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iv  Abstract 

Abstract 

Interactions between surface water and groundwater play an essential role in hydrology, 

hydrogeology, ecology, and water resources management. When modelling the river-aquifer 

interactions, a proper characterization of riverbed properties such as the riverbed topography and 

the riverbed hydraulic conductivity (Krb) can be important for the prediction of exchange fluxes 

between a river and an aquifer. These riverbed properties are changing in time and space. 

Specifically, flood events may change the riverbed elevation as well as the riverbed texture and 

structure, which in turn can influence the Krb and river-aquifer exchange fluxes. One main objective 

of this PhD-work was to investigate the role of different Krb patterns on prediction of hydrologic 

states and river-aquifer exchange fluxes and to evaluate methodologies for improving the 

characterization of the spatial and temporal variability of Krb, in combination with different 

conceptualizations of the heterogeneity of the riverbed. In particular, it was evaluated whether 

variants of the Ensemble Kalman Filter (EnKF), an ensemble based data assimilation technique, can 

reproduce such interactions. EnKF is commonly used in subsurface flow and transport modelling for 

estimating states and parameters. However, EnKF only performs optimally for multi-Gaussian 

distributed parameter fields, but the spatial distribution of Krb often shows complex non-multi-

Gaussian patterns, which are related to flow velocity dependent sedimentation and erosion 

processes. In this work, multiple types of heterogeneous Krb patterns, based on different 

geostatistical models, were evaluated and compared. 

A first synthetic study considered a 3-D river-aquifer model including a river in hydraulic connection 

to a homogeneous aquifer using a conductance based groundwater model. A riverbed with non-

multi-Gaussian distributed hydraulic parameters with channelized structures was assumed as a 

virtual reference. In a series of data assimilation experiments three different geostatistical models for 

the spatial distribution of the riverbed hydraulic parameters were studied: (i) heterogeneous with 

non-multi-Gaussian distribution (channelized structures), (ii) heterogeneous with non-multi-Gaussian 

distribution (elliptic structures) and (iii) heterogeneous with multi-Gaussian distribution. For the non-

multi-Gaussian scenarios, stochastic realizations of non-multi-Gaussian distributed riverbeds were 

inversely conditioned to state measurements, taken from the virtual reality, using EnKF and the 

normal score ensemble Kalman filter (NS-EnKF). For the multi-Gaussian distribution, the stochastic 

realizations of riverbed properties have multi-Gaussian distributed hydraulic parameters and are also 

conditioned to the same state measurements with EnKF. It was concluded that both EnKF and NS-

EnKF improve the characterization of non-multi-Gaussian riverbed properties, hydraulic heads and 

exchange fluxes by piezometric head assimilation, and only NS-EnKF could preserve the initial 

distribution of Krb. In addition, it was found that the best results were achieved for channel-
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distributed non-multi-Gaussian stochastic realizations and with parameter updating. However, 

differences between the simulations were small and non-multi-Gaussian riverbed properties seem to 

be of less importance for subsurface flow than non-multi-Gaussian aquifer properties.  

In a second study, the role of these heterogeneity patterns of Krb was again explored but using a fully 

integrated hydrological model which can simulate complex, variably saturated subsurface flow. A 

similar synthetic 3-D river-aquifer model was set up. The reference model was constructed with a 

heterogeneous riverbed using the same non-multi-Gaussian patterns in the form of meandering 

channels as in the first study. Data assimilation was used again to test the ability of different Krb 

patterns to reproduce hydraulic heads, Krb and river-aquifer exchange fluxes. Both fully saturated as 

well as variably saturated conditions underneath the riverbed were tested. The data assimilation 

experiments with EnKF were carried out for four types of geostatistical models of Krb fields: (i) 

spatially homogeneous; (ii-iv) three different geostatistical models similar to the ones used in the 

first study. For all data assimilation experiments, state variables and Krb were updated by assimilating 

hydraulic heads. For saturated conditions, heterogeneous geostatistical models allowed a better 

characterization of net exchange fluxes than a homogeneous approximation. Among the three 

heterogeneous models, the performance of non-multi-Gaussian models was superior to the 

performance of the multi-Gaussian model, but the two tested non-multi-Gaussian models showed 

only small differences in performance from one another. For the variably saturated conditions both 

the multi-Gaussian model and the homogeneous model performed clearly worse than the two non-

multi-Gaussian models, while the two non-multi-Gaussian models did not show much difference in 

performance. This clearly shows that characterizing heterogeneity of Krb is important. Moreover, 

particularly under variably saturated flow conditions the mean and the variance of Krb do not provide 

enough information for exchange flux characterization and additional histogram information of Krb 

provides crucial information for the reproduction of exchange fluxes. 

In the third study, a model was set up for the Upper Emme catchment in Switzerland with a fully 

integrated hydrological model. Due to a 300-year flood event that happened on 24.07.2014 in the 

Emme River in Switzerland, the riverbed topography and probably the Krb were greatly changed. 

Multiple data assimilation experiments were carried out with EnKF, including the periods before and 

after the flood for the year 2014, to detect the spatial and temporal variation of these riverbed 

properties and to characterize the river-aquifer interaction. The following scenarios were simulated: 

(i) with/without consideration of changes in riverbed topography as observed by drone 

measurements; (ii) with/without update of Krb and aquifer hydraulic conductivity (Kaq) before the 

flood; (iii) with/without update of Krb and/or Kaq after the flood, in 2014. The performance of the data 

assimilation was evaluated by evaluating the reproduction of the hydraulic states for the following 
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year 2015. The scenario with pre-flood hydraulic parameters and pre-flood riverbed topography, not 

updated after the flood, resulted in the largest root mean square error (RMSE) of heads (RMSE (h) = 

76.6 cm). Using the post-flood riverbed topography instead of the pre-flood riverbed topography 

reduced the RMSE (h) by 24% to 57.9 cm. If in addition to using the post-flood riverbed topography 

also Krb and Kaq were updated through data assimilation after the flood, the smallest RMSE (h) was 

obtained (34.8 cm). This implies a reduction of RMSE (h) of 55% compared to using pre-flood 

riverbed topography and hydraulic conductivity (K). On the other hand, the prediction of surface 

water discharge was not affected much by these changes. In summary, it could be shown that 

updating Krb and Kaq combined with the post-flood riverbed topography after a major flood event is 

important for groundwater flow modelling in the period after the flood, because changes induced by 

such floods have a significant effect on piezometric heads. 
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Zusammenfassung 

Wechselwirkungen zwischen Oberflächenwasser und Grundwasser spielen eine maßgebliche Rolle in 

Hydrologie, Hydrogeologie, Ökologie und Wasserressourcen-Management. Bei der Modellierung von 

Wechselwirkungen zwischen Flüssen und Grundwasserleitern kann eine korrekte Charakterisierung 

von Flussbett-Eigenschaften, wie etwa der Flussbett-Topografie oder der hydraulische Flussbett-

Leitfähigkeit (K), für die Vorhersage von Austauschprozessen zwischen Flüssen und 

Grundwasserleitern von großer Bedeutung sein. Diese Flussbett-Eigenschaften verändern sich über 

Zeit und Raum. Speziell Überflutungsereignisse können die Lage des Flussbettes sowie dessen Textur 

und Struktur verändern, was wiederum Einfluss auf die Flussbett-K sowie auf Austauschflüsse 

zwischen Fluss und Grundwasserleiter haben kann. Ein Hauptziel dieser Arbeit war die Untersuchung 

der Rolle von unterschiedlichen Flussbett-K-Mustern auf die Vorhersage von hydrologische 

Zustandsgrößen und Austauschflüssen zwischen Fluss und Grundwasserleiter sowie die Evaluation 

von Methoden für eine verbesserte Charakterisierung der räumlichen und zeitlichen Variabilität der 

Flussbett-K, in Kombination mit unterschiedliche Konzeptualisierungen der Flussbett-Heterogenität. 

Insbesondere wurde evaluiert, ob Varianten des „Ensemble-Kalman-Filters“ (EnKF), einer Ensemble-

basierten Datenassimilationstechnik, solche Wechselwirkungen reproduzieren können. Der 

„Ensemble-Kalman-Filter“ (EnKF) wird häufig bei der Modellierung von Strömungs- und 

Transportprozessen im Untergrund für die Abschätzung von Zustandsgrößen und Parametern 

verwendet. Jedoch funktioniert EnKF nur bei einer Multi-Gauß´schen Verteilung der Parameterfelder 

optimal, wohingegen die räumliche Verteilung der Flussbett-K oft komplexe nicht-Multi-Gauß´sche 

Muster aufweist, die mit fließgeschwindigkeitsabhängigen Sedimentations- und Erosionsprozessen 

zusammenhängen. In dieser Arbeit wurden mehrere Typen heterogener Flussbett-K-Muster, 

basierend auf verschiedene geostatistische Modelle, evaluiert und verglichen. 

Eine erste synthetische Studie wurde mithilfe eines dreidimensionalen Fluss-Grundwasser-Modells 

durchgeführt, bei dem der Fluss über das sogenannte „Leakage“-Konzept in hydraulischer 

Verbindung mit einem homogenen Grundwasserleiter steht. Ein Flussbett mit nicht-Multi-Gauß-

verteilten hydraulischen Parametern mit Kanalstrukturen wurde als virtuelle Referenz angenommen. 

In einer Serie von Datenassimilations-Experimenten wurden drei verschiedene geostatistische 

Modelle für die räumliche Verteilung von Flussbett-K Parametern untersucht: (i) heterogen mit nicht-

Multi-Gauß´scher Verteilung (Kanalstrukturen), (ii) heterogen mit nicht-Multi-Gauß´scher Verteilung 

(elliptische Strukturen), (iii) heterogen mit Multi-Gauß´scher Verteilung. Für die nicht-Multi-Gauß-

Szenarien wurden stochastische Realisierungen von nicht-Multi-Gauß-verteilten Flussbetten unter 

Verwendung von EnKF und dem „normal-score“ Ensemble-Kalman-Filter (NS-EnKF) invers auf 

Zustandsinformationen aus der virtuellen Referenz konditioniert. Für das Multi-Gauß-Szenario 
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wiesen die stochastischen Realisierungen der Flussbetteigenschaften Multi-Gauß-verteilte 

hydraulische Parameter auf und wurden auch mithilfe von EnKF auf die gleichen 

Zustandsinformationen konditioniert. Es stellte sich heraus, dass sowohl EnKF als auch NS-EnKF die 

Charakterisierung von nicht-Multi-Gauß’schen Flussbett-Eigenschaften, Piezometerhöhen und 

Austauschflüssen durch die Assimilation von Piezometerhöhen verbessern konnte, wobei nur durch 

den NS-EnKF die anfängliche Verteilung der Flussbett-K erhalten wurde. Zudem stellte sich heraus, 

dass die besten Ergebnisse für nicht-Multi-Gauß’sche stochastische Realisierungen mit 

Kanalstrukturen unter Verwendung von Parameteranpassung erreicht wurden. Jedoch waren die 

Unterschiede zwischen den Simulationen gering und nicht-Multi-Gauß’sche Flussbett-Eigenschaften 

scheinen für Strömungsprozesse im Untergrund weniger wichtig zu sein als eine nicht-Multi-

Gauß´sche Verteilung von Eigenschaften des Grundwasserleiters.  

In der zweiten Studie wurde ebenfalls die Rolle dieser Heterogenitäts-Muster von Flussbett-K 

erforscht, aber diesmal unter Nutzung eines voll integrierten hydrologischen Modells, welches die 

Simulation komplexer, variabel gesättigter Strömungsprozesse im Untergrund ermöglicht. Ein 

ähnliches synthetisches dreidimensionales Fluss-Grundwasser-Modell wurde aufgebaut. Das 

Referenzmodell wurde mit einem heterogenen Flussbett konstruiert, unter Verwendung derselben 

nicht-Multi-Gauß´schen Muster in Form von mäandernden Kanälen wie in der ersten Studie. 

Datenassimilation wurde wieder verwendet, um die Fähigkeit verschiedener Flussbett-K-Muster zur 

Reproduktion von Piezometerhöhen, Flussbett-K und Fluss-Grundwasser-Austauschflüssen zu 

überprüfen. Sowohl völlig gesättigte als auch variabel gesättigte Zustände unterhalb des Flussbetts 

wurden getestet. Die Datenassimilations-Experimente mit EnKF wurden für vier Typen 

geostatistischer Modelle von Flussbett-K-Feldern durchgeführt: (i) räumlich homogen; (ii)-(iv) drei 

unterschiedliche geostatistische Modelle, die denjenigen aus der ersten Studie gleichen. Für alle 

Datenassimilations-Experimente wurden Zustandsvariablen und Flussbett-K durch die Assimilation 

von Piezometerhöhen angepasst. Bei gesättigten Bedingungen erlaubten die heterogenen 

geostatistischen Modelle eine bessere Charakterisierung der Netto-Austausch-Flüsse als eine 

homogene Annäherung. Unter den drei heterogenen Modellen war die Leistungsfähigkeit der nicht-

Multi-Gauß-Modelle höher als die des Multi-Gauß-Modells, allerdings wiesen die beiden getesteten 

nicht-Multi-Gauß-Modelle nur kleine Leistungsunterschiede untereinander auf. Bei den variabel 

gesättigten Bedingungen schnitten sowohl das Multi-Gauß-Modell als auch das homogene Modell 

ganz klar schlechter ab, als die beiden nicht-Multi-Gauß-Modelle, deren Leistungsfähigkeit nicht sehr 

verschieden war. Dies macht deutlich, dass die Charakterisierung der Heterogenität der Flussbett-K 

wichtig ist. Zudem stellen der Mittelwert und die Standardabweichung der Flussbett-K vor allem bei 

variabel gesättigten Strömungsbedingungen nicht genügend Informationen für die Charakterisierung 
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der Austausch-Flüsse zur Verfügung, wohingegen zusätzliche Histogramm-Informationen zur 

Flussbett-K wesentliche Informationen zur Reproduktion von Austausch-Flüssen liefern. 

In der dritten Studie wurde ein voll integriertes hydrologisches Modell des Einzugsgebietes der 

oberen Emme in der Schweiz aufgestellt. Während eines 300-Jahre-Überflutungsereignisses der 

Emme am 24.07.2014 hat sich die Flussbetttopografie und möglicherweise auch die Flussbett-K stark 

verändert. Mehrere Datenassimilations-Experimente wurden mit EnKF durchgeführt, um die 

räumliche und zeitliche Variation dieser Flussbett-Eigenschaften zu ermitteln und die Fluss-

Grundwasserleiter-Wechselwirkung zu charakterisieren. Diese beinhalteten die Zeitperioden vor und 

nach der Überflutung im Jahre 2014. Die folgenden Szenarien wurden simuliert: (i) mit/ohne 

Berücksichtigung der Veränderungen in der Flussbetttopografie, die über Drohnen-Messungen 

beobachtet wurden; (ii) mit/ohne Aktualisierung der Flussbett- und Grundwasserleiter-K vor der 

Überflutung; (iii) mit/ohne Aktualisierung der Flussbett- und/oder Grundwasserleiter-K nach der 

Überflutung, im Jahr 2014. Die Leistungsfähigkeit der Datenassimilation wurde durch einen Vergleich 

der Reproduktion der hydraulischen Zustandsgrößen für das Folgejahr 2015 evaluiert. Das Szenario 

mit den hydraulischen Parametern sowie der Flussbetttopografie vor der Überflutung, die nach der 

Überflutung nicht aktualisiert wurden, ergaben den größten Wert der Wurzel der mittleren 

quadratischen Abweichungen der Piezometerhöhen (RMSE (h) = 76,6 cm). Die Nutzung der 

Flussbetttopografie nach der Überflutung anstelle derjenigen vor der Überflutung reduzierte den 

RMSE (h)-Wert um 24 % auf 57,9 cm. Der kleinste RMSE (h)-Wert von 34,8 cm wurde erreicht, indem 

zusätzlich zur Nutzung der Flussbetttopografie nach der Überflutung auch Flussbett- und 

Grundwasserleiter-K durch Datenassimilation nach der Überflutung aktualisiert wurden. Dies 

bedeutet eine Reduzierung des RMSE (h)-Wertes um 55 % im Vergleich zur Nutzung der 

Flussbetttopografie und K vor der Überflutung. Allerdings wurde die Vorhersage des 

Oberflächenwasserabflusses durch diese Veränderungen nicht sehr stark beeinflusst. 

Zusammenfassend kann festgestellt werden, dass die Anpassung von Flussbett- und 

Grundwasserleiter-K in Kombination mit der Flussbetttopografie nach dem großen 

Überflutungsereignis wichtig ist für die Modellierung des Grundwasserflusses in der Zeit nach der 

Überflutung, da die Veränderungen, die von solchen Überflutungsereignissen hervorgerufen werden, 

einen wesentlichen Effekt auf Piezometerhöhen haben. 
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Chapter 1 Introduction 

1.1 Importance of surface water - groundwater interaction 

Water resources management is challenged by an increasing demand for water by agriculture, 

industry and human activities. Although surface water (SW) as well as groundwater (GW) serve as 

important components of global freshwater resources, the fundamental management unit for water 

resources was normally either the SW or the GW, as SW and GW were considered as separated 

bodies (Winter et al., 1998; Vaessen and Brentführer, 2014). However, these two bodies interact 

with each other and changes in one single body affect the quantity and quality of the other one 

(Winter et al., 1998). For example, the maintenance of a minimum ecological flow in a river system is 

strongly controlled by the groundwater flow contribution to the river discharge, especially in the dry 

seasons (Sophocleous, 2002). Contaminants in the river can infiltrate into the aquifer and thus 

pollute drinking water that is pumped from the aquifer (Hendricks Franssen et al., 2011). 

Groundwater storage can serve as a buffer for flood and drought during extreme events (Jones, 2011; 

Scanlon et al., 2012). The SW-GW transition zone is ecologically significant as complex 

physiochemical environmental conditions are provided for species due to the exchange process 

(Brunke and Gonser, 1997). Groundwater discharge areas linked to the river are essential for winter 

fish survival as groundwater temperature is higher than the surface water (Hayashi and Rosenberry, 

2002). Therefore an effective, conjunctive management of SW and GW was proposed within an 

integrated water resources management framework, requiring a clear and better understanding of 

SW-GW interaction (Winter et al., 1998; Vaessen and Brentführer, 2014). 

1.2 Challenges in modeling river-aquifer system  

Studies on SW-GW interactions began in the 1960s (e.g. Rorabaugh, 1964) and the main interest for 

studying these interactions was the eutrophication of lakes and later acid rain (Sophocleous, 2002). 

In recent years, exchange between near-channel water and in-channel water like the river-aquifer 
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system attracts more and more attention. The groundwater flow contribution to the river and the 

corresponding feedback from the river are varying in space and time (Ellis et al., 2007; Krause et al., 

2007). Quantification of such dynamic river-aquifer exchange processes is challenging. One key point 

is the selection of hydrological models which can consider both components and the interaction 

between them. Until now several of such models have been developed, for a review see Furman 

(2008). Conductance based groundwater models are the most commonly used models for simulating 

river-aquifer interaction, such as MODFLOW (McDonald and Harbaugh, 1988) and SPRING (Delta h 

Ingenieugesellschaft mbH, 2006). The advantage is that these models are relatively easy to set up, 

and need relatively little computation time (Hogan et al., 2004). However, in these models the 

surface water heads are pre-defined, unsaturated zones are neglected and exchange fluxes between 

the river and the aquifer are calculated according to a simplified, linear relationship. An alternative 

are more complex, integrated hydrological models which are designed to simulate the surface water 

and groundwater in one framework, such as InHM (VanderKwaak, 1999), MODHMS (Panday and 

Huyakorn, 2004), Parflow (Kollet and Maxwell, 2006), CATHY (Camporese et al., 2010), and 

HydroGeoSphere (HGS) (Therrien et al., 2010; Aquanty Inc, 2016). For all of these models, the three 

dimensional Richards’ equation is used to describe the water flow in the subsurface domain. The 

surface water flow is described by either the two dimensional diffusion wave (e.g. InHM, MODHMS, 

CATHY and HGS) or the kinematic wave (e.g. Parflow) approximation to the Saint Venant equations. 

Coupling between the surface and the subsurface flow is done by either the first-order exchange 

coefficient approach (e.g. InHM, HGS and MODHMS) or the continuity of pressure approach (e.g. 

Parflow, HGS, CATHY). This type of models can simultaneously solve the surface water and 

groundwater equations and the interaction between the river and the aquifer is considered in a 

physically based, consistent manner. A detailed comparison between these two types of hydrological 

models is described by Furman (2008) and Brunner et al. (2010). 

Another challenging point is to properly quantify model uncertainties induced by initial conditions, 

model forcings and model parameters, as these uncertainties can have a large impact on the 
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modelling of river-aquifer interaction (Saha et al., 2017). Major uncertainty for simulating water flow 

in the river-aquifer system is related to the unknown geological parameters, i.e. the riverbed 

properties such as the riverbed bed topography and riverbed hydraulic conductivity (Krb) (Li et al., 

2017). These two riverbed properties can have a large impact on simulating the river-aquifer 

exchange fluxes (Woessner, 2000; Hester and Doyle, 2008). On the one hand, riverbed topography 

determines the exchange flow magnitude and pattern (Tonina and Buffington, 2007). The exchange 

flux between the river and the aquifer is enhanced by convexities and concavities (Harvey and 

Bencala, 1993). In one study, removing pool-riffle sequences reduced the hyporheic flow by a 

maximum of 48% and increased the longer residence time exchange flow, and removing channel 

sinuosity also increased the proportion of long residence time flow (Kasahara and Wondzell, 2003). 

Riverbed topography together with the stream water slope also control the solute transport (Harvey 

and Bencala, 1993). On the other hand, the Krb, especially the heterogeneity of Krb significantly 

influences the estimation of exchange fluxes (Cardenas et al., 2004; Fleckenstein et al., 2006) and 

flow residence time (Tonina et al., 2016). A separate riverbed layer with heterogeneous hydraulic 

conductivity values was needed for estimating peak flows of groundwater discharge (Kalbus et al., 

2009). These hydraulic conductivity values can vary over one  or two orders of magnitude (Käser et 

al., 2009; Xi et al., 2015; Song et al., 2016) in space and a homogeneous equivalent value can lead to 

large errors when estimating groundwater level (Lackey et al., 2015) and exchange fluxes under 

certain conditions (Irvine et al., 2012). Heterogeneity of hydraulic conductivity is also important for 

solute transport (Ryan and Boufadel, 2006), i.e. the assessment of contaminant movement and 

remediation (Anderson et al., 1999). Moreover, these two riverbed properties are varying in time, 

which makes the prediction of exchange fluxes complicated and highly dynamic, especially during 

extreme events like droughts and floods (Schubert, 2006). A scour up to 0.06 m and a total 

fluctuation of 0.17 m was detected in the riverbed height during the flood in January 2015 along the 

Great Miami River at Charles M. Bolton Water Plant in southwest Ohio, USA (Birck, 2006). Similar 

results were found by Simpson and Meixner (2012). Besides, the flood induced erosion can increase 

Krb as well as the infiltration rate from the river to the aquifer (Doppler et al., 2007; Mutiti and Levy, 
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2010; Grischek and Bartak, 2016). On the other hand, after deposition starts, Krb can be reduced by 

up to 75% due to the accumulation of fine materials transported by the river (Nowinski et al., 2011; 

Simpson and Meixner, 2012; Ulrich et al., 2015).  

The ensemble based data assimilation technique, e.g. the ensemble Kalman filter (EnKF) (Evensen, 

1994), is a powerful method for accounting for model as well as measurement uncertainties and can 

thus significantly improve the predictions of uncertain models by sequentially assimilating 

measurement data. Particularly, EnKF can be used together with hydrological modeling for improving 

the characterization of river-aquifer interaction. Stream flow can be better estimated by assimilating 

both stream flow and pressure head data with EnKF (Camporese et al., 2009). Specifically, the 

hydraulic parameters, i.e. the Kaq or Krb can be successfully estimated together with model states by 

EnKF (Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008; Hendricks Franssen et al., 

2011; Xie and Zhang, 2013). Also, temporally and spatially variable Krb can be characterized by 

sequential data assimilation with EnKF (Kurtz et al., 2012; Kurtz et al., 2013; Kurtz et al., 2014).  

1.3 Motivation, research objectives and structure of the thesis 

When modeling the heterogeneous Krb, most of the above studies adopted a geostatistical model 

using the multi-Gaussian assumption. This is because limited information is available on the spatial 

Krb variation and Gaussian statistics are commonly used in stochastic hydrogeology. However, already 

existing studies indicated that in reality more complex spatial patterns of Krb with non-multi-Gaussian 

features are encountered (Anderson et al., 1999) which can be related to flow velocity dependent 

sedimentation and erosion patterns (Min et al., 2013; Sebok et al., 2015). Field measurement found 

that Krb can be neither normally nor log-normally distributed (Genereux et al., 2008; Leek et al., 2009; 

Cheng et al., 2011), but can show a bimodal distribution (Springer et al., 1999). However, until now, 

none of these studies considered the non-multi-Gaussian patterns of Krb when modelling river-

aquifer interactions and whether such complex patterns influence the magnitude and the spatial 

patterns of river-aquifer exchange fluxes is still unknown. Moreover, no SW-GW interaction studies 
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inversely estimated these non-multi-Gaussian distributed heterogeneous Krb by sequential data 

assimilation. Therefore, the objective of the work in this PhD-dissertation is to improve characterizing 

the spatiotemporal varying Krb by assimilating measurement data and to explore the role of complex 

patterns of Krb on predicting river-aquifer exchange fluxes. This is tested for a simplified synthetic 3-D 

river-aquifer case using first a conductance based groundwater model and later a physically based, 

integrated hydrological model considering also complex saturation conditions under the riverbed. 

When non-multi-Gaussian distribution is taken into account, compared to the standard EnKF, the 

Normal Score Ensemble Kalman Filter (NS-EnKF) may be a better choice since it outperforms the 

standard EnKF in terms of characterizing hydraulic conductivity and updating piezometer heads 

(Zhou et al., 2011; Li et al., 2012; Schöniger et al., 2012; Crestani et al., 2013). Therefore we also 

explore whether NS-EnKF leads to a better characterization of non-multi-Gaussian Krb (and river-

aquifer exchange fluxes) than the standard EnKF.  

Moreover, as described in section 1.1, a precise characterization of river-aquifer exchange fluxes is 

highly relevant for real world water management around streams in the context of drinking water 

supply, sustainability of groundwater use and ecological aspects. One example is the Upper Emme 

catchment in the Northern pre-alps of Switzerland which supplies around 40 % of drinking water for 

the Swiss capital Bern (Käser and Hunkeler, 2016). The pumping behavior strongly influences the SW-

GW interactions around the drinking water stations which can influence the drinking water quality 

and the riparian ecosystem (Blau and Muchenberger, 1997). It is also shown that the riverbed 

permeability is the key point controlling the SW-GW interaction in this area (Schilling et al., 2017). 

Specifically, a 300-year flood occurred on July 24th of 2014 which changed the riverbed topography 

and probably also the Krb. Therefore, a real world catchment model is set up for this catchment to 

further explore the role of the spatiotemporal variation of flood induced Krb on the river-aquifer 

interaction.  

The thesis is structured as follows. Chapter2 briefly describes the two hydrological models used for 

simulating the river-aquifer interactions and the EnKF approach. Chapter 3 presents the impact of 



6  Introduction 

three different heterogeneous Krb patterns on the characterization of hydraulic heads, Krb and river-

aquifer exchange fluxes. A synthetic three dimensional river-aquifer model was set up using a 

simplified, conductance based model. Three different geostatistical models were used to generate 

the Krb fields: one non-multi-Gaussian model with channelized structures, one non-multi-Gaussian 

model with elliptical structures and one multi-Gaussian model. A riverbed generated using the non-

multi-Gaussian model with channelized structures was taken as a virtual reference case. Normal 

score transformation was implemented into the standard EnKF scheme and was later used for the 

two non-multi-Gaussian models. In Chapter 4, we explored further the importance of complex 

heterogeneous patterns of Krb but with a physically based, integrated hydrological model for a 

synthetic study. Besides the three heterogeneous Krb patterns, a homogeneous equivalent was 

included in the comparison. Moreover, both saturated and variably saturated conditions beneath the 

riverbed were considered for this study. In Chapter 5, the spatial and temporal variation of the Krb 

induced by a 300-year flood was characterized and its impact on the prediction of hydraulic heads, 

surface water discharge and river-aquifer exchange fluxes was further explored for a real world 

catchment in the Emme catchment in Switzerland. The temporal variation of riverbed properties was 

characterized by not only time series of piezometric head data near the river, but also drone pictures, 

taken before and after the flood in the catchment. These drone pictures provide information about 

the riverbed elevation changes throughout the flood period. In this study again an integrated 

hydrological model was used combined with data assimilation. Finally, Chapter 6 briefly summarizes 

the outcomes of these numerical experiments and gives an outlook on possible future work.  
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Chapter 2 Theory and methods 

2.1 Flow equations 

2.1.1 Groundwater flow in porous media 

Transient variably saturated groundwater flow in porous media is described by the three dimensional 

Richards’ equation: 

           (2.1) 

where  is the water content [-], t is time [T], Q is external sinks and sources [L3 L-3 T-1] and q is the 

fluid flux [L T-1]: 

           (2.2) 

where kr is relative permeability of the porous medium [-],  is the pressure head [L], z is the 

elevation above sea level [L] and K is hydraulic conductivity tensor [L T-1] given by 

            (2.3) 

where ρ is the water density [M L-3], g is gravitational acceleration [L T-2], μ is the water viscosity [M L-

1 T-1], and k is the permeability tensor of the porous medium [L2].  

In both SPRING and HGS, the control volume finite element method is used to solve the groundwater 

flow equation. The mesh grid can be discretized as regular/irregular rectangular/triangular cells. 

The van Genuchten equations are used to describe the relationship between , and kr for the 

unsaturated flow (Van Genuchten, 1980):  
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          (2.4) 

,          (2.5) 

where is the saturated soil water content [-], is the residual water content [-], is the inverse 

of the air entry pressure head [L-1], and n is the pore size distribution index [-].  

2.1.2 Surface water flow  

Surface water flow is based on the shallow water wave theory described by the one- or two-

dimensional Saint Venant equations using the kinematic wave approximation (Lighthill and Whitham, 

1955), the diffusion wave approximation, or the dynamic wave approximation. The selection of the 

approximation method is determined by various criteria like the Froudé numbers, boundary 

conditions, the kinematic  wave numbers (Vieira, 1983). A detailed comparison among the different 

approximation methods is given by Liggett and Woolhiser (1967). In this study, the diffusive wave 

approximation is used:  

         (2.6) 

where is the surface flow domain porosity [-], d0 is the depth of the flow [L] , is the fluid 

exchange rate [L3 L-3 T-1] between the surface domain and the subsurface domain, Q0 is external 

sources and sinks [L T-1] and q0 is the fluid flux [L T-1] given by  

          (2.7) 

where K0 is surface conductance [L T-1] dependent on the Manning´s equation, and kr0 is a 

dimensionless factor varying between 0 and 1, accounting for the additional resistance in horizontal 
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conductance caused by obstruction storage. If a critical depth (the depth of flow where the specific 

energy is at a minimum) boundary condition is applied at the downstream of the surface flow nodes, 

stream discharge Qr is calculated based on the upstream water level and the channel geometry: 

            (2.8) 

HGS solves the surface flow and subsurface flow equations simultaneously for each time step in a 

joint equation system which allows two-way coupling when accounting for the river-aquifer 

interaction. Instead, SPRING is a conductance based groundwater flow model, in which river stages 

are prescribed, for example from a pre-calibrated hydraulic model (Knapton, 2009), and the river 

stages do not receive the feedback from the groundwater flow simulation.  

2.1.3 Surface water – groundwater flow coupling  

The flow coupling between the subsurface and the surface domain can be done by either the 

common node approach or the dual node approach. The common node approach allows a fully 

coupled way to consider the GW-SW interaction because consistent heads are assumed for the 

surface and the uppermost subsurface nodes. The dual node approach assumes a thin layer between 

the surface layer and the uppermost subsurface layer and a first-order exchange coefficient is used 

to account for the permeability of this thin layer (sediment). This allows a higher numerical stability 

compared to the common node approach. Liggett et al. (2012) pointed out that if the coupling length 

(the thickness of the thin layer) in the dual node approach is set to a very small value (approaches 

zero), the effects of the dual node approach on simulation results are minimal and results are 

comparable to the common node approach. The exchange fluxes between the surface and the 

subsurface domain are then defined by the sediment K, the coupling length and the head gradient 

according to Darcy’s law: 

          (2.9) 
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Where qexe is the exchange flux (  in equation (2.6)) [L T-1], kre is the relative permeability term for 

the exchange flux, is the riverbed hydraulic conductivity, lexch is the coupling length [L], hgw is the 

groundwater level [L] calculated from equation (2.1) and hsw is the surface water level [L] pre-defined 

as river stages in SPRING or calculated from equation (2.6) in HGS.  

 In SPRING, the leakage coefficient [T-1] is defined as  

                       (2.10) 

and kre is set to one. In HGS, kre is the same as kr in Equation (2.5) during the exfiltration process 

(water flows from subsurface to surface), and if infiltration (flow from surface to subsurface) occurs, 

kre is defined as below: 

                    (2.11) 

where  and Hs is the obstruction height [L]. 

2.2 The Ensemble Kalman filter  

Data assimilation allows constraining states and parameters of numerical flow models by 

incorporating observations to correct the model evolution in state space. It is a powerful tool for 

uncertainty quantification, which has first been developed for the estimation of system states and 

later extended for the estimation of parameters (Chen and Zhang, 2006; Hendricks Franssen and 

Kinzelbach, 2008). In this work, the ensemble Kalman filter (EnKF) (Evensen, 1994) is used as the data 

assimilation technique for simultaneously updating state variables and parameters for both the 

conductance based groundwater model SPRING and the integrated hydrological model HGS. EnKF 

consists of three basic equations: the forecast equation, the measurement equation and the analysis 

equation. The forecast equation is solved by EnKF several times with different input parameters, 
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following a Monte Carlo approach, to take uncertainties into account. Model uncertainties are taken 

into account by drawing random samples from the multivariate pdf of the initial conditions, forcing 

functions and parameters. The corresponding predicted state vectors, called ensemble members or 

stochastic realizations, are used to represent the statistical distribution of the model states. For each 

realization, the augmented state vector consists of the state variables as well as model 

parameters: 

                       (2.12) 

where  is the augmented state vector containing the model states and parameters, is the 

vector with model states,  the vector with model parameters and i the realization counter. In our 

study, is hydraulic head, and is log-transformed parameter. Therefore the can be rewritten 

as: 

                       (2.13) 

where h is hydraulic head and . Here K can refer to the leakage coefficient α, Krb, Kaq, 

or both Krb and Kaq, depending on the simulation model and assimilation scenarios.  

For each time step, the model states at the current time step are predicted from the previous time 

step by the model forecast equation: 

                       (2.14) 

where t is the time counter, and M the simulation model (SPRING or HGS in this dissertation).   

To account for the measurement uncertainty, the original measurements at time step t are 

perturbed according the measurement equation 
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                       (2.15) 

where  is the vector of perturbed measurements, is the vector with original measurements at 

time step t, and is the vector with observation errors usually generated from a normal 

distribution with zero mean and standard deviation equal to the measurement error. 

The augmented state vector is then updated according the analysis equation by comparing the 

model simulation with the perturbed measurements: 

                     (2.16) 

where is the augmented state vector containing the updated model states and parameters, 

is the vector with the forecasted states obtained from the dynamic model in Equation 2.14, is a 

damping factor varying between 0 and 1, H is the measurement operator matrix mapping the 

simulated states to the observation locations, and G is the Kalman gain which weights the relative 

importance of the model forecast and the observations. The Kalman gain is calculated by: 

                     (2.17) 

where R is the measurement error covariance matrix, and C is the model error covariance matrix 

containing covariances of the model states and parameters and given by 

                      (2.18) 

Once the updating step is finished, the updated model states and parameters will be used as input 

for the model forecasts (the prediction function) for the next computation time step. Each time when 

measurements are available, equations 2.15-2.18 are applied, until the end of the simulation period. 

As EnKF works optimally only when parameters or states follow a Gaussian distribution, Zhou et al. 

(2011) suggested the Normal score transform EnKF (NS-EnKF) scheme for updating states and 
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parameters, which could outperform the standard EnKF if states and parameters have a non-

Gaussian distribution. In this work, the NS-EnKF is only implemented for the model SPRING for joint 

updating of hydraulic heads and leakage coefficients. In the NS-EnKF, simulated piezometric heads 

and/or leakage coefficients are transformed using anamorphosis functions according to Johnson and 

Wichern (2002): 

                       (2.19) 

                       (2.20) 

where x is the original vector, F the empirical cumulative distribution function (CDF), G the 

theoretical standard normal CDF, j the rank of x and N the ensemble size. For each variable, the 

anamorphosis function is created independently at each grid cell location and time step. In this work, 

the transformed hydraulic heads and parameter can be written as: 

                      (2.21) 

                     (2.22) 

where the superscript trans indicates the variable after transformation. The corresponding model 

covariance matrix can be written as: 

                     (2.23) 

The anamorphosis function used to transform the perturbed measurements is the same as the one 

applied on the simulated heads at that particular location: 

                       (2.24) 
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where  is the anamorphosis function created based on the simulated heads. Since most 

measurements will not correspond exactly with one of the points that define the anamorphosis 

function and some may be outside the range, it is necessary to interpolate and extrapolate the 

transformed heads along the anamorphosis function. The linear spline is selected for interpolation, 

as it has been proven to be a stable and reasonable choice when the ensemble size is large enough 

(N>200) (Schöniger et al., 2012). The mean slope of the anamorphosis function was estimated and 

used for extrapolation, which was found in test experiments to be a stable solution. The mean slope 

m at the current time step is calculated by 

                      (2.25) 

where the subscript max refers to the maximum value of among i realizations and min the 

minimum value.  

When normal score transformation for the simulation and measurements is done, the transformed 

state vector is updated by  

                    (2.26) 

where                       

(2.27) 

It should be noticed that it is possible to transform only the heads or only Y. As a last step, the 

updated heads and/or Y are back-transformed using the inverse anamorphosis functions according 

to equation (2.24). In this step interpolation/extrapolation is needed, still using the linear spline for 

interpolation and mean slope for extrapolation. The back transformed variables are used as inputs 

for the simulation of the next time step, and the procedure is repeated until the end of the 

simulation period is reached.  
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Chapter 3 The role of spatial patterns of riverbed hydraulic 

conductivities on characterization of river-aquifer exchange 

fluxes using a conductance based groundwater model* 

3.1 Introduction 

Exchange processes between surface water and groundwater play an essential role for hydrology, 

hydrogeology, ecology, and water resources management (Brunke and Gonser, 1997; Hayashi and 

Rosenberry, 2002; Sophocleous, 2002). The main uncertain factors for predicting river-aquifer water 

exchange fluxes are riverbed and aquifer properties (Storey et al., 2003; Saenger et al., 2005). A 

better characterization of riverbed structures representing more realistic properties may lead to an 

improved estimation of river-aquifer exchange fluxes (Kurtz et al., 2012). Traditionally, these media 

are considered homogeneous (Fox and Durnford, 2003) and the models for quantifying the exchange 

fluxes are simplified. 

Field measurements and inverse modelling show that in the real world riverbed hydraulic 

conductivities may vary over several orders of magnitude (Calver, 2001). Several field surveys also 

indicate that the spatial distribution of riverbed hydraulic conductivities exhibit non-Gaussian 

features (Springer et al., 1999; Genereux et al., 2008; Leek et al., 2009; Cheng et al., 2011; Sebok et 

al., 2015). Springer et al. (1999) found a bimodal distribution of K for five reattachment bars in the 

Colorado River (Grand Canyon National Park, USA). Genereux et al. (2008) conducted a detailed field 

experiment in a 250 m long river reach of West Bear Creek (North Carolina, USA) and found that 

measured riverbed hydraulic conductivities are neither normally nor log-normally distributed. Cheng 

et al. (2011) measured vertical streambed hydraulic conductivities at 18 sites along a 300 km reach of 

Platte River (Nebraska, USA) and evaluated whether the measured values were normally distributed. 
                                                             
* adapted from: Tang, Q., Kurtz, W., Brunner, P., Vereecken, H., and Franssen, H.-J. H., 2015, Characterisation of 
river–aquifer exchange fluxes: The role of spatial patterns of riverbed hydraulic conductivities: Journal of 
hydrology, v. 531, p. 111-123. 
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For nine sites a normal distribution could be confirmed by several statistical tests. However, for the 

other sites the statistical tests were not significant, which was attributed to the presence of river 

tributaries with varying sediment loads. Several studies also suggest that there can be a distinct 

spatial pattern of cross-sectional river bed hydraulic conductivities (Genereux et al., 2008; Min et al., 

2013; Sebok et al., 2015), which is thought to be related to flow velocity dependent spatially distinct 

sedimentation and erosion patterns. Some papers (Genereux et al., 2008; Leek et al., 2009; Sebok et 

al., 2015) additionally provide maps of the spatial distribution of measured riverbed conductivities 

showing spatial patterns that can hardly be described by a purely Gaussian distribution.  

Flow and transport modelling indicates that heterogeneity of riverbed properties has a large impact 

on river-aquifer exchange fluxes (Wroblicky et al., 1998; Woessner, 2000; Salehin et al., 2004; Kalbus 

et al., 2009; Irvine et al., 2012; McCallum et al., 2014). In earlier work, we analyzed temporal changes 

in riverbed hydraulic conductivities, which could be generated by floods and sedimentation 

processes (Kurtz et al., 2012). It was found that sequential data assimilation can detect the changes 

in the riverbed with some delay. Kurtz et al. (2014) analyzed the value of temperature measurements 

to characterize heterogeneous riverbeds. In other works it was analyzed whether heterogeneous 

riverbeds (with Gaussian distributed heterogeneous riverbed conductivities) can be replaced with a 

few zones with spatially homogeneous riverbed conductivities (Kurtz et al., 2013). In practice not 

enough detailed knowledge is available on the spatial variation of riverbed hydraulic conductivities 

and Gaussian statistics are used for modelling, if heterogeneity is taken into account at all. However, 

non-Gaussian patterns probably have a significant influence on the magnitude and the spatial 

patterns of river-aquifer exchange fluxes, which can be of great importance for the prediction of 

transport processes of heat and contaminants in river-aquifer systems. Non-multi-Gaussian patterns 

of riverbed hydraulic conductivities could result in very different net exchange fluxes between 

streams and aquifers compared to multi-Gaussian distributions with the same geostatistical 

parameters. It was demonstrated that non-multi-Gaussian patterns in aquifers result in a flow and 

transport behavior which is very different from multi-Gaussian patterns with the same global 
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statistics (e.g., Gómez-Hernández and Wen, 1998; Zinn and Harvey, 2003). Fleckenstein et al. (2006) 

and Frei et al. (2009) represented facies distribution of aquifer heterogeneities and investigated the 

dynamics of river–aquifer exchange fluxes. However, in their studies, only aquifer heterogeneities 

were treated as non-multi-Gaussian and riverbed hydraulic conductivities were the same as the 

underlying aquifer hydraulic conductivities. Consequently, until now, such non-multi-Gaussian 

patterns have not been taken into account for the generation of riverbed hydraulic conductivities; 

neither were non-multi-Gaussian distributed conductivities updated using inverse methods or data 

assimilation. This study therefore focuses on investigating the impact of the non-multi-Gaussian 

distribution of riverbed hydraulic conductivities on model states and river-aquifer exchange fluxes.  

A number of already established simulation techniques developed to characterize the spatial 

variability of aquifer heterogeneities (Zinn and Harvey, 2003; Khodabakhshi and Jafarpour, 2013) can 

also be applied for the characterization of spatially variable riverbed structures. Geostatistical 

simulation techniques can model spatial heterogeneity by generating equally likely stochastic 

realizations of the spatially variable geological medium. One typical approach is the sequential 

simulation algorithm (Gómez-Hernández and Journel, 1993) based on a variogram to generate a 

conditional realization from a multi-Gaussian random function. Elfeki and Dekking (2001) proposed a 

Markov chain model to characterize geological heterogeneities constrained on well data. Another 

approach is the multiple-point (MP) geostatistical technique (Guardiano and Srivastava, 1993) which 

expanded the traditional sequential simulation by avoiding the definition of a random function based 

on two-points geostatistics  (Hu and Chugunova, 2008). A comparison between simulations 

generated by the multiple point geostatistical method and variogram-based geostatistics showed 

that the reproduction of the hydraulic conductivity field generated by MP methods can better 

represent certain geological media (Mariethoz et al., 2010). We assume that the multiple point 

geostatistical method can also be used to generate more realistic parameter distributions of 

riverbeds. A next step is the inverse conditioning of the non-multi-Gaussian parameter distribution to 

hydraulic head data. 
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Inverse modelling techniques are also called indirect methods which encompass model identification 

and parameter estimation. Carrera et al. (2005) reviewed the recent progress of inverse modelling 

for aquifer characterization and tried to find similarities between well-established methods, including 

the pilot point method, zonation method and sequential self-calibration. Carrera and Neuman (1986) 

used a maximum likelihood method called the zonation method to estimate hydraulic conductivities 

and possibly other parameters for a limited number of zones in which the aquifer is divided. The 

division of the aquifer in a limited number of zones reduces the number of parameters to be 

estimated and allows a unique, stable solution of the inverse problem. Carrera and Neuman (1986) 

proposed the solution of the inverse problem by an iterative approach solving the groundwater flow 

problem, which results in a hydraulic head solution which is consistent with the parameters. 

RamaRao et al. (1995) proposed the pilot point method for solving the inverse problem in 

groundwater flow systems, locating pilot points where there are no measurements. The sequential 

self-calibration method was proposed by Gómez-Hernández et al. (1997) and generates equally likely 

realizations of transmissivity fields conditioned to both transmissivities and heads. The main step 

forward of this approach is that a non-unique solution is sought to the inverse problem and multiple 

equally likely solutions are calculated. A comparison of seven inverse modelling methods for 

groundwater flow was presented by Hendricks Franssen et al. (2009). They showed that Monte Carlo 

based inverse modelling methods, which calculate multiple equally solutions to the inverse problem, 

generally outperform other inverse methods. 

The Ensemble Kalman Filter (EnKF) (Evensen, 1994) is a Monte Carlo based inverse method. Instead 

of calculating one solution with a dynamical simulation model (in this paper a hydrological model) 

multiple solutions are calculated. The multiple solutions are calculated for different model inputs, 

like for example different spatial distributions of input parameters. Also other model input can be 

made uncertain. The different model inputs characterize the model input uncertainties and are 

sampled from multivariate probability density functions. The multiple solutions are used to calculate 

the model covariance matrix, containing the covariances between all model states. EnKF is a purely 
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stochastic method because the observations are treated as random variables by adding 

perturbations to the measurements (Burgers et al., 1998). EnKF can be extended to estimate 

parameters together with states and was applied for estimating hydraulic conductivities for a 

transient groundwater flow problem by Chen and Zhang (2006). As it is suited to condition to 

observations and performs well for non-linear models, it becomes a robust tool to deal with flow and 

transport problems in complex geological media. Hendricks Franssen and Kinzelbach (2008) used 

EnKF combined with the 2-D saturated transient groundwater flow equation to update both model 

states and parameters. A damping factor was introduced to avoid the filter inbreeding problem, 

which is an underestimation of the model variance related to a limited number of ensemble 

members used to approximate the model covariance matrix. Camporese et al. (2009) estimated 

stream flow using the CATHY model and incorporated the assimilation of both stream flow and 

pressure head data for two synthetic cases: a soil column experiment and a V-catchment scale 

experiment. Results showed that EnKF increased the accuracy of the prediction. Also Bailey and Bau 

(2010; 2012), and Pasetto et al. (2012), amongst others, analyzed joint assimilation of pressure and 

discharge data for a coupled surface-subsurface problem. These papers however did not focus 

specifically on the riverbed and did not update riverbed hydraulic properties. Hendricks Franssen et 

al. (2011) jointly updated Kaq and leakage coefficients in a real-time application of EnKF for the 

Limmat Valley aquifer in Zurich, Switzerland. Kurtz et al. (2012) characterized time-dependent 

leakage coefficients by updating time-dependent model parameters with EnKF using covariance 

inflation to improve the estimation performance. Kurtz et al. (2013) updated spatially variable 

leakage coefficients.  

EnKF only works optimally when parameters or states follow a Gaussian distribution. Kerrou et al. 

(2008) investigated and compared the ability of direct methods and inverse modelling in 

characterizing non-multi-Gaussian parameter fields under the wrong assumption of a multi-Gaussian 

random function model. They observed that two points multi-Gaussian techniques were not able to 

detect the non-multi-Gaussian structures and may lead to inaccurate groundwater flow and mass 
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the more classical EnKF for non-multi-Gaussian distributions. The non-multi-Gaussian fields of 

riverbed hydraulic conductivities are modelled with multiple point geostatistical methods. In 

summary, this paper investigates: (i) how important it is to represent non-multi-Gaussian 

distributions of riverbed hydraulic conductivities in the model (comparison with multi-Gaussian 

assumption and an alternative erroneous non-multi-Gaussian assumption), and (ii) whether NS-EnKF 

can outperform classical EnKF for the characterization of non-multi-Gaussian riverbeds under the 

non-multi-Gaussian assumption. For the first objective, experiments with three different 

geostatistical models for riverbed characterization were made: a non-multi-Gaussian model 

exhibiting channels, a non-multi-Gaussian model with the same bimodal histogram but without 

channels and a multi-Gaussian model with the same mean and variance as the non-multi-Gaussian 

models. Next, EnKF experiments were performed for the three geostatistical models by assimilating 

hydraulic heads with update of both states and parameters. Additionally, NS-EnKF was implemented 

for the two non-multi-Gaussian models to evaluate the performance of normal score transformation. 

A series of numerical experiments are carried out with a three-dimensional synthetic river-aquifer 

model for different scenarios. The performance of EnKF/NS-EnKF is evaluated in terms of its ability to 

predict the hydraulic heads, reproduce the Krb fields and  estimate the exchange fluxes between river 

and aquifer. 

3.2 Methods and Materials 

The governing continuity hydraulic equation for a 3D unsaturated-saturated groundwater flow 

problem in a river-aquifer system is described by the three dimensional Richards’ equation 2.1. The 

software SPRING (Delta h Ingenieugesellschaft mbH, 2006) is used to solve the 3D unsaturated-

saturated groundwater flow problem in a river-aquifer system with help of the finite element 

method, using regular rectangles in the simulation studies presented in this study. We present here 

the NS-EnKF in terms of the joint updating of piezometric heads and riverbed hydraulic conductivities 

(expressed as leakage coefficients (α)) with help of assimilation of piezometric heads to simulate 

river-aquifer interactions. The main steps and equations for NS-EnKF are summarized as follows: 
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1. Generation of initial ensemble. In our work, non-multi-Gaussian distributed parameter fields are 

generated using the direct sampling algorithm (Mariethoz et al., 2010), a multiple-point geostatistical 

simulation technique (Caers and Zhang, 2004; Zhang, 2008). Both non-multi-Gaussian fields with 

channels and non-multi-Gaussian fields without channels are generated by the direct sampling 

algorithm. multi-Gaussian distributed parameter fields are generated using a sequential multi-

Gaussian simulation technique (Gómez-Hernández and Journel, 1993).  

2. Forecast of state vectors. In this step, the states at the current time step are estimated from the 

previous time step by the transient flow model. The stochastic realizations of log10 (α), together with 

other input information, are used here as input to solve the 3-D river-aquifer flow problem with the 

software SPRING. The calculated piezometric heads are denominated “forecasted heads” in order to 

distinguish them from the updated heads after data assimilation. For each of the realizations, the 

prediction equation is given by: 

            (3.1) 

where  is the augmented state vector containing the model states (here the simulated piezometric 

heads) and parameters (here the log-transformed leakage coefficient): 

            (3.2) 

where h is the simulated heads and . M is the simulation model (SPRING in this work) , 

t is the time step counter and i is the realization number. 

3. Normal-Score transformation. This is only done for certain simulation scenarios (see section 3.3.4). 

The ensemble of state vector forecasts and leakage coefficient fields provides the basis for the 

normal-score transform of heads and leakage coefficients. At each location and time step a 

probability density function of hydraulic heads and leakage coefficients can be constructed. In 

addition, both simulated piezometric heads and leakage coefficients are transformed by creating 
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anamorphosis functions for each variable independently, at all grid cell locations and all time steps 

according equations 2.19-2.22.  

4. Updating. In this step simulated heads, possibly transformed, from the model are compared with 

measurements, which are also transformed in case the simulated heads are transformed. The 

original measurements are perturbed with a series of normally distributed measurement errors. 

These measurement errors are defined a priori on the basis of expert knowledge:  

            (3.3) 

where is the perturbed measurement vector, is the vector with the measurements at the 

current time step and is the vector containing random errors. If the perturbed measurements are 

transformed, this is done using the same anamorphosis function as for the simulated heads at that 

location. The transformed perturbed measurements can be written as: 

            (3.4) 

where  is the anamorphosis function created based on the simulated heads and the 

interpolation/extrapolation. Next, the Kalman gain G is calculated as: 

          (3.5) 

where C is the covariance matrix of the, possibly transformed, states and parameters and R is the 

covariance matrix of, possibly transformed, measurement errors. The structure of C for the example 

of transformed states and variables is as follows: 

          (3.6) 

The analysis equation updates the transformed, simulated heads (and transformed log10 (α)) 

accounting for the observations: 
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         (3.7) 

where . It should be noticed that it is also possible to transform only the heads or 

only log10 (α) or none of the two. In the latter case the updating equation reduces to the standard 

EnKF-method for joint updating of states and parameters. 

5. Back transformation if transformation was done at step 3. The updated heads (and log10 (α)) are 

back transformed after data assimilation using the inverse anamorphosis functions. For this step, the 

original anamorphosis functions are used but now in general interpolation/extrapolation is needed. 

After finishing this step, the algorithm returns to step 2.  

3.3 Synthetic experiments 

3.3.1 Model setup 

We carried out numerical experiments for a simplified synthetic three-dimensional river-aquifer 

model with a domain size of 500m × 250m × 10m, see Figure 3.1. The model is discretized into 

125,000 grid cells at a spatial resolution of 10m × 10m × 0.1m. For two reasons a high vertical model 

resolution was chosen. The first reason is the improved representation of vertical variations in 

saturation. The second reason is the improvement of numerical stability. The simulation period of 

one year is discretized into 365 time steps. A river is conceptualized into eight lines of river nodes 

(408 nodes totally), which are situated in the top layer of the domain and are in fact nodes which 

represent the riverbed-aquifer interface, connected to the river. The river nodes are situated in the 

middle of the simulation domain. We assume that the aquifer is homogeneous and only the river bed 

is spatially heterogeneous. The aquifer has a log-transformed hydraulic conductivity of -3 log10 m/s. 

The initial river stage at the western boundary is 410m and decreases to the eastern boundary with a 

slope of 0.01. The model forcing data for this synthetic model are transient river stages calibrated 

from real world discharge data of river Sihl which are taken from Kurtz et al. (2014). See Figure 3.2 (a) 
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for further details. Otherwise, both western and eastern boundaries are impermeable. Northern and 

southern boundaries are assigned prescribed heads with a yearly cycle whose values are given by a 

phase shifted sine function with an amplitude of 1m (see Figure 3.2 (b)). Along the northern and 

southern boundaries, time dependent fixed heads are spatially homogeneous. A model spin-up of 50 

days, using average hydrologic conditions, is made for both the reference runs and all other 

ensemble runs so that model states and parameters are in dynamic equilibrium and the values for 

the initial states are meaningful. The final simulated heads from the spin-up period were used as 

initial heads for the forward model run. This model set-up results in infiltration of river water into the 

aquifer in the western part of the model domain during most of the simulation period, whereas the 

opposite occurs most of the time in the eastern part of the simulation domain. Partially saturated 

conditions below the riverbed prevail in the eastern part of the domain. At 30 observation points 

piezometric head is monitored (ten measurements directly below the riverbed, for the uppermost 

model layer and others north and south of the river, also for the uppermost model layer) and no 

observations are available for constraining parameters (K and α). See also Figure 3.1 for the position 

of the measurement locations. Figure 3.2 provides a summary of the model dynamics and boundary 

conditions for both the reference runs and data assimilation runs. The temporal pattern of river stage 

variation is the same for each river node, but the absolute values of the river stage vary across the 

river nodes. Hydraulic parameters according to van Genuchten were employed for characterizing 

flow under unsaturated conditions, using three different parameter combinations as provided by the 

software SPRING (for further details of the parameter values see Kurtz et al., 2013).  
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Figure 3.1: Setup of the synthetic 3D model including the observation points and the nodes which are located 

below the river (in blue). Node number 460 is also indicated as a reference for Figure 3.2. 

 

 

Figure 3.2: Model dynamics and boundary conditions: (a) temporal evolution of river stages at node=460; (b) 

temporal evolution of fixed heads along northern and southern boundaries. 

3.3.2 Multiple reference runs 

For the synthetic experiment in total ten different reference fields of riverbed hydraulic 

conductivities were defined. The performance of different prior geostatistical models (see section 

3.3.3) was evaluated for each of the ten reference fields. Ten reference fields were generated instead 

of one reference field because results can be quite influenced by the specific features generated in 

the reference field (e.g., Schöniger et al., 2012).  

(a) (b) 
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Figure 3.3: The training image used for the generation of the ten non-multi-Gaussian reference fields with 

channels. 

For the generation of the ten non-multi-Gaussian reference fields with channels, a training image is 

generated by SGeMS (Remy et al., 2009), which reflects the channelized structures, see Figure 3.3. 

The training image is composed of two different facies, and the fraction of highly permeable facies 

(in red) is set to 0.4. In the training image, the channels correspond to sand and the background 

represents low permeable materials like clay. The direct sampling method (Mariethoz et al., 2010) is 

used as a multiple-point geostatistical simulation technique to generate the patterns for the non-

multi-Gaussian references with channels. In order to complete the generation of the non-multi-

Gaussian reference fields, the two facies were independently populated with log transformed 

leakage coefficient values generated by sequential Gaussian simulation using the GCOSIM3D code 

(Gómez-Hernández and Journel, 1993). Table 3.1 gives the geostatistical parameters for generating 

the multi-Gaussian patterns within each of the facies of the non-multi-Gaussian models. A spherical 

variogram model was adopted in all cases. The mean log10 (α) of the riverbed channels was three 

orders of magnitude larger than the little permeable parts of the riverbed.  
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Table 3.1: Variogram parameters used to generate stochastic realizations of log10 (α) for each of the two facies 

in the non-multi-Gaussian reference fields with channels. Background represents the material between the 

highly permeable channels/ellipsoidal structures. The same parameters were used to generate stochastic 

realizations for the non-multi-Gaussian model with channels and the non-multi-Gaussian model with ellipsoidal 

structures. The geostatistical parameters for creating stochastic realizations for the multi-Gaussian model are 

also given. 

Facies Variogram type Mean (log10(m/s)) Range (m)* Sill(log10(m/s))  

Channel /ellipsoidal Spherical  -2.0 100 0.5 

Background Spherical -5.0 100 0.5 

multi-Gaussian Spherical -3.8 100 2.7 

*: in all directions (x, y and z). 

The resulting reference log10 (α) fields are shown in Figure 3.4. Each reference field shows a 

pronounced bimodality with distributed connected channels (one example of the histograms for 

these reference fields is given in Figure 3.5). Forward model runs are made for the ten reference 

fields for a simulation period of 365 days and the calculated heads serve to collect synthetic hydraulic 

head observations at 30 observation points. These synthetic data are assimilated on a daily basis in 

the data assimilation experiments. Piezometric head measurements are unbiased with standard 

deviation of 0.05m. No (riverbed) hydraulic conductivity data are available as direct data in the 

experiments. 

3.3.3 Three geostatistical models for generation of riverbed heterogeneities 

Three different a priori geostatistical models (used in data assimilation with EnKF) were used to 

investigate the role of patterns of riverbed heterogeneities: 

(i) Non-multi-Gaussian distributed riverbed properties with connected channels (same geostatistical 

model as reference).  

(ii) Non-multi-Gaussian distributed riverbed properties with the same bimodal distribution of log10 (α) 

as in (i), but with ellipsoidal instead of channelized structures.  

(iii) multi-Gaussian distributed riverbed properties.  
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Notice that the only difference between (i) and (ii) is the spatial organization of the riverbed 

hydraulic conductivities, the main difference being the spatial continuity, which is much higher for 

the channelized structures than for the ellipsoidal structures.  

 

 

Figure 3.4: (a) The ten reference facies distributions and (b) the ten associated reference distributions of log10 

(α). 

Table 3.1 provides also the basic statistics used to generate the stochastic realizations for each of the 

geostatistical models. Figure 3.5 shows the log-conductivity histograms for the three geostatistical 

models. 

 

 

 

(a) (b) 
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Figure 3.5: Histograms of log10 (α) calculated over all river nodes for the non-multi-Gaussian model with 

channels (a), the multi-Gaussian model (b), and the non-multi-Gaussian model without channels (c). An 

example of a histogram for a true reference field (Reference field number 1) is shown as (d). 

 Stochastic realizations for the two non-multi-Gaussian models are generated with help of two 

training images created by SGeMS (Remy et al., 2009). The training image for the non-multi-Gaussian 

model with channels is the same as detailed in section 3.3.2, and the training image for the non-

multi-Gaussian model with ellipsoidal structures is shown in Figure 3.6. This last training image is 

composed of two different facies, again with a proportion of 0.4 for the highly permeable facies to 

make the two training images comparable for geostatistical simulation. The direct sampling method 

(Mariethoz et al., 2010) is also used to generate facies distributed patterns for the two non-multi-

Gaussian models.  

Stochastic realizations for the two non-multi-Gaussian models are completed by populating the two 

facies independently with log transformed leakage coefficient values. These leakage values are 

generated by sequential Gaussian simulation using the GCOSIM3D code (Gómez-Hernández and 

(a) (b) 

(c) (d) 
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Journel, 1993), see Figure 3.6. Table 3.1 gives the geostatistical parameters for generating the multi-

Gaussian patterns within each of the facies of the non-multi-Gaussian models. 

 

 

 

 

 

Figure 3.6: Training images used to generate an ensemble of log10 (α) realizations for non-multi-Gaussian 

models with ellipsoidal structures (a). The training image is squared and deviates from the rectangular riverbed 

as the training image serves as a database for geological structures, from which samples are taken. An example 

is provided of a stochastic realization generated from the training image with channelized structures. First, a 

binary pattern of facies is generated with the direct sampling method (b). Second, within each facies multi-

Gaussian distributed values are generated with GCOSIM3d (c). 

 

 

 

Figure 3.7: Examples of stochastic realizations of log10 (α) drawn from the non-multi-Gaussian model with 

channels (a), the multi-Gaussian model (b) and the non-multi-Gaussian model without channels (c). 

The multi-Gaussian stochastic realizations of log10 (α) are generated using GCOSIM3D with the same 

arithmetic mean and variance as for the non-multi-Gaussian models. Figure 3.7 provides examples of 

generated stochastic realizations of Krb fields, which are later used as initial ensembles of log10 (α). 

Table 3.1 gives the geostatistical parameters used for defining the multi-Gaussian random model. 

(b) 

(c) 

(b) (a) 

(c) 

(a) 
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The variance of the riverbed log10 (α) for the multi-Gaussian case was selected in order to get a 

variance which is similar to the overall variance of the non-multi-Gaussian case.  

3.3.4 Data assimilation experiments 

Simulations were performed with 200 stochastic realizations of leakage coefficients for eight 

scenarios and for each of the ten reference fields. The number of stochastic realizations was limited 

to 200 given restrictions on CPU-time. The stochastic realizations generated according to the three 

geostatistical models are the starting point for conditioning to hydraulic head data with help of data 

assimilation methods. Piezometric heads and leakage coefficients are updated with assimilation of 

piezometric heads. A damping factor a of 0.1 (Section 3.2.2) is used in the EnKF/NS-EnKF scheme. For 

comparison purpose, unconditional (open loop) simulations are performed with exactly the same 

model settings.  

Table 3.2: Definition of the eight simulation scenarios (open loop and five different data assimilation scenarios).   

Assumption  Scenarios Update h Update α Transform h Transform α 

non-multi-Gaussian 

(channel) 
 

1: open loop × × × × 

2: hl √ √ × × 

3: hl_hl √ √ √ √ 

non-multi-Gaussian 

(ellipsoidal) 

4: ellip_open loop × × × × 

5: ellip_hl √ √ × × 

6: ellip_hl_hl √ √ √ √ 

multi-Gaussian 

 

 7:multi_open loop × × × × 

 8: multi_hl √ √ × × 

√: yes. ×: no. 

A detailed description of different scenarios is given in Table 3.2. As indicated before, three different 

geostatistical models were evaluated and for each of these models open loop simulations were 

performed (scenarios 1, 4 and 7). For each of the geostatistical models also joint updating of 

hydraulic heads and leakage coefficients with EnKF was evaluated (scenarios 2, 5 and 8). In addition, 
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for the non-multi-Gaussian models this updating was also evaluated with NS-EnKF (instead of EnKF), 

these are the scenarios 3 and 6.     

3.3.5 Performance assessment  

Performance evaluation measure is the root mean square error (RMSE) of model states (simulated 

heads), model parameters (log10 (α)) and leakage fluxes (Q) to quantify the difference between model 

predictions and reference values:  

       (3.8) 

where Nr is the number of realizations, Nt is the number of time steps, Nnodes is the total number of 

model nodes over the complete domain, the superscripts sim and ref refer to the model predictions 

at a certain time step before data assimilation and the reference values at the same time step, 

respectively. We calculated RMSE also for individual time steps: 

       (3.9) 

RMSE measures how close model predictions are to the true value over the complete model domain. 

We also calculated the relative error for evaluation, as it expresses the improvement compared to 

the open loop simulation. 

                     (3.10) 

3.4 Results and discussion 

The different scenarios described previously were analyzed. The errors for simulated heads, updated 

log10 (α) and estimated leakage fluxes calculated according to these different scenarios (Table 3.2) 

averaged over ten references are summarized in Table 3.3.  
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Table 3.3: Performance measures (standardized, relative errors) for the different scenarios averaged over ten 

references. 

simulation scenarios RMSEallnodes(h) RMSE(α) RMSE(Q) 

1: open loop 1.00 1.00 1.00 

2: hl 0.73 0.91 0.79 

3: hl_hl 0.72 0.93 0.84 

4: ellip_openloop 1.00 1.00 1.00 

5: ellip_hl 0.62 0.90 0.82 

6: ellip_hl_hl 0.60 0.92 0.85 

7: multi_openloop 1.00 1.00 1.00 

8: multi_hl 0.71 0.95 0.91 

 

3.4.1 Influence of river bed patterns 

This subsection centers on the impact of adopting a wrong geostatistical model for the spatial 

distribution of riverbed hydraulic conductivities and results are compared with the case that the 

correct model assumption was used. In particular, it is investigated whether the specific spatial 

pattern of log10 (α) matters; non-multi-Gaussian simulations with connected channels and 

disconnected ellipsoidal clusters are compared.  

First, results are compared for a non-multi-Gaussian model exhibiting channels, a non-multi-Gaussian 

model with the same bimodal histogram but without channels and a multi-Gaussian model. The 

comparison is centered here on the case hydraulic head data are used to update model states and 

log10 (α), with EnKF (scenarios 2, 5 and 8 in Table 3.3). Errors for these three scenarios (in terms of 

RMSE) are smaller than for open loop simulations (scenario 1). For example, the relative 

improvement for RMSE (h) evaluated over all nodes was 27% and 29% for the multi-Gaussian and the 

channelized scenarios, respectively and even 38% for the non-multi-Gaussian ellipsoidal scenario. 

Updated log10 (α) and leakage fluxes show less improvement, especially for the multi-Gaussian 

assumption. The characterization of log10(α) (results for leakage fluxes in brackets) in terms of RMSE 

improved 5% (9%) for multi-Gaussian fields, 10% (18%) for non-multi-Gaussian fields without 
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channels and 9% (21%) for non-multi-Gaussian with channels. In general, from Table 3.3 it can be 

observed that for non-multi-Gaussian fields with channels the characterization of leakage coefficients 

and fluxes improves more with data assimilation than for the other geostatistical models which used 

the wrong model assumption. However, the differences between the two non-multi-Gaussian 

models are only small and probably not significant. 

The temporal evolution of RMSE for simulated heads for different scenarios is shown in Figure 3.8 (a). 

At the beginning of the simulation period, we cannot observe a pronounced benefit from data 

assimilation. However, after 100 days EnKF improves the simulation results compared to the open 

loop run and the non-multi-Gaussian model with channels performs better than the multi-Gaussian 

model and the non-multi-Gaussian model with ellipsoidal structures, for this specific reference. In 

general, data assimilation results in an improved characterization of hydraulic heads compared to the 

open loop run, but the differences are not very large. To analyze the ability of characterization of 

riverbed hydraulic conductivities, the temporal evolution of RMSE for updated log10 (α) is shown in 

Figure 3.8 (b). Figure 3.8 (b) illustrates that a non-multi-Gaussian model with channels outperforms 

the other geostatistical models.  

 

 

Figure 3.8: Temporal evolution of RMSE for (a) simulated heads (b) and updated log10 (α) evaluated over all 

model/river nodes and all realizations after each time step (for reference 1). Displayed are the RMSE for the 

open loop run and scenarios with different patterns for riverbed hydraulic conductivities, conditioned on 

hydraulic head data with EnKF. 

(a) (b) 
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Figure 3.9 displays the final updated ensemble mean log10 (α) fields for the scenarios 2, 5 and 8. After 

one year of assimilation, the updated log10 (α) field for the case with channels captures the basic 

structures of the reference field, although the absolute magnitude for the leakage values differs from 

the reference. For the multi-Gaussian case the updated riverbed patterns are similar to the initial 

distribution, and hardly recover the basic patterns of the reference field from the measurement data.  

 

 

Figure 3.9:  The reference log10 (α) field together with final updated log10 (α) fields (ensemble mean) after 365 

time steps with EnKF for the three simulation scenarios: (a) hl: non-multi-Gaussian model with channels; (b) 

multi_hl: multi-Gaussian model; (c) ellip_hl: non-multi-Gaussian model without channels and (d): Reference 

field number 1. 

Although EnKF improves the characterization of Krb for the non-multi-Gaussian conditions, none of 

them could preserve the bimodal histogram. 

Figure 3.10 shows the boxplot of RMSE of piezometric heads, updated log10 (α) and leakage fluxes, 

calculated over ten reference fields and for different scenarios.  Root mean square errors are lower 

after data assimilation (compared to open loop simulations). 

The comparison of the performance of the three geostatistical models reveals that best results are 

obtained with a non-multi-Gaussian model with channels and the non-multi-Gaussian model with 

ellipsoidal structures. It is not surprising that the non-multi-Gaussian model with channels performs 

best, as all ten reference fields were also drawn from this geostatistical model.  Again, it is more 

remarkable that the other non-multi-Gaussian model performs similar, pointing to the fact that the 

statistical distribution of leakage coefficients matters, but not so much the spatial pattern of it. If – 

(a) (b) 

(c) (d) 
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erroneously – a multi-Gaussian model is assumed for log10 (α), results are worse, especially for 

characterization of leakage coefficients and to a lesser extent also for flux characterization. However, 

the characterization of fluxes is not so much affected as typically is found in groundwater studies 

(e.g., Gómez-Hernández and Wen, 1998; Zinn and Harvey, 2003). For example, synthetic experiments 

on groundwater flow and transport of solutes in groundwater revealed that breakthrough of 

contaminants can be much faster in time when channels are present, compared to the multi-

Gaussian case (e.g., Wen and Gómez-Hernández, 1998). In addition, it was found that inverse 

modelling with an erroneous multi-Gaussian assumption for a non-multi-Gaussian aquifer is not able 

to delineate channels or improve transport predictions significantly, stressing the importance of the 

correct adoption of the geostatistical model for the aquifer (Kerrou et al., 2008). This might indicate 

that non-multi-Gaussian riverbed patterns matter less for flow characterization than non-multi-

Gaussian aquifer patterns. This is most probably related to the vertical water fluxes through the 

riverbed, so that horizontally oriented channels have less influence on the flow, whereas in aquifers 

flow is predominantly horizontal and controlled by channels. 

It was assumed in this study that geostatistical parameters which describe spatial heterogeneity of 

riverbed hydraulic conductivities within the facies are perfectly known. In reality these parameters 

are (very) uncertain as well. It is expected that this assumption has not a major impact on the 

outcomes of this study. For the case that a multi-Gaussian assumption was adopted, assuming 

correlation structures which deviate strongly from the non-multi-Gaussian reference, the 

performance was not much worse than for the case with the correct, non-multi-Gaussian assumption. 

It is expected that a minor mistake in the correlation structure within facies would have a smaller 

impact. For the same reasons, it is expected that a mistake in the training image would also have a 

more limited impact in this study. Uncertainty of the training image was not studied in this paper, but 

first studies have been published where uncertainty of the training image was considered (e.g., 

Khodabakhshi and Jafarpour, 2013). 
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Figure 3.10: Boxplot over ten references for (a) simulated heads, (b) updated log10 (α) and (c) estimated leakage 

fluxes over all model (river) nodes, all realizations and all time steps for scenarios starting with different Krb 

patterns. 

3.4.2 Performance of NS-EnKF (EnKF versus NS-EnKF) 

Results presented in section 3.4.1 were generated by data assimilation using the classical Ensemble 

Kalman Filter. EnKF is suboptimal for non-multi-Gaussian distributions and therefore NS-EnKF was 

tested as an alternative data assimilation procedure. The results obtained with EnKF (section 3.4.1) 

showed that the bimodal distribution of log10 (α) could not be captured even although some of the 

simulations with EnKF started from a bimodal distribution.  

Normal score transformation of both hydraulic heads and log10 (α) was done in the simulation 

scenarios 3 and 6, which will be compared with the simulation scenarios 2 and 5. For hydraulic head 

characterization, it is indeed found that NS-EnKF gives better results than classical EnKF, with a 1% - 2% 

(a) (b) 

(c) 
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additional reduction of RMSE (see Table 3.3). However, the characterization of leakage coefficients 

and leakage fluxes slightly worsens with NS-EnKF (compared to classical EnKF).  

 

 

 

 

Figure 3.11: Histograms of final updated log10 (α) for different scenarios, displayed are values for all river nodes 

and all stochastic realizations: (a) scenario hl: non-multi-Gaussian model with channels, updated with EnKF; (b) 

scenario hl_hl: non-multi-Gaussian model with channels, updated with NS-EnKF; (c) scenario ellip_hl: non-

multi-Gaussian model without channels, updated with EnKF; (d) scenario ellip_hl_hl: non-multi-Gaussian model 

without channels, updated with NS-EnKF. 

Figures 3.11 and 3.12 show the histograms and updated leakage coefficient fields, respectively. 

These figures illustrate that the transformation of log10 (α) allows preserving the shape of the original 

histogram. Additionally, the updated log10 (α) fields without channels (but assuming non-multi-

Gaussian statistics) represent more realistic riverbed patterns after calibration with NS-EnKF 

(compared to EnKF). These results indicate that NS-EnKF is able to preserve the initial Krb patterns. 

However, these patterns apparently do not yield an improved estimation of the leakage fluxes and 

leakage coefficients.  

(a) (b) 

(c) (d) 
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The boxplots in Figure 3.13 show the statistics over ten references which illustrate that both for the 

non-multi-Gaussian model with channels and the non-multi-Gaussian model without channels, NS-

EnKF is not able to outperform EnKF. There might be multiple reasons for these results. First, leakage 

coefficients and leakage fluxes can only be improved more than for classical EnKF if the piezometric 

head data are able to provide more information about log10 (α) than in the standard case. However, 

the sensitivity of head data for identifying channels is not too high. The results for section 3.4.1 

already illustrated that the difference between a multi-Gaussian and non-multi-Gaussian prior model 

in terms of reproduction of leakage coefficients and leakage fluxes was small. This is illustrative for a 

limited sensitivity to identify channels. A limitation might be that calculations are very CPU-intensive 

and therefore limited to 200 stochastic realizations. Especially for NS-EnKF it is important to use a 

high number of stochastic realizations to determine the anamorphosis function and therefore results 

for NS-EnKF could be affected by sampling errors induced by the relatively small number of 

stochastic realizations. However, a test for simulations with 500 realizations gave similar results as 

for 200 stochastic realizations.  

 

 

Figure 3.12: The reference log10 (α) field together with final updated log10 (α) fields (ensemble mean) for 

different scenarios: (a) scenario hl: non-multi-Gaussian model with channels, updated with EnKF; (b) scenario 

hl_hl: non-multi-Gaussian model with channels, updated with NS-EnKF; (c) scenario ellip_hl: non-multi-

Gaussian model without channels, updated with EnKF; (d) scenario ellip_hl_hl: non-multi-Gaussian model 

without channels, updated with NS-EnKF and (e) reference field number 1. 

(a) (b) 

(c) (d) 

(e) 
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Figure 3.13: Boxplot over ten references for (a) simulated heads, (b) updated log10 (α) and (c) estimated leakage 

fluxes over all model (river) nodes, all realizations and all time steps for different scenarios updated with EnKF 

(hl and ellip_hl) or NS-EnKF (hl_hl and ellip_hl_hl). 

3.5 Summary and conclusions 

This synthetic study investigated for a riverbed displaying non-multi-Gaussian structures like 

channels the impact of the adopted geostatistical model for the inverse characterization (with the 

ensemble Kalman Filter (EnKF)) of model states, riverbed properties and river-aquifer exchange 

fluxes. For aquifers the correct characterization of channels has an important impact on flow and 

transport predictions. In this study it is found that the reproduction of channels by multiple point 

geostatistical methods results in a better characterization of states, parameters and fluxes than a 

multi-Gaussian model, but differences are very small compared to a non-multi-Gaussian model 

without channels. This can most probably be explained by the predominant vertical flow through the 

riverbeds, and the expected horizontal orientation of layers and channels. The conclusion is that non-

(a) (b) 

(c) 
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multi-Gaussian riverbed properties have less influence on flow behavior than non-multi-Gaussian 

hydraulic conductivity distributions in aquifers. We have reached this conclusion using a model that 

only simulates vertical exchange fluxes between the river and the aquifer. The majority of numerical 

models (e.g. MODFLOW) are based on a conductance approach, and our analysis suggests that non-

multi-Gaussian structures do not improve the predictive value of a conductance type model. 

However, the question has again to be analyzed in a 3D, fully coupled model for surface water- 

groundwater interaction. Such a complimentary study will provide further insight to what extent 

complexity in the geological structure can improve simulation results for a given model type. It is also 

expected that heat and solute transport simulations are more sensitive to non-multi-Gaussian 

patterns of riverbed hydraulic conductivities than flow simulations alone. This study tested also 

whether the Normal Score ensemble Kalman filter (NS-EnKF) was able to give better inversion results 

than the classical EnKF. This could be expected, as hydraulic heads and leakage coefficients did not 

follow a Gaussian distribution in this study, and the EnKF performs optimally for Gaussian 

distributions only, whereas NS-EnKF can handle better bimodal distributions as present in this case. 

However, the performance of EnKF and NS-EnKF was very similar in this study. This can be related to 

a too limited sensitivity of piezometric heads to identify channels in the riverbed. 
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Chapter 4 The influence of riverbed heterogeneity patterns 

on river-aquifer exchange fluxes under different connection 

regimes using an integrated hydrological model* 

4.1 Introduction 

4.1.1 Background 

Quantifying river-aquifer interactions is important for understanding flow and transport mechanisms 

between rivers and aquifers. It is also important for assessing the impact of climate change on water 

resources (Goderniaux et al., 2009) and balancing human water demands and ecosystem base flow 

maintenance in arid and semi-arid regions (Zhou et al., 2013). An important requirement for the 

estimation of river-aquifer exchange fluxes is a proper representation of riverbed properties, e.g. Krb 

(Brunner et al., 2017). In early studies, riverbeds were often neglected, and if considered they were 

typically strongly simplified and modeled as homogeneous layers (e.g. Fox and Durnford, 2003). 

However, field measurements and laboratory analysis showed that riverbed properties can be 

different from the properties of the underlying aquifer, and that Krb can vary over several orders of 

magnitude within a single reach (Calver, 2001; Leek et al., 2009). Studies also indicated a large impact 

of riverbed heterogeneity on the prediction of river-aquifer exchange fluxes. It is therefore important 

to assess the impact of riverbed heterogeneities in numerical flow models (Kalbus et al., 2009; Irvine 

et al., 2012; Lackey et al., 2015; Schilling et al., 2017). Irvine et al. (2012) found that a heterogeneous 

riverbed could be replaced by a homogeneous equivalent while maintaining the accuracy of the 

prediction of infiltration fluxes in a losing stream system as long as the hydraulic connectivity 

between river and aquifer is not different between the calibration period and the prediction period. 

                                                             
* adapted from: Tang, Q., Kurtz, W., Schilling, O. S., Brunner, P., Vereecken, H., and Hendricks Franssen, H.-J., 
2017, The influence of riverbed heterogeneity patterns on river-aquifer exchange fluxes under different 
connection regimes: Journal of Hydrology. Under review for Journal of Hydrology.  
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Based on the investigations of Irvine et al. (2012), Schilling et al. (2017) developed an efficient 

method to rapidly assess the potential for unsaturated flow conditions to appear in heterogeneous 

riverbed-heterogeneous aquifer systems using key statistical variables. Lackey et al. (2015) compared 

the estimation of stream depletion using both homogeneous and heterogeneous Krb fields, which 

were varying over two orders of magnitude along the streambed. They found that a homogeneous 

conceptualization of the riverbed properties always led to errors in the estimate.  

In several studies the impact of riverbed heterogeneity was assessed by data assimilation (Hendricks 

Franssen et al., 2011; Kurtz et al., 2012; Kurtz et al., 2013; Kurtz et al., 2014). Hendricks Franssen et al. 

(2011) successfully estimated spatially variable leakage coefficients (together with spatially variable 

Kaq) with data assimilation for the river - groundwater flow system in the upper Limmat valley in 

Switzerland. Kurtz et al. (2013) explored whether high resolution characterization of spatially 

heterogeneous riverbeds was required in a variably saturated groundwater system with strong river-

aquifer interactions and found that it is important to represent at least the basic zones of 

heterogeneity. Kurtz et al. (2014) also implemented a data assimilation scheme for joint assimilation 

of groundwater temperature data and piezometric head data in the Upper Limmat Valley near Zurich 

(Switzerland) and tested cases with heterogeneous riverbeds and found that both model states and 

parameters can be better predicted by updating aquifer and riverbed hydraulic parameters. None of 

those earlier studies accounted for more complicated heterogeneous patterns of Krb, such as 

multimodal non-Gaussian distributions, which are expected to occur in practice (Cheng et al., 2011). 

To fill this gap, we investigated in a previous study the impact of different simple and complex 

patterns of heterogeneous Krb on the characterization of hydraulic heads, riverbed properties, and 

river-aquifer exchange fluxes (Tang et al., 2015).  

4.1.2 Limitation of previous studies 

In order to estimate river-aquifer exchange fluxes correctly, it is important that the selected 

hydrological model calculates these in a physically based manner. The majority of numerical 
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groundwater models (e.g. MODFLOW (McDonald and Harbaugh, 1988), SPRING (Delta h 

Ingenieugesellschaft mbH, 2006)) are based on a conductance approach. The disadvantage of 

conductance approaches is that the non-linear unsaturated flow behavior underneath the river is 

usually not taken into account, and lateral flow within the riverbed is also neglected (Brunner et al., 

2010). Our previous study (Tang et al., 2015) used the model SPRING and was based on this kind of 

approach. Fully-integrated physically-based surface-subsurface models are increasingly applied to 

provide a physically more consistent description of surface water-groundwater exchange processes. 

Examples are provided by VanderKwaak and Sudicky (2000) (InHM), Panday and Huyakorn (2004) 

(MODHMS), Kollet and Maxwell (2006) (Parflow), Camporese et al. (2010) (CATHY), Therrien et al. 

(2010) and Brunner and Simmons (2012) (HGS). Such integrated hydrological models can better 

capture the dynamics of surface water-groundwater interactions but require additional input 

parameters (e.g. parameters for simulation of surface water flow) compared to more simplified 

approaches, which simulate only the groundwater flow component.  

Only few data assimilation studies were carried out with fully coupled surface water-groundwater 

models. Examples are provided by Camporese et al. (2009) and Rasmussen et al. (2015), amongst 

others. Both groundwater head and stream discharge observations were used for assimilation in 

those works and Rasmussen et al. (2015) also considered the estimation of spatially homogeneous 

leakage coefficients. Kurtz et al. (2016) developed a data assimilation scheme for the terrestrial 

system modelling platform TerrSysMP (Shrestha et al., 2014). It allows joint updating of both model 

states and parameters of the CLM (land surface) and Parflow (subsurface including overland flow) 

modules. However, until now no studies updated heterogeneous riverbeds in fully coupled surface 

water-groundwater models.  

4.1.3 Contribution of this paper 

Tang et al. (2015) used a conductance based model to conclude that complex non-multi-Gaussian 

riverbed patterns did not result in significantly different river-aquifer exchange fluxes compared to 
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multi-Gaussian riverbed patterns (with the same overall mean Krb and variance as the non-multi-

Gaussian riverbed). In this work, we combine now the use of fully coupled surface water-

groundwater models with the evaluation of the impact of complex heterogeneous patterns of Krb on 

river-aquifer exchange fluxes. The heterogeneous patterns of Krb are estimated by the ensemble 

Kalman filter (Evensen, 1994), a data assimilation approach.  This will provide further insights to what 

extent representing the geological complexity of a riverbed is required for the characterization of 

states and fluxes under both fully saturated and variably saturated conditions underneath the 

riverbed in the river-aquifer system.  

The experiments consist of two different cases. In one case, saturated conditions for the riverbed and 

the underlying aquifer prevail and full hydraulic connection between the river and aquifer is thus 

maintained. In the second case, variably saturated conditions occur within and underneath the 

riverbed and as outlined above, due to the unsaturated conditions the estimation problem becomes 

non-linear and it is expected that it will be more challenging to infer river-aquifer exchanges fluxes 

and model states and parameters. The role of different Krb patterns for this configuration is therefore 

much unclearer and results are expected to show more variation. The analysis was made for four 

different geostatistical models of Krb including non-multi-Gaussian fields with and without 

channelized structures, multi-Gaussian fields and homogeneous fields.  

4.2 Theory and methods 

4.2.1 Coupled surface-subsurface flow simulations with HydroGeoSphere 

If river-aquifer interactions are modelled by the conductance approach, river stages are needed as a 

predefined input and are conceptualized as fixed head dependent boundary conditions in the river-

aquifer model (Knapton, 2009). The river-aquifer exchange fluxes are then calculated as a linear 

function of the gradient of hydraulic heads between groundwater and surface water (Brunner et al., 

2010). However, if the groundwater level is lowered, an unsaturated zone can develop and once the 
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river and the aquifer are hydraulically disconnected exchange fluxes are no longer changing linearly 

as a function of head differences between the surface water body and the aquifer (Brunner et al., 

2009). Compared to conductance-based models, a fully-coupled surface water-subsurface flow 

model allows a dynamic, two-way coupling when accounting for the river-aquifer interaction. 

Exchange fluxes are then calculated in a fully coupled manner. HydroGeoSphere (HGS) (Therrien et 

al., 2010; Brunner and Simmons, 2012; Aquanty Inc, 2016) is such a fully coupled, physically-based 

model for groundwater and surface water flow simulations and used for the work presented in this 

paper. 

In HGS, variably saturated subsurface flow is simulated with the three-dimensional Richards equation 

and surface water flow is solved using a one- or two-dimensional approximation of the Saint Venant 

equations. The surface flow and subsurface flow equations are solved simultaneously for each time 

step at the interface nodes in a joint equation system, and complete water balance and solute 

budgets are calculated. HGS has successfully been used to simulate the interactions between 

groundwater and surface water (Goderniaux et al., 2009; Partington et al., 2013) , the interactions 

between surface water-, groundwater and vegetation (e.g. Banks et al., 2011; Schilling et al., 2014), 

micro-topographic wetland runoff (Frei et al., 2010) and also large scale solute transport (Blessent et 

al., 2011).  

In HGS, two approaches can be used for flow coupling between subsurface and surface domains. In 

the first approach, the top layer of nodes represents both surface and subsurface domains, assuming 

that the same heads are assigned for the surface and the uppermost subsurface nodes. The surface 

and subsurface flow equations are solved simultaneously for those surface-subsurface interface 

nodes. The second approach uses Darcy’s law for flow relations between the surface nodes and the 

first layer of subsurface nodes, with an assumption that they are separated by a thin layer where the 

leakage occurs. A first-order exchange coefficient is introduced and exchange fluxes are calculated 

linearly dependent on the pressure difference between the surface and subsurface domain. A 

detailed comparison between the two approaches is given in Liggett et al. (2012). In both of these 
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approaches subsurface and surface flow equations are fully coupled. In this work, the second 

approach (called the dual node approach) is selected to represent the relation between surface 

domain and subsurface domain.  

While the dual node approach follows a similar conceptualization as the leakage principle in 

conductance based models, the representation of exchange fluxes between river and aquifer in HGS 

in the unsaturated zone is more realistic because it is limited by the relative permeability. Moreover, 

if the coupling length lexch of the dual node approach is set to a very small value, the effects of the 

dual node approach on simulation results are minimal and results are comparable to the common 

node approach, while providing a higher numerical stability compared to the common node 

approach (Liggett et al., 2012).  

4.2.2 Data assimilation with ensemble Kalman filter 

The data assimilation procedure of this study can be described by the following steps: 

(1) For each realization of Krb generated according to section 4.3.3, the model states at the current 

time step are forecasted using the solution from the previous time step as initial condition with 

HGS: 

            (4.1) 

where  is the augmented state vector containing the model states (here the simulated piezometric 

heads) and parameters (here the log-transformed Krb): 

            (4.2) 

where h is the simulated heads and . M the numerical flow model (HGS in this study), 

t is the time step counter and i the realization number. 
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(2) After every time step of the simulation, EnKF is applied to update both model states and 

parameters according to: 

                     (4.3) 

where is the updated augmented state vector, is the forecasted state vector, is a 

damping factor varying between 0 and 1, H is the measurement operator matrix mapping the 

simulated states to the observation locations, and G is the Kalman gain which weights the relative 

importance of the model forecast and the observations. 

According to Burgers et al. (1998), measurements need to be perturbed to account for the 

measurement uncertainty in order to guarantee the correct estimation of the posterior variance of 

the updated ensemble with EnKF, which can be written as : 

            (4.4) 

where  is the vector of perturbed measurements, is a vector with the original measurements 

at time step t, and is a vector with normally distributed measurement errors with zero mean and 

specified variance accounting for the measurement uncertainty.  

The Kalman gain G, which determines the weight assigned to the model simulation on the one hand 

and the measurements on the other hand, is given by 

          (4.5) 

where R is the measurement error covariance matrix, and C is the covariance matrix with covariances 

between states, between states and parameters, and between parameters according to: 

           (4.6) 
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Once the updating step (step (2)) is finished, the updated states and parameters are used as inputs 

for the simulation of the next time step, the algorithm returns to step (1), and the procedure is 

repeated until the end of the simulation. The coupling of EnKF and HGS is described in  Kurtz et al. 

(2017). 

4.3 Synthetic flow modeling experiments	

4.3.1 Overview 

To investigate the importance of Krb patterns for river-aquifer interactions, simulations with complex, 

non-multi-Gaussian reference Krb fields are compared to simulations with multiple geostatistical 

models for Krb. The model simulation period is two years in total. Data assimilation experiments were 

performed in the first year, and the second year served as a verification period. Before the data 

assimilation runs, a spin up run of one year with the same transient model forcings as for the data 

assimilation experiments was carried out. The modeling experiments consist of the following steps: 

1) Ten reference Krb fields are generated, and the corresponding river-aquifer interactions are 

simulated during two years with HGS. The first year is the assimilation period and the second year 

the verification period. The Krb fields, the simulated hydraulic heads and the simulated (net) 

exchange fluxes serve as the ‘truth’.  

2) A large number of initial Krb fields are generated for each of the different geostatistical models, 

using geostatistical simulation algorithms. 

3) Data assimilation experiments were carried out for a one year period for each of the four 

geostatistical models, using the initial Krb fields as input. The updated Krb fields and the simulated 

heads and fluxes are subsequently evaluated against the reference fields.  

4) The estimated fields of Krb parameters were used as input for verification experiments for the 

following one year period with different hydrological conditions and without data assimilation, for 
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each of the four geostatistical models. The simulated heads and fluxes are then evaluated against the 

reference fields.  

4.3.2 Three dimensional river-aquifer model setup 

4.3.2.1 Model domain  

In this study, a three-dimensional synthetic river-aquifer model is simulated. The subsurface domain 

(i.e., the aquifer) has a spatial extent of 500 m × 250 m × 10.5 m, while the surface domain (i.e., the 

river) is defined as a channel centered on top of the aquifer, with spatial dimensions of 500 m × 80 m 

× 0.5 m. Both the surface and subsurface domain are discretized by 3D-blocks of size 10 m x 10 m x 

0.1 m resulting in a grid of 131,250 cells in total. The numerical model is outlined in Figure 4.1. The 

model is inclined along the x-direction with a slope of 0.01 m/m. The riverbed (including the 

riverbanks) is conceptualized by a rectangular cross-section with eight rows of elements. This 

constrains the surface water to flow within the channel.   

 

Figure 4.1: The synthetic 3-D river-aquifer model domain with locations of synthetic hydraulic head 

observations (red solid points).  

4.3.2.2 Twin cases set up: saturated vs. variably saturated 

The importance of Krb patterns for river-aquifer interactions is evaluated for two cases using the 

same model domain but different states of connection between the river and the aquifer. The 

‘saturated’ case indicates that in the simulated model, riverbed and the subsurface below the 
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riverbed are fully saturated and the river and the aquifer are hydraulically connected. Alternatively, 

the ‘variably saturated’ case refers to the model which is partially unsaturated under the river and 

the system is either fully hydraulically disconnected (i.e., an unsaturated zone is present under the 

entire streambed) or in a transitional state with partly saturated and unsaturated conditions. This 

variably saturated case is obtained by adjusting the ratio of K in the aquifer and riverbed according to 

Brunner et al. (2009), where, in order for an unsaturated zone to occur, the following equation needs 

to hold true: 

                        (4.7) 

where hc is the thickness of the riverbed and d is the ponded water depth.  

As an example, the saturation map of the variably saturated case for the reference Krb field no. 6 is 

displayed in Figure 4.2. 

4.3.2.3 Model parameterization 

The aquifer and riverbed are conceptualized as gravel-sand material; van Genuchten parameters for 

aquifer and riverbed are α=3.48 m-1 and n=1.75, according to Li et al. (2008). Specific storage is set to 

10-4 m-1 and porosity is 0.25. The coupling length is set to a very small value of 10-3 m for calculating 

the exchange fluxes between the surface and the subsurface domain. Like in the study of Tang et al. 

(2015), the aquifer is homogeneous with a hydraulic conductivity value of 10-3 m/s and only riverbeds 

are heterogeneous. For the saturated flow case the geometrical mean value of Krb is equal to -6 log10 

m/s. Under this condition, the aquifer underneath the riverbed is saturated and the relationship 

between exchange fluxes and head difference from surface water to groundwater is approximately 

linear. For the variably saturated case, the geometrical mean value of Krb was lowered by two 

magnitudes. 
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Figure 4.2: 2-D view of the log10 (Krb) map (top row) and connectivity conditions under the river (bottom row) 

for the reference Krb field No. 6 of the variably saturated case. Displayed is the initial condition of the 

assimilation period. The log10 (Krb) field is colored according to the magnitude of Krb, and the saturated regions 

underneath the river are shown in blue. 

4.3.2.4 Boundary conditions 

Surface water flow is generated through transient fixed head boundary conditions defined for the 

upstream nodes along the river cross-section (x = 0, y = 80 to 160). A critical depth boundary 

condition is defined at the downstream part (x = 500, y= 80 to 160). In the subsurface domain, 

transient prescribed head boundary conditions are defined for the two planes y = 0 and y = 250. No 

flow boundaries are applied to the aquifer nodes along x = 0 and x = 500. Figure 4.3 summarizes the 

boundary conditions used for the saturated and the variably saturated cases over the complete 

simulation period. For each of the two cases, the same transient boundary conditions are used for 

the spin-up runs and the assimilation experiments. For the saturated case, in the assimilation period 

the transient fixed heads defining the inflow at the river inlet are taken from Kurtz et al. (2014). 

Transient prescribed heads for the subsurface domain are set between z = 404.5 m and 405.5 m. In 

the verification period, lower prescribed head boundary values are used for the subsurface domain, 
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but otherwise the setup is similar to the assimilation period. For the variably saturated case, in the 

assimilation period, river stages are the same as for the saturated case and prescribed heads in the 

subsurface domain are 5 m lower than for the saturated case. The verification period for the variably 

saturated case has the same subsurface prescribed heads as the assimilation period but river stages 

have much larger fluctuations than in the assimilation period. 

 

Figure 4.3: Fixed head boundary conditions for the subsurface domain for the saturated case (red round dots; 

abbr. sat_fixed heads) and for the variably saturated case (purple long dash dots; abbr. unsat_fixed heads). 

Transient river stages for the upstream river nodes are shown for the saturated case with blue round dots 

(abbr. sat_river stages), and for the variably saturated case with green long dash dots (abbr. unsat_river stages).  

4.3.3 Hydraulic conductivity fields 

4.3.3.1 Reference riverbed hydraulic conductivity 

A non-multi-Gaussian Krb field with channelized structures was used as the reference Krb. For this 

purpose, a training image reflecting channelized structures is generated using the software SGeMS 

(Remy et al., 2009), see Figure 4.4 (a). The training image consists of two facies: channels occupy a 

proportion of 0.4 of the whole image, and the rest symbolizes background material. The two facies 

represent two materials with high and low permeability (e.g. sand and clay). In order to avoid 

random effects in the results of statistical analysis, which might be induced if only one particular 
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reference field is used, ten different K reference fields are generated. The ten realizations of facies 

distributions are generated using the direct sampling method (Mariethoz et al., 2010). Within each 

facies, log10(Krb) values are generated independently by sequential multi-Gaussian simulation using 

GCOSIM3D (Gómez-Hernández and Journel, 1993). The corresponding geostatistical parameters are 

provided in Table 4.1. 

 

Figure 4.4: Two training images for the generation of stochastic realizations for non-multi-Gaussian K fields: (a) 

with channelized structures and (b) with elliptic structures. The left one is also used for generating ten 

reference Krb fields. 

 

Table 4.1: Geostatistical parameters for the two facies in the non-multi-Gaussian distributed K fields and 

geostatistical parameters for the multi-Gaussian fields.  

Facies Variogram type Mean (log10(m/s)) Range (m) Sill (log10(m/s))  

channel/ellipse Spherical  -4.3 100 0.5 

background Spherical -7.3 100 0.5 

multi-Gaussian Spherical -6.1 100 2.7 

 

4.3.3.2 Initial riverbed hydraulic conductivity used for the data assimilation experiments 

As outlined in section 4.3.1, four different geostatistical models were used to generate initial Krb 

fields for the assimilation experiments: (1) non-multi-Gaussian distributed fields with channelized 

structures, (2) non-multi-Gaussian fields with elliptic structures, (3) multi-Gaussian fields and (4) 
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homogeneous fields. As for the reference Krb fields, non-multi-Gaussian fields are simulated with the 

direct sampling method. The multi-Gaussian fields are generated by sequential multi-Gaussian 

simulation. 

The two types of non-multi-Gaussian heterogeneous Krb fields are generated as follows: 

1) Two training images (for each of the two types of non-multi-Gaussian fields independently, 

see Figure 4.4) are generated by SGeMS. The training image for the non-multi-Gaussian 

model with channelized structures is the same as used for the generation of the ten 

reference fields. Each of the two training images is composed of two different facies with a 

proportion of 0.4 for channels/ellipses. 

2) In total 200 stochastic realizations of the spatial distribution of facies are generated with help 

of the direct sampling method, using the training images from step 1. 

3) Each facies is independently populated with multi-Gaussian distributed log10 (K) values, using 

the sequential Gaussian simulation technique. The geostatistical parameters used for 

defining the variograms for each facies are given in Table 4.1.  

For the multi-Gaussian heterogeneous Krb fields, a similar mean and variance of riverbed log10 (Krb) 

are used as for the non-multi-Gaussian random fields by sequential multi-Gaussian simulation. The 

mean and variance for the multi-Gaussian random fields is calculated from the mean and variance of 

each of the two facies of the non-multi-Gaussian fields, using the geometric mean. A more detailed 

description of the generation technique of non-multi-Gaussian and multi-Gaussian riverbed fields is 

given in Tang et al. (2015). 

The stochastic realizations of log10(Krb) values for the equivalent homogeneous case are generated by 

taking the geometric mean of each of the 200 random fields for the non-multi-Gaussian case with 

channelized structures. Figure 4.5 shows examples of stochastic realizations of Krb for each of the 

four geostatistical models. Figure 4.6 displays the histograms of Krb, calculated over all 200 stochastic 
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realizations for each of the three geostatistical models with heterogeneous K. The figure illustrates 

that the histogram is bimodal for the two non-multi-Gaussian cases, but Gaussian for the multi-

Gaussian case.  

 

Figure 4.5: Examples of stochastic realizations of initial Krb fields: (a) non-multi-Gaussian field with channelized 

structures; (b) non-multi-Gaussian field with elliptic structures; (c) multi-Gaussian field; (d) homogeneous field. 

4.3.4 Modelling strategy  

4.3.4.1 Spin-up run 

The spin-up process includes two parts: first a quasi-steady state simulation that runs for 10,000 days 

with constant boundary conditions corresponding to the forcings of the first time step of the 

assimilation period, followed by an additional one year exit spin-up run with the 200 stochastic 

realizations of Krb fields, using the same transient boundary conditions as for the assimilation 

experiments. The one year quasi-steady state simulation departs from dry initial conditions. The 

following one year exit spin-up runs are made for each of the four geostatistical models and two 

cases (fully saturated and variably saturated) and result in different initial heads for each of the 

different realizations of Krb. These differing initial conditions are necessary to reflect the different 

interactions resulting from the different K fields, and allow generating an adequate ensemble spread. 

In summary, the spin-up runs provide the initial hydraulic heads needed for the data assimilation 

experiments. 
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Figure 4.6: Histograms of Krb for three geostatistical models, calculated over all the 200 realizations: (a) non-

multi-Gaussian fields with channelized structures; (b) non-multi-Gaussian fields with elliptic structures; (c) 

multi-Gaussian fields. 

4.3.4.2 Observations obtained from the reference runs 

For the data assimilation experiments, 30 piezometric head observations are taken from the sixth 

layer (saturated case) or bottom layer (variably saturated case) and used as virtual observations. 10 

of the 30 measurements are beneath the riverbed and the other 20 in the aquifer north and south of 

the river. These virtual observations are taken from each of the ten reference runs. A measurement 

error of 5 cm is imposed.  

4.3.4.3 Data assimilation experiments 

Data assimilation experiments are performed for each of the four geostatistical models, using in total 

200 stochastic realizations per model. The damping factor for the parameter update is set to 0.1. In 

the data assimilation experiments, hydraulic heads and Krb are updated daily by assimilating the 30 
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virtual piezometric head data. Open loop simulations, without data assimilation, are also performed 

for comparison purposes. Table 4.2 summarizes the assimilation scenarios.  

Table 4.2: Simulation scenarios for data assimilation experiments. The symbol ‘√’ represents the update of 

h/log10 (K) is done, while ‘×’ represents not.  

Riverbed patterns Scenarios Update h Update log10(Krb) 

non-multi-Gaussian (channel) 
channel_open loop × × 

channel_hK �� ��

non-multi-Gaussian (elliptic) 
ellip_open loop × × 

ellip_hK �� ��

multi-Gaussian 
multi_open loop × × 

multi_hK �� ��

homogeneous 
homo_open loop × × 

homo_hK �� ��

 

4.3.4.4 Verification experiments 

The estimated hydraulic head and Krb fields at the end of the assimilation period are used as input 

fields for the verification experiments. This is done for both the data assimilation runs with update of 

heads and log10 (Krb) and for the open loop simulations, and for each of the four geostatistical models 

of Krb. In the one year verification period the parameter fields are not modified and no data 

assimilation is done. 

4.3.4.5 Performance measures 

The Root Mean Square Error (RMSE) is used to evaluate the characterization of model states, 

riverbed hydraulic conductivities and river-aquifer exchange fluxes. RMSE is evaluated separately 

both for the data assimilation as well as the verification periods. The RMSE for hydraulic heads is 
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calculated for all model nodes (including both surface nodes and subsurface nodes) over all 

simulation time steps: 

        (4.8) 

where nt is the number of simulation time steps, nnodes_all the total number of model nodes, the 

overbar indicates ensemble average, h hydraulic heads, the superscript f indicates model simulations 

and the superscript ref the reference field.  

The RMSE for the updated Krb is calculated over all riverbed elements at the final simulation time 

step: 

      (4.9) 

where is the updated ensemble mean value of log10(Krb) for the j
th element of the 

riverbed at the final time step of the assimilation period and nriver_ele is the number of river elements.  

The RMSE for exchange fluxes is calculated over all the river nodes for all time steps: 

                    (4.10) 

                       (4.11) 

where nnodes_river is the number of the river nodes. 

For an individual time step, the RMSE for hydraulic heads and net exchange fluxes is calculated 

according to: 
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                   (4.12) 

                      (4.13) 

4.4 Results  

4.4.1 Saturated case 

4.4.1.1 Assimilation period 

Compared to the open loop simulations, data assimilation improved the characterization of model 

states and parameters, especially when the models included heterogeneous riverbed structures. 

Since the simulation of heads and exchange fluxes is influenced by model dynamics, average RMSE 

(h,t) and RMSE (Q,t) calculated over ten references are shown in Figure 4.7 (a, c). Displayed are 

results for the four geostatistical models. From Figure 4.7 (a) we see that only at the beginning of the 

data assimilation period RMSE (h,t) is clearly higher for ellip_hK and homo_hK compared to the other 

two models, but later RMSE shows a substantial reduction. After a simulation period of 50 days, 

channel_hK and ellip_hK have very similar errors, with lower RMSE than for multi_hK and homo_hK. 

Within the assimilation period, the maximum difference in RMSE (h,t) among the four geostatistical 

models is 7 cm.  

The boxplot of RMSE (Krb) calculated over ten reference models is displayed in Figure 4.8 (a). The final 

updated ensemble mean riverbed log10 (Krb) field for the four different geostatistical models is shown 

for one of the reference fields in Figure 4.9 (a - d). The non-multi-Gaussian models with channelized 

structures resemble the true Krb field best, while, non-surprisingly, the homogeneous model deviates 

most. Nevertheless, the differences between the two non-multi-Gaussian models are small. 
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Figure 4.7: Average RMSE (h,t) for (a) the saturated case and (b) the variably saturated case; average RMSE (Q,t) 

for (c) the saturated case and (d) the variably saturated case. These RMSEs were calculated over ten references 

and for the four geostatistical models, the saturated case and assimilation period. 

The large differences in the characterization of Krb patterns between the non-multi-Gaussian models 

and the other models also manifest themselves in terms of exchange fluxes: Compared to the non-

multi-Gaussian model with channelized structures, the average RMSE (Q) over ten references is 61.3% 

higher for the non-multi-Gaussian model with elliptic structures and 32.6% higher for the multi-

Gaussian model. The homogeneous model performs considerably worse than the others, which 

resulted in the highest errors: the RMSE (Q) is 271.3% higher than for the non-multi-Gaussian model 

with channelized structures. 
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Figure 4.8: Boxplots of RMSE (Krb) calculated over ten references (Krb is evaluated at the end of the assimilation 

period) for the four geostatistical models for (a) the saturated case and (b) the variably saturated case. 

 

Figure 4.9: Ensemble mean riverbed log10 (Krb) fields at the end of the assimilation period for the saturated case 

(a - d) and the variably saturated case (e - h). Shown are the reference (a, e) and different geostatistical models: 

(b, f) channel_hK; (c, g) ellip_hK; (d, h) multi_hK. 

4.4.1.2 Verification experiment 

The results of the verification experiments are evaluated in terms of RMSE (h) and RMSE (Q), shown 

in Table 4.3. Values for the ten individual reference fields and their average are provided. The non-

multi-Gaussian model with channelized structures results in the smallest RMSE (h) in four out of ten 

cases, the non-multi-Gaussian model with elliptic structures in five out of ten, and the multi-Gaussian 

model in one. The non-multi-Gaussian models thus clearly outperform the other models. The 
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average RMSE (h) is also lower for the heterogeneous models (2.9 - 3.2 cm) than for the 

homogeneous model (6 cm). Among the three heterogeneous models, the differences are minor. 

Slightly smaller RMSE (h) are found for two non-multi-Gaussian models (average RMSE (h) 2.9 - 3.0 

cm) than the multi-Gaussian model (average RMSE (h) 3.2 cm).  

Table 4.3: RMSE (h) (cm) and RMSE (Q) (m3/d) for the verification period for the saturated case. Shown are 

results for the ten reference fields and the four geostatistical models: the non-multi-Gaussian model with 

channelized structures (channel), the non-multi-Gaussian model with elliptic structures (ellip), the multi-

Gaussian model (multi) and the homogeneous model (homo). 

 
channel ellip multi homo 

 

RMSE 
(h) 

RMSE 
(Q) 

RMSE 
(h) 

RMSE 
(Q) 

RMSE 
(h) 

RMSE 
(Q) 

RMSE 
(h) 

RMSE 
(Q) 

Ref_1 3.16 2.07 2.72 2.00 3.24 1.86 4.75 3.19 
Ref_2 2.78 1.60 3.06 1.97 3.05 2.22 3.97 0.95 
Ref_3 2.65 2.55 2.91 3.11 2.97 3.19 7.97 5.87 
Ref_4 3.38 2.55 3.10 2.63 4.71 1.69 7.88 4.53 
Ref_5 2.94 3.61 2.68 3.86 2.65 3.77 5.02 3.57 
Ref_6 3.20 0.95 3.26 0.69 3.32 0.55 7.80 2.72 
Ref_7 2.79 0.32 2.73 0.25 2.73 0.39 4.65 3.04 
Ref_8 3.46 1.04 3.19 1.34 3.37 0.65 4.60 0.60 
Ref_9 2.67 1.69 2.96 1.53 3.43 0.70 8.83 5.33 

Ref_10 2.93 0.60 2.60 0.47 2.87 8.45 4.47 1.88 
Average 3.00 1.70 2.92 1.79 3.23 2.35 6.00 3.17 

 

Also in terms of characterization of river-aquifer exchange fluxes the heterogeneous models 

outperform the homogeneous models. The average RMSE (Q) is 3.17 m3/d for the homogeneous 

models compared to 1.7 – 2.3 m3/d for the heterogeneous models; the RMSE (Q) is about 86.5% 

larger for the homogeneous model than for the non-multi-Gaussian model with channelized 

structures. Among the three heterogeneous models, like for the RMSE (h), similar performance is 

observed for the two non-multi-Gaussian models (average RMSE (Q) between 1.7 - 1.8 m3/d), while 

the RMSE (Q) for the multi-Gaussian model is 41.2% larger than the non-multi-Gaussian model with 

channelized structures. 
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4.4.2 Variably saturated case 

4.4.2.1 Assimilation period 

 

Figure 4.10: Maps with exchange fluxes for the variably saturated case at the end of the assimilation period. 

Shown are the reference (a) and results for the different geostatistical models: (b) channel_hK; (c) ellip_hK; (d) 

multi_hK; (e) homo_hK. Negative fluxes indicate infiltration from the river into the aquifer. 

The average RMSE (h,t) and RMSE (Q,t) calculated over all ten references are shown in Figure 4.7 (b, 

d). The errors are larger in the beginning of the assimilation period and vary strongly between the 

different models due to the different initial conditions. However, towards the end of the assimilation 

period, the RMSE (h,t) and RMSE (Q,t) for the four models become smaller and more similar. Within 

the first 100 days, data assimilation allows reducing the RMSE (h,t) by more than 80% for all four 

geostatistical models of Krb, especially for the homogeneous model which produces the smallest 

RMSE (h) at the end of the assimilation period. Figure 4.8 (b) shows the boxplot of RMSE (Krb) for the 

updated Krb fields. In six out of ten cases the non-multi-Gaussian case with channelized structures 

shows the best characterization of Krb in terms of RMSE (Krb). Figure 4.9 (e - h) indicates that only the 

non-multi-Gaussian model with channelized structures could capture some of the channels present 

in the reference Krb fields; the multi-Gaussian model deviates strongly from that reference pattern. 

Overall, heterogeneous fields allow better capturing the spatial distribution of exchange fluxes, 

although their exact spatial position is often not correct. This is illustrated in Figure 4.10. The 

relatively good performance of the homogeneous model in reproducing exchange fluxes compared 
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to the heterogeneous models is related to very large flux errors for a few grid cells in the 

heterogeneous cases, which have an important influence on the performance statistics, even though 

we focus on the net fluxes.  

4.4.2.2 Verification experiment 

The verification experiment with variably saturated conditions was carried out with stronger 

variations in river stage than during the assimilation phase. The RMSE (h) and RMSE (Q) scores of the 

verification period are provided in Table 4.4. As in the assimilation period, the RMSE (h) for the three 

heterogeneous models are smaller than for the homogeneous model. In total, the non-multi-

Gaussian model with channelized structures results in the smallest RMSE (h) for three out of ten 

reference cases, the non-multi-Gaussian model with elliptic structures six out of ten, and the multi-

Gaussian model in one out of ten cases. The two non-multi-Gaussian models result in the lowest 

mean RMSE (h). The average RMSE (h) for the non-multi-Gaussian model with channelized structures 

is 18.2 cm and for the non-multi-Gaussian model with elliptic structures it is 17.1 cm. The multi-

Gaussian model shows only a slightly larger mean RMSE (h) (19.6 cm). The homogeneous model 

leads to a RMSE (h) of 40.4 cm, which is 121% higher than for the non-multi-Gaussian model with 

channelized structures.  

The two non-multi-Gaussian models result in the best characterization of net exchange fluxes: in two 

out of ten cases the non-multi-Gaussian model with channelized structures outperforms all other 

geostatistical models, and in eight out of ten cases the non-multi-Gaussian model with elliptic 

structures. The average RMSE (Q) of the non-multi-Gaussian model with channelized structures and 

the non-multi-Gaussian model with elliptic structures are 3.45 m3/d and 2.49 m3/d, respectively. 

Although the homogeneous riverbed has clearly the largest RMSE (h) and RMSE (K), for the 

characterization of net exchange fluxes the homogeneous model performs only slightly worse (RMSE 

(Q) = 5.72 m3/d) compared to the multi-Gaussian model (5.22 m3/d). The mean RMSE (Q) for the 

homogeneous model is 65.8% larger than for the non-multi-Gaussian model with channelized 

structures.  
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Table 4.4: RMSE (h) (cm) and RMSE (Q) (m3/d) for the verification period for the variably saturated case. Shown 

are results for the ten reference fields and the four geostatistical models.  

 
channel Ellip multi homo 

 

RMSE 
(h) 

RMSE 
(Q) 

RMSE 
(h) 

RMSE 
(Q) 

RMSE 
(h) 

RMSE 
(Q) 

RMSE 
(h) 

RMSE 
(Q) 

Ref_1 14.48 2.45 13.67 0.75 19.54 6.08 42.92 7.16 
Ref_2 18.69 3.31 20.87 2.02 21.73 5.40 44.85 2.86 
Ref_3 18.12 2.69 19.05 1.52 18.39 3.40 59.61 14.01 
Ref_4 18.90 4.28 17.72 2.11 17.62 3.78 37.96 2.49 
Ref_5 21.08 4.87 17.64 2.86 21.44 6.92 32.21 4.05 
Ref_6 21.53 3.55 18.66 4.46 22.84 6.38 41.22 4.04 
Ref_7 14.37 5.26 15.50 6.38 17.14 7.14 41.21 8.36 
Ref_8 18.58 2.72 14.28 2.23 19.24 3.76 50.48 4.36 
Ref_9 15.83 3.17 15.65 0.79 17.67 4.43 23.55 3.94 

Ref_10 20.81 2.19 17.45 1.79 20.28 4.86 29.94 5.91 
Average 18.24 3.45 17.05 2.49 19.59 5.22 40.40 5.72 

 

4.4.3 Correlation analysis 

In a final step, linear correlations were calculated between different observations and simulated 

heads for all riverbed nodes, all references and all simulation scenarios, with the aim to find out 

whether head observations in the assimilation process provided necessary and sufficient information 

or not. The percentage of grid cells for which the absolute value of the linear correlation coefficient 

was >0.5 and >0.2 was calculated, for three different time steps (after 50, 180 and 365 days), all four 

different geostatistical models and the two different saturation cases. The percentage of grid cells 

represents an average value calculated over all reference fields. Table 4.5 summarizes these scores. 

The correlations for the homogeneous model are much stronger than for the heterogeneous models 

for all the displayed time steps and for both saturated and variably saturated cases. For the 

homogeneous model 99.6% - 100% of the grid cells show a correlation coefficient >0.2, while for the 

heterogeneous model this percentage is between 8.5% and 32.5%. 
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Table 4.5: The percentage of grid cells for which the absolute value of the linear correlation coefficient 

was >0.5 and >0.2, for three different time steps, the four different geostatistical models and the two different 

considered cases. The percentage of grid cells is an average value calculated over all reference fields.  

model Krb type 
t=50 days t=180 days t=365 days 

>0.5 >0.2 >0.5 >0.2 >0.5 >0.2 

Saturated case 

channel 2.60% 21.66% 2.44% 21.39% 1.60% 15.04% 

ellip 2.40% 18.43% 2.45% 19.88% 1.42% 10.31% 

multi 1.32% 8.47% 1.15% 10.43% 1.13% 8.16% 

homo 99.01% 99.56% 99.78% 100.00% 98.69% 99.78% 

Variably 

saturated case 

channel 0.87% 15.91% 1.06% 16.51% 1.16% 16.43% 

ellip 0.85% 11.53% 1.09% 19.06% 2.77% 32.53% 

multi 0.59% 9.64% 0.81% 9.91% 2.11% 24.90% 

homo 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

 

The high correlation between the observations and the simulated hydraulic heads for the 

homogeneous model likely relates to the fact that the different observations all spatially coincide 

with the one homogeneous Krb, while for heterogeneous riverbeds observations provide more local 

information to the surrounding grid elements, and not directly relate to the entire riverbed. This 

highlights that for homogeneous riverbeds measurement data can be more informative to update 

the single (and unknown) Krb. As in the homogeneous case the representation of the riverbed is 

strongly simplified, the measurement data allow the identification of this unknown Krb value. 

4.5 Discussion 

The results of this study reveal that for all four geostatistical models and both the saturated and 

variably saturated cases, data assimilation improved the characterization of hydraulic heads. In terms 

of characterizing Krb, data assimilation provided an improvement only when heterogeneous models 

of Krb were used. Finally, in most simulation scenarios the estimation of net river-aquifer exchange 

fluxes was improved through data assimilation. At the end of the assimilation period of the saturated 
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case, the two non-multi-Gaussian models performed clearly better than the other two geostatistical 

models, while in the variably saturated case the four different geostatistical models showed similar 

performance.  

One important question is whether an erroneous heterogeneous/homogeneous approximation of a 

heterogeneous, non-multi-Gaussian riverbed with channelized structures allows characterizing the 

river-aquifer exchange fluxes adequately. Performance is evaluated based on the results in the 

verification period. Comparison is first made between an erroneous heterogeneous non-multi-

Gaussian model (in this work the non-multi-Gaussian model with elliptic structures) and a correct 

heterogeneous non-multi-Gaussian model (here the non-multi-Gaussian model with channelized 

structures): Results provided in sections 4.4.1.2 and 4.4.2.2 illustrate that both for the saturated and 

the variably saturated case differences between the two non-multi-Gaussian models were minor, 

especially for the variably saturated case, as the erroneous heterogeneous non-multi-Gaussian 

model outperformed even the correct heterogeneous non-multi-Gaussian model. Next, the 

performance of the multi-Gaussian model and the (correct) non-multi-Gaussian model with 

channelized structures is compared: For the saturated case the average RMSE (Q) of the multi-

Gaussian model is slightly larger, although five out of ten times it outperforms the correct non-multi-

Gaussian model. For the variably saturated case the multi-Gaussian model performs clearly worse 

than the (correct) non-multi-Gaussian model with channelized structures. 

These comparisons highlight that for the saturated, hydraulically connected river-aquifer systems, 

the error in the characterization of net river-aquifer exchange fluxes does not significantly differ 

between a non-multi-Gaussian model with channelized structures, a non-multi-Gaussian model with 

elliptic structures and a multi-Gaussian model. This is a similar conclusion as for the river-aquifer 

model analyzed by Tang et al. (2015), where the pattern of the heterogeneous Krb had little influence 

on the characterization of river-aquifer exchange fluxes. However, for variably saturated river-aquifer 

systems which are not hydraulically connected everywhere, the error in reproducing net river-aquifer 

exchange fluxes is smaller for the non-multi-Gaussian models than for a multi-Gaussian model. This 
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implies that knowing only the mean and the variance of the Krb contains not sufficient information for 

estimating the net river-aquifer exchange fluxes, and knowing the histogram of the Krb provides 

valuable additional information. On the other hand, the small differences between the two non-

multi-Gaussian models imply that information on exact patterns and connectivity is not important for 

improving the estimation of river-aquifer exchange fluxes. It is possible that the estimation of solute 

fluxes between river and aquifer would be more affected by the Krb pattern. 

The homogeneous model results in larger errors than the correct non-multi-Gaussian model in terms 

of average RMSE (Q), although the homogeneous model outperforms the correct model three out of 

ten times in both the saturated and the variably saturated cases. It is somewhat surprising that for 

the variably saturated case the characterization of net exchange fluxes with the homogeneous model 

was not much worse than for the heterogeneous models, given that both hydraulic heads and Krb 

were significantly better characterized using the heterogeneous models. It was also expected that 

the heterogeneous models would outperform the homogeneous model stronger for the variably 

saturated case than for the saturated case (Irvine et al., 2012). Different reasons can be postulated 

for the relatively good performance of the homogeneous model (albeit with larger RMSE values than 

for the heterogeneous non-multi-Gaussian models):  

1) Although a homogeneous approximation of a heterogeneous riverbed induces errors, in 

this study the heterogeneous approximation also induced errors, which is related to a 

lack of information from hydraulic head observations (both in terms of the limited 

information content of hydraulic heads towards reproducing fluxes, as well as in terms of 

the limited number of available head observations). This is one limitation of this study. In 

the study of Irvine et al. (2012) the homogeneous approximation of the heterogeneous 

riverbed was made with help of the measured net river-aquifer exchange flux over the 

studied stream reach. This is the best information possible over the studied stream reach. 

In this work, both for the homogeneous and the heterogeneous approximations of the 

true heterogeneous riverbed, only a limited amount of hydraulic head data is available. 
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This is a key difference between the problem considered and the upscaling problem 

analyzed by Irvine et al. (2012).  

2) The absolute correlations between measured hydraulic heads and modelled riverbed 

hydraulic heads were larger for the homogeneous case than for the heterogeneous cases, 

illustrating that for the homogeneous case measurements were more informative. 

Although for both the homogeneous approximation of the heterogeneous riverbed and 

the characterization of the heterogeneous riverbed only a limited number of point 

measurements was used, those point measurements were more informative to estimate 

a single unknown homogeneous value than to estimate spatially heterogeneous fields.  

3) For the variably saturated case, for which the homogeneous approximation should be 

more problematic according to the findings of Irvine et al. (2012), for a large part of the 

riverbed the saturation condition (i.e., saturated or unsaturated) did not change over 

time. This implies that the sketched saturation condition in Figure 4.2 was not very 

dynamic over time, and under such conditions the homogeneous approximation is less 

problematic than for highly dynamic variably saturated conditions. However, this is 

controlled by both the dynamic model forcings and the ratio of Krb and Kaq. This is another 

limitation of this study. 

Altogether points (1)-(3) show that for approximating a heterogeneous riverbed with a homogeneous 

value it is important to distinguish between the upscaling problem as outlined by Irvine et al. (2012) 

and the inverse problem, where typically a limited number of measurement data is available (as was 

the case in this study). Moreover, in this study the aquifer is simplified and assumed to be known and 

homogeneous over the whole simulation period. The homogeneity assumption affects the river-

aquifer exchange fluxes and simplifies the parameter estimation problem. In reality, a more complex, 

heterogeneous aquifer is common. Therefore, further study should focus on the role of a spatially 

heterogeneous aquifer on the estimation of riverbed properties with different geostatistical models 
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for those riverbed properties. In addition, further evaluation is planned for a real-world case study to 

inversely estimate riverbed properties by data assimilation. This will provide further insight into 

understanding the role of complex heterogeneous patterns within a more dynamic and uncertain 

river-aquifer system.  

4.6 Conclusions 

We compared four geostatistical models of riverbed hydraulic conductivity (Krb) for simulating river-

aquifer interactions with the integrated surface water-groundwater model HydroGeoSphere. 

HydroGeoSphere calculates a fully coupled feedback between surface water and groundwater, and 

river-aquifer exchange fluxes are better approximated when an unsaturated zone is present between 

surface water and aquifer. In this work, the reference (“true”) Krb field was drawn from a non-multi-

Gaussian distribution with channelized structures. Four different geostatistical models were 

compared: a homogeneous model, a multi-Gaussian model, a non-multi-Gaussian model with elliptic 

structures and a non-multi-Gaussian model with channelized structures. 200 stochastic realizations 

of Krb fields were generated for each of the four geostatistical models, and served as input parameter 

files for model simulations and data assimilation experiments. Model simulations were done for (1) a 

setup with saturated conditions in and below the riverbed and (2) another setup with variably 

saturated conditions. Piezometric head measurement data were used for updating model states 

(heads) and parameters (Krb) with the ensemble Kalman filter. The performance was evaluated in 

terms of its ability to characterize hydraulic heads, Krb and net river-aquifer exchange fluxes. From 

the analysis above, we conclude: 

1) Assimilation of hydraulic head data improved the characterization of hydraulic heads, Krb and 

river-aquifer exchange fluxes for all four geostatistical models, even though in three out of 

four cases the prior geostatistical models did not coincide with the reference geostatistical 

model.  
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2) In the case of a fully saturated river-aquifer system, both the non-multi-Gaussian and the 

multi-Gaussian geostatistical models outperform the homogeneous model in terms of 

characterization of model states, parameters and exchange fluxes. However, the differences 

in performance between the three heterogeneous models are minor, indicating that the 

spatial pattern of Krb has, in most cases, only a limited influence on river-aquifer exchange 

fluxes, similar to what has been shown for a one-way coupled model by Tang et al. (2015). 

3) In the case of variably saturated conditions in and under the riverbed, conclusions are similar 

for the characterization of model states and parameters. However, concerning the 

characterization of net river-aquifer exchange fluxes results are slightly different. The 

performance of a multi-Gaussian Krb field and a homogeneous equivalent Krb are clearly worse 

than of the two non-multi-Gaussian models. The two different non-multi-Gaussian models, 

however, performed similarly. It can thus be concluded that for a variably saturated river-

aquifer system the exact spatial pattern of the heterogeneous riverbed hydraulic 

conductivities is not important for characterizing river-aquifer exchange fluxes, but besides 

mean and variance also histogram information of the Krb is valuable for selecting an 

appropriate geostatistical model. However, this might not be true for simulating solute 

transport can be stronger affected by connectivity and complex spatial patterns of Krb. 
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Chapter 5 Simulating flood induced riverbed transience with 

physically-based modelling and ensemble Kalman filter* 

5.1 Introduction 

The riverbed plays a key role for modeling hydrological processes and changes, especially concerning 

stream-aquifer interactions. When a riverbed is considered within a hydrological simulation model, 

both riverbed topography and the Krb are critical variables to be quantified. The riverbed topography 

is not only a main control for surface water - groundwater exchange fluxes (Harvey and Bencala, 

1993; Woessner, 2000; Kasahara and Wondzell, 2003; Tonina and Buffington, 2007; Hester and Doyle, 

2008; Cardenas, 2009; Shope et al., 2012; Zhang et al., 2017) but also for numerous biogeochemical 

processes in the hyporheic zone (Boano et al., 2010a; Harvey et al., 2012; Hester et al., 2013; 

Marzadri et al., 2014; Wildhaber et al., 2014). The Krb also plays an important role in the dynamics of 

exchange fluxes and solute transport processes between the river and the surrounding groundwater 

system (e.g., Woessner, 2000; Cardenas et al., 2004; Ryan and Boufadel, 2006; Song et al., 2007; 

Kalbus et al., 2009; Käser et al., 2009; Irvine et al., 2012; Lackey et al., 2015; Miller et al., 2016; Song 

et al., 2016; Schilling et al., 2017b).  

Riverbed topography as well as its texture and materials may change in time and space due to 

erosion and clogging processes at the river-aquifer interface. This will also cause changes in Krb and 

the corresponding surface water - groundwater exchange fluxes (Anderson et al., 1999; Calver, 2001; 

Doppler et al., 2007; Genereux et al., 2008; Leek et al., 2009; Rosenberry and Pitlick, 2009; Boano et 

al., 2010b; Cuthbert et al., 2010; Hatch et al., 2010; Nowinski et al., 2011; Rosenberry, 2011; Sebok et 

al., 2015; Ulrich et al., 2015; Xi et al., 2015; Burnette et al., 2016; Grischek and Bartak, 2016; Wang et 

al., 2017). Both measurements from field and laboratory experiments as well as results from 

                                                             
* adapted from: Tang, Q., Schilling, O. S., Kurtz, W., Brunner, P., Vereecken, H., and Hendricks Franssen, H.-J., 
2018, Simulating flood induced riverbed transience using unmanned aerial vehicles, physically-based 
hydrological modelling and the ensemble Kalman filter. Under review of Water Resources Research. 



Simulating flood induced riverbed transience with physically-based modelling and ensemble Kalman filter
  75 

numerical models provide evidence of this: Nowinski et al. (2011) observed temporally varying Krb on 

a riverbed point bar at a meander scale throughout the period of one year; originally high Krb 

decreased due to the accumulation of fine materials transported by the river. Grischek and Bartak 

(2016) reviewed and documented the temporal variation of the leakage coefficient from 1971 to 

2015 for the Elbe River in Germany. The leakage coefficient is defined as the ratio of Krb to the 

thickness of the clogging layer. The results from the field tests showed that the leakage coefficient 

increased by a factor of 1.3 to 3.3 during the observed period. Ulrich et al. (2015) investigated the 

spatiotemporal variability of riverbed permeability and the mechanisms behind it by monitoring the 

clogging process with different methods at the Russian River near Forestville, California, from May to 

November in 2012. A decrease of permeability was observed from the onset of September due to the 

formation and accumulation of biomass on the riverbed.  

During and after a flood event, scouring and deposition can occur which changes the riverbed 

topography and the Krb by disturbing the sediment and re-sorting the grain size of the materials (e.g., 

Kim et al., 1999; Freer et al., 2002; Birck, 2006; Schubert, 2006; Doppler et al., 2007; Mutiti and Levy, 

2010; Levy et al., 2011; Tu, 2011; Harvey et al., 2012; Simpson and Meixner, 2012). Birck (2006) 

explored the impact of high river stages on scouring of the riverbed and the corresponding changes 

of Krb along the Great Miami River at Charles M. Bolton Water Plant in southwest Ohio, USA. A 

scouring of up to 0.06 m and a total fluctuation of 0.17 m was detected during the flood in January 

2015. However, the contribution of scouring to the variation of overall Krb was minimal. Doppler et al. 

(2007) provided field evidence of temporal varying leakage coefficients playing an important role 

when simulating groundwater flow for the upper Limmat valley in Zürich, Switzerland. The 

groundwater flow model needed to be recalibrated after a flood event, as the infiltration rate from 

the river into the aquifer was increased due to the flood induced erosion and the corresponding 

increase in Krb. Schubert (2006) observed a highly dynamic clogging process and a significant 

temporal variation in the permeability of the clogged layer with rising and lowering water level in the 

lower Rhine region, Germany. Mutiti and Levy (2010) investigated the temporal evolution of Krb 
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during a storm event beginning on June 12, 2005 at Charles M. Bolton Water Plant in southwest Ohio, 

USA. Groundwater flow and heat transport were simulated with the model VS2DHI (Hsieh et al., 

2000). An increase of Krb by almost one magnitude was observed due to the loss of fine materials 

during the scouring process. Simpson and Meixner (2012) used a series of surface and groundwater 

flow models to simulate a synthetic flood event and its effect on Krb and surface - groundwater 

interactions. The total amount of scouring and filling was 12mm and 16mm, respectively; relatively 

small compared to the flood flow rate. The vertical Krb was cumulatively increased by a factor of 14 in 

the beginning 15 hours of the flood event before the deposition started, and reduced afterwards 75% 

due to the generation of thin and low-conductivity layers on top of the riverbed. 

These findings make it evident that it is important to characterize the spatiotemporal variation of Krb 

induced by a flood, as well as the corresponding dynamic influence on the hydraulic states and fluxes 

of the river-aquifer system. Most of the applications mentioned above directly measured the Krb by 

either field or laboratory experiments. However, indirect methods such as inverse modeling can also 

be an efficient approach for estimating Krb. Data assimilation is one possible inverse modeling 

method for this purpose (Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008). Until 

now it has already been successfully applied for estimating Krb in several cases (e.g., Hendricks 

Franssen et al., 2011; Kurtz et al., 2012; Kurtz et al., 2013; Kurtz et al., 2014; Tang et al., 2015). 

Hendricks Franssen et al. (2011) estimated leakage coefficients for a limited number of zones, 

together with Kaq using a 3-D variably saturated groundwater flow model of the Limmat valley, 

Switzerland. The prediction of hydraulic heads was improved if both parameters were updated using 

the ensemble Kalman filter (EnKF). Kurtz et al. (2012) successfully captured the spatial and temporal 

variation of Krb for a synthetic 3-D river-aquifer model with joint updating of piezometer heads and 

Krb by EnKF. Later, the importance of Krb heterogeneity in the Limmat valley river-aquifer system was 

studied by Kurtz et al. (2013). The heterogeneous Krb as well as the piezometric heads can be even 

better estimated when both groundwater temperature data and piezometric heads were assimilated 

(Kurtz et al., 2014). Tang et al. (2015) investigated the impact of different Krb patterns on the 



Simulating flood induced riverbed transience with physically-based modelling and ensemble Kalman filter
  77 

estimation of hydraulic heads, Krb, and river-aquifer exchange fluxes for a synthetic experiment with 

a 3-D conductance based groundwater model. The surface water heads are pre-defined as fixed head 

boundary and exchange fluxes between the river and the aquifer are calculated according to Darcy’s 

law. Using this kind of flow model approach, we found that complex Krb patterns did not have a 

significant influence on the characterization of river-aquifer exchange fluxes. This was further 

explored by Tang et al. (2017) using a physically - based, fully integrated surface water-groundwater 

model able to simulate variably saturated conditions. Under fully saturated conditions, results were 

consistent with those shown in Tang et al. (2015); under variably saturated conditions, however, the 

histogram of Krb provided useful additional information for the characterization of net river-aquifer 

exchange fluxes, suggesting that the pattern of Krb is nevertheless important. 

To the authors’ knowledge, however, until now no studies inversely estimated the spatiotemporal 

variation of a flood induced Krb with the help of hydraulic head measurements combined with 

transient riverbed topography data in an integrated hydrological model. Whether such Krb variations 

during and after a flood event can be reproduced by hydraulic head data is still unknown, and the 

importance of Krb variations for the prediction of hydraulic heads and fluxes between surface water 

and groundwater is also still unknown. Therefore, in this paper we investigate the spatially and 

temporally varying Krb induced by a 300-year flood event and analyze its effect on the prediction of 

hydraulic heads, surface water discharge and river-aquifer exchange fluxes. 

For this purpose, a 3-D river-aquifer model was set up for the site where the flooding occurred 

(Emme valley, Switzerland) using the physically based, fully integrated surface water-groundwater 

model HydroGeoSphere (HGS), and the hydraulic response to the flood event was simulated. Two 

high resolution datasets of riverbed topography, one before and one after the flood event, were 

used to define the riverbed topography in the model. An ensemble of different Kaq and Krb fields was 

generated using sequential Gaussian simulations, and served as input files for the HGS model. Data 

assimilation experiments were carried out using the EnKF. After data assimilation, one year 
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5.2 Materials and methods 

5.2.1 Integrated hydrological model HydroGeoSphere 

HydroGeoSphere (HGS) (Therrien et al., 2010; Brunner and Simmons, 2012; Aquanty Inc, 2016) is a 

physically-based, integrated hydrological model designed for accounting for all components in the 

water cycle. The surface water and groundwater flow equations are solved simultaneously. Surface 

water flow is described by the two-dimensional Saint Venant equation. Groundwater flow is 

implemented by the three-dimensional Richards’ equation. The dual node approach is used for the 

flow coupling between the surface and the subsurface domain. Van Genuchten functions (Van 

Genuchten, 1980) are used to describe the relationship between the hydraulic conductivity of the 

porous medium, the soil water content and pressure.  

HGS has been used for the simulation of many different hydrological systems, e.g. for the 

interactions between groundwater, surface water and vegetation (e.g. Banks et al., 2011; Schilling et 

al., 2014; Ala-aho et al., 2017), for the detection of the sensitivity of catchment scale dynamics to the 

different parameters (Cornelissen et al., 2016), to track catchment scale surface water levels and 

overland flow routing (Ameli and Creed, 2017), to explore the hydrological dynamics of wetlands (Liu 

et al., 2016) and micro-topographic wetland runoff (Frei et al., 2010), as well as for large scale solute 

transport (Blessent et al., 2011). In many instances HGS was calibrated against different types of data 

(e.g. Karan et al., 2014; Schilling et al., 2014; Schilling, 2017) using the automatic inverse code PEST 

(Doherty, 2015). Recently, HGS has been coupled to a sequential data assimilation routine (EnKF-HGS, 

(Kurtz et al., 2017)).  

5.2.2 Ensemble Kalman Filter 

The data assimilation approach used in this study is the ensemble Kalman filter (EnKF) described by 

Evensen (1994). It has first been developed for the estimation of system states and later extended 
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for the estimation of parameters (Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008). 

The following description contains the EnKF algorithm as it is coupled to HGS.  

EnKF consists of three basic equations: the forecast equation, the observation equation and the 

updating equation. Being a Monto-Carlo based inverse modelling method, EnKF uses a (large) 

number of stochastic realizations of model states and parameters to represent the model 

uncertainties. The augmented state vector includes both the model states and model parameters. 

For each stochastic realization, the augmented state vector can be written as: 

            (5.1) 

where is the vector with model states and  the vector of model parameters. The subscript is 

the realization number. In our case, the augmented state vector contains one type of state variable 

(hydraulic head) and one type of model parameter (log-transformed hydraulic conductivity), 

therefore the state vector can be rewritten as: 

            (5.2) 

where h is hydraulic head and . Here K can include Krb, Kaq, or both Krb and Kaq, 

depending on the assimilation scenario.   

The model states at the current time step are predicted from the previous time step using the 

integrated surface-subsurface flow model HGS: 

            (5.3) 

where M is the  forward model and the subscript t represent the time step. 

The observations available at time step t are perturbed according the observation equation: 
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            (5.4) 

where  is the vector of perturbed measurements, is the vector with original measurements at 

time step t, and is the vector with observation errors usually generated from a normally 

distribution with zero mean and standard deviation equal to the measurement error. 

Combining the model prediction with the observations, the state vector is updated according the 

following analysis equation: 

          (5.5) 

where is the augmented state vector containing the updated model states and parameters, 

is the vector with the forecasted states obtained from the dynamic model, a is a damping factor 

varying between 0 and 1, H is the measurement operator matrix mapping the simulated states to the 

observation locations, and G is the Kalman gain which weights the relative importance of the model 

forecast and the observations. The Kalman gain is calculated by: 

          (5.6) 

where R is a diagonal covariance matrix representing the measurement errors at individual 

observation locations, and  C is the covariance matrix of the model states and parameters, given by 

           (5.7) 

Once the updating step is done, the updated model states and parameters will be used as input for 

the forward model for the next computation time step. Each time when observations are available, 

equations 5.4-5.7 are applied. The coupling of HGS and EnKF is described in detail by Kurtz et al. 

(2017). 
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5.2.3 Description of the study site 

The Upper Emmental catchment in the Northern pre-alps of Switzerland is home to one of the largest 

drinking water stations of the Swiss capital Bern (Blau and Muchenberger, 1997; Käser and Hunkeler, 

2016; Schilling et al., 2017a). The Emme River, which is the primary source of recharge for the alluvial 

aquifer of the Upper Emmental, has an average annual discharge of 4.4 m3/s and is characterized by 

highly-dynamic discharge behavior (Käser and Hunkeler, 2016). The drinking water station is situated 

on the valley bottom towards the outlet of the catchment at an elevation of 690 m ASL (Figure 5.1). 

At that location, the topographic gradient is approximately 0.9 % (Käser and Hunkeler, 2016). A total 

rate of 0.4 m3/s of groundwater (GW) is pumped from 8 wells located on a wellfield in the ultimate 

vicinity of the Emme River. The unconfined alluvial aquifer, out of which the GW is pumped, is 

composed of highly permeable quaternary alluvial gravel (~80%) and sand (~20%) with an average 

hydraulic conductivity of around 4 x 10-3 m/s, and is limited below by an impermeable layer of 

freshwater molasses (Würsten, 1991). The average thickness of the aquifer around the drinking 

water station is 25 m (Würsten, 1991). Per well, GW is abstracted from a single depth, which in the 

three upstream wells (wells 1-3) is 10 m and in the five downstream wells (wells 4-8) is 15 m below 

ground (see Figure 5.1). An extensive monitoring network (see Figure 5.1) has been put in place in 

order to manage the drinking water abstraction (Blau and Muchenberger, 1997; Kropf et al., 2014; 

Lapin et al., 2014). Multiple studies have been carried out in order to better characterize and 

quantify the river-aquifer interactions: Figura et al. (2013, 2015) characterized and predicted the 

evolution of GW temperature at the drinking water wellfield based on future climate scenarios, 

indicating an increasing trend. Käser and Hunkeler (2016) used temperature and electrical 

conductivity measurements in the Emme River to show that directly upstream of the wellfield river 

water is mostly infiltrating into the subsurface, whereas due to a narrowing of the aquifer 

downstream of the wellfield GW is exfiltrating back into the stream. Two weirs located in the Emme 

River at the height of the wellfield are also influencing SW-GW interactions, producing locally losing 

conditions upstream and locally gaining conditions downstream of the weirs. Schilling et al. (2017a) 
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carried out a multi-tracer study and found that the GW pumped at the drinking water wellfield 

contains approximately 50% older GW and 50% SW that infiltrated directly upstream of the wellfield. 

They showed that the key parameter controlling the SW-GW interactions of this system, and 

therefore mixing between recently infiltrated SW and older GW in the subsurface, is the permeability 

of the riverbed. Unfortunately, the Krb around the wellfield is very variable and poorly known, but the 

mean is estimated to be approximately two orders of magnitude lower than the Kaq (Schilling et al., 

2017a). Multiple studies show that the pumping rate strongly influences the SW-GW interactions 

around the drinking water wellfield, and this can pose a major threat both to drinking water quality 

as well as to the riparian ecosystem health (Blau and Muchenberger, 1997; Schilling et al., 2017a). 

 

Figure 5.1: Location of the measurement stations of piezometer heads and surface water discharge within the 

study site. 
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5.2.4 Riverbed topography before and after the flood event 

A violent flood with a return period of only 300 years and a peak discharge of 350 m3/s occurred on 

July 24th, 2014, and substantially altered the riverbed topography and probably also changed 

riverbed properties. The riverbed topography was recorded in high resolution both before the flood 

(on February 12th 2014) and after the flood (on March 20th 2015). The riverbed topography was 

obtained with through-water photogrammetry of remotely sensed images taken from different 

angles. The method was reviewed in detail by Feurer et al. (2008).  A high-resolution digital elevation 

model (DEM) of the floodplain was available from Swisstopo (2010). Based on the two riverbed DEMs 

and the floodplain DEM, two DEMs of the study area around the drinking water wellfield, 

representing the topography before and after the flood, were generated (Figure 5.2). 

 

Figure 5.2: Two riverbed topography profiles before (a) and after the flood (b) (Schilling, 2017). The section 

where a lot of change happened is highlighted within the ellipse region. 
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5.3 The 3-D HGS model setup 

5.3.1 Model conceptualization 

5.3.1.1 Model discretization 

The conceptual and numerical models used for this study have been described in detail by Schilling et 

al. (2017a): Vertically, the model is divided into 15 layers, and proportional sub-layering is used: the 

top 5 layers cover each 0.61 %, the following 4 layers each 6.1 %, and the bottom 5 layers each 12 % 

of the total aquifer depth, which results in 0.28 m, 2.8 m and 5.5 m thick layers at the location where 

the aquifer has the largest vertical extent (46 m). Horizontally, the model is discretized by equilateral 

triangles of 17.5 m side length on the floodplain and 8.5 m side length within the Emme River, 

resulting in 10983 elements per layer, i.e. 5645 nodes per slice. The model outline is illustrated in 

Figure 5.1. The automatic time-stepping scheme implemented in HGS was used. 

5.3.1.2 Model parametrization 

The riverbed was conceptualized as a slightly clogged layer within the Emme River boundaries, 

spanning across the 4 topmost model sublayers. An average K value for the riverbed of 2.8 x 10-5 m/s 

was found to best reproduce the observed mixing ratios between older GW and freshly infiltrated 

SW in the wellfield (Schilling et al., 2017a). For the aquifer, a homogeneous value of 2.9 x 10-3 m/s, 

which is about two magnitudes higher than the riverbed, is used to represent the Kaq. These 

homogeneous K values were used as starting points for the generation of spatially distributed K fields 

(described below in the section 5.3.2). The porosity of the aquifer layers was set to 0.15, representing 

a typical value of gravel-sand aquifers (Fetter, 2000; Anderson et al., 2015), and 0.41 for the riverbed 

layers. The unsaturated van Genuchten parameters a and b were set to 3.48 m-1 and 1.75, 

respectively, representing typical values for gravel-sand aquifers according to (Li et al., 2008). The 

residual saturation (Swr) was fixed at 0.05. The coupling length (lexch) between the SW and the GW 
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domain was set to a very small value of 0.001 m, representing an optimal compromise between head 

continuity and numerical stability (see de Rooij (2017)). 

5.3.1.3 Boundary conditions 

The daily changing transient boundary conditions were based on measurement time series 

aggregated to daily values. Precipitation was conceptualized as a second type, specified flux 

boundary condition, and input time series of precipitation were obtained from the nearby weather 

station in Langnau i. E. operated by MeteoSuisse ([lat/long]: 07°48.33' / 46°56.38', elevation [mASL]: 

745). Evapotranspiration was addressed by correcting the precipitation input time series with the 

actual evapotranspiration rate, calculated after Spreafico and Auer (2005), and using solar radiation 

and air temperature measurements of the same weather station as input. The Emme River inflow 

was also conceptualized as a specified flux boundary condition, and discharge input time series were 

obtained from two measurement stations located 5 km upstream of the upstream model boundary. 

The SW outflow boundary was conceptualized as a critical depth boundary condition. On the 

upstream boundary of the model, GW inflow was implemented as a first type, constant head 

boundary condition using measured GW levels from the piezometer located directly on the upstream 

model boundary (A41). To account for mounding due to losing conditions underneath the river in the 

upstream, the hydraulic head underneath the riverbed was fixed 1 m above the hydraulic head 

measured in that piezometer. For the downstream, constant head boundary condition, GW levels 

measured in a piezometer on the downstream model boundary (A3) were used. The lateral model 

boundaries and the bottom of the model were set impermeable. The GW pumps of the drinking 

water station were implemented as single node specified flux boundary conditions at the 

corresponding depth of each well. GW abstraction time series were provided by the water works 

association of the region of Bern (WVRB). 
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5.3.2 Hydraulic conductivity fields 

In this study, spatially heterogeneous Kaq and Krb fields were adopted. As Tang et al. (2017) 

demonstrated, multi-Gaussian distributed K fields provide good results for fully-connected river-

aquifer systems when an integrated hydrological model is used, and non-multi Gaussian K fields are 

not required. We therefore used a multi-Gaussian geostatistical model for the generation of both 

random Krb and Kaq fields. The generated random K fields served as the initial parameter fields for the 

data assimilation experiments. Figure 5.3 shows the initial ensemble mean as well as one stochastic 

realization of the random K fields for both riverbed and aquifer. 

 

Figure 5.3: (a) One stochastic realization of the initial Kaq and Krb field and (b) the ensemble mean of the initial K 

fields, calculated over 128 realizations. 

For the aquifer, 128 stochastic realizations of multi-Gaussian distributed random Kaq fields were 

generated with the sequential Gaussian simulation algorithm in SGeMS (Remy et al., 2009). The 

geostatistical parameters used for generating the variogram are listed in Table 5.1. A spherical 

variogram was selected, with a mean value of -2.53 log10 (m/s) and a sill value of 0.1 log10 (m2/s2). The 

semi-variogram range was set to 150 m which is approximately 10% of the horizontal model domain 

size and which was used in absence of better information on the range parameter. The sequential 

Gaussian simulations were conditioned to two hydraulic conductivity values obtained from pumping 

tests (Würsten, 1991).  

(a) (b) 
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Table 5.1: Geostatistical parameters of the variogram used for generating the Kaq and Krb fields. 

 Type Mean (log10 m/s) Nugget Range (m) Sill (log10 m/s) 

Kaq Spherical -2.53 0 150 0.1 

Krb Spherical -4.55 0 150 0.3 

 

For the riverbed, random Krb fields were generated in a similar way. Table 5.1 provides the 

corresponding geostatistical parameters for the variogram. A mean value of -4.55 log10 (m/s) was 

used to generate the random Krb fields, which is approximately 2 magnitudes lower than the Kaq 

values. The semi-variogram range was set to 150 m, and a sill value of 0.3 log10 (m2/s2) was used. The 

generation of the random Krb fields was unconditional as no measurement data were available for 

the riverbed. 

5.4 Numerical experiments with EnKF-HGS 

5.4.1 Overview 

Simulation experiments were carried out using the numerical model described in section 5.3.1. Data 

assimilation was performed using measurement data from the year 2014, and measurements from 

the year 2015 were used as a verification dataset. Due to the riverbed changing flood on July 24th 

2014, starting on July 25th 2014 two models with different streambed topography were used: one 

model with the pre-flood riverbed topography, and one with the post-flood topography. Multiple 

assimilation scenarios were tested: In order to systematically investigate the influence of riverbed 

topography on the inverse estimation of riverbed and Kaq as well as the prediction of hydraulic heads 

and exchange fluxes, the data assimilation experiments were organized according to ten different 

scenarios, divided into two groups. In the first group, changes in riverbed topography induced 

through the flood event were considered, whereas in the second group these changes were not 

considered. Within each of the two groups, five scenarios were implemented, including one ‘open 

loop’ scenario without any update of model states (hydraulic heads) or parameters (Kaq and Krb), and 
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four scenarios with data assimilation. For all of these four scenarios, data assimilation was carried 

out before the flood event (updating hydraulic heads, Krb and Kaq); however, the four scenarios 

differed in the parameters which were updated after the flood event: i) no update; ii) only Krb; iii) 

only the Kaq; iv) both the Kaq and Krb. Performance of different simulation scenarios was evaluated by 

the root mean square error (RMSE) of hydraulic heads and surface water discharge measured during 

the verification period. 

5.4.2 Observation dataset 

Hydraulic heads within the model domain were measured at seven observation points (see Figure 

5.1): A4, A7, A19, A24, A25, A26 and A35. The SW measurement station SW1 is located on top of a 

weir directly on the downstream model boundary and measures the SW discharge leaving the study 

site. Figure 5.4 displays the measured hydraulic heads and the surface water discharge for the years 

2014 and 2015. Among these stations, measurements from A24, A25 and A26 are available for the 

entire two-year simulation period, while for the locations A4, A7, A19 and A35 some gaps exist. The 

hydraulic head observations of the year 2014 are used for the data assimilation experiments, and the 

hydraulic head observations of the year 2015 are used as a validation dataset. The SW discharge 

measurements of the year 2015 are also used to evaluate the model performance. 

5.4.3 Model spin-up 

Prior to the data assimilation, a series of spin-up simulations was carried out in order to obtain 

suitable initial conditions: First, a steady state simulation with one randomly chosen realization of the 

stochastic K fields was run using boundary conditions corresponding to the annual average values of 

2013. In a second step, individual exit-spin-up simulations for all 128 stochastic realizations of K fields 

were run for 20 days. The initial conditions calculated by the steady state spin up runs were used for 

these exit spin-up runs, and transient boundary conditions of the first 20 days of January 2014 were 
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imposed. The exit-spin-up runs produced an adequate initial ensemble spread adapted to the 

multiple stochastic K fields for the subsequent data assimilation experiments. 

5.4.4 Data assimilation and verification experiments 

Data assimilation experiments were carried out, updating both the hydraulic heads and the hydraulic 

conductivities, by assimilation of the hydraulic head observations. Due to the riverbed-changing flood 

event, the assimilation year 2014 was divided into two periods: A ‘pre-flood period’ from 01.01.2014 

until 24.07.2014, the day the flood occurred, and a ‘post-flood period’ from 25.07.2014 until 

31.12.2014. As outlined in Section 5.4.1, the data assimilation scenarios were divided into two groups: 

In Group 1 the pre-flood riverbed was used, and the riverbed topography remained unchanged 

before and after the flood event (denoted by ‘_old’), while in Group 2 a new riverbed corresponding 

to the measured post-flood topography was used for the post-flood period (denoted by ‘_new’). As 

outlined in Section 5.4.1, each of the two groups consisted of five different simulation scenarios: 

1) An ‘open loop’ scenario without assimilation and update, denoted by ‘OL’. 

2) A scenario where hydraulic heads, Kaq and Krb were updated during the pre-flood period, but 

without update during the post-flood period, denoted by ‘DA_OL’. 

3) A scenario where hydraulic heads, Kaq and Krb were updated during the pre-flood period, but 

during the post-flood period only hydraulic heads and Krb were updated, denoted by ‘DA_hKr’. 

4) A scenario with the same pre-flood updates as for scenarios 1 and 2, but where during the 

post-flood period only hydraulic heads and Kaq were updated, denoted by ‘DA_hKa’. 

5) A scenario where hydraulic heads, Kaq and Krb were updated both during the pre-flood period 

and the post-flood period of the assimilation year 2014, denoted by ‘DA_hKrKa’.  

A detailed description of all the simulation scenarios is provided in Table 5.2.  
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Table 5.2: Simulation scenarios with different riverbed topography (RBT), updating variables, and for different 

time periods. 

 
Before flood (2014.1.1-2014.7.24) After flood (2014.7.25-2014-12-31) 

Verification 

year 2015 

 
RBT 

Update 

h 

Update 

Kr 

Update 

Ka 
RBT 

Update 

h 

Update 

Kr 

Update 

Ka 
RBT 

OL_old old N N N old N N N old 

OL_new old N N N new N N N new 

DA_OL_old old Y Y Y old N N N old 

DA_OL_new old Y Y Y new N N N new 

DA_hKr_old old Y Y Y old Y Y N old 

DA_hKr_new old Y Y Y new Y Y N new 

DA_hKa_old old Y Y Y old Y N Y old 

DA_hKa_new old Y Y Y new Y N Y new 

DA_hKrKa_old old Y Y Y old Y Y Y old 

DA_hKrKa_new old Y Y Y new Y Y Y new 

 

In order to eliminate any potential effects of initial conditions during the performance evaluation, 

pure verification experiments were carried out using measurements of the year 2015. For each of the 

different simulation scenarios, the same riverbed topography as used during post-flood period in 

2014 was also used for the verification period. The simulated hydraulic heads and the calibrated K 

fields of the last time step of the assimilation period (i.e., end of December 31st 2014) were taken as 

initial conditions and parameter fields for the verification period. During the verification period, no 

data assimilation or update of states or parameters was carried out. 
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Figure 5.4: Measurements of (a) hydraulic head and (b) surface water discharge for the two-year simulation 

period 2014 and 2015. 

5.4.5 Performance measures 

The Root Mean Square Error (RMSE) was used to evaluate the model performance by comparing 

simulated and measured hydraulic heads and surface water discharge for the verification period. The 
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RMSE for the simulated hydraulic heads was calculated by comparing the ensemble mean value of 

the simulated heads to the measured hydraulic heads, averaged over all time steps and all 

observation locations: 

          (5.8) 

where h is the hydraulic head, nt the number of simulation time steps, nnodes_obs the total number of 

the observation locations which differs for different simulation periods, the overbar indicates 

ensemble average, the superscript f indicates simulations and the superscript obs the observations. 

In our case, nt equals to 365 and nnodes_obs is 7. 

The RMSE for the surface water discharge is calculated by comparing the ensemble mean value of 

the simulated flow rate at the outlet, defined as the ‘critical depth’, with the measurement value, 

averaged over all time steps: 

         (5.9) 

where Q is the surface water discharge. 

Temporal evolution of RMSE for the simulated hydraulic heads and surface water discharge is also 

calculated by 

                   (5.10) 

                     (5.11) 
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5.5 Results and discussion 

5.5.1 Reproduction of heads 

The scores of the RMSE (h) for different simulation scenarios are provided in Table 5.3. In the 

verification period, the RMSE (h) for the open loop run with the old riverbed topography (scenario 

OL_old) is 0.766m and with the new riverbed topography (scenario OL_new) 0.579m. The RMSE (h) 

was therefore reduced by 24% through the incorporation of the post-flood riverbed topography. This 

indicates that changes in riverbed topography have an influence on the estimation of hydraulic heads, 

and that the new and correct riverbed topography leads to a better reproduction of hydraulic heads 

if no calibration of the parameter fields is made.  

If in the verification period the old riverbed topography is used, and if hydraulic heads, and Kaq and 

Krb were only updated in the pre-flood period (scenario DA_OL_old) the RMSE (h) is 0.659m, which is 

13.4% lower than its open loop counterpart (scenario OL_old). This shows that data assimilation can 

improve the simulation of hydraulic heads. However, the improvement is less compared to the 

scenario which used the new riverbed topography but where otherwise no update was carried out 

(scenario OL_new). This clearly illustrates that it is crucial to consider the actual riverbed topography 

of river-aquifer systems. If, for the model with the old riverbed topography, states and parameters 

are also updated in the post-flood period (scenario DA_hKrKa_old), the RMSE (h) is reduced by 51.7% 

(RMSE (h) = 0.370m) compared to the open loop with the old riverbed topography. Interestingly, this 

is only slightly larger than the scenario with continuous update of states and parameters throughout 

both the pre- and the post-flood periods and the new riverbed topography (scenario DA_hKrKa_new) 

(RMSE (h) = 0.348m). This last comparison illustrates that if a strong flood event changes the riverbed 

topography, but no information on these changes is available, data assimilation of hydraulic heads, in 

which both states as well as Krb and Kaq are updated, can almost make up for the missing information 

on riverbed topography, at least in terms of the reproduction of hydraulic head.  
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Table 5.3: RMSE of simulated heads and surface water discharge for different simulation scenarios. 

 RMSE(h) (m) RMSE(Q) (m3/s) 

OL_old 0.766 4.17 

OL_new 0.579 4.15 

DA_OL_old 0.659 4.14 

DA_OL_new 0.581 4.11 

DA_hKr_old 0.449 4.06 

DA_hKr_new 0.630 4.13 

DA_hKa_old 0.513 4.09 

DA_hKa_new 0.357 4.23 

DA_hKrKa_old 0.370 4.04 

DA_hKrKa_new 0.348 4.18 

 

If the post-flood riverbed topography is used, but hydraulic heads, Kaq and Krb are only updated in the 

pre-flood period (scenario DA_OL_new) the RMSE (h) is 0.581m. This performance is similar to the 

open loop counterpart (scenario OL_new) (RMSE (h) = 0.579m). This poor performance is probably 

due to the fact that the Krb fields are estimated based on the pre-flood riverbed topography, which is 

not in correspondence with the post-flood riverbed topography. Nevertheless, the RMSE (h) is still 

11.6% lower than the scenario where the riverbed topography was not updated after the flood 

(scenario DA_OL_old). This again highlights the importance of updating riverbed topography for 

estimating hydraulic heads. If with the post-flood riverbed topography parameters are also updated 

during the post-flood (scenario DA_hKrKa_new), the RMSE (h) is reduced to 0.348m, which is the 

best among all the scenarios. It is 39.9% lower than the corresponding open loop run OL_new and 

40.1% lower than the scenario with only update in the pre-flood period. The reduction is less if 

compared to the scenario with the pre-flood riverbed topography (scenario DA_hKrKa_old, reduction 

51.7 %), because the post-flood riverbed topography already provides information on the riverbed 

and estimation of the Krb fields is less important than for the scenario where the old riverbed 

topography is used. 
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That information on riverbed topography is important can be further seen by comparing scenarios 

where both Kaq and Krb are updated to scenarios where only one of them is updated. The former one 

refers to scenarios DA_hKrKa_old and DA_hKrKa_new, while the latter one refers to scenarios 

DA_hKr_old, DA_hKr_new, DA_hKa_old and DA_hKa_new. The RMSE (h) shows that both for the pre- 

or post-flood riverbed topography, updating only Kaq or only Krb results in a poorer performance than 

updating both. With the pre-flood topography, the RMSE (h) for the scenario with update of only Krb 

is 0.449m, and with update of only Kaq 0.513m. These values are 21.3% and 38.6% higher than the 

scenario with update of both Kaq and Krb (RMSE (h) = 0.37m), respectively. Nevertheless, the 

performance comparison demonstrates that updating Krb is more important than updating Kaq, most 

likely because the Kaq could already be sufficiently estimated during the pre-flood period, and 

because the flood event induced changes in Krb, and/or because the wrong riverbed topography is 

compensated. If the post-flood riverbed topography is used after the flood event, the RMSE (h) for 

the scenario where only Krb is updated is 0.63m and if only Kaq is updated it is 0.357m. This shows 

that if the new riverbed topography is incorporated in the model, updating Kaq is important and re-

estimation of Krb is not necessary anymore. 

5.5.2 Evolution of aquifer and riverbed hydraulic conductivity 

Figure 5.5 shows the ensemble mean K fields at the initial (t = 01.01.2014) and the final time step (t = 

24.07.2014) of the pre-flood period. The log10 (Kaq) values are between -5.29 and -1.30 log10 (m/s) for 

the final updated field and between -4.44 and -2.19 log10 (m/s) for the initial field. Compared to the 

initial K field, the final updated ensemble mean K field shows a larger fluctuation by nearly two 

orders of magnitude. As no measurement data is available for Krb, and the only two Kaq 

measurements are used for generating the initial Kaq fields, it is not possible to directly evaluate if the 

updated K fields are closer to the true values. However, these updated K fields improved the 

characterization of heads by 29% in the pre-flood period.  
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Figure 5.5: The ensemble mean of K fields (a) at the initial (t = 01.01.2014) and (b) the final time step of the pre-

flood period (t = 24.07.2014) after data assimilation together with the corresponding histograms (c and d). 

The temporal evolution of Krb averaged over all the riverbed elements is displayed for different 

simulation scenarios in Figure 5.6. In the pre-flood period these four scenarios are exactly the same. 

The following results focus on the post-flood period. The estimated Krb in the post-flood period is 

lower for scenarios with the pre-flood riverbed topography than for the scenarios with the post-flood 

one, which highlights the fact that the Krb does not need to be altered that much for a good 

reproduction of hydraulic heads if the riverbed topography is also updated. Besides, either with the 

old or the new riverbed topography, the reduction of Krb is larger for scenarios where both Kaq and Krb 

are updated than for scenarios where only Krb is updated. 

(a) (b) 

(c)
) 

(d) 
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Figure 5.6: Temporal evolution of average Krb for different simulation scenarios for the assimilation year 2014. 

Shown are four scenarios where different variables are updated in the post-flood period: scenario with update 

of heads, Krb and Kaq using the old riverbed topography (blue line, DA_hKrKa_old), scenario with update of 

heads, Krb and Kaq using the new riverbed topography (red line, DA_hKrKa_new), scenario with update of heads 

and Krb using the old riverbed topography (green line, DA_hKr_old) and scenario with update of heads and Krb 

using the new riverbed topography (purple line, DA_hKr_new). 

Figure 5.7 shows the ensemble mean K fields at the end of the post-flood period (t = 31.12.2014) for 

scenarios with data assimilation also during the post-flood period. Scenarios with the post-flood 

riverbed topography show slightly higher and smoother K values for both the aquifer and the 

riverbed than scenarios with the pre-flood riverbed topography, which is also consistent with the 

analysis above and the head results in section 5.5.1. 
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(a)    (b)    (c) 

 

(d)    (e)    (f) 

 

Figure 5.7: The final updated K fields at the end of the post-flood period (t = 2014.12.31) for different 

simulation scenarios: (a) scenario DA_hKr_old; (b) scenario DA_hKa_old; (c) scenario DA_hKrKa_old;  (d) 

scenario DA_hKr_new; (e) scenario DA_hKa_new; (f) scenario DA_hKrKa_new. Scenarios using the old 

topography are displayed in the upper row, while scenarios using the new topography are displayed in the 

bottom row. 

5.5.3 Simulation of exchange fluxes and surface water (SW) discharge (Q)  

Figure 5.8 displays the temporal evolution of exchange fluxes between surface and subsurface water. 

In the pre-flood period all plotted scenarios give the same results as there are no differences 
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between the runs. Differences among the scenarios are minor in the post-flood period, but become 

larger in the second half of 2015. Differences are particularly large between scenarios with the pre-

flood and scenarios with the post-flood riverbed topography, which is consistent with the reduction 

of Krb (see Figure 5.6). The lower the Krb is, the less infiltration is observed. This shows that although 

data assimilation was able to compensate for a wrong riverbed topography in the post-flood period, 

the exchange fluxes between river and aquifer are clearly different for the scenarios with the correct 

and the wrong riverbed topography. Thus, it has to be concluded that the use of a wrong riverbed 

topography can only be partly corrected by data assimilation as states can be reproduced well, but 

exchange fluxes differ clearly between the scenarios with the correct and wrong riverbed topography. 

RMSE (Q) for different simulation scenarios and evaluation period are provided in Table 5.3. The 

difference of RMSE (Q) between the two open loop runs with different riverbed topographies is 0.02 

m3/d. This indicates that an update of the riverbed topography also slightly improves the 

representation of SW discharge, but the impact is very small. If the pre-flood riverbed topography is 

used and hydraulic heads, Kaq and Krb are updated only in the pre-flood period (scenario DA_OL_old), 

the RMSE (Q) is 4.14 m3/d, which is only 0.03 m3/d lower than for the open loop counterpart OL_old. 

However, if all of these variables are continuously updated by EnKF in the post-flood period (scenario 

DA_hKrKa_old), the RMSE (Q) is decreased to 4.04 m3/d. This shows that without information on the 

post-flood riverbed topography, data assimilation based on EnKF can nonetheless improve the 

characterization of SW discharge via updating of parameters and hydraulic heads. Altogether, 

scenarios where both Kaq and Krb are updated (scenario DA_hKrKa_old) resulted in the smallest RMSE 

(Q). This is consistent with the results for hydraulic heads discussed in section 5.5.1.  
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Figure 5.8: Temporal evolution of net exchange fluxes between the surface and subsurface domain. Shown is 

the mean value calculated over 128 realizations. Positive values indicate infiltration from the surface water into 

the subsurface. 

If the post-flood riverbed topography is included in the simulations, the RMSE (Q) for the scenario 

where hydraulic heads, Kaq and Krb are updated in the pre-flood period (scenario DA_OL_new) is 0.04 

m3/d lower than for the open loop counterpart (scenario OL_new). However, data assimilation in the 

post-flood period did not improve SW discharge characterization significantly. Only the scenario with 

update of Krb (scenario DA_hKr_new) provided minimally better results than the corresponding open 

loop run (scenario OL_new). The temporal evolution of simulated SW discharge against the 

measurement (not displayed) also indicates that differences between the different simulation 

scenarios are small, and differences with the measurements are mostly small except for periods with 

large discharge rates, for example in May 2015. This illustrates that the updating the riverbed 

topography and Krb has a small impact on the SW discharge, although the impact on the simulation of 
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hydraulic heads and exchange fluxes is strong. This is mainly because the total amount of exchange 

fluxes is much smaller than the total amount of the SW discharge. 

5.6 Conclusion 

In this study, we investigated the spatial and temporal variation of the riverbed hydraulic 

conductivity (Krb) and topography induced through a 300-year flood event and investigated its 

influence on the simulation of hydraulic heads, surface water discharge and river-aquifer exchange 

fluxes using the physically-based, fully integrated hydrological model HydroGeoSphere. Both riverbed 

topography data before and after the flood event were available as input for the simulation model. 

Data assimilation experiments were performed with the EnKF for pre- and post-flood assimilation 

periods, either under consideration of the changes of riverbed topography, or ignoring them. 

Heterogeneous multi-Gaussian distributed Kaq and Krb fields were used as the initial parameter fields 

and later, together with hydraulic heads, updated by EnKF-HGS. Verification experiments of the post-

flood year (2015) were used for evaluating the performance of the different 

parameter/states/topography updating schemes. The following conclusions can be drawn from the 

simulation experiments: 

1) Changes in riverbed topography have a significant influence on the prediction of hydraulic heads 

and river-aquifer exchange fluxes, and a minor influence on the prediction of surface water discharge. 

Incorporation of information on the modified riverbed topography obtained via remotely sensed 

through-water photogrammetry improves the simulation of hydraulic heads and exchange fluxes 

significantly. 

2) The estimation of Kaq and Krb with help of data assimilation allows a better estimation of hydraulic 

heads and SW discharge, even if assimilation is only carried out before the flood event. The 

parameter estimation is especially important if changes in riverbed topography are not taken into 

account in the post-flood simulations, allowing compensating for this problem. However, the 

exchange fluxes between river and aquifer and clearly different for the scenarios with the correct 
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riverbed topography and the wrong riverbed topography, indicating that data assimilation only partly 

can correct for wrong information on the post-flood riverbed topography. 

3) Both observations of the changes in riverbed topography and of hydraulic heads provide useful 

information for the simulation of river-aquifer systems. Without the riverbed topography 

information, estimation of both Krb and Kaq is important. However, if information on the transient 

changes of riverbed topography is available, a re-estimation of Krb seems to be less important. 

 

 

 

 



104  Summary and outlook 

Chapter 6 Summary and outlook 

Integrated water resources management requires full consideration of surface water – groundwater 

interaction, especially when such interactions can strongly influence the water quantity and quality 

of surrounding drinking water stations (Winter et al., 1998). Our study site, the Upper Emme 

catchment in Switzerland, is such an area with strong river-aquifer interaction. Simulating these river-

aquifer interactions relies strongly on the proper representation of riverbed properties like the 

riverbed topography and riverbed hydraulic conductivity (Krb) (Schilling et al., 2017). Riverbed 

properties show a strong spatial variability and are also highly dynamic in time due to erosion and 

deposition processes especially in relation with extreme events like floods. Spatial and temporal 

variability of riverbed properties make the simulation of river-aquifer interaction very uncertain and 

dynamic. Specifically, previous studies usually adopted the multi-Gaussian assumption to model the 

spatial variability of Krb. However, in reality, the Krb shows more complex non-multi-Gaussian spatial 

patterns (Springer et al., 1999), which might have significant influence on the estimation of river-

aquifer exchange fluxes. In order to investigate the role of spatial patterns of r Krb as well as temporal 

variability, the sequential data assimilation technique ensemble Kalman filter (EnKF) was used, which 

is a powerful tool to inversely estimate model parameters by accounting for model uncertainties as 

well as measurement uncertainties. In this PhD-dissertation, the aim was to improve characterization 

of the spatiotemporal variation of Krb by EnKF, and to investigate the role of riverbed topography and 

complex heterogeneous Krb patterns on simulating river-aquifer exchange fluxes. These complex 

heterogeneous Krb patterns are generated according to different geostatistical models under either 

the multi-Gaussian assumption or the non-multi-Gaussian assumption. Numerical experiments are 

carried out first for a simplified synthetic 3-D river-aquifer case using a conductance based 

groundwater model, and later for a similar synthetic case using a physically based, integrated 

hydrological model under both fully saturated and variably saturated conditions beneath the 

riverbed. These two synthetic experiments provide a controlled environment for process-studies and 
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for detecting model sensitivities, as all model states and fluxes of the virtual ‘truth’ are exactly known 

at all times, which allows to precisely determine the efficiency of data assimilation and parameter 

estimation. Afterwards, a real world 3-D river-aquifer case study was tested for the Upper Emme 

catchment using the integrated hydrological model to explore the role of transient riverbed 

properties on the river-aquifer interaction. In the Emme catchment the riverbed properties greatly 

changed because of a 300-year flood which occurred on July 24th of 2014. For the real-world case two 

riverbed topography profiles obtained from through-water photogrammetry of remotely sensed 

images before and after the flood event were used, together with more traditional hydrogeological 

data types.  

For the two synthetic studies, ten reference Krb fields, which served as synthetic truths, were 

generated using a non-multi-Gaussian model with channelized structures, as several experimental 

studies show that this could be a more realistic model for the spatial variability of Krb and since until 

now no study considered such type of Krb pattern for modeling river-aquifer interaction. Three 

different geostatistical models were used to generate the initial heterogeneous Krb fields, including 

one non-multi-Gaussian model with channelized structures, one non-multi-Gaussian model with 

elliptical structures and one multi-Gaussian model. For the synthetic study with the integrated 

hydrological model, a homogeneous geostatistical model was also used to generate the initial Krb 

fields.  

The role of different Krb patterns was explored with these two synthetic experiments. Both of the two 

synthetic studies revealed that EnKF can improve the characterization of hydraulic heads and river-

aquifer exchange fluxes. The Krb characterization could also be improved, even if the prior 

geostatistical models differed from the reference (true) geostatistical model. Under fully saturated 

conditions beneath the riverbed, and both for a conductance based groundwater model and an 

integrated hydrological model, the differences in performance among the correct non-multi-

Gaussian model, the erroneous non-multi-Gaussian model and the erroneous multi-Gaussian model 

were minor. This indicates that Krb patterns have only a minor influence on river-aquifer interactions. 
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Moreover, NS-EnKF, a variant of EnKF which can handle better non-Gaussian distributed states and 

parameters due to a normal score transformation, did not show a better performance than standard 

EnKF, although parameters showed a non-multi-Gaussian distribution. The only main advantage was 

that with NS-EnKF, the histogram shape of Krb could be preserved. Under variably saturated 

conditions, for the characterization of net river-aquifer exchange fluxes, an erroneous multi-Gaussian 

model performed clearly worse than the erroneous non-multi-Gaussian model and the correct non-

multi-Gaussian model, while the two non-multi-Gaussian models gave similar performance. This 

indicates that for variably saturated conditions, again complex heterogeneous K patterns such as 

connectivity do not matter so much for characterizing net river-aquifer exchange fluxes, but now, 

and in contrast to fully saturated conditions, the histogram provides valuable information besides the 

mean and the variance value. 

For the real world study, the characterization of both hydraulic heads and river-aquifer exchange 

fluxes was also improved by EnKF. The maximum improvement by EnKF for estimating the exchange 

fluxes was 3%, which is relatively small due to the relative small amount of exchange fluxes 

compared to the surface water discharge in this catchment. On the other hand, for the prediction of 

hydraulic head, the maximum RMSE-reduction with data assimilation, averaged over all observation 

locations, was 55% for the scenario where riverbed topography, hydraulic heads, Krb and Kaq were 

updated.  

Besides the Krb, riverbed topography also plays an important role in simulating a river-aquifer system. 

Our real world case study shows that considering the changes in both the riverbed topography and 

Krb leads to the best simulation results for hydraulic head and stream-aquifer exchange fluxes. 

However, if the riverbed topography information is missing, the Krb can be estimated by EnKF and 

account for the missing information on topography, resulting in only slightly worse results than the 

simulation taking into account the changes of riverbed topography. If the riverbed topography is 

available, the re-estimation of Krb is not that important. 
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In this thesis, we characterized the spatiotemporal varying Krb and investigated the role of Krb 

patterns on the estimation of river-aquifer exchange fluxes. All of the conclusions in this thesis are 

based on simulations in river-aquifer systems. As Li et al. (2012), Chen et al. (2013) and Tong et al. 

(2013) pointed out, ensemble based data assimilation methods such as EnKF and ensemble smoother 

can improve the characterization of heterogeneous Kaq by assimilating tracer data or solute 

concentration data. The impact of a heterogeneous riverbed on solute transport simulation was not 

investigated in this work. Therefore, in future, the sensitivity of solute transport through riverbeds 

with respect to non-multi-Gaussian and multi-Gaussian patterns of heterogeneous Krb should also be 

analyzed. Moreover, further study should also investigate the role of these types of heterogeneous 

Krb patterns on heat transport. As Kalbus et al. (2006) and Constantz (2008) pointed out, temperature 

can be used as a tool for the estimation of water fluxes through streambed sediments, as 

groundwater temperature is often relatively stable and stream temperature often shows stronger 

fluctuations on the daily and yearly scales. As a tracer for surface water infiltration and hydraulic 

conductivity, it is also inexpensive and naturally available over the complete stream reach (Anderson, 

2005). Kurtz et al. (2014) found, for a study in the Upper Limmat Valley in Switzerland, that a 

heterogeneous riverbed can be better estimated by jointly assimilating groundwater temperature 

data and piezometric head data. However, Kurtz et al. (2014) adopted a multi-Gaussian Krb pattern. 

Future work could also here focus on the role of different complex non-multi-Gaussian Krb patterns 

on simulating heat transport and the value of additional temperature data measured in the riverbed. 

It is expected that both solute and heat transport are more affected by such complex spatial patterns 

of Krb than flow only. Specifically, compared to the traditional isolated temperature data logger, 

temperature recorded by Distributed Temperature Sensing (DTS) can provide highly resolved data 

along buried cables instead of temperature data for isolated points, which allows detecting the 

precise location of groundwater inflows to river channels (Lowry et al., 2007; Sebok et al., 2013). DTS 

has also been used to detect river-aquifer exchange fluxes together with electrical imaging method 

(Slater et al., 2010). Vogt et al. (2010) used vertical high resolution temperature data obtained by DTS 

for the estimation of seepage rates to quantify river-groundwater exchange. Krb and river-aquifer 
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exchange fluxes can then inversely be estimated with the flow and heat transport model by 

assimilating the high resolution DTS temperature data together with the piezometer head data. An 

improved characterization of both the primary variables (e.g. the hydraulic heads and the Krb) and the 

secondary variables (e.g. the surface water discharge and the river-aquifer exchange fluxes) can be 

expected. 
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