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ABSTRACT
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Food for Fuel: The Effect of the US 
Biofuel Mandate on Poverty in India*

More than 40% of US grain is used for energy due to the Renewable Fuels Mandate (RFS). 

There are no studies of the global distributional consequences of this purely domestic policy. 

Using micro-level survey data, we trace the effect of the RFS on world food prices and their 

impact on household level consumption and wage incomes in India. We first develop a 

partial equilibrium model to estimate the effect of the RFS on the price of selected food 

commodities - rice, wheat, corn, sugar and meat and dairy, which together provide almost 

70% of Indian food calories. Our model predicts that world prices for these commodities 

rise by 8-16% due to the RFS. We estimate the price pass-through to domestic Indian 

prices and the effect of the price shock on household welfare through consumption and 

wage incomes. Poor rural households suffer significant welfare losses due to higher prices 

of consumption goods, which are regressive. However they benefit from a rise in wage 

incomes, mainly because most of them are employed in agriculture. Urban households also 

bear the higher cost of food, but do not see a concomitant rise in wages because only a 

small fraction of them work in food- related industries. Welfare losses are greater among 

urban households. However, more poor people in India live in villages, so rural poverty 

impacts are larger in magnitude. We estimate that the mandate leads to about 26 million 

new poor: 21 million in rural and five million in the urban population.
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1 Introduction

The United States has been the most aggressive nation in encouraging the use of

biofuels in the transportation sector. About 10% of U.S. gasoline now comes from ethanol

produced from corn, making it the largest consumer of biofuels in the world. This share

is expected to rise several-fold with the advent of second generation biofuels under the

Renewable Fuels Standard (RFS) (EPA, 2010).1 This policy is controversial because it

uses scarce land resources that displace food for energy production, leading to an increase

in food prices (Rosenthal, 2011). Several studies have attributed past food price shocks

in US and world markets to the sharp increase in biofuel production, especially from corn

ethanol.2

That the RFS induces an increase in the price of food commodities is well estab-

lished.3 However, given that the US is a major agricultural nation as well as the largest

consumer of transport fuels, the distributional effects of this price increase may be sig-

nificant, and have not been rigorously studied. Little is known about the overall poverty

impacts of the mandate on other nations. The effects may be negative through the higher

cost of consumption, or positive, if wages and income in the agricultural sector of other

nations increase. This is the focus of the present paper. Using micro-level survey data,

we estimate the effect of the RFS through consumption and wage impacts among house-

holds in India. India is an important country to study because of its high incidence of

poverty. According to the multi-dimensional poverty index, which accounts for health,

education and living standards, eight Indian states together have more poor people than

the 26 poorest African states combined (UNDP, 2010). About a fifth of the population

suffers from malnutrition (FAO, 2010).

We proceed in two steps: first, we calibrate a partial equilibrium model to trace

the effect of the RFS on the world market for specific crops which consume a significant

acreage and are important to the Indian diet, while aggregating the ones less important.4

This calibrated model captures critical dynamic effects such as allowing for new land to

be converted to farming when crop prices rise. The goal is to predict price changes that

are inclusive of adjustment processes in the world economy. We explicitly model shocks

in parameters such as crop yields and food and fuel price elasticities through Monte

Carlo simulations that generate stochastic distributions of price effects with corresponding

standard errors. Based on mean impacts, this model predicts that the RFS raises long-

1Brazil, the European Union, China and other countries have similar policies that divert corn, sugar
cane and other crops from food to energy.

2See for example, Mitchell (2008), Rosegrant et al. (2008) and Hausman et al. (2012). They report
significant price increases for different food commodities, of the order of 20-70%.

3Although there may be differences in the estimated magnitude of price effects, especially in the short
and long run.

4We study rice, wheat, corn, sugar and meat and dairy, which together supply about 70% of the
calories for the average Indian household.
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run food commodity prices in the world market by about 8-16%. These estimates suggest

a significant price increase, but modest relative to previous studies.

Next, we use detailed micro-level household data to examine how these predicted

commodity price shocks affect welfare among households in India through the cost of

consumption and wage incomes. We allow for household heterogeneity in terms of their

expenditure shares, factor endowments, income, geographical location and household

structure, and identify the groups that are most impacted. In order to incorporate the

limited pass-through of world prices to domestic prices, we estimate price pass-through

elasticities and consider both perfect and imperfect price transmission from world to

domestic Indian markets. We also estimate wage-price elasticities to assess how price

changes are reflected in household wage incomes. Finally the welfare effects through

consumption and wage incomes are combined to determine the number of new poor

created by the mandate.5

The main contribution of our paper is in using a partial equilibrium model for

selected food crops to generate predictions for energy policy-induced commodity price

shocks, and then using micro-level household data to study distributional effects at the

household level. We incorporate uncertainty in the main parameters, and in the set of

simulated prices to obtain the welfare and poverty effects using an econometric framework.

Our poverty estimates are stochastic, not deterministic, as they reflect the uncertainty

from Monte Carlo simulations. This approach enables us to understand how the decisions

of an economy (the U.S.) that is a major player in the world energy and food markets

impacts individuals and households in a developing country.

The surprising implication is that clean energy policies that raise food prices may

have significant positive impacts in other nations where a large number of people work in

the agricultural sector. The study is unique because there are almost no rigorous studies

of the global impacts of domestic energy or environmental policies using micro-data. We

show that domestic policy decisions of a major economy may have large global welfare

impacts.6 In agricultural and energy markets, where the US produces (and consumes) a

sizable share of world supply, these impacts may be significant, as we demonstrate in this

paper.7

5The methodology adopted in this paper is fairly general and can be used to study the distributional
effects of any policy that causes food price shocks, e.g., agricultural subsidies, trade barriers or natural
phenomena such as climate-induced droughts that affect crop yields.

6Leading economists from developing nations such as the former Indian Central Bank Governor,
Raghuram Rajan, have pointed to the lack of economic studies that analyse the effect of US domestic
policy on other nations.

7Specifically, there are almost no studies of US energy policy on other nations, using micro-level data
that simulates the policy impact on individual households in a representative sample. See Bourguignon
et al. (2008) for a careful discussion of top-down models that use macroeconomic policies to study micro-
level impacts. Another study (Bento et al., 2009) focuses on the impact of increased gasoline taxes on
gasoline consumption and miles traveled in the US as well as the associated distributional effects across
households that differ by income, race and other characteristics.
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In section 2, we outline the calibration model and obtain a distribution of price

shocks for selected food commodities induced by the energy mandate. Section 3 discusses

the framework for the welfare analysis, the data used and estimates price pass-through

elasticities of world to domestic Indian prices. Section 4 shows the welfare estimates.

Section 5 concludes the paper.

2 Impact of the RFS on food prices

In this section we calibrate a simple, dynamic partial equilibrium model of the

agriculture and transport sectors in order to trace the effect of the US Renewable Fuels

Standard (RFS) on food prices. This mandate requires the use of biofuels (mainly from

corn) in transportation to increase from the current 13 billion gallons to 36 billion by the

year 2022 as shown in Figure 1.8 First we present a toy model which reveals the underlying

economic principles, followed by a detailed specification of the calibration exercise. The

goal is to show that the RFS will lead to a shift in land-use from agriculture to energy

crops, thereby decreasing the supply of food crops and causing an increase in their prices.

This in turn, will lead to new land being brought into cultivation, which a dampening

effect on prices.

A model of energy and food

Consider a partial equilibrium economy in which two goods are produced — trans-

port energy and food crops. The quantity consumed of each good is denoted respectively

by qe and qf , where the subscripts e and f denote energy and food crops.9 Let the

downward-sloping inverse demand function for each good by denoted by D−1
j , j = {e, f}.

Demand is assumed independent of other goods. Transport energy is produced from

gasoline or biofuel, which are assumed to be perfect substitutes. Food crops and biofuel

are produced on land.

Land is assumed to be of uniform quality and may be allocated to energy or food

production.10 Let Lj(t), j ∈ {e, f}, be the amount of land dedicated to producing

energy and food at any time t. Since we use this model to predict future food prices,

we explicitly incorporate model dynamics. The total land cultivated L(t) is then given

8See https://www.epa.gov/renewable-fuel-standard-program/program-overview-renewable-fuel-
standard-program for the program overview. There is some uncertainty as to how this ambitious
mandate will be met by industry, especially in an era of low oil and gas prices, see CBO (2014).

9In the calibration model described below, we will distinguish food crops from food commodities.
Demand is expressed in terms of the food commodity, e.g., the rice crop is produced on land then
converted to rice commodity by applying a coefficient of transformation. In the theoretical model, this
distinction is left out for tractability.

10In the calibration model, we allow for heterogeneity in land quality across different geographical
regions.
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by
∑

j∈{e,f}

Lj(t) = L(t). Change in the total land area available under food or energy

production equals the new land put to either use, defined by l(t), i.e., L̇(t) = l(t), where

dot represents the time derivative. Note that the variable l(t) may be negative if land is

taken out of production: here we only allow for new land to be brought under cultivation.

The total cost of bringing new land into cultivation is increasing and convex as a

function of aggregate land cultivated, but linear in the amount of new land used at any

given instant. It is given by c(L)l, where we assume that c
′
(L) > 0 and c

′′
(L) > 0. The

cost of conversion of land increases because it is likely to be remotely located and less

accessible to markets. Thus the greater is the land area already under cultivation, the

higher the unit cost of bringing new land into farming. The conversion cost function is

the same whether the land is being used for food or energy.

Crop yield per unit of land for energy or food is denoted by kj where j ∈ {e, f}.
Then the output of energy and food crops is given by qe = keLe and qf = kfLf , respec-

tively, where we hide the time subscript.11 Total production cost is rising and convex

with output qj and is given by wj(qj).

The production of transport fuel is given by keLe + g where keLe and g denote

production of biofuels and gasoline.12 Let the unit cost of gasoline be cg. The mandate

is in the form of a quota and can be written as keL̄e where L̄e is the minimum land area

required to meet the imposed target, giving us the constraint keLe ≥ keL̄e.

Let the social discount rate be ρ. Thus, by maximizing the discounted sum of

the consumer and producer surplus, the amount of land to be used for food and energy

production and the quantity of gasoline to be used are the solution of the following

maximization program:

Max{Lj ,l,g}

∞∫
0

e−ρt{[
keLe+g∫

0

D−1
e (·)dψ +

kfLf∫
0

D−1
f (·)dγ]

−c(L)l −
∑
j

wj(kjLj)− cgg}dt, j = {e, f} (1)

subject to keLe ≥ keL̄e (2)∑
j∈{e,f}

Lj(t) = L(t) (3)

L̇(t) = l (4)

11Later, we allow for production of multiple food and energy crops.
12Here we assume perfect substitution. In the calibration, gasoline and biofuels are considered imper-

fect substitutes and the production of crude oil and conversion to gasoline is explicitly modeled.

5



The current value Lagrangian can be written as:

L =

keLe+g∫
0

D−1
e (·)dψ +

kfLf∫
0

D−1
f (·)dγ − c(L)l −

∑
j∈{f,e}

wj(kjLj)− cgg + θke(Le − L̄e)

−β(
∑

j∈{e,f}

Lj(t)− L(t))− λl,

where θ is the multiplier associated with the mandate (2) and represents the implicit

subsidy required to meet it, β is the land rent and λ is the dynamic shadow price of land.

The first order conditions, assuming an interior solution, are given by:

ke(pe + θ − w′e)− β − c′(L)l = 0 (5)

kf (pf − w
′

f )− β − c′(L)l = 0 (6)

c(L)− λ = 0 (7)

pe − cg = 0 (8)

and λ̇(t) = rλ+ c ′(L)l, (9)

along with associated non-negativity constraints, not shown here. Condition (5) suggests

that the price of energy (pe) equals the sum of the marginal cost of biofuel production

w
′

e, the land rent β and the marginal cost of land conversion c′(L)l, both adjusted by

crop yield minus the subsidy θ induced by the mandate. Equation (6) states that land is

allocated to food production until the price of food (pf ) equals the sum of the marginal

cost of production (w
′

f ), the land rent β and the marginal conversion cost c′(L)l, both

adjusted by crop yield. The dynamic shadow price of land λ is equal to the marginal cost

of land conversion from condition (7). Condition (8) suggests that the price of transport

fuel equals the marginal cost of gasoline production. Since biofuels and gasoline are

perfect substitutes, both are used in the production of transport fuel if and only if their

marginal costs are equal. Finally (9) relates the rate of change of the land shadow price

to the discount rate and marginal cost of land conversion.

We can summarize the main insights from the model. Positive demand shocks

will lead to higher prices for food or energy, and induce new land conversion, ceteris

paribus. A higher price of gasoline will make biofuels relatively economical and trigger

an acreage shift from food to energy. Food prices will rise, and new land conversion

may occur, exerting a downward shift in prices. A larger biofuels mandate will implicitly

mean a higher subsidy for biofuel production, increase land under biofuels and lower

consumption of the substitute, gasoline.
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Model calibration

In this section, we modify the simple analytical framework outlined above to cal-

ibrate a more realistic model that can trace the effect of the mandate on the price of

selected food commodities in the world market. Specifically, we include heterogeneity in

demand for energy and food in different geographical regions and differences in produc-

tion costs and in land endowment and quality. The goal is to arrive at realistic long-run

predictions for price increases for a set of food commodities that are critical to the Indian

diet.

The price effects are modeled by considering three geographical regions - the United

States, India, and the Rest of the World (ROW) - the last region aggregates all other

nations. In the rest of the paper, we use the subscript r for all equations and parameters

that are region-specific. We consider six food commodities - rice, wheat, corn, sugar and

“other food” which includes all other crops, and finally, ‘meat and dairy” are considered

separately because they are not directly produced from land, although their production is

land-intensive.13 A portion of the “other crops” and corn are used to feed animals which

are then transformed into meat and dairy products. These six commodities are chosen

for two reasons: their importance to the Indian diet and because they use significant land

area globally, which makes them especially sensitive to acreage substitution induced by

the mandate away from food to energy production.14 The “other food” category includes

all grains other than rice, wheat and corn such as starches and oil crops.15 The model

assumes frictionless trading across the three regions in the food commodities, crude oil

and biofuels. However, transport fuel which is a blend of gasoline and biofuels, is assumed

to be produced domestically in each region and is not traded.

Figure 2 shows a schematic of the calibration model. Land of different qualities

is used to grow food crops and biofuels. Gasoline is produced from crude oil. Biofuels

and gasoline are imperfect substitutes in transport fuel. The six food commodities and

transport fuel are characterized by independent demand functions. The time-sensitive

biofuel mandate is imposed as a consumption constraint that must be satisfied each year.

The model is run for 100 years starting from base year 2012 with a discount rate of 2%.

All parameters are calibrated to match actual figures for year 2012.

Supply of food and biofuels

As shown in Figure 2, each land class may produce the five food crops (rice, wheat,

sugar, corn and other food) and biofuels (first and second generation).16 Since land

13On average, eight kilograms of cereals produce one kg of beef and three kgs produce one kg of pork.
14Rice, wheat and sugar together supply 60% of all calories in India. They also consume large amounts

of farmland - according to FAO (2016), rice and corn account for 11% and 12% respectively of world
farmland, and wheat another 14%.

15These crops are not disaggregated further because they occupy a smaller acreage and are likely to
be less important in terms of distributional effects in India than staples like rice, wheat and corn.

16First generation biofuels are produced from corn in the US and from sugarcane in India and ROW.
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quality differs accross different regions, we use the FAO-IIASA database (Fischer et al.,

2001) to define three different land qualities based on soil and climate characteristics.

Each quality is indexed by n (high, medium, low) with high being the most productive.17

Total land area in the model includes land cultivated in base year 2012 and fallow land

that may be brought into cultivation in subsequent periods. Table 1 shows yields and

endowment of land for the base year 2012 by land quality and region.18 We assume linear

production, i.e., output is yield times land area. For each land quality, the FAO/IIASA

database has information on the acreage under each crop and its yield.19 The definition

of land quality depends on the level of input use such as technology and irrigation. The

FAO data gives yield estimates at various levels of inputs - high, medium and low. For

each crop and region, we match these yields to actual data from FAO (2016) for base year

2012 and choose the input level that matches the data. For the US, we adopt the yield for

“high input” use, and for the other two regions, we choose the yield for “low input use.”

Yields can be three times higher on high quality land than on land of low quality. Since

the model is dynamic, we allow for exogenous improvements in agricultural productivity

specific to region and land quality. These annual growth rates are also shown in Table 1.

The total cost of producing a given crop in each region is a function of aggregate

regional output and assumed to be increasing and convex.20 Let j denote the crop

produced on any given land, such as rice, wheat, corn, sugar, other crops or biofuels.

Then the total production cost for crop j in a given region is defined as

wrj

(∑
n

kjrn L
jr
n

)
= ηjr1

[∑
n

kjrn L
jr
n

]ηjr2
(10)

where
∑
n

kjrn L
jr
n is the aggregate output of product j, and ηjr1 and ηjr2 are crop-specific

regional cost parameters. The values of the production cost parameters ηjr1 and ηjr2 are

shown in Table A1 and are from GTAP 5 (1997).

The price-induced conversion of new land to farming may vary by region. For

example, an acre of land in a developing country may cost more to convert to farming

than an acre in a developed nation which may have better infrastructure. The unit cost

17The database identifies four qualities - very suitable, suitable, moderately suitable and marginally
suitable. We have grouped these four into three, by consolidating the two intermediate classes into one,
since their yield differences are small.

18Protected forests are excluded from the model as in other studies (Golub et al., 2009). For India, we
make the plausible assumption that no new land is available for farming (Ravindranath et al., 2011).

19Crop acreage for US and India is readily available from this database. For the ROW region, we
subtract the values for US and India from the total world figure. For wheat, rice, corn and sugar, we
can use the data directly. However, to obtain the yield per land class for the category “other crops,” we
calculate the weighted mean crop yield for grains, roots, tubers, pulses and oil crops where the weight
used is the share of each crop in total production in the region.

20Ideally, production costs should vary by land class. We have not followed this approach due to data
limitations. The data base we employ to characterize the three land qualities has information on different
crop yields and the area available per land class. However, there is no data on production costs.
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of conversion of land into farming for each land quality and region is taken from Sohngen

and Mendelsohn (2003):

crn(Lrn) = ψr1 − ψr2log

(
L̄rn − Lrn
L̄rn

)
(11)

where L̄rn is the initial area of fallow land of quality n available for cultivation in the base

year and Lrn is the acreage of quality n already cultivated. Thus, L̄rn − Lrn is the residual

land available. The smaller this value, the larger is the cost of conversion. Conversion

costs go to infinity as available land gets exhausted, since very remote locations are

prohibitively costly to develop. The parameters ψr1 and ψr2 are taken from Gouel and

Hertel (2006) and reported in Table A2. These coefficients are the same for each land

class but differ by region. We thus have three conversion cost functions for each region -

one for each land quality.

Crops are transformed into six final food commodities (rice, wheat, corn, sugar,

other food, and meat/dairy) by applying a constant coefficient of transformation.21 There

are two types of biofuels in the model, called first and second generation biofuels. The

supply of first generation biofuels is region-specific, with a representative fuel for each

region. This assumption is reasonable since only one type of first generation biofuel

actually dominates in each region. For example, 93% of US production in 2012 was

from corn ethanol (EIA, 2014). In India, sugarcane ethanol is the main source of biofuel

(Ravindranath et al., 2011). The premier producer in the ROW region is Brazil where

ethanol is also produced from sugarcane. Table A3 shows the representative crop for each

region, its yield by land quality and production cost.22 Cellulosic or second generation

biofuels are assumed to be only available in the US alone since it may take a while for

them to acquire significant acreage in other regions. As these crops are less demanding

in terms of land quality, we assume that their yield is uniform across different qualities

(see Gelfand et al. (2013)). The yield of cellulosic ethanol is assumed to be 2, 000 gallons

per hectare and its unit cost is $1.1 per gallon (Chen et al., 2014).

Supply of transport energy

Transport energy is supplied by gasoline and biofuels, which are imperfect substi-

tutes. We adopt a CES specification as in Chen et al. (2014) given by

21For rice, wheat, sugar and “other crops,” we assume that one ton of crop produces 0.95 tons of the
final food commodity (FAO, 2016), taken to be uniform across regions. A portion of ”other crops” is
used as animal feed. The quantity of meat and dairy produced from one ton of “other crops” (called
feed ratio) is region-specific and adapted from Bouwman (1997). We use a feed ratio of 0.4 for US and
0.25 for India and ROW.

22Output of biofuel per hectare is computed as crop yield times the coefficient of transformation of the
crop into biofuel. Production costs include the cost of transforming the crop into biofuel net the positive
value of any by-products.
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qre = λr

[
µrgq

r
g

ξr−1
ξr + (1− µrg)(qrbf + qrbs)

ξr−1
ξr

] ξr

ξr−1

(12)

where qre is the production of transport fuel in the region r, µrg is the share of gasoline in

transport, ξr is the elasticity of substitution, and qrg, q
r
bf and qrbs are the respective supplies

of gasoline and first and second generation biofuels. The elasticity of substitution depends

upon the technological barriers for displacing gasoline by biofuels. Elasticity estimates

are from Hertel et al. (2010), and the parameter λr is a constant calibrated to reproduce

the base-year production of transport fuel (see Table A4).23

Gasoline is produced from crude oil which is modeled as a competitive “bathtub”

as in Nordhaus (2009). We posit a rising cost of extraction which captures the fact that

with increased extraction, the unit cost of oil rises.24 As in Nordhaus, the unit extraction

cost at any time t̃ is given by

co(t̃) = φ1 + φ2

(∑t̃
t=1

∑
r x

r(t)

X̄

)φ3

(13)

where xr(t) represents the quantity of oil extracted in region r at time t and
t̃∑
t=1

∑
r

xr(t)

the cumulative amount of oil extracted from date t = 1 to t = t̃, X̄ is the amount of oil

available over the base year, and φ1, φ2 and φ3 are constant parameters. The parameter

φ1 represents the unit extraction cost of oil over the base year, and φ1 + φ2 the cost of

extraction of the last unit (i.e., if the stock is completely exhausted). Data on the initial

stock (X̄), the parameters φ1, φ2 and φ3 are reported in Table A5 and they are from

Chakravorty et al. (2012). According to IEA (2014), 64% of global oil production is used

in the transport sector, so we take the initial reserves to be 64% of world oil reserves, i.e.,

35.43 trillion gallons.

Crude oil is transformed into gasoline: one gallon of oil produces 0.47 gallon of

gasoline. The cost of converting oil into gasoline is assumed to be the same across different

regions and equals $0.46/gallon (Chakravorty et al., 2017). Since transport fuel demand

is in energy units, we convert gallons into MegaJoules (MJ). A gallon of gasoline yields

120 MJ of energy; a gallon of ethanol gives 80 MJ. Finally, transport fuel is transformed

into Vehicle Miles Traveled (VMT): one MJ of transport energy equals 0.177 VMT for a

23The parameter λr is a constant calibrated to reproduce base-year production of transport fuel, given

by λr =
qre[

µr
gq

r
g

ξr−1
ξr + (1− µr

g)(qrbf + qrbs)
ξr−1
ξr

] ξr

ξr−1

where qre , qrg , qrbf and qrbs are at their 2012 levels.

Data used to calibrate λr is reported in Table A4. Supply of transport fuel, gasoline and biofuels are
from EIA (2014).

24These costs may rise due to depletion effects or the increased cost of environmental regulation of
fossil fuels.
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gasoline-powered car (Chen et al., 2012).

Demand for food and transport energy

Demands for each of the six food commodities and for transport fuel are modeled

using generalized Cobb-Douglas functions. They are indexed by i ∈ {rice, wheat, corn,

sugar, other food, meat/dairy and transport fuel}. Regional demand Dr
i for good i is

given by

Dr
i = AriP

r
i
αri yrβ

r
iN r (14)

where P r
i is the price of good i (in dollars), αri and βri are the regional own-price and

income elasticities for good i, yr and N r are regional per capita income in dollars per

capita and population (in billions), and Ari is the constant demand parameter calibrated

from data (see Table A6).25 The constant Ari is calibrated to reproduce demand in the

base year and is calculated as Ari =
Dr
i

P r
i
αri yrβ

r
iN r

where Dr
i , P

r
i , yr, N r are respectively,

demand for good i, the price of good i, the GDP per capita in constant dollars and the

population in the base year. These parameters used to compute Ari for each commodity

and region are shown in Table A6. Note that we impose exogenous population and GDP

per capita projections for each region in order to capture time shifts in demand for food

and energy.26

The RFS mandate sets a minimum use of first generation (ethanol from corn) and

advanced biofuels as shown earlier in Figure 1. The consumption of first generation

fuel equals 15 billion gallons in 2015 (EPA, 2010). Two categories of advanced biofuels

are also specified in the mandate - 4 billion gallons of low-carbon biofuels which must

exhibit a 50% reduction in greenhouse gas emissions relative to gasoline (only sugarcane

ethanol from Brazil can meet this minimum requirement) and 16 billion gallons of second

generation biofuels for the year 2022. We consider both types of advanced biofuels in the

model.27

25Since there is no trade barrier for food, the demand for food is a function of world food prices.
However, transport fuel being produced domestically and not being traded, therefore its demand is a
function of regional price.

26For price and income elasticities, data come from various sources. Own-price and income elasticities
for transport fuel are from Parry and Small (2005), Hertel et al. (2007) and Dimaranan et al. (2007);
price and income elasticities for food commodities (U.S.) are from Dimaranan et al. (2007), Regmi et al.
(2001), Regmi and Seale (2011), Muhammad et al. (2010); price elasticities for food commodities (ROW)
are from Roberts and Schlenker (2013) and from Dimaranan et al. (2007); income elasticities for food
commodities (ROW) are from Dimaranan et al. (2007); price and income elasticities for food commodities
(India) are from Paul (2011), Dimaranan et al. (2007), Regmi et al. (2001), Regmi and Seale (2011). For
population, we use estimates from the United Nations (UN Population Division, 2010) based on medium
range fertility projections which predict a 2050 world population of 9.3 billion. India’s population is
expected to increase to about 1.38 billion in 2022. Projections for GDP per capita are from EIA (2015)
which are based on three oil price scenarios: low, high and an intermediate reference case which we adopt
for our model.

27Only the one billion gallon mandate for biodiesel that is part of the RFS is not included in our
model. Since this is less than 3% of the total mandate, it will likely have a small effect on our results.
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Using GAMS software, we run the model for two cases. In the BASE (baseline)

model, biofuels are available but there is no RFS. In the REG (regulation) model, the

RFS as explained above, is imposed.28 Specifically, we impose three constraints: (i)

the minimum level of consumption of corn ethanol is set at 15 billion gallons in 2015,

which can be met through domestic production or imports; (ii) the 4 billion gallons of

low carbon biofuels (by 2022) that is met through imports from Brazil, which belongs to

ROW; (iii) and finally cellulosic production is set to increase to 16 billion gallons in 2022.

The discounted consumer plus producer surplus for all regions is maximized by

choosing the allocation of land for food and biofuels and the consumption of gasoline.

The mandate imposes a minimum use of biofuels for each year and causes grains to be

diverted from food to energy. This leads to increased acreage in farming in regions that

have large endowments of low-cost arable land.29

Validation of the model and effect on prices

Before discussion model results, we assess its validity by proceeding in two steps.

First, we check whether model predictions for the base year 2012 are reasonably close to

observed values in the three regions. The results for consumption of food and fuel in US,

India, and ROW are presented in Table A7, and world food prices are shown in Table A8.

Both for consumption and prices, the tables show that model predictions are all within

10% of realized values.

Second, we check whether our model predicts the growth rate of prices during 2005-

12. We calibrate the model for 2005 in exactly the same fashion as was done earlier for

2012.30 It is run from 2005-12. Since the objective of our study is to capture long-run

behavior, we compare the average annual growth rate of food commodity prices during

2005-12. Table A9 shows that predicted values from the model are within three percentage

points of the observed value in all cases.

We first discuss the results using deterministic values for all parameters. Table 2

shows prices in year 2022 for the six food commodities with and without the mandate.31

28India has also set a target for minimum use of biofuels of 20% by 2017, however, the share of biofuels
in transport fuel is less than 5% and unlikely to rise sharply. We do not model this policy since the
Indian biofuel policy will not likely impact world food and energy markets significantly - India consumes
less than 2% of global transport fuel which is small compared to US consumption of about 40%.

29Since we have made the model tractable by aggregating countries into three regions, we are unable
to say precisely in which country (or countries) land conversion to farming occurs. That would require
a more disaggregated framework and may be of limited interest for this study which focuses on the
distributional impacts of RFS-induced price changes in one specific country.

30That is, we calculate the values of Ai for each demand function, and the values of λ for each region
by using data for the new base year 2005. We use GDP for 2005 (in 2005 US dollars), and population.

31We show price estimates for the year 2022 because that is the terminal year for the RFS, and allows
the model to make supply side adjustments. Recall that the goal of the paper is to estimate the effect of
long-run price shocks on households. Short-run price shocks may be larger. We do not report the price
of transport fuel because its mean share in Indian household expenditure is 0.3% for rural and 0.6% for
urban households: welfare impacts are likely to be small. It is not included in the welfare estimations
reported later.
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The price effects are modest (0-15%) relative to other studies (Roberts and Schlenker,

2013, Hausman et al., 2012) possibly because of supply-side adjustments built into our

model.32 Wheat prices increase the most followed by “other food” and meat and dairy.

The price of wheat shows the largest increase as the US is a major wheat producer. Meat

prices increase mainly due to the rise in the price of feed such as corn and soybean, which

are a part of “other crops.” Sugar prices are impacted less because it is mostly produced

outside the US and can be cultivated in lower quality lands, unlike most grains. Relative

to the no mandate case, the model predicts a shift in acreage away from food to energy

production in the US of about 28 million hectares by the year 2022. This represents about

18% of US cropland. Since most of this additional land is released from the acreage in

corn and “other crops,” US production of food crops falls by about 32%. Thus, net

imports of food crops into the United States from ROW doubles. Indian net imports are

not affected. India becomes a net importer of food crops in 2022 even under the BASE

model, while it is almost self-sufficient in 2012.33

Next, we introduce stochastic distributions for parameters and perform Monte Carlo

simulations to predict the outcome variables. This is our preferred approach because the

parameter values (e.g., crop yields or the price of oil) may depend on external shocks,

such as weather (e.g., hurricanes) or droughts.34 We proceed in two steps. First, we

perform a sensitivity analysis to determine which model parameters have the greatest

impact on food prices. Next, we introduce stochastic distributions for these parameters

in the Monte Carlo simulations.

We shock the main model parameters: income elasticities for food and fuel, crop

yields, extraction cost of crude oil and cost of biofuels (both ethanol and cellulosic) and the

demand parameters: GDP per capita and population. The model is re-run by shocking

each parameter one at a time, keeping the other parameters constant. To quantify the

shock, Parry and Small (2005) assume distributions for the parameters and define a

plausible range of parameter values to obtain a 90% confidence interval. We modify this

approach by constructing a plausible range of parameter values using historical data (if

available) or from other studies. From this data, we calculate the mean and standard

deviation, and the shock applied to each parameter is set equal to the ratio of the absolute

value of standard deviation to the mean.

32Our results are reasonably close to that of Scott et al. (2013) who estimate that the US biofuels
mandate leads to a 9.7% increase in prices in the aggregate. Our figures for wheat are a bit higher.
Roberts and Schlenker (2013) report higher price increases – of about 20% with a 95% confidence interval
of 14-35%.

33We also ran the model by assuming that cellulosic yields vary with land quality, using an average
growth rate across land classes as in other crops (see Table 1). Results suggest that cellulosic ethanol
is produced on the lowest land quality, thus, more land is needed to meet the RFS target. The effect
of the RFS on crop prices is slightly higher, for example the difference in rice prices is 9.14% instead of
8.17% in Table 2.

34As an example, after the 2012 drought in the US, average maize yields declined by 25% from their
2011 levels.
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For crop yield, the yield for the base year is assumed to be the mean yield. It varies

by land quality and region, as reported in Table A10.35 The standard deviation of the

distribution is computed from regional yield data for the period 1980-2010 obtained from

FAO (2016).36 The base year unit cost for crude oil is also assumed to be the mean. The

standard deviation is calculated from observed data from 1980-2010 (World Bank, 2016).

For the parameters price elasticity of demand, income elasticity, cost of biofuel, GDP per

capita and population, we obtain plausible values from earlier studies. Their mean and

standard deviation are reported in Table A10.37

Table 3 reports the results for the sensitivity analysis. In the top panel, we repeat

the information from Table 2 to facilitate comparison. The lower panels show the price

estimates and the difference between the regulated (BASE) and unregulated (REG) prices

for each parameter shock. The figures in parentheses show the difference in percentage

points between the price shocks for that panel relative to the model with initial parameter

values (top panel). We use these differences to assess which parameter has the largest

impact on prices from the mandate. For instance, the price of wheat increases with

the mandate by 15.77% under the set of initial parameter values (see top panel on left)

but with the higher food price elasticity, it increases by 13.28% (second panel). So, the

difference is −2.49% points, as noted in the last row of that panel. We then choose the

parameters that affect the price shocks the most. This involves comparison of the vector

of price shocks for all six commodities in the table, along with some subjective judgment.

The table shows that commodity prices are most sensitive to food price elasticities and

crop yields, and less sensitive to other parameters. Rice and wheat are the most important

crops, because of the acreage they occupy and their importance in the Indian diet, hence

price changes for these two crops may have significant distributional effects. Using this

criteria, we only focus on uncertainty in the two parameters listed in the top of the table,

food price elasticity and crop yield.38

35This data is readily available for rice, wheat and sugar, both for US and India. For ROW, we net out
India and US output from world production. For the “other crops” category, we calculate mean yield by
dividing total production by acreage planted for each of the three regions.

36We assume that extreme events affect all land classes equally. Since historical data on yield by land
class is not available, we cannot compute standard deviations for each land quality. These are taken to
be uniform, as shown in Table A10.

37Data on price and income elasticities for the US are from Hertel et al. (2007) and Regmi et al. (2001).
Both studies estimate the elasticity for two groups of food commodities. The first group includes cereals,
sugar and sugar cane, roots and tuber, oils seeds, vegetables and fruits. We use this value as our common
elasticity estimate for rice, wheat, sugar and other food. Their second group of food commodities includes
meat and dairy which we can adopt directly. Data on price and income elasticities for India are from
Paul (2011), Hertel et al. (2007) and Mittal (2006). For the ROW region, we use elasticity data from
Roberts and Schlenker (2013) and Dimaranan et al. (2007) by assuming that their world averages hold
for ROW. Roberts and Schlenker (2013) estimate world elasticities for one consolidated commodity group
that includes maize, wheat, rice and soybeans, which we use for our four commodities corn, rice, wheat
and other food.

38The effect on sugar prices is generally low, since sugarcane can grow well on lower land qualities,
unlike other crops (see Table 1). As a robustness check, we also ran the two models by shocking the
remaining parameters such as income and price elasticity for transport, cost of biofuels and population.
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We next run the Monte Carlo simulations by modifying the calibration model –

replacing the two chosen parameters with their probability density functions. The pa-

rameter values for price elasticity and crop yields are assumed to be independent and

normally distributed. The mean and standard deviation are shown in Table A10. We

run the model at baseline and with the RFS, but this time with 500 randomly drawn

values from the distributions of the two chosen parameters. This procedure yields 500

values for the vector of food prices with and without the mandate. The derived distri-

bution of price changes is shown in Figure 3, plotted against the normal distribution.

Note that the distributions are unimodal and close to normal, but skewed, especially for

sugar, meat and other foods, which points to the need to use the entire distribution in

welfare analysis rather than their mean values.39 We only show the means and standard

errors for the Monte Carlo simulations in Table 4. The results suggest that impacts vary

greatly across commodities, with 13.19% higher price for wheat and 7.87% for rice.

3 Estimation of distributional impacts

In this section, we estimate the distributional impacts of the mandate using micro-

level surveys from India. We study changes in household welfare from the cost of con-

sumption and wage incomes due to the increase in price for the six commodities. They

are estimated with (REG) and without the mandate (BASE). The welfare impact is then

defined as the percentage gain or loss to Indian households relative to the no RFS policy.

The change in household welfare is given by the negative of the compensating variation as

a share of initial household expenditure (Deaton, 1989). That is, the amount households

must be compensated in order to have the same utility level they have without the RFS.

After accounting for estimated changes in their wage incomes, we arrive at a net welfare

effect for each household. We use the Monte Carlo results to estimate the standard errors

for these welfare effects. This micro-level approach allows us to differentiate between

households based on their characteristics such as expenditure patterns and factor endow-

ments. This method has been used to investigate the impacts of price changes due to

trade polices.40 However, our approach differs from these studies as it relies on stochastic

outcomes of the Monte Carlo model, rather than deterministic values for policy variables

such as tariffs. We obtain a distribution of welfare estimates for each household in the

sample.

These shocks did not cause discernible price changes. We also applied a +/- 30% shock to the mean
value of each parameter. Our main results did not change.

39Values of the other parameters is assumed to be known with certainty. As a robustness check, we
allow uncertainty in all parameters by assuming that they follow a normal distribution with mean and
standard deviation as shown in Table A10. Results were similar.

40see e.g., Han et al. (2016), Nicita (2009), Porto (2010), Ural Marchand (2012), Ravallion (1990) and
De Janvry and Sadoulet (2010).
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Consider the following net expenditure function Bh for a household denoted h:

Bh(p, u) = eh(p, u)− wh(p) (15)

where p is the vector of prices, eh(p, u) is the expenditure required to reach utility level u

and wh(p) denotes the wage income of the household. A first-order Taylor series expansion

of Bh(p, u) around an initial price level p0 and utility level u0 and some manipulation

yields

dBh(p, u) = Bh(p, u)−Bh(p
0, u0) =

∑
i

(
∂eh
∂pi
− ∂wh

∂pi

)
dpi (16)

where dBh(p, u) is the compensation the household needs to achieve the initial utility u0.

When this term is positive, it is a net transfer, hence a welfare loss for the household.

When it is negative, the household is better off, thus experiencing a welfare gain. 41

Define Wh = −dBh(p, u)/eh as the compensating variation expressed as a fraction of

household initial expenditure.42 Our estimating equation can then be written as

Wh = −
∑
i

θihdlnpi +
∑
m

∑
i

θmwihε
s
wi
dlnpi (17)

where θih = xihpi/eh is the expenditure share of good i, θmwih is the share of wage income

from production of good i in the household budget contributed by member m and εswi is

the wage-price elasticity of individual i with skill level s.

The terms on the right side of (17) represent the different components of the com-

pensating variation. The first term gives the direct consumption impact of the price

change, dlnpi. Households that consume goods i = 1, ..., n will be impacted negatively

due to an increase in their cost of consumption. The magnitude of this effect is propor-

tional to the importance of these goods in their budget given by the budget shares θih.

This share is computed for each household using survey data.

The second component of (17) measures the effect of the price shock on household

income, which enters positively in their welfare function. These income changes are

measured individually for each member m and then aggregated up to the household.

Individuals affiliated with industry i with skill level s experience an increase in their wages

by the term εswidlnpi, where the wage-price elasticity εwi is estimated using employment

41In the econometric model, households are affected by the policy only through prices.

42We can rewrite condition (16) as Wh = −dBh(p, u)

eh
= − 1

eh

∑
i

(xihpi − εwiwi)
dpi
pi

where xih is the

Hicksian demand for good i by household h and εwi is the elasticity of wages with respect to the price
of good i. By the envelope theorem, ∂eh/∂pi = xih. Each member of the household contributes to
household income, which is affected by the price change. We can express household wage income from

good i as wih =
∑
m

wm
ih where m = 1, ....,M represents members of the household.
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survey data.43 The impact of wage income on household net expenditure is proportional

to the contribution of member m to the household budget, given by weight θmwih , which

is computed using survey data.44

The compensating variation is estimated by commodity for each vector of price

changes produced by the Monte Carlo analysis. This delivers a distribution of consump-

tion impacts for each household, with mean Ĉh and standard error σCh , wage impacts

with mean Êh and standard error σEh , as well as a total compensating variation with

mean Ŵh and standard error σWh
. The total compensating variation can then be written

as45

Ŵh = Ĉh + Êh. (18)

Description of the survey data

We use two nationally representative surveys from the National Sample Survey

(NSS) of the Government of India - the Consumer Expenditure Survey to estimate the

consumption component, and the Employment and Unemployment Survey for the earn-

ings component of household welfare. The 61st and 66th rounds of these surveys, con-

ducted during 2004−2005 and 2009−2010 are used. This is one of the richest micro-level

surveys for a developing country as approximately 100, 000 households and 460, 000 in-

dividuals are surveyed in each of the 35 states of the country. Because the NSS samples

rural and urban households separately, we can distinguish between rural and urban wel-

fare impacts.

The expenditure survey asks each household the value and quantity consumed for

about 500 consumption items during the previous 30-day period.46 The consumption

goods are aggregated into commodity groups, namely rice, wheat, sugar, corn, meat

and “other foods” (see details in Table A11). The definitions of these six commodities

are consistent across the calibration and econometric analysis in the paper. The “other

food” category covers fruits, vegetables, starchy foods, other cereals, oil and spices. The

survey reports household consumption as “purchased” and “home produced.” We only

43Here, the terms good and industry are used interchangeably. However, we distinguish between the
two in the next section. In particular, a good refers to consumption items in the household budget, and
an industry refers to the individual’s primary industry affiliation coded by the 5-digit Indian National
Industry Classification (NIC), which includes detailed categories for agricultural goods.

44Household-level income data for profits, remittances, rents and transfers is not available and thus
not included in our analysis. These effects are likely to be small compared to the direct impacts through
cost of consumption and wages. Second order consumption effects are excluded. In a robustness check,
these effects turn out to be quite small when estimated using cross and own-price elasticities from Regmi
et al. (2001) and Hertel et al. (2010), respectively.

45This approach has the advantage of circumventing additional distributional assumptions on key
parameters of the model. The econometric model incorporates the uncertainty from the Monte Carlo
analysis.

46The 66th round reports consumption of meat, fruits, vegetables and spices during a 7-day recall
period. These expenditures are adjusted to 30 days.
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use the ”purchased” quantity as the price impacts are expected to mainly work through

purchased goods.47

The mean household expenditure shares (θih) computed from the 2009−2010 round

of the expenditure survey are shown in Table 5.48 This is our baseline year for the welfare

analysis. The distribution of household log per capita expenditure is divided into deciles

and the mean shares are shown for both rural and urban households. The table shows

that the budget share for food expenditures is higher for households at the lower end of

the distribution. This is consistent with Engel’s law, which states that the budget share

of food falls with income, even if food expenditures rise. Rural households in the lowest

decile spend 13.4% of their budget on rice consumption, decreasing to about 2.7% for

those in the highest decile. The distribution of budget shares for wheat, sugar and “other

food” follow a similar trend. We find an inverse-U shape in the budget share distribution

for meat, indicating that meat consumption increases faster than income in the middle

of the distribution.

For the wage income estimates, we use the employment survey, which is an individual-

level labor market survey that has information about wages, labor supply and occupation

by 5-digit primary industry affiliation codes for each activity, reported according to the

Indian National Industry Classification (NIC). The matching between the NIC codes

and the product categories in the consumer expenditure survey is shown in Table A11.

The increase in the price of the six commodities affects the earnings of individuals en-

gaged in their production, while the earnings of those not involved are assumed to stay

unchanged.49

Table 6 shows the mean employment share of individuals (not households) in each

industry obtained by aggregating across industry affiliations within households. The

Indian NIC classification of industry affiliations of individuals does not distinguish be-

tween production of different types of grains (see Table A11), therefore ‘grain’ covers all

grains including rice, wheat, and corn. As expected, a large share of rural individuals is

employed in grain production. In the lowest decile, 52.4% of individuals report grain pro-

duction as their primary industry, decreasing monotonically to about 25% in the highest

decile. These shares are much smaller and range between 2% and 11.3% among urban

47The NSS Consumer Expenditure survey includes rice and wheat purchases obtained through the
Public Distribution System (PDS) at lower prices. A household which relies on the PDS will have lower
expenditure shares of that commodity, and welfare effects from price changes will be correspondingly
lower.

48We assume homogeneous goods across households due to data restrictions. The type of grain con-
sumed by each household may have distributional consequences. Imported products may be lower quality
(domestic basmati rice is often considered superior to imported white rice) and less processed than the
domestically produced variety, which would make distributional effects more regressive. Unfortunately,
our survey data do not include product quality, or whether the household purchased an imported or
domestic variety.

49We do not measure general equilibrium impacts that arise from factor reallocation across industries.
These effects are expected to be negligible due to strict labor market regulations Besley and Burgess
(2004) and low labor mobility across localities (Munshi and Rosenzweig, 2009, Anderson, 2011).
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individuals. The total share of individuals affiliated with food production is 48.7% in

rural and 10.4% in urban areas.

The above stylized facts for expenditure and employment shares play an important

role in the distributional effects of RFS policy. Consider a scenario with uniform price

effects across commodities. In this case, the consumption impacts Ĉh, would be higher

(more negative) at the low end of the distribution due to the high budget share of food

expenditures. On the other hand, the (positive) impact on wage income, Êh would also

be higher for poorer households as a relatively high share of these individuals are in food

production. The net compensating variation therefore depends on the relative size of these

two channels. In terms of rural-urban differences, the consumption impact is expected

to be similar between rural and urban households due to their similar budget structures,

while impacts on wage incomes are expected to diverge, with a higher effect among

rural households.Note that the first order price effects impact all households through

the consumption channel, but the first order income effect is accrued by workers in the

directly affected sectors. Thus average consumption effects are larger in magnitude. The

price effects of the RFS are non-uniform across commodities, which leads to additional

variation in distributional impacts across households.

Pass-through of world prices

We need to worry about the extent to which world prices pass through to domestic

Indian prices. India has a history of strong intervention in the form of agricultural sub-

sidies and large-scale government procurement and distribution of food (see Kwiecinski

and Jones (2010)). This regulatory environment may restrict the transmission of price

shocks from world to domestic markets. Even with no government regulation, price trans-

mission may be low due to other distortions, such as imperfectly competitive producers

or retailers, as well as imperfect substitution between imported and domestic goods.50

We thus consider both perfect and imperfect pass-through of world prices. For the

latter, pass-through elasticities for each commodity are estimated using monthly time-

series data. The estimates rely on the period 2005-11, as prior data is not available. This

period is somewhat unusual because of the spike in commodity prices in 2008, shown in

Figure 4, and the resulting aggressive short run response by the Indian government.51

Due to data limitations, it is not possible to identify the transmission mechanism inde-

pendent of this policy response. However even though government intervention may have

50Public distribution of food at lower than retail prices will reduce pass-through. In the exchange
rate pass-through literature, Gopinath and Burstein (2014) among others, show that competition among
retailers is a key determinant of pass-through rates.

51India implemented several temporary measures during this time. These include trade policies (export
bans, minimum export prices, export taxes and temporary removal of tariffs), increasing minimum
support prices, de-listing crops from futures trading, and creating and releasing strategic food reserves.
Some of these measures were in effect only for a few months, but they were largely effective in insulating
the domestic market from price increases during the crisis (Kwiecinski and Jones, 2010). Most of these
policies were removed eventually.

19



mitigated the effect of world price shocks in the short-run (as is clear from the figure),

they are distortionary and hence potentially costly in the long run.52

Domestic prices for rice, wheat, and sugar are obtained from the Indian Ministry

of Public Affairs. They reflect average end-of-month prices across different zones of In-

dia.53 Corn prices are end of month spot prices from the Indian National Commodity

and Derivatives Exchange. Meat prices are obtained from the Indian Ministry of Agri-

culture.54 Grain prices are defined as the average of rice and wheat prices, as consistent

domestic and world prices for grains are not readily available.55 Exchange rates are ob-

tained from the Federal Reserve Bank of India. All world prices are taken from the World

Bank Commodity Price database.56

Table 7 shows the summary statistics for price changes for the major commodi-

ties between January 2005 and May 2011. Domestic price changes for rice, corn and

meat were similar to changes in the world price, with growth rates of 1.07, 0.8 and 0.84

percent, respectively. However, wheat and sugar prices grew at a slower rate in the do-

mestic market compared to the world price, also seen in Figure 4. Movements in world

prices transmitted only partially to the domestic market, suggesting that pass-through

coefficients are likely to vary across commodities and need to be estimated individually.

We estimate these pass-through elasticities using a single equation framework, as in

Campa and Goldberg (2005) and Campa and Gonzalez Minguez (2006).57 The estimating

equation is

∆lnpdt =
∑
k

βk∆lnp
w
t−k + γ∆ln(1 + τt) + δ∆lnet + εt (19)

where pdt is the domestic price vector expressed in local currency (rupees) for month t; k

denotes the set of lags where k = 0, 3, 6, 9 and 12; pwt is the world price, τt is the tariff

52These costs are not included in our estimates.
53The Indian Ministry of Public Affairs collects price data from the Northern, Western, Eastern,

Northeastern and Southern zones which are then averaged to obtain a nationwide price level for each
commodity.

54Average meat (mutton) prices are for Hyderabad, Gujarat, Karnataka, Orissa, Maharashtra, Delhi,
Tamil Nadu, Uttar Pradesh and West Bengal. The 2010 and 2011 prices are extrapolated using the
wholesale price index for meat.

55The pass-through elasticity for grains is needed to estimate wage impacts under imperfect pass-
though.

56For rice prices, the Thai 5% variety is used, as it provides the longest series. US Hard Red Winter
(HRW) prices are used for wheat.

57There are other approaches to measuring the pass-through, e.g., De Janvry and Sadoulet (2010)
interpret it as the ratio of growth rates in domestic and world prices. Following their approach, we find
a 107% pass-through elasticity for rice and 47% for wheat. However, this method does not control for
factors such as trade policy shocks. Mundlak and Larson (1992) estimate a model in levels instead of
differences - we find higher and significant elasticities for all commodities using their approach. This
is not appropriate in our case, however, since the Augmented Dickey-Fuller tests suggest that the price
series are integrated of degree one, and therefore the pass-through coefficients estimated on levels may
reflect arbitrary correlation between the series. In addition, the Johansen test suggests that we cannot
reject the null hypothesis of no cointegration for most of our series.
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rate for the commodity, et is the exchange rate and ε is an i.i.d. error term at time t.

Prices are expressed in nominal terms.58 Because our goal is to estimate the distributional

effects in the long run, we estimate the long-run pass through elasticities by including

the contemporaneous change in world prices, ∆lnpwt as well as the quarterly lags in the

model, ∆lnpwt−k where k denotes the lag for each quarter.59 The short term elasticity is

thus given by the coefficient on the contemporaneous price level β0, while the long-term

elasticity
12∑
i=0

βi is defined as the sum of the coefficients on contemporaneous and lagged

prices.

Table 8 shows that the short run transmission of rice prices is statistically significant,

although the magnitude of the pass-through transmission elasticity is relatively small. A

100% increase in the world price of rice yields a 5.7% increase in the domestic price in

the short run. Sugar and corn elasticities are also significant and larger in magnitude.

Pass-through elasticities for meat and wheat are insignificant.

The welfare impacts under imperfect pass-through are estimated by incorporating

the long-run pass-through elasticities. Based on Table 8, world price shocks for rice, sugar,

and corn are transmitted by 18.1%, 38.3% and 19.7%, respectively, while changes in wheat

and meat prices are not reflected in the domestic market. The predicted price effects from

Figure 3 are multiplied by these pass-through elasticities prior to the estimation of welfare

effects.60 The domestic price can be written as dlnpi,imp = εi,imp ∗ dlnpi where εi,imp

is the pass-through elasticity from Table 8. In the analysis with perfect pass-through

assumption, world prices are assumed to perfectly transmit to the domestic market, thus

εi,imp equals unity.

Estimation of wage-price elasticities

The response of wage incomes to price shocks is given by w = w(p, γ) where p is the

vector of commodity prices and γ is a set of personal characteristics such as education, age,

marital status or location. According to the Indian Ministry of Statistics (MOSPI), the

informal sector accounts for about 90% of the workforce and 50% of the national product

(MOSPI, 2012). A major advantage of the NSS Employment and Unemployment Survey

is that it includes both formal and informal sector labor. Because we aim to estimate the

total welfare impacts, the analyses are conducted based on cash and kind weekly wage

incomes as reported in the survey. We focus on the working age population between 15

and 65 years old. The sample is restricted to workers with a principal industry affiliation

58Results are similar when prices are expressed in dollars and the exchange rate variable is dropped.
In addition, Granger-Wald tests suggest that there is no reverse causality from domestic to world prices
for any of the commodities.

59Given the length of our data series, it is not possible to consistently estimate the model with all 12
lags, hence we choose quarterly lags.

60For the ‘other food’ category, the pass-through elasticity is taken as unity.
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in one of the six product categories.61 The model is estimated separately for skilled and

unskilled workers, where an unskilled individual is defined as someone who is illiterate.

We exploit district variation in prices over time and estimate the following wage

equation

lnwkdt = α + βlnpdt + δγkdt + µst + εkdt (20)

where wkdt is the wage income of individual k in district d at time t; β is the wage-

price elasticity; lnpdt is the price level in district d at time t, and γkdt is a vector of

individual characteristics that includes age, age-squared, and indicator variables for male

and married workers; µst is the interaction of state and year fixed effects, and εkdt is an

iid error term.62

The unit prices of products are based on the two rounds of the NSS Consumer

Expenditure Survey. We use the value and quantity of the commodities reported by

each household to arrive at a price variable at the household level.63 We then compute

the average price within each district for each of the six commodities across years, using

sampling weights to ensure that the sample is representative of the district. Next, we

merge these six district level price variables with the corresponding rounds of the NSS

Employment and Unemployment Survey, where we compute the employment shares of

individuals who work in the production of these commodities. We then obtain the fol-

lowing weighted average of district level prices using the employment shares in the initial

round as weights pdt =
∑
i

(χid,2005)pidt where χid,2005 is the employment share of product

i in district d in 2005 from the Employment Survey, and pidt is the district level unit

price for each product from the Consumer Expenditure Survey. This variable reflects the

importance of each sector within districts. The weights are fixed in the initial year to

ensure that pdt does not reflect the selective sorting of product-specific employment over

the sample period.

We are interested in the response of wage incomes to exogenous changes in prices

among rural and urban households across the skill distribution. In order to account

for unobservable factors correlated with wages that vary over time within states, the

specification includes a vector of state and year interactions. While the inclusion of these

interaction terms alleviates many endogeneity concerns, the time varying unobservable

factors at the district level that are correlated with price levels and wage incomes may

bias the estimates. For example, differential improvements in technology across districts

61Following common practice, the 5-digit NIC code for the ‘usual principal activity’ variable is used
as the principal industry affiliation of each individual (Table A11).

62Using geographical variation is common. Deaton (2000) exploits the regional variation in prices to
estimate systems of demand parameters and Ravallion (1990) and Porto (2006, 2010) use consumption
surveys to exploit time variation in prices to estimate wage responses. Jacoby (2016) also estimates
wage-price elasticities across districts using changes in wages over time.

63The producer prices for these commodities are unfortunately not available at the district level.
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may raise wage incomes due to the high value of marginal product of labor, and may

influence prices if the new technology leads to a higher quality product. Also, there may

be spatially correlated shocks across districts that affect both wages and prices (Jacoby,

2016).

In order to identify the effect of exogenous changes in prices, we use an identification

strategy based on exogenous changes in prices as an instrument. Specifically, we construct

a price variable uses the employment weights in all districts within a state, excluding the

district in which the worker is located. Unlike the variation in prices, this measure is

driven by aggregate shocks and thus orthogonal to factors that might directly influence

prices in each district.64 It is given by p̄dt =
∑
i

(χid−,2005)pidt where χid−,2005 is the

employment share of product i in 2005 in all districts except the own-district.

Table 9 shows the estimation results. The rural wage-price elasticity under OLS

is estimated as 0.14 for unskilled and 0.15 for skilled individuals, both statistically sig-

nificant. The elasticities identified through IV are higher than the OLS elasticities –

0.2 for unskilled and 0.29 for skilled individuals in rural areas. For urban workers, only

unskilled wage incomes respond significantly to price changes in the IV estimation, with

an elasticity of 0.2, while the estimate is insignificant for skilled workers.65

One consideration is that labor mobility across districts may violate the exclusion

restriction of the instrument. India has exceptionally low labor mobility across geograph-

ical regions due to strong social ties in communities (Munshi and Rosenzweig, 2009).

Caste-based networks provide social insurance in the absence of well-functioning insur-

ance markets. These networks tend to significantly reduce mobility rates. Anderson

(2011) notes that there is virtually no mobility among castes. In most studies, the rural

population is assumed to be essentially immobile, as a tiny share of individuals report

that they have left their village of birth (Munshi and Rosenzweig, 2009). As a result,

migration in India is very low compared to countries at similar levels of development

(Anderson, 2011).

The smaller wage response for rural unskilled workers is consistent with reported

wage rigidities in the agricultural sector. Dreze and Mukherjee (1989) in their analyses

of Indian rural labor markets observe that the standard wage often applies for prolonged

periods of time, from several months to years. They observe little seasonality and note

64Similar instruments are often used in the literature. For example, in order to estimate wage-price
elasticities in rural India, Jacoby (2016) used crop area-weighted prices in all states except the state to
which the district belongs. Mazzolari and Ragusa (2013) use the employment-weighted share of wages
in US cities other than the own-city as an instrument to estimate the effect of consumption spillovers on
employment.

65As an alternative approach, we use international prices for the commodities as an instrument for
domestic prices as in Porto (2010). This regression yields insignificant elasticities for rural individuals,
and larger elasticities for urban residents. In our case, this is not our preferred approach for two reasons.
First, world prices may not be entirely excludable for a large country such as India. Second, there is
little variation in world prices as they do not exhibit variation across districts.
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that casual wages are rigid downwards during slack seasons. Supreet (2014) shows that

wages in India are rigid, which leads to unemployment once the positive shock dissipates.

Our estimated elasticities are similar in magnitude to those reported for countries that

are at similar stages of development. Datt and Olmsted (2004) find the short term

wage-food price elasticity for Egypt to be 0.27, while Boyce and Ravallion (1991) report

the short-run wage elasticity with respect to the price of rice in Bangladesh to be 0.22.

The insignificant response of skilled wages for urban workers is expected since these

workers tend to be affiliated with food manufacturing rather than direct production in

the agricultural sector.

4 Household welfare and poverty impacts

In this section, we present the estimates for consumption, income and net welfare

effects on households. First, we present the results under perfect pass-through followed

by imperfect pass-through where we apply the elasticities from (??). We show results

across the per capita expenditure distribution for rural and urban households. The decile-

level averages for consumption effects Ĉh, and their standard errors, σCh are presented

in the top panel of Table 10. Under perfect pass-through, households in the lowest

decile suffer a welfare loss of about 6% through the consumption channel. This loss

monotonically decreases to about 4% at the highest decile. Losses are slightly higher

for urban households in the lower five deciles, and higher for the upper five deciles.

Since budget shares are similar for rural and urban households, welfare effects are also of

similar magnitude. Under imperfect pass-through, all effects decline in magnitude. Rural

households at the lowest decile experience a 4% loss, decreasing to 2.6% at the highest

decile. These figures are similar for urban households.

Figure 5 plots the local polynomial regressions for household-level consumption

effects on log per capita expenditure. The positive slopes suggest that consumption

effects are regressive, i.e., households at the lower end of the distribution experience

larger welfare losses. They are smaller under imperfect pass-through. However, the

difference between perfect and imperfect pass-through is more pronounced at the lower

end of the distribution because the budget shares of the commodities are larger for these

households.

Wage income effects Êh and their standard errors σEh , are shown in the second panel

of Table 10. Under perfect pass-through, rural households at the lowest decile experience

a 7% welfare gain. This is because a large share of these households is employed in

food production. These gains decline sharply with household expenditure, to only 0.15%

for households in the highest decile. Among urban households, the magnitude of these

welfare gains is much smaller everywhere in the distribution, mainly due to the low share

of individuals employed in food industries. Under imperfect pass-through, gains from
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wage income are still progressive, but lower in magnitude due to smaller price effects.

Figure 6 shows that the distribution of welfare effects through wage incomes has a

negative slope for both rural and urban households, suggesting that wage income effects

are progressive. As expected, both the magnitude and slope declines under imperfect

pass-through. The decline is substantial for rural households at the lower end of the

distribution, as the share of individuals who are employed in the production of food

commodities is larger.

The consumption and wage income effects are combined in equation (18) to generate

a distribution of the net welfare effect for each household, with mean Ŵh and standard

error σWh
, shown in the bottom panel of Table 10. Welfare effects are negative throughout,

except for rural households in the lowest decile under perfect pass-through, suggesting

that welfare gains through wage incomes dominate the welfare loss through consumption.

For rural households, net welfare decreases as one moves up the distribution, although

the decline is not monotonic at higher deciles. For urban households, welfare losses are

larger and regressive as well. The lowest decile suffers a 6% welfare loss, which decreases

to 4.3% at the highest decile.

These effects can be seen in Figure 7. They are progressive with a sharp negative

slope among rural households, but regressive for urban households. This is because the

positive price shocks confer large welfare benefits through the wage income channel at

the lower end of the distribution. For urban households, the welfare gains through wage

incomes are small and not enough to offset the welfare loss through consumption.

Impact on poverty

The poverty impact is estimated by comparing the number of poor individuals before

and after the price change. Let the poverty line be defined by z. Then, the poverty rate,

P , is defined as the proportion of population below the poverty line. This headcount

ratio definition for the poverty rate is given by

P =
1

K

K∑
i=1

I(xi ≤ z) (21)

where K is the total number of individuals, xi is per capita expenditure of individual i,

and I(·) is an indicator function that takes the value of one for individuals that are below

the poverty line, i.e., for whom xi ≤ z.

The price shock impacts household expenditures through two channels. First, higher

food prices increase wage incomes of individuals who work in industries that are directly

affected. This will increase the per capita expenditure of the household in direct pro-

portion to the share of wage income from industry i in the household budget, thereby

shifting the household expenditure distribution upwards. The second effect is through a

shift in the poverty line z to the right as the same basket of goods is now more costly.
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These effects are captured by

dz =
∑
i

θidlnpi (22)

where θi is the average expenditure share of the ‘marginal poor’, defined as households

within a 5% range of the poverty line (De Janvry and Sadoulet (2010), Porto (2010)). We

use the international poverty line (z) of $1.25 per day which is equivalent to Rs 701.25

per month.66

This poverty line is used to partition poor and non-poor individuals prior to the

price shock and to identify households that change their poverty status. Households who

were marginally poor prior to the price change may no longer be poor if the share of

income from affected industries is relatively high. At the same time, the marginally non-

poor may become poor if their income share is low. Each household is marked as poor

and non-poor according to I(xi ≤ z) before and after the policy change. The change in

poverty rate is computed as ∆P = Ppre−Ppost where Ppre and Ppost are the poverty rates

before and after the price increase, respectively. These changes are computed for each

vector of the price shock drawn from the distribution estimated earlier, yielding a mean

∆P̂ and standard error σP for the poverty estimates.

Table 11 shows mean poverty impacts. It is about two percentage points for rural

households under perfect pass-through and slightly larger, 2.18 percentage points under

imperfect pass-through. In the latter case, marginally poor individuals rely relatively

more on wage incomes from food-related industries, which is adversely impacted when

the pass-through is muted. The corresponding figures for urban households are 1.36 and

0.83 percentage points – lower because they are less concentrated around the poverty

line. The standard errors in all cases show that the mean poverty effects are precisely

estimated.

India is home to a significant share of the world’s poor. In order to gauge the size

of the affected population, we can use United Nations population projections for 2022

(UNDP, 2015). These poverty rates translate to about 20 million new rural poor and

between 3.8 and 6.2 million urban poor. Overall, our results imply that the US Renew-

ables Fuel Standard increases the number of poor individuals in India by approximately

25 million people.

The numbers for urban poor are lower partly because of the smaller size of the

Indian urban population. Moreover, the concentration of population around the poverty

line varies between urban and rural areas. Figure 8 shows kernel densities for the rural and

urban populations relative to the international poverty line. The higher rural population

66This implies that the ‘marginal poor’ is a household with per capita expenditure between Rs 666.2
and Rs 736.3, using the 2010 purchasing power parity (PPP) of Rs 18.7 (World Bank Development
Indicators). A month is assumed to be 30 days.
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density near the poverty line leads to a higher share falling below the line when it shifts

to the right. This can also be seen by comparing the share of the ‘marginal poor’.

About 5.5% of rural households, but only 2.9% for urban households, have per capita

incomes within 5% range of the poverty line. Urban households suffer a larger welfare

loss, but a smaller number of them are located near the poverty line. On the other hand,

rural households experience lower welfare effects, but a larger poverty impact. These

results highlight the need to study the entire distribution of welfare impacts rather than

estimating a single statistic such as the poverty rate.

Welfare effects by household characteristics

We have focused on household heterogeneity in terms of their consumption basket,

income and labor market characteristics. These sources of variation are expected to be

correlated with other characteristics of the household. Certain groups may be more or less

impacted due to factor ownership or dietary preferences. Here we dissect the consumption

and wage effects across different groups of households using a series of mean comparison

tests.67

In Table 12, we first report results across factor ownership of households, partic-

ularly land and skilled labor. Both landowners and the landless suffer similar welfare

impacts through the consumption channel, as seen in column (1). However, the welfare

gains through the wage channel are higher for those who own land, the difference be-

ing statistically significant. The effects are similar among urban households. Next we

compare the skill level of the household head. As expected, unskilled households expe-

rience a larger loss through the consumption channel, mainly because they tend to be

poorer. However, they see larger welfare gains through the wage channel because they

work predominantly in the agriculture sector.

Gender comparisons are made in the third panel.68 Households with a male head

accrue lower losses through the consumption channel and larger welfare gains through

the wage income channel. Hence, overall welfare losses are significantly lower for those

with male heads. Religious identity of households may be important to the extent that

they are correlated with dietary habits. For example, many Hindus are vegetarians, and

tend to consume less animal protein relative to Muslims. Rural Hindu households exhibit

larger consumption effects, but gain more through the wage income channel, leading to

a smaller net welfare loss compared to other households.

67We only report the estimates for perfect pass-though.
68Approximately 12% of rural households and 14% of urban households have female heads.
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5 Concluding remarks

In this paper, we study the effect of the US Renewable Fuels Mandate on household

consumption and income in a developing country. We show significant welfare impacts

- consumption effects tend to be regressive because the poor spend a larger portion of

their expenditure on food. Wage impacts are progressive because the poor are likely

to be employed in the agriculture sector and therefore benefit from higher wages. The

net effect is progressive for rural populations and regressive for those living in towns

and cities, because the latter bear large consumption losses but gain little through the

wage channel. However, because a larger number of poor people live in villages, poverty

impacts are disproportionately higher for rural households. We estimate that about 25-

26 million are likely to become poor as a result of the RFS. These figures are robust to

assumptions about the pass-through of world prices to the domestic Indian market.

These impacts may multiply several fold if other countries with rapidly-growing

transportation sectors also turn to biofuels as a way of reducing their energy dependence.

Some countries such as those of the European Union already have a significant mandate

in place, although not as large as the one in the U.S.. India and China have mandates

in the books. In the long-run of course, these price effects may be mitigated by bringing

new land under production and technological improvements in farming. However, to the

extent that we must use scarce land, water and other resources to produce more food

and energy, the supply cost of food commodities is likely to increase, and food price

shocks may linger for an extended time period. Other factors such as climatic shifts and

droughts may also affect commodity prices and exacerbate these distributional impacts.

Even with the Renewable Fuels Standard, the poverty impacts we report may be much

larger if other poor countries such as those in sub-Saharan Africa are included in the

analysis.

An important data limitation is that the welfare estimations focus only on con-

sumption and wage incomes, excluding important channels such as agricultural profits.

However, including farm profits is unlikely to make a big difference in our estimates be-

cause the poor do not own significant economic assets. We do not take into account

general equilibrium impacts driven by factor reallocation across sectors. This requires

price data from other sectors, including services such as education and health, data for

which is not readily available for a developing country like India. However, the magni-

tude of the general equilibrium impacts is likely to be small as service sectors are highly

regulated in India and they may not be very sensitive to commodity price shocks.

This research can be extended in other directions. The micro-level impacts in India

can be compared with that in other countries with significant poor populations to check

if the composition of the welfare effects is fundamentally different and idiosyncratic to

diet and other cultural factors. For example, societies in which the diet is based on corn
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or a higher consumption of meat and dairy may be impacted differently. Countries adopt

different policies to mitigate the effect of price shocks, which can again be compared to

obtain policy insights. Ultimately, these price shocks will affect nutritional intake among

individuals and affect the allocation of calories within each household. Each consumption

item in the NSS data we have used can be matched to its calorie, fat and protein content

using the FAO nutritional database. The price shocks are likely to alter the consumption

structure of households. It may then be possible to estimate the number of individuals

that will move below the recommended minimum daily nutritional intake, and isolate the

effects on particular segments of the population, such as women and children.
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Figures

Figure 1: U.S. renewable fuels mandate
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Notes: Beyond 2015, the ethanol mandate is fixed at 15 billion gallons. The rest is advanced biofuels,
mainly produced from biomass. Source: (EPA, 2010)
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Figure 2: Schematic of the model with food and energy

Land of different qualities Crude oil

Food crops Biofuels Gasoline

Food commodities Transport fuel

Notes: Land of different qualities is used to produce either food crops (i.e., rice, wheat, corn, sugar and
‘other crops’) or biofuels. Food crops are then processed into food commodities. Transport energy is
derived from gasoline and biofuels.
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Figure 3: Distribution of commodity price shocks induced by mandate
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Notes: The graphs show the distribution of price shocks for each commodity from 500 draws from the underlying
parameter distributions with and without the RFS. We report values within two standard deviations of the mean,
with less than 6 observations outside this range for each commodity. Smooth lines show the normal density.
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Figure 4: Domestic and world prices ($) for food commodities
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Notes: All prices are in current US dollars. Rice, sugar, wheat and grain prices are in metric tons, while meat
and corn prices are in kilograms. Grains include rice and wheat.
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Figure 5: Effect of the mandate on household consumption
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Notes: Local polynomial regression of consumption on log per capita household expenditure.

Figure 6: Effect of the mandate on household wage income
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Notes: Local polynomial regression of wage income effects on log per capita household expenditure.
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Figure 7: Effect of the mandate on welfare
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Notes: Local polynomial regression of net welfare on log per capita household expenditure.

Figure 8: Kernel densities around the poverty line
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Notes: Kernel densities for per capita expenditure are shown. The halfwidth kernel of 0.5 and sampling
weights are used in density estimation. The vertical line represents the log international poverty line of
$1.25 converted to rupees (i.e. ln(701.25)=6.55).
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Tables

Table 1: Regional endowment of land (million ha) and crop yield (tons/ha)
by land quality and region

Land quality
Land
available Rice Wheat Sugar Corn Other Crops

U.S.

High 60 7.1 (1.20%) 6.8 (1.50%) 86 (0.02%) 9.3 (1.50%) 4.5 (1.20%)

Medium 80 5.1 (1.20%) 5.0 (1.50%) 72 (0.02%) 7.1 (1.50%) 3.5 (1.20%)

Low 30 3.5 (1.20%) 2.9 (1.50%) 65 (0.02%) 4.7 (1.50%) 2.5 (1.20%)

India

High 70 3.2 (1.20%) 4.0 (1.20%) 79 (0.01%) 3.9 (1.30%) 2.0 (1.20%)

Medium 50 2.8 (1.20%) 1.8 (1.20%) 60 (0.01%) 3.3 (1.30%) 1.5 (1.20%)

Low 10 1.8 (1.20%) 1.5 (1.20%) 52 (0.01%) 1.9 (1.30%) 1.0 (1.20%)

ROW

High 200 4.0 (1.20%) 2.8 (1.30%) 70 (0.01%) 4.7 (1.20%) 2.2 (1.50%)

Medium 950 3.0 (1.20%) 1.8 (1.30%) 60 (0.01%) 4.3 (1.20%) 1.8 (1.50%)

Low 950 2.0 (1.20%) 0.8 (1.30%) 50 (0.01%) 2.6 (1.20%) 0.9 (1.20%)

Source: FAO-IIASA (2002) and FAO (2016). Numbers in parentheses represent the assumed annual growth rate
of yield, calculated from historical data.

Table 2: Price of food commodities ($/ton) in 2022 with and without the
biofuel mandate

Rice Wheat Sugar Meat Corn Other food

BASE 514 501 456 2,751 314 400

REG 556 580 458 3,069 345 450

% diff 8.17 15.77 0.44 11.56 9.87 12.50

Notes: BASE refers to the model without the mandate, and REG with it. % diff refers to the
percentage difference between the two prices.
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Table 3: Price of food commodities ($/ton) with and without the mandate
in 2022: sensitivity to parameters

Rice Wheat Sugar Meat Corn Other food

Initial parameter values
BASE 514 501 456 2,751 314 400
REG 556 580 458 3,069 345 450
% diff 8.17 15.77 0.44 11.56 9.87 12.50

Price elasticity for food
BASE 496 467 456 2,615 301 378
REG 530 529 457 2,867 326 418
% diff 6.85 13.28 0.22 9.64 8.31 10.58

(-1.32) (-2.49) (-0.22) (-1.92) (-1.57) (-1.92)

Crop yield
BASE 422 327 452 2,052 244 288
REG 448 375 454 2,246 264 319
% diff 6.16 14.68 0.44 9.45 8.20 10.76

(-2.01) (-1.09) (0.00) (-2.11) (-1.67) (-1.74)

Income elasticity for food
BASE 547 563 458 3,001 339 440
REG 594 645 460 3,359 374 495
% diff 8.59 14.56 0.44 11.93 10.32 12.50

(0.42) (-1.20) (0.00) (0.37) (0.45) (0.00)

Per capita GDP
BASE 552 571 458 3,036 342 445
REG 599 660 460 3,391 378 502
% diff 8.51 15.59 0.44 11.69 10.53 12.81

(0.34) (-0.18) (0.00) (0.13) (0.65) (0.31)

Cost of land conversion
BASE 638 735 461 3,695 408 551
REG 687 827 463 4,062 444 609
% diff 7.68 12.52 0.43 9.93 8.82 10.53

(-0.49) (-3.25) (-0.01) (-1.63) (-1.05) (-1.97)

Unit cost of oil
BASE 516 503 456 2,760 315 401
REG 557 581 458 3,077 346 452
% diff 7.95 15.51 0.44 11.49 9.84 12.72

(-0.22) (-0.26) (0.00) (-0.07) (-0.03) (0.22)

Notes: BASE refers to the model without the mandate, and REG
with it. Each parameter shock equals the ratio of its standard devia-
tion to mean. % diff is the difference in prices expressed as a percent-
age between BASE and REG. The numbers in parentheses show the
contribution of the parameter (e.g., food price elasticity in the second
panel) to the price shock. It is the difference in prices for that param-
eter and the initial values in the top panel.
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Table 4: Mean and standard error for food commodity prices in year 2022
with and without the mandate

Rice Wheat Sugar Meat Corn Other food

BASE

Mean 580 579 459 3,245 358 475

(8.93) (15.08) (0.45) (67.31) (6.79) (10.76)

REG

Mean 627 660 461 3,852 393 530

(10.22) (17.44) (0.42) (77.66) (7.56) (12.35)

Change in commodity prices (%)

Mean 7.87 13.19 0.39 9.44 9.89 10.88

(0.76) (0.36) (0.009) (0.25) (0.69) (0.51)

Notes: BASE refers to the model without the mandate, and REG with it. Standard errors are in parenthe-
ses. Mean and standard errors are obtained from 500 random draws from selected distributions of model
parameters.

Table 5: Household mean expenditure shares (%) by commodity

Rural Urban

Decile Rice Wheat Sugar Meat Corn Other
food

Rice Wheat Sugar Meat Corn Other
food

1 13.40 6.62 2.20 6.70 0.37 34.13 9.71 8.14 2.52 7.36 0.09 34.02

2 10.83 6.13 2.36 9.49 0.25 33.36 8.88 6.61 2.41 9.59 0.03 32.39

3 9.76 5.04 2.28 11.09 0.26 32.94 8.13 5.93 2.22 10.03 0.04 31.89

4 8.82 4.60 2.29 12.02 0.20 32.12 7.57 5.18 2.13 10.97 0.03 31.22

5 7.92 4.43 2.27 12.93 0.20 30.58 6.85 4.91 2.01 11.63 0.01 29.99

6 7.25 3.89 2.14 12.92 0.10 30.61 6.26 4.26 1.85 11.74 0.01 29.16

7 6.57 3.59 1.98 13.59 0.09 29.84 5.96 3.87 1.67 11.49 0.01 28.36

8 5.66 3.10 1.85 13.45 0.08 28.60 5.01 3.26 1.46 11.01 0.01 28.43

9 4.65 2.62 1.63 12.62 0.03 27.62 4.31 2.75 1.22 10.14 0.01 27.61

10 2.72 1.61 1.02 8.53 0.03 25.70 2.51 1.71 0.76 7.71 0.00 24.22

Overall 7.76 4.16 2.00 11.33 0.16 30.55 6.52 4.66 1.83 10.17 0.02 29.73

Notes: Mean monthly expenditure shares as a fraction of total expenditures are computed from the
2009− 2010 round of the NSS Household Expenditure Survey. Deciles are based on household log per capita
expenditure. Sampling weights are used.
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Table 6: Employment shares (%) for individuals by commodity

Rural Urban

Decile Grains Sugar Meat Other
food

Grains Sugar Meat Other
food

1 52.35 0.45 1.56 3.11 11.29 0.08 1.29 1.26

2 47.34 0.54 1.82 3.17 11.57 0.08 1.52 1.22

3 46.98 0.76 2.32 3.72 11.16 0.18 1.49 1.29

4 45.67 0.76 2.32 3.72 10.24 0.24 1.80 2.77

5 43.50 0.92 2.34 4.24 8.37 0.20 1.85 1.26

6 41.26 1.05 2.66 4.64 7.44 0.06 1.89 1.45

7 39.27 0.88 2.32 5.23 6.09 0.09 1.31 1.21

8 35.03 1.46 2.80 5.72 4.92 0.24 1.67 0.99

9 30.82 1.22 3.56 6.17 3.42 0.16 0.87 1.01

10 25.27 0.68 3.42 6.35 2.08 0.08 0.68 0.68

Overall 40.75 0.87 2.51 4.61 7.66 0.14 1.44 1.31

Notes: Grains denote all grains including rice and wheat: separate NIC codes for rice
and wheat are not available. Employment shares as a fraction of total employment (in-
cluding non-food) are computed from the 66st round of the NSS Employment and Un-
employment Survey. Deciles are based on household log per capita expenditure. The
matching of the 5-digit NIC affiliation of workers to food categories is shown in Table
A11. Sampling weights are used in the estimation.

Table 7: Percent increase in commodity prices, 2005-2011

Rice Wheat Sugar Meat Corn Grains

Domestic 72.29 61.16 64.11 59.16 184.62 67.07

World 67.74 131.31 151.72 74.33 219.84 89.90

Ratio 1.07 0.47 0.42 0.80 0.84 0.75

Notes: Ratio represents domestic over world price. The price series are converted to US dollars us-
ing exchange rates from the Reserve Bank of India. The period January 2005-May 2011 is the longest
available for all commodities. Grains include rice, wheat and corn and its pass-through elasticity is
used to compute wage impacts.
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Table 8: Estimation of price pass-through elasticities

Short run (β1) Long run (
∑

βi)

Rice 0.057*** 0.181***

(0.021) [7.97]

Wheat 0.008 0.006

(0.035) [0.01]

Sugar 0.219*** 0.383***

(0.043) [16.40]

Meat -0.023 0.056

(0.068) [0.06]

Corn 0.280*** 0.197***

(0.093) [19.66]

Grains 0.069** 0.184**

(0.024) [5.62]

N 76 76

Notes: Standard errors for short run elasticities are reported
in parenthesis and F -statistics for long-run elasticities are in
square brackets. Grains include rice and wheat and its pass-
through elasticity is used to compute wage impacts. Only the
significant long-run elasticities are incorporated in the estima-
tion. Asterisks denote statistical significance at the 1% ***, 5%
** and 10% * levels.

Table 9: Estimation of wage-price elasticities

Rural Urban

Unskilled OLS IV OLS IV

Wage-price elasticity 0.141*** 0.195** 0.263*** 0.204*

(0.031) (0.105) (0.056) (0.120)

R2 0.440 0.439 0.521 0.512

N 14,348 14,307 1,291 1,283

Kleibergen-Paap p-value 0.0001 0.0002

First stage F-stat 55.856 15.738

Skilled

Wage-price elasticity 0.154*** 0.289** 0.238*** 0.009

(0.030) (0.130) (0.061) (0.209)

R2 0.361 0.355 0.424 0.369

N 14,498 14,405 1,749 1,720

Kleibergen-Paap p-value 0.0004 0.0007

First stage F-stat 22.681 14.696

Notes: An unskilled individual is defined as someone who is illiterate. Estimates based on
wage income of individuals and unit prices from the NSS Consumer Expenditure Survey.
Employment-weighted price levels are used. All regressions control for age, age-squared,
gender, marital status and interaction of state and year fixed effects. Standard errors are
clustered at the district level. Asterisks denote statistical significance at the 1% ***, 5%
** and 10% * levels.
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Table 10: Effect on consumption, wages and welfare

Perfect price pass-through Imperfect price pass-through

Rural Urban Rural Urban

Mean SE Mean SE Mean SE Mean SE

Decile Consumption

1 -6.030 0.111 -6.321 0.270 -3.955 0.190 -3.631 0.060

2 -5.957 0.109 -6.083 0.250 -3.831 0.183 -3.455 0.057

3 -5.851 0.107 -5.917 0.239 -3.770 0.179 -3.394 0.056

4 -5.724 0.105 -5.787 0.229 -3.665 0.174 -3.317 0.055

5 -5.565 0.102 -5.629 0.216 -3.483 0.165 -3.182 0.053

6 -5.439 0.100 -5.405 0.205 -3.475 0.164 -3.088 0.051

7 -5.334 0.098 -5.211 0.198 -3.379 0.159 -3.001 0.050

8 -5.062 0.093 -5.000 0.188 -3.229 0.152 -2.962 0.049

9 -4.838 0.089 -4.743 0.180 -3.215 0.150 -2.905 0.048

10 -4.038 0.074 -4.316 0.164 -2.573 0.120 -2.764 0.046

Overall -5.384 0.099 -5.441 0.214 -3.458 0.163 -3.170 0.052

Wage income

1 7.030 0.173 0.183 0.139 1.733 0.038 0.034 0.018

2 4.550 0.175 0.104 0.108 1.055 0.039 0.025 0.018

3 3.503 0.171 0.089 0.101 1.112 0.042 0.034 0.018

4 2.975 0.172 0.047 0.125 0.952 0.044 0.013 0.017

5 2.124 0.171 0.019 0.081 0.636 0.044 0.006 0.018

6 1.434 0.169 0.022 0.074 0.392 0.045 0.003 0.008

7 1.239 0.152 0.006 0.047 0.332 0.045 0.001 0.005

8 0.608 0.172 0.009 0.051 0.125 0.046 0.001 0.005

9 0.391 0.176 0.001 0.036 0.086 0.053 0.000 0.007

10 0.145 0.173 0.000 0.011 0.049 0.065 0.000 0.006

Overall 2.400 0.171 0.048 0.077 0.647 0.046 0.012 0.012

Net welfare

1 1.000 0.111 -6.138 0.270 -2.222 0.190 -3.597 0.060

2 -1.407 0.109 -5.979 0.250 -2.777 0.183 -3.430 0.057

3 -2.348 0.107 -5.828 0.239 -2.658 0.179 -3.360 0.056

4 -2.748 0.105 -5.740 0.229 -2.713 0.174 -3.304 0.055

5 -3.441 0.102 -5.610 0.216 -2.847 0.165 -3.177 0.053

6 -4.005 0.100 -5.383 0.205 -3.083 0.164 -3.085 0.051

7 -4.095 0.098 -5.205 0.198 -3.047 0.159 -3.000 0.050

8 -4.454 0.093 -4.991 0.188 -3.103 0.152 -2.960 0.049

9 -4.447 0.089 -4.742 0.180 -3.129 0.150 -2.905 0.048

10 -3.893 0.074 -4.316 0.164 -2.524 0.120 -2.764 0.046

Overall -2.984 0.099 -5.393 0.214 -2.810 0.163 -3.158 0.052

Notes: SE denotes standard errors, estimated through replications based on sampling from
the distribution of commodity price shocks.
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Table 11: Number of new poor created by the mandate

Rural Urban

Change in New poor Change in New poor Total new poor

poverty rate (million) poverty rate (million) (million)

Perfect Pass-through:

Mean 2.052 *** 19.792 1.361*** 6.180 25.591

(0.000) (0.005)

Imperfect Pass-through

Mean 2.175*** 20.985 0.829*** 3.766 24.751

(0.005) (0.001)

Notes: Standard errors are in parentheses. The $1.25 poverty line is converted to Rupees using 2010 purchasing
power parity. The number of new poor is computed using year 2022 UN projected population for India of 1.42
billion (UNDP, 2015). Asterisks denote statistical significance at the 1% ***, 5% ** and 10% * levels.
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Table 12: Welfare effects by household characteristics

Rural Urban

Consumption Wages Welfare Consumption Wages Welfare

(1) (2) (3) (4) (5) (6)

Land ownership

Landowner -5.428 2.833 -2.606 -5.202 0.037 -5.180

(0.004) (0.010) (0.010) (0.007) (0.001) (0.007)

Landless -5.310 2.287 -3.055 -4.991 0.025 -4.986

(0.025) (0.051) (0.049) (0.014) (0.001) (0.014)

∆ -0.118*** 0.546*** 0.450*** -0.211*** 0.013*** -0.193***

(0.021) (0.050) (0.047) (0.015) (0.001) (0.014)

t-stat -5.554 10.996 9.498 -14.365 13.301 -13.477

Skill

Unskilled -5.705 3.636 -2.071 -5.848 0.072 -5.779

(0.007) (0.021) (0.020) (0.014) (0.001) (0.014)

Skilled -5.296 2.437 -2.875 -5.007 0.026 -4.999

(0.005) (0.011) (0.011) (0.007) (0.000) (0.007)

∆ -0.408*** 1.199*** 0.804*** -0.841*** 0.045*** -0.780***

(0.009) (0.022) (0.021) (0.017) (0.001) (0.016)

t-stat -43.433 55.667 38.690 -50.388 41.972 -47.855

Gender

Male -5.416 2.826 -2.602 -5.133 0.033 -5.115

(0.005) (0.011) (0.010) (0.007) (0.000) (0.007)

Female -5.476 2.668 -2.828 -5.257 0.039 -5.245

(0.015) (0.031) (0.030) (0.019) (0.001) (0.019)

∆ 0.060*** 0.158*** 0.226*** 0.125*** -0.005*** 0.130***

(0.014) (0.033) (0.032) (0.020) (0.001) (0.019)

t-stat 4.210 4.769 7.167 6.387 -4.120 6.814

Religion

Hindu -5.460 2.914 -2.555 -5.095 0.034 -5.079

(0.005) (0.012) (0.011) (0.007) (0.000) (0.007)

Islam and other -5.296 2.450 -2.866 -5.309 0.035 -5.286

(0.010) (0.020) (0.019) (0.013) (0.001) (0.012)

∆ -0.164*** 0.464*** 0.311*** 0.214*** -0.001 0.208***

(0.010) (0.024) (0.023) (0.015) (0.001) (0.014)

t-stat -15.671 19.087 13.405 14.450 -1.315 14.369

Notes: Household classification is based on characteristics reported in the 66th round of the NSS Household
Expenditure Survey. Gender refers to the gender of the household head. A household is unskilled if the house-
hold head is illiterate. t-statistics of the mean comparison tests are reported. ∆ denotes the difference in the
mean impact. Asterisks denote statistical significance at the 1% ***, 5% ** and 10% * levels.
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A Appendix tables

Table A1: Parameters for crop production cost

Rice Wheat Sugar Corn Other crops
ηr1 ηr2 ηr1 ηr2 ηr1 ηr2 ηr1 ηr2 ηr1 ηr2

U.S. 1.15 1.50 1.15 1.50 1.20 1.55 1.15 1.50 1.20 1.55
India 1.55 1.80 1.55 1.80 1.45 1.70 1.55 1.80 1.45 1.70
ROW 1.50 1.75 1.50 1.75 1.35 1.65 1.50 1.75 1.35 1.65

Source: GTAP 5 (1997).

Table A2: Parameters for the cost of land conversion

ψr
1 ψr

2

US 430 431

India 200 200

ROW 56 106

Source: Gouel and Hertel (2006).

Table A3: Cost and yield data for corn ethanol

US India ROW

Representative crop Corn Sugarcane Sugarcane

Share (93%) (82%) (63%)

Unit cost($/gallon) 0.73 1.66 0.63

Energy yield by land quality (gallons/ha)

High 876 1,200 1,463

Medium 681 912 1,254

Low 487 790 1,115

Notes: Share denotes production of representative crop in regional biofuel production. The rep-
resentative crop for ROW is sugarcane - since Brazil is the dominant producer with 47% of ROW
production in 2012. Unit costs of production are taken from IEA-ETSAP (2013), OECD/IEA
(2011) and Ravindranath et al. (2011).
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Table A4: Parameters for supply of transport fuel

US India ROW

Transport fuel supply qre (MJ) 16,400 688 23,150

Gasoline supply qrg (MJ) 15,840 540 22,000

Biofuels supply qrbf (MJ) 800 40 1,040

Share of gasoline µr
g 0.90 0.95 0.95

Elasticity of substitution ξr 2 2 2

Constant λr 1.22 1.37 1.14

Notes: MJ: MegaJoules; production of transport fuel (qre) equals consumption since
transport fuel is not traded; supply of biofuels (qrbf ) and gasoline (qrg) are from EIA
(2014); the share of gasoline is calculated as the ratio of gasoline (qrg) to transport
fuel supply (qre); elasticities of substitution are from Hertel et al. (2010).

Table A5: Parameters for extraction cost of crude oil

World reserves φ1 φ2 φ3

(Billion gallons) $/gallon

35,427 1.18 7.76 15

Source: Oil reserves (British Petroleum (2013) and IEA (2014)); Cost pa-
rameters φ1, φ2 and φ3 are from Chakravorty et al. (2012).
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Table A6: Demand parameters by region and commodity (base year 2012)

US India ROW

Population (Billion) 0.31 1.22 5.36

GDP per capita ($) 43,210 3,295 10,714

Rice

Consumption per capita (kg) 8 70 53

Price ($/ton) 450 450 450

Price elasticity -0.15 -0.35 -0.20

Income elasticity 0.15 0.57 0.65

Constant Ari 0.004 0.005 0.0004

Wheat

Consumption per capita (kg) 80 60 65

Price ($/ton) 250 250 250

Price elasticity -0.15 -0.35 -0.20

Income elasticity 0.15 0.57 0.65

Constant Ari 0.036 0.004 0.0004

Sugar

Consumption per capita (kg) 60 23 22

Price ($/ton) 450 450 450

Price elasticity -0.23 -0.34 -0.25

Income elasticity 0.41 0.71 0.65

Constant Ari 0.003 0.0005 0.0002

Meat

Consumption per capita (kg) 375 75 70

Price ($/ton) 1,960 1,960 1,960

Price elasticity -0.28 -0.37 -0.30

Income Elasticity 0.43 0.97 0.77

Constant Ari 0.032 0.00048 0.00054

Corn

Consumption per capita (kg) 12 6 21

Price ($/ton) 250 250 250

Price elasticity -0.15 -0.35 -0.20

Income elasticity 0.15 0.57 0.65

Constant Ari 0.005 0.0004 0.00015

Other food

Consumption per capita (kg) 119 80 116

Price ($/ton) 280 280 280

Price elasticity -0.28 - 0.58 -0.30

Income elasticity 0.41 0.71 0.71

Constant Ari 0.007 0.0067 0.0009

Transport fuel

Consumption per capita (VMT) 9,250 69 752

Price ($/VMT) 0.14 0.23 0.23

Price elasticity -0.50 -0.21 -0.78

Income Elasticity 1.30 1.30 1.20

Constant Ari 0.003 0.001 0.003

Sources: Consumption figures for food commodities are from FAO (2016); transport fuel: EIA (2014); prices: World Bank (2015);
own-price and income elasticities for transport fuel: Parry and Small (2005), Hertel et al. (2007) and Dimaranan et al. (2007); price
and income elasticities for food commodities (U.S.) are from Dimaranan et al. (2007), Regmi et al. (2001), Regmi and Seale (2011),
Muhammad et al. (2010); price elasticities for food commodities (ROW): Roberts and Schlenker (2013) and from Dimaranan et al.
(2007); income elasticities for food commodities (ROW): Dimaranan et al. (2007); price and income elasticities for food commodi-
ties (India): Paul (2011), Dimaranan et al. (2007), Regmi et al. (2001), Regmi and Seale (2011); population figures: United Nations
Population Division UNDP (2015); and per capita income: EIA (2015).
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Table A7: Model validation: consumption of food and fuel in 2012

US India ROW

Observed Predicted % diff Observed Predicted % diff Observed predicted % diff

Rice 8.00 8.21 2.63 70.00 74.40 6.29 53.00 54.87 3.53

Wheat 80.00 78.67 -1.66 60.00 57.69 -3.85 65.00 63.56 -2.22

Sugar 60.00 61.42 2.37 23.00 24.38 6.00 22.00 22.57 2.59

Meat 375.00 383.84 2.36 75.00 77.07 2.76 70.00 71.57 2.24

Corn 12.00 12.31 2.58 6.00 6.36 6.00 21.00 21.72 3.43

Other food 119.00 120.88 1.58 80.00 81.36 1.70 116.00 117.12 0.97

Fuel 9,250 9,810 6.05 69 73 5.80 752 763 1.46

Notes: Consumption units for food in kg/capita and fuel in VMT/capita. Observed values are rounded off.
% diff is the percent difference between observed values and model predictions. Sources: consumption of food
commodities: FAO (2016), transport fuel: EIA (2014).

Table A8: Model validation: world commodity prices in year 2012

Observed Predicted % diff

Rice 450 462 2.66

Wheat 250 270 8.00

Sugar 450 471 4.66

Meat 1,960 1,820 -7.14

Corn 250 241 -3.60

Other food 280 271 -3.21

Notes: % diff represents the percentage difference between observed values and model predictions. Prices are in
2005 dollars. Source: World Bank (2015).

Table A9: Model validation: average growth rate of food prices, 2005-12

Observed Predicted

Rice 7% 7%

Wheat 9% 8%

Sugar 7% 6%

Meat 5% 3%

Corn 11% 14%

Other food 7% 9%

Notes:Average growth rates of observed prices are calculated from annual real food prices in

2005 dollars, Source: World Bank (2015).
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Table A10: Parameters used in the sensitivity analysis and Monte Carlo sim-
ulations

US India ROW

Mean Std. Dev. Shock(%) Mean Std. Dev. Shock(%) Mean Std. Dev. Shock(%)

Price elasticity
Cereals -0.15 0.022 15 -0.35 0.105 30 -0.20 0.060 30
Sugar -0.23 0.038 17 -0.34 0.085 25 -0.25 0.065 26
Meat -0.28 0.039 14 -0.37 0.140 38 -0.30 0.096 32
Other food -0.28 0.038 14 -0.58 0.116 20 -0.30 0.096 32
Fuel -0.50 0.074 15 -0.21 0.063 30 -0.78 0.026 3

Income elasticity
Cereals 0.15 0.021 14 0.57 0.037 6 0.65 0.12 18
Sugar 0.41 0.049 12 0.71 0.001 0.1 0.65 0.05 7.6
Meat 0.43 0.120 28 0.97 0.038 4 0.77 0.07 9
Other food 0.41 0.042 10 0.71 0.009 1 0.71 0.06 8
Fuel 1.30 0.016 1.2 1.30 0.020 2 1.20 0.12 10

Crop yield (tons/hectare)
Rice-H 7.1 12 3.2 13 4.0 8
Rice-M 5.1 0.936 16 2.8 0.482 15 3.0 0.472 14
Rice-L 3.5 24 1.8 22 2.0 21

Wheat-H 6.8 3.5 4.0 9 2.8 4
Wheat-M 5.0 0.273 5 1.8 0.439 21 1.8 0.122 6
Wheat-L 2.9 8 1.5 26 0.8 14

Sugar-H 86 5.5 79 7 70 6.5
Sugar-M 72 4.706 7.5 60 5.598 9 60 4.563 7.5
Sugar-L 65 8.5 52 11 50 8

Corn-H 9.3 12 3.9 10 4.7 13
Corn-M 7.1 1.329 16 3.3 0.430 21 4.3 0.681 14
Corn-L 4.7 25 1.9 20 2.6 23

Other crops-H 4.5 11 2.0 10 2.2 9
Other crops-M 3.5 0.49 14 1.5 0.30 12 1.8 0.308 10
Other crops-L 2.5 20 1.0 20 0.9 19

Unit extraction cost of oil ($/barrel)
Unit Cost 50 7.500 15 50 7.50 15 50 7.500 15

Unit cost of biofuel ($/gallon)
Ethanol 0.73 0.025 3.5 0.63 0.02 3 0.63 0.02 3
Cellulosic ethanol 0.99 0.150 15 na na na na na na

Demand parameters in base year
GDP/capita ($) 43,210 1,022 2.4 3,295 105 3.2 10,714 284 2.5

Population (Billion) 0.31 0.0070 2.3 1.22 0.020 1.6 5.36 0.120 2.4

Sources: The magnitude of the shock equals the ratio of standard deviation to mean, as shown. Price elasticities: Regmi et al. (2001),
Parry and Small (2005), Dimaranan et al. (2007), Muhammad et al. (2010), Regmi and Seale (2011), Roberts and Schlenker (2013)
and Bento et al. (2015) ; Income elasticities: Parry and Small (2005), Dimaranan et al. (2007), Muhammad et al. (2010), Bento et al.
(2015); Crop yields: (FAO, 2016); Oil cost: World Bank (2015); Ethanol cost: OECD/IEA (2011) and IEA-ETSAP (2013); Cellulosic
ethanol cost: Carriquiry et al. (2010), OECD/IEA (2010), OECD/IEA (2011) and IEA-ETSAP (2013); GDP per capita: EIA (2014);
Population: UNDP (2015). Notes: Cereals include rice, wheat and corn. Rice-H, Rice-M and Rice-L should be respectively read as:
yield of rice on high, medium and low land qualities. The same notation applies for wheat, corn, sugar and other food. The standard
deviation is uniform across the different land classes since it is calculated from historical data. Cellulosic ethanol is not produced in
India and ROW. Due to a lack on data on land conversion cost, we could not calculate the standard deviation. We assume a shock of
15%.
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Table A11: Matching between commodities, expenditure categories and
industries

Products NSS
Codes

NSS Description NIC
Codes

NIC Description

(1) (2) (3) (4) (5)

Rice 101-102 Rice 1111 Growing of food grain crops

103 Chira 1403 Activities establishing a crop, promoting its growth or pro-
tecting it from disease and insects.

104 Khoi, lawa 1404 Harvesting and activities related to harvesting, such as prepa-
ration of crop cleaning, trimming, grading, drying.

105-106 Muri and Other Rice Products

Wheat 107-108 Wheat, atta 1111 Growing of food grain crops

110 Maida 1403 Activities establishing a crop, promoting its growth or pro-
tecting it from disease and insects. Transplantation of rice in
rice fields.

111 Suji, rawa 1404 Harvesting and activities related to harvesting, such as prepa-
ration of crop cleaning, trimming, grading, drying.

112-114 Bread, bakery, sewai, noodles,
other wheat products

Sugar 269 Sugar (sub-total) 1115 Growing of sugarcane or sugar beet

Meat/Dairy 160 Milk: liquid (litre) 1407 Activities to promote propagation, growth and output of ani-
mals and to obtain

161 Baby food 1409 Other agricultural and animal service activities, n.e.c.

162 Milk: condensed/ powder 1211 Farming of cattle , sheep, goats, horses, asses, mules and hin-
nies; dairy farming

163 Curd 1212 Rearing of goats, production of milk

164 Ghee 1213 Rearing of sheep; production of shorn wool

165 Butter 1214 Rearing of horses, camels, mules and other.

166 Ice-cream 1221 Raising of pigs and swine

167 Other milk products 1222 Raising of poultry (including broiler) and other domesticated
birds; production of eggs and operation of poultry hatcheries

180 Eggs (no.) 1223 Raising of bees; production of honey

181 Fish, prawn 1224 Raising of silk worms; production of silk worm cocoons

182 Goat meat/mutton 1225 Farming of rabbits including angora rabbits

183 Beef/ buffalo meat 1229 Other animal farming; production of animal products n.e.c.

184 Pork 1500 Hunting, trapping and game propagation including related
service activities

185 Chicken 5011-
5012

Fishing on commercial basis in ocean, sea and coastal areas

186 Others: birds, crab, oyster,
tortoise, etc.

5021-
5023

Fishing, fish farming, gathering of marine materials, other
fishing activities

Other food 115-122 Jowar, bajra, maize, barley,
small millets other cereal

1112 Growing of oilseeds including peanuts or soya beans

139 Cereal substitutes: tapioca,
jackfruit, etc.

1119 Growing of other crops, n.e.c.

159 Pulses & pulse products 1121 Growing of vegetables

179 Edible oil (sub-total) 1122 Growing of horticultural specialties including: seeds for flow-
ers, fruit or

229 Vegetables (sub-total) 1131 Growing of coffee or cocoa beans

249 Fruits (fresh, sub-total) 1132 Growing of tea or mate leaves including the activities of tea
factories associated

259 Fruits (dry, sub-total) 1133 Growing of edible nuts including coconuts

289 Spices (sub-total) 1134 Growing of fruit: citrus, tropical pome or stone fruit; small
fruit such as berries;

290-293 Tea and coffee 1135 Growing of spice crops including: spice leaves
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