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Abstract 
Soil moisture is an important variable for the cycling of water and energy at the 
catchment/regional/global scale. Soil moisture content is usually simulated by land surface 
models, monitored by ground-based sensors, or observed by remote sensing techniques. 
However, land surface models often have high uncertainties due to simplified 
parameterizations and uncertainties from input forcing data and hydraulic parameters. For 
example, in most land surface models, the interaction between groundwater and root zone 
soil moisture is neglected. The availabilities of in situ monitoring networks are limited 
because of high costs. Remote sensing can provide soil moisture at the global scale but is 
limited to the top 5 cm and resolution is coarse. Data assimilation can take advantage of these 
three different sources of information by assimilating the observations (e.g. from the ground 
sensors or remote sensing data) into the land surface models to improve soil moisture 
predictions in both space and time. Furthermore, soil hydraulic parameters in land surface 
models can also be estimated jointly with soil moisture by data assimilation to further 
improve soil moisture characterization. In order to make land surface models more robust, 
integrated land surface-subsurface models have been developed which consider the effect of 
groundwater on root zone soil moisture in a fully two-way coupled fashion.  

In this work, we firstly compared four data assimilation methods in terms of joint estimation 
of soil moisture and soil hydraulic parameters for two land surface models. The four 
assimilation methods included Ensemble Kalman Filter (EnKF) with state augmentation 
(EnKF-AUG) or dual estimation (EnKF-DUAL), the residual resampling Particle Filter 
(RRPF) and the MCMC-based parameter resampling method (PMCMC). The two land 
surface models used were the Variable Infiltration Capacity Model (VIC) and the Community 
Land Model (CLM version 4.5). Real world data (soil properties, soil moisture measurements 
at 5, 20 and 50 cm depth, climate forcing data) from the Rollesbroich site located in the 
western Germany were used. We evaluated the usefulness and applicability of the four 
different data assimilation methods for joint parameter and state estimation of the VIC and 
the CLM using a 5-month calibration (assimilation) period of the soil moisture measurements. 
The performance of the “calibrated” VIC and CLM were investigated using water moisture 
measurements of a 5-month evaluation period. Results from the first study showed that all of 
the four assimilation methods were able to improve the model predictions of soil moisture 
after soil hydraulic parameters (for VIC) or sand/ clay/ organic matter fraction (for CLM) 
were jointly estimated with soil moisture. Overall, EnKF (EnKF-AUG and EnKF-DUAL) 
performed better than PF (RRPF and PMCMC). The differences between the soil moisture 
simulations of VIC and CLM were much larger than the discrepancies among the four data 
assimilation methods. CLM performed better than VIC in the soil moisture simulations at 50 
cm depth. The large systematic underestimation of water storage at 50cm depth in VIC is 
most probably related to the fact that groundwater is not well represented in VIC.  

Therefore, one conclusion from this first study was that groundwater was essential for the 
estimation of the soil moisture content in the deeper soil profile. Therefore in the second 
study, an integrated model, TerrSysMP, which couples a land surface model and a 
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groundwater flow model, was used to investigate the potential of assimilating groundwater 
level data to improve the characterization of root zone soil moisture. We evaluated five data 
assimilation strategies, based on EnKF, in small scale synthetic experiments. In the 
groundwater level data assimilation experiments with TerrSysMP, the five data assimilation 
methodologies demonstrated that EnKF could not handle well strongly skewed state 
distributions (non-Gaussian distribution). In TerrSysMP, in the unsaturated zone during dry 
periods very negative pressure heads were calculated. The best methodology to solve this 
problem was constructing the state vector, to be updated in data assimilation, with pressure 
head for the saturated zone and soil moisture for the unsaturated zone. This approach gave the 
best results among the five methodologies and avoided strongly skewed state distribution in 
EnKF. 

It was expected that the relation between groundwater level and root zone soil moisture was 
affected by different climate conditions, plant functional types (PFTs) and soil textures. So in 
the third study, we analysed the effect of climate, PFTs and soil textures on the assimilation 
of groundwater level also with TerrSysMP and small scale synthetic experiments. Results 
from the third study showed that different climate conditions, PFTs and soil textures 
generated different groundwater levels and soil moisture distributions. In different data 
assimilation experiments surface soil moisture and groundwater level were jointly assimilated 
and results were evaluated in terms of improving root zone soil moisture characterization. 
Results showed that assimilation performance was more sensitive to climate condition and 
soil texture, and less sensitive to PFTs. It was also found that assimilation generally worked 
better if groundwater levels were between -1m and -5m below the soil surface. 

In summary, these results showed that data assimilation is a promising way to improve the 
model predictions and model parameter estimations. The linkage between root zone soil 
moisture and groundwater is either neglected or simplified in most land surface models. The 
fully-coupled subsurface-surface model TerrSysMP which is used in this work can properly 
handle this linkage. Assimilation of groundwater level in TerrSysMP is well suited for 
improving the characterization of root zone soil moisture. 
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Zusammenfassung 
Bodenfeuchte ist eine wichtige Variable für Wasser- und Energieflüsse auf 
Einzugsgebietsebene, sowie auf der regionalen und globalen Skala. Der Bodenwassergehalt 
wird in der Regel mit Hilfe von Landoberflächenmodelle simuliert, von bodenbasierten 
Sensoren gemessen oder durch Fernerkundungstechniken beobachtet. Allerdings haben 
Landoberflächenmodelle oftmals hohe Unsicherheiten aufgrund vereinfachter 
Parametrisierungen sowie Unwägbarkeiten in den Eingabegrößen und hydraulischen 
Parametern. Zum Beispiel werden bei den meisten Landoberflächenmodellen 
Wechselwirkungen zwischen Grundwasser und dem Bodenwasser in der Wurzelzone 
vernachlässigt. Die Verfügbarkeit von in-situ-Monitoring-Netzwerken ist aufgrund der hohen 
Kosten begrenzt.. Die Fernerkundung kann Bodenfeuchtedaten auf globaler Ebene 
bereitstellen, ist aber auf die oberen 5 cm des Bodenprofils limitiert und die Auflösung ist 
grob. Die Datenassimilierung kann diese drei verschiedenen Informationsquellen nutzen, 
indem die Beobachtungen (z.B. von den Bodensensoren oder Fernerkundungsdaten) in die 
Landoberflächenmodelle eingebunden werden, um die Bodenfeuchtigkeitsvorhersagen 
sowohl im Raum als auch über die Zeit zu verbessern. Darüber hinaus können auch 
bodenhydraulische Parameter in Landoberflächenmodellen gemeinsam mit Bodenfeuchte 
durch Datenassimilation geschätzt werden, um die Bodenfeuchtebeschreibung weiter zu 
verbessern. Um Landoberflächenmodelle robuster zu machen, wurden integrierte 
Landoberflächen-Untergrund-Modelle entwickelt, welche die Interaktionen zwischen 
Grundwasser und Bodenwasser in der Wurzelzone mit Hilfe einer vollständig 
wechselseitigen Kopplungberücksichtigen. 

In dieser Arbeit verglichen wir zunächst vier Datenassimilationsmethoden in Bezug auf die 
gemeinsame Schätzung der Bodenfeuchte und der hydraulischen Parameter für zwei 
Landoberflächenmodelle. Die vier Assimilationsmethoden umfassten den Ensemble Kalman 
Filter (EnKF) mit „state augmentation“ (EnKF-AUG) oder „dual estimation“ (EnKF-DUAL), 
den „residual resampling particle filter“- (RRPF) und die „Markov chain Monte Carlo-based 
parameter resampling“-Methode (PMCMC). Die beiden Landoberflächenmodelle waren das 
„Variable Infiltration Capacity Model“ (VIC und das „Community Land Model“ (CLM 
Version 4.5). Es wurden reale Daten (Bodeneigenschaften, Bodenfeuchtemessungen in 5, 20 
und 50 cm Tiefe, Klimadaten) vom Standort Rollesbroich in Westdeutschland verwendet. 
Wir untersuchten die Nützlichkeit und Anwendbarkeit der vier verschiedenen 
Datenassimilationsmethoden für die gemeinsame Parameter- und Zustandsschätzung mit dem 
VIC und dem CLM unter Verwendung einer 5-monatigen Kalibrierungsperiode (Assimilation) 
mit Bodenfeuchtemessungen. Die Güte der "kalibrierten" Modelle, VIC und CLM, wurde 
anhand von Bodenwassermessungen in einem 5-monatigen Evaluationszeitraum untersucht. 
Die Ergebnisse der ersten Studie zeigten, dass alle vier Assimilationsmethoden die 
Modellvorhersagen der Bodenfeuchte verbessern konnten, nachdem die bodenhydraulischen 
Parameter (für VIC) oder die Anteile an Sand, Ton und organischer Substanz (für CLM) 
gemeinsam mit der Bodenfeuchte angepasst wurden. Insgesamt lieferte EnKF (EnKF-AUG 
und EnKF-DUAL) bessere Ergebnisse als PF (RRPF und PMCMC). Die Unterschiede 
zwischen den Bodenfeuchtesimulationen von VIC und CLM waren viel größer als die 
Diskrepanzen zwischen den vier Datenassimilationsmethoden. CLM hat in den 
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Bodenfeuchtigkeitssimulationen in 50 cm Tiefe besser abgeschnitten als VIC. Die große 
systematische Unterschätzung des Wasserspeichers in 50 cm Tiefe in VIC hängt 
höchstwahrscheinlich damit zusammen, dass das Grundwasser im VIC nicht gut beschrieben 
ist. 

Eine Schlussfolgerung aus dieser ersten Studie war daher, dass die korrekte Simulation der 
Grundwasserdynamik für die Schätzung des Bodenfeuchtegehalts im tieferen Bodenprofil 
unerlässlich war. Daher wurde in der zweiten Studie ein integriertes Modell, TerrSysMP, 
welches ein Landoberflächen- und ein Grundwasserströmungsmodell koppelt, verwendet, um 
das Potenzial der Assimilierung von Grundwasserspiegeldaten für eine bessere Beschreibung 
des Bodenwassers in der Wurzelzone zu untersuchen. Wir haben fünf 
Datenassimilationsstrategien, basierend auf EnKF, in kleinräumigen synthetischen 
Experimenten ausgewertet. In den Grundwasserspiegel-Datenassimilationsexperimenten mit 
TerrSysMP zeigten die fünf Datenassimilationsmethoden, dass EnKF Probleme mit der 
Verabeitung sehr schiefer Wahrscheinlichkeitsverteilungen (nicht-Gaußsche Verteilungen) 
der Zustandsgrößen hatte In TerrSysMP wurden in der ungesättigten Zone während 
Trockenperioden sehr negative Druckhöhen berechnet. Die beste Methode zur Lösung dieses 
Problems war die Definition des Zustandsvektors, der in der Datenassimilation aktualisiert 
werden soll, mit Druckhöhe für die gesättigte Zone und Bodenfeuchte für die ungesättigte 
Zone. Dieser Ansatz ergab die besten Ergebnisse unter den fünf Methoden und vermied eine 
sehr schiefe Verteilung der Zustandsgrößen in EnKF. 

Es wurde erwartet, dass die Beziehungen zwischen Grundwasserspiegel und Bodenwasser in 
der Wurzelzone durch unterschiedliche Klimabedingungen, funktionale Pflanzentypen (PFTs) 
und Bodentexturen beeinflusst werden. So analysierten wir in der dritten Studie die Wirkung 
von Klima, PFTs und Bodentextur auf die Assimilation des Grundwasserspiegels auch in 
TerrSysMP und mit kleinräumigen synthetischen Experimenten. Die Ergebnisse dieser Studie 
zeigten, dass unterschiedliche Klimabedingungen, PFTs und Bodentexturen unterschiedliche 
Grundwasserspiegel und Bodenfeuchtigkeitsverteilungen erzeugten. In verschiedenen 
Datenassimilationsexperimenten wurden die Bodenfeuchte und der Grundwasserspiegel 
gemeinsam assimiliert und die Ergebnisse wurden hinsichtlich der verbesserten Schätzung 
des Bodenwassers in der Wurzelzone bewertet. Die Ergebnisse zeigten, dass die 
Assimilationsgüte sensibler gegenüber Klimabedingungen und Bodenbeschaffenheit war und 
weniger gegenüber PFTs. Es wurde auch festgestellt, dass die Assimilation im Allgemeinen 
bessere Ergebnisse lieferte, wenn die Grundwasserspiegel zwischen -1 m und -5 m unterhalb 
der Bodenoberfläche lagen. 

Zusammenfassend zeigten diese Ergebnisse, dass die Datenassimilation eine 
vielversprechende Methode ist, welche die Modellvorhersagen und -parameterschätzungen 
verbessert. Die Verknüpfung zwischen Bodenwasser in der Wurzelzone und Grundwasser 
wird in den meisten Landoberflächenmodellen entweder vernachlässigt oder vereinfacht. Das 
vollständig gekoppelte Landoberflächen-Untergrund-Modell TerrSysMP, das in dieser Arbeit 
verwendet wird, kann diese Verknüpfung richtig behandeln. Die Assimilation des 
Grundwasserspiegels in TerrSysMP eignet sich hervorragend zur Verbesserung der 
Beschreibung des Bodenwassers in der Wurzelzone.  
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Chapter 1 : Introduction 
A good knowledge of hydrologic conditions is of critical importance to our daily life such as 
agricultural irrigation and production, flood and drought prediction, water resources 
management, weather forecast, water supply and environmental preservation. In land surface 
hydrologic processes, surface soil moisture and root zone soil moisture content dynamically 
change in time and space as the result of precipitation and evapotranspiration. Soil moisture 
content plays an important role in the global energy and water cycles due to its control on the 
division of net radiation between sensible and latent heat flux at the atmosphere-land-
vegetation interface (Koster et al., 2004). Changes in average soil moisture content related to 
climate change have the potential to significantly impact climate change via feedback 
processes (Seneviratne et al., 2010). Soil moisture constrains plant transpiration and 
photosynthesis (Havranek and Benecke, 1978) and affects biogeochemical cycles. For 
example, high soil moisture content is associated with increased N2O production (Rubol et al., 
2013). Therefore monitoring, estimating and predicting soil moisture content is necessary and 
essential in many aspects (Houser et al., 2004; Houser et al., 2012).   

Soil moisture measurements are available at different scales. Soil moisture can be evaluated 
by soil samples in the laboratory. Soil samples are collected from field sites which are 
affected by variability in soil properties, terrain, micro-climate, and vegetation. Indirect 
methods can establish a relation between soil properties and soil moisture. Information of the 
soil dielectric constant, variations of the gravity field or soil suction can be converted to soil 
moisture estimates as the capacity of a soil to retain water is a function of its texture and 
structure (Park and Xu, 2017). For example, ground-based observational networks provide a 
good way to precisely measure temporal and spatial variation of soil moisture at the field 
scale. In a measurement network, soil moisture sensors/probes are installed at different 
locations and different depths throughout the study site. Based on an empirical (Topp et al., 
1980) or semi-theoretical model (Birchak et al., 1974) between soil moisture and dielectric 
permittivity from sensor/probe response, time series of soil moisture can be monitored by the 
sensors/probes without disturbing the soil system. However, in situ measurements are very 
localized and limited in spatial coverage (Robock et al. 2000; Robinson et al., 2008; Dorigo 
et al., 2011).  

The Cosmic-ray Soil Moisture Observation System is a promising method to measure soil 
moisture at an intermediate spatial scale with a single sensor (Zreda et al., 2012; Han et al., 
2014b). The footprint of a cosmic-ray probe measurement is on the scale of ~10 ha and the 
penetration depth is, depending on soil moisture content, 10-70 cm. Remote sensing 
techniques make it possible to measure surface soil moisture at large scale (Jackson, 1993). 
Examples are the ESA Soil Moisture and Ocean Salinity and the NASA Soil Moisture Active 
Passive missions, launched in 2009 and 2015 respectively. They provide different levels of 
global soil moisture products with spatial resolutions between 9km and 50km. However, 
surface soil moisture from remote sensing only represents information from the upper 5 cm. 
The conversion of the measured brightness temperature into soil moisture is also affected by 
many factors, like water body fraction, vegetation density, frozen status of soil and 



6 
 

uncertainties in the retrieval parameters. Given these errors, the usefulness of the remotely-
sensed soil moisture products is limited.  

Land surface models (LSMs) provide a good way to simulate soil moisture content at 
regional and global scales. They formulate physical understanding of the land surface-
vegetation-atmosphere system (Overgaard et al., 2006). LSMs simulate terrestrial biosphere 
fluxes of matter and energy via numerical solution of the water, energy, carbon and nitrogen 
balances of the land-surface. The hydrologic processes include soil evaporation, surface 
runoff, infiltration, canopy interception and transpiration, groundwater drainage and recharge 
and precipitation. Different LSMs have different parameterizations, simplifications and 
assumptions for modelling these processes. Generally, the spatial resolution of LSMs is 
dictated by the applications, changing from hyper-resolution (100 m to 1 km) to very coarse 
resolution (20km to 100km). LSM predictions are affected by uncertainties in the 
meteorological forcing variables, model parameters, and model formulations (Reichle et al., 
2004). 

In most LSMs interaction between root zone soil moisture and groundwater is neglected or 
not explicitly treated (Liang and Guo, 2003; Chen and Hu, 2004; Kollet and Maxwell, 2008; 
Miguez-Macho et al., 2008; Zhu et al. 2013). Although groundwater may have a small effect 
on soil moisture in areas with a deep groundwater table, groundwater can act as a soil water  
source  and  have  substantial  effects  in  areas  where  the  groundwater  table  is  closer to 
the land surface. A shallow groundwater table is more likely to cause surface runoff. On the 
other hand, deep percolation is needed when rainfall or irrigation are in excess to the soil 
water content deficit, thus producing a downward flux to recharge groundwater through the 
bottom boundary of the root zone.  

As groundwater is a significant water source for soil moisture especially for root zone soil 
moisture (water rise across the bottom of the soil profile) (Liu et al., 2006; Zhu et al., 2013), 
there has been increasing interest in incorporating a groundwater component into LSMs to 
improve the representation of soil moisture at the land surface. Liang et al. (2003) 
implemented a new parameterization in the VIC (Variable Infiltration Capacity) model to 
investigate the effects of surface and groundwater interactions on soil moisture, 
evapotranspiration, runoff and recharge. Yeh and Eltahir (2005) linked a lumped unconfined 
aquifer model to a LSM and found that most of the simulated hydrological states (e.g., water 
table depth and soil moisture) and fluxes (e.g., runoff and evaporation) were better simulated. 
Graham and Butts (2005) developed the MIKE-SHE hydrological model which covers the 
major processes in the hydrologic cycle and includes process models for evapotranspiration, 
overland flow, unsaturated flow, groundwater flow, and channel flow and their interactions. 
Maxwell and Miller (2005) coupled a LSM (Common Land Model) and a variably saturated 
groundwater flow model (ParFlow) and demonstrated that the soil moisture and water table 
depth simulated by the coupled model agreed well with observations. More recently the 
atmosphere-land surface-subsurface Terrestrial System Modeling Platform (TerrSysMP) 
(Shrestha et al., 2014) was developed to consider land–atmosphere interaction and subsurface 
hydrodynamics in the terrestrial system. 
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Land data assimilation provides a good way to merge uncertain observations with predictions 
of imperfect models to optimally estimate soil moisture dynamics. In situ soil moisture 
measurements have high accuracy but the sampled spatial volume is limited. Remotely 
sensed retrievals and LSM estimates show a good spatial coverage but are associated with 
high uncertainties. Data assimilation combines the complementary information from the 
measurements and LSMs to produce a superior estimate of soil moisture (Reichle et al., 2002; 
Reichle et al., 2008). Data assimilation of soil moisture has been tested with soil moisture 
measurements collected during field campaigns and with synthetic/real satellite retrievals 
(Houser et al., 2001; Margulis et al., 2002; Reichle et al., 2002; Walker et al., 2002; Crow 
and Wood 2003; Dunne and Entekhabi 2005; Zhou et al., 2006; Blasone et al., 2008; Huang 
et al., 2008; Pipunic et al., 2011; Han et al., 2013; De Lannoy and Reichle 2016). 
Constraining LSMs using data assimilation techniques has been demonstrated to be an 
effective way to estimate soil moisture dynamics (Ni-Meister 2008; Reichle et al., 2009).   

Commonly used data assimilation algorithms in hydrology include Ensemble Kalman Filter 
(EnKF) (Evensen, 1994), Particle Filter (PF) (Gordon et al., 1993) and their variants, which 
are Monte Carlo implementations of the Bayesian update problem. The use of the Monte 
Carlo approach allows to explicitly deal with different sources of modelling error and can 
also be used in combination with complex non-linear system models. EnKF is more CPU- 
efficient than PF, but it only shows an optimal performance if the model states and 
parameters which are updated are Gaussian-distributed. EnKF, PF and their variants are 
broadly used in hydrology data assimilation and their ability in decreasing the model 
prediction uncertainty has been demonstrated (Reichle et al., 2002; Zhou et al., 2006; Houser 
et al., 2012). In these studies the observations used to update model states were soil moisture 
(Huang et al., 2008; Pipunic et al., 2011; Han et al., 2012; Flores et al., 2012; Yan et al., 
2015), discharge (Andreadis et al., 2007; Neal et al., 2009; Pauwels and De Lannoy 2009), 
runoff (Lorenz et al., 2015) and streamflow (Hirpa, 2013). But most of the works evaluate the 
ability of EnKF, PF or their variants individually, and the performance of the algorithms is 
only compared in few studies (Dechant and Moradkhani, 2012; Dumedah and Coulibaly, 
2013; Chen et al., 2015).  

Moreover, joint estimation of parameters and state variables via EnKF, PF or variants of 
these algorithms could enhance significantly the predictive capabilities of LSMs. The power 
and usefulness of such joint state and parameter estimation methods have been investigated 
by different authors in the hydrologic literature. Most of these publications use synthetic (or 
twin) experiments with assimilation of artificially generated observations in LSMs, like the 
Community Land Model (Su et al., 2011; Plaza et al., 2012; Han et al., 2014a; Hoppe et al., 
2014), NOAA-Noah LSM (Shi et al., 2014) and Soil and Water Assessment Tool model (Liu 
et al., 2017).  

These synthetic experiments conclude that the joint estimation of parameters and state 
variables via data assimilation enhances significantly the predictive capabilities of LSMs. 
Despite this growing body of applications, relatively few studies have focused on real-world 
joint state-parameter estimation via assimilation in LSMs, like the Community Land Model 
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(Tian et al., 2008; Lo et al., 2010; Post et al., 2017), the VIC-model (Bi et al., 2014; Peng et 
al., 2014) and the Flux-PIHM model (Shi et al., 2015b). 

Considering the interaction between root zone soil moisture and groundwater in integrated 
models, assimilation of groundwater level data has a great potential to improve estimation of 
root zone soil moisture. Moreover, groundwater level is available in many places and at 
regional and national scales as it can be continuously measured by automatic sensing devices 
at low cost and high accuracy, like the Collaborative National Groundwater Monitoring 
Network Program for the United States (Subcommittee on Ground Water, 2011). By 
assimilating the groundwater level measurements in the integrated models, land surface 
hydrologic processes can be better simulated as root zone soil moisture will be better 
reproduced which also affects evapotranspiration. Recently, a few studies were presented 
where groundwater levels were assimilated in integrated hydrological models (Shi et al., 2014; 
Rasmussen et al., 2015; Zhang et al., 2016), but this subject is still in its infancy as a research 
topic.  

The objectives of this PhD work are to: 

(1) Assimilate soil moisture including state and parameter estimation in two LSMs using the 
EnKF and the PF. Joint state and parameter estimation is evaluated with real data, which was 
not done before. EnKF and PF are compared in terms of their ability to jointly estimate states 
and parameters. Moreover, in our work we use two LSMs to juxtapose the soil moisture 
simulations and predictions for the comparisons of EnKF and PF.  

(2) Develop a methodology to effectively assimilate groundwater levels to improve 
predictions of root zone soil moisture with the integrated terrestrial systems model 
TerrSysMP. 

(3) Investigate under which conditions assimilation of groundwater levels can improve root 
zone soil moisture characterization. 

Chapter 2 gives a short overview of the integrated model TerrSysMP which was used in our 
work. Furthermore, this chapter introduces the basic data assimilation schemes of EnKF and 
PF. In chapter 3 the usefulness and applicability of four different data assimilation methods 
(variants of EnKF and PF) for joint state and parameter estimation in two LSMs are evaluated. 
As argued before, people used EnKF or PF but only in few studies the algorithms were 
compared. Moreover, the methods are compared for a real-world case. The comparison of 
these data assimilation algorithms for a real-world case including parameter estimation was 
not documented before. Real world data from the Rollesbroich site in western Germany are 
used for this comparison. Two LSMs with different parameterizations are also compared and 
provide contrastive soil moisture simulations for the comparison of data assimilation methods. 
In chapter 4 the fully-coupled subsurface-land surface model TerrSysMP is used. Root zone 
soil moisture is closely linked with groundwater, especially when groundwater level is 
shallow. Therefore assimilation of groundwater levels in the integrated model TerrSysMP has 
the potential to improve root zone soil moisture characterization. We develop five data 
assimilation methodologies for assimilating groundwater level data via the EnKF to improve 
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root zone soil moisture estimation with TerrSysMP. These methodologies are evaluated in 
synthetic experiments which are performed for different climate conditions, soil types and 
plant functional types to simulate various root zone soil moisture distributions and 
groundwater levels. In chapter 5 we use the assimilation methodology which gave the best 
results in the study presented in chapter 4 to assimilate groundwater levels and surface soil 
moisture data. As the correlation between groundwater level and root zone soil moisture is 
expected to depend on the climate conditions, soil textures and vegetation types, it is 
important to systematically investigate the impact of these factors on the root zone soil 
moisture characterization with groundwater level data assimilation, which is done in this 
chapter. 100 synthetic cases which cover 5 climate conditions, 5 plant functional types (PFTs) 
and 4 soil textures are tested to investigate how climate conditions, PFTs and soil textures 
affect the assimilation performance in terms of improving root zone soil moisture 
characterization. Finally, chapter 6 provides a summary of the main results and an outlook for 
future research. 
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Chapter 2 : Theory 

2.1 Integrated terrestrial systems model TerrSysMP 

The integrated terrestrial systems model TerrSysMP (Shrestha et al., 2014) simulates the 
interaction between the lower atmospheric boundary layer, water and energy cycles at the 
land surface and subsurface (e.g., overland flow, evapotranspiration and water and energy 
transport in the unsaturated zone) and subsurface groundwater flow. It features three existing 
well-established models: an atmospheric model (Consortium for Small-Scale Modeling; 
COSMO) (Baldauf et al., 2011), a land surface model (the NCAR Community Land Model, 
version 3.5; CLM) (Oleson et al., 2008), and a three-dimensional variably saturated 
groundwater flow model (ParFlow) (Ashby and Falgout, 1996; Jones and Woodward, 2001; 
Kollet and Maxwell, 2006). An external coupler (Ocean Atmosphere Sea Ice Soil, version 3.0; 
OASIS3) (Valcke, 2013) is used to couple these three models, drive TerrSysMP and control 
the exchange of fluxes between each component model. 

  

Figure 2.1 Coupling of the TerrSysMP component models COSMO (atmosphere), CLM (land surface) 
and ParFlow (subsurface) by the coupler OASIS. 

Figure 2.1 schematically shows the data exchange among the three component models via the 
OASIS coupler in TerrSysMP. CLM calculates land surface-atmosphere exchange fluxes, 
momentum flux, albedo and outgoing long-wave radiation to COSMO. In turn, COSMO 
provides meteorological forcing data to CLM, including air temperature, air pressure, wind 
speed, specific humidity, precipitation and incoming short/long-wave radiation. CLM has ten 
soil layers and provides the net infiltration flux to the upper ten soil layers of ParFlow, which 
is calculated from precipitation, interception and total evapotranspiration. ParFlow sends 
back the calculated subsurface saturation and pressure values for the upper ten layers to CLM. 
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In ParFlow the number of soil layers and soil thicknesses are defined by users and generally it 
has more than 10 soil layers.  

The coupling of the three models improves the physical representation especially at the 
interfaces of the different terrestrial compartments. For instance, the simplified soil 
hydrology (1-D only) and surface water routing (uncoupled) schemes in CLM are replaced by 
ParFlow by a fully integrated 3-D variably saturated surface–subsurface flow model. In 
COSMO the simplified land surface scheme TERRA is replaced with the more sophisticated 
land surface scheme of CLM, with an improved representation of vegetation processes. 
Regarding the parallel performance, TerrSysMP has already shown to be highly scalable on 
the massively parallel supercomputing environment JUQUEEN (Jülich BlueGene/Q) (Gasper 
et al., 2014). TerrSysMP is a highly modular model which can be run with fully coupled 
configuration (COSMO + CLM + ParFlow), partly coupled configuration (COSMO + CLM / 
CLM + ParFlow) or run for each of the models individually (COSMO / CLM / ParFlow). In 
our work, the partly coupled configuration with CLM and ParFlow is applied. In the 
following sections a short overview over the model ParFlow and model CLM is given.   

2.1.1 ParFlow 

The parallel three-dimensional variably saturated subsurface flow code ParFlow is the result 
of a long, multi-institutional development history. It was firstly developed by Ashby and 
Falgout (1996) to simulate groundwater flow with heterogeneous parameter distributions, 
Jones and Woodward (2001) proposed a Newton-Krylov method to solve Richards' equation, 
Kollet and Maxwell (2006) incorporated a new two-dimensional overland flow simulator into 
it and made the parallelism more efficient, and Maxwell (2013) implemented a terrain-
following grid transform with variable vertical discretisation to solve groundwater problems 
with high topographic gradients. It is now a collaborative effort among Colorado School of 
Mines, University of Bonn, Juelich Research Center, Lawrence Livermore National 
Laboratory and other universities and institutes. As an open-source, object-oriented and 
parallel watershed flow model, it includes fully-integrated overland flow and is able to 
simulate complex topography, geology and heterogeneity. It is available for multi-platforms 
and runs with a common I/O structure from laptop to supercomputer with excellent parallel 
efficiency which enables high-resolution large-scale hydrologic simulations (Maxwell et al., 
2015).  

As one of the main features of ParFlow, the overland flow simulator allows simulation of 
surface flow based on the shallow water equation (Kollet and Maxwell, 2006). In two spatial 
dimensions, the continuity equation is given by: 

𝜕𝜕𝜓𝜓s
𝜕𝜕𝜕𝜕

= 𝛻𝛻(𝑣⃗𝑣𝜓𝜓s) + 𝑞𝑞r(𝑥𝑥) + 𝑞𝑞e(𝑥𝑥)                                                                                            (2.1) 

where 𝜓𝜓s [L] is the surface ponding depth, t [T] the time, 𝑞𝑞r(𝑥𝑥) [L/T] the general source/sink 
(e.g. rainfall) rate, 𝑞𝑞e(𝑥𝑥) [L/T] the exchange rate with the subsurface and 𝑣⃗𝑣 [L/T] is vertically 
averaged surface flow velocity. Equation (2.1) is solved with the Newton-Krylov method and 
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integrated into the Richards equation as a free surface overland flow boundary condition. 
More details can be found in the study from Kollet and Maxwell (2006).  

Another main feature is the terrain-following grid formulation which transforms the ParFlow 
grid to conform to topography. Darcy’s law includes a topographic slope component: 

 𝑞𝑞 = −𝑘𝑘s(𝑥𝑥)𝑘𝑘r(ℎ)(∇(ℎ + 𝑧𝑧)cos𝜃𝜃𝑥𝑥 + sin𝜃𝜃𝑦𝑦)                                                                        (2.2) 

where 𝑞𝑞  [L/T] is the flux, ℎ  [L] the pressure head, 𝑧𝑧  [L] the elevation, 𝑘𝑘s(𝑥𝑥)  [L/T] the 
saturated hydraulic conductivity, 𝑘𝑘r [-] the relative permeability and 𝜃𝜃𝑥𝑥 [-] is the local angle 
of topographic slope 𝑆𝑆𝑥𝑥 [-] in the x direction and 𝜃𝜃𝑥𝑥 = tan−1𝑆𝑆𝑥𝑥 and 𝜃𝜃𝑦𝑦 [-] in the y direction as 
𝜃𝜃𝑦𝑦 = tan−1𝑆𝑆𝑦𝑦  . More details can be found in the study by Maxwell (2013). The terrain 
following grid formulation makes groundwater follow the topography which is useful for 
coupled surface and subsurface flow problems. 

ParFlow can calculate a water balance on the basis of solving the Richards’ equation, 
overland flow equation and interaction with CLM, which is given by: 

∆(𝑉𝑉subsurface+𝑉𝑉surface)
∆𝑡𝑡

= 𝑄𝑄overlandflow + 𝑄𝑄evapotranspiration + 𝑄𝑄sourcesink                           (2.3) 

where 𝑉𝑉subsurface  [L3] is the subsurface storage, 𝑉𝑉surface  [L3] the surface storage, 
𝑄𝑄overlandflow  [L3/T] is overland flux, 𝑄𝑄evapotranspiration  [L3/T] the evapotranspiration flux 
passed from CLM, and 𝑄𝑄sourcesink  [L3/T] any other source/sink fluxes specified in the 
simulation (e.g. rainfall). 𝑉𝑉subsurface and 𝑉𝑉surface are calculated by: 

𝑉𝑉subsurface = ∑ [𝑆𝑆(ℎ𝑖𝑖)∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧�𝑆𝑆𝑠𝑠,𝑖𝑖ℎ𝑖𝑖 + 𝜙𝜙𝑖𝑖�]Ω
𝑖𝑖=1                                                                   (2.4) 

𝑉𝑉surface = �
∑ [ℎ1∆𝑥𝑥∆𝑦𝑦],ℎ1 > 0 Г
0,                    ℎ1 ≤ 0                                                                                           (2.5) 

where ℎ1 is the pressure head for the top surface layer. The 𝑉𝑉subsurface is calculated over all 
active grid cells i in the domain Ω [L3]. 𝑉𝑉surface is calculated over the upper surface boundary 
cells in the domain Г [L2]. ∆𝑥𝑥 [L], ∆𝑦𝑦 [L] and ∆𝑧𝑧 [L] are the cell resolution in x, y and z 
directions respectively. 𝑆𝑆(ℎ𝑖𝑖) [-] is water saturation, 𝑆𝑆s,𝑖𝑖 [L-1] the specific storage coefficient, 
and 𝜙𝜙𝑖𝑖 [-] the porosity of the medium for grid cell i. 

2.1.2 Community Land Model (CLM), version 3.5 

CLM (version 3.5) is developed by the American National Center for Atmospheric Research 
to calculate the mass and energy balance at the land surface including soil water infiltration, 
surface runoff, snow, interception and evapotranspiration (Oleson et al., 2004; Oleson et al., 
2008). It was initially developed by Dai et al. (1997), and later further developed by the 
American National Center for Atmospheric Research including the areas of carbon cycling, 
vegetation dynamics, and river routing (Oleson and Bonan, 2000). Following this release, 
Peter Thornton implemented changes to the model structure required to represent carbon and 
nitrogen cycling in the model which is known as CLM version 2.1 (Vertenstein et al., 2003). 
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CLM version 3.0 contains further software technical improvements related to the 
performance and model output. Later CLM version 3.5 features improved biogeophysical 
parameterizations (Oleson et al., 2008). It also improved the characterization of the land 
surface by subdividing each CLM3.0 soil cell into 8 sub-cells, improving the accuracy of the 
estimation of latent and sensible heat fluxes between the land surface and atmosphere.  

CLM includes 15 possible plant functional types (PFTs) plus bare soil. Vegetated surfaces are 
comprised of up to 4 of the 15 PFTs. These PFTs have different physiological and 
morphological traits along the climatic preferences (Bonan et al., 2002). The composition and 
abundance of PFTs within a grid cell are time-invariant and prescribed from 1-km satellite 
data (Bonan et al., 2002). In the 15 PFTs, there are 7 primary PFTs: needleleaf evergreen or 
deciduous tree, broadleaf evergreen or deciduous tree, shrub, grass, and crop. These 7 
primary PFTs are expanded to 15 physiological variants based on climate rules to distinguish 
arctic, boreal, temperature and tropical PFTs (i.e., different leaf and stem optical properties, 
different root distributions, and different aerodynamic parameters). CLM has 10 soil layers 
with internally fixed soil layer depths. Water and energy balances are calculated over the 
PFTs and the 10 soil layers.  

As in TerrSysMP CLM’s major contribution is calculating the evapotranspiration from 
ground and vegetation, here an overview of the parameterization of the evapotranspiration 
calculation in CLM is given. Precipitation is partitioned into canopy interception, through fall 
to the soil/snow surface and canopy drip. CLM calculates evaporation and transpiration based 
on the non-vegetated and vegetated surfaces. For the non-vegetated surface (bare soil), the 
evaporation Eg [M/L2/T] from ground is calculated as: 

𝐸𝐸g = −𝜌𝜌atm(𝑞𝑞atm − 𝑞𝑞g)
𝛾𝛾aw

                                                                                                             (2.6) 

where 𝜌𝜌atm [M/L3] is air density, 𝑞𝑞atm [M/M] is the atmospheric specific humidity, 𝑞𝑞g [M/M] 
is the specific humidity of the soil surface  and 𝛾𝛾aw [T/L] is the aerodynamic resistance to 
water vapor transfer. qg is proportional to the saturation specific humidity: 

𝑞𝑞g = 𝛼𝛼𝑞𝑞sat
𝑇𝑇g                                                                                                                               (2.7) 

with 𝑞𝑞sat
𝑇𝑇g  [M/M] is the saturated specific humidity given the ground surface temperature Tg 

[Q]. The factor α [-] is a combined value of soil and snow: 

𝛼𝛼 = 𝛼𝛼soi,1(1 − 𝑓𝑓sno) + 𝑓𝑓sno                                                                                                   (2.8) 

where 𝑓𝑓sno [-] is the fraction of snow coverage, 𝛼𝛼soi,1 [-] refers to the surface soil layer and is 
a function of the surface soil layer water matrix potential ψ1[L]:  

𝛼𝛼soi,1 = exp ( 𝜓𝜓1𝑔𝑔
1×103𝑅𝑅wv𝑇𝑇g

)                                                                                                       (2.9) 

where 𝑅𝑅wv  [L2/T2/Q] is the gas constant for water vapor, 𝑔𝑔  [L/T2] is the gravitational 
acceleration, ψ1 [L] is calculated as: 
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𝜓𝜓1 = 𝜓𝜓sat,1𝑠𝑠1
−𝐵𝐵1    𝑎𝑎𝑎𝑎𝑎𝑎    𝜓𝜓1 ≥ −1 × 108                                                                            (2.10) 

where ψsat,1 [L] is saturated matric potential for the surface soil layer, 𝐵𝐵1 [-] is the Clapp and 
Hornberger parameter (Clapp and Hornberger, 1978), and 𝑠𝑠1[-] is the wetness of the top soil 
layer with respect to saturation: 

𝑠𝑠1 = 1
∆𝑧𝑧1𝜃𝜃sat,1

�𝑤𝑤liq,1

𝜌𝜌liq
+ 𝑤𝑤ice,1

𝜌𝜌ice
�     and     0.01 ≤ 𝑠𝑠1 ≤ 1.0                                                        (2.11) 

where ∆𝑧𝑧1 [L] is the thickness of the top soil layer, 𝜃𝜃sat,1 [L3/L3] is saturated soil moisture of 
the top soil layer  (i.e., porosity), 𝑤𝑤liq,1 [M/L2] and 𝑤𝑤ice,1 [M/L2] are the mass of liquid water 
and ice of the top soil layer, 𝜌𝜌liq [M/L3] and 𝜌𝜌ice [M/L3] are the density of liquid water and 
ice.    

For the vegetated surface, the evapotranspiration flux 𝐸𝐸 [M/L2/T] includes the water vapor 
flux from vegetation 𝐸𝐸v and the ground 𝐸𝐸g: 

𝐸𝐸 = 𝐸𝐸v + 𝐸𝐸g                                                                                                                         (2.12) 

𝐸𝐸𝑣𝑣 = −𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞𝑠𝑠−𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑣𝑣 )

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
                                                                                                            (2.13)                

𝐸𝐸g = −𝜌𝜌atm(𝑞𝑞s−𝑞𝑞g)
𝑟𝑟aw′

                                                                                                               (2.14) 

where 𝑞𝑞sat
𝑇𝑇v  [M/M] is the saturated specific humidity given the vegetation temperature 𝑇𝑇v [Q], 

𝑟𝑟aw′  [T/L] is the aerodynamic resistance to water vapor transfer between the ground and the 
canopy air, 𝑟𝑟total [T/L] is the aerodynamic resistance  to water vapor transfer from the canopy 
to the canopy air. 𝑞𝑞s [M/M] is the canopy specific humidity:  

𝑞𝑞s = 𝑐𝑐aw𝑞𝑞atm+𝑐𝑐gw𝑞𝑞g+𝑐𝑐vw𝑞𝑞sat
𝑇𝑇v

𝑐𝑐aw+𝑐𝑐gw+𝑐𝑐vw
                                                                                                     (2.15) 

where 𝑐𝑐aw [L/T], 𝑐𝑐gw [L/T] and 𝑐𝑐vw [L/T] are water vapor conductances from the canopy air to 
the atmosphere, the leaf to canopy air, and ground to canopy air, respectively.  

2.2 Data assimilation  

The concept of data assimilation is proposed by Charney et al. (1969) to combine current and 
past data in an explicit dynamic model which provides time continuity and dynamic coupling 
amongst the fields. Daley (1991) established data assimilation techniques in weather 
forecasting. Bennett (1992) successfully used data assimilation in oceanography to improve 
ocean dynamic prediction. Based on the knowledge derived from the meteorological and 
oceanographic data assimilation, hydrologists applied data assimilation in hydrology (Houser 
et al., 1998). Hydrologic data assimilation has been accelerated by the development in 
hydrologic models and observations, like new satellite sensors which provide suitable large 
scale observations (Walker et al., 2003a). In essence, hydrologic data assimilation uses both 
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the hydrological process knowledge from a hydrologic model and information from 
observations to improve the model predictions with an accuracy level that cannot be obtained 
when models and observations are used separately.  

2.2.1 Posterior inference using Bayes Law  

In data assimilation the statistic estimation problem can be approached using Bayes’ theorem 
and conditional probabilities (Lorenc, 1986). Here for illustration, let 𝑥𝑥 denote the model 
state of interest and 𝑦𝑦� observation data. Assuming that an observation is available at time 𝑡𝑡, 
the posterior distribution is presented by 𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡), which is the probability of 𝑦𝑦� at time 𝑡𝑡 
given all previous and current observation 𝑦𝑦� . According to Bayes Law, 𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡) can be 
derived as: 

𝑝𝑝�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡� = 𝑝𝑝�𝐱𝐱𝑡𝑡�𝐲𝐲�𝑡𝑡,𝐘𝐘�1:𝑡𝑡−1� = 𝑝𝑝�𝐲𝐲�𝑡𝑡�𝐱𝐱𝑡𝑡�𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1)
𝑝𝑝(𝐲𝐲�𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1)

                                                              

(2.16) 

where 𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1) is the prior distribution of 𝑥𝑥, 𝑝𝑝(𝐲𝐲�𝑡𝑡|𝐱𝐱𝑡𝑡) is the likelihood of measurements 
𝑦𝑦� given 𝑥𝑥, and 𝑝𝑝(𝐲𝐲�𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1) is a normalization constant which ensures that the posterior state 
distribution integrates to unity. 𝑝𝑝(𝐲𝐲�𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1) can be expanded using the 𝑥𝑥  as intermediate 
variable: 

𝑝𝑝�𝐲𝐲�𝑡𝑡�𝐘𝐘�1:𝑡𝑡−1� = ∫ 𝑝𝑝(𝐲𝐲�𝑡𝑡 |𝐱𝐱𝑡𝑡)𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1)𝑑𝑑𝐱𝐱𝑡𝑡                                                                        (2.17) 

By substituting equation (2.17) into (2.16), Bayes Law can compute the posterior distribution 
sequentially in time: 

𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡) = 𝑝𝑝�𝐲𝐲�𝑡𝑡�𝐱𝐱𝑡𝑡�𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1)
∫𝑝𝑝(𝐲𝐲�𝑡𝑡|𝐱𝐱𝑡𝑡)𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1)𝑑𝑑𝐱𝐱𝑡𝑡

                                                                                      (2.18) 

If the model is assumed to be a first-order Markov process, the prior distribution 𝑝𝑝�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡−1� 
can be applied in a recursive form through the estimation of the prior distribution via the 
Chapman-Kolmogorov equation: 

𝑝𝑝�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡−1� = ∫ 𝑝𝑝(𝐱𝐱𝑡𝑡 |𝐱𝐱𝑡𝑡−1)𝑝𝑝(𝐱𝐱𝑡𝑡−1|𝐘𝐘�1:𝑡𝑡−1)𝑑𝑑𝐱𝐱𝑡𝑡−1                                                            (2.19) 

2.2.2 Ensemble Kalman Filter (EnKF) 

The EnKF was proposed by Evensen (1994) as generalization of the Kalman filter to 
nonlinear system models with many state variables. This method uses a Monte Carlo 
approach to generate an ensemble of different model trajectories from which the time 
evolution of the probability density of the model states, and related error covariances are 
estimated.  

We represent the state-space implementation of the dynamic system model with the following 
steps (Burgers et al., 1998): 
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𝐱𝐱𝑡𝑡𝑖𝑖− = ℳ(𝐱𝐱𝑡𝑡−1𝑖𝑖 , 𝐛̃𝐛𝑡𝑡−1𝑖𝑖 , 𝐈𝐈) + wt                                                                                               (2.20) 

where 𝐱𝐱𝑡𝑡𝑖𝑖− is the 𝑘𝑘 × 1 vector of predicted values of the state variables of the 𝑖𝑖th ensemble 
member, 𝑖𝑖 = {1,…,N} , 𝐛̃𝐛𝑡𝑡−1𝑖𝑖  signifies the corresponding vector (or matrix) of measured 
values of the forcing variables, 𝐈𝐈 is the matrix of model parameters or variables,  wt denotes a 
𝑘𝑘 × 1  process noise vector that accounts for structural imperfections of the LSM, and 𝑡𝑡 
denotes time.  

In EnKF, the posterior distribution 𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡) in equation (2.18) is estimated as (a Bayesian 
update on 𝐱𝐱𝑡𝑡): 

𝑝𝑝�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡�  ∝  𝑝𝑝(𝐲𝐲�𝑡𝑡|𝐱𝐱𝑡𝑡)𝑝𝑝(𝐱𝐱𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1)                                                                                   (2.21) 

which is found by applying the following equation on each ensemble member i: 

𝐱𝐱𝑡𝑡𝑖𝑖  = 𝐱𝐱𝑡𝑡𝑖𝑖− + 𝐊𝐊(𝐲𝐲�𝑡𝑡𝑖𝑖 - H𝐱𝐱𝑡𝑡𝑖𝑖−)                                                                                                      (2.22) 

where 𝐱𝐱𝑡𝑡𝑖𝑖  denotes the 𝑘𝑘 × 1 vector with updated estimates of the state variables (also called 
analysis state), 𝐲𝐲�𝑡𝑡𝑖𝑖 is the 𝑚𝑚 × 1 vector of measured data at time 𝑡𝑡, 𝐊𝐊 is a 𝑘𝑘 × 𝑚𝑚 matrix called 
the Kalman gain, and the 𝑚𝑚 × 𝑘𝑘 matrix 𝐇𝐇 signifies the measurement operator which maps the 
model output to the measurement space. It is linear for EnKF.  

𝐲𝐲�𝑡𝑡𝑖𝑖 is assumed to be Gaussian, and can be written for each individual ensemble member as 
follows: 

𝐲𝐲�𝑡𝑡𝑖𝑖 = 𝐲𝐲�t + 𝐯𝐯𝑡𝑡𝑖𝑖                                                                                                                (2.23) 

where 𝐯𝐯𝑡𝑡𝑖𝑖 signifies a 𝑚𝑚 × 1 vector of measurement errors drawn randomly from a 𝑚𝑚-variate 
normal distribution 𝒩𝒩𝑚𝑚(0,𝐑𝐑)  with zero-mean and 𝑚𝑚 × 𝑚𝑚  observation error covariance 
matrix 𝐑𝐑. In our work we assume the measurement errors to have a fixed and common 
variance𝜎𝜎2, and to be uncorrelated in space and time. Thus we can write 𝐑𝐑 = 𝜎𝜎2𝐈𝐈𝑚𝑚, where 
𝐈𝐈𝑚𝑚 signifies the 𝑚𝑚 × 𝑚𝑚 identity matrix with zeros everywhere except on the main diagonal 
which stores values of 𝜎𝜎2.  

The Kalman gain 𝐊𝐊 is computed as follows: 

𝐊𝐊 = 𝐂𝐂HT(H𝐂𝐂HT + R)-1                                                                                                       (2.24) 

where the symbol 𝑇𝑇 denotes transpose, 𝐂𝐂 is the 𝑘𝑘 × 𝑘𝑘 model error covariance matrix. EnKF 
assume that 𝐱𝐱𝑡𝑡 has Gaussian probability distribution, from the ensemble of 𝑁𝑁 state vectors, 
we can calculate 𝐂𝐂, using:  

𝐂𝐂 = 1
𝑁𝑁−1

∑ (𝐱𝐱𝑡𝑡𝑖𝑖− −  𝐱𝐱�𝑡𝑡)(𝐱𝐱𝑡𝑡𝑖𝑖− −  𝐱𝐱�𝑡𝑡)𝑁𝑁
𝑖𝑖=1                                                                                    (2.25) 

where 𝐱𝐱�𝑡𝑡 denotes the 𝑘𝑘 × 1 vector with ensemble mean values of the states at time t. 
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The updated values of the states 𝐱𝐱𝑡𝑡𝑖𝑖  from equation (2.22) now enter equation (2.20) and are 
used to predict the soil moisture values at the next observation time, 𝑡𝑡 = 𝑡𝑡 + 1, and so forth. 

In some cases it might be appropriate to estimate the model parameters along with the state 
variables. This requires a slight modification to the state-space formulation of equation (2.24) 
as the 𝑑𝑑-vector of parameter values, 𝛂𝛂, must now vary among the 𝑁𝑁 ensemble members to 
facilitate parameter estimation from the measured data. Three different approaches have been 
published in the literature for joint estimation of model states and parameters in the EnKF. 
This includes, state augmentation, dual and outer estimation. The first two approaches 
assume the LSM parameters to be time-variant, and infer their values sequentially along with 
the model states. The third approach assumes the parameters to be time-invariant, and 
estimates their posterior distribution in a loop outside the EnKF by maximizing the marginal 
likelihood of the 𝑁𝑁 state trajectories (Vrugt et al., 2005, 2013). In our study we will consider 
herein only the first two approaches, that is, state augmentation and dual estimation, as these 
two methods are most CPU-efficient.  

In state augmentation, the 𝑘𝑘 × 1 vector of state variables, 𝐱𝐱𝑡𝑡 , the model error covariance 
matrix C, the measurement operator H, and the Kalman gain K consist of two separate blocks 
(Franssen and Kinzelbach, 2008): 

𝐱𝐱∗𝑖𝑖 = �x
i

𝛂𝛂i�                                                                                                                            (2.26) 

𝐂𝐂∗ = �C𝐱𝐱𝐱𝐱      C𝛂𝛂𝛂𝛂
T

C𝛂𝛂𝛂𝛂       C𝛂𝛂𝛂𝛂
�                                                                                                             (2.27) 

𝐇𝐇∗= [Hx, 0]                                                                                                                         (2.28) 

where the subscripts x and 𝛂𝛂 refer to the model states and parameters respectively. The state 
vector, 𝐱𝐱∗, now consists of 𝑘𝑘 + 𝑑𝑑 elements, the model error covariance matrix 𝐂𝐂∗ is made up 
of four smaller matrices, Cxx, C𝛂𝛂𝛂𝛂

T , C𝛂𝛂𝛂𝛂, and C𝛂𝛂𝛂𝛂, and the measurement operator H* includes 
Hx and additional values of zero. The Kalman gain matrix K is now given by: 

K= 𝐂𝐂∗𝐇𝐇∗𝑇𝑇(𝐇𝐇∗𝐂𝐂∗𝐇𝐇∗𝑇𝑇+ R)-1 = �C𝐱𝐱𝐱𝐱      C𝛂𝛂𝛂𝛂
T

C𝛂𝛂𝛂𝛂      C𝛂𝛂𝛂𝛂
� �𝐇𝐇𝐱𝐱

𝑇𝑇

0
� �[𝐇𝐇𝐱𝐱, 0] �𝐂𝐂𝐱𝐱𝐱𝐱       𝐂𝐂𝛂𝛂𝛂𝛂𝑇𝑇

𝐂𝐂𝛂𝛂𝛂𝛂       𝐂𝐂𝛂𝛂𝛂𝛂
� �𝐇𝐇𝐱𝐱

T

0
� + 𝐑𝐑�

−1
  

                                             = �
C𝐱𝐱𝐱𝐱𝐇𝐇𝐱𝐱

𝑇𝑇(𝐇𝐇𝐱𝐱C𝐱𝐱𝐱𝐱𝐇𝐇𝐱𝐱
𝑇𝑇 + 𝐑𝐑)−1

C𝛂𝛂𝛂𝛂𝐇𝐇𝐱𝐱
𝑇𝑇(𝐇𝐇𝐱𝐱C𝐱𝐱𝐱𝐱𝐇𝐇𝐱𝐱

𝑇𝑇 + 𝐑𝐑)−1
� 

                                             = �Kx
K𝛂𝛂

�                                                                                    (2.29)                                                                                       

This results in the following equation for the updated states and parameter values:  

�𝐱𝐱𝑡𝑡
𝑖𝑖

𝛂𝛂𝑡𝑡𝑖𝑖
�= �𝐱𝐱𝑡𝑡

𝑖𝑖−

𝛂𝛂𝑡𝑡𝑖𝑖−
�+ �

Kx(𝐲𝐲�𝑡𝑡𝑖𝑖 −Hx𝐱𝐱𝑡𝑡𝑖𝑖−)
K𝛂𝛂(𝐲𝐲�𝑡𝑡𝑖𝑖 − Hx𝐱𝐱𝑡𝑡𝑖𝑖−)

�.                                     (2.30) 
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In the dual estimation approach, the state variables and model parameters are stored in two 
separate vectors and updated using their own individual steps (Moradkhani et al., 2005a). The 
parameter values of each ensemble member are first updated according to: 

𝛂𝛂𝑡𝑡𝑖𝑖  = 𝛂𝛂𝑡𝑡𝑖𝑖− + K𝛂𝛂(𝐲𝐲�𝑡𝑡𝑖𝑖 − Hx𝐱𝐱𝑡𝑡𝑖𝑖−)                                                                                               (2.31)                                                                                        

Then, the updated parameter values are used with equation (2.20) to predict, for the second 
time, the state variables at time 𝑡𝑡, after which their values are updated via equation (2.24). 
This approach necessitates running the LSM twice for the time period between two 
successive measurements, thereby doubling the required CPU-time of each ensemble member 
for this dual estimation method compared to the state augmentation approach.  

2.2.3 Particle Filter (PF) 

The PF was first suggested in the research area of object recognition, robotics and target 
tracking (Gordon et al., 1993) and was introduced to hydrology by Moradkhani et al. (2005a). 
The PF differs from the EnKF in that it describes the evolving probability density function 
(PDF) of the LSM state variables by a set of 𝑁𝑁 random samples, also called particles. Each 
particle carries a non-zero weight which determines its underlying probability, and these 
weights are updated as soon as a new datum (observation) becomes available. Before we 
proceed with a brief theoretical description of the PF we must first explicate our notation. We 
denote with symbol 𝐗𝐗1:𝑡𝑡  the collection of simulated values of the LSM state variables 
between the first observation at 𝑡𝑡 = 1 and the present datum, 𝑡𝑡, hence 𝐗𝐗1:𝑡𝑡 = [𝐱𝐱1, … , 𝐱𝐱𝑡𝑡] is a 
𝑘𝑘 × 𝑡𝑡 matrix with the LSM states at each measurement time stored as a column vector. The 
corresponding observations are stored in the 𝑚𝑚 × 𝑡𝑡 matrix, 𝐘𝐘�1:𝑡𝑡 = [𝐲𝐲�1, … , 𝐲𝐲�𝑡𝑡]. Finally, we use 
braces, {∙}, to denote our Monte Carlo ensemble of 𝑁𝑁 particle trajectories, {𝐗𝐗1:𝑡𝑡

1:𝑁𝑁}, and thus 
{𝐱𝐱𝑡𝑡1:𝑁𝑁} is a 𝑘𝑘 × 𝑁𝑁  matrix with sampled values of the LSM state variables at time 𝑡𝑡 . The 
subsequent description of the PF follows closely the description of Vrugt et al. (2013). 
Interested readers are referred to this publication for further details.      

If we assume the parameters to be known, then we can write the evolving posterior 
distribution, 𝑝𝑝𝛂𝛂(𝐗𝐗1:𝑡𝑡|𝐘𝐘�1:𝑡𝑡), for the state-space formulation of equation (2.20) as follows: 

𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡�𝐘𝐘�1:𝑡𝑡� = 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡−1�𝐘𝐘�1:𝑡𝑡−1������������
prior

 ℳ𝛂𝛂(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1)���������
model

𝐿𝐿𝛂𝛂(𝐲𝐲�𝑡𝑡|𝐱𝐱𝑡𝑡)�������
likelihood function

𝑝𝑝𝛂𝛂(𝐲𝐲�𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1)���������
normalization constant

,           (2.32) 

where 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡−1�𝐘𝐘�1:𝑡𝑡−1�  denotes the prior state distribution, ℳ𝛂𝛂(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1)  signifies the 
transition probability density of the state variables (= equation (2.20)), 𝐿𝐿𝛂𝛂(y�𝑡𝑡|𝐱𝐱𝑡𝑡)  is the 
likelihood function, and 𝑝𝑝𝛂𝛂(𝐲𝐲�𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1) represents the normalization constant. Equation (2.32) 
follows directly from Bayes’ law (see Appendix A of Vrugt et al. (2013)), and does not use at 
once the data up to time 𝑡𝑡 to estimate 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡�𝐘𝐘�1:𝑡𝑡� but rather estimates the evolving system 
state recursively over time using some mathematical model and new incoming measurements. 
If we integrate out the state trajectory 𝐗𝐗1:𝑡𝑡−1 from equation (2.32) then we can derive an 
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expression for the marginal PDF of the state variables 𝑝𝑝𝛂𝛂�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡� at time 𝑡𝑡 (= equation (2.16) 
in the state-space):  

𝑝𝑝𝛂𝛂�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡� =
𝐿𝐿𝛂𝛂(𝐲𝐲�𝑡𝑡|𝐱𝐱𝑡𝑡)𝑝𝑝𝛂𝛂�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡−1�

𝑝𝑝𝛂𝛂(𝐲𝐲�𝑡𝑡|𝐘𝐘�1:𝑡𝑡−1)
,               (2.33) 

which is also referred to as the update step of the optimal filter (conditional independence of 
measurements). The state prediction step is equivalent to the Chapman-Kolmogorov 
equation (= equation (2.19) in the state-space):  

𝑝𝑝𝛂𝛂�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡−1� = ∫ ℳ𝛂𝛂(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1)𝛀𝛀 𝑝𝑝𝛂𝛂�𝐱𝐱𝑡𝑡−1�𝐘𝐘�1:𝑡𝑡−1�d𝐱𝐱𝑡𝑡−1,            (2.34) 

where 𝛀𝛀 signifies the feasible state space.  

We conveniently assume herein, a Gaussian likelihood function: 

𝐿𝐿𝛂𝛂(𝐲𝐲�𝑡𝑡|𝐱𝐱𝑡𝑡) = 1
(2𝜋𝜋)𝑚𝑚/2|𝐑𝐑|1/2 exp �− 1

2
(𝐲𝐲�𝑡𝑡 − 𝐇𝐇𝐱𝐱𝐱𝐱𝑡𝑡)𝑇𝑇𝐑𝐑−1(𝐲𝐲�𝑡𝑡 − 𝐇𝐇𝐱𝐱𝐱𝐱𝑡𝑡)� ,            (2.35) 

where R is the 𝑚𝑚 × 𝑚𝑚 measurement error covariance matrix, |∙| signifies the determinant 
operator, and 𝑚𝑚 denotes the length of the observation vector, 𝐲𝐲�𝑡𝑡, at time 𝑡𝑡.  

The PF makes use of the following identity of equation (2.32) to approximate the evolving 
state PDF: 

 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡�𝐘𝐘�1:𝑡𝑡� ∝ 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡−1�𝐘𝐘�1:𝑡𝑡−1�ℳ𝛂𝛂(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1)𝐿𝐿𝛂𝛂(𝐲𝐲�𝑡𝑡|𝐱𝐱𝑡𝑡).            (2.36) 

This recursion implies that we can reuse the particles (samples) at 𝑡𝑡 − 1 that define the prior 
distribution, 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡−1�𝐘𝐘�1:𝑡𝑡−1�, to approximate the posterior state PDF, 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡�𝐘𝐘�1:𝑡𝑡�, at the 
next observation time. Yet, such recycling poses a problem, that is, we cannot sample directly 
from 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡�𝐘𝐘�1:𝑡𝑡� as we do not know its multivariate distribution. We therefore resort to an 
easy-to-sample-from importance density, 𝑞𝑞𝛂𝛂�∙ �𝐱𝐱𝑡𝑡−1, 𝐲𝐲�𝑡𝑡� , and draw {𝐱𝐱𝑡𝑡1:𝑁𝑁}  taking into 
consideration the current observation, 𝐲𝐲�𝑡𝑡 , and previous state samples, {𝐱𝐱𝑡𝑡−11:𝑁𝑁 } . We then 
calculate the unnormalized importance weight of the 𝑖𝑖th particle, 𝑊𝑊𝑡𝑡

𝑖𝑖, as follows 

𝑊𝑊𝑡𝑡
𝑖𝑖 ∝ 𝑊𝑊�𝑡𝑡−1𝑖𝑖 𝑤𝑤𝑡𝑡��𝐗𝐗1:𝑡𝑡

𝑖𝑖 ��,                   (2.37) 

where 𝑤𝑤𝑡𝑡(𝐗𝐗1:𝑡𝑡
𝑖𝑖 ) signifies the incremental importance weight: 

𝑤𝑤𝑡𝑡��𝐗𝐗1:𝑡𝑡
𝑖𝑖 �� = ℳ𝛂𝛂��𝐱𝐱𝑡𝑡

𝑖𝑖 ���𝐱𝐱𝑡𝑡−1
𝑖𝑖 ��𝐿𝐿𝛂𝛂�𝐲𝐲�𝑡𝑡��𝐱𝐱𝑡𝑡

𝑖𝑖 ��
𝑞𝑞𝛂𝛂��𝐱𝐱𝑡𝑡

𝑖𝑖 ���𝐱𝐱𝑡𝑡−1
𝑖𝑖 �,𝐲𝐲�𝑡𝑡�

,               (2.38) 

and 𝑊𝑊�𝑡𝑡𝑖𝑖 = 𝑊𝑊𝑡𝑡
𝑖𝑖/∑ 𝑊𝑊𝑡𝑡

𝑖𝑖𝑁𝑁
𝑖𝑖=1  denote the normalized importance weights, which vary between 0 

and 1. 

Before we can implement the PF in practice, we need to specify the importance density, 
𝑞𝑞𝛂𝛂(∙ |{𝐱𝐱𝑡𝑡−11:𝑁𝑁 },𝐲𝐲�𝑡𝑡), for 𝑡𝑡 = {2, … ,𝑛𝑛}. We follow Gordon et al. (1993) and set 𝑞𝑞𝛂𝛂(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1, 𝐲𝐲�𝑡𝑡) =
ℳ𝛂𝛂(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1) which results in the following equation for the incremental particle weights: 
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𝑤𝑤𝑡𝑡��𝐗𝐗1:𝑡𝑡
𝑖𝑖 �� = ℳ𝛂𝛂��𝐱𝐱𝑡𝑡

𝑖𝑖 ���𝐱𝐱𝑡𝑡−1
𝑖𝑖 ��𝐿𝐿𝛂𝛂�𝐲𝐲�𝑡𝑡��𝐱𝐱𝑡𝑡

𝑖𝑖 ��
ℳ𝛂𝛂��𝐱𝐱𝑡𝑡

𝑖𝑖 ���𝐱𝐱𝑡𝑡−1
𝑖𝑖 ��

= 𝐿𝐿𝛂𝛂�𝐲𝐲�𝑡𝑡��𝐱𝐱𝑡𝑡𝑖𝑖 ��.             (2.39) 

This chapter is adopted from Zhang et al. (2017).  

2.2.4 TerrSysMP-PDAF  

TerrSysMP-PDAF is developed by Kurtz et al. (2016) which couples TerrSysMP and a 
Parallel Data Assimilation Framework (PDAF) (Nerger and Hiller, 2013).  PDAF is a 
parallelized data assimilation system and provides interface with numerical models to do 
efficient data assimilation. It parallelizes both the forward ensemble simulations and the 
analysis step to provide a fully parallelized framework. TerrSysMP-PDAF can do data 
assimilation for the land surface-subsurface part of TerrSysMP (CLM and ParFlow). To 
improve the computational efficiency, an online coupling approach is used in coupling 
TerrSysMP and PDAF, where data exchange is via main memory so that frequent re-
initialisations and I/O operations are avoided, which affords the application of the system to 
very large problem sizes.  More technical implementations can be referred to (Kurtz et al., 
2016). The current version 1.0 of TerrSysMP-PDAF has only EnKF as data assimilation 
algorithm activated. In the coupled (ParFlow + CLM) and uncoupled (ParFlow stand alone) 
TerrSysMP configuration, measurements of pressure or soil moisture can be assimilated in 
ParFlow. TerrSysMP-PDAF also allows for joint state-parameter update to estimate spatially 
distributed saturated hydraulic conductivity or the Manning’s roughness parameter.  

Kurtz et al. (2016) investigated the scaling properties of TerrSysMP-PDAF with a simple 
synthetic data assimilation exercise. They assimilated soil moisture in a virtual catchment for 
CLM + ParFlow of TerrSysMP. Their experiments showed that the TerrSysMP-PDAF 
system runs efficiently and scales well even for a large number of processors, which proved 
that this system is promising for large scale applications of high resolution models which are 
extremely computationally demanding. Baatz et al. (2017) applied a catchment tomography 
approach in synthetic experiments to assimilate frequent stream water level measurements 
and update spatially distributed Manning’s roughness coefficients with TerrSysMP-PDAF. 
The subsurface part ParFlow was used to simulate 2D overland flow which was forced by 
high resolution radar precipitation data. Their results showed that TerrSysMP-PDAF worked 
successfully with the joint state-parameter estimation. Given the effectiveness and reliability 
of TerrSysMP-PDAF we also used it in this work to conduct assimilation experiments.   
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Chapter 3 : State and parameter estimation of two land surface 

models using the Ensemble Kalman Filter and the Particle Filter 
*adapted from: Zhang, H., Hendricks Franssen, H.-J., Han, X., Vrugt, J. A., and Vereecken, H.: State 
and parameter estimation of two land surface models using the ensemble Kalman filter and the 
particle filter, Hydrology and Earth System Sciences, 21, 4927-4958, https://doi.org/10.5194/hess-21-
4927-2017, 2017. 

3.1 Introduction and scope 

Land surface models (LSMs) are used widely to simulate and predict the exchanges of 
momentum, energy, and mass between the terrestrial biosphere and overlying atmosphere at 
local, regional, and global scales. These models also play a key role in assessing impacts of 
environmental changes (climate, land-use, and land-cover) on energy, water, and 
biogeochemical fluxes (e.g. CO2, CH4, N2O) at the soil-atmosphere interface, and simplify 
analysis of cause-effect relationships among the myriad of processes that govern land-
atmosphere interactions and feedbacks, and emulate spatiotemporal variations in climate 
through greenhouse gas exchanges, carbon-nitrogen feedbacks, soil moisture-precipitation, 
and soil moisture-temperature coupling. LSMs use relatively simple mathematical equations 
to conceptualize and aggregate the complex, spatially distributed, and interrelated 
(bio)physical, chemical, and ecological processes that govern the exchange of mass, energy, 
and momentum between the land-surface and the atmosphere. This approach simplifies 
considerably the topology of the land-surface system, and reduces to much lower dimensions 
its state and parameter space. The consequence of this process aggregation and simplification 
is, however that the LSM parameters often do not represent directly measurable entities, and 
instead must be estimated via calibration by fitting the model against measured data records 
of soil moisture, soil temperature, and/or CO2, water vapour, and/or energy fluxes across a 
range of biomes and timescales. These measurements are of crucial importance to quantify 
properly LSM parameter and predictive uncertainty, and to identify poorly represented or 
missing processes (Williams et al., 2009; Bonan, 2008).  

Many of the parameters of a LSM are model dependent and therefore difficult to transfer 
between different land-surface schemes. Nevertheless, all LSMs use soil hydraulic, 
vegetation, and thermal parameters to describe heat transport, water flow, and root water 
uptake (canopy transpiration) in the variably saturated soil domain, and share a reflection 
coefficient (aka surface albedo) to calculate the reflected shortwave radiation. Two main 
approaches exist to determine the hydraulic and thermal properties of the considered soil 
domain. Some LSMs such as the Community Land Model (CLM) use basic soil data (soil 
texture and organic matter fraction) to estimate hydraulic and thermal parameters via 
pedotransfer functions (Oleson et al., 2013; Han et al., 2014a; Vereecken et al., 2016). Other 
land-surface schemes such as the Variable Infiltration Capacity Model (VIC) (Liang et al., 
1994; Gao et al., 2010) expect users to specify values for the hydraulic and thermal 
parameters. Pedotransfer functions are particularly useful in large-scale application of CLM 
as they simplify tremendously soil hydraulic characterization. Nevertheless, soil hydraulic 
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parameter values derived from pedotransfer functions are subject to considerable uncertainty, 
and might therefore not accurately describe soil water movement and storage, particularly at 
larger spatial scales. What is more, (measurement) errors of the atmospheric forcing (e.g. 
wind speed, temperature, radiation, vapour pressure deficit, and precipitation) and errors in 
the auxiliary model input (e.g. topographic properties, vegetation characteristics) further 
enhance LSM prediction uncertainty.  

In the past decades, many different search and optimization methods have been developed for 
automatic calibration of dynamic system models. Of these, Bayesian methods have found 
widespread application and use in Earth systems modelling due to their innate ability to treat, 
at least in principle, model input (forcing), output (forecast), parameter and structural errors. 
The Bayesian approach relaxes the assumption of a single optimum parameter value in favour 
of a posterior parameter and forecast distribution which summarizes the coordinated impact 
of different uncertainties on the modelling results. Yet, general-purpose methods such as 
DREAM (Vrugt et al., 2008, 2009; Vrugt, 2016) require a relatively large number of LSM 
evaluations to estimate parameter and forecast uncertainty. This can pose significant 
computational challenges for CPU-intensive and parameter-rich LSMs, and complicates 
treatment of input data uncertainty via latent variables (e.g. Vrugt et al., 2008).  

Data assimilation offers an attractive alternative as general framework to account for LSM 
parameter, input, output, and other sources of uncertainty to take advantage of all available 
ground-based, airborne or spaceborne observations to improve the compliance between 
numerical models and corresponding data. This approach enables joint estimation of model 
state variables and parameters and simplifies treatment of forcing data errors (Liu and Gupta, 
2007). Many different studies published in the hydrologic literature have demonstrated the 
benefits of parameter estimation in the context of data assimilation for soil moisture 
characterization (e.g., Montzka et al., 2011; Lee, et al., 2014), rainfall-runoff (e.g., 
Moradkhani et al., 2005a; Vrugt et al., 2005) and land surface modelling (e.g., Pauwels et al., 
2009).  

Data assimilation methods merge uncertain observations with predictions (output) of 
imperfect models to optimally estimate the state of a dynamical system. The prototype of this 
method, the Kalman filter (KF) was developed in the 1960s by Rudy Kalman for optimal 
control of linear dynamical systems (Kalman, 1960). The KF is a maximum likelihood 
estimator of the dynamic state of the system if the model error and measurement error 
distributions are (multivariate) normal. For nonlinear dynamical models this Gaussian 
assumption is not generally valid, and the KF will not give a maximum likelihood state 
estimate. The ensemble Kalman Filter, or EnKF, is a stochastic generalization of the KF to 
nonlinear system models, in which the evolution of the model error covariance matrix is 
derived from a finite set of state realizations (Evensen, 1994). The use of this Monte Carlo 
ensemble not only makes possible state estimation for complex system models but also 
enables the explicit treatment of different sources of modelling error. Two decades on from 
its inception, the EnKF has received operational status in real-time weather, tsunami, and 
flood prediction systems (amongst others) due its proven ability to enhance a model’s 
forecast skill and characterize accurately prediction uncertainty.  
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State estimation via the EnKF advances significantly the capabilities of hydrologic and land-
surface models to predict spatiotemporal dynamics of water movement and storage in soils, 
lakes, and reservoirs, and fluxes of mass, energy, and momentum between the soil and the 
atmosphere. The predictive skill of these models is, however determined in large part by their 
parameterization. This has led hydrologists and hydrometeorologists to develop data 
assimilation approaches that permit the simultaneous inference of model state variables and 
parameter values. The power and usefulness of such joint state and parameter estimation 
methods have been investigated by many different authors in the water resources literature. 
Most of these publications use synthetic (or twin) experiments with assimilation of artificially 
generated data. Examples include studies with simulated measurements of the groundwater 
table depth or hydraulic head (Franssen and Kinzelbach, 2008; Bailey and Bau, 2012; Kurtz 
et al., 2014; Shi et al., 2014; Song et al., 2014; Tang et al., 2015), discharge/streamflow 
(Bailey and Bau, 2012; Moradkhani et al., 2012; Vrugt et al., 2013; Rasmussen et al., 2015), 
groundwater temperature (Kurtz et al., 2014), soil moisture (Wu and Margulis, 2011; Plaza et 
al., 2012; Erdal et al., 2014; Shi et al., 2014; Song et al., 2014; Pasetto et al., 2015), 
brightness temperature from passive remote sensing (Montzka et al., 2013; Han et al., 2014a), 
and contaminant concentration (Gharamti et al., 2013). These studies use a variety of 
different methods for joint parameter and state estimation, among which the EnKF (Franssen 
and Kinzelbach, 2008; Wu et al., 2011; Gharamti et al., 2013; Erdal et al., 2014; Kurtz et al., 
2014; Shi et al., 2014; Pasetto et al., 2015), the iterative EnKF (Song et al., 2014), the 
extended KF (Pauwels et al., 2009), the local ensemble transform KF (Han et al., 2014a), the 
ensemble transform KF (Rasmussen et al., 2015), and the normal score EnKF (Tang et al., 
2015).  

The overarching conclusion from the body of synthetic experiments is that the joint 
estimation of parameters and state variables via data assimilation enhances significantly the 
predictive capabilities of hydrologic and land-surface models. This finding is corroborated by 
results for real-world assimilation studies documented in a rapidly growing list of 
publications and involving model structural inadequacies, measurement errors of the 
atmospheric forcing variables and calibration (assimilation) data, inadequate characterization 
of the lower boundary condition (aquifer), and uncertainty of other, auxiliary, model inputs. 
This includes assimilation of measurements of the electrical conductivity (Wu and Margulis, 
2013), hydraulic head in wells (Kurtz et al., 2014; Shi et al., 2015b), groundwater 
temperature (Kurtz et al., 2014), streamflow and discharge (Moradkhani et al., 2012; Shi et 
al., 2015b), active remote sensing (Pauwels  et al., 2009), passive brightness temperature (Qin 
et al., 2009), soil moisture from lysimeters (Lue et al., 2011; Wu and Margulis, 2013; Erdal et 
al., 2014; Shi et al., 2015a), land surface temperature (Bateni and Entekhabi, 2012) and 
sensible and latent heat fluxes (Shi et al., 2015b) using methods such as the PF (Qin et al., 
2009), PMCMC (Moradkhani et al., 2012), EnKF (Bateni and Entekhabi, 2012; Wu and 
Margulis, 2013; Erdal et al., 2014; Kurtz et al., 2014; Shi et al., 2015b) and the extended KF 
(Pauwels et al., 2009; Lue et al., 2011). Despite this growing body of applications, relatively 
few studies (e.g. Lue et al., 2011; Shi et al., 2015b) have focused on an accurate 
characterization of soil moisture dynamics simulated by LSMs. This is particularly surprising, 
as root zone moisture storage modulates spatiotemporal variations in climate and weather, 
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and governs the production and health status of crops, and the organization of natural 
ecosystems and biodiversity (Vereecken et al., 2008). 

In this study, we evaluate the usefulness and applicability of four different data assimilation 
methods for joint parameter and state estimation of VIC and CLM using a 5-month 
calibration (assimilation) period of soil moisture measurements at 5, 20 and 50 cm depth in 
the Rollesbroich experimental test site in the Eifel mountain range in western Germany. This 
grassland site is part of the TERENO network of observatories and extensively monitored 
since 2011 to catalogue long-term ecological, social and economic impact of global change at 
regional level. We used the EnKF with state augmentation (Chen and Zhang, 2006) or dual 
estimation (Moradkhani et al., 2005a), respectively, and the residual resampling PF (Douc et 
al., 2005) with a simple, statistically deficient (Moradkhani et al., 2005b), or more 
sophisticated, MCMC-based (Vrugt et al., 2013) parameter resampling method. The 
“calibrated” LSM models were tested using SPADE water content measurements from a 5-
month evaluation period. To the best of our knowledge, this is only the second study after 
Chen et al. (2015) that compares sequential data assimilation methods for joint parameter and 
state estimation of a LSM. Related work by Dechant and Moradkhani (2012) and Dumedah 
and Coulibaly (2013) consider application to the rainfall-runoff transformation of a watershed.  

The three main objectives of our study may be summarized as follows, (1) to evaluate the 
usefulness and applicability of joint parameter and state estimation for soil moisture 
characterization with LSMs, (2) to compare the performance of four commonly used 
parameter and state estimation methods in their ability to predict soil moisture dynamics at 
different depths in the Rollesbroich experimental test site, and (3) to compare, contrast and 
juxtapose the soil moisture simulations and predictions of CLM and VIC. 

The remainder of this study is organized as follows. Section 3.2 discusses briefly VIC and 
CLM which are used as our LSMs to characterize soil moisture dynamics of the Rollesbroich 
experimental site in Germany. In this section, we contrast the numerical approaches, 
boundary conditions, and spatial discretization (soil layers), that are used by VIC and CLM to 
describe water flow and storage in the modelled soil domain, and are particularly concerned 
with selection of their calibration parameters. Section 3.3 then reviews the basic concepts and 
theory of the four different data assimilation algorithms used herein. This is followed in 
section 3.4 with a detailed discussion of the Rollesbroich experimental site, and the numerical 
implementation and setup of each data assimilation method. Section 3.5 introduces the results 
of the different parameter and state estimation methods and two LSMs, and section 3.6 
discusses the main findings of our numerical experiments and assimilation studies. Finally, 
this study concludes in section 3.7 with a summary of our main findings.  

3.2 Land surface models and calibration parameters 

LSMs simulate terrestrial biosphere fluxes of matter and energy via numerical solution of the 
water, energy, and carbon balance of the land-surface. This includes hydrologic processes 
such as soil evaporation, infiltration, surface runoff, canopy interception and transpiration, 
aquifer discharge, groundwater recharge, and precipitation (Schaake et al., 1996) and energy 
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fluxes such as latent and sensible heat from soil, snow, surface water and vegetated surfaces 
(Bertoldi, 2004). Their respective equations contain parameters whose values depend on 
global or regional distributions of vegetation and soil properties (Milly and Shmakin, 2002).  

The Rollesbroich site investigated herein covers an area of about 270,000 m2 with grassland 
vegetation that is dominated by perennial ryegrass (Loliumperenne) and smooth meadow 
grass (Poapratensis). The limited size of our site and its rather uniform vegetation and 
topography, justify treatment of our land surface domain as a single grid cell in LSM with 
apparent parameters that characterize the mass and energy exchange between the soil and 
atmosphere. This assumption of homogeneity is computationally convenient and also 
simplifies somewhat our subsequent mathematical notation. We conveniently write the LSM 
as a (nonlinear) regression function, ℳ(∙) , which returns a 𝑚𝑚 × 𝑛𝑛  matrix 𝐘𝐘  with the 
simulated (predicted) values of m different variables (e.g. soil moisture content, latent and 
sensible heat fluxes) at discrete times, 𝑡𝑡 ∈ {1, … ,𝑛𝑛}, as follows  

𝐘𝐘 ← ℳ(𝛂𝛂, 𝐱𝐱�0,𝐁𝐁�,𝐔𝐔�),           (3.1) 

where 𝛂𝛂 = {𝛼𝛼1, … ,𝛼𝛼𝑑𝑑} is the d-vector of model parameters, 𝐱𝐱�0  signifies the 𝑘𝑘 × 1-vector 
with measured (inferred) values of the state variables of the land surface model for the 
domain at the start of simulation, 𝐁𝐁�  denotes the 𝑙𝑙 × 𝑛𝑛  control matrix with temporal 
measurements of 𝑙𝑙  forcing variables (e.g. air temperature, precipitation, vapour pressure 
deficit, wind speed, short and long-wave radiation), 𝐔𝐔�  represents a matrix with auxiliary 
constants, variables, or properties (e.g. plant functional type, land cover, soil texture, and 
other variables/constants) deemed necessary to simulate the water and energy balance of the 
land-surface domain of interest, and 𝐘𝐘 = [𝐲𝐲1:𝑛𝑛

1 , … , 𝐲𝐲1:𝑛𝑛
𝑚𝑚 ]𝑇𝑇, where 𝑇𝑇 denotes transpose. Without 

loss of generality, we restrict the model parameters to a closed space, 𝚨𝚨, equivalent to some 
d-dimensional hypercube, 𝛂𝛂 ∈ 𝚨𝚨 ∈ ℝ𝑑𝑑 , called the feasible parameter space.  

The assumption of homogeneity simplifies considerably the model definition in equation 
(3.1). Yet, this lumped topology might not characterize adequately real-world soil-land-
surface systems that exhibit considerable spatial variations in soils, vegetation, and land 
properties. Such systems might necessitate distributed application of equation (3.1) via spatial 
discretization of the considered land-surface domain into different grid cells. This 
discretization should honour spatial variations in vegetation and soil properties, and could 
account for small-scale (within-grid-cell) variability. Nevertheless, in our present application 
of LSM we the treat the Rollesbroich site as a single grid cell with grassland vegetation and 
homogeneous, but layered, soil (details to follow).      

We now discuss briefly two different land surface schemes, VIC and CLM which are used to 
describe temporal variations in soil water storage at different depths in the Rollesbroich 
experimental site in Germany.    

3.2.1 The Variable Infiltration Capacity Model (VIC) 

The VIC model is a macro-scale semi-distributed hydrological model which solves for the 
water and energy balance of each grid cell using explicit consideration of within-grid-cell 
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vegetation variations. Accordingly, each grid cell is divided into land cover tiles (Liang et al., 
1994; Liang et al., 1996; Cherkauer and Lettenmaier, 1999), and assumes constant values of 
the soil properties (e.g., soil texture, hydraulic conductivity, thermal conductivity). The total 
evapotranspiration, sensible heat flux, effective land surface temperature and runoff are then 
obtained for each grid cell by summing over all the land cover tiles (vegetation types and bare 
soil) weighted by their respective fractional coverage (Gao et al., 2010). The VIC model can 
either be executed in a water balance mode or a water-and-energy balance mode. In this study, 
we assume the latter and use a 70 cm deep soil composed of a 10 cm surface layer followed 
by a middle and bottom layer of 20 and 40 cm, respectively.  The relatively thin surface layer 
is used to capture rapid fluctuations in soil moisture due to rainfall and bare soil evaporation, 
and the deepest and thickest layer summarizes seasonal water content dynamics and base 
flow. We use herein, VIC, and force the model with atmospheric boundary conditions (e.g. 
precipitation, wind speed, air temperature, longwave and shortwave radiation, and relative 
humidity) for the Rollesbroich experimental site in Germany. In the absence of detailed 
information about the hydraulic properties of the considered soil domain, we treat each 
layer’s saturated hydraulic conductivity, log10𝑘𝑘𝑠𝑠 [log10(m/s)] and exponent of Brooks-Corey’s 
drainage equation, 𝛽𝛽  [-], as calibration parameters. What is more, we also include the 
infiltration shape parameter, 𝑏𝑏  [-], and the maximum baseflow velocity, 𝐷𝐷m  [mm/day] as 
calibration parameters. Thus, this involves estimation of 𝑑𝑑 = 8 parameters in VIC for the 
Rollesbroich site. Appendix 3.A summarizes the soil module of VIC, including a brief 
description of the main processes and model parameters.  

3.2.2 The Community Land Model (CLM) 

CLM is the land model for the Community Earth System Model (Oleson et al., 2013), and is 
made up of multiple different building blocks, or modules, which resolve processes related to 
land biogeophysics, the hydrological cycle, biogeochemistry, and dynamic vegetation 
composition, structure, and phenology. The model recognizes explicitly surface heterogeneity 
by dividing each individual grid cell into multiple subgrid levels. For example, a grid cell can 
be made up of different land cover types, each with their own respective patches of plant 
functional types (PFTs) and associated stem area index and canopy height. The first subgrid 
level is defined by land units (vegetated, lake, urban, glacier, and crop), each composed of a 
number of different columns (second subgrid level) for which separate energy and water 
calculations are made. Vegetated land units, as well as lakes and glaciers, use one column. 
Urban land uses five separate columns, and for crop land there is a distinction between 
irrigated and unirrigated columns with one single crop occupying each column. The third 
subgrid level is composed of PFTs and includes bare soil. The vegetated column has 16 
possible PFTs besides bare soil. For the crop column, several crop types are available. 
Processes such as canopy evaporation and transpiration are calculated for each individual 
PFT, whereas soil and snow processes are calculated at the column level using areal-weighted 
values of the properties of the PFTs of individual patches. Note, that a similar aggregation 
approach is used by VIC. 
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In our application of CLM to the Rollesbroich experimental site in Germany, we calculate 
soil temperature for 15 different soil layers, and simulate hydrological states and fluxes for 
the top 10 soil layers only. Appendix 3.B presents a brief description of the soil module of 
CLM, and discusses the main parameters used. The CLM is forced with atmospheric 
conditions (e.g. precipitation, vapour pressure deficit, wind speed, incoming short wave and 
long wave radiation) using values for the model parameters and initial states, and land surface 
data and other physical constants and/or variables as auxiliary input. The soil hydraulic (e.g. 
saturated hydraulic conductivity) and thermal parameters of CLM are derived from built-in 
pedotransfer functions (see equation (3.B1) - equation (3.B4) of Appendix 3.B) using as 
inputs the auxiliary matrix 𝐔𝐔� with sand, clay and organic matter fractions of each individual 
soil layer. We treat these auxiliary soil variables as unknown parameters in the present 
application of CLM. Thus, this involves 𝑑𝑑 = 30 parameters in CLM for the Rollesbroich site. 

3.2.3 Main differences of VIC and CLM 

Before we proceed, we first summarize the main differences of VIC and CLM in their 
calculations of the water and energy balance of the land-surface. In the first place, VIC treats 
the vadose zone as a multi-layer bucket with variable infiltration capacity, whereas CLM uses 
a more physics-based description of soil water movement, storage, and associated 
hydrological fluxes (e.g. root water uptake) by numerical solution of a modified form of 
Richards’ equation (Zeng and Decker, 2009). A bucket model is computationally convenient, 
but sacrifices important detail regarding the vertical distribution of soil water storage. The 
latter is a prerequisite to characterize accurately processes such as infiltration, redistribution, 
root-water uptake, drainage, and groundwater recharge. We refer the interested reader to 
Romano et al. (2011) for a detailed comparison of bucket-type and Richards’ based vadose 
zone flow models.  

Second, VIC treats the saturated and variably-saturated soil domain as two separate, lumped, 
control volumes which are decoupled from the underlying groundwater reservoir. In other 
words, a fixed lower boundary condition is imposed. CLM, on the contrary, simulates 
interactions between the modelled soil domain and an unconfined aquifer. The resulting 
water table variations of the aquifer affect soil water movement in the unsaturated zone via a 
variable recharge flux. In our application of CLM, this recharge flux emanates at the bottom 
of the tenth soil layer. The calculation of this recharge flux may be best explained via the use 
of a virtual soil layer, say layer 11, whose depth extends from the bottom of layer 10 to the 
groundwater table. If we assume hydrostatic conditions in layer 11, then we can calculate the 
recharge flux from layer 10 using equation (3.B9) in Appendix 3.B. This recharge flux then 
changes the depth of the water table according to equation (3.B11). This equation also takes 
into consideration drainage from the water table due to topographic gradients. If the 
groundwater table is within the upper 10 soil layers, a drainage flux emanates from the upper 
most saturated layer according equation (3.B10). 

Third, VIC expects the user to specify values for the soil hydraulic (e.g. saturated hydraulic 
conductivity), thermal, and baseflow parameters of the first, second, and third layer of each 
grid-cell, respectively, whereas CLM derives their counterparts (e.g. hydraulic conductivity at 
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saturation, matric head at saturation, Clapp-Hornberger exponent 𝐵𝐵 , and soil thermal 
conductivity) for each of the fifteen soil layers using built-in pedotransfer functions.  

Finally, VIC allows the user to determine freely the number and thickness of the soil layers in 
the bucket model (default is three layers), whereas CLM assumes a fixed thickness of each 
soil layer. 

3.2.4 Selection of calibration parameters 

LSMs contain a large number of parameters whose values can be adjusted by fitting model 
output to observed data. Yet, only a few of those parameters will affect noticeably model 
performance. Various authors have investigated the parameter sensitivity of VIC via Monte 
Carlo simulation, Generalized Likelihood Uncertainty Estimation (GLUE), or model 
calibration methods (Demaria et al., 2007; Xie et al., 2007; Troy et al., 2008). These studies 
demonstrated a strong dependency of parameter sensitivity on climatic conditions. Table 3.1 
lists the VIC and CLM parameters that have been selected for calibration via data 
assimilation, and reports their units, feasible ranges, perturbation, and spatial configuration. 
To honour prior information (e.g. soil textural data) we do not draw the model parameters 
from their feasible ranges, but rather sample their initial values around some best-guess VIC 
and CLM parameterization using the normal and uniform distributions listed under the header 
“Perturbation”. This makes up the prior parameter distribution and is further explained in 
section 3.4.2.  

Appendix 3.A (VIC) and 3.B (CLM) summarize the main variables, processes, and equations 
which are used by both models to describe the storage and vertical and/or horizontal 
movement of water in the variably-saturated soil domain of the Rollesbroich site. These two 
appendices help to better understand the role of the different calibration parameters of table 
3.1, and will be most beneficial to readers which are rather unfamiliar with both models. Note 
that CLM estimates the hydraulic and thermal parameters of each soil layer from built-in 
pedotransfer functions (Oleson et al., 2013; Han et al., 2014a) using as input the sand, clay, 
and organic matter fraction of each soil layer.  

  



29 
 

Table 3.1 Description of the soil parameters of VIC and CLM that are subject to inference with the 
different data assimilation methods using the 5-month soil moisture calibration data period of the 
Rollesbroich site. We list the symbol, unit, feasible range, perturbation, and domain of application of 
each parameter of VIC and CLM. The column with header “perturbation” lists the statistical 
distributions that are used to create the initial parameter ensemble for each data assimilation algorithm. 
The notation 𝓝𝓝(𝐚𝐚,𝐛𝐛) signifies the univariate normal distribution with mean 𝐚𝐚 and standard deviation 
𝐛𝐛, whereas 𝓤𝓤(𝐚𝐚,𝐛𝐛) denotes the univariate uniform distribution between 𝐚𝐚 and 𝐛𝐛. These perturbation 
distributions are centred on the best-guess parameter values of VIC and CLM (see section 3.4.2) and 
define together the prior parameter distribution. This prior distribution honours textural measurements 
of each soil layer and its dispersion is in agreement with previously published studies. 

Model Parameter Description Units Ranges Perturbation Configuration 

VIC 

log10𝑘𝑘s 
Saturated hydrologic 

conductivity log10(m/s)♦ [-7, -3] 𝒩𝒩(0, 1) Layer 

𝛽𝛽 
Exponent of Brooks-

Corey drainage 
equation 

- [8, 30] 𝒰𝒰(−5, 5) Layer 

𝑏𝑏 Infiltration shape 
parameter - [10-3, 0.8] 𝒰𝒰(−0.1, 0.1) Profile 

𝐷𝐷m Maximum baseflow 
velocity mm/d (0, 30] 𝒰𝒰(−10, 10) Profile 

CLM 

𝑓𝑓cl Clay fraction - [0.01, 1] 𝒰𝒰(−0.1,0. 1) Layer 

𝑓𝑓sd Sand fraction - [0.01, 1] 𝒰𝒰(−0.1, 0.1) Layer 

𝑓𝑓om Organic matter 
fraction - [0, 1] 𝒰𝒰(−0.12,0. 12) Layer 

†Note that the sand, clay, and organic matter fraction of each layer serve as input to pedotransfer 
functions in CLM which compute the hydraulic properties of each layer. See equation (3.B2) – (3.B5) 
of Appendix 3.B. 

♦In the figures of this study we conveniently use labels with units of m/s for log10ks. 

3.3 Data assimilation methods 

Data assimilation methods merge uncertain observations with predictions (output) of 
imperfect models to optimally estimate the state and/or parameters of a dynamical system. 
This includes the use of four-dimensional variational data assimilation (4D-Var), EnKF, PF, 
and related assimilation schemes. These methods have been applied successfully to a large 
number of different fields for model-data fusion in the atmospheric, oceanic, biogeochemical 
and hydrological sciences.  

3.3.1 EnKF and PF  

In chapter 2 the theory of EnKF and PF (state estimation/joint estimation of states and 
parameters) is described. Here the state augmentation method and dual estimation method of 
EnKF are referred to as EnKF-AUG and EnKF-DUAL, respectively. The EnKF suffers from 
filter inbreeding, that is, the ensemble spread degrades after several data assimilation steps. In 
extreme cases, the covariance matrix 𝐂𝐂 , of the state ensemble is so small that the 
measurements receive a negligible weight via equation (2.24) and do not affect much the 
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state trajectories of the individual ensemble members. This reflects a situation similar to 
model calibration in which state variable errors are ignored and all uncertainty in the input-
output representation of the model is attributed to the parameters. Filter inbreeding is 
aggravated by the use of a relatively low number of ensemble members (small 𝑁𝑁) which 
results in spurious correlations among state variables and/or parameters, and underestimation 
of the spread of the ensemble. Other reasons for an insufficient ensemble spread are model 
structural errors, and the use of an underdispersed prior parameter distribution or too small 
variance of the measurement errors of the forcing variables. Ensemble inflation methods are 
an effective way to ameliorate filter inbreeding (Anderson, 2007; Whitaker and Hamill, 2012). 
We apply the inflation algorithm of Whitaker and Hamill (2012) to the d parameter values of 
each ensemble member as follows: 

𝛼𝛼𝑗𝑗,𝑡𝑡
𝑖𝑖  = 𝛼𝛼�𝑗𝑗,𝑡𝑡 +

𝑉𝑉𝑗𝑗
𝑊𝑊𝑗𝑗
�𝛼𝛼𝑗𝑗,𝑡𝑡

𝑖𝑖   - 𝛼𝛼�𝑗𝑗,𝑡𝑡�,                     (3.2)  

where 𝛼𝛼�𝑗𝑗,𝑡𝑡 signifies the analysis mean (after update) of the 𝑗𝑗th parameter at time 𝑡𝑡, the scalars 
𝑉𝑉𝑗𝑗  and 𝑊𝑊𝑗𝑗  denote the prior (before update) and analysis standard deviation of the 𝑗𝑗 th 
parameter (derived from ensemble), and 𝑗𝑗 = {1, … ,𝑑𝑑}. This method promotes a parameter 
spread that is in agreement with the width of the prior parameter distribution, and is 
particularly important to avoid a strong underestimation of ensemble variance and associated 
filter inbreeding in applications with relatively small ensemble sizes. As the spread is kept 
artificially constant, it cannot be assessed properly how data assimilation affects reduction of 
prediction uncertainty. In addition, it is important that the initial ensemble spread is adequate. 
This is a drawback of the applied inflation.  

We now briefly discuss two different data assimilation methods of PF which are used herein 
with VIC and CLM to characterize spatiotemporal soil moisture dynamics at our 
experimental site. PF gives satisfactory results if the transition density or model operator, 
ℳ𝛂𝛂(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1), adequately describes the observed system dynamics, and/or the observations, 
𝐘𝐘�1:𝑡𝑡, are not too informative. Otherwise, the repeated application of equation (2.37) causes 
particle impoverishment in which the sampled particle trajectories drift away from the actual 
posterior state distribution, and receive a negligible importance weight. This ensemble 
degeneracy (e.g. Carpenter et al., 1999) deteriorates PF performance and results in a poor 
computational efficiency of the filter as much of the CPU-time is devoted to carrying forward 
particle trajectories whose contribution to 𝑝𝑝𝛂𝛂�𝐗𝐗1:𝑡𝑡�𝐘𝐘�1:𝑡𝑡� for 𝑡𝑡 > 1 is virtually zero.     

To combat particle degeneracy we monitor the effective sample size (ESS) after assimilation 
of each new observation:  

ESS = 1 ∑ �𝑊𝑊�𝑡𝑡𝑖𝑖�
2𝑁𝑁

𝑖𝑖=1⁄ .                   (3.3) 

If the ESS is smaller than some default threshold, say 𝑁𝑁/2, then the particle ensemble is said 
to be degenerating. Several methods have been developed in the statistical literature to 
rejuvenate the particle ensemble. Gordon et al. (1993) introduced Sequential Importance 
Resampling (SIR), where 𝑁𝑁  particles are drawn from the ensemble using selection 
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probabilities equal to their normalized importance weights. This step replaces samples with 
low importance weights with exact copies of the most promising particles, and produces a 
resampled set of N particles with equal weights of 1/𝑁𝑁. In our application of the PF we 
implement Residual Resampling (RR) developed by Liu and Chen (1998). This method has 
an important advantage over SIR in that it produces a resampled set of particles with more 
diverse weights (Weerts and Serafy, 2006). First, we compute a selection probability, 𝑝𝑝�xti�, of 

each individual particle as follows: 

𝑝𝑝�𝐱𝐱𝑡𝑡𝑖𝑖 � = 𝑁𝑁𝑊𝑊�𝑡𝑡
𝑖𝑖−�𝑁𝑁𝑊𝑊�𝑡𝑡

𝑖𝑖�
𝑁𝑁−𝑀𝑀

,                                (3.4) 

where the ⌊∙⌋ operator rounds down to the nearest integer, and 𝑀𝑀 = ∑ �𝑁𝑁𝑊𝑊�𝑡𝑡
𝑗𝑗�𝑁𝑁

𝑗𝑗=1 . Then, the 𝑀𝑀 
particles with largest normalized importance weights are retained, and the remaining 𝑁𝑁 −𝑀𝑀 
spots are filled by drawing from the M retained particles using their selection probabilities 
from equation (3.4). The resulting filter is referred to as RRPF. 

In the present application of the RRPF, we not only estimate the LSM states but also jointly 
infer the values of the model parameters. We use state augmentation and add the model 
parameters to the vector of LSM state variables. Yet, this approach requires definition of an 
importance density for the parameters to avoid parameter impoverishment after several 
successive assimilation steps. This has been demonstrated numerically by Plaza et al. (2012) 
using a series of data assimilation experiments. In principle, we could corrupt the posterior 
parameter distribution using the ensemble inflation method of Whitaker and Hamill (2012) 
detailed in equation (3.2). This approach was used by Qin et al. (2009) to avoid degeneracy 
of the parameter values. Instead, we use the approach described by Plaza et al. (2012) and 
perturb the parameter values of the resampled particles using draws from a zero-mean d-
variate Gaussian distribution with diagonal covariance matrix. This 𝑑𝑑 × 𝑑𝑑 matrix has zero 
entries everywhere (uncorrelated dimensions) except on the main diagonal which stores 
values of 𝑠𝑠2Var��𝛼𝛼0,𝑗𝑗

1:𝑁𝑁��, where s is a scaling factor, Var��𝛼𝛼0,𝑗𝑗
1:𝑁𝑁�� signifies the prior variance 

of the j th parameter (at t = 0 ), and j = {1, … , d} . This is an adaptation of the method 
introduced by Moradkhani et al. (2005b) and uses the prior variance of the parameters rather 
than their variance at the previous measurement time, 𝑡𝑡 − 1. Yet, in the absence of a formal 
guidelines on the choice of 𝑠𝑠, this perturbation approach suffers from a lack of adequate 
statistical underpinning (Vrugt et a., 2013; Yan et al., 2015). In our present application, we 
set 𝑠𝑠 = 0.1, and evaluate the RRPF performance for VIC model using other values for this 
scaling factor as well.  

The RR procedure produces a sample with more evenly distributed weights, but many of the 
particles are exact copies of one another. To enhance sample diversity, we therefore evaluate 
another resampling step using Markov chain Monte Carlo (MCMC) simulation. We follow 
herein the MCMC resampling method of Vrugt et al. (2013) and create candidate particles 
after RR using a discrete proposal distribution with state and parameter jumps equal to a 
multiple of the difference of two or more pairs of resampled particles. Each candidate particle 
is then re-evaluated between 𝑡𝑡 − 1 and 𝑡𝑡 by the LSM model, and the Metropolis acceptance 
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probability is used to determine whether to replace the “old” particle or not. This combined 
PF and MCMC methodology is also referred to as PMCMC. Interested readers are referred to 
Vrugt et al. (2013) for a detailed description of this method. 

3.1.2 Important differences of EnKF and PF  

Before we proceed with application of the EnKF-AUG, EnKF-DUAL, RRPF and PMCMC 
data assimilation methods, we reminisce about the key differences of the EnKF and PF. 
These differences are often overlooked and misunderstood but of crucial importance to help 
understand the two filters, and analyse and interpret our findings (see Vrugt et al., 2013). 
Most critically, the EnKF uses the measured values of the state variables (via measurement 
operator, if appropriate) to correct (update) the forecasted states of each ensemble member. 
The state PDF at each time is approximated by a weighted average of the distributions of the 
measured and forecast states. The PF on the other hand does not use a state analysis step, but 
rather assigns a likelihood to each particle. This likelihood is a dimensionless scalar which 
measures in a probabilistic sense the distance between the measured and forecasted state 
variables. The state PDF at each time is then constructed via the likelihoods (normalized 
importance weights) of the particles. Resampling is required to rejuvenate the ensemble, but 
this step is rather inefficient compared to the state analysis step of the EnKF as the measured 
states are only used indirectly in the PF via calculation of the likelihood. What is more, a 
single resampling step in RRPF or PMCMC does not guarantee a good approximation of the 
actual state PDF, as the particles’ forecasted states may be systematically biased. 
Consequently, the PF may need a very large ensemble and/or many resampling steps to 
characterize properly the state PDF. On the contrary, the state analysis step of the EnKF 
resurrects rapidly a biased ensemble by migrating the members’ forecasted states in closer 
vicinity of their measured values. This crucial difference between the EnKF and PF is the 
result of their dichotomous design, as is also evident from our mathematical notation. The 
EnKF estimates separately at each time the state PDF via equation (2.22), whereas the PF is 
designed to estimate the posterior distribution of the entire state trajectory via the recursion of 
equation (2.36). This latter task is much more difficult in practice, and requires use of the 
laws of probability to ensure that each particles’ state trajectory constitutes a plausible 
realization from the transition density, ℳ��𝐱𝐱𝑡𝑡𝑖𝑖 ���𝐱𝐱𝑡𝑡−1𝑖𝑖 ��, juxtaposed by the distribution of the 
model errors. This latter requirement of plausibility renders impossible the use of an analysis 
step in the PF (such as EnKF), as the resulting state updates may violate the statistics of the 
transition density and model error distribution and jeopardize the realism of each particle’s 
state trajectory. Therefore, the PF requires a proper resampling method that takes into explicit 
account the statistical properties of the state transition density and model error distribution to 
replace bad particles and ensure an exact characterization of the evolving state PDF.       
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3.4 Case study  

3.4.1 The Rollesbroich experimental site 

We apply the four data assimilation approach to characterize soil moisture dynamics of the 27 
ha Rollesbroich experimental test site (50°37'27"N, 6°18'17"E) in Germany. This site is 
located in the Eifel hills and ranges in elevation between 474 and 518 m with mean slope of 
1.63°. The watershed constitutes a sub-basin of the TERENO Rur experimental catchment 
(Bogena et al., 2010; Qu et al., 2014) and consists of grassland with a soil texture that is 
predominantly silty loam. The mean annual air temperature and precipitation are 7.7 °C and 
1033 mm, respectively. An eddy covariance tower (50°37'19"N, 6°18'15"E, elevation 514.7 
m) and a soil moisture and soil temperature sensor network (with measurements at 5, 20 and 
50 cm depth) have been installed (amongst others) at the Rollesbroich site. Water content 
data are measured at 41 different locations (see figure 3.1) using SPADE soil moisture probes 
(sceme.de GmbH i.G., Horn-Bad Meinberg, Germany) (Hübner et al., 2009) installed at 5 cm, 
20 cm and 50 cm depth along a vertical profile. The SPADE probe is a ring oscillator and the 
frequency of the oscillator is a function of the dielectric permittivity of the surrounding 
medium, which depends strongly on local soil water content because of the high relative 
permittivity of water (≈ 80) as compared to mineral soil solids (≈ 2-9), and air (≈ 1). The 
SPADE probe was calibrated following the procedure outlined in (Qu et al., 2014). The soil 
moisture measurements are subject to several sources of error. This includes an inadequate 
contact of the sensors with the surrounding soil, and structural imperfections of the equations 
which relate the sensor response to the dielectric permittivity, and this permittivity to soil 
moisture.  

The atmospheric LSM forcing data in this study were measured at the eddy covariance tower 
and include hourly measurements of air temperature, air pressure, relative humidity, wind 
speed, and incoming shortwave and longwave radiation. Precipitation was measured by a 
tipping bucket located in close proximity of the eddy covariance station. Soil texture was 
determined using 273 soil samples, taken from three different depths, ranging between 5 and 
11 cm, 11 and 35 cm, and 35 to 65 cm. The sample locations coincided exactly with the 
location of the SoilNet sensors. The soil textural composition, organic carbon content, and 
bulk density were determined for each sample using standard laboratory experiments. These 
values were averaged to obtain mean values for the listed depths. Soil hydraulic parameters 
were then estimated for each of these three measurement depths from pedotransfer functions 
using as input data the basic soil measurements.  
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Figure 3.1 Aerial photograph of the 270,000 m2 Rollesbroich experimental test site near the city of 
Rollesbroich in the Eifel mountain range, western Germany (photo is taken from Qu et al., (2014)). 
The solid black line signifies the outer perimeter of our site and is determined in part by topographic 
gradients except for the Rollesbroich Straße which acts as border in the East-Southeast part of our 
domain. The small blue dots characterize locations within the watershed where soil samples were 
taken. The larger red dots are locations of the sensor network where soil moisture and temperature 
were recorded at depths of 5, 20, and 50 cm. The blue triangle symbolizes the eddy covariance tower. 

In this work, we conveniently assume the soil-land-surface domain of the Rollesbroich site to 
be homogeneous and characterized by areal average values of soil moisture content at 5, 20 
and 50 cm depth. In other words, we consider only vertical variations in soil water storage. 
Common LSM data assimilation experiments published in the literature usually involve 
application to much larger spatial scales, especially when remote sensing data are used. 
Hence, it is important to evaluate the LSM performance for a site where heterogeneities are 
neglected. Qu et al. (2014) investigated the geostatistical properties of the soils of the 
Rollesbroich test site. This work demonstrated a rather small spatial variability of the soil 
texture. This does not suggest, however that we can ignore spatial variations in the measured 
soil moisture values. Indeed, the standard deviations of soil moisture vary between 0.04 and 
0.07 cm3/cm3 depending on the actual soil layer. This spatial heterogeneity of the soil 
moisture data documents variability in the soil hydraulic properties, and complicates the 
application and upscaling of LSMs.  
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3.4.2 Numerical experiments 

A total of N = 100 ensemble members (particles) were used in all our data assimilation 
experiments. The period from January 1, 2011 to February 29, 2012 was used to spin-up VIC 
and CLM using measured hourly forcing data. The subsequent period between March 1, 2012 
and July 31, 2012 served as our “calibration period” during which the daily soil moisture 
observations at the three measurement depths were used to update the LSM state variables 
and possibly also its parameter values. The following 5-months from August 1, 2012 to 
December 31, 2012 were used as an independent evaluation period. During this last period, 
we did not update the states and set the parameters to their “optimized” values derived from 
the calibration period. Soil moisture assimilation was initiated in March 2012 as the SPADE 
water content sensors were deemed unreliable (at least in February) in the preceding winter 
season due to soil freezing. We terminated our numerical experiments at the end of December 
2012, as a large number of sensors seemed to be malfunctioning in subsequent readings 
which could impact too much the mean soil moisture values.  

Soil moisture contents measured at 5 cm, 20 cm and 50 cm depth were assimilated jointly. 
The three (default) soil layers in VIC (0-10 cm, 10-30 cm, and 30-70 cm) were synchronized 
to match the three measurement depths. Soil parameters were defined separately for all 
individual layers, measured or not. In CLM, we used ten (default) soil layers with increasing 
thickness downwards (see table 3.2). The 5, 20 and 50 cm measurement depths correspond to 
the third, fifth and the sixth layer in CLM. Spatial relationships (covariance matrices) 
between the soil parameters of the measured layers and their values of the unmeasured layers 
were used in the EnKF to update the parameterization of layers 1, 2, 4, 7, 8, 9 and 10. A 
slightly different approach was followed in RRPF and PMCMC, in which the soil parameters 
of the unmeasured moisture layers in CLM were updated to their weighted-average values of 
the resampled particles using the vector of normalized importance weights.  

The measurement errors of the soil moisture observations are assumed to be zero-mean 
Gaussian with standard deviation, 𝜎𝜎 = 0.02  m3/m3. This results in 𝐑𝐑 = 4 ∙ 10−4𝐈𝐈𝐦𝐦  in 
equation (2.24) and equation (2.35), respectively. We admit that 0.02 m3/m3 is clearly larger 
than the uncertainty of the mean soil moisture content averaged over the 41 values. A larger 
observation error alleviates potential problems with filter inbreeding. Also, we account 
crudely for errors in LSM model formulation via parameter uncertainty and the use of a 
stochastic description of the precipitation record of the Rollesbroich site (discussed next). In 
other words, the 𝑘𝑘 × 1 process noise vector, wt, in equation (2.20) consists of zeros. However, 
we agree that it can be expected that we have other model structural errors, for example in 
relation to the representation of photosynthesis.  

The hyetograph of each ensemble member is derived by multiplying the measured hourly 
precipitation rates of the tipping bucket with multipliers drawn from a unit-mean normal 
distribution with standard deviation of 0.10. This is equivalent to a heteroscedastic error of 10% 
of the observed precipitation (Hodgkinson et al., 2004). Forcing variables which govern 
evapotranspiration (incoming shortwave and longwave radiation, air temperature, relative 
humidity, and wind speed) were not corrupted.  
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Table 3.2 Nodal depth, 𝒛𝒛, thickness, ∆𝒛𝒛, and depth at layer interface, 𝒛𝒛𝒛𝒛, of the ten soil layers used by 
CLM.  

Layer 𝒊𝒊 𝒛𝒛 [m] ∆𝒛𝒛 [m] 𝒛𝒛𝒛𝒛 [m] 

         1 (top) 0.0071 0.0175 0.0175 

2 0.0279 0.0276 0.0451 

3 0.0623 0.0455 0.0906 

4 0.1189 0.0750 0.1655 

5 0.2122 0.1236 0.2891 

6 0.3661 0.2038 0.4929 

7 0.6198 0.3360 0.8289 

8 1.0380 0.5539 1.3828 

9 1.7276 0.9133 2.2961 

10 2.8646 1.5058 3.8019 

 

The initial values of the VIC and CLM parameters are sampled at random using a simple 
two-step procedure. This approach honours soil textural data and is consistent with related 
results published in the literature. First, we draw 𝑁𝑁 times from each marginal distribution 
listed in Table 1 under the column “perturbation”. These distributions originate from Han et 
al. (2014) for CLM, and Demaria et al. (2007) and Troy et al. (2008) in case of VIC. This 
results in a 𝑁𝑁 × 𝑑𝑑 matrix of perturbations for VIC and CLM, respectively. We then create the 
initial 𝑁𝑁 × 𝑑𝑑 parameter ensemble of VIC and CLM by adding each perturbation matrix to a 
deterministic vector of “best-guess” parameter values for each model. This initial parameter 
ensemble is the same for all the assimilation methods. For CLM, this best-guess vector is 
simply equivalent to the areal-averaged sand, clay, and organic matter fraction of each of the 
ten soil layers, respectively. In case of VIC, we guess that 𝛽𝛽 = 15 (all layers), 𝑏𝑏 = 0.2, and 
𝐷𝐷m = 13 (mm/d), and derive the value of log10𝑘𝑘𝑠𝑠 (log10(m/s)) of all three soil layers from the 
measured mean areal sand fraction at each of those depths. The best-guess parameter values 
of VIC and CLM and their respective marginal distributions are jointly also referred to 
hereafter as prior parameter distribution. We want to compare EnKF and PF starting from the 
same prior distribution in order to make a more meaningful comparison. EnKF assumes a 
Gaussian distribution, but the PF not. We believe that assuming an initial uniform distribution 
is a neutral assumption good for comparing EnKF and PF. 

One may debate our best-guess parameter values of VIC and CLM and their respective 
marginal distributions. Nevertheless, the prior parameter distribution used herein introduces 
more than sufficient dispersion in the best-guess parameter values to rapidly overcome a 
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possibly deficient initial model parameterization. Note, that the prior uncertainty of the two 
texture parameters (sand and clay fraction) in CLM is much larger than their spread derived 
from the texture measurements of each soil layer. This inflation of the prior distribution is 
done purposely to account indirectly for the epistemic uncertainty of the pedotransfer 
functions that are used to predict the soil hydraulic parameters. Indeed, the prior parameter 
uncertainty of the sand and clay fraction should be large enough to guarantee a sufficient soil 
moisture spread of the ensemble, which is of crucial importance for an adequate performance 
of the different data assimilation methods.  

Figure 3.2 shows the measured records of daily precipitation and daily air temperature for the 
10 month measurement period used herein. The measurement period is rather wet with 
several intensive precipitation events during the summer. For example, notice the event on 
the 27th of July in 2012 in which 31 mm of precipitation fell in just one hour. Our experience 
suggests that such extreme rainfall events corrupt the parameter estimates, in large part due to 
an inadequate description and/or characterization of surface runoff. What is more, the 
correlation between the hydraulic parameters of the different layers of our soil domain and 
the moisture state deteriorates rapidly close to saturation. Therefore, on days with rainfall in 
excess of 20 mm we resort to state estimation only, and proceed with this the next two 
consecutive days to give VIC and CLM sufficient opportunity to remove, via deficient 
surface transport or state updating, the excess water. On the third day after each 20 mm+ 
precipitation event, we resume joint LSM state and parameter estimation.  

 
Figure 3.2 Historical records of daily mean air temperature (solid black line; left y-axis) and 
precipitation (blue bars; right y-axis) in the period from March 1, 2012 to December 31, 2012 for the 
Rollesbroich experimental test site in the Eifel mountain range in western Germany. The grey region 
demarcates the 5-month assimilation period (March 1, 2012 to July 31, 2012) which is used for VIC 
and CLM calibration using joint parameter and state estimation. The subsequent 5-month period 
between August 1, 2012 and December 31, 2012 serves as our evaluation period to verify the 
performance of the calibrated VIC and CLM models without state estimation. 

  



38 
 

 

To evaluate joint state-parameter estimation algorithms for the two LSMs and the four 
different data assimilation algorithms, we carried out the following three numerical 
experiments for VIC and CLM (see also table 3.3):  

(1) Open loop simulation. We evaluate the LSMs from March 1, 2012 to December 31, 2012 
with time-invariant parameters via Monte Carlo simulation using a large number of draws 
from the prior parameter distribution summarized in table 3.1 and section 3.4.2. 

(2) State updating with EnKF. The soil moisture state variables were updated during the five-
month calibration period using the SPADE moisture content measurements. In theory, soil 
moisture assimilation should improve our estimates of the initial states of the evaluation 
period. We posit that this enhanced state-value characterization should improve the accuracy 
of the LSM simulated (predicted) soil moisture values during the first few days/weeks of the 
evaluation period, after which the model performance deteriorates rapidly over time in the 
absence of recursive state adjustments.  

(3) Joint state-parameter estimation using RRPF, PMCMC, and EnKF with state 
augmentation and dual estimation. The soil moisture state variables and model parameters are 
estimated during the five-month calibration period using the SPADE soil moisture 
measurements. The parameter values and state variables at the end of the calibration data 
period are used for the evaluation period. 

Table 3.3 Summary of the different numerical experiments used in this study for CLM and VIC and 
their respective abbreviations used in the subsequent tables and figures. 

 scenario description Abbreviation 

 Open loop simulation OpenLoop 

 EnKF with state estimation noParamUpdate 

 EnKF with state augmentation  EnKF-AUG 

 EnKF with dual estimation EnKF-DUAL 

 RRPF with ad-hoc parameter perturbations  RRPF 

 PMCMC    PMCMC 

 

3.4.3 Summary statistics 

We used the Nash-Sutcliffe model efficiency (NSE) and the Root Mean Square Error (RMSE) 
to evaluate the quality-of-fit of the VIC and CLM predicted (simulated) soil moisture values 
during the calibration (assimilation) and evaluation period. These two metrics are computed 
separately for the 5, 20, and 50 cm measurement depths as follows:  
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 NSE𝑖𝑖 = 1 − ∑ �𝐲𝐲�𝑖𝑖,𝑡𝑡− 𝐲𝐲�𝑖𝑖,𝑡𝑡�
2𝑛𝑛

𝑡𝑡=1

∑ �𝐲𝐲�𝑖𝑖,𝑡𝑡− 1𝑛𝑛∑ 𝐲𝐲�𝑖𝑖,𝑡𝑡𝑛𝑛
𝑡𝑡=1 �

2𝑛𝑛
𝑡𝑡=1

 ; RMSE𝑖𝑖 = �1
𝑛𝑛
∑ �𝐲𝐲�𝑖𝑖,𝑡𝑡 − 𝐲𝐲�𝑖𝑖,𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1 ,    (3.5) 

where 𝐲𝐲�𝑖𝑖,𝑡𝑡 and 𝐲𝐲�𝑖𝑖,𝑡𝑡 denote the measured and ensemble mean predicted soil moisture contents 
at time 𝑡𝑡, the subscript 𝑖𝑖 constitutes an index for measurement depth, 𝑖𝑖 = {1, … ,3}, and 𝑡𝑡 =
{1, … ,𝑛𝑛}. The 3 × 1  vector of ensemble mean predicted moisture contents, 𝐲𝐲�𝑡𝑡 , is simply 
equivalent to the mean of the VIC or CLM forecasted state variables at these respective 
measurement depths. Larger values of the NSE and smaller values of the RMSE are preferred 
as they indicate a better LSM performance. In the absence of reliable information about the 
soil hydraulic properties of the different layers, the soil moisture observations were the only 
data available to evaluate the results of VIC and CLM and each data assimilation method.  

3.5 Results  

In this section we present the results of our numerical experiments. We first discuss our 
findings for VIC followed by the results of CLM. Section 3.6 proceeds with a discussion of 
the main findings.    

3.5.1 VIC 

Figure 3.3 displays the observed (blue dots) and VIC predicted soil moisture values (solid 
lines) at (a) 5, (b) 20, and (c) 50 cm depths using PMCMC (black), RRPF (red), EnKF-AUG 
(green), and EnKF-DUAL (cyan). As the Rollesbroich test site experiences a yearly average 
precipitation of more than about 1000 mm it is not surprise that the upper soil layer at 5 cm is 
rather wet with volumetric soil moisture contents that vary dynamically between 0.3 and 0.5 
cm3/cm3 in response to atmospheric forcing. This is especially true during the summer 
months (week 12 – 22) and explained by a rapid succession of rainfall and drying events. The 
larger porosity values of the surface layer explain the relatively high soil moisture contents of 
the 5 cm measurement depth. The storage time series of the deeper soil layers at 20 and 50 
cm depth exhibit a rather negligible temporal variation with soil moisture values that range 
between 0.3-0.4 cm3/cm3 and show a damped and lagged response to rainfall. Note that the 
soil water storage of the deepest layer increases steadily during the year. This implies a 
drainage flux from the top soil to the aquifer (and drainage channels).  

The different data assimilation methods demonstrate a rather similar performance with VIC 
predicted moisture contents that track reasonably well the three different layers. Note, 
however that RRPF does not reproduce well the measured data at 50cm depth in the period 
from March (week 1) to June (week 17). This might be caused by filter inbreeding of the 
states, and will be discussed later (see also figure 3.9(b)). Nevertheless, RRPF recovers the 
observed soil moisture data in week 18. Although difficult to see, the EnKF produces the best 
results at 50 cm depth (state augmentation and dual estimation).  
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Figure 3.3 Assimilation period: Observed (blue dots) and VIC predicted time series (solid lines) of 
soil moisture content at depths of (a) 5, (b) 20, and (c) 50 cm in the Rollesbroich site. Colour coding is 
used to differentiate between the results of PMCMC [black], RRPF [red], EnKF-AUG [green], and 
EnKF-DUAL [cyan]. The first days of week 1 and 22 are 01-03-2012 and 26-07-2012, respectively. 

Table 3.4 summarizes the NSE and RMSE values of PMCMC, RRPF, EnKF-DUAL and 
EnKF-AUG for the calibration (assimilation) period. We also list the performance of VIC 
without data assimilation (OpenLoop) using the mean soil moisture time series of many 
different realizations of the prior parameter distribution, and include RMSE and NSE values 
of the EnKF for state estimation only (noParamUpdate) using VIC parameterizations drawn 
randomly from its prior parameter distribution. The open loop deviates most from the 
measured values with RMSE values of 0.036, 0.037 and 0.129 cm3/cm3 for the 5, 20, and 50 
cm measurement depths. The different data assimilation methods improve significantly the 
quality of fit of VIC compared to the open loop run. EnKF-AUG and EnKF-DUAL exhibit an 
almost identical performance with similar NSE and RMSE values. The particle filters, RRPF 
and PMCMC demonstrate comparable results for the 5 and 20 cm depth, but exhibit 
somewhat inferior performance compared to EnKF-AUG and EnKF-DUAL for the 50 cm 
layer. The Table confirms our previous finding that the PF exhibits difficulties to track the 
soil moisture data of the deepest measurement layer. Indeed, the RMSE value of 0.088 of the 
PF for this layer is much larger than its counterparts of 0.021, 0.014 and 0.016 derived from 
PMCMC, EnKF-AUG and EnKF-DUAL, respectively. Perhaps surprisingly, but the best 
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performance of VIC is obtained for state estimation only (noParamUpdate) using model 
parameterizations drawn randomly from the prior parameter distribution. We posit that the 
nonlinear relationship between states and parameters may introduce inconsistencies in 
PMCMC, RRPF, EnKF-AUG and EnKF-DUAL which jointly estimate VIC states and 
parameters. Overall, the EnKF gives somewhat better results than the PF, particularly for the 
deepest measurement layer, and PMCMC exhibits a better performance than RRPF.  

Table 3.4 Calibration period: Values of the NSE and RMSE summary statistics of the quality of fit of 
VIC for the Rollesbroich soil moisture observations at 5, 20, and 50 cm depth using the PMCMC, 
RRPF, EnKF-AUG and EnKF-DUAL data assimilation methods. For completeness, we also list the 
performance of the EnKF for state estimation only (noParamUpdate) using VIC parameter values 
drawn randomly from the prior parameter distribution, and the performance of an open loop run of 
VIC (OpenLoop) using the mean simulation of many different VIC parameterizations drawn 
randomly from the prior parameter distribution (see table 3.1 and section 3.4.2). 

Criteria 
Soil 

depth 
PMCMC RRPF 

EnKF-

AUG 

EnKF-

DUAL 
noParamUpdate OpenLoop 

NSE 

(-) 

5 cm 0.82 0.73 0.80 0.82 0.89 0.33 

20 cm 0.80 0.84 0.92 0.91 0.86 -1.16 

50 cm 0.27 -11.77 0.69 0.58 0.91 -26.65 

RMSE 

(m3/m3) 

5 cm 0.019 0.023 0.020 0.019 0.015 0.036 

20 cm 0.011 0.010 0.007 0.007 0.009 0.037 

50 cm 0.021 0.088 0.014 0.016 0.008 0.129 

 

Figure 3.4 presents traceplots of the VIC parameters during the 5-month calibration period 
using the PMCMC (black), PF (red), EnKF-AUG (green), and EnKF-DUAL (cyan) data 
assimilation methods. We display the ensemble mean saturated hydraulic conductivity 
(log10𝑘𝑘𝑠𝑠 in m/s) at (a) 5 cm, (b) 20 cm, and (c) 50 cm depth, (d) 𝑏𝑏, 𝛽𝛽 at (e) 5 cm, (f) 20 cm, 
and (g) 50 cm depth, and (h) the maximum baseflow velocity, 𝐷𝐷m in mm/day. In general, the 
different data assimilation methods result in somewhat similar trajectories of the ensemble 
mean parameter values during the calibration period. In particular, the parameter traceplots of 
EnKF-AUG and EnKF-DUAL appear almost identical, with the exception of parameter 𝑏𝑏 and 
𝛽𝛽 at 50 cm depth. Note that the parameters of the surface layer exhibit most dynamics in 
response to atmospheric forcing. PMCMC exhibits significant temporal dynamics. This is not 
surprising, and a consequence of the MCMC resampling step that is used to rejuvenate the 
parameter samples (e.g. Vrugt et al., 2013). In the first place, the DREAM-type proposal 
distribution that is used to create candidate particles allows for relatively large moves in the 
parameter space. Second, only a small LSM trajectory between two successive soil moisture 
observations is used to determine the acceptance probability of each candidate particle. With 
such a short (re)-simulation period, insensitive parameters are allowed to transition to very 
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different values, as they do not affect the model output between the two observations, and 
thus likelihood of a candidate particle. Altogether, this also contributes to a stronger 
dependency of PMCMC on the initial parameter ensemble. This collection of parameter 
vectors is drawn randomly from the prior parameter distribution and differs per trial 
depending on the random seed. The use of a larger historical simulation period (going back 
further in time) would better constrain the VIC parameters, but also increase significantly the 
computational burden of resampling. Nonetheless, the ensemble mean VIC parameter values 
of the different data assimilation methods are remarkably similar at the end of the calibration 
period, after assimilating the soil moisture observations of week 22. The exception to this is 
parameter 𝑏𝑏 whose trajectories differ most with values at the end of the calibration period that 
range between values of 0.11 for RRPF and 0.25 for EnKF-DUAL. Finally, parameter 𝐷𝐷m 
converges systematically to values of 1 - 2 mm/day but at a different rate for the data 
assimilation methods. The EnKF-AUG, EnKF-DUAL and PMCMC methods need just a few 
soil moisture observations to determine the value of 𝐷𝐷m, whereas RRPF converges at a much 
slower pace. This might explain the rather inferior performance of RRPF for the 50 cm 
measurement depth during a substantial part of the assimilation period.  

 
Figure 3.4 Traceplots (solid lines) of the VIC parameters, Saturated hydraulic conductivity (log10𝒌𝒌𝒔𝒔 in 
m/s) at (a) 5 cm, (b) 20 cm, and (c) 50 cm depth, (d) 𝒃𝒃, 𝜷𝜷 at (e) 5 cm, (f) 20 cm, and (g) 50 cm depth, 
and (h) the maximum baseflow velocity, 𝑫𝑫𝐦𝐦, in mm/day during the 5-month assimilation period. 
Colour coding is used to differentiate between the results of PMCMC [black], RRPF [red], EnKF-
AUG [green], and EnKF-DUAL [cyan]. The first days of week 1 and 22 are 01-03-2012 and 26-07-
2012, respectively. 
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To provide a better understanding of the ensemble spread of the VIC parameters, please 
consider Figure 3.5 which presents traceplots of the sampled log10ks (left column) and β (right 
column) values at the 20 cm measurement depth for the 𝑁𝑁 =  100 members. Results are 
presented in order of (a-b) PMCMC (gray), (c-d) RRPF (red), (e-f) EnKF-AUG (green) and 
(g-h) EnKF-DUAL (cyan) and the ensemble mean is indicated with the solid black line. The 
ensemble members cover a relatively large part of the prior distribution of both parameters, 
with the exception of RRPF which seems to underestimate the actual uncertainty of log10ks 
and β. This is an artefact of equation (3.2) which discourages large parameter adjustments 
with small 𝑠𝑠 . Nevertheless, note that the ensemble mean of the parameters is rather 
unaffected by assimilation of the soil moisture data, except for the small increase of log10ks 
and β late April due to increased precipitation in the following months (see also figure 3.2).  

Figure 3.6 displays VIC simulated soil moisture time series for the independent 5-month 
evaluation period at (a) 5, (b) 20, and (c) 50 cm depths using initial states and parameter 
values derived from PMCMC (black), PF (red), EnKF-AUG (green), and EnKF-DUAL 
(cyan). The observed soil moisture values are separately indicated with the solid blue dots.  

 
Figure 3.5 Sampled trajectories of the 𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏  ensemble members of the saturated hydraulic 
conductivity (log10𝒌𝒌𝒔𝒔 in m/s) at 20 cm depth (left column) and parameter 𝜷𝜷 (right column) of VIC 
during the 5-month assimilation period of week 1 to 22 using (a-b) PMCMC [grey] (c-d) RRPF [red], 
(e-f) EnKF-AUG [green], and (g-h) EnKF-DUAL [cyan]. The trajectory of the ensemble mean is 
separately indicated in each panel using the solid black line. 

The water content simulations of VIC are hardly distinguishable, except for the deepest soil 
layer at 50 cm depth. Apparently, it does not matter which data assimilation method is used to 
estimate the VIC parameter values and initial states of the evaluation period. VIC tracks very 
well the soil moisture data at 20 cm depth, but does not do a particularly good job in 
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describing water content dynamics at 5 and 50 cm depth. In particular, the model 
systematically underestimates the observed storage of the bottom soil layer between weeks 
25-36. This might be a consequence of the use of a fixed lower boundary condition (no 
connection with underlying aquifer) and/or the relatively simple baseflow parameterization. 
Although not further shown herein, a separate VIC run using state estimation only 
(noParamUpdate) produces similar results after a few days to an open loop simulation.  

We summarize in table 3.5 the NSE and RMSE values of PMCMC, RRPF, EnKF-DUAL and 
EnKF-AUG during the 5-month evaluation period. We also list the performance of VIC 
without data assimilation (OpenLoop) using the mean soil moisture time series of many 
different realizations of the prior parameter distribution, and include RMSE and NSE values 
of the EnKF for state estimation only (noParamUpdate) using VIC parameterizations drawn 
randomly from its prior parameter distribution. In general, the RMSE values of the evaluation 
period are much higher than their counterparts of the assimilation period, and 
noParamUpdate produces RMSE values similar to that of an open loop simulation. VIC 
parameter estimation is productive, as it substantially reduces the RMSE values of 20 and 50 
cm measurement depths compared to a model run with state estimation only (noParamUpdate) 
and parameters drawn randomly from their prior distribution. More specifically, the PMCMC, 
RRPF, EnKF-AUG and EnKF-DUAL show a RMSE improvement of about 54% and 42% 
for the second and third measurement depth compared to OpenLoop and noParamUpdate. 
The NSE values of VIC for the 50 cm depth are negative for all six methods, conclusively 
demonstrating an inferior performance of the model for this soil layer.  

Table 3.5 Table 3.5 Evaluation period: Values of the NSE and RMSE summary statistics of the 
quality of fit of VIC for the Rollesbroich soil moisture observations at 5, 20, and 50 cm depth using 
the calibrated parameter values and initial states derived from the PMCMC, RRPF, EnKF-AUG and 
EnKF-DUAL data assimilation methods. For completeness, we also list the performance of the EnKF 
using state estimation only (noParamUpdate) using VIC parameter values drawn randomly from the 
prior parameter distribution, and the performance of an open loop run of VIC (OpenLoop) using the 
mean simulation of many different VIC parameterizations drawn randomly from the prior parameter 
distribution.   

Criteria 
Soil 

depth 
PMCMC RRPF 

EnKF-

AUG 

EnKF-

DUAL 
noParamUpdate OpenLoop 

NSE 

(-) 

5 cm 0.39 0.39 0.39 0.39 0.35 0.36 

20 cm 0.38 0.47 0.40 0.39 -1.75 -1.87 

50 cm -10.33 -8.41 -10.54 -11.33 -26.83 -32.96 

RMSE 

(m3/m3) 

5 cm 0.052 0.052 0.052 0.052 0.054 0.053 

20 cm 0.026 0.024 0.026 0.026 0.055 0.056 

50 cm 0.076 0.069 0.077 0.079 0.119 0.132 
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Figure 3.6 Evaluation period: Observed (blue dots) and VIC simulated time series (solid lines) of soil 
moisture content at depths of (a) 5 cm, (b) 20 cm, and (c) 50 cm in the Rollesbroich site. Colour 
coding is used to differentiate between the results of PMCMC [black], RRPF [red], EnKF-AUG 
[green], and EnKF-DUAL [cyan]. The first days of week 23 and 44 are 01-08-2012 and 26-12-2012, 
respectively. 

We now investigate in more detail the effect of MCMC resampling with the PF as figure 3.4 
has demonstrated that PMCMC produces rather dynamic trajectories of the sampled 
parameter values. Nevertheless, the parameters converge to stable values at the end of the 
assimilation period. This suggests that the choice of the length of the calibration period is 
crucially important in determining the performance of PMCMC during the evaluation period. 
To investigate this in more detail we use June 11, June 30, July 20, and July 31, 2012 as end 
dates of the PMCMC calibration period and verify VIC performance for the same 5-month 
evaluation period. The different end dates are conveniently referred to as PMCMC_0611, 
PMCMC_0630, PMCMC_0720 and PMCMC_0731 in figure 3.7. The simulated soil 
moisture trajectories of PMCMC_0630, PMCMC_0720 and PMCMC_0731 are in excellent 
agreement, but deviate from PMCMC_0611. Thus, a 4-month calibration period would have 
led to the same results of PMCMC.   
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Figure 3.7 Evaluation period: VIC simulated volumetric moisture contents at (a) 5 cm, (b) 20 cm, and 
(c) 50 cm depth in the soil of the Rollesbroich experimental test site using parameter values derived 
from PMCMC via assimilation periods ending on 06-11 [platinum], 06-30 [silver], 07-20 [grey] and 
07-31 [black], respectively. For PMCMC_0611, PMCMC_0630 and PMCMC_0720, the soil moisture 
state on 01-08-12, the first day of the 5-month evaluation period, was derived from VIC simulation 
using the analysis state and parameter values of the last day of the assimilation period. 

The effect of initial uncertainties on the performance of EnKF with the ensemble inflation 
method is also tested with the VIC model. Table 3.6 compares the RMSE values of EnKF-
AUG and EnKF-DUAL for the calibration and evaluation period using heteroscedastic 
precipitation data errors equivalent to 10% (default) and 20% of their measured hourly rates 
plotted in figure 3.2. We list separate RMSE values for each soil moisture measurement depth. 
In short, the results are equivalent for both EnKF implementations. 

Next, we evaluate the effect of the choice of the scaling factor 𝑠𝑠 in RRPF on VIC output. This 
scalar plays a crucial role in the resampling of the parameters in the PF. If 𝑠𝑠 is taken too large, 
the resampling step will introduce parameter drift and corrupt the approximation of 
𝑝𝑝�𝐗𝐗1:𝑡𝑡�𝐘𝐘�1:𝑡𝑡� and 𝑝𝑝�𝐱𝐱𝑡𝑡�𝐘𝐘�1:𝑡𝑡�. On the contrary, if 𝑠𝑠 is too small, then the resampled parameters 
exhibit insufficient dispersion, and underestimate the actual parameter uncertainty. In the 
absence of theoretical convergence proofs and clear guidelines on the selection of 𝑠𝑠, the 
RRPF cannot estimate exactly the posterior state and parameter PDF (Vrugt et al., 2013; Yan 
et al., 2015). Previous applications of RRPF have suggested a value of 𝑠𝑠 = 0.01 (DeChant 
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and Moradkhani, 2012; Plaza et al., 2012), but thus far we have used 𝑠𝑠 = 0.1 to avoid sample 
impoverishment. Table 3.7 lists RMSE values of VIC for the 5, 20, and 50 cm measurement 
depth for the calibration and evaluation period using RRPF with 𝑠𝑠 = 0.01, 𝑠𝑠 = 0.1, and 𝑠𝑠 =
0.5 , respectively. These three runs are coined RRPF-0.01, RRPF-0.1 and RRPF-0.5, 
respectively. These results demonstrate that a value of 𝑠𝑠 = 0.5 significantly enhances the 
performance of RRPF during the calibration period. The RMSE values are reduced from 
0.025, 0.012, and 0.113 to 0.015, 0.007, and 0.037 for the 5, 20 and 50 cm measurement 
depths. RRPF-0.5 also shows substantial improvements over RRPF-0.01 during the 
evaluation period. This improvement is most apparent for the 20 and 50 cm soil depths with 
RMSE values that have decreased from 0.025 and 0.119 to 0.020 and 0.071, respectively. 
These results are on par with our default setting of 𝑠𝑠 = 0.1 in RRPF. These findings provide 
evidence for our claim that the scaling factor s plays a crucial role in RRPF. What is more, it 
provides support for our conclusion in figure 3.5 that RRPF underestimates the actual 
uncertainty of log10ks and β. Larger values of 𝑠𝑠 will increase the parameter spread, which in 
turn will enhance the uncertainty among the particles’ forecasted states. This makes it easier 
for RRPF to track the observed soil moisture data during the calibration period.  

Table 3.6 RMSE values of VIC for the Rollesbroich soil moisture measurements at 5, 20, and 50 cm 
depth using the EnKF with state AUGmentation or DUAL estimation during the calibration period. 
We also summarize the subsequent performance of the VIC model using the calibrated parameter 
values and initial states derived from AUG and DUAL. The subscripts 10% and 20% signify the 
standard deviations of the measurements errors that are used to corrupt the hourly precipitation data. 

Period Soil depth 
EnKF-

AUG_10% 

EnKF-

AUG_20% 

EnKF-

DUAL_10% 

EnKF-

DUAL_20% 

Calibration 

( Assimilation ) 

5 cm 0.020 0.019 0.019 0.019 

20 cm 0.007 0.007 0.007 0.007 

50 cm 0.014 0.014 0.016 0.014 

Evaluation 

5 cm 0.052 0.052 0.052 0.052 

20 cm 0.026 0.025 0.026 0.025 

50 cm 0.077 0.077 0.079 0.079 

 

Figure 3.8 displays traceplots of the sampled 𝑁𝑁 = 100 trajectories of the saturated hydraulic 
conductivity (log10𝑘𝑘𝑠𝑠 in m/s) at 50 cm depth (left column) and parameter 𝛽𝛽 (right column) of 
VIC during the 5-month assimilation period using (a-b) RRPF-0.01, (c-d) RRPF-0.1, and (e-f) 
RRPF-0.5. As expected, larger values of 𝑠𝑠 increase the spread of the sampled values of the 
VIC parameters as evidenced by an increasingly larger particle coverage of the prior 
parameter distribution. This larger spread of the particles’ parameter values also enhances the 
ability of RRPF to track properly the joint parameter and state PDF. Yet, larger values of 𝑠𝑠 
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have two important drawbacks. Not only can it obstruct parameter convergence (as evidenced 
in figure 3.8(e)), but also many of the resampled parameter values might be deemed 
nonbehavioral, enhancing considerably the chances of particle degeneration. To demonstrate 
this more explicitly, Figure 3.9 shows traceplots of the VIC predicted soil moisture contents 
of the 𝑁𝑁 = 100 particles at 50 cm depth using (a) RRPF-0.01, (b) RRPF-0.1, and (c) RRPF-
0.5. The RRPF is excessively optimistic for 𝑠𝑠 = 0.01 with a negligible uncertainty in the 
predicted soil moisture values between weeks 2-14. Note that in weeks 2-4 the ensemble has 
collapsed to a deterministic simulation (appears as single line). A similar result is observed 
for RRPF-0.1 but with enhanced uncertainty in soil moisture values for the second part of the 
calibration period. In PF-0.1 particle degeneration from March to June explains its bad 
performance from March to June in figure 3.3. The use of 𝑠𝑠 = 0.5 enhances considerably the 
spread of the VIC soil moisture predictions. Yet, the ensemble spread has become quite large 
from week 15 onwards. For these reasons, we are satisfied with our value of 𝑠𝑠 = 0.1 in RRPF, 
although this decision is subjective and would require much testing via trial-and-error. This 
has stimulated Vrugt et al. (2013) to introduce a parameter resampling method which is 
properly rooted in statistical theory and uses laws of probability to rejuvenate the ensemble.   

   

Figure 3.8 Sampled trajectories of the 𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏 ensemble members (solid red lines) of the saturated 
hydraulic conductivity (log10𝒌𝒌𝒔𝒔 in m/s) at 50 cm depth (left column) and parameter 𝜷𝜷 (right column) 
of VIC during the 5-month assimilation period of week 1 to 22 using (a-b) RRPF-0.01, (c-d) RRPF-
0.1, and (e-f) RRPF-0.5. The ensemble mean is separately indicated in each panel with the solid grey 
line. 
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Figure 3.9 Soil moisture trajectories of the 𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏 ensemble members at 50 cm depth for the 5-
month assimilation period (week 1 to 22) of the Rollesbroich site using VIC and (a) RRPF-0.01, (b) 
RRPF-0.1, and (c) RRPF-0.5. The solid black line signifies the ensemble mean soil moisture 
prediction. 

Table 3.7 RMSE values of VIC for the Rollesbroich soil moisture observations at 5, 20, and 50 cm 
depth using data assimilation with RRPF during the calibration period. We also summarize the 
subsequent performance of the VIC model using the calibrated parameter values and initial states 
derived from RRPF. The subscripts 0.01, 0.1, and 0.5 signify the value of the scaling factor s of the 
multivariate normal distribution that is used to perturb the parameter values (importance density).  

Table 3.7 RMSE values of VIC for the Rollesbroich soil moisture observations at 5, 20, and 50 cm 
depth using data assimilation with RRPF during the calibration period. We also summarize the 
subsequent performance of the VIC model using the calibrated parameter values and initial states 
derived from RRPF. The subscripts 0.01, 0.1, and 0.5 signify the value of the scaling factor 𝐬𝐬 of the 
multivariate normal distribution that is used to perturb the parameter values (importance density). 

Period Soil depth 
RRPF-

0.01 
RRPF-0.1 RRPF-0.5 

Calibration 

( Assimilation ) 

5 cm 0.025 0.023 0.015 

20 cm 0.012 0.010 0.007 

50 cm 0.113 0.088 0.037 
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Evaluation 

5 cm 0.053 0.052 0.056 

20 cm 0.025 0.024 0.020 

50 cm 0.119 0.069 0.071 

3.5.2 CLM 

Figure 3.10 shows the observed (blue dots) and ensemble mean predicted soil moisture values 
by CLM (solid lines) at (a) 5, (b) 20, and (c) 50 cm depths during the assimilation period 
using PMCMC (black), PF (red), EnKF-AUG (green), and EnKF-DUAL (cyan). The most 
important results are as follows. First, the ensemble mean soil moisture time series of CLM 
exhibit a larger spread than VIC depicted previously in figure 3.3. Second, the EnKF-AUG 
and EnKF-DUAL exhibit a superior performance with ensemble mean CLM simulations that 
track closely the observed soil moisture observations at each depth. Third, the moisture time 
series (and data) demonstrate most dynamics at the 5 cm depth in response to the variable 
atmospheric boundary conditions. Fourth, the worst performance is observed for RRPF, as 
evidenced by systematic deviations of this filter´s soil moisture predictions with the observed 
data between weeks 3-6 and 18-21 for the 5 cm depth, weeks 1-14 and weeks 18-21 for the 
20 cm depth, and weeks 1-15 and 19-22 for the 50 cm measurement depth. Fourth, the initial 
soil moisture values of CLM at 50 cm depth appear positively biased with a distance of 
approximately 0.05 cm3/cm3 to the areal-mean value of the soil water contents measured by 
the SPADE sensors on 01-03-2012 (first day of week 1). A smaller bias of 0.03 cm3/cm3 is 
observed at the 20 cm depth. The ENKF-AUG and EnKF-DUAL methods need a few days to 
recover from this erroneous initialization.         
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Figure 3.10 CLM predicted time series of soil moisture content at (a) 5 cm, (b) 20 cm, and (c) 50 cm 
depth during the 5-month calibration period using PMCMC [black], RRPF [red], EnKF-AUG [green], 
and EnKF-DUAL [cyan]. The first day of week 1 is 01-03-2012 and week 22 starts with 26-07-2012. 

Table 3.8 lists the NSE and RMSE values of PMCMC, RRPF, EnKF-DUAL and EnKF-AUG 
for the CLM calibration (assimilation) period. We also list the performance of CLM without 
data assimilation (OpenLoop) using the mean soil moisture time series of many different 
realizations of the prior parameter distribution, and list in column with header 
“noParamUpdate” the RMSE and NSE values of the EnKF using state estimation only with 
CLM parameterizations drawn randomly from the prior parameter distribution. These results 
demonstrate that soil moisture assimilation enhances considerably the ability of CLM to 
predict the observed data. Compared to open loop CLM simulation, the RMSE is reduced 
from 0.051, 0.031 and 0.069 to values of about 0.020, 0.012, and 0.016 (average) for the 
different data assimilation methods, respectively. Yet, the RMSE and NSE values of a CLM 
run with state estimation only (noParamUpdate) appear as good as those derived from joint 
parameter and state estimation using PMCMC, RRPF, EnkF-AUG and EnKF-DUAL. Overall, 
the best performance is observed for EnKF-AUG and EnKF-DUAL followed by PMCMC 
and RRPF.     
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Table 3.8 Calibration period: Values of the NSE and RMSE summary statistics of the quality of fit of 
CLM for the Rollesbroich soil moisture measurements at 5, 20, and 50 cm depth with the PMCMC, 
RRPF, EnKF-AUG and EnKF-DUAL data assimilation methods. For completeness, we also list the 
performance of the EnKF for state estimation only (noParamUpdate) using CLM parameter values 
drawn randomly from the prior parameter distribution, and the performance of an open loop run of 
CLM (OpenLoop) using the mean simulation of many different CLM parameterizations drawn 
randomly from the prior parameter distribution.   

Criteria 
Soil 

depth 
PMCMC RRPF 

EnKF-

AUG 

EnKF-

DUAL 
noParamUpdate OpenLoop 

NSE 

(-) 

5 cm 0.63 0.63 0.82 0.85 0.72 -0.31 

20 cm 0.73 0.23 0.94 0.95 0.98 -0.57 

50 cm 0.50 -0.26 0.85 0.86 0.47 -6.90 

RMSE 

(m3/m3) 

5 cm 0.027 0.027 0.019 0.017 0.024 0.051 

20 cm 0.013 0.022 0.006 0.006 0.004 0.031 

50 cm 0.017 0.028 0.009 0.009 0.018 0.069 

 

We proceed in figure 3.11 with traceplots of the 𝑁𝑁 = 100  sampled trajectories of the 
saturated hydraulic conductivity (log10𝑘𝑘𝑠𝑠  in m/s) at 50 cm depth (left column) and soil 
hydraulic parameter 𝐵𝐵 at 50 cm depth (right column) during the 5-month assimilation period 
using (a-b) PMCMC (c-d) RRPF, (e-f) EnKF-AUG, and (g-h) EnKF-DUAL. The evolution 
of the ensemble mean log10𝑘𝑘𝑠𝑠 and 𝐵𝐵 values is separately indicated with the solid black line. 
The largest spread of the ensemble members is observed for EnKF-AUG and EnKF-DUAL 
and explained by the inflation method of equation (3.2) which inherits and sustains the prior 
parameter uncertainty. The RRPF sampled trajectories of log10𝑘𝑘𝑠𝑠 and 𝐵𝐵 exhibit a rather small 
uncertainty with PDF´s of these two parameters that appear well defined at all measurement 
times. This might explain the inferior performance of RRPF as detailed previously in table 
3.8. Overall, the two CLM parameters do not exhibit large temporal changes and converge to 
stable values in the last few weeks of the calibration period.  
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Figure 3.11 Sampled trajectories of the 𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏  ensemble members of the saturated hydraulic 
conductivity (log10𝒌𝒌𝒔𝒔 in m/s) at 50 cm depth (left column) and soil hydraulic parameter 𝑩𝑩 at 50 cm 
depth (right column) of CLM during the 5-month assimilation period of week 1 to 22 using (a-b) 
PMCMC [grey] (c-d) RRPF [red], (e-f) EnKF-AUG [green], and (g-h) EnKF-DUAL [cyan]. The solid 
black line signifies the evolution of the ensemble mean values of log10𝒌𝒌𝒔𝒔 and B. Please note that 
log10ks (in log10(m/s)) and parameter 𝑩𝑩 are derived from the sand, clay, and organic matter fractions 
of each soil layer, which are estimated during the assimilation period. 

Figure 3.12 displays the observed (blue dots) and ensemble mean predicted soil moisture 
values by CLM (solid lines) at (a) 5, (b) 20, and (c) 50 cm depths during the evaluation 
period using PMCMC (black), PF (red), EnKF-AUG (green), and EnKF-DUAL (cyan). The 
soil moisture time series of the different data assimilation methods appear rather similar with 
largest differences observed at the 50 cm depth. In general, the PMCMC, RRPF, EnKF-AUG 
and EnKF-DUAL methods do not do a particularly good job in tracking the soil moisture 
observations of the top soil layer. Indeed, the CLM soil moisture predictions derived from the 
different data assimilations are systematically biased, either underestimating (weeks 35-41 
and 43-44) or overestimating (weeks 24-31 and 42) the observed soil moisture data during 
large parts of the evaluation data set. CLM much better tracks the soil moisture data of the 20 
and 50 cm depth.  
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Figure 3.12 Traceplots of soil moisture contents simulated by CLM during the evaluation period at (a) 
5 cm, (b) 20 cm, and (c) 50 cm depth in the Rollesbroich site using the calibrated parameter values 
derived from PMCMC [black], RRPF [red], EnKF-AUG [green], and EnKF-DUAL [cyan]. The 
measured moisture data are separately indicated in each panel with the solid blue dots. The first day of 
week 23 is 01-08-2012 and the last day of week 44 is 02-01-2013. 

Finally, table 3.9 presents the NSE and RMSE values of PMCMC, RRPF, EnKF-AUG and 
EnKF-DUAL during the 5-month evaluation period. We also list the performance of VIC 
without data assimilation (OpenLoop) using the mean soil moisture time series derived from 
many different realizations of the prior parameter distribution, and display NSE and RMSE 
values of the EnFK using state estimation only (noParamUpdate) with CLM 
parameterizations drawn randomly from the prior parameter distribution. The results of this 
Table are in agreement with our findings for VIC. Indeed, the RMSE values of the evaluation 
period are much higher than their counterparts of the assimilation period. This is particularly 
evident for the 5 cm measurement depth where RMSE values have increased from 0.017-
0.027 to 0.054-0.058. The deeper measurement depths do not appear to be as much affected, 
consistent with our findings from figure 3.12. The results also highlight the importance of 
joint CLM parameter and state estimation as state estimation alone (column noParamUpdate) 
results in significantly larger RMSE values during the evaluation period. This is most evident 
for the 50 cm measurement depth, where the RMSE value of 0.050 of noParamUpdate is 
much larger than its value of 0.016-0.025 derived from PMCMC, RRPF, EnKF-AUG and 
EnKF-DUAL. Altogether, RRPF achieves the worst performance of all four parameter-state 
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estimation methods during the evaluation period. PMCMC, EnKF-AUG and EnKF-DUAL 
provide rather similar RMSE and NSE values.  

Table 3.9 Evaluation period: NSE and RMSE values for the Rollesbroich soil moisture measurements 
at 5, 20, and 50 cm depth using CLM. The initial states and parameter values used by the PMCMC, 
RRPF, EnKF-AUG and EnKF-DUAL data assimilation methods originate from the 5-month 
calibration data period. For completeness, we also list the performance of the EnKF using state 
estimation (noParamUpdate) using CLM parameter values drawn randomly from the prior parameter 
distribution, and the performance of an open loop run of CLM (OpenLoop) using the mean simulation 
of many different CLM parameterizations drawn randomly from the prior parameter distribution. 

Criteria 
Soil 

depth 
PMCMC RRPF 

EnKF-

AUG 

EnKF-

DUAL 
noParamUpdate OpenLoop 

NSE 

(-) 

5cm 0.26 0.23 0.32 0.33 -0.19 -0.14 

20cm 0.39 0.21 0.44 0.46 0.24 -0.11 

50cm 0.35 -0.23 0.51 0.42 -3.87 -4.58 

RMSE 

(m3/m3) 

5cm 0.057 0.058 0.055 0.054 0.072 0.071 

20cm 0.026 0.029 0.025 0.024 0.031 0.035 

50cm 0.018 0.025 0.016 0.017 0.050 0.053 

3.6 Discussion 

In this study, we have evaluated the usefulness and applicability of four different data 
assimilation methods for joint parameter and state estimation of the VIC and CLM land 
surface models using a 5-month calibration (assimilation) data set of distributed SPADE soil 
moisture measurements at 5, 20 and 50 cm depth in the Rollesbroich test site in the Eifel 
mountain range in western Germany. We used the EnKF with state augmentation or dual 
estimation, respectively, and the PF with a simple, statistically deficient, or more 
sophisticated, MCMC-based parameter resampling method. The “calibrated” LSM models 
were tested using water content data from a 5-month evaluation period. The uniqueness of the 
present work resides in the application of these four joint or dual parameter and state 
estimation methods to real-world data.  

Our results demonstrated that joint inference of the VIC and CLM soil parameters improved 
considerably soil moisture characterization during the evaluation period compared to the 
mean water content predictions of an open loop run derived via averaging of simulations of 
many different realizations drawn randomly from the prior parameter distribution. This is 
particularly true for CLM, the two deeper soil layers, and the EnKF-AUG and EnKF-DUAL 
methods (but followed closely by PMCMC). Despite this improvement in model performance 
over an open-loop simulation, VIC and CLM do not adequately characterize soil moisture 
dynamics of the top layer (5 cm measurement depth) during the evaluation period (RMSE 
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values of about 0.05 cm3/cm3). We posit that these two models do not characterize adequately 
processes such as water infiltration, soil evaporation, and/or root water uptake (transpiration), 
which govern rapid variations in soil moisture storage in the top soil. VIC also appeared 
deficient at 50 cm depth during the evaluation period with RMSE values of about 0.07 
cm3/cm3 which are much larger than their counterparts of approximately 0.02 cm3/cm3 
derived from CLM. These results favour the use of CLM which uses a more physics-based 
description of soil water movement, storage, and associated hydrological fluxes at the 
Rollesbroich site. 

The improvement in quality-of-fit of the VIC and CLM models compared to an open-loop 
run does not necessarily imply that the estimated parameter values of VIC and CLM 
characterize better the hydraulic properties and maximum baseflow velocity of the soils of 
the Rollesbroich experimental test site. Assimilation studies with synthetically generated data 
help to ascertain whether the model parameters converge properly to their “true” values, yet 
this is difficult to confirm with real-world measurements. State estimation will, without doubt, 
help reduce the impact of epistemic errors and systematic biases of LSM input and forcing 
data on parameter inference during the assimilation period (e.g. Vrugt et al., 2005). But the 
calibrated parameter values derived with state estimation do not necessarily guarantee a 
consistent and adequate model performance during an independent evaluation period without 
state estimation. Indeed, without assimilation the simulated states may diverge from their 
“measured” values and deteriorate model performance in an evaluation period. This begs the 
question which parameter values we should use to predict future system behaviour outside an 
assimilation period? Should we use parameter estimates derived with state estimation or 
should we use their values derived via batch calibration (optimization) without recursive 
adjustments to the state variables? This dilemma is illustrated further in Vrugt et al. (2006) by 
modelling of a subsurface tracer test using data from Yucca Mountain, Nevada, USA. We 
conclude that the enhanced performance of VIC and CLM during the evaluation period 
compared to our open-loop simulation is due to improved estimates of the initial states and 
the soil parameters. 

In our implementation of the EnKF and PF, the VIC and CLM parameters were assumed to 
be time-variant and their values updated jointly with the model states at each assimilation 
time step. The 5-month calibration period we used herein involves several large precipitation 
events, and as a consequence, the soil profile is rather wet. The resulting parameter estimates 
might therefore not be representative for dry periods with much lower moisture values of the 
soil profile. What is more, the assumption of spatial homogeneity might not characterize 
adequately the distributed soil properties of the Rollesbroich site and induce temporal 
variability in the VIC and CLM parameters. Bias in model input and measurement errors of 
the forcing data also contribute to the temporal fluctuations of the estimated parameter values. 
These temporal parameter variations are meaningful in some cases as they can help diagnose 
structural model inadequacies and/or biases in model input and forcing data. Kurtz et al. 
(2012) successfully estimated a temporally-variant parameter with the EnKF, but these 
authors concluded that the algorithm needs a considerable spin-up period to “warm-up” to 
new parameter values. Vrugt et al. (2013) found considerable temporal non-stationarity in the 
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parameters estimated by PMCMC as a result of the small time period used to calculate the 
acceptance probability of candidate particles. This finding is in agreement with the results of 
PMCMC in our study. Of course, we could have assumed time-invariant parameters via a 
method such as SODA, yet this would have enhanced significantly computational 
requirements. Fortunately, parameters estimated via our implementation of the EnKF exhibit 
asymptotic properties during the assimilation period (e.g. see Shi et al. (2015)). This is 
particularly true for highly sensitive parameters. An example of this was parameter Dm of 
VIC which quickly converged to values of around 1 – 2 mm after assimilating just a handful 
of soil moisture observations.  

It is difficult to assess whether the inferred VIC and CLM parameter values will do a good 
job at predicting soil moisture dynamics at the different measurement depths during a much 
longer evaluation period with wet and dry conditions. As the estimated parameters represent 
apparent properties of the Rollesbroich site, one may expect their calibrated values not to 
change too much over time. We would need additional soil moisture data and/or other type of 
measurements to corroborate this. Nevertheless, the apparent parameter values derived herein 
improve characterization of soil moisture dynamics at the Rollesbroich site compared to a 
separate state estimation run with VIC and CLM using parameters drawn randomly from the 
prior distribution, or open loop simulation using the ensemble mean model output of a large 
cohort of parameter vectors drawn randomly from the prior parameter distribution (initial 
parameter ensemble).  

The different data assimilation methods (EnKF-AUG, EnKF-DUAL, RRPF and PMCMC) 
led to a rather similar performance of VIC during the calibration and evaluation period. The 
only exception to this was the anomalous RMSE value of RRPF at the 50 cm measurement 
depth during the calibration period. This was explained by the slow convergence of the 
maximum baseflow velocity in RRPF. Our results for VIC further demonstrated that the 
results of EnKF-AUG and EnKF-DUAL were equivalent for a 10% and 20% rainfall error. 
Moreover, the use of a larger value of the scaling s in RRPF reduced considerably the RMSE 
values of VIC in the calibration data period, particularly at the 50 cm measurement depth, 
whereas model performance was hardly improved during the evaluation period.    

For CLM, larger differences were observed in the performance of the different data 
assimilation methods. This larger disparity among the methods is explained by the 
considerably larger number of soil layers (ten) used by CLM. This increased significantly the 
dimensionality of the parameter estimation problem. The overall best results at the 5, 20 and 
50 cm measurement depths were observed for EnKF-AUG and EnKF-DUAL with RMSE 
values that were somewhat smaller than their counterparts derived from PMCMC. This was 
true for both the calibration and evaluation periods. The RRPF exhibited the worst 
performance, in part determined by the use of a relatively small ensemble of N =  100 
particles. The superiority of the EnKF-AUG and EnKF-DUAL methods for CLM is 
consistent with our expectations articulated previously in section 3.1. The analysis step of the 
EnKF makes it much easier for EnKF-AUG and EnKF-DUAL to track the measured soil 
moisture dynamics, thereby promoting convergence in high-dimensional state-parameter 
spaces. PF-based methods, on the contrary, deteriorate in robustness and efficiency with 
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larger dimensionality of the state-parameter space as they lack a state analysis step and 
approximate the transient state-parameter PDF via the particles’ likelihoods. This likelihood 
is only a low-dimensional summary statistic of the distance between the forecasted and 
measured values of the states. Resampling with MCMC via the likelihood thus becomes 
increasingly more difficult in high-dimensional state-parameter spaces. For CLM, the 
PMCMC method still achieves comparable results to EnKF-AUG and EnKF-DUAL as the 
dimensionality of the state-parameter PDF of this model is only somewhat larger than its 
counterpart of VIC. Of course, the use of a larger ensemble size makes it easier to 
characterize the transient state-parameter PDF, but at the expense of a significantly increased 
CPU-cost. For PMCMC, multiple different MCMC resampling steps can also enhance 
significantly the particle ensemble by allowing each particle trajectory to improve its 
likelihood. Yet, this deteriorates significantly the efficiency of implementation as each 
candidate particle requires a separate model evaluation of VIC or CLM to determine its 
likelihood. Thus, for LSMs with relatively few state variables and model parameters, we 
expect the EnKF and PF methods to achieve a comparable performance. For larger 
dimensional state-parameter spaces we would recommend EnKF-AUG and EnKF-DUAL, 
unless one can afford a very large number of particles. 

Finally, our results demonstrated that the differences between the soil moisture simulations of 
VIC and CLM are much larger than the discrepancies among the four data assimilation 
methods. Overall, CLM performed better than VIC, especially at 50 cm measurement depth. 
Of course, we cannot generalize this finding to other sites, but VIC’s rather poor 
characterization of soil moisture dynamics at 50 cm depth (systematic underestimation during 
first 2-3 months) warrants investigation into the use of a variable water table depth in this 
model to account for interactions between the variably-saturated soil domain and the 
groundwater reservoir of the Rollesbroich site. CLM simulates such interactions and the 
resulting variations in the water table depth affect soil water movement in the unsaturated 
zone.  

3.7 Conclusions 

In this study, we have evaluated the usefulness and applicability of four different data 
assimilation methods for joint parameter and state estimation of the Variable Infiltration 
Capacity Model (VIC) and the Community Land Model (CLM) using a 5-month calibration 
(assimilation) period (March – July, 2012) of areal-averaged SPADE soil moisture 
measurements at 5, 20 and 50 cm depth in the Rollesbroich experimental test site in the Eifel 
mountain range in western Germany. This watershed is part of TERENO observatories and 
extensively monitored since 2011 to catalogue long-term ecological, social and economic 
impact of global change at regional level. We used the EnKF with state augmentation or dual 
estimation, respectively, and the PF with a simple, statistically deficient, or more 
sophisticated, MCMC-based parameter resampling method. The “calibrated” LSM models 
were tested using SPADE water content measurements from a 5-month evaluation period 
(August – December, 2012). The performance of the four different state and parameter 
estimation methods appeared rather similar during the evaluation period with a slightly better 
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performance of the augmentation and dual estimation methods, but followed closely by 
PMCMC and then RRPF. The differences between the soil moisture simulations of VIC and 
CLM are much larger than the discrepancies among the four data assimilation methods. 
Overall, the best performance was observed for CLM. The large systematic underestimation 
of water storage at 50 cm depth by VIC during the first few months of the evaluation period 
questions, in part, the validity of its fixed lower boundary condition at the bottom of the 
modelled soil domain. This approach ignores the movement of water into and out of the 
groundwater reservoir of the Rollesbroich site. CLM simulates interactions of the modelled 
soil domain with the Rollesbroich aquifer via the use of a variable water depth at the lower 
boundary.  

Appendix 3.A Parametrization of the VIC model 

The integrated water balance in the VIC can be written as follows: 

𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 𝑃𝑃 − 𝑇𝑇 − 𝐸𝐸 − 𝑄𝑄d − 𝑄𝑄b,                (3.A1) 

where 𝑆𝑆 [L] is storage, 𝑡𝑡 [T] denotes time, ∂𝑆𝑆 ∂𝑡𝑡⁄  [LT-1] signifies the change in water storage, 
and 𝑃𝑃, 𝑇𝑇, 𝐸𝐸, 𝑄𝑄d , and 𝑄𝑄b[LT-1] represent fluxes of precipitation, canopy transpiration, soil 
evaporation, direct runoff, and baseflow, respectively. Bare soil evaporation, 𝐸𝐸, is calculated 
using the equation of Francini and Pacciani (1991). The canopy transpiration flux, 𝑇𝑇 , is 
equivalent to the total uptake of water by plant roots in our soil profile and is estimated 
following Blondin (1991) and Ducoudre et al. (1993) using the bulk equation of Monteith 
(1963). In this “single-leaf” approach, the canopy resistance is assumed to be a function of 
the minimum canopy resistance and environmental variables (factors) such as 
photosynthetically active radiation, ambient temperature, vapour pressure deficit, and soil 
moisture content. We refer to Wigmosta et al. (1994) for a detailed discussion of these four 
limiting variables, including their mathematical description and parameterization used herein. 
When it rains the leaves become covered with a thin film of water and the transpiration flux 
is suppressed temporarily until the intercepted water has evaporated at the potential rate 
derived from the Penman-Monteith equation (Shuttleworth, 2007). To calculate foliage 
storage the maximum canopy water storage is set to a multiple of 0.2 of the leaf area index 
(Dickinson, 1984). Direct runoff, 𝑄𝑄d, reduces the amount of rainfall that can infiltrate in the 
top soil during wet conditions, and is calculated using (Liang et al., 1996): 

𝑄𝑄d =

1
∆𝑡𝑡
�

 𝑃𝑃∆𝑡𝑡 − �𝑧𝑧1(𝜙𝜙1 − 𝜃𝜃1) + 𝑧𝑧2(𝜙𝜙2 − 𝜃𝜃2) − (𝑧𝑧1𝜙𝜙1 + 𝑧𝑧2𝜙𝜙2) �1 − 𝑃𝑃∆𝑡𝑡+𝐼𝐼0
𝐼𝐼max

�
(1+𝑏𝑏)

 �   if  𝑃𝑃∆𝑡𝑡 ≤ (𝐼𝐼max −  𝐼𝐼0)

 𝑃𝑃∆𝑡𝑡 − �𝑧𝑧1(𝜙𝜙1 − 𝜃𝜃1) + 𝑧𝑧2(𝜙𝜙2 − 𝜃𝜃2)�                                                                    otherwise,
     

                                                                                                                                           (3.A2) 

where the triples {𝜃𝜃1,𝜙𝜙1, 𝑧𝑧1} and {𝜃𝜃2,𝜙𝜙2, 𝑧𝑧2} signify the volumetric moisture content [L3L-3], 
porosity [-], and depth [L] of the top layer of the soil and the next or second layer 
immediately below it, respectively, 𝐼𝐼0  [L] and 𝐼𝐼max  [L] denote the actual and maximum 
moisture capacity of the soil, respectively, ∆𝑡𝑡 [L] signifies the integration time step that is 
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used to solve numerically equation (3.A1), and 𝑏𝑏 [-] is an unknown shape parameter that 
measures the spatial variability of the soil moisture capacity. Note that the integration time 
step, ∆𝑡𝑡, is often missing from equation (3.A2) in VIC-manuals or literature publications. 
This is consistent if rainfall, 𝑃𝑃 , is expressed in units of depth, say mm, but invalid in 
conjunction with equation (3.A1) which requires as input precipitation rates. If the integration 
time step is set equivalent to the time unit of the measured precipitation rates then ∆𝑡𝑡 = 1. 
This approach, however can introduce large numerical errors, particularly if the soil is close 
to saturation. The dimensionless parameter 𝑏𝑏 is usually determined via calibration by fitting 
VIC against a historical record of soil moisture observations and/or flux data.  

The direct runoff in equation (3.A2) is not only a function of the water saturation of the first 
layer, but also depends on the moisture content of the second underlying soil layer. To be 
able to track adequately the large storage variations of the top soil observed in experimental 
data, the first layer of VIC must be taken rather small. Consequently, this top layer will 
saturate quickly in response to rainfall as it exhibits a rather negligible water holding capacity. 
Hence, VIC uses the available storage of the first and second layer to determine the excess 
precipitation, which is set equivalent to 𝑄𝑄d . If the rainfall depth exceeds the available 
moisture capacity of the soil, (𝐼𝐼max −  𝐼𝐼0) , then the excess precipitation is removed via 
surface runoff. Otherwise, if 𝑃𝑃∆𝑡𝑡 ≤ (𝐼𝐼max −  𝐼𝐼0), then a large fraction of the rainfall will 
infiltrate depending on the soil’s available storage and the spatial variability of the moisture 
capacity within the grid cell. The values of 𝐼𝐼0 and 𝐼𝐼max are estimated from (Zhao, 1992): 

𝐼𝐼0 = 𝐼𝐼max�1 − (1 − 𝐴𝐴s)(1/𝑏𝑏)�                                                              (3.A3) 

𝐼𝐼max = (1 + 𝑏𝑏)(𝑧𝑧1𝜙𝜙1 + 𝑧𝑧2𝜙𝜙2) ,               (3.A4) 

where 𝐴𝐴s [-] is the areal fraction of the grid cell that is saturated (infiltration capacity equal to 
Imax):  

𝐴𝐴s = 1 − �1 − 𝑧𝑧1𝜃𝜃1+𝑧𝑧2𝜃𝜃2
𝜙𝜙1+𝜙𝜙2

�
(𝑏𝑏 (1+𝑏𝑏)⁄ )

                                                 (3.A5) 

The baseflow, 𝑄𝑄b, originates from the bottom (third) soil layer and is calculated using the 
formulation of the Arno model (Franchini and Pacciani, 1991): 

𝑄𝑄b = �

𝐷𝐷S𝐷𝐷m
𝑊𝑊S𝜙𝜙3

𝜃𝜃3                                                                                if 0 ≤ 𝜃𝜃3 ≤ 𝑊𝑊s𝜙𝜙3
𝐷𝐷S𝐷𝐷m
𝑊𝑊S𝜙𝜙3

𝜃𝜃3 + �𝐷𝐷m − 𝐷𝐷S𝐷𝐷m
𝑊𝑊S

� �𝜃𝜃3−𝑊𝑊S𝜙𝜙3
𝜙𝜙3−𝑊𝑊S𝜙𝜙3

�
2

                          otherwise
,               (3.A6) 

where 𝐷𝐷m  [LT-1] is the maximum baseflow velocity, and 𝐷𝐷S  and 𝑊𝑊S  are dimensionless 
fractions of 𝐷𝐷m and the porosity of the third layer, 𝜙𝜙3, respectively. The baseflow flux is 
linearly dependent on the water content of the third layer if 𝜃𝜃3 ≤ 𝑊𝑊s𝜙𝜙3 , and increases 
nonlinearly with water storage of the third layer if 𝜃𝜃3 ≥ 𝑊𝑊s𝜙𝜙3.  



61 
 

Now we have discussed the different fluxes from the soil domain simulated by VIC we can 
now write differential equations of the moisture dynamics in the individual soil layers (see 
also Liang et al., 1996).  

∂𝜃𝜃1
∂𝑡𝑡
𝑧𝑧1 = 𝑃𝑃 + 𝑄𝑄1,2 − 𝑄𝑄d − 𝑅𝑅1 − 𝐸𝐸

∂𝜃𝜃2
∂𝑡𝑡
𝑧𝑧2 = 𝑄𝑄2,3 − 𝑄𝑄1,2 − 𝑅𝑅2

∂𝜃𝜃3
∂𝑡𝑡
𝑧𝑧3 = −𝑄𝑄2,3 − 𝑅𝑅3 − 𝑄𝑄b

,                (3.A7) 

where 𝑄𝑄𝑖𝑖,𝑖𝑖+1 [LT-1] is the vertical flux of water between two adjacent soil layers 𝑖𝑖 and 𝑖𝑖 + 1, 
𝑅𝑅𝑖𝑖 [LT-1] signifies the root water uptake of the ith layer, and 𝑖𝑖 = {1,2,3}. Downward fluxes 
are negative to be consistent with convention used in soil hydrology. The canopy 
transpiration flux is equal to the total water uptake by the plant roots, thus 𝑇𝑇 = 𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3. 
All three soil layers contain roots and thus contribute to transpiration in our application of 
VIC to the Rollesbroich site. The vertical flux of water between two adjacent soil layers is 
assumed to be equivalent to the hydraulic conductivity of the upper layer. VIC computes the 
hydraulic conductivity of each soil layer using the formulation of Brooks and Corey (1988): 

𝑄𝑄𝑖𝑖,𝑖𝑖+1 = −𝑘𝑘𝑠𝑠,𝑖𝑖 �
 𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑟𝑟,𝑖𝑖
𝜙𝜙𝑖𝑖 − 𝜃𝜃𝑟𝑟,𝑖𝑖

�
𝛽𝛽𝑖𝑖

      (𝑖𝑖 = 1,2),                                                                        (3.A8)  

where 𝑘𝑘𝑠𝑠,𝑖𝑖 [LT-1] and 𝜃𝜃𝑟𝑟,𝑖𝑖 [L3L-3] signify the saturated hydraulic conductivity and the residual 
volumetric moisture content of the 𝑖𝑖th soil layer, respectively. The minus sign at the right-
hand-side of equation (3.A8) matches the direction of the flux. The dimensionless exponent 
𝛽𝛽𝑖𝑖 should be larger than 3.0.  

The use of three soil layers by VIC makes it difficult to describe accurately the vertical 
moisture distribution in the vadose zone. Indeed, VIC cannot distinguish between saturated 
and partially-saturated areas in a given soil layer. As a consequence, the baseflow flux, 𝑄𝑄b, is 
made up of water from the unsaturated zone and the groundwater (Liang et al., 1996; Liang et 
al., 2003). Liang et al. (2003) developed a new parameterization, which considers explicitly 
effects of surface and groundwater interactions on soil moisture, transpiration, soil 
evaporation, runoff and recharge. This parameterization, coined VIC-ground, enhanced 
considerably water storage in the lower soil layer compared to VIC.  

Appendix 3.B Parametrization of the CLM model 

This Appendix summarizes the main equations of CLM which are used to describe variably-
saturated water flow in the soil domain of our experimental catchment. The model uses a 
water balance formulation similar to equation (3.A1) of Appendix 3.A to simulate moisture 
storage and movement in the soil of each grid-cell of the application domain of interest. Yet, 
CLM includes a more exhaustive description of all the different processes that determine the 
water storage of the land surface. This includes canopy water, surface water, snow water, soil 
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water, soil ice and water stored in the unconfined aquifer. In addition to surface and 
subsurface runoff, CLM also considers runoff from glaciers, wetlands and lakes.  

Fluxes, 𝐹𝐹  [ML-2T-1], of ground evaporation, interception evaporation, and vegetation 
transpiration are calculated by CLM using the following general expression (Schwinger et al., 
2010; Oleson et al., 2013): 

𝐹𝐹 = 𝜌𝜌a
𝑟𝑟a

(𝑞𝑞 − 𝑞𝑞a),                   (3.B1)  

where 𝜌𝜌a [ML-3] is the density of air, 𝑟𝑟a [TL-1] signifies the aerodynamic resistance, 𝑞𝑞 [MM-1] 
is the specific humidity of the soil pores (for soil evaporation) or canopy (for vegetation 
transpiration and interception evaporation) or the saturated specific humidity of snow or 
surface water, and 𝑞𝑞a [MM-1] denotes the specific humidity at atmospheric level if ground 
evaporation is calculated, or the saturated specific humidity within the canopy if canopy 
evapotranspiration is calculated. The values of 𝑟𝑟a , q and 𝑞𝑞a  are based on Monin-Obukhov 
similarity theory (Schwinger et al., 2010; Oleson et al., 2013). 

We use 10 soil layers (see table 3.2) in CLM to solve for the vertical storage and movement 
of water. Whenever the index 𝑖𝑖  is used we mean ‘for all 𝑖𝑖 ∈ {1, … ,10} ‘. The saturated 
hydraulic conductivity, 𝑘𝑘𝑠𝑠,𝑖𝑖  [LT-1], saturated volumetric moisture content, 𝜃𝜃𝑠𝑠,𝑖𝑖  [L3L-3], 
thermal conductivity, λi  [WL-1K-1], soil matric head at saturation, 𝜓𝜓𝑠𝑠,𝑖𝑖  [L], and Clapp-
Hornberger exponent, 𝐵𝐵𝑖𝑖  [-], of each soil layer are derived from built-in pedotransfer 
functions. These functions use as inputs textural data (Clapp and Hornberger, 1978; Cosby et 
al., 1984) and/or the organic matter fraction (Lawrence and Slater, 2008) of each soil layer as 
follows:   

𝜓𝜓𝑠𝑠,𝑖𝑖 = −10(1 − 𝑓𝑓om,𝑖𝑖)10(1.88−0.0131𝑓𝑓sd,𝑖𝑖) − 10.3𝑓𝑓om,𝑖𝑖   [mm]            (3.B2) 

𝐵𝐵𝑖𝑖 = (1 − 𝑓𝑓om,𝑖𝑖)(2.91 + 0.159𝑓𝑓cl,𝑖𝑖) + 2.7𝑓𝑓om,𝑖𝑖    [-]          (3.B3) 

𝜃𝜃𝑠𝑠,𝑖𝑖 = (1 − 𝑓𝑓om,𝑖𝑖)(0.489 − 0.00126𝑓𝑓sd,𝑖𝑖) + 0.9𝑓𝑓om,𝑖𝑖 ,  [-]           (3.B4) 

𝑘𝑘𝑠𝑠,𝑖𝑖 = �1 − 𝑓𝑓p,𝑖𝑖� �
1−𝑓𝑓om,𝑖𝑖

0.0070556∙10(−0.884+1.53𝑓𝑓sd,𝑖𝑖)
+ 𝑓𝑓om,𝑖𝑖−𝑓𝑓p,𝑖𝑖

𝑘𝑘s,om
�
−1

+ 𝑓𝑓p,𝑖𝑖𝑘𝑘s,om [mm/s]         (3.B5) 

where 𝑓𝑓sd,𝑖𝑖  and 𝑓𝑓cl,𝑖𝑖 , and 𝑓𝑓om,𝑖𝑖  signify the fractions of sand, clay and organic matter, 
respectively, 𝑓𝑓p,𝑖𝑖 [-], denotes the fraction of connected organic matter, 𝑘𝑘𝑠𝑠,om [mm/s], is the 
saturated hydraulic conductivity of organic soils. If the organic matter fraction, 𝑓𝑓om,𝑖𝑖 , is 
smaller than 0.5, then 𝑓𝑓p,𝑖𝑖  = 0, otherwise 𝑓𝑓p,𝑖𝑖  = 0.5𝑓𝑓om,𝑖𝑖(𝑓𝑓om,𝑖𝑖 − 0.5)−0.139.      

Vertical flow in the unsaturated zone is governed by rainfall infiltration, surface and 
subsurface runoff, root water uptake (canopy transpiration), and groundwater interactions. A 
modified Richards’ equation is used to predict water storage and movement in the variably-
saturated soils of the Rollesbroich site: 

∂𝜃𝜃𝑖𝑖
∂𝑡𝑡

= ∂
∂𝑧𝑧
�𝑘𝑘𝑖𝑖 �

∂(𝜓𝜓𝑖𝑖 + 𝑧𝑧𝑖𝑖 − 𝐶𝐶𝑖𝑖)
∂𝑧𝑧

�� − 𝑅𝑅𝑖𝑖 = ∂
∂𝑧𝑧
�𝑘𝑘𝑖𝑖 �

∂�𝜓𝜓𝑖𝑖 − 𝜓𝜓e,𝑖𝑖�
∂𝑧𝑧

�� − 𝑅𝑅𝑖𝑖,                       (3.B6) 
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where 𝜃𝜃𝑖𝑖 [L3L-3], 𝜓𝜓𝑖𝑖  [L], 𝑘𝑘𝑖𝑖 [LT-1], 𝑧𝑧𝑖𝑖 [L], and 𝜓𝜓e,𝑖𝑖 [L] denote the volumetric water content, 
matric head, hydraulic conductivity, depth, and equilibrium matric head of the ith soil layer, 
𝐶𝐶𝑖𝑖 = 𝜓𝜓e,𝑖𝑖 + 𝑧𝑧𝑖𝑖, and 𝑅𝑅𝑖𝑖 [T-1] is the loss of water via root water uptake (canopy transpiration). 
Note that equation (3.B6) omits conveniently the evaporation flux from the first (top) layer. 
The hydraulic conductivity, 𝑘𝑘𝑖𝑖 , of each layer depends on its moisture content, saturated 
hydraulic conductivity, and exponent 𝐵𝐵 , and these values of the adjacent soil layer 
immediately below, with the exception of the bottom layer (Oleson et al., 2013; Han et al., 
2014a). The use of the constant Ci in equation (3.B6) allows CLM to simulate matric head 
variations below the water table. This modification maintains a hydrostatic equilibrium soil 
moisture distribution, and fixes a critical deficiency of the θ-based formulation of Richards’ 
equation (Zeng and Decker, 2009; Oleson et al., 2013).  

The matrix head, 𝜓𝜓𝑖𝑖 , and equilibrium matric head, 𝜓𝜓e,𝑖𝑖, of each soil layer are computed as 
follows: 

𝜓𝜓𝑖𝑖 = 𝜓𝜓s,𝑖𝑖 �
𝜃𝜃𝑖𝑖
𝜃𝜃s,𝑖𝑖
�
−𝐵𝐵𝑖𝑖

 and  𝜓𝜓e,𝑖𝑖 = 𝜓𝜓s,𝑖𝑖 �
𝜃𝜃e,𝑖𝑖
𝜃𝜃s,𝑖𝑖
�
−𝐵𝐵𝑖𝑖

,                         (3.B7) 

with 

𝜃𝜃e,𝑖𝑖 = 𝜃𝜃s,𝑖𝑖 �
𝜓𝜓s,𝑖𝑖 + 𝑧𝑧∇ − 𝑧𝑧𝑖𝑖

𝜓𝜓s,𝑖𝑖
�

(−1/Bi)
,                                                            (3.B8) 

where 𝑧𝑧∇ [L] is the depth of the water table.  

The bottom boundary condition of equation (3.B6) depends on the depth of the water table. 
This depth, 𝑧𝑧∇ , is calculated following Niu et al. (2007) and assumes the presence of an 
unconfined aquifer below the soil column. If the water table is within the modelled soil 
column (top 10 layers), then a constant water storage is assumed in the unconfined aquifer 
(soil column is saturated with water below water table) and a zero-flux bottom boundary 
condition is used. Recharge, 𝑞𝑞rec [LT-1], to the unconfined aquifer is calculated as follows: 

𝑞𝑞rec = −𝑘𝑘wt �
−𝜓𝜓wt

 𝑧𝑧∇ − 𝑧𝑧wt
�,                  (3.B9)  

where 𝑘𝑘wt [LT-1], 𝜓𝜓wt [L], and 𝑧𝑧wt [L] signify the hydraulic conductivity, matric head, and 
depth of the layer that contains the groundwater table. Drainage, qdrain [ML-2T-1], from the 
aquifer is calculated via a simple TOPMODEL-based (SIMTOP) scheme (Niu et al., 2005) 
using: 

𝑞𝑞drain = 10 sin(𝜀𝜀) exp (−2.5𝑧𝑧∇),               (3.B10)  

where 𝜀𝜀 [Rad] signifies the mean topographic slope of the respective grid cell. The change in 
the water table depth is then given by: 

Δ𝑧𝑧∇ = (𝑞𝑞rec − 𝑞𝑞drain)Δ𝑡𝑡
𝑆𝑆y

,                           (3.B11) 

where 𝑆𝑆y [-] denotes the specific yield which depends on the properties of the soil.  
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Chapter 4 : Comparison of different assimilation methodologies 

of groundwater levels to improve predictions of root zone soil 

moisture with an integrated terrestrial system model 
*adapted from: Zhang, H., Kurtz, W., Kollet, S., Vereecken, H., and Hendricks Franssen, H.-J.: 
Comparison of different assimilation methodologies of groundwater levels to improve predictions of 
root zone soil moisture with an integrated terrestrial system model, Advances in Water Resources, 
111, 224-238, https://doi.org/10.1016/j.advwatres.2017.11.003, 2018. 

4.1 Introduction 

Precise knowledge of spatial and temporal variations in root zone soil moisture content is 
important for agriculture, weather prediction and drought monitoring (Lue et al., 2011). 
However, information about root zone soil moisture is usually limited due to the small 
volume support of point scale measurements (Grayson and Western, 1998) and the high level 
of uncertainty associated with (land surface) model predictions, which is caused by uncertain 
input parameters and atmospheric forcings (Houser et al., 2001). Remote sensing techniques 
allow monitoring of surface soil moisture content over large areas, but these measurements 
are limited to the top few centimeters of the soil and are not reliable for dense vegetation (Du 
et al., 2000). In recent years, some work has been carried out to improve the prediction of 
root zone soil moisture content. Using data assimilation techniques, ground-based surface soil 
moisture measurements or remotely-sensed surface soil moisture data have been combined 
with land surface models, which simulate surface and root-zone soil moisture content, to 
update soil moisture estimates for all soil layers (Walker et al., 2002; Walker et al., 2003b; 
Sabater et al., 2007; Crow et al., 2008; Das et al., 2008; Kumar et al., 2009; Pipunic et al., 
2011; Ford et al., 2014; Han et al., 2014a; De Lannoy and Reichle, 2016). Kumar et al. (2009) 
concluded that the potential of surface soil moisture assimilation to improve root-zone soil 
moisture characterization was higher when the surface–root zone coupling was stronger. 
Walker et al. (2002) showed that the soil moisture profile cannot be retrieved from near-
surface soil moisture measurements when the near-surface and deep soil layers become 
decoupled, such as during extreme drying events. Das et al. (2008) found that the assimilation 
of remotely sensed surface soil moisture content improved soil moisture content estimation 
for shallow soil (0-0.50m) but hardly for the deeper soil layers (0.50m-3.86m). Frod et al. 
(2014) demonstrated that the relationship between near-surface (5-10cm) and root zone (25-
60cm) soil moisture was generally strong. Pipunic et al. (2011) stated that there was no clear 
evidence of an ability to strongly improve soil moisture content prediction for deeper layers 
using only surface information. In summary, the updating of root zone soil moisture by 
combining surface soil moisture from satellite and land surface model predictions via data 
assimilation is a way forward, but often improvement is only limited. 

Groundwater effects on root zone soil moisture are either neglected or not explicitly treated in 
most land surface models (Chen and Hu, 2004; Kollet and Maxwell, 2008). A shallow 
groundwater table is more likely to lead to surface runoff because of saturation excess, and to 

https://doi.org/10.1016/j.advwatres.2017.11.003
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supply water to the atmosphere at the rate demanded by the atmosphere. On the other hand, 
deeper groundwater tables generally indicate drier areas. In this situation, surface runoff is 
likely to be generated by the infiltration excess runoff mechanism, the groundwater is 
recharged when the infiltration is enhanced, and evaporation is more often limited by the 
available soil moisture. Under both conditions, soil moisture content is changed through its 
interaction with the groundwater (Liang and Guo, 2003; Miguez-Macho et al., 2008; Miguez-
Macho and Fan, 2012; Zhu et al., 2013).  

Recently, a number of modeling platforms with varying complexity which couple 
groundwater, land surface, and atmospheric models have emerged aiming to improve the 
estimation of water flow in the unsaturated zone (Kollet and Maxwell, 2008; Maxwell, 2009; 
Davin et al., 2011; Tian et al., 2012; Maxwell et al., 2015). For example, the HIRHAM 
regional climate model is coupled with the MIKE-SHE hydrological model (Larsen et al., 
2014), the Common Land Model is integrated into ParFlow (ParFlow-CLM) (Maxwell and 
Miller, 2005; Kollet and Maxwell, 2008). Another example is the atmosphere-surface-
subsurface Terrestrial System Modeling Platform (TerrSysMP) (Shrestha et al., 2014). 
TerrSysMP and ParFlow-CLM have been used in a number of simulation studies like the 
investigation of the role of topography and subsurface heterogeneity on the interactions 
between land surface energy fluxes and groundwater dynamics (Rihani et al., 2010), the role 
of topography and subsurface heterogeneity on spatial soil moisture variability and discharge 
(Gebler et al., 2017), the impact of subsurface hydrodynamics on the lower atmosphere 
(Shrestha et al., 2014), the influence of crop-specific physiological properties on the 
partitioning of land surface energy fluxes and the resulting modifications in the heat and 
moisture budgets of the atmospheric boundary layer (Sulis et al., 2015), and the influence of 
groundwater dynamics on land surface processes (net radiation, latent heat flux, sensible heat 
flux and ground heat flux) (Kollet and Maxwell, 2008). 

Information of groundwater level is available in many places and at regional and national 
scales as it can be continuously measured by automatic sensing devices at low cost and high 
accuracy, like the Collaborative National Groundwater Monitoring Network Program for the 
United States (Subcommittee on Ground Water, 2011). As mentioned above, near surface soil 
moisture content hardly provides information about root zone soil moisture content and 
groundwater levels may contain valuable information about the unsaturated zone. Integrated 
models like TerrSysMP are expected to be suited to explore in an optimal way the 
information provided by groundwater levels as well as near surface soil moisture content data, 
using sequential data assimilation techniques like ensemble Kalman Filter (EnKF) (Evensen, 
1994; Burgers et al., 1998).  

EnKF has been applied successfully in unsaturated flow and groundwater flow problems. The 
contributions relevant in the context of this study are the assimilation of water table depth or 
piezometric head (Chen and Zhang, 2006; Franssen and Kinzelbach, 2008; Li et al., 2012; 
Kurtz et al., 2014; Shi et al., 2014), soil moisture content (Margulis et al., 2002; Reichle et al., 
2002; Montzka et al., 2013; Erdal et al., 2014; Shi et al., 2014; Pasetto et al., 2015), 
brightness temperature (Margulis et al., 2002; Crow and Wood, 2003; Sabater et al., 2007; 
Das et al., 2008; Han et al., 2014a), and surface radiometric temperature (Crow et al., 2008). 
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However there are few studies focusing on the assimilation of groundwater levels to improve 
the characterization of the unsaturated zone. Zhang et al. (2016) assimilated both 
groundwater head and soil moisture content with ensemble transform Kalman filter (ETKF) 
in the MIKE SHE hydrological model and emphasized the necessity of using localization 
when assimilating both groundwater head and soil moisture. Rasmussen et al. (2015) also 
used ETKF to assimilate groundwater head and stream discharge to study the relationship 
between the filter performance and the ensemble size. Shi et al. (2014, 2015b) and Shi et al. 
(2015a) employed EnKF to investigate the impacts of multivariate hydrological data 
assimilation including groundwater levels on estimating unsaturated flow parameters with 
synthetic experiments and real-world experiments. In our study we focus on the comparison 
of different methodologies for the assimilation of groundwater levels in integrated 
hydrological models. In addition, the methodological developments made in this work aim 
for high-dimensional problems and spatially heterogeneous fields of hydraulic parameters. If 
groundwater levels are assimilated in terms of pressure head the strongly skewed and non-
Gaussian pressure distributions for dry soils cause problems for sequential data assimilation 
algorithms as these algorithms perform optimally only for Gaussian distributions. The water 
retention function maps the very negative values to a very small range of water content 
values, and is highly nonlinear. Therefore, if EnKF is applied in a standard form, the 
nonlinear state propagation would cause large errors. Erdal et al. (2015) discussed the 
importance of state transformations in EnKF when dealing with strong nonlinearities for 
unsaturated flow modeling. In this work, a complication is that groundwater level data, 
although often showing a correlation with soil moisture content, are in general only weakly 
correlated with soil moisture content of the upper soil layers. This raises the question what is 
the sphere of influence of groundwater level data and whether the complete unsaturated zone 
should be updated with groundwater level data. In summary, two problems to be solved for 
assimilating groundwater level data in integrated hydrological models are: (1) strongly 
skewed pressure distributions under dry conditions; (2) detection of the sphere of influence of 
groundwater level data in the context of cross-compartmental data assimilation.  

In order to test different methodologies for groundwater level (and surface soil moisture) 
assimilation in the integrated model TerrSysMP, a series of synthetic experiments was carried 
out in this work. The remainder of this study is organized as follows. In section 4.4.2, we 
briefly review the TerrSysMP model used to simulate the soil moisture and subsurface 
pressure distributions, as well as energy exchange fluxes between the land and the 
atmosphere. The land surface model CLM and subsurface model ParFlow are described 
separately. Assimilation methodologies with the EnKF are also explained in this section. 
Section 4.4.3 then introduces our experiment setup and in section 4.4.4 the main findings of 
our assimilation study are presented. Discussion and conclusion are presented in section 4.4.5 
and section 4.4.6 respectively. 

4.2 Materials and methods 

In this study, we perform data assimilation experiments with a coupled subsurface-land 
surface model. In order to illustrate the technical setup for these experiments, section 4.2.1 
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summarizes the utilized models, section 4.2.2 explains the implementation of data 
assimilation methodologies for this study, and introduces our data assimilation platform.  

4.2.1 Terrestrial System Modelling Platform (TerrSysMP) 

TerrSysMP (Shrestha et al., 2014) is a modular, scale-consistent terrestrial system model 
composed of well-established models for the atmosphere (COSMO) (Baldauf et al., 2011), 
the land surface (CLM) (Oleson et al., 2008) and the subsurface (ParFlow) (Ashby and 
Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2008). Its modularity makes 
it possible to run in fully coupled way (COSMO+CLM+ParFlow), partly coupled way 
(CLM+ParFlow/CLM+COSMO), and uncoupled way by running each model individually 
(COSMO/CLM/ParFlow). In our work, the partly coupled (ParFlow+CLM) TerrSysMP 
configuration is used. 

The land surface component of TerrSysMP, CLM, calculates the mass and energy balance at 
the land surface including evaporation from the ground surface, transpiration from plants, 
sensible and ground heat fluxes, and freeze-thaw processes (Oleson et al., 2008; Shrestha et 
al., 2014). 10 soil layers are internally defined with a total extend of about 3m. There is no 
lateral flow between grid cells because water and energy flows are calculated only in the 
vertical direction. CLM input includes atmospheric forcing data (i.e precipitation, wind speed, 
incoming shortwave and longwave radiation, air pressure, air temperature and humidity), land 
surface data including information on plant functional type (PFT), and adjustable parameters 
and physical constants. CLM uses soil properties like soil texture and bulk density in 
combination with model internal pedotransfer functions to derive soil hydraulic and thermal 
parameters like saturated hydraulic conductivity (Oleson et al., 2004; Oleson et al., 2008).  

The subsurface part of TerrSysMP consists of the subsurface flow model ParFlow. In 
ParFlow, a 2D distributed overland flow simulator is implemented into a 3D variably 
saturated groundwater flow (Kollet and Maxwell, 2006). The overland flow boundary 
condition helps ParFlow to simulate fully-coupled surface and subsurface flow via a mixed 
form of the 3D Richards equation and the kinematic wave equation. ParFlow solves for water 
pressure at every time step and calculates the saturation field from which soil moisture and 
water table depth are determined by the pressure-saturation relationship, for example 
according the van Genuchten formulation (Van Genuchten, 1980). More details about the 
model equations, the discretization and the numerical implementation can be found in (Ashby 
and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 2006). ParFlow input 
includes soil hydraulic parameters like saturated hydraulic conductivity and residual soil 
water content, van Genuchten parameters like α and n, and soil porosity.  

Data from CLM and ParFlow are exchanged via the coupling software OASIS-MCT (Valcke, 
2013) which is a library providing a generic interface to exchange information between 
standalone executable codes in memory. Originally, CLM only takes into account 1D vertical 
flow in the unsaturated zone with a decoupled surface routing as the upper boundary 
condition and a simple parameterization of groundwater table as a lower boundary condition. 
ParFlow overcomes these limitations with an overland flow boundary condition and 3D 
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variable saturated groundwater flow. ParFlow provides CLM with its calculated subsurface 
pressure (ψ) and saturation (Sw) values for the 10 uppermost subsurface layers and, in return, 
CLM provides the upper boundary condition for ParFlow which consists of the soil 
infiltration values (qinf) which are calculated based on the land surface fluxes of CLM 
(precipitation, interception, total evaporation, total transpiration). Thus, the 1D column soil 
moisture prediction of CLM is replaced by the 3D formulation in ParFlow. The information 
exchange between CLM and ParFlow is shown schematically in figure 4.1. The thicknesses 
of the 10 uppermost subsurface layers should be consistent with those of the 10 soil layers in 
CLM and also the porosities in both models need to be the same.  

 
Figure 4.1 Coupling of the TerrSysMP component models ParFlow (subsurface) and CLM (land 
surface) by OASIS-MCT. Model forcings for the land surface component are: T (air temperature), P 
(air pressure), U (wind velocity), Qv (specific humidity), SW (incoming shortwave radiation), LW 
(incoming longwave radiation) and R (precipitation). The exchanged fluxes and state variables are: qinf 
(net infiltration flux), Sw (subsurface saturation), and ψ (subsurface pressure). 

4.2.2 Data assimilation methodologies 

4.2.2(a) Ensemble Kalman Filter, EnKF 
In our study, EnKF is used in combination with the fully coupled model TerrSysMP to update 
soil moisture content and groundwater levels. The theory of EnKF can be referred to section 
2.2.2. In our work, the observation vector 𝐲𝐲 and the state vector 𝐱𝐱 include pressure and/or soil 
moisture. As mentioned above, the correlations between pressure and soil moisture are 
needed to update pressure with soil moisture data. The van Genuchten model gives the 
relation between soil moisture and pressure:   

ψ = - 
[( θs-θr

θ(ψ)-θr
)
1/m

-1]
1/n

α
                                                                                                                  (4.1) 

where θs is the saturated soil moisture content which is equal to porosity (ϕ), θr is residual 
soil moisture content, α is a measure of the first moment of the pore size density function, n is 
an inverse measure of the second moment of the pore size density function, and m=1-1/n. 

EnKF needs to be tested carefully when pressure head is the state variable. In our experiment, 
in the unsaturated zone, the Richard´s equation is solved for pressure head and pressure head 

T  P  U  QV  SW  LW  R 

qinf 

Sw     ψ 
CLM (10 layers) 

ParFlow 

upper 10 layers 
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can vary between strongly negative values, in case of dry soil, and positive values in the 
aquifer, and depends on the soil hydraulic parameters and climate conditions (Fredlund, 
1991). For example, when the infiltration rate exceeds the saturated hydraulic conductivity, 
ponding occurs and pressure head becomes positive at the top of the domain. Contrarily, 
during a long drying period, pressure head can become strongly negative because of 
evapotranspiration. In data assimilation, stochastic realizations may show a large spread of 
pressure head values because of varying hydraulic parameters between the realizations so that 
the ensemble may show a strongly skewed probability density function of pressure. This 
strong skewness can generate unrealistically large updates in the EnKF analysis step because 
the ensemble mean is largely influenced by few realizations with extreme values. In addition, 
EnKF performs optimally for Gaussian distributions but not for strongly skewed distributions. 
Erdal et al. (2014) mitigated this issue by limiting the negative pressure head to -10 m but this 
is not an optimal solution for arid regions. They also proposed two other methods to avoid 
very negative pressure heads in the unsaturated zone, that are normal score (NS) 
transformation and pressure head to water content (PWC) transformation with a soil water 
retention function (Erdal et al., 2015). Both methods improved the state distribution as well 
as the assimilation results. However, NS-transformation may distort the spatial corrections 
and in PWC-transformation all pressure heads above or below a certain limit are mapped to 
the same water content. We are dealing with the same issue as groundwater pressure head is 
assimilated to improve the pressure head distribution for the whole domain including 
saturated zone and unsaturated zone.  

In our work, a modular high-performance data assimilation framework TerrSysMP-PDAF 
(Kurtz et al., 2016) which couples TerrSysMP and the pre-existing parallel data assimilation 
library PDAF (Parallel Data Assimilation Framework) (Nerger and Hiller, 2013) is used. 
Details about technical implementation, installing and running TerrSysMP–PDAF can be 
found in (Kurtz et al., 2016). Currently TerrSysMP-PDAF can assimilate pressure and/or soil 
moisture data in ParFlow with EnKF.  

4.2.2(b) Assimilation Methodologies  
In this work, we are concerned with groundwater level data which can be continuously 
measured at high accuracy and low cost with automatic sensing devices in groundwater wells. 
We propose two ways to introduce the groundwater level data into the model TerrSysMP. 
Figure 4.2 illustrates how observed groundwater level is translated into observation data. Two 
different variants are possible. First, at locations with groundwater level measurements, the 
pressure head in the saturated zone is calculated assuming hydrostatic conditions in the 
aquifer. Pressure head in the saturated zone is then assumed to be the observation of our 
assimilation system. Second, soil moisture content in the saturated zone should be equal to 
porosity, and then soil moisture data (porosity data) is assimilated. Based on these two 
observation strategies, in total five methodologies are tested and compared to assimilate 
groundwater level data in TerrSysMP to improve the predictions of root zone soil moisture: 

(1) Assimilation of pressure (P). Here the observation is pressure head in the saturated zone at 
locations with groundwater level measurements. The observation error of pressure head is 
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assumed 0.01m. The state vector includes the pressure head for the whole domain including 
the saturated and unsaturated zones. 

(2) Assimilation of log-transformed pressure data (P_log). To reduce problems with non-
Gaussianity in method (1), pressure head is converted into log space as log10(100 – pressure) 
to improve the EnKF performance. To avoid taking log of zero or negative values, pressure 
head is subtracted from 100 m for both the measurement data and simulated values before 
calculating the Kalman gain. The observation error in log space is 4 × 10-5 log(m) which is 
based on the random error of 0.01 m for pressure head. We calculated the standard deviation 
of log10(100 – perturbed pressure), where perturbed pressure was generated by adding a 
random error of 0.01m. The state vector includes the pressure head in log space for the whole 
domain including the saturated and unsaturated zones. After the analysis step, the log 
pressure head is back-transformed. 

(3) Assimilation of soil moisture (SM). Here the observation is soil moisture (porosity) in the 
saturated zone at locations with groundwater level measurements. The observation error is 
0.02 m3/m3. In EnKF, the state vector includes the soil moisture for the whole domain 
including saturated zone and unsaturated zone. After the update with EnKF, the state vector 
needs to be converted to pressure head for the whole domain on the basis of the van 
Genuchten model as pressure head is the prognostic variable in ParFlow.  

(4) Assimilation of pressure in saturated zone (P_mask). This method is similar to method (1), 
but for each ensemble member, grid cells in the unsaturated zone are not updated in the data 
assimilation procedure. Unrealistic updates for the unsaturated zone caused by extreme 
values in the ensemble are avoided, but the disadvantage is that the groundwater level 
information is not directly used to update soil moisture contents in the unsaturated zone. 

(5) Assimilation of both pressure and soil moisture (Mix). In this approach, groundwater 
level measurements are assimilated as pressure head data with an observation error of 0.01 m. 
However, the state vector includes now two parts: pressure head for the saturated zone and 
soil moisture for the unsaturated zone. Because of different parameters, the ensemble 
members will show different vertical divisions between the unsaturated and saturated zone. In 
the data assimilation step, the definition of the state vector should be consistent for all 
ensemble members. This implies that a given grid cell should be updated for all ensemble 
members in the same way: either in terms of soil moisture or pressure head. The distinction 
between the saturated and unsaturated zone is firstly defined by the deepest water table depth 
among the ensemble members. Then, for grid columns with groundwater level measurements, 
we apply a correction of this depth in case the groundwater level of the observation is higher 
than the one of the ensemble. Grid cells above this depth are updated in terms of soil moisture 
and grid cells below this depth in terms of pressure head. After defining the state vector and 
defining which elements are updated in terms of pressure, and which elements in terms of soil 
moisture, the pressure head observations are assimilated via EnKF. In this mixed approach, 
also joint assimilation of surface soil moisture content and groundwater level was tested, 
where observations include both groundwater level data and surface soil moisture, with 
measurement errors equal to 0.01 m and 0.02 m3/m3, respectively.   
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4.3.1 Reference model 

The synthetic domain has a horizontal extension of 2000 m × 2000 m and is discretized 
horizontally into 2 × 2 grid cells with a grid cell size of 1000 m × 1000 m. The domain has a 
vertical extension of 30 m, which is discretized into 30 soil layers with variable thickness. 
The uppermost 10 layers are with layer thicknesses exponentially increasing with depth. 
These ten layers extend in total over 3 m and in these ten layers fluxes are exchanged 
between CLM and ParFlow. The deeper 20 subsurface layers have a constant thickness of 
1.35 m. The slope is 1% in both x and y directions for all grid cells (hillslope), thus there is 
topographically driven overland flow and groundwater flow in ParFlow. Soil texture, 
meteorological conditions and PFTs are homogeneous over the domain. The bottom 
boundary and boundaries on the side are impermeable. Overland flow can be generated over 
the upper boundary (Kollet and Maxwell, 2006) where ponded water is routed along the land 
surface and allowed to exit the domain at the bottom of the hill.  

In order to produce different land surface fluxes and groundwater dynamics, we use two 
forcing datasets from a semi-arid climate and a humid climate site. Data for the semi-arid 
Picassent site in Spain are from a local meteorological station, and data for the humid 
Kennedy Space Center site within the Merritt Island in Florida, USA are from the AmeriFlux 
Network (Bracho et al. 2008). For each site, climate data from two years are used, one year is 
for model spin-up and the other year is for the model simulation and assimilation. Figure 4.3 
shows the daily accumulated precipitation, average air temperature and average incoming 
shortwave radiation for the two climate sites.  
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Figure 4.3 Daily accumulated precipitation, average air temperature and average incoming shortwave 
radiation for Picassent (Spain) and the Merritt Island (Florida, USA). 

Three soil types with different soil hydraulic parameters are used. Variably-saturated flow is 
parameterised with the van Genuchten model. Spatially constant values of residual soil 
moisture content θr, the saturated hydraulic conductivity ks, the van Genuchten parameters α 
and n are chosen from (Leij et al., 1996) (see table 4.1). To keep hydraulic consistence 
between CLM and ParFlow, saturated soil moisture θs  (=porosity) for both models is 
calculated on the basis of the sand fraction via the following pedotransfer function in CLM: 

θs=0.489-0.00126(sand%)                                                                                                     (4.2) 

Table 4.1 Soil properties used in simulations. 

Soil texture θs(m3/m3) θr (m3/m3) α (m-1) n ks (m hr-1) sand% clay% 
Loam 0.4386 0.078 3.6 1.56 0.0104 40 20 
Loamy sand 0.388 0.057 12.4 2.28 0.146 80 15 
Sandy loam 0.4134 0.065 7.5 1.89 0.0442 60 18 
 

Three plant functional types (PFTs) are used in the simulations namely bare soil, shrubs/ 
grasland (short roots) and broadleaf tree (deeper roots). Bare soil, shrub and evergreen 
broadleaf tree are specified for simulations for the Picassent site, and bare soil, grassland and 
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evergreen broadleaf tree for the Florida site. The vegetation properties are characterized  by  
distinct  physiological, PFT-specific parameters in CLM (Oleson et al., 2004).  

Each configuration of the atmospheric forcings, soil texture and vegetation type is initialized 
with a water table depth of 1m relative to the land surface. Then TerrSysMP is run for 100 
years, forced repeatedly with one year of atmospheric data. For all the simulation scenarios in 
this work, 100 years of spin-up is enough to reach hydrologic and dynamic equilibrium 
conditions. After the model has reached equilibrium the model is forced by another year of 
atmospheric data for the simulation and assimilation experiments.  

4.3.2 Setup of data assimilation experiments 

Two climate types, three soil texture types and three PFTs were combined to generate 18 
TerrSysMP configurations. These configurations generate different land surface fluxes and 
groundwater dynamics. For each configuration, groundwater dynamics and land surface 
fluxes also differ between the four hillslope grid cells. Only one grid cell is observed. The 
results for the highest situated grid cell and the grid cell at medium elevation are analyzed 
resulting in 36 (2 climate types × 3 soil types × 3 vegetation types × 2 grid cells along slope) 
synthetic scenarios with different groundwater levels.  

For the data assimilation experiments, a synthetic reference run is created for each scenario 
mentioned above. The synthetic runs use the “true” hydraulic parameters shown in table 4.1 
and provide virtual observation data of pressure head or soil moisture as specified in section 
4.2.2(b). Although groundwater level data are assimilated, we refer to them in terms of 
pressure head or soil moisture data below. The synthetic reference simulations are run for 1 
year with an hourly time step for both ParFlow and CLM. The synthetic reference runs also 
provide the true values of root zone soil moisture. The five assimilation methodologies are 
evaluated by comparing the assimilation results of root zone soil moisture and their 
corresponding “true” values. 

For the assimilation experiments, an ensemble of 128 realizations of log10(ks) is created. For 
each scenario, individual log10(ks) realisations are generated by perturbing the reference value 
of log10(ks) (see table 4.1) with an additive random perturbation which is sampled from the 
standard normal distribution 𝒩𝒩(0, 1) . The spin-up is done for each ensemble member 
individually for 100 years using the different ks-values as input. The ensemble is used in 
addition for an open loop run and data assimilation experiments. Observation data from the 
reference run (groundwater level data in the form of pressure head or soil moisture) are 
assimilated on a daily basis for the observation grid point. The root zone soil moisture is 
updated directly or indirectly by assimilating observation data. The model uncertainty from 
the physical parametrizations in the model is ignored in this study. 

4.4 Results  

Groundwater level assimilation experiments for all the scenarios mentioned above are 
performed with the five assimilation methodologies, and joint assimilation experiments of 
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groundwater level and surface soil moisture with method (5) described in section 4.2.2(b). 
Some representative results are shown below to illustrate the possibility and potential of the 
assimilation strategies under different groundwater dynamics and compare the performance 
of the five methodologies. To evaluate the performances of the different assimilation 
strategies/methodologies, the Root Mean Square Error (RMSE) of soil moisture from the 
surface to the depth of 3m (the 10 upper soil layers, which is assumed to be the root zone) is 
calculated as: 

RMSEj = �1
T
∑ (𝜃̅𝜃t, j

sim- θt, j
true)

2T
t=1                                                                                                (4.3)       

where 𝜃̅𝜃t
sim  is the ensemble mean soil moisture at time step t, θt

true the true soil moisture at 
time step t, j the jth soil layer and T is the number of time steps. The weighted average of 
RMSE for these 10 layers is also calculated: 

RMSE = ∑ (𝜔𝜔𝑗𝑗 ∗  RMSEj) 10
j=1                                                                                                 (4.4) 

where 𝜔𝜔𝑗𝑗 is the weight for the jth soil layer, which is calculated by the depth of the jth soil 
layer 𝐷𝐷𝑗𝑗: 

𝜔𝜔𝑗𝑗 =  𝐷𝐷𝑗𝑗
∑ 𝐷𝐷𝑗𝑗 10

j=1
                                                                                                                            (4.5)  

The deeper layers get larger weights in correspondence to their larger vertical extend.                                                                                             

4.4.1 Assimilation of groundwater levels 

In this section, only groundwater level (in the form of pressure head or soil moisture) is 
assimilated in TerrSysMP-PDAF. The scenario name is specified by the soil type, climate site, 
plant type and grid (“Top” means the highest grid cell and “Medium” the grid cell with 
medium elevation). 

As in this work the soil moisture observation error is 0.02 m3/m3, we assume that if the 
RMSE value of root zone soil moisture from the open loop run is less than 0.02 m3/m3 the 
model performs well. The scatterplots in figure 4.4 illustrate that if the water table depth is 
very deep (< -10m) the open loop RMSE values are below 0.02 m3/m3. When the water table 
is very deep, root zone soil moisture content is low for all realizations in the open loop run so 
that the difference between the ensemble mean and the reference is small. On the other hand, 
in some scenarios when the water table is very shallow (close to surface), all realizations have 
very wet root zones, which also result in low RMSE values (< 0.02 m3/m3). Notice that in the 
simulation experiments the meteorological forcings and porosity were known. We analyze 
the results of the assimilation experiments for some scenarios with (with open loop RMSE 
values above 0.02 m3/m3 and water table depth between -5m to 0m) where data assimilation 
is necessary for improving the model performance. 
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Figure 4.4 Scatterplots of RMSE values (m3/m3) of soil moisture at 10 different depths in the soil 
profile for the open loop runs as a function of yearly averaged reference water table depth (m) for the 
36 synthetic scenarios. The red line indicates a RMSE value of 0.02 m3/m3. Please note the uneven 
scales on the x-axes. 

4.4.1(a) Aggregated results 
Figure 4.5 shows the scatter plots of weighted average of RMSE values for the open loops 
versus weighted average of RMSE values for the five data assimilation methodologies, for 
the different scenarios with open loop RMSE values above 0.02 m3/m3. The 1:1 line 
corresponds to equal weighted averages of RMSE for the open loop and data assimilation 
runs. Points which are situated below the 1:1 line indicate that assimilation of groundwater 
level improves soil moisture characterization compared to the open loop.  From the figure we 
can see that methodologies P_mask, SM and Mix work well for most scenarios, especially the 
methodology Mix, which results for all the scenarios in weighted average RMSE values 
smaller than 0.02 m3/m3 after assimilation. Root zone soil moisture characterization is greatly 
improved compared to the open loop for this scenario. P_mask also improves the root zone 
soil moisture characterization for all the scenarios but the improvement is not as significant as 
for Mix. For a few scenarios, the methodology SM performs bad. Methodology P shows the 
worst performance and P_log works a little better than P. For these last two methodologies 
for many scenarios soil moisture characterization is worse after assimilation.   
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Figure 4.5 Scatter plots of weighted averages of RMSE values (m3/m3) for the open loop run and each 
of the data assimilation methods. The subfigures correspond to different assimilation methodologies. 
Black dots represent scores for individual data assimilation experiments. The yellow line is the 1:1 
line. 

More details are shown for the scenario Loam_Florida_Broadleaf_Top. Figure 4.6 shows the 
ensemble spread of groundwater levels as a function of time for the open loop and the five 
assimilation methodologies for this scenario during the assimilation. Table 4.2 shows the 
corresponding RMSE values of soil moisture for the upper 10 soil layers (calculated by 
Equation (4.3)) and weighted average of RMSE values (calculated by Equation (4.4)). In this 
scenario (see table 4.2), all the five methodologies improve the soil moisture profile 
estimation after assimilation compared with the open loop run. The improvement for the 
upper layers is limited for the methodologies P and P_log when compared with the other 3 
methodologies, and the deeper layers are greatly improved by all the methodologies. From 
Figure 4.6, we can see that all methodologies improve the ensemble towards the reference 
groundwater level and reduce the ensemble variance. In particular, the ensemble converges 
quickly to the reference in the methodologies SM and Mix, which produce the best results 
according to table 4.2. There are small spikes in the ensemble for the methodologies P and 
P_log during the summer period which might affect their performances. In the below section, 
performances of the five assimilation methodologies are analyzed and compared with some 
representative scenarios.  
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Figure 4.6 Time series of groundwater level for the open loop ensemble and the five assimilation 
methodologies for the scenario Loam_Florida_Broadleaf_Top. Gray is the ensemble spread and red 
the synthetic truth. 

Table 4.2 The RMSE values (m3/m3) for the soil moisture characterization for the 10 upper soil layers 
for the open loop run and the 5 assimilation methodologies for the scenario 
Loam_Florida_Broadleaf_Top.  

Depth Open loop P P_log P_mask SM Mix 
-0.01m 0.035 0.028 0.026 0.023 0.007 0.011 
-0.035m 0.035 0.029 0.026 0.024 0.007 0.010 
-0.075m 0.037 0.029 0.026 0.025 0.007 0.010 
-0.135m 0.041 0.030 0.027 0.027 0.009 0.009 
-0.235m 0.044 0.030 0.028 0.029 0.010 0.008 
-0.4m 0.045 0.029 0.027 0.029 0.009 0.009 
-0.65m 0.047 0.029 0.027 0.029 0.007 0.010 
-1.05m 0.050 0.023 0.022 0.028 0.008 0.008 
-1.65m 0.043 0.017 0.017 0.021 0.002 0.008 
-2.5m 0.039 0.013 0.013 0.015 0.002 0.008 
Weighted average of RMSE  0.043 0.019 0.019 0.022 0.004 0.008 

 

4.4.1(b) Comparisons of the five assimilation methodologies 
The performances of the methodologies P and P_log are strongly dependent on the water 
content distribution in the unsaturated zone. Under some conditions, like a long dry period 
(Picassent site in Spain), high potential ET or erroneous hydraulic parameters ks, the pressure 
head ensemble shows a strongly skewed distribution in the unsaturated zone which cannot be 
properly handled by EnKF. When most realizations calculate a groundwater table which is 
higher than the reference value, the methodology SM also has a problem as the variance 
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calculated at the observation point is near zero. Below some representative scenarios will be 
shown to discuss these issues in detail.  

We analyze now the simulation results for the Spanish site which is more affected by (very) 
dry periods and therefore very dry topsoil conditions. We see in figure 4.7 and table 4.3 that 
the simulation performance is now more strongly affected by the dry conditions, which is 
visible in the form of high spikes in the plots for the methodologies P and P_log (scenario 
Sandyloam_Spain_Baresoil_Medium). From table 4.3 we can see that the methodologies P 
and P_log improve the soil moisture estimations below the reference water table but worsen 
the soil moisture estimations above the reference water table. The other three methodologies 
perform well above the groundwater table, especially the methodology Mix. Figure 4.7 shows 
that after about five months of assimilation, the reference water table is below almost all the 
calculated water table depths in the individual realizations for methodologies P and P_log. 
Related to this, these methodologies perform well in the saturated zone.  

In the unsaturated zone the bad performance of methodologies P and P_log is related to the 
artificial large spread of the strongly skewed pressure head distribution resulting from the 
large updates in EnKF. In figure 4.7 there are small spikes in the ensemble for the P and 
P_log methods during the summer period. In the summer period soil profiles get drier, so the 
pressure head near the surface becomes more negative. Some ensemble members with 
improper ks values may generate very negative pressure heads, which result in strongly 
skewed, non-Gaussian local probability density functions of pressure head, as shown in figure 
4.8(a) and 4.8(c), which illustrates that before the update there are a few isolated realizations 
with very negative pressure values while most realizations are close to the synthetic truth. 
The update drags the other realizations to the extreme realizations and therefore to more 
negative pressure values (see figure 4.8(b) and 4.8(d)). Some realizations are updated to high 
positive pressure heads. These positive pressure heads make no sense in the model from a 
physical point of view, and are the consequence of the artificial large spread of the skewed 
head distribution resulting from the EnKF updates. These unwanted positive pressure head 
updates result in the water table depth spikes in the methodologies P and P_log in figure 4.7 
and bad performance for the upper layers in table 4.3. The figure also shows that the scenario 
P_log strongly reduces the outliers compared to the scenario P, but is not able to fully 
eliminate them.  

In the figure 4.7 the methodology P_mask shows a much slower convergence than the other 
methodologies. In the P_mask methodology, only the grid cells in the saturated zone are 
updated in the data assimilation procedure. Unrealistic updates for the unsaturated zone 
caused by extreme values in the ensemble are avoided.  Soil moisture contents in the 
unsaturated zone are indirectly updated as a result of updating groundwater levels (by data 
assimilation) and the action of the model equations, which leads to its slower convergence.   

 



80 
 

 

Figure 4.7 Time series of water table depth from the open loop ensemble and the 5 assimilation 
methodologies for the scenario Sandyloam_Spain_Baresoil_Medium. Please note the different scales 
on the y-axes. Gray is the ensemble spread and red the synthetic truth. 

Table 4.3 The RMSE values (m3/m3) for the soil moisture characterization for the 10 upper soil layers 
for the open loop run and the 5 assimilation methodologies for the scenario 
Sandyloam_Spain_Baresoil_Medium. Red values highlight the RMSE values for the five assimilation 
methodologies which are larger than the corresponding RMSE values for the open loop. 

Depth Open loop P P_log P_mask SM Mix 
-0.01m 0.033 0.045 0.037 0.026 0.023 0.010 
-0.035m 0.033 0.049 0.039 0.026 0.023 0.009 
-0.075m 0.035 0.053 0.043 0.028 0.023 0.009 
-0.135m 0.043 0.062 0.051 0.035 0.019 0.008 
-0.235m 0.055 0.076 0.061 0.044 0.018 0.008 
-0.4m 0.061 0.082 0.057 0.042 0.018 0.008 
-0.65m 0.072 0.037 0.035 0.036 0.007 0.010 
-1.05m 0.058 0.023 0.023 0.024 0.004 0.008 
-1.65m 0.046 0.017 0.017 0.017 0.003 0.007 
-2.5m 0.033 0.011 0.011 0.011 0.002 0.005 
Weighted average of RMSE 0.046 0.025 0.022 0.021 0.005 0.007 
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Figure 4.8 Histogram of pressure head distribution for the surface layer at 0.01m depth before and 
after the update at assimilation step 185 for methodologies P ((a) and (b)) and P_log ((c) and (d)) for 
the scenario Sandyloam_Spain_Baresoil_Medium. The dashed red line marks the synthetic truth on 
the x-axes at this time step. 

In some scenarios, methodology SM also worsens the soil moisture estimations in the 
unsaturated zone while Mix still works very well (see figure 4.9 and table 4.4). For the 
scenario Sandyloam_Spain_Shrub_Medium, in methodology SM, after two months of 
assimilation, all realizations are above the reference water table (see figure 4.9(b)). As a 
consequence, (y-Hx) in equation (2.22) is very small for the soil moisture observations taken 
at the layer nodes as the ensemble spread is close to zero there (all realizations are saturated 
or nearly saturated), and if (y-Hx) is very small, the update in equation (2.22) is also small. 
Therefore, the data assimilation according to methodology SM is not able to correct the 
erroneous water table depth, resulting in bad performance statistics as indicated in table 4.4. 
For the scenario Loamysand_Spain_Baresoil_Medium, in methodology SM, even though the 
reference water table is covered by the ensemble spread during assimilation (see figure 
4.9(e)), SM still produces bad results in the unsaturated zone (see table 4.4). In the model, the 
pressure head and soil moisture are defined for the centers of layers (nodes) but the 
groundwater table can be between those layer centers (see figure 4.2). In the methodology 
SM soil moisture (=porosity) for the layer nodes below the reference water table are 
observations (layer node i to the bottom layer node in figure 4.2). For this scenario, in the 
subfigure 4.9(e) the blue line shows the layer node depth of the uppermost saturated layer 
node (layer node i in figure 4.2) with observation, and we can see that the layer nodes which 
have the observation are also saturated for all realizations, which causes the same problem as 
the previous scenario. From figure 4.9 and table 4.4 we can see that in these two scenarios 
methodology Mix still performs very well with a fast convergence of the water table depth 
ensemble towards the true value and greatly reduced RMSE values compared to the open 
loop simulation.    
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Figure 4.9 Time series of groundwater level from the open loop ensemble ((a) and (d)) and the 
assimilation methodologies SM ((b) and (e)) and Mix ((c) and (f)) for the scenario 
Loamysand_Spain_Baresoil_Medium ((a), (b) and (c)) and Sandyloam_Spain_Shrub_Medium ((d), (e) 
and (f)). Gray lines represent ensemble members and red the synthetic truth. The blue line in (e) 
marks the boundary of the saturated layer nodes. Layer nodes below the boundary are saturated which 
contain soil moisture observations (porosity). 

Table 4.4 The RMSE values (m3/m3) for the soil moisture characterization for the 10 upper soil layers 
for the open loop run and the methodologies SM and Mix for the scenarios 
Loamysand_Spain_Baresoil_Medium and Sandyloam_Spain_Shrub_Medium. Red values highlight 
the RMSE values for the SM which are larger than the corresponding RMSE values for the open loop. 

 Loamysand_Spain_Baresoil_Medium Sandyloam_Spain_Shrub_Medium 
Depth Open loop SM Mix Open loop SM Mix 
-0.01m 0.037 0.054 0.009 0.027 0.029 0.011 
-0.035m 0.043 0.062 0.010 0.030 0.033 0.012 
-0.075m 0.049 0.075 0.011 0.035 0.038 0.013 
-0.135m 0.054 0.088 0.011 0.043 0.047 0.013 
-0.235m 0.072 0.090 0.011 0.058 0.061 0.012 
-0.4m 0.096 0.064 0.011 0.080 0.087 0.012 
-0.65m 0.140 0.009 0.020 0.111 0.136 0.013 
-1.05m 0.136 0.008 0.024 0.112 0.188 0.015 
-1.65m 0.127 0.007 0.023 0.039 0.125 0.017 
-2.5m 0.118 0.006 0.020 0.118 0.008 0.018 
weighted average 
of RMSE 0.120 0.016 0.020 0.090 0.085 0.016 
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4.4.2 Joint assimilation of groundwater levels and surface soil moisture 

In section 4.4.1 we evaluate the five assimilation methodologies for assimilating groundwater 
level data in the integrated subsurface- land surface model TerrSysMP. From the results 
above, we find that the methodology Mix works the best. Now we test this methodology to 
jointly assimilate groundwater levels and surface soil moisture (Joint_SSM_GWL) with more 
realistic experimental settings. When jointly assimilating groundwater levels and surface soil 
moisture, the state vector of Mix methodology still includes pressure for the saturated zone 
and soil moisture for the unsaturated zone. The observation vector includes also the top 
surface soil moisture (0.01 m below the soil surface) besides pressure head measurements in 
the saturated zone. The soil moisture observation is taken at 0.01 m in order to mimic remote 
sensing observations.  

In addition, the experiments presented in this section mimic more realistic conditions. 
Vertically heterogeneous saturated hydraulic conductivity ks and van Genuchten parameters 
(α and n) are used as input. For the data assimilation experiments, a synthetic reference run is 
created for each scenario. The synthetic “true” ks value for the top surface layer is taken from 
Table 1. Saturated hydraulic conductivity decreases exponentially with soil depth (Niu et al., 
2005): 

� ks(zi)=ks(z1)*e-f(zi-z1),        i=1:10
ks(zi) = ks(z10),                i=11:20

                                                                                       (4.6) 

where zi is the soil depth of the ith layer, z1 is the depth of the top surface layer, ks(z1) is the 
saturated hydraulic conductivity of the top surface layer, and f is the decay factor, which 
indicates the decrease of ks with soil depth (Beven, 1997). f is set to 2.0 m-1 (Niu et al., 2005). 
The remaining ks values for the deeper 20 layers use the same values as the 10th layer. The 
“true” van Genuchten parameters (α and n) for each soil layer are generated based on the ks 
values by sampling a multivariate Gaussian distribution described in Carsel and Parrish (1988) 
for each soil type. Carsel and Parrish (1988) used four kinds of transformation on ks, α and n 
to get a multi-normal distribution among the three parameters: no transformation (NO), 
lognormal (LN), log ratio (SB) and hyperbolic arcsine (SU). Details about the transformation 
for each soil type can be found in Carsel and Parrish (1988). This procedure takes 
correlations among the three parameters into account. Table 4.5 shows the covariance among 
the three transformed parameters for loam and loamy sand. Residual soil moisture content θr 
and porosity θs are deterministic and spatially constant (see table 4.1). Please note that ks, α 
and n are vertically heterogeneous, but with spatially homogeneous values for the different 
soil layers (2.5 dimensional). Other settings are similar as outlined in section 4.3.2. The 
synthetic “true” hydraulic parameters are used as model input to provide virtual measurement 
data of pressure head and soil moisture. In the experiments only loamy sand and loam are 
tested, in combination with the 3 PFTs and 2 climate datasets. 
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Table 4.5 Covariances among transformed ks, α and n for Loam and Loamy sand. Transformations 
and units are shown in brackets. Transformations include no transformation (NO), log ratio (SB) and 
hyperbolic arcsine (SU). 

 ks (cm/hr) α (cm-1) n (-) 
 Loam 

ks  (SB) 1.41 0.611 0.055 
α (SB) 0.982 0.093 0.026 
n (SU) 0.632 0.591 0.029 

 Loamy sand 
ks (SB) 1.48 0.037 0.211 
α (NO) 0.986 0.014 0.019 
n (SB) 0.730 0.354 0.108 

 
For the assimilation experiments, an ensemble of 128 realizations of ks, α and n is created as 
outlined above. Precipitation is also perturbed in the data assimilation experiments with 
multiplicative noise sampled from a uniform distribution with values between 0.5 and 1.5.  

To further investigate the performance of Joint_SSM_GWL, we also assimilate surface soil 
moisture alone (SSM) (for all the scenarios) as is typical done in many land surface data 
assimilation studies, and assimilate groundwater level alone (GWL). Figure 4.10 shows the 
scatter plots of open loop RMSE values versus GWL, SSM and Joint_SSM_GWL RMSE 
values for all the scenarios. For the upper surface layers (depth: -0.01 m, -0.035 m and -0.075 
m), SSM and Joint_SSM_GWL improve the soil moisture estimation compared with open 
loop run, because for most cases their blue and red dots are below the 1:1 line, but many 
green dots of GWL distribute above the 1:1 line, which indicates that GWL-assimilation does 
not significantly improve surface soil moisture estimation. This is reasonable because SSM 
and Joint_SSM_GWL include surface soil moisture observations to constrain the soil 
moisture content for the upper layers. For the intermediate soil layers (depth: -0.135m, -
0.235m and -0.4m), Joint_SSM_GWL still works well, while the blue dots of SSM are 
scattered around the 1:1 line and the green dots of GWL move towards an area slightly below 
the 1:1 line, indicating improved performance. In other words, the performance of SSM gets 
worse while GWL performs better. For the deeper soil layers (depth: -0.65m, -1.05m, -1.65m 
and -2.5m), SSM is not able to improve soil moisture characterization compared to the open 
loop runs while GWL and Joint_SSM_GWL significantly improve the soil moisture 
characterization. Therefore, we can conclude that assimilation of surface soil moisture alone 
can improve the soil moisture characterization for the upper 10-20 cm, but it may even 
worsen the soil moisture estimation for deep layers. Similarly, assimilation of groundwater 
level alone can improve soil moisture characterization for layers deeper than 40cm, but may 
have negative effect on soil moisture characterization for surface layers. Joint assimilation of 
surface soil moisture and groundwater level is able to integrate the advantages of the two 
observation types.  

The number of dots in the figure is smaller for deeper layers, because in some scenarios the 
water table depths are shallower than -2.5 m so that both open loop RMSE values and 
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assimilation RMSE values beneath the water table are very close to zero as all ensemble 
members reproduce saturated conditions there.  

 

Figure 4.10 Scatter plot of RMSE values for open loop runs and the 3 assimilation strategies for all 
scenarios. On the x-axes the RMSE values for soil moisture characterization for the open loop run are 
denoted, and on the y-axes the RMSE values of GWL, SSM and Joint_SSM_GWL. Each subfigure 
shows a particular soil layer. Different colors donate different methods. Yellow line is 1:1 line. 

Figure 4.11 compares the soil moisture results for the reference, open loop, and the data 
assimilation scenario Joint_SSM_GWL for Loamysand_Spain_Shrub_Medium. Data 
assimilation results in an ensemble closer to the reference compared with the open loop run. 
The ensemble does not suffer from variance underestimation. In the top four layers, soil 
moisture content is low with some strong fluctuations related to few precipitation events and 
strong potential evapotranspiration. The groundwater level data are able to correct most 
ensemble members for the deeper soil layers.  
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Figure 4.11 Soil moisture time series for the reference truth (OBS), the ensemble mean of open loop 
run (Ens_Mean_Openloop), the ensemble mean (Ens_Mean_DA) and the ensemble during 
assimilation (Ens_Members_DA). The scenario here is Loamysand_Spain_Shrub_Medium with 
Joint_SSM_GWL. Each subfigure shows a particular soil layer. 

4.5 Discussion 

This study compares five data assimilation methodologies for improving root zone soil 
moisture estimation with groundwater level data or a combination of groundwater level and 
surface soil moisture data. These five assimilation methodologies and assimilation of 
groundwater level and/or surface soil moisture data are evaluated and compared on the basis 
of 36 synthetic scenarios. The problem associated with the implicit Gaussian assumption in 
the EnKF for updating pressure heads in the unsaturated zone is illustrated.  

The results of methodologies P and P_log suffer from the extreme pressure heads which drag 
the ensemble mean of model states far away from the “truth”. This problem happens 
particularly in dry periods when some realizations with extreme ks-values result in very 
negative pressure head values at near surface layers. One important aspect in EnKF is the 
ensemble size. In our study a size of 128 realizations is used which is a small size compared 
to groundwater data assimilation studies. However, Erdal et al. (2015) tested a very large 
ensemble size of 1000 members for the problem of highly skewed distributions. They pointed 
out that a larger ensemble size would rather increase the risk for the strong negative pressure 
heads since these originate from initially sampled extreme parameter values. For a large 
ensemble, it is more likely that a few extreme parameter values are sampled. Furthermore, the 
extreme state values still have a major effect on the ensemble mean even though the 
ensemble size is larger.   

An alternative data assimilation method which could be used here is the particle filter method, 
which could also help to avoid extreme state values. The particle filter can deal with non-
linear and non-Gaussian problems but usually requires large numbers of model evaluations to 
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get a reliable result. If one can afford the cost of using the particle filter method, it is obvious 
that the skewed pressure distribution would not pose such a problem as in the EnKF. For the 
small synthetic examples shown here, it would be possible to apply the particle filter. 
However, most real cases involve many more unknowns and a much higher dimensionality. 
Under those conditions, the particle filter is expected to need an extremely large ensemble 
size. Erdal et al. (2015) also discussed if the most common ad-hoc methods would have any 
positive effect on the performance with such a strongly skewed pressure distribution. They 
concluded that dampening the state update only has limited effect as it cannot remove the 
extreme realizations which still have an unwanted, but dampened, impact. They concluded 
that also localization would not improve the performance significantly.  

Groundwater level information which is assimilated in the form of soil moisture data works 
well in most scenarios but there are some exceptions when the simulated water tables from all 
or most realizations are above the reference water table. Increasing the ensemble size could 
solve this specific problem, but it is unclear whether this would work in all scenarios. For 
example, in real-world cases with bias where the simulated water table depths are 
systematically closer to the surface than the observed water table depth, correction is difficult. 
In addition, a larger ensemble size also implies of course increased computational costs.  

From section 4.4.1 we find that the methodology Mix, which updates model states in terms of 
pressure for the saturated zone and in terms of soil moisture for the unsaturated zone, 
outperforms the other methods and results in a very good root zone soil moisture 
characterization. This might be related to the simple setting in our experiments where only 
the saturated hydraulic conductivity ks is perturbed. The van Genuchten parameters (α and n) 
and porosity which link the pressure head and soil moisture in the unsaturated zone are 
constant. While this setting is relatively simple, the focus is on developing assimilation 
methodologies with TerrSysMP to improve the estimation of root zone soil moisture by 
assimilating groundwater levels. Additional experiments (section 4.4.2) where α and n are 
also perturbed together with ks further verified the feasibility of the methodology Mix. 

There will be additional challenges for the application of the methodology in real-world 
situations. The van Genuchten model is used to transform the soil moisture to pressure head 
in the unsaturated zone after EnKF. In real world cases, the relation between soil moisture 
and pressure head might even not be described correctly by the van Genuchten model. In 
addition, if the updated soil moisture state is ≥ porosity (from unsaturated to saturated 
conditions), no back transform is made. For this grid cell, the model predicted pressure head 
value prior to assimilation is used. In this case, strange pressure profiles might be generated 
as the states of the surrounding grid cells were either directly updated in terms of pressure 
(saturated zone) or pressure was indirectly updated via soil moisture (unsaturated zone). It is 
expected that in the model simulation for the next time step the pressure profile is partly 
smoothed again. 

In our work, we test joint assimilation of groundwater levels and surface soil moisture with 
2.5 dimensional synthetic experiments, which is proven to be a promising way to improve the 
estimation of root zone soil moisture. Surface soil moisture is easily available temporally and 
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spatially from satellites like SMAP and SMOS. Groundwater level measurements are also 
potentially numerous and measured at low cost and high accuracy, although currently large 
scale groundwater level data are not systematically stored in databases. Taking full advantage 
of these two types of data helps to better understand the soil water profile. Various studies 
use data assimilation techniques to combine satellite data with land surface models to update 
the complete soil moisture profile including the root zone. Generally, in those works, the land 
surface models only consider the exchange of water and energy between atmosphere, land 
surface and vegetation, but water and heat fluxes from the deeper subsurface are neglected. 
The integrated model TerrSysMP, which couples the land surface and subsurface, makes it 
possible to take advantage of the surface soil moisture information (from satellite) and 
groundwater levels (from observation networks or satellite GRACE) to improve the soil 
moisture estimation in the vadose zone by data assimilation.  

We impose uncertainties with respect to soil hydraulic parameters (ks, α and n) and model 
forcings (precipitation) in the synthetic joint assimilation study. In reality, these parameters 
and model forcings (especially precipitation) are always impacted by a large uncertainty, 
especially for large-scale applications. It is difficult to obtain information about soil hydraulic 
and thermal parameter values and their statistics beyond sporadic point measurements. It is 
important to better constrain these parameters, which is possible by sequential data 
assimilation using joint state-parameter estimation or inverse modelling. In future work we 
will test the joint estimation of states and soil hydraulic parameters by jointly assimilating 
surface soil moisture and groundwater level information.  

As this work focused on defining the best data assimilation strategy for data assimilation 
problems for coupled land surface-subsurface models, model structural errors were neglected. 
This provides favorable conditions for our synthetic experiments. Model structural errors 
could be important in practice; examples are neglecting preferential flow in the unsaturated 
zone or the limited number of plant functional types to cover all vegetation types. It is 
therefore important in future work to evaluate this data assimilation methodology for real-
world land surface-subsurface data assimilation problems. Nevertheless, we think that the 
ParFlow-CLM is less affected by model structure errors than the CLM stand-alone model, as 
ParFlow eliminates some of the deficiencies of CLM, for example concerning the role of 
groundwater.  

4.6 Conclusions 

In this work, we develop and compare five data assimilation methodologies to improve root 
zone soil moisture estimation using groundwater level or joint groundwater level and surface 
soil moisture data, in an integrated model TerrSysMP. The performance of the five data 
assimilation methodologies is evaluated for 36 synthetic scenarios under different 
groundwater level dynamics. Observations of groundwater levels are assimilated in the form 
of pressure head data or soil moisture data in TerrSysMP to update pressure heads and/or soil 
moisture in the whole domain. The results for assimilation of pressure or log-transformed 
pressure show that it can be problematic to apply EnKF, which performs optimally for 
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Gaussian distributions, to scenarios with strongly non-Gaussian state distributions (caused by 
extreme negative pressure heads in the unsaturated zone). The results from assimilation of 
groundwater level data in the form of soil moisture data (i.e., for the aquifer part soil moisture 
content is set equal to the porosity) show that this strategy often gives satisfying results, but 
under certain conditions (if nearly all ensemble members have a simulated groundwater depth 
closer to the surface than the measured groundwater level) updating of the states in the 
unsaturated zone does not work. The best methodology is assimilating groundwater level data 
to update the pressure head in the saturated zone and soil moisture content in the unsaturated 
zone. This method alleviates the impact of skewed pressure distributions on the EnKF 
analysis step. Joint assimilation of surface soil moisture and groundwater levels also shows 
great potential in improving the root zone soil moisture profile in synthetic scenarios with 
both uncertain soil hydraulic parameters and meteorological forcings. It is important to 
extend this work to include estimation of unknown soil and aquifer hydraulic parameters, and 
test in large scale real-world applications. 
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Chapter 5 : Under which conditions can assimilation of 

groundwater level data improve root zone soil moisture 

characterization? 
*adapted from: Zhang, H., Kurtz, W., Kollet, S., Vereecken, H., and Hendricks Franssen, H.-J.: Under 
which conditions can assimilation of groundwater level data improve root zone soil moisture 
characterization? Journal of Hydrology, 2018, under review. 

5.1 Introduction 

Temporal and spatial variations of root zone soil moisture content are important in 
hydrological and climate studies, because root zone soil moisture exerts an important control 
on water and energy fluxes between the subsurface, land surface and the atmosphere (Chen 
and Hu, 2004). However, characterization of root zone soil moisture is not trivial at large 
spatial scales which are typically applied in land surface models, because not enough point 
soil moisture measurements are available. In addition, remote sensing only provides an 
estimate of surface soil moisture content which has limited potential to improve root zone soil 
moisture-characterization. It is significant to find a way to improve the root zone soil 
moisture estimation. Root zone soil moisture is affected by soil type, climate condition, 
vegetation type, topography and also groundwater level (GWL) (Liang and Guo, 2003; Chen 
and Hu, 2004; Fiori and Russo, 2007; Kollet and Maxwell, 2008; Miguez-Macho and Fan, 
2012; Zhu et al., 2013). This paper explores especially the potential of GWL data to improve 
root zone soil moisture characterization.  

Many GWL measurement networks exist, such as the national framework for groundwater 
monitoring in the United States (Subcommittee on Ground Water, 2011), and groundwater 
monitoring networks in Europe (Nixon et al., 1996). The assimilation of GWL data is an 
interesting methodology to improve large-scale root zone soil moisture characterization. A 
shallow GWL is more likely to generate higher root zone soil moisture, and also higher actual 
evapotranspiration. A deeper groundwater table has high possibility to generate lower root 
zone soil moisture and soil moisture at the land surface is then mostly affected by 
atmospheric conditions. Thus, under water-limited condition, the available soil water may 
limit evapotranspiration. 

Coupled land surface-subsurface models (Kollet and Maxwell, 2008; Maxwell, 2009; Larsen 
et al., 2014; Shrestha et al., 2014; Zhang et al., 2018) allow surface-subsurface flow 
simulation and produce improved root zone soil moisture predictions (Maxwell et al. 2015). 
Some studies analyzed the interaction between the unsaturated zone and groundwater in such 
integrated models. Chen and Hu (2004) studied groundwater influences on soil moisture and 
surface evaporation in a soil hydrological model which includes groundwater effects by 
allowing water exchange between the unsaturated zone and groundwater. They found that 
spatial variations in the GWL may result in spatial variability in soil moisture content. Kollet 
and Maxwell (2008) used a three-dimensional variably saturated subsurface flow model 
(ParFlow) coupled to a land surface model (Common Land Model) to capture the influence of 
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groundwater dynamics on land surface processes at the catchment scale. They detected a 
range of critical water table depths where land surface processes show a strong sensitivity 
with respect to GWL. Rihani et al. (2010) used this coupled model with idealized simulations 
to investigate the effects of terrain, subsurface heterogeneity, climate conditions and 
vegetation on water table variability and to identify regions with stronger interaction between 
water table depth and the land surface energy balance.   

Hydrological data assimilation takes advantage of hydrological measurements to improve the 
performance of hydrological models. Several studies previously assimilated GWL data to 
improve land surface fluxes using integrated hydrological models. Zhang et al. (2016) 
assimilated observed groundwater heads and near surface soil moisture into the MIKE SHE 
integrated hydrological model using the Ensemble Transform Kalman Filter (ETKF) and 
analyzed the impact of ensemble size and localization. In general, assimilation improved the 
model performance and the necessity was shown to apply localization especially when jointly 
assimilating groundwater head and soil moisture data. Shi et al. (2015) also assimilated 
GWLs and near surface soil moisture in the variably-saturated flow model HYDRUS-1D for 
estimating soil hydraulic parameters with the Ensemble Kalman Filter (EnKF). They found 
that estimates of hydraulic parameters from GWL data may suffer from strong degradation, if 
a large number of parameters must be identified. They also showed that a combined use of 
GWL data with soil moisture data is more helpful to improve the parameter estimation. Thus 
GWL data assimilation in integrated land surface-subsurface models is still a topic of 
ongoing research. Previous studies did not specifically focus on improved root zone soil 
moisture characterization with help of GWL assimilation. Because it can be expected that the 
success of GWL data assimilation for root zone soil moisture characterization depends on the 
correlation between GWL and root zone soil moisture, it is important to systematically 
characterize the impact of climate, soil, vegetation types but also GWLs, which is done in this 
study. The simulations are carried out with the highly modular and scale-consistent 
Terrestrial System Modeling Platform (TerrSysMP) (Shrestha et al., 2014). GWLs are 
assimilated for all combinations of selected climate conditions, PFT’s and soil types to see 
how the different conditions affect the assimilation performance in terms of root zone soil 
moisture characterization.  

5.2 Methodology 

5.2.1 TerrSysMP 

TerrSysMP is a recently developed model to simulate the coupled water and energy cycles 
for the atmosphere, the land surface and the subsurface. TerrSysMP couples three existing 
component models: the groundwater flow model ParFlow (Ashby and Falgout, 1996; Jones 
and Woodward, 2001), the land surface model CLM (Community Land Model, version 3.5) 
(Oleson et al., 2008), and the atmospheric model COSMO (Baldauf et al., 2011). For more 
details about the model physics see Shrestha et al. (2014). In our work, only the land surface 
part CLM and subsurface part ParFlow were used.  
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Information between CLM and ParFlow is exchanged via the library OASIS-MCT (Valcke, 
2013). ParFlow provides CLM with the calculated subsurface pressure (ψ) and saturation (Sw) 
values for the first 10 subsurface layers and in return CLM provides the upper boundary 
condition for ParFlow, which consists of depth differentiated net infiltration values which are 
calculated based on the land surface fluxes of CLM (precipitation, interception, total 
evaporation, total transpiration). Thus, the 1D column soil moisture prediction of CLM is 
replaced by the 3D ParFlow simulations.  

5.2.2 Assimilation of GWLs with EnKF 

EnKF was first proposed by Evensen (1994) as a Monte Carlo variant of the classical Kalman 
Filter. The governing model equations are solved many times, for different input states, 
model forcings and/or parameters. The ensemble of model realizations (e.g., with different 
initial conditions, forcings and/or parameters) is propagated forward, until new measurement 
data yt are available at time t and EnKF then performs a Bayesian update on the ensemble of 
state vectors xt. yt is perturbed to generate an observation vector for the jth ensemble member 
at time t: 

𝐲𝐲𝑗𝑗,𝑡𝑡 = 𝐲𝐲𝑡𝑡 + 𝛆𝛆𝑗𝑗,𝑡𝑡                                                                                                                       (5.1) 

where 𝛆𝛆𝑗𝑗,𝑡𝑡 is a vector with perturbation terms drawn from a normal distribution 𝑁𝑁(0,σ) where 
the standard deviation 𝜎𝜎 is equal to the expected measurement error, which is set to 0.01m for 
GWL measurements in this study. For each ensemble member j at time step t, the state vector 
𝐱𝐱𝑗𝑗,𝑡𝑡 is updated according to:  

𝐱𝐱𝑗𝑗,𝑡𝑡
𝑎𝑎 = 𝐱𝐱𝑗𝑗,𝑡𝑡

𝑓𝑓 + 𝐊𝐊𝑡𝑡(𝐲𝐲𝑗𝑗,𝑡𝑡 − 𝐇𝐇𝐱𝐱𝑗𝑗,𝑡𝑡
𝑓𝑓 )                                                                                                 (5.2) 

where 𝐱𝐱𝑗𝑗,𝑡𝑡
𝑎𝑎  and 𝐱𝐱𝑗𝑗,𝑡𝑡

𝑓𝑓  are the updated state vector and the model predicted state vector 
respectively. 𝐇𝐇 is the observation operator which represents the relationship between the 
observation vector 𝐲𝐲 and the state vector 𝐱𝐱. The Kalman gain 𝐊𝐊𝑡𝑡 is calculated by: 

𝐊𝐊𝑡𝑡 = 𝐂𝐂𝑡𝑡𝐇𝐇T(𝐇𝐇𝐂𝐂𝑡𝑡𝐇𝐇T + 𝐑𝐑)−1                                                                                                  (5.3) 

where 𝐑𝐑 is the measurement error covariance matrix. 𝐂𝐂𝑡𝑡 is the covariance matrix at time step 
t: 

𝐂𝐂𝑡𝑡 = 1
𝑁𝑁−1

∑ (𝐱𝐱𝑗𝑗,𝑡𝑡
𝑓𝑓 − 𝐱𝐱𝑡𝑡

𝑓𝑓)(𝐱𝐱𝑗𝑗,𝑡𝑡
𝑓𝑓 − 𝐱𝐱𝑡𝑡

𝑓𝑓)T𝑁𝑁
𝑗𝑗=1                                                                                    (5.4)                        

where 𝑁𝑁  is the number of ensemble members and 𝐱𝐱𝑡𝑡
𝑓𝑓  is a vector containing predicted 

ensemble mean values. 

In this work, assimilated measurement data are groundwater levels, but the prognostic 
variable of ParFlow is pressure. Hence, groundwater level measurements are transferred into 
pressure in the saturated zone, which is calculated by: 

ψi=GWL - Di                                                                                                                          (5.5) 
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Where i is the ith saturated soil layer, ψi is the pressure for the ith saturated layer, Di the depth 
of the ith saturated soil layer and GWL the water table depth. All depths are negative using 
the land surface as reference (0m). 

The observation vector 𝐲𝐲𝑡𝑡 at time step t includes pressure values for the saturated grid cells 
(at locations with a groundwater table observation).  

Pressure heads simulated for the saturated zone and soil moisture for the unsaturated zone are 
stored in the state vector x. This approach assures that the state vector only consists of 
positive values and avoids skewed and strongly non-Gaussian distributions of states which 
can worsen the performance of EnKF (Zhang et al., 2018). At each time step, after model 
prediction and before assimilation, we reconstruct the state vector and the division between 
the saturated and unsaturated zone for the domain is re-defined again and shared by all the 
ensemble members. The division is firstly defined by the deepest GWL among the ensemble 
members. Then for grid columns with observations, a correction of this depth is applied, if 
the GWL of the observation is higher than this depth. Grid cells above this depth are updated 
in terms of soil moisture and grid cells below the depth in terms of pressure head. Further 
details are provided in Zhang et al. (2018). The state vector at time step t is defined as: 

𝐱𝐱𝑡𝑡 = �𝛙𝛙𝑡𝑡
𝚹𝚹𝑡𝑡
�                                                                                                                               (5.6) 

where 𝛙𝛙𝑡𝑡 is the pressure vector and 𝚹𝚹𝑡𝑡 the soil moisture vector at time step t. Note that the 
dimensions of 𝛙𝛙𝑡𝑡 and 𝚹𝚹𝑡𝑡 change over time. The dimension of xt is constant and equal to the 
total number of grid cells. 

After assimilation by EnKF, 𝚹𝚹𝑡𝑡  in 𝐱𝐱𝑗𝑗,𝑡𝑡
𝑎𝑎  in equation (5.2) is transferred to pressure by the 

pressure-saturation relationship as pressure is the prognostic variable in ParFlow. In this work, 
the van Genuchten model (van Genuchten, 1980) is used: 

ψ = −
[( 𝜃𝜃𝑠𝑠−𝜃𝜃𝑟𝑟
𝜃𝜃(ψ)−𝜃𝜃𝑟𝑟

)1/𝑚𝑚−1]1/𝑛𝑛

𝛼𝛼
                                                                                                        (5.7) 

where 𝜃𝜃𝑠𝑠 is the saturated soil moisture content which is equal to porosity (Ø), 𝜃𝜃𝑟𝑟 is residual 
soil moisture content, 𝛼𝛼 is a measure of the first moment of the pore size density function, 𝑛𝑛 
is an inverse measure of the second moment of the pore size density function, and 𝑚𝑚 = 1 −
1/𝑛𝑛. ParFlow solves for pressure for the next time step and calculates the saturation field also 
by the van Genuchten model.   

In our work, the modular high-performance data assimilation framework TerrSysMP-PDAF 
is used which couples TerrSysMP and a parallel data assimilation library PDAF (Parallel 
Data Assimilation Framework) (Nerger and Hiller, 2013) to do data assimilation within 
TerrSysMP. For more details about the framework see Kurtz et al. (2016).  

5.3 Experiment Setup 
Assimilation experiments were performed for simplified synthetic set-ups at small spatial 
scales. All the experiments include a domain of 2 by 2 grid columns (1km × 1km). Each grid 
column has 30 vertical cells (soil layers) of variable thicknesses for the upper 10 soil layers 
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and fixed depths for the lower 20 soil layers resulting in a total depth of 30m. The land 
surface slope is 0.01 in both x and y directions to allow for topographically driven overland 
flow and groundwater flow based on the terrain following grid implementation of ParFlow 
(Maxwel, 2013). Overland flow is the upper boundary condition and zero fluxes for the 
bottom boundary and lateral boundaries are imposed. The climatic forcings are homogeneous 
over the domain, the same holds for PFT and soil type while soil hydraulic parameters are 
vertically heterogeneous. 

In order to study assimilation of GWLs for improving root zone soil moisture estimation 
under different climate conditions, PFTs and soil types, the experiments are performed for 5 
PFTs, 5 climate conditions and 4 soil texture types which results in 100 (5×5×4) cases which 
produce different GWLs and soil moisture distributions. All simulations were performed on 
the supercomputer JURECA (Jülich Supercomputing Centre, 2016).  

The 5 climate datasets are obtained from the CEOP (the Coordinated Energy and Water cycle 
Observations Project) Reference Site Data Sets and AmeriFlux Network, including humid 
temperate, humid tropical, arid tropical, semiarid Mediterranean and tropical monsoon 
climate conditions (see table. 5.1). For each site, climate data from two years are used, one 
year is for model spin up and the second year for model simulation/ assimilation. Note 
however that it was not a main aim of this research to reproduce typical groundwater levels 
for different climates, but to generate groundwater levels which differ between different 
climates. The 5 PFTs include bare soil, crop land, C3/C4 grass (arid sites have C4 grass, 
others have C3 grass), needle leaf tree and broadleaf tree. They have different rooting depths 
and their physical, phylogenetic and phenological characteristics are defined in CLM. The 4 
soil texture types are clay, loam, loamy sand and silt loam. Their residual soil moisture 𝜃𝜃𝑟𝑟 
and saturated hydraulic conductivity ks are from Leij et al. (1996),  sand fraction  and clay 
fraction are chosen based on the soil types, and saturated soil moisture (porosity) 𝜃𝜃𝑠𝑠  is 
calculated on the basis of the sand fraction via the following pedotransfer function in CLM 
(version 3.5), to keep functional consistence between CLM and ParFlow: 

θs=0.489-0.00126(sand%)                                                                                                     (5.8) 

Table 5.2 shows the values of  the parameters for the 4 soil types.  

Reference simulations 

The synthetic reference simulations for the 100 cases are generated by imposing the climate 
conditions, PFTs, and the soil property values from table 5.2. The soil hydraulic parameter ks 

is vertically heterogeneous. Spatial variability of ks is created to generate a reference 
heterogeneous ks. The layer specific ks is generated by decreasing it exponentially with soil 
depth (Niu et al., 2005): 

� ks(zi)=ks(z1)*e-f(zi-z1),        i=1:10
ks(zi) = ks(z10),                i=11:30

                                                                                        (5.9) 

where zi is the soil depth of the ith layer, ks(z1) is the ks of the top layer which is taken from 
table 5.2. For the upper 10 layers ks decreases with depth and the layers 11 until 30 have the 
same ks as the 10th layer. f is the decay factor taken as 2.0 m-1 according to Niu et al. (2005). 
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Van Genuchten parameters α and n are essential in describing the pressure-saturation and 
relative conductivity relationships to close the problem mathematically. We use the 
covariances among transformed ks, α and n to get the values of α and n from the reference 
heterogeneous ks, as described in Carsel and Parrish (1988). Table 5.3 shows the 
transformations and the covariances for each soil type. Layer specific α and n-values are 
generated based on the correlation between (transformed values of) ks values and 
(transformed values of) α and n, given the covariances provided in table 5.3. After the 
multivariate sampling step, values are back transformed to ks, α and n, which are used as 
reference parameters. More details can be found in Carsel and Parrish (1988).   

For each case, the model spin up is performed for 100 years from an initial GWL of -1 m. 
Afterwards, a reference simulation is performed for 1 year to produce synthetic GWL, which 
are assimilated as daily values in the data assimilation experiments. 

 
Table 5.1 Five climate types used in the data assimilation cases. 

Site name Latitude Longitude 

Average 
yearly 

temperature 
(°C) 

Average 
yearly 

precipitation 
(mm) 

Köppen-Geiger 
classification 

California desert site 33.65N -116.37E 25.3 70.2 Hot desert climates 
(BWh)  

Picassent site in Spain 39.37N -0.45E 16.7 400.5 Hot semi-arid 
climates (Bsh)  

Northeast Thailand site 14.47N 102.38E 26.1 550.2 Tropical savanna 
climate (Aw)  

Cabauw site in Netherlands 51.97N 4.93E 11.5 771.8 Temperate oceanic 
climate (Cfb)  

Kennedy Space Center in Florida 28.61N -80.67E 22.2 1000.5 Humid subtropical 
climate (Cfa)  

 
Table 5.2 Four soil types used in the data assimilation cases. Values of 𝜃𝜃𝑟𝑟 and 𝑘𝑘𝑠𝑠 (cm/hr) are from  
Leij et al. (1996), sand% and clay% are chosen based on the soil types, 𝜃𝜃𝑠𝑠 is calculated by equation 
(5.8).  
Soil texture 𝜽𝜽𝒔𝒔 𝜽𝜽𝒓𝒓 𝒌𝒌𝒔𝒔 (cm/hr) sand% clay% 

Clay 0.4575 0.068 0.02 25 50 
Loam 0.4386 0.078 1.04 40 20 
silt loam 0.4512 0.067 0.45 30 10 
loamy sand 0.388 0.057 14.6 80 15 

 

Ensemble generation  

The parameter ensemble is generated for assimilation. Firstly log10(ks(z1)) is perturbed by an 
additive random perturbation which is sampled from the standard normal distribution 
𝒩𝒩(0, 1)  to generate 128 ensemble members. For each ensemble member, the initial 
perturbation is done for the uppermost layer, equation (5.9) is then applied for the layers 2 
until 30, and α and n are also sampled from the multivariate Gaussian distribution described 
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before. In addition, precipitation is perturbed in the data assimilation experiments by 
multiplicative noise sampled from a uniform distribution with values between 0.5 and 1.5. 
For each case, the 128 ensemble members are also spun up for 100 years from an initial GWL 
of -1m, and then assimilation is performed for 1 year.   

 
Table 5.3 Covariances among transformed ks (cm/hr), α (cm-1) and n for loam, silt loam and loamy 
sand. Transformations include no transformation (NO), lognormal (LN), log ratio (SB) and hyperbolic 
arcsine (SU). Transformations and units are shown in brackets. Values are from Carsel and Parrish 
(1988). 

clay SB (ks) SB (α) LN (n) 
SB (ks) 1.96 0.565 0.048 
SB (α) 0.948 0.172 0.002 
LN (n) 0.908 0.910 0.016 
loam SB (ks) SB (α) SU (n) 

  SB (ks) 1.41 0.611 0.055 
SB (α) 0.982 0.093 0.026 
SU (n) 0.632 0.591 0.029 

silt loam LN (ks) LN (α) SB (n) 
LN (ks) 1.478 0.525 0.353 
LN (α) 0.986 0.082 0.234 
SB (n) 0.730 0.775 0.158 

loamy sand SB (ks) NO (α) SB (n) 
SB (ks) 1.48 0.037 0.211 
NO (α) 0.986 0.014 0.019 
SB (n) 0.730 0.354 0.108 

5.4 Results and Discussions 
We investigate the grid columns which have the highest elevation in the domain. The results 
for the different cases are analyzed to study the role of the PFTs, climate conditions and soil 
texture on the assimilation of GWLs to improve root zone soil moisture characterization. The 
10 upper soil layers are assumed to be the root zone with a depth of 3m. In order to evaluate 
the assimilation performance, the Root Mean Square Error (RMSE) of soil moisture for these 
layers is calculated as: 

RMSEi = �1
T
∑ (𝜃̅𝜃t, i- θt, i

ref)
2 T

t=1   , i=1:10                                                                                (5.10) 

where T is the total number of assimilation time steps (365), 𝜃̅𝜃t, i is the ensemble average soil 
moisture content of the ith layer at time step t (either from open loop run or data assimilation 
run) and  θt, i

ref is the reference soil moisture content of the ith layer at time step t. For each case, 
a vertically averaged RMSE is also calculated: 

RMSEDepth-Mean  = �1
T

 1
Nlayers

∑ ∑ (θ�t, i- θt, i
ref)

2 T
t=1

Nlayers
𝑖𝑖=1  ,  Nlayers=10                                        (5.11) 
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where Nlayers is the total number of root zone soil layers.  

A RMSE reduction is calculated by dividing the RMSE of soil moisture from the data 

assimilation run θ�t,i
ass by the RMSE of soil moisture from the open loop run θ�t,i

ol: 

∆RMSEi   =
�1

T
∑ (θ�t,i

ass- θt,i
ref)

2 T
t=1

�1
T
∑ (θ�t,i

ol- θt,i
ref)

2 
T
t=1

, i=1:10                                                                                     (5.12) 

and the Depth-Mean RMSE reduction is calculated based on equation (5.11): 

∆RMSEDepth-Mean =  
�1

T 1
Nlayers

∑ ∑ (θ�t,i
ass- θt, i

ref)
2 T

t=1
Nlayers
𝑖𝑖=1

�1
T 1

Nlayers
∑ ∑ (θ�t,i

ol- θt, i
ref)

2 
T
t=1

Nlayers
𝑖𝑖=1

, Nlayers=10                                                 (5.13) 

A RMSE reduction smaller than 1.0 implies that assimilation improves soil moisture 
characterization.  

 

 

Figure 5.1 Boxplot of yearly averaged GWLs for all cases in terms of climate conditions (a), PFTs (b) 
and soil texture types (c) (only a subset of the simulations is used). y axis is the GWL (m). In the 
boxplots, the red line represents the median value and the green line mean value. 

Figure 5.1 shows the boxplots of reference GWLs (yearly average for the second year) for all 
cases. In figure 5.1(a) each boxplot shows the effects of climate condition on GWLs (20 
cases = 5 PFTs × 4 soil texture types), in figure 5.1(b) the effect of PFT (20 cases = 5 climate 
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conditions × 4 soil texture types), and in figure 5.1(c) the effect of soil texture (cases with 
GWL between -5m to -1m). In figure 5.1(c) only the GWLs between -5m to -1m are shown 
for soil textures in order to focus on the specific impact of soil texture on GWL-assimilation. 
Because of our artificial setup (like zero flux for the bottom boundary and manually 
generated ks, α and n), some cases show artifacts, such as very shallow GWLs for loamy sand, 
while this soil type in reality is generally associated with deeper GWLs because it is more 
permeable and tend to have lower sorption potentials to hold water. From figure 5.1 we can 
see that different climate conditions, PFTs and soil textures result in different GWLs. Sites 
with arid/semi-arid climate or plants with deep roots like trees result in deeper groundwater 
tables.  

 

 

Figure 5.2 RMSE reductions of root zone soil moisture as a function of yearly averaged GWLs. 
Subfigures correspond to the upper 10 soil layers and the Depth-Mean, each red/blue dot represents a 
case, x-axis is yearly averaged GWL, y-axis is the RMSE reduction. If the RMSE reduction value is 
less than 1.0 (indicated by a black line), assimilation improves soil moisture estimation. 

Figure 5.2 shows the RMSE reductions of soil moisture (for each soil layer and also averaged 
over the root zone) vs. yearly averaged reference GWL for all 100 cases (5 PFTs × 5 climate 



99 
 

conditions × 4 soil texture types). If GWL is too deep (<-10m) or too shallow (-1m to 0m), 
the assimilation does not result in an improved characterization of root zone soil moisture, 
depending on the combination of soil type, PFT and climate conditions. When GWL is 
between 1 to 10m, for almost all the cases, assimilation of GWL improves the root zone soil 
moisture estimation, which means that in this critical zone, soil moisture is sensitive to the 
water table position. This finding is consistent with the results from Kollet and Maxwell 
(2008), where the authors demonstrated that the land surface energy budget is most sensitive 
to the GWL when GWL is in a critical depth range.  

 

 

Figure 5.3 Boxplot of ∆RMSEDepth-Mean for all cases in terms of climate conditions (a), PFTs (b) and 
soil texture types (c). In the boxplots, the red line represents median value and the green line mean 
value. The value 1.0 is indicated by a black dot line. 

Figure 5.3 shows boxplots of the vertically averaged RMSE reduction as a function of 
climate, PFT and soil type. In figure 5.3(a) each boxplot shows the effect of climate condition 
on the assimilation of GWL (20 cases = 5 PFTs × 4 soil texture types), in figure 5.3(b) each 
boxplot shows the effect of PFT (20 cases = 5 climate conditions × 4 soil texture types) and 
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in figure 5.3(c) the effect of soil texture is shown (cases with GWL between -5m to -1m). 
Like figure 5.1(c) here in figure 5.3(c) effect of soil texture on the assimilation performance 
is studied with a subset of simulations. We assume that if the median and mean values are 1, 
there is no effect of the climate condition in figure 5.3(a), the PFT in figure 5.3(b) or soil type 
in figure 5.3(c) on the ∆RMSEDepth-Mean, and if the median and mean are >1, assimilation 
worsens root zone soil moisture characterization, and otherwise assimilation improves root 
zone soil moisture characterization.   

The effect of climate condition on the assimilation is discussed in the following. From figure 
5.3(a), we see that data assimilation does not significantly improve root zone soil moisture 
characterization for humid sites (Netherlands and Florida), but assimilation does improve soil 
moisture characterization for semi-arid and arid sites (Thailand, Spain, and California). 
Humid sites result in very shallow GWL and semi-arid/arid sites in deeper GWL. From figure 
5.1(a), we can see that the distribution of GWL for the semi-arid/arid sites covers a broader 
range and includes often the aforementioned critical zone (-10m to -1m). Climate conditions 
affect strongly the performance of GWL assimilation as climate exerts a strong control on 
GWLs, which is essential in the assimilation.  

The effect of PFT on the assimilation is discussed in the following. From figure 5.1(b) we can 
see that the 5 PFTs result in different GWL distributions because of different rooting depths 
(see figure 5.5). However, differences among the 5 boxplots in figure 5.3(b) for the 5 PFTs 
are not as large as for climate and soil texture, because their mean values, median values and 
box shapes are similar. Only the PFT broadleaf tree is associated with a lower mean and 
median values. In figure 5.1(b) even though the 5 box shapes are distinct, their mean and 
median values are close. All the 5 PFTs are associated with GWL values in the critical depth 
range, and as this critical depth is closely associated with the assimilation performance, 
vegetation types have a smaller impact on the assimilation performance. 

The effect of soil texture on the assimilation is discussed in the following. From figure 5.3(c) 
we can see that even though all GWLs are in the critical range [-10m, -1m] the performances 
of the 4 soil textures are different. Loam soil and especially loamy sand perform better than 
clay and silt loam. The explanation would be that for different soil texture the correlation 
among soil hydraulic parameters (ks, α and n) is different (see section 5.3 and figure 5.4), thus 
assimilating GWL has a differing effect on the characterization of pressure and saturation via 
equation (5.7). In addition, ensemble members are generated by perturbing soil hydraulic 
parameters which play an important role in the assimilation (e.g. ensemble spread). Therefore, 
soil texture also affects clearly the performance of assimilation because it affects GWL 
dynamics and the soil properties (e.g. ks) affect the GWL assimilation.  

In order to better illustrate the effect of climate condition, soil texture and PFT on the 
assimilation performance, vertically averaged RMSE reduction of root zone soil moisture as a 
function of yearly averaged GWLs is plotted in figure 5.6. In figure 5.6(a), 5.6(b) and 5.6 (c) 
different colors represent different climate conditions, PFTs and soil textures respectively. 
Figure 5.6(a) illustrates that the RMSE reductions for the California site are mostly lying 
below other climate sites, and figure 5.6(b) illustrates that the RMSE reductions for broadleaf 
tree are lying below others, and figure 5.6(c) shows that the RMSE reductions for loamy sand 
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soil are a bit below others. But there is not a very clear pattern in the figure that shows how 
different climate conditions, soil textures and PFTs affect the RMSE reduction. The GWL 
depth has the largest influence on the results and other impacts are marginal.  

 

 

Figure 5.4 Scatter plot of α (cm-1) and n as a function of log10ks (cm/hr) for the 128 ensemble 
members for silt loam texture (left), loam soil (middle), and loamy sand texture (right).  
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Figure 5.5 Root fraction for the upper 10 layers for the 4 PFTs: cropland, grass land, needleleaf tree 
and broadleaf tree. y-axis is the soil depth for the 10 layers and x-axis is the root fraction. 
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Figure 5.6 Vertically averaged RMSE reduction of root zone soil moisture as a function of yearly 
averaged GWLs. Each dot represents each case, and different colors show different climate conditions 
(a), different PFTs (b) and different soil textures (c). 
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5.5 Conclusions     

In this study, groundwater level (GWL) data were assimilated in the integrated land surface-
subsurface model TerrSysMP. Synthetic experiments were used to study under which 
conditions assimilation of GWLs can help to better characterize root zone soil moisture 
content. In particular, the influence of climate, plant functional type (PFT) and soil texture on 
the assimilation performance were analyzed. The 5 considered climate conditions were humid 
temperate, humid tropical, arid tropical, semiarid Mediterranean and tropical monsoon, the 5 
plant functional types were needleleaf, broadleaf, grassland, cropland and bare soil and the 4 
soil textures were clay, loam, silt loam and loamy sand. This resulted in 100 data assimilation 
cases in total. We find that there is a critical depth range (GWL between 1 to 10m) where 
assimilation leads to the largest improvements in root zone soil moisture estimation, due to 
pronounced sensitivity of root zone soil moisture to the GWL in this zone. The range of 
GWL (-10m to -1m) mainly determines the effectiveness of assimilation. In addition, GWL 
assimilation performance is influenced by the combination of climate condition, soil texture 
and PFT. Climate conditions can greatly affect the performance of assimilation as they 
strongly control GWL. Soil texture also affects the assimilation performance independent of 
its impact on GWL. Different soil textures have different soil hydraulic parameters which 
have different impacts on the pressure-saturation relationship and finally affect the 
assimilation performance. The PFT is found to have a relatively small effect on the 
assimilation performance. These results point to the potential of the available large scale 
networks of groundwater level observations for improving root zone soil moisture 
characterization in simulations with large scale land surface models, especially in areas with 
GWLs between 1m and 10m depth.  
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Chapter 6 : Summary and outlook 
Surface and root zone soil moisture play an important role in the global and regional water 
and energy cycle, as they influence the partitioning of water into infiltration, runoff and 
evapotranspiration at the land-atmosphere interface and also the partitioning of incoming 
radiation into latent and sensible heat flux. Soil moisture contents can for example be 
estimated by field observations, remote sensing retrievals and land surface models. These 
methods provide soil moisture at different spatial and temporal scales but have individual 
shortnesses. For example, land surface models have high uncertainties which are related to 
simple parameterization of hydrologic processes, uncertain model input data and parameters. 
In this work, data assimilation was used to merge observations with land surface models (or 
an integrated terrestrial system model) to provide an improved dynamic representation of 
surface and root zone soil moisture. A central goal of the PhD work was to evaluate four 
different data assimilation methods in joint estimation of states and parameters and 
investigate the interaction between groundwater level and root zone soil moisture by 
assimilating groundwater level in an integrated model to update root zone soil moisture.  

Therefore, first four different assimilation methods were evaluated in terms of joint 
estimation of states and parameters with two land surface models. Land surface models 
(LSMs) use a large cohort of parameters and state variables to simulate the water and energy 
balance at the soil-atmosphere interface. Many of these model parameters cannot be 
measured directly in the field, and require calibration against measured fluxes of carbon 
dioxide, sensible and/or latent heat, and/or observations of the thermal and/or moisture state 
of the soil. Data assimilation provides an approach to estimate model parameters (e.g. soil 
hydraulic parameters, soil thermal parameters and vegetation parameters) while considering 
model structural and model forcing uncertainties. There are several commonly used 
assimilation methods for joint state and parameter estimation. These methods not only update 
model states but also model parameters in the data assimilation framework. In this work we 
chose four important data assimilation methods for joint parameter and state estimation: the 
Ensemble Kalman Filter (EnKF) with state augmentation (EnKF-AUG) or dual estimation 
(EnKF-DUAL), respectively, and the residual resampling Particle Filter (RRPF) with a 
simple, statistically deficient, or more sophisticated, MCMC-based parameter resampling 
method (PMCMC). These four methods were implemented in two land surface models to 
compare and evaluate their usefulness and applicability: the Variable Infiltration Capacity 
Model (VIC) and the Community Land Model (CLM version 4.5). These two models had 
different parameterization mechanisms with different model parameters and CLM took into 
account groundwater while VIC didn’t. The Rollesbroich experimental test site locates in the 
Eifel mountain range in western Germany. A soil moisture sensor network (with 
measurements at 5, 20 and 50 cm depth) has been installed at the Rollesbroich site. Areal-
averaged soil moisture measurements at 5, 20 and 50 cm depth of the sensor network were 
used to do data assimilation with the four assimilation methods and the two models. The 
atmospheric forcing data for the models were measured at the eddy covariance tower located 
in the experimental site. The soil texture, bulk density and organic carbon data were 
determined by soil samples using laboratory experiments. Then they were averaged to obtain 
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mean values for the listed depths. As VIC and CLM have different representations of the 
physical processes of the land surface hydrology, different model parameters were chosen to 
be updated in the data assimilation. The assimilation period was from March to July, 2012 
where soil moisture and model parameters were updated jointly via assimilation methods. 
The performance of the “calibrated” models was investigated using water content 
measurements of a 5-month evaluation period (August – December, 2012). As expected, all 
data assimilation methods enhanced the ability of the VIC and CLM models to describe 
spatiotemporal patterns of moisture storage within the vadose zone of the Rollesbroich site, 
particularly if the maximum baseflow velocity (VIC) or fractions of sand, clay, and organic 
matter of each layer (CLM) were estimated jointly with the model states of each soil layer. 
The differences between the soil moisture simulations of VIC and CLM were much larger 
than the discrepancies among the four data assimilation methods. The EnKF with state 
augmentation or dual estimation yielded the best performance of VIC and CLM during the 
calibration and evaluation period, yet results were in close agreement with the PF using 
MCMC resampling. Overall, CLM demonstrated the best performance for the Rollesbroich 
site. The large systematic underestimation of water storage at 50 cm depth by VIC during the 
first few months of the evaluation period questioned, in part, the validity of its fixed water 
table depth at the bottom of the modelled soil domain. 

Based on the investigation of data assimilation methods in previous work, we used EnKF for 
following works. By studying the LSMs VIC and CLM (version 4.5), we found that the 
linkage between root zone soil moisture and groundwater was either neglected in VIC or 
simplified in CLM, which resulted in the large biases in the soil moisture predictions at 50cm 
depth. This neglect or simplification exists in most LSMs. However, the interaction between 
root zone soil moisture and groundwater plays an important role in subsurface hydrologic 
processes. Root zone soil moisture changes as a result of precipitation recharge and water 
exchange with both the atmosphere and groundwater. Excessive root zone soil moisture 
recharges groundwater by gravity drainage and groundwater can move upward to the root 
zone by capillary forces. The lack of understanding of the effect of groundwater on soil 
moisture prompted our following study.  

To explicitly investigate the effects of groundwater on soil moisture we used the fully-
coupled subsurface-land surface model TerrSysMP including variably saturated groundwater 
dynamics. TerrSysMP features three model components: an atmospheric model COSMO, a 
land surface model CLM (version 3.5) and a groundwater flow model ParFlow. These 
component models are integrated in a scale-consistent way conserving moisture and energy 
from the subsurface across the land surface into the atmosphere. In our work the land surface 
and subsurface components of TerrSysMP, CLM and ParFlow, were used. CLM calculates 
net infiltration for the upper ten layers of ParFlow and ParFlow in turn passes the subsurface 
saturation and pressure head to CLM. ParFlow is capable of simulating high-resolution 
groundwater flow with high-performance parallel computing.  

As groundwater level can be continuously measured by automatic sensing devices at low cost 
and high accuracy, many groundwater monitoring networks are developed. Groundwater 
level measurements from these measurement networks are a valuable source of information. 
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We assimilated groundwater levels in TerrSysMP via the data assimilation framework 
TerrSysMP-PDAF to see how much root zone soil moisture prediction was improved. In 
order to assimilate groundwater levels in TerrSysMP via EnKF, groundwater levels were 
transformed to pressure head values in the saturated zone because pressure head was the 
prognostic variable in ParFlow. In principle, the state vector in EnKF consisted of pressure 
head for the whole domain including both saturated zone and unsaturated zone. 
EnKFperforms optimally only for Gaussian probability distributions of states and parameters. 
However, the pressure head in the soil profile might show very non-Gaussian pdf´s, e.g. 
under very dry conditions the pressure head for the upper soil layers can be very negative. 
The strongly non-Gaussian distriutions are related to some very negative pressure head values 
for some of the ensemble members. To solve this problem our second work aimed to find a 
proper way to assimilate the groundwater level data in TerrSysMP to improve root zone soil 
moisture estimation.      

We tested and compared five data assimilation methodologies for assimilating groundwater 
level data via the EnKF to improve root zone soil moisture estimation with TerrSysMP. 
Groundwater level data were assimilated in the form of pressure head or soil moisture (set 
equal to porosity in the saturated zone) to update state vectors. In the five assimilation 
methodologies, the state vector contained either (i) pressure head, or (ii) log-transformed 
pressure head, or (iii) soil moisture, or (iv) pressure heads for the saturated zone only, or (v) a 
combination of pressure head for the saturated zone and soil moisture for the unsaturated 
zone. These methodologies were evaluated in synthetic experiments which were performed 
for different climate conditions, soil types and plant functional types to simulate various root 
zone soil moisture distributions and groundwater levels. The results demonstrated that EnKF 
cannot properly handle strongly skewed pressure distributions which were caused by extreme 
negative pressure heads in the unsaturated zone during dry periods. This problem could only 
be alleviated by (iii), (iv) and (v). The last approach gave the best results and avoided 
unphysical updates related to strongly skewed pressure heads in the unsaturated zone. If 
groundwater level data were assimilated by (iii), EnKF failed to update the state vector 
containing the soil moisture values if for (almost) all the ensemble members the observation 
did not bring significant new information. Synthetic experiments for the joint assimilation of 
groundwater levels and surface soil moisture also supported the methodology (v) and showed 
great potential for improving the representation of root zone soil moisture.      

In the third work we applied the best assimilation methodology (v) to more synthetic 
experiments to investigate under which conditions assimilation of groundwater level data can 
improve root zone soil moisture characterization. The integrated model TerrSysMP was set 
up for 100 synthetic cases which covered 5 climate conditions (humid temperate/humid 
tropical/arid tropical/ semiarid Mediterranean/ tropical monsoon), 5 plant functional types 
(PFTs) (needleleaf/ broadleaf/ grassland/ cropland/ bare soil) and 4 soil textures (clay/ loam/ 
silt loam/ loamy sand), to generate different groundwater levels and soil moisture 
distributions. Data assimilation experiments were done to investigate how climate conditions, 
PFTs and soil textures affect the joint assimilation of surface soil moisture and groundwater 
levels in terms of improving root zone soil moisture characterization. Our results showed that 
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assimilation performance is more sensitive to climate conditions and soil texture, and less 
sensitive to PFTs. It was also found that assimilation generally works better if groundwater 
levels are between -1m and -10m below the soil surface, and if soil hydraulic parameters are 
well correlated with each other.   

From these synthetic experiments on the use of EnKF in an integrated model it is concluded 
that data assimilation with EnKF is a promising tool to assimilate groundwater level data to 
improve root zone soil moisture. Of course some of our results were derived on the basis of 
idealized and simplified conditions with synthetic experiments. The spatio-temporal 
variations of soil properties in nature are usually more complex and lead to distinct patterns 
of heterogeneity in the soil profile. The relation between pressure head and soil moisture in 
the unsaturated zone may differ from the Mualem-van Genuchten model. For further 
investigations on this topic it would therefore be desirable to also apply the TerrSysMP-
PDAF model and assimilation methodology to real world catchments.  

We will apply groundwater level assimilation for the Rur catchment, which is part of the 
TERENO infrastructure. The Rur catchment (Vereecken et al., 2010; Simmer et al., 2015) is 
located in western Germany with a total area of 2354 km2. It shows a strong spatial 
variability with respect to weather conditions, soil types and land use. The Rur catchment is 
highly equipped with monitoring infrastructure including soil moisture and groundwater level 
measurement networks, cosmic ray soil moisture stations, eddy covariance stations and river 
runoff stations. This abundant measurement infrastructure provides valuable information for 
data assimilation into terrestrial models. The possibility of assimilation of groundwater level 
data in TerrSysMP-PDAF with EnKF and the potential of improvement of root zone soil 
moisture has already been proved by our synthetic experiments, which benefits the 
application in the Rur catchment with real groundwater level (and soil moisture) observations.  

The model TerrSysMP has already been set up successfully for the Rur catchment and in 
earlier work soil moisture data from cosmic ray probes were assimilated into TerrSysMP-
PDAF. Based on this work, we will continue assimilating groundwater level measurements to 
improve root zone soil moisture characterization. It is also possible to jointly assimilate 
groundwater level measurements and soil moisture data from cosmic ray probes or remote 
sensing data. Another possibility is estimating soil hydraulic parameters, like saturated 
hydraulic conductivity and van Genuchten parameters, via assimilating groundwater level 
measurements and/or soil moisture data. It can be expected that assimilating for the real-
world case is associated with many additional complications compared to the synthetic 
experiments. Examples are: (i) All the groundwater wells are clustered in the northern part of 
the catchment; (ii) TerrSysMP simulations produce shallower groundwater levels than 
measurements and seem to have a systematic wet bias; (iii) Model resolution (500m) is (too) 
coarse for the maximally 100m broad Rur river. The improvement of root zone soil moisture 
might therefore not be as significant as in the synthetic experiments. 

Another extension of our work in the future is estimating soil hydraulic parameters, like 
saturated hydraulic conductivity and van Genuchten parameters, via assimilating groundwater 
level measurements. From our first study (in this PhD-thesis), joint estimation of soil 
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moisture and model parameters by EnKF is proven to be an efficient way to improve soil 
moisture profile prediction of LSMs. This study can be extended with TerrSysMP to not only 
update groundwater levels but also soil hydraulic parameters to investigate if root zone soil 
moisture characterization can be further improved.  

The integrated model TerrSysMP also makes multivariate data assimilation possible. In our 
second and third studies, we jointly assimilate surface soil moisture and groundwater levels, 
and conclude that this approach is superior to univariate assimilation of surface soil moisture 
data or groundwater level data alone. In the future soil moisture from remote sensing data and 
cosmic ray probes should be jointly assimilated with groundwater levels. Moreover, further 
data types can be included in the multivariate assimilation like evapotranspiration data and 
discharge data. 
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