parallel to the respective
path are generated by cylindrical coils. Before entering the first flight path the neutron beam
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is polarized in forward direction9. Firstly, a π/2 flipper rotates the polarization to the x
direction perpendicular to the direction of propagation (z). This is done by exposing the
neutrons to a well defined field for a time defined by their speed and the thickness of a
flat coil (Mezei coil). Beginning with this well-defined initial condition the neutrons start
their precession in the field B. After being scattered by the sample the neutrons pass a π
flipper and then pass the second precession field B′. Finally, the neutrons pass another π/2
coil which, under certain conditions, restores their initial polarization parallel to their flight
direction. In order to understand what that condition is, one has to trace the changes of the
spin vector (z always denoting the direction parallel to neutron propagation):

(nx, ny, nz) neutronic device

(0,0,1)
π/2 flipper

(1,0,0)
field B

(cosφ, sinφ, 0)
π flipper

(cosφ,− sinφ, 0) =
(cos(−φ), sin(−φ), 0)

field B′
(cos(φ′ − φ), sin(φ′ − φ), 0)

π/2 flipper
(0, sin(φ− φ′), cos(φ− φ′))

In total, the spin is rotated by φ − φ′ around the x axis when a neutron passes through
the spectrometer. This means that the final polarization is identical to the incident if
φ = φ′ (+2πn), especially if λi = λf (elastic scattering) and

∫ l
0
Bdz =

∫ l′
0
B′dz (for ho-

mogeneous fields: Bl = B′l′) as follows from (11.67). This condition is called “spin echo”
and is independent of the individual velocities of the neutrons because their difference alone
determines φ− φ′.

Leaving spin echo condition the probability of a single neutron to reach the detector is re-
duced due to the polarization analyzer by cos(φ′ − φ). If we keep the symmetry of the
instrument, Bl = B′l′, but consider inelastic scattering the precession angle mismatch can be
approximated by

φ′ − φ =

(
2π|γ|µm

h2

)
Bl(λf − λi)

≈ |γ|µmn
2λ3Bl

h3︸ ︷︷ ︸
=tNSE(B)

ω (11.68)

for small energy transfers where ∆λ ≈ ~ω
/

dE
dλ

can be used. Because the energy transfer
for inelastic scattering is not fixed but distributed as determined by the scattering function
S(Q,ω) we have to average the factor cos(φ′ − φ) weighted by S(Q,ω) to get the reduction
of count rate at the detector, the effective polarization

P (Q, tNSE) =

∫∞
−∞ S(Q,ω) cos(ωtNSE)dω∫∞

−∞ S(Q,ω)dω
. (11.69)

9 This is done by a a “polarizing supermirror” which only reflects neutrons of that spin—similar to the Nicol prism
in optics.
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Instrument λ [Å] Qmax [Å−1] tmax [ns]
IN11 (ILL) 4.5–12 0.9–2.4 2–45
IN15 (ILL) 8–25 0.13–0.4 30–1000
J-NSE (JCNS) 4.5–16 0.4–1.5 10–350
WASP (ILL, under construction) 3.5–12 1.0–3.5 2–70

Table 11.3: Basic specifications of representative neutron spin echo spectrometers. The maxi-
mal Q and the maximal Fourier time tmax depend on the incident wavelength; the upper limit of
the Q range and the lower limit of tmax correspond to the lower limit of the incident wavelength
λ and vice versa.

Firstly, we note that S(Q,ω) in this expression usually is the coherent scattering function.
In principle, similar arguments can used for incoherent scattering because a well-defined
fraction of neutrons changes its spin. This leads to a “negative echo” because the majority
of neutrons invert their polarization. But because this effect is only partial (e.g. 2/3 for
Hydrogen nuclei) it is much more difficult to observe. Only recently, NSE spectroscopy
could be applied successfully to incoherently scattering samples.

Secondly, expression (11.69) reverses the temporal Fourier transform of equation (11.21) and
therefore the result of the NSE experiment

P (Q, tNSE(B)) =
I(Q, tNSE(B))

I(Q, 0)
(11.70)

is the normalised intermediate scattering function. This function is often more understandable
and easier to interpret than the frequency dependent scattering function.

In order to estimate typical Fourier times tNSE which can be accessed by NSE we consider
maximum fields of B = B′ = 500 Gauss in precession coils of l = l′ = 2 m length operating
at λ = 8 Å. Then (11.68) results in a time of about 10 ns which can be reached.

From this equation it also becomes clear that the most efficient way to enlarge this time
is to use longer wavelengths because λ enters in the third power. This in turn reduces the
accessible Q range which constitutes a drawback for studies on low molecular materials but
not for the large scale properties of polymers which have to be observed at low Q anyway.

Typical NSE spectrometers with their specifications are listed in table 11.3. NSE spectrom-
eters are very flexible instruments often used with different setups of which only “typical”
ones have been included. As special features have to be mentioned that IN11 and SPAN
have one-dimensional detector arrays which span 60◦ and 150◦ degrees respectively, allow-
ing the simultaneous observation of a range of Q values. The instruments IN15 and J-NSE
have two-dimensional detector arrays which can be used for studying anisotropies but cover
a smaller angular range. IN15 uses a focusing mirror in order to increase neutron flux which
would be otherwise very low due to its long precession coils.
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Exercises

Note: Exercises are labelled by stars (* through ***) indicating the level of difficulty. Try to
solve the easier ones first.

E11.1 Scattering triangle

For the feasibility of an inelastic neutron scattering experiment it is essential that the desired
Q, ~ω combination (in the scattering function S(Q,ω) can be reached at a certain combina-
tion of incident neutron wavelength λ and angle 2θ.

1. (*) λ = 5.1 Å, 2θ = 90◦ and ~ω = 5 meV, which value has Q? Which value would Q
have calculated from the formula for elastic scattering?

2. (**) λ = 5.1 Å, Q = 1 Å−1, what is the largest energy gain and largest absolute energy
loss one can reach? What do you have to do if you need larger values of |~ω|? (Hint:
Do not try to solve this question analytically but geometrically! Take figure 11.1, draw
k with some chosen scale and the circle on which Q = 1 Å−1 to the same scale.
You will immediately see which conditions correspond to the two extrema and that the
resulting expressions are much simpler than (11.2).)

3. (***): (neutron Brillouin scattering) One of the most demanding tasks of inelastic neu-
tron scattering is the measurement of sound waves, i.e. Brillouin scattering. A typical
sound velocity for a metal is v = 2500 m/s. If you would like to observe the Brillouin
peaks at Q = 1.5 Å−1 what would be ~ω? At what values of 2θ can you observe the
Brillouin lines using an incident wavelength λ = 1 Å? What happens for longer wave-
lengths as λ = 2 Å and 1.8 Å? (You can also answer these questions approximately by
a geometrical construction as before.) What experiment-technical challenges does your
result present? Why could you be still interested to do this experiment with neutrons
and not with light? Do you need coherent or incoherent scattering? Which sound will
you see, longitudinal or transverse?

Numbers and formulae: ~ = 1.0546 × 10−34 Js, neutron mass: m = 1.6749 × 10−27 kg,
1 eV = 1.6022× 10−19 J. The relations between E, k, and λ of the neutron are in lectures 2
and 3.

E11.2 Q dependence of characteristic time∗∗

In many cases, the incoherent intermediate scattering function can be written in the form
Iinc(Q, t) = exp

(
−(t/τ(Q))β

)
with τ(Q) ∝ Q−x. In the lecture, diffusion (x = 2, β = 1)

was presented. In a later lecture you will learn that for polymers in the melt x = 4, β = 1/2
holds. For polymers in solution the Zimm model predicts x = 3, β = 2/3. For the ideal gas:
x = 1, β = 2. In all cases x · β = 2. What is the reason for this nearly universal relation?
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E11.3 Jump diffusion in a confined space∗∗∗

In the lecture, it was shown that for diffusion the incoherent scattering function is

Sinc(Q,ω) =
1

π

DQ2

ω2 + (DQ2)2 .

This function (‘Lorentzian’) has a width of w = 2DQ2 at half its maximum value. The
‘hand-waving’ argument for this is that Q defines a length scale of observation l ≈ 2π/Q.
The average time it takes a particle to diffuse out of this length scale is τ = l2/D ∼ D−1Q−2.
The Fourier transform from time to ω causes the width of S(Q,ω) to be related by w ∼
1/τ ∼ DQ2.

In reality where diffusion is constituted from individual steps and on the long end may be
limited by some confinement e.g. a pore wall, the dependence of the width w on Q may look
like this:

The Q−2 law is only valid in a small range. Can you explain this from the ‘hand-waving’
argument above? Where are the kinks in the double-logarithmic plot located approximately
in terms of the dimensions a and R?
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12.1 Introduction

Materials with strong electronic correlations are materials, in which the movement of one elec-

tron depends on the positions and movements of all other electrons due to the long-range

Coulomb interaction. With this definition, one would naively think that all materials show

strong electronic correlations. However, in purely ionic systems, the electrons are confined

to the immediate neighborhood of the respective atomic nucleus. On the other hand, in ideal

metallic systems, the other conduction electrons screen the long-range Coulomb interaction.

Therefore, while electronic correlations are also present in these systems and lead for example

to magnetism, the main properties of the systems can be explained in simple models, where

electronic correlations are either entirely neglected (e.g. the free electron Fermi gas) or taken

into account only in low order approximations (Fermi liquid, exchange interactions in mag-

netism etc.). In highly correlated electron systems, simple approximations break down and

entirely new phenomena and functionalities can appear. These so-called emergent phenomena

cannot be anticipated from the local interactions among the electrons and between the electrons

and the lattice [1]. This is a typical example of complexity: the laws that describe the behavior

of a complex system are qualitatively different from those that govern its units [2]. This is what

makes highly correlated electron systems a research field at the very forefront of condensed

matter research. The current challenge in condensed matter physics is that we cannot reliably

predict the properties of these materials. There is no theory, which can handle this huge num-

ber of interacting degrees of freedom. While the underlying fundamental principles of quantum

mechanics (Schrödinger equation or relativistic Dirac equation) and statistical mechanics (max-

imization of entropy) are well known, there is no way at present to solve the many-body problem

for some 1023 particles. Some of the exotic properties of strongly correlated electron systems

and examples of emergent phenomena and novel functionalities are:

≥ High temperature superconductivity; while this phenomenon was discovered in 1986 by

Bednorz and Müller [3], who received the Nobel Prize for this discovery, and since then

has continually attracted the attention of a large number of researchers, there is still no

commonly accepted mechanism for the coupling of electrons into Cooper pairs, let alone

a theory which can predict high temperature superconductivity or its transition tempera-

tures. High temperature superconductivity has already some applications such as highly

sensitive magnetic field sensors, high field magnets, and power lines, and more are likely

in the future.

≥ Colossal magnetoresistance effect CMR, which was discovered in transition metal oxide

manganites and describes a large change of the electrical resistance in an applied magnetic

field [4]. This effect can be used in magnetic field sensors and could eventually replace

the giant magnetoresistance [5, 6] field sensors, which are employed for example in the

read heads of magnetic hard discs.

≥ The magnetocaloric effect [7], a temperature change of a material upon applying a mag-

netic field, can be used for magnetic refrigeration without moving parts or cooling fluids.

≥ Metal-insulator-transitions as observed e.g. in magnetite (Verwey transition [8]) or cer-

tain vanadites are due to strong electronic correlations and could be employed as elec-

tronic switches.
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≥ Multiferroicity [9], the simultaneous occurring of various ferroic orders, e.g. ferromag-

netism and ferroelectricity, in one material. If the respective degrees of freedom are

strongly coupled, one can switch one of the orders by applying the conjugate field of the

other order. Interesting for potential applications in information technology is particularly

the switching of magnetization by an electric field, which has been proposed to be used

for easier switching of magnetic non-volatile memories [10]. Future applications of mul-

tiferroic materials in computer storage elements are apparent. One could either imagine

elements, which store several bits in form of a magnetic- and electric polarization, or one

could apply the multiferroic properties for an easier switching of the memory element.

≥ Negative thermal expansion [11] is just another example of the novel and exotic properties

that these materials exhibit.

It is likely that many more such emergent phenomena will be discovered in the near future.

This huge potential is what makes research on highly correlated electron systems so interesting

and challenging: this area of research is located right at the intersection between fundamen-

tal science investigations, striving for basic understanding of the electronic correlations, and

technological applications, connected to the new functionalities [12].

12.2 Electronic structure of solids

Fig. 12.1: Potential energy of an electron in a solid.

In order to be able to discuss the effects of strong electronic correlations, let us first recapitulate

the textbook knowledge of the electronic structure of solids [13, 14]. The description of the

electron system of solids usually starts with the adiabatic or Born-Oppenheimer approximation:

The argument is made that the lighter electrons are moving so quickly compared to the nuclei

that the electrons can instantaneously follow the movement of the much heavier nuclei and thus

see the instantaneous nuclear potential. This approximation serves to separate the lattice- and

electronic degrees of freedom. Often one makes the further approximation to consider the nuclei

to be at rest in their equilibrium positions. The potential energy seen by a single electron in the

averaged field of all other electrons and the atomic core potential is depicted schematically for

a one dimensional system in Fig. 12.1.

The following simple models are used to describe the electrons in a crystalline solid:
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≥ Free electron Fermi gas: here a single electron moves in a 3D potential well with in-

finitely high walls corresponding to the crystal surfaces. All electrons move completely

independent, i.e. the interaction between the electrons is considered only indirectly by the

Pauli exclusion principle.

≥ Fermi liquid: here the electron-electron interaction is accounted for in a first approxima-

tion by introducing quasiparticles, so-called dressed electrons, which have a charge e,

and a spin 1
2

like the free electron, but an effective mass m∗, which can differ from the

free electron mass m. Other than this renormalization, interactions are still neglected.

≥ Band structure model: this model takes into account the periodic potential of the atomic

cores at rest, i.e. the electron moves in the average potential from the atomic cores and

from the other electrons.

Considering the strength of the long-range Coulomb interaction, it is surprising that the sim-

ple models of Fermi gas or better Fermi liquid already are very successful in describing

some basic properties of simple metals. The band structure model is particularly successful in

describing semiconductors. But all three models have in common that the electron is described

with a single particle wave function and electronic correlations are only taken into account in-

directly, to describe phenomena like magnetism due to the exchange interaction between the

electrons or BCS superconductivity [15], where an interaction between electrons is mediated

through lattice vibrations and leads to Cooper pairs, which undergo a Bose-Einstein condensa-

tion.

What we have sketched so far is the textbook knowledge of introductory solid state physics

courses. Of course there exist more advanced theoretical descriptions, which try to take into

account the electronic correlations. The strong Coulomb interaction between the electrons is

taken into account in density functional theory in the so-called “LDA+U” approximation or

in the so-called dynamical mean field theory DMFT or a combination of the two in various

degrees of sophistication [16]. Still, all these extremely powerful and complex theories often

fail to predict even the simplest physical properties, such as whether a material is a conductor

or an insulator.

Fig. 12.2: Left: Atomic potential of an electron interacting with the atomic core and the cor-
responding level scheme of sharp energy levels. Right: Broadening of these levels into bands
upon increase of the overlap of the wave functions of neighboring atoms. After [13]
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Let us come back to the band structure of solids. In the so-called tight-binding model one

starts from isolated atoms, where the energy levels of the electrons in the Coulomb potential

of the corresponding nucleus can be calculated. If N such atoms are brought together, the

wave functions of the electrons from different sites start to overlap so that electrons can hop

between neighboring atoms. This leads to a broadening of the atomic energy levels, which

eventually will give rise to the electronic bands in solids, each of which is a quasi-continuum of

2N electronic states (N possible values of k, spin σ =↓ or ∝). The closer the atoms are brought

together, the more the wave functions overlap, the more the electrons will be delocalized, and

the broader in energy are the corresponding bands (Fig. 12.2).

Fig. 12.3: Band structure of insulators and metals.

If electronic correlations are not too strong, the electronic properties can be described by a band

structure, which allows one to predict whether a material is a an insulator or a metal. This is

shown in Fig. 12.3. At T = 0 all electronic states are being filled up to the Fermi energy,

taking into account the Pauli principle. If there is an even number of electrons per atom (or

more generally per primitive unit cell), say 2m, these will fill up exactly the first m bands, and

the higher energy bands are empty. Unless there is band-overlap between the highest occupied

(valence) band and the lowest unoccupied (conduction) band (which may accidentally happen

in 3D) any electron transport would require the bump of an electron from the valence to the

conduction band, and consequently the material is an insulator (at non-zero T some electrons

may be thermally excited to the conduction band if the band gap is small, one calls the material

then a semi-conductor rather than an insulator). If there is an odd number of electrons per

primitive unit cell, say 2m+ 1, the first 2m bands will be completely full, but the band 2m+ 1
will be half-filled. In a partially filled band electrons easily move in response to a voltage, hence

the material is a metal within the model described so far always. However, as mentioned

above this band structure model describes the electrons with single particle wave functions.

Where are the electronic correlations?
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12.3 Strong electronic correlations: the Mott transition

Fig. 12.4: Rock-salt (NaCl)-type structure of CoO.

It turns out that electronic correlations are particularly important in materials, which have some

very narrow bands. This occurs for example in transition metal oxides or transition metal

chalcogenides as well as in some light rare earth intermetallics (heavy fermion systems). Con-

sider CoO as a typical and simple example of a transition metal oxide. CoO has the rock-salt

structure shown in Fig. 12.4, with a face-centered cubic (fcc) unit cell containing four for-

mula units. The primitive unit cell of the fcc lattice, however, is spanned by the basis vectors

a′ = 1
2
a(ex + ey), b

′ = 1
2
a(ey + ez), and c′ = 1

2
a(ez + ex), where a is the lattice constant,

and ex, ey, and ez, are the unit basis vectors of the original fcc unit cell. The primitive unit cell

contains only one cobalt and one oxygen atom. The electronic configurations of these atoms

are: Co: [Ar]3d74s2; O: [He]2s22p4. In the solid, the atomic cores of Co and O have the elec-

tronic configuration of Ar and He, respectively. These electrons are very strongly bound to the

nucleus and we need not consider them on the usual energy scales for excitations in the solid

state. We are left with nine outer electrons for the Co and six outer electrons for the O atom in

the solid, so that the total number of electrons per primitive unit cell is 9 + 6 = 15, i.e. an odd

number. According to our considerations in the last section, we must have at least one partially

filled band and CoO should be a metal.

What does the experiment tell us? Well, in fact, CoO is a very good insulator with a room-

temperature resistivity ρ(300K) → 108 Ωcm (For comparison, the good conductor iron has

ρ(300K) → 10−7Ωcm. The resistivity of CoO is exponentially decreasing with increasing

temperature T , and the T -dependence corresponds to activation energies of about 0.6 eV or a

temperature equivalent of 7000K, which means there is a huge band gap making CoO a very

good insulator. To summarize these considerations: the band theory breaks down already for a

very simple oxide consisting of only one transition metal and one oxygen atom!

In order to understand the reason for this dramatic breakdown of band theory, let us con-

sider an even simpler example: the alkali metal sodium (Na) with the electronic configuration

[Ne]3s1=1s22s22p63s1. Following our argumentation for CoO, sodium obviously has a half-

filled 3s band and is therefore a metal. This time our prediction was correct: ρ(300K) →
5©10−6 Ωcm. However, what happens if, hypothetically, we pull the atoms further apart and

increase the lattice constant continuously? Band theory predicts that for all distances sodium

remains a metal, since the 3s band will always be half-filled. This contradicts our intuition: at a

certain critical separation of the sodium atoms, there must be a transition from a metal to an in-

sulator. This metal-to-insulator transition was predicted by Sir Nevill Mott (physics Nobel price

1977); it is therefore called the Mott transition [17]. The physical principle is illustrated in Fig.
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Fig. 12.5: Illustration of (electron) hopping between two neutral Na atoms - involving charge
fluctuations.

12.5: On the left, two neutral Na atoms are depicted. The atomic energy levels of the outer elec-

trons correspond to an energy ε3s. The wave functions of the 3s electrons will overlap giving

rise to a finite probability that an electron can hop from one sodium atom to the other one. Such

a delocalization of the electrons arising from their possibility to hop is favored because it lowers

their kinetic energy. This can be seen for example by generalizing the “particle in a box” prob-

lem: Ekin H p2 = h2/λ2 (de Broglie) and λ →box size, and it is consistent with the uncertainty

principle Δp ×Δx ∼ �

2
. Fig. 12.5 on the right shows the situation after the electron transfer.

Instead of neutral atoms, we have one Na+ and one Na− ion. However, we have to pay a price

for the double occupation of the 3s states on the Na− ion, namely the intra-atomic Coulomb re-

pulsion between the two electrons denoted as U3s. While this is a very simplistic picture, where

we assume that the electron is either located on one or the other Na atom, this model describes

the two main energy terms by just two parameters: the hopping matrix element t, connected

to the kinetic energy, and the intra-atomic Coulomb repulsion U , connected with the potential

energy due to the Coulomb interaction between the two electrons on one site. In this simple

model, we have replaced the long range Coulomb potential proportional to 1/r with its leading

term, an on-site Coulomb repulsion U . More realistic models would have to take higher order

terms into account but already such a simple consideration leads to very rich physics. We can

see from Fig. 12.5 that electronic conductivity is connected with charge fluctuations and that

such charge transfer costs energy, where U is typically of the order of 1 or 10 eV. Only if the

gain in kinetic energy due to the hopping t is larger than the penalty in potential energy U can

we expect metallic behavior. If the sodium atoms are now being separated more and more, the

intra-atomic Coulomb repulsion U will maintain its value while the hopping matrix element t,
which depends on the overlap of the wave functions, will diminish. At a certain critical value

of the lattice parameter a, potential energy will win over kinetic energy and conductivity will

be suppressed. This is the physical principle behind the Mott transition.

More formally, this model can be cast into a model Hamiltonian, the so-called Hubbard model
[18]. In second quantization of quantum-field theory, the corresponding Hamiltonian is

〉̂ = t
∑
j,l,σ

(ĉ†jσ ĉlσ + ĉ†lσ ĉjσ) + U
∑
j

n̂j↑n̂j↓, (12.1)

where the operator ĉ†jσ creates an electron in the atomic orbital Φ(r Rj) σ| . The first term is

nothing but the tight-binding model of band structure (in second quantization), where t is the

hopping amplitude depending on the overlap of the wavefunctions from nearest-neighbor atoms

at R1 and R2:

t =

∫
Φ(r R1)

e2

4πε0 r R2

Φ(r R2) dr. (12.2)
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It describes the kinetic energy gain due to electron hopping.

The second term is the potential energy due to doubly-occupied orbitals. Here, n̂jσ = ĉ†jσ ĉjσ is

the occupation operator of the orbital Φ(r Rj) σ| and U is the Coulomb repulsion between

two electrons in this orbital,

U =

∫
e2 Φ(r1 Rj)

2 Φ(r2 Rj)
2

4πε0 r1 r2
dr1dr2, (12.3)

The Hubbard model is a so-called lattice fermion model, since only discrete lattice sites are be-

ing considered. It is the simplest way to incorporate correlations due to the Coulomb interaction

since it takes into account only the strongest contribution, the on-site Coulomb interaction. Still

there is very rich physics contained in this simple Hamiltonian like the physics of ferromagnetic-

or antiferromagnetic metals and insulators, charge- and spin density waves and so on [18]. A

realistic Hamiltonian should contain many more inter-site terms due to the long-range Coulomb

interaction likely to contain additional new physics.

Fig. 12.6: Illustration of hopping processes between neighboring atoms together with their
corresponding energy scales.

The most direct consequence of the on-site Coulomb interaction is that additional so-called

Hubbard bands are created due to possible hopping processes, illustrated in Fig. 12.6: The first

row shows hopping processes involving a change of the total Coulomb energy. The second

row shows hopping processes without energy change. The last row shows hopping processes

forbidden due to the Pauli principle (here, the spin enters the model, giving rise to magnetic

order). From Fig. 12.6 we can identify two different energy states. Configurations for which

the on-site Coulomb repulsion comes into play have an energy which is higher by the on-site

Coulomb repulsion U as compared to such configurations where the electrons are not on the

same atom. In a solid these two energy levels will broaden into bands (due to the delocalization

of the electrons on many atoms driven by the hopping matrix element t), which are called

the lower Hubbard band and the upper Hubbard band. If these bands are well separated, i.e.

the Coulomb repulsion U dominates over the hopping term t, we will have in insulating state

(only the lower Hubbard band is occupied). If the bands overlap, we will have a metallic state.

Note that lower and upper Hubbard band are totally different from the usual band structure
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of solids as they do not arise due to the interaction of the electrons with the atomic cores but

due to electronic correlations. As a result the existence of the Hubbard bands depends on the

electronic occupation: the energy terms for simple hopping processes depend on the occupation

of neighboring sites. The apparently simple single electron operator gets complex many body

aspects.

Fig. 12.7: Perovskite structures. The A-site atoms are shown as spheres, octahedra have Mn (or
Ti) at their center and O at their corners. Left: Ideal (cubic) structure. Middle: cubic structure
in orhorhombic setting. Right: distorted structure with rotated and tilted oxygen octahedra.

12.4 Complex ordering phenomena: perovskite manganites
as example

The correlation-induced localization leads to atomic-like electronic degrees of freedom that can

(because the possible hopping of electrons between sites means that different sites interact with

one another) order in complex ways. The electronic degrees of freedom include charge (or ion

valence), orbital (which atomic orbitals are occupied, what is the shape of the electron cloud),

and magnetic moment. In the following we will discuss these ordering processes, taking as

an example, because of their particularly simple basic structure, perovskite manganites (see

e.g. [19]). Their stoichiometric formula is A1−xBxMnO3, where A is a trivalent cation (e.g. A =
La, Gd, Tb, Er, Y, Bi) and B is a divalent cation (B =Sr, Ca, Ba, Pb). The doping with divalent

cations leads to a mixed valence on the manganese sites. In a purely ionic model (neglecting

covalency) charge neutrality requires that manganese exists in two valence states: Mn3+ (elec-

tronic configuration [Ar]3d4, note that the 4s electrons are lost first upon positive ionization in

a solid; the reason is that the 4s orbitals have electron density extending much further from the

nucleus, which leads to a Coulomb penalty given nearby negative ions) and Mn4+ ([Ar]3d3)

according to the respective doping levels: A1−xBxMnO3 ↑ [
A3+

1−xB
2+
x

] [
Mn3+

1−xMn4+
x

]
O2−

3 .

The structure of these mixed valence manganites is related to the perovskite structure (Fig.

12.7). Perovskite CaTiO3 is a mineral, which has a cubic crystal structure, where the smaller

Ca2+ metal cation is surrounded by six oxygen atoms forming an octahedron; these corner shar-

ing octahedra are centered on the corners of a simple cubic unit cell and the larger Ti4+ metal

cation is filling the interstice in the center of the cube. This ideal cubic perovskite structure is

extremely rare. It only occurs when the sizes of the metal ions match to fill the spaces be-tween

the oxygen atoms ideally. Usually there is a misfit of the mean ionic radii of the A and B ions,

which leads to sizeable tilts of the oxygen octahedra, described in larger cells (see Fig. 12.7).
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These tilt distortions are, however, not important for the following general considerations of the

electronic degrees of freedom.

Fig. 12.8: Energy level diagram for a Mn3+ ion in an oxygen octahedron. For the free ion, the
five 3d electron levels are degenerate. They split in a cubic environment into t2g and eg levels.
If Hunds’ rule coupling is stronger than crystal field splitting, a high-spin state results. The
degeneracy of the eg level is lifted by a Jahn-Teller distortion resulting in an elongation of the
oxygen octahedra. On the right of the figure, the a basis set of 5 real 3d orbitals are depicted.

For an isolated manganese, or other transition metal, ion, the electrons are filled into the five

d orbitals according to Hund’s rules. The first, and dominant, Hund rule implies that electrons

tend to maximize their total spin S =
∑

j sj , avoiding in particular double occupation of any

d orbital. In other words, the electrons occupy the orbitals in such a way that the spins of all

electrons are parallel as far as the Pauli principle permits. This is a consequence of the intra-

atomic Coulomb repulsion between electrons, in particular the exchange contribution to the

Coulomb repulsion. The energy gained by fulfilling the first Hund rule is called the Hund’s rule

energy JH. The second Hund rule, originating from direct intra-atomic Coulomb repulstion,

states that the total angular momentum L is maximized, as far as consistent with the first Hund

rule, i.e. orbitals are filled from high to low angular momentum. Finally, the third Hund rule, due

to spin-orbit coupling, states that total spin and orbital momentum are (anti-)parallel for more

(less) than half-filled shells. For the manganites the octahedral surrounding of the Mn ions leads

to so-called crystal field effects. To explain these we stay in the ionic model and describe the

oxygen atoms as O2− ions. The outer electrons of the Mn ions, the 3d electrons, experience the

electric field created by the surrounding O2− ions of the octahedral environment. This so-called

crystal field leads to a splitting of the electronic levels by the crystal field as depicted in Fig.

12.8: The 3d orbitals with lobes of the electron density pointing towards the negatively charged

oxygen ions (3z2 r2 and x2 y2; so-called eg orbitals) will have higher energies compared to

the orbitals with the lobes pointing in-between the oxygen atoms (zx, yz, and xy; so-called t2g
orbitals). For the manganites this crystal-field splitting is typically →2 eV. If we now consider a

Mn3+ ion, how the electrons will occupy these crystal field levels depends on the ratio between

the crystal-field splitting and the intra-atomic exchange JH: If the crystal field splitting is much

larger than Hunds’ coupling, a low-spin state results, where all electrons are in the lower t2g
level and two of these t2g orbitals are singly occupied and one is doubly occupied. Due to the

Pauli principle the spins in the doubly occupied orbital have to be antiparallel, giving rise to

a total spin S = 1 for this low-spin state. Usually, however, in the manganites Hunds’ rule
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coupling amounts to →4 eV, stronger than the crystal field splitting. In this case the high spin
state shown in Fig. 12.8 is realized, where four electrons with parallel spin occupy the three t2g
orbitals plus one of the two eg orbitals. The high spin state has a total spin of S = 2 and the

orbital angular momentum is quenched, i.e. L = 0. This state has an orbital degree of freedom:

the eg electron can either occupy the 3z2 r2 or the x2 y2 orbital. The overall energy can

(and thus will) be lowered by a geometrical distortion of the oxygen octahedra that shifts the

eg levels, lifting their degeneracy. This so-called Jahn-Teller effect (Fig. 12.8) further splits the

d-electron levels. For the case shown, the c-axis of the octahedron has been elongated, thus

lowering the energy of the 3z2 r2 orbital with respect to the energy level of the x2 y2 orbital.

The Jahn-Teller splitting in the manganites has a magnitude of typically →0.6 eV.

a

b

c

O

Fig. 12.9: Left: Orbital order in LaMnO3. Below the Jahn-Teller transition temperature of
780K, a distinct long range ordered pattern of Jahn-Teller distortions of the oxygen octahedra
occurs leading to orbital order of the eg orbitals of the Mn3+ ions as shown. Also shown is the
antiferromagnetic spin order which sets in below the Néel temperature TN → 145K. Oxygen
atoms are represented by filled circles, La is not shown. Center: Distinct spin order of CaMnO3.
Right: Charge-, orbital- and spin-order in half-doped manganite La3+

0.5Sr2+0.5Mn3+
0.5Mn2+

0.5O3.

The Jahn-Teller effect demonstrates nicely how in these transition metal oxides electronic and

lattice degrees of freedom are coupled. Only the Mn3+ with a single electron in the eg orbitals

exhibits the Jahn-Teller effect, whereas the Mn4+ ion does not. A transfer of charge between

neighboring manganese ions is accompanied with a change of the local distortion of the oxygen

octahedron: a so-called lattice polaron. Due to the Jahn-Teller effect, charge fluctuations and

lattice distortions become coupled in these mixed-valence oxides.

Having explained the Jahn-Teller effect, we can now introduce an important type of electronic

order occurring in these materials: orbital order. Consider the structure of LaMnO3: All man-

ganese are trivalent and are expected to undergo a Jahn-Teller distortion. In order to minimize

the elastic energy of the lattice, the Jahn-Teller distortions on neighboring sites are correlated.

Below a certain temperature TJT →780K, a cooperative Jahn-Teller transition takes place, with

a distinct pattern of distortions of the oxygen octahedra throughout the crystal lattice as shown

in Fig. 12.9 left. This corresponds to a long-range orbital order of the eg electrons, not to be

confused with magnetic order of an orbital magnetic moment. In fact, the orbital magnetic mo-

ment is quenched, i.e. totally suppressed, by the crystal field surrounding the Mn3+ ions (this

is always the case for non-degenerate states with real wave functions because such functions

have pure-imaginary expectation values for an angular momentum operator). Orbital ordering
instead denotes a long-range ordering of an anisotropic charge distribution around the nuclei.
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As the temperature is further lowered, magnetic order sets in at TN →145K. In LaMnO3 the

spin degree of freedom of the Mn3+ ion orders antiferromagnetically in so-called A-type order:

spins within the a-b plane are parallel, while spins along c are coupled antiferromagnetically.

The depicted antiferromagnetic ordering results from a complex interplay between structural-,

orbital- and spin degrees of freedom and the relative strengths of the different coupling mecha-

nisms in LaMnO3, as can be seen by comparing with the different magnetic order of CaMnO3,

which does not have an orbital degree of freedom (Fig. 12.9 center).

Fig. 12.10: Resistivity in the La1−xSrxMnO3 series [20]. Left: resistivity in zero field for
various compositions from x = 0 to x = 0.5. Right: resistivity for x = 0.15 in different
magnetic fields H , and magnetoresistance, defined as the change in resistivity relative to its
value for H = 0. Reprinted with permission from [20]. c• 1995 by the American Physical
Society.

Doped manganites are even more complex, because the charge on the Mn site becomes an

additional degree of freedom due to the two possible manganese valances Mn3+ and Mn4+.

In order to minimize the Coulomb interaction between neighboring manganese sites, so-called

charge order (or ion valence order) can develop. This is shown for the example of half-doped

manganites in Fig. 12.9 on the right: These half-doped manganites show antiferromagnetic spin

order, a checkerboard-type charge order with alternating Mn3+ and Mn4+ sites and a zig-zag

orbital order of the additional eg electron present on the Mn3+ sites. This is only one example

of the complex ordering phenomena that can occur in doped mixed valence manganites. These

ordering phenomena result from a subtle interplay between lattice-, charge-, orbital-, and spin

degrees of freedom and can have as a consequence novel phenomena and functionalities such

as colossal magnetoresistance.

How are these ordering phenomena related with the macroscopic properties of the system? To

answer this question, let us look at the resistivity of doped Lanthanum-Strontium-Manganites

( Fig. 12.10): The zero field resistance changes dramatically with composition. The x = 0
compound shows insulating behavior: the resistivity ρ increases with decreasing temperature T .

The higher doped compounds, e.g. x = 0.4, are metallic with ρ(T ) decreasing. Note, however,
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that the resistivity of these compounds is still about three orders of magnitude higher than for
typical good metals. At an intermediate composition x = 0.15, the samples are insulators at
higher T down to about 250K, then a dramatic drop of the resistivity indicating an insulator-
to-metal transition and again an upturn below about 210K with typical insulating behavior.
The metal-insulator transition occurs at the temperature where ferromagnetic long-range order
sets in. Around this temperature we also observe a very strong dependence of resistivity on
external magnetic field. This is the so-called colossal magnetoresistance effect. In order to
appreciate the large shift in the maximum of the resistivity curve with field (Fig. 12.10 right)
one should remember that the energy scales connected with the Zeeman interaction of the spin
1
2

electron in an applied magnetic field are very small: the energy equivalent of 1 Tesla for a
spin 1

2
system corresponds to 0.12meV, which in turn corresponds to a temperature equivalent

of 1.3K. The strong dependence of the resistance on an external field is partly due to the
so-called double exchange mechanism: the electron hopping from Mn3+ to Mn4+ (associated
with metallicity) can occur only if the t2g spins are parallel, which is automatically fulfilled
(only) in the ferromagnetic state. This phase competition and consequent tunability by external
parameters, such as temperature and field, is typical for correlated-electron systems.

It is clear that our entire discussion starting from ionic states is only a crude approximation
to the real system. Therefore we now have to pose the question how can we determine the
true valence state? Or more general, which experimental methods exist to study the complex
ordering and excitations of the charge-, orbital-, spin- and lattice- degrees of freedom in these
complex transition metal oxides?

12.5 Probing correlated electrons by scattering methods

Fig. 12.11: Polarized single crystal neutron diffraction on LuFe2O4. The (1
3
1
3
ℓ) line of spin

and charge order superstructure reflections is shown. Left: magnetic reflections in the spin-flip
channel (top) and charge order reflections in the non-spin-flip channel (bottom) at 220K. Right:
diffuse scattering in the spin-flip channel at two temperatures above TN , revealing short-range
magnetic correlations [21].

How can these various ordering phenomena be studied experimentally? Obviously we need
probes with atomic resolution, which interact with the spins as well as with the charges in the
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Table 12.1: R0 values of cation-oxygen bonds [22] in manganese perovskites needed for the
bond valence calculation (12.4).

system. Therefore neutron and x-ray scattering are the ideal microscopic probes to study the

complex ordering phenomena and their excitation spectra. The lattice and spin structure can be

studied with neutron diffraction from a polycrystalline or single crystalline sample as detailed

in chapter 8 of this course, “Structural analysis”. Fig. 12.11 shows as an example of more recent

research on a material with more complex (rhombohedral) crystal structure polarized neutron

diffraction on a single crystal of LuFe2O4, a once-proposed charge-order-based multiferroic.

Periodic arrangements of spins and/or Fe valence states in this material can be described by

an enlarged cell, which corresponds to a smaller cell in reciprocal space and therefore leads

to the emergence of superstructure reflections between the main nuclear reflections. Magnetic

reflections in the spin-flip channel yield the spin structure, while the charge-order reflections

show up in the non-spin-flip channel (c.f. chapter 7). For charge order and small structural

distortions complementary synchrotron x-ray diffraction data is often useful because of the

higher achievable q-resolution. It is beyond the scope of this lecture to discuss the experimental

and methodological details of such a structure analysis or to present detailed results on specific

model compounds. For this we refer to the literature, e.g. [21]. For the above example, we

just want to mention that the refinement of spin and charge order showed strong spin-charge

coupling, but the absence of a polar charge order, negating the proposed multiferroicity. At first

sight it might be surprising that neutron diffraction is able to give us information about charge
order. We have learnt in the introductory chapters that neutrons interact mainly through the

strong interaction with the nuclei and through the magnetic dipole interaction with the magnetic

induction in the sample. So how can neutrons give information about charge order? Obviously

charge order is not determined directly with neutrons. However, the length of the transition

metal-oxygen bond will depend on the charge (valence state) of the transition metal ion. The

higher the positive charge of the transition metal, the shorter will be the bond to the neighbor-

ing oxygen, just due to Coulomb attraction. This qualitative argument can be quantified in the

so-called bond-valence sum. There is an empirical correlation between the valence Vi of an ion

and the bond lengths Rij to its neighbors:

Vi =
∑
ij

sij = Vi =
∑
ij

e
R0−Rij

B . (12.4)

Here, the Rij are the experimentally determined bond lengths, B = 0.37 is a constant, and R0

are tabulated values for the cation-oxygen bonds, see, e.g., [22]. Table 12.1 reproduces some of

these values. The sum over the partial “bond-valences” sij gives the valence state of the ion.

Even though this method to determine the valence state is purely empirical, it is rather precise
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Fig. 12.12: Anisotropic anomalous x-ray scattering for a hypothetical diatomic 2D compound.
Left: Reconstruction of the charge distribution from a laboratory x-ray source, sensitive mainly
to the spherical charge distribution and corresponding unit cell (white lines). Middle: Prin-
ciples of resonance x-ray scattering in an energy level diagram (see text). Right: Charge
distribution deduced from such an anomalous x-ray scattering experiment. An orbital order-
ing pattern is apparent, which could not be detected with non-resonant x-ray scattering. The
evidently larger unit cell gives rise to superstructure reflections (at resonance).

compared to other techniques. The values of the valences found with this method differ signif-

icantly from a purely ionic model. Instead of integer differences between charges on different

transition metal ions, one finds more likely differences of a few tenth of a charge of an electron,

though rare exceptions, where near-integer valence differences were observed, exist [23].

Just like charge order, orbital order is not directly accessible to neutron diffraction since orbital

order represents an anisotropic charge distribution and neutrons do not directly interact with the

charge of the electron. However, we have seen in the discussion of the Jahn-Teller effect (Figs.

12.8 and 12.9) that an orbital order is linked to a distortion of the local environment visible

in different bond lengths within the anion complex surrounding the cation. Thus, by a precise

determination of the structural parameters from diffraction, one can determine in favorable cases

the ordering patterns of all four degrees of freedom: lattice, spin, charge and orbitals.

Is there a more direct way to determine charge- and orbital order? The scattering cross section

of x-rays contains the atomic form factors, which are Fourier transforms of the charge den-

sity around an atom. Therefore, one might think that charge and orbital order can be easily

determined with x-ray scattering. However, as discussed in the last paragraph, usually only a

fraction of an elementary charge contributes to charge- or orbital ordering. Consider the Mn

atom: the atomic core has the Ar electron configuration, i.e. 18 electrons are in closed shells

with spherical charge distributions. For the Mn4+ ion, three further electrons are in t2g levels.

Since in scattering, we measure intensities, not amplitudes, these 21 electrons contribute 212r20
to the scattered intensity (the classical electron radius r0 is the natural unit of x-ray scattering).

If the difference in charge between neighboring Mn ions is 0.2 e, this will give an additional

contribution to the scattered intensity of 0.22r20. The relative effect of charge order in x-ray

scattering is therefore only a tiny fraction 0.22

212
→ 10−4, even ignoring that scattering from all
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other atoms makes the situation worse. There is, however, a way to enhance the scattering from
non-spherical charge distributions, the so-called anisotropic anomalous x-ray scattering, first
applied for orbital order in manganites by Murakami et al. [24]. The principle of this technique
is depicted in Fig. 12.12, showing scattering from a hypothetical diatomic 2D compound. Non
resonant x-ray scattering is sensitive mainly to the spherical charge distribution. A reconstruc-
tion of the charge distribution done from such an experiment might look schematically as shown
on the left. The corresponding crystal structure can be described with a primitive unit cell (white
lines). To enhance the scattering from the non-spherical part of the charge distribution, an ex-
periment can be done at a synchrotron source, with the energy of the x-rays tuned to the energy
of an absorption edge (middle). Now, second order perturbation processes can occur, where
a photon induces virtual transitions of an electron from a core level to empty states above the
Fermi energy and back with re-emission of a photon of the same energy. As second-order per-
turbation processes have a resonant denominator, this scattering will be strongly enhanced near
an absorption edge. If the intermediate states in this resonant scattering process are somehow
connected to orbital ordering, scattering from orbital ordering will be enhanced. Thus in the
resonant scattering experiment, orbital order can become visible as indicated on the right. With
the shown arrangement of orbitals, the true primitive unit cell of this hypothetical compound is
obviously larger than the unit cell that was deduced from the non resonant scattering experiment
(left), which was not sensitive enough to determine the fine details of the structure. An increase
of the unit cell dimensions in real space is connected with a decrease of the distance of the
reciprocal lattice points, leading to additional superstructure reflections. The intensity of these
reflections has the strong energy dependence expected for a second-order perturbation process.
This type of experiment is called anisotropic anomalous x-ray scattering, because it is sensitive
to the anisotropic charge distribution around an atom.

So far we have discussed some powerful experimental techniques to determine the various
ordering phenomena in complex transition metal oxides. Scattering can give much more in-
formation than just on the time averaged structure. Quasi-elastic diffuse scattering gives us in-
formation on fluctuations and short range correlations persisting above the transitions, e.g. short
range correlations of polarons, magnetic correlations in the paramagnetic state (Fig. 12.11), lo-
cal dynamic Jahn-Teller distortions etc. Studying these correlations and fluctuations helps to
understand what drives the respective phase transitions into long-range order. The relevant
interactions, which give rise to these ordering phenomena, can be determined from inelastic
scattering experiments as learnt in the chapter “Inelastic neutron scattering”. For example, in a
new class of iron-based high-temperature superconductors, the involvement in Cooper pairing
of lattice vibrations or alternatively magnetic fluctuations is controversial, and both of these can
be probed in-depth by inelastic neutron scattering (see, e.g., [25]). Since there is a huge amount
of scattering experiments on highly correlated transition metal oxides and chalcogenides, a re-
view of these experiments definitely goes far beyond the scope of this introductory lecture.
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12.6 Summary

Fig. 12.13: Illustration of complexity in correlated electron systems. H, E: magnetic and elec-
tric field, respectively; μ: chemical potential (doping); T : temperature; P : pressure; σ: strain
(epitaxial growth); d: dimensionality (e.g. bulk versus thin film systems); CO: charge order;
OO: orbital order; SO: spin order; JT: Jahn-Teller transition.

This chapter gave a first introduction into the exciting physics of highly correlated electron

systems, exemplified by transition metal oxides and chalcogenides. The main message is sum-

marized in Fig. 12.13. The complexity in these correlated electron systems arises from the

competing degrees of freedom: charge, lattice, orbit and spin. The ground state is a result

of a detailed balance between these different degrees of freedom. This balance can be easily

disturbed by external fields or other thermodynamical parameters, giving rise to new ground

states or complex collective behavior. Examples are the various ordering phenomena discussed,

Cooper pairing in superconductors, so-called spin-Peierls transitions in 1D systems etc. This

high sensitivity to external parameters as well as the novel ground states of the systems gives

rise to novel functionalities, such as the colossal magnetoresistance effect, high temperature

superconductivity, multiferroicity, and many more. A theoretical description of these com-

plex systems starting from first principles, like Schrödinger equation in quantum mechanics or

the maximization of entropy in statistical physics, is bound to fail due to the large number of

strongly interacting particles. Entirely new approaches have to be found to describe the emer-

gent behavior of these complex systems. Therefore highly correlated electron systems are a

truly outstanding challenge in modern condensed matter physics. We have shown in this lecture

that neutron and x-ray scattering are indispensable tools to disentangle this complexity experi-

mentally. They are able to determine the various ordering phenomena as well as the fluctuations

and excitations corresponding to the relevant degrees of freedom. No other experimental probe

can give so much detailed information on a microscopic level as scattering experiments.
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Exercises

Note: ⋆ indicates an increased difficulty. Solve the easier problems first.

E12.1 Electronic structure and Mott transition

a) In modeling the electronic structure of crystalline solids, what is the typical starting assump-
tion to separate the electronic structure from the lattice dynamics, and why does it work?

b) In which of the three simplest models of electrons in a solid are the electronic correlations
taken into account at least approximately?

c) Neglecting electronic correlations, would you predict NaCl to be an insulator or a metal?
Why?

d) The competition of which two contributions to the total energy of the electrons is crucial
for the Mott-transition? Which further contributions to the total energy are neglected in the
simplest model?

e) Assume that a particular material is a Mott-insulator, but just barely so (i.e. the relevant
energy contributions are almost equal). What would you predict to happen when sufficiently
high pressure is applied, and why?

E12.2 Electronic ordering in correlated-electron materials

a) List and very briefly explain three “electronic degrees of freedom”, which can become or-
dered.

b) To order of which of the electronic degrees of freedom is neutron scattering directly sensitive,
and to which not?

c) For those electronic degrees of freedom, to which neutron is not directly sensitive, neutron
scattering can still be used to deduce an ordered arrangement: How and why? Is there a more
direct scattering method than neutron scattering?

d) ⋆ What, if any, connection is there between orbital order and orbital magnetic momentum?

e) ⋆ Discuss why electronic correlations favor ordering processes of electronic degrees of free-
dom.

E12.3 Crystal field

Fe has atomic number 26 and in oxides typically has valence states 2+ or 3+.

a) Determine the electronic configuration of free Fe2+ and Fe3+ ions (hint: as for Mn the outer-
most s-electrons are lost first upon ionization).

b) From Hund’s rules determine the values of the spin S, orbital angular momentum L, and total
angular momentum J of Fe2+ and Fe3+ ions.
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(Hund’s rules:

1. S max.

2. L max consistent with 1.

3. J = L S for a less than half filled shell,
J = L+ S for a more than half filled shell).

c) � The effective moment μeff of a magnetic ion can be determined experimentally by the

Curie-Weiss law, and is given by μeff = gJ
√

J(J + 1)μB, where the Landé factor is

gJ =
3

2
+

S(S + 1) L(L+ 1)

2J(J + 1)
. (12.5)

Calculate the expected effective moment in units of μB of Fe2+ and Fe3+ ions, i) assuming S,

L, and J as determined in b) and ii) setting L = 0 (‘quenched orbital momentum’). Compare

with the experimental values of →5.88μB for Fe3+ and →5.25 5.53μB for Fe2+.

d) � The negatively charged oxygen ions surrounding the Fe ions in an oxide solid influence

the energy of the different orbitals. Plot the expected energy level diagram for the case of an

octahedral environment of nearest-neighbor O2− (corresponding to the example in the lecture).

How does the total spin moment of Fe2+ change between weak and strong crystal field splittings

(relative to intra-atomic “Hund’s” exchange)?

e) (optional) �� In a tetrahedral environment the energy levels of the orbitals are reversed com-

pared to an octahedral environment. Determine the spin moment of Fe2+ in a tetrahedral en-

vironment with strong crystal field splitting. Is an orbital angular momentum possible in this

case?

E12.4 Orbital and Magnetic order in LaMnO3 (Optional!)

The orbital and magnetic order in LaMnO3 is sketched in Fig. 12.9 (page 11 of the chapter) on

the left. One crystallographic unit cell a©b©c is shown.

a) Why is there no charge order in LaMnO3?

b) What are the smallest unit cells (sketch in relation to the crystallographic cell) that can de-

scribe i) magnetic order, ii) � orbital order (Hint: consider also centered cells, where the cen-
tering symmetry is broken by the orbital order), iii) both magnetic and orbital order.

c) Make a plot of reciprocal space in the a∗-c∗-plane indicating the positions, where you expect

nuclear, orbital, and magnetic Bragg peaks to occur.

d) � As c), but for the a∗-b∗-plane.
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13.1 Introduction

Polymers are materials without which modern technology cannot be imagined. In many
places they have supplanted traditional materials as metals. One of the reasons for this is
that polymers show unique mechanical properties which are desirable for engineering, e.g.
high impact resistance at low specific mass. These mechanical properties are determined by
the microscopic dynamics of the polymer molecules. For that reason, polymer dynamics is a
vibrant topic in solid state physics.

In addition to the technological interest, polymer dynamics is also scientifically interesting
because of the rheological peculiarities of polymers [1]. One of these is shown in figure 13.1
represented by the shear compliance J(t) of polystyrene. The shear compliance is given by
the shear strain σ(t) = ∆y(t)/x resulting from a stress ε applied at t = 0 by J(t) = σ(t)/ε.
For a purely elastic medium one would expect J(t) = const from Hooke’s law, for a purely
viscous material J(t) = t/η from Newton’s law. The polymer shows a complex behaviour,
even more complex than just a superposition of both types. In the beginning the increase of
J(t) is sublinear. Then it arrests in a plateau indicating a spring- or rubber-like behaviour.
Only for very long time viscous behaviour J(t) ∝ t is attained with a very high “terminal”
viscosity. &UHHS�&RPSOLDQFH
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Fig. 13.1: Shear compliance J(t) of polyisoprene (molecular weight Mw = 6.2 × 105 g/mol),
double-logarithmic plot. Data from ref. 2. The time axis has been constructed using the time-
temperature superposition principle: Data from different temperatures were scaled by a tem-
perature dependent factor aT in order to obtain a master curve.

The length of the plateau increases with the molecular weight of the polymer shifting the
viscous regime to higher values. Therefore, the viscosity increases with molecular weight
M . The increase can be described by power laws, η ∝ M below a certain molecular weight
Mc and typically η ∝ M3.4 above (figure 13.2, left). A similar dependence is found for the
self-diffusion constant: D ∝ M−1 for M < Mc, and D ∝ M−2 for M > Mc (figure 13.2,
right).

The fact that relations as shown in figure 13.2 are applicable to nearly all polymers with the
same exponents indicates that the dynamics of polymers on large scales follows universal
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laws. The underlying reason is that on a large length scale the individual molecular nature of
the monomeric unit is not important. Rather a description by simple models (e.g. bead and
spring) is possible. Such descriptions have been developed firstly for the region M < Mc

and later also for M > Mc and will be discussed in subsections 13.2 and 13.3, respectively.

Although these concepts had an immediate success in terms of describing the rheological
experiments correctly it took a long time to confirm them on a molecular basis. For this task
inelastic neutron scattering, especially the Neutron Spin Echo (NSE) technique turned out to
be the crucial tool to reveal the mesoscopic dynamics on its proper length and time scales.

In this lecture only the basics of polymer dynamics can be explained. More details regarding
the macroscopic (rheological) properties can be found in ref. 1 and a deeper treatise of
microscopic dynamics in refs. 5–7.
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13.2 Free Chains (Rouse Model)

Despite the simplicity of the standard model for short chain polymer dynamics, the Rouse
model [8], it involves some complicated calculations. The mathematical details can be found
in the literature [9] and the fundamental equations are summarised in appendix A13.1.

Here, only the basic assumptions and most important results will be presented. Firstly, the
chain is subdivided into segments with a Gaussian end-to-end distance distribution similar to
what is done for the calculation of the static properties. Then, the most important assumption
is that there is no interaction between those segments of a polymer chain with those of other
chains or the same chain except for a global friction force and a random force as assumed in
the derivation of Brownian motion of a single particle.

The results for the macroscopic rheological properties, terminal viscosity and self-diffusion
constant, are

η =
ζ`2ρN

36
∝ N (13.1)

D =
kBT

ζN
∝ N−1 (13.2)

in perfect agreement with what is found for low molecular weight polymers. (N is the
number of segments, N ∝ M , ρ the number density of the polymer segments, ζ the friction
coefficient, and ` the average length of a segment.) These relations can be motivated by
the rough argument that if there is no other interaction than a friction with the environment,
its total effect on a polymer molecule will simply increase proportionally to the number of
rubbing units.

Despite this agreement it still has to be proven that the model is correct on a molecular level.
Here, the Rouse model allows a very stringent test because it predicts the incoherent dynamic
structure factor (self-correlation function), equation (13.44) of appendix A13.1.

Measurements of the incoherent inelastic neutron scattering are usually performed on pro-
tonated materials because of the large incoherent cross section of hydrogen. But because
in this case the scattering is of spin-incoherent origin, which means that the polarisation is
partially lost, neutron spin echo (NSE) experiments are difficult or even impossible with sam-
ples of high hydrogen content. In order to get around this obstacle one uses a chemical trick.
High molecular weight deuterated polymer is synthesised which contains short protonated
sequences at random positions. In such a sample the scattering essentially originates from
the contrast between the protonated sequence and the deuterated environment and is therefore
coherent with respect to the individual scatterers. On the other hand, the labelled sequences
are randomly distributed so that there is no constructive interference of partial waves arising
from different sequences. This means that on the whole chain level the scattering is incoher-
ent1 and the scattering experiment measures the self-correlation function of the segments.

1 At this point it becomes clear that the subdivision of (11.19) into coherent and incoherent scattering may be
arbitrary. If we consider hydrogen and deuterium to be isotopes of the same atom we get a difference b2 − b2 not
only from spin disorder but also from different b values of the nuclei. If we consider H and D to be different atoms
(because for the samples here they are—by chemical means—put into preferential positions) we would have to
extend (11.20) to a polyatomic expression which would then contain the same scattering in the coherent part just
leaving the spin disorder part as incoherent.
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In figure 13.3 the scattering data obtained in this way from polydimethylsiloxane (PDMS) on
the NSE spectrometer IN11 is plotted against the scaling variable of the Rouse model (13.46).
The results for the different momentum transfers Q follow a common straight line in the
semilogarithmic plot versus the Q2-scaled square root of time which is the characteristic
behaviour predicted by the Rouse model (equations (13.44) and (13.46)),

Iinc(Q, t) = exp
(
−const ·Q2

√
t
)
. (13.3)

This result follows from 〈r2〉 ∝ t1/2 and the Gaussian approximation (11.61) for the incoher-
ent intermediate scattering function. The proportionality of the mean-square displacement to
t1/2 (instead of t for simple diffusion) is a consequence of the connectivity of the chain and
can be explained by a scaling argument [10] without going through the hassle of the calcula-
tion in appendix A13.1. As time proceeds, more and more segments N(t) are dragged with
the segment to be moved. The extension of this region is a random walk, thus N(t) ∝ t1/2.
Since D ∝ 1/N , D(t) ∝ 1/N(t) ∝ t−1/2 and 〈r2〉 = 6D(t)t ∝ t1/2.

Fig. 13.3: NSE spectra, self-correlation function Iinc(Q, t), measured on a randomly labelled
polydimethylsiloxane (molecular weight Mw = 105) sample at 100◦C. Semilogarithmic plot
with the time axis scaled by the Rouse variable. The solid line is a fit with the Rouse model
result (13.44). Reprinted figure with permission from ref. 11. Copyright 1989 by the American
Physical Society.

It is also possible to test the Rouse model on a molecular level using the coherent intermedi-
ate scattering function. In this case one uses a mixture of (totally) protonated and deuterated
chains as it is used for measuring the static structure factor of a chain in a small-angle neu-
tron scattering experiment. The evaluation of the data is more complicated because there is
no closed expression for the coherent intermediate scattering function. Nevertheless, because
it shows the same scaling properties as the incoherent one the crucial test is the same plot
versus the Rouse variable (13.46) (figure 13.4).
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Fig. 13.4: NSE spectra, pair correlation function Icoh(Q, t), measured on a mixture of H- and
D-polydimethylsiloxane (molecular weight Mw = 1.5 × 105) at 100◦C. Semilogarithmic plot
with the time axis scaled by the Rouse variable. The solid curve is a fit with the Rouse model
result (13.47). Reprinted figure with permission from ref. 11. Copyright 1989 by the American
Physical Society.

13.3 Entangled Chains (Reptation)

13.3.1 Linear Chains

The simple Rouse behaviour found for PDMS of molecular weight around 105 is rather the
exception than the rule in polymer science. This becomes already clear from the macroscopic
properties η and D which obey the predictions of the Rouse model only for M < Mc. In this
respect, PDMS is a peculiarity because of its low friction coefficient ζ and high flexibility
allowing the Rouse model to be valid in a large time range of I(Q, t).

Various attempts have been undertaken to understand the change of macroscopic properties
for M > Mc. The most important path of development starts with the tube model of Ed-
wards [12] developed by de Gennes [13]. The basic idea is that the surrounding polymer
molecules form a virtual tube (figure 13.5) which hinders the motion of the central polymer
molecule. The only motion which is easily possible is that along its own contour similar to
a motion of a snake. For that reason the term “reptation”2 has been coined for this type of
motion.

It has to be noted that this virtual tube is not “tight-fitting” but restricts the motion of a
polymer chain on an intermediate length scale d ≈ 5 nm larger than the dimension of a
monomer. Therefore, at short times the restriction is not active and the motion is Rouse-like.
The onset of the tube interaction defines a new intermediate time scale, the entanglement
time τe.

In this simple intuitive model the experimental results for viscosity and diffusion can be
immediately understood. The viscosity of a polymer melt is determined by the longest re-

2 from the latin word reptare = to creep, to crawl; the same root as in “reptile”.
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Fig. 13.5: Artist’s rendering of the virtual tube constituted by the polymer chains surrounding
another.

laxation time τη, in this model the time which is necessary for a polymer to leave its initial
tube and constitute a new one. Within the tube the chain performs a Rouse diffusion with
DR ∝ N−1. The chain has completely left its initial configuration when it has moved by
the contour length L = N`. (Note that here the restriction by the tube enters: It is not the
end-to-end distance

√
N` that counts but the larger arc length.) Thus one expects

η ∝ τη ∝ L2/DR ∝ N3 (13.4)

a cubic increase of viscosity with molecular weight. The actual exponent is more like 3.4 in
the experiment (Fig. 13.2(a) ) but there are indications that for very large chain lengths the
limit of 3 is attained.

In real space the contour of the chain follows a Gaussian random walk, i.e. during the time
τη it moves by diffusion over a distance comparable to its end-to-end distance Re ∝

√
N .

From this one obtains the self-diffusion constant of the whole chain

D ∝ Re
2/τη ∝ N−2 . (13.5)

This result agrees with the example shown in Fig. 13.2(b), but systematic studies show that
the experimental exponent is in general somewhat higher.

Although the explanation of the experimental results by the reptation model is quite satis-
factory, for a real confirmation of the model it is necessary to verify directly the molecular
behaviour. One way to do this is computer simulation. Figure 13.6 shows results from a
bead-and-spring model. Indeed, one can clearly see that the motion of the displayed polymer
molecule is restricted to a tube except for its ends. Nevertheless, this is no true experimental
test because the underlying mathematical model is a gross simplification of the complexity of
a real macromolecule which can only be justified by the universality of large scale dynamics.

A test on real polymers is again possible by the NSE technique. Figure 13.7 shows results of
polyethylenepropylene (PEP) using a similar mixture of hydrogenated and deuterated poly-
mer as before in figure 13.4. It can be seen that the normalised intermediate scattering func-
tion I(Q, t)/I(Q, 0) does not scale with the Rouse variable (13.46). Instead of decreasing
exponentially for long times its value tends to go to a plateau.

This can be qualitatively understood as an effect of the restriction due to the virtual tube
(figure 13.8). For short times the motion of the chain obeys Rouse diffusion. Its position be-
comes on the average “smeared out” and in consequence the correlation function decreases.
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Fig. 13.6: Computer simulation of a bead-and-spring model of a polymer. Shown are only two
(left and right picture) of the 100 chains of length 400. 40 conformations at different times are
superimposed to give an impression of the fluctuation of the polymer shape. Reprinted from
ref. 14, with the permission of AIP Publishing.

Fig. 13.7: NSE spectra from polyethylenepropylene at 492◦C plotted semilogarithmically and
scaled by the Rouse variable as in figure 13.4. The solid curves are fits with the Ronca
model [15]. Reprinted figure with permission from ref. 16. Copyright 1990 by the American
Physical Society.

As soon as the average displacement reaches the order of the tube radius (t = τe) this pro-
cess comes to a halt and the correlation function does not reduce further. Its limiting value
I(Q, t � τe)/I(Q, 0) describes the shape of the tube as S(Q) does for a static object. But
it has to be noted that the tube “exists” only in a certain time regime τe � t � τη and
therefore cannot be detected by static scattering methods.

For a quantitative comparison analytical models are required which can be compared with the
data. Three different model categories shall be discussed without explaining them in detail:

1. In so-called generalised Rouse models [15, 17] the effect of topological hindrance is
described by a memory function. In the borderline case of long chains the dynamics



Polymer Dynamics 13.9

Fig. 13.8: Schematic visualisation of the dynamics of a polymer chain in the tube of surrounding
chains, left to right: 1. initial conformation of the chain, 2. distribution of conformations for
short times t < τe, 3. distribution of conformations for long times t < τe

structure factor can be explicitly calculated in models of this type in time domain which
is directly comparable to the NSE experiment. The solid lines plotted in figure 13.7
correspond to a fit of the data with Ronca’s generalised Rouse model [15].

2. Neglecting the initial Rouse motion which determines the common incipient part of
the data in figure 13.7, in his local reptation model de Gennes explicitly calculated the
collective chain motion in the localisation tube [18]:

I(Q, t� τe)

I(Q, 0)
=

(
1− exp

(
−
(
Qd

6

)2
))

exp

(
kBT`

2Q4t

12

)
erfc

√
kBT`2Q4t

12

+ exp

(
−
(
Qd

6

)2
)

8

π2

∑
p=1,3,...

1

p2
exp

(
−p

2t

τη

)
. (13.6)

Here the first term describes the local reptation while the second represents the creep
process out of the tube. Despite its complicated structure, equation (13.6) gives a
simple result for the plateau

I(Q, (Qd)4τe � t� τη)

I(Q, 0)
= exp

(
−Q

2d2

36

)
. (13.7)

where τe = d4ζ/3π2`2kBT .

3. Finally, des Cloizeaux formulated a model analogous to a rubber (a polymer with fixed
chemical cross-links) at intermediate times [19]. He assumes that the chain performs
Rouse motion between fixed entanglement points.

Because all three types of models have similar underlying concepts the numerical results
are not very different for shorter times in the entanglement regime τe . . . τη. Therefore, it
was for a long time impossible to discriminate them and decide which one is closest to
the experimental truth. A breakthrough in NSE technology could resolve this question [20].
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NSE spectrometry directly measures Ssq, td [12], where
typically the highest attainable Fourier times have been
limited to about 30–50 nsec. On this time scale, NSE
has already played a crucial role in helping to understand
the dynamics of polymeric systems [9,13–17], where, for
example the existence of an entanglement length scale in
a linear polymer has been proven [13]. However, until
now, NSE has not been able to separate the reptation
model from other phenomenological entanglement theo-
ries, such as the rubberlike model of des Cloizeaux [18],
where the polymer is assumed to be spatially fixe at tran-
sient (but long-lived) cross-links, and undergoing Rouse-
relaxation in between. Also under consideration is the
model of Ronca [19], which is a generalized Rouse model
where the influenc of the neighboring chains is approxi-
mated via a memory function of an elastic medium. Fi-
nally, a recent model of Chatterjee and Loring [20] has
appeared, where the entanglements are treated as fluctu
ating obstacles hindering individual chain relaxation. All
these models are more or less consistent with the existing
NSE data, despite representing different basic relaxation
mechanisms.

The inability to clearly distinguish between these mod-
els arises from the fact that the longest attainable Fourier
time for existing NSE spectrometers is insufficien to
reach far enough into the plateau region where the dif-
ferences between theories become apparent (Fig. 1). In
addition to this, a recently developed “first-principles
mode-coupling theory [8] does not support the concept of

FIG. 1. Plot of Ssq, td vs t at q ­ 0.050 and 0.077 Å21, with
a comparison between the predictions of reptation (solid lines),
local reptation (dotted lines), the model of des Cloizeaux [18]
(dashed lines), and the Ronca model [19] (dot-dashed lines).
The vertical line and arrow indicate the upper Fourier-time limit
of previous experiments.

reptation. Since this is a microscopic theory, it seriously
challenges the idea that reptation is the principal relaxa-
tion mechanism. Addressing this issue through Monte
Carlo or molecular dynamics simulations is exceedingly
time consuming, and the investigation of reptation through
simulations find itself in an analogous situation as the
early NSE investigations [21]. Thus, without the devel-
opment of a NSE spectrometer capable of exploring a sub-
stantial part of the plateau region, this issue is unlikely to
be easily resolved.

A significan step forward has recently been made
through the development of an instrument (IN15 at the
Institut Laue-Langevin [22]) capable of exceeding Fourier
times of 300 nsec (Fig. 2). This greatly surpasses the pre-
vious limit of (at most) 30–50 nsec for existing instru-
ments and opens up the possibility for exploring dynamic
phenomena which were previously unobservable. By suf-
ficientl extending the upper limit in t, one is now able
to reach far into the plateau regime and look for clearer
signatures of reptation.

The same polyethylene (PEB-2) sample of molecular
weight Mw ­ 36 000 as used in previous NSE experi-
ments [16] was remeasured at T ­ 509 K on IN15. This
system is well suited for studying the effect of entan-
glements. It is a linear polymer, stable at high temper-
atures. PEB-2 has a high segmental mobility (Wl4

­

7.0 6 0.7 3 1013 Å4ys at 509 K) and should exhibit a
well define plateau (Ne ­ 140, N ­ 2570) [14]. From
the previous NSE measurements the tube diameter was

FIG. 2. Normalized echo amplitude for an elastic, 35 mm
diameter (graphite) scatterer vs Fourier time. The circles,
squares, and triangles represent the spin echo “resolution”
for an incident neutron wavelength of 15, 17.5, and 19 Å,
respectively (Dlyl ­ 15%), and a momentum transfer of q .
0.06 Å21. The inset shows the incident flu on the sample vs
wavelength under the experimental configuratio used for this
investigation.

125

Fig. 13.9: NSE spectra from polyethylene (Mw = 12.4 kg/mol) at 509 K and wave vectors
Q = 0.050 and 0.077 Å−1 with a comparison between predictions of reptation (solid curve),
local reptation (short-dashed curve), the models of des Cloizeaux [19] (dashed curve), and of
Ronca [15] (dot-dashed curve). The vertical line and the arrow indicate the upper time limit
of previous experiments. Reprinted figure with permission from ref. 20. Copyright 1998 by the
American Physical Society.

Model Reference d [Å] Reduced χ2

Reptation [18] 46.0± 0.1 3.03
Local Reptation [18] 46.5± 0.1 3.21
des Cloizeaux [19] 59.8± 0.2 7.19
Ronca [15] 47.4± 0.1 12.2

Table 13.1: Fit results for the entanglement distance d for the studied models [20]. The reduced
χ2 of the fits is also indicated.

Figure 13.9 shows NSE data (IN15, ILL) up to 170 ns (which is five times more than the
previous time range) fitted with the models mentioned above. All fits only have one free
parameter (the entanglement length d) which is listed in table 13.1 together with the χ2

quality of the fit. It is immediately clear that the full reptation expression (13.6) allows the
best description. Next comes the “local reptation”, i.e. only the first term of (13.6). The
slightly worse fit in this case is an indication that the reptation time scale τη has already an
influence in the observed time window. The other two descriptions fall behind significantly
what concerns the t dependence shown here as well as the wave vector Q dependence [20]. It
should also be mentioned that the parameter d obtained using the reptation model is the most
consistent compared with that calculated from rheological measurements d = 42 Å [21].
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time range length scale range mean-square displacement description
. . . τe . . . d 〈∆r2〉 ∝ t1/2 Rouse regime
τe . . . τR d . . .

√
dRe 〈∆r2〉 ∝ t1/4 local reptation

τR . . . τη
√
dRe . . . Re 〈∆r2〉 ∝ t1/2 reptation

τη . . . Re . . . 〈∆r2〉 ∝ t diffusion

Table 13.2: Four regimes of mean-square displacement predicted by reptation theory. τe: en-
tanglement time, d: tube diameter, τR: Rouse time, τη: disentanglement time, Re: end-to-end
distance of polymer chain. Note that this is only an order-of-magnitude estimate, the actual
time and length limits will additionally contain small dimensionless factors.

Apart from the extension of the time range shown above, the progress of NSE instruments re-
cently allows the measurement of genuine incoherent scattering. The ‘trick’ described before,
to synthesise a random co-polymer of protonated and deuterated monomers, is not necessary
anymore. Rather the spin-incoherent scattering of the protons can be directly used. This kind
of experiment allows to calculate the time development of the mean-square displacement
〈∆r2〉 by inverting the Gaussian relation (11.61):

〈
∆r2

〉
= −6

ln(I(Q, t))

Q2
. (13.8)

The reptation model predicts four regimes with different dependences of the mean-square
displacement (MSD) listed in Table 13.2. As long as the MSD is smaller than the tube
diameter, the chain will not ‘feel’ the confinement and its motion will be Rousian, 〈∆r2〉 ∝
t1/2. For longer times, the chain will continue the Rouse motion but along the contour of the
tube. Because the latter is a random walk the exponent reduces by another 1/2, 〈∆r2〉 ∝ t1/4.
For t > τR, the Rouse motion crosses over to diffusion, but still along the tube. So one of
the 1/2-s remains, 〈∆r2〉 ∝ t1/2. Finally, when this motion reaches the length scale of the
chain size (Re), the motion becomes truly diffusion-like, 〈∆r2〉 ∝ t.

The results of the corresponding experiment are shown in Fig. 13.10. The transition from
power 1/2 to power 1/4 can be seen clearly in the double-logarithmic plot. Nevertheless, the
quantitative result for the MSD in the local reptation regime (dotted line) using the known
value of the tube diameter (4.8 nm) does not correspond to the experimental data. The reason
is that the motion in this regime is restricted to the tube. Therefore it is strongly anisotropic
and this is one of the few instances when the Gaussian approximation fails. (The dashed line
represents the limiting case of pure one-dimensional motion which obviously overestimates
the non-Gaussianity effect.)

13.3.2 Limits of Reptation

From its concept it is clear that the reptation model should break down for shorter chain
lengths approaching the minimum length necessary for entanglement, Me, from above. This
visible in the NSE experiment shown in Fig. 13.11 [23]. While the upper panel shows the
usual agreement with the reptation expression, the low molecular weight curves in the lower
panel fall systematically above the theoretical expectation. The fit can be ‘forced’ by adjust-
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Fig. 13.10: Mean-square displacements of polyethylene (Mw = 190 kg/mol) at 509 K from
wave vectors Q = 0.1 (empty symbols) and 0.15 Å−1 (filled symbols). The continuous lines
show the expected power laws. The dotted and dashed lines are explained in the text. Reprinted
figure with permission from ref. 22. Copyright 2003 by the American Physical Society.

ing the tube diameter, but the resulting value d does not correspond to the rheological value
and the fit does not follow the data as well.

The deviation from the reptation model can also be recognised in the macroscopic properties:

• The viscosity follows η ∝M3.4 instead of M3.

• The diffusion coefficient, on closer inspection, follows D ∝M−2.3 instead of M−2.

• The frequency dependence of the loss part of the shear modulus (not discussed here)
follows G′′(ω) ∝ ω−1/4 rather than ω−1/2.

As a consequence of the first two deviations, the entanglement molecular weight Me does
not coincide with the cross-over Mc visible in Fig. 13.2 but it is rather Mc ≈ 2Me [1, 24].

In order to explain these deviations, two additional processes were introduced into the repta-
tion model, contour length fluctuation (CLF) and constraint release (CR). Fig. 13.12 schemat-
ically shows how the CLF mechanism works: Firstly, the chain retracts into its tube. Sec-
ondly, it ‘forgets’ the location of the old tube and extends into a new tube. This process can
also be seen in the simulation data of Fig. 13.6.

It is clear that this results in an enhanced mobility of the chain ends which can explain the
faster dynamics for short chains observed in Fig. 13.11. But to prove that this is really an
effect of the chain ends, a special labelling is used. Chains were synthesised where only
the end regions were deuterated. This was done by following the synthesis of a triblock
copolymer using deuterated and protonated monomers. The chains labelled in that way were
mixed into a majority of fully deuterated chains. In this mixture the contrast is lost for the
ends and one observes only the dynamics of the centre part.

Fig. 13.13 shows the results of NSE experiments [25]. The left panel contains the results
from the abovementioned labelling in comparison to the ordinary labelling where the whole
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Fig. 13.11: Upper panel: NSE spectra from polyethylene (Mw = 190 kg/mol) at 509 K, wave
vectors Q = 0.030 (squares), 0.050 (circles), 0.077 (triangles, up), 0.096 (diamonds), and
0.115 Å−1(triangles, down). The continuous curves represent a fit with the reptation model.
Lower panel: NSE spectra from polyethylene (Mw = 12.4 kg/mol) at 509 K (same symbols).
The dotted lines indicate the fit with the same tube diameter d as for the higher molecular mass,
the continuous curve a fit with free d. Reprinted figure with permission from ref. 23. Copyright
2002 by the American Physical Society.

Fig. 13.12: Contour length fluctuation. Left to right: time sequence of steps of the CLF mech-
anism.
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Fig. 13.13: Left: NSE spectra from polyethylene of Mw = 25 kg/mol where both ends have
been deuterated on a length equivalent to 4 kg/mol (red) compared to completely protonated
polyethylene of the same molecular weight (black) in a deuterated matrix. Right: Same NSE
data for the centre-labelled polyethylene (red) compared to a long chain (Mw = 190 kg/mol)
polyethylene (black).

Fig. 13.14: Constraint release. Left to right: time sequence of steps of the CR mechanism.
Reprinted figure with permission from ref. 26. Copyright 2006 by the American Physical Soci-
ety.

chain is either protonated or deuterated. It can be seen directly from the data that the ac-
celeration of the dynamics is reduced. The right panel shows the comparison with a long
chain where the ends do not play a big rôle. It shows that the centre part of the short chain
dyanmically behaves as a long chain. Both results together prove that the deviations from
the reptation model are indeed chain end effects, corresponding to the picture of CLF.

The second mechanism relevant for deviations from the (ideal) Rouse model is ‘constraint
release’ (CR). It is schematically depicted in Fig. 13.14: Here one of the ‘loops’ defining
the tubes temporarily vanishes due to a move of the molecule forming this loop. The chain
confined takes this opportunity to escape from the tube and settle in a new one.

In order to test this, mechanism labelled (protonated) chains of the same length were mixed
into matrices of chains of varying length. The NSE results [26] show that for identical and
comparatively high length (Mw = 36 kg/mol) the typical reptation picture can be observed:
The curves do not scale with the Rouse variable and do not follow the Rouse model function
(black curve). Upon lowering the molecular weight of the matrix polymer the situation grad-
ually crosses over to the Rouse situation (scaling and functional form). This shows that for
the transition Rouse-reptation not the chain length of the molecule observed but that of the



Polymer Dynamics 13.15

Fig. 13.15: NSE spectra of a long labelled (protonated) chain (Mw = 36 kg/mol) in different
length (deuterated) matrix chains (Mw = 36, 6, 2 kg/mol as indicated in the plot) in a Rouse
scaling representation for two different Q values (filled symbols: Q = 0.12 Å−1, empty sym-
bols: Q = 0.05 Å−1). The black curve represents the master function expected from the Rouse
model (13.47). Reprinted figure with permission from ref. 26. Copyright 2006 by the American
Physical Society.

surrounding molecules is what counts. This is in agreement with the CR mechanism where
the mobility of the molecules constituting the tube walls determine its importance.

13.3.3 Polymer Architecture

In the preceding sections the polymer was always considered as a linear chain. In real appli-
cations polymers often have a branched architecture. One reason for this is that technically
used synthesis mechanisms often unavoidably produce branched chains. But even in situa-
tions where linear chains can be selectively synthesised one often prefers branched polymers
because they may show mechanical properties which are desired for a specific application.
As an example of the large rheological differences branching can cause, Fig. 13.16 shows a
comparison of two species of polyethylene driven in a model of an extruder from a tube of
larger diameter to a smaller one. The flow has been made visible by dispersing particles in
the polymer melt. One can see that the linear polymers exhibits a flow field expected from
Newtonian viscosity while the branched polymer creates vortices in the corners.

In addition to the technological interest in the description of such behaviour of branched
polymers there is also an interest from basic science in its explanation. The reptation theory
as described before depends on the topology of the molecules, i.e. that they are chains with
exactly two ends. Therefore, it is interesting to study how the theory has to be modified, if
there are branching points, more than two ends, or even no chain ends (ring polymers).

It is easy to see that even in the simplest case of modified architecture, the three-arm star,
long-range diffusion is drastically changed. The branching point can only be relocated if one



13.16 R. Zorn, R. Biehl

Fig. 13.16: Flow-visualisation of polyethylene melts. Left: high-density polyethylene (linear),
right: low-density polyethylene (branched). [6]

of the arms retracts completely and forms a new tube. This stands in contrast to the linear
chain where it is sufficient that only end sections of the chain retract (contour length fluctu-
ation) and a new tube is constructed gradually. Because the whole molecule cannot diffuse
faster than any of its parts this slows down all macroscopic dynamics. The dependence of the
viscosity on the molecular weight changes qualitatively from a power law to an exponential
law:

η ∝ Dcentre ∝ exp

(
ν
Ma

Me

)
. (13.9)

Here, Ma is the arm molecular weight and Me the entanglement molecular weight of the
corresponding linear polymer. For this relation, one finds ν = 0.6 experimentally and ν =
5/8 from a reptation model including constraint release3.

The question whether this enhanced viscosity is really a consequence of the confinement
of the branching point can be answered by a neutron scattering experiment. By advanced
synthesis techniques it is possible to connect three diblock copolymers, each containing a
short labelled (protonated) block and a long deuterated block, to build a star with labelled
centre (Fig. 13.17, left). In neutron scattering, a melt of such stars only shows the dynamics
of branching point if the labelled region is sufficiently small. Fig. 13.17 shows the result
of an NSE experiment [27] comparing the centre-labelled star with a centre-labelled linear
polymer. It can be seen that, while the centre of the linear chain shows a similar relaxation
as the central part of the chain (as discussed in the preceding section), the centre of the star
is immobilised on the time scale of the experiment. This is a consequence of equation (13.9)
which shifts the relaxation times to values far beyond the experimental time limit of 200 ns.
Given that the same effect cannot be found for the centre of the linear polymer, this proves
that the microscopic confinement of the branching point indeed takes place.

3 The situation would be even more dramatic without the CLF mechanism. In that case one would expect ν = 15/8.
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Fig. 13.17: Comparison of centre dynamics in a star-branched and a linear polyethylene. Left:
structure and labelling (h: red, d: blue) of the molecules used. Right: NSE results. Empty sym-
bols and continuous curve: star polymer, 3.2 kg/mol protonated centre, 25.8 kg/mol deuterated
arms. Dashed line and filled lines: linear polymer with sequence d26.4–h3.5–d26.2 [kg/mol].
Q values: 0.05 (circles), 0.077 (triangles up), and 0.115 Å−1 (triangles down). Reprinted with
permission from ref. 27. Copyright 2010 American Chemical Society.

13.4 Protein dynamics

Beyond synthetic polymers, the next challenge is the investigation of the large-scale motion

of biopolymers. Biopolymers as proteins share some structure with polymers as a sequence

of repeating units forms a larger structure. For proteins, these are 21 amino acids which

differ not only in the sidechain size, but also in charge, hydrophobicity and polarity. The

structure of globular proteins is mainly stabilised by hydrophobic interactions but addition-

ally via a hydrogen bond network and crosslinking by disulfide bonds. Proteins are found in a

diversity of structures as each amino acid sequence defines a three-dimensional arrangement

reaching from polymer like intrinsically unfolded proteins to rigid protein domains connected

by flexible linkers and rigid protein complexes with hinges between domains or rigid glob-

ular complexes. The structure and related conformational changes are often related to the

function of the protein e.g. by arranging the active centre after substrate binding or allow-

ing transport and release of products. The concept of adaption of a specific active structure

caused by ligand binding is referred to as “induced fit” and is challenged by models as e.g.

“conformational sampling” (ligands bind if the active configuration is found). Newer models

about protein function include some flexibility within the protein structure or even internal

dynamics of the protein. As larger domains contribute to the configurational changes, the

timescale of the involved motions is slowed down. More and more, the role of slow domain

dynamics is recognised as essential to understand the function of proteins.

If the structure of the protein is polymerlike we may use polymer-related models averaging

over a configurational space. For structured proteins, this is not possible. An adequate model

is based on normal mode deformations of a rigid structure to describe hinge motions or

motions enabled by short flexible linkers. In the following we describe two cases: the poly-



13.18 R. Zorn, R. Biehl

merlike intrinsically unfolded myelin basic protein and the domain motions of an antibody
with short linkers.

13.4.1 Separation of global and internal dynamics

The normalised coherent intermediate scattering function I(Q, t)/I(Q, 0) measured by NSE
of a protein in solution has contributions from overall translational and rotational diffusion
and from motions within the molecule that we call “internal dynamics”. In the general case,
all motions might be coupled. In a simplifying assumption known as decoupling approxima-
tion we assume that the internal dynamics (int) does not alter the overall diffusion and that
translational (trans) and rotational (rot) diffusion are decoupled too. The single particle pair
correlation function4 or coherent intermediate scattering under this assumption is

F (Q, t) = Ftrans (Q, t) ·F rot (Q, t) ·F int (Q, t) . (13.10)

13.4.1.1 Global diffusion of rigid proteins

The diffusional term contributing to equation (13.10) for a single rigid protein has contri-
butions from translational and rotational diffusion characterized by the respective diffusion
coefficients DT and DR. These can be calculated from the atomic coordinates rα of the pro-
tein by HYDROPRO on basis of a PDB conformation [28] or measured in dilute solutions.
We obtain

Ftrans (Q, t) = exp
(
−Q2DTt

)
and (13.11)

Frot (Q, t) =
∞∑
l=0

Sl (Q) exp(−l (l + 1)DRt) (13.12)

with Sl (Q) =
∑
m

∣∣∣∣∣∑
α

bαjl(Qri)Yl,m(Ωα)

∣∣∣∣∣
2

. (13.13)

4 For the synthetic polymers discussed in section 13.2 and 13.3 it was sufficient to treat the polymer segments as
identical scatterers with a total scattering length which does not differ between the segments. This allows writing
the intermediate scattering function as a dynamic structure factor (see equation 11.26):

I(Q, t) =

〈∑
ij

exp (−iQ · (rj(t)− ri(0)))

〉
.

Due to the less regular chemical structure of proteins, it is necessary to consider the different scattering lengths
explicitly. The resulting scattering-length-weighted correlation function is

F (Q, t) =

〈∑
ij

bib
∗
j exp (−iQ · (rj(t)− ri(0)))

〉
.

Note that the dimension of F (Q, t) is m2. It is rather a cross section than a structure factor. For comparison to with
NSE data this does not matter because in expressions as F (Q, t)/F (Q, 0) the dimension cancels out. For reasons
of compatibility with the literature the experimental NSE result will still be called I(Q, t)/I(Q, 0) here.
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where Sl(Q) are the coefficients of a multipole expansion of the asymmetric form factor with
scattering length bα of the atom α at position rα and orientation Ωα, j1(Qr) are the spherical
Bessel functions and Yl,m(Ωα) the spherical harmonics [29, 30].

The measured NSE signal is independent of direct concentration effects as I(Q, t)/I(Q, 0) =
F (Q, t)/F (Q, 0). For larger concentrations, the protein scalar translational diffusion coef-
ficient DT is influenced by direct interactions subsumed in the structure factor S(Q) and
hydrodynamic interaction described by the hydrodynamic function HT(Q). This leads to
the correction DT(Q) = DT0HT(Q, c)/S(Q, c) were the index 0 indicates the dilute limit
(single particle limit). [30, 31]. The hydrodynamic function HT(Q) is found to be con-
stant for flexible proteins [29, 32, 33] and reduces the translational diffusion coefficient with
HT(Q) = HT(Q = ∞) = η0/η < 1 [34–37]. η0/η is measured as the ratio between solvent
viscosity, η0, and protein solution viscosity at the measured concentration, η. Hydrodynamic
effects also influence the rotational diffusion coefficient subsumed in the hydrodynamic factor
HR for rotational diffusion with DR = DR0HR. According to ref. 38 for spherical particles
this effect can be estimated as 1−HR = (1−HT(Q =∞)) /3.

13.4.1.2 Internal dynamics

To explore the internal dynamics of fragments or domains we use a normal mode description
of the internal motions similar to the Rouse model or Zimm model. In contrast to the poly-
mer models we cannot assume that only nearest neighbours in a chain interact. Instead we
have to take into account all neighbours in the direct vicinity. Tirion had shown that a sim-
plified elastic force field is enough to describe the slowest large scale motions [39]. With this
in mind, we assume Brownian motion of the protein atoms in a harmonic potential around
the equilibrium position, a problem described by the Ornstein-Uhlenbeck process [40, 41].
The coherent intermediate scattering function is (for details see appendix A13.2)

Fint(Q, t) =

〈∑
α,β

bαbβ exp(iQ ·Req
β ) exp(−iQ ·Req

α ) · fαβ (Q,∞) · f ′αβ(Q, t)

〉
. (13.14)

Here fαβ(Q,∞) is a time independent factor determined by the internal forces. The time
dependent part is

f ′αβ (Q, t) = exp

( ∑
j=1...3N

(vjα ·Q)(vjβ ·Q) exp(−λjt)

)
(13.15)

with displacements vjα =
√
kBT/(λjΓj)bjα in Brownian normal mode j with relaxation

time 1/λj and friction Γj . bjα is a normalised eigenvector of the force constant ma-
trix (see appendix A13.2). The contribution of internal dynamics to the NSE signal is
Fint(Q, t)/Fint(Q, 0). The dynamics of single independent particles or subunits can be de-
scribed by the much simpler function

Fint (Q, t) = exp(−Q2
〈
x2
〉

(1− exp (−λt)) (13.16)

with the (one-dimensional) mean square displacement 〈x2〉 in the harmonic potential [42].
Nevertheless, in this simplification, the specific arrangement of the conformation is lost.
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Expanding the first exponential in equation (13.15) as exp(x) = 1+x we get a simplification
for small displacements

f ′αβ (Q, t) = 1 +
∑

j=1...3N

(vjα ·Q)(vjβ ·Q) exp(−λjt) (13.17)

showing that the amplitude is directly related to the displacements of the modes. Using
F (Q, t)/F (Q, 0) for the measured NSE signal we find with B =

∑
j=1...3N (vjα ·Q)(vjβ ·Q)

and A = B/(1 +B) assuming a single relaxation rate λ:

F (Q, t)

F (Q, 0)
=
[
(1− A) + Ae−λt

] Ftrans (Q, t) ·F rot (Q, t)

Ftrans (Q, 0) ·F rot (Q, 0)
. (13.18)

13.4.2 Intrinsically Disordered Proteins (IDP)

The biological role of the IPD is founded in their high conformational adaptivity, enabling
them to respond rapidly to environmental changes, in the flexibility of their associative prop-
erties allowing them to fold into different states depending on partner molecules. For these
properties the dynamics is essential. In particular, the sampling of the energy landscape and
the exploration of the large conformational space are driven by conformational motions of
the unfolded peptide chain.

MBP (Myelin Basic Protein) is a major component of the Myelin sheets in the central ner-
vous system [43]. Among the several isoforms the major human and bovine isoform, the
18.5 kDa form, was investigated. In the human body MBP is of significant importance as
there are many neurological disorders such as multiple sclerosis that are related to MBP mal-
function. Lipid-free MBP is not completely unfolded but retains some elements of the alpha
helix and beta sheet (about 60 % of the protein is unfolded) [44].

13.4.2.1 Structural results

Since the intrinsic disorder prevents crystallographic structure determination, only low-
resolution SANS and SAXS information about the average structure in the disordered state
exists.

Figure 13.18A and B show X-ray and neutron form factors of MBP that display strong sim-
ilarities to polymer form factors. Both data show a power law decay at Q > 1.0 nm−1 with
power law exponents of ≈ −2, which is characteristic for Gaussian chain polymers in theta
solvents. Within the Guinier approximation a radius of gyration of 3.30 nm for the SAXS
and 3.38 nm for the SANS data were found. Since there is no structural model available,
the data were further evaluated by reverse Monte Carlo simulations with the goal to generate
a coarse grained ensemble representing the structural characteristics of MBP [45] (see Fig-
ure 13.18B). We found elongated structures with a relatively compact core and flexible ends
on both sides similar to Figure 13.18C.

The tendency to more compactness, indicated by the higher exponent in the asymptotic Q
power law, is reproduced also in comparing the hydrodynamic radius obtained by light scat-
tering with the radius of gyration obtained by small angle scattering. For MBP a ratio of
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Fig. 13.18: Small angle scattering data from MBP (A) SAXS data at 4.5 mg/ml. (B) SANS
results extrapolated to infinite dilution. The solid lines in (A) are fits with the Debye equation
for a Gaussian chain. Power law scattering is indicated above Q > 1 nm−1 by dashed lines.
(C) Kratky plot of the SAXS data. The line is a result of the scattering from the most probable
conformational ensembles. (C) Displacement pattern of the normal modes 7 (upper part) and
8 (lower part) from a structural model. The lengths of the vectors are increased for better
visibility. (C) Amplitude of the internal protein dynamics as obtained from the fit. The solid
and dashed lines are the calculated mode amplitude according to equation 4. Reprinted with
permission from ref. 47. Copyright 2014 American Chemical Society.

1.07 ± 0.01 was found which is significantly larger than the value of 0.66 found for poly-
mers in a good solvent and smaller than 1.26 characteristic for a small globular protein such
as myoglobin [5, 46]. Thus, the enhanced ratio of RH/RG also supports the notion of an
increased compactness compared to a completely unfolded chain.

13.4.2.2 MBP internal dynamics

Figure 13.19 displays NSE spectra from 54 mg/ml solutions. At this concentration, times
up to 140 ns could be accessed. Inspecting Figure 13.19A, already with the naked eye the
two-component structure of the NSE spectra at Q values above 0.9 nm−1 is visible. Thus,
we deal with long time rigid body motion augmented by internal dynamics with relaxation
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times below 10 ns.

As an approach justified by the similarity to polymers it was tested whether the dynamics of
MBP can be described using the Zimm model as a coarse grained description of the solution
dynamics including the hydrodynamic interactions between beads [5].

Within the Zimm model the chain is considered as a succession of N beads that are con-
nected by entropic springs with the uniform average bead distance `. The internal motions
of the chain including rotational diffusion are represented by relaxation modes with mode
number p and characteristic times τp given by

τp =
ηR2

e√
3πkBT

p−3ν (13.19)

with the D2O viscosity η = 1.679 cP at 10◦C. As the SAS data could be reasonably well
described by a Debye form factor, Gaussian chain statistics with ν = 0.5 and an end-to-end
distance Re =

√
6Rg = 8.08 nm were employed. With this approach the first Zimm mode

corresponding to the rotational relaxation time equals to τ1 = 73.9 ns.

The dashed lines in Figure Fig. 13.19B display the results of the Zimm description – the
translational diffusion coefficient was adapted to the experimental values from dynamic light
scattering (DLS). It is evident that the Zimm model does not fit the data: the predicted decay
is much faster than the experimental observation.

In order to improve the description, the ZIF model was applied [48–50]. This model consid-
ers the effect of internal friction within the chain – a damping ‘dashpot’ is placed in parallel
to the springs. The internal chain friction leads to a relaxation time τi that has to be added to
each Zimm relaxation time resulting in τZIF

p = τp + τi. The solid lines in Figure Fig. 13.19B
show the improved result. The corresponding residuals oscillate in a systematic way and
do not fluctuate randomly. Additionally, a large value for the internal friction τ1 = 81.6 ns
is imposed, that is longer than the first mode relaxation time of the pure Zimm model. In
this way the internal friction dominates all higher relaxation times to such an extent that the
limiting value τ1 is quickly approached and the τp ∼ p−3/2 signature of the Zimm model is
lost.

13.4.2.3 Normal mode analysis for internal dynamics in MBP

Since for the calculation of the rigid body dynamics no crystal structure was available, the
most probable ensemble optimised model (EOM) structures were used instead. On this basis
the Q-dependent effective diffusion coefficient D0 was calculated. For the translational and
rotational diffusion coefficients DT = 3.7± 0.2 Å

2
/ns and DR = 2.35± 0.36× 106 s−1 were

found. The corresponding average rotational correlation time is τR = 1/(6DR0) = 70.9 ns.
The calculated translational diffusion coefficients agree well with the DLS results at infinite
dilution.

In the first approach, the structural ensemble evaluated from the inverse Monte Carlo cal-
culation was used to interpret the full NSE spectra. Using equation (13.19), a Q-dependent
motional amplitude A(Q) and an internal mode relaxation time were evaluated. The fit re-
sults from the structural model to the NSE spectra are displayed in Figure Fig. 13.19A up
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Fig. 13.19: NSE Data for MBP: All spectra start at unity but are shifted consecutively by a
factor of 0.8 for clarity. The residuals of the displayed fits are given for Q=0.9 and 1.1 nm−1

below the graphs. (A) Solid lines are fits to the NSE data with the structural model. The dashed
lines are exponential fits for t > 20 ns to extrapolate the long time rigid body dynamics. A clear
separation between the internal and the global dynamics is obvious. (B) The dashed lines are
a result of the Zimm model. The solid lines represent a fit with a ZIF model. Reprinted with
permission from ref. 47. Copyright 2014 American Chemical Society.

to 40 ns. The experimental data are very well described and the contribution of the inter-
nal protein motion to the spectra becomes directly visible. The results for the Q-dependent
amplitude are displayed in Figure 13.18D. For the characteristic internal relaxation time
1/λint = 8.4± 2.0 ns is found for the whole structural ensemble.

Given the structural information as well as the spectral line shapes it is not surprising that
the polymer approach does not work. The motions of MBP are significantly slower than that
of a Gaussian polymer of the same size in solution. Thus, for MBP the structural ensemble
gives a significantly better realisation of the dynamics than the polymer model. The lowest
soft collective excitations of the structural model, as they are revealed by the normal mode
analysis, are displayed in Figure 13.18C. Normal mode 7 and 8 correspond to bending and
stretching motions of the structural model. With these modes, the internal dynamics ampli-
tude A(Q) was calculated and is compared with the experimental values in Figure 13.18D.
As may be seen mode 7 is dominating and fully reproduces the observed A(Q). The dis-
placement patterns indicate that the centre part of MBP remains rather rigid, while the termini
are flexible.

13.4.3 Antibody domain dynamics

Specificity and constancy cause the high potential of the antibodies to be used in im-
munotherapy to develop new specific drugs targeting specific cells for inhibition/activation
of cell processes. IgG (Immunoglobulin G) is the major antibody class, large molecules of
150 kDa composed of four peptide chains: two identical heavy chains of 50 kDa and two
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Fig. 13.20: Left: Immunoglobulin G1 with Fc and two Fab fragments with the van der Waals
surface in grey. The Fc fragment is built from parts of the heavy chains (red and blue cartoon)
and the glycans (red and green spheres) between the two heavy chains. Fab fragments are
built from heavy and light chains (orange and green cartoon) with a hinge between the variable
region (V) and the constant region (C) of the Fab fragment. The heavy chains are connected in
the linker region by two disulfide bonds (yellow spheres). The structure displayed is based on
the human IgG1 structure IgG-ALL.pdb of Padlan [53]. Right: The SAXS form factor with the
fit result. The form factor fit includes 52 ± 4% monomer as monomer and 48 ± 4% monomer
in dimers and a background contribution (bgr). The dashed line shows the combined monomer-
dimer scattering, the red line shows the contribution of the dimer, while the blue line shows the
monomer, all without the residual background. Reprinted from ref. 51

identical light chains of 25 kDa, in a tetrameric structure (Figure 13.20). The conformational

dynamics of IgG results from a hinge region as a loose section of the polypeptide chain that

links the Fc and Fab domains. This hinge is functional important as immunoglobulins that

lack this flexible region by a mutation trigger no immune response.

13.4.3.1 Antibody domain structure in solution

We used X-ray scattering to investigate the configurations of IgG in solution in a concentra-

tion range between 3 and 26.4 mg/ml as shown in Figure 13.20 right [51]. As confirmed by

analytical ultracentrifugation the solution contains monomers and dimers, which is common

for antibodies in solution as there is a tendency to build oligomers. Dimers with a head-head

configuration are proposed [52]. Modelling of mixtures between monomers and dimers, in-

cluding a flexible hinge region in the centre, allows to fit the SAXS form factor as shown in

Figure 13.20, right. The dimers show still flexibility in the hinge.

13.4.3.2 IgG dynamics

Figure 13.21 displays the intermediate scattering function I(Q, t)/I(Q, t = 0) as measured

by NSE. Already by simple inspection, a clear deviation from a simple diffusion process
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is observed on short times. Fitting the data by the corresponding single exponential decay
I(Q, t)/I(Q, t = 0) = exp (−Deff(Q)Q2t) one can see a proper fit for long times t with
an effective diffusion coefficient Deff(Q). The effective diffusion is shown on the right. On
a ten-nanosecond scale, clear indications for a faster relaxation can be observed, which we
attribute to motions within the molecule.

13.4.3.3 Global diffusion

The 6×6 diffusion tensor D was calculated by HYDROPRO on basis of a PDB (protein data
bank) conformation [28]. As result we get the scalar diffusion coefficients DT0 = 3.48 ×
10−2 nm2/ns and DR0 = 6.96× 10−4 ns−1 for the monomer and DT0 = 2.71× 10−2 nm2/ns
and DR0 = 3.53× 10−4 ns−1 for the dimer. The rotational correlation times τr = 1/6DR0 for
the monomer and dimer are on a scale of 260 ns−1 respectively 500 ns−1 and are longer than
the translational diffusion times (e.g. 29 ns at Q = 1 nm−1). Therefore, we can extract the
effective diffusion Deff(Q) comprising translational and rotational contributions of the over-
all protein by applying a single exponential fit for times t > 15 ns. The result is shown in
Figure 13.21 together with the DLS result for the same concentration as used for NSE mea-
surement. We use equation (2) and the 6× 6 diffusion tensor D together with the monomer
and dimer structure to calculate D0(Q) of the rigid structures (see inset in Figure 13.21).
The increase from low Q to the higher Q values results from the stronger visibility of the ro-
tational diffusion when the observation length scale 2π/Q reaches the size of the protein. At
low Q we see only the translational diffusion as measured by DLS. The expected diffusion
Deff(Q) of the monomer/dimer mixture can be calculated as the average of monomer and
dimer diffusion weighted by the scattering contribution to the form factor as shown in Fig-
ure 13.20. To include the hydrodynamic effects, the translational contribution Deff(Q = 0) is
corrected by HT(Q =∞) = 0.66 as calculated from viscosity and correspondingly the rota-
tional diffusion contribution Deff(Q) − Deff(Q = 0) as described above by HR. It needs to
be emphasised that the excellent agreement is not a fit but based on additional measurements
and model calculations.

13.4.3.4 Internal dynamics

The specific structure of IgG with three nearly equally sized fragments connected by flexible
linkers suggests a simple model of three fragments within a harmonic potential. The flexi-
ble linkers may act as springs fixing the relative equilibrium position of the fragments but
allowing fluctuations around the equilibrium position.

We use a reduced set of apparent displacement patterns and consider three perpendicular vec-
tors of unit length for each of the three fragments. One is aligned parallel to the linker from
the IgG centre of mass to a fragment centre of mass and further two aligned perpendicular to
this. Overall this represents nine degrees of freedom. Using equation (13.14) and 5 we find
an excellent description of the data as shown in Figure 13.21 left. The additional information
beyond the amplitude and the relaxation time are the force constant of the harmonic poten-
tial and the relevant friction for the Ornstein-Uhlenbeck process. We find a force constant of
about 10 pN/nm and a friction of about 40000 g/ps/mol. The friction corresponds to the fric-
tion exerted by the water on a single free fragment. The force constant is comparable to the



13.26 R. Zorn, R. Biehl

0 20 40 60 80 100 120
t / ns

0.01

0.1

1

I(
Q

,t)
/I(

Q
,0

)
9 modes

Model OUwithdiff9 with chi2=1.52664 (DOF = 130 points - 3 parameters)

0.5 nm-1

0.8 nm-1

1.1 nm-1

1.4 nm-1
1.7 nm-12.0 nm-1

0 0.5 1 1.5 2
Q / nm-1

2

2.5

3

3.5

D
(Q

) /
 c

m
2 /s

 x
10

-7

(m+d)*H
(m+d)*H/S(Q)
DLS
NSE

0 1 2Q / nm-1

3

4

5

D
(Q

) 

monomer
dimer
(m+d)

Fig. 13.21: Intermediate scattering functions I(Q, t)/I(Q, 0) of IgG. Spectra were shifted for
clarity upwards. Solid lines in the same color represent the fit by equation (5) with contribu-
tions from translational and rotational diffusion from equation (6) & (7) and internal dynamics
described by equation 10 with 9 degrees of freedom as described in the text. Dashed lines cor-
respond to the contribution of translational and rotational diffusion and are close to a single
exponential for times t > 15 ns. The amplitude of internal dynamics is the difference be-
tween the contribution of diffusion and the observed signal, respectively the solid line of the
fit curve. Right: Effective diffusion coefficient Deff for long Fourier times as result of fits to
exp (−Q2Defft) for t > 15 ns at a concentration of 29 mg/ml as black circles. Black squares
show the effective diffusion for low Q as measured by dynamic light scattering at the same con-
centration. The dashed blue line shows the result for Deff(Q) as a mixture between monomer
and dimer including the effect of hydrodynamic interactions. The black solid line includes addi-
tionally the structure factor correction. The inset shows the diffusion coefficients for monomer
and dimer with the intensity averaged Deff(Q). Reprinted from ref. 51

force of an entropic spring of the same length as the linker from the centre to the fragment
(about 8 amino acids). Concludingly, we observe that even short linkers act as an entropic
spring for the fragments allowing the highest degree of mobility with a large configurational
freedom.

13.5 Summary

The macroscopic properties of polymers (e.g. viscoelasticity) and the function of biopoly-
mers can be explained on the basis of their microscopic dynamics. To explore the latter,
inelastic neutron scattering is the most important experimental technique because it covers
the necessary length- and time scales. Especially, neutron spin echo (NSE) spectroscopy has
been useful because its time range allows observing the slow motions of polymer chains. A
further advantage of neutron scattering is that it allows the selective study of regions of the
polymer chain (ends, branching points, protein subunits) by means of isotopic labelling.
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Appendices

A13.1 Rouse dynamic structure factor

The essential assumption of the Rouse model is that chains do not interfere with each other
in their motion. This results in a Gaussian chain in a heat bath as the simplest model for
chain relaxation. The building blocks of such a chain are N segments each consisting of
sufficient monomers so that their end-to-end distance follows a Gaussian distribution with the
average `. We are interested in the motion of these segments on a length scale ` < r < RE

(Re =
√
N` is the total end-to-end distance of the polymer chain). This motion is described

by a Langevin equation [5]

ζ
drn
dt

= K (rn+1 − 2rn + rn−1) + fn(t) (13.20)

where ζ is the monomeric friction coefficient and rn the position of the nth segment. K is a
(spring) force constant and fn(t) a stochastic force which will be determined in the following.
The respective equations of motion for the first and last segment are

ζ
dr1

dt
= K (r2 − r1) + f1(t) , ζ

drN
dt

= K (rN−1 − rN) + fN(t) . (13.21)

The probability of a conformation {ri} is the product of the probabilities of the individual
segment distances having the values ri+1−ri, in case of a Gaussian distribution with average
`:

W ({ri}) =

(
3

2π`2

)3N/2 N−1∏
i=1

exp

(
−3|ri+1 − ri|2

2`2

)
. (13.22)

From this follows directly the entropy S = −kB lnW ({ri}) and the free energy F =
E + kBT lnW ({ri}). Even under the assumption that there is no direct interaction between
the segments (E = 0) there is still an entropic force between them which is given by the
derivative of F with respect to a segment’s position rn. It is easy to carry out and results in
the first right hand side term of (13.20) with K = 3kBT/`

2.

The stochastic force has the following properties:

〈fn(t)〉 = 0 (13.23)
〈fmα(t)fnβ(t′)〉 = 2kBTζδmnδαβδ(t− t′) . (13.24)

The first equation expresses the random character of the force, on average there is no net
force. The second equation includes the uncorrelatedness of the force on segments m,n
its vector components α, β and at times t, t′. The magnitude of 2kBTζ is related by the
fluctuation dissipation theorem to the strength of the friction.

Similarly to the solution of the equation of motion of an elastic string, the Langevin equa-
tion (13.20) is solved by constructing the segment motions as a sum of normal modes xp:

rn =
N−1∑
p=0

xp cos

(
pπ
(
n− 1

2

)
N

)
. (13.25)
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Choosing the cosine and the phase −pπ/2N has the effect that the boundary cases (13.21)
reduce to the general case (13.20) by introducing fictitious segments r0 = r1 and rN+1 =
rN

5. Inserting (13.25) into the Langevin equation (13.20) yields

ζ

N−1∑
p=0

dxp
dt

cos

(
pπ
(
n− 1

2

)
N

)
= (13.26)

3kBT

`2

N−1∑
p=0

xp

(
cos

(
pπ
(
n+ 1

2

)
N

)
− 2 cos

(
pπ
(
n− 1

2

)
N

)
+ cos

(
pπ
(
n− 3

2

)
N

))
+ fn .

Using the relation cos(x + y) − 2 cosx + cos(x − y) = −2 cosx(1 − cos y) and introducing
mode components of the stochastic force fp such that

fn =
N−1∑
p=0

fp cos

(
pπ
(
n− 1

2

)
N

)
(13.27)

we can simplify (13.26) to

N−1∑
p=0

[
ζ

dxp
dt

+
3kBT

`2
2(1− cos(pπ/N))xp − fp

]
cos

(
pπ
(
n− 1

2

)
N

)
= 0 . (13.28)

Because of the orthogonality of the cosine functions this system of equations is only ful-
filled if the term in square brackets vanishes for any p. This means that in terms of normal
coordinates the equations of motions are decoupled and can be solved separately:

ζ
dxp
dt

= −6kBT (1− cos(pπ/N))

`2
xp + fp . (13.29)

To be consistent with equations (13.23) and (13.24) the normal mode components of the
stochastic force have to fulfill

〈fp(t)〉 = 0 (13.30)
〈fpα(t)fqβ(t′)〉 = 2(2− δp0)kBTζδpqδαβδ(t− t′)/N . (13.31)

We firstly consider the modes with p ≥ 1: The formal solution of (13.29) is

xp(t) =
1

ζ

∫ t

−∞
exp

(
−t− t

′

τp

)
fp(t

′)dt′ (13.32)

with

τp =
ζ`2

6kBT (1− cos(pπ/N))
=

ζ`2

12kBT sin2(pπ/2N)
≈ ζN2`2

3π2kBTp2
for p� N . (13.33)

Thus, the modes have a spectrum of decay times ranging from τN = ζ`2/12kBT to τ1 ≈
ζN2`2/3π2kBT , the latter usually being called the Rouse time τR.

5 This rather sophistical consideration of the boundary conditions loses its importance for large N . Therefore, the
phase difference is often omitted in the literature and an approach chosen where n is a continuous variable instead
of an integer.
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Of course, this solution is undetermined because it still contains the random force fp(t).
Nevertheless, it is possible to calculate its correlators:

〈xpα(t)xqβ(0)〉 =
1

ζ2

∫ t

−∞
dt1

∫ 0

−∞
dt2 exp

(
−t− t1 − t2

τp

)
〈fpα(t1)fqβ(t2)〉

=
1

ζ2

∫ t

−∞
dt1

∫ 0

−∞
dt2 exp

(
−t− t1 − t2

τp

)
4δpqδαβζkBTδ(t1 − t2)/N

=
4δpqδαβkBT

Nζ

∫ 0

−∞
exp

(
−t− 2t2

τp

)
dt2

=
2δpqδαβkBTτp

Nζ
exp

(
− t

τp

)
. (13.34)

On the other hand, for p = 0 there is no spring force term in (13.29) and one obtains

x0(t) =
1

ζ

∫ t

0

f0(t′)dt′ + x0(0) (13.35)

and

〈(x0α(t)− x0α(0))(x0β(t)− x0β(0))〉 =
2kBT

Nζ
δαβt . (13.36)

The physical meaning of the mode zero is the motion of the centre of mass

rcm =
1

N

N∑
n=1

N−1∑
p=0

xp cos

(
pπ
(
n− 1

2

)
N

)
= x0 (13.37)

because the sum over n vanishes for p 6= 0. Therefore we can calculate the mean square
displacement of the centre of mass:

〈∆rcm
2〉 = 〈(rcm(t)− rcm(0))2〉 = 3〈(x0α(t)− x0α(0))2〉 =

6kBT

Nζ
t . (13.38)

This is a simple diffusion law with the self-diffusion constant D = kBT/Nζ (11.58). The
calculation of the viscosity is somewhat more complicated because the external shear force
has to be added to the Langevin equation (13.20) but otherwise straightforward resulting
in (13.1).

In order to calculate the incoherent inelastic scattering function the Gaussian approxima-
tion (11.61) is used. Then it is only necessary to calculate the time dependent mean square
displacement of the average segment, i.e. the n average of 〈∆rn2(t)〉 = 〈(rn(t) − rn(0))2〉.
Inserting (13.25) for rn(t) one gets

〈∆rn2(t)〉 =
N−1∑
p=0

〈
(xp(t)− xp(0))2

〉
cos2

(
pπ
(
n− 1

2

)
N

)

=
6kBT

Nζ
t+

N−1∑
p=1

12kBTτp
Nζ

cos2

(
pπ
(
n− 1

2

)
N

)(
1− exp

(
− t

τp

))
.(13.39)
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Hitherto, the calculation of the Rouse model is exact. By inserting (13.39) into (11.61) and
averaging over all segments n = 1 . . . N an exact result for Iinc(Q, t) could be obtained6. In
order to obtain a result in closed form one usually considers the limit N → ∞. Then, one
can express the mean-square displacement in closed form by special functions:

〈∆rn2(t)〉 =
6kBT

ζ
t 1F1

(
1

2
; 2;−12kBT

ζ`2
t

)
(13.40)

=
6kBT

ζ
t exp

(
−6kBT

ζ`2
t

)(
I0

(
6kBT

ζ`2
t

)
+ I1

(
6kBT

ζ`2
t

))
. (13.41)

Here, 1F1 is the confluent hypergeometric function and I0 and I1 are modified Bessel
functions [54]. From the asymptotic properties of the Bessel functions follows that for
τN � t� τR

〈∆r2〉 ∼

√
12kBT

πζ
`t1/2 . (13.42)

This result can also be obtained in a mathematically less strict but more comprehensible way:
The limit N →∞ means that the chain is infinitely subdivided and can be seen as a contin-
uous string. Then the sum in (13.39) can be replaced by an integral. Furthermore, because
the main contribution to the sum comes from higher p it is possible to replace cos2(. . .) by
its average 1/2. Finally, N → ∞ ensures the validity of the approximation τp = τR/p

2

in (13.33):

〈∆rn2(t)〉 =
4N`2

π2

∫ ∞
0

1

p2

1

2

(
1− exp

(
−tp

2

τR

))
dp

= 2N`2

√
t

π3τR

=

√
12`2kBT

πζ
t . (13.43)

It can be seen that—in contrast to ordinary diffusion as for the centre of mass (13.38)—
〈∆rn2(t)〉 does not increase linearly with t but only with t1/2. Inserting (13.43) into (11.61)
gives the final result:

Iinc(Q, t) = exp

(
− 2√

π
(ΩR(Q)t)1/2

)
(13.44)

with the characteristic rate of the Rouse dynamics

ΩR(Q) =
kBT`

2

12ζ
Q4 . (13.45)

We note that if we plot data of the incoherent intermediate scattering function versus the
Rouse scaling variable

(ΩR(Q)t)1/2 =
Q2`2

6

√
Wt (13.46)

with W ≡ 3kBT/`
2ζ we obtain the same exponential decay for all Q values.

6 This is so because the Gaussian approximation is valid for an individual segment. The motion rn(t) is described
by a sum of integrals of random functions. Therefore its distribution is a Gaussian according to the central limit
theorem. Nevertheless, for the whole chain it is approximative because the motion of the outer segments is faster
than for the inner ones of the chain.
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The calculation if the pair correlation, i.e. the coherent scattering function is much more
complicated than the case before. Additional approximations are necessary which are only
valid in the case QRe � 1. The result of a lengthy but straightforward calculation [9, 55] is

Icoh(Q, t) =
12

Q2`2

∫ ∞
0

du exp
(
−u− (ΩR(Q)t)1/2 h

(
(ΩR(Q)t)−1/2 u

))
(13.47)

with

h(y) ≡ 2

π

∫ ∞
0

dx cos(xy)
1− exp(−x2)

x2
.

Despite its complicated form Icoh(Q, t) depends (as in the incoherent case) only on the Rouse
variable (ΩR(Q)t)1/2.

A13.2 Brownian motion of the fragments in a harmonic po-
tential

In the following, we consider Brownian motion in a harmonic potential around the equilib-
rium position, a problem described by the [40,41] and follow refs. [42,56] in the derivation
of the corresponding correlation function for coherent neutron scattering Fcoh(Q, t). Restrict-
ing the analysis to the internal coordinates of the protein, the translational and rotational
degrees of freedom are separated. The rotational and translational degrees of freedom are
described by rotational and translational diffusion, which can be treated within the decou-
pling approximation according to equation (2) and equation (3). The coherent intermediate
scattering function Fcoh(Q, t) of atoms or subunits α with coherent scattering length bα at
positions bα describing our internal dynamics can be written as

Fint(Q, t) =

〈∑
α,β

bαbβ exp(iQ · rβ(t)) exp(−iQ · rα(0))

〉
. (13.48)

With displacements uα from the time independent equilibrium position Req
α we can use

rα(t) = Req
α + uα(t) and fαβ(Q, t) = 〈exp (−iQ · (uα(0)− uβ(t)))〉 resulting in

Fint(Q, t) =

〈∑
α,β

bαbβ exp(iQ ·Req
β ) exp(−iQ ·Req

α ) · fαβ (Q, t)

〉
. (13.49)

We describe the internal dynamics by a Langevin type equation ẍ +γγγẋ +κκκx = fs(t) as with
position vector x, friction matrix γγγ, force constant matrix κκκ and random acceleration fs(t)
in mass weighted coordinates and mass weighted friction and force constants [42]. In the
case of vanishing friction (γγγ = 0), normal mode analysis with the eigenequation κκκej = ω2

jej
of eigenvalues ω2

j and eigenvectors ej results in oscillating solutions describing vibrational
motion. Here, we restrict ourselves to the highly overdamped case of high friction with
a negligible acceleration term ẍ. The high friction solution of Smoluchowski dynamics is
solved by the eigenequation γγγ−1κκκbi = λibi of eigenvalues λj and eigenvectors bj with
characteristic exponentially decaying solutions. For details about the derivation of low and
high friction limits see Kneller et al. [56]. According to the nature of the modes, the ei are
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called elastic or vibrational normal modes, while the bi are called brownian normal modes
indicating that the Brownian motion characterizes the modes and eigenvalues.

Using the normal modes we may decompose the last term fαβ(Q, t) in equation (14) in a
constant term and a term describing the time dependence

fαβ(Q, t) = fαβ(Q,∞) · f ′αβ(Q, t) . (13.50)

The constant term is related to the vibrational modes and only dependent on the harmonic
potential as

fαβ(Q,∞) = exp

(
−

∑
j=1...3N

1

2

(
(djα ·Q)2 + (djβ ·Q)2)) and (13.51)

fαβ(Q, 0) = exp

(
−

∑
j=1...3N

1

2

(
((djα − djβ) ·Q)2)) (13.52)

with vibrational displacement djα =
√
kBT/mαΓjejα of subunit α in normal mode j. djα

is the displacement vector that corresponds to the width in a Gaussian distribution around
equilibrium configuration Req

α in the harmonic potential with force constant kj = mω2
j along

normal mode j. ejα is the eigenvector of κκκ normalised such that ‖ejα‖ = 1.

In the high friction limit the time dependent part within Smoluchowski dynamics is described
by

f ′αβ (Q, t) = exp

( ∑
j=1...3N

(vjα ·Q)(vjβ ·Q) exp(−λjt)

)
(13.53)

with displacements vjα =
√
kBT/λjΓj bjα of subunit α in Brownian normal mode j and

friction Γj = b>j γγγbj . vj is the displacement vector within relaxation time 1/λj . A force
constant can be estimated by kj = λjΓj . We assume the friction matrix γγγ to be diagonal
and that the off-diagonal terms are zero [57]. For an equal-valued diagonal friction matrix,
the vibrational and Brownian modes are equal and mode displacements can be used to cal-
culate the displacement between the fragments. Friction with the solvent may be attributed
to surface subunits but can also be equally distributed for rigid domains for simplicity. For
independent relaxing modes the mean square displacement is msd =

∑
j

1
N

∑
α v

2
α.

The coherent intermediate scattering function describing the internal dynamics is finally

Fint(Q, t) =

〈∑
α,β

bαbβ exp(iQ ·Req
β ) exp(−iQ ·Req

α ) · fαβ (Q,∞) · f ′αβ(Q, t)

〉
. (13.54)

The contribution of internal dynamics to the NSE signal can be calculated accordingly by

Fint(Q, t)

Fint(Q, 0)
=

〈∑
α,β bαbβ exp(iQ ·Req

β ) exp(−iQ ·Req
α ) · fαβ (Q,∞) · f ′αβ(Q, t)

〉
〈∑

α,β bαbβ exp(iQ ·Req
β ) exp(−iQ ·Req

α ) · fαβ (Q,∞) · f ′αβ(Q, 0)
〉 . (13.55)

The close similarity of numerator and denominator let us perceive that the dominating term
describing the time evolution is of the form exp(. . . exp(− . . . t)). In fact, for the case of a
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single independent particle in a harmonic trap, the dynamics can be described by the much
simpler function shown in equation 13.16.
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[45] P. Bernadó, E. Mylonas, M. V. Petoukhov, M. Blackledge, D. I. Svergun, Structural
Characterization of Flexible Proteins Using Small-Angle X-ray Scattering, Journal of the
American Chemical Society 129, 5656 (2007).

[46] A. M. Stadler, E. Pellegrini, M. Johnson, J. Fitter, G. Zaccai, Dynamics-stability re-
lationships in apo- and holomyoglobin: A combined neutron scattering and molecular
dynamics simulations study, Biophysical Journal 102, 351 (2012).

[47] A. M. Stadler, L. Stingaciu, A. Radulescu, O. Holderer, M. Monkenbusch, R. Biehl,
D. Richter, Internal nanosecond dynamics in the intrinsically disordered myelin basic
protein., Journal of the American Chemical Society 136, 6987 (2014).

[48] R. R. Cheng, A. T. Hawk, D. E. Makarov, Exploring the role of internal friction in the
dynamics of unfolded proteins using simple polymer models., The Journal of chemical
physics 138, 074112 (2013).

[49] B. S. Khatri, T. C. B. McLeish, Rouse Model with Internal Friction: A Coarse Grained
Framework for Single Biopolymer Dynamics, Macromolecules 40, 6770 (2007).

[50] A. Soranno, B. Buchli, D. Nettels, R. R. Cheng, S. Müller-Späth, S. H. Pfeil, A. Hoff-
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Exercises

Note: Exercises are labelled by stars (* through ***) indicating the level of difficulty. Try to
solve the easier ones first.

E13.1 Scaling arguments

(a ***) You may have noticed that no firm definition of the average segment length ` has
been given. Related to this, there is no fixed relation between the number of segments N
and well-defined quantities as the degree of polymerisation or the molecular weight. On the
first thought, this casts some doubts on results as (13.1). But on a closer look it turns out
that the limiting results of the Rouse model are independent of the choice of `. When ` is
replaced by `′ = α`, one can replace N , ζ , and ρ in such a way that all macroscopic results
remain unchanged. Show this for the end-to-end distance Re

2 = N`2 and equations (13.1),
(13.2), and (13.43).

(b *) In the pre-CGI days of King Kong and Godzilla filmmakers sometimes used scaled-
down mechanised models of the monsters for the scenes where these deal out destruction,
e.g. by tearing down houses. These scenes were often taken in slow motion to make them
look more realistic. Why? What slow-motion factor would be (theoretically) appropriate if
the monster is scaled down 1 : 25.

E13.2 Length and time scales of reptation

(a **) Table 13.2 shows the power laws in time of the mean-square displacement 〈r2〉. Sketch
〈r2〉 versus t in a double-logarithmic plot with correct slopes of the lines but arbitrary values
of τe, d, and Re. How would the plot change if you increase the molecular weight by a
factor of 4? From this, demonstrate that τη and D have the molecular weight dependences of
equations (13.4) and (13.5). (You can also prove this by calculation, but that exercise would
be like ****.)

(b *) For polyethylene, the tube diameter is d = 4.8 nm and (from Fig. 13.10) at T = 509 K
τe = 7 ns. For the molecular weight of 190 000 g/mol the end-to-end length is Re = 42 nm.
From these values calculate all the numbers in Table 13.2. Do you think there is any chance
to observe regions 3 and 4 experimentally?

E13.3 Deuteration of biomolecules

(*) The experiments shown here were all done with natural proteins. There are considerable
efforts underway to produce proteins containing deuterium instead of hydrogen. What new
or better insights can one get with these? (Hint: Have a look at lectures 5 and 6 for contrast
variation.)
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14.1 Introduction 
 

 

 

 
Fig. 14.1: Length- and time scales covered by research with neutrons giving 

 examples for applications and neutron techniques [1].  
 
Research with neutrons covers an extraordinary range of length- and time scales as de-
picted in figure 14.1. The very extremes of length scales - below 10-12 m - are the do-
main of nuclear and particle physics, where e. g. measurements of the charge or electric 
dipole moment of the neutron provide stringent tests of the standard model of particle 
physics without the need of huge and costly accelerators. On the other extreme, neu-
trons also provide information on length- and time scales relevant for astronomical di-
mensions, e. g. the decay series of radioactive isotopes produced by neutron bombard-
ment give information on the creation of elements in the early universe. In this course, 
however, we are only concerned with neutrons as a probe for condensed matter research 
and therefore restrict ourselves to a discussion of neutron scattering. Still, the various 
neutron scattering and imaging techniques cover an area in phase space from picometers 
pm up to meters and femtoseconds fs up to hours, a range, which probably no other 
probe can cover to such an extent.  
 
Different specialized neutron scattering techniques are required to obtain structural in-
formation on different length scales:  
 

• With wide angle neutron diffractometry, magnetization densities can be deter-
mined within single atoms on a length scale of about 10 pm1. The position of at-

1 In this sense, neutrons are not only nanometer nm probes, but even picometer pm probes! 
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oms can be determined on a similar length scale, while distances between atoms 
lie in the 0.1 nm range2.  

• The sizes of large macromolecules, magnetic domains or biological cells lie in 
the range of nm to µm or even mm. For such studies of large scale structures, 
one applies reflectometry or small angle scattering techniques.  

• Most materials relevant for engineering or geo-science occur neither in form of 
single crystals, nor in form of fine powders. Instead they have a grainy structure, 
often with preferred orientation of the grains. This so-called texture determines 
the macroscopic strength of the material along different directions. Texture dif-
fractometry as a specialized technique allows one to determine this grainy struc-
ture on length scales of up to mm. 

• Finally, for even larger structures, one uses imaging techniques, such as neutron 
radiography or tomography, which give a two-dimensional projection or full 3-
dimensional view into the interior of a sample due to the attenuation of the neu-
tron beam, the phase shift or other contrast mechanisms. 

 
In a similar way, different specialized neutron scattering techniques are required to ob-
tain information on the system’s dynamics on different time scales:  
 

• Neutron Compton scattering, where a high energy neutron in the eV energy 
range makes a deep inelastic collision with a nucleus in so-called impulse ap-
proximation, gives us the momentum distribution of the atoms within the solid. 
Interaction times are in the femtosecond fs time range.  

• In magnetic metals, there exist single particle magnetic excitations, so-called 
Stoner excitations, which can be observed with inelastic scattering of high ener-
gy neutrons using the so-called time-of-flight spectroscopy or the triple axis 
spectroscopy technique. Typically, these processes range from fs to several hun-
dred fs.  

• Lattice vibrations (phonons) or spin waves in magnetic systems (magnons) have 
frequencies corresponding to periods in the picosecond ps time range. Again, 
these excitations can be observed with time-of-flight or triple axis spectroscopy.  

• Slower processes in condensed matter are the tunneling of atoms, for example in 
molecular crystals or the slow dynamics of macromolecules. Characteristic time 
scales for these processes lie in the nanosecond ns time range. They can be ob-
served with specialized techniques such as backscattering spectroscopy or spin-
echo spectroscopy.  

• Even slower processes occur in condensed matter on an ever-increasing range of 
lengths scales. One example is the growth of domains in magnetic systems, 
where domain walls are pinned by impurities. These processes may occur with 
typical time constants of microseconds µs. Periodic processes on such time 
scales can be observed with stroboscopic neutron scattering techniques.  

• Finally, kinematic neutron scattering or imaging techniques, where data is taken 
in consecutive time slots, allow one to observe processes from the millisecond 
ms to the hour h range.  

 

2 In what follows, we use as “natural atomic unit” the Ångstrøm, with 1 Å=0.1 nm. 
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In this chapter, we will overview the various techniques used in neutron scattering and 
provide some examples for their application. We will start by repeating the properties of 
the different correlation functions, in order to be able to judge what kind of information 
we can obtain from a certain neutron scattering experiment. We will introduce neutron 
scattering techniques used to obtain information on “where the atoms are” (diffractome-
try) and “what the atoms do” (spectroscopy). We will finish by reviewing the range of 
applicability of various neutron scattering methods and compare them to other experi-
mental techniques. 
 

14.2 Scattering and correlation functions 
 
This somewhat advanced section can be skipped during first reading, but is given here 
for completeness. 
 
The neutron scattering cross section for nuclear scattering can be expressed in the fol-
lowing form (for simplicity, we restrict ourselves to a mono-atomic system): 

( )
2

2 2 2' | | | | ( , ) | | ( , )inc coh
k N b b S b S
k

σ ω ω
ω

∂  = ⋅ ⋅ − +  ∂Ω∂
Q Q  (14.1) 

The cross section is proportional to the number N of atoms. It contains a kinematical 
factor k’/k, i. e. the magnitude of the final wave vector versus the magnitude of the inci-
dent wave vector, which results from phase-space density consideration. The scattering 
cross section contains two summands: one is the incoherent scattering cross section, 
which depends on the variance of the scattering length ( )2 2| | | |b b− , and the other one is 

the coherent scattering cross section, which depends on the magnitude square of the 
average scattering length density 2| |b . The cross section (14.1) has a very convenient 
form: it separates the interaction strength between probe (here: the neutrons) and sample 
from the properties of the system studied. The latter is given by the so-called scattering 
functions ( , )incS ωQ  and ( , )cohS ωQ , which are completely independent of the probe and 
solely a property of the system under investigation [2]. The coherent scattering function 

( , )cohS ωQ  (also called dynamical structure factor or scattering law) is a Fourier trans-
form in space and time of the pair correlation function: 

( ) 31( , ) ( , )
2

i t
cohS G t e d rdtωω

π
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Here the pair correlation function ( , )G tr  depends on the time dependent positions of 
the atoms in the sample: 
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(0)ir  denotes the position of atom i at time 0, while ( )j tr  denotes the position of atom j 
at time t. The angle brackets denote the thermodynamic ensemble average, the integral 
extends over the entire sample volume and the sum runs over all atom pairs in the sam-
ple. Instead of correlating the positions of two point-like scatterers at different times, 
one can rewrite the pair correlation function in terms of the particle density as given in 
the second line of (14.3). Coherent scattering arises from the superposition of the ampli-
tudes of waves scattered from one particle at time 0 and a second particle at time t, av-
eraged over the entire sample volume and the thermodynamic state of the sample. In 
contrast, incoherent scattering arises from the superposition of waves scattered from the 
same particle at different times. Therefore, the incoherent scattering function ( , )incS ωQ  
is given in the following form: 

( ) 31( , ) ( , )
2

i t
inc sS G t e d rdtωω

π
⋅ −= ∫



Q rQ r  (14.4)  

which is the Fourier transform in space and time of the self-correlation function 
( , )SG tr : 

3
j j

1( , ) ( ' (0)) ( ' ( )) 's
j

G t t d r
N

d d= − ⋅ + −∑∫ r rr r r r  (14.5)  

We next define the intermediate scattering function ( , )S tQ  as the purely spatial Fourier 
transform of the correlation function (here we have dropped the index “coh” and “inc”, 
respectively, as the intermediate scattering function can be defined for coherent as well 
as for incoherent scattering similarly): 

3( , ) : ( , )

( , ) '( , )

iS t G t e d r

S S t
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∫ Q rQ r

Q Q
 (14.6)  

For reasons, which will become apparent below, we have separated in the second line 
the intermediate scattering function for infinite time 

( , ) lim ( , )
t

S S t
→∞

∞ =Q Q  (14.7)  

from the time development at intermediate times. Given this form of the intermediate 
scattering function ( , )S tQ , we can now calculate the scattering function as the temporal 
Fourier transform of the intermediate scattering function: 
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 (14.8)  

 
In this way, the scattering function has been separated into one term for frequency 0, i. 
e. vanishing energy transfer 0E ω∆ = =  and one term for non-vanishing energy trans-
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fer. The first term is the purely elastic scattering, which is given by the correlation func-
tion at infinite times. Correlation at infinite times is obtained for particles at rest. A 
prominent example is the Bragg scattering from a crystalline material, which is purely 
elastic, while the scattering from liquids is purely quasi-elastic3 since the atoms in liq-
uids are moving around freely and thus the correlation function vanishes in the limit of 
infinite time differences.  
 
Often times the energy of the scattered neutron is not discriminated in the detector. In 
such experiments, where the detector is set at a given scattering angle, but does not re-
solve the energies of the scattered neutrons, we measure an integral cross section for a 
fixed direction  ' 'ofk k : 



2

,int 'coh const

d d
d
σ σ ω

ω
=

∂  = ⋅ Ω ∂Ω∂  ∫
k

 (14.9)  

Momentum and energy conservation are expressed by the following kinematic equa-
tions of scattering: 

'-=Q k k  ;  ( )
2

2 '2'
2

E E k k
m

ω = − = −
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  (14.10)  

Due to these kinematic conditions, the scattering vector Q will vary with the energy of 
the scattered neutrons E' or the energy transfer ω  as the integral in (14.9) is per-
formed. The so-called quasi-static approximation neglects this variation and uses the 
scattering vector Q0 for elastic scattering ( 0)ω =  in (14.9). This approximation is val-
id only if the energy transfer is small compared to the initial energy. This means that the 
movements of the atoms are negligible during the propagation of the radiation wave 
front from one atom to the other. In this case, the above integral can be approximated as 
follows:  
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r
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 (14.11)  

which shows that the integral scattering in quasi-static approximation depends on the 
instantaneous spatial correlation function only, i.e. it measures a snapshot of the ar-
rangement of atoms within the sample. This technique is e.g. very important for the de-
termination of short-range order in liquids, where no elastic scattering occurs (see 
above).  
 
Our discussion on correlation functions can be summarized in a schematic diagrammat-
ic form, see figure 14.2.  

3 Inelastic scattering usually denotes scattering from an excitation with well-defined energy transfer, 
while quasi-elastic scattering denotes scattering which is not elastic, but has a broad energy distribution, 
centered around an energy transfer of zero. 
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Fig. 14.2: Schematic diagrams depicting the various scattering processes: a) 

 coherent scattering is connected with the pair correlation function in 
 space-and time; b) incoherent scattering is connected with the self-
 correlation function; c) magnetic scattering is connected with the spin 
 pair correlation function; d) elastic and inelastic scattering from a 
 crystal measures average positions and movements of the atoms, 
 respectively, e) inelastic scattering in quasi-static approximation sees a 
 snapshot of the sample.  

 
Figure 14.2 shows that coherent scattering is related to the pair correlation between at-
oms at different times (14.2a), while (quasi-elastic) incoherent scattering relates to the 
one particle self-correlation function at (different) times (e.g. diffusion of atoms) 
(14.2b). In analogy to nuclear scattering, magnetic scattering depends on the correlation 
function between magnetic moments of the atoms. If the magnetic moment is due to 
spin only, it measures the spin pair correlation function. Since the magnetic moment is 
a vector quantity, this correlation function strongly depends on the neutron polarization. 
For this reason, in magnetic scattering we often perform a polarization analysis as dis-
cussed in the corresponding chapter. Figure 14.2d depicts elastic and inelastic scattering 
from atoms on a regular lattice. Elastic scattering depends on the infinite time correla-
tion and thus gives us information on the time averaged structure. Excursions of the 
atoms from their time averaged positions due to the thermal movement will give rise to 
inelastic or quasi-elastic scattering, which allows one e.g. to determine the spectrum of 
lattice vibrations, see chapter on “inelastic neutron scattering”. Finally, an experiment 
without energy analysis in quasi-static approximation will give us the instantaneous 
correlations between the atoms, see figure 14.2e. This schematic picture shows a snap-
shot of the atoms on a regular lattice. Their positions differ from the time averaged posi-
tions due to thermal movement. 
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14.3 The generic scattering experiment 
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Fig. 14.3: Schematic diagram of a generic scattering experiment; the primary 
 spectrometer in front of the sample serves to select an incident wave 
 vector distribution by means of collimation and monochromatization; the 
 secondary spectrometer after the sample selects a final wave vector; the 
 number of neutrons for a given distribution of incident wave vector k and 
 final wave vector k’ is counted in the detector.  

 
A generic scattering experiment is depicted schematically in figure 14.3. The incident 
beam is prepared by collimators, which define the direction of the beam and mono-
chromators, which define the energy of the incident neutrons. Together these optical 
elements select an incident wave vector k. In reality, since these neutron-optical ele-
ments are never perfect, a certain distribution of incident wave vectors around an aver-
age wave vector is selected in the primary spectrometer. In an analogous manner, a final 
wave vector k’ - or better a distribution of final wave vectors - is being selected from all 
scattered waves after the sample by the secondary spectrometer. Finally, the scattered 
neutrons are being counted in the detector. Since our neutron-optical elements are never 
perfect, the measured intensity in the detector is not simply proportional to the scatter-
ing function ( , )S ωQ  (or more precisely, the cross section), but it is proportional to the 
convolution of the scattering function (or cross section) with the experimental resolu-
tion function R:  

3
0 0 00

( , ) ( , ) ( , )I S R d Qdω ω ω ω ω∝ − −∫∫Q Q Q Q  (14.12)  

Here, the resolution function R appears due to the limited ability of any experimental 
setup to define an incident or final wave vector k or k’, respectively. R therefore de-
pends purely on the instrumental parameters and not on the scattering system under in-
vestigation. The art of any neutron scattering experiment is to adjust the instrument - 
and with it the resolution function - to the problem under investigation. If the resolution 
of the instrument is too tight, the intensity in the detector becomes too small and count-
ing statistics will limit the precision of the measurement. If, however, the resolution is 
too relaxed, the intensity will be smeared out and will not allow one to determine the 
scattering function properly.  
The simplest way to collimate an incident beam is to put two slits with given openings 
in a certain distance in the beam path and thus define the angular spread of the incident 
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beam. For monochromatization of a neutron beam, usually one of two different methods 
is applied:  

• One can use the wave property of the neutron and diffract the neutron beam 
from a single crystal. According to Braggs' law 2 sind θ λ= , a certain wave 
length λ is being selected for a given lattice d-spacing under a scattering angle 
2θ.  

• One can use the particle property of the neutron and use the neutron time-of-
flight to determine its velocity and thus its kinetic energy. How this is being 
done technically is discussed in the corresponding section of this course.  

Following our discussion of the correlation functions, we will now distinguish two prin-
cipally different types of neutron scattering instruments:  

• Diffractometers: these are scattering instruments, which either perform no ener-
gy analysis at all, or which measure only the truly elastic scattering. As dis-
cussed in chapter 14.2, the truly elastic scattering allows one to determine the 
time averaged structure. The prominent example is Bragg scattering from single 
crystals. If, however, no energy analysis is performed, one usually makes sure 
that one works in quasi-static approximation to facilitate the interpretation of the 
scattered intensity distribution. Quasi-static approximation corresponds to a 
snapshot of the scatterers in the sample and is important for example to deter-
mine short-range order in a liquid. Be it elastic scattering or integral scattering in 
quasi-static approximation, a diffraction experiment allows one to determine the 
position of the scatterers only. The movement of the scatterers is not (directly) 
accessible with such a diffraction experiment. Similarly, in a diffraction experi-
ment for magnetic scattering, the arrangement of magnetic moments within the 
sample, i.e. its magnetic structure, can be determined, while the spin dynamics is 
not accessible in a diffraction experiment4. 

• Spectrometers: a neutron spectrometer is dedicated to measure inelastic scatter-

ing, i.e. to determine the change of the neutrons’ kinetic energy 
2 2

2
kE
m

=
  dur-

ing the scattering process. Such an experiment requires the analysis of the ener-
gy of the scattered neutrons, in contrast to a conventional diffractometer. Now 
the intensity measured in the detector depends on momentum- and energy- trans-
fer and is proportional to the convolution of the double differential scattering 
cross section (14.1) with the resolution function of the instrument (14.12). 
Therefore, a neutron spectrometer gives us information on the scattering func-
tions (coherent or incoherent) and thus on the truly time dependent pair- or self-
correlation functions. This is why spectrometers are used to determine the dy-
namics of a system after its structure has been determined in a previous diffrac-
tion experiment5. 

 

4 In fact, there is a way to access also spin- or lattice- dynamics in a diffraction experiment: lattice vibra-
tions will give rise to diffuse scattering around Bragg peaks, so-called thermal diffuse scattering, which 
can be modelled and thus the spectrum of excitations can be determined in an indirect, but not model-free 
direct way.  
5 Of course, spectrometers could also be used to determine the structure, but usually their resolution is not 
at all adapted to this purpose.  
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14.4 Diffractometers 
 

14.4.1  Wide angle diffraction versus small angle scattering 
 
According to (14.10) and de Broglie, the momentum transfer during a scattering exper-

iment is given by '= −  Q k k . Remembering that 2k π
λ

= , the magnitude Q of the 

scattering vector Q can be expressed in terms of wavelength λ and scattering angle 2θ 
as:  

4 sinQ π θ
λ

=  (14.13)  

As we have seen in chapter 14.2, the scattering cross section is related to the Fourier 
transform of the spatial correlation function and therefore a reciprocal relation exists 
between characteristic real space distances d and the magnitude of the scattering vector 
Q, for which intensity maxima appear: 

2~Q
d
π

∆  (14.14)  

Bragg scattering from crystals provides an example for this equation (compare corre-
sponding introductory chapter): the distance between maxima of the Laue function is 
determined by 2Q d π∆ ⋅ = , where d is the corresponding real space periodicity. Reflec-
tometry provides another example (see below): the Q-distance between Kiessig fringes 
is given by the relation ~ 2Q d π∆ ⋅  (compare (14.19)), where d is the layer thickness.  
(14.14) is central for the choice of an instrument or experimental set-up, since it tells us 
which Q-range we have to cover in order to get information on a certain length range in 
real space. (14.13) tells us at which angles we will observe the corresponding intensity 
maxima for a given wavelength. This angle has to be large enough in order to separate 
the scattering event clearly from the primary beam. This is why we need different in-
struments to study materials on different length scales. Table 14.1 gives two examples. 
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Tab. 14.1: Examples for scattering from structures on different characteristic real 

space length scales d. ΔQ is the corresponding characteristic scattering vec-
tor according to (14.14), 2θ the scattering angle according to (14.13), calcu-
lated for two different wavelengths λ. 

 
1. The study of structures on atomic length scales is typically done with a wave-

length of around 1 Å (comparable to the distance between the atoms) and the 
scattered intensity is observed at rather large angles between 5° and 175°. There-
fore one speaks of wide angle diffraction, which is employed for the study of 
atomic structures.  

2. For the study of large-scale structures (precipitates, magnetic domains, macro-
molecules in solution or melt) on length scales of 10 up to 10,000 Å (1 up to 
1000 nm), the magnitude of the relevant scattering vectors as well as the corre-
sponding scattering angles are small. Therefore one chooses a longer wavelength 
in order to expand the diffractogram. The suitable technique is small angle scat-
tering, which is employed to study large scale structures.  

 
In what follows we will first focus on the study of large-scale structures. In the corre-
sponding conceptually very simple instruments, some typical considerations for the de-
sign of an instrument can be exemplified. We will distinguish between small angle neu-
tron scattering instruments and reflectometers, discuss the basic instrument concepts 
and list some possible applications. After having discussed how large-scale structures 
can be studied with neutron diffraction, we will then introduce instruments for wide 
angle scattering and their possible applications.  
 

14.4.2  Small angle neutron scattering SANS 
 
As mentioned in chapter 14.4.1, small angle scattering is employed whenever structures 
on length scales between typically 10 Å and 10,000 Å (1 nm and 1,000 nm) are of inter-
est. This range of real space lengths corresponds to a scattering vector of magnitude 
between about 10-1 Å-1 and 10-4 Å-1 (1 nm-1 and 10-3 nm-1). In order to observe the scat-
tering events under reasonable scattering angles, one chooses a rather long wavelength. 
However, due to the moderator spectrum (see chapter on neutron sources), there is very 
little neutron flux at wavelengths above 20 Å. Therefore typically neutrons of wave-
length between 5 and 15 Å are employed for small angle neutron scattering.  
 

Example 

Distance between 
atoms in crystals 

Precipitates in 
metals (e.g. Co in 
Cu) 

d 

2 Å 

400 Å 

ΔQ 

3.14 Å-1 

0.016Å-1 

2θ  
(λ=10 Å) 

"cut-off" 

1.46° 

Technique 

wide angle diffraction 

small angle scattering 

2θ  
(λ=1 Å) 

29° 

0.14° 



14.12  Th. Brückel 

Two different principles of small angle neutron scattering will be distinguished in this 
chapter: the pinhole SANS and the focusing SANS depicted in figures 14.4 and 14.5, 
respectively. Other types of instruments, e.g. with multi-pinhole grid collimation, are 
variants of these techniques and will not be discussed here. 
 

 

 

 
Fig. 14.4: Schematics of a pinhole SANS, where the incident wave vector is defined 

 through distant apertures (KWS-1 or KWS-2 of JCNS [3]).  
 

 

 

 
Fig. 14.5: Schematics of a focusing SANS, where an image of the entrance aperture 

 is produced on the detector by a focusing mirror (KWS-3 of JCNS [3]).  
 
For both instrument concepts, the wavelength band is usually defined by a so-called 
velocity selector. Figure 14.6 shows a photo of a velocity selector drum build in Jülich 
for the instrument KWS-3. 
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Fig. 14.6: Photo of the velocity selector drum of the JCNS instrument KWS-3 show-
ing the screw-like twisted channels separated by absorbing walls, which only 
neutrons of a certain wavelength band can pass when the drum is turning. 

 
In the pinhole SANS, the direction of the incident wave vector k is defined by two dis-
tant apertures of comparable size. The longer the distance between the diaphragms, the 
higher is the collimation for a given cross section of the beam. The sample is placed 
right next to the second aperture and the scattered neutrons are being recorded in a de-
tector, which is at a large distance from the sample; typically, the sample-detector dis-
tance is comparable to the collimation distance. The overall length of such an instru-
ment can amount to 40 m, up to 80 m.  
In contrast to the pinhole SANS, the focusing SANS uses a divergent incident beam and 
a focusing optical element produces an image of the entrance aperture on the detector. 
The sample is positioned directly behind the focusing element. Small angle scattering 
from the sample appears on the position-sensitive area detector around the primary 
beam spot. Such a set-up with a focusing element would be the natural solution in light 
optics, where focusing lenses are readily available. Due to the weak interaction of neu-
trons with matter, the index of refraction for neutrons is very close to one, and it is diffi-
cult to produce efficient focusing elements. In case of the focusing SANS realized by 
Forschungszentrum Jülich [4], a toroidal6 mirror is employed as focusing element. Lo-
cally, the toroidal shape is a good approximation to an ellipsoid with its well-known 
focusing properties. The challenge in realizing such a device lies in the fact that small 
angle scattering from the focusing element has to be avoided i.e. the mirror has to be 

6 A torus is a surface of revolution generated by revolving a circle about an axis coplanar with the circle, 
which does not touch the circle (examples: doughnuts, inner tubes). 
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flat on an atomic scale (root-mean square roughness of about 3 Å!), which became pos-
sible due to the developments of optical industry for x-ray satellites.7 
As an example of the considerations leading to the design of a neutron scattering in-
strument, we will now discuss the resolution of a pinhole SANS machine. In general 
terms, the resolution of an instrument denotes the smearing of the signal due to the in-
struments’ finite performance (14.12). As neutron scattering is a flux limited technique, 
there is need for optimization: the better the resolution of the instrument, i.e. the better 
the angular collimation Δθ and the smaller the wavelength spread Δλ, the smaller is the 
intensity recorded on the detector. Therefore, resolution has to be relaxed to such an 
extent that the features of interest are still measurable and not smeared out entirely by 
the resolution of the instrument, while at the same time the intensity is maximized. In 
order to determine the resolution of a SANS instrument, we start from (14.13): 

4 sinQ π θ
λ

= . The influence of angular- and wavelength spread can be determined by 

differentiation of this equation, where the different contributions have to be added quad-
ratically according to Gauss:  

( ) ( ) ( )

( )

2 2 2 2
2 2 22 2 2

2

2 222 2 22
2 2 2

0

4 4 sincos

4
12

S SD E

D C C D

Q QQ

d dd dk
L L L L

θ

π π θθ λ θ θ λ
θ λ λ λ

π λ λθ θ θ
λ λ λ↑

→

∂ ∂       ∆ = ∆ + ∆ = ∆ + ∆       ∂ ∂       
       ∆ ∆      = ∆ + = + + + +           

                

 (14.15)  

ΔQ2 is the variance of the scattering vector due to the finite collimation and monochro-
matization. dE and dS are the diameters of the entrance and sample aperture, respective-
ly. dD denotes the detector pixel size. LC and LD are collimation length and sample-
detector distance, respectively. An optimization can be achieved, if all terms in (14.15) 
contribute the same amount, which leads to the condition  

 ,   2D C E D SL L d d d= = =  (14.16)  

(14.16) shows that a pinhole SANS has to be designed such that sample-to-detector dis-
tance LD is equal to the collimation length LC. Typical values are LD = LC = 10 m with 
openings of dE = 3 cm for the entrance- and dS = 1.5 cm for the sample aperture. Note 
that one can chose the opening of the entrance aperture to be twice as large as the open-
ing of the sample aperture - or sample size - without sacrificing markedly in resolution, 
while gaining in neutron count rate! The detector needs a minimum pixel resolution 
dD ≈ dE ; a detector with a radius of about RD ≈ 30 cm is necessary to cover the required 
Q-range up to 0.05 Å-1 at LD = 10 m and for λ = 8 Å. Having defined the incident col-
limation, we can now determine the appropriate wavelength spread with the same ar-
gument as above: the last term in the sum in (14.15), corresponding to the wavelength 
spread, should contribute the same amount to the variance of the scattering vector as the 
corresponding terms for the collimation, i. e.:  

1 10%
10

E D E

C D D

d L d
L r r

λ
λ
∆

= ⋅ ≈ ≈ =  (14.17)  

7 It should be mentioned that nowadays focusing lenses for neutron scattering have also been realised. 
These have a very long focal distance, but can be employed to improve intensity or resolution in pinhole 
SANS.  
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(14.17) demonstrates that in general for small angle scattering we don't need a very high 
degree of monochromatization. A 10 % wavelength band is acceptable, since for small 
angles the smearing due to the wavelength spread is quite comparable to the smearing 
due to the incident divergence. This is the reason why usually a velocity selector is em-
ployed as monochromatizing element for small angle scattering, as it lets a wavelength 
band of typically 10 % pass.  
Let us give a short introduction into the analysis of small angle scattering experiments. 
As in any scattering experiment, the detected intensity is proportional to the scattering 
cross section, which in the SANS case is usually normalized to the sample volume and 
therefore has the unit [cm-1]:  

1

sample

d d
d V d

σ∑
= ⋅

Ω Ω
 (14.18)  

Here we discuss the so-called “two phase model” only, where homogeneous particles 
are dispersed in a matrix (e. g. precipitates in metals or nanoparticles in solution etc.). 
The cross section will then be proportional to the contrast between particles and solution  

( ), ,j j P j M
j

b b ρ ρ∆ = −∑  (14.19)  

where j labels atom species j of scattering length bj with number density ρj,P in the par-
ticle and ρj,M in the matrix, respectively. The differential cross section per particle is 
given by the interference term (note: we use a continuum description for the small Q 
limit):  
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 (14.20)  

Here f(Q) denotes the particle form factor for a homogeneous particle of volume V:  
31( ) if e d r

V
⋅= ∫ Q rQ  (14.21)  

(14.20) is the differential cross section for a single particle. For very dilute solutions of 
identical particles, the cross section will be given by (14.20) times the number N of par-
ticles (“single particle approximation”). However, in more concentrated solutions, there 
will be additional interference effects between the particles, which are described by the 
so-called structure factor S and we obtain the modified cross section for dense solu-
tions: 

22 2 ( ) ( )d N b V f S
d
σ

= ⋅∆ ⋅ ⋅ ⋅
Ω

Q Q  (14.22)  

where S(Q) is related to the Fourier transform of the pair correlation function g(R) be-
tween the single particles at distance R:  
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31( ) 1 ( )
sample

i

sample V

S g e d r
V

⋅= + ∫ Q RQ R  (14.23)  

(Note: for vanishing pair correlations g(R)≡0, i.e. random distributed particles, the 
structure factor has to be unity: S(Q)≡1).  
 
The isotropic form factor of a homogeneous sphere of radius R can be calculated by 
Fourier transform and is introduced elsewhere in this course:  

3

sin cos( ) 3
( )

QR QR QRf Q
QR
−

=  (14.24)  

For forward scattering f(Q=0)=1 per definition. For small values of the scattering vec-
tor, this expression can be approximated by:  
 
“Guinier Law” for QR≤2:  

2( ) 2 2
2 3( ) 1

3

GQR
GQ Rf Q e

−
≈ ≈ −  (14.25)  

Here the quantity RG is the so-called radius of gyration of the particle. For a spherical 

particle 2 23
5GR R= , but RG can defined in a more general way also for non-spherical 

particles.  
 
For QR=3 the form factor squared has dropped to about 10 %. In the larger Q region - 
neglecting the sharp minima of the form factor (14.24), which are often not visible due 
to particle size distribution and instrumental resolution - the form factor follows the 
behavior:  
 
“Porod Law” for QR≥4.5: 

2 4
2( ) 2 Af Q Q

V
π −≈  (14.26)  

where A=4πR2 is the surface, and 34
3

V Rπ
= the volume of the sphere of radius R. In 

small angle scattering, often times one does not deal with simple geometrically smooth 
particles in a second phase. In stochastical growth processes or soft matter system, ir-
regular fractal structures can appear, which show self-similarity on multiple length 
scales. For such structures, power laws with other exponents are observed:  
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 (14.27)  

where D denotes the so-called fractal dimension for porous objects. D is in general 
smaller than 3 and non-integer. If the particles have a dense core, but a rough self-
similar surface, they are called surface fractals with a surface area of A ~ RDs. From the 
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above discussion we see that characteristic regions can be distinguished in a small angle 
scattering experiment:  
 

1. Close to forward direction in the very small Q limit and for dilute solutions, we 
observe constant scattering proportional to the number of particles N, the square 
of the particle volume V2 and contrast (14.19). For known contrast, we can de-
duce the product N⋅V2, if the scattering is measured in absolute units by compar-
ing to a known scatterer e. g. water. For dense solutions, the structure factor 
from correlations between particles becomes apparent. 

2. In the region up to QR≤2, the Guinier Law (14.25) holds for compact particles. 

From a Guinier-Plot ln d
d
σ
Ω

 versus Q2 one can determine the radius of gyration  
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3. In the Porod-region QR≥4.5 
2 42d b NAQ

d
σ π −= ∆
Ω

 (14.29)  

 we can, independent of particle shape, determine the total surface area N⋅A of all 

particles with sharp surfaces from a Porod Plot 4d Q
d
σ
⋅

Ω
 versus Q4. 

4. Finally, if Q approaches the value 1/a where a corresponds to typical atomic dis-
tances, we approach the region of Bragg scattering from atomic structures (wide 
angle scattering).  

 
Let us now turn to applications of small angle scattering. One example is given in figure 
14.7, which is concerned with the self-organization of crystalline amorphous diblock-
copolymers [4]. Combining three different instruments, small angle scattering has been 
observed over ten orders of magnitude in cross section and nearly four orders of magni-
tude in momentum transfer. In different regions, different power laws apply, corre-
sponding to different structures: the Q-2 power law corresponds to 2d structures on the 
shortest length scale, the Q-1 power law corresponds to the organization of rods in bun-
dles, while the Q-3 power law corresponds to a network of bundles with a mass fractal 
aspect and finally, correlations become visible in the very low Q-range.  
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Fig. 14.7: SANS investigation of the self-organization of a crystalline-amorphous 

 diblock-copolymer measured with three different instruments of different 
 resolution: double crystal diffractometer, focussing SANS and pinhole 
 SANS for the low, medium and larger Q range, respectively. Plotted is 
 the cross section in absolute units versus the magnitude of the scattering 
 vector. For details see [4].  

 
We will end this short introduction into the principles of small angle scattering by list-
ing some examples for applications of small angle scattering in different fields of sci-
ence:  

• soft matter: polymers and colloids, e. g. micelles, dendrimers, liquid crystals, 
gels, reaction kinetics of mixed systems, … 

• materials science: phase separation in alloys and glasses, morphologies of sup-
eralloys, micro-porosity in ceramics, interfaces and surfaces of catalysts 

• biological macromolecules: size and shape of proteins, nucleic acids and of 
macromolecular complexes, bio-membranes, drug vectors 

• magnetism: ferromagnetic correlations and domains, flux line lattices in super-
conductors, … 

 

14.4.3  Large scale structures: Reflectometry 
 
As elaborated in chapter 14.4.2, neutron small angle scattering is applied to determine 
large-scale structures, e. g. scattering length density fluctuations on length scales of 
some 100 Å in bulk material. There is another type of instrument, which is dedicated to 
the study of large-scale structures in thin film systems, on surfaces and in multilayers. 
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Such an instrument is called a neutron reflectometer. This conceptually simple instru-
ment is depicted schematically in figure 14.8. 
 

 

 

 
Fig. 14.8: Schematics of a neutron reflectometer. Monochromatization can be done 

 in many different ways: by a velocity selector, by a crystal 
 monochromator, or by a chopper in a time-of-flight instrument. 
 Collimation slits define the direction of the incident beam. The monitor is 
 a low efficient detector of high transmission, which measures the incident 
 flux on the sample. The reflected neutrons are either detected in a  
 position sensitive detector, or a secondary collimation in front of a 
 point detector selects the direction of the reflected beam. For magnetic 
 samples, a polarizer, a polarization analyzer and guide fields can be 
 inserted for polarization analysis experiments.  

 
Similar to a pinhole SANS instrument, the incident beam is collimated through a set of 
two well separated slits. However, since in reflectometry, one is mainly interested in the 
momentum transfer perpendicular to the planar sample surface, the collimation of a re-
flectometer is tight only in this direction. Along the sample surface the beam can be 
wide and have a larger divergence in order to gain intensity. This collimated beam im-
pinges on the sample under a grazing angle (typically fractions of a degree up to a few 
degrees) and is reflected into a single point detector or a position sensitive detector. To 
define the angle of exit for a point detector, a secondary collimation is needed between 
sample and detector. The incident beam is monochromatized using different techniques, 
depending on the resolution requirements: velocity selector, time-of-flight chopper or 
crystal monochromator.  
 
With such an instrument, the layer structure of a sample can be determined, such as lay-
er composition, layer thickness and surface- or interfacial roughness. This information 
is obtained in so-called specular reflection, for which the incident angle is equal to the 
final angle like in a reflection from a perfect optical mirror. In this case, the momentum 
transfer of the neutrons is perpendicular to the surface of the sample and thus only later-
ally averaged information can be obtained. In order to determine lateral correlations 
within the layers, for example magnetic domain sizes, a momentum transfer within the 
layer has to occur, which implies that angle of incidence and final angle have to be dif-
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ferent. Short range correlation within the layers will then give rise to so-called off spec-
ular diffuse scattering as well known in optics from a bad optical mirror. 
 
The scattering geometry is shown in figure 14.9.  
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Fig. 14.9: Scattering geometry for grazing incidence neutron scattering. Specular 
 reflections are obtained, if the angle of incidence equals the final angle 
 ai = af. Off-specular scattering is observed at ai ≠ af.  

 
In fact, the theoretical description of neutron reflectometry follows exactly along the 
lines of conventional optics, except that for neutrons in most cases the index of refrac-
tion is smaller than one and thus external total reflection occurs for neutrons coming 
from vacuum towards matter8. The index of refraction n of neutrons of wavelength λ 
from a layer composed of elements with scattering length bi and number density ρi and 
linear absorption coefficient µn is given by:  

2

1 :1
2 4j j n

j

n b i µ iλ λρ d b
π π

= − − = − −∑  (14.30)  

Refraction and total reflection are described by the well-known Snell's Law of optics: 
 

Snell’s law: cos
cos

i t

t

k n
k

a
a

= =  (14.31)  

8 This is exactly what happens in neutron guides, evacuated tubes of usually rectangular cross section, 
where neutrons are totally reflected from the smooth glass side walls, often coated, e.g. with 58Ni, to en-
hance the angle of total reflection. Since for total reflection conditions, reflectivity is close to 100%, neu-
trons are transported over large distances (some 10 to above 100 m) nearly without loss from the source 
to the instruments by bouncing back- and forth from the guide side walls. 
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angle of total reflection: cos c nθ =  (14.32)  

The intensities of reflected and transmitted beam can be determined from the optical 
Fresnel equation (A0, A1, B0: amplitudes of incident, transmitted and reflected waves, 
respectively; kz, ktz: component of wavevector k and kz, respectively, perpendicular to 
average surface):  
Fresnel equation: 

Reflectivity 
2 2 2
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0

z tz i t

z tz i t

B k k nR
A k k n

a a
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 (14.33)  

Transmissivity 
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+ + ⋅

 (14.34)  

 
Figure 14.10 shows as an example the reflectivity and transmissivity of a Ni layer.  
 

 

 

 
Fig. 14.10: Reflectivity and transmissivity of neutrons from a Ni surface.  
 
Here we just want to demonstrate with very simple arguments how interference effects 
from layered structures arise and how the intensity modulation in Q-space are related to 
real space length scales. Figure 14.11 shows how interference can occur from a beam 
being reflected at the surface and at the internal interface of a double layer stack.  
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Fig. 14.11: Schematics of the reflection of a neutron beam from a single layer on a 

 substrate. There exists an optical path length difference Δ between the 
 rays drawn with a solid line and those drawn with a dotted line.  

 
For simplicity we consider only the case of a specular reflection, i.e. the incident angle 
αi is equal to the angle of exit αf: i fa a a= = . Interference occurs between beams re-
flected from the surface (dotted line in figure 14.11) and those first transmitted into the 
layer, reflected from the interface between layer 1 and substrate and then leaving the 
layer into vacuum (solid line). To a good approximation, refraction at the top surface 
can be neglected for incident angles larger than about twice the critical angle of total 
reflection. In this case t i fa a a a= = =  holds. Since the index of refraction for neutrons 
is very close to one, this approximation is valid even for rather small angles of inci-
dence. Then the optical path length difference for the two beams is: 

2 sind a∆ =  (14.35)  

Here d is the thickness of layer 1. We can now determine the distance between interfer-
ence maxima from the condition that the path length difference has to differ by one 

wavelength: 2 (sin ) 2d dλ a a= ⋅∆ ≈ ⋅∆ . With 4 4sinQ π πa a
λ λ

= ≈  we finally obtain: 

2Q
d
π

∆ ≈  (14.36)  

Again, we can see that the interference phenomena in Q-space are connected with real 
space length scales in a reciprocal way. (14.36) tells us that there will be a number of 

interference maxima at distances in Q of 2
d
π . These interference phenomena are called 

“Kiessig fringes” and are well known to us in conventional optics for example as the 
beautiful colors observed in soap bubbles. Figure 14.12 shows as an example the reflec-
tivity of neutrons from a thin nickel layer on a glass substrate, which is nothing else but 
a section of a neutron guide employed to transport the neutrons from the source to the 
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14.4.4  Atomic structures: Single crystal and powder neutron 
  diffraction 

 
As explained in chapter 14.4.1, wide angle scattering with neutrons of wavelength typi-
cally 1 Å is applied for the determination of atomic structures. Due to the periodicity of 
the lattice, Bragg peaks appear under diffraction angles given by the Bragg equation 
(compare reflectometry: (14.35) and (14.36)!): 

2 sind θ λ=  (14.37)  

The intensity of the Bragg peaks is governed by the arrangement of the atoms within the 
unit cell (structure factor) and the scattering from the single atom (form factor). By col-
lecting a large set of scattered intensities for many Bragg peaks, modeling the atomic 
structure and refining the parameters in order to get an optimum agreement between 
calculated and observed intensities, the arrangement of atoms within the unit cell as 
well as the arrangements of spins for magnetic samples can be determined. Figure 14.13 
shows the schematics of a single crystal diffractometer.  
 

 

 

 
Fig. 14.13: Schematics of a single crystal diffractometer. The drawing shows the 

 layout of the diffractometer D9 at the Institute Laue-Langevin and has 
 been taken from http://www.ill.eu/.  

 
In contrast to small angle scattering, where a broad wavelength band is employed to 

enhance the scattered intensity, a better monochromatization of typically ~ 1%λ
λ
∆  has 

to be achieved for wide angle scattering to avoid the broadening of the Bragg reflections 
due to the wavelength spread according to (14.37). This monochromatization is typical-
ly done by Bragg diffraction from a single crystal. The direction of the incident beam is 
determined by a set of slits. As Bragg reflections only occur when the corresponding 
lattice planes have a definite orientation with respect to the incident beam, the single 

http://www.ill.eu/
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crystal sample is usually mounted on a so-called Eulerian cradle, which allows one to 
orient the sample using the three Eulerian angles ω, χ and φ. Finally, the scattered beam 
is detected in a point- or small area detector. Care must be taken to collect the entire 
integrated intensity for a scan through the Bragg reflection. 
 
A conceptually simpler experiment for the determination of atomic structures is the neu-
tron powder diffractometer. In this case, since the powder grains in the sample usually 
have random orientations with respect to the incident beam, there is no need for orient-
ing the sample with respect to the beam. Scattering will always occur for some of the 
grains, which fulfill the Bragg condition by chance. As scattering occurs for all allowed 
Bragg reflections simultaneously, it would be very inefficient to detect scattered intensi-
ties by a single point detector, which would have to be positioned recursively for the 
correct 2θ values. Therefore, in powder diffraction one usually uses a large linear - or 
even better area - position sensitive detector, which is arranged on a circular arch 
around the sample position.  
 
While neutron powder diffraction is conceptually simple, it poses the problem that 
Bragg reflections will overlap for larger unit cells, e.g. due to finite peak width. Among 
other factors, the peak width is determined by the resolution of the instrument. One can 
show that the resolution function for a neutron powder diffractometer on a beam being 
monochromized by a Bragg reflection from a monochromator crystal9 is given by:  

( )2 22 tan tanU V Wθ θ θ∆ = + +  (14.38)  

For overlapping reflections, one cannot determine the intensities of the various Bragg 
reflections separately. The solution to the problem is the so-called Rietveldt- or profile 
refinement, where structural parameters (unit cell metric a,b,c,α,β,γ, atom positions and 
site occupations, the Debye-Waller-factors, etc.) are refined together with the instru-
mental parameters (zero point of the scattering angle 2θ0, parameters of the resolution 
function U, V, W, etc). Assuming a certain peak shape function, this allows one to mod-
el the entire powder diffractogram and determine the corresponding parameters from a 
refinement, which aims at minimizing the weighted sum of the quadratic deviations of 
calculated and observed intensities for all data points. Figure 14.14 shows an example 
of such a Rietveldt analysis for data taken from a colossal magnetoresistance manganite.  
 

9 Alternatively, one can chop the incoming white beam, so that the different wavelengths arrive at differ-
ent times at the sample; from the arrival time of elastically scattered neutrons at the detector, one can 
deduce the wavelengths of the scattered neutrons.  Using large area detectors, which cover most of the 
solid angle 4π, this time-of-flight technique, typically applied at pulsed sources, can be very efficient.  
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Fig. 14.14: Powder neutron diffraction from a colossal magnetoresistance  

 manganite. Points represent the measured intensities, the solid line the 
 calculated profile function. The green bars below the diffractogram 
 indicate the positions of the Bragg reflections and the line beneath 
 shows the difference between observed and calculated intensities [5].  

 
As one can see, there is a very strong overlap of Bragg reflections, especially at larger 
scattering angles. Still, by using the above-mentioned profile refinement technique, the 
atomic structure of the compound could be determined to a high precision.  
 
Applications of wide angle diffractions are manifold: 

• Life-sciences: structure of biological macromolecules, e. g. Hydrogen (crystal 
water!) in protein structures 

• chemistry: structure determination of new compounds, position of light atoms; 
time resolved reaction kinetics 

• materials science: stress-strain determination; texture of materials 
• geo-science: phase and texture analysis 
• solid state physics: structure - function relations e. g. in high TC superconduc-

tors; magnetic structures and spin densities, e. g. in molecular magnets 
  

CMR
Manganite
CMR
Manganite
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14.5 Spectroscopy 
 
So far, we have only explored the purely elastic - or the quasi-static correlation func-
tions, which give us structural information on various length scales only. We will now 
turn to the general case of correlation functions in space and time, which allow us to 
determine in addition the microscopic dynamics of the sample under investigation. 
Again, different instrument types exist for different applications. First of all, if we con-
sider the neutron as a particle, we can determine the time-of-flight it needs to travel 
from the sample to the detector and thus its velocity or energy after the scattering pro-
cess. With the knowledge of the incident energy, the energy transfer during the scatter-
ing process can be determined. This kind of neutron spectrometer is called a time-of-
flight or TOF spectrometer. A special case of the TOF spectrometer is the so-called 
neutron spin-echo spectrometer, where the time-of-flight of the neutrons is being de-
termined through the Larmor precession of the nuclear spin of neutrons in an external 
magnetic field. Neutron spin-echo spectroscopy has the highest energy resolution and 
measures the intermediate scattering function directly. Therefore, it is well suited to 
study slow relaxation processes. An alternative approach to spectroscopy is to deter-
mine the energy of scattered neutrons by means of Bragg reflection from an analyzer 
crystal. Such an instrument is called a crystal spectrometer and if the selection of the 
incident wavelength is done by a crystal monochromator, it is called a triple axis spec-
trometer. A variant of a crystal spectrometer is the high-resolution backscattering spec-
trometer. Of course, there are various combinations of these techniques, which exist in 
particular at spallation sources. A discussion of all of the various instrument concepts 
goes well beyond the scope of this introductory course.  
 

14.5.1  Time-of-Flight or TOF spectroscopy 
 
Figure 14.15 depicts schematically a generic time-of-flight spectrometer. Neutrons are 
being monochromatized either by reflection from a monochromator crystal or by time-
of-flight techniques (X-TOF or TOF-TOF instruments, respectively). Monochromatic 
neutron pulses are produced by a chopper, which can be a fast rotating (up to e.g. 600 
Hz) disc or drum made from neutron absorbing material, which has a slit that lets neu-
tron pass only during a short time interval of typically some microseconds. This pulsed 
neutron beam impinges on the sample and is scattered under all possible scattering an-
gles. Neutrons are recorded on a two dimensional position sensitive detector (nowadays, 
this is often an array of linear position sensitive 3He detector tubes) surrounding the 
sample typically on the surface of a cylinder. From the arrival time of the neutrons in 
the detector with respect to the starting time given by the opening of the chopper, an 
intensity spectrum can be recorded for each scattering angle separately as a function of 
the arrival time of the neutrons in the detector. Using simple kinematic equations for the 
neutron as a particle and a calibration obtained by measuring a reference sample, this 
time-of-flight spectrum can be converted into the scattering function S(Q,ω). Figure 
14.16 illustrates the scattering process in a flight-path-versus-time diagram.  
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Fig. 14.15: Generic TOF spectrometer. The neutron beam is monochromatized, 

 either by a crystal monochromator (X-TOF) or by time-of-flight (TOF-
 TOF) with choppers and / or the pulse from a spallation source. A 
 chopper creates monochromatic neutron beam pulses incident on the 
 sample. The scattered neutrons are collected in an array of detectors 
 surrounding the sample. For each detector pixel, the neutrons are 
 counted into a histogram as a function of their arrival time. These 
 intensity – time histograms can be converted into the scattering function 
 S(Q,ω) by using a reference sample for absolute calibration and simple 
 kinematic relations between scattering angle and flight time on one hand 
 and scattering vector and energy on the other hand.  

 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 14.16: Flight-path-versus-time-diagram for a generic time-of-flight instrument 

 (see text). (Courtesy of Dr. M. Monkenbusch).  

 



Applications neutron scattering  14.29 

In such a diagram, a monochromatic neutron beam has a certain slope, which can be de-

rived from the de Broglie equation  

 (14.39)  

Typical velocities for thermal neutrons lie in the range of meter per millisecond. In fig-
ure 14.16 the neutrons coming from a monochromator enter the chopper with a certain 
slope in the path-vs.-time diagram corresponding to the velocity of the monochromatic 
neutrons. With a repetition rate of  given by the chopper frequency, pulses of mono-
chromatic neutrons leave the chopper. A second chopper can be applied to suppress 
higher order reflections. The neutron scattered from the sample can either gain energy, 
resulting in a steeper slope in the path-vs.-time diagram or lose energy resulting in a 
shallower slope. The number of neutrons entering the detector in a certain time interval 
is counted into a histogram with the elastic line usually being strongest and inelastic 
events being visible in neutron energy gain or -loss.  
 
A nice example for a powder neutron time-of-flight spectrum is given by the excitation 
spectrum of a molecular magnet, namely Mn12 acetat, see figure 14.17 [6]. Here the 
time-of-flight axis has been converted into an energy scale. Clearly visible are nicely 
separated excitations, which result in the energy level diagram depicted on the middle 
of figure 14.17. Transitions between these levels correspond to transitions between dif-
ferent values of the magnetic quantum number of the total spin of the molecule. Model-
ing this energy level spectrum allows one to determine the magnetic interaction parame-
ters, here mainly the magnetic anisotropy.  
 

 

 

 
Fig. 14.17: Left: Time-of-flight spectrum of the molecular magnet Mn12 acetat 

 converted into an energy scale; middle: the corresponding energy level 
 diagram; right: the magnetic molecule consisting of an outer ring of 8 
 Mn atoms with parallel coupled spins and an inner ring of 4 Mn atoms 
 with opposite spin orientation. Taken from [6].  

 
Typical applications of time-of-flight spectroscopy can be found in various fields of 
science:  
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large detector bank allows one to obtain an overview over the excitation spectrum in 
reciprocal space, the triple axis spectrometer is the instrument of choice, if a certain 
narrow region in Q and ω is of interest. This is the case, if sharp excitations like lattice 
vibrations (phonons) or spin waves (magnons) are being investigated. A propagation 
vector of such an excitation together with a certain energy transfer can be selected by 
setting monochromator, sample and analyzer to the corresponding values as depicted in 
the scattering diagram of figure 14.18, left. Here the energy transfer is given by 

, while the momentum transfer is given as    

.  
 
As an example, Figure 14.19 shows spin wave dispersion relations determined for the 
garnet Fe2Ca3Ge3O12 by triple axis spectroscopy.  
 

 

 

 
Fig. 14.19: Spin wave dispersion relations for the garnet Fe2Ca3Ge3O12 along main 

 symmetry directions in reciprocal space. The data points are obtained 
 from scans keeping the momentum transfer constant. The figure on 
 the right shows examples of such “constant Q scans”. The solid lines are 
 model calculations, from which the interaction (exchange) parameters 
 between the spins in the unit cells can be determined; figure taken from 
 [7].  

Typical examples of triple axis spectroscopy lie mainly in solid state physics: 
• phonon dispersions in crystalline material, from which the interatomic forces 

can be determined 
• spin wave dispersions, which allow one to determine exchange and anisotropy 

parameters 
• dynamics of biological model membranes 
• lattice and spin excitations in quantum magnets, superconductors, … 
• phase transitions: critical behavior.  
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14.5.3  High resolution spectroscopy 
 
Both, time-of-flight and triple axis spectroscopy, have typical energy resolutions of a 
few percent of the incident neutron energy. While such energy resolutions are sufficient 
in many cases, there is need for higher energy resolutions, for example to investigate the 
rather slow movements of large macromolecules, the slow spin dynamics of frustrated 
spin systems, diffusion of atoms or tunneling processes in molecular crystals. In order to 
improve the energy resolution, one could just narrow the energy band width of the neu-
trons incident on the sample. However, such an improvement of resolution goes hand-
in-hand with the decrease of the signal in the detector and is therefore not practicable 
beyond certain limits. There are, however, alternative approaches to increase the energy 
resolution: neutron spin echo spectroscopy and backscattering spectroscopy.  
 
Neutron spin echo spectroscopy can be understood as a further development of the time-
of-flight spectroscopy, where the flight times of individual neutrons are encoded and 
thus a broad wavelength band of incident neutron energies can be used. Encoding of the 
flight-time is done by the Larmor precession of the nuclear spin of the neutrons in an 
external magnetic field. Loosely speaking "each neutron carries its own clock" to meas-
ure its individual time-of-flight. Figure 14.20 demonstrates the principle of neutron spin 
echo spectroscopy: the incident neutron beam with a broad wavelength band of typical-
ly 10 % is being polarized with the polarization along the neutron flight direction. A so-

called 
2
π -flipper turns the neutron polarization into the vertical direction, just before the 

neutrons enter a strong magnetic field, which is designed in such a way that the field 

integral ( )d∫B s s  is identical for all neutron flight paths (an absolute non-trivial re-

quirement!!). In the external filed, the nuclear magnetic moment of the neutron starts to 
precess in this field with a Larmor precession frequency determined by: 

d
dt γ= ×s s B  (14.40)  

Due to the different neutron velocities and thus different flight times in the magnetic 
field area, the neutron beam reaching the sample is entirely depolarized. Typical field 
integrals are in the range of 0.5 T·m giving rise to some 10,000 precessions of the neu-
tron spin. At the sample, the polarization of each neutron is inverted by a so-called π-
flipper. In the second arm of the neutron spin echo spectrometer, the scattered neutrons 
travel through an identical solenoid as on the incident side. If the neutrons are scattered 
elastically and the field integrals in the two coils are precisely identical, then the full 
polarization of the neutron beam will be restored and a full intensity will be recorded in 

the detector after a further 
2
π  flip and a polarization analyzer. This maximum intensity 

is called the spin echo. This spin echo is due to the fact that in the second coil, each neu-
tron performs as many revolutions as in the first coil and thus has to end up with the 
initial spin direction. If an inelastic scattering event happens at the sample, the spin echo 
will be destroyed, i.e. the intensity in the detector will be lowered. The echo signal can 
be measured by scanning the field of the second coil with respect to the field of the first 
coil. Since the echo signal depends directly on the time-of-flight which neutrons need to 
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travel through the magnetic field region, the spin echo technique directly measures the 
intermediate scattering function I(Q,t) instead of S(Q,ω). This type of spectroscopy is 
therefore well suited to measure slow relaxation processes like the magnetization dy-
namics in spin glasses or the dynamics of large macromolecules.  
 

 
Fig. 14.20: Schematics of the neutron spin echo spectrometer of JCNS at the Heinz 

Maier-Leibnitz Zentrum MLZ in Munich [3]. The incident neutron beam has a 
wavelength – or energy band of 10%λ

λ
∆ = .  

 
Another instrument for high resolution spectroscopy, based on a crystal analyzer and 
thus related to the triple axis spectrometer, is the so-called neutron backscattering in-
strument. Starting from the Bragg equation 2 sindλ θ=  one can derive the wavelength 
spread of a Bragg reflection from a monochromator or analyzer crystal by simple deri-
vation:  

( ) ( ) ( )
2 2 2 2

2 2 22 cotdd
d d
λ λ λλ θ θ θ

θ λ
∂ ∂ ∆ ∆       ∆ = ∆ + ∆ ⇒ = + ⋅ ∆       ∂ ∂       

 (14.41)  

(14.41) shows that the wavelength spread results from two factors: an uncertainty in the 
lattice d-spacing, which can be minimized for perfect crystals such as silicon or germa-
nium and a term resulting from the divergence of the beam. For backscattering, i.e. 
2 180θ = °  or 90θ = °  this latter contribution vanishes due to the cot(θ) dependence. 
Thus, in backscattering one can work with a very divergent beam and still achieve a 
very good wavelength- or energy- resolution – of course at the prize of a poor angular 
resolution. This principle is applied for backscattering instruments. An example of such 
a spectrometer from a neutron spallation source is shown in figure 14.21.  
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Fig. 14.21: Schematics of the neutron backscattering spectrometer BASIS at the 

 Spallation Neutron Source SNS in Oak Ridge, USA, taken from [8].  
 
Neutron pulses are produced in the supercritical hydrogen moderator. These pulses have 
a width of about 45 µs for 6.267Åλ =  wavelength neutrons (this wavelength corre-
sponds with silicon (111) backscattering analyzers). Bandwidth choppers are used to 
select a certain wavelength band from the pulsed white neutron beam. A long incident 
flight path of 84 m between moderator and sample allows one to define with great preci-
sion the wavelength of the incident neutrons arriving at the sample at a certain time after 
the initial neutron pulse. Neutrons are scattered from the sample onto Si (111) analyzers, 
reflected from these analyzers into detectors in a close-to-backscattering geometry. In 
this way the final neutron wavelength is fixed to 6.267 Å, while the incident neutron 
wavelength varies with time after the pulse and thus the energy transfer can be deter-
mined like in a time-of-flight instrument10. An energy resolution of about 2.2 µeV can 
be achieved with the dynamic range of ± 250 µeV. Typical applications of such a 
backscattering spectrometer lie in the investigation of tunneling in molecular crystals, 
spin diffusion or slow spin relaxation in frustrated spin systems, or atomic diffusion 
processes.  
 

14.6 Summary and conclusions 
 
In this chapter we have given a rough overview over the different neutron scattering 
techniques and their applications. Many details will be discussed in the practical part of 
this course. In addition to the instrument concepts presented, there are many variants, 
which could not be discussed within the scope of this introduction. Besides neutron 
scattering there are of course many other techniques, which cover similar lengths- and 

10 The BASIS spectrometer is an example of a so-called inverse TOF spectrometer, where the final veloc-
ity of neutrons is fixed and the incident velocity varies. This is in contrast to a direct TOF spectrometer, 
where the incident velocity is fixed and the final velocity varies. 
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time- scales for research in condensed matter. All these techniques are complementary 
since all of them can only access a certain phase space region and since the contrast 
mechanisms are quite different for the different techniques. Figures 14.22 and 14.23 
depict the relevant lengths- and time- scales accessible with various neutron- and non-
neutron techniques.  
 

 

 

 
Fig. 14.22: Experimental techniques with spatial resolution: neutron diffraction 

 compared to other experimental techniques; taken from [9].  
 

 

 

 
Fig. 14.23: Experimental techniques with time and energy resolution, respectively: 

 neutron spectroscopy compared to other experimental techniques; taken 
 from [9].  
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As these figures clearly demonstrate, neutron techniques cover a very large range of 
lengths- and time- scales relevant for research on condensed matter systems. Together 
with the typical assets of neutrons - sensitivity to magnetism, gentle non-destructive 
probe, sensitivity to light elements, contrast for neighboring elements etc. - it is clear 
why neutrons are such an important probe in many research fields. Figure 14.24 shows 
how research with neutrons is relevant in many areas of fundamental research and how 
this in turn is highly relevant for many developments of modern technologies, which are 
the basis to solve current challenges of mankind.  
 

 

 

 
Fig. 14.24: Significance of research with neutrons in fundamental research and 

 modern technologies, which finally shape our environment and help 
 solve pressing problems of modern societies, like energy supply,  
 transport or communication; taken from [9].  
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Exercises 
 

Multiple choice 
 

1. Thermal neutrons have typical energies of 
       0.2 meV 
        20 meV 
    2000 meV 
  20000 meV 

 
2. In 1 sec, thermal neutrons cover a distance of 

          10 m 
        100 m 
      1000 m 
  100000 m 

 
3. Neutron choppers rotate with frequencies up to  

          5 Hz 
      600 Hz 
  60000 Hz 

 
4. Phonon- and Magnon-dispersions are usually measured at 

small angle scattering instruments 
triple axis spectrometers 
backscattering spectrometers 
neutron spin echo spectrometers 

 
5. Interface structure in thin film systems is usually studied at 

powder diffractometers 
time-of-flight spectrometers 

  reflectometers 
 

6. Polymer reptation has been extensively studied at 
thermal time-of-flight spectrometers 
triple axis spectrometers 

  spin-echo spectrometers 
 

7. Incoherent scattering (e.g. of hydrogen) is very useful to 
reduce the background 
study magnetic properties 

  study diffusive motions 
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8. With integral scattering we see 
the time averaged structure 
a snapshot of the sample 

  the dynamics of the atoms 
 

9. The scattering vector Q is directly related to 
  the momentum transfer of neutrons to the sample 
  the coherence of the neutron beam 
  the phase shift during scattering 
 

10. The resolution function of an instrument is directly related to 
the Fourier transform of the pair correlation function of the atoms in the sample 
the coherence volume of the neutron beam 

  the collimation and monochromatization of the beam 
 
 

E14.1  Collimation 
Assume you have to define the direction of a neutron beam by collimation. The incident beam 
has a flat angular distribution over an angular range much wider than needed. Employ the 
following three methods, plot the intensity distribution after your collimating device, compar-
ing shape, width and transmission:  
 

1. two slits with opening S in distance L 
 
 
 
 
 

2. a “Soller Collimator” consisting of N neutron absorbing plane-parallel plates of thick-
ness t, channel width d and length l:  

 
 
 
 
 

3. a neutron guide of length L>> width w coated with 58Ni (b =14.4 fm; fcc-structure; 
a0 = 3.520 Å) 

 
 
 
 
 
What is the principle difference between method 3 and methods 1 and 2? 

l 
d 

t 

L 

w 
58Ni 

L 
S S 
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b) Determine the relation between the delayed arrival time of neutrons at the detector and 
the energy loss during inelastic scattering at the sample.  

 
c) Determine the relation between energy transfer 'E Eω = −  and the magnitude of the 

momentum transfer '= − Q k k  for a detector with fixed scattering angle 2θ.  
 

Which factors determine the energy resolution of a TOF spectrometer? How does this affect 
the design of such an instrument? 



Index I.1

Index

A

absolute calibration, 5.10
absorption, 2.21
adiabatic field variation, 7.4
amphiphilic block copolymers, 6.10
anisotropic anomalous x-ray scattering,

12.15
anomalous SAXS, 5.32
antibody, 13.23
atomic coordinates, 8.7

B

backscattering, 14.33
backscattering spectroscopy, 11.20
band structure model, 12.4
Beaucage form factor, 6.7
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scattering length, 4.25, 4.26
scattering length density, 5.14, 5.31, 9.4
scattering vector, 2.3, 4.18, 5.5
self correlation function, 14.5
site occupation, 8.2

size polydispersity, 6.11
small angle neutron scattering, 14.11
Snell’s law for refraction, 9.6
source brilliance, 3.3
space group, 4.12
spallation, 3.5
spallation source, 3.3
specular reflection, 9.2
spin density distribution, 7.16
spin echo, 11.21
spin echo spectroscopy, 14.32
spin pair correlation, 14.7
spin-flip, 7.11
spin-incoherent scattering, 7.9
star polymer, 13.15
star polymers seen as ultra-soft colloids,

6.15, 6.17
strong electronic correlations, 12.2
structure factor, 4.25, 5.25
supermirror, 3.12
supermirror, polarizing, 7.5
superstructure reflections, 12.13
swollen chain, 6.6
symmetry element, 4.7

T

Teubner-Strey formula, 5.30
The hydrogen problem, 8.4
thin film, 9.2
tight-binding model, 12.4
time-of-flight Laue technique, 7.20
time-of-flight spectroscopy, 11.18, 14.30
time-resolved small angle neutron scatter-

ing, 6.9, 6.12
total scattering cross section, 2.4
transmissivity, 9.6
transmitted wave amplitude, 9.5
triple axis spectroscopy, 11.17, 14.30

V

van Hove correlation function, 11.12
virial expansion / virial coefficient, 6.3
viscosity, 13.2

W

wide angle diffraction, 14.26

X

XYZ polarization analysis, 7.18



I.4 Index

Z

Zeeman splitting, 7.3
zero average contrast, 5.22
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