% Federal Office
for Information Security

Technical Guideline BSI TR-03151
Secure Element API (SE API)

Version 1.0.0
6.June 2018

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn

E-Mail: registrierkassen@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2018

mailto:registrierkassen@bsi.bund.de?subject=Technical%20Guideline%20BSI%20TR-03151
https://www.bsi.bund.de/
mailto:registrierkassen@bsi.bund.de?subject=Technical%20Guideline%20BSI%20TR-03151

Table of Contents

Table of Contents

1 Introduction 7
11 Motivation .7
1.2 Purpose and general functionality of the SE API 7
1.3 Content and scope .8
14 K@Y WOTAS. et eeeeererceeeimseeceeiaseeeeeeesss s sesssss s sesesss e se bRk R RS R0 8
2 Log messages and theil CIEAION. ... ssesessssses s ssssssssssssessssssssssssss s ssssssssssssssssssssessssssssssssssesssassen 10
2.1 LOZ MESSAZE SEIUCLUTE......coeveerererrriesesseesssessssesesssssssssssssssssssssssssssssssssessssssssssesssssessssssssssesssssessssssssssessbssassssssssssessssnssssanssnns 10
2.2 CONENTS Of LOZ MESSAZE.....ocumreverrereernsssesessssssssssssssesssassssssssssssessssssssssssssssssnss 10
2.3 COTTIIRAD ATATYPC.ceeeeeeevreesseeeeeee e essssssssssesesess s ssssssss s ssss s s s SA AR s SRR R SR RR A 11
231 Certified data Of tranNSACION LOS.......rrremuerereiiaserecsiissessesessssessesssssssssessssssssssssssssssessesssssssssssssssssessssssssseses 12
2.32 Certified data Of SYSTEIM LOZS........cuoreerreererisensereees s sssssesssssssessssssssssssssesssssssessssssess st ssss s ss s sens 12
24 Transaction Log Message Signature CIEatiON......eerecemmseseesimsmessessssssessesssssssssssssssssssssssssmsessessssessssees 12
24.1 Simplified Log Message Signature Creation .13
242 Log Message SigNatUure CIEAtION. ..o .rreerrereserssessessssssensssssssssssssssssssesssssssssssssessssssssssssssssssssassssssssssssssssssssans 13
243 Log Message Signature Creation with Signed Updates 17
2.5 Transaction Log Message Signature Validation .18
2.6 SYStem LOZ MESSAZE CTrOALION........vurreveeesesieresssesessessssssssssssssssssssasssssssssssssnsssnns 18
3 Secure Element Functionality .19
4 Secure Element API Functionality

41 Error handling

42 Maintenance and Time Synchronization

42.1 Initialize

422 UpdateTime

43 Input Functions

431 StartTransaction

432 UpdateTransaction

433 FinishTransaction

44 Export Functions . 26
441 Export 26
442 GEtLOGMESSAGECEITIICALE. ...ovrnrvveenrrreeseseresesssiesesesssssesssessesssssssssssssssssssssssssssssssssssssessssssssssssssssssss s sssssssssssssssssssssssns 29
443 RestoreFromBackup .31
444 REAALOGMESSAZE.corrrvrernnnssssissnsssssissasssmssssssssssnasssssssssssssnes 32
5 EXPOTT FOTTIIALS ..ottt sass s ssse s ss s sss s s R ettt 33
51 TAR and TLV Export .33
511 Initialization INFOTMATION File ...t eesss s eessss s essssss s ssssseessssssss s ssssss e ssssassssasses 33
5.1.2 Log Messages Files .33
513 Certificate files .34
6 Appendix A: System log messages .35
6.1 Initialization

6.2 Set time

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java .36
7.1 I ETOAUCEIONY ceeeeeeeeeeeeeeess e ceeees s eeeesss s eeess s e ke R SRR R RS R b0 36
7.2 MADDINIE OFf DASIC L PES.cuumrrreveersnresssessnsssassssssssssssssssssssssssssssssssssassssnnes 37

Federal Office for Information Security 3

Table of Contents

7.3 DEfINITION Of SETITIES......ooirevveerieeeeeseieeessseses e sssse s sesessssssesssssssessssssess s s s s sss s b s bss s sss s b s s ssse s bss s b saes 39
7.4 Arrays .. 39
7.5 Definition context .40
7.6 EXCEPLIONIS ..ottt s b s s s s bbb SRR eSS b e bbb 40
7.7 Optional fUNCHON PATAINELETS........oieeeeeeeveereeene ettt st ssessseessssessssessbassssbssssbs s s baes s bas s sbases bbb sanen 41
7.8 Function input parameters 42
7.9 Function output parameters 44
7.10 Return value 45
8 Appendix C: The TAR file format ... 46
References 48
Figures
Figure 1: General system architecture in the context Of the SE APL.......cooreionnessnssssessssssssssssssssssssssssssssses 7
FAigure 2: TAR fI1€ FOTIIIAL.......oooerveeveeeeeeeeseeeeeeseeseesseee s ssssssessssssssssessssssssse s ssssss s sssssss s sssss s ssssse s s ssse s s s s s ssss s e ss st 46

Tables

TADIE 11 KEY WOTIAS.......oorreveereeiereseseessssesesssssssssssssssssssessssssssssssssssssss s ssssesssss s sss s b s b s e e bbb et 9
Table 2: Structure of a log message 10
Table 3: Description of the elements Of the 108 MESSAZE............coowrvveererrevrrererisensersees s ssseessssesessssssessssssess s sesnses 11
Table 4: Structure of the certifiedData of & tranSaCtioN 10G.. ..o ssessses 12
Table 5: Description of the elements Of the 10Z MESSAZE............cooervveererrevrrnrerirenseseseenesee s sisesssseessssssessssesessssssess s sesssenses 12
Table 6: Structure of the certifiedData of a system log 12
Table 7: Functionality of the Secure Element ..19
Table 8: Input parameters Initialize function 20
Table 9: Exceptions for the INitialize fUNCLIOMN.......cccooioreeeeereceeeesesesee st sisessssesess s sssssessssssesssssssessssss s ssssssssassssnnss 20
Table 10: Input parameters for the UpdateTime fUNCLION........ccouvcrriecrrrresnseresesssessessseessssssssssssssssssssesssssesssssssssssssnses 21
Table 11: Exceptions for UpdateTime fUNCHION......cco....coorcevrnereeeensceeeese e ssesesssssssessssssessssssessssssessssssesssssssessssssssssssnsssnes 21
Table 12: Input parameters for startTransaction fUNCHION.....cc.crivcrmrrrnresssnnresesssssssssesses 22
Table 13: Output parameters for startTransaction fUNCLION.......ccoocoreicienrcvceeeeeese e sasessssse s sesssesnees 23
Table 14: Exceptions of the startTransaction function 23
Table 15: Input parameters for updateTransaction fUNCHION........cccoovcorevvcrnereveesees v sssssesssssssessssss e esnees 24
Table 16: Output parameters for updateTransaction function 24
Table 17: Exceptions of the updateTransaction function w24
Table 18: Input parameter of the finishTransaction function .25
Table 19: Output parameter for finishTransaction fUNCHION............ccoovvvveervevcnnnrereeen s ssssessssesesssseseesssessesssesnees 26
Table 20: Exceptions for finishTransaction function 26
Table 21: Input parameters for export function 27
Table 22: Output parameters fOr XPOTt fUNCHIOMN. ..o ssisnssssesessssessssesssssssssesssssssssssssssssssssssssssessssssssssssssness 28
Table 23: EXCepPtions fOr @XPOTt fUNCLION ...t sssessssssssssssessssssessssssessssssssssssssesssssssessssssessssass e s s ssssens 28
Table 24: Output parameters for getLogMessageCertificate fUNCHION.corvvecrmmreeesmsreesnnsssessnsssesesssssssssssssssssssssssees 30
Table 25: Exceptions for getLogMessageCertificate fUNCHION.coovvvenerevvsnereseieesesieeessseesessssesessssssessssesessssss s sessesnees 30
Table 26: Input parameters restoreFromBackup function .31
Table 27: Exceptions of restoreFromBackup fUNCHION......oo.vcurveveeenrerireeseeeeeseetens e svessesssssesssssssssssssss s sesses 31
Table 28: Output parameters from ReadLogMessage function 32
Table 29: Exceptions for ReadLogMesSage fUNCHION......co....revcreereveceensieens s ssassessssessssssssessssssssssssssesssssssssass e sesses 32
Table 30: Parts of the file names in export tar archive 34
Table 31: Relevant building bloCKS in [OMG2017a]..........coorreverereeneeeseesensessssseeessssssssesssssssssseessssssssssssssssssssssssssssassssasessasssenns 36
Table 32: Overview Of the fOlloWIng ChADLETS......ooc ettt sesssssssssessssssssssssssssessssssassssssesessen 37

Bundesamt fir Sicherheit in der Informationstechnik

Table of Contents

Table 33: Mapping of data types vervvenneen 39
Table 34: Tar file members header

Federal Office for Information Security 5

Introduction 1

1 Introduction

1.1 Motivation

In the course of digitalisation, many applications nowadays rely on digital signatures in order to protect the
authenticity and integrity of information. Due to legal or organisational requirements, such applications
need a certain level of protection of their signature keys, i.e. private signature keys must be protected from
unauthorized usage and disclosure via a suitable secure component. Such a level of protection can be
achieved by the usage of a Secure Element (SE).

This document specifies the Secure Element API (SE API). The SE API is a digital interface that wraps
functionality of a Secure Element and allows access to security functionalities by an application in a unified
way regardless of the specific type of Secure Element in use (see Figure 1).

The main purpose of this interface is to secure authenticity and integrity of information by creating digital
signatures over them.

- 4—) Application

Users

SEI API

Secure

Element Storage
(optional)

Figure 1: General system architecture in the context of the SE API

1.2 Purpose and general functionality of the SE API

A more specific purpose is the protection of externally provided process data with a unique transaction
number and a time-stamp. Both additional parameters, time and counter, as well as the process data, are
covered by the signature. The time-stamp provides information about point in time when the signature
creation was performed. Furthermore, a signature counter that is increased with every signature allows to
detect the absence of a signature can be easily detected.

Federal Office for Information Security 7

1 Introduction

The SE API works in the following way:

1. Process data flow into the SE APL

2. Inthe SE AP], the process data are forwarded to the Secure Element.

3. If required, the Secure Element creates a new transaction number for the current transaction.
4

. The Secure Element creates a signature over the process data and the additional self-provided data (a
time-stamp, a signature counter and other information).

5. Then, the SE API composes and returns a log message; the Secure Element is invoked for parts of the log
message. The log message contains the signature and all additional data, that was used in the signature
creation process (and is needed to verify the signature).

The set of log messages can be used to verify the completeness of transactions. Furthermore, it is ensured
that the contained process data was signed at a certain time (and has not been altered since) and that the
signature creation happened in succession to a signature creation over data containing a smaller signature
counter value.

1.3 Content and scope

This Technical Guideline focuses on the creation and structure of the log messages, their export, and the
specification of the integration interfaces to the application.

The integration interface is defined in the OMG Interface Definition Language (IDL) - a generic interface
description language. The OMG IDL [OMG2017a] is a text based, language independent definition language
for interfaces.

The descriptions in this document are designed to be independent of any concrete implementation. Possible
implementations of an API as described in this document include (but are not limited to) a SOAP-API or the
direct exposition of a classical API from the programming language that the API is developed in.

Neither the physical interface, by which the SE API is exposed, nor any other layers in terms of the ISO/OSI
reference model are defined by this Technical Guideline. This allows a maximum degree of flexibility for a
Secure Element application developer.

The functions of the SE API are described regarding their function parameters, their behavior, and the
exceptions. The interaction between the SE API and the Secure Element is only considered in an abstract,
technologically independent way.

This document is accompanied by a ZIP archive [SPECZIP] that contains:
— the definitions of the SE API in form of its OMG IDL definition,

— the translation of the OMG IDL definitions to Java,

— the translation of the OMG IDL definitions to ANSI C.

1.4 Keywords

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document SHALL be interpreted as described in
[RFC2119].

The key word "CONDITIONAL" is to be interpreted as follows: The usage of an item is dependent on the
usage of other items. It is therefore further qualified under which conditions the item is REQUIRED or
RECOMMENDED.

8 Federal Office for Information Security

Introduction 1

When used in tables (profiles), the key words are abbreviated as shown in Table 1.

Key word Abbrev.
MUST / SHALL REQUIRED m
MUST NOT / SHALL NOT - X
SHOULD RECOMMENDED r
MAY OPTIONAL o
- CONDITIONAL c
Table 1: Key words

Federal Office for Information Security

2 Log messages and their creation

2 Log messages and their creation

Log messages contain application or system data to be protected, protocol data that generated by a Secure
Element during the logging process, and a signature protecting these two data structures.

2.1 Log Message Structure

The log message MUST be structured in the following way:

Data field Tag Data type Mandatory?
Log Message 0x30 SEQUENCE m
version 0x02 INTEGER m
certifiedDataType 0x06 OBJECT IDENTIFIER m
certifiedData ANY DEFINED BY
certifiedDataType
Protocol Data 0x30 SEQUENCE m
transactionNumber 0x80 INTEGER m
signatureCounter 0x81 INTEGER m
logTime 0x82 UTCTime m
operationType 0x83 [A5String m
serialNumber 0x84 OCTET STRING m
optionalProtocolData 0x85 OCTET STRING o
signature 0x30 SEQUENCE m
signatureAlgorithm 0x30 SEQUENCE m
algorithm 0x06 OBJECT IDENTIFIER m
parameters ANY DEFINED BY algorithm
signatureValue 0x04 OCTET STRING m

Table 2: Structure of a log message

2.2 Contents of Log Message

All elements of the log message structure MUST contain the following information:

Data Description Origin of data
version Represents the version of the log message format and | Predefined value
SHALL be setto ‘1’ SHALL be “1” Is

provided by the
Secure Element.

certifiedDataType The element certifiedDataType MUST identify the type | Dependent of the
of the certified data. certifiedDataType

10 Federal Office for Information Security

Log messages and their creation 2

Data Description Origin of data
certifiedData MUST contain the application of system data that is to
be protected by the Secure Element. The structure of
certifiedData depends on the certifiedDataType and
contains the actual protected data cf section 2.3.
protocolData MUST contain the protocol data generated by the|Created by the Secure
Secure Element during the protection process. Element.
transactionNumber MUST contain the transaction number generated by the | Created by the Secure
Secure Element at the start of the transaction. Element.
signatureCounter Shall contain the current count of signatures as created by | Created by the Secure
the Secure Element. Element.
logTime MUST contain the point in time of the Secure Element | Created by the Secure
when the log message was created. Element.
operationType MUST contain the name of the API or system function | Created by the Secure
whose execution is recorded by the log message. Element.
serialNumber MUST contain the hash value of the public key|Provided by the
encoded as octet string of the certificate that|Secure Element.
corresponds to the private key of the key pair used for
creating signatures.
optionalProtocolData MAY be present. If present MUST contain additional | Created by the Secure
BER-TLV encoded protocol data encoded as octet string | Element.
signature MUST provide information about the signature|Provided by the
creation. Secure Element.
signatureAlgorithm MUST provide information about the signature|Provided by the
algorithm used by the Secure Element. The field|Secure Element. The
algorithm MUST contain the object identifier of the |signature algorithm
used signature algorithm. The structure parameters| MUST be configured
depends on the algorithm. in the Secure Element
according to [BSI TR-
03116].
signatureValue MUST contain the signature that is built over the|Created by the Secure

application or system data and protocol data.

Element.

Table 3: Description of the elements of the log message

2.3 certifiedDataType

This Technical Guideline distinguishes between the two types of log messages, i.e. transaction logs and
system logs. Transaction logs are log messages created to protect the actual transactions of the external
application. System logs are generated to protect management or configuration operations of the Secure

Element.

Federal Office for Information Security

11

2 Log messages and their creation

2.3.1 Certified data of transaction logs

A transaction log MUST be identified by the following object identifier (id-SE-API-transaction-log):
e bsi-de (0.4.0.127.0.7.0) applications (3) sE-API (7) sE-API-dataformats(1) 1
The certifiedData MUST be structured as follows:

Data field Tag Data type Mandatory?
clientID 0x81 INTEGER c
processData 0x82 OCTET STRING m
processType 0x83 PrintableString o}
additionalData 0x84 OCTET STRING)

Table 4: Structure of the certifiedData of a transaction log

The elements MUST contain the following information:

Data Description

clientID MUST be present if the Secure Element is used by more than one client in
order to identify the client application

processData MUST contain the process data
processType If present, MUST contain information about the type of transaction
additionalData MAY be present. If present, MUST contain additional (TLV encoded) data

Table 5: Description of the elements of the log message

2.3.2 Certified data of system logs

A system log MUST be identified by the following object identifier (id-SE-API-system-log):
* bsi-de (0.4.0.127.0.7.0) applications (3) sE-API (7) sE-API-dataformats(1) 2
The certifiedData MUST be structured as follows:

Data field Tag Data type Mandatory?

systemFunctionData 0x81 OCTET STRING m
Table 6: Structure of the certifiedData of a system log

The element systemFunctionData MUST contain information about the system operation. A list of system
operations and the corresponding certifiedData is given in Appendix A.

2.4 Transaction Log Message Signature Creation

This signature included in a log message is calculated over the application data and protocol data parts of
the log message. The signature SHALL be created by the signature algorithm.

12 Federal Office for Information Security

Log messages and their creation 2

241 Simplified Log Message Signature Creation

Text 1 provides an overview on how the log message signature is created.

First the message M is created. M is the input data of the signature function. The message is built by the
concatenation of the plain values of clientID, processData, processType, additionalData and protocolData
encoded as octet string.

Essential for the creation of a signature over the various data elements is a private key. This private key, here
called keyprivate, belongs to the key pair that is managed by the Secure Element. This key SHALL be used for
the creation of signature sig over M.

Note: The symbol “||” depicts a concatenation of data.

Input:
From application: clientID
processData
processType
additionalData
From Secure Element: protocolData
Actions: message M := version || certifiedDataType || clientID || processData || processType ||
additionalData || protocolData
signature sig := SignatureFunction (keyorivate, M)
Output: sig

Text 1: General process of creating signatures

Text 2 shows the definition for protocolData.

protocolData := transactionNumber || signatureCounter || logTime || operationType || serialNumber
|| optionalProtocolData

Text 2: Creation of protocolData

2.4.2 Log Message Signature Creation

Every transaction SHALL be started and finished by calling the corresponding functions. Additionally, every
transaction MAY be updated between start and finish.

Federal Office for Information Security 13

2 Log messages and their creation

2.4.2.1 Start a transaction

The result of a started transaction SHALL be a log message. The structure of this log message SHALL follow
the definitions from table 2 and 4.

Text 3 shows the data that is used during the creation of the log message signature.

Input:

From application: clientID
processData
processType
additionalData

From Secure Element: protocolData

Actions: message M := version || certifiedDataType || clientID || processData || processType ||
additionalData || protocolData

signature sig := SignatureFunction (keyoprivate, M)

Create log-message log

Output: log

Text 3: Creation of signatures in the context of a transaction start

To facilitate the signature creation, the actual input to the signature function are the plain data and TLV
structure of the content of protocol data of the log message. Both components contain all previously
mentioned elements. Both elements SHALL be concatenated. The protocol data SHALL contain the TLV
structure (tags and length bytes) according to table 2.

message M := version || certifiedDataType || clientID || processData ||
processType || additionalData || protocolData

signature sig := SignatureFunction (keyprivate, M)

Text 4: Signature creation after a transaction start

2422 Update a transaction

During the first execution of the transaction update the process data SHALL be managed by the Secure
Element. On every subsequent call the passed process data SHALL be added to the value of concatenated
process data from previous calls of the function to update the transaction.

14 Federal Office for Information Security

Log messages and their creation 2

Note: The process data already signed by the transaction start log message are not included in the update
process data.

Text 5 shows the concatenation of process data during a transaction update:

Input:
From application: clientID
processDatainput
From Secure Element: initialization of processDataypdate i1 With an empty value during the first
of call of updateTransaction, otherwise previous processDatapatei-1
Actions: processDataypdatei = processDataypdatei-1 || processDatainpue
Output nothing / status message

Text 5: Concatenation of process data in the context of a transaction update

Due to the limited memory capacity of some Secure Elements, the process data passed with every update
MAY already be fed into the hash function of the signature algorithm. After this, the Secure Element can
discard the passed process data from its internal memory. Only the hash function of the signature algorithm
SHALL be used for this. The signature hash function SHALL remain open to add additional data in
subsequent updates. The hash function SHALL be closed during the finish of the transaction.

If necessary, the Secure Element MAY sign not yet secured process data received during the update process.
In this case, the signature SHALL be calculated over all process data that has been received so far and that
has not yet been secured in accordance with the description in chapter 2.4.1.

2.4.2.3 Finish a transaction

To finish a transaction, a signature over all process data sent to the Secure Element after the start of the
transaction and additional protocol data SHALL be created. This SHALL cause the creation of a log message.
The log message SHALL follow the scheme defined in Table 2 and Table 4.

Text 6 pictures the creation of the final log message:

Federal Office for Information Security 15

2 Log messages and their creation

Input:
From application: clientID
processDatafinish
processType
additionalData
From Secure Element: processDataypdate1
protocolData
Actions: message M := version || certifiedDataType || clientID || processDataypaatei || processDatasnisn
|| processType || additionalData || protocolData
signature sig := SignatureFunction (key,rivate, M)
Create log-message log
Output: log

Text 6: Creation of signatures in the context of a transaction finish

The following cases SHALL be considered:

1.

If the process data has been concatenated during updates without being already fed into the hash
function of the signature algorithm, the signature SHALL be calculated over the whole array of stored
process data and the additional protocol data.

If the process data of updates has already been fed into the hash function of signature algorithm, the hash
SHALL be updated with the function call of the transaction finish, and the protocol data. Subsequently,
the hash function SHALL be closed and the signature SHALL be created.

To facilitate the signature creation, the actual input to the signature function are the plain process data
and TLV structure of the protocol data of the log message. Both components contain all previously
mentioned elements. Both elements SHALL be concatenated. The protocol data SHALL contain the TLV
structure (tags and length bytes) according to Table 2 and Table 4.

message M := version || certifiedDataType || clientID || signatureCounter || processDataupdate i ||
processDatasnih || processType || additionalData || protocolData

signature sig SignatureFunction (Keyprivate, M)

Text 7: Signature creation after a transaction finish

16 Federal Office for Information Security

Log messages and their creation 2

2.43 Log Message Signature Creation with Signed Updates

Due to limited capacities of a Secure Element, it might be needed to not only create log messages for the
start and finish of a transaction, but also for process data updates. By implementing this technique, no
intermediate data needs to be stored on the Secure Element, as every input is directly fed into a signature.

Text 8 displays the creation of a log message:

Input:
From application: clientID
processData
processType
additionalData
From Secure Element: protocolData
Actions: certifiedDataType || clientID || processData || processType ||
_ additionalData || protocolData
message M =
signature sig := SignatureFunction (keyoprivate, M)
Create log-message log
Output: log

Text 8: Creation of log messages for start, update, and finish of a transaction

To facilitate the signature creation, the actual input to the signature function are the plain process data and
TLV structure of the protocol data of the log message. Both components contain all previously mentioned
elements. Both elements SHALL be concatenated. The protocol data SHALL contain the TLV structure (tags
and length bytes) according to Table 2 and Table 4.

message M := certifiedDataType || clientID || processData || processType || additionalData ||
protocolData
signature sig ;= SignatureFunction (keyprivate, M)

Text 9: Signature creation if every function call results in a log message

If an implementation with signed updates is chosen, every function call (start, update, finish) SHALL result in
exactly one log message. Every signature SHALL be created immediately after calling each function.

Note: A Secure Element might use a single function to generate the protocol data and signature for a log
message. If it does so, the function parameters of the Secure Element MAY pass the information whether the
function call is a start, update, or finish, so that the operationType field in the protocol data indicates the

Federal Office for Information Security 17

2 Log messages and their creation

correct log type. This information MAY also be passed by the usage of three different function calls.
Nevertheless, every logType element SHALL indicate the correct transaction phase.

2.5 Transaction Log Message Signature Validation

After the affiliation and the correctness of the certificate belonging to the log messages has been verified, the
log message signature verification SHALL be performed analogue to the signature creation.

The log message signatures SHALL be verified with the public key of the certificate whose serial number is
included in the log message.

message M := certifiedDataType || clientID || processData || processType || additionalData ||
protocolData
verificationResult := VerifySignatureFunction (key,uic, sig, M, signatureAlgorithm)

Text 10: General verification of protocol data

All data not covered by a valid signature SHALL be considered invalid.

2.6 System Log Message Creation

Text 11 provides an overview on how the system log messages are created.

The message is built by the concatenation of the plain values of systemFunctionData and protocolData
encoded as octet string.

Input:

From system: systemFunctionData

From Secure Element: protocolData

Actions: message M := systemFunctionData || protocolData
signature sig := SignatureFunction (KeYorivate, M)
Create log-message log

Output: log

Text 11: Creation of system log messages

18 Federal Office for Information Security

Secure Element Functionality 3

3 Secure Element Functionality

The SE API serves as a wrapper around the functionality of a Secure Element. However, the specification of
the SE API assumes that the Secure Element provides a certain set of functionality.

Table 7 provides a generic overview over this functionality. The Secure Element SHALL provide these
functionalities. However, concrete aspects as the names of the functions should not be understood as
normative requirements with respect to the Secure Element. Furthermore, the specification does not state
any particular requirements regarding the practical implementation of this functionality.

Functionality

Description

Authenticate user

This function serves to authenticate the user and to establish a trusted
channel.

Start a transaction

This function starts an external transaction with the Secure Element.

Update a transaction

This function updates an external transaction with the Secure Element.

Finish a transaction

This function finishes an external transaction with the Secure Element.

Sign a transaction

This function allows to secure process information by the use of a log message
(which is signed).

Retrieve a log message

This function retrieves the last log message parts from the Secure Element.

Set time

This function sets the time that is maintained by the Secure Element.

Export certificate

This function retrieves the current certificate that is used by the Secure
Element for signing log messages.

Table 7: Functionality of the Secure Element

Federal Office for Information Security

19

4 Secure Element API Functionality

4 Secure Element API Functionality

4.1 Error handling

If the application receives any kind of error from the SE API it falls into the responsibility of the application
to handle the situation. Depending on the concrete function that threw the error and depending on the
concrete error, the application may:

— decide to do nothing at all,
— simply repeat the last function call,

— repeat a larger amount of steps.

4.2 Maintenance and Time Synchronization

42.1 Initialize

This function Initialize MUST be used to start the initialization of the SE API.

42.1.1 Initialize - Input parameters

Name Type (OMG IDL) Required? Meaning

description string REQUIRED This parameter presents a short
description of the Secure Element.

Table 8: Input parameters Initialize function

421.2 Initialize — Output parameters

None.

42.1.3 Initialize - Exceptions

Exception Meaning

ErrorStoringInitDataFailed Storing of the initialization data failed.

Table 9: Exceptions for the Initialize function

4214 Detailed description

1. This function SHALL instruct the Secure Element to initialize the Secure Element and store the
initialization data in form of the description of the Secure Element.

2. If storing of the initialization data fails, the Secure Element SHALL set back the initial data set to the state
before storing the provided initialization data. Furthermore, the function SHALL raise the exception
ErrorStoringInitDataFailed and exit the function.

3. If the storing has been successful, this function SHALL return EXECUTION_OK.

20 Federal Office for Information Security

Secure Element API Functionality 4

4.2.2 UpdateTime

The function updateTime can be used to update the current date/time that is maintained by the Secure Element.

4221 UpdateTime - Input parameters

Name Type (OMG IDL) Required? Meaning

newDateTime DateTime CONDITIONAL The new time value for the date/time
maintained by the Secure Element.

useTimeSync boolean REQUIRED If the underlying Secure Element
supports time synchronization, this
parameter instructs the function to
utilize this feature.

Table 10: Input parameters for the updateTime function

4.2.2.2 UpdateTime - Output parameters

None.

4223 UpdateTime - Exceptions

Exception Meaning
ErrorSetTimeFailed The execution of the Secure Element functionality to set the time
failed.
ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to retrieve log

message parts has failed.

ErrorStorageFailure Storing of the log message has failed.

Table 11: Exceptions for updateTime function

Federal Office for Information Security 21

4 Secure Element API Functionality

4224 UpdateTime — Detailed description

1. If the parameter useTimeSync has:

1 the value true, the function SHALL instruct the Secure Element to use its time synchronization
mechanism to update the local time. If the execution fails, the function SHALL raise the exception

ErrorSetTimeFailed.

2 the value false, the function SHALL invoke the functionality of the Secure Element to set the time
with the provided newDateTime. If the execution of fails, the function SHALL raise the exception

ErrorSetTimeFailed.

2. The function SHALL retrieve the log message of the Secure Element. If the retrieval of the log message
fails, the function SHALL raise the exception ErrorRetrieveLogMessageFailed.

3. The function SHALL store the previously retrieved log message on the storage medium. If storing fails,
the function SHALL raise the exception ErrorStorageFailure.

4. The function SHALL return the value EXECUTION_OK to indicate that the execution of the function
updateTime has been successful.

4.3 Input Functions

4.3.1 StartTransaction

This function provides the functionality to start a new transaction.

43.1.1 StartTransaction - Input parameters

Name Type (OMG IDL) Required? Meaning

clientID unsigned long CONDITIONAL MUST be present if the Secure
Element is used by more than one
client

processData octet [] REQUIRED This parameter represents all the
necessary information regarding the
initial state of the process.

processsType string<100> OPTIONAL This parameter is used to identify the
type of the transaction as defined by the
application

additionalData octet [] OPTIONAL Reserved for future use.

Table 12: Input parameters for startTransaction function
22 Federal Office for Information Security

Secure Element API Functionality 4

4.3.1.2 StartTransaction — Output parameters
Name Type (OMG IDL) Required? Meaning

transactionNumber |unsigned long REQUIRED The value of this parameter represents a
transaction number that has been
assigned by the Secure Element to the
process.

logTime DateTime REQUIRED The value represents the point in time
of the Secure Element when the log
message was created

serialNumber octet[] REQUIRED This field contains the hash value over
the key that is part of the certificate in
the secure element.

signatureCounter unsigned long REQUIRED The current value of the signature
counter.

signatureValue octet(] OPTIONAL The value represents the signature value

Table 13: Output parameters for startTransaction function
43.1.3 StartTransaction — Exceptions

Exceptions

Meaning

ErrorStartTransactionFailed

The execution of the Secure Element functionality
to start a transaction failed.

ErrorRetrieveLogMessageFailed

The execution of the Secure Element functionality
to retrieve log message parts has failed.

ErrorStorageFailure

Storing of the log message failed.

43.1.4

Table 14: Exceptions of the startTransaction function

StartTransaction - Detailed description

The following description specifies the behavior of the startTransaction function in detail:

1. The function SHALL invoke the function to start a transaction of the Secure Element and pass on the
clientld. In this step, the Secure Element will generate a transaction number for the transaction.
If the execution of the Secure Element function fails, the function SHALL raise the exception
ErrorStartTransactionFailed.

2. Next, the function SHALL retrieve the log message parts created by the Secure Element. If the execution
of this function fails, the exception ErrorRetrieveLogMessageFailed SHALL be raised.

3. The input data and the log message parts created by the Secure Element SHALL be combined into a
complete log message and the log message SHALL be stored. If storing fails, the function SHALL raise the
exception ErrorStorageFailure.

4. After successfully storing the log message, the function SHALL return the current transaction number (as
an output parameter) by transactionNumber, the current signature counter by signatureCounter, the
time of the log message creation by logTime, the hash value over the used public key by hashValueKey
and MAY return the signature Value by signatureValue. Additionally, the function SHALL return the
return value EXECUTION_OK to indicate that of the function startTransaction has been successful.

Federal Office for Information Security

23

4 Secure Element API Functionality

4.3.2 UpdateTransaction

This function updates an existing transaction.

4321 UpdateTransaction - Input parameters

Name Type (OMG IDL) Required? Meaning

clientID unsigned long CONDITIONAL |MUST be present if the Secure
Element is used by more than one
client

transactionNumber unsigned long REQUIRED This parameter is used to
unambiguously identify the current
transaction.

processData octet [] REQUIRED This parameter represents all the
necessary information regarding the
initial state of the process.

processsType string<100> OPTIONAL This parameter is used to identify the

type of the transaction as defined by the
application

Table 15: Input parameters for updateTransaction function

4.3.2.2 UpdateTransaction — Output parameters

Name Type (OMG IDL) Required? Meaning
logTime DateTime CONDITIONAL | The value represents the point in time
of the Secure Element when the log
message was created
signatureValue Octet(] CONDITIONAL | The value represents the signature value
signatureCounter unsigned long CONDITIONAL | The current value of the signature
counter.

Table 16: Output parameters for updateTransaction function

4.3.2.3 UpdateTransaction — Exceptions

Exception

Meaning

ErrorUpdateTransactionFailed

The execution of the Secure Element functionality
to update a transaction failed.

ErrorStorageFailure

Storing of the log message has failed.

ErrorLogMessageRetrievalFailed

Retreival of the log message from the Secure
Element failed.

ErrorNoTransaction No transaction is known to be open under the
provided transaction number.
Table 17: Exceptions of the updateTransaction function
24 Federal Office for Information Security

Secure Element API Functionality 4

43.2.4 UpdateTransaction - Detailed description

The following description specifies the behavior of the updateTransaction (without signed updates) function

in detail:

1. The function SHALL invoke the functionality of the Secure Element to update a transaction and pass on
the clientld and the transactionNumber. If the execution of the function fails, the exception
ErrorUpdateExternalTransactionFailed SHALL be raised.

2. The Secure Element SHALL check whether the transactionNumber belongs to an open transaction. If this
is not the case, the function SHALL return the error ErrorNoTransaction and exit.

3. In case of UpdateTransaction without signed updates:

1. The function SHALL return the return value EXECUTION_OK to indicate that the execution of the
function updateTransaction has been successful.

4. In case of UpdateTransaction with signed updates:

1. Next, the function SHALL retrieve the log message parts created by the Secure Element. If the
execution of this function fails, the exception ErrorLogMessageRetrievalFailed SHALL be raised.

2. The input data and the log message parts created by the Secure Element SHALL be combined into a
complete log message and the log message SHALL be stored. If storing fails, the function SHALL raise
the exception ErrorStorageFailure.

3. After successfully storing the log message, the function SHALL return the time of the log message
creation by logTime and MAY return the signature Value by signatureValue and signature counter by
signatureCounter. Additionally, the function SHALL return the return value EXECUTION_OK to
indicate that of the function UpdateTransaction has been successful.

4.3.3 FinishTransaction

This function finalizes an existing transaction.

43.3.1 FinishTransaction — Input parameters

Name Type (OMG IDL) Required? Meaning

clientID unsigned long CONDITIONAL |MUST be present if the Secure
Element is used by more than one
client

transactionNumber unsigned long REQUIRED This parameter is used to
unambiguously identify the current
transaction.

processData octet [] REQUIRED This parameter represents all the
necessary information regarding the
initial state of the process.

processsType string<100> OPTIONAL This parameter is used to identify the
type of the transaction as defined by the
application

additionalData octet [] OPTIONAL Reserved for future use.

Table 18: Input parameter of the finishTransaction function

Federal Office for Information Security

25

4 Secure Element API Functionality

4.3.3.2 FinishTransaction — Output Parameters

Name Type (OMG IDL) Required? Meaning

logTime DateTime CONDITIONAL The value represents the point in time

of the Secure Element when the log
message was created

signatureValue Octet(] OPTIONAL The value represents the signature value
signatureCounter unsigned long REQUIRED The current value of the signature
counter.

Table 19: Output parameter for finishTransaction function

4333 FinishTransaction — Exceptions

Exception Meaning

ErrorFinishTransactionFailed The execution of the Secure Element functionality

to finish a transaction failed.

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality

to retrieve log message parts has failed.

ErrorStorageFailure Storing of the log message failed.

Table 20: Exceptions for finishTransaction function

43.3.4 FinishTransaction — Detailed description

The following description specifies the behavior of the finishTransaction function in detail:

1.

The function SHALL invoke the functionality of the Secure Element to finish a transaction and pass on
the clientld and the transactionNumber of process to finish and the processData.
If the execution of the function fails, the exception ErrorFinishTransactionFailed SHALL be raised.

Next, the function SHALL retrieve the log message parts created by the Secure Element. If the execution
of this function fails, the exception ErrorRetrieveLogMessageFailed SHALL be raised.

The process data, created since the start of the transaction and the log message parts created by the
Secure Element SHALL be combined into a complete log message and the log message SHALL be stored.
If storing fails, the function SHALL raise the exception ErrorStorageFailure.

The function SHALL return the time of the log message creation by logTime, the signature counter by
signatureCounter and MAY return the signature Value by signatureValue. Additionally, the SE API
SHALL return the return value EXECUTION_OK to indicate that the execution of the function
finishTransaction has been successful.

4.4 Export Functions

441 Export

This function is used to export the log messages, containing the process and protocol data.

26

Federal Office for Information Security

Secure Element API Functionality 4

4411 Export - Input parameters
Name Type (OMG Required? Meaning
IDL)
clientID unsigned long | OPTIONAL MUST be present if the Secure Element is used by more
than one client.
transactionNumber |unsigned long |OPTIONAL If present, the function SHALL only return the log
messages associated with the given transaction number
and, if present, clientID.
startTransactionNu | string <100>* OPTIONAL If present, the function SHALL only return the log
mber messages associated within the interval of
startTransactionNumber to endTransactionNumber
(inclusive).
endTransactionNum | string <100>" OPTIONAL If present, the function SHALL only return the log
ber messages associated within the interval of
startTransactionNumber to endTransactionNumber
(inclusive).
startDate DateTime OPTIONAL If present, the function SHALL only return the log
messages between startDate and endDate (inclusive).
Date/Time SHALL be encoded in UTC.
endDate DateTime OPTIONAL If this parameter is provided, the function SHALL
only return the log messages between startDate and
endDate (inclusive).
Date/Time SHALL be encoded in UTC.
maximumNumberR | long OPTIONAL If this parameter is provided, and its value is not 0, the
ecords function SHALL only return the log messages if the

number of relevant records is less or equal to the
number of maximum records. Else, an error SHALL be
returned®.

If this parameter is provided and its value is 0, the
function SHALL return all stored log messages.

Table 21: Input parameters for export function

1 This optional value allows the client to ensure that only a specific number of log messages is returned by the
export function. If the function returns an error, the calling application can restructure the call and e.g. only

ask for a smaller number of data records next time.

Federal Office for Information Security

27

4 Secure Element API Functionality

4.4.1.2

Export — Output parameters

Name

Type (OMG IDL)

Required? Meaning

exportData

The function will return the

format (see chapter 5):
— application data

form of TLV

— encoded log messages
chapter 2.1)

— initialization information

verify the log messages

following data in a defined export

and
corresponding protocol data in

(see

— certifcate(s) that are needed to

REQUIRED Log messages and additional files
needed to verify the signatures
included in the log messages.

44.1.3

Table 22: Output parameters for export function

Export - Exceptions

Exception

Meaning

ErrorIldNotFound

No data found for the provided clientID.

ErrorTransactionldNotFound

No data found for the provided transactionNumber.

ErrorNoDataAvailable

No data found for the provided selection.

ErrorTooManyRecords

The amount of requested records exceeds the parameter
maximumNumberRecords

ErrorParameterMismatch

Mismatch in parameters of function.

4414

Table 23: Exceptions for export function

Export — Detailed Description

The following description specifies the behavior of the export function in detail.

1. The function SHALL check the input parameters for validity. If any of the checks fails, the function
SHALL raise the exception ErrorParameterMismatch. This specifically includes the following checks:

1. If transactionNumber has been provided, neither startDate nor endDate SHALL be provided.

2. If startTransactionNumber and endTransactionNummber have been provided, neither startDate,

endDate nor clientID SHALL be provided.
If startDate has been provided, endDate MUST be provided as well.

® N D ok W

If endDate has been provided, startDate MUST be provided as well.

If startTransactionID has been provided, endTransactionNumber SHALL be provided as well.
If endTransactionID has been provided, startTransactionNumber SHALL be provided as well.
If provided, startDate and endDate MUST be valid date/time values.

If provided, endDate MUST lay after startDate.

28

Federal Office for Information Security

Secure Element API Functionality 4

9. If a startDate and endDate have been provided, neither a clientID nor a transactionID MUST be
provided.

2. If transactionNumber has been provided, the function SHALL check whether any data has been stored
regarding this transactionNumber and, if present, clientID.

1. If no data is available for the transactionNumber, the function SHALL raise the exception
ErrorTransactionldNotFound. If no data is available for the clientID, the function SHALL raise the
exception ErrorldNotFound.

2. Else, the function SHALL return the data that corresponds to the provided transactionNumber (as an
output parameter by exportData). Additionally, the function SHALL return the return value
EXECUTION_OK to indicate that the execution of the function has been successful.

3. If startTransactionINumber and endTransactionNumber have been provided, the function SHALL check
whether any data for the relevant period between these two transaction numbers has been stored.

1. If no datais available, the function SHALL raise the exception ErrorTransactionldNotFound.

2. If maximumNumberRecords has been provided and its value is not 0, the function SHALL check
whether the amount of records that have been found is less than maximumNumberRecords. If this is
not the case, the function SHALL raise ErrorTooManyRecords.

3. Else, the function SHALL return the data (as an output parameter) by exportData. Additionally, the
function SHALL return the return value EXECUTION_OK to indicate that the execution of the
function has been successful.

4. If a startDate and endDate have been provided, the function SHALL check whether any information has
been stored in the period between startDate and endDate (inclusive).

1. If no datais available, the function SHALL raise the exception ErrorNoDataAvailable.

2. If maximumNumberRecords has been provided and its value is not 0, the function SHALL check
whether the amount of records that have been found is less than maximumNumberRecords. If this is
not the case, the function SHALL raise ErrorTooManyRecords.

3. Else, the function SHALL return the data that corresponds to the provided period between startDate
and endDate (inclusive, as an output parameter) by exportData. Additionally, the function SHALL
return the return value EXECUTION_OK to indicate that the execution of the function has been
successful.

5. If NEITHER, a transactionNumber nor startDate and endDate have been provided, the function SHALL
check if any data has been stored.

1. If no datais available, the function SHALL raise the exception ErrorNoDataAvailable.

2. If maximumNumberRecords has been provided and its value is not 0, the function SHALL check
whether the amount of records that have been found is less than maximumNumberRecords. If this is
not the case, the function SHALL raise ErrorTooManyRecords.

3. Else, the function SHALL return all the stored data (as an output parameter) by exportData.
Additionally, the function SHALL return the return value EXECUTION_OK to indicate that the
execution of the function has been successful.

442 GetLogMessageCertificate

This function returns the certificate that belongs to the current key pair used for creating the signatures
contained in log messages.

Federal Office for Information Security 29

4 Secure Element API Functionality

4421 GetLogMessageCertificate — Input parameters

None

4422 GetLogMessageCertificate — Output parameters

Name Type (OMG IDL) Required? Meaning

certificate octet[] REQUIRED This parameter MAY occur several
times, each containing a card-verifiable
certificate of the certificate chain
belonging to the key pair that is
currently used to create signatures
contained in log messages.

Table 24: Output parameters for getLogMessageCertificate function

4423 GetLogMessageCertificate — Exceptions

Exception Meaning

ErrorExportCertFailed The execution of the Secure Element function
exportCert failed.

Table 25: Exceptions for getLogMessageCertificate function

4424 Detailed description

1. This function SHALL invoke the certificate export function of the Secure Element to retrieve the
certificates of the certificate chain that belongs to the key pair that is used to create the signatures
contained in a log message. If the execution of this function fails, the ErrorExportCertFailed exception
SHALL be raised.

2. The function SHALL return the certificate encoded according to 5.1.3. Additionally, the function SHALL
return the return value EXECUTION_OK to indicate that the execution of the function
GetLogMessageCertificate has been successful.

30 Federal Office for Information Security

Secure Element API Functionality 4

44.3 RestoreFromBackup

This function enables the restoring of a backup in the SE API and storage. The function utilizes data that has
been exported by the use of the export function (see chapter 4.4.1).

4431 RestoreFromBackup - Input parameters

Name Type (OMG IDL) Required? Meaning

restoreData octet [] REQUIRED Contains the data that SHALL be
restored in the SE API and storage.

Table 26: Input parameters restoreFromBackup function

4.4.3.2 RestoreFromBackup — Output parameters

None.

4433 RestoreFromBackup - Exceptions

Exception Meaning
ErrorRestoreFailed The restore process has failed.
ErrorDeletingFailed Deleting of the secured data from the storage from
the SE API before the restoring has failed.

Table 27: Exceptions of restoreFromBackup function

4434 RestoreFromBackup - Detailed description

The following description specifies the behavior of the restoreFromBackup function in detail:

1. The function SHALL perform the following tasks within one atomic transaction.

1. The function SHALL delete the secured data in the storage. If this step fails, the function SHALL raise
the exception ErrorDeletingFailed and exit the function. In this case, it has to be ensured that the SE
API and the storage are left in a consistent state.

2. The function SHALL restore the secured data provided in restoreData. If the restore procedure fails,
the function SHALL raise the exception ErrorRestoreFailed and exit the function. In this case, it
SHALL be ensured that the data stock of the storage are set back to the state that corresponds to the
point in time before the restore procedure.

2. If the restoring has been successful, the function SHALL return EXECUTION_OK.

Federal Office for Information Security 31

4 Secure Element API Functionality

444 ReadlLogMessage

This function enables the reading of a log message that bases on the last log message parts that have been
produced and processed by the Secure Element.

4441 ReadLogMessage - Input parameters

None

4.4.4.2 ReadLogMessage — Output parameters

Name Type (OMG IDL) Required? Meaning

logMessage octet [] REQUIRED Contains the last log message that the
Secure Element has produced

Table 28: Output parameters from ReadLogMessage function

4443 ReadLogMessage - Exceptions

Exception Meaning
ErrorNoLogMessage No log message parts found
ErrorReadinglLogMessage Error while retrieving log message parts.

Table 29: Exceptions for ReadLogMessage function

4444 ReadlLogMessage — Detailed description

The following description specifies the behavior of the readLogMessage function in detail:

1. The function SHALL retrieve the log message parts created and processed by the Secure Element most
recently. If no log message parts are found in the Secure Element, the exception ErrorNoLogMessage
SHALL be raised and the function SHALL be exited. If the retrieving of the log message parts fails, the
exception ErrorReadingLogMessage SHALL be raised and the function SHALL be exited.

2. The retrieved log message parts SHALL be combined into a complete log message. This log message
SHALL be returned to the application over the output parameter logMessage. Additionally, the SE API
SHALL return the return value EXECUTION OK to indicate that the execution of the function
readLogMessage has been successful

32 Federal Office for Information Security

Export Formats 5

5 Export Formats

51 TARandTLV Export

If the export information is requested, the requested information SHALL be exported into a [POSIX.1-1988]
compliant TAR file that in turn contains the following files:

— theinitialization information
— the log messages

— the certificate(s) that are needed to verify the log messages

5.1.1 Initialization Information File

The TAR file SHALL contain a file named ‘info.csv’. This coma separated value (CSV) text file SHALL follow
the structure shown in Text 12.

»description:“ $1; “manufacturer:” $2,"version”, $3

Text 12: content of info.csv
The variables $1 to $3 shall be replaced with the following values:
— $1 to be replaced by the content of the parameter description from the initialization function,
— $2to be replaced by the content of the parameter manufacturer from the initialization function,
— $3 to be replaced by the version information

Line endings in the text file SHALL be encoded in UNIX style (i.e. Line feed, "\n/, 0x0A) and the delimiter
SHALL be ¢ (a comma).

5.1.2 Log Messages Files

Log message files in a TAR container SHALL be named in the following way:
CLIENT-ID_PROCESS-ID_TRANSACTION_DATE_TYPE.der

The parts of the file name separated by an underscore should be replaced by values according to table 30.

Federal Office for Information Security 33

5 Export Formats

Part of file name Description
CLIENT-ID The ID that identifies the client.
TRANSACTION The ID of the transaction that has been assigned by the Secure Element.
DATE The DATE/TIME that the log file has been created. The format SHALL be

“YYMMDDhhmmssZ”. This implies that the date/time SHALL only be stored
in UTC and be agnostic of any time zone.

TYPE This part of the file name shows whether the log message in the file is of type

“START”, “UPDATE”, “END” or the file is a certificate “CERT”.

— START is used if the file contains process data for the start of a process
(used in the context of the function startTransaction),

— UPDATE is used if the file contains process data for an update (used in
the context of the function updateTransaction),

— END is used if the file contains process data for the finalization of a
process (used in the context of the function finishTransaction),

— CERT is used if the file contains a certificate.

SERIAL This part of the file name refers to the serial number of the certificate.

Table 30: Parts of the file names in export tar archive
If a file of this name already exists, the filename SHALL be appended by a counter (before the .der suffix).
The contents of the file SHALL be structured as defined in table 2 and 4.

If a log message is not related to a process, the PROCESS-ID part of the filename and the following
underscore SHALL be omitted.

5.1.3 Certificate files
The TAR file SHALL contain all certificates needed to verify the exported log messages, encoded as Card-
Verifiable-Certificates (CVC) according to [ISO7816-8].
The certificate files SHALL be named
SERIAL_TYPE.der
The parts of the filename SHALL be replaced by values according to table 30.

34 Federal Office for Information Security

Appendix A: System log messages 6

6 Appendix A: System log messages

This section contains management or configuration functions that MUST be logged by the Secure Element.

6.1 Initialization

The systemFunctionData octet string MUST contain the following information:

Data field

Tag

Data type

Mandatory?

Description

description

0x81

PrintableString

m

MUST contain the description of the initialization
function call

6.2 Settime

The systemFunctionData octet string MUST contain the following information:

Data field Tag Datatype | Mandatory? Description
timeBeforeUpdate |0x81 |UTCTime m MUST contain the current time of the Secure
Element (before the update). If the time of the
Secure Element has not been set, timeBeforeUpdate
issetto 0.
timeafterUpdate 0x82 |UTCTime m MUST contain the new reference time of the Secure
Element

Federal Office for Information Security

35

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

7 Appendix B: Mapping of OMG IDL constructs to
ANSI C and Java

7.1 Introduction

This annex describes the OMG IDL constructs that have been used in the context of the SE API and how the
OMG IDL definitions of the functions in Chapter 4 have been translated into their respective translations in
ANSI C and Java.

The approach is based on the OMG IDL mappings to ANSI C and Java that are provided in [OMG2017a],
[OMGx] and [OMG1999]. These descriptions are adopted in various places as they focus on a translation into
CORBA constructs (which is not the objective for the interface defined in this document).

The chapters of [OMG2017a] that are listed in Table 31 can be used without any modification, except for the
usage of OMG IDL arrays (see Chap. 7.4). These chapters describe the specification of the OMG IDL language
constructs that have been used to define the SE API.

Building block Chapter Description

Building Block Core Data Types 7.4.1 Specification of language constructs for:

* IDL specifications
* modules
* constants

e datatypes

Building Block Interfaces - Basic 7.4.3 Specification of language constructs for:

e exceptions
e interfaces
* operations

e attributes

Table 31: Relevant building blocks in [OMG2017a]

Table 32 provides an overview over the following sub chapters and shows, which parts of the OMG IDL
standard needed adoption.

36 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

Section Description
7.2 This chapter shows the representation of OMG IDL basis data types in ANSI C and JAVA.
7.3 This chapter shows the representation of OMG IDL strings in ANSI C and JAVA.
7.4 This chapter considers the representation of OMG IDL arrays in ANSI C and JAVA.
7.5 General aspects of the representation of an OMG IDL specification in ANSI C and JAVA.
7.6 This chapter shows how OMG IDL exceptions are specified in ANSI C and JAVA.
7.7 This chapter shows how OMG IDL optional function parameters are specified in ANSI C and

JAVA.

7.8 This chapter shows how OMG IDL input parameters are specified in ANSI C and JAVA.
7.9 This chapter shows how OMG IDL output parameters in ANSI C and JAVA.
7.10 This chapter shows how OMG IDL return values are defined in ANSI C and JAVA.

Table 32: Overview of the following chapters

7.2 Mapping of basic types

Table 33 contains information regarding the basic data types that have been used to define the SE API. This
table has been specified under consideration of the following aspects:

OMG IDL standard definition for the syntax of basic types in [OMG2017a], Chap.7.4.1.4.4.1.1,p. 25 f.
The value ranges for the integer types in OMG IDL as defined in [OMG2017a], Chap. 7.4.1.44.1.1.1, p. 26.

The mapping of the OMG IDL integer types to the corresponding Java types as defined in [OMGx], Table
4.1, p. 6. The definition of the value ranges regarding the relevant Java types occurs in [ORACLE2017] (see
Chap.4.2.1, p. 43).

The mapping of the OMG IDL integer types to the corresponding C types as defined in [OMG1999], Chap.
1.7, p. 1-10. As [OMG1999] does not consider ANSI C, the definitions of integer types in [ANSI99] have to
be taken into account. Here, the limit values for the ranges of the different integer types are defined in
[ANSI99], Chap. 5.2.4.2.1. Regarding signed integer values, the limit values define that the

— minimal limit value in a concrete implementation has to be equal or smaller than the corresponding
minimal limit value defined in [ANSI99].

— maximal limit value in a concrete implementation has to be equal or greater than the corresponding
maximal limit value defined in [ANSI99].

For an unsigned integer type, the maximal limit value in a concrete implementation has to be equal or
greater than the corresponding maximal limit value defined in [ANSI99].

OMG IDL ANSIC Java Comment
short (-2%...2%- 1) short int short (-2%...215- 1) ANSI C: Common
(-(2=-1)..25-1) implementations provide a value

range of(-(2") ... 2" - 1)

long (-2°'...2%- 1) long int int (-2%1...2%-1) ANSI C: Common

(-(2+-1)..2%-1) implementations provide a value
range of(-(2*') ... 2% - 1)

Federal Office for Information Security 37

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

OMG IDL ANSIC Java Comment
long long long long int long (-2%...2%-1) ANSI C: Common
(-2%5...2%-1) (-(2%-1)...2%8-1) implementations provide a value

range of(-(2%)... 2%- 1)

unsigned short
(0..2%-1)

unsigned short int
(0...2%-1)

int (-2*...2%-1)

ANSI C: Common
implementations provide a value
range of 0...2'%-1

Java: The range of the
corresponding Java type does not
match because Java does not
support unsigned types.

The Java type int SHALL be used.
The developers SHALL examine
that relevant parameter values
belong to the correct range.

unsigned long
(0...2%-1)

unsigned long int
(0...2%-1)

long (-2%...2%-1)

ANSI C: Common
implementations provide a value
range of 0...2%*-1

Java: The range of the
corresponding Java type does not
match because Java does not
support unsigned types.

Therefore, the Java type long
SHALL be used. Here, the
developers SHALL examine that
relevant parameter values belong
to the correct range.

unsigned long long
(0...2%-1)

unsigned long long int

(0..2%-1)

long (-2%...2%- 1)1

ANSI C: Common
implementations provide a value
range of 0...2% -1

Java: The range of the
corresponding Java type does not
match because Java does not
support unsigned types.

The Java type long SHALL be used
for the mapping. In this context,
the value range from 0 to 2%- 1
SHALL be relevant for the
mapping. Accordingly, the
maximal value of the used Java
type long is smaller than the
maximal value of the
corresponding OMG IDL type.

38

Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

OMG IDL ANSIC Java Comment
octet unsigned char byte OMG IDL: “The octet type is an
opaque 8-bit quantity”
(see [OMG2017a], Chap. ([OMG2017a], Chap.7.4.1.4.4.1.1.6,
7.4.14.4.1.16,p.27) (see [ORACLE2017], p.27)

Chap.4.2.1,p.43)

boolean

(see [OMG2017a], Chap.
7.4.1.4.4.1.1.5,p.27)

_Bool

(see [ANSI99], Chap. 6.2.5, p.
33).

boolean

(see [ORACLE2017],
Chap. 4.2, p. 43)

OMG IDL: The boolean data type
can only take the values TRUE and
FALSE.

ANSI C: ANSI C provides the
header file <stdbool.h> (, Chap.
7.16, p. 252) that enables the use of
the identifier bool for the type
_Bool. In the context of the SE API
the specifier bool is used.

Presentation of Presentation by the Presentation by using OMG IDL: An OMG IDL native
date/time by the native | structure tm from the | the Java class type allows a mapping to a type of
type DateType. header file time.h. (cf. |java.util.Gregorian a specific programming language.
[ANSI99], Chap. 7.23.1, p. | Calendar
337) The date/time SHALL be
represented in UTC.

Table 33: Mapping of data types

7.3 Definition of strings

Regarding the definition of strings, the OMG IDL distinguishes between non-wide strings and wide strings.
As no wide strings have been used to define the SE API, the following discussion refers only to non-wide
strings.

In the context of the OMG IDL, non-wide strings are represented by the type string (see [OMG2017a], Chap.
74.1.44.1.2.2, p. 27). Optionally, it is possible to define the maximum size of a string. The size of a string is
represented by a positive integer value that is surrounded by the signs < and >.

In Java OMG IDL strings are mapped to the data type java.lang.String (see [OMG2017a], Chap. 4.3.3, p. 56)

In ANSI C OMG IDL, strings are implemented by string literals (see [ANSI99], Chap. 6.4.5, p. 62 f.). A
string literal is represented by an array of elements of the type char. String literals are terminated by a
null character (see [ANSI99], Chap. 7.1.1, p. 164).

7.4

The OMG IDL provides the language construct array (see [OMG2017a], Chap. 7.4.1.4.4.3) that represents the
data structure array. These arrays can be one-dimensional or multi-dimensional. In deviation from
[OMG2017a]the use of arrays of variable length is allowed.

Arrays

In the context of the SE API definition, only one-dimensional arrays are used as types of function
parameters. At this, an array is represented by its type, its name and a following opening and closing squared
bracket. If the array is of fixed length, the squared brackets contain the definition for the size of the array in

Federal Office for Information Security 39

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

form of a positive integer value. If an array has no fixed size, the squared brackets contain no integer number.
This notation for the use of arrays with no fixed size represents an extension to [OMG2017a].

OMG IDL arrays are represented by the particular array constructs in Java (see [ORACLE2017], Chap. 10, p.
347) and ANSI C (see [ANSI99], Chap. 6.7.5.2, p. 116 f.) respectively.

7.5 Definition context

OMG IDL specifications are contained in IDL-files. An IDL specification can contain the definitions for
interfaces, exceptions, types, and constants. These definitions can be grouped by modules (see [OMG2017a],
7.4.14.2, p. 20). Regarding the OMG IDL definition of the SE API, the above mentioned constructs are
grouped by a module.

For the definition of interfaces, the OMG IDL provides the language construct interface (see [OMG2017a],
74.34.3,p.37).

OMG IDL modules are implemented in Java by the construct package (cf. [ORACLE2017], Chap. 7.4, p. 181) of
the same name. OMG IDL interfaces are mapped to the Java construct interface (see [ORACLE2017], Chap. 9,
p. 293 ff.). Java interfaces contain the signature definitions of functions. OMG IDL interfaces are mapped to a
public Java interface of the same name that is contained in a Java-file of the same name.

It is not possible to implement OMG IDL modules in ANSI C. For the implementation of OMG IDL interfaces
ANSI C does not provide an explicit language construct. Accordingly, OMG IDL interfaces are implemented
in ANSI C by defining the relevant function signatures in header files. Here, a header file has the same name
as the corresponding OMG IDL interface.

7.6 Exceptions

Exceptions are a means of error handling. In the context of the OMG IDL, exceptions are supported by the
language construct exception (see [OMG2017a], Chap. 7.4.3.4.2, p. 37). Defined exceptions are assigned to
interface functions by using the keyword raises.

There are two basic ways to implement the exceptions that have been specified for the functions in this
chapter:

— Some programming languages support exceptions as an explicit construct of the language. In erroneous
situations, a function raises an exception at the point where an error is detected. Here, the program flow
of the function is interrupted immediately and the exception is caught in the program code or by the
code of the calling application. Therefore, the function does not return a return value.

— If no specialized language constructs are provided, exception handling is implemented by error codes.
Here, the function exits its program flow when an error is detected by returning an appropriate error
code as the return value.

For the translation of the SE API into ANSI C and Java this means:

In Java the concept of exceptions is implemented. OMG IDL exceptions are mapped to checked Java
exceptions (see [ORACLE2017], Chap. 11.1, p 360). An OMG IDL exception is implemented by a Java class
of the same name that extends the class java.lang.Exception. Java exceptions are assigned to an interface
function by the key word throws. The following example shows the mapping of the exceptions
ErrorlllegalDayValue and ErrorlllegalMonthValue defined in OMG IDL to Java. Regarding the Java code
the corresponding exception classes have been defined (the definition itself is not shown in the code) and
assigned to the relevant function.

OMG IDL

40 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

ErrorIllegalDayValue{};
ErrorIllegalMonthValue({};
short saveTheDate (short day, short month, short year)
(ErrorIllegalDayValue, ErrorIllegalMonthValue) ;

Corresponding Java code

short saveTheDate (short day, short month, short year)
throws ErrorIllegalDayValue,
ErrorIllegalMonthValue;

Text 13: Example for mapping of OMG IDL exception to Java

In ANSI C the concept of exceptions is not supported explicitly. Rather, it allows the implementation of an
error handling. In this context, the functions return error codes as a return value to indicate that the
execution of a function failed.

Error codes are implemented as constants in form of a pre-processor-directive. The name of a constant
corresponds to the name of the relevant OMG IDL exception. Here, the UpperCamelCase notation of the
OMG IDL exception name is transformed into a UPPER_CHARACTER_WITH_UNDERSCORES notation.
The following text shows an example of this translation into ANSI C.

OMG IDL

ErrorIllegalDayValue{};
ErrorIllegalMonthValue{};
short saveTheDate (short day, short month, short year)
(ErrorIllegalDayValue, ErrorIllegalMonthValue) ;

Corresponding ANSI C code

#define EXECUTION OK

#define ERROR ILLEGAL DAY VALUE -20000

#define ERROR ILLEGAL MONTH VALUE -20001

short saveTheDate (short int day, short int month,
short int year);

Text 14: Example for mapping of OMG IDL exception to ANSI C

7.7 Optional function parameters

Federal Office for Information Security 41

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

short export (unsigned long transactionNumber,
unsigned long clientID,
unsigned long maximumNumberRecords,
octet exportData []):

short export (unsigned long startTransactionNumber,
unsigned long endTransactionNumber,
unsigned long maximumNumberRecords,
octet exportData []);

short export (DateTime startDate,
DateTime endDate,
unsigned long maximumNumberRecords,
octet exportData []);

short export (unsigned long maximumNumberRecords,
octet exportData []);

Text 15: Example for representing different expressions of a function

OMG IDL does not provide any construct for representing optional and conditional input and output
parameters of a function.

Regarding this information a developer SHALL consider the appropriate definitions for the input and/or
output parameters of the different functions of the SE API in chapter 4. If it is predictable that a function is
called with certain combinations of input and/or output parameters, particular expressions of the function
with appropriate parameter combinations are defined.

Text 15 shows the definition of the different expressions of the function export in OMG IDL (the exceptions
are not represented).

7.8 Function input parameters
In OMG IDL function input parameters are defined by the keyword in (see [OMG2017a] , Chap. 7.4.3.4.3.3.1, p.
39f).

In ANSI C and Java input parameters of a primitive type are defined directly by replacing the appropriate
OMG IDL types by the corresponding ANSI C and Java type respectively.

The following text shows an example of this translation.

42 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

OMG IDL specification

long calculateSum (short summandOne, short summandTwo,
boolean fastCalculation) ;

Corresponding Java code
int calculateSum (short summandOne, short summandTwo,

boolean fastCalculation);

Corresponding ANSI C code
long int calculateSum (short int summandOne,

short int summandTwo,
bool fastCalculation) ;

Text 16: Example for representing OMG IDL input parameters in ANSI C and Java

OMG IDL input parameters in form of arrays are mapped to the particular array constructs in Java and ANSI
C.

Regarding to Java, the definition of an appropriate input parameter follows the ordinary declaration of an
array.

In the context of ANSI C, the length of the array is defined as an additional input parameter. The definition
of this additional input parameter

— follows directly after the definition of the input parameter for the corresponding array,
— is of the ANSI C type unsigned long int and
— has the same name as the corresponding array plus the extension Length.

In ANSI C strings are represented in form of char arrays. Accordingly, the corresponding array length is also
passed.

The Text 17 shows an example for the mapping of input parameters with the types of a byte array and a
string respectively.

OMG IDL specification

short saveData (octet inputDatal], string comment) ;

Corresponding Java code

short saveData (byte inputData[], String comment) ;

Corresponding ANSI C code

short int saveData (unsigned char *inputData,
unsigned long int inputDatalength,
unsigned char *comment,

unsigned long int commentLength) ;

Text 17: Example for input parameters in form of arrays and strings

Federal Office for Information Security 43

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

7.9 Function output parameters

In OMG IDL function output parameters are defined by the keyword out (see [OMG2017a], Chap. 7.4.3.4.3.3.1,
p.39f).

To represent output parameters in Java, the data for the relevant function parameters must be passed in
form of a call-by-reference. Accordingly, changes to a parameter value inside the function affect the original
data. In Java only parameters of types that are specified by Java classes or interfaces can be passed as call-by-
reference.

In Java parameter values of primitive number types (e. g. int) and the primitive type boolean as well as the
type String can only be passed in form of call-by-value. In the context of call-by-value a copy of the
parameter value is passed to a function. Accordingly, changes to a parameter value are only relevant in the
context of the function and do not affect the original data.

To allow the definition of output parameters in Java for the above mentioned primitive types, appropriate
holders in form of final® Java classes are specified. The name of such a holder class consists of the name of the
type and the extension Holder. It has one private property named value that is of the particular type. The
holder class provides a constructor with an input parameter for setting the value of the value property. To
get the property value, the function getValue is defined. The function setValue is defined to set the property.

The example in Text 18 shows the definition regarding a holder class for the primitive Java type int.

In ANSI C output parameters can be specified by using appropriate pointers to the types of the
corresponding parameters.

final public class IntHolder({

public IntHolder (int newValue) {
value=newValue;

}

private int value;

public int getValue () {
return value;

}

public void setValue (int newValue) {
value=newValue;

}

Text 18: Definition of a holder class for the primitive Java type int

Text 19 shows an example for the representation of OMG IDL output parameters of a primitive type in ANSI
C and Java. Regarding the Java representation of the output parameter the holder class IntHolder from the
previous example (see Text 18) is used.

2 Afinal Java class can not be extended by inheritance.

44 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

OMG IDL specification

short calculateSum (short summandOne, short summandTwo,
long sum) ;

Corresponding Java code
short calculateSum (short summandOne, short summandTwo,

IntHolder sum);

Corresponding ANSI C code
short int calculateSum (short summandOne, short summandTwo,
long int *sum);

Text 19: Example for representing an output parameter of a primitive type in Java and ANSI C

In Java, arrays can not be passed by reference. Accordingly, an appropriate holder class is needed. The name
of this class consists of the name of relevant type and the extension ArrayHolder. The property value of this
class represents an array of the particular type.

In ANSI C, output parameters in form of arrays are defined by a double pointer of the relevant type. The
additional output parameter regarding the length of the returned array is defined by a pointer of the type
unsigned long int.

The Text 20 represents an example for the mapping of an OMG IDL output parameter in form of a byte array
to Java and ANSI C.

OMG IDL specification
short getData (octet outputDatall]);

Corresponding Java code

short getData (ByteArrayHolder outputData) ;

Corresponding ANSI C code

short int getData (unsigned char **outputData,
unsigned long int *outputDatalength) ;

Text 20: Example for representing an OMG IDL output parameter in form of a byte array in Java and ANSI C

7.10 Return value

In OMG IDL the return value of a function is represented by the type of the function.

In ANSI C and Java return values are defined directly by replacing the appropriate OMG IDL types by the
corresponding ANSI C and Java type respectively.

Federal Office for Information Security 45

8 Appendix C: The TAR file format

8 Appendix C: The TAR file format

The TAR file format allows it to combine multiple files into one. It also allows the analysis of the TAR file on
all common Operating Systems (i.e. the TAR file can be easily unpacked and the content can be viewed).

This document references the format specified in [POSIX.1-1988].

A tar archive consists of a series of file objects. Figure 2 shows that the original information of each file that is
contained in the tar archive stays unchanged.

end of archive block 1 | end of archive block 2

file header (512 byte) file data padding (zeros) (512 byte zeros) (512 byte zeros)

-— one file

tar archive

color scheme

l unchanged information ‘

‘ metadata ‘

Figure 2: TAR file format

Each file object included in the tar archive is preceded by a 512-byte header record. The file data is written
unaltered directly following the header, but is rounded up to a multiple of 512 bytes (denoted as padding in
Figure 2). As most modern implementations use a padding of zeros, implementations following this
document SHALL also use zeros for this padding.

The end of an archive is marked by at least two consecutive zero-filled records of 512 byte. The final block of
an archive is padded out to full length with zeros.

The TAR standard as defined in [POSIX.1-1988] allows certain options for the headers that are explained and
restricted in this chapter as follows:

1. In addition to entries describing archive members, an archive may contain entries which tar itself uses to
store information. The implementation MAY use such entries but their use is not mandatory.

2. The file header of each file in the tar file SHALL be filled as explained in Table 34.

Header part Data type Description

name char[100] This field contains the name of the file, with directory names (if any)
preceding the file name, separated by slashes.

The implementation MUST not use any directory names, all files
SHALL be stored in the root of the tar file.

mode char[8] The mode field provides nine bits specifying file permissions and three
bits to specify the Set UID, Set GID, and Save Text (sticky) modes.
This field MAY be used at the discretion of the developer.

uid char|[8] The uid and gid fields are the numeric user and group ID of the file

gid char(8] owners, respectively. If the operating system does not support numeric
user or group IDs, these fields should be ignored.

This field MAY be used at the discretion of the developer.

If the developer does not use these fields for a certain purpose, the field

SHOULD be set to ‘0.

46 Federal Office for Information Security

Appendix C: The TAR file format 8

Header part

Data type

Description

size

char[12]

The size field is the size of the following file in byte.

mtime

char[12]

The mtime field is the data modification time of the file at the time it
was archived. It is the ASCII representation of the octal value of the last
time the file's contents were modified, represented as an integer
number of seconds since January 1, 1970, 00:00 Coordinated Universal
Time.

The API SHALL use the date and time of the tar archive creation for this
entry.

chksum

charl[8]

The chksum field is the ASCII representation of the octal value of the
simple sum of all bytes in the header block. Each 8-bit byte in the
header is added to an unsigned integer, initialized to zero, the precision
of which shall be no less than seventeen bits. When calculating the
checksum, the chksum field is treated as if it were all blanks.

typeflag

char

The typeflag field specifies the type of file archived. If a particular
implementation does not recognize or permit the specified type, the file
will be extracted as if it were a regular file.

The implementation SHALL set this character to ‘0’ which represents a
regular file. The implementation MUST not use any other file types.

linkname

char[100]

This entry is used if the typeflag is set to ‘1’ (link). As the
implementation MUST not use links, this entry SHALL remain empty.

magic

charl[6]

The magic field indicates whether this archive was output in the P1003
([POSIX.1-1988]) archive format.

To indicate that the generated tar file shall be compliant to [POSIX.1-
1988], the implementation SHALL set this field to ‘ustar’.

version

char[2]

This field shall be set to ‘00’ (indicating a standard POSIX archive).

uname

char[32]

This field can be used to set the user name of the file. Please note that
this value might be ignored if this functionality is not supported by the
Operating System under which the tar file is unpacked.

gname

char[32]

This field can be used to set the group name of the file. Please note that
this value might be ignored if this functionality is not supported by the
Operating System under which the tar file is unpacked.

devmajor

char|[8]

As the implementation shall only use regular files within the tar file,
this field SHALL stay empty.

devminor

charl[8]

As the implementation shall only use regular files within the tar file,
this field SHALL stay empty.

prefix

char[155]

First part of pathname. If the pathname is too long to fit in the 100
bytes provided by the standard format, it can be split at any / character
with the first portion going here. If the prefix field is not empty, the
reader will prepend the prefix value and a / character to the regular
name field to obtain the full path- name.

As the implementation MUST NOT use any path names for the files in
the tar archive, this field MUST remain empty.

Table 34: Tar file members header

Federal Office for Information Security

47

References

References

OMG2017a OMG: Interface Definition Language, Version 4.1, 2017

SPECZIP BSI: SE API definition in OMG IDL, ANSI C and Java

RFC2119 S. Bradner: Key words for use in RFCs to Indicate Requirement Levels

BSITR-03116 BSI: Technische Richtlinie TR-03116 Kryptographische Vorgaben fiir Projekte der
Bundesregierung - Teil 5: Anwendungen der Secure Element API
POSIX.1-1988 The Open Group: POSIX.1-1988 -Portable Operating System Interface, 1988

ISO7816-8 ISO: ISO 7816-8 Identification cards — Integrated circuit cards —Part 8: Commands for
security operations, Part 8,2016

OMGx OMG: IDL to Java Language Mapping, Version 1.3, 2008

OMG1999 OMG: C Language Mapping Specification, 1999

ORACLE2017 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith: The Java®
LanguageSpecification]Java SE, 9 Edition, 2017
ANSI99 ANSI, ISO: ISO/IEC 9899:1999, ANSI C, 1999

48 Federal Office for Information Security

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Purpose and general functionality of the SE API
	1.3 Content and scope
	1.4 Key words

	2 Log messages and their creation
	2.1 Log Message Structure
	2.2 Contents of Log Message
	2.3 certifiedDataType
	2.3.1 Certified data of transaction logs
	2.3.2 Certified data of system logs

	2.4 Transaction Log Message Signature Creation
	2.4.1 Simplified Log Message Signature Creation
	2.4.2 Log Message Signature Creation
	2.4.2.1 Start a transaction
	2.4.2.2 Update a transaction
	2.4.2.3 Finish a transaction

	2.4.3 Log Message Signature Creation with Signed Updates

	2.5 Transaction Log Message Signature Validation
	2.6 System Log Message Creation

	3 Secure Element Functionality
	4 Secure Element API Functionality
	4.1 Error handling
	4.2 Maintenance and Time Synchronization
	4.2.1 Initialize
	4.2.1.1 Initialize – Input parameters
	4.2.1.2 Initialize – Output parameters
	4.2.1.3 Initialize – Exceptions
	4.2.1.4 Detailed description

	4.2.2 UpdateTime
	4.2.2.1 UpdateTime – Input parameters
	4.2.2.2 UpdateTime – Output parameters
	4.2.2.3 UpdateTime – Exceptions
	4.2.2.4 UpdateTime – Detailed description

	4.3 Input Functions
	4.3.1 StartTransaction
	4.3.1.1 StartTransaction – Input parameters
	4.3.1.2 StartTransaction – Output parameters
	4.3.1.3 StartTransaction – Exceptions
	4.3.1.4 StartTransaction – Detailed description

	4.3.2 UpdateTransaction
	4.3.2.1 UpdateTransaction – Input parameters
	4.3.2.2 UpdateTransaction – Output parameters
	4.3.2.3 UpdateTransaction – Exceptions
	4.3.2.4 UpdateTransaction – Detailed description

	4.3.3 FinishTransaction
	4.3.3.1 FinishTransaction – Input parameters
	4.3.3.2 FinishTransaction – Output Parameters
	4.3.3.3 FinishTransaction – Exceptions
	4.3.3.4 FinishTransaction – Detailed description

	4.4 Export Functions
	4.4.1 Export
	4.4.1.1 Export – Input parameters
	4.4.1.2 Export – Output parameters
	4.4.1.3 Export – Exceptions
	4.4.1.4 Export – Detailed Description

	4.4.2 GetLogMessageCertificate
	4.4.2.1 GetLogMessageCertificate – Input parameters
	4.4.2.2 GetLogMessageCertificate – Output parameters
	4.4.2.3 GetLogMessageCertificate – Exceptions
	4.4.2.4 Detailed description

	4.4.3 RestoreFromBackup
	4.4.3.1 RestoreFromBackup – Input parameters
	4.4.3.2 RestoreFromBackup – Output parameters
	4.4.3.3 RestoreFromBackup – Exceptions
	4.4.3.4 RestoreFromBackup – Detailed description

	4.4.4 ReadLogMessage
	4.4.4.1 ReadLogMessage – Input parameters
	4.4.4.2 ReadLogMessage – Output parameters
	4.4.4.3 ReadLogMessage – Exceptions
	4.4.4.4 ReadLogMessage – Detailed description

	5 Export Formats
	5.1 TAR and TLV Export
	5.1.1 Initialization Information File
	5.1.2 Log Messages Files
	5.1.3 Certificate files

	6 Appendix A: System log messages
	6.1 Initialization
	6.2 Set time

	7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java
	7.1 Introduction
	7.2 Mapping of basic types
	7.3 Definition of strings
	7.4 Arrays
	7.5 Definition context
	7.6 Exceptions
	7.7 Optional function parameters
	7.8 Function input parameters
	7.9 Function output parameters
	7.10 Return value

	8 Appendix C: The TAR file format
	References

