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1 Introduction

The Intergovernmental Panel on Climate Change predicts a mean increase in the Earth’s surface

temperature of 2� to 7�F over the next century, calling it “virtually certain” that there will be more

frequent hot temperature extremes experienced over most land areas by 2100 (IPCC, 2014). There

is now evidence from the US (Barreca, 2012; Barreca et al., 2016; Deschênes and Moretti, 2009; De-

schênes, Greenstone and Guryan, 2009; Deschênes and Greenstone, 2011; Heutel, Miller and Molitor,

2017) and from other middle and high income countries (Gasparrini et al., 2015) on the extent to

which extreme temperatures kill. Yet we know little to date about such effects in developing coun-

tries, which could be significantly different. In particular, poor populations may be less capable of

reducing exposure to extreme heat and humidity, such as via climate-controlled housing and indoor

work. Further, due to more fragile baseline health among the poor, the harm conditional on exposure

could be greater.

The environmental economics literature has routinely highlighted the need to understand the

health impacts of weather and climate change in developing countries (Greenstone and Jack, 2015).

But to date progress has been limited because the poorest countries lack the kind of vital registration

data routinely available in rich countries. As a broad coalition of economists recently noted in Sci-

ence, the near exclusive focus in the prior literature on rich countries is “problematic, both because

developing countries currently represent the majority of the world’s population and greenhouse gas

emissions and because the nature of impacts and context for policy choice could differ greatly relative

to developed regions” (Burke et al., 2016). Similarly, as Deschênes (2014) explains in a recent review

of this literature: “An important component of future research is to better ascertain the differences

in the temperature–mortality response across countries, especially the difference between developed

and less developed countries.”

This study provides new evidence on human mortality effects of extreme heat and humidity

in the developing world. We focus on infants: Although many poor countries lack high-quality

vital registration systems, nationally-representative Demographic and Health Surveys record infant

deaths in detail. Mothers in these surveys report retrospective fertility histories that allow us to

locate child births and deaths in time and place, even in the absence of birth and death registries.

We link these births to temperature, humidity, and precipitation data at fine-grained geographic and

temporal resolution, generating a panel of weather exposure and survival from the in utero period
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into childhood for 53 developing countries.

Because we observe many births within the same villages, and because within a village, observed

births occur in the same months of different years, we can flexibly control for locality-specific season-

ality. Identifying effects off of only weather shocks addresses any seasonality in the composition of

births that could otherwise confound estimates (Barreca, 2017; Barreca, Deschênes and Guldi, 2018;

Buckles and Hungerman, 2013).

In addition to extending the temperature-mortality literature to populations not captured in vi-

tal registration data—nearly all of the places we study do not have functioning death registration

systems—we innovate by introducing wet bulb temperature (Twb) into the climate economics liter-

ature. The evaporation of sweat is humans’ primary thermoregulatory mechanism in high ambient

temperatures, and Twb tracks the physics of evaporative heat exchange better than the familiar (dry

bulb) measurement of temperature. It is recognized in textbook treatments of human thermal en-

vironments as a more informative signal of both comfort and heat stress (Parsons, 2014). It is also

widely employed by climate scientists and biologists interested in describing the envelope of the-

oretically survivable temperature-humidity combinations (Sherwood and Huber, 2010; Im, Pal and

Eltahir, 2017). In practice, we show that this parametrization of temperature best fits the infant mor-

tality patterns we observe.

We find that very hot and humid days generate large infant mortality effects: Experiencing an

additional day of mean wet bulb temperature above 85�F (equal to about 100�F at 55% humidity)

in the first month of life increases neonatal mortality by 0.7 deaths per thousand births. This infant

mortality effect is an order of magnitude larger than most previous econometric estimates of the

impacts of hot days, which have primarily been generated from developed country samples. Our

parameter estimates are closest to those in Barreca et al. (2016) for the US from 1930 to 1959, prior to

the widespread adoption of air conditioning.

We show that the largest and most robust mortality effects are associated with exposure to ex-

treme temperatures experienced during the month of birth, rather than in utero or later in infancy.

Further, the largest share of the resulting deaths occur in the birth month, contemporaneous with

the timing of weather exposure. This immediate response suggests a direct biological channel, rather

than a channel through eventual agricultural yields and incomes. The findings thus complement

work that has highlighted effects of extreme temperatures on agricultural output (Guiteras, 2009),
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with impacts on economic wellbeing overall (reviewed in Dell, Jones and Olken, 2014) and on health

in particular (Burgess et al., 2017). The contrast here suggests that policy responses focused on in-

come smoothing in the face of weather uncertainty, while potentially protective against some harms,

may be insufficient to fully counteract the infant mortality effects of extreme weather.

Our paper contributes to the economic analysis of weather and climate change in several impor-

tant ways. This paper is the first to identify the effect of extreme heat and humidity on early life

mortality in a sample that spans very poor countries without vital statistics systems. We thus con-

tribute to a broad economic literature examining the short- and long-term health and human capital

consequences of adverse environmental exposures during the in utero period and early childhood

(reviewed in Almond, Currie and Duque, 2017). In particular, we build on studies that examine in-

utero and infant weather exposure in rich country settings, including Deschênes, Greenstone and

Guryan (2009) and Isen, Rossin-Slater and Walker (2017). We likewise complement a very small lit-

erature (Burgess et al., 2017) that has identified any health impacts of temperature in any developing

country context, and a broader literature that considers weather-related natural disasters in develop-

ing countries (e.g., Guiteras, Jina and Mobarak, 2015).

Second, the new facts we establish about the role of properly-parameterized humidity has the

potential to reshape understanding of the geographic distribution of health damages, an issue of

broad current interest (see, e.g., Hsiang, Oliva and Walker, 2017). Figure 1 plots the location of each

village or urban block in our global sample, along with temperature and humidity characteristics.

Some of the hottest places on Earth are concentrated in sub-Saharan Africa. However, our estimates

do not imply the largest incidence of heat-related mortality at these locations, which tend to be dry.

Instead, our findings indicate the largest impacts occur in the more humid regions of Asia. In this

way, we build on earlier work by Barreca (2012), which showed that absolute humidity is predictive

of US adult mortality, but in contrast to our results, found no amplifying effect between heat and

humidity.

Third, our findings contribute to the continued evolution of climate damage functions and in-

tegrated assessment models used to determine optimal climate policy, including the optimal carbon

tax. Though damage functions have historically been crude, the most recent research has attempted

to directly incorporate the type of micro-econometric estimates we generate here. In such models for

the US, health and mortality impacts comprise the greatest share of total climate damages (Hsiang
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et al., 2017). Thus, our finding that mortality effects in poor countries are an order of magnitude

larger than what has been estimated for the developed world has the potential to significantly alter

assessments of optimal policy.

2 Background

We use wet bulb temperature, denoted Twb, to combine information about ambient air temperature

and moisture in the air in a functional form that is motivated by the physics of how humans regu-

late body temperature. Twb is widely used in climate science, biology, and ergonomics as a useful

summary statistic for heat stress danger and thermal comfort (Parsons, 2014). As a practical matter,

it is also the dominant meteorological variable used for assessing heat exposure danger by the US

military, by OSHA, and by (outdoor) sports medicine physicians (Budd, 2008). Mechanically, Twb

corresponds to the temperature reading on a standard mercury thermometer whose bulb is wrapped

in a continuously dampened cloth. The reading is lower than on a familiar “dry bulb” thermometer

because evaporation carries heat energy away from the bulb.

Twb connects naturally to the process of cooling oneself via sweating. As dry bulb ambient air

temperatures rise above the skin’s surface temperature (typically 96�F), the only biological process

that can substantially cool the body is the evaporation of sweat. High humidity exacerbates heat

stress by reducing the efficiency of sweating/evaporation: Holding ambient temperature fixed, the

rate of heat transfer via evaporation is lower on a humid day (when the sweat clings to the skin

rather than quickly evaporates). When sweating functions inefficiently, the cardiovascular system

experiences greater stress, dilating blood vessels in the skin and working harder to transport heat

away from the body’s core towards the skin. This problem can particularly impact neonates, who

effectively free-ride on maternal temperature regulation in utero. The baby’s own thermoregulation

remains poorly controlled for the first days of life (Hey and Katz, 1969).

Because wet bulb temperatures (Twb) are highly non-linear combinations of dry bulb tempera-

ture (T) and relative humidity (H), they do not readily translate into more familiar units. In fact,

there is no closed form expression linking Twb, T, and H. A wet bulb temperature of 85�F (a relevant

threshold below) corresponds to the following temperature-relative humidity combinations at stan-

dard pressure: {120�F, 30%}, {100�F, 55%}, and {90�F, 80%}. If the true model linking human mortality

to extreme heat is a function of Twb, then simple linear interactions of temperature and relative hu-
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midity may be insufficient to capture the relevant impacts of humidity. We show that this turns out to

be empirically true, at least in our developing country setting and for the infant mortality outcomes

we can examine.

3 Data and Empirical Framework

3.1 Data

We link data from two sources: the Demographic and Health Surveys (DHS) and a globally grid-

ded weather dataset. DHS are nationally-representative survey data collected as a joint effort of

USAID and the national governments where the surveys are fielded. The main questionnaire mod-

ules, which focus on demographic statistics and maternal and child health, are comparable across

countries. Women aged 15 to 49 are the primary respondents. Each woman reports her complete

birth history (e.g., child #3 was born in March 2006 and survived to the date of interview). Therefore,

although we observe each surveyed woman at just one point in time, information on month and year

of birth—and, if applicable, date of death—enables us to construct a month-by-month panel of child

survival.

We assemble and harmonize all DHS datasets collected through 2014 for which the latitude and

longitude of the primary sampling unit (PSU) was recorded. PSUs correspond to a very fine level

of geographic disaggregation: villages in rural areas and city blocks in urban areas. We use village

as shorthand for PSU below. The universe of DHS surveys with geolocation information includes

countries spanning Latin America, Africa, Eastern Europe, South Asia, and Southeast Asia. For many

countries we observe several survey rounds (e.g., Bangladesh in 1999/2000, 2004, 2007, and 2011).

Even for countries with only a single round, the retrospective nature of birth histories implies that

we observe many births within the same village, occurring in different months and years—and in

the same months of different years. Our assembled dataset includes 53 countries observed over 111

country ⇥ survey rounds. Figure 1 maps the countries in our assembled data. In Table A1 we list

each country and associated survey rounds.

To the DHS data, we match geographically-gridded sub-daily measures of temperature, humid-

ity, and other meteorological variables from the Princeton Meteorological Forcing Dataset (PMFD),

generated by Sheffield, Goteti and Wood (2006) and Sheffield, Wood and Roderick (2012). The PMFD
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combines reanalysis data from NCEP-NCAR with a collection of observation-based data from the

Climactic Research Unit and other sources. These weather data have a geographic resolution of 0.25�

latitude ⇥ 0.25� longitude and a temporal resolution of 3 hours. The data are described in additional

detail in Appendix Section A.1.

To merge the datasets, for each PSU in the DHS we identify the four closest surrounding grid

points, and assign weather values averaged across those points, weighted by inverse distance to the

PSU. This yields a panel that locates each month of each child’s life in time and in latitude ⇥ longitude

with linked information on exposure to various weather variables.

Variables of particular interest in our study include daily mean humidity, daily mean dry bulb

temperature (T), and daily mean wet bulb temperature (Twb). Daily means are generated by averag-

ing across eight daily temperature readings. Thus, a day described by a mean temperature of 90�F

may have daytime highs in excess of 100�F. We follow the recent literature in tabulating the exposure

variables semi-parametrically, as counts of days falling in various temperature ranges. In wet bulb

degrees Fahrenheit, we count the days per month in each of the following bins: < 30, [30,40), [40,50),

[50,60), [60,70), [70,75), [75,80), [80,85), and � 85. Panel D of Figure 1 plots the incidence of daily

means across these bins in our sample.

It is important to understand the strengths and limitations of these data, relative to the kinds of

vital registration data typically used in weather-mortality studies. A primary advantage is that DHS

data allow us to measure mortality in the poorest countries in the world. As Table A1 summarizes,

most of these countries do not have credible national vital registration systems (Mathers et al., 2005).

In this way, our approach resembles Young (2012), which uses DHS asset data to measure economic

growth in African countries with weak national accounts systems. In addition, even relative to the

few developing countries where there is at least partial vital statistics coverage (e.g., Brazil, China,

India), the data here allow for finer temporal and geographic resolution in the measurement of births

and deaths than is typically possible. This enables us to narrow in on perinatal events and to construct

the first econometric estimates of effects of weather on neonatal mortality in the literature (including

in rich country-settings).1 This advantage proves important in practice, as we show that exposure

1To our knowledge, no other study has identified effects of weather on neonatal mortality in a manner that addresses
the potential for endogenous seasonality. The epidemiology literature that examines weather and birth outcomes often
explicitly relies on seasonality to identify effects. See Strand, Barnett and Tong (2011) for a review. In the econometric liter-
ature, studies tend to report annualized deaths in most cases and to estimate a single “age-adjusted” effect that combines
infants with adults and the elderly. Even in cases where mortality is measured monthly or infants have been estimated
separately, studies have not distinguished between neonatal deaths (month one) and infant deaths (year one).
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and death during the birth month accounts for most of the weather-related mortality in the first year.

A relative weakness of the DHS is that despite our assembled data spanning dozens of countries,

the number of lives and deaths represented in each country sample is small relative to the number of

lives and deaths represented in birth and death registry data, which are based on complete censuses.

Therefore, the analysis here is powered to detect large effects, which it finds; we are limited in our

ability to detect or rule out mortality effects of the sizes documented in richer populations.

3.2 Empirical Framework

We follow the recent literature to estimate flexible regressions of the form

Yijdct = Â
B

bB · TempB
ijdct + st + qdm + Â

B
zB · TempB, 5-year

jdcm + FXijdct + eijdct, (1)

where j indexes survey PSUs, d indexes about 2,300 administrative divisions (“districts”) within

countries, and c indexes the 53 countries countries.2 Calendar months are indexed by m. We de-

note month ⇥ year interactions (e.g., July 2009) with t. Observations i are children. The dependent

variable Y represents a child health outcome, the focal outcomes being an indicator for infant death

(first year) or neonatal death (first month). Mortality indicators are multiplied by 1000, so that coef-

ficients correspond to mortality effects per 1000 lives.

The coefficients of interest are bB, with B indexing temperature range bins. The variables TempB

count the days in the relevant month for which the child/fetus was exposed to temperatures in some

range—e.g., the child experienced 6 days with mean temperatures in the range 75-80�F during her

birth month. Coefficients b are interpretable as effects relative to the experiencing a day of mean tem-

perature in the omitted category (60-70�F). Saturated fixed effects for the month ⇥ year, st, accom-

modate time trends with maximal flexibility. We additionally control for rainfall and household-level

characteristics (X) recorded in the DHS.

The identifying assumption in our analysis is that conditional on the controls for typical weather

and place-specific seasonality, the actual realization of weather is random. An important practical

consideration is exactly how to control for local seasonality that could otherwise lead weather to be

endogenous to the timing and socioeconomic composition of births. We take several approaches.

2The units of within-country administrative divisions d vary across countries in the pooled sample, and may refer to
districts, divisions, provinces, regions, states, zones, etc., each interacted with urban/rural. We use districts for parsimony.

7



As written, Equation (1) includes district fixed effects interacted with calendar month, qdm (e.g., an

indicator for the Mid-western terai zone of Nepal in August), to flexibly control for local seasonal

variation in both the weather and patterns of births and deaths. This accommodates seasonality

that differs across locales within a country. We investigate sensitivity to coarser controls, including

country ⇥ calendar quarter fixed effects, and to finer controls, including village ⇥ month fixed effects.

To further account for predictable, seasonal weather at the local level, all regressions also control for

the count of days in each bin in the PSU averaged over the preceding 5 years (TempB, 5-year) for the

same calendar month as the main exposure variable (TempB).

4 Variation in Heat and Humidity

Figure 1 offers several views of the weather variation that identifies mortality effects below. Panel B

indicates the locations of the individual survey PSUs in our data, plotted as points. We add special

markers to PSUs above the 99th percentile of days in the top dry bulb bin (T � 95�) in gold. We

likewise indicate PSUs above the 99th percentile of days in the top wet bulb bin (Twb � 85�) in red.

Whereas the hottest dry bulb days tend to be located in sub-Saharan Africa, the hottest wet bulb days

are more likely to occur in South Asia and Southeast Asia.

Panel C of Figure 1 further illustrates how wet and dry bulb temperatures often diverge. Begin-

ning from observations at the PSU-day level, we calculate the range of wet bulb temperatures that

corresponds to various dry bulb temperature bins. The figure shows that for a dry bulb bin that is

10�F wide, variation in humidity can lead to ranges of wet bulb temperatures spanning 20�, 30�, or

even 40�F. The variance in Twb conditional on T tends to increase at higher temperatures.

Panel C shows that the hottest wet bulb temperatures are not coincident with the highest dry

bulb temperatures. The nearly linear relationship between Twb and T breaks around 85�F dry bulb,

at which point the sign of the correlation flips. We exploit the non-collinearity of dry and wet bulb

temperatures below when examining which measure better fits the observed patterns of infant mor-

tality.
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5 Results

5.1 Birth Month Exposure and Infant Mortality

Figure 2 displays our main estimates of Equation (1) for both dry and wet bulb temperature. The

dependent variable is infant mortality, and weather exposure is measured during the month of birth.

We control for interactions of district indicators with month indicators, for rainfall in the exposure

month, and for typical weather in the infant’s birth month in the infant’s village over the five years

that precede the birth. The regression thus reveals how, conditional on usual weather and place-

specific seasonality of births, the temperature profile experienced during the first month of life im-

pacts infant survival.

The plots show a U-shape that is characteristic of temperature-mortality studies: Mortality de-

creases moving left to right from colder to warmer temperatures, then bottoms out in the mild tem-

perature range (60-70�F), and finally rises sharply at very high temperatures. Due to the scaling of

the dependent variable, effects are per 1,000 births. Therefore, a coefficient 0.7 (about the effect of

Twb � 85� in the bottom panel) implies that exposure to one day of mean wet bulb temperature

above 85�F (in place of a 60-70�F day) increases deaths by 0.7 infants per thousand births.

Estimates corresponding to Figure 2, along with additional regression specifications, are reported

in Table 1. Although we include as regressors all of the same degree-day bins shown in the figure,

in the table we report coefficients for only the coldest and hottest bins. Across the columns, we

try various approaches to controlling for local seasonality: In columns 1 and 5, country indicators

interacted with calendar quarter indicators; in columns 2 and 6, country indicators interacted with

month indicators and additional fixed effects for each district; in columns 3 and 7, these district

indicators interacted with month indicators, as in Figure 2.

To examine robustness to very fine geography ⇥ season controls, we add village ⇥ month fixed

effects in columns 4 and 8. Here we face a bias-precision tradeoff as this involves identifying about

500,000 village ⇥ month fixed effects. In practice, the addition of these in column 8 increases standard

errors but does not impact point estimates relative to column 7, which we treat as the preferred

specification. We add household and individual-level covariates in column 9.3 Consistent with the

assumption that conditional on controls for typical local weather, realized weather is as good as

3Household covariates include the child’s sex and whether the mother is literate as well as indicators for birth order,
sibship size, household asset wealth quintiles, and household electrification.
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random, the inclusion of household controls has essentially no impact on parameter estimates. We

show in Appendix A.3 that our estimates are similar when splitting the sample to either focus on or

to drop South Asia, where extreme heat and humidity most often occur together.

It is clear from Table 1 that the estimates that are most robust to alternative control sets are the

coefficients on Twb � 85�. The effect of temperatures < 30� are less precisely estimated but relatively

stable. This is true for both the wet and dry bulb variables, which are more strongly correlated at low

temperatures than at high temperatures (see Figure 1C). In contrast, the estimated effect of days in

the T � 95� dry bulb bin is imprecisely estimated and varies significantly in magnitude across the

columns. Indeed, we show in Appendix A.2 that the wet bulb specifications are much more robust

to further reasonable perturbations on the controls for local seasonality and the choice of bin cutoffs.

In columns 10 through 12, we simultaneously include wet and dry bulb variables in the same

regressions. Coefficients can be separately estimated because a day in a T � 95� bin could corre-

spond to any of several wet bulb bins.4 In these columns, estimates for Twb � 85� remain essentially

unchanged while estimates for T � 95� move closer to zero.

An alternative approach to parameterizing the impact of humidity would be to interact dry bulb

temperatures with measures of absolute or relative humidity. Interestingly, we find that various sim-

ple forms of such interactions yield estimates that are small and never statistically significant.5 Given

that the broader scientific literature (e.g., Im, Pal and Eltahir, 2017) anticipates non-linear impacts

of heat-humidity combinations on human health, this is sensible. The finding is also is consistent

with Barreca (2012), which finds null effects for these types of linear interactions in the context of US

mortality.

The sum of this evidence suggests that the functional form of Twb—which is intrinsically linked

to the physics of evaporation—may better parameterize the underlying process linking heat and

humidity to deaths, at least with respect to infant mortality in our developing country sample. This

finding fits with the theoretical literature that treats the upper range of survival temperatures as being

best described by wet bulb temperature (Sherwood and Huber, 2010), though our paper is the first

to our knowledge to provide econometric estimates of the effects of wet bulb temperatures on infant

deaths. An open question is whether humidity-indexing is as important for adults and as important

4Interpreting coefficients is more complex here because each day falls into both a dry and wet bulb bin and the effects
sum.

5See Appendix A.4.
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in the less hot, less humid regions of the world (where richer countries are predominately located).

A special feature of our data is that at the person level, we observe household characteristics like

wealth and mother’s literacy, which are potentially important for child health outcomes (Thomas,

Strauss and Henriques, 1991) and may interact with weather exposure to affect mortality. However, in

practice we cannot rule in or out economically meaningful heterogeneity by individual or household

characteristics.6 The limit to statistical power here is the tradeoff made in using sample survey data

to measure effects in populations for which effects would be otherwise unmeasurable. As Setel et al.

(2007) explains, “Most people in Africa and Asia are born and die without leaving a trace in any legal

record or official statistic.”

5.2 Effects in Context

The qualitative pattern in Figure 2 resembles results from the prior literature estimated in US and

European data and adult populations, but the scale is importantly different. Many such studies (e.g.,

Deschênes and Greenstone, 2011; Heutel, Miller and Molitor, 2017) find that exposure to a day in the

highest temperature bin increases all-age mortality on the order of 0.01 deaths per 1,000 population.

Our estimates for infants are significantly larger. Days with the highest humidity-indexed mean

temperatures in our setting cause about 0.70 infant deaths per thousand infants born (though days of

Twb � 85� are rarer than T � 90� or T � 95�; see Appendix A.2).

That we find larger effects for babies in poor countries is plausible. In our sample, the baseline

infant mortality rate is an order of magnitude larger (77 deaths per thousand infants) compared to

total mortality in the US and Europe today (about 7 to 8 deaths per thousand population). Preg-

nant mothers and babies in the developing world are more likely than in richer populations to be al-

ready physically weakened due to interactions among poor nutrition, infectious disease, and poverty

(Foster, 1994). And neonates are especially sensitive to environmental conditions due to their still-

developing thermoregulation systems.

Populations in poor countries are also more exposed to outdoor temperatures: In our sample,

which covers births occurring in the 1980s through 2010, a negligible minority of households would

have had access to climate-controlled indoor environments, which have been shown to mitigate im-

pacts on fetuses and infants in the US (Isen, Rossin-Slater and Walker, 2017).7 Our estimates are

6See Appendix A.3 for results showing these null interactions.
7Questions regarding AC were not asked by the DHS precisely because they are irrelevant to these populations.
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closest in magnitude to estimates from the historical US, derived from a period prior to the introduc-

tion of air conditioning. In a sample spanning 1931 to 1959, Barreca et al. (2016) estimates that the

impact of a > 90� day on all-age mortality is about 0.20 deaths per 1,000 population.8

5.3 Timing

An important issue in the context of weather-related deaths is “harvesting,” or hastening deaths that

would have otherwise occurred within a few days or months. Deschênes and Moretti (2009) finds

that increases in mortality following days of very high temperatures in the US are primarily driven

by this type of near-term displacement. In contrast, Heutel, Miller and Molitor (2017) does not find

evidence of such displacement in its US estimates. Both studies examine displacement up to one

month. We examine potential displacement up to two years in Figure 3.

We find that the weather-induced mortality in our setting is not claiming sick babies who would

have succumbed in their first two years regardless of having experienced the weather. In Figure 3

we hold the month of exposure fixed at the birth month (month zero), and measure survival through

age two in one-month increments. Harvesting here would imply a declining effect size moving right

along the horizontal axis, as an initial increase in mortality during the month of exposure would be

(partially) offset by a later decrease in mortality, generating a smaller net effect for mortality mea-

sured in later months. In contrast to the pattern implied by harvesting, the effects of Twb � 85� are

stable over the two year period. For Twb < 30�, the effect grows as mortality is measured later, in-

dicating that some of the mortality occurs the future rather than occurring contemporaneously with

the month of exposure. The finding that the effects of cold, in particular, are stronger when allowing

a longer lag is consistent with Heutel, Miller and Molitor (2017), which studies effects among the US

elderly.

So far, we have focused on the impacts of the weather that occurs during each infant’s birth

month. In Figure 4, we examine impacts of weather that occurs outside of the birth month. Here

we regress infant mortality (first 12 months) on the temperature profile experienced during various

periods. The exposure period varies along the horizontal axes, organized as trimesters (3-month

periods). Towards the left, the exposure variables are calculated as the mother’s exposure prior to

8Our dry bulb estimates in Table 1 column 3 for T � 95� are similar: 0.24. However, as discussed above these estimates
are noisy. We cannot rule in or out effects of dry bulb temperature of the magnitudes that have been documented in studies
using vital registries.
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birth. Toward the right, exposure is calculated as the child’s own exposure during various periods

post-birth. Each point represents a separate regression. The central point in each panel corresponds

to the estimates in Table 1, column 7.

For very cold days (Panel A), although the strongest effects correspond to birth month exposure,

exposure in the prenatal and post-neonatal periods is associated with mortality effects that are each

positive and on the margin of statistical significance. The only estimate in the panel for which this

does not hold is the leftmost point. This point corresponds to the 3-month period that would pre-

cede conception for a full-term birth. Cold days thus appear important throughout the prenatal and

postnatal periods.

The pattern for very hot and humid days (Panel B) is simpler: The only clear effects occur when

the exposure takes place in the month of birth. There is evidence from North America and Europe in

the economics (Barreca, 2018) and epidemiology (Kuehn and McCormick, 2017) literatures that hot

days cause premature births. A possibility here is that high temperatures cause decreased gestational

length, in turn increasing the risk of neonatal death. If this were the case, the total effect of hot

and humid days would be correctly estimated in our regressions, but the mechanism would include

causing a change in birth month. (A reliable measure of gestational length is not a part of mothers’

self reporting of their birth histories.)

An implication of the apparently contemporaneous timing of hot weather exposure and death in

Figure 3B is that it appears most consistent with a direct, biological channel rather than a more com-

plex income feedback mechanism. Exposure and death occurring in the same month would be more

difficult to rationalize through, for example, a weather-induced crop failure feeding back into family

income at the time of harvest and sale. Although such a channel is known to be important for other

outcomes—e.g., adult mortality in Burgess et al. (2017), and economic wellbeing more generally, as

reviewed in Dell, Jones and Olken (2014)—the timing here suggests a more direct biological channel

for this outcome (Hey and Katz, 1969).

6 Conclusion

We shed important new light on the relationship between weather and health in the developing

world, overcoming the lack of vital registry data by relying on birth history surveys from 53 countries.

Our evidence of large effects of heat and humidity on infant mortality highlights several important
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avenues for future research. First, the apparent importance of humidity-indexing suggests the need

for further analysis of the wet bulb parameterization in the economics literature, especially where

there is statistical power to identify the best-fit functional form of heat-humidity interactions. Second,

our findings cohere with concerns in the climate literature that estimates from rich countries could

significantly understate the mortality vulnerability of poor populations. Again, the availability of

data is a key constraint. For example, whereas Deschênes, Greenstone and Guryan (2009) shows

birth weight effects of extreme weather in the US, no estimates are available from poor populations,

where weighing babies at birth is rare (Strauss and Thomas, 1996). Other health and human capital

outcomes (e.g., test scores in Zivin et al., 2018) should be explored in developing countries wherever

data exists or can be generated by researchers. Finally, assessments of the social costs of climate

change should incorporate the high social value of death that occurs in early life, as well as a refined

understanding of the geographic distribution of damages across the hot versus the humid regions of

the world.
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Figure 1: Sample and Summary Statistics

(A) Sample, spanning 53 developing countries

(B) Spatial incidence of hot days and high wet bulb (humidity-indexed temperature) days

(C) Daily means of wet bulb versus dry bulb temperatures
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Note: Panel A displays the countries in our sample. Panel B plots the locations of each survey PSU in the sample.
These are villages in rural places and blocks in urban places. Gold markers indicate PSUs above the 99th percentile
in counts of days with mean (dry bulb) temperatures above 95�F. Red markers indicate the same for mean wet
bulb temperatures above 85�F. Panel C displays the median, middle 90%, and overall range of mean daily wet bulb
temperatures associated with various mean daily dry bulb temperatures. Panel D plots the count of days in each wet
bulb temperature bin in our sample. In panels B and D, statistics are calculated over the birth months of infants in
our sample. In panel C, daily means are taken for each day in the 10 years preceding sample births for each survey
PSU in the sample. 18



Figure 2: The Impacts of Wet and Dry Bulb Temperatures During Birth Month on Infant Mortality

(A) Dry Bulb
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Note: Figure shows the estimated infant mortality effect of exposure to one day in each of the indicated degree-day
bin in the birth month, relative to exposure to a day in the excluded bin, [60,70). The dependent variable is death
in the first year of life (infant mortality), scaled by 1,000 so that the vertical axes indicate effects in terms of deaths
per thousand births. Specifications control for district indicators interacted with month indicators. See Table 1 for
description of the additional controls common to all specifications. Observations are children (live births). Standard
errors clustered by PSU. Point estimates and 95% confidence intervals shown.
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Table 1: Effects of Extreme Temperatures on Infant Mortality

Local	Seasonlity	Controls																													
(Fixed	Effects):

Country	
X	

Quarter

Country		
X				

Month

District				
X					

Month

Village					
X					

Month

Country	
X	

Quarter

Country		
X				

Month

District			
X					

Month

Village					
X					

Month

Village					
X					

Month

Country		
X				

Month

District			
X					

Month

Village					
X					

Month

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Dry	Bulb

T	<	30	 0.43 0.70+ 0.89* 0.64 -0.35 -0.43 0.14
(0.40) (0.41) (0.42) (0.53) (1.09) (1.10) (1.42)

95	≤	T 0.41 0.29 0.24 0.02 0.21 0.15 -0.07
(0.29) (0.29) (0.29) (0.33) (0.29) (0.30) (0.34)

Wet	bulb

Twb	<	30	 0.49 0.64* 0.78* 0.53 0.51 0.98 1.23 0.44
(0.30) (0.31) (0.31) (0.46) (0.46) (0.92) (0.93) (1.21)

85	≤	Twb	 0.65* 0.72* 0.72* 0.69+ 0.70+ 0.71* 0.69* 0.81*
(0.33) (0.33) (0.33) (0.39) (0.38) (0.35) (0.35) (0.40)

Degree-day	bins	included

Prior	5	year	weather	in	birth	month	in	village
Year	indicators	X	month	indicators X X X X X X X X X X X X
Local	seasonality	FEs
Country	X	quarter X X
Country	X	month	and	district X X X
District	X	month X X X
Village	X	month X X X X

Household	covariates X
Observations	(live	births) 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898

Wet	&	Dry	Bulb

All	dry	bulb	bins
All	dry	bulb	bins All	wet	bulb	bins

All	wet	bulb	bins
All	wet	and	dry	bulb	bins
All	wet	and	dry	bulb	bins

Dry	Bulb Wet	Bulb

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator for death in the first year multiplied by 1,000.
The regressors of interest measure the counts of days in various temperature ranges in the infant’s PSU (village/urban block) during the infant’s month of birth.
Coefficients express the marginal effect of exchanging a day in the specified temperature range with a day in the excluded range (60-70�F). All of the same bins shown
in Figure 2 are included as regressors here, though the table reports coefficients for only the coldest and hottest bins. All specifications control for precipitation in the
birth month (linear in centimeters), for year ⇥ month indicators for the birth month (e.g., July 2003), and for the typical seasonal weather in the preceding five years.
This latter is constructed as, for each bin, the count of days in the PSU in the same calendar month as the birth month, averaged over the five years preceding the birth.
Household covariates include the child’s sex and whether the mother is literate as well as birth order (indicators for each order, capped at 6), sibship size (indicators
for each size, capped at 6), indicators for asset wealth quintiles, and an indicator for household electrification. Observations are children (live births). Standard errors
clustered by PSU. + p < 0.1, * p < 0.05.
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Figure 3: Mortality Measured at Various Ages for Weather Exposure in First Month of Life

(A) Exposure month (for Twb < 30�) held fixed at month of birth; survival to
month x varying
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(B) Exposure month (for Twb � 85�) held fixed at month of birth; survival to
month x varying
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Note: Figure plots regression results for infant mortality effect of exposure to one day in each of the indicated degree-
day bins, relative to exposure to a day in the excluded bin, [60,70). Each point represents a separate regression in
which the dependent variable is defined as survival up to age x, with x in months indicated along the horizontal
axis. The month of weather exposure is held fixed at the birth month (month zero). The control specification matches
column 7 in Table 1. Observations are children (live births). Standard errors clustered by PSU. Point estimates and
95% confidence intervals shown.
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Figure 4: Infant Mortality Effects for Weather Exposure Occurring in Utero and Postnatally

(A) Exposure month (for Twb < 30�) varying;
survival measured at 1 year
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(B) Exposure month (for Twb � 85�) varying;
survival measured at 1 year

-2

-1

0

1

2

Ef
fe

ct
 o

f 1
 d

ay
 in

 T
w
b ≥

 8
5°

 b
in

-4 
trim

es
ter

s

-3 
trim

es
ter

s

-2 
trim

es
ter

s

-1 
trim

es
ter

s

mon
th 

of 
bir

th

+1 t
rim

es
ter

s

+2 t
rim

es
ter

s

+3 t
rim

es
ter

s

+4 t
rim

es
ter

s

 
Timing of weather exposure       

Note: Figure plots regression results for infant mortality effect of exposure to one day in each of the indicated degree-
day bin, relative to exposure to a day in the excluded bin, [60,70). The dependent variable is mortality by age one year
(end of month 11) scaled per 1,000 births. Each point represents a separate regression in which the weather exposure
regressors are varied. Towards the left, the exposure variables are calculated as the mother’s exposure prior to birth.
Toward the right, exposure is calculated as the child’s own exposure during various periods post-birth. Except for
the birth month, exposure periods are grouped into 3-month periods (trimesters). The control specification matches
column 7 in Table 1. Observations are children (live births). Standard errors clustered by PSU. Point estimates and
95% confidence intervals shown.
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Appendix

APPENDIX

A.1 Data Appendix: Princeton Meteorological Forcing Dataset

We use the Princeton Meteorological Forcing Dataset throughout the analysis. The Princeton dataset
combines reanalysis data from the National Centers for Environmental Prediction-National Center
for Atmospheric Research (NCEP-NCAR) with a collection of observation-based data. The observa-
tional data come from the Climactic Research Unit (CRU), which is a gridded historical dataset using
weather station observations, as well as from the Global Precipitation Climatology Project (GPCP),
which uses microwave and infrared measurements as well as outgoing longwave radiation retrievals
from multiple satellite instruments in addition to rain gauge observations.

Reanalysis datasets combine observational data with physics-based models to improve the data
in observationally sparse regions. The NCEP-NCAR dataset uses rawisonde (balloon) data from the
NCEP-Global Telecommunications System (GTS) data as the main observational data source, along
with marine data, aircraft data, and satellite sounder data sources, among others. In the NCEP-NCAR
data, upper air temperature and wind are most strongly influenced by the observational data, while
humidity and surface temperature rely more strongly on the model. Precipitation is entirely derived
from the model. Biases in the reanalysis precipitation and near-surface meteorology are corrected
in the Princeton data using observational data on precipitation, temperature, and radiation. We use
Princeton data on temperature, specific humidity, pressure and precipitation at a 0.25 x 0.25 degree,
3-hourly resolution, which are available from 1948-2010. To produce our final weather variables, we
make the following calculations:

1. From 3-hourly temperature, specific humidity, and pressure, we calculate relative humidity
using the following equation1

rh = 0.263 ⇥ p ⇥ sh ⇥


exp
✓

17.67(t � 273.16)
t � 29.65

◆��1

(2)

where rh is relative humidity (%), p is pressure (Pa), sh is specific humidity, and t is temperature
(K).

2. From 3-hourly temperature and relative humidity, we calculate wet bulb temperature using the
Stull Calculation, which is standard for sea level pressure:

wb = t ⇥
⇣

atan[(0.151977 ⇥ (rh + 8.313658)
1
2 ]
⌘
+ atan(t + rh)� atan(rh � 1.676331)+

0.00391838(rh)
3
2 ⇥ atan(0.023101rh)� 4.686035 (3)

Here, temperature is in degrees Celsius.

3. We create daily means of each weather variable across the 8 observations. For the precipitation
data, we create a daily total.

1This equation can be derived as follows: relative humidity is defined by the World Meteorological Organization as
the ratio of the mixing ratio to the saturation mixing ratio ( w

ws
), where ws = 0.622 es

p�es
, where p is pressure and es is the

saturation vapor pressure. This can be closely approximated by 0.622 es
p . Specific humidity can be used as an approximation

for w (http://glossary.ametsoc.org/wiki/Mixing_ratio). Substituting a commonly-used approximation for the Clausius-
Clapeyron equation for es (http://glossary.ametsoc.org/wiki/Clausius-clapeyron_equation) results in the calculation we
use.
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4. From the daily means, we put together our daily bin and heat wave variables for analysis and
finally collapse to the monthly level.

5. For each DHS cluster/month, we create a weighted average of each weather variable for the
four surrounding 0.25-degree grid points. The average is weighted by inverse distance (in km)
from the cluster.

A.2 Robustness

In this section, we report additional specifications to allow the reader to assess the robustness of
various estimates. Table A2 presents wet and dry bulb estimates for a wider combination of fixed
effects, controls for temperatures in the 5-year window preceding the birth, and household-level
covariates. Columns 1 to 4 do not control for the count of days in each bin in the PSU averaged over
the preceding 5 years (TempB, 5-year). Columns 5 to 8 add these controls. Columns 9 to 12 additionally
control for the household covariates described in Table 1. The most stable coefficient estimates are
for the effect of day with wet bulb temperatures in excess of 85� (Panel B). Point estimates for T � 95
(Panel A) are more sensitive to the control set and never statistically significant at p < .05. The
estimates for the coldest bin (< 30�, both panels) are less sensitive in columns 4 through 12 and
similar in the wet and dry bulb specifications, though often not statistically significant.

In Table A3 we show that the lack of statistical significance for hot dry bulb days is not due to
the choice of drawing the cutoff temperature for the highest bin at T � 95�. For the births in our
estimation sample, the average count of days during the birth month with dry bulb temperatures
exceeding 90�, 95�, and 97.5� are 0.85, 0.13, and 0.03, respectively. By comparison the average count
of days in the birth month with with wet bulb temperatures exceeding 85� is 0.04. Across the columns
in Table A3, the cutoffs for the highest bin are set at T � 90�, T � 95�, and T � 97.5�. In the alternative
binning, none of the high dry bulb bins yield statistically significant coefficients, though confidence
interval remain large. We conclude that this analysis is not powered to detect moderately-sized effects
of hot dry bulb days.

A.3 Heterogeneity in Effects

In Table A4 we examine heterogeneity in effects across different world regions and heterogeneity in
effects by household-level characteristics within regions. Column 1 repeats our main estimate for
reference (Table 1 column 7). In columns 2 through 5, the regression is estimated over subsamples
defined by world regions. Because the combination of high heat with high humidity is most common
in our sample in South Asia (in our data Bangladesh, Nepal and Pakistan), we show results separately
for South Asia alone and for the world other than South Asia. We repeat the exercise for Southeast
Asia, another region where high heat and high humidity most often combine. At face value the
point estimates suggest the impacts of hot, humid days are larger in South Asia and Southeast Asia,
where these days are more common, though the various splits do not yield statistically significant
differences.

In columns 6 through 9, we examine whether individual- and household-level characteristics
(and the unobserved endowments and behaviors of which these are correlates) appear to protect
against the effects of extreme weather. The variables of interest are indicators for: mother being liter-
ate, household asset wealth in the highest quintile, electricity present in the household, and whether
the household is in a rural area. To preserve sample size, missing covariate data are coded as not high
assets and no electricity present in the housedhold. These variables are interacted with each tempera-
ture bin, though only the interaction coefficients for the highest and lowest bins are reported. Each of
the main effects shows an economically large and statistically significant effect on infant mortality in
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the expected direction, indicating that these variables are informative of endowments and behaviors
that materially affect infant survival.9 In contrast, in the interaction terms, there is no clear pattern in
which greater endowments are associated with smaller effect sizes than the main effects presented in
Table 1, though the confidence intervals are wide and could accommodate economically meaningful
heterogeneity. One exception is that household electrification appears protective against cold but not
hot days. The limited sample size of our survey data cannot in practice be used to rule in or out eco-
nomically meaningful heterogeneity by potentially relevant individual or household characteristics.

A.4 Alternative Heat-Humidity Interactions

Wet bulb temperature is a humidity-indexed measure of heat with a functional form that tracks the
thermodynamics of evaporation. We find that simpler forms of interactions between dry bulb tem-
perature bins and humidity are small and never statistically significant. In Table A5 we explore
alternative parameterization of the heat-humidity interaction. Across the columns, the functional
form of the heat-humidity interaction is varied: In columns 1 and 2, days falling in the highest bin
range (T � 95�) are split according to whether each day’s relative humidity was above the median
for days above 95�. In columns 3 and 4, the count of days for which T � 95� is interacted with the
mean relative humidity in the month. In columns 5 and 6, the count of days for which T � 95� is
interacted with the mean specific humidity in the month. In the table, the main effects of humidity
are statistically significant and negative, which would be consistent with the Barreca (2012) finding of
greater mortality on very low humidity (but possibly very cold) days. However, interactions between
dry bulb temperature bins and humidity are small and never statistically significant.

Note that in general, high humidity cools the air, which is one reason why days that are both
very hot and very humid are rare. The average count of days in the birth month with with wet bulb
temperatures exceeding 85� is 0.04. By comparison, the average count of days during the birth month
with dry bulb temperatures exceeding 90�, 95�, and 97.5� are 0.85, 0.13, and 0.03, respectively.

In columns 7 to 10, we add controls for specific and relative humidity to the main wet bulb
specifications. The addition of these controls increases point estimates and statistical significance of
the coefficients on Twb � 85�. However, the interpretation becomes more complex, as the marginal
effect of a day at, say, 100�F and 60% relative humidity in place of a day in the excluded category
(60-70�F wet bulb) would include both a humidity component and a Twb component. For example,
taking the estimates from column 8: 0.60 ⇥ �0.15 + 1 ⇥ 0.81 = 0.72. The corresponding estimate
without humidity controls from Table 1 (column 7) was 0.72.

9The main effect of rural is subsumed in the “district” fixed effects.
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Table A1: Sample: Nationally Representative Surveys Merged to Gridded Weather Data

(1) (2) (3) (4)

Country DHS	Survey	Rounds																																							
(Years	of	Interviews)

Birth	Years	
Matched	to	
Weather	Data

Quality	of	non-
DHS	Mortality	

Registrationa

Albania 	2008,	2009 1996-2008 Low
Armenia 2010 1996-2009 Low
Bangladesh 	1999,	2000,	2004,	2007,	2011,	2014 1990-2010 (Incomplete)
Benin 	1996,	2001,	2011,	2012 1981-2010 (Incomplete)
Bolivia 2008 1991-2007 (Incomplete)
Burkina	Faso 	1992,	1993,	1998,	1999,	2003,	2010 1981-2009 (Incomplete)
Burundi 	2010,	2011 1981-2010 (Incomplete)
Cambodia 	2000,	2005,	2006,	2010,	2011,	2014 1991-2010 (Incomplete)
Cameroon 	1991,	2004,	2011 1981-2010 (Incomplete)
Central	African	Republic 	1994,	1995 1981-1994 (Incomplete)
Colombia 	2009,	2010 1991-2009 Medium
Comoros 2012 1981-2010 (Incomplete)
Congo,	Democratic	Republic 	2007,	2013,	2014 1981-2010 (Incomplete)
Cote	d'Ivoire 	1994,	1998,	1999,	2011,	2012 1981-2010 (Incomplete)
Dominican	Republic 	2007,	2013 1991-2010 (Incomplete)
Egypt 	1992,	1993,	1995,	1996,	2000,	2005,	2008 1983-2007 Low
Ethiopia 	2000,	2005,	2010,	2011 1981-2010 (Incomplete)
Gabon 2012 1981-2010 (Incomplete)
Ghana 	1993,	1994,	1998,	1999,	2003,	2008,	2014 1981-2010 (Incomplete)
Guinea 	1999,	2005,	2012 1981-2010 (Incomplete)
Guyana 2009 1991-2008 Medium
Haiti 	2000,	2005,	2006,	2012 1991-2010 (Incomplete)
Honduras 	2011,	2012 1991-2010 (Incomplete)
Indonesia 	2002,	2003 1991-2002 (Incomplete)
Jordan 	2002,	2007,	2012 1983-2010 (Incomplete)
Kenya 	2003,	2008,	2009,	2014 1981-2010 (Incomplete)
Kyrgyz	Republic 2012 1996-2010 Medium
Lesotho 	2004,	2005,	2009,	2010,	2014 1981-2010 (Incomplete)
Liberia 	2006,	2007,	2013 1981-2010 (Incomplete)
Madagascar 	1997,	2008,	2009 1981-2008 (Incomplete)
Malawi 	2000,	2004,	2005,	2010 1981-2009 (Incomplete)
Mali 	1995,	1996,	2001,	2006,	2012,	2013 1981-2010 (Incomplete)
Moldova 2005 1996-2004 (Incomplete)
Morocco 	2003,	2004 1983-2003 (Incomplete)
Mozambique 2011 1981-2010 (Incomplete)
Namibia 	2000,	2006,	2007,	2013 1981-2010 (Incomplete)
Nepal 	2001,	2006,	2011 1990-2010 (Incomplete)
Niger 	1992,	1998 1981-1997 (Incomplete)
Nigeria 	1990,	2003,	2008,	2013 1981-2010 (Incomplete)
Pakistan 	2006,	2007 1990-2006 (Incomplete)
Peru 2000 1991-1999 Low
Phillipines 	2003,	2008 1991-2007 Medium
Rwanda 2005 1981-2004 (Incomplete)
Senegal 	1992,	1993,	1997,	2005,	2010,	2011 1981-2010 (Incomplete)
Sierra	Leone 	2008,	2013 1981-2010 (Incomplete)
Swaziland 	2006,	2007 1981-2006 (Incomplete)
Tajikistan 2012 1996-2010 Low
Tanzania 	1999,	2009,	2010 1981-2009 (Incomplete)
Timor-Leste 	2009,	2010 1991-2009 (Incomplete)
Togo 	1998,	2013,	2014 1981-2010 (Incomplete)
Uganda 	2000,	2001,	2006,	2011 1981-2010 (Incomplete)
Zambia 	2007,	2013,	2014 1981-2010 (Incomplete)
Zimbabwe 	1999,	2005,	2006,	2010,	2011 1981-2010 (Incomplete)

Note: Table lists DHS surveys used in construction of the sample. Rows in the table correspond to countries, which
are listed in column 1. Column 2 lists the DHS survey round years. Column 3 indicates the birth years included
in our sample matched in time and place to weather variables. These years extend backwards from the survey
date, as mothers are reporting on their birth histories. Column 4 describes the completeness and quality of national
mortality registration data as a point of contrast.
a Source for column 5 data is Mathers et al. (2005). The label “incomplete” was applied by Mathers et al. (2005) if the
country did not supply registration data on cause-of-death with at least 50% completeness or coverage as estimated
by WHO.
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Table A2: Robustness to Alternative Controls for Local Seasonality and Household Covariates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel	A:	Dry	Bulb

T	<	30	 0.95** 1.46** 1.93** 0.57 0.44 0.68+ 0.88* 0.62 0.41 0.54 0.71+ 0.62
(0.26) (0.36) (0.42) (0.52) (0.40) (0.41) (0.42) (0.53) (0.40) (0.41) (0.42) (0.52)

95	≤	T 0.38+ 0.08 -0.04 0.06 0.4 0.31 0.26 0.05 0.36 0.28 0.22 0.08
(0.19) (0.20) (0.25) (0.33) (0.29) (0.29) (0.29) (0.33) (0.29) (0.29) (0.29) (0.33)

Panel	B:	Wet	bulb

Twb	<	30	 1.12** 1.27** 1.63** 0.52 0.48 0.66+ 0.81* 0.54 0.46 0.54 0.67+ 0.5
(0.22) (0.29) (0.32) (0.45) (0.34) (0.35) (0.36) (0.46) (0.34) (0.35) (0.35) (0.46)

85	≤	Twb	 0.35 0.59* 0.55+ 0.66+ 0.67* 0.68* 0.68* 0.71+ 0.67* 0.66* 0.65+ 0.71+
(0.28) (0.28) (0.31) (0.39) (0.33) (0.33) (0.34) (0.39) (0.33) (0.33) (0.33) (0.38)

Degree-day	bins	included

Prior	5	year	weather	in	birth	month	in	village X X X X X X X X
Year	indicators	X	month	indicators X X X X X X X X X X X X
Local	seasonality	FEs
Country	X	quarter X X X
Country	X	month	and	district X X X
District	X	month X X X
Village	X	month X X X

Household	covariates X X X X
Observations	(live	births) 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2865898 2,865,898

All	dry	bulb	(Panel	A)	or	wet	bulb	(Panel	B)	bins

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator for death in the first year multiplied
by 1,000. Within each column, Panels A and B report results from separate regressions with parallel control sets. Observations are children (live births).
Standard errors clustered by PSU. + p < 0.1, * p < 0.05. See Table 1 notes for additional information on control variables.
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Table A3: Alternative Dry Bulb Temperature Binning

(1) (2) (3) (4) (5) (6)

T	<	30	 0.70+ 0.89*

(0.41) (0.42)

95	≤	T	 0.29 0.24

(0.29) (0.29)

T	<	30	 0.68+ 0.88*

(0.41) (0.42)

90	≤	T	 0.22 0.18

(0.15) (0.16)

T	<	30	 0.68+ 0.88*

(0.41) (0.42)

95	≤	T	<	97.5	 0.43 0.28

(0.37) (0.38)

97.5	≤	T	 0.08 0.22

(0.55) (0.59)

Year	indicators	X	month	indicators X X X X X X

Local	seasonality	FEs

Country	X	quarter

Country	X	month	and	district X X X

District	X	month X X X

Village	X	month

Observations	(live	births) 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator
for death in the first year multiplied by 1,000. Across the columns, the binning of dry bulb temperatures for the
hottest days is varied. Columns 1 and 2 repeat columns 2 and 3 from Table 1: < 30, [30,40), [40,50), [50,60), [60,70),
[70, 80), [80,85), [85,90), [90,95), and � 95. Columns 3 and 4 use the dry bulb bins: < 30, [30,40), [40,50), [50,60),
[60,70), [70, 80), [80,85), [85,90), and � 90. Columns 5 and 6 use the dry bulb bins: < 30, [30,40), [40,50), [50,60),
[60,70), [70, 80), [80,85), [85,90), [90,95), [95,97.5), and � 97.5. In all cases, the controls for typical weather match the
Table 1 specification. See Table 1 notes. Observations are children (live births). Standard errors clustered by PSU. +
p < 0.1, * p < 0.05.
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Table A4: Heterogeneity by World Region and Household Characteristics

World,	
Main	

Estimate

South	Asia
World	
Minus	

South	Asia

Southeast	
Asia

World	
Minus	

Southeast	
Asia

Mother	
Literate

HH	Asset	
Wealth

HH	
Electricty Rural

Mean	days	of	85	≤	Twb	in	birth	month: 0.04 0.45 0.01 0.13 0.04 0.04 0.04 0.04 0.04
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Twb	<	30	 0.81* 0.45 0.70+ -- 0.80* 0.96* 0.77* 1.82** 0.47
(0.36) (1.01) (0.38) (0.36) (0.40) (0.37) (0.57) (0.58)

85	≤	Twb	 0.68* 1.11* 1.03 1.12 0.54 0.70+ 0.72* 0.43 0.19
(0.34) (0.56) (0.64) (0.80) (0.39) (0.42) (0.36) (0.42) (0.56)

Mother	Literate -15.54**
(1.02)

Mother	Literate	X	Twb	<	30 -0.53
(0.55)

Mother	Literate	X	85	≤	Twb -0.09
(0.51)

High	Asset	Wealth -19.92**
(1.33)

High	Asset	Wealth	X	Twb	<	30 0.24
(0.41)

	High	Asset	Wealth	X	85	≤	Twb	 -0.25
(0.59)

Electricity	in	HH -17.69**
(1.16)

Electricity	in	HH	X	Twb	<	30 -1.28*
(0.53)

Electricity	in	HH	X	85	≤	Twb 0.56
(0.52)

Rural	X	Twb	<	30 0.50
(0.69)

Rural	X	85	≤	Twb 0.66
(0.65)

Degree-day	bins	included
Prior	5	year	weather	in	birth	month	in	village
Year	indicators	X	month	indicators X X X X X X X X X
Local	seasonality	FEs
Country	X	quarter
Country	X	month	and	district
District	X	month X X X X X X X X X
Village	X	month

Observations	(live	births) 2,865,898 196,782 2,669,116 183,378 2,682,520 2,865,898 2,865,898 2,865,898 2,865,898

Interactions	with	HH	Characteristics

All	wet	bulb	bins
All	wet	bulb	bins

All	wet	bulb	bins
All	wet	bulb	bins

By	World	Region

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator for
death in the first year multiplied by 1,000. In columns 2 through 5, the regression is estimated over subsamples defined
by world regions. In columns 6 through 9, the indicated household-level covariates are interacted with each temperature
bin, though only the coefficients for the highest and lowest bins are reported. These interaction variables are indicators
for: mother being literate, household asset wealth in the highest quintile, electricity present in the household, and rural.
Observations are children (live births). Standard errors clustered by PSU. + p < 0.1, * p < 0.05. The control set for all
regressions matches the specification in column See Table 1 notes for additional information on control variables.
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Table A5: Alternative Heat-Humidity Interactions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

95	≤	T	 0.32 0.22 0.23 -0.14 0.17 -0.13
(0.37) (0.41) (0.56) (0.64) (0.59) (0.68)

85	≤	Twb	 0.77* 0.81* 1.01** 1.13**
(0.34) (0.34) (0.35) (0.37)

95	≤	T	X	high	rel.	humidity	on	day 0.00 0.08
(0.48) (0.55)

relative	humidity	in	month -0.07* -0.13** -0.11** -0.15**
(0.03) (0.04) (0.03) (0.04)

rel.	humidity	in	month	X	95	≤	T 0.00 0.01
(0.02) (0.02)

specific	humidity	in	month -0.17 -0.37* -0.66** -0.92**
(0.12) (0.16) (0.24) (0.29)

	specific	humidity	in	month	X	95	≤	T 0.02 0.05
(0.06) (0.07)

Degree-day	bins	included
Prior	5	year	weather	in	birth	month	in	village
Year	indicators	X	month	indicators X X X X X X X X X X
Local	seasonality	FEs
Country	X	quarter
Country	X	month	and	district X X X X X
District	X	month X X X X X
Village	X	month

Observations	(live	births) 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898 2,865,898

Dry	Bulb	/	Humidity	Interactions Wet	Bulb	Effects	with	Humidity	Controls

All	dry	bulb	bins
All	dry	bulb	bins

All	wet	bulb	bins
All	wet	bulb	bins

Note: Table reports results from a series of OLS regressions. The dependent variable in all columns is an indicator for death in the first year multiplied
by 1,000. Across the columns, the functional form of the heat-humidity interaction is varied. In columns 1 and 2, days falling in the highest bin range
(T � 95�) are split according to whether each day’s relative humidity was above the median for days above 95�. In columns 3 and 4, the count of days
for which T � 95� is interacted with the mean relative humidity (%) in the month. In columns 5 and 6, the count of days for which T � 95� is interacted
with the mean specific humidity (grams water per grams air) in the month. In columns 7 to 10, controls for specific and relative humidity are added
to the main wet bulb specifications. See Table 1 notes for additional information on control variables. Observations are children (live births). Standard
errors clustered by PSU. + p < 0.1, * p < 0.05.
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