
IAS Series
Band / Volume 37
ISBN 978-3-95806-344-0

IAS Series
Band / Volume 37
ISBN 978-3-95806-344-0

Analysis of I/O Requirements of Scientific Applications

Salem El Sayed Mohamed

37

IA
S

Se
ri

es
A

na
ly

si
s

of
 I/

O
 R

eq
ui

re
m

en
ts

 o
n

H
PC

Sa
le

m
 E

l S
ay

ed
 M

oh
am

ed

Schriften des Forschungszentrums Jülich
Reihe IAS Band / Volume 37

Forschungszentrum Jülich GmbH
Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

Analysis of I/O Requirements of Scientific
Applications

Salem El Sayed Mohamed

Schriften des Forschungszentrums Jülich
Reihe IAS Band / Volume 37

ISSN 1868-8489 ISBN 978-3-95806-344-0

Bibliografische Information der Deutschen Nationalbibliothek.
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte Bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

Herausgeber Forschungszentrum Jülich GmbH
und Vertrieb: Zentralbibliothek, Verlag
 52425 Jülich
 Tel.: +49 2461 61-5368
 Fax: +49 2461 61-6103
 zb-publikation@fz-juelich.de
 www.fz-juelich.de/zb

Umschlaggestaltung: Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

Druck: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2018

Schriften des Forschungszentrums Jülich
Reihe IAS, Band / Volume 37

D 468 (Diss., Wuppertal, Univ., 2017)

ISSN 1868-8489
ISBN 978-3-95806-344-0

Persistent Identifier: urn:nbn:de:0001-2018071801

The complete volume is freely available on the Internet on the Jülicher Open Access Server (JuSER)
at www.fz-juelich.de/zb/openaccess

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Analysis of I/O Requirements of Scientific Applications

The advance in both computation and data storage size in High Performance Computing

(HPC) has not been matched by a similar advance in I/O connections. Emerging tech-

nologies have promised to overcome this gap. These could require scientific applications

to change their I/O behaviour to benefit from the improvements. Therefore, a deeper

analysis of applications’ I/O behaviour on modern HPC systems is required. This work

defines I/O analysis criteria by which I/O behaviour can be systematically evaluated.

Using the defined criteria a large set of collected I/O logs on a petascale Blue Gene/P

installation, namely JUGENE, was analysed. To further the understanding of I/O ar-

chitectures and their effect on I/O, a simplified parametric I/O model was developed.

Results show that the implemented model has a comparable I/O behaviour to that of

JUGENE, and therefore is used to evaluate new I/O technologies.

Acknowledgements

Thanks to Prof. Dirk Pleiter and Prof. Matthias Bolten for their generous support

and guidance, without which this work would not have been possible. Thanks to my

colleagues at the Juelich Supercomputing Center for allowing me to be part of the team

and their helpful notes and tips. Thanks to my family and friends, who have not failed

to help and support.

But most of all, I’m grateful to my wife for her everlasting support, courage and en-

durance that replaced the hardships with blessings.

To

MARIA & CAROLINA

Contents

Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Goals . 3

1.3 HPC I/O Architecture . 4

1.3.1 Emerging I/O Architectures . 7

2 I/O System Architecture 13

2.1 JUGENE I/O Stack . 13

2.2 Storage Infrastructure . 15

2.2.1 GPFS I/O Counters . 16

3 Methodology: I/O Criteria 19

3.1 Related Work . 21

3.2 Basic Quantities . 23

3.2.1 Application Quantities . 23

3.2.2 I/O Request Quantities . 23

3.2.3 Filesystem Metadata Operation Quantities 25

3.3 Category 1: Aggregate Performance Numbers 26

3.4 Category 2: I/O Pattern Analysis . 32

3.4.1 Request Size . 34

3.4.2 Type Of I/O Operation . 37

3.4.3 Spatiality Of I/O Requests . 39

3.4.4 Temporal Intervals . 44

3.4.5 Repetitive Behaviour . 46

3.5 Category 3: Parallel I/O . 48

3.6 Summarizing I/O Criteria . 51

vii

Contents viii

4 Performance Characterization: Analysing GPFS I/O Counters 55

4.1 Related Work And I/O Profiling Tools . 55

4.1.1 I/O Measuring Tools . 56

4.1.2 Analysis Process . 59

4.1.3 Using Analysis Information . 60

4.2 Reformatting GPFS I/O Counters . 61

4.2.1 GPFS I/O Log Database . 63

4.3 Job Database . 64

4.4 Verifying Analysis Process . 66

4.4.1 Verification Of GPFS I/O Counters Using I/O Benchmark 72

4.5 Evaluating JUGENE Job I/O . 78

4.5.1 Filtering The Job List . 79

4.5.2 Revisiting I/O Criteria . 81

4.5.3 Category 1: Aggregate Performance Numbers 83

4.5.4 Category 2: I/O Pattern Analysis 99

4.5.5 Category 3: Parallel I/O . 111

4.5.6 Further Analysing A Subset Of Jobs 116

4.5.7 Analysing Jobs Using Category 1: Aggregate Performance Numbers119

4.5.8 Analysing Jobs Using Category 2: I/O Pattern Analysis 146

4.5.9 Analysing Jobs Using Category 3: Parallel I/O 150

4.6 General Notes on Analysing the GPFS I/O Counters 151

5 Performance Modeling: Modeling JUGENE I/O 153

5.1 Related Work . 154

5.2 Modeling Framework (OMNET++) . 155

5.3 Modelling JUGENE I/O . 156

5.3.1 I/O Model Components . 157

5.4 I/O Model Verification . 162

5.4.1 Parameter Fitting Using GPFS I/O Logs 163

5.5 Future I/O Architectures . 167

5.5.1 I/O Model Changes . 168

5.5.2 Burst Buffers . 171

5.6 Conclusions On Modelling System I/O . 176

6 Conclusion 179

6.1 Future Work . 182

A I/O Criteria - Category 4: Application Details 185

B I/O Model Parameter Fitting Using An I/O Benchmark 189

Bibliography 193

List of Figures

1.1 HPC traditional I/O stack . 4

1.2 I/O stack with I/O forwarding . 9

2.1 Blue Gene/P I/O stack . 14

2.2 JUGENE I/O architecture . 15

2.3 GPFS I/O counters in JUGENE I/O stack 17

3.1 Simple strided access . 42

3.2 Nested strided access . 43

4.1 GPFS I/O log time line analysis . 62

4.2 Sum of GPFS I/O logs for midplanes divided over I/O nodes 65

4.3 Special case for matching job runtime with GPFS I/O logs 67

4.4 Worst case for matching job runtime with GPFS I/O logs 68

4.5 Weighted fraction for conflict resolution 70

4.6 Open Command (OC), for matching POSIX-I/O task-local files 4KiB 64
node test to GPFS I/O logs . 74

4.7 Close Command (CC), for matching POSIX-I/O task-local files 4KiB 64
node test to GPFS I/O logs . 75

4.8 Bytes Read (BR) and Read Commands (RdC), for matching POSIX-I/O
task-local files 1024KiB 32 node test to GPFS I/O logs 76

4.9 Bytes Written (BW), for matching POSIX-I/O shared file 4KiB 64 node
test to GPFS I/O logs . 77

4.10 Histogram and cumulative distribution of job compute node count and
job duration . 81

4.11 Bytes read and written for analysed jobs 84

4.12 Bytes read and written average over I/O nodes for analysed jobs 85

4.13 Read and write commands for analysed jobs 86

4.14 Read and write commands average over I/O nodes for analysed jobs . . . 87

4.15 Read and write maximum bandwidth for analysed jobs 89

4.16 Read and write average bandwidth for analysed jobs 90

4.17 Read and write maximum IOPS for analysed jobs 92

4.18 Read and write average IOPS for analysed jobs 93

4.19 Open commands for analysed jobs. 94

4.20 Close commands for analysed jobs. 95

4.21 I/O intensity for analysed jobs computed using various thresholds c . . . 97

4.22 Read and write I/O intensity for analysed jobs computed using various
thresholds c . 98

4.23 Read and write I/O intensity (c = 1MiB) for analysed jobs 99

ix

List of Figures x

4.24 Distribution of read request sizes . 100

4.25 Distribution of write request sizes . 101

4.26 Read and write average request size for analysed jobs 102

4.27 Percentage of small read I/O for analysed jobs computed using various
ssmall . 103

4.28 Percentage of small write I/O for analysed jobs computed using various
ssmall . 104

4.29 Percentage of write for analysed jobs . 105

4.30 Read and write burstiness for analysed jobs computed using various thresh-
olds c . 108

4.31 Read and write burstiness for analysed jobs with c = 1MiB 109

4.32 Parallel I/O intensity for analysed jobs computed using various thresholds c112

4.33 Read and write parallel I/O intensity for analysed jobs computed using
various thresholds c . 113

4.34 Read and write parallel I/O intensity for analysed jobs with c = 1KiB . . 114

4.35 Bytes read and written for selected jobs 119

4.36 Bytes read for job 1782577; maximum of total bytes read 121

4.37 Bytes written for job 1782577; maximum of total bytes read 121

4.38 Bytes written for job 1492818; maximum of total bytes written 122

4.39 Bytes written for job 1823713; bytes written median of jobs with over
1TiB read or write . 125

4.40 Read and write commands for selected jobs 125

4.41 Read commands for job 1766138; maximum of total read commands . . . 127

4.42 Read commands for job 1752533; maximum of total write commands . . . 129

4.43 Write commands for job 1752533; maximum of total write commands . . 129

4.44 Write commands for job 987713; write commands median of jobs with
over 1TiB read or write . 131

4.45 Read and write maximum bandwidth for selected jobs 132

4.46 Bytes read for job 1912846; equal read and write bandwidth 134

4.47 Bytes written for job 1912846; equal read and write bandwidth 134

4.48 Bytes read for job 1668617; read bandwidth median of jobs with over
1TiB read or write . 136

4.49 Bytes written for job 1668617; read bandwidth median of jobs with over
1TiB read or write . 136

4.50 Read and write maximum IOPS for selected jobs 137

4.51 Write commands for job 1946944; equal read and write IOPS 139

4.52 Read commands for job 1551853; read IOPS median of jobs with over
1TiB read or write . 141

4.53 Write commands for job 1117955; write IOPS median of jobs with over
1TiB read or write . 143

4.54 Read and write I/O intensity (c = 1MiB) for selected jobs 143

4.55 Bytes read for job 1950206; I/O intensity of 1.0 145

4.56 Bytes written for job 1950206; I/O intensity of 1.0 145

4.57 Distribution of read request sizes for job 1782577 148

4.58 Distribution of write request sizes for job 1492818 148

4.59 Read and write job burstiness (c = 1MiB) for selected jobs 149

4.60 Read and write parallel I/O intensity (c = 1MiB) for selected jobs 150

List of Figures xi

5.1 JUGENE I/O model verification cycle . 157

5.2 JUGENE I/O model components . 158

5.3 I/O model write flow graph . 161

5.4 I/O model read flow graph . 162

5.5 Real versus simulated GPFS I/O log . 164

5.6 Using GPFS I/O logs for I/O model parameter fitting 165

5.7 Example of an I/O node’s 24hour I/O model simulation 166

5.8 Simulated time spent in I/O for each I/O node 167

5.9 Simulated percentage of job execution time in I/O for each I/O node . . . 168

5.10 Time shifting GPFS I/O logs in the I/O model 169

5.11 Job I/O mismatched timing on different I/O nodes 170

5.12 Job I/O resynchronizing of GPFS I/O logs on different I/O nodes 171

5.13 Burst buffer I/O model . 172

5.14 Change of I/O and job time per I/O node using burst buffers of size
64GiB and an external bandwidth of 1Gbps 174

5.15 Change of I/O and job time per I/O node using burst buffers of size
16GiB and an external bandwidth of 4Gbps 174

5.16 Change of job I/O and execution time using burst buffers of size 64GiB
and an external bandwidth of 1Gbps . 175

5.17 Change of job I/O and execution time using burst buffers of size 16GiB
and an external bandwidth of 4Gbps . 175

B.1 JUGENE I/O model verification cycle using an I/O micro-benchmark . . 189

B.2 Example of I/O model parameter fitting using I/O benchmark for write . 190

List of Tables

2.1 GPFS I/O (mmpmon) counters . 16

3.1 Parallel I/O distribution metrics . 50

3.2 I/O criteria analysis map . 53

4.1 GPFS I/O counters . 61

4.2 Information on the GPFS I/O log database 64

4.3 Information on the job database . 64

4.4 Matching micro-benchmark for POSIX-I/O and task-local files with GPFS
I/O logs . 74

4.5 Matching micro-benchmark for POSIX-I/O and shared files with GPFS
I/O logs . 76

4.6 Matching micro-benchmark for MPI-IO and task-local files with GPFS
I/O logs . 78

4.7 Matching micro-benchmark for MPI-IO and shared files with GPFS I/O
logs . 78

4.8 GPFS I/O counters matched to basic quantities 82

4.9 Percentage of small I/O for various ssmall 103

4.10 Analysis map of I/O criteria for analysing GPFS I/O logs 117

4.11 Info of job 1782577; maximum of total bytes read 120

4.12 I/O criteria analysis map of job 1782577; maximum of total bytes read . . 120

4.13 Info of job 1492818; maximum of total bytes written 122

4.14 I/O criteria analysis map of job 1492818; maximum of total bytes written 123

4.15 Info of job 1823713; bytes written median of jobs with over 1TiB read or
write . 123

4.16 I/O criteria analysis map of job 1823713; bytes written median of jobs
with over 1TiB read or write . 124

4.17 Info of job 1766138; maximum of total read commands 126

4.18 I/O criteria analysis map of job 1766138; maximum of total read commands126

4.19 Info of job 1752533; maximum of total write commands 128

4.20 I/O criteria analysis map of job 1752533; maximum of total write commands128

4.21 Info of job 987713; write commands median of jobs with over 1TiB read
or write . 130

4.22 I/O criteria analysis map of job 987713; write commands median of jobs
with over 1TiB read or write . 130

4.23 Info of job 1912846; equal read and write bandwidth 132

4.24 I/O criteria analysis map of job 1912846; equal read and write bandwidth 133

4.25 Info of job 1668617; read bandwidth median of jobs with over 1TiB read
or write . 134

xiii

List of Tables xiv

4.26 I/O criteria analysis map of job 1668617; read bandwidth median of jobs
with over 1TiB read or write . 135

4.27 Info of job 1946944; equal read and write IOPS 138

4.28 I/O criteria analysis map of job 1946944; equal read and write IOPS . . . 138

4.29 Info of job 1551853; read IOPS median of jobs with over 1TiB read or write139

4.30 I/O criteria analysis map of job 1551853; read IOPS median of jobs with
over 1TiB read or write . 140

4.31 Info of job 1117955; write IOPS median of jobs with over 1TiB read or
write . 141

4.32 I/O criteria analysis map of job 1117955; write IOPS median of jobs with
over 1TiB read or write . 142

4.33 Info of job 1950206; I/O intensity of 1.0 144

4.34 I/O criteria analysis map of job 1950206; I/O intensity of 1.0 144

4.35 Percentage of small I/O (ssmall = 1MiB) of selected jobs 147

5.1 Number of logs and average error for 24hours simulated time. 165

5.2 Statistics on the change of job I/O and execution time using burst buffers
of size 64GiB and an external bandwidth of 1Gbps 176

5.3 Statistics on the change of job I/O and execution time using burst buffers
of size 16GiB and an external bandwidth of 4Gbps 176

Abbreviations

HPC High Performance Computing

I/O Input/Output

MPI Message Passing Interface

POSIX Portable Operating System Interface for Unix

NSD Network Shared Disk

SAN Storage Area Network

IOP/IOPs Input/Output OPeration(s)

IOPS Input/Output Operations Per Second

HDD Hard Disk Drive

SSD Solid State Disk

GPFS General Parallel FileSystem

CIOD Control and Input/Output Daemon

CNK Compute Node Kernal

CN Compute Node

ION Input/Output Node

xv

Chapter 1

Introduction

1.1 Motivation

High Performance Computing (HPC) systems have advanced from the tera-scale to

the peta-scale and are advancing onwards to the exa-scale. These systems are being

supported by large ever growing storage units that already can store on the order of

tens of petabytes. However, the advance in both computation and storage size has

not been met with a matching increase in the input/output (I/O) performance. This

threatens the overall gain from employing such large scale HPC systems for the benefit

of scientific applications. The problem is further complicated by HPC systems using an

ever growing number of parallel computing components. These have to be serviced by

the system’s available I/O [1]. The increasing number of parallel components employed

in HPC systems leads to possible higher failure rates. To prevent data and progress loss,

applications have to save their intermediate status, further straining the I/O systems [2].

Many HPC systems have a high cost attached to its networking infrastructure. These to

some extend dictate the size and performance of the I/O. As a result simply extending

or increasing the I/O system is in many cases limited by overall system cost.

To provide HPC systems with the needed access to data, application’s I/O requests have

to traverse various software and hardware components. These can be thought of as a

stacked layer of units, where each serves specific and interchanging functionalities. The

I/O stack has evolved over a long period of time. As I/O transcends into a bottleneck

and due to constant technology advancement, some I/O stack layers require an update.

1

Chapter 1. Introduction 2

Emerging I/O concepts and technologies promise upgrading and improving I/O perfor-

mance. These provide changes to one or more layer in the I/O stack. The performance

increase comes from better understanding the underlying systems and the tasks they

need to fulfil to run a more optimized I/O. While some of these optimizations require

scientific applications to change their implementations, others do not. Changing an

application’s implementation is usually connected to large efforts that scientists and

application developers have to exert. Meanwhile, optimizations that do not require

application changes focus on system or I/O library improvements.

The benefit from improving I/O can depend on paring the correct I/O behaviour with a

more thoughtful I/O system configuration. Future I/O architectures should employ a co-

design approach, where design decisions are made on the basis of a good understanding

of application I/O behaviour. Many studies have been undertaken to provide a better

understanding of the I/O system and it’s functionalities, these include [3], [4], [5], [6],

[7], [8], [9] and many more. As for the I/O behaviour of applications, there is an overall

absence for understanding application’s interactions with the underlying storage system

[10]. Since I/O system designers have no control over the I/O behaviour of applications,

many are forced to implement I/O systems on the basis of speculations [11]. As a result,

many I/O systems are designed without full information on the workload they will have

to serve [12].

There are significant efforts ongoing in the HPC community to monitor and analyse the

I/O behaviour of applications such as [13], [10], [12] and [14]. Understanding application

I/O and its impact on the I/O stack layers and the benefit of available I/O optimiza-

tions, is key in improving I/O performance of current peta-scale and future exa-scale

systems. Knowledge of the application’s I/O behaviour can be used in relation to avail-

able I/O optimizations to determine the extend of benefit applications will perceive,

while considering the needed effort for implementation. Therefore, modern computing

centers should analyse the I/O behaviour of the scientific applications running on their

infrastructure. Configuration, I/O optimizations and upgrades of the I/O system should

be done with reference to the understanding obtained from such I/O analysis.

Chapter 1. Introduction 3

1.2 Research Goals

Due to the complexity of the I/O stack and the massive parallelism integrated into

modern HPC systems, the I/O behaviour is a complex compound of various observ-

ables. Analysing the I/O behaviour can be made easier by designing an analysis map.

Therefore, this study proceeds by providing a scientific method for systematic analysis

of I/O behaviour by outlining a set of I/O criteria. These are constructed and selected

with contemplation on both modern scientific applications and I/O architecture. While

some approach the study of I/O behaviour by investigating the I/O of a single or a

limited group of applications [15][16], others opt for mass application I/O behaviour

analysis [14]. Therefore, the I/O criteria are designed to provide both possibilities. The

I/O criteria also attempts being applicable to many modern I/O architectures as well

as to different methods of I/O measuring techniques.

The conclusions made according to any analysis method chosen is strongly dependent

on the I/O measuring procedure. To provide a case study for applying the I/O crite-

ria, a mass analysis on a large quantity of filesystem logs for a modern HPC system is

performed. This tests the I/O criteria in the wild and allows feeding the information

gained back into their design. The case study also gains system and application devel-

opers insights into scientific application’s perceived I/O patterns created on a modern

I/O system.

Collecting and analysing I/O behaviour of applications can feed into the design cycle of

I/O systems that are or will be used by current or future HPC systems. One method

for using such I/O behaviour information is to create simulations of I/O systems and

experiment with I/O stack changes that could benefit the application. This study pro-

vides a simulation of a modern HPC I/O system with it’s underlying components. By

feeding the model with the collected I/O information, I/O architectural changes are

investigated.

The approach taken by defining I/O criteria, using them to investigate I/O behaviour

and simulating I/O stack changes, could greatly benefit I/O system and application

developers.

Chapter 1. Introduction 4

1.3 HPC I/O Architecture

Fulfilling an application’s requirement for storage access, takes the I/O request on a path

through multiple components of the I/O system. The path taken is referred to as the

I/O stack. The layers involved have the task to address and store the data, as well as

providing an I/O interface. Applications are constantly growing in both computing and

data requirements. As a response HPC systems had to grow in computational power,

parallelism and data storage size and access performance. This lead to the need of

further developing and improving the individual I/O stack layers.

A representation of the I/O stack layers that are part of a traditional I/O system are

given in Fig. 1.1. Applications create I/O requests using either a high level I/O library

or an I/O interface such as POSIX I/O or MPI-IO. The I/O interface translates the

I/O requests to the underlying filesystem. These have the task of managing the storage

infrastructure and the data stored on them. Since HPC systems employ a large scale

storage infrastructure, local filesystems are not sufficient to take on the task. Therefore,

the I/O system employs parallel filesystems that can span over multiple servers and

many storage devices. The main difference to a standard desktop I/O stack is in the

scale and size of the storage infrastructure and the parallel filesystem that is needed to

operate it.

Figure 1.1: HPC traditional I/O stack

Chapter 1. Introduction 5

HPC systems are steadily growing in computational power. To achieve this, the systems

incorporate large scale parallelism, employing multi-core multi-thread processors on a

large number of nodes. To accommodate these changes the I/O systems had to scale

their bandwidth and IOPS. Bandwidth is defined as the rate of data transfer that a

system can achieve in a given time, and carries the unit data quantity over time1. I/O

Operations Per Second (IOPS) is defined as the number of I/O Operations (IOPs) that

a system can perform in one second.

The I/O stack as described here implies a separation between the computation and I/O

system. Both need to implement or execute different parts of the I/O stack. However, the

parallel filesystem considered can be accessed from different computing systems without

requiring redesign, as long as these use the correct interface. It is therefore possible

to distinguish between three terms: HPC or compute system, I/O system and I/O

subsystem. The compute system includes the compute nodes, possibly specialized I/O

nodes and an internal and external network for communication. An I/O system refers

to the parallel filesystem along with the storage infrastructure attached. It dictates

the interface the compute system will have to use for data access. The I/O subsystem

refers to the union of the computation and I/O system components that are used in

the fulfilment of an I/O request. For example, the external network connections of the

compute system are also considered part of the I/O subsystem. The use of these terms

allow differentiating between updates that would require changing the I/O system versus

these that require changes to both the compute and I/O system, i.e. I/O subsystem.

Storage infrastructure

The storage infrastructure contains the physical storage units, storage servers and file

servers as well as switches and routers that provide data access. Most storage systems

use Hard Disk Drive (HDD) as storage devices. These are densely packed in storage

servers and could be accessed through file servers. Due to HDD’s limited bandwidth

and IOPS, the storage infrastructure has to use in the order of thousands of HDDs in

parallel to deliver adequate performance. These are placed into many storage servers.

The increasing number of HDDs can result in reliability and cost issues. New storage

1Bandwidth has the unit B/s for bytes per second and bps for bits per second. The standard used here
dictates that, 1KiB (Kibibyte) = 1024B, 1MiB (Mebibyte) = 1024KiB, 1GiB (Gibibyte) = 1024KiB,
1TiB (Tebibyte) = 1024GiB and 1PiB (Pebibyte) = 1024TiB

Chapter 1. Introduction 6

device technologies such as Solid State Disks (SSD) are being introduced, offering better

bandwidth and IOPS. However, due to their high cost per storage unit and occasionally

reliability issues they are as of now not capable of fully replacing HDDs. Some systems

attempt combining the low cost per storage unit of HDD with the high performance of

SSDs in so called hybrid systems [17].

Parallel filesystems

To manage the large number of storage servers, large scale parallel filesystems are used.

Contrary to local filesystems, parallel filesystems can span multiple servers and offer

access to a large number of clients. Therefore they offer global access to the storage

infrastructure from all HPC system nodes [3]. To utilize the full bandwidth, IOPS and

storage space offered by the storage and file servers, parallel filesystems stripe data

across storage servers and HDDs within the storage server. Filesystems use metadata

to track file and data locations, among other data information. While bandwidth and

IOPS are mostly limited by storage infrastructure, metadata operations highly depends

on the parallel filesystem used. Metadata operations include opening, closing, creating

and deleting of files. Some parallel filesystem such as Lustre use dedicated metadata

servers, others such as GPFS distribute the data across the available storage servers [3].

Parallel filesystems have to provide data reliability and cope with storage device failure.

To prevent data corruption data access synchronization, such as data locks, have to be

implemented.

Due to their complexity parallel filesystems offer a large number of configuration pa-

rameters. One such parameter is the filesystem’s block size, the size of the smallest

addressable unit in the filesystem. Configuring a parallel filesystem for optimal perfor-

mance is a difficult task due to the large parameter space. The correct configuration is

also dependent on the I/O behaviour resulting from the application in combination with

high level I/O libraries and the used I/O interface. For example, smaller requests than

the block size could result in an overhead [5] and possibly wasting storage space.

Chapter 1. Introduction 7

I/O interface

Most (if not all) HPC systems still implement and use the POSIX-I/O2 standard, this

can be expected to continue for a long period of time. Since POSIX-I/O was originally

introduced to manage local filesystems, other I/O interfaces that offer more parallel

functionality were introduced. One such interface is the MPI-IO, an extension to the

Message Passing Interface (MPI) standard. Nonetheless, many applications still directly

employ POSIX-I/O [14].

High level I/O libraries

Applications can either utilize the available I/O interface directly or use higher level I/O

libraries. These offer added functionality such as complex data managing tools. Higher

level I/O libraries primarily focus on improved user functionality rather than optimizing

performance [3].

1.3.1 Emerging I/O Architectures

The increase in computation and storage size have not been met with a similar increase

in I/O performance. While applications get offered more from both, the compute nodes

might spend valuable time idling for I/O. As a result, many improvements to the I/O

system have been offered. Emerging I/O architectures have also indicated ways to

improve the I/O performance. These architectural changes can span over a single or

multiple I/O stack layers. To benefit from or implement some of these improvements

application changes might be required.

It is possible to group optimizations of I/O into two sets, system and applications opti-

mizations. Application specific I/O optimization builds on changing the I/O behaviour

to adapt and better fit to an existing I/O system. For that purpose a deeper understand-

ing of the application’s I/O algorithm and available I/O libraries and tools is required.

When improving unoptimized application I/O, a significant performance increase can be

obtained. As a disadvantage the optimization will only be applied to single application.

Both [18] and [19] are examples of improving I/O of an application.

2Portable Operating System Interface for Unix

Chapter 1. Introduction 8

System optimization or improved I/O architectures can benefit a whole set of applica-

tions. The improvements build on either hardware or software changes that could benefit

I/O performance. Occasionally system optimizations or changes require adapting the

applications. Even when application changes are not required the overall benefit could

depend on the I/O behaviour exhibited. As a result, not all applications are equally

improved when implementing system optimizations.

The following explain a short set of I/O optimizations and emerging I/O architectures.

While the focus remains on system optimizations, when suitable application optimiza-

tions are mentioned. The main target from this study remains observing the I/O be-

haviour of scientific applications on HPC systems. However, the explained optimizations

are later used to possibly shed light on how the observed I/O behaviour can be utilized

for improved performance or reducing overall system cost. As a result, the I/O opti-

mization list is not exhaustive, leaving room for matching observed I/O behaviour with

future technologies and architectures.

I/O forwarding

To provide more computing power HPC systems are rapidly scaling into order of tens

of thousands of compute nodes with the possibility of running in the order of millions

of processes. Although parallel filesystems are designed for multi-client use, these scales

could significantly degrade performance.

I/O forwarding decreases the number of process accessing a given I/O system. Dedicated

I/O nodes are tasked to access data on behalf of the compute nodes [20]. As a result

the I/O system has to service a smaller number of processes. Network and system costs

are also significantly reduced. Fig 1.2 shows the change of I/O forwarding on the I/O

stack [20].

I/O forwarding is a combination of hardware and software changes. As the compute

node and I/O node implementation performs the task of I/O forwarding, there is no

need for application changes. However, while reducing the number of nodes accessing

the filesystem improves performance, application developer should be aware of I/O par-

allelism and its benefits. Each I/O node has it’s own link to the I/O system. Therefore,

to fully utilize the available system bandwidth application developers should use as many

Chapter 1. Introduction 9

Figure 1.2: I/O stack with I/O forwarding

I/O nodes as available in their allocation. I/O forwarding can open the door for more

I/O optimizations, such as improved I/O scheduling and asynchronous data staging [21].

Burst buffers

Burst buffers aim at overcoming low bandwidth bottlenecks for high short I/O bursts.

Often to implement this the burst buffers exploit high internal network bandwidth. The

I/O bursts are then buffered and slowly moved to the external storage. To provide fast

I/O, burst buffers use SSDs. The benefit from burst buffers depends on applications

and how much they exhibit a bursty behaviour. In [1] the observation of bursty I/O

behaviour is considered to model and test the benefits from burst buffers, while in [22] a

physical test system is implemented and GPFS is used to manage it. Burst buffers can

also be extended to operate as a cache between the computation and I/O system. This

could increases the benefit seen on the read path.

Prefetching

A prefetching mechanism reads data from the I/O system ahead of time. The data is

therefore preloaded when requested by the application. To achieve a benefit prefetching

Chapter 1. Introduction 10

can use application I/O idle periods. Two terms can be distinguished in this context.

The first is prefetching; the act of system preloading data based on system access pattern

recognition during or before application start. Preloading data before application start

is called pre-execution prefetching and can be used to hide I/O latency [23]. Prefetching

can also be guided by application hints while running. The second term is readahead;

which can be considered the act of an application using asynchronous I/O to preload

data3. Prefetching requires the knowledge or the ability to recognize the exhibited access

patterns [24]. The benefits from both implementing prefetching and readahead highly

depends on the application I/O behaviour.

Active storage

Most I/O optimizations target improving the I/O access to the external storage system.

Active storage is a new concept in which the I/O stack is significantly altered. Storage

units are directly embedded into the computation system to be directly accessible [25].

By employing new storage technologies the embedded storage can be used as a burst

buffer or as an extension for internal computation memory. The storage can be embedded

into all compute nodes, creating a homogeneous system or only placed into a smaller set

of nodes such as the I/O nodes creating a heterogeneous system. The embedded storage

can use a local filesystem or different data representations such as key/value object store

[25]. Benefiting from an active storage configuration requires applications that can utilize

the added storage through different interfaces. Determining the extend of that benefit

requires understanding the relationship between the applications computation and I/O

access patterns. Studying the computational behaviour of application’s is beyond the

scope of this study. Yet primary knowledge of I/O application behaviour can benefit

active storage design and possibly help initiate selection of I/O intensive applications

which can benefit from such I/O architectures.

Other optimizations

There are many more I/O optimizations. These include collective I/O and data sieving.

Both attempt increasing request sizes by restructuring the access pattern. This builds

3The two terms readahead and prefetching are often interchangeably used. The distinction is made
in this study to separate system optimizations from application optimizations.

Chapter 1. Introduction 11

on the assumption that non-contiguous I/O reduces performance [26]. In collective I/O

a group of processes can coordinate their I/O access [27]. A non-contiguous group of I/O

requests from different processes can therefore be combined. In [28] the benefit of col-

lective I/O is increased by sharing the data layout with the filesystem. Meanwhile, data

sieving merges separate I/O requests from a single process by reading or writing data

physically allocated between the requests. For writing a read-modify-write operation is

performed [26].

The changes for collective I/O and data sieving suggested in [26] and [27] are imple-

mented into the MPI-I/O interface. As a result, all applications that use the MPI-I/O

interface can benefit. The extent of performance improvement depends on several factors

including system settings and application I/O patterns [29].

Chapter 2

I/O System Architecture

As previously shown, large supercomputers require a complex I/O stack. These support

the I/O requirements of the multi-core and multi-thread applications. In Chp. 1, the

extend of possible variations on the I/O stack has been introduced. The following

explains a practical example on the basis of JUGENE, a BlueGene/P system operated

in Juelich supercomputing center between 2009 and 2012. JUGENEs 72 racks offered

a peak performance of 1 PetaFlop/s1 with 288×103 compute cores and had 144 TiB of

main memory [5].The interest in JUGENE for this study is availability of collected I/O

logs over a large period of time. These offer the possibility of further studying the I/O

behaviour of scientific applications on a large supercomputing system.

2.1 JUGENE I/O Stack

JUGENE’s I/O stack is similar to the one introduced in Chp. 1. The applications

can either communicate with the filesystem using POSIX-I/O or employ various higher

level I/O libraries, such as HDF5 and NetCDF [5]. These offer an extended API. The

main difference to a traditional I/O stack is the use of I/O forwarding. Compute nodes

forward their I/O requests to dedicated I/O nodes. These then execute the I/O request

on behalf of the compute node. JUGENE had an I/O node to compute node ratio of

1:128, i.e. each rack contains 8 I/O nodes. The last rack is an exception and had a

ratio of I/O node to compute nodes of 1:32, i.e. contains 32 I/O nodes. BlueGene/P

1Floating point operations per second.

13

Chapter 2. System Architecture 14

offered two internal networks, a 3D torus and a binary tree for collective communication.

Compute nodes employed the binary tree network to forward I/O requests to the I/O

nodes.

Figure 2.1: Blue Gene/P I/O stack, adapted from [5]

Fig. 2.1 shows the I/O forwarding on BlueGene/P. The application initiates the I/O

request using either directly POSIX-I/O or higher level libraries. Higher level libraries

such as MPI-IO might perform collective operations. These in turn might use the 3D

torus to communicate across the compute nodes. The Compute Node Kernel (CNK)

then forwards the I/O request via the BlueGene/P binary tree network to the I/O node.

The Control and I/O Daemon (CIOD) receives the I/O request for further processing

and forwarding to the filesystem. CIOD offers 1 buffer for each process running on the

compute node group attached to the I/O node. BlueGene/P has a virtual node (VN)

mode that runs 4 processes on each compute node. Therefore the CIOD offers 4 buffers

for each compute node [5]. Each compute node process uses its allocated CIOD buffer

for forwarding the request to the filesystem. Therefore, if the request is larger than the

CIOD buffer allows, the request is split. This takes place on the compute node. The

CIOD buffer size has been set on JUGENE to 4MiB [5].

Chapter 2. System Architecture 15

On behalf of the compute node, the I/O node forwards the I/O requests to the filesystem.

I/O nodes run a full Linux and employ a 10GbE Ethernet to communicate with the

filesystem server. JUGENE uses a storage cluster built on the IBM General Parallel

File System (GPFS) [30].

2.2 Storage Infrastructure

Figure 2.2: JUGENE I/O architecture, adapted from [5]

The storage cluster supporting JUGENE has an aggregate performance of 66GiB/s.

GPFS is used to handle the disks and servers that are required to achieve this perfor-

mance. This allows applications to access the filesystem in parallel. GPFS uses Network

Shared Disk (NSD) servers. Since compute nodes in a traditional system do not contain

any storage, GPFS offers NSD clients. In a traditional system, compute nodes would

access the GPFS by running the GPFS NSD clients. As previously explained, Blue-

Gene/P compute nodes forward their I/O requests to dedicated I/O nodes. As shown in

Fig. 2.2 the I/O node uses the NSD client to fulfil the I/O requests, that were initiated

by the compute node. This construction shows the advantage of I/O forwarding. By

using a smaller set of nodes to access the GPFS, only a few NSD clients have to run.

This in turn can reduce the computation time spent in I/O organizational operations

Chapter 2. System Architecture 16

and filesystem locks. GPFS client on the I/O nodes contain a pagepool buffer, which

is used to cache data and metadata. The pagepool buffer is set to 1024MiB [5]. It is

worth noting here that the GPFS file servers are split into several filesystems. These are

accessible using shell environment variables. Users are encouraged to use the $WORK

scratch filesystem for I/O during job execution. The other filesystems are used for user

home directories or as archives.

2.2.1 GPFS I/O Counters

GPFS provides a method for monitoring I/O performance, which is described in [31,

Chapter 8]. The monitoring is based on using the mmpmon command (Further details

of the command’s options can be found in [32, Chapter 7]). The counters registered by

the mmpmon are shown in table 2.1.

Keyword Description

n IP address of the node responding. This is the address by which GPFS
knows the node.

nn The hostname that corresponds to the IP address (the n value).

rc Indicates the status of the operation.

t Indicates the current time of day in seconds (absolute seconds since Epoch
(1970)).

tu Microseconds part of the current time of day.

cl Name of the cluster that owns the file system.

fs The name of the filesystem for which data is being presented.

d The number of disks in the filesystem.

br Total number of bytes read, from both disk and cache.

bw Total number of bytes written, to both disk and cache.

oc Count of open() call requests serviced by GPFS. This also includes creat()
call counts.

cc Number of close() call requests serviced by GPFS.

rdc Number of application read requests serviced by GPFS.

wc Number of application write requests serviced by GPFS.

dir Number of readdir() call requests serviced by GPFS.

iu Number of inode updates to disk.

Table 2.1: GPFS I/O (mmpmon) counters [31].

Many I/O profiling tools exist and offer the ability to monitor the I/O of an application

or a system. These tools can be compared on the basis of two properties. The first is the

form and quantity of I/O profiling offered. While the second is related to the position

of the I/O counters within the I/O stack. The mmpmon or GPFS I/O counters are

present in the GPFS NSD clients on the I/O nodes. This is shown in Fig. 2.3. Deciding

Chapter 2. System Architecture 17

which profiling tool and which layer in the I/O stack to monitor has an impact on the

analysis process. The limitations and benefits from having the I/O counters present in

the filesystem on the I/O nodes are discussed in Chp. 4.

Figure 2.3: Location of GPFS I/O counters in JUGENE I/O stack, adapted from [5]

Chapter 3

Methodology: I/O Criteria

Analysing the I/O behaviour of applications has become a crucial part in locating per-

formance bottlenecks. Many tools provide tracing and profiling of application I/O.

However, due to the complex underlying systems and libraries that perform the I/O

requests, the many dimensions of I/O behaviour are seldom explained by the measured

quantities. The complexity of I/O architectures results in a large range of quantities

to measure. Therefore a clear characterization of I/O criteria is necessary to analyse

the I/O behaviour of an application. These I/O criteria have to be chosen with a care-

ful consideration of both application and I/O system architecture. Understanding the

I/O system of HPC brings forward the known I/O metrics, such as bandwidth and I/O

Operations Per Second (IOPS). On the other hand, understanding how scientific appli-

cations perform I/O brings forward metrics that define the I/O behaviour. The I/O

criteria should allow for a wide analysis and comparison of a large set of applications’

I/O information. In turn this helps defining the I/O load that is exerted on a modern

HPC I/O system.

The complexity of modern HPC systems could lead to an overwhelming number of

measurable quantities. As a result, it is helpful to limit the I/O criteria by predefining

some I/O architectural bounds. The here defined I/O criteria assumes the existence

of a filesystem that manages the available storage through files, thereby ignoring the

underlying block layers and the filesystem inner workings. The filesystem allows to

perform read, write and seek operations. Furthermore a set of operations are considered

for manipulating the filesystem’s metadata. These operations are restricted to those

19

Chapter 3. Methodology: I/O Criteria 20

considered to dominate in a typical HPC workload and therefore include file create,

open, close and delete.

The selection of I/O criteria requires consideration of three fundamental aspects, which

are relevance, ease of measurement and I/O architecture dependency. Relevance gener-

ally questions the information attained from measuring and analysing the I/O criteria.

However, judging the relevance of I/O criteria to an analysis highly depends on the

analysis goal. The I/O criteria here aim for a general survey of I/O behaviour, there-

fore these consider various criteria that can be ignored for other analysis targets. The

second aspect to consider is the ease of measurement. Effectively I/O criteria should

only include measurable or quantifiable values. However, judging the ability to mea-

sure an I/O criteria highly depends on the I/O architecture and the used method of

measuring. As a result, the I/O criteria considered here is limited to those reasonably

easy to measure using various techniques that are listed when required. The third and

final aspect to consider when selecting I/O criteria is I/O architecture dependency. The

values measured to analyse the I/O criteria should attain an independence from the used

I/O architecture. In case a full independence is not possible, the I/O criteria should be

applicable to a broad range of architectures. For example, the maximum filling of buffers

in an I/O system could be considered an interesting I/O criteria to measure. However,

as some I/O architecture do not employ large buffers, such I/O criteria would not be

applicable to a broad range of I/O systems. A counter example is I/O parallelism, where

it is safe to consider that most I/O subsystems employed by modern HPC systems would

involve a parallel access to the I/O storage.

For practical use, an analysis using the I/O criteria has to observe two aspects, appli-

cation dependent changes and I/O measuring conditions. Application changes include

problem size, implementation or code revision and run or partition size. These have to

be defined in relation to any I/O profiling of an application. On the other hand, I/O

measuring conditions define the state of the machine and the layer of the I/O stack at

which I/O is measured.

The state of the machine has to be considered for the definition of I/O criteria, as it

is not possible or not desirable to perform a machine independent I/O profile. This is

due to machine I/O system and compiler software changing the I/O behaviour of the

application being profiled. Furthermore, the I/O behaviour measured for an application

Chapter 3. Methodology: I/O Criteria 21

might also be changed depending on the total I/O load produced by all applications

running on the machine at the time of measurement. The second component of I/O

measuring conditions is the layer or level of I/O stack at which I/O is measured. Buffer-

ing and collective I/O for example, change the measured number and timing of I/O

requests. Some machine architectures, such as BlueGene provide I/O forwarding nodes,

thus changing the number of I/O accessing processes on various I/O stack layers. Mean-

while, I/O libraries change requests sizes, timings and even number of files accessed. It

is therefore crucial to define these unknowns or observe the limitations they set on the

I/O profiling. Once these conditions are met, the defined I/O criteria can be used to

profile the I/O behaviour of an application.

The description provided here for the selected I/O criteria occasionally define some

practical issues with evaluating and measuring individual I/O criteria. To investigate

the full potential of the I/O criteria, Chp. 4 provides a practical example for evaluating

the I/O criteria using the GPFS I/O counters introduced in Sec. 2.2.1.

3.1 Related Work

Most found related work does not provide an all around summary of I/O metrics and

criteria that can be used for a full evaluation of application I/O behaviour. This is

often due to the existence of a specific target for the I/O analysis, thereby reducing the

considered I/O criteria to those relevant to the pre-set goal. For example, [7], [24] and

[33] introduce some I/O criteria, focusing the scope on only those needed for applying

some special optimizations. However, the intention here is analysing the general I/O

behaviour of applications, from which the design of new I/O architecture can benefit.

Thus the I/O criteria introduced requires consideration of many more available I/O

metrics, including those found in various sources.

In [7] a clear focus on storage infrastructure evaluation is given. Here the common I/O

metrics such as bandwidth and IOPS in the form of throughput is introduced. Addition-

ally, capacity, reliability and cost are considered. These traditional metrics are useful

when comparing different storage systems. The approach taken here differs by consider-

ing that I/O storage infrastructure performance depends on application I/O behaviour.

To fulfil this analysis the given I/O metrics are redefined as seen by the application.

Chapter 3. Methodology: I/O Criteria 22

The then defined application I/O requirements can be used to judge the total benefit

of a superior system in terms of these metrics. The assumptions is that understanding

maximums and totals of bandwidth, IOPS and needed capacity of application’s in rela-

tion to available system resources, could allow for achieving a higher I/O performance

and/or reducing cost.

In [24] I/O access patterns are defined, to implement and optimize prefetching. Mean-

while, in [33] the ability of applications to decouple I/O from processing is introduced to

exploit asynchronous I/O. By aggregating and regrouping these introduced I/O criteria

it is possible to formulate a wide view for a better understanding of overall application

I/O behaviour. Thereby allowing for weighing the benefits from introducing new I/O

architectures to current application I/O behaviour.

The approach of evaluation of a large set of applications’ I/O is also taken in some

studies. For example, [15] tackles I/O system optimization with an attempt to perform

a closer study of application I/O behaviour. Although [15] contains many useful I/O

criteria, the analysis presented here complements these by using many more. Addition-

ally, [15] focuses the analysis on a limited set of applications. In comparison the I/O

criteria selected here should allow for mass analysis and comparison of applications’ I/O

behaviour.

The best attempt found for introducing I/O criteria and metrics that can be used for

a wide application I/O analysis is the Charisma project [11], [34] and [35]. Although

the intention of a wide I/O application study is given, the focus remains on file access

patterns to improve filesystem’s performance. To achieve this goal the project limited

itself to analysing production I/O without relating the I/O behaviour to specific ap-

plications. In contrast, the I/O criteria selection introduced here is application based,

thereby requiring connecting the I/O behaviour and the application.

Other sources extrapolate on the subject of I/O interfaces. Some criteria can be inferred

from these sources. As an example [36] deals with designing a portable I/O interface. It

therefore explains the difficulties that applications face in adapting and optimizing I/O.

As result, further application details are relevant to the I/O criteria and the analysis

of I/O behaviour. These might include I/O interface and libraries used, as well as

implemented I/O optimizations. Some I/O criteria related to application details can be

found in App. A.

Chapter 3. Methodology: I/O Criteria 23

3.2 Basic Quantities

To clearly the formulation of the I/O criteria, it is necessary to define basic quantities in

relation to I/O. These quantities are organized into three groups defining the application,

the I/O requests and the file or filesystem operations.

3.2.1 Application Quantities

Three quantities are considered to define an application for I/O analysis:

tstart Time when execution of application starts.

tend Time when execution of application ends.

P Number of processes. Where each process is identified by a number p

(0 ≤ p < P).

3.2.2 I/O Request Quantities

Data or I/O requests on the other hand can be defined by time t, size s and type as read

r or write w. Since the I/O criteria intends the evaluation of overall application I/O

behaviour, it is easier to consider the aggregate number of operations a basic quantity.

This leads to the definition of the following primary quantities:

Dr(s, t) Number of read operations with request size s Bytes (s ≥ 0) exe-

cuted during time interval from tstart until time t (tstart ≤ t ≤ tend).

By definition Dr(s, tstart) = 0.

Dw(s, t) Number of write operations with request size s Bytes (s ≥ 0) exe-

cuted during time interval from tstart until time t (tstart ≤ t ≤ tend).

By definition Dw(s, tstart) = 0.

Chapter 3. Methodology: I/O Criteria 24

Using the basic quantities some derived quantities can be defined:

Dr(t) Number of read operations with any request size executed during

the time interval from tstart till time t.

Dr(t) =
∑
s

Dr(s, t) (3.1)

Dw(t) Number of write operations with any request size executed during

the time interval from tstart till time t.

Dw(t) =
∑
s

Dw(s, t) (3.2)

D̃r,∆t(s, t) Number of read operations with request size s Bytes (s ≥ 0) exe-

cuted during the time interval [t−∆t, t].

D̃r,∆t(s, t) = ∆t
∂Dr(s, τ)

∂τ
|τ=t (3.3)

In case of sampling the number of read operations in discrete time intervals

tk = t0 + k∆t this reduces to:

D̃r,∆t(s, t) = Dr(s, tk)−Dr(s, tk−1) (3.4)

D̃w,∆t(s, t) Number of write operations with request size s Bytes (s ≥ 0) exe-

cuted during the time interval [t−∆t, t].

D̃w,∆t(s, t) = ∆t
∂Dw(s, τ)

∂τ
|τ=t (3.5)

In case of sampling the number of write operations in discrete time intervals

tk = t0 + k∆t this reduces to:

D̃w,∆t(s, t) = Dw(s, tk)−Dw(s, tk−1) (3.6)

Chapter 3. Methodology: I/O Criteria 25

D̃r,∆t(t) Number of read operations with any request size executed during

the time interval [t−∆t, t].

D̃r,∆t(t) =
∑
s

D̃r,∆t(s, t) (3.7)

D̃w,∆t(t) Number of write operations with any request size executed during

the time interval [t−∆t, t].

D̃w,∆t(t) =
∑
s

D̃w,∆t(s, t) (3.8)

3.2.3 Filesystem Metadata Operation Quantities

Filesystem metadata operations can be described using time t, size s of file and type

of file operation, which can be either create, open or close. Using this the following

quantities can be defined:

Fcreate(s, t) Number of files with size s (s ≥ 0) created during the time interval

from tstart till t (tstart ≤ t ≤ tend). For any s, Fcreate(s, tstart) = 0.

Fopen(t) Number of file open operations executed during the time interval

from tstart till t (tstart ≤ t ≤ tend). By definition Fopen(tstart) = 0.

Fclose(t) Number of file close operations executed during the time interval

from tstart till t (tstart ≤ t ≤ tend). By definition Fclose(tstart) = 0.

For some criteria it is necessary to link the I/O request with the process that initiated

the request and the file on which the request is carried out. For these the following

quantities are defined:

R(p, f, i) i-th I/O request from process p for a given file handle f . i is in the

range [0, np,f], where np,f is the total number of I/O requests from process

p to file f .

Roff(p, f, i)Offset of the i-th I/O request from process p for a given file handle

f with respect to the file start.

Chapter 3. Methodology: I/O Criteria 26

Additional filesystem operations can be defined using time t, file handle f and type being

either directory operation or inode update. The following quantities are then defined:

Fdir(t) Number of directory operations during the time interval from tstart

till t (tstart ≤ t ≤ tend). By definition Fdir(tstart) = 0.

Finode(t) Number of inode updates executed during the time interval from

tstart till t (tstart ≤ t ≤ tend). By definition Finode(tstart) = 0.

3.3 Category 1: Aggregate Performance Numbers

The aggregate performance numbers represent a quantitative evaluation of application

I/O and therefore assess the magnitude of I/O the system has to withstand. Most com-

mon benchmarks and I/O analysis use these metrics to measure I/O system bottlenecks.

As a consequence many assume that by achieving the highest requirements of applica-

tion I/O in terms of these metrics the I/O has been thoroughly optimized. However,

these metrics only offer a single dimension of optimization and might result into over-

assessing application I/O requirements and missing the opportunity of creating a more

cost effective I/O system. One reason for this misconception is the ease by which the

performance metrics can be measured. A wide range of benchmarks are available to

measure the system I/O, even using the same access patterns that applications produce.

Additionally, optimization based on these metrics allow system administrators to inde-

pendently reconfigure the I/O system with the hope for better performance without the

need for application changes. Therefore, these metrics are still valuable to know when

analysing I/O, but should be critically observed in light of more detailed qualitative I/O

analysis metrics.

Classification 1.1 Total amount of data read/written

The total amount of data read or written by the execution of an application can be

defined by:

Sr =
∑
s

sDr(s, tend) (3.9)

Sw =
∑
s

sDw(s, tend) (3.10)

Chapter 3. Methodology: I/O Criteria 27

Sr and Sw are important to understand the capacity of data that the I/O storage system

will deal with. It is also beneficial to know the data quantities an application works on

when using various buffering techniques. It should be noted that total amount of data

read or written mostly does not depend on the I/O stack layer where it is measured. One

exception would be the use of compression on one or more of the I/O layers. Another

exception is the use of data sieving [26], where data that lies between non-contiguous

I/O requests is also read.

Classification 1.2 Total number of IOPs

Total number of read or write I/O requests initiated by the application defined as:

Nr =
∑
s

Dr(s, tend) (3.11)

Nw =
∑
s

Dw(s, tend) (3.12)

Nr and Nw do not include filesystem operations such as file creation and file opening.

The IOP definition here only relates to application initiated I/O requests. The total

number of IOPs heavily depends on the I/O stack layer it is measured on. This is due

to various I/O optimizations such as data sieving and collective I/O [26]. Reducing the

number of IOPs on various layers has been mostly driven by the use of HDDs, these offer

better performance for reduced contiguous IOPs. It is worth noting that some emerging

storage technologies benefit less from this optimization [37, Chapter 5].

Classification 1.3 Read/Write bandwidth

The read and write bandwidth at time t can be defined as:

Br(t) =
d

dτ

∑
s

sDr(s, τ)|τ=t (3.13)

Bw(t) =
d

dτ

∑
s

sDw(s, τ)|τ=t (3.14)

As Dr and Dw might not be continuous but rather measured at discrete points of time,

the bandwidth measured becomes a local average over ∆t, where ∆t is the measuring

Chapter 3. Methodology: I/O Criteria 28

interval. Using the discrete time interval definition of D̃r,∆t(s, t) and D̃w,∆t(s, t) given

in Eq. 3.4 and 3.6 respectively, the bandwidth can be redefined as:

Br(t) =

∑
s sD̃r,∆t(s, t)

∆t
(3.15)

Bw(t) =

∑
s sD̃w,∆t(s, t)

∆t
(3.16)

The maximum read and write bandwidth for an application can be defined as:

Bmax,r = max
tstart≤t≤tend

[Br(t)] (3.17)

Bmax,w = max
tstart≤t≤tend

[Bw(t)] (3.18)

Using total amount of data read and written defined in Eq. 3.9 and Eq. 3.10 respectively,

the average read and write bandwidth over the application’s runtime can be defined as:

Br =
Sr

tend − tstart
(3.19)

Bw =
Sw

tend − tstart
(3.20)

Comparing the maximum bandwidth with the available network and I/O system band-

width helps indicate how often the I/O subsystem is really challenged by the application.

As a result, an application that operates at the maximum available bandwidth might

benefit from an I/O system bandwidth increase. However, without further analysing the

applications I/O behaviour a simple increase in system bandwidth might be a missed

opportunity for more cost effective solutions. For example, an application that is only

bottlenecked over a few bursts by the bandwidth limitation could be optimized using

burst buffers [1], which are explained in Sec. 1.3.1. Such possible use of emerging

I/O architectures will be further introduced when evaluating the I/O criteria using the

GPFS I/O counters in Chp. 4. On the other hand, the average bandwidth in relation to

the total amount of data read or written (Classification 1.1) would allow for comparing

I/O magnitude of different applications. This could be of interest for HPC system ad-

ministrators that are looking for applications that require further attention on the I/O

system.

Chapter 3. Methodology: I/O Criteria 29

Classification 1.4 Read/Write IOPS

Read or write IOPS (Γ) at time t can be defined as:

Γr(t) =
dDr(τ)

dτ
|τ=t (3.21)

Γw(t) =
dDw(τ)

dτ
|τ=t (3.22)

Similar to the definition of bandwidth, Dr and Dw might not be continuous but rather

measured at discrete points of time. Thus the measured IOPS becomes a local average

over ∆t, where ∆t is the measuring interval. Read and write IOPS can therefore be

redefined as:

Γr(t) =
D̃r,∆t(t)

∆t
(3.23)

Γw(t) =
D̃w,∆t(t)

∆t
(3.24)

Where D̃r,∆t(s, t) and D̃w,∆t(s, t) in Eq. 3.7 and Eq. 3.8 are evaluated using the discrete

time interval definition given in Eq. 3.4 and Eq. 3.6 respectively.

The maximum read and write IOPS achieved during application run can be defined as:

Γmax,r = max
tstart≤t≤tend

[Γr(t)] (3.25)

Γmax,w = max
tstart≤t≤tend

[Γw(t)] (3.26)

Using the total number of read and write I/O requests defined in Eq. 3.11 and Eq. 3.12

respectively, the average read and write IOPS of an application run can be defined as:

Γr =
Nr

tend − tstart
(3.27)

Γw =
Nw

tend − tstart
(3.28)

Similar to maximum bandwidth, maximum IOPS of an application can help indicate how

often the I/O subsystem is really challenged by the application’s I/O. It is important to

note that bandwidth and IOPS are linked through the request size. In other words, an

application limited by IOPS but not by bandwidth, could benefit from increasing the

Chapter 3. Methodology: I/O Criteria 30

request sizes. Indeed many libraries and I/O stack layers attempt increasing the request

size by using data sieving and collective I/O [26]. Using buffers write can be delayed

to combine spatially adjacent requests. Meanwhile, using readahead and prefetching

larger chunks of data can be read, thereby increasing the request sizes. As a result, the

number of I/O requests executed changes on different I/O stack layers, directly leading

to a change in the IOPS value measured. On the other hand, average IOPS in relation

to total number of I/O requests (Classification 1.2) allows for comparing I/O request

magnitudes of different applications.

Classification 1.5 Total number of files created

Total number of file creations can be defined as:

Fcreate =
∑
s

Fcreate(s, tend) (3.29)

The purpose is to have initial information on the metadata operations required by the

application. Many applications are designed using task-local files, that is each process

creates and uses its own file. As the number of cores and processes on supercomputers

increases, filesystems have to endure an ever growing number of metadata operations.

To prove this limitation, a test shown in [38] resulted in JUGENE’s attached filesystem

taking 33min to create a total of 256K files. [38] continues to describe SIONlib a

library that reduces the number of physical open files. Therefore when using SIONlib

the number of open or created files could change between I/O stack layers, which should

be acknowledged when measuring the number of created files. As additional information

each file size might be analysed. Knowing the maximum Fmax,s and minimum Fmin,s file

sizes might be useful for backup and filesystem design.

Classification 1.6 I/O intensity

The I/O intensity can be defined as the number of time intervals where read, write or

a mix of read/write operations dominate, divided by the total execution time (tend −

tstart) of the application. I/O in the form of read or write is considered to dominate

if it surpasses a certain threshold c. The threshold can be tuned so as to avoid small

I/O, such as logging, to influence the I/O intensity. Other I/O intensity definitions

Chapter 3. Methodology: I/O Criteria 31

exist, such as the execution time without I/O divided by the execution time with I/O.

However, compared to the definition used here some of these lack ease and accessibility

of measuring I/O intensity for a large set of applications.

An issue with defining I/O intensity is that it considers the time taken by an I/O event.

So far the duration of an I/O request was not considered, as only the number of I/O

events is counted in a given time interval. While an I/O event can be counted at the

moment of initiation or conclusion, the I/O request data stream would last for a given

period of time. This is relevant when considering the property of I/O used to define

dominating I/O intervals. The property can either be I/O requests or I/O quantity and

would be compared accordingly to a reasonably selected threshold c.

Assuming that modern HPC systems employ multiprocessing, to formulate the I/O

intensity the following definition is needed for each process p:

h∆t,p(t) =

 1 if φr > c or φw > c,

0 else,
(3.30)

Where φ depends on the I/O property used to evaluate the dominating I/O intervals.

When using I/O requests, φr =
∑

s D̃r,∆t(s, t) and φw =
∑

s D̃w,∆t(s, t). Meanwhile,

when using I/O quantity φr =
∑

s sD̃r,∆t(s, t) and φw =
∑

s sD̃w,∆t(s, t). It should be

noted that despite defining the I/O quantity in terms of I/O requests, the measured

I/O quantity should be viewed as a flux of data over time disregarding the related I/O

requests.

Based on h∆t,p the following can be defined:

H∆t(t) =

 1 if for at least one p, h∆t,p(t) > 0,

0 else,
(3.31)

Finally the I/O intensity can then be defined as:

I =

∑
tH∆t(t)

(tend − tstart)/∆t

= ∆t

∑
tH∆t(t)

tend − tstart
(3.32)

Chapter 3. Methodology: I/O Criteria 32

In essence the I/O intensity computes the fraction of time during which I/O is performed.

Therefore the I/O intensity is both machine and application dependent. A computation-

ally powerful machine would make applications seem more I/O intense, while a machine

with a larger I/O subsystem would make the same applications seem less I/O intense.

Therefore the measured I/O intensity cannot be compared across different systems. Ad-

ditionally modern I/O subsystems tend to serve a larger set of separate systems running

separate applications. Therefore the real time I/O intensity would not only depend on

the I/O operations of the application but on other applications that ran at the same

time.

Although the principle might seem simple, measuring I/O intensity requires further

issues to be covered. As I/O might be done asynchronous or buffered, the I/O stack

layer on which the fraction of time spent in I/O is measured, effects the I/O intensity.

For example, using asynchronous I/O measuring on the application level would yield

a different I/O intensity than measuring in the filesystem. Furthermore, in case of the

presence of buffering it should be made clear when an I/O operation has been concluded.

For example, a write request can be considered done either when it has reached the final

storage or once the data has been buffered.

A closer study of I/O intensity can help begin to evaluate the usefulness applications

would have from introducing asynchronous I/O, when measured on a synchronous I/O

system. This can be done in relation to the busy work parameter defined in [9] as the

computational complexity needed by an application to hide the I/O operations on a

given system. The practicality of such a study however depends on the I/O stack layer

where the I/O intensity is measured.

3.4 Category 2: I/O Pattern Analysis

For the purpose of improving prefetching, Byna et al. [24] suggested to classify I/O

patterns using five dimensions:

1. Request size

2. Type of I/O operation

3. Spatiality

Chapter 3. Methodology: I/O Criteria 33

4. Temporal intervals

5. Repetitive behaviour

Others reiterate these access pattern dimensions adding various details or focusing on a

subset [39], [15], [11] and [40]. To allow for analysing access patterns, the information

from these sources are combined and symbolically defined.

For parallel I/O in multiprocessing systems, the I/O can be viewed in terms of local or

global I/O. Local I/O refers to I/O as performed by individual processes, while global

I/O refers to the overall application I/O behaviour. Shown in [40] the local I/O access

patterns can be combined to form a global I/O access pattern view of an application. For

some HPC systems employing different I/O architectures, analysing the I/O per process

might not be relevant or feasible. For these systems the local I/O can be redefined

as needed. For example, local I/O can be defined as either the I/O as performed by

individual nodes or in case of I/O forwarding as the I/O performed by the dedicated

I/O nodes. However, the number of nodes or I/O nodes in a system is usually smaller

than the number of processes available to an application. Therefore, using node or I/O

nodes instead of processes as a local view would change the I/O patterns analysed. In

all cases, since most modern HPC I/O subsystems support large scale parallel I/O, the

I/O access pattern dimensions should allow for analysing both the local and global I/O

access patterns. The request size is excluded from this rule, as it has the same local and

global view. An example for the need of having a local and global view of I/O access

patterns is a local I/O showing repetitive behaviour that is not visible on the global

view.

Both the time and the I/O stack layer of analysis are critical points in evaluating appli-

cation I/O patterns. While most aggregate performance numbers can only be obtained

from measuring a run of the application, I/O pattern behaviour could also be inferred

from the I/O access style encoded into the application’s algorithm. This is due to ap-

plication I/O pattern analysis being a qualitative rather than a quantitative evaluation.

However, caution has to be taken when comparing real time I/O access pattern with

expected or coded I/O pattern. For example, I/O requests built into individual pro-

cesses might not occur at the same time if interprocess synchronization on I/O does not

take place. Additionally over the I/O layers request sizes and timing of requests might

change, which also should be accounted for on both the local and global view.

Chapter 3. Methodology: I/O Criteria 34

3.4.1 Request Size

The request size can be defined as the I/O quantity transferred as either read or write

when executing the I/O request and is a crucial factor that links IOPS to bandwidth. Up

to a limit and depending on the I/O subsystem and storage technology, when increasing

the request size, bandwidth increases and IOPS decrease. Many including [24] consider

small request sizes as a factor that degrades I/O performance. A good request size could

be considered as one that does not limit performance by reaching the limit of possible

IOPS.

In general each I/O request induces an overhead given by the network and the filesystem.

Therefore, the assumption is that a group of small I/O requests should result in a larger

latency than a single I/O request with the same total request size. However depending on

the I/O subsystem and the used storage technology this assumption might be mistaken.

For example, an HDD might quickly reach its peak IOPS when presented with a large

set of scattered small I/O requests. Meanwhile, an SSD could handle these scattered

small I/O requests faster if it can employ more on board storage chips [37, Chapter 5].

Hence, analysing the request sizes of applications should observe the I/O subsystem’s

performance using various request sizes.

Classification 2.1 Distribution of request sizes

The distribution of the probabilities pr(s) and pw(s) of read and write operations with

requests size s can be defined as:

pr(s) =
Dr(s, tend)∑
sDr(s, tend)

(3.33)

pw(s) =
Dw(s, tend)∑
sDw(s, tend)

(3.34)

An equally useful tool for investigating request sizes is the cumulative distribution func-

tion (CDF). In [15] the CDF of the percentage of read and write operations versus the

request size is investigated for different scientific applications.

Many I/O stack layers employ I/O techniques that lead to changing the number and

subsequently the size of I/O requests. As a result, the I/O stack layer on which the I/O

Chapter 3. Methodology: I/O Criteria 35

request sizes are measured highly affects the distribution of request sizes. This should

be accounted for when analysing the evaluation of the distribution.

Filesystems designate a block size (sblock) as the smallest I/O operation size. An I/O

request that is not a multiple of the filesystem block size might increase the transferred

I/O. Generally, I/O requests larger than or equal to the filesystem block size (s ≤ sblock)

should be acceptable, as these already start to reduce partial accesses to filesystem

blocks. Consequently, a request size distribution with higher probability of multiple or

larger than filesystem block size (sblock) requests could have a better overall performance.

Classification 2.2 Percentage of small I/O requests

A request size can be considered small if it is smaller than or equal to a predefined value

ssmall. Thus the fraction of small read and write requests can be defined as:

fr(ssmall) =

∑
s≤ssmall

Dr(s, tend)∑
sDr(s, tend)

(3.35)

fw(ssmall) =

∑
s≤ssmall

Dw(s, tend)∑
sDw(s, tend)

(3.36)

The most reasonable value to identify a small request size is to use ssmall = sblock, where

sblock is the filesystem block size. Since filesystems conduct every I/O operation in

multiples of sblock, smaller than sblock requests could result in an overhead. Other values

for ssmall might also be used. As discussed when introducing request sizes, small request

sizes could result in higher latency as the application becomes IOPS limited. Therefore

ssmall could be identified as the request size that would not allow for the IOPS limit to

be reached.

For practical evaluation, the percentage of small I/O requests measured depends on the

I/O stack layer at which the request sizes are measured. This is due to same reasons as

discussed for the distribution of request sizes (Classification 2.1).

Chapter 3. Methodology: I/O Criteria 36

Classification 2.3 Request size: Variable vs. fixed

The request size of an I/O operation is considered fixed, if for a given problem size the

i-th I/O request size is fixed. That is the i-th I/O operation will always have the same

size (si = constant), irrelevant of the problem state or other factors. The number of

variable size I/O requests can be defined as:

∑
i

σ(i) where: σ(i) =

 0 if si = constant,

1 else,
(3.37)

Meanwhile a request size is considered variable if it varies, e.g. depending on the problem

state. A variable request size si of the i-th operation can be the result of the input data,

even though the problem size has not changed. Applications with an increase in fixed

request sizes are more likely to exhibit repetitive behaviour either in the temporal or

spatial dimensions. Meanwhile, an increase in variable request sizes could complicate

understanding the I/O behaviour of the application as this could in turn depend on the

problem state or other factors. Furthermore, adapting underlying I/O architectures for

improved performance could be less complicated for fixed I/O requests than for variable

ones.

Variability of request sizes can be investigated using several runs of the same application,

while comparing si of each run with its previous value. Another more suitable option

is to investigate the I/O algorithm built into the application. An application that by

design uses uniform or constant I/O request sizes will most likely have fixed request sizes.

Another application designed using work queues or work stealing might allow different

processes to take different work loads, thus changing si. It is important to note that in

the context of fixed and variable request sizes there is no interest in the location and/or

data itself that is being requested. That is, if si of the i-th I/O request is constant then

the request size is considered fixed even if it contains different data with each run. The

aspect of spatiality and timing of I/O requests is covered in the other dimensions of the

I/O access pattern.

Chapter 3. Methodology: I/O Criteria 37

3.4.2 Type Of I/O Operation

An I/O operation can be typed as read, write or a mix of read and write. The type

of an I/O operation results in different behaviour of the I/O architecture. Indeed some

new I/O architectures might benefit one I/O operation type over others. Therefore,

to understand the applications’ I/O behaviour and it’s impact on the underlying I/O

subsystem, the quantity of each type should be evaluated. Furthermore, to analyse the

type of I/O operations in relation to application’s temporal behaviour, time intervals

can be assigned a dominating I/O operation type.

Classification 2.4 Percentage of I/O type

The fraction of I/O type for read and write can be defined based on the number of I/O

requests:

pr,IOPs
=

∑
sDr(s, tend)∑

s(Dr(s, tend) +Dw(s, tend))
(3.38)

pw,IOPs
=

∑
sDw(s, tend)∑

s(Dr(s, tend) +Dw(s, tend))
(3.39)

It can also be defined based on the amount of data read or written in bytes:

pr,Bytes
=

∑
s sDr(s, tend)∑

s s(Dr(s, tend) +Dw(s, tend))
(3.40)

pw,Bytes
=

∑
s sDw(s, tend)∑

s s(Dr(s, tend) +Dw(s, tend))
(3.41)

The percentage of I/O type can give a hint to the application’s category in terms of

I/O. For example, a simulation is likely to read a small amount of configurations and

produce larger amounts of data to write. On the other hand a data analysis application

is likely to read more data than it will write. However, caution should be observed when

defining the I/O behaviour of the application in terms of percentage of I/O type. For

example, the same data could have been re-read multiple times. Additionally, buffering,

collective I/O and data sieving among others might change the concluded percentage

of I/O type on different I/O stack layers. In general, the percentage of I/O type does

not observe data distribution in space or time, yet it still offers a good insight into

application I/O behaviour. In fact, disregarding data distribution in space and time

Chapter 3. Methodology: I/O Criteria 38

limits the percentage of I/O type to a single value per application. Thereby allowing for

comparison of type of I/O operations across a large set of analysed applications.

Classification 2.5 Dominating I/O operation type

Each time interval ∆t can be assigned a dominating I/O operation type when the ratio

of I/O operation type exceeds a predefined threshold ε (with 0 < ε� 1). This creates a

temporal distribution of the I/O operation type. Assigning a dominating I/O operation

type to a time interval ∆t can be done using the following ratios:

Read if
D̃r,∆t(t)

D̃r,∆t(t) + D̃w,∆t(t)
> ε (3.42)

Write if
D̃w,∆t(t)

D̃r,∆t(t) + D̃w,∆t(t))
> ε (3.43)

Read/Write if
D̃r,∆t(t) + D̃w,∆t(t)∑

s(Dr(s, tend) +Dw(s, tend))
> ε (3.44)

An alternative definition for the read/write domination is:

Read/Write if
D̃r,∆t(t)

D̃r,∆t(t) + D̃w,∆t(t)
≈ 0.5 (3.45)

OR

if
D̃w,∆t(t)

D̃r,∆t(t) + D̃w,∆t(t)
≈ 0.5 (3.46)

It is possible to analyse the dominating I/O operation type’s temporal distribution

by visualizing the read or write I/O type ratio over time. The ratios given here are

described using the number of I/O requests. Another option is to use the I/O quantity

for evaluating the ratio of I/O operation type in a given time interval ∆t. The suggested

dominating I/O operation type is limited to the evaluation using the number of I/O

requests. This reduces the number of values to examine in a large scale I/O analysis.

The ability to evaluate the I/O operation type on the time scale gives a deeper appli-

cation I/O access pattern description. Knowing that an I/O burst occurs at a specific

time in the application is even more useful when the dominating I/O operation type

of the burst is known as well. Due to some I/O stack layers shifting the I/O request’s

Chapter 3. Methodology: I/O Criteria 39

timing, the temporal distribution of dominating I/O operation type might change, when

measured on different I/O stack layers.

3.4.3 Spatiality Of I/O Requests

The spatial component of an I/O request is it’s address or location in the file or filesys-

tem. As previously discussed access patterns can be analysed with a local, meaning

process, node or I/O node view or using a global application view. Therefore, it is

possible to distinguish between a local and a global spatiality of I/O requests. The

first relates processes to files, while the second relates I/O requests in a given file to

processes. The files used by an application can be defined according to the local spatial

view as being either task-local or shared files. A task-local file is created, opened, read

or written by only one process, while a shared file is operated on by all or some of the

application’s processes. Building on the local view, global spatial view is the location,

i.e. the offsets, of I/O requests within a given file. It therefore combines both the process

and the application view of I/O requests’ location in a given task-local or shared file.

Classification 2.6 Task-local vs. shared

A file can be considered either task-local, i.e. accessed by one process, or shared, i.e.

access by more than one process. This can be defined as:

Task − local if

P∑
p=0

np,f = np,f (3.47)

Shared if

P∑
p=0

np,f > np,f for all p (0 ≤ p < P) (3.48)

That is a file is task-local if the sum of all I/O operations from all processes to file

f (np,f), is equal to only one process’s (p) I/O operations to the same file. On the

other hand, the file is shared if the sum of all np,f from all processes is larger than any

individual np,f of all processes. Using this definition a file is considered shared if more

than one process accesses the file. Therefore the fraction of processes accessing a shared

Chapter 3. Methodology: I/O Criteria 40

file can be defined as:

ap,f =

 1 if np,f > 0,

0 else,

Af =

P∑
p=0

ap,f

P
(3.49)

The resulting I/O behaviour and it’s performance from using task-local or shared files

highly depends on the filesystem and the I/O libraries employed. For example, shared

files could suffer from file locks, leading to I/O requests from separate processes to be

handled sequentially rather than in parallel. The handling of these file locks depends on

the filesystem’s implementation. Additionally, the use of task-local files’ performance

depends on the capability of the filesystem to handle the creation and opening of a

large number of files. This issue becomes relevant with the fast and extreme increase of

parallelism in modern HPC systems. As a result the metadata could become a bottleneck

for task-local files depending on the filesystem’s capability. This problem is addressed in

[38], where SIONlib maps task-local files on a reduced number of physical shared files.

It is worth noting that the use of SIONlib would result in changing the number of shared

or task-local files on different I/O stack layers. Finally, many I/O libraries including

MPI-IO change their behaviour attempting to optimize access for shared files. Due to

the impact the filesystem and I/O libraries could have on task-local and shared files,

their resulting I/O behaviour has to be analysed while occasionally considering the I/O

architecture.

On the other hand, the use of task-local or shared files could open other design dimen-

sions for the I/O architecture. For example the use of task-local might allow for some

I/O subsystems to use local filesystems attached to each process or a subset of processes.

This is because task-local files clearly separate I/O from different processes. However,

such an implementation using task-local files could limit the use of collective I/O and

data sieving.

It is possible to add a third category of files called single-file sequential, defined in [38].

This describes a file that is task-local, yet the owning process uses this file to read or

write data on behalf of all other processes. The process using the task local file might

go so far as being a designated I/O process that does not participate in computation. In

Chapter 3. Methodology: I/O Criteria 41

a sense it becomes an application I/O forwarding process. Single-file sequential works

well for shared memory architectures, but is quite limited with distributed memory [38].

This category of files is not considered here since defining it requires observation of

inter-process communication which is beyond the scope of the here given I/O criteria.

Classification 2.7 Spatial access pattern classification

Spatial access pattern observes the location or offset relation between a consecutive set

of I/O requests (0 ≤ i < nf) that use the same file f (with nf � 1). Following [39] it is

possible to distinguish 5 types of spatial access patterns, defined as:

Sequential Sequential file access means for all consecutive requests in a se-

ries that:

Roff(p, f, i) > Roff(p, f, i+ 1) (3.50)

Contiguous Contiguous file access is a special case of sequential access with:

Roff(p, f, i) = Roff(p, f, i− 1) + si (3.51)

where si is the request size of the i-th I/O request.

Simple strided

access

Simple strided access is another sequential access with:

Roff(p, f, i) = Roff(p, f, i− 1) + oi (3.52)

where oi is a constant stride and could be a multiple of the

request size

Nested strided

access

Nested strided access is yet another sequential access, in which

there are several levels of strides nested together. A two level

strided access would therefore have an internal and an external

stride and could be defined as:

Roff(p, f, i) = Roff(p, f, i0) + oi

(
1− δ⌊ i

ns

⌋
, i
ns

)
+ ls

⌊
i

ns

⌋
(3.53)

Chapter 3. Methodology: I/O Criteria 42

where:

i0 = first I/O request in the access

oi = internal stride

ns = number of requests in external stride(
1− δ⌊ i

ns

⌋
, i
ns

)
=

 0 if at start of external stride,

1 else,

ls = external stride length

ls

⌊
i

ns

⌋
= sets beginning of external stride

Random The relation between Roff(p, i, f) and Roff(p, i− 1, f) is random

and not a function of s.

Despite defining the spacial pattern classification given here for one process or a local

view, the full concept behind simple and nested strided access can only be seen from

a global or application view. An example for simple strided access is given in Fig.

3.1. Shown is the commonly found simple strided access of parallel I/O for P processes

reading or writing consecutive chunks of data of length s with oi = Ps.

Figure 3.1: Example of simple strided access of a file f in a parallel application using
oi = Ps. Adapted from [39]

Defining nested strided access can be done using Eq. 3.53. It can also be imagined as a

substitution of one request from a process with another level of strided access [39]. The

example shown in Fig. 3.2 has an internal stride for each process of oi = 2s, an external

stride length of ls = 12s and ns = 2 requests per external stride. The nested strided

access pattern is used by many scientific applications [39].

Chapter 3. Methodology: I/O Criteria 43

Figure 3.2: Example of nested strided access of a file f in a parallel application using
ns = 2s, ls = 12s and oi = 3s where s is a uniform request size. Adapted from [39]

Analysing spatial patterns on the fly from an application I/O request set is difficult.

The major problem is the need to link every I/O request to its process, file and offset.

This tends to drastically increase the size of the I/O analysis data collected and require

implementation of complex pattern detectors. It is therefore preferred to analyse spatial

access patterns from the application’s I/O algorithm.

In [24] both post-execution and runtime analysis are used to predict future I/O. There-

fore understanding the spatial patterns commonly exhibited by analysed applications

could allow for designing prefetching or readahead of I/O requests. However, prefetch-

ing requires an application with a regular, consistent and predetermined I/O access

pattern, that can be easily detected and/or signalled to the I/O subsystem. The I/O

subsystem has to then be able to react and subsequently prefetch the data as needed

to achieve any performance improvements. Another option for an I/O subsystem to

use spatial patterns exhibited by applications is to improve data storage. For example,

understanding the spatial pattern could lead the filesystem to change the data alloca-

tion, thereby allowing for an improvement of data write or later it’s read back. Indeed,

some local filesystems already allocate adjacent blocks to written ones in anticipation

of sequential contiguous file access, which has an improved performance on HDD [37,

Chapter 5]. Additionally, I/O subsystems can improve collective I/O or data sieving if

the spatial pattern of an application is known. However, prior to altering the system to

accommodate any special access patterns these have to be established as being common

among applications.

Chapter 3. Methodology: I/O Criteria 44

3.4.4 Temporal Intervals

Temporal intervals analyses an application in time, compared to spatiality which analy-

ses the application in space. By observing the application’s I/O behaviour over time it

is possible to judge the uniformity of I/O over the execution time. It could be expected

that many application’s exhibit periods of intense I/O that might delay computation.

By detecting and applying various techniques such as asynchronous I/O prefetching and

burst buffers it is possible to overlap computation and I/O.

Classification 2.8 Temporal distribution of I/O

The temporal distribution of I/O considers the total number of I/O requests and total

amount of data read or written during a given interval [t −∆t, t] as a function of time

and can be defined as:

Sr,w(t) =
∑
s

(
D̃r,∆t(s, t) + D̃w,∆t(s, t)

)
(3.54)

Nr,w(t) =
∑
s

(
D̃r,∆t(s, t) + D̃w,∆t(s, t)

)
(3.55)

The temporal distribution of I/O can also be split into read and write, i.e. splitting

Sr,w(t) into Sr(t) and Sw(t) for read and write respectively, similarly splitting Nr,w(t) into

Nr(t) and Nw(t). A visualization of I/O distribution overtime could be very descriptive

of the I/O behaviour of an application. Indeed the value of Sr,w(t) and Nr,w(t) would

show the bandwidth and IOPS respectively required over time. Meanwhile the width

of a burst of I/O on an Sr,w(t) plot against time would show the magnitude and could

therefore define the size and external or internal bandwidth of burst buffers needed to

hide such a burst.

Classification 2.9 Burstiness parameter

A burst can be considered a sudden increase in I/O with a short duration. The burstiness

parameter attempts evaluating the overall burst behaviour of an application. Consider-

ing H∆t(t) defined in Eq. 3.37. It is possible to define a burstiness parameter for read

Chapter 3. Methodology: I/O Criteria 45

and write as:

ρ =


1− tanh

 l IO

l noIO

 if l noIO > 0,

0 else.

(3.56)

Where:

l IO = Average of consecutive time slices t during which H∆t(t) > 0

l noIO = Average of consecutive time slices t during which H∆t(t) = 0

The used equation assumes that a burst of I/O is a continues time slice where either read

or write is above a given threshold c. The value of the threshold c is used to evaluate

h∆t,p(t) in Eq. 3.30, which is subsequently used to evaluate H∆t(t) in Eq. 3.37. As

l IO or the average duration of I/O bursts increases, ρ tends towards 0. In this case

I/O is more distributed over the execution time. Meanwhile when l noIO or the average

duration of no I/O increases, ρ tends towards 1, meaning that I/O appears in bursts.

The burstiness parameter can be considered a quantifiable variable informing on the

temporal distribution of I/O (classification 2.8). It is therefore an attempt to define a

simple and relevant indicator from a potentially complex variable time series. Which is

needed as the use of a visualization of I/O overtime is difficult when comparing different

applications and matching the I/O behaviour to a suitable I/O architecture.

As the name indicates burst buffers [1] are used to catch and hide the delay of I/O bursts.

Understanding the burstiness of an application could indicate the usefulness and speci-

fication of burst buffers. For example, longer and bigger bursts require larger buffers to

hide them. Therefore by observing the burstiness parameter in relation with I/O inten-

sity (Classification 1.6), bandwidth (Classification 1.3) and IOPS (Classification 1.4) it

is possible to quantify the suitability of burst buffers, asynchronous I/O and prefetching.

A bursty application with sufficient time between bursts can benefit from asynchronous

I/O overlapped with computation. It can also benefit from a high bandwidth to a burst

buffer, while coping with a lower bandwidth to the external storage. To allow equal

benefits to read as much as write from these I/O architectures might require the use of

prefetching for read data to the available buffers. The prefetching can be triggered by

Chapter 3. Methodology: I/O Criteria 46

the application asynchronously or initiated by a spatial pattern recognition as explained

in classification 2.7. Filesystems and I/O libraries can also benefit from understanding

the exhibited burst behaviour of applications as quantified by the burstiness parameter.

3.4.5 Repetitive Behaviour

Repetition indicates that a certain I/O pattern will repeat itself. The pattern does not

need to occur in a constant periodic fashion to be considered repetitive. Repetition can

therefore take place in either space or time. For example, when two files are accessed

using the same access pattern, the application is said to exhibit a spatial repetitive

behaviour. Finding repetition can give the opportunity of using prefetching or prolong

buffering or caching of the read data.

Classification 2.10 Access pattern repetitive behaviour

A repetitive access pattern would mean that within a sequence of requests (0 ≤ i < n)the

following is found:

R(p, i, f) = R(p, i+ k∆, f ′) (3.57)

For:

fixed ∆

k = 1, 2, 3, ...

and potentially different f and f ′

Two I/O requests are the same given in Eq. 3.57 if either both involve the same data in

which case f = f ′, or both use the same offsets within the given files, i.e. Roff(p, i, f) =

Roff(p, i+k∆, f ′). If the same data is involved in two read requests caching and buffering

could make use of the repetition. However, if the same offsets, i.e. the same spatial access

pattern is used, prefetching can employ this knowledge to overlap I/O with computation.

It is also possible to consider the case for R(p, i, f) = R(p′, i + ∆, f) where p 6= p′.

That is two processes read the same data using the same access pattern at different

occasions. Processes with shared memory could then also benefit from such an access

Chapter 3. Methodology: I/O Criteria 47

pattern repetition by prolonging caching and/or buffering of the read data. A burst

buffer can also use this information to prolong data buffering.

As detection of access pattern repetition requires the analysis of spatial access patterns,

the same difficulties apply. Not only is it necessary to link each I/O requests with

its process, file and offset, but it is also required to detect and be able to compare

the resulting access patterns. It is therefore preferable to analyse the repetition through

careful study of application’s I/O algorithm. Once a repetition is detected, the challenge

of informing the I/O subsystem or detecting the pattern and its repetition remains. The

I/O subsystem would also need modification to be able use techniques for improving the

access once a repetitive access is detected.

Classification 2.11 Dominating I/O operation repetitiveness

Defining the dominating I/O operation type is given by the classification 2.5. To identify

a repetitiveness in the I/O operation type the count of number of occasions where during

a time interval ∆t′ the same I/O operation type dominates can be defined as:

nx,∆t′(δt) (3.58)

Where:

x = r (read), w (write) or rw (read/write)

and the same I/O operation dominates at t1 and t2 = t1 + δt

here (tend ≤ t1 < t2 ≤ tstart)

Detecting a repetition of dominating I/O can be done by plotting nx,∆t′(δt) for a given

∆t′ as a function of δt. It is worth noting that ∆t 6= ∆t′, where ∆t can be considered

the time interval between the discrete measured values and ∆t′ is a portion of the

application’s runtime duration. It is possible to propose that ∆t < δt < ∆t′ ≤ tend −

tstart.

It can be expected from many scientific applications to exhibit a repetitive dominating

I/O operation type. These applications could be using the pattern read - compute -

write. For such a cyclic pattern, overlapping computation and asynchronous I/O could

reduce I/O time.

Chapter 3. Methodology: I/O Criteria 48

3.5 Category 3: Parallel I/O

Parallel I/O describes the behaviour of the combination of the I/O of individual processes

in the temporal dimension. As previously discussed access patterns can be divided into

local and global [24]. Local access patterns describe the I/O of a single process. Global

access pattern describes the I/O of a parallel application across it’s multiple of processes

to a single or multiple of files. In Sec. 3.4 the I/O access patterns (Category 2) have

analysed the spatial access pattern of both the local and global application views. The

temporal behaviour however, is analysed on the local view only and does not account

for the combination of process I/O. As a result, the application has to be analysed for

parallel I/O.

As introduced before, for some I/O subsystems analysing process I/O is not relevant

or feasible, thereby redefining local I/O as node or I/O node I/O. Since in many cases

the number of nodes or I/O nodes is smaller than the number of processes on a given

HPC system, the redefinition of local I/O changes the depth of available measurable

I/O parallelism. This should be observed when analysing the parallel I/O behaviour of

applications.

Classification 3.1 Parallel I/O intensity

The parallel I/O intensity can be defined as the number of time intervals ∆t during

which more than one process performs read or write versus the total number of time

intervals during which I/O operations are performed. By this definition a real-time

concurrency is meant.

Considering h∆t,p(t) defined in Eq. 3.30 the following quantity can be defined:

ρ∆t(t) =

∑P
p h∆t,p(t)

P
(3.59)

Eq. 3.59 defines the fraction of processes which during the time interval [t − ∆t, t]

participated in the I/O access. Using ρ∆t(t) and H∆t(t) defined in Eq. 3.37, it is

possible to define the unnormalized parallel I/O intensity as:

P ′IO,∆t =

∑
t ρ∆t(t)∑
tH∆t(t)

(3.60)

Chapter 3. Methodology: I/O Criteria 49

If in all time intervals where I/O is performed all process are involved P ′IO,∆t = 1 is

maximized. P ′IO,∆t = 1/P is the minimal value, meaning that during all time intervals

with I/O only a single process was involved.

The normalized parallel I/O intensity can be then defined as:

PIO,∆t =
P ′IO,∆t − 1/P

1− 1/P
=
PP ′IO,∆t − 1

P − 1
(3.61)

The extreme case of no I/O, that is h∆t,p(t) = 0 for all t will lead to a parallel I/O

intensity of −1. This can be the result of choosing a too high I/O threshold c in Eq.

3.30 or analysing an application with too little I/O. Although an application with no or

little I/O that is analysed using a well defined threshold c is uninteresting, this case has

to be handled for analysis of a large number of applications. As a result Eq. 3.61 can

be extended:

PIO,∆t =

 0 if P ′IO,∆t = 0,
PP ′

IO,∆t−1

P−1 else.
(3.62)

PIO,∆t is a quantity in the range 0 ≤ PIO,∆t ≤ 1. Where a PIO,∆t = 0 indicates that only

one process does I/O at any given time interval ∆t. PIO,∆t = 1 indicates that for any

time interval ∆t I/O is performed by all processes. PIO,∆t is a measurement of real-time

parallelism. That is, PIO,∆t gives no indication as to whether all processes doing I/O in

parallel are involved in the same I/O task. Whether the application uses collective I/O

spanning over all process is not measured. Timing and duration of I/O is changed over

different I/O stack layers, thereby changing the parallel I/O intensity. I/O forwarding

also changes the number of processes that access the I/O system and therefore changes

the possible depth of I/O parallelism.

The PIO,∆t gives the ability to understand the real parallel behaviour, which is a result

of I/O libraries, parallel filesystem and application interprocess synchronization. Rec-

ognizing the efficiency of applications in doing real parallel I/O is useful for measuring

the parallel load the filesystem has to endure.

Chapter 3. Methodology: I/O Criteria 50

Classification 3.2 I/O operation concurrency

I/O operation concurrency ρ∆t(t) shows the number of processes involved in the I/O

operations over time. ρ∆t(t) is defined in Eq. 3.59.

While parallel I/O intensity (Classification 3.1) defines the total parallelism of an appli-

cation, I/O operation concurrency defines parallelism at a given time. The advantage

of using parallel I/O intensity is the ability to analyse a large set of applications and

compare the I/O parallelism using a single value. Meanwhile, I/O operation concurrency

is a temporal distribution representing the parallel I/O behaviour and can be used to

further analyse a smaller set of applications’ I/O parallelism.

Classification 3.3 Parallel I/O distribution

The aggregate performance numbers (Category 1) described in Sec. 3.3 analyses the

total performance numbers of the application. Showing the contribution of each process

to the total performance numbers allows for observing the distribution of I/O on the

individual processes. Table 3.1 shows the performance numbers that can be measured

for each process.

Number of read operations Np,r =
∑

sDr(p, s, tend)

Number of write operations Np,w =
∑

sDw(p, s, tend)

Amount of read data Sp,r =
∑

s sDr(p, s, tend)

Amount of write data Sp,w =
∑

s sDw(p, s, tend)

Number of open operations Fp,open

Number of close operations Fp,close

Table 3.1: Parallel I/O distribution metrics.

Together there are three I/O criteria for temporal parallelism of I/O. The first is parallel

I/O intensity (Classification 3.1) and represents the overall I/O parallelism of an appli-

cation. The second is I/O operation concurrency (Classification 3.2) and represents ratio

of I/O parallelism overtime. Finally, the third is parallel I/O distribution (Classification

3.3) and defines the magnitude of contribution from each process to the application’s

I/O. The parallel I/O distribution can also be represented as a temporal distribution

Chapter 3. Methodology: I/O Criteria 51

of the performance numbers. This is done by exchanging the aggregate performance

numbers with their temporal counterparts for each process.

Classification 3.4 Same file access concurrency

Same file access concurrency level indicates the number of processes accessing a given

file at the same time versus the total number of processes. The following definition is

needed for each process p:

a(p, f, t) =

 1 if np,f(t) > 0,

0 else,
(3.63)

where np,f(t) is the total number of I/O requests from process p to file f during the time

interval [t−∆t, t]. Then the same file access concurrency can be defined as:

A(f, t) =

∑P
p a(p, f, t)

P
(3.64)

The definition in classification 2.6 of task-local versus shared only labelled files and set

the fraction of processes accessing a shared file. Same file access concurrency however

gives the fraction of processes accessing a file over time. To avoid racing conditions the

I/O stack has to implement various synchronization and locking mechanisms. These in

turn can impact performance when shared files are used. The extend of that impact can

be concluded from the same file access concurrency. A file accessed by all processes at

different times could induce less synchronization effects than a file always accessed by

all processes at the same time. The same file access concurrency can be considered to

analyse the spatial component of an application’s parallel I/O.

3.6 Summarizing I/O Criteria

The introduction of a collective I/O criteria, allows for analysing I/O behaviour of a

single or a large set of applications using a standardized formulation. Studying a large

set of applications’ I/O allows for analysing and further understanding the overall I/O

behaviour of scientific applications on modern HPC systems and how these operate on

the given I/O architecture. Using this information new I/O architectures that would

Chapter 3. Methodology: I/O Criteria 52

redesign the I/O subsystem can be described to better accommodate the I/O require-

ments of scientific applications. However, this analysis process should consider that the

I/O behaviour changes as the I/O subsystem offers different capabilities. Therefore,

evaluating overall application I/O behaviour can be complemented by further analysing

a subset of I/O intensive applications. The I/O criteria overall analysis of I/O behaviour

would facilitate identifying the relevant subset of I/O intensive applications that can be

further analysed. The I/O criteria can also be used for evaluating I/O behaviour of

individual applications and possibly selecting suitable optimization techniques.

The I/O criteria presented here can be grouped into single values such as total amount

of data read/written (Classification 1.1) and I/O distributions over time, request sizes

or processes, which are listed below:

• Classification 2.1 Distribution of request sizes

• Classification 2.5 Dominating I/O operation type

• Classification 2.8 Temporal distribution of I/O

• Classification 3.2 I/O operation concurrency

• Classification 3.3 Parallel I/O distribution

• Classification 3.4 Same file access concurrency

When analysing a large set of applications an additional dimension is added to the

analyses process namely the analysed applications. In such a case single I/O criteria

values are best visualized as a distribution over the applications. On the other hand,

I/O distributions are difficult to visualize and/or analyse for a larger set of applications.

The I/O criteria are designed to overlap and some single values illustrate some idea of

their I/O distribution counterparts. For example, analysing the temporal distribution

of I/O (Classification 2.8) for a large set of analysed applications is partly covered by

the burstiness parameter (Classification 2.9).

Once the large set of applications are analysed and the I/O criteria evaluated, it is

possible to pick a smaller representative subset of applications. These would facilitate the

demonstration of I/O behaviour and allow for visualizing the I/O distribution criteria.

Tab. 3.2 provides an overview for all single value I/O criteria and can be used in relation

Chapter 3. Methodology: I/O Criteria 53

to I/O distribution criteria to further analyse the I/O behaviour of the subset. To

complement the analysis process further application information must be provided, this

includes number of process P and runtime duration represented by time when execution

of application starts tstart and ends tend.

Read Write

1 Aggregate performance numbers

1.1 Total amount of data Sr Sw

1.2 Total amount of IOPs Nr Nw

1.3 Bandwidth
Max Bmax,r Bmax,w

Avg Br Bw

1.4 IOPS
Max Γmax,r Γmax,w

Avg Γr Γw

1.5 Total number of files created Fcreate

1.6 I/O intensity Ir Iw

2 I/O pattern analysis

2.2 Percentage of small I/O requests fr(ssmall) fw(ssmall)

2.3 Number of request with variable size
∑

i σr(i)
∑

i σw(i)

2.4 Percentage of I/O type
in IOPs pr,IOPs

pw,IOPs

in Bytes pr,Bytes
pw,Bytes

2.6 Task-local vs. shared
Task-local

∑
ftask−local

Shared
∑
fshared

2.7 Spactial access pattern Exhibited spatial patterns

2.9 Burstiness ρr ρw

2.10 Access pattern repetitiveness yes (period ∆) or no

2.11 Dominating I/O repetitiveness yes (period δ) or no

3 Parallel I/O

3.1 Parallel I/O intensity PIO,∆t for read PIO,∆t for write

Table 3.2: Analysis map listing all single value I/O criteria to facilitate application
analysis.

Chapter 4

Performance Characterization:

Analysing GPFS I/O Counters

The GPFS I/O counters are explained in section 2.2.1 and were used to collect the

GPFS I/O logs1 for a period of approximately 19 months on JUGENE. Every 120 sec

the counters are logged for every I/O node. Additionally a large database containing all

jobs that ran on JUGENE over the same time period is kept. By equating the counters

with the start and end time of the application’s run a large scale analysis of I/O can be

performed. The analysis process presented here uses the I/O criteria described in Chp.

3 to evaluate the I/O behaviour of applications as seen by the GPFS I/O counters. This

allows for demonstrating the I/O criteria as an investigative tool, while commenting on

the relationship between analysis and measuring of I/O.

4.1 Related Work And I/O Profiling Tools

As the computation increases along with the available data storage, the awareness for

the need of investigating and optimizing I/O increases. As a result, many analysis and

profiling tools are created or updated to trace and log the I/O behaviour of scientific

applications on HPC systems. Part of the necessity to using various tracing tools is

rooted in the complexity of the I/O stack. It therefore becomes inherently difficult to

1The term GPFS I/O logs is used to indicate the resulting data from logging the GPFS I/O counters
periodically.

55

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 56

relate application I/O requests or behaviour to reactions of individual I/O stack layers

or total performance of the I/O subsystem [13][41][42].

Three steps can be attributed to the process of any I/O monitoring and/or profiling

technique. First is selecting a method of data collection, thereby deciding on the data

resolution (i.e. amount or type of data to collect) and I/O stack layer to measure I/O

on. Second is analysing or deciding on an analysis process for the collected data, which

includes the goal or behaviour to be analysed. Third and final is the use of the gained

knowledge towards improving I/O or application performance, system operation2 or

cost. Although all would agree on the need for I/O tracing, the approach taken by

many differs. As a result, not all techniques involve all three steps for I/O monitoring

and profiling. Despite the need to practically perform the three steps in order, many

interchange the order of selecting the methods or goals involved in them.

The following describes some methods and tools used in the process of I/O monitoring

and/or profiling. These methods are dissected across the different approaches they take

to the three steps. The list given and discussed here is by no means exhaustive. Yet

it allows for comparing the efforts made in this study with others. Additionally, it

evaluates some of the complementary work done.

4.1.1 I/O Measuring Tools

As inferred by first introducing the I/O criteria the approach taken here first decides

on the analysis process independent of the I/O measuring technique3. Many have a

different approach. In it the data collection method is created first and only later the

decisions are made on the needed analysis process. An example of such approach includes

many profiling tools, which instrument key functions to monitor and collect the relevant

events. Profiling of applications is regularly used to investigate performance bottlenecks.

Many tools were either extended or created to allow for instrumenting of I/O calls. One

such tool is VampirTrace [43]. Here all I/O events are recorded with varying details.

2Some studies use monitoring of system I/O for detecting performance degradation due to failing
hardware or to automatically steer the system, this approach is taken in Scalable I/O for Extreme
Performance (SIOX) [13]

3The introduction of I/O criteria mentions the limitations that the measuring method has on the
evaluation and analysis process. It also confirms that the selection of which I/O criteria to evaluate is
relevant to the measuring method. Despite the ability to interchangeably select either the analysis target
or the measuring technique first, both are intricately linked and the decisions related to each effects the
other.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 57

This allows for a full coverage of all I/O events and the related information, thereby

opening the possibility of full analysis of application I/O behaviour. Profiling tools can

also provide sophisticated methods for visualizing collected data, along with statistics of

the I/O calls. For example, the Vampir tool set provides Vampir and VampirServer for

visualization of VampirTrace collected data [43]. Nonetheless, the actual analysis and

investigation of I/O behaviour of application is mostly left to the application developers.

Many I/O profiling or tracing tools leave instrumentation of application to users. As a

result, only individual applications have their I/O measured as users employ the given

I/O profiling tool. An alternative, used by DARSHAN, is to instrument user space

libraries, thereby not requiring source code changes or instrumentation of individual

applications [10]. Nonetheless, I/O profiling tools require the instrumentation of events

to be observed. Due to the availability of various functions to users for performing I/O,

tool developers need to create appropriate instrumentation for all of these functions.

Otherwise, I/O events will be missed and subsequently not logged in the collected data.

For example, DARSHAN cannot monitor a job that does not use MPI [14].

Another method for data collection on I/O behaviour is the use of system counters. Many

of the I/O subsystem components implement counters that regularly collect statistics.

These can be either used or modified to regularly log their values. In [44] the RAID

controllers’ tools for querying performance and status is periodically polled and logged.

Meanwhile, [12] complements the DARSHAN collected data by using system level tools

to collect storage device activity and filesystem contents. These and others are similar

to the method used for collecting the GPFS I/O counters. The approach allows for

coverage of all I/O operations as seen by the logged counter on the specific I/O stack

layer. However, matching logged I/O to applications requires additional effort. In some

cases, the relationship to the application is ignored. For example, in [44] the analysis of

the RAID controllers’ counters have not been linked to specific applications.

A final method for data collection is to create dedicated systems. The Scalable I/O for

Extreme Performance (SIOX) creates a separate system that can collect I/O data on all

I/O layers for each I/O request [13].

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 58

Resolution of Data Collection

Due to the high resolution of data collection, profiling tools create a large quantity of

data during application runtime. This problem becomes more visible as the number of

recorded I/O events and the number of processes per application increase, which is a

common trend in today’s HPC systems. The produced data could therefore limit scaling

the trace to larger runs of an application or investigating a large number of application

I/O behaviour. Furthermore, only instrumented applications will have their I/O traced.

As a result, these tools are mostly limited to the analysis of individual applications.

Some profiling tools attempt eliminating the obstacles for data scalability by improving

the I/O performance when storing I/O traces. For example, in [45] I/O forwarding

techniques are used to improve the I/O of Vampir. Another option for allowing data

scalability of profiling tools is decreasing data produced by reducing the number of

recorded events necessary to recreate an I/O trace of the instrumented application [46].

Meanwhile, ScalaIOTrace uses event compression and aggregation of timing information

[47]. To reduce the data produced during I/O profiling, DARSHAN only records overall

statistics of the I/O events. Therefore, DARSHAN can be used for mass I/O analysis

of application’s access patterns [10].

Usually when using system counters to log I/O information, the logged instances are

not related to I/O events. Rather system counters are periodically captured. The data

resolution is therefore temporal and the period of logging can be changed to increase or

decrease the resulting data size. The GPFS I/O counters used here are logged with a

period of 2min.

Since SIOX attempts the investigation of all I/O events on all I/O stack layers, the data

resolution should be high. As result, a large quantity of data could be collected. This

requires the implementation of a specialized system that can coup with a flood of data

[13].

Measuring I/O Stack Layer

Application profiling tools measure and instrument the I/O behaviour as created by the

application itself. Indeed, DARSHAN developers in [10] consider this a necessity for

understanding the application’s interaction with the storage system, arguing that I/O

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 59

behaviour is changed as it moves through I/O stack layers. Nonetheless, to increase data

captured while using DARSHAN, [12] simultaneously collects storage device activity and

filesystem contents. In comparison, [44] characterizes the workload of storage systems

by only collecting data from RAID controllers.

Meanwhile, many attempt investigating the full operation of the I/O stack layers. SIOX

create a system for the collection and linking of I/O events on all I/O stack layers

simultaneously [13]. IOVIS attempts catching and visualizing the full end-to-end events

triggered by an I/O request [41]. In [42] the user specifies the portion of the application to

be instrumented and an automatic tracing of the I/O stack is performed. ScalaIOTrace

can be extended to collect I/O events on any I/O stack layer [47].

As described in Sec. 2.2.1 the GPFS I/O counters are logged on the filesystem layer.

The I/O criteria as an analysis tool described in Chp. 3 attempts to be I/O stack layer

and architecture agnostic. It therefore recognizes the effect of the I/O stack layer, but

can fit I/O collected on most of them. Analysing the GPFS I/O logs as provided here

can be considered a demonstrative tool for the I/O criteria and it’s ability to investigate

the I/O behaviour of individual or a large number of applications.

4.1.2 Analysis Process

As mentioned, the analysis process, as in the goal or I/O behaviour to be analysed, is in

many cases selected after collection of I/O traces. A main reason for choosing what to

analyse prior to monitoring the data is the quest for observing specific I/O behaviours.

For example, in [24] and [48] a classification of access patterns is offered, which is then

used to analyse the collected I/O signatures. The reason for this predetermined I/O

analysis is to offer improved prefetching.

As mentioned most profiling tools offer visualization of collected data for the user to

perform the analysis. However, since DARSHAN offers the mass collection of application

I/O it is used for long term characterization of I/O behaviour [12][14]. This most

resembles the approach for mass application analysis taken here. Indeed, some of the

findings in [14] and [12] correlate with the analysis results using the GPFS I/O counters

to evaluate the I/O criteria. Comparing the two approaches reveals some complementary

results. For example, the investigation using DARSHAN in [14] lacks the temporal

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 60

behaviour of I/O, which can be analysed from the GPFS I/O logs. The analysis in

[12] attempts simultaneously collecting storage device activity and filesystem contents

to retrieve some temporal I/O information, such as burstiness. On the other hand, the

GPFS I/O logs almost looses all spatial and metadata information which are analysed

in [14].

4.1.3 Using Analysis Information

Admittedly the overall target from all tools or methods for monitoring or profiling I/O

is recognising and understanding the I/O behaviour of applications and/or the I/O sub-

system. Nonetheless, the method by which this understanding can improve performance

or cost differs. There are two main approaches, distinguished by which part is to be

optimized. While one optimizes the application, the other optimizes the I/O subsystem

on which the application runs.

Profiling tools can target the optimization of the instrumented applications. This is true

for the methods used in [42], Vampir [43] and DARSHAN [10]. Application developers

can be supported by hints to possible and available optimizations. The large scale

analysis using DARSHAN performed in [14] adds the ability for selecting the applications

that necessitate optimization. There the overall gain for the system is considered a result

of finding an eliminating applications with less than optimal I/O performance.

The second approach is improving the I/O subsystem by analysing I/O. Existing param-

eters of the I/O subsystem can be improved to fit application I/O behaviour. In [24] the

access pattern is analysed and fed to a tool-kit that performs prefetching. SIOX intends

finding I/O bottlenecks and proposing optimizations for the I/O middleware [13].

The I/O criteria as evaluated by the GPFS I/O logs can be used to improve application

and I/O subsystem performance. The main focus as presented in Chp. 3 is understand-

ing I/O behaviour to possibly suggest improvement from different I/O architectures.

These improvements are sparsely mentioned when analysing the GPFS I/O logs.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 61

4.2 Reformatting GPFS I/O Counters

Tab. 4.1 shows the information logged by the I/O counters. Due to the crude form

of logging, the data has to be reformatted to facilitate analysis. The reformatting

entailed creating discrete values from the logged accumulative GPFS I/O counters and

dealing with counter resets occurring at seemingly random points in time. To achieve a

discretized data set each log has to be subtracted from it’s previous value or the previous

log. As a consequence the first recorded value has to be set to zero. In some cases the

time between logs (∆t) is longer than 120sec, possibly due to maintenance periods. To

keep track of such instances and other time factors, a record of ∆t = tcurrent − tprev

is kept for each log. This allows tracing the log back to the previous log used in the

subtraction. Fig. 4.1 shows an example of the analysis time line for a single filesystem.

Although the analysis encounters a logged data point at the very beginning, it cannot be

used as there is no previous counter value available. The counters are therefore logged

as zero for that first point and the I/O requests in region (1) are lost. Meanwhile the

logged values in both region (2) and (5) can be discretized as each log has a previous

value.

Keyword Description

t
Indicates the current time of day in seconds (absolute seconds since Epoch
(1970)).

fs The name of the filesystem for which data is being presented.

br Total number of bytes read, from both disk and cache.

bw Total number of bytes written, to both disk and cache.

oc
Count of open() call requests serviced by GPFS. This also includes creat() call
counts.

cc Number of close() call requests serviced by GPFS.

rdc Number of application read requests serviced by GPFS.

wc Number of application write requests serviced by GPFS.

dir Number of readdir() call requests serviced by GPFS.

iu Number of inode updates to disk.

Table 4.1: GPFS I/O counters [31].

Another factor in reformatting the GPFS I/O logs are counter resets leading to loss

of information. Fig. 4.1 shows a reset point which leads to I/O requests not being

logged. Region (3) I/O requests are lost due to resetting the GPFS I/O counters. To

increase benefit from I/O data analysis resets can be used as previous values for later

logs. Opposite to region (1)’s I/O requests that were lost, region (4)’s I/O requests can

be discretised using the time-stamp logged for the GPFS I/O counter reset. Indeed most

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 62

Figure 4.1: Analysis of GPFS I/O log time line where regions 1,3 and 6 represents
I/O requests that have not been logged, regions 2 and 5 are logged I/O requests and

region 4 is logged by including resets in analysis.

found of the logging start with a GPFS I/O counter reset, leading to region (1) losses

to be minimized. Finally region (6) was not logged and therefore has no information

recorded on the I/O requests.

Tracking the changes to the I/O data and the correctness of the reformatting process is

challenging. GPFS I/O counters do not just change their behaviour over time with resets,

they also change in space over multiple filesystems. On each I/O node multiple I/O

filesystems are accessible and for each a separate GPFS I/O counter set exists. Therefore

the process of forming discrete values from the accumulative GPFS I/O counters has to

be repeated separately for each filesystem.

Due to the size of the GPFS I/O logs, it is important to implement optimized analysis

scripts. Optimized scripts allow for analysing the complete data set within a reasonable

time frame. The major difficulty with reformatting the data is not altering the infor-

mation contained in the GPFS I/O logs. The later analysis and the correctness of the

conclusions built on this set of GPFS I/O logs depends on keeping the information as

accurate as possible. Therefore the analysis process has to check and compare results

with the original GPFS I/O logs. Checking a random sample of GPFS I/O counters by

hand adds to checking the GPFS I/O logs reformatting correctness.

Originally the GPFS I/O counters are periodically logged into text files. To analyse

the I/O behaviour of an application the complete file of GPFS I/O logs has to be

parsed to extract the relevant time span. The bottleneck for such a file parse is the

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 63

amount of data that has to be read in before the analysis can be conducted. Most

of the GPFS I/O logs will then be discarded, since these logs lie outside the runtime

of the application to be analysed. Therefore, a large data quantity would be loaded

repeatedly to analyse different applications, leading to a decrease of the analysis process’s

performance. Large number of applications that should be analysed and the amount

of data, means the analysis cannot be concluded in a reasonable time. Therefore it

is necessary to place the reformatted GPFS I/O logs into a suitable database. This

provides an efficient and optimized data access. Further database improvements, such

as indexing, are implemented to allow for better performance. Once again checks are

performed to ensure the correctness of the resulting database contents.

4.2.1 GPFS I/O Log Database

Due to the large size of the gathered GPFS I/O logs, placing all logs into a single table

would prolong later the query process. Therefore the data has to be divided into different

tables. The GPFS I/O logs are placed in tables corresponding to the I/O nodes on which

they were recorded, leading to a total of 600 tables for the JUGENE system. Since the

application runtime information include the I/O nodes used, the database query for the

relevant GPFS I/O logs of the application is optimized. Rather than searching through

the database for the entries corresponding to both the time and the I/O nodes for the

application, the analysis would already provide the I/O node information by selecting

the correct tables. Table entries are indexed using a time stamp corresponding to the

time at which the GPFS I/O counter was logged and the filesystem it was logged for.

Table 4.2 shows some information relating to the size of the GPFS I/O log database.

Here I/O requests can be referred to as read/write commands4.

Mismatch of open to close could be explained by lost requests. Close commands lie more

often at the end of a job. From Sec. 4.2 some regions are not fully logged. These mostly

exist at the end of the GPFS I/O logs. Therefore it can be expected that some close

commands would go missing.

Figure 4.2 represents a first look into the GPFS I/O logs for each I/O node. Since

jobs on JUGENE cannot have a smaller allocation than a full midplane5 (excluding the

4In this study I/O requests are synonyms to I/O commands and both are used interchangeably.
5Half a rack is a midplane, which contains 512 compute nodes with 4 I/O nodes.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 64

Database size 222428.09375 MiB

Total number of GPFS I/O logs
754,365,752, with an average of 1,257,276 entries per
I/O Node

Total data read 28.4169 PiB

Total data written 16.6596 PiB

Total read commands 15.3×109

Total write commands 18.07×109

Total file open commands 11.14×109

Total file close commands 10.91×109

Table 4.2: Information on the GPFS I/O log database.

last rack), the four I/O nodes on each midplane should behave similarly. A perfect

parallelism expects the amount of read or written data to be equal across the four I/O

nodes. Such behaviour is observed in Fig. 4.2. One exception to this is the number

of write commands shown in Fig. 4.2-(d), where the first I/O nodes seem to issue a

lot more write commands than the other three. This could indicate that GPFS has

some method for write request aggregation. Furthermore, some midplanes appear to be

performing more write requests and the behaviour appears periodic across JUGENE.

This could indicate a possible step wise aggregation between different midplanes. The

existence of such aggregation has not been confirmed by studying GPFS.

4.3 Job Database

Number of jobs 1108814

Average duration of jobs 3039 sec (' 50min)

Average number of compute nodes 694 compute nodes

Average number of I/O nodes 6 I/O nodes

Table 4.3: Information on the job database.

The term job refers to a single run (i.e. the execution) of an application. Since an

application can run several times using same or different parameters, it can result in

many jobs. Meanwhile a job can only be related to one application. As part of the

administration of JUGENE a job database is kept. This contains information on the jobs

that ran on the system, including start and end time. Table 4.3 shows some information

on the job database. The job information in the database allows matching GPFS I/O

logs to the corresponding jobs that initiated the I/O requests. Therefore the job database

can be limited to jobs that ran during the period of logging the GPFS I/O counters.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 65

0 20 40 60 80 100 120 140
Midplane

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
y
te
s
R
e
a
d

1e14

(a) Bytes read

0 20 40 60 80 100 120 140
Midplane

0.0

0.5

1.0

1.5

2.0

B
y
te
s
W
ri
tt
e
n

1e14

(b) Bytes written

0 20 40 60 80 100 120 140
Midplane

0

1

2

3

4

5

6

7

8

R
e
a
d
 C
o
m
m
a
n
d
s

1e9

(c) Read commands

0 20 40 60 80 100 120 140
Midplane

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

W
ri
te
 C
o
m
m
a
n
d
s

1e9

(d) Write commands

0 20 40 60 80 100 120 140
Midplane

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O
p
e
n
 C
o
m
m
a
n
d
s

1e9

(e) Open commands

0 20 40 60 80 100 120 140
Midplane

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
lo
se
 C
o
m
m
a
n
d
s

1e9

(f) Close Commands

Figure 4.2: Sum of GPFS I/O logs for midplanes divided among the four I/O nodes.

Jobs are indexed using a JOBID, which will be used throughout the analysis to refer to

individual jobs. This provides user anonymity.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 66

4.4 Verifying Analysis Process

The major challenge of a large scale data analysis are the occasional missing data or

meta information needed to conduct an in depth analysis. Although the collected GPFS

I/O logs represents a powerful insight into I/O on a full scale machine, the resolution

of the GPFS I/O logs is limited. The GPFS I/O counters are logged every 120sec,

thereby loosing accuracy of the temporal component. Additionally the spatiality is

completely lost as I/O requests cannot be linked to addresses or files. Still by observing

the limitations set on the I/O measurement, the analysis of the GPFS I/O logs can yield

some conclusions on large scale scientific application I/O. The GPFS I/O logs can be

viewed as information on the flow of data between I/O nodes and the storage system.

Thereby many of the details of the inner workings of the storage system and GPFS

cannot be observed. By subsequently limiting the GPFS I/O log analysis to focus on the

application behaviour this might be an advantage. The I/O criteria evaluated can focus

on the measurable end I/O behaviour of the applications, without being complicated by

the storage system details.

The collected GPFS I/O logs can be considered a series of values representing the change

of any GPFS I/O counter as v(ti) during the time interval [ti−1, ti], where ti−1 < ti. Here

v(ti) can be the number of read/write requests, bytes read/written, number of open/close

commands or any other GPFS I/O counter. As described the GPFS I/O counters are

logged at 120sec intervals, thus ti−1 − ti ' 120sec6. It can be assumed that their exists

a known upper limit for a GPFS I/O counter change vmax, where 0 ≤ v(ti) < vmax.

The upper limit can be either determined theoretically (e.g. based on nominal hardware

peak performance numbers) or empirically.

To be able to investigate the GPFS I/O logs it is necessary to link the logged requests to

the jobs that initiated them. For that t
(k)
start and t

(k)
end are needed, which are the k-th job

start and end time respectively. Jobs are expected to run consecutively on an I/O node,

thus .. < t
(k−1)
start < t

(k−1)
end < t

(k)
start < t

(k)
end < t

(k+1)
start < t

(k+1)
end < .. . The target of matching

the GPFS I/O logs to job (k) can be reduced to estimating the aggregate change of the

counter values in the interval [t
(k)
start, t

(k)
end]. This allows for simplifying the description of

the following matching methods. The matched GPFS I/O logs can be used in relation to

6As previously mentioned, the GPFS I/O logs are occasionally more than 120sec apart. The methods
described here are designed to deal with variations in ∆t

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 67

their timestamps to create the temporal I/O behaviour as described later. The methods

provided here are described for a single I/O node, but can be expanded by repeating

the process for each job sequence on each I/O node associated with job (k).

Figure 4.3: Special case for matching job runtime with GPFS I/O logs.

Figure 4.3 shows a special case where a value v(t0) exists between job (k−1) and job (k),

where t
(k−1)
end < t0 < t

(k)
start and a value v(tn) exists between job (k) and job (k+ 1), where

t
(k)
end < tn < t

(k+1)
start . In such a case the estimation of the aggregate change of counter

values is straight forward and can be defined as:

Ṽ (k) =
n∑
i=1

v(ti) (4.1)

Where:

t
(k−1)
end < t0 < t

(k)
start < t1 < .. < tn−1 < t

(k)
end < tn < t

(k+1)
start

For this special case it can be expected that Ṽ (k) is identical to the true value V (k).

Here V (k) can be considered the value obtained if the GPFS I/O counters were logged

at time t
(k)
start and t

(k)
end

7.

The main problem with matching GPFS I/O logs to the job runtime, is observed when

a value v(ti) does not exist between two jobs. Considering no measured value between

job (k − 1) and job (k), meaning t0 < t
(k−1)
end < t

(k)
start < t1. Therefore, the value v(t1)

cannot be fully attributed to job (k − 1) or job (k) and can therefore be considered

in conflict. The most plausible assumption is that both job (k − 1) and job (k) have

contributed to the value v(t1) with an unknown ratio. Fig. 4.4 shows the worst case

7This is not strictly guaranteed as I/O operations might not be completed by the job’s end.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 68

where job (k) exhibits a conflicted value at both the start and end of the job’s runtime.

Here t0 < t
(k−1)
end < t

(k)
start < t1 as well as tn−1 < t

(k)
end < t

(k+1)
start < tn. Conflicts such as

these need to be resolved in order to allow for matching GPFS I/O logs to job runtime.

Ultimately the method used will not deliver a fully accurate estimation or Ṽ (k) = V (k).

Therefore different strategies should be evaluated.

Figure 4.4: Worst case, with missing values v(ti) between jobs, for matching job
runtime with GPFS I/O logs.

The first strategy is to discard all values at which such conflicts occur. For the worst

case shown in Fig. 4.4 this means discarding values v(t1) and v(tn). This results in an

aggregate change of GPFS I/O counters for job (k) that can be defined as:

Ṽ (k) =

n−1∑
i=2

v(ti) (4.2)

Where:

t0 < t
(k−1)
end < t

(k)
start < t1 < .. < tn−1 < t

(k)
end < t

(k+1)
start < tn

It is also possible to evaluate an upper limit to the estimation error using the discard

strategy and vmax, that can be defined as:

|V (k) − Ṽ (k)| ≤ 2vmax (4.3)

The second strategy is to double-count conflicted values i.e. to attribute a value v(ti)

to two jobs. For the worst case example given in Fig. 4.4, v(t1) will be aggregated to

both job (k − 1) and job (k). Meanwhile, v(tn) will be aggregated to both job (k) and

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 69

job (k + 1). Using this strategy the aggregate change of GPFS I/O counters for job (k)

can be defined as:

Ṽ (k) =
n∑
i=1

v(ti) (4.4)

Where:

t0 < t
(k−1)
end < t

(k)
start < t1 < .. < tn−1 < t

(k)
end < t

(k+1)
start < tn

The upper limit for estimation error for double-count should be similar to the one given

in Eq. 4.3.

It is worth noting that the discard strategy can be considered the lower limit, while the

double-count strategy can be considered the upper limit of the aggregate value V (k).

It is therefore possible to create both an upper and a lower limit for each job. This

however complicates the analysis and increases the time required to perform an analysis

on all jobs. In general it is better to have a single method of matching I/O logs to job

runtime. The method should reduce as much as possible the inaccuracy, while avoiding

implementing too many assumptions into the matching method.

A third strategy is to attempt to resolve conflicts using a weighted-count. The strategy

assumes that that no I/O occurs between two jobs in the interval [t
(k)
end, t

(k+1)
start]. It also

assumes all jobs perform I/O operations at approximately the same rate and therefore

the number of I/O operations in the time intervals [ti, t
(k)
end] and [t

(k+1)
start , ti+1]. Using these

assumptions it is possible to aggregate the change of GPFS I/O counters for job (k) as

seen in the worst case scenario given in Fig. 4.4 using weighted measurements for job

(k) as ṽ(k):

ṽ(k)(t1) = w
(k)
startv(t1) (4.5)

ṽ(k)(tn) = w
(k)
endv(tn) (4.6)

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 70

Where the weighted factors can be defined as:

w
(k)
start =

t1 − t(k)
start

t
(k−1)
end − t0 + t1 − t(k)

start

(4.7)

w
(k)
end =

t
(k)
end − tn−1

t
(k)
end − tn−1 + tn − t(k+1)

start

(4.8)

It is worth noting that, w
(k)
start can be considered the ratio of time job (k) spent doing I/O

that contributed to the value v(t1) as seen in Fig. 4.5. As a result, 0 < wstart, wend < 1

and w
(k−1)
end +w

(k)
start = 1. The same reasoning would make w

(k)
end the ratio of job (k) spent

doing I/O that contributed to the value v(tn) and w
(k)
end + w

(k+1)
start = 1

Figure 4.5: The weighted fraction w
(k)
start can be considered the ratio of time job (k)

spent doing I/O that contributed to the value v(t1).

Considering the worst case scenario given in Fig. 4.4 it is now possible to define the

aggregate change of GPFS I/O counters for job (k) as:

Ṽ (k) = ṽ(k)(t1) +
n−1∑
i=2

v(ti) + ṽ(k)(tn) (4.9)

Where:

t0 < t
(k−1)
end < t

(k)
start < t1 < .. < tn−1 < t

(k)
end < t

(k+1)
start < tn

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 71

For the conflict resolution method or weighted-count the limit of error can be defined

as:

|V (k) − Ṽ (k)| ≤ (w
(k)
start + w

(k)
end)vmax < 2vmax (4.10)

Note that all so far described strategies will directly aggregate any non-conflicted val-

ues. For example, applying the conflict resolution strategy on the special case given in

Fig. 4.3, the aggregation defaults to Eq. 4.1. As a result, all three strategies discard,

double-count and conflict resolution have the need to identifying conflicts. To distin-

guish conflicted values requires knowledge of both previous and subsequent jobs and

their runtime information. This could slightly complicate the implementation of the

matching scripts. To simplify the matching for implementation, it is possible to only

consider values that were logged within the runtime of the job being analysed, irrelevant

of conflicts.

The fourth and final strategy is a simple matching, which only counts the GPFS I/O

logs within the runtime of the job, i.e. in the interval [t
(k)
start, t

(k)
end]. Such a strategy would

result in an aggregate change of GPFS I/O counters for job (k) that can be defined as:

Ṽ (k) =

n−1∑
i=1

v(ti) (4.11)

Here Eq. 4.11 remains the same for the special and worst case described in Fig. 4.3 and

Fig. 4.4. The upper limit of the estimation error for the simple method can be defined

as:

|V (k) − Ṽ (k)| ≤ vmax (4.12)

Both the discard and the double-count strategies are simple and easy to implement.

However, both have the disadvantage of the values being discarded or duplicated among

jobs. As a result, aggregation of values at the global level and a per job level will not

match when using these methods. Such aggregation comparison can allow for checking

correctness of implemented analysis tools. Therefore both strategies complicate the

debugging and checking for faults in the matching of GPFS I/O logs to jobs. Although

the simple strategy suffers from the same disadvantage, it is easier to implement. In

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 72

comparison, the conflict resolution strategy does not suffer from this issue. And despite

being more complicated, the implementation of conflict resolution is still manageable.

The upper limit of error is lower for both the simple and conflict resolution strategies

compared to both the discard and double-count strategies, which have equal upper limits

of error. However, determining which approach is better when comparing the simple and

conflict resolution is more complicated. This is due to the ratio’s used in the conflict

resolution being part of the upper limit error estimation. It is therefore worth testing

and comparing the two strategies of matching I/O logs. It is also necessary to verify the

analysis process. To achieve a good comparison and to verify the matching process and

the accuracy of the GPFS I/O logs, an I/O benchmark is used.

It is worth noting that the error rising from mismatches such as conflicts is reduced as

job runtime increases. It is therefore expected that once longer running jobs are selected

the conflicts will only marginally effect the overall analysis.

4.4.1 Verification Of GPFS I/O Counters Using I/O Benchmark

To verify the I/O data and the analysis process, knowledge of the I/O done by the

running job is needed. This can be achieved by running an I/O benchmark while the

GPFS I/O counters are being logged. Most available I/O benchmarks are complex,

making it difficult to determine individual I/O requests timing. Therefore a simplified

micro-benchmark is created. To parse the possible application I/O behaviours the micro-

benchmark reads in a set of parameters that allow altering the test conditions. The

parameters include I/O request size, number of requests and file being shared or task-

local. An additional option allows for creating random I/O request sizes. The micro-

benchmark can even switch the I/O interface by using either POSIX-I/O or MPI-IO.

The test scheme is kept as simple as possible, with the individual I/O requests being

recorded with timestamps after conclusion. The time-line is in order an open, write,

close, open, read and close. Meaning, the micro-benchmark starts with opening a set of

files and writes the given number of I/O requests to those files and closes them. The

files are then reopened and the data read-back with the same set of given I/O requests.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 73

As a check the read buffers are compared with the write buffers for correctness8. The

scheme allows for creating a reasonable amount of I/O including opening and closing of

files, that all will be logged by the GPFS I/O counters.

The micro-benchmark ran on 32 compute nodes and 1 I/O node with different requests

sizes, using either MPI-IO or POSIX-I/O and opening either a single shared file or task-

local files. For some request sizes the test is repeated using 64 compute nodes and 2

I/O nodes. This allows for covering a wide range of parameters. It is worth noting that

all tests using the micro-benchmark are conducted using 4 process per compute node.

Therefore a 32 compute node test contained 128 processes, while a 64 compute node

test contained 256 processes.

Table 4.4 shows the micro-benchmark results for using POSIX-I/O with task-local files.

The values are given in error percentage from the I/O registered by the micro-benchmark

for both the simple (S) Esimp and conflict (C) Econf resolution matching. Error percent-

age is calculated using the following equations:

Esimp =
Ṽ

(k)
simp − V (k)

V (k)
∗ 100 (4.13)

Econf =
Ṽ

(k)
conf − V

(k)

V (k)
∗ 100 (4.14)

where:

Ṽ
(k)

simp is Ṽ (k) calculated using simple matching.

Ṽ
(k)

conf is Ṽ (k) calculated using conflict resolution matching.

V (k) is the true value as seen by the I/O benchmark.

The values Ṽ
(k)

simp, Ṽ
(k)

conf and V (k), and therefore Esimp and Econf , could be Bytes Read

(BR), Read Commands (RdC), Bytes Written (BW), Write Commands (WC), Open

Commands (OC) or Close Commands (CC).

The results given in table 4.4 seem to suggest that, in most cases the conflict resolution

matching arrives at a lower or equal error compared to the simple method. However, for

8The is an added check to acknowledge that the data has traversed the I/O stack and should have
been recorded by the GPFS I/O counters. Since the interest is not in computation nor in performance
measurement, the time spent in comparing the buffers can be spared.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 74

32 Nodes (1 I/O node)

Request Size[Bytes] BR[%] RdC[%] BW[%] WC[%] OC[%] CC[%]

C S C S C S C S C S C S

4Ki 0 -4 1 0 0 -5 0 0 50 -25 0 -65

16Ki 0 -11 0 0 0 -12 0 0 50 -24 0 -74

64Ki 0 -8 0 0 0 -8 0 0 50 -24 0 -74

Random max 64Ki 0 -7 0 0 0 -7 0 0 50 -24 0 -69

256Ki 0 -8 0 0 0 -8 0 0 50 -24 0 -74

Random max 512Ki 0 -6 0 0 0 -6 0 0 50 -24 0 -65

1024Ki 0 -3 0 0 0 -3 0 0 50 -24 0 -61

64 Nodes (2 I/O nodes)

4Ki 0 -17 1 0 0 -17 0 0 50 -24 0 -74

Random max 512Ki 0 -13 0 0 0 -13 0 0 50 -24 0 -74

1024Ki 0 0 0 0 0 0 0 0 50 -24 0 -50

Table 4.4: Micro-benchmark using POSIX I/O and task-local files. GPFS I/O logs
matching error is shown for simple (S) and conflict (C) resolution matching methods,
given for Bytes Read (BR), Read Commands (RdC), Bytes Written (BW), Write Com-

mands (WC), Open Commands (OC) and Close Commands (CC).

0 200 400 600 800 1000 1200
Time[s]

0

200

400

600

800

1000

1200

1400

1600

O
p
e
n
 C
o
m
m
a
n
d
s

st
a
rt

e
n
d

Micro-benchmark Conflict Simple

Figure 4.6: Open Command (OC), for matching POSIX-I/O task-local files 4KiB 64
node test to GPFS I/O logs.

Open Commands (OC) the simple method seem to arrive at a better estimate. Fig. 4.6

shows the logs for the Open Commands (OC) accumulating over time, of the POSIX-

I/O task-local files 4KiB test with 64 nodes. The figure shows that the GPFS I/O

counters logged many more open commands from the very beginning of the job runtime.

This appears to repeat for other tests as well, making it difficult to estimate the open

commands initiated directly by the job. A possible explanation for the excess of open

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 75

commands are system operations and the opening of binary files to be executed by the

job.

0 200 400 600 800 1000 1200
Time[s]

0

200

400

600

800

1000

1200

C
lo
se

 C
o
m
m
a
n
d
s st
a
rt

e
n
d

Micro-benchmark Conflict Simple

Figure 4.7: Close Command (CC), for matching POSIX-I/O task-local files 4KiB 64
node test to GPFS I/O logs.

In comparison Close Commands (CC) shown in Fig. 4.7 seem to be easier to estimate

using the GPFS I/O logs. It has been previously mentioned that there is an unexplained

mismatch between the total number of open commands and close commands in Sec.

4.2.1.

An analysis based on the GPFS I/O logs would also be interested in the temporal

distribution of the I/O behaviour. To verify the accuracy of the intermediate values of

I/O, Fig. 4.8 zooms on individual values of the logs. As seen for both Bytes Read (BR)

and Read Commands (RdC), intermediate values may vary slightly from actual job I/O.

The variation appears to show a small delay in adding the I/O commands or bytes to

the GPFS I/O counters. However, the delay appears fairly small and seems to affect all

values equally, as can be inferred when comparing Fig. 4.8-(a) and Fig. 4.8-(b). Despite

the slight time shift, the final value of both benchmark and GPFS I/O logs analysed

using conflict resolution matching appear to be almost equal as given by Tab. 4.4. This

is also observable in the second zoom-in in Fig. 4.8-(a) and Fig. 4.8-(b). This outcome

can be seen for all measured values with the exception of Open Commands (OC) and

Closed Commands (CC). As a result the temporal distribution of I/O can be analysed

using GPFS I/O logs, however the slight possible inaccuracy has to be observed.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 76

0 200 400 600 800 1000 1200 1400
Time[s]

0.0

0.5

1.0

1.5

2.0

2.5

B
y
te
s
R
e
a
d

1e11

st
a
rt

e
n
d

Micro-benchmark Conflict Simple

1028 1449 1508

(a) Bytes Read (BR)

0 200 400 600 800 1000 1200 1400
Time[s]

0.0

0.5

1.0

1.5

2.0

2.5

B
y
te
s
R
e
a
d

1e11

st
a
rt

e
n
d

Micro-benchmark Conflict Simple

1028 1449 1508

(b) Read Commands (RdC)

Figure 4.8: Bytes Read (BR) and Read Commands (RdC), for matching POSIX-I/O
task-local files 1024KiB 32 node test to GPFS I/O logs.

Tab. 4.5 shows another set of micro-benchmark runs using POSIX-I/O and shared files.

All processes here used a single shared file to write and read from. The results appear

to suggest the same. In most cases the conflict resolution matching appears to contain

less error in its estimation.

32 Nodes (1 I/O node)

Request Size[Bytes] BR[%] RdC[%] BW[%] WC[%] OC[%] CC[%]

C S C S C S C S C S C S

4Ki 0 -6 0 -6 1 0 0 0 25 -49 0 -74

16Ki 0 -70 0 -70 0 0 0 0 25 -49 0 -74

64Ki 0 -25 0 -25 0 0 0 0 25 -49 0 -74

Random max 64Ki 0 -2 0 -2 0 0 0 0 27 -48 1 -57

256Ki 0 -7 0 -7 0 0 0 0 25 -49 0 -74

Random max 512Ki 0 0 0 0 0 0 0 0 25 -49 0 -52

1024Ki 0 -11 0 -11 0 0 0 0 25 -49 0 -74

64 Nodes (2 I/O nodes)

4Ki -5 -10 -5 -10 203 0 0 0 -6 -49 -42 -74

Random max 512Ki 0 0 0 0 0 0 0 0 25 -49 0 -49

1024Ki 0 -9 10 9 -1 0 -1 0 57 25 42 0

Table 4.5: Micro-benchmark using POSIX I/O and shared files. GPFS I/O logs
matching error is shown for simple (S) and conflict (C) resolution matching methods,
given for Bytes Read (BR), Read Commands (RdC), Bytes Written (BW), Write Com-

mands (WC), Open Commands (OC) and Close Commands (CC).

In the case of Bytes Written (BW) using 4KiB and 64 compute nodes an estimation

error of 203% is given for the conflict resolution matching. Fig. 4.9 shows the logs

accumulative over time for the Bytes Written (BW) of the POSIX-I/O shared file 4KiB

test with 64 nodes. From the figure it appears that the conflict resolution matching has

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 77

matched a portion of the bytes written in job (k+1) to job (k). An error that can occur

when two jobs are closely scheduled. Additionally the jobs have to create many requests

at the job boundary to effect the other job matching estimation. From the test results

this appears to be an uncommon occurrence.

0 200 400 600 800 1000
Time[s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
y
te
s
W
ri
tt
e
n

1e10

st
a
rt

e
n
d

Micro-benchmark Conflict Simple

Figure 4.9: Bytes Written (BW), for matching POSIX-I/O shared file 4KiB 64 node
test to GPFS I/O logs.

To complete the scan of the dimensions given by the micro-benchmark parameters, Tab.

4.6 and Tab. 4.7 show the results for using MPI-I/O with task-local files and a shared

file respectively. Tab. 4.6 appears to suggest the same as previous tests. The conflict

resolution results in a higher accuracy in most cases compared to the simple matching.

Compared to previous results, 4.7 shows large estimation errors for both Read Com-

mands (RdC) and Write Commands (WC) when using either conflict resolution or sim-

ple matching. This observation can be a result of the MPI-I/O for shared file performing

collective I/O. Thereby reducing the number of I/O requests seen by the filesystem. This

reiterates the importance of noticing the effect of the I/O stack layer on which I/O is

measured.

With a few mentioned exceptions, the conflict resolution method shows that matching

of GPFS I/O logs to job runtime can be achieved with relatively low error margins. As

a result, conflict resolution matching will be used for job I/O analysis in the following

sections.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 78

32 Nodes (1 I/O node)

Request Size[Bytes] BR[%] RdC[%] BW[%] WC[%] OC[%] CC[%]

C S C S C S C S C S C S

4Ki 0 -8 0 -8 1 0 0 0 75 0 25 -43

16Ki 0 -24 0 -24 0 0 0 0 75 0 25 -49

64Ki 0 -17 0 -17 0 0 0 0 75 0 25 -49

Random max 64Ki 0 -3 0 -3 0 0 0 0 75 0 25 -39

256Ki 0 0 0 0 0 0 0 0 75 27 25 -16

Random max 512Ki 0 0 0 0 0 0 0 0 75 0 25 -24

1024Ki 0 -71 0 -71 0 0 2 0 75 0 25 -49

64 Nodes (2 I/O nodes)

4Ki 0 -9 0 -9 1 0 0 0 75 0 25 -49

Random max 512Ki 0 -12 0 -12 -1 0 0 0 16 0 6 -43

1024Ki 0 -10 0 -10 0 0 0 0 75 0 25 -49

Table 4.6: Micro-benchmark using MPI-IO and task-local files. GPFS I/O logs
matching error is shown for simple (S) and conflict (C) resolution matching methods,
given for Bytes Read (BR), Read Commands (RdC), Bytes Written (BW), Write Com-

mands (WC), Open Commands (OC) and Close Commands (CC).

32 Nodes (1 I/O node)

Request Size[Bytes] BR[%] RdC[%] BW[%] WC[%] OC[%] CC[%]

C S C S C S C S C S C S

4Ki 0 -7 -99 -99 1 0 -99 -99 25 -49 0 -74

16Ki 0 -6 -98 -98 0 0 -98 -98 25 -49 0 -74

64Ki 0 -3 -93 -93 0 0 -93 -93 25 -49 0 -74

Random max 64Ki 0 -8 -93 -94 0 0 -93 -93 25 -49 0 -74

256Ki 0 -1 -93 -93 1 0 -93 -93 13 -49 -27 -74

Random max 512Ki 0 -1 -93 -93 0 0 -93 -93 25 -49 0 -74

1024Ki 0 1 -74 -74 0 0 -74 -74 38 100 28 75

64 Nodes (2 I/O nodes)

4Ki 0 0 -99 -99 2 1 -99 -99 44 25 -5 -24

Random max 512Ki 0 -1 -93 -93 0 0 -93 -93 25 -49 0 -74

1024Ki 0 -11 -75 -78 0 0 -74 -73 6 -49 6 -49

Table 4.7: Micro-benchmark using MPI-IO and shared files. GPFS I/O logs matching
error is shown for simple (S) and conflict (C) resolution matching methods, given for
Bytes Read (BR), Read Commands (RdC), Bytes Written (BW), Write Commands

(WC), Open Commands (OC) and Close Commands (CC).

4.5 Evaluating JUGENE Job I/O

As the Sec. 4.4 shows, it is possible to evaluate the I/O done by a job using the GPFS

I/O logs. Such evaluation has the value of showing the I/O behaviour of scientific

applications on large HPC systems under real conditions. Furthermore, using the I/O

criteria discussed in Chp. 3, it is possible to form some general conclusions on the

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 79

overall I/O behaviour of scientific applications. In addition to that, the I/O criteria

analysis allows for the selection of interesting jobs or applications that can be taken as

representative for some I/O conditions and later further analysed.

Since JUGENE was decommissioned in 2012 which ended the GPFS I/O logging for

this system, one may consider the GPFS I/O logs collected on JUGENE to be outdated.

However, there are two main reasons why it is still worthwhile to analyse the GPFS

I/O logs collected on JUGENE using the I/O criteria and thereby evaluate job I/O

behaviour. The first reason is to show the applicability of evaluating job I/O using I/O

criteria. The purpose therefore becomes demonstrating the methodology described in

Chp. 3. The second reason is maturity of job I/O. While analysing the latest HPC

system’s I/O is tempting, application developers require time to port their application

onto the newly available hardware. As a result, many jobs running at the early stages

of an HPC system can be considered porting experiments and might not achieve the

system’s full potential. Furthermore, large collections of I/O logs that allow for a large

scale job I/O analysis requires time. For example, to have the possibility of analysing

the number of jobs discussed in Sec. 4.3 necessitated collecting I/O logs for a period of

19 months.

There are further reasons why an I/O analysis using the GPFS I/O logs collected on

JUGENE is worthwhile. It is possible to argue that many applications develop their

I/O behaviour slowly and would therefore change relatively little in their I/O behaviour

overtime. Thus making the measured I/O behaviour using JUGENE’s GPFS I/O logs

relevant to modern I/O subsystems. Additionally, a mass I/O log analysis might reverse

the process with the intention of analysing the impact I/O subsystem architectural

changes have on I/O behaviour. In such a case a supercomputing center might be

interested in performing such long term I/O analysis over two or more generations

of HPC systems. Using the results some conclusions can be drawn on the next I/O

subsystem architecture that would best serve the I/O behaviour of scientific applications.

4.5.1 Filtering The Job List

Tab. 4.3 in Sec. 4.3 shows the complete size of the jobs that ran on JUGENE during

the time the GPFS I/O counters are logged. Despite the temptation to analyse the

entire set of jobs that ran during that period, some filtering is necessary. There are

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 80

two main reasons for reducing the number of jobs to be analysed. First, the analysis

process is time consuming and/or requires large processing power, storage, Random

Access Memory (RAM) and systems with high I/O bandwidth. Such effort can be

acceptable and depends on the available resources. However, the second prime reason

for not analysing the full set of jobs, is the existence of short or fail-run jobs that might

taint the overall analysis and as a result the conclusions drawn from it.

Avoiding overly complicating or extending the I/O analysis requires a mere reduction of

the number of analysed jobs, which can be performed in random or using simple criteria

or a combination of both. However, filtering the job list to remove irrelevant or erroneous

jobs, requires the identification of job specification that correctly select the jobs to be

filtered out. The target is to attempt recognizing production jobs, which are defined

as jobs that are a full run of a scientific application and that possibly ended without

errors. Correctly identifying production jobs requires the involvement of application

developers that ran the job. As this is not feasible, production jobs have to be inferred

from the available information in the job database. Two key aspects that can be used

is the scale or number of compute nodes used by the job and the duration of the job’s

runtime. While at first choosing larger scale jobs appears reasonable, it risks leaving

scientific applications that run on a smaller scale unanalysed. Additionally, large jobs

are expected to preform more I/O and could therefore skew results.

Job duration can be used to reasonably identify possible production jobs. The assump-

tion is that a job that ran for at least 1 hour has performed many or all of the intended

duties. Therefore the resulting I/O measured by the GPFS I/O logs should contain the

I/O behaviour exhibited by the application. Furthermore, a 1 hour job allows for at

least 30 GPFS I/O logs to be available for the job. As a result, the error of matching

GPFS I/O logs to job runtime, described in Sec. 4.4, is reduced. In addition to filtering

using job duration, any jobs known to be I/O benchmarks or performed no read or no

write are discarded.

Filtering jobs that ran for less than 1 hour reduces the job list to 166971 jobs from

originally 1108814. In numbers the filtered list only represent 15% of the jobs that

ran while logging GPFS I/O counters. However, in terms of duration the filtered list

occupied over 80% of the compute time on JUGENE during logging. That is 80%

of the logged I/O would be analysed when using the filtered list. Furthermore, when

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 81

considering both job duration and node count, the filtered list constitutes 67% of the

duration over node count.

For the filtered jobs, Fig. 4.10-(a) shows the job distribution over compute node count

and indicates that about 68% of jobs occupied 512 compute nodes. Another 21% of

jobs occupied 1024 compute nodes. Out of the 166971 selected jobs, only 21 used the

complete JUGENE system. On the other hand, Fig. 4.10-(b) shows the job distribution

over runtime duration. The cut off of 1hour or 3600s is clearly visible. When summed

up, the total duration of all jobs is around 2.7×109s, 55% of that sum can be attributed

to only 20% of filtered jobs. Meanwhile, the remaining 80% of filtered jobs have a

duration of 5.82hours or less.

101 102 103 104 105

Job Compute Node Count

100

101

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

(a) Job compute node count

103 104 105 106

Job Duration[s]

100

101

102

103

104

105

106
N
u
m
b
e
r
o
f
Jo
b
s

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

(b) Job duration

Figure 4.10: Histogram and cumulative distribution of job compute node count and
job duration

4.5.2 Revisiting I/O Criteria

The I/O criteria discussed in Chp. 3, introduced the limitations set by the I/O measuring

method on the evaluation process. Specifically the total I/O system load while measuring

I/O and the layer of the I/O stack at which I/O is measured greatly effect the resulting

analysis. Since the GPFS I/O counters are logged on the filesystem and in an I/O

forwarding layer, the resulting analysis sets some limitations on the evaluation of the

I/O criteria.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 82

To allow for analysing the GPFS I/O logs using the I/O criteria, the basic quantities

discussed in Sec. 3.2 need to be defined in terms of GPFS I/O counters given in Tab.

4.1. The relationship is drawn in Tab. 4.8 and shows why the I/O criteria are expressed

in a specific format.

Keyword Description Expression

t
Indicates the current time of day in seconds (absolute seconds
since Epoch (1970)).

t

br Total number of bytes read, from both disk and cache.
∑

s sDr(s, t)

bw Total number of bytes written, to both disk and cache.
∑

s sDw(s, t)

oc Count of open() call requests serviced by GPFS. Fopen(t)

cc Number of close() call requests serviced by GPFS. Fclose(t)

rdc Number of application read requests serviced by GPFS. Dr(t)

wc Number of application write requests serviced by GPFS. Dw(t)

dir Number of readdir() call requests serviced by GPFS. Fdir(t)

iu Number of inode updates to disk. Finode(t)

Table 4.8: GPFS I/O counters matched to basic quantities.

Additionally the application quantities such as tstart, tend and number of I/O nodes used

by the job are given by the job database. As discussed in Chp. 3 it is possible to use

the number of I/O nodes instead of the number of processes P . This is required here as

the GPFS I/O counters are logged on a per I/O node basis.

Some limitations on analysing the GPFS I/O logs using the I/O criteria comes from

a missing set of basic quantities that cannot be determined from the GPFS I/O logs.

Specifically Fcreate(s, t) the number of files created, R(p, f, i) relating I/O requests to

files and processes, and Roff(p, f, i) relating I/O requests to offset in file. As a result the

number of created files and spatial patterns cannot be evaluated using the GPFS I/O

logs.

The GPFS I/O counters are logged with an interval of 2min on the I/O nodes, leading

to a reduction in the temporal resolution. This should be observed during GPFS I/O

log analysis. Furthermore, evaluating overall I/O criteria for jobs requires summing the

individual GPFS I/O logs across different I/O nodes. This is difficult as the logging is

not synchronized. To settle these issues the assumption is made that the distribution of

I/O is equal within the logged interval. This leads to some I/O criteria to be evaluated

as an average over the 2min. To have synchronized values across I/O nodes that can

be aggregated, the GPFS I/O logs are interpolated. This is achieved by distributing

equally the change in the GPFS I/O log over the 2min with a ∆t = 1s. However the

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 83

lost portion of the temporal distribution is not regained by the interpolation. Therefore,

the effect the 2min interval has on the temporal distribution has to be observed when

discussing temporal I/O behaviour.

Due to these limitations and observations not all I/O criteria can be evaluated using the

GPFS I/O logs or the results have some attached constraints. This can be considered

a price to pay for system level logging of performance data of such long period of time.

The following sections describe the evaluation of the I/O criteria using the GPFS I/O

logs, while enumerating any observation and/or limitation.

4.5.3 Category 1: Aggregate Performance Numbers

Classification 1.1 Total amount of data read/written

Fig. 4.11 shows the total amount of data read against data written for the 166971 jobs

that were analysed. The Fig. 4.11-(a) uses hexagonal binning to reduce the scatter

points. The colour of the hexagons indicate the number of jobs contained within it

resulting in a heat map. Fig. 4.11-(b) and 4.11-(c) show histograms for distribution of

jobs over the x and the y axis respectively. The histograms use binning to reduce the

number of bars to a 1000 bins and show the number of jobs within each bin. Finally,

to clearly convey the distribution of jobs, the cumulative distribution is placed onto the

histograms. Fig. 4.11 is a good visualization of read and written data for the analysed

jobs. The same data representation is used for other analysed I/O criteria when possible.

In total over 14PiB were read and over 11PiB were written. These are surprisingly small

quantities, when considering the overall capacity of the storage system. This could

indicated that the amount of transient data hitting the external storage is relatively

small. Jobs averaged around 92GiB of read and 73GiB of write. However averages in

this case are misleading, as 80% of the jobs did below 13GiB of read and below 16GiB

of write. The average is simply increased by outliers, such as the largest read job which

did 109TiB of read and the largest write job which did 22TiB of write. In fact 20% of

the jobs are responsible for over 97% of both the read and write I/O in terms of bytes.

This imbalance of I/O quantity distribution over jobs can be seen from the cumulative

distributions in Fig. 4.11-(b) and 4.11-(c).

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 84

26 210 214 218 222 226 230 234 238 242 246

Bytes Read

26

210

214

218

222

226

230

234

238

242

246

B
y
te
s
W
ri
tt
e
n

(a)

0

800

1600

2400

3200

4000

4800

5600

6400

7200

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.11: Bytes read and written for analysed jobs. (a) Scatter plot of bytes
read and written with a heat map for job count, (b) Histogram of bytes read and (c)

Histogram of bytes written.

One very useful tool for analysing large data sets is the use of clustering, which could

be defined as the attempt of sorting jobs into different groups according to similar prop-

erties. The target is to find a small limited number of groups or clusters with little jobs

being labelled as noise. These clusters can then be further analysed and used as basis for

architecture or application changes. However, early attempts to provide job clustering

using Density-based spatial clustering of applications with noise (DBSCAN) [49] on the

basis of I/O quantity yields no reasonable clustering. Using various parameters for the

DBSCAN results in either a few clusters with a lot of jobs being labelled as noise or in

thousands of clusters. Both cases do not provide further insight into job I/O.

A similar conclusion, on the ability to cluster jobs according to read and written data,

can also be inferred from Fig. 4.11. The heat map in Fig. 4.11-(a) indicates the absence

of large job collections performing similar quantities of I/O. For data with large or

obvious clusters, regions of different colours would be visible on the heat map. The

jobs appear to be evenly distributed, with a few very small clusters, as indicated by the

uniformity of colour. It is also not possible to create reasonable clusters using either

read or write individually. Both Fig. 4.11-(b) and Fig. 4.11-(c) show that hardly any

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 85

group of jobs stands out by containing more than 10000 jobs.

Fig. 4.11 compares the read and written bytes of all jobs irrelevant of their size. It is

therefore possible to assume that when jobs are normalized over their size some pattern

or clusters might appear. Fig. 4.12 shows the average of bytes read and written over

the I/O nodes of each job. As the interest is in job I/O the number of I/O nodes in a

job are used to represent job size, rather than the number of compute nodes.

23 27 211 215 219 223 227 231 235 239 243

Avg Bytes Read per I/O Node

23

27

211

215

219

223

227

231

235

239

243

A
v
g
 B
y
te
s
W
ri
tt
e
n
 p
e
r
I/
O
 N
o
d
e

(a)

0

600

1200

1800

2400

3000

3600

4200

4800

5400

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.12: Bytes read and written average over I/O nodes for analysed jobs. (a)
Scatter plot of bytes read and written averaged over the I/O nodes with a heat map for
job count, (b) Histogram of bytes read averaged over the I/O nodes and (c) Histogram

of bytes written averaged over the I/O nodes.

Despite Fig. 4.12 showing average bytes read and written per I/O node for each job, the

distribution appears similar to that given in Fig. 4.11. This suggests that when a job

grows, the amount of I/O produced grows accordingly. As a result the same conclusions

can be drawn for job distribution over bytes read and written from both Fig. 4.11 and

Fig. 4.12.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 86

Classification 1.2 Total number of IOPs

As explained in the I/O criteria, the I/O stack layer at which I/O is measured strongly

influences the measured results. Measuring IOPs is more influenced by the I/O subsys-

tem than bytes read or written. Many I/O stack layers might perform collective I/O or

buffering and result in different number of I/O requests arriving at the filesystem. Since

this is the position at which I/O is measured, it is to be expected that the measured

number of I/O requests does not exactly correspond to the number of I/O requests ini-

tiated by the jobs. An example for this effect has been shown by Tab. 4.7 in Sec. 4.4.

Therefore, the term IOPs used here, refers to the I/O requests that are carried out by

the filesystem and are registered by the GPFS I/O counters, after higher I/O stack layers

have performed any I/O request changes. Since most I/O stack layers attempt reducing

the number of I/O requests, it is possible to expect jobs to be actually performing a

larger number of IOPs than measured by the GPFS I/O counters.

100 101 102 103 104 105 106 107 108 109 1010

Read Commands

100

101

102

103

104

105

106

107

108

109

1010

W
ri
te
 C
o
m
m
a
n
d
s

(a)

0

400

800

1200

1600

2000

2400

2800

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.13: Read and write commands for analysed jobs. (a) Scatter plot of read
and write commands with a heat map for job count, (b) Histogram of read commands

and (c) Histogram of write commands.

Fig. 4.13 shows the number of read commands against the number of write commands for

analysed jobs. In total over 102×109 read commands and over 145×109 write commands

are performed. The average is over 615×103 for read and over 870×103 for writes.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 87

Outliers of read and write have again skewed the averages, proven by the fact that

80% of jobs perform less than 77×103 read commands and 33.2×103 write commands.

Where the maximum of write is over 924×106, the maximum of read is quite high at

14×109. Here 20% of jobs are responsible for over 97% of read commands and 99% of

write commands. This I/O command distribution is shown by Fig. 4.13-(b) and Fig.

4.13-(c).

As the hexbin in Fig. 4.13-(a) indicates, the distribution of jobs over the read and

write commands is semi-uniform. Only a few areas show some colour change, indicating

small clusters of jobs. However, when compared to the total of 166971 jobs, these

clusters seem too small to be significant. Clustering algorithms are therefore expected

to produce a large number of small clusters, which would not help in further analysing

job I/O behaviour. The same can be inferred from the histogram of both read and write,

shown in Fig. 4.13-(b) and Fig. 4.13-(c) respectively. Here a single bin achieves a count

of 1×104 jobs for read, while hardly any bin achieves 3×103 for write.

100 101 102 103 104 105 106 107 108 109

Avg Read Commands per I/O Node

100

101

102

103

104

105

106

107

108

109

A
v
g
 W
ri
te
 C
o
m
m
a
n
d
s
p
e
r
I/
O
 N
o
d
e

(a)

0

250

500

750

1000

1250

1500

1750

2000

2250

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.14: Read and write commands average over I/O nodes for analysed jobs. (a)
Scatter plot of read and write commands average over I/O nodes with a heat map for
job count, (b) Histogram of read commands average over I/O nodes and (c) Histogram

of write commands average over I/O nodes.

Fig. 4.14 shows the average I/O commands over I/O nodes for analysed jobs. Similar

to bytes read and written, the number of I/O commands change with the job size. As

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 88

a result the distribution given in Fig. 4.14 is very similar to that given in Fig. 4.13 and

should lead to the same conclusions.

Classification 1.3 Read/Write bandwidth

Contrary to quantity of I/O and number of I/O commands, bandwidth is physically more

limited by the used system. A job can hardly fill the large capacity storage, usually

available for an HPC system. It can also use as many I/O commands as it needs.

In comparison, a job cannot exceed the available bandwidth that the I/O subsystem

provides. Therefore, it is necessary to observe the limitations set on the bandwidth by

the I/O subsystem when analysing job bandwidth. It is reasonable to assume that most

jobs will not achieve the maximum available bandwidth. This is due to most jobs only

using part of the I/O subsystem and/or jobs performing I/O with less than efficient

parameters.

Since the GPFS I/O counters are logged every 2min, the temporal I/O distribution has

a lower resolution. As previously mentioned the I/O performed is interpolated over

the 2min. As a result, the exact bandwidth at any given time and by deduction the

exact maximum bandwidth is no longer available. However, by averaging the GPFS I/O

counters over the 2min, it is possible to perceive some of the I/O variation over time.

As a consequence the term maximum bandwidth, used here, refers to the maximum

average bandwidth over the 2min. The real bandwidth could be higher than what can

be measured using the GPFS I/O counters.

Fig. 4.15 shows the distribution of jobs over maximum read versus maximum write

bandwidth. The average maximum bandwidth for read is over 201MiB/s and for write

over 97MiB/s. Again the averages are skewed by outliers, such as the maximum mea-

sured read bandwidth of 103GiB/s and write bandwidth of 120GiB/s. These maximums

are too high, when compared to the limit of 66GiB/s offered by the JUGENE I/O sub-

system. It is possible to assume that any bandwidth measured that exceeds the limit, is

caused by either buffering or by an error in matching GPFS I/O logs to job runtime. It

is worth noting that an error in matching GPFS I/O logs to job runtime could strongly

effect the maximum bandwidth measured if it falls within a wrongly matched GPFS I/O

log.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 89

22 25 28 211 214 217 220 223 226 229 232 235

Max Read Bandwidth[Bytes/s]

22
25
28
211
214
217
220
223
226
229
232
235

M
a
x
 W

ri
te
 B
a
n
d
w
id
th
[B
y
te
s/
s]

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.15: Read and write maximum bandwidth for analysed jobs. (a) Scatter plot
of read and write maximum bandwidth with a heat map for job count, (b) Histogram

of read maximum bandwidth and (c) Histogram of write maximum bandwidth.

In total 1 job for read measured a maximum bandwidth over the 66GiB/s limit, while 9

jobs for write are over the limit. When disregarding these jobs, the average of read max-

imum bandwidth slightly drops to 200MiB/s and for write drops to 93MiB/s. Nonethe-

less, the averages are still skewed by outliers, as the maximum measured bandwidth

for read becomes 45GiB/s and for write 65GiB/s. Although the maximum does not

exceed the peak available bandwidth, it can still be considered high, as jobs are usually

expected to not reach almost full peak bandwidth. For read 80% of jobs have remained

below 84MiB/s for maximum bandwidth, while for write 80% of jobs remained below

19MiB/s. It is also possible to view the maximum bandwidth achieved by individual

I/O nodes for each job. However, previously dividing I/O quantity across I/O nodes has

shown no change in distribution. Therefore, the same can be expected for maximum

bandwidth.

The heat map in Fig. 4.15 shows the jobs rather evenly distributed over the read/write

bandwidth. The exception being a coloured area on the diagonal pushing towards the

upper right corner. Under perfect conditions, it would be expected that all jobs read

and write with the maximum available bandwidth. In such a case the jobs would form a

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 90

large cluster on the scatter plot in the upper right corner. However, due to jobs sharing

the bandwidth, buffering, file locks, request size variation and many other conditions

effecting available bandwidth, the jobs attempting to reach maximum read and write

bandwidth are more spread on the diagonal. This clearly indicates that the architecture

of the I/O subsystem directly affects the measured bandwidth.

While maximum bandwidth is strongly limited by the I/O subsystem, an average band-

width is a factor of the job’s I/O quantity and job’s duration. Additionally average

bandwidth is less prone to errors in matching GPFS I/O logs to job runtime. For read

80% of analysed jobs performed an average bandwidth below 1.17MiB/s and for write

below 1.25MiB/s. The maximum average bandwidth is fairly high at about 5.3GiB/s

for read and 1.3GiB/s write.

Fig. 4.16 shows the jobs distribution over the average bandwidth. Compared to the

maximum bandwidth, the coloured area seen in in Fig. 4.15 dissipates in Fig. 4.16. It is

interesting to see that the distribution for the average bandwidth in Fig. 4.16, resembles

the distribution of bytes read and written in Fig. 4.11. This could prove that job I/O

increases with both job size and job duration.

2-7 2-4 2-1 22 25 28 211 214 217 220 223 226 229 232

Avg Read Bandwidth[Bytes/s]

2-7
2-4
2-1
22
25
28
211
214
217
220
223
226
229
232

A
v
g
 W
ri
te
 B
a
n
d
w
id
th
[B
y
te
s/
s]

(a)

0

400

800

1200

1600

2000

2400

2800

3200

3600

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.16: Read and write average bandwidth for analysed jobs. (a) Scatter plot
of read and write average bandwidth with a heat map for job count, (b) Histogram of

read average bandwidth and (c) Histogram of write average bandwidth.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 91

Classification 1.4 Read/Write IOPS

Similar to bandwidth, IOPS are also limited by the physical attributes of the I/O sub-

system. Although jobs cannot exceed the maximum available IOPS, it is more difficult

to find an exact limit. Maximum IOPS depends on the details of the transport protocols

and latencies, which are more difficult to determine without measurements. By ignoring

caching effects, an upper limit to the I/O bandwidth can be determined by looking for

the smallest nominal bandwidth along the data path. This is beyond the scope of this

study and therefore no jobs are disregard on the basis of a too high IOPS rate. Large

scale storage systems are often designed to offer high bandwidth. Since IOPS and band-

width are closely related through the request size, it is difficult to determine which limit

(i.e. bandwidth or IOPS) is reached first.

As previously discussed, measured IOPS are more influenced by the I/O subsystem

than bandwidth. This is a result of the number of I/O requests being changed across

different I/O stack layers. Hence, the term IOPS used here, defines the number of I/O

requests per time unit conducted by the filesystem and registered by the GPFS I/O

counters. While most I/O stack layers lead to a reduction in the number of I/O requests

performed, it is difficult to suggest whether the actual number of I/O requests initiated

by the job would finish in less or more time. As a result, it is difficult to speculate on

the actual IOPS seen by the jobs when compared to the here measured IOPS.

Similar to bandwidth, the 2min logging interval of the GPFS I/O counters leads to a

reduction of accuracy of the measured IOPS value. As a consequence, the maximum

IOPS, referred to here, is the maximum average IOPS as measured over the 2min. It is

possible for the actual maximum IOPS seen by the filesystem to be higher.

The analysed jobs average 1.5×103IOPS for read and 295IOPS for write. In this case the

average is closer to the center than for previous I/O criteria, as 80% of jobs performed a

maximum under 1.26×103IOPS for read and a maximum under 57IOPS for write. The

maximum job observed IOPS are however still skewing the average, at 1.23×106IOPS

for read and 732.11×103IOPS for write.

The distribution over read versus write IOPS is shown in Fig. 4.17. It is worth noting

that IOPs cannot be fractioned, resulting in the lines formed at the bottom for jobs with

low write IOPS and on the left for jobs with low read IOPS. This can also be explaining

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 92

the slight coloured areas at the bottom of the heat map. From these it appears that

many jobs, about 50%, have performed a maximum IOPS equal or lower than 10 for

write. Meanwhile, only 10% of jobs have performed a maximum IOPS equal or lower

than 10 for read. This result is indicated by Fig. 4.17-(b) and Fig. 4.17-(c) respectively.

100 101 102 103 104 105 106

Max Read IOPS

100

101

102

103

104

105

106

M
a
x
 W
ri
te
 I
O
P
S

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104 105

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.17: Read and write maximum IOPS for analysed jobs. (a) Scatter plot of
read and write maximum IOPS with a heat map for job count, (b) Histogram of read

maximum IOPS and (c) Histogram of write maximum IOPS.

Average IOPS over job runtime duration depends on the number of I/O requests initiated

and the duration of the job. Therefore, contrary to maximum IOPS, average IOPS can

have fractions. The average IOPS for read remained under 10.45IOPS and for write

under 2.48IOPS for 80% of jobs. The maximum of the average IOPS is about 315×103

for read and 83×103IOPS for write. Without knowledge of request sizes, it is difficult

to suggest whether these jobs are IOPS limited or not.

Fig. 4.18 shows the distribution of jobs over read versus write average IOPS. The

distribution suggests no visible clusters. However when comparing Fig. 4.13 for read

versus write commands, with Fig. 4.18 for average IOPS, there are slight similarities in

the distribution. This again suggests that jobs increase the number of requests when

increasing job duration.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 93

10-4 10-3 10-2 10-1 100 101 102 103 104 105

Avg Read IOPS

10-4

10-3

10-2

10-1

100

101

102

103

104

105

A
v
g
 W

ri
te
 I
O
P
S

(a)

0

400

800

1200

1600

2000

2400

2800

3200

3600

N
u
m
b
e
r
o
f
Jo
b
s

101

102

103

104

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.18: Read and write average IOPS for analysed jobs. (a) Scatter plot of read
and write average IOPS with a heat map for job count, (b) Histogram of read average

IOPS and (c) Histogram of write average IOPS.

Classification 1.5 Total number of files created

While total number of files created is an interesting criteria to measure, the GPFS

I/O counters do not allow for it. Only file open and close commands are counted. It

is not possible to distinguish newly created files from old files that are being opened.

Although the GPFS I/O counters count the number of inode updates, inferring created

files from it might result in unreliable results. This clearly indicates the limitations

that a measuring method might set on the resulting I/O criteria that can be evaluated.

Logging file creation and deletion requires access to metadata services.

The I/O criteria, files created, as presented here investigates the file open and close

commands as seen on the filesystem. The analysis should observe the errors in the

counts of open and close commands when matching to job runtime as discussed in

4.4.1. When observing that the matching error found is almost constant across the jobs,

it is possible to assume that all have been created by the job. Even open and close

commands initiated by the system to load and run the job can be attributed to the

job’s operation. The emphasize is therefore on the filesystem, which has to fulfil these

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 94

commands irrespective of them being initiated by the job or the system as a result of

the job running.

Fig. 4.19 and Fig. 4.20 show the histograms of both open and close commands distri-

bution over jobs respectively. Both figures indicate a relatively large number of opened

and closed files. A total of about 66×109 opened commands and a total of about 64×109

close commands were initiated by the analysed jobs. The maximum lies in a job that

created around 969×106 from each open and close commands. However, 80% of jobs

used less than 38×103 open commands and less than 33×103 close commands. As a

result 20% of jobs are responsible for almost 99% of both open and close commands.

100 101 102 103 104 105 106 107 108 109

Open Commands

100

101

102

103

104

105

N
u
m
b
e
r
o
f
Jo
b
s

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

Figure 4.19: Open commands for analysed jobs.

Although it is possible to expect that the number of open files is equal to the number of

closed files, this has not been always the case for the analysed jobs. A total of 140755

have more open commands, while 13441 have more close commands. Only 12744 have

equal number of open and close commands. Around 80% of the jobs have open and close

commands divert from each other by a relative difference (i.e. the difference divided by

the total number of open and close commands) of about 11.5%. Nevertheless, Fig. 4.19

and Fig. 4.20 show almost equal distribution of open and close commands respectively,

over jobs.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 95

100 101 102 103 104 105 106 107 108 109

Close Commands

100

101

102

103

104

105

N
u
m
b
e
r
o
f
Jo
b
s

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

Figure 4.20: Close commands for analysed jobs.

While numbers ranging in the thousands for open and close commands appear high, the

relative system size should be observed. JUGENE contains a total of 73728 compute

nodes. Each can run upto 4 processes resulting in 294912 possible processes. A job

running in task-local scheme can easily open a relatively large number of files. When

dividing the number of open or close commands over the number of I/O nodes an almost

equal distribution of jobs, as the ones given in Fig. 4.19 and Fig. 4.20, can be created.

Jobs could be operating with a larger number of files when increasing in size.

Classification 1.6 I/O intensity

As discussed in Chp. 3 (Classification 1.6), I/O intensity is the fraction of time spent in

I/O, and can therefore be influenced by many parameters. This results in many issues to

be observed when analysing job I/O behaviour using I/O intensity. One such issue is the

I/O stack layer on which the I/O is measured. The time spent in I/O could be changed

relative to the job’s I/O time when moving down the I/O stack layers. In the case of

computing the I/O intensity of jobs using the GPFS I/O logs, the I/O intensity would be

effected by any operation that decouples the job from it’s I/O before logging. Since the

GPFS I/O logs are measured on an I/O forwarding layer and in the filesystem, the I/O

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 96

requests timings could be changed before being logged. For example, any intermediate

layer might perform buffering. The GPFS I/O counters would then register the I/O

when such buffer contents are being written to the filesystem. Asynchronous I/O would

have a similar effect. Therefore, the I/O intensity analysed here, can be redefined as the

time during a job in which the filesystem performed I/O.

Furthermore, the I/O intensity is expected to be sensitive to the temporal granularity

at which the measurements are performed. Therefore, another issue to be observed on

computing I/O intensity, is the requirement of the full temporal information as to start

and end time of I/O requests. The GPFS I/O counters are logged every 2min leading

to a reduced temporal resolution. For the purpose of analysing the GPFS I/O logs the

values are interpolated over the span of the 2min to achieve a resolution of ∆t = 1,

resulting in a possibly higher I/O intensity than actually performed by the jobs. To

clarify this effect, an example can be given of a job that features phases of 30sec of

intensive I/O every 2min. The I/O intensity would have the values 0.25, 0.5 and 1 when

measuring with an interval of 30sec, 60sec and 2min respectively.

To increase the information delivered by the I/O intensity and to attempt decreasing the

influence of the GPFS I/O log 2min span, the intensity factor can be tuned. The I/O

intensity definition allows for 2 parameters that change the definition of I/O dominating

time periods (∆t = 1). The first is the threshold that computes the time in which I/O

is dominating, given by the variable c in Eq. 3.30. The second, is the I/O property, as

either I/O quantity (bytes read or written) or I/O commands (IOPs), which is compared

to the defined threshold. As a result, computing the I/O intensity at various thresholds

for different properties and by analysing and comparing the distribution, it is possible

to further understand the I/O intensity of the analysed jobs.

A multi-threshold analysis of I/O intensity as seen by the GPFS I/O logs is given in

Fig. 4.21. The figure shows the distribution of jobs over the I/O intensity for differ-

ent thresholds. While Fig. 4.21-(a) shows I/O intensity using I/O commands with a

threshold of c = 0, the rest of the figure shows I/O intensity using bytes read and writ-

ten with various thresholds. With the exception of Fig. 4.21-(b) computed using bytes

read/written and threshold c = 0B, all distributions are similar with jobs experiencing

a shift to lower I/O intensities as the threshold increases.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 97

Using a bytes read/written with a threshold c = 0B for computing I/O intensity given

in Fig. 4.21-(b) shows that more than 99% of jobs achieve an I/O intensity of 1.0. It

is possible to conclude that I/O is continuously performed. As this conclusion cannot

be made when the threshold is increased, this might just be a result of interpolating

the GPFS I/O logs over the span of the 2min. There is also the possibility that jobs

continuously perform small I/O, e.g. write every minute a short message into a log

file. Since there is no interest in such small I/O operations, it makes sense to introduce

the threshold and select it high enough such that intervals where only small logging

occurs are filtered out. In addition to that, when equating the bandwidth of the I/O

subsystem available to JUGENE of 66GiB/s (about 112MiB/s when divided over I/O

node), a threshold below 1MiB appears small in comparison. Therefore, the I/O intensity

distribution is likely to resemble the one with the threshold of 1MiB, with 80% of jobs

having an I/O intensity below 0.2. As a result, it can be concluded that most jobs while

running do not lead the filesystem on the I/O nodes to spend a lot of time in I/O. Some

jobs achieve an I/O intensity of 1 even when using a threshold of c = 1MiB. These jobs

could be suitable for further study on various I/O architectures.

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(a) Commands (c=0)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

0.0 0.2 0.4 0.6 0.8 1.0

I/O intensity

100

101

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(b) c = 0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

I/O intensity

102

103

104

105

106
(c) c = 1KiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

I/O intensity

101

102

103

104

105

106
(d) c = 8KiB

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

0.0 0.2 0.4 0.6 0.8 1.0

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(e) c = 128KiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

105

106

(f) c = 512KiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

105

106

(g) c = 1MiB

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

Figure 4.21: I/O intensity for analysed jobs computed using various thresholds c. (a)
I/O commands c = 0, (b) c = 0B, (c) c = 1KiB, (d) c = 8KiB, (e) c = 128KiB, (f)

c = 512KiB and (g) c = 1MiB.

The I/O intensity can also be split into read and write I/O intensity and plotted for

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 98

jobs against each other. This has the advantage of showing whether read or write is

responsible for a high I/O intensity. The results of such analysis can be seen in the

scatter plots shown in Fig. 4.22. To easier understand the scattering of jobs the dotted

red lines are added to represent the 80% marker. That is 80% of jobs have a read

intensity below the horizontal red line and 80% of jobs have a write intensity to the left

of the vertical red line. From these it is possible to conclude that write is for many jobs

responsible for the high I/O intensity. This is proven by the bulk of jobs scattering to the

left as the threshold is increased. Additionally, the I/O intensity computed using bytes

read/written and threshold c = 0B has many jobs in the left upper corner. Leading

to the conclusion that write is fairly spread across the many jobs runtime. However,

the almost constantly visible diagonal line on which many jobs are scattered for higher

thresholds, indicates that other jobs have an equal I/O intensity for both read and write.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 I
/O
 I
n
te
n
si
ty

(a) Commands (c=0)

0
5000

10000
15000
20000
25000
30000
35000
40000

N
u
m
b
e
r
o
f
Jo
b
s

0.0 0.2 0.4 0.6 0.8 1.0

Read I/O Intensity

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 I
/O
 I
n
te
n
si
ty

(b) c = 0

0.0 0.2 0.4 0.6 0.8 1.0

Read I/O Intensity

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 I
/O
 I
n
te
n
si
ty

(c) c = 1KiB

0.0 0.2 0.4 0.6 0.8 1.0

Read I/O Intensity

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 I
/O
 I
n
te
n
si
ty

(d) c = 8KiB

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 I
/O
 I
n
te
n
si
ty

(e) c = 128KiB
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 I
/O
 I
n
te
n
si
ty

(f) c = 512KiB
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 I
/O
 I
n
te
n
si
ty

(g) c = 1MiB

Figure 4.22: Read and write I/O intensity for analysed jobs computed using various
thresholds c. (a) I/O commands c = 0, (b) c = 0B, (c) c = 1KiB, (d) c = 8KiB, (e)

c = 128KiB, (f) c = 512KiB and (g) c = 1MiB.

To complement the information given in Fig. 4.22 and to highlight the individual distri-

bution of I/O intensity over read and write, Fig. 4.23 shows the scatter and histograms

for I/O intensity computed using bytes read and written at a c = 1MiB threshold. As

seen when comparing Fig. 4.23-(b) and Fig. 4.23-(c), many jobs seem to have a higher

write I/O intensity. This is proven by 80% of jobs having a read I/O intensity below

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 99

0.05 and a write I/O intensity below 0.12, which is more than double. Nonetheless, the

conclusion remains that most jobs do not have a high I/O intensity, remaining under

0.2 for 80% of the jobs. This could indicate that either jobs are not I/O intense or that

the I/O subsystem has a higher capability than the jobs require.

0.0 0.2 0.4 0.6 0.8 1.0
Read I/O Intensity (c=1MiB)

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 I
/O
 I
n
te
n
si
ty
 (
c=

1
M
iB
)

(a)

0

4000

8000

12000

16000

20000

24000

28000

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104 105

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.23: Read and write I/O intensity (c = 1MiB) for analysed jobs. (a) Scatter
plot of read and write I/O intensity with a heat map for job count, (b) Histogram of

read I/O intensity and (c) Histogram of write I/O intensity.

4.5.4 Category 2: I/O Pattern Analysis

Classification 2.1 Distribution of request sizes

As previously mentioned, the number and therefore the size of I/O requests can be

changed while traversing different I/O stack layers. For measuring I/O using the GPFS

I/O logs any collective I/O performed in higher I/O stack layers would result in changing

the I/O request size. On the basis of collective I/O and data sieving, till now the

discussion only introduced a possible decrease in the number of I/O requests and a

resulting I/O request size increase. However, some I/O operations and I/O stack layers

require decreasing the size of I/O requests. An example for this behaviour on JUGENE

is introduced in Sec. 2.1. The CIOD buffers on the I/O nodes are set to 4MiB. A

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 100

larger I/O request has to be split into multiple requests on the compute node. As a

result the number and size of I/O requests can be changed compared to the I/O directly

requested by the application. Buffering could also result in an increase of request size.

For example, multiple I/O requests could be collected and bundled together on the I/O

node in the GPFS pagepool.

GPFS I/O counters count the number of read and written bytes and the number of I/O

commands. There however is no relationship set between the two counts. That is, bytes

read or written cannot be related back to a specific I/O request. Therefore the I/O

request size is not measured when using the GPFS I/O logs. As the I/O logging is done

with an interval of 2min, it is possible to create a 2min average I/O request for both

read and write. The I/O request sizes presented here are 2min averages. The delay of

I/O counting given in Sec. 4.4.1, specifically Fig. 4.8, might effect the measured average

I/O request size. As the figure shows the delay is almost identical for both bytes read

and read commands and therefore should result in the same estimate for requests size

average. Such influences could result in variation of average request size and therefore

should be considered.

0.5

1.0

1.5

2.0

N
u
m

b
e
r
o
f
R
e
q
u
e
st

s

1e10

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Avg Read Request Size[Bytes]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

m
u
la

ti
v
e

D
is

tr
ib

u
ti
o
n

Figure 4.24: Distribution of read request sizes.

Fig. 4.24 shows the distribution of all read requests sizes. More than 80% of requests

are below 64KiB, which is rather small given that the filesystem block is 4MiB. On the

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 101

other hand, Fig. 4.25 shows the distribution of write request sizes, which indicates that

write has smaller request sizes than read. Above 80% of write requests are below 1KiB.

Although the CIOD buffer should not allow for larger than 4MiB request sizes, it is

possible that the few larger I/O requests are caused by buffering.

0.2

0.4

0.6

0.8

1.0

1.2

N
u
m
b
e
r
o
f
R
e
q
u
e
st
s

1e11

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Avg Write Request Size[Bytes]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

D
is
tr
ib
u
ti
o
n

Figure 4.25: Distribution of write request sizes.

Showing the distribution of I/O request sizes for every analysed job is not possible. For

the purpose of comparison, the distributions given in Fig. 4.24 and Fig. 4.25 do not

relate I/O request sizes to jobs. To partially link I/O request sizes to jobs, Fig. 4.26

shows the distribution of jobs over job average requests sizes, which are computed by

dividing the total bytes read or written by the total number of read or write commands

for each job. The distribution shows that almost all jobs do not have an average job

read or write request size above 4MiB as dictated by the use of CIOD buffers. In total,

about 80% of jobs have an average job read request size of 1.7MiB and an average job

write request size of 881KiB.

Generally for the period analysed, more write than read requests are counted. Write is

about 59% of all I/O commands. Meanwhile, the number of total bytes read are more

than the number of bytes written. Read bytes represents about 55% of all bytes read or

written. As concluded from the analysis, smaller write than read requests are initiated

by jobs.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 102

21 24 27 210 213 216 219 222 225 228

Avg Read Request Size

21

24

27

210

213

216

219

222

225

228

A
v
g
 W

ri
te

 R
e
q
u
e
st

 S
iz

e

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u
m

b
e
r
o
f
Jo

b
s

101
102
103
104
105

N
u
m

b
e
r
o
f
Jo

b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m

m
u
la

ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.26: Read and write average request size for analysed jobs. (a) Scatter plot
of read and write average request size, (b) Histogram of read average request size and

(c) Histogram of write average request size.

Classification 2.2 Percentage of small I/O requests

In Chp. 3 (Classification 2.2), small I/O is defined as any I/O with request size smaller

than a given limit ssmall. As previously explained, the request sizes used here are

averages over 2min and measured on the filesystem. Many I/O stack layers attempt

improving I/O, forming larger requests by combining small I/O requests. With the

exception of CIOD buffers breaking very large (>4MiB) I/O requests, the application

itself could be expected to create smaller I/O requests and as a consequence have a

larger percentage of small I/O.

When introducing percentage of small I/O in Chp. 3, it is suggested that a reasonable

value for ssmall is the filesystem block size (sblock =4MiB). Tab. 4.9 shows that most

I/O requests are indeed smaller than sblock. To further understand the percentage of

small I/O, Tab. 4.9 expands on different possible ssmall sizes. The results given in the

table confirm conclusions in Classification 2.1, as larger percentage of small I/O exists

for write compared to read, irrelevant of ssmall.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 103

ssmall 4KiB 8KiB 64KiB 128KiB 512KiB 1MiB 4MiB

Read small I/O[%] 46 52 82 88 90 96 98

Write small I/O[%] 86 89 94 95 96 97 99

Table 4.9: Percentage of small I/O for various ssmall

One advantage for the use of percentage of small I/O is reducing the distribution of

I/O request sizes to a single number. It therefore becomes possible to present the

distribution of small I/O percentage for the analysed jobs. Fig. 4.27 and Fig. 4.28 show

the distribution of small read and write I/O respectively over analysed jobs for various

ssmall values. Both figures show the same conclusions as Tab. 4.9, that most jobs use

relatively small I/O requests. A few jobs manage to have a low small I/O percentage

for read or write despite increasing ssmall.

0.0 0.2 0.4 0.6 0.8 1.0
101

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(a) ssmall ≤ 4KiB

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
u
m
m
u
la
ti
v
e

0.0 0.2 0.4 0.6 0.8 1.0

Read Small I/O

101

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(b) ssmall ≤ 8KiB

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.2 0.4 0.6 0.8 1.0

Read Small I/O

101

102

103

104

105

106
(c) ssmall ≤ 64KiB

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Read Small I/O

101

102

103

104

105

106
(d) ssmall ≤ 128KiB

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u
m
m
u
la
ti
v
e

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(e) ssmall ≤ 512KiB

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

105

106

(f) ssmall ≤ 1MiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

105

106

(g) ssmall ≤ 4MiB

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

Figure 4.27: Percentage of small read I/O for analysed jobs computed using various
ssmall. (a) ssmall < 4KiB, (b) ssmall < 8KiB, (c) ssmall < 64KiB, (d) ssmall < 128KiB,

(e) ssmall < 512KiB, (f) ssmall < 1MiB and (g) ssmall < 4MiB

On the basis of analysed jobs, it is reasonable to assume that large scale I/O subsystems

have to be capable of performing well when dealing with small I/O. Given that the GPFS

I/O counters are logged in the filesystem, it appears that the storage system cannot even

depend on higher I/O stack layers forming larger I/O requests using collective I/O or

other methods. However, it is unknown if the I/O subsystem serving JUGENE suffers

from the use of small I/O. When possible, tests should be conducted along side analysing

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 104

0.0 0.2 0.4 0.6 0.8 1.0

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(a) ssmall ≤ 4KiB

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

0.0 0.2 0.4 0.6 0.8 1.0

Write Small I/O

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(b) ssmall ≤ 8KiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Write Small I/O

102

103

104

105

106
(c) ssmall ≤ 64KiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Write Small I/O

102

103

104

105

106
(d) ssmall ≤ 128KiB

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

0.0 0.2 0.4 0.6 0.8 1.0

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(e) ssmall ≤ 512KiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

104

105

106

(f) ssmall ≤ 1MiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

105

106

(g) ssmall ≤ 4MiB

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

Figure 4.28: Percentage of small write I/O for analysed jobs computed using various
ssmall. (a) ssmall < 4KiB, (b) ssmall < 8KiB, (c) ssmall < 64KiB, (d) ssmall < 128KiB,

(e) ssmall < 512KiB, (f) ssmall < 1MiB and (g) ssmall < 4MiB

percentage of small I/O to determine it’s impact on the I/O performance. Even then,

changing I/O subsystem parameters to accommodate a large percentages of small I/O

should be done with caution. While the number of small I/O operations might be very

large, the remaining large I/O operations could be responsible for writing/reading most

of the data. In such a case the system would not be positively effected from possibly

increasing delay of large I/O to accommodate more small I/O requests.

Classification 2.3 Request size: Variable vs. fixed

To determine whether given I/O requests are variable or fixed requires analysing several

runs of the same application. Additionally, it requires understanding the parameters

and input datasets. As the GPFS I/O logs analyse jobs that cannot be easily linked to

the application, it is difficult to analyse the variability of request sizes. Another issue

that leads to this limitation, is the use of 2min average I/O request sizes for the analysis.

These result in a difficulty when using the GPFS I/O logs to determine whether a specific

I/O request changes its size when the application is rerun.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 105

Classification 2.4 Percentage of I/O type

The percentage of I/O type as defined in Chp. 3 (Classification 2.4) can be calculated

using either I/O quantity in terms of bytes or I/O commands. Since the number of I/O

commands can be changed on various I/O stack layers, the percentage of I/O type based

on I/O commands might be different than the application when measured using GPFS

I/O logs. Excluding any error in matching the GPFS I/O logs to the job’s runtime,

when using I/O quantity the percentage of I/O should resemble that expected by the

application.

Fig. 4.29 shows the distribution of write percentage of I/O for both I/O commands

and bytes read/written in Fig. 4.29-(a) and 4.29-(b) respectively. Since the same figure

for read would simply be a flipped mirror of write, any information for read can be

concluded from the write figures. Therefore, the read figures are omitted.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Write I/O Commands

100

101

102

103

104

105

N
u
m

b
e
r
o
f
Jo

b
s

0.2

0.4

0.6

0.8

1.0

C
u
m

m
u
la

ti
v
e

(a) Percentage of write I/O commands from
total I/O commands

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Written Bytes

100

101

102

103

104

105

N
u
m
b
e
r
o
f
Jo
b
s

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

(b) Percentage of written bytes from total read
and written bytes

Figure 4.29: Percentage of write for analysed jobs

When comparing the two write distributions in Fig. 4.29, the faster rise of the percentage

of write bytes becomes obvious, indicating that almost 40% of jobs have performed

almost 100% of bytes as read. For percentage of write I/O commands the rise is slower.

However once past the 20% write marker both distributions are similar. In fact both

arrive at the 50% write marker at 60% of the jobs, that is for both 40% of jobs have

performed above 50% write.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 106

It is mentioned in classification 2.1 that in total 59% of I/O commands are write, while

only 45% of bytes are written. By comparing the distribution of write command percent-

age to written bytes percentage, it is possible find the jobs contributing to increasing the

total percentage of write commands, while not equally contributing to the bytes written.

Equal conclusions can be made from the read percentage distributions.

Classification 2.5 Dominating I/O operation type

Dominating I/O operation type evaluates the distribution of I/O type over time. Due

to the temporal dimension it is difficult to visualize for the entire set of analysed jobs.

Although some visualization methods exist, it is hard to see a benefit from it. Any

conclusions on the entire set of analysed jobs using dominating I/O operation type can

also be drawn from classification 2.4; percentage of I/O type. Dominating I/O operation

type is more suitable to understand the distribution of I/O types within a job. Individual

job analysis using I/O criteria is performed for a selected set of jobs in Sec. 4.5.6.

The analysis of dominating I/O operation type using GPFS I/O logs has similar issues

to consider as those mentioned for classification 2.4 percentage of I/O type. I/O stack

layers that change the number of I/O commands could effect the distribution of the

dominating I/O operation type. In addition to that, the GPFS I/O counters being

logged once every 2min could influence the temporal resolution of the analyses.

Classification 2.6 Task-local vs. shared

Analysing the percentage of task-local to shared files for jobs could lead to interesting

conclusions. However, it cannot be perceived using the GPFS I/O logs. This is due to

the open and close commands registered by the GPFS I/O counters not being linked

to the individual opened or closed files. As a result, there is no way of recognizing two

open commands as belonging to either the same or different files, whether on the same

or on different I/O nodes. This is a basic requirement for differentiating task-local from

shared files.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 107

Classification 2.7 Spatial access pattern classification

As mentioned in the introduction of this section, the GPFS I/O counters do not register

addresses of I/O requests. Therefore the spatial behaviour of jobs cannot be retrieved

using the GPFS I/O logs. Generally, investigating the spatial access pattern behaviour

is difficult for a large set of jobs. This is due to the need of saving all files and file

offsets for each I/O request. Additionally, identifying the spatial access pattern is in

itself a difficult task for which it is hard to create reliable algorithms. As a result, it

could be considered that spatial access pattern classification is more suitable for deeper

analysis of a limited set of fully available applications. Many other approaches allow for

analysing the spatial pattern classification and have been discussed in the related work

Sec. 4.1.

Classification 2.8 Temporal distribution of I/O

The temporal distribution brings the time factor into the total amount of data read-

/written and into the total number of IOPs. Similar to classification 2.5; dominating

I/O operation type, the temporal distribution is difficult to visualize for a large set of

jobs. Therefore it is performed on a limited set of analysed jobs in Sec. 4.5.6.

The temporal distribution analysis has to observe the GPFS I/O counters being logged

every 2min. This leads to a change in the resolution of the temporal distribution. Any

I/O stack layers altering the data read/written or the number of IOPs, would also result

in a change in the temporal distribution.

Classification 2.9 Burstiness parameter

The main difficulty of analysing the temporal I/O behaviour of a large set of data,

is visualization. The burstinesss parameter reduces the temporal I/O behaviour to a

quantifiable parameter that informs on the overall temporal behaviour of jobs. As with

all time based analysis, I/O stack layers might shift or change I/O requests in time

using buffering or other methods. As a result the burstiness parameter is subject to

changing compared to job burstiness as I/O requests pass through the I/O stack layers

before being logged by the GPFS I/O logs. Therefore, the burstiness measured here is

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 108

redefined as the bursts seen by the filesystem on the I/O nodes during the job’s runtime.

Additionally the 2min resolution of the GPFS I/O logs could change the burstiness of

analysed jobs. As a consequence of interpolating the GPFS I/O counters over the 2min,

the burstiness is expected to be reduced. Therefore, the actual burstiness of applications

could be higher than that computed using the GPFS I/O logs.

Similar to I/O intensity, the computation of burstiness can employ various thresholds c

on either I/O quantity (bytes read or written) or I/O commands (IOPs). The threshold

c therefore dictates the height a burst must achieve to influence the burstiness parame-

ter. This prevents small I/O operations which have little impact on the I/O system to

dominate the analysis.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss

(a) Commands (c=0)

0
5000

10000
15000
20000
25000
30000
35000
40000

N
u
m
b
e
r
o
f
Jo
b
s

0.0 0.2 0.4 0.6 0.8 1.0

Read Burstiness

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss

(b) c = 0

0.0 0.2 0.4 0.6 0.8 1.0

Read Burstiness

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss

(c) c = 1KiB

0.0 0.2 0.4 0.6 0.8 1.0

Read Burstiness

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss

(d) c = 8KiB

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss

(e) c = 128KiB
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss

(f) c = 512KiB
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss

(g) c = 1MiB

Figure 4.30: Read and write burstiness of analysed jobs computed using various
thresholds c. (a) I/O commands c = 0, (b) c = 0B, (c) c = 1KiB, (d) c = 8KiB, (e)

c = 128KiB, (f) c = 512KiB and (g) c = 1MiB.

Fig. 4.30 represents a study of the burstiness of analysed jobs using various thresholds.

As seen from the scatter plots, it appears that read exhibits a higher burstiness than

write, visible by the jobs scattering towards the right. This is proven by using a threshold

c = 0B shown in Fig. 4.30-(b), where 99% of jobs had a write burstiness of 0, while almost

75% of jobs exhibit a read burstiness of over 0.8. As the threshold is increased, more

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 109

write burstiness becomes visible and as expected both read and write burstiness increase.

However, read burstiness remains as a whole slightly larger than write burstiness.

Another interesting aspect seen from Fig. 4.30 is the almost constantly visible diagonal

on which many jobs scatter. This indicates that for these jobs the burstiness for both

read and write are almost equal. Finally, to complement the conclusions made from the

scatter plots, Fig. 4.31 shows the scatter plot of read versus write burstiness and the

individual distribution of read and write burstiness at threshold c = 1MiB. In this case

the analysed jobs average 0.93 read burstiness with a standard deviation of 0.17. For

write burstiness the average is 0.87 with a standard deviation of 0.25.

0.0 0.2 0.4 0.6 0.8 1.0
Read Burstiness (c=1MiB)

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss

 (
c=

1
M
iB
)

(a)

0

4000

8000

12000

16000

20000

24000

28000

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104 105

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.31: Read and write burstiness for analysed jobs with c = 1MiB. (a) Scatter
plot of read and write burstiness, (b) Histogram of read burstiness and (c) Histogram

of write burstiness.

Classification 2.10 Access pattern repetitive behaviour

As defined in Chp. 3 (Classification 2.10), access pattern repetitive behaviour requires

analysing the spatial access pattern and comparing it between different files and pro-

cesses. Since the GPFS I/O logs do not allow for a spatial access pattern analysis, it is

not possible to form any conclusions on the access pattern repetitiveness. As a result,

similar difficulty exists for both analysing spatial access patterns and their repetitiveness.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 110

Analysing access pattern repetitive behaviour requires the ability to not only recognize

the access pattern, but to be able to compare and conclude whether two exhibited pat-

terns are equal. This adds a dimension of difficulty for spatial access pattern analysis

when analysing a large set of job’s I/O behaviour.

Classification 2.11 Dominating I/O operation repetitiveness

Detecting a repetitive behaviour in the time distribution of dominating I/O type re-

quires fine tuning the period δt for which a repetition is expected. As a result, in Chp.

3 (Classification 2.11) when introducing dominating I/O operation repetitiveness, it is

suggested to plot the count of number of occasions the same I/O operation type dom-

inates (Eq. 3.58) as a function of the period δt. A repetition can be detected if the

count for same I/O operation dominance in a given time interval is high. In practice

performing such an analysis for a large set of jobs is a complex process and difficult to

visualize. Additionally, the process of selecting a count that would determine whether

a repetition exists could lead to mistaken assumptions.

The GPFS I/O logs pose further limit a large scale dominating I/O operation repeti-

tiveness analysis. The 2min intervals for logging GPFS I/O counters limit the available

resolution of the temporal distribution of I/O and therefore also the temporal distribu-

tion of dominating I/O operation. As a result a repetition might be detected that does

not exist for the original application when using higher temporal resolution analysis.

Any I/O stack layer that might change the temporal distribution of I/O would change

the temporal distribution of dominating I/O and it’s repetitiveness.

It is preferable to attempt detecting repetitiveness in dominating I/O type for individual

applications directly from it’s algorithm. Using GPFS I/O logs when analysing individ-

ual jobs, it is possible to use the analysis methods suggested in Chp. 3 and Eq. 3.58.

However, the notes attached to using the GPFS I/O logs should be observed. Finally,

it is possible to form some conclusions on the dominating I/O operation repetitiveness

using a visualization of the temporal distribution of the dominating I/O operation type.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 111

4.5.5 Category 3: Parallel I/O

Classification 3.1 Parallel I/O intensity

Parallel I/O intensity as described in Chp. 3 (Classification 3.1), is a measurement of

real I/O parallelism and depends on the temporal distribution of analysed jobs. As a

result any I/O stack layer changing the temporal distribution will result in a change in

the parallel I/O intensity. Using the GPFS I/O logs measured in the filesystem therefore

results in a different parallel I/O intensity than if, for example, measured directly from

the application.

Enabling analysis of the full range of parallelism of a job, requires the ability to distin-

guish the I/O of each individual process. In most cases logging I/O counters from within

a filesystem obscures the process performing I/O and leads to loss of I/O parallelism

information. Although GPFS I/O logs are measured in the filesystem I/O stack layer,

the logging is done on the I/O nodes. This allows for the ability to partially retrieve the

I/O parallelism information.

Jobs analysed could be using a large number of processes running on the compute nodes,

which forward I/O requests to their I/O node serving as many as 128 compute nodes.

The ratio of processes served by I/O nodes can increase when each compute node runs

the maximum of 4 processes, in which case I/O nodes could serve up to 512 processes.

Therefore, measuring parallelism using GPFS I/O logs is a reduction of possible actual

available parallelism of JUGENE. The effect of this parallelism reduction is increased

since, as reported in Sec. 4.5.1 and shown by Fig. 4.10a, most jobs employ only 512

compute nodes and therefore only have 4 I/O nodes.

It is possible to argue that measuring parallelism passed the I/O forwarding layer is

more appropriate. The argument rests on the I/O nodes already reducing the number

of processes or nodes accessing the filesystem in parallel. Therefore, measuring I/O node

I/O parallelism might be more interesting than measuring compute node I/O parallelism.

Additionally I/O nodes through I/O forwarding could be performing I/O collection

and/or buffering, which change I/O request timing, thereby decoupling compute node

I/O parallelism from actual filesystem access parallelism.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 112

Similar to measuring I/O intensity, the threshold c is used to prevent small I/O from

dominating the analysis of parallel I/O . Fig. 4.32 shows the parallel I/O intensity

for jobs computed using various thresholds. With the exception of Fig. 4.32-(b) using

c = 0B, for the most part the distributions are similar and as expected the parallel

I/O intensity is reduced when increasing the threshold. Additionally the distributions

suggest that jobs almost evenly range from no to full parallel I/O intensity.

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(a) Commands (c=0)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

0.0 0.2 0.4 0.6 0.8 1.0

Parallel I/O intensity

100

101

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(b) c = 0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Parallel I/O intensity

102

103

104

105

106
(c) c = 1KiB

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Parallel I/O intensity

102

103

104

105

106
(d) c = 8KiB

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

0.0 0.2 0.4 0.6 0.8 1.0

102

103

104

105

106

N
u
m
b
e
r
o
f
Jo
b
s

(e) c = 128KiB

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

102

103

104

105

106

(f) c = 512KiB

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

102

103

104

105

106

(g) c = 1MiB

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u
m
m
u
la
ti
v
e

Figure 4.32: Parallel I/O intensity for analysed jobs computed using various thresh-
olds c. (a) I/O commands c = 0, (b) c = 0B, (c) c = 1KiB, (d) c = 8KiB, (e)

c = 128KiB, (f) c = 512KiB and (g) c = 1MiB.

Studying the parallel I/O intensity in Fig. 4.32, the distribution in Fig. 4.32-(b) for c =

0B appears different than other thresholds. To find whether read or write is responsible

for a high or low parallel I/O intensity, it is helpful to untangle read from write and form

a 2 dimensional distribution as given by the scatter plots in Fig. 4.33. Specifically, from

Fig. 4.33-(b) it is possible to deduce that write causes the high parallel I/O intensity

observed in Fig. 4.32-(b).

To facilitate tracking the changes of the distributions in Fig. 4.33 when increasing

threshold c a vertical and a horizontal 80% marker is placed on each scatter plot. That

is 80% of jobs write with a parallel I/O intensity below the horizontal line. Meanwhile,

80% of jobs are located left of the vertical line and read with a parallel I/O intensity

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 113

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 P
a
ra
lle

l
I/
O
 I
n
te
n
si
ty

(a) Commands (c=0)

0
6000

12000
18000
24000
30000
36000
42000
48000

N
u
m
b
e
r
o
f
Jo
b
s

0.0 0.2 0.4 0.6 0.8 1.0

Read Parallel I/O Intensity

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 P
a
ra
lle

l
I/
O
 I
n
te
n
si
ty

(b) c = 0

0.0 0.2 0.4 0.6 0.8 1.0

Read Parallel I/O Intensity

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 P
a
ra
lle

l
I/
O
 I
n
te
n
si
ty

(c) c = 1KiB

0.0 0.2 0.4 0.6 0.8 1.0

Read Parallel I/O Intensity

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 P
a
ra
lle

l
I/
O
 I
n
te
n
si
ty

(d) c = 8KiB

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 P
a
ra
lle

l
I/
O
 I
n
te
n
si
ty

(e) c = 128KiB
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 P
a
ra
lle

l
I/
O
 I
n
te
n
si
ty

(f) c = 512KiB
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 P
a
ra
lle

l
I/
O
 I
n
te
n
si
ty

(g) c = 1MiB

Figure 4.33: Read and write parallel I/O intensity for analysed jobs computed using
various thresholds c. (a) I/O commands c = 0, (b) c = 0B, (c) c = 1KiB, (d) c = 8KiB,

(e) c = 128KiB, (f) c = 512KiB and (g) c = 1MiB.

below the vertical lines position on the x-axis. From these it is possible to see that a

major drop in write parallel intensity happens when increasing threshold from c = 0B

to c = 1KiB, while read parallel intensity remains almost the same9. Increasing the

threshold further appears to only slightly effect the overall parallel I/O intensity of all

jobs, while maintaining a higher read parallel intensity.

To complement the discussion on parallel I/O intensity distribution, Fig. 4.34 shows the

histograms of read and write parallel intensity distributions for c = 1KiB. The figure

shows that 80% of jobs have read parallel intensity below 0.92 and a write parallel

intensity below 0.25. Furthermore, it shows that there is a large group of jobs (around

64%) with a write parallel intensity of zero, while only around 1.6% of jobs have a read

parallel intensity of zero.

From the given analysis, it is possible to conclude that most analysed jobs perform better

parallelism on the I/O node level for read than for write. This is the opposite of I/O

9It is possible for parallel I/O intensity to increase when increasing threshold c as seen when comparing
read parallel intensity’s 80% marker in Fig. 4.33-(b) with Fig. 4.33-(c). This happens when the higher
threshold c reduces

∑
tH∆t(t) faster than reducing

∑
t ρ∆t(t) in Eq. 3.60

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 114

0.0 0.2 0.4 0.6 0.8 1.0
Read Parallel I/O Intensity (c=1KiB)

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 P
a
ra
lle
l
I/
O
 I
n
te
n
si
ty
 (
c=
1
K
iB
)

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101102103104105106

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.34: Read and write parallel I/O intensity for analysed jobs with c = 1KiB.
(a) Scatter plot of read and write parallel I/O intensity with a heat map for job count,
(b) Histogram of read parallel I/O intensity and (c) Histogram of write parallel I/O

intensity.

intensity where write had a higher intensity than read. Therefore, from the analyses it

appears that jobs spend more time writing than reading, but read more often in parallel.

Classification 3.2 I/O operation concurrency

While parallel I/O intensity defines parallelism in a single value, I/O operation concur-

rency defines the distribution of concurrency over time. This is similar to the relationship

between percentage of I/O type (Classification 2.4) and dominating I/O operation type

(Classification 2.5). Therefore, it can be similarly argued that the visualization of I/O

operation concurrency for all analysed jobs is difficult and would not contribute much

to the analysis process. As a result, the I/O operation concurrency is a tool better used

to further analyse a limited set of jobs. It allows for measuring the contribution of an

individual process or an I/O node to a parallel I/O operation.

Being both an analysis of parallelism and of it’s temporal distribution, I/O operation

concurrency has the same observations when measured using the GPFS I/O logs. The

I/O parallelism depth is limited by the available data which only includes I/O node I/O

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 115

request information. Additionally, the temporal distribution and by deduction the I/O

operation concurrency changes when measured on different I/O stack layers and using

different logging intervals.

Classification 3.3 Parallel I/O distribution

The parallel I/O distribution dissects the I/O, showing the contribution of each process.

While I/O operation concurrency describes temporal distribution of parallelism, parallel

I/O distribution describes the magnitude of contribution from each process. Therefore,

parallel I/O distribution has similar observations to be considered as the ones made

for I/O operation concurrency when using GPFS I/O logs for evaluation, for both the

I/O parallelism depth is measured on an I/O node level. The parallel I/O distribution,

similar to aggregate performance numbers, can change when measured in different I/O

stack layers. For example, IOPs is effected by the I/O stack layer it is measured on,

which remains true when defining it for individual I/O nodes.

To further the analysis, parallel I/O distribution could add the temporal distribution. In

this case the parallel I/O is further dissected into it’s temporal I/O distribution, which

for GPFS I/O logs has a resolution of 2min, the logging interval.

Parallel I/O distribution can therefore unfold into 3 dimensions, number of process

or I/O nodes; various measured performance numbers such as IOPs and finally their

distribution over time. As a result the visualization of parallel I/O distribution for the

large number of analysed jobs is both difficult and hardly contributes to the analysis

process. It is possibly interesting to perform a parallel I/O distribution for a limited set

of jobs.

Classification 3.4 Same file access concurrency

Same file access concurrency combines the temporal and spatial accessing for the sake

of understanding parallelism. While labelling files as either shared or task-local defines

the file access pattern, same file access concurrency describes the magnitude of a files

sharing in time. Due to the need of the spatial component required for measuring

same file access concurrency, it is not possible to evaluate it using the GPFS I/O logs.

The missing relationship between open/close commands, I/O requests and files leads to

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 116

the missing spatial component. Same file access concurrency combines file access with

parallelism while describing them in time and should therefore observe the I/O stack

layer on which it is measured and the temporal resolution of the measurement.

4.5.6 Further Analysing A Subset Of Jobs

As discussed in Sec. 3.6, the ability to select and further analyse a smaller set of

applications allows for visualizing I/O behaviour using various observables. Analysing a

large set of applications allows for comparing them according to various I/O behaviours.

Meanwhile, analysing a smaller number of applications allows to focus on specific I/O

behaviours and questioning their direct impact on the I/O architecture and possible

methods of improving I/O.

Selecting applications or jobs to analyse depends on the objective of analysis. A general

survey of application’s I/O should incorporate the analysis of jobs with commonly found

I/O behaviour as analysed by the distribution of the I/O criteria. On the other hand,

a focused analysis of a specific I/O behaviour, while carefully considering the I/O ar-

chitecture and it’s operation, requires a more cautious selection process. In such a case,

jobs exhibiting a specific I/O behaviour should be selected, and the percentage of jobs

exhibiting that I/O behaviour should be objectively analysed. Overall, to avoid bias in

the analysis process the selected jobs should be complemented with a randomly selected

group.

The purpose of the given analysis is to survey the job I/O behaviour as recorded by the

GPFS I/O logs, while allowing for investigation of the I/O criteria and their applicabil-

ity. However, due to the absence of clear clusters or groups of jobs with common I/O

behaviour in the analysed job distributions, the selection method is simplified, using

among others maximum, minimum and median values to select jobs. The given list

of jobs is therefore not exhaustive, yet offers well considered examples on the analysis

process. For that purpose, it becomes less necessary to fully inspect all characteristics

of selected jobs, but to only consider interesting aspects as they arise.

Sec. 3.6 offers an analysis map in Tab. 3.2, that can be employed for single value I/O

criteria. As seen from the process of analysing the GPFS I/O logs it is not possible

to evaluate all I/O criteria. Therefore, a restructuring of the analysis map is needed.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 117

Tab. 4.10 shows a reduced I/O criteria analysis map that can be used in relation to

the GPFS I/O log analysis. While it is possible to investigate the dominating I/O

repetitiveness from the GPFS I/O logs for a limited number of jobs, it has been omitted

from the analysis mapping. As discussed in Sec. 4.5.4 (Classification 2.11) for analysing

dominating I/O repetitiveness using the GPFS I/O logs, it is preferred to infer it from

investigating the temporal I/O distribution.

Read Write

1 Aggregate performance numbers

1.1 Total amount of data Sr Sw

1.2 Total amount of IOPs Nr Nw

1.3 Bandwidth
Max Bmax,r Bmax,w

Avg Br Bw

1.4 IOPS
Max Γmax,r Γmax,w

Avg Γr Γw

1.5 File commands
Open Fopen

Close Fclose

1.6 I/O intensity I Ir Iw

2 I/O pattern analysis

2.2 Percentage of small I/O requests fr(ssmall) fw(ssmall)

2.4 Percentage of I/O type
in IOPs pr,IOPs

pw,IOPs

in Bytes pr,Bytes
pw,Bytes

2.9 Burstiness ρr ρw

3 Parallel I/O

3.1 Parallel I/O intensity PIO,∆t PIO,∆t for read PIO,∆t for write

Table 4.10: Analysis map of I/O criteria for analysing GPFS I/O logs.

The I/O criteria analysis for I/O intensity (Classification 1.6), burstiness (Classification

2.9) and parallel I/O intensity (Classification 3.1) is performed using many thresholds

c. It is possible to assume that any modern HPC I/O subsystem can cope well with

jobs generating I/O requests of less than 1MiB/s, making c =1MiB. The high value for

threshold observes the size of the I/O subsystem serving JUGENE. For a system with

a bandwidth of 66GiB/s, 1MiB/s is relatively small. As the target is to find jobs that

strain the I/O subsystem and might require new I/O architectures, it is reasonable to

select a threshold that reflects such a job. Furthermore, lower I/O rates might be due to

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 118

writing continuously short status messages at low frequency. Tacking such I/O activities

into account could lead to wrong conclusions, e.g. jobs might appear to be I/O intensive,

while aggregate amount of data read/written is small.

As previously mentioned, having a limited set of jobs allows for analysing I/O distribu-

tions over time, request sizes or processes. Therefore, to provide further insight into jobs

I/O behaviour, the selected jobs I/O distributions are visualized including dominating

I/O operation type (Classification 2.5); temporal distribution of I/O (Classification 2.8);

I/O operation concurrency (Classification 3.2) and parallel I/O distribution (Classifica-

tion 3.3). Here too when thresholds are needed the value is set to c = 1MiB, with

the exception of studying read or write commands where the threshold is set to c = 0

commands. Distribution of request sizes (Classification 2.1) is analysed when necessary.

The following sections re-list a subset of the I/O criteria and uses some of these to select

a list of jobs for further analysis. Specifically jobs are selected using total amount of

data read and written (Classification 1.1); total number of IOPs (Classification 1.2);

read/write maximum bandwidth (Classification 1.3); read/write maximum IOPS (Clas-

sification 1.4) and I/O intensity (Classification 1.6). In addition to that, for some of

the selected jobs comments are made on the distribution of request sizes (Classification

2.1); the percentage of small I/O requests (Classification 2.2); burstiness (Classification

2.9) and parallel I/O intensity (Classification 3.1).

To complement the analysis of the selected jobs, possible benefits from different I/O ar-

chitectures are mentioned. Occasionally comments are made on the applicability of burst

buffers and readahead or prefetching techniques. These function as a demonstration for

considering I/O architectures in relation to job I/O analysis. As an example, reasonable

size of burst buffers are questioned as seen from the burst behaviour of jobs. However,

these examples are simplified and suggested improvements could depend on many addi-

tional parameters. For instance, the performance enhancement from using burst buffers

assumes a larger bandwidth to the burst buffer than available to the storage system.

Meanwhile, the readahead or prefetching performance improvement assumes the ability

for jobs to recognize the needed data in advance. Fully judging and investigating the

applicability of different I/O architectures and their positive and negative impact on

the I/O behaviour would require detailed analysis of a larger set of jobs, including the

application’s algorithm and internal behaviour.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 119

4.5.7 Analysing Jobs Using Category 1: Aggregate Performance Num-

bers

Classification 1.1 Total amount of data read/written

26 210 214 218 222 226 230 234 238 242 246

Bytes Read

26

210

214

218

222

226

230

234

238

242

246

B
y
te
s
W
ri
tt
e
n

(a)

1766138

1551853

1782577

1668617

1752533

1950206

1823713

1912846

1946944

987713

1117955

1492818

0

800

1600

2400

3200

4000

4800

5600

6400

7200

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.35: Bytes read and written for selected jobs. (a) Scatter plot of bytes
read and written with a heat map for job count, (b) Histogram of bytes read and (c)

Histogram of bytes written.

Using bytes read and written 3 jobs are selected. Job 1782577; has the maximum of

bytes read, job 1492818; has the maximum of bytes written and job 1823713; is the

bytes written median of jobs with over 1TiB read or write. The numbers indexing the

jobs are called JOBID and have been discussed in Sec. 4.3. The median10 selection is a

method of quasi random selecting a job and has been done for jobs with at least 1TiB

of read or write to observe the size of the I/O subsystem serving JUGENE. For PiB of

storage and a bandwidth of 66GiB/s a job with I/O of less than 1TiB and a runtime of

longer than 1hour can be considered in I/O terms relatively small.

To solidify the understanding of the connection between analysing and comparing a large

batch of jobs versus analysing a smaller subset, it is helpful to see the position of the

selected jobs within the overall distribution. Fig. 4.35 shows all selected jobs and their

10The median is the job at the middle of the sorted evaluated I/O criteria. Although not fully selected
at random, the job could exhibit any I/O behaviour.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 120

position within the distribution of read and written bytes. The 3 jobs selected based

on bytes read and written are highlighted in red. The remaining jobs are selected using

other evaluated I/O criteria.

Job 1782577 Maximum of total bytes read

Duration[s] 86389

I/O node count 8

Compute node count 1024

Table 4.11: Info of job 1782577; maximum of total bytes read.

1 Aggregate performance numbers Read Write

1.1 Total amount of data 109.543 TiB 63.067 GiB

1.2 Total amount of IOPs 1.38×108 1.99×107

1.3 Bandwidth
Max 1.624 GiB/s 5.946 MiB/s

Avg 1.298 GiB/s 765.501 KiB/s

1.4 IOPS
Max 3982 13806

Avg 1597.17 230.49

1.5 File commands
Open 6.74×107

Close 6.74×107

1.6 I/O intensity c = 1MiB 1.00 1.00 0.00

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.01 0.98

2.4 Percentage of I/O type
in IOPs 0.87 0.13

in Bytes 1.00 0.00

2.9 Burstiness c = 1MiB 0.00 1.00

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.99 0.99 0.00

Table 4.12: I/O criteria analysis map of job 1782577; maximum of total bytes read.

Job 1782577 measured the highest amount of bytes read at 109TiB. Tab. 4.11 introduces

the size of job 1782577 in both time and number of both I/O nodes and compute nodes.

Evaluating I/O criteria is better understood in terms of the job’s size. Tab. 4.12 presents

the evaluated I/O criteria map for job 1782577; maximum of total bytes read. As seen,

the job has performed a large amount of read to a relatively small write. The mismatch

of read to write manifests itself in almost all I/O criteria.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 121

0.5

1.0

1.5

2.0

I/
O

 N
o
d
e

R
e
a
d
 [

B
y
te

s]

1e8
(3.3)

Max
Mean
Min

0 10000 20000 30000 40000 50000 60000 70000 80000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

R
e
a
d (2.5)

0 10000 20000 30000 40000 50000 60000 70000 80000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

0.5

1.0

1.5

R
e
a
d
 [

B
y
te

s]

1e9
(2.8)

Bytes Read

Figure 4.36: Bytes read for job 1782577; maximum of total bytes read.

1
2
3
4
5
6
7
8

I/
O

 N
o
d
e

W
ri

te
 [

B
y
te

s]

1e5
(3.3)

Max
Mean
Min

0 10000 20000 30000 40000 50000 60000 70000 80000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 10000 20000 30000 40000 50000 60000 70000 80000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

1

2

3

4

5

6

W
ri

te
 [

B
y
te

s]

1e6
(2.8)

Bytes Written

Figure 4.37: Bytes written for job 1782577; maximum of total bytes read.

Fig. 4.36 presents the I/O distributions of job 1782577. The plots depict, from top to

bottom, temporal distribution of bytes read (Classification 2.8); dominating I/O type

for bytes read (Classification 2.5) or percentage of bytes read over time; parallel bytes

read distribution (Classification 3.3) and bytes read concurrency (Classification 3.2).

For reference the number of the classification is repeated besides the I/O distribution.

While all plots in Fig. 4.36 have a single value at any point in time, Fig. 4.36-(3.3) for

parallel I/O distribution could have 3. The plot depicts the maximum, minimum and

mean value of temporal I/O distribution of the I/O nodes belonging to the analysed

job. From this it is possible to infer the range of values between the I/O nodes and as a

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 122

result the parallel I/O distribution. The method given in Fig. 4.36 is a compact method

to evaluate many of the I/O distributions from the I/O criteria and is therefore used to

analyse the selected jobs.

Fig. 4.37 presents the bytes written distributions. When analysed in relation to the

bytes read in Fig. 4.36, job 1782577 appears to be operating with a repetitive cycle. The

job almost continuously reads with the exception of some periodic dips of read amount

which seem to coincide with slight increase in bytes written. Such job behaviour could

benefit from an increase in available read bandwidth. In general any improvement on

the read path can increase performance. As read appears to be continues a prefetching

or readahead mechanism could require relatively large buffers.

Job 1492818 Maximum of total bytes written

Duration[s] 86032

I/O node count 64

Compute node count 8192

Table 4.13: Info of job 1492818; maximum of total bytes written.

Job 1492818 measured the highest amount of bytes written at over 22TiB. Tab. 4.13

introduces the job’s information, while Tab. 4.14 evaluates the I/O criteria map for

the job. The job appears to have a less mismatch between read and write compared to

job 1782577. Job 1492818 is a larger job occupying 11% of JUGENE. Meanwhile, the

maximum read job 1782577 occupied only an eighth of that size.

0.5
1.0
1.5
2.0
2.5
3.0
3.5

I/
O

 N
o
d
e

W
ri

te
 [

B
y
te

s]

1e8
(3.3)

Max
Mean
Min

0 10000 20000 30000 40000 50000 60000 70000 80000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 10000 20000 30000 40000 50000 60000 70000 80000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

0.2

0.4

0.6

0.8

1.0

1.2

W
ri

te
 [

B
y
te

s]

1e10
(2.8)

Bytes Written

Figure 4.38: Bytes written for job 1492818; maximum of total bytes written.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 123

1 Aggregate performance numbers Read Write

1.1 Total amount of data 3.307 TiB 22.259 TiB

1.2 Total amount of IOPs 9.12×105 6.47×106

1.3 Bandwidth
Max 14.172 GiB/s 10.537 GiB/s

Avg 40.304 MiB/s 271.297 MiB/s

1.4 IOPS
Max 3783 2766

Avg 10.60 75.21

1.5 File commands
Open 4.82×105

Close 3.08×105

1.6 I/O intensity c = 1MiB 0.05 0.00 0.04

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 0.05

2.4 Percentage of I/O type
in IOPs 0.12 0.88

in Bytes 0.13 0.87

2.9 Burstiness c = 1MiB 0.99 0.95

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.55 0.75 0.53

Table 4.14: I/O criteria analysis map of job 1492818; maximum of total bytes written.

Fig. 4.38 presents the bytes written distributions for job 1492818. Write appears in

bursts and could be considered almost periodic. Given the time between bursts it is

possible to perform burst buffering, which can also be understood from the value of

burstiness given in Tab. 4.14. The buffer has then sufficient time to move the data out

to the storage system. As a result the burst buffers might reduce the time spent in I/O

significantly. However, when considering a write I/O intensity of only 0.04, the burst

buffers would hardly improve performance of the overall job.

Job 1823713 Bytes written median of jobs with over 1TiB read

or write

Duration[s] 17993

I/O node count 32

Compute node count 4096

Table 4.15: Info of job 1823713; bytes written median of jobs with over 1TiB read or
write.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 124

1 Aggregate performance numbers Read Write

1.1 Total amount of data 256.125 GiB 1.0 TiB

1.2 Total amount of IOPs 1.49×105 6.04×105

1.3 Bandwidth
Max 3.152 GiB/s 1.846 GiB/s

Avg 14.576 MiB/s 58.276 MiB/s

1.4 IOPS
Max 1842 1029

Avg 8.26 33.58

1.5 File commands
Open 8.20×104

Close 8.21×104

1.6 I/O intensity c = 1MiB 0.07 0.00 0.06

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 0.02

2.4 Percentage of I/O type
in IOPs 0.20 0.80

in Bytes 0.20 0.80

2.9 Burstiness c = 1MiB 1.00 0.93

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.85 0.92 0.84

Table 4.16: I/O criteria analysis map of job 1823713; bytes written median of jobs
with over 1TiB read or write.

Job 1823713 is selected being the median of bytes written. The selection method is simple

and provides a job almost at random that does not have as large I/O as the maximums

previously presented. Tab. 4.15 provides job 1823713 information and indicates that the

job’s duration is less than for the two maximum selected jobs. On the other hand, Tab.

4.16 evaluates the job’s I/O criteria and indicates a larger write than read by about 4

times.

Similar to job 1492818; maximum of total bytes written, job 1823713 exhibits bursty

write as seen in Fig. 4.39 and evaluated by the burstiness parameter in Tab. 4.16. As

a result similar benefits can be achieved for using burst buffers and at an I/O intensity

of 0.06 job 1823713 could achieve a slight improvement. Nonetheless, the burst buffers

would only minimally effect the overall job performance.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 125

1
2
3
4
5
6
7

I/
O

 N
o
d
e

W
ri

te
 [

B
y
te

s]

1e7
(3.3)

Max
Mean
Min

0 5000 10000 15000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 5000 10000 15000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

0.5

1.0

1.5

2.0

W
ri

te
 [

B
y
te

s]

1e9
(2.8)

Bytes Written

Figure 4.39: Bytes written for job 1823713; bytes written median of jobs with over
1TiB read or write.

Classification 1.2 Total number of IOPs

100 101 102 103 104 105 106 107 108 109 1010

Read Commands

100

101

102

103

104

105

106

107

108

109

1010

W
ri
te
 C
o
m
m
a
n
d
s

(a)

1766138

1551853

1668617

1950206

1946944

987713

1823713

1912846

1117955

1492818

1782577

1752533

0

400

800

1200

1600

2000

2400

2800

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.40: Read and write commands for selected jobs. (a) Scatter plot of read
and write commands with a heat map for job count, (b) Histogram of read commands

and (c) Histogram of write commands.

Using total number of IOPs 3 jobs are selected. Job 1766138; has the maximum of

total read commands, job 1752533; has the maximum of total write commands and

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 126

job 987713; is the write commands median of jobs with over 1TiB read or write. The

selected jobs are shown in the distribution of read and write commands for jobs in Fig.

4.40.

Job 1766138 Maximum of total read commands

Duration[s] 3878

I/O node count 32

Compute node count 4096

Table 4.17: Info of job 1766138; maximum of total read commands.

1 Aggregate performance numbers Read Write

1.1 Total amount of data 4.575 TiB 444.211 KiB

1.2 Total amount of IOPs 1.22×109 2.12×103

1.3 Bandwidth
Max 1.579 GiB/s 749.0B/s

Avg 1.208 GiB/s 117.268B/s

1.4 IOPS
Max 332364 32

Avg 315707.05 0.55

1.5 File commands
Open 2.87×104

Close 2.87×104

1.6 I/O intensity c = 1MiB 1.00 1.00 0.00

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.43 1.00

2.4 Percentage of I/O type
in IOPs 1.00 0.00

in Bytes 1.00 0.00

2.9 Burstiness c = 1MiB 0.00 1.00

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 1.00 1.00 0.00

Table 4.18: I/O criteria analysis map of job 1766138; maximum of total read com-
mands.

Job 1766138 created the largest number of read commands at about 1.22×109 commands.

The job’s information is given in Tab. 4.17. The evaluation of the job’s I/O criteria

in Tab. 4.18, shows the large amount of read the job has performed compared to a

relatively very small write.

Fig. 4.41 depicts the I/O distributions of read commands for job 1766138. As seen the

job produces almost continuously read requests and is therefore similar to job 1782577;

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 127

0.2

0.4

0.6

0.8

1.0

I/
O

 N
o
d
e

R
e
a
d
 [

C
o
m

m
a
n
d
s]

1e4
(3.3)

Max
Mean
Min

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

R
e
a
d (2.5)

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
0

(3.2)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

R
e
a
d
 [

C
o
m

m
a
n
d
s]

1e5
(2.8)

Read Commands

Figure 4.41: Read commands for job 1766138; maximum of total read commands.

maximum of total bytes read. Both the maximum read bytes job and maximum read

command job appear to achieve similar read bandwidth when comparing Tab. 4.12 and

Tab. 4.18. Therefore, it could be assumed that no improvement could be made to job

1766138; maximum of total read commands, by increasing the read request sizes and

as a result decreasing the number of read commands. However, considering that job

1782577; maximum of total bytes read, achieved this read bandwidth using 8 I/O nodes,

while job 1766138; maximum of total read commands, achieved the same bandwidth

using 32 I/O nodes, it shows that with the larger number of read requests a smaller read

bandwidth is achieved for the same I/O quantity.

For job 1766138; maximum of total read commands, prefetching or readahead could

require large buffers. However, a prefetching mechanism can attempt merging small

read requests to improve performance. The job could also benefit from an increase

in available read IOPS or read bandwidth. Generally any improvement on the read

path, specially in terms of dealing with a large quantity of read requests, could lead to

an improvement in the job’s I/O performance. Such improvement could have a large

impact on the overall job’s performance given the measured I/O intensity of 1.0.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 128

Job 1752533 Maximum of total write commands

Duration[s] 30251

I/O node count 64

Compute node count 8192

Table 4.19: Info of job 1752533; maximum of total write commands.

1 Aggregate performance numbers Read Write

1.1 Total amount of data 10.575 TiB 82.16 GiB

1.2 Total amount of IOPs 3.12×106 9.25×108

1.3 Bandwidth
Max 36.481 GiB/s 40.282 MiB/s

Avg 366.556 MiB/s 2.781 MiB/s

1.4 IOPS
Max 9346 470733

Avg 103.00 30568.18

1.5 File commands
Open 1.04×107

Close 1.03×107

1.6 I/O intensity c = 1MiB 0.19 0.17 0.02

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 1.00

2.4 Percentage of I/O type
in IOPs 0.00 1.00

in Bytes 0.99 0.01

2.9 Burstiness c = 1MiB 0.80 0.97

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.12 0.13 0.01

Table 4.20: I/O criteria analysis map of job 1752533; maximum of total write com-
mands.

Job 1752533 created the largest number of write commands at about 9.25×108 com-

mands. The job’s information is given in Tab 4.19. Tab. 4.20 evaluates job 1752533 I/O

criteria. Despite the large number of write commands performed by the job, a relatively

small amount of bytes were written. As a result the write requests are rather small as

seen in Tab. 4.20 from percentage of small I/O requests. This could also be resulting in

a reduced bandwidth as the job becomes limited by the available I/O system IOPS.

To analyse job 1752533; maximum of total write commands, Fig. 4.42 presents the read

command distributions, while Fig. 4.43 presents the write command distributions. As

seen from the two figures, it appears job 1752533 starts with read interleaved with write,

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 129

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

I/
O

 N
o
d
e

R
e
a
d
 [

C
o
m

m
a
n
d
s]

1e2
(3.3)

Max
Mean
Min

0 5000 10000 15000 20000 25000 30000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

R
e
a
d (2.5)

0 5000 10000 15000 20000 25000 30000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
0

(3.2)

0.2

0.4

0.6

0.8

1.0

R
e
a
d
 [

C
o
m

m
a
n
d
s]

1e4
(2.8)

Read Commands

Figure 4.42: Read commands for job 1752533; maximum of total write commands.

0.2
0.4
0.6
0.8
1.0
1.2

I/
O

 N
o
d
e

W
ri

te
 [

C
o
m

m
a
n
d
s]

1e4
(3.3)

Max
Mean
Min

0 5000 10000 15000 20000 25000 30000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 5000 10000 15000 20000 25000 30000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
0

(3.2)

1

2

3

4

5

W
ri

te
 [

C
o
m

m
a
n
d
s]

1e5
(2.8)

Write Commands

Figure 4.43: Write commands for job 1752533; maximum of total write commands.

moves into a large read burst and ends with a write burst. Between the two bursts write

appears to be small but continuous. Furthermore, the final write burst is not shared by

all I/O nodes, as given by Fig. 4.43-(3.3).

It is possible to imagine that job 1752533; maximum of total write commands, can benefit

from a larger write IOPS rate on the I/O subsystem. It is also possible to achieve an

improvement by using buffers with a combination of merging small write requests. Such

collective I/O techniques requires a spatial access pattern that allows I/O requests to

be combined.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 130

Job 987713 Write commands median of jobs with over 1TiB

read or write

Duration[s] 82349

I/O node count 8

Compute node count 1024

Table 4.21: Info of job 987713; write commands median of jobs with over 1TiB read
or write.

1 Aggregate performance numbers Read Write

1.1 Total amount of data 25.562 GiB 1.526 TiB

1.2 Total amount of IOPs 6.88×103 4.20×105

1.3 Bandwidth
Max 415.136 MiB/s 303.799 MiB/s

Avg 325.49 KiB/s 19.431 MiB/s

1.4 IOPS
Max 112 80

Avg 0.08 5.10

1.5 File commands
Open 1.25×104

Close 9.48×103

1.6 I/O intensity c = 1MiB 0.23 0.00 0.23

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 0.03

2.4 Percentage of I/O type
in IOPs 0.02 0.98

in Bytes 0.02 0.98

2.9 Burstiness c = 1MiB 1.00 0.71

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.00 0.00 0.00

Table 4.22: I/O criteria analysis map of job 987713; write commands median of jobs
with over 1TiB read or write.

To complement the I/O distributions studied of the largest 2 jobs in terms of read and

write commands, job 987713; write commands median of jobs with over 1TiB read or

write, is selected. Tab. 4.21 shows the job’s information. The evaluated I/O criteria for

job 987713, given in Tab 4.22, suggest a job with a larger write than read I/O.

The I/O distribution of write commands for job 987713, given in Fig. 4.44 and the

burstiness parameter seems to suggest a bursty write access, with almost no parallel

I/O. It might therefore benefit from introducing burst buffers, which at a write intensity

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 131

1
2
3
4
5
6
7
8

I/
O

 N
o
d
e

W
ri

te
 [

C
o
m

m
a
n
d
s]

1e1
(3.3)

Max
Mean
Min

0 10000 20000 30000 40000 50000 60000 70000 80000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 10000 20000 30000 40000 50000 60000 70000 80000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
0

(3.2)

1
2
3
4
5
6
7
8

W
ri

te
 [

C
o
m

m
a
n
d
s]

1e1
(2.8)

Write Commands

Figure 4.44: Write commands for job 987713; write commands median of jobs with
over 1TiB read or write.

of 0.23 might add some improvement to the job’s performance. Additionally, job 987713

appears to move through two I/O stages, in the first stage the write access bursts are

more frequent, while in the second stage the bursts period increases.

Classification 1.3 Read/Write bandwidth

One reason for having the bandwidth as an I/O criteria is finding jobs that are limited

at the maximum read or write bandwidth available by the I/O subsystem. However, as

discussed in Sec. 4.5.3 (Classification 1.3), the maximum bandwidth has some inaccu-

racies when analysed using a coarse temporal resolution. As a result, selecting the job

that performed the highest bandwidth might not be as effective in understanding the job

I/O behaviour. For the purpose of surveying the I/O behaviour of analysed jobs 2 jobs

are selected. Job 1912846; having equal read and write bandwidth and job 1668617; is

the read bandwidth median of jobs with over 1TiB read or write. The term bandwidth

here refers to the maximum bandwidth as measured by the GPFS I/O logs. Fig. 4.45

shows the selected jobs location in the distribution of read and write bandwidth over

the analysed jobs.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 132

22 25 28 211 214 217 220 223 226 229 232 235

Max Read Bandwidth[Bytes/s]

22
25
28
211
214
217
220
223
226
229
232
235

M
a
x
 W

ri
te
 B
a
n
d
w
id
th
[B
y
te
s/
s]

(a)

1766138

1551853

1782577

1752533

1668617

1946944

1117955

987713

1950206

1912846

1823713

1492818

0

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.45: Read and write maximum bandwidth for selected jobs. (a) Scatter plot
of read and write maximum bandwidth with a heat map for job count, (b) Histogram

of read maximum bandwidth and (c) Histogram of write maximum bandwidth.

Job 1912846 Equal read and write bandwidth

Duration[s] 14203

I/O node count 16

Compute node count 2048

Table 4.23: Info of job 1912846; equal read and write bandwidth.

Tab. 4.23 gives the information of job 1912846 which achieved an equal read and write

maximum bandwidth. Despite that the job appears to have performed a larger amount

of write than read as described by Tab. 4.24, which evaluates the I/O criteria for job

1912846.

Fig. 4.46 and Fig. 4.47 depict an interesting I/O sequence for job 1912846. The job

appears to start with a small read burst, moves in a stage of many write bursts with

a complete absence of read. The job then proceeds to perform periodic write bursts

interleaved with periodic read bursts. While this behaviour might not benefit much

from an increase in bandwidth, it could benefit from burst buffers and prefetching or

readahead. With maybe the exception of the first write bursts, the timing and period

after each write burst could allow a burst buffer to trickle the data to the storage system

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 133

1 Aggregate performance numbers Read Write

1.1 Total amount of data 810.044 GiB 2.039 TiB

1.2 Total amount of IOPs 3.65×105 9.54×105

1.3 Bandwidth
Max 614.409 MiB/s 614.409 MiB/s

Avg 58.402 MiB/s 150.54 MiB/s

1.4 IOPS
Max 276 284

Avg 25.73 67.19

1.5 File commands
Open 5.65×105

Close 3.28×105

1.6 I/O intensity c = 1MiB 0.48 0.19 0.41

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 0.00

2.4 Percentage of I/O type
in IOPs 0.28 0.72

in Bytes 0.28 0.72

2.9 Burstiness c = 1MiB 0.76 0.37

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.68 0.54 0.68

Table 4.24: I/O criteria analysis map of job 1912846; equal read and write bandwidth.

while job I/O is idling. Meanwhile, the period of read bursts could allow a readahead

mechanism to slowly read the needed data from the storage into a buffer before it is

needed by the job. At an I/O intensity of 0.48 the burst buffering and readahead could

have a beneficial impact on job 1912846.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 134

1

2

3

4

5

6

I/
O

 N
o
d
e

R
e
a
d
 [

B
y
te

s]

1e7
(3.3)

Max
Mean
Min

0 2000 4000 6000 8000 10000 12000 14000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

R
e
a
d (2.5)

0 2000 4000 6000 8000 10000 12000 14000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

1
2
3
4
5
6
7

R
e
a
d
 [

B
y
te

s]

1e8
(2.8)

Bytes Read

Figure 4.46: Bytes read for job 1912846; equal read and write bandwidth.

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

I/
O

 N
o
d
e

W
ri

te
 [

B
y
te

s]

1e7
(3.3)

Max
Mean
Min

0 2000 4000 6000 8000 10000 12000 14000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 2000 4000 6000 8000 10000 12000 14000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

1
2
3
4
5
6
7

W
ri

te
 [

B
y
te

s]

1e8
(2.8)

Bytes Written

Figure 4.47: Bytes written for job 1912846; equal read and write bandwidth.

Job 166861 Read bandwidth median of jobs with over 1TiB

read or write

Duration[s] 4754

I/O node count 8

Compute node count 1024

Table 4.25: Info of job 1668617; read bandwidth median of jobs with over 1TiB read
or write.

Job 1668617 is selected as the read bandwidth median of jobs with over 1TiB read or

write. The job’s information are presented in Tab. 4.25 and the I/O criteria of the job

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 135

1 Aggregate performance numbers Read Write

1.1 Total amount of data 3.253 TiB 22.781 GiB

1.2 Total amount of IOPs 8.80×105 6.95×103

1.3 Bandwidth
Max 2.582 GiB/s 26.75 MiB/s

Avg 717.379 MiB/s 4.906 MiB/s

1.4 IOPS
Max 906 15

Avg 185.09 1.46

1.5 File commands
Open 1.07×105

Close 1.06×105

1.6 I/O intensity c = 1MiB 0.76 0.63 0.41

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 0.14

2.4 Percentage of I/O type
in IOPs 0.99 0.01

in Bytes 0.99 0.01

2.9 Burstiness c = 1MiB 0.06 0.39

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.77 0.92 0.00

Table 4.26: I/O criteria analysis map of job 1668617; read bandwidth median of jobs
with over 1TiB read or write.

are evaluated in Tab. 4.26. It appears that job 1668617 performed a far larger amount

of read than write as reflected by the I/O criteria. Nonetheless the write I/O intensity

is at 0.41 which is not far behind the read I/O intensity of 0.63.

Fig. 4.48 describes the bytes read I/O distributions of job 1668617. The job appears

to exhibit wide step bursts. When examining Fig. 4.48-(3.3) and Fig. 4.48-(3.2) it is

possible to see that all I/O nodes experience these step bursts in parallel.

Fig. 4.49 depicts the bytes written I/O distributions of job 1668617. When compared

to Fig. 4.48 it is possible to see an overall I/O behaviour of read and write. While

performing read, some I/O nodes additionally perform write which occasionally coincides

with the lower of the two steps of the read bursts. This behaviour can be observed from

Fig. 4.48-(2.5) where the read I/O domination occasionally falls below 1.0. The opposite

is also true, where write performance drops coincide with the occurrence of a read burst

and can be observed from Fig. 4.49-(2.5). However, from the analysis of the GPFS I/O

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 136

0.5
1.0
1.5
2.0
2.5
3.0
3.5

I/
O

 N
o
d
e

R
e
a
d
 [

B
y
te

s]

1e8
(3.3)

Max
Mean
Min

0 1000 2000 3000 4000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

R
e
a
d (2.5)

0 1000 2000 3000 4000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

0.5

1.0

1.5

2.0

2.5

3.0

R
e
a
d
 [

B
y
te

s]

1e9
(2.8)

Bytes Read

Figure 4.48: Bytes read for job 1668617; read bandwidth median of jobs with over
1TiB read or write.

0.5

1.0

1.5

2.0

2.5

3.0

I/
O

 N
o
d
e

W
ri

te
 [

B
y
te

s]

1e7
(3.3)

Max
Mean
Min

0 1000 2000 3000 4000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 1000 2000 3000 4000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

0.5

1.0

1.5

2.0

2.5

3.0

W
ri

te
 [

B
y
te

s]

1e7
(2.8)

Bytes Written

Figure 4.49: Bytes written for job 1668617; read bandwidth median of jobs with over
1TiB read or write.

logs it is not clear whether this decrease of read performance coinciding with write and

vice versa is an application design or due to the I/O subsystem. Small I/O systems such

as accessing an HDD could exhibit a drop in read and write bandwidth when performing

simultaneous read and write.

For job 1668617, prefetch or readahead mechanism could benefit the read performance.

however the implementation might require the use of relatively large buffers to hold the

prefetched data. The size of the required buffers depends on the size of the bursts and

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 137

the time between bursts. Write might also benefit from a burst buffer. At a fairly high

I/O intensity of 0.76 these I/O architectural changes might have a high impact on the

job’s performance.

Classification 1.4 Read/Write IOPS

100 101 102 103 104 105 106

Max Read IOPS

100

101

102

103

104

105

106

M
a
x
 W

ri
te
 I
O
P
S

(a)

1766138

1668617

1551853

1946944

987713

1117955

1912846

1950206

1823713

1492818

1782577

1752533

0

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
e
r
o
f
Jo
b
s

101

102

103

104

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104 105

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.50: Read and write maximum IOPS for selected jobs. (a) Scatter plot of
read and write maximum IOPS with a heat map for job count, (b) Histogram of read

maximum IOPS and (c) Histogram of write maximum IOPS.

The analysis of job IOPS is similar to analysing bandwidth. As discussed in Sec. 4.5.3

(Classification 1.4), the maximum IOPS has some inaccuracies when analysed with a

coarse temporal resolution. Therefore the study of jobs with highest maximum IOPS

might not give correct conclusions on the I/O behaviour of analysed jobs. Using IOPS

analysis of GPFS I/O logs 3 jobs are selected to survey the I/O behaviour. Job 1946944;

having equal read and write IOPS, job 1551853; is the read IOPS median of jobs with

over 1TiB read or write and job 1117955; is the write IOPS median of jobs with over

1TiB read or write. IOPS here refers to maximum achieved IOPS as measured using

the GPFS I/O logs. Fig. 4.50 shows where these jobs are located in the distribution of

maximum read and write IOPS over jobs. The IOPS measured are averages over 2min,

the GPFS I/O counter logging interval, which should be considered when observing

relatively low IOPS rates.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 138

Job 1946944 Equal read and write IOPS

Duration[s] 67159

I/O node count 8

Compute node count 1024

Table 4.27: Info of job 1946944; equal read and write IOPS.

1 Aggregate performance numbers Read Write

1.1 Total amount of data 25.543 GiB 1.048 TiB

1.2 Total amount of IOPs 6.82×103 2.90×105

1.3 Bandwidth
Max 264.184 MiB/s 282.133 MiB/s

Avg 398.816 KiB/s 16.367 MiB/s

1.4 IOPS
Max 75 75

Avg 0.10 4.32

1.5 File commands
Open 8.35×103

Close 6.42×103

1.6 I/O intensity c = 1MiB 0.37 0.00 0.37

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 0.03

2.4 Percentage of I/O type
in IOPs 0.02 0.98

in Bytes 0.02 0.98

2.9 Burstiness c = 1MiB 1.00 0.48

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.00 0.00 0.00

Table 4.28: I/O criteria analysis map of job 1946944; equal read and write IOPS.

Tab. 4.27 lists job 1946944 information, while Tab. 4.28 shows it’s evaluated I/O

criteria. Job 1946944 performed an equal maximum IOPS for both read and write.

Despite that the job appears uneven, having performed mostly write. This suggests

that the maximum achieved IOPS is not directly related to the number of I/O requests

a job needs to perform.

Due to the large write performed by job 1946944, the write command’s distributions are

shown in Fig. 4.51. As seen from the figure the write commands are continuous with

interleaved bursts. These appear to be periodic, with the period decreasing over the jobs

runtime. Additionally, the write bursts appear to come in different magnitudes, with

the larger bursts being followed by smaller ones. Such periodic burst behaviour allows

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 139

1
2
3
4
5
6
7

I/
O

 N
o
d
e

W
ri

te
 [

C
o
m

m
a
n
d
s]

1e1
(3.3)

Max
Mean
Min

0 10000 20000 30000 40000 50000 60000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 10000 20000 30000 40000 50000 60000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
0

(3.2)

1
2
3
4
5
6
7
8

W
ri

te
 [

C
o
m

m
a
n
d
s]

1e1
(2.8)

Write Commands

Figure 4.51: Write commands for job 1946944; equal read and write IOPS.

for better burst buffer design. Using burst size and period, buffer size and bandwidth

between buffer and storage can be chosen.

Job 1551853 Read IOPS median of jobs with over 1TiB read or

write

Duration[s] 3690

I/O node count 32

Compute node count 4096

Table 4.29: Info of job 1551853; read IOPS median of jobs with over 1TiB read or
write.

Job 1551853 is the read IOPS median of jobs with over 1TiB read or write. The job’s

information is given in Tab. 4.29 and it’s evaluated I/O criteria in Tab. 4.30. Job

1551853 appears to have performed a large amount of read compared to a very small

amount of write.

The read behaviour of job 1551853 is described in the read commands distributions

shown in Fig. 4.52. The figure indicates continuous read throughout the job’s runtime.

However, as seen from Fig. 4.52-(3.3) and Fig. 4.52-(3.2), the read lacks in parallelism.

Out of the 32 I/O nodes occupied by the job, only a few appear to be involved in the

read operations at any given time. If allowed by the job’s algorithm, distributing the

read over the available I/O nodes might help utilizing more bandwidth. Another method

of achieving better I/O node parallelism for the job, is for the I/O nodes to redistribute

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 140

1 Aggregate performance numbers Read Write

1.1 Total amount of data 2.472 TiB 1.05 MiB

1.2 Total amount of IOPs 2.60×106 5.12×103

1.3 Bandwidth
Max

1021.766
MiB/s

935.0B/s

Avg 702.163 MiB/s 298.433B/s

1.4 IOPS
Max 1019 32

Avg 703.27 1.39

1.5 File commands
Open 7.55×103

Close 7.55×103

1.6 I/O intensity c = 1MiB 1.00 1.00 0.00

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 1.00

2.4 Percentage of I/O type
in IOPs 1.00 0.00

in Bytes 1.00 0.00

2.9 Burstiness c = 1MiB 0.00 1.00

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.16 0.16 0.00

Table 4.30: I/O criteria analysis map of job 1551853; read IOPS median of jobs with
over 1TiB read or write.

some of the I/O load among themselves. However, such design must avoid using too

much of the internal available network for the I/O nodes to bring the data to the process

that initiated the read requests.

Given that job 1551853 continuously performs read, a readahead mechanism would only

interfere with the ongoing read operations. A better implementation would attempt

initiating prefetch prior to the start of the job. Such a design requires large buffers that

allows for keeping the data long enough till it is needed by the job. For such applications

understanding the data read could allow for better I/O architectures. Since the GPFS

I/O logs do not allow identifying I/O requests, some data might be reread several times.

In such a case a buffering the data or using active storage that brings the processing

closer to the data, might allow for better I/O performance. Given job 1551853 high I/O

intensity of 1.0, this might merit a deeper analysis of the application’s I/O.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 141

0.5

1.0

1.5

I/
O

 N
o
d
e

R
e
a
d
 [

C
o
m

m
a
n
d
s]

1e2
(3.3)

Max
Mean
Min

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

R
e
a
d (2.5)

0 500 1000 1500 2000 2500 3000 3500

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
0

(3.2)

0.2

0.4

0.6

0.8

1.0

R
e
a
d
 [

C
o
m

m
a
n
d
s]

1e3
(2.8)

Read Commands

Figure 4.52: Read commands for job 1551853; read IOPS median of jobs with over
1TiB read or write.

Job 1117955 Write IOPS median of jobs with over 1TiB read or

write

Duration[s] 69342

I/O node count 16

Compute node count 2048

Table 4.31: Info of job 1117955; write IOPS median of jobs with over 1TiB read or
write.

Job 1117955 is the write IOPS median of jobs with over 1TiB read or write. The job’s

information is given in Tab. 4.31 and it’s evaluated I/O criteria in Tab. 4.32. Similar to

many of the so far analysed jobs the read and write quantities show a mismatch. In the

case of job 1117955 the write quantity dwarfs the read. Despite that the read appears to

achieve a higher maximum IOPS than write. This might indicate the lack of relationship

between maximum IOPS and the total number of I/O requests a job requires.

The I/O behaviour of job 1117955 is given by the read command distributions shown

in Fig. 4.53. As observed from the figure the maximum IOPS write occurs at the

beginning of the job’s runtime. As described in Sec. 4.5.3 (Classification 1.4), the

maximum IOPS can suffer from errors in matching GPFS I/O logs to job runtime.

Therefore the maximum write IOPS recorded for job 1117955 becomes less trust worthy

as it might be resulting from a previous job.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 142

1 Aggregate performance numbers Read Write

1.1 Total amount of data 123.818 MiB 2.401 TiB

1.2 Total amount of IOPs 5.60×104 4.11×106

1.3 Bandwidth
Max 1.61 MiB/s 66.281 MiB/s

Avg 1.828 KiB/s 36.312 MiB/s

1.4 IOPS
Max 656 114

Avg 0.81 59.34

1.5 File commands
Open 1.23×107

Close 8.18×106

1.6 I/O intensity c = 1MiB 1.00 0.00 1.00

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 1.00 0.00

2.4 Percentage of I/O type
in IOPs 0.01 0.99

in Bytes 0.00 1.00

2.9 Burstiness c = 1MiB 1.00 0.00

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 0.90 0.00 0.90

Table 4.32: I/O criteria analysis map of job 1117955; write IOPS median of jobs with
over 1TiB read or write.

Job 1117955 write distribution appears to be interesting, as seen in Fig. 4.53, performing

continuous write in parallel over all 16 I/O nodes. Despite that the maximum and

average read bandwidth and IOPS appear small. It is therefore questionable whether

the job was limited by the available I/O subsystem bandwidth and hence might not

benefit from increasing it. Given the job’s long runtime, it is difficult to attribute the

diminished write bandwidth to other jobs running in parallel. This might also be an

effect of measuring the I/O intensity with a lower log temporal resolution of 2min.

Using a higher resolution might yield a smaller I/O intensity. The continuity of the

write operations might require too large burst buffers to accommodate such large write

without throttling performance.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 143

0.2

0.4

0.6

0.8

1.0

I/
O

 N
o
d
e

W
ri

te
 [

C
o
m

m
a
n
d
s]

1e1
(3.3)

Max
Mean
Min

0 10000 20000 30000 40000 50000 60000 70000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 10000 20000 30000 40000 50000 60000 70000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
0

(3.2)

0.2

0.4

0.6

0.8

1.0

1.2

W
ri

te
 [

C
o
m

m
a
n
d
s]

1e2
(2.8)

Write Commands

Figure 4.53: Write commands for job 1117955; write IOPS median of jobs with over
1TiB read or write.

Classification 1.6 I/O intensity

0.0 0.2 0.4 0.6 0.8 1.0
Read I/O Intensity (c=1MiB)

0.0

0.2

0.4

0.6

0.8

1.0

W
ri

te
 I

/O
 I

n
te

n
si

ty
 (

c=
1

M
iB

)

(a)

1782577

1766138

1551853

1752533

1492818

1823713

987713

1912846

1946944

1668617

1117955

1950206

0

4000

8000

12000

16000

20000

24000

28000

N
u

m
b

e
r

o
f

Jo
b

s

101
102
103
104
105

N
u

m
b

e
r

o
f

Jo
b

s

(b)

101 102 103 104 105

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u

m
m

u
la

ti
v

e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.54: Read and write I/O intensity (c = 1MiB) for selected jobs. (a) Scatter
plot of read and write I/O intensity with a heat map for job count, (b) Histogram of

read I/O intensity and (c) Histogram of write I/O intensity.

Jobs with high measured I/O intensity are more likely to be I/O limited. Studying the

I/O behaviour of such jobs might indicate methods for improving the I/O architecture.

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 144

As a result, job 1950206 with an I/O intensity of 1.0 is selected. Fig. 4.54 shows the

job’s location on the I/O intensity distribution. The figure shows that both the read

and write intensity of the job are high.

Job 1950206 I/O intensity of 1.0

Duration[s] 4471

I/O node count 16

Compute node count 2048

Table 4.33: Info of job 1950206; I/O intensity of 1.0.

1 Aggregate performance numbers Read Write

1.1 Total amount of data 1.304 TiB 1.312 TiB

1.2 Total amount of IOPs 4.12×105 3.57×105

1.3 Bandwidth
Max 363.329 MiB/s 365.489 MiB/s

Avg 305.689 MiB/s 307.699 MiB/s

1.4 IOPS
Max 863 114

Avg 92.14 79.78

1.5 File commands
Open 5.87×104

Close 5.87×104

1.6 I/O intensity c = 1MiB 1.00 1.00 1.00

2 I/O pattern analysis

2.2 Percentage of small I/O requests (s ≤ 4KiB) 0.00 0.00

2.4 Percentage of I/O type
in IOPs 0.54 0.46

in Bytes 0.50 0.50

2.9 Burstiness c = 1MiB 0.00 0.00

3 Parallel I/O

3.1 Parallel I/O intensity c = 1MiB 1.00 1.00 1.00

Table 4.34: I/O criteria analysis map of job 1950206; I/O intensity of 1.0.

Tab. 4.33 introduces job 1950206 information, while Tab. 4.34 evaluates it’s I/O criteria.

From this the almost balanced read and write performance can be seen.

Fig. 4.55 and Fig. 4.56 show the bytes read and written distributions respectively. By

comparing the two figures, the almost equal distribution of read and write is visible.

Both are almost continuously performed in parallel from all I/O nodes. As a result,

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 145

0.5

1.0

1.5

2.0

2.5

I/
O

 N
o
d
e

R
e
a
d
 [

B
y
te

s]

1e7
(3.3)

Max
Mean
Min

0 1000 2000 3000 4000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

R
e
a
d (2.5)

0 1000 2000 3000 4000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

R
e
a
d
 [

B
y
te

s]

1e8
(2.8)

Bytes Read

Figure 4.55: Bytes read for job 1950206; I/O intensity of 1.0.

0.5

1.0

1.5

2.0

2.5

I/
O

 N
o
d
e

W
ri

te
 [

B
y
te

s]

1e7
(3.3)

Max
Mean
Min

0 1000 2000 3000 4000

Time[s]

0.2
0.6
1.0

D
o
m

in
a
ti

n
g
 I
/O

W
ri

te

(2.5)

0 1000 2000 3000 4000

Time[s]

0.2
0.4
0.6
0.8
1.0

C
o
n
cu

rr
e
n
cy

c=
1
M

iB

(3.2)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

W
ri

te
 [

B
y
te

s]

1e8
(2.8)

Bytes Written

Figure 4.56: Bytes written for job 1950206; I/O intensity of 1.0.

both Fig. 4.55-(2.5) and Fig. 4.56-(2.5) are set for almost the entire runtime at 50%

dominating read or write.

Since job 1950206 has an I/O intensity for write of 1.0 and a zero burstiness, burst

buffers should have a rather low performance improvement, which depends on the size

of the burst buffers. On the other hand, prefetching could introduce some limited

improvement to the I/O if performed prior to the job’s start. This is due to both burst

buffers and readahead or prefetching requiring I/O idle times in which asynchronously

the buffers are emptied or data can be readahead from storage. The size of the burst or

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 146

readahead buffers should consider the size and the duration of the I/O bursts. The idle

time between bursts needed to fill or empty the buffer depends on the buffer size and

the ratio between internal (buffer to I/O node) and external (buffer to storage system)

bandwidth. Whether the job can benefit from increasing bandwidth is difficult to judge.

Any observed limit on the bandwidth could also be the result of other factors such as

filesystem locks or internal job algorithm. Due to the large I/O intensity of 1.0, it is safe

to assume that any improvement of the I/O performance could result in a significant

improved overall job performance.

4.5.8 Analysing Jobs Using Category 2: I/O Pattern Analysis

Classification 2.1 Distribution of request sizes

Analysing distribution of requests sizes allows for further understanding the I/O be-

haviour of jobs. It also allows for locating possible bottlenecks, such as added read or

write due to request sizes smaller than filesystem block size. However, as introduced in

Sec. 4.5.4 (Classification 2.1), distribution of request size cannot be introduced for all

analysed jobs. As a result, jobs cannot be selected from a large scale GPFS I/O log

analysis based on having an interesting request size distribution. However, jobs can be

selected based on their percentage of small I/O.

Classification 2.2 Percentage of small I/O requests

It is possible to combine the percentage of small I/O requests with the distribution of

request sizes to analyse job’s request size behaviour. Here the percentage of small I/O

can be used to select jobs for which to represent the I/O request size distribution. Tab.

4.35 shows the percentage of small I/O of both read and write for the analysed jobs

with ssmall = 1MiB. As described in Sec. 2.1 the CIOD buffer limits the request sizes

to 4MiB. As a result selecting 4MiB, despite being the suggested filessytem blocksize,

would result in all jobs reporting high percentage of small I/O. Therefore, Tab. 4.35

uses ssmall = 1MiB.

Analysing the values given in Tab. 4.35 suggests that percentage of small I/O for

analysed jobs is either high or low. This could suggest that the job’s I/O request sizes

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 147

JOBID Selection Percentage of small read Percentage of small write

1782577
Maximum of total
bytes read

1.00 1.00

1492818
Maximum of total
bytes written

0.01 0.06

1823713

Bytes written me-
dian of jobs with
over 1TiB read or
write

0.00 0.03

1766138
Maximum of total
read commands

1.00 1.00

1752533
Maximum of total
write commands

0.06 1.00

987713

Write commands
median of jobs with
over 1TiB read or
write

0.04 0.03

1912846
Equal read and write
bandwidth

0.00 0.00

1668617

Read bandwidth me-
dian of jobs with
over 1TiB read or
write

0.02 0.14

1946944
Equal read and write
IOPS

0.03 0.03

1551853
Read IOPS median
of jobs with over
1TiB read or write

1.00 1.00

1117955
Write IOPS median
of jobs with over
1TiB read or write

1.00 1.00

1950206 I/O intensity of 1 0.15 0.00

Table 4.35: Percentage of small I/O (ssmall = 1MiB) of selected jobs.

do not exhibit large variations. To further investigate job’s request sizes the request size

distribution of a selected group of jobs is provided.

Job 1782577 has a percentage of small read of 100% and its read request size distribution

is given in Fig. 4.57. Despite being the job with the most bytes read, almost all I/O

requests appear to be just short of 1MiB in size.

On the other hand, job 1492818 performed the most bytes written and exhibits zero

percent of small write requests. The distribution for the write request sizes is given in

Fig. 4.58. The figure suggest that most I/O requests are between 2MiB and 4MiB.

Both shown request size distributions seem to suggest jobs operate mostly with a limited

constant range of request sizes. Since GPFS I/O log measured request sizes are averages,

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 148

0.5

1.0

1.5

2.0

2.5

3.0

N
u
m
b
e
r
o
f
R
e
q
u
e
st
s

1e6

26 28 210 212 214 216 218 220 222 224

Avg Read Request Size[Bytes]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

D
is
tr
ib
u
ti
o
n

Figure 4.57: Distribution of read request sizes for job 1782577.

1

2

3

4

5

6

N
u
m
b
e
r
o
f
R
e
q
u
e
st
s

1e4

23 25 27 29 211 213 215 217 219 221 223

Avg Write Request Size[Bytes]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

D
is
tr
ib
u
ti
o
n

Figure 4.58: Distribution of write request sizes for job 1492818.

it might even be possible that these jobs have a single preferred read or write request

size that is used by the application. Furthermore, in Sec. 4.5.4 (Classification 2.2)

it is suggested that write requests are overall smaller than read requests. Through

analysing the distribution of request sizes it is possible to expand on such observation.

For example, although both distributions in Fig. 4.57 and Fig. 4.58 perform most of

it’s I/O requests at certain values, smaller than the job’s preferred write request size

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 149

appear to be slightly more frequent. It is therefore possible that the overall smaller write

requests sizes suggested are the result of job’s other tasks such as logging. As a counter

suggestion it is possible that the smaller write requests appearing in Fig. 4.58 are simply

the CIOD buffer breaking some I/O requests that are slightly larger than 4MiB in two

requests.

While small I/O is considered a cause for I/O delay, in Sec. 4.5.4 (Classification 2.2),

this fact is questioned and testing the effect of small I/O on the delay is suggested.

Another interesting factor is to attempt changing the filesystem blocksize. Indeed in a

system where the I/O request size is trimmed at 4MiB it might be reasonable to use a

smaller filesystem blocksize, thereby possibly avoiding write and read overhead.

Classification 2.9 Burstiness parameter

0.0 0.2 0.4 0.6 0.8 1.0
Read Burstiness (c=1MiB)

0.0

0.2

0.4

0.6

0.8

1.0

W
ri
te
 B
u
rs
ti
n
e
ss
 (
c=

1
M
iB
)

(a)

1117955

1950206

1912846

1668617

1946944

987713

1823713

1492818

1752533

1782577

1766138

1551853

0

4000

8000

12000

16000

20000

24000

28000

N
u
m
b
e
r
o
f
Jo
b
s

101
102
103
104
105

N
u
m
b
e
r
o
f
Jo
b
s

(b)

101 102 103 104 105

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u
m
m
u
la
ti
v
e

0.2 0.4 0.6 0.8 1.0
 Cummulative

Figure 4.59: Read and write job burstiness (c = 1MiB) for selected jobs. (a) Scatter
plot of read and write burstiness, (b) Histogram of read burstiness and (c) Histogram

of write burstiness.

The burstiness has already been sparsely introduced for various analysed jobs. The

analysed jobs are highlighted in Fig. 4.59. By observing the analysed job’s temporal

I/O distribution and comparing it to the evaluated burstiness parameter, it appears that

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 150

the burstiness parameter has managed to describe to a good degree the I/O behaviour

of analysed jobs.

In general a bursty job could benefit from introducing burst buffers for write and reada-

head or prefetch for read. These would utilize idle I/O times and spread bursts across

them. How much a job benefits from these I/O architectural improvements is dependent

on many factors. For example, a job with higher write I/O intensity could benefit more

from burst buffers, if they manage to spread bursts across the job’s computation.

4.5.9 Analysing Jobs Using Category 3: Parallel I/O

Classification 3.1 Parallel I/O intensity

0.0 0.2 0.4 0.6 0.8 1.0
Read Parallel I/O Intensity (c=1MiB)

0.0

0.2

0.4

0.6

0.8

1.0

W
ri

te
 P

a
ra

lle
l

I/
O

 I
n

te
n

si
ty

 (
c=

1
M

iB
)

(a)

1551853

1752533

987713

1668617

1946944

1782577

1766138

1492818

1912846

1823713

1117955

1950206

0

6000

12000

18000

24000

30000

36000

42000

48000

N
u

m
b

e
r

o
f

Jo
b

s

101
102
103
104
105

N
u

m
b

e
r

o
f

Jo
b

s

(b)

101102103104105106

Number of Jobs

(c)

0.2
0.4
0.6
0.8
1.0

C
u

m
m

u
la

ti
v

e
0.2 0.4 0.6 0.8 1.0

 Cummulative

Figure 4.60: Read and write parallel I/O intensity (c = 1MiB) for selected jobs. (a)
Scatter plot of read and write parallel I/O intensity with a heat map for job count,
(b) Histogram of read parallel I/O intensity and (c) Histogram of write parallel I/O

intensity.

Similar to burstiness, the parallel I/O behaviour has been described for many analysed

jobs using the parallel I/O intensity in relation to the I/O operation concurrency and

parallel I/O distribution. The analysed jobs have therefore shown that the parallel I/O

intensity as an I/O criteria allows for correctly categorizing the I/O parallelism of a

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 151

large set of jobs. Fig. 4.60 shows the selected jobs on the distribution of parallel I/O

intensity over analysed jobs.

Jobs with low parallel I/O loose part of the available bandwidth, given that less I/O

links are utilized to the storage system. While this can be improved by optimizing the

I/O parallelism of the application, another solution is to allow for I/O nodes to share

the I/O load. As a result I/O nodes with higher loads would use the internal network to

send I/O requests to other I/O nodes. However overloading the internal network with

I/O requests should be avoided.

4.6 General Notes on Analysing the GPFS I/O Counters

From the analysis of the GPFS I/O logs it is possible to conclude that jobs exhibit a wide

range of I/O behaviour. As a result it is not possible to cluster or group the jobs into

categories according to the analysed I/O criteria. In general the jobs are found to have

a relatively low I/O intensity. This could be the result of the I/O subsystem’s capability

to handle the magnitude of I/O driven by the analysed jobs. It could also be due to

the knowledge of users that I/O operations are potentially expensive and subsequently

avoided.

The analysed I/O behaviour suggests the need for considering and experimenting with

many possible I/O architectures. This is due to the large number of analysed jobs and

their diverse I/O behaviour. The different I/O optimizations could cater for specific I/O

behaviours that arise more frequently among jobs. The use of I/O architectures that do

not require application changes are recommended.

Despite the demonstrated ability to use the GPFS I/O logs for large job I/O analy-

sis, the possible limitations and observations mentioned should be considered. Other

I/O measuring methods could offer more insight into job’s I/O behaviour and allow for

analysing more I/O criteria. These however come at a cost, such as producing probably

much larger data sets to be analysed. Other I/O measuring techniques might also not

allow for mass analysis of job I/O. As a result, to better evaluate the I/O behaviour

of jobs it is suggested to couple the GPFS I/O logs analysis with other methods. The

conclusions of the GPFS I/O logs would direct the attention to a smaller group of jobs

Chapter 4. Performance Characterization: Analysing GPFS I/O Counters 152

with interesting I/O behaviour, that would later be analysed using more detailed proce-

dures. As an overall principle, the analysis demonstrated here suggests the importance

of evaluating the measuring technique and asses the I/O criteria, which have been found

to greatly facilitate the I/O behaviour analysis process.

Chapter 5

Performance Modeling: Modeling

JUGENE I/O

While the I/O criteria and GPFS I/O log analysis provide an insight into the I/O

behaviour of applications, the possibilities to optimize and test various architectures

is not provided. In general, reinventing and tuning an I/O system is a complex and

difficult procedure and could be hindered by limited financial and hardware resources.

However, beyond studying the I/O systems, tuning and optimizing future architectures

is necessary to further the understanding of application’s I/O behaviour.

Simulations offers an alternative to building several test systems and/or changing a

running existing system. The investigated new I/O architecture can be decoupled from

existing production systems, thereby avoiding the disturbance that might be caused by

repeated changes for users running their applications.

An advantage of simulation is the full control over the setup and the involved parameters.

In comparison, analysing real running systems and their architectural changes could

suffer from parameter sensitivity.

As noted in Chp. 1, I/O architectures are fairly complex. The target is therefore to

create a model of an I/O system that is simple, but still well represents the I/O system’s

behaviour. Simplifying the model eases the implementation and offers a limitation on

the number of changing parameters. The task of creating a simulation becomes defining

a set of parameters that can adequately represent the simulated system and be used to

153

Chapter 5. Performance Modeling: Modeling JUGENE I/O 154

tune for future architectures. For example, a storage system can incorporate the details

of the inner workings of each disk. The storage model can also be simplified to only

simulate individual storage server or even further simplified to a single module with a

specific bandwidth.

The GPFS I/O logs can be used to test the reactions of a simulated I/O system. This

provides the simulation with real world I/O patterns. As the GPFS I/O logs have been

collected on JUGENE, an appropriate model of JUGENE’s I/O subsystem is created

and used for investigating future I/O architectures.

5.1 Related Work

Other work has already pursued the path of simulating systems for studying I/O ar-

chitectures. As a reference, two system simulations that relate to the work done here

are presented. The first and closer to this study is the Co-design of Exascale Storage

System (CODES) [50], which is later used to simulate burst buffers in [1]. The second

is the Hybrid Parallel I/O and Storage System Simulator (HPIS3) [17]. Generally there

are many factors by which simulation of I/O architectures can be differentiated. These

include simulation purpose, complexity of simulation, which components to simulate,

methods for parameter fitting, input data and tools used to perform the simulation.

CODES demonstrates a simulation of a large scale I/O subsystem, particularly a Blue-

Gene/P installation [50]. Due to this the simulation bares some similarities to the efforts

made here. The target for CODES is the simulation of an end-to-end storage system and

to accurately represent storage system software protocols [50]. As a result, components

are detailed and encapsulate the protocols of communication between them. Parameters

such as link throughput and access latency are selected using micro-benchmarks that

ran on a real system [50]. To validate the model, it is fed with IOR (a known I/O

benchmark) access patterns. The resulting behaviour is compared to runs of IOR on the

real system. To implement this simulation CODES employs the Rensselaer Optimistic

Simulation System (ROSS), which is a simulation framework that allows for parallel

discrete-event simulations [50].

CODES was extended to simulate burst buffers [1]. To create this extension along with

simulating additional components, burst buffers had to be included into the protocols

Chapter 5. Performance Modeling: Modeling JUGENE I/O 155

of the modelled system. The parameters of the burst buffer, such as internal bandwidth

and size, were varied to test the effect it has on the simulated configuration [1]. In

addition to IOR, the simulation was fed with simulated application I/O patterns as

observed on the original system [1].

The HPIS3 simulation intends creation of a framework to facilitate simulation of par-

allel storage systems. The focus is on testing the creation of better performing system

configurations, largely for hybrid systems, which employ both HDD and SSD [17]. The

simulation focuses on the storage system with the underlying filesystems and file-servers.

HPIS3 has more details and simulates all the way down to some of the inner operations

of the storage devices, including HDD and SSD [17]. Parameters can be fitted using

benchmarked results from the intended simulated system. The simulation input data

is acquired using IOSIG, an I/O monitoring tool, which collected the I/O pattern gen-

erated on a real system using IOR [17]. Similar to CODES, HPIS3 uses ROSS as a

simulation framework.

5.2 Modeling Framework (OMNET++)

With the exception of organizational tasks, an I/O system generally operates by reacting

to I/O requests triggered by compute nodes. Therefore discrete event simulations are

well suited for simulating an I/O system. These reduce the simulated system to a set

of components that react to a set of events in time. As a result, simulated time only

moves forward between two given events, hence the name discrete event simulation.

Although it is possible to implement discrete event simulations from scratch, using

available established simulation environments is less prone to errors. Many available

packages and environments exist in several programming languages. It is necessary to

select the simulation framework that most fits the task and if possible decrease effort to

implement and debug the model.

Modern I/O systems can be viewed as a set of complex components that are intercon-

nected using a set of networks. OMNeT++ is a discrete event simulator targeting the

simulation of communication networks, multiprocessors and distributed systems [51].

This makes OMNeT++ suitable for simulating the JUGENE I/O subsystem.

Chapter 5. Performance Modeling: Modeling JUGENE I/O 156

An OMNet++ simulation is based on connecting various modules. These can exist in a

hierarchy, where a compound module is a collection of simple or other compound mod-

ules. The connections and communication between modules, i.e. the model’s topology

is described using the OMNET++ defined Network Description (NED) language [51].

Modules exchange messages, which trigger events. To simulate passage of time, a mod-

ule can send a scheduled message or event to itself. The module’s behaviour or reaction

to events is defined in C++ [51].

Depending on events to signal progress in simulated time makes the simulation indepen-

dent of the system it is running on. Since the inner workings of I/O system modules are

rather complicated, they can be split into several internal modules. This avoids creating

large modules that are complex and error prone and simplifies validating and debugging

the simulation. Internal modules can be connected using zero delay networks.

5.3 Modelling JUGENE I/O

Modelling JUGENE I/O requires translating complex I/O behaviour of system compo-

nents into a simulated version. The resulting simulation has to react to I/O requests in

a similar manner when compared to the original I/O system. This requires I/O model

verification, which is performed by comparing measured I/O on the original system to

it’s simulated version. For JUGENE I/O the verification process uses the GPFS I/O

logs described in Sec. 2.2.1 and analysed in Chp. 4. The verification cycle is shown in

Fig. 5.1.

JUGENE and its I/O network has been previously introduced in Chp. 2. To model the

I/O system of JUGENE, it is necessary to study each component and determine the

level of details to simulate. Since the interest here is in I/O, other components can be

ignored. For example, only the binary tree network of BlueGene/P is part of an I/O

request, therefore there is no need to simulate the 3D torus. Other components need to

be introduced. For example, a request generator, that triggers compute nodes to create

I/O requests, is necessary to simplify control over simulated modules.

The level of details to which the JUGENE I/O subsystem can be modelled is limited by

the information available on its I/O behaviour and the GPFS I/O logs that are used to

verify the model. The interest here is in overall data movement by applications based

Chapter 5. Performance Modeling: Modeling JUGENE I/O 157

Figure 5.1: JUGENE I/O model verification cycle

on the GPFS I/O logs. Simulating the inner workings of some components such as disks

or the GPFS filesystem would complicate the implementation and add a wide set of

unknown parameters. These components are simplified and the GPFS I/O logs are used

to verify their overall I/O behaviour. While in [50], handshakes and protocols have been

included, the I/O model here does not perform any kind of pre-communication setup

between components.

5.3.1 I/O Model Components

Fig. 5.2 shows the components of the JUGENE I/O model. It is constructed from a

compute node group, connected through the binary tree by an I/O node. All I/O nodes

are then connected to a common GPFS server, which in turn is connected to the Disk

module. The inner workings of each component has been simplified, avoiding complex

protocols and handshakes. The model does not simulate metadata or file read write

operations. The reason behind this simplification is the use of the GPFS I/O counters

to test the model. As the I/O data does not offer a link between files and data read

or written, it is not possible to model metadata accesses. In [50] complex protocols

have been added to the model to simulate file access protocols. Such protocols can

Chapter 5. Performance Modeling: Modeling JUGENE I/O 158

Figure 5.2: JUGENE I/O model components.

be later implemented into the JUGENE I/O model, should the necessity rise for such

changes. The I/O model here is more focused on the overall data movement in relation

to application I/O access. And this is tested and verified using the long term collected

I/O logs from the GPFS I/O counters.

The following explains each component of the JUGENE I/O model and its behaviour:

1. Request Generator,

creates the I/O requests and distributes them over the connected compute nodes.

The requests can be constructed in different configurations. This allows for various

tests and validations to be used. The most relevant configuration employs GPFS

I/O logs, which the request generator divides over the compute node group. As the

I/O logs only contain information on total data read/written and total number of

read/write requests per 2min, the generator creates average sized requests. These

are then distributed in a round-robin on the available compute nodes. If an I/O

request is larger than the 4MiB allowed by the CIOD buffer (see Sec. 2.2.1), the

request generator splits the request. Although this case should not occur per I/O

system design, the GPFS I/O logs average an I/O request size that occasionally is

larger than 4MiB (see Sec. 2.1). This behaviour might add some I/O requests that

Chapter 5. Performance Modeling: Modeling JUGENE I/O 159

do not exist in the GPFS I/O logs. Another factor worth mentioning, is the dis-

tribution of I/O requests by the request generator over time. Since the GPFS I/O

counters are logged every 2min, the request generator lacks the timing information

of each I/O request as performed by the application. To avoid adding additional

unknown parameters, the I/O requests logged within the 2min are generated at

the beginning of the interval.

2. Compute Node (CN),

receives the I/O request over a zero delay connection from the request generator.

The compute node then forwards these requests over the binary tree network.

Each link in the binary tree has a bandwidth of 850MiB/s. I/O operations are

synchronously assigned, therefore a maximum of one I/O request is in flight per

compute node at any given time.

3. CIOD,

represents the control and I/O daemon (CIOD) of the I/O node. It receives the

request over the binary tree network links and forwards the message to the CIOD

buffer belonging to the compute node that initiated the request.

4. CIOD Buffer,

is a 4MiB buffer and only holds requests from a single compute node. Requests

have been previously split if larger than 4MiB, therefore no overflow is possible

using one I/O request. Although, compute nodes perform only synchronous I/O,

the buffer is designed as a queue and can hold more than one request. This could

be used in the future to simulate asynchronous I/O. In that case, possible buffer

overflow from multiple requests has to be taken into account. The CIOD buffer

can either forward the request internally to the pagepool if space is available, or

sends the request directly to the GPFS server.

5. Pagepool,

is offered by the GPFS client as a cache. Although JUGENE’s 1024MiB pagepool

offered both read and write buffering, it is difficult to perform read caching in the

simulation. This is due to missing addresses and information on data allocations

for the GPFS I/O logs. In other words, it is not possible to determine if two

requests address the same data or not. As a result, the model’s pagepool only

offers write buffering. It is also not possible for the simulated pagepool to perform

Chapter 5. Performance Modeling: Modeling JUGENE I/O 160

any merge or sort of the buffered I/O requests. Once a write request is forwarded

to the pagepool, it responds with an acknowledgement to the compute node, which

can then proceed with the next request. Once the path to the GPFS server is free,

the pagepool would drain the stored write requests to the storage.

6. Bypass,

offers a possible bypass to the pagepool. It has the task of forwarding the I/O

requests from either the CIOD buffers or the pagepool to the GPFS server. Ad-

ditionally it collects the simulated GPFS counters. It is reasonable to assume

that the GPFS counters are located below the pagepool, which could explain the

presence of larger than 4MiB I/O requests. These could be the result of merging

several smaller I/O requests in the pagepool. It should be noted here that the

bypass is not a buffer in itself. Therefore the pagepool and CIOD buffers are not

allowed to forward any I/O requests to the bypass, unless the link to the GPFS

server is free and can be used by the forwarded I/O request. Using this the bypass

creates collision free traffic on the 10GbE link to the GPFS server.

7. GPFS Server,

operates as a switch, connecting the 10GbE link from the I/O nodes with the

66GiB/s link of the disks. In comparison, real GPFS servers and the filesystem

used are far more complicated and contain a multitude of components, to stripe

and distribute the data over the different servers and disks.

8. Disks,

represents the end of the path where data is either placed into the disks and

responded to by an acknowledgement or read and forwarded back to the compute

nodes. There is no delay in either reading or writing the data. The delay to the

disks come solely from the bandwidth of the link between the GPFS server and

the disks.

9. Messages,

are the events sent between the I/O model components and represent requests

and acknowledgements simulating the GPFS I/O logs. A message can either be a

request, an acknowledgement (ack) or a data transfer. Requests and acks have zero

size and a higher priority than data transfer messages. However, when travelling

along links with limited bandwidth or delay, requests and acks still need to wait

Chapter 5. Performance Modeling: Modeling JUGENE I/O 161

in case the link is busy or other requests are being transferred. The flow graph

of a write request is given in Fig. 5.3, and shows the decisions the request has

to traverse. When a write data transfer arrives at the disk, the disk creates an

ack and sends that in return to the compute node. On receiving the ack message

the bypass checks if the write request has been previously acknowledged by the

pagepool. If it has been, the bypass does not forward the ack message to the

compute node. The bypass still needed to receive the ack from the disk, as it is

collecting the simulated GPFS counters. A read request traverses the same path,

excluding the pagepool, as seen in Fig. 5.4. As a result, a read request has less

decisions to make on its path.

Figure 5.3: I/O model write flow graph.

While the three figures, Fig. 5.2, Fig. 5.3 and Fig. 5.4 make no distinction between

the links connecting the components, there are four connection types. The following

describes the connection types and provides the original JUGENE system bandwidth

for each link if available:

Internal zero delay are the links connecting internal components of either the I/O

nodes or the compute node groups. These include the link connecting the request

generator to compute nodes; the CIOD to CIOD buffers; the CIOD buffers to both

Chapter 5. Performance Modeling: Modeling JUGENE I/O 162

Figure 5.4: I/O model read flow graph.

pagepool and bypass; and pagepool to bypass. As the name suggests, these links

have no delay.

Binary tree are the links connecting the compute nodes to each other and the compute

nodes to the I/O nodes. These have a bandwidth of 850MiB/s.

10GbE are the links connecting the I/O nodes to the GPFS server. These have a

bandwidth of 10Gbps

GPFS server to disk provides the bandwidth limitation to storage access and has a

value of 66GiB/s.

5.4 I/O Model Verification

The verification process involves comparing the I/O behaviour of the model to the I/O

behaviour of the original system. To provide as close as possible approximation of the

I/O system, the model’s parameters are changed. This is termed parameter fitting,

which is the process of selecting parameter values to bring the simulation closer to the

operation and delays of the real system. The main target is to use the GPFS I/O

logs to drive the I/O model. As a result, parameters that cannot be evaluated using the

GPFS I/O logs are not considered. The parameters of the I/O model mainly include the

Chapter 5. Performance Modeling: Modeling JUGENE I/O 163

bandwidth of the links. These can be gradually changed until the overall performance

resembles the real I/O system.

As discussed earlier, their exists four link types, internal zero delay, binary tree, 10GbE

and GPFS server to disk. The internal zero delay communicates between functional

components within the compute and I/O nodes and therefore cannot be tuned due to

missing information on internal node operations. The GPFS I/O logs are logged on

the I/O nodes filesystem clients and as a result the binary tree bandwidth cannot be

tuned using the GPFS I/O logs. This leaves two links for tuning, the first is the 10GbE

connecting the I/O nodes to the GPFS server and the second is the GPFS server to disk

link.

In [5] it is shown that the I/O nodes are unable to drive the filesystem at the full rate

available by the 10GbE. Meanwhile, the GPFS system’s peak bandwidth of 66GiB/s is

an aggregate value that might not be achievable by the I/O nodes. In fact this bandwidth

is divided among different filesystems [5]. Both of these links might require tuning in

accordance to the verification done using the GPFS I/O logs.

5.4.1 Parameter Fitting Using GPFS I/O Logs

The GPFS I/O logs are used to generate I/O requests that drive the full I/O model

simulation of JUGENE for longer periods of simulated time. This allows for an objective

evaluation of the chosen parameters. It also allows for the simulation to be driven using

real application I/O, making it possible to compare the JUGENE I/O model’s behaviour

to possible future I/O architecture models. Another method for parameter fitting the

I/O model using an I/O micro-benchmark can be found in App. B.

Using GPFS I/O logs for parameter fitting is subject to some limitations. The 2min in-

terval between logging GPFS I/O counters gives no clear indication of the exact duration

and timing of each I/O request. Fig. 5.5 shows a possible real I/O request distribution

over the 2min that is captured by the GPFS I/O log as four values, the total bytes read

and written and the number of read and write requests. As a result, the exact timings

and sizes of the I/O requests is not reflected in the GPFS I/O logs. To mitigate this,

the I/O model generates all logged I/O requests at the beginning of the 2min interval as

seen by the simulated I/O requests in Fig. 5.5. The figure also shows for the simulated

Chapter 5. Performance Modeling: Modeling JUGENE I/O 164

I/O requests that the total I/O quantity logged by the GPFS I/O counters is distributed

equally across the logged number of I/O requests. Therefore, the simulated I/O requests

have the average read/write request size over the 2min.

Figure 5.5: Real versus simulated GPFS I/O log.

Due to the missing timing and size information on individual I/O requests, the simulation

cannot be exactly tuned to perform the same requests. Fig. 5.6 shows how the GPFS

I/O logs can help in testing and tuning the I/O model. Only logs in which pure I/O was

done for the complete 2min can detect a mismatch of performance between I/O model

and real I/O logs. In case the duration of the I/O during the simulation is longer than

2min, tuning the parameters would be needed. However, if the simulation runs through

the I/O requests faster than the 2min, no mismatch will be detected.

Although I/O model to real I/O request mismatch might indicate a possible error in

tuning the I/O model, it should not effect the conclusions drawn from the simulations.

The purpose is not to create an over all accurate depiction of the I/O operations on an

I/O subsystem. Rather the aim is to create a sufficient modelling of I/O that would

allow comparing different I/O architectures. As long as the parameters and model fulfil

real I/O system conditions the comparison is reasonable. This point will be further

clarified when introducing the future I/O architectures in Sec. 5.5.1.

To achieve reasonable tuning of I/O model it is necessary to run the simulation for

extend simulated time. It should therefore include many I/O logs. Tab. 5.1 shows

the number of error logs and the average error across the logs for 24 hours simulated

time using the original bandwidth values for the links, i.e. 10Gbps for the 10GbE and

66GiB/s for the GPFS server to disk link.

Chapter 5. Performance Modeling: Modeling JUGENE I/O 165

Figure 5.6: Using GPFS I/O logs for I/O model parameter fitting.

Logs with error
Average error of

logs [%]

Bytes Read 15856/425227 0.023

Read Commands 713/425227 0.45

Bytes Written 241147/425227 0.2

Write Commands 5108/425227 2.08

Table 5.1: Number of logs and average error for 24hours simulated time.

The final decision on the accuracy of the I/O model rests on the average deviation of

simulated I/O from the GPFS I/O logs given in Tab. 5.1. Here the average error of

logs, that is the deviation of simulated logs from real logs, is quite small, with a worst

case of only 2% for write commands.

The exact reason for this slight variation between real and simulated I/O is unknown,

but can be, at least partially, attributed to floating point errors. Another possible

contributor to the error is the existence of larger than 4MiB requests in the GPFS I/O

Chapter 5. Performance Modeling: Modeling JUGENE I/O 166

logs. These are, per I/O model design, dissected into several smaller requests, thereby

changing the count of I/O requests for either read or write. This shows that debugging

and correctly configuring such a large model is a delicate and difficult task. As a result

slight variation between real and simulated I/O are to be expected and can hardly

be avoided. As will be discussed in Sec. 5.5.1 the main focus is on changes in the

I/O behaviour when subjected to various new I/O architectures. As long as the I/O

resembles real system I/O, within a limited margin, the I/O behaviour of the I/O model

can be compared with a changed model. The conclusions are drawn on the changes and

not on the accuracy of the real I/O on the I/O model. The I/O model should behave

realistic when driven with real I/O logs which can be deduced from the results shown

in Tab. 5.1.

Fig. 5.7 shows an example I/O node comparing the GPFS I/O logs to the simulated

I/O. From the figure it can be seen that the simulated and real I/O logs correlate.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time[s]

0

1

2

3

4

5

6

7

8

9

B
y
te
s
R
e
a
d

1e9 Simulated I/O Logs [I/O Node 28]

GPFS I/O Logs
Simulated I/O Logs

(a) Bytes read

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time[s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
y
te
s
W
ri
tt
e
n

1e10 Simulated I/O Logs [I/O Node 28]

GPFS I/O Logs
Simulated I/O Logs

(b) Bytes written

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time[s]

0

1000

2000

3000

4000

5000

6000

7000

8000

R
e
a
d
 C
o
m
m
a
n
d
s

Simulated I/O Logs [I/O Node 28]

GPFS I/O Logs
Simulated I/O Logs

(c) Read commands

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time[s]

0

1000

2000

3000

4000

5000

6000

7000

8000

W
ri
te
 C
o
m
m
a
n
d
s

Simulated I/O Logs [I/O Node 28]

GPFS I/O Logs
Simulated I/O Logs

(d) Write commands

Figure 5.7: Example of an I/O node’s 24hour I/O model simulation.

Chapter 5. Performance Modeling: Modeling JUGENE I/O 167

The time spent in I/O observed by the simulation is also needed for simulating and

comparing I/O architecture changes. Fig. 5.8 shows the time spent in I/O for each I/O

node. It is also worth observing the time each I/O node spent executing jobs in relation

to the I/O time. This is given in Fig. 5.9 as the percentage of job execution time spent

in I/O.

0 100 200 300 400 500 600
I/O Node

0

500

1000

1500

2000

2500

I/
O
 T
im

e
[s
]

I/O Time per I/O Node

Figure 5.8: Simulated time spent in I/O for each I/O node.

5.5 Future I/O Architectures

As previously mentioned, the main reason for modelling and simulating JUGENE I/O

is to experiment with architecture changes. By comparing a standard I/O model us-

ing the I/O logs with different I/O subsystem architectures, some conclusions can be

drawn. These simulations can give an insight to the usability and effectiveness of I/O

architectures under real I/O loads. In general performing simulations for new I/O archi-

tectures is advised to evaluate their impact on I/O prior to implementing them. This is

specially true for I/O architectures that require massive or difficult changes from both

the hardware and the scientific applications.

Different I/O architectures vary in the improvements and changes they offer to the

I/O system. The main thoughts for most I/O system updates are performance and

Chapter 5. Performance Modeling: Modeling JUGENE I/O 168

0 100 200 300 400 500 600
I/O Node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

I/
O
 T

im
e
 o

f
Jo

b
s[

%
]

Percentage of Job Execution Time in I/O
per I/O Node

Figure 5.9: Simulated percentage of job execution time in I/O for each I/O node.

storage space. While storage space is not modelled here, performance improvement is

considered to be less time spent in I/O for an application. However, an I/O architecture

can bring more than just a better performance. By additionally considering cost, some

I/O architectures might become interesting by achieving equivalent performance for less

cost.

5.5.1 I/O Model Changes

To model different I/O architectures the I/O model requires the addition of new com-

ponents and/or changing component’s behaviour. As a direct result the I/O model as

a whole changes behaviour. By comparing the difference between the original and the

updated I/O model the effect of the changes on the I/O behaviour is modelled. Since

the conclusions are drawn from the comparison, there is no need to recreate an exact

detailed I/O model or replicate the exact I/O requests. As long as the I/O model en-

tails the main components and replicates their main behaviour under real I/O load the

comparison can yield useful insights into I/O architecture changes. All this should be

done while observing the limitations of the simulation and the I/O measuring limitations

discussed in Chp. 3 and Chp. 4.

Chapter 5. Performance Modeling: Modeling JUGENE I/O 169

Correct conclusions can be drawn from comparing the original to changed I/O model

only if the differences are limited as much as possible to the tested I/O system changes.

Updating the I/O model could lead to changing the time taken to conclude the given I/O

requests. As a result, I/O requests are shifted in time and the I/O load as a whole would

change. An additional issue is the possible prolonged I/O request delay that might lead

the GPFS I/O log to be overdrawn. In such a case the simulation of individual GPFS

I/O logs could overlap or require shifting.

Figure 5.10: Time shifting GPFS I/O logs in the I/O model.

To allow for minimal I/O load changes to affect the comparison, a unified rule for

shifting GPFS I/O logs is required. Fig. 5.10 shows the principal of shifting GPFS

I/O logs according to the difference in time spent in I/O requests. The main concept

is preservation of computation time. The I/O architectural changes should only effect

the I/O time. Comparing the delay for the original I/O model with the new delay for

the changed I/O model, the shift required for the GPFS I/O log can be measured. This

is shown in Fig. 5.10, where comparing the time taken by simulated I/O requests with

simulated architecture changes yields the I/O log shift. This holds true for both positive

and negative I/O time changes. The difficulty here is to keep track of two simultaneous

Chapter 5. Performance Modeling: Modeling JUGENE I/O 170

time-lines, the GPFS I/O log timings and the simulated shifted timings. As a result

more care has to be given into simulation correctness, component behaviour and event

logging to ensure proper simulation.

As GPFS I/O logs shift, the synchronization between I/O nodes can change. The I/O

requests are not always going to be equally shifted as the I/O model changes might lead

to variable delays. An example of such a shift can be seen in Fig. 5.12-(a). As a result

two or more I/O nodes involved in the same I/O load of a job could perform the job’s

I/O at different times. Fig. 5.11-(b) shows the miss shifting of GPFS I/O logs making

I/O nodes unsynchronized.

(a) Simulated job I/O synchronized across I/O nodes

(b) Unsynchronized job I/O due to GPFS I/O log time shift

Figure 5.11: Job I/O mismatched timing on different I/O nodes due to GPFS I/O
log time shift.

To achieve an almost equal load on both the original and the changed I/O model it is

necessary, to resynchronize the I/O of a job across the I/O nodes. This is achieved by

adding an additional component to the JUGENE I/O model called Re-Scheduler. It’s

Chapter 5. Performance Modeling: Modeling JUGENE I/O 171

task is to delay performing the I/O requests of the GPFS I/O logs until all I/O nodes

involved in the job are ready. As a result the I/O logs of the job are resynchronized.

Such process is shown in 5.12.

Figure 5.12: Job I/O resynchronizing of GPFS I/O logs on different I/O nodes.

Despite the use of the re-scheduler to execute GPFS I/O logs of a job across multiple

I/O nodes at the same time, there is no resynchronization occurring while a job’s GPFS

I/O logs are executed. Any shift in a job’s internal I/O logs across I/O nodes is tolerated

as there is no information on the relationship between the separate I/O requests. Indeed

the shifting of GPFS I/O logs for job I/O synchronization leads to empty spots in which

no I/O is performed. As a result the I/O load may be lessened over certain periods of

time. Such observation correlates with the intention that all is kept constant between

original and updated I/O model with exception of tested I/O architecture changes. Even

the job scheduling decisions are kept the same.

5.5.2 Burst Buffers

As a counter measure to increasing I/O bandwidth some systems opt for placing burst

buffers in the form of SSDs integrated into the computing system or on the I/O subsys-

tem to catch I/O bursts. Burst buffers are therefore bridging the gap between fast and

slower connections. Applications can dump their data on the close burst buffers and

return to computation. The burst buffer then over time moves the data onwards to the

storage system. Although burst buffers can also operate as caches by retaining data for

rereading, they mainly optimize the write path.

Chapter 5. Performance Modeling: Modeling JUGENE I/O 172

In [1] the observation of bursty application I/O is stated as a well known issue. This

coincides with the findings made while analysing the burstiness of job I/O using the

GPFS I/O logs in Sec. 4.5.3 (Classification 2.9). This could indicate the usefulness of

burst buffers to the I/O subsystem. As described in Sec. 5.1, [1] has also performed

simulations to test the use of burst buffers.

Figure 5.13: Burst buffer I/O model.

Fig. 5.13 shows the change needed to simulate burst buffers. Each I/O node has an

added burst buffer. As a result the model includes three additional parameters. The first

is the internal bandwidth connecting the I/O node’s I/O to the burst buffer. The second

is the size of the burst buffer. Finally the third is the external bandwidth connecting

the burst buffer to the GPFS servers. Being part of the internal workings of the I/O

node the internal link can be considered equivalent to the links connecting the compute

nodes with the I/O node. Therefore a reasonable value for the internal bandwidth is

850MiB/s. This leaves two parameters that can be varied, burst buffer size and the

Chapter 5. Performance Modeling: Modeling JUGENE I/O 173

external bandwidth1.

The two remaining parameters, external bandwidth and burst buffer size, need to fulfil

real conditions and simulate intended improvements. The original external bandwidth

of JUGENE is 10Gbps, which is difficult to improve. Additionally [5] shows that the

limiting factor lies in the disk bandwidth. However as the 10Gbps Ethernet cards rep-

resent a significant cost factor, the opportunity of using smaller external bandwidth

without loss of performance could significantly reduce total system cost. To test such an

opportunity, the simulation can be run with several available external bandwidth and

burst buffer size combinations. The first possible value for the external bandwidth is a

1Gbps representing the use of a 1Gbps Ethernet card. The second external bandwidth

is 4Gbps representing the use of 4x1Gbps Ethernet cards, a common implementation in

various systems. It is possible to start the burst buffer size at 16GiB and increase it upto

256GiB. Although SSDs are well suited for the task of burst buffers, the limited number

of write cycles offered by SSDs should be considered when regarding total system cost.

Fig. 5.14-(a) shows the relative I/O time change of I/O nodes for using a 64GiB burst

buffer with an external bandwidth of 1Gbps. For most I/O nodes the I/O time is

increased, in some cases up to 10 times, while for a few I/O nodes the I/O time is de-

creased. The benefit from burst buffers depends on many factors, such as I/O burstiness.

Additionally, read is not improved by the placement of burst buffers and would only be

slowed down by the limited external bandwidth.

To further investigate the effect of using burst buffers both the burst buffer size and

the external bandwidth can be changed. Fig. 5.15-(a) shows the relative I/O time

of I/O nodes change for using a 16GiB burst buffer with an external bandwidth of

4Gbps. As the figure shows, the I/O time is well improved compared to having a 64GiB

burst buffer with 1Gbps external bandwidth. The improvement could indicate that the

external bandwidth is the bottleneck rather than the burst buffer’s size.

As previously mentioned, a performance improvement or a cost reduction can justify the

use of a burst buffer. Although the simulation results indicate reduced performance for

I/O time, both Fig. 5.14-(b) and Fig. 5.15-(b) show that the simulated jobs’ execution

1There are other possible parameters that can be added to the burst buffer model, which are not
considered here, such as fill level.

Chapter 5. Performance Modeling: Modeling JUGENE I/O 174

0 100 200 300 400 500 600
I/O Node

0

2

4

6

8

10

N
e
w
 I
/O
 T
im
e
 /
 O
ri
g
in
a
l
I/
O
 T
im
e

I/O Time (Burst Buffer Size=64GiB with Ext.BW=1Gbps)

(a) Change in I/O time
per I/O node

0 100 200 300 400 500 600
I/O Node

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
e

w
 J

o
b

 T
im

e
 /

 O
ri

g
in

a
l

Jo
b

 T
im

e

Job Time (Burst Buffer Size=64GiB with Ext.BW=1Gbps)

(b) Change in job execution time
per I/O node

Figure 5.14: Change of I/O and job time per I/O node using burst buffers of size
64GiB and an external bandwidth of 1Gbps.

0 100 200 300 400 500 600
I/O Node

0.0

0.5

1.0

1.5

2.0

2.5

N
e
w
 I
/O
 T
im
e
 /
 O
ri
g
in
a
l
I/
O
 T
im
e

I/O Time (Burst Buffer Size=16GiB with Ext.BW=4Gbps)

(a) Change in I/O time
per I/O node

0 100 200 300 400 500 600
I/O Node

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
e

w
 J

o
b

 T
im

e
 /

 O
ri

g
in

a
l

Jo
b

 T
im

e

Job Time (Burst Buffer Size=16GiB with Ext.BW=4Gbps)

(b) Change in job execution time
per I/O node

Figure 5.15: Change of I/O and job time per I/O node using burst buffers of size
16GiB and an external bandwidth of 4Gbps.

time per I/O node is less effected. Therefore it is still possible to reduce system cost by

the use of burst buffers, if most jobs exhibit low I/O times.

The effect of the burst buffers on the jobs’ I/O and execution time are given in Fig. 5.16

and Fig. 5.17, showing the use of burst buffer size 64GiB and 16GiB with 1Gbps and

4Gbps external bandwidth respectively. Around 4300 jobs are simulated. The figures

show the jobs’ distribution over the change of I/O and execution time. The I/O time

Chapter 5. Performance Modeling: Modeling JUGENE I/O 175

of a job is selected as the maximum of the job’s I/O nodes I/O time during the job’s

simulation.

0 2 4 6 8 10
New Job I/O Time/ Orig. Job I/O Time

0

200

400

600

800

1000

1200

N
u
m
b
e
r
o
f
Jo
b
s

Change in Simulted Job I/O Time
(Burst Buf. Size=64GiB with Ext.BW=1Gbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

(a) Job I/O time

0 1 2 3 4 5 6 7 8 9
New Job Time/ Orig. Job Duration

0

500

1000

1500

2000

2500

3000

3500

N
u
m
b
e
r
o
f
Jo
b
s

Change in Simulted Job Duration
(Burst Buf. Size=64GiB with Ext.BW=1Gbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
m
u
la
ti
v
e

(b) Job execution time

Figure 5.16: Change of job I/O and execution time using burst buffers of size 64GiB
and an external bandwidth of 1Gbps.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
New Job I/O Time/ Orig. Job I/O Time

0

200

400

600

800

1000

1200

1400

1600

N
u

m
b

e
r

o
f

Jo
b

s

Change in Simulted Job I/O Time
(Burst Buf. Size=16GiB with Ext.BW=4Gbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
m

u
la

ti
v

e

(a) Job I/O time

0.0 0.5 1.0 1.5 2.0 2.5 3.0
New Job Time/ Orig. Job Duration

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u

m
b

e
r

o
f

Jo
b

s

Change in Simulted Job Duration
(Burst Buf. Size=16GiB with Ext.BW=4Gbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
m

u
la

ti
v

e

(b) Job execution time

Figure 5.17: Change of job I/O and execution time using burst buffers of size 16GiB
and an external bandwidth of 4Gbps.

Tab. 5.2 and Tab. 5.3, in relation to Fig. 5.16 and Fig. 5.17, clarify the effect of using

burst buffers with reduced external bandwidth. While the job I/O time can increase by

up to 10 times, the execution time of most jobs will only slightly change. However some

jobs will experience relatively large slow downs. About 20% of simulated jobs have a

slow down above 10% for a 64GiB burst buffer with 1Gbps external bandwidth. As the

external bandwidth increases to 4Gbps with a 16GiB burst buffer, only 2% suffer from

Chapter 5. Performance Modeling: Modeling JUGENE I/O 176

Burst buffer size = 64GiB with Ext.Bw = 1Gbps

Ratio of I/O time Ratio of job execution time

(New I/O time / Orig. I/O time) (New job time / Orig. job time)

Average (standard deviation) 8.1 (2.7) 1.08 (0.2)

Maximum 10.0 8.47

Median 9.7 1.05

Ratio > 1.1 97% 20%

Table 5.2: Statistics on the change of job I/O and execution time using burst buffers
of size 64GiB and an external bandwidth of 1Gbps.

Burst buffer size = 16GiB with Ext.Bw = 4Gbps

Ratio of I/O time Ratio of job execution time

(New I/O time / Orig. I/O time) (New job time / Orig. job time)

Average (standard deviation) 2.14(0.52) 1.01(0.03)

Maximum 2.96 2.25

Median 2.44 1.01

Ratio > 1.1 96% 2%

Table 5.3: Statistics on the change of job I/O and execution time using burst buffers
of size 16GiB and an external bandwidth of 4Gbps.

a slow down of 10% or more. These jobs and the effect of the I/O delay on the overall

system utilization have to be considered for the use of burst buffers with a reduced

external bandwidth. Using more simulations and the I/O analysis it is possible to find

the percentage of all applications running on a particular system that are effected by

such I/O performance reduction. Additionally, by employing I/O analysis based on

the I/O criteria these applications could be further analysed to decide on other I/O

architectural changes that might benefit them.

5.6 Conclusions On Modelling System I/O

The purpose of the modelled I/O is to provide basic understanding of the I/O subsys-

tem’s components interaction and how the I/O behaviour reacts to changes in the I/O

architecture. It also allows for increased control of the I/O system’s parameters and

investigate subtle changes to I/O behaviour. As shown, the complexity of the simula-

tion highly depends on the available information on the individual components and the

used input data. The verification and parameter fitting observes real application I/O

behaviour to allow for valid conclusions on the reaction to the I/O architectural changes.

Chapter 5. Performance Modeling: Modeling JUGENE I/O 177

The decision on which components to simulate and the required detail of the simulation

is linked to the purpose of the I/O model. The I/O architectural changes to simulate

are driven by analysing the I/O behaviour of applications on the existing I/O system to

determine the need for possible improvements.

As more I/O architecture modifications and configurations are suggested, the necessity

of using simulations will grow. This rises from the need of understanding the effect

these changes have on the I/O behaviour. While the simulation done here is by no

means exhaustive, it paves the way for experimenting with more simulations of future

I/O system architectures.

Chapter 6

Conclusion

Modern HPC systems offer substantial compute power to scientific applications, which

grows at an exponential rate following Moore’s law. These HPC systems are supported

by large growing data storage infrastructures. The evolution of both compute power

and data storage quantities has not been matched by an equal growth of the I/O capa-

bilities available to modern HPC systems. This threatens the gain achieved by scientific

applications using such large scale systems. To combat this threat, many suggestions

for improving I/O performance are made. These could require costly modifications to

HPC systems and I/O systems. In some cases the scientific applications have to be

modified as well. The benefit from using many future I/O architectures depends on the

I/O behaviour exhibited by the scientific applications. This study attempts establishing

both the need and possible methods for investigating the I/O behaviour of applications

as observed on current modern HPC systems.

The complexity of I/O systems could lead to an overwhelming number of measurable

quantities. The I/O criteria described provides an analysis map that can be used to

reduce quantities that require evaluation. This is achieved by selecting quantities that

are relevant, easy to measure and applicable to a wide range of modern I/O systems.

The I/O criteria is designed to be usable for analysis of different data sets, that were

collected using different methods and on different I/O stack layers. They also provide the

possibility of analysing individual applications or perform a mass I/O behaviour analysis

and comparison of a large number of applications. This is provided by a well formulated

and condensed group of I/O criteria that are selected with careful consideration of

179

Chapter 6. Conclusion and Future Work 180

the functionalities of modern I/O systems. The I/O criteria offer a starting point for

investigating the overall application I/O behaviour. They can be extended, reduced or

modified to fit other I/O architectures or to further evaluate specific I/O behaviours.

To establish the usability of the I/O criteria and analyse the I/O behaviour of applica-

tions on modern HPC systems, a large set of I/O measurements were analysed. The I/O

measurements were logged GPFS I/O counters on the I/O nodes of a peta-scale modern

HPC system, namely JUGENE.

Analysing the large data quantity of I/O measurements given has demonstrated the

benefit from using well defined I/O criteria. These allow a standardized repetition and

comparison of such an analysis for different HPC and I/O system combinations or for

different methods of I/O measurements on possibly different I/O stack layers. The I/O

criteria were updated by understanding the analysis results. This improves on the I/O

criteria or filters out quantities that do not further the description of application and

system I/O behaviour. Such cyclic feedback from I/O criteria to their analysis and back,

provides a refining process for the I/O criteria.

The analysis of the GPFS I/O logs demonstrates the effect the I/O measurement tech-

nique has on the evaluation of I/O criteria. I/O measurement methods vary in their

resolution, the I/O stack layer and the collected quantities. These variations can limit

the I/O criteria evaluation’s accuracy. Missing quantities, such as temporal or spatial

information could restrict the number of I/O criteria that can be evaluated.

The analysis of the GPFS I/O logs has resulted in evaluating many of the I/O criteria

of over 166×103 jobs. The I/O behaviour exhibited by these jobs is observed to vary

widely. Given the overall capacity of the storage system supporting JUGENE, the

transient data hitting the external storage system was indicated by the analysis to

be relatively small. Most jobs were found to have a low I/O intensity. Small I/O

requests are found to dominate the I/O, more so for write than for read. The analysis

of the GPFS I/O logs demonstrated the bursty I/O behaviour of analysed jobs. For

many jobs the real time parallel I/O on the I/O nodes was observed to be relatively

low. These analysis results among others demonstrates the need for considering and

experimenting with many different I/O architectures. Various I/O improvements could

cater to subsets of different I/O behaviours exhibited by the analysed jobs. Many jobs

Chapter 6. Conclusion and Future Work 181

and their applications might merit using other I/O measuring techniques to evaluate

missing I/O criteria and further investigate their I/O behaviour.

The target of the analysis was to give an overview of the I/O behaviour of applications

on modern I/O systems. While evaluating the I/O criteria for the analysed jobs, an

effort was made to pair some observations to possible I/O architecture changes. As the

target of the analysis and the analysed system changes, so would the suggested future

I/O architectures change. This is a result of the different reactions various I/O systems

have to different I/O behaviour. Supercomputing centers are therefore urged to perform

such analysis when considering future I/O architectures or different configuration to

their existing I/O system. Emphasis should then be made on the I/O criteria paired

with a suitable I/O measuring technique, that would give the most insight into the

specific desired I/O changes.

Testing new I/O architectures and configuring an I/O system can be a complex and

costly procedure. The I/O criteria used for the analysis of I/O behaviour can sug-

gest which I/O configurations can yield better I/O performance. Modelling the I/O of

an existing I/O subsystem can complement the I/O analysis process, providing more

information on the I/O behaviour. It also provides control over I/O system parameters.

An I/O model of the JUGENE was created and verified using the GPFS I/O logs.

The details of the I/O model’s components was shown to depend on both the available

information on internal I/O system operations and the input data used for verification.

By carefully adapting the I/O model it was demonstrated that future I/O architectures

can be modelled and simulated. Comparing the original I/O model to the changed

model provides basic understanding of the effect I/O architectural changes have on the

I/O behaviour. Due to the observed bursty I/O behaviour of analysed jobs, the effect

of burst buffers on the I/O performance is modelled and simulated. Creating a more

accurate comparison between original I/O model and burst buffers, required carefully

limiting the differences between the two models and their simulations. Many I/O system

and application I/O optimizations target improved I/O performance. The simulation

here showed that adding burst buffers with reduced external bandwidth can result in

prolonged I/O time for simulated jobs. However, cost is an additional factor to consider

for improving an I/O system and selecting appropriate configurations. Since the overall

execution time of simulated jobs was not increased as much, burst buffers remain a viable

Chapter 6. Conclusion and Future Work 182

I/O configuration choice to reduce overall system cost. In this case some applications

might suffer from reduced performance due to their high I/O intensity. These can be

further analysed and possibly catered for with other I/O improvements.

The number of I/O system configurations, modifications and improvements will increases

as the scientific applications’ need for improving I/O increases. Prior to implementing

these changes the I/O behaviour of the scientific applications need thorough analysis.

The conclusions from the analysis can be complemented with simulating the I/O system

and the suggested future architectures. Such process will allow supercomputing centers

to build better performing and more cost effective future I/O systems that can better

support the scientific community.

6.1 Future Work

The I/O criteria are designed to reflect the main quantities representing the I/O be-

haviour. As the necessity rises more criteria can be added, while the existing definitions

can be refined. This can be done to observe new I/O behaviours or to analyse specific

I/O architectures. The I/O criteria can also be further edited to reflect the effect of the

I/O measuring technique used in the analysis process.

The I/O criteria or a refined version can be used to analyse the I/O behaviour across

different systems and different I/O measuring techniques. The I/O behaviour of jobs

on JUGENE can then be compared to I/O behaviour on newer systems. The reaction

of jobs to larger computation power, more I/O bandwidth and more available storage

can be investigated. Using different data sets from different I/O measuring techniques

allows exploring the impact different measuring methods have on the analysis and it’s

observations. These can then be compared according to their benefits and cost effective-

ness. Applications can be selected for further analysis and their evaluated I/O criteria

compared across various I/O measuring techniques. The analysis process as a whole

can be automated giving periodic information of system or application I/O behaviour

to system administrators or application developers.

The I/O model investigated can be extended and further new I/O architectures and

I/O optimizations can be modelled. More details can be added to the I/O model by

using different input data for I/O model verification and finding more information on

Chapter 6. Conclusion and Future Work 183

system component’s inner operations. The impact these details have on the I/O model

can then be investigated. By simultaneously changing a set of parameters in a real I/O

system and it’s I/O model the effectiveness of I/O simulations in determining parameters

for I/O system configurations can be evaluated. Other I/O subsystems with radically

different I/O architectures can be modelled and their I/O behaviour investigated.

Appendix A

I/O Criteria - Category 4:

Application Details

The introduced I/O criteria in Chp. 3 focused on measurable quantities. Application

details describe application specific information. These in general require closer analysis

of the application’s implementation. The challenge for the application details is to

determine the I/O criteria which could require manual code analysis. Some information

can only be acquired from the application developers directly. As a result, some of the

application details are more likely to be evaluated using questionnaires directed at HPC

system users. The following are short notes on some possible application details worthy

of investigating.

Classification 4.1 Problem size dependency

The problem size dependency can be considered the data volume as a function of appli-

cation input parameters. These should be reduced to the input parameters that dictate

the problem size.

185

Appendix A. I/O Criteria - Category 4: Application Details 186

Classification 4.2 Library dependencies and I/O interface used

Listing used I/O libraries and the I/O interface can help determine overall application

benefit from specific I/O improvements. For example, only applications using MPI-IO

can benefit from improving collective I/O in the MPI-IO interface [26] [27]. The number

of applications using a specific I/O library and/or I/O interface determine the overall

benefit from improving these libraries and/or interfaces.

Classification 4.3 Options and willingness to change I/O routines

Application developers might not always be willing to change or improve their imple-

mented I/O routines. Reasons for this can vary. The I/O routines could have been

implemented and optimized for a specific platform. In some cases, changing commu-

nity used codes might be restricted. System, I/O library or I/O interface improvements

are more suitable to optimize the I/O of applications where developers are not able or

willing to change I/O routines.

Classification 4.4 I/O purpose classification

According to [15], the purpose of I/O can be classified into compulsory, checkpoint and

out-of-core. Compulsory I/O are unavoidable I/O operations such as reading initiali-

sation files, reading input data sets or writing output data sets. Checkpoints are I/O

operations performed for the purpose of saving application progress or restarting the

application at a given point. Out-of-core are I/O operations performed due to the lim-

ited primary memory, as a result the application is forced to swap data with the storage

system. To these an additional class can be added, namely workflow I/O. For this class

the I/O is a result of data being transferred from one component to another through

storing it in the storage system.

The purpose of I/O might change the approach for improving the I/O performance.

For example, compulsory I/O cannot be eliminated but only optimized, while out-of-

core I/O can be reduced by increasing the primary memory. Meanwhile, many I/O

optimizations target improved applications’ checkpointing performance.

Appendix A. I/O Criteria - Category 4: Application Details 187

Classification 4.5 I/O task dependency

I/O tasks can be defined as application tasks that are formed of I/O operations and no

(or very little) computation. The remaining application tasks can be either dependent

or independent of the I/O tasks. According to [33] the dependency of application to

I/O tasks can be grouped into fully coupled, decoupled in space and decoupled in time.

When an application is fully dependent on the I/O tasks it is considered fully coupled. In

this case I/O will be performed synchronously and on the source node [33]. Independent

application from I/O task can either be decoupled in space or time. When decoupled

in space the application I/O can be performed on a separate node such as an I/O

node. Decoupled in time means that I/O can be performed asynchronously while the

application proceeds with other tasks [33].

Appendix B

I/O Model Parameter Fitting

Using An I/O Benchmark

Parameter fitting using the GPFS I/O logs is described in Sec 5.4.1. Another method

for parameter fitting uses an I/O micro-benchmark, the cycle for which can be seen in

Fig. B.1 and is described here.

Figure B.1: JUGENE I/O model verification cycle using an I/O micro-benchmark.

In this method for establishing the I/O model parameters, a single I/O node and the

connected compute nodes are simulated. The request generator, generates I/O requests

189

Appendix B. I/O Model Parameter Fitting Using I/O Benchmark 190

at the rate of an I/O micro-benchmark, which is the same as the one described in Sec.

4.4.1. The simulation is repeated multiple times, while changing the bandwidth available

between the GPFS server and the disk. This allows finding an appropriate value for the

disk bandwidth using a single I/O node.

Fig. B.2 shows an example of changing the bandwidth for parameter fitting one of

the I/O benchmark runs, specifically the use of POSIX-I/O with task-local files and

request size of 1024KiB1. The red dashed line represents the I/O behaviour registered

by the GPFS I/O logs, while the other lines show results of simulating with different disk

bandwidth. From the figure it appears that an I/O node can drive the disks in the I/O

model at 2.3Gbps for write operations which resembles the value described in [5]. This

value for bandwidth is acquired by observation from Fig. B.2. To achieve a more accurate

bandwidth, the simulation has to be repeated several times for different benchmarks runs

with different input parameters. The resulting data from all simulation runs has then

to undergo a linear regression to find the best fitting value for disk bandwidth. This

process has to be repeated for both write and read.

0 200 400 600 800 1000
Time[s]

0.0

0.5

1.0

1.5

2.0

2.5

B
y
te
s
W
ri
tt
e
n

1e11

GPFS I/O logs
Disk BW=2.0Gbps
Disk BW=2.1Gbps
Disk BW=2.2Gbps
Disk BW=2.3Gbps
Disk BW=2.4Gbps
Disk BW=2.5Gbps
Disk BW=2.6Gbps
Disk BW=2.7Gbps
Disk BW=2.8Gbps
Disk BW=2.9Gbps
Disk BW=3.0Gbps

Figure B.2: Example of I/O model parameter fitting using I/O benchmark for write

Observed deviation of the simulated bandwidth in this method from the available peak

performance of JUGENE, can be due to other applications running at the same time.

1See Sec. 4.4.1 for micro-benchmark description

Appendix B. I/O Model Parameter Fitting Using I/O Benchmark 191

In other words, during collection of the GPFS I/O logs for the I/O benchmark, the

remaining I/O nodes were also creating I/O requests, thereby consuming I/O resources

that could have led to better results for the I/O benchmark. To confirm these parameter

values for all I/O nodes in the simulation, this verification method has to be repeated for

the complete machine or while the remaining machine is empty (eg. after maintenance).

Bibliography

[1] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and

C. Maltzahn, “On the role of burst buffers in leadership-class storage systems,”

in Proceedings of the 2012 IEEE Conference on Massive Data Storage, 2012.

[2] P. C. Roth, “Characterizing the I/O behavior of scientific applications on the cray

XT,” in Proceedings of the 2Nd International Workshop on Petascale Data Storage:

Held in Conjunction with Supercomputing ’07, PDSW ’07, (New York, NY, USA),

pp. 50–55, ACM, 2007.

[3] A. Jackson, F. Reid, J. Hein, A. Soba, and X. Saez, “High performance I/O,” in

Parallel, Distributed and Network-Based Processing (PDP), 2011 19th Euromicro

International Conference on, pp. 349–356, February 2011.

[4] R. L. Cloud, “Problems in modern high performance parallel I/O systems,” CoRR,

vol. abs/1109.0742, 2011.

[5] W. Frings and M. Hennecke, “A system level view of petascale I/O on IBM Blue

Gene/P.,” Computer Science - R&D, vol. 26, no. 3-4, pp. 275–283, 2011.

[6] E. L. Miller, “Towards scalable benchmarks for mass storage systems,” 5th NASA

Goddard Conference on Mass Storage Systems and Technologies, College Park, MD,

pp. 515–527, September 1996.

[7] P. Chen and D. Patterson, “Storage performance-metrics and benchmarks,” Pro-

ceedings of the IEEE, vol. 81, pp. 1151–1165, August 1993.

[8] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the I/O perfor-

mance of HPC applications using a parameterized synthetic benchmark,” in High

Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. Inter-

national Conference, pp. 1–12, November 2008.

193

Bibliography 194

[9] J. Borrill, L. Oliker, J. Shalf, and H. Shan, “Investigation of leading HPC I/O

performance using a scientific-application derived benchmark,” in Supercomputing,

2007. SC ’07. Proceedings of the 2007 ACM/IEEE Conference, pp. 1–12, November

2007.

[10] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7 character-

ization of petascale I/O workloads,” in Cluster Computing and Workshops, 2009.

CLUSTER ’09. IEEE International Conference, pp. 1–10, August 2009.

[11] D. Kotz and N. Nieuwejaar, “File-system workload on a scientific multiprocessor,”

Parallel Distributed Technology: Systems Applications, IEEE, vol. 3, pp. 51–60,

Spring 1995.

[12] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross,

“Understanding and improving computational science storage access through con-

tinuous characterization,” in Mass Storage Systems and Technologies (MSST), 2011

IEEE 27th Symposium, pp. 1–14, May 2011.

[13] M. Wiedemann, J. Kunkel, M. Zimmer, T. Ludwig, M. Resch, T. Bönisch, X. Wang,

A. Chut, A. Aguilera, W. Nagel, M. Kluge, and H. Mickler, “Towards I/O analysis

of HPC systems and a generic architecture to collect access patterns,” Computer

Science - Research and Development, vol. 28, no. 2-3, pp. 241–251, 2013.

[14] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat, S. Byna,

and Y. Yao, “A multiplatform study of I/O behavior on petascale supercomputers,”

in Proceedings of the 24th International Symposium on High-Performance Parallel

and Distributed Computing, HPDC ’15, (New York, NY, USA), pp. 33–44, ACM,

2015.

[15] E. Smirni and D. A. Reed, “Lessons from characterizing input/output bahavior of

parallel scientific applications,” INTERNATIONAL JOURNAL, vol. 33, pp. 27–44,

1998.

[16] P. Crandall, R. Aydt, A. Chien, and D. Reed, “Input/output characteristics of scal-

able parallel applications,” in Supercomputing, 1995. Proceedings of the IEEE/ACM

SC95 Conference, pp. 59–59, 1995.

[17] B. Feng, N. Liu, S. He, and X.-H. Sun, “HPIS3: towards a high-performance simu-

lator for hybrid parallel I/O and storage systems,” in Proceedings of the 9th Parallel

Bibliography 195

Data Storage Workshop, PDSW ’14, (Piscataway, NJ, USA), pp. 37–42, IEEE Press,

2014.

[18] A. Deuzeman, S. Reker, and C. Urbach, “Lemon: an MPI parallel I/O library

for data encapsulation using LIME,” Computer Physics Communications, vol. 183,

no. 6, pp. 1321–1335, 2012.

[19] R. Latham, C. Daley, W. keng Liao, K. Gao, R. Ross, A. Dubey, and A. Choud-

hary, “A case study for scientific I/O: improving the FLASH astrophysics code,”

Computational Science and Discovery, vol. 5, no. 1, p. 015001, 2012.

[20] N. Ali, P. H. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. B. Ross, L. Ward,

and P. Sadayappan, “Scalable I/O forwarding framework for high-performance com-

puting systems,” in Name: Proceedings of the 2009 IEEE International Conference

on Cluster Computing, (New Orleans, LA, USA), 08/2009 2009.

[21] V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov, M. Papka, R. Ross,

and K. Yoshii, “Accelerating I/O forwarding in IBM Blue Gene/P systems,” in

High Performance Computing, Networking, Storage and Analysis (SC), 2010 Inter-

national Conference, pp. 1–10, November 2010.

[22] S. El Sayed, S. Graf, M. Hennecke, D. Pleiter, G. Schwarz, H. Schick, and

M. Stephan, “Using GPFS to manage NVRAM-based storage cache,” in Super-

computing (J. Kunkel, T. Ludwig, and H. Meuer, eds.), vol. 7905 of Lecture Notes

in Computer Science, pp. 435–446, Springer Berlin Heidelberg, 2013.

[23] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp, “Hiding I/O latency

with pre-execution prefetching for parallel applications,” in Proceedings of the

2008 ACM/IEEE conference on Supercomputing, SC ’08, (Piscataway, NJ, USA),

pp. 40:1–40:10, IEEE Press, 2008.

[24] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O prefetching

using MPI file caching and I/O signatures,” in Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, SC ’08, (Piscataway, NJ, USA), pp. 44:1–44:12,

IEEE Press, 2008.

[25] B. G. Fitch, A. Rayshubskiy, M. C. Pitman, T. J. C. Ward, and R. S. Germain,

“Using the active storage fabrics model to address petascale storage challenges,”

Bibliography 196

in Proceedings of the 4th Annual Workshop on Petascale Data Storage, PDSW ’09,

(New York, NY, USA), pp. 47–54, ACM, 2009.

[26] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in ROMIO,”

in Frontiers of Massively Parallel Computation, 1999. Frontiers ’99. The Seventh

Symposium, pp. 182–189, February 1999.

[27] K. Coloma, A. Ching, A. Choudhary, W.-K. Liao, R. Ross, R. Thakur, and L. Ward,

“A new flexible MPI collective I/O implementation,” in Cluster Computing, 2006

IEEE International Conference, pp. 1–10, September 2006.

[28] Y. Chen, X.-H. Sun, R. Thakur, H. Song, and H. Jin, “Improving parallel I/O

performance with data layout awareness,” in Cluster Computing (CLUSTER), 2010

IEEE International Conference, pp. 302–311, September 2010.

[29] J. Kunkel, M. Zimmer, and E. Betke, “Predicting performance of non-contiguous

I/O with machine learning,” in High Performance Computing (J. M. Kunkel and

T. Ludwig, eds.), vol. 9137 of Lecture Notes in Computer Science, pp. 257–273,

Springer International Publishing, 2015.

[30] F. Schmuck and R. Haskin, “GPFS: a shared-disk file system for large comput-

ing clusters,” in Proceedings of the 1st USENIX Conference on File and Storage

Technologies, FAST ’02, (Berkeley, CA, USA), USENIX Association, 2002.

[31] “GPFS version 3.5 (2013) advanced administration guide,” IBM publication, June

2013.

[32] “GPFS version 3.5 administration and programming reference,” IBM publication,

no. SA23-2221-08.

[33] M. Payne, P. Widener, M. Wolf, H. Abbasi, S. McManus, P. G. Bridges, and

K. Schwan, “Exploiting latent I/O asynchrony in petascale science applications,” in

Proceedings of the 2008 Fourth IEEE International Conference on eScience, (Wash-

ington, DC, USA), pp. 410–411, IEEE Computer Society, 2008.

[34] A. Purakayastha, C. Ellis, D. Kotz, N. Nieuwejaar, and M. Best, “Characterizing

parallel file-access patterns on a large-scale multiprocessor,” in Parallel Processing

Symposium, 1995. Proceedings., 9th International, pp. 165–172, April 1995.

Bibliography 197

[35] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best, “File-access char-

acteristics of parallel scientific workloads,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 7, pp. 1075–1089, October 1996.

[36] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible IO

and integration for scientific codes through the adaptable IO system (ADIOS),” in

Proceedings of the 6th international workshop on Challenges of large applications

in distributed environments, CLADE ’08, (New York, NY, USA), pp. 15–24, ACM,

2008.

[37] S. El Sayed, “Analysis and optimization of storage IO in distributed and massive

parallel high performance systems,” masterarbeit, Universität Stuttgart, Fakultät

Informatik, Elektrotechnik und Informationstechnik, Germany, November 2011.

[38] W. Frings, F. Wolf, and V. Petkov, “Scalable massively parallel I/O to task-local

files,” in Proceedings of the Conference on High Performance Computing Network-

ing, Storage and Analysis, SC ’09, (New York, NY, USA), pp. 17:1–17:11, ACM,

2009.

[39] R. Ge, X. Feng, S. Subramanya, and X.-H. Sun, “Characterizing energy efficiency of

I/O intensive parallel applications on power-aware clusters,” in Parallel Distributed

Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Sym-

posium, pp. 1–8, April 2010.

[40] T. Madhyastha and D. Reed, “Learning to classify parallel input/output access

patterns,” Parallel and Distributed Systems, IEEE Transactions, vol. 13, pp. 802–

813, August 2002.

[41] C. Muelder, C. Sigovan, K.-L. Ma, J. Cope, S. Lang, K. Iskra, P. Beckman, and

R. Ross, “Visual analysis of I/O system behavior for high-end computing,” in Pro-

ceedings of the Third International Workshop on Large-scale System and Applica-

tion Performance, LSAP ’11, (New York, NY, USA), pp. 19–26, ACM, 2011.

[42] S. J. Kim, Y. Zhang, S. W. Son, R. Prabhakar, M. Kandemir, C. Patrick, W.-

k. Liao, and A. Choudhary, “Automated tracing of I/O stack,” in Proceedings of

the 17th European MPI users’ group meeting conference on Recent advances in the

message passing interface, EuroMPI’10, (Berlin, Heidelberg), pp. 72–81, Springer-

Verlag, 2010.

Bibliography 198

[43] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. Müller,

and W. Nagel, “The vampir performance analysis tool-set,” in Tools for High

Performance Computing (M. Resch, R. Keller, V. Himmler, B. Krammer, and

A. Schulz, eds.), pp. 139–155, Springer Berlin Heidelberg, 2008.

[44] Y. Kim, R. Gunasekaran, G. Shipman, D. Dillow, Z. Zhang, and B. Settlemyer,

“Workload characterization of a leadership class storage cluster,” in Petascale Data

Storage Workshop (PDSW), 2010 5th, pp. 1–5, November 2010.

[45] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones, A. Knüpfer, K. Iskra, R. Ross,

W. Nagel, and S. Poole, “Optimizing I/O forwarding techniques for extreme-scale

event tracing,” Cluster Computing, vol. 17, no. 1, pp. 1–18, 2014.

[46] M. Kluge, A. Knupfer, and W. Nagel, “Efficient pattern based I/O analysis of paral-

lel programs,” in Parallel Processing Workshops (ICPPW), 2010 39th International

Conference, pp. 144–153, September 2010.

[47] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Scalable I/O tracing and

analysis,” in Proceedings of the 4th Annual Workshop on Petascale Data Storage,

PDSW ’09, (New York, NY, USA), pp. 26–31, ACM, 2009.

[48] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting application-specific

parallel I/O optimization using IOSIG,” in Cluster, Cloud and Grid Computing

(CCGrid), 2012 12th IEEE/ACM International Symposium, pp. 196–203, May

2012.

[49] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm for dis-

covering clusters in large spatial databases with noise,” in In Proceedings of 2nd

International Conference on Knowledge Discovery and Data Mining (KDD-96),

pp. 226–231, AAAI Press, 1996.

[50] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and C. Maltzahn,

“Modeling a leadership-scale storage system,” in In Proceedings of the 9th Interna-

tional Conference on Parallel Processing and Applied Mathematics, 2011.

[51] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment,”

in Simutools ’08: Proceedings of the 1st international conference on Simulation tools

and techniques for communications, networks and systems & workshops, (ICST,

Bibliography 199

Brussels, Belgium, Belgium), pp. 1–10, ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2008.

Schriften des Forschungszentrums Jülich
IAS Series

Band / Volume 25
Numerical simulation of gas-induced orbital decay of binary systems
in young clusters
A. C. Korntreff (2014), 98 pp
ISBN: 978-3-89336-979-9
URN: urn:nbn:de:0001-2014072202

Band / Volume 26
UNICORE Summit 2014
Proceedings, 24th June 2014 | Leipzig, Germany
edited by V. Huber, R. Müller-Pfefferkorn, M. Romberg (2014), iii, 60 pp
ISBN: 978-3-95806-004-3
URN: urn:nbn:de:0001-2014111408

Band / Volume 27
Automatische Erfassung präziser Trajektorien
in Personenströmen hoher Dichte
M. Boltes (2015), xii, 308 pp
ISBN: 978-3-95806-025-8
URN: urn:nbn:de:0001-2015011609

Band / Volume 28
Computational Trends in Solvation and Transport in Liquids
edited by G. Sutmann, J. Grotendorst, G. Gompper, D. Marx (2015)
ISBN: 978-3-95806-030-2
URN: urn:nbn:de:0001-2015020300

Band / Volume 29
Computer simulation of pedestrian dynamics at high densities
C. Eilhardt (2015), viii, 142 pp
ISBN: 978-3-95806-032-6
URN: urn:nbn:de:0001-2015020502

Band / Volume 30
Efficient Task-Local I/O Operations of Massively Parallel Applications
W. Frings (2016), xiv, 140 pp
ISBN: 978-3-95806-152-1
URN: urn:nbn:de:0001-2016062000

Band / Volume 31
A study on buoyancy-driven flows: Using particle image velocimetry
for validating the Fire Dynamics Simulator
by A. Meunders (2016), xxi, 150 pp
ISBN: 978-3-95806-173-6
URN: urn:nbn:de:0001-2016091517

Schriften des Forschungszentrums Jülich
IAS Series

Band / Volume 32
Methoden für die Bemessung der Leistungsfähigkeit
multidirektional genutzter Fußverkehrsanlagen
S. Holl (2016), xii, 170 pp
ISBN: 978-3-95806-191-0
URN: urn:nbn:de:0001-2016120103

Band / Volume 33
JSC Guest Student Programme Proceedings 2016
edited by I. Kabadshow (2017), iii, 191 pp
ISBN: 978-3-95806-225-2
URN: urn:nbn:de:0001-2017032106

Band / Volume 34
Multivariate Methods for Life Safety Analysis in Case of Fire
B. Schröder (2017), x, 222 pp
ISBN: 978-3-95806-254-2
URN: urn:nbn:de:0001-2017081810

Band / Volume 35
Understanding the formation of wait states in one-sided communication
M.-A. Hermanns (2018), xiv, 144 pp
ISBN: 978-3-95806-297-9
URN: urn:nbn:de:0001-2018012504

Band / Volume 36
A multigrid perspective on the parallel full approximation scheme
in space and time
D. Moser (2018), vi, 131 pp
ISBN: 978-3-95806-315-0
URN: urn:nbn:de:0001-2018031401

Band / Volume 37
Analysis of I/O Requirements of Scientific Applications
S. El Sayed Mohamed (2018), XV, 199 pp
ISBN: 978-3-95806-344-0
URN: urn:nbn:de:0001-2018071801

Weitere Schriften des Verlags im Forschungszentrum Jülich unter
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp

IAS Series
Band / Volume 37
ISBN 978-3-95806-344-0

IAS Series
Band / Volume 37
ISBN 978-3-95806-344-0

Analysis of I/O Requirements of Scientific Applications

Salem El Sayed Mohamed

37

IA
S

Se
ri

es
A

na
ly

si
s

of
 I/

O
 R

eq
ui

re
m

en
ts

 o
n

H
PC

Sa
le

m
 E

l S
ay

ed
 M

oh
am

ed

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Research Goals
	1.3 HPC I/O Architecture
	1.3.1 Emerging I/O Architectures

	2 I/O System Architecture
	2.1 JUGENE I/O Stack
	2.2 Storage Infrastructure
	2.2.1 GPFS I/O Counters

	3 Methodology: I/O Criteria
	3.1 Related Work
	3.2 Basic Quantities
	3.2.1 Application Quantities
	3.2.2 I/O Request Quantities
	3.2.3 Filesystem Metadata Operation Quantities

	3.3 Category 1: Aggregate Performance Numbers
	3.4 Category 2: I/O Pattern Analysis
	3.4.1 Request Size
	3.4.2 Type Of I/O Operation
	3.4.3 Spatiality Of I/O Requests
	3.4.4 Temporal Intervals
	3.4.5 Repetitive Behaviour

	3.5 Category 3: Parallel I/O
	3.6 Summarizing I/O Criteria

	4 Performance Characterization: Analysing GPFS I/O Counters
	4.1 Related Work And I/O Profiling Tools
	4.1.1 I/O Measuring Tools
	4.1.2 Analysis Process
	4.1.3 Using Analysis Information

	4.2 Reformatting GPFS I/O Counters
	4.2.1 GPFS I/O Log Database

	4.3 Job Database
	4.4 Verifying Analysis Process
	4.4.1 Verification Of GPFS I/O Counters Using I/O Benchmark

	4.5 Evaluating JUGENE Job I/O
	4.5.1 Filtering The Job List
	4.5.2 Revisiting I/O Criteria
	4.5.3 Category 1: Aggregate Performance Numbers
	4.5.4 Category 2: I/O Pattern Analysis
	4.5.5 Category 3: Parallel I/O
	4.5.6 Further Analysing A Subset Of Jobs
	4.5.7 Analysing Jobs Using Category 1: Aggregate Performance Numbers
	4.5.8 Analysing Jobs Using Category 2: I/O Pattern Analysis
	4.5.9 Analysing Jobs Using Category 3: Parallel I/O

	4.6 General Notes on Analysing the GPFS I/O Counters

	5 Performance Modeling: Modeling JUGENE I/O
	5.1 Related Work
	5.2 Modeling Framework (OMNET++)
	5.3 Modelling JUGENE I/O
	5.3.1 I/O Model Components

	5.4 I/O Model Verification
	5.4.1 Parameter Fitting Using GPFS I/O Logs

	5.5 Future I/O Architectures
	5.5.1 I/O Model Changes
	5.5.2 Burst Buffers

	5.6 Conclusions On Modelling System I/O

	6 Conclusion
	6.1 Future Work

	A I/O Criteria - Category 4: Application Details
	B I/O Model Parameter Fitting Using An I/O Benchmark
	Bibliography
	IAS_Titelei_37.pdf
	Leere Seite

	Leere Seite
	Leere Seite

