

Bundesinstitut für Bau-, Stadt- und Raumforschung

im Bundesamt für Bauwesen und Raumordnung

Nutzungshinweis/Haftungsausschluss

Diese Broschüre wurde mit großer Sorgfalt erstellt. Eine Gewähr für die Richtigkeit und Vollständigkeit kann dennoch nicht übernommen werden. Die Verantwortlichkeit für die konkrete Planung und die Einhaltung der anerkannten Regeln der Technik liegt im Einzelfall allein beim Planer. Ein Vertragsverhältnis oder vertragsähnliches Verhältnis wird durch diese Broschüre nicht geschlossen. Für die Inhalte der Sekundärquellen sind die Autorinnen, Autoren und der Herausgeber nicht verantwortlich.

Inhalt

Vorwort	5
Digitalisierung – Eine Chance für das Bauwesen	6
Hochdämmende und recycelbare Holz-Massivbauweise	9
Entwicklung einer idealtypischen Soll-Prozesskette zur Anwendung der BIM-Methode im Lebenszyklus von Bauwerken	13
CDP // Energy	16
Zielgruppen- und prozessorientierte Untersuchung freier BIM-Werkzeuge	19
Plotbot/Crawler	23
Digital Hut	26
Entwicklung und Ausrichtung der BBSR-Forschung zur Digitalisierung und zu BIM	28
eLCA – Neue Schnittstelle zur EnEV-Berechnung ergänzt den digitalen Workflow in der Gebäudeplanung	30
Initiative "Effizienzhaus Plus" – Sieben Jahre Plus!	33
Bildungsbauten im "Effizienzhaus Plus"-Standard	37
5 Kongress ZUKUNFTSRAUM SCHULE 2017	40
3dTEX: Textiles Leichtwandelement	42
HYBAU – Bauliche Hygiene im Krankenhaus	45
TN-Technologie für den Einsatz in Architekturverglasungen	50
Die Zukunft des Bauens	52
Großformatige energieeffiziente Fassaden aus Textilbeton mit Sandwichtragwirkung – Entwicklung von Herstellmethoden, Bemessungs- und Fügekonzepten	54
H ₂ O_WoodController	57
Innovative Wohnkonzepte werden erprobt: die Modellvorhaben der Variowohnungen	60
Gebäude als intelligenter Baustein im Energiesystem – Lastmanagement-Potenziale von Gebäuden im Kontext der zukünftigen Energieversorgungsstruktur in Deutschland	63
Machbarkeitsuntersuchungen zu kontinuierlichen und schalungsfreien Bauverfahren durch 3-D-Formung von Frischbeton	68
Trends und Strukturen der Baukonjunktur	71
Erschließung der Ressourceneffizienzpotenziale im Bereich der Kreislaufwirtschaft Bau	74
Diskussion an der Schnittstelle von Architekturdebatte und Forschungsdiskurs	78
Bauen mit Weitblick – Systembaukasten für den industrialisierten sozialen Wohnungsbau	80

Additive Fertigung durch Extrusion von Holzleichtbeton	84
Anreize und Hemmnisse des Wohnungsneubaus	87
Einrichtung eines virtuellen "Museums der 1000 Orte" zur Präsentation der Kunst am Bau des Bundes	90
Bildnachweise	94
Literaturhinweise des Herausgehers	96

Vorwort

Seitens der Forschung werden enorm große Anstrengungen unternommen, das Bauen einfacher, schneller und moderner umzusetzen, das Bauwesen insgesamt auf eine zukunftsweisende, fortschrittliche und nachhaltige Ebene zu stellen Digitale Methoden und Werkzeuge nehmen in diesem Zusammenhang eine wichtige Rolle ein – und deren Bedeutung wächst stetig

Die Digitalisierung hat seit der Gründung der Forschungsinitiative Zukunft Bau im Jahr 2006 ihren festen Platz in der Forschungsförderung Mit dem Einzug von Building Information Modeling und der Entwicklung neuer Herstellungsmethoden hat die Durchdringung der Baubranche mit digitalen Technologien eine zusätzliche Dynamik erhalten

Für eine erfolgreiche Umsetzung sind jedoch zwei Aufgabengebiete zu betrachten:

Zunächst ist (betriebs)intern die Digitalisierung zu organisieren Medienbrüche dürfen nicht zu Informationsverlusten führen Dabei ist es besonders wichtig, für eine einheitliche Bearbeitung von Daten und Informationen eigene Standards zu setzen Schon hier lassen sich mit einem vergleichbar geringen Aufwand erhebliche Mehrwerte generieren

Lothar Fehn Krestas

Unterabteilungsleiter Bauwesen, Bauwirtschaft im Bundesministerium für Umwelt, Naturschutz. Bau und Reaktorsicherheit Des Weiteren wird die Methode Building Information Modeling (BIM) als Teil der Digitalisierung angesehen, sie fokussiert sich auf ein konkretes Bauwerk Dabei muss die Umsetzung transdisziplinär gedacht werden: Baubezogene Daten werden prozessübergreifend genutzt Die Methode BIM liefert hier Datendurchgängigkeit und eine strukturierte Datenablage und -verfügbarkeit in Bauwerksdatenmodellen

Die Digitalisierung beschäftigt sich also mit der Datendurchgängigkeit entlang unternehmensinterner und unternehmensübergreifender Prozesse Die interne Organisation sowie die Durchgängigkeit baubezogener Informationen sind somit die Grundlagen für eine erfolgreiche Digitalisierung des Bauwesens

Mit der aktuellen Ausgabe des Magazins "Zukunft Bauen" werden einige zukunftsweisende Projekte aus der Welt des digitalisierten Bauens vorgestellt Sie erhalten Einblicke in aktuelle Forschungsarbeiten der Forschungsinitiative Zukunft Bau sowie Ausblicke auf kommende Entwicklungen im Bauwesen

Robert Kaltenbrunner

Komm Direktor des Bundesinstituts für Bau-, Stadt- und Raumforschung, Leiter der Abt Bau- und Wohnungswesen

Digitalisierung – Eine Chance für das Bauwesen

Interview mit Lothar Fehn Krestas

Unterabteilungsleiter Bauwesen, Bauwirtschaft im Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit.

Frage: Die Kapazitäten des Baugewerbes sind derzeit nahezu vollständig ausgelastet. Investieren die Unternehmen der Bauwirtschaft aktuell in Forschung und Entwicklung? Werden die Fördermöglichkeiten des Bundesbauministeriums überhaupt abgerufen?

In der Tat, die Bauwirtschaft ist so gut beschäftigt wie seit Langem nicht mehr Und dennoch kümmert sie sich auch um ihre Zukunft Die Nachfrage nach den anwendungsnahen Programmen der Forschungsinitiative Zukunft Bau ist ungebrochen Im November 2017 hat ein neuer Rekord, seit der Gründung der Initiative 2006, die Attraktivität erneut bestätigt Im Vergleich zum Vorjahr haben wir in der Antragsforschung fast ein Drittel mehr an Projektskizzen erhalten Eine echte Herausforderung für die Kolleginnen und Kollegen im Bundesinstitut für Bau-, Stadtund Raumforschung (BBSR), die die Umsetzung des Programms engagiert und mit höchster Fachkompetenz betreuen

Frage: Mehr Bundesinvestitionen für Forschung und Entwicklung! Diese Forderung hört man aktuell von Vertretern aus der Wissenschaft und der Wirtschaft. Wird das Bundesbauministerium auf diesen Ruf reagieren? Gerade auf dem Gebiet der angewandten Bauforschung hat das BMUB den Forschungsmehrbedarf nicht nur längst erkannt, sondern auch bereits darauf reagiert

So konnte die Forschungsinitiative Zukunft Bau in der vergangenen Legislaturperiode kontinuierlich von zusätzlichen Mitteln für Forschung und Entwicklung aus der ressortübergreifenden Hightech-Strategie der Bundesregierung profitieren

In der Antragsforschung stehen so beispielsweise 30% mehr Fördermittel zur Verfügung als noch im Jahr 2015 Konkret fördern wir in der aktuellen Förderrunde Forschungsprojekte im Bauwesen mit 11 Mio € – eine sehr konkrete Zukunftsinvestition in die Bauforschungslandschaft

Frage: Wie genau fördert man eigentlich die Zukunftsund Innovationsfähigkeit der Bauwirtschaft?

Die Bauforschung des Bundesbauministeriums soll die klein- und mittelständische Bauwirtschaft fit machen, um die großen gesellschaftlich relevanten Themen umsetzen zu können und stark für den europäischen Binnenmarkt zu sein

Dieses Ziel verfolgen wir seit der Gründung der Forschungsinitiative vor elf Jahren

Geforscht wird im Verbund aus Bauwirtschaft und Wissenschaft Eine interdisziplinäre Herangehensweise fördert das Bundesbauministerium dabei ausdrücklich

Die Förderschwerpunkte werden jährlich überprüft, neue Fragestellungen und Zukunftsthemen aufgenommen Die Förderthemen der aktuellen Förderrichtlinie beispielsweise decken ein breites Spektrum ab: Sie reichen vom kostengünstigen Wohnungsbau über energieeffizientes, ressourcenschonendes und klimagerechtes Bauen bis hin zu Mehrwerten für Architektur, Stadtraum und Gestaltungsqualitäten Auch die Fragen der Digitalisierung im Bauwesen bilden aktuell einen wichtigen Schwerpunkt

Frage: Der Prozess der digitalen Transformation in der Industrie erstreckt sich zunehmend auch auf das Bauwesen. Welche Chancen sehen Sie in der Digitalisierung von Planungs- und Bauprozessen?

Größere Termintreue, mehr Kostenwahrheit, eine höhere und frühzeitige Planungsqualität! Gerade im Hinblick auf die Herausforderung, gesenkte und bezahlbare Baukosten bei zugleich hoher Qualität erreichen zu können, ist es von großer Bedeutung, diese Effizienzpotenziale in den Planungs- und Bauprozessen zu heben Die Digitalisierung kann ein Beitrag zu mehr bezahlbarem Wohnen und Bauen sein

Frage: Kann dies allein durch die Digitalisierung erreicht werden?

Natürlich können diese Effizienzpotenziale nicht alleine durch die Verfügbarkeit von Informationstechnologie gehoben werden Generell kann man sagen: Die Omnipräsenz digitaler Techniken ist nicht das entscheidende Kennzeichen der Digitalisierung, denn dies würde bedeuten, dass digitale Techniken nur Hilfswerkzeuge bei der Umsetzung ehemals analoger Arbeitsweisen sind Stattdessen werden wir veränderte und neue Arbeitsweisen und Prozesse erleben, die von Informations- und Kommunikationstechnologien unterstützt werden Ein wesentliches Kennzeichen der Digitalisierung von Planungsund Bauprozessen wird eine intensivere Kooperation zwischen den Projektbeteiligten sein

Die Basis dieser intensiven Kooperation sind Datenmodelle In den Modellen werden projektspezifisch alle relevanten geometrischen und alphanumerischen Daten eingegeben, fortgeschrieben und verwaltet Durch den Abgleich in einem projektübergreifenden Koordinierungsmodell können die Projektbeteiligten alle Informationen transparent aufeinander abstimmen und prüfen

Es muss aber auch klar dargestellt werden, dass die Methode des BIM, also des Building Information Modeling, allein weder eine gute Planungsqualität noch einen optimalen Projektverlauf garantiert Entscheidend ist weiterhin die Anwendung durch die qualifizierten Fachleute

Frage: Ein wesentliches Element des nachhaltigen Bauens ist die Lebenszyklusbetrachtung. Wie wirkt sich denn die Digitalisierung im Lebenszyklus eines Gebäudes aus?

Durch die Nutzung digitaler Technologien ergeben sich mit der Methode des BIM neue Mög-

lichkeiten im Lebenszyklus eines Gebäudes Während der Planungsphase können Kollisionsprüfungen zwischen den einzelnen Gewerken detailliert und teils automatisiert durchgeführt werden Bereits in dieser Phase können Berechnungen zu Lebenszykluskosten erstellt und entsprechende Entscheidungen getroffen werden In der Bauphase liegen beispielsweise Informationen zu terminlichen Abhängigkeiten bei der Montage von Objekten detailliert vor Und am Ende der Bauphase werden die für den Betrieb des Gebäudes notwendigen Informationen schneller, übersichtlicher und verlustfreier zur Verfügung gestellt Damit setzt die Digitalisierung dort an, wo die Ursache von vielen Projektstörungen liegt

Frage: Die Digitalisierung soll dabei helfen, einen mangelhaften Informationsaustausch zu beheben und so Projektstörungen zu vermeiden?

In der Vergangenheit haben sich die am Bauprozess Beteiligten aus ökonomischen Gründen insbesondere nach innen optimiert Dies bedeutet, dass alle internen Prozesse tendenziell so optimiert wurden, dass die Schnittstellen nach außen nur mit dem vertraglich geschuldeten Minimum bedient werden Dies führt an den Schnittstellen zu einem hohen Verlust an bereits digital vorliegenden Informationen und somit zu einer mehrfachen "Neuerstellung" dieser Informationen Es muss aufgezeigt werden, dass eine Weitergabe von Informationen über das vertraglich geschuldete Minimum hinaus für alle Beteiligten zu einem Effizienzgewinn führen kann

Frage: Der Erfolg der Digitalisierung bedarf der breiten Beteiligung aller Akteure. Was ist die Voraussetzung dafür?

Ganz klar: produktneutrale Lösungen mit systemoffenen Datenschnittstellen, also "Big Open BIM" Nichts anderes kommt für den Bundeshochbau in Betracht und auf nichts anderes zielt die Unterstützung des Bundesbauministeriums

Damit alle Akteure der Wertschöpfungskette Bau die Möglichkeit haben, sich in die Entwicklung einzubringen, setzen wir auf einen schrittweisen, praxisorientierten Digitalisierungsprozess Eine andere Vorgehensweise ist nicht realistisch Denn noch sind nicht alle Voraussetzungen für einen regelmäßigen und umfänglichen Einsatz der BIM-Methode geschaffen

Hierzu zählt auch der Bereich der Standardisierung und Normung Es ist wichtig, dass auch

auf internationaler Ebene die richtigen Weichen gestellt werden Das BMUB wirkt schon jetzt selbst und vertreten durch das BBSR in den Normungsgremien mit und plant, diese Aktivtäten zukünftig zu intensivieren

Darüber hinaus hat das BMUB gemeinsam mit dem BMWi den Branchendialog "Digitaler Hochbau" initiiert, an dem auch mehrere Kammern und Verbände beteiligt sind Mit dem Branchendialog wollen wir den digitalen Transformationsprozess politisch flankieren und gezielt unterstützen Der Dialog bietet Gelegenheit für den Austausch der Akteure untereinander, schafft Synergieeffekte und soll gezielt die digitale Entwicklung des Planens und Bauens unterstützen

Frage: Setzt der Bund auch bei seinen eigenen Baumaßnahmen auf die Methode BIM?

In den vergangenen Jahren haben wir im Bundeshochbau, wenn auch zunächst auf Projektabschnitte begrenzt, kontinuierlich Erfahrungen zur Digitalisierung gesammelt Diese Erfahrungen werden in einem Kompetenzzentrum "Digitales Planen und Bauen" für den Bundeshochbau zusammengeführt und ausgewertet Das Kompetenzzentrum wird in der ersten Hälfte dieses Jahres mit der Arbeit beginnen Weitere Aufgaben des Kompetenzzentrums sind u a das Erstellen von BIM-spezifischen Arbeitsunterlagen wie beispielsweise Auftraggeberinformationsanforderungen und BIM-Ablaufpläne, die Begleitung von BIM-Pilotprojekten und die Beratung der Bauverwaltungen, die für den Bund tätig sind

Frage: Die Digitalisierung des Bauwesens wird sich nicht auf die Planungs- und Bauprozesse beschränken. Hat das Bundesbauministerium auch die weiteren Bereiche des Bauwesens im Blick?

Im Zuge der Digitalisierung werden sich vernetzte Systeme in der gesamten Wertschöpfungskette des Bauwesens etablieren Die Digitalisierung wird Architekten und Ingenieure als auch das bauausführende Gewerbe und somit das Handwerk erfassen Neben dem BIM als digitaler Planungsmethode werden sich beispielsweise auch digitale Fertigungsmethoden etablieren, wobei diese aufeinander aufbauen Es wird ein letztlich lückenloser Informationsfluss von der Planung zum physikalischen Bauprozess, zum Gebäudebetrieb bis zur Wiederverwertung entstehen Architekten und Ingenieure können durch digitale Fertigungsmethoden wieder näher an den Bauprozess heranrücken Mit

der digitalen Fertigung sind viele Hoffnungen verknüpft: höhere Ressourceneffizienz, materialgerechte Designkonzepte oder Kosten- und Zeitersparnis

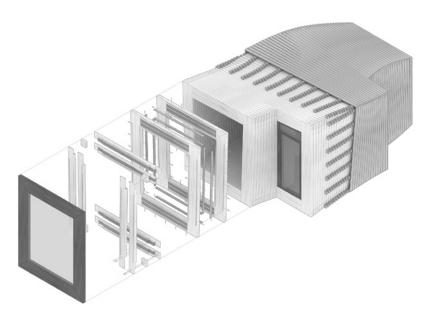
Es sind aber noch viele Fragen zu klären Wie wird sich die digitale Fertigung auf die traditionelle Trennung von Planung und Ausführung auswirken? Wird die digitale Fertigung ein neues Arbeitsgebiet für Architekten und Ingenieure? Wie wirkt sich die digitale Fertigung auf Handwerk und Baustellenlogistik aus?

Damit die hohen Erwartungen an die Digitalisierung erfüllt werden können, sind noch viele Innovationen erforderlich Hierzu braucht es zukunftsorientierte Unternehmer in der Planung und in den Handwerks- und Bauunternehmen, kreative Bauherren, aber auch innovative Forscher und Entwickler Und genau hier kommt wieder unsere Forschungsinitiative Zukunft Bau ins Spiel Mit dieser fördern wir die angewandte Forschung im Bauwesen und so auch Forschung zu Fragestellungen der Digitalisierung der gesamten Wertschöpfungskette Bau

Der Bund will einen zügigen Übergang zur Digitalisierung des Bauens organisieren und dabei gerade die mittelständischen Planer und Handwerksbetriebe ermutigen, ihre Chancen zu erkennen

Hochdämmende und recycelbare Holz-Massivbauweise

Baukonstruktionen aus Massivholz, welche durch Form und Fügung konstruktive und bauphysikalische Anforderungen des energieeffizienten und nachhaltigen Bauens erfüllen

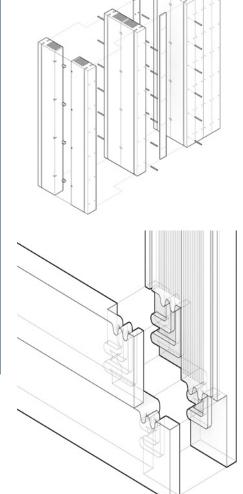

Prof. Achim Menges, Universität Stuttgart

Die weite Verbreitung, hohe Leistungsfähigkeit und leichte Bearbeitbarkeit von Holz machen es zu einem idealen Baumaterial für innovative Konstruktionen Ziel des Forschungsprojektes ist die Entwicklung eines Massivholz-Bausystems, bei dem einfache Holzelemente durch digitale Fertigungsmethoden so bearbeitet werden, dass sie durch Form und Fügung konstruktive und bauphysikalische Anforderungen des energieeffizienten und nachhaltigen Bauens erfüllen Am Beispiel eines variablen Prototyp-Gebäudes, das in Partnerschaft zwischen der Universität Stuttgart, der Jade Hochschule und der IBA Thüringen entwickelt und gebaut wird, soll das Bausystem erprobt werden

Entwicklungsprozess

Vollholz weist nicht nur ökologisch herausragende Eigenschaften auf, sondern ist auch ökonomisch eine der günstigsten Bauweisen Im Vergleich zu anderen Baumaterialien für tragende Konstruktionen weist Holz generell hervorragende Dämmeigenschaften auf Der kapillare Aufbau der Holzstruktur bedeutet, dass das Holz zugleich tragend und dämmend eingesetzt werden kann Das Grundprinzip einer isolierenden Vollholzkonstruktion wurde in einem Vorgängerprojekt unter der Leitung von Hans Drexler an der Münster School of Architecture entwickelt Durch die Einschnitte wird nicht nur die Dämmwirkung des Materials deutlich verbessert, sondern auch die Spannungen innerhalb der Profile werden aufgehoben Diese Entlastungsschnitte, die ein tangentiales Aufspalten des Vollholzes verhindern, werden hier durch ihre kammartige Ausbildung auch als Dämmung wirksam Die Weiterentwicklung des Konstruktionssystems in Verbindung mit digitalen Entwurfs- und Fertigungsmethoden geschieht auf zwei Ebenen Zum einen soll das System bauphysikalisch leistungsfähiger werden und einen Aufbau erleichtern Zum anderen soll der architektonische Entwurfsspielraum durch präzise digitale Vorfertigung erheblich erweitert werden

Durch eine komplett digitale Planung und Fertigung wird es möglich, die Positionen der einzelnen Balken zueinander individuell zu definieren So entsteht ein geometrisch äußerst flexibles Materialsystem, das durch Form und Fügung konstruktive und bauphysikalische Anforderungen des energieeffizienten und nachhaltigen Bauens erfüllt Während oft mit hoch entwickelten und teuren Produkten gebaut wird, ist in diesem Fall ein sehr günstiges Material die Ausgangsbasis Das Projekt versteht sich deshalb als ein Beitrag für kostengünstiges Bauen Ähnlich einer modernen Blockhütte soll nur mit dem Rohmaterial Holz gearbeitet werden Im Gegensatz zu dieser klassischen Konstruktion und auch zum Vorgängerprojekt, verläuft die Faserrichtung in diesem neuartigen Konstruktionssystem entlang der Tragrichtung


Abbildung 1: Explosionszeichnung des Konstruktionssystems

Prof. Achim Menges

Professor, Institutsleiter ICD Institut für Computerbasiertes Entwerfen und Baufertigung, Fakultät für Architektur und Stadtplanung

■■ Die Digitalisierung führt zunächst zu einer anteiligen Automatisierung des eigentlich prädigitalen Planens und Bauens. Das echte Potenzial digitaler Technologien wird dann freigesetzt, wenn wir Planungsmethoden, Bauprozesse und Bausysteme integrativ und computerbasiert neu denken.

Im Verlauf des Projekts wurde die Anzahl und Anordnung der Schlitze zunächst im Vergleich zu anderen Materialien durch eine Simulationssoftware untersucht Die Evaluierung von Prototypen an der Materialforschungs- und Prüfanstalt der Bauhaus-Universität Weimar hat anschließend einen Wärmedurchgangskoeffizienten von U = 0,20 W/(m²K) ergeben, der allerdings stark von der Luftdichtigkeit der Konstruktion abhängt Die Entwicklung von konstruktiven Aspekten steht auch im engen Zusammenhang mit einem digitalen Entwurfswerkzeug, das die Generierung von kompletten Entwürfen mit maximalem Informationsgehalt erlaubt Nicht nur die Geometrie des Gebäudes wird mit dem Entwurfswerkzeug erstellt, sondern die gesamte digitale Kette bis hin zu allen Konstruktionsdetails, Gebäudeinformationen und den Maschinendaten Vor allem spielt in diesem Fall die Verbindung über Eck und entlang der Konstruktion eine wichtige Rolle Die Art der Fügung ist darauf ausgelegt, dass die Luftdichtigkeit erhöht und gleichzeitig konstruktiv wirksam wird Für diese Entwicklung war es essenziell mit Industriepartnern in Kontakt zu treten, um die Machbarkeit der Konstruktion ständig zu evaluieren Zwar wurden im Labor des ICD bereits mehrere kleine Prototypen gebaut, jedoch verfügt der dort benutzte Industrieroboter über einen anderen Arbeitsraum und andere Maschinendaten als übliche CNC-Maschinen mit heutigem Stand der Technik Die Fertigung des Demonstratorgebäudes sollte deshalb in enger Zusammenarbeit mit einem Holzbau- oder Schreinerunternehmen erfolgen

Abbildungen 2 und 3: Konstruktionssystem

mit Verbindungsdetails in der Wandebene und in der Ecke

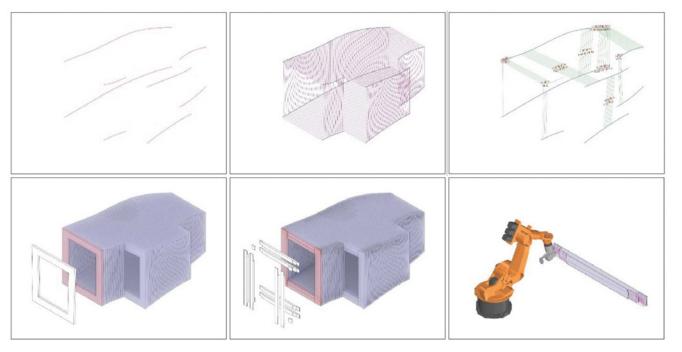


Abbildung 4: Visualisierung der Schritte des computerbasierten Entwurfswerkzeugs vom Design-Input bis zur Fertigung

Abbildung 5: Alle vorgefertigten Gebäudesegmente sind bereit zum Aufbau vor Ort "Just in sequence" gefertigt

Die Planung und der Bau des Demonstratorgebäudes stellen einen wesentlichen Schritt in der Konkretisierung der Planungs- und Fertigungstechnologien dar, die im Rahmen dieses Forschungsprojekts praxisnah untersucht wurden Im August 2017 wurden finale Entwürfe und Detailentscheidungen getroffen, um die Produktion des Demonstrators zu beginnen Die Ausführung konnte aus architektonischer Sicht zeigen, dass das Bausystem auch im baulichen Maßstab durch seine geometrische Komplexität eine besondere Wirkung aufweist Es konnte aber auch festgestellt werden, dass einfaches Konstruktionsvollholz für die hohen Anforderungen an eine präzise Fertigung ungeeignet ist Das ungenaue Rohmaterial hatte zur Folge, dass der subtraktive Fertigungsprozess wesentlich länger als ursprünglich antizipiert dauerte Innerhalb von acht Wochen wurden 464 individuelle Balken auf einer Fünf-Achs-CNC-Maschine gefräst und zu sechs Modulen zusammengebaut Diese Module wurden auf zwei Tiefladern innerhalb eines Tages zum Aufbauort transportiert und innerhalb von zwei Tagen zu einem kompletten Gebäude zusammengebaut

Architektonisches Konzept

Die Internationale Bauausstellung IBA Thüringen als Projektpartner hat eine neue Geschäftsstelle in Apolda in einem historischen Gebäude

des Architekten Egon Eiermann gefunden An der Rückseite des historischen Gebäudes findet sich eine unbebaute Grünfläche mit landschaftlichen Qualitäten im Übergang zu Gärten

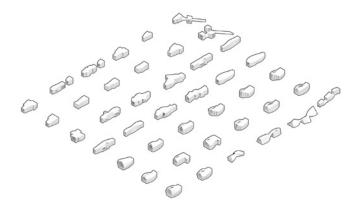


Abbildung 6: Fertig bearbeitete Vollholzbalken Jeder Balken hat eine individuelle Nummer und wurde "just in sequence" gefertigt

Abbildung 7:
Liegender Aufbau von
insgesamt sechs Gebäudesegmenten, die jeweils
ungefähr 1 m lang waren
Zwischen den Lagen wird
Leinenstoff zur Abdichtung

verwendet

Abbildung 8:

Entwurfsvarianten, die mit dem Entwurfswerkzeug möglich sind und im Verlauf des Forschungsprojekts erzeugt wurden

der Gebäude und einer Kleingartenanlage Das Prototyp-Gebäude soll auf der leicht ansteigenden freien Fläche als architektonische Inszenierung des landschaftlichen Kontexts eingesetzt werden Diese Inszenierung reflektiert die Aufgabenstellung der IBA Thüringen Stadtland: In dem landschaftlich geprägten und kleinteilig besiedelten Bundesland Thüringen ist Architektur immer im Spannungsfeld zu dem landschaftlichen Kontext zu denken

Als eines der ersten voll parametrisch entworfenen und digital hergestellten Gebäude mit einer Vollholzkonstruktion stellt das Projekt einen wichtigen Schritt in der modernen Holzforschung dar Vor allem die praxisnahe Evaluation der Entwurfs- und Fertigungsmethodik hat eine Reihe von wichtigen Erkenntnissen zur Folge Prinzipiell kann davon ausgegangen werden, dass Mono-Material-Konstruktionen durch intelligente Entwurfsprozesse und eine digitalisierte Fertigung effizient herstellbar sind und einen wesentlich höheren architektonischen Entwurfsspielraumerlauben Diefürdas Demonstratorgebäude benötigte hohe Genauigkeit hatte zunächst noch einen wesentlich höheren Fertigungsaufwand zur Folge Dieser Unterschied könnte in einem weiteren Entwicklungsschritt mit einer generellen Überarbeitung des Produktionsablaufs stark reduziert werden Das Forschungsprojekt kann insofern als erster Schritt für die Entwicklung eines neuen Bausystems angesehen werden

Eckdaten

Hochdämmende und recycelbare Holz-Massivbauweise

Projektteam:

Universität Stuttgart, Institut für Coputerbasiertes Entwerfen (ICD) Prof Achim Menges, Oliver Bucklin,

Jade Hochschule Oldenburg Fachbereich Architektur Vertretungsprofessur Hans Drexler

In Kooperation mit:

Oliver David Krieg

IBA – Internationale Bauausstellung Thüringen

Projektunterstützung:

Thüringer Forst Rettenmeier Holding AG Serge Ferrari – Stamisol Hoffmann GmbH HolzWider GmbH

Entwicklung einer idealtypischen Soll-Prozesskette zur Anwendung der BIM-Methode im Lebenszyklus von Bauwerken

Agnes Kelm, Anica Meins-Becker, Matthias Kaufhold, Bergische Universität Wuppertal

Zur Etablierung der Methode BIM und zur Förderung des digitalen Wandels wurde das gegenständliche Forschungsprojekt beantragt und durchgeführt Insbesondere mangelte es zum Zeitpunkt der Antragstellung an Standards und einem einheitlichen Verständnis in Bezug auf den BIM-Prozess und damit einhergehender Veränderungen in der Bau- und Immobilienwirtschaft

Das Forschungsprojekt "BIM-basiertes Bauen im Prozess" soll den Rahmen für ein längerfristiges Großprojekt spannen Ziel dessen ist es, die Standardisierungsbestrebungen von Bauwerksdatenmodellen in allen Lebenszyklusphasen voranzutreiben Dies wird bei gleichzeitiger Rechts- und Normkonformität dazu beitragen, die Transparenz in Bezug auf die Methode BIM für die am Immobilienlebenszyklus Beteiligten zu schaffen

Im Rahmen des Forschungsprojektes wurde eine idealtypische Soll-Prozesskette unter Einsatz der BIM-Methode entlang des Lebenszyklus eines Bauwerkes entwickelt Der standardisierte Lebenszyklus-Prozess soll konkret aufzeigen, welche Schritte zur Umsetzung von BIM-Projekten aus Sicht der Bauherrenschaft notwendig sind Auf Grundlage dessen können Informations- und Kommunikationsschnittstellen identifiziert werden Analysen verändern sich durch Leistungsanforderungen der Beteiligten und offene Fragen wie z B rechtliche Fragestellungen können weitergehend durchgeführt bzw bearbeitet werden Das Forschungsprojekt ist phasenübergreifend auf den gesamtheitlichen Bauwerkslebenszyklus ausgerichtet und betrachtet die Prozesse von der Projektentwicklung bis zum Rückbau einer Immobilie In mehreren parallel stattfindenden sowie in Vorbereitung befindlichen Forschungs-

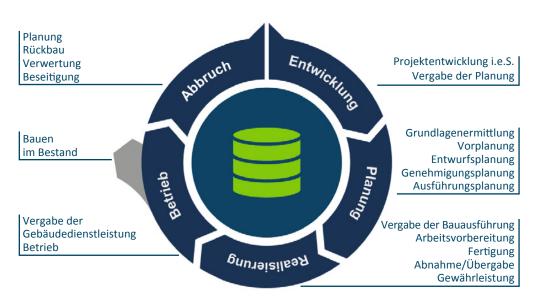


Abbildung 9: Bauwerkslebenszyklus

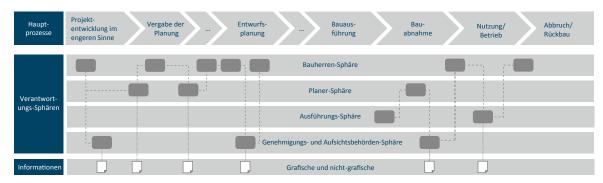


Abbildung 10: Prozessmodell mit Verantwortungssphären und Informationsbezug



Abbildung 11: Beziehung zwischen fachlichem Prozess, inhaltlichem Informationsprozess und Informationsmanagementprozess

projekten der BUW werden darüber hinaus Teilabschnitte vertiefend betrachtet

Im ersten Schritt erfolgte die Herleitung eines Prozessszenarios und die Entwicklung eines methodenunabhängigen, standardisierten Prozessablaufs Betrachtet wurden hierbei die aus Sicht des Bauherrn wesentlichen Kommunikations- und Austauschschnittstellen mit den Projektbeteiligten in allen Lebenszyklusphasen eines Hochbauprojekts Auf Grundlage von Literaturrecherchen und Experteninterviews wurde hierzu analysiert und festgelegt, wie die einzelnen Prozessschritte verlaufen und welcher Beteiligte wann welche Leistung und Informationen wem gegenüber erbringt bzw zu liefern hat, um den Forderungen des Bauherrn nach einem erfolgreich errichteten und bewirtschafteten Bauwerk gerecht zu werden Praxisunternehmen, Institutionen und weiteren Akteuren wird somit ein Überblick über die in Bezug auf den Informationsaustausch bestehende Situation vermittelt, sodass ein gemeinsames Verständnis der relevanten fachlichen Zusammenhänge gegeben ist Eine Validierung der Prozesse erfolgte anhand der Durchführung von Expertenworkshops Hieraus entstand ein sogenannter Informationsprozess, der die Frage beantwortet: "Wer braucht welche Informationen von wem wann wofür?"

Des Weiteren wurde in Anlehnung an die ISO 19650 ein sogenannter Informationsmanagementprozess zur Anwendung der Methode BIM erstellt, der wiederum die Frage beantwortet: "Wer muss was tun, damit Informationen generiert und verlustfrei verfügbar gemacht werden können?" Diese Entwicklung erfolgte einerseits durch die Analyse von BIM-Leitfäden, -Richtlinien, -Normen, die Beteiligung in verschiedenen Gremienarbeiten, anderseits auch durch die Begleitung von Praxisprojekten und Unterstützung von Unternehmen, die auf die Umsetzung von BIM-Projekten spezialisierter sind

Im Anschluss erfolgte die Zuweisung des Informationsmanagementprozesses zum Informationsprozess Aus der Zusammenführung beider Prozesse resultiert der BIM-Prozess Die Umsetzung erfolgte durch Anwendung des Business Process Modelling und eines entwickelten Prozessmodells

Abbildung 12: Übersicht Informationsmanagementprozess

Zur praxisnahen Umsetzung wurde basierend auf den Ergebnissen des analysierten BIM-Prozesses ein Bauherren-Leitfaden zur Anwendung der Methode BIM verfasst und eine Methodik zur Erzeugung von BIM-zielorientierten Abfragen als Vorbereitung für die Auftraggeber-Informations-Anforderungen (AIA) entwickelt

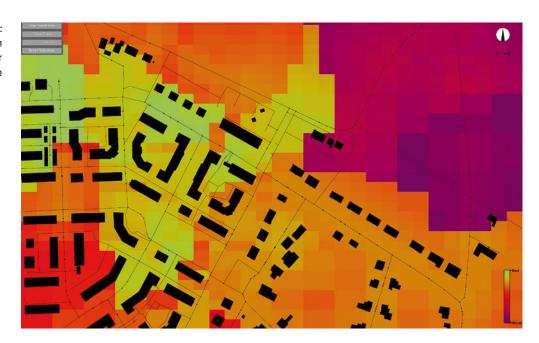
Darüber hinaus erfolgte die Durchführung einer Online-Umfrage zum "Status quo – digitales Planen, Bauen und Betreiben" in Zusammenarbeit mit dem Karlsruher Institut für Technologie auf der Grundlage einer Umfrage, die das Institut im Jahr 2011 durchgeführt hatte

Eckdaten

BIM im Prozess

Forscher:

Bergische Universität Wuppertal Lehr und Forschungsgebiet Baubetrieb und Bauwirtschaft


Prof Manfred Helmus (Projektleiter), Anica Meins-Becker, Agnes Kelm, Mathias Kaufhold

CDP // Energy

Simulationsgestützte Entwurfsplanung im städtebaulichen Kontext unter Berücksichtigung energetischer und raumklimatischer Aspekte

Gerhard Schubert, Technische Universität München

Abbildung 13: Analyse zur Identifikation der günstigen Positionen zur Platzierung der Heizzentrale

Energetische und raumklimatische Aspekte von Entwurfsentscheidungen werden heutzutage in städtebaulichen Planungsphasen nur ungenügend berücksichtigt Die Ursachen hierfür finden sich in unzureichenden Bedienschnittstellen wie auch Softwarelösungen Zur Auflösung dieser Diskrepanz wurden Anforderungen an Analysemethoden zur energetischen Betrachtung in kreativen Planungsphasen untersucht – aufbauend hierauf wurden Lösungsansätze konzeptionell entwickelt und als Applikationen prototypisch umgesetzt

Die Arbeit am Projekt erfolgte in einem interdisziplinären Team zwischen dem Lehrstuhl für
Gebäudetechnologie und klimagerechtes Bauen (Prof Thomas Auer) und dem Lehrstuhl für
Architekturinformatik (Prof Frank Petzold)
Die Bearbeitung erfolgte in parallelen wie auch
gekoppelten Arbeitsschritten: Die Wissenschaftler für Gebäudetechnologie und klimagerechtes Bauen erforschten Methoden zur Berechnung und Analyse relevanter energetischer
und raumklimatischer Aspekte im Maßstab
1:500 auf deren Basis die Definition konzeptioneller Anforderungen an Berechnungsmodelle
erfolgte Das Team um Prof Petzold fokussierte sich auf die computergestützte Implementie-

rung der aufgestellten Methoden auf Basis der bestehenden Form CDP // Collaborative Design Platform Die CDP als Entwurfsplatform ermöglicht dem Planer wie gewohnt mittels Arbeitsmodellen und Handskizzen zu Entwerfen In Echtzeit berechnete Analysen und Simulationen werden direkt im Modell angezeigt und erweitern den Ermessensspielraum des Nutzers um zusätzliche Entscheidungsebenen Im Fokus der Forschung stand hierbei maßgeblich die Entwicklung effizienter, aber dennoch genauer Algorithmen wie auch geeigneter Anwendungsund Visualisierungskonzepte Die Arbeitsschritte untergliedern sich hierbei wie folgt:

1. Eruierung relevanter Berechnungs- bzw. Simulationsmethoden

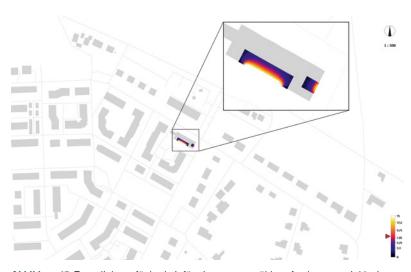
Am Anfang stand die Identifikation und Definition geeigneter Berechnungs- und Analysemodelle zur Untersuchung der Versorgungsmöglichkeiten mit Wärmenetzen und zur Ermittlung der Potenziale erneuerbarer Energien (Solar und oberflächennahe Geothermie) in frühen städtebaulichen Planungsphasen Diese basieren auf der gebäudescharfen Ermittlung

des Wärmebedarfs und der erschließbaren solaren und geothermischen Energiemengen Zusätzlich wurden geeignete Simulationsmethoden zur präziseren Analyse des thermischen Verhaltens und der Tageslichtverhältnisse innerhalb eines Gebäudes identifiziert Die Herausforderung liegt hierbei maßgeblich in diesen Phasen nur vage und unscharf vorhandenen Daten Es mussten somit Ansätze untersucht und Methoden entwickelt werden zur prognostizierenden Echtzeit-Vorhersage energetischer Aspekte und Auswirkungen unter Angabe unvollständiger Planungsinformationen

2. Erweiterung der CDP // Collaborative Design Platform um zusätzliche Plugins

Unter Berücksichtigung der aufgestellten Berechnungsmodelle und Methoden erfolgte die Konzeption und Implementierung mehrerer Plugins auf Basis der bestehenden Entwurfsplattform CDP // Collaborative Design Platform Der Fokus lag hierbei in der Umsetzung folgender Analysetools:

Plugin zur Analyse der Versorgungsmöglichkeiten mit Wärmenetzen


Es wurde ein Plugin zur Analyse der Versorgungsmöglichkeiten mittels Fernwärmenetz konzipiert und prototypisch implementiert Die Basis hierzu bildet die automatische, optimierte Trassenverlegung auf Basis des Straßen-/und Wegenetzes Ausgehend hiervon erfolgt die Berechnung der Wärmeabnahme pro Meter Netztrasse je Trassensegment Es wurden zwei unterschiedliche Methoden zur Analyse des Planungsgebietes implementiert Methode 1 berechnet bei einer manuell platzierten Heizzentrale das Versorgungspotenzial im Netz In Methode 2 erfolgt eine automatische Bewertung des gesamten Planungsgebietes für die Standortqualität der Heizzentrale

Plugin zur Berechnung und Analyse des Solarpotenzials

Das Plugin zur Berechnung des Solarpoten-Zials umfasst die analytische Untersuchung sämtlicher Gebäude im Planungsgebiet (existierende Bebauung wie auch Neuplanung) Aus der Berechnung der Solareinstrahlung auf den Dachflächen im Jahresverlauf unter Berücksichtigung der Verschattung wird die erzeugbare Strommenge aus Photovoltaik gebäudespezifisch ermittelt und dem möglichen Stromverbrauch gegenübergestellt

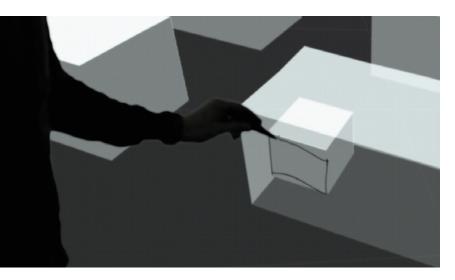

Abbildung 14: Automatische Generierung und Bewertung des Wärmenetzes in Abhängigkeit von der Position der Heizzentrale (physisches Objekt auf der Tischoberfläche – rot markiert)

Abbildung 15: Tageslichtverfügbarkeit für einen ausgewählten Analyseraum inklusive Vergrößerung der Darstellung

Abbildung 16: Darstellung des durch solare Einstrahlung gedeckten Energieverbrauchs in Prozent; rot markierte Gebäude sind nicht Teil der Betrachtung

Abbildung 17:

Auswahl des Analyseraums –
die Geometrie mit 6 m Raumtiefe wird direkt aus der
Handskizze konstruiert, dem
Gebäude zugeordnet und im
3-D-Modell positioniert und
referenziert

Plugin zur Analyse des Potenzials aus oberflächennaher Geothermie

Zur Abschätzung des Potenzials oberflächennaher Geothermie wurde das System um die Anbindung an WMS-Server erweitert Dies
ermöglicht die Darstellung relevanter Informationen in Form von zusätzlichen Kartenebenen Zusätzlich wurde eine Methode zur
gebäudespezifischen Berechnung des Wärmepotenzials aus oberflächennaher Geothermie
konzeptionell erstellt

• Plugin zur Simulation des Tageslichts

An der Schwelle zwischen Innen- und Außenraum ermöglicht dieses Plugin eine Tageslichtsimulation zur Ermittlung des Tageslichtquotienten für einen Analyseraum innerhalb des Gebäudes Die Auswahl/das Markieren des Simulationsbereiches erfolgt über eine Handskizze, die Simulation wiederum mittels der Software Radiance Die Eingabe wie auch Ausgabe findet direkt an der CDP statt

Plugin zur thermischen Simulation

Die Berechnung einer thermischen Simulation erfolgt ebenfalls über die Definition eines Analyseraumes via Handskizze Im Rahmen des Projektes wurde die Methode zur Ermittlung des Energiebedarfs und der thermischen Komfortbedingungen definiert und eine erste Implementierung unter Einbindung der kommerziellen Software TRNSYS getestet

3. Strategien zur Informationsvisualisierung und Berücksichtigung entsprechender Abstraktionsgrade

Die Einbettung der Analyseergebnisse in den Planungsprozess erfordert entsprechende Methoden der Informationsvisualisierung und der Repräsentation der Simulationsergebnisse Im Rahmen des Projektes wurden entsprechende Strategien für die einzelnen Plugins untersucht, konzipiert und im Rahmen der Plugins implementiert Der Fokus lag hierbei maßgeblich auf der Darstellung der Ergebnisse in Echtzeit wie auch auf möglichen Darstellungsformen von Tendenzen widerspiegelnder Ergebnisse Lösungsansätze hierfür fanden sich u a in der sukzessiven Detaillierung der Analysemethode wie auch transparenter, "gefadeter" Übergänge

Im Rahmen des interdisziplinären Forschungsprojektes CDP // ENERGY wurden Methoden zur energetischen Überprüfung von städtebaulichen Entwürfen in frühen Planungsphasen konzipiert, untersucht und prototypisch implementiert Ausgehend von raumklimatischen bzw energetischen Gesichtspunkten wurde eine Anforderungsanalyse für die Bereiche Fernwärmeversorgung, erneuerbare Energiepotenziale sowie Tageslicht- und thermische Simulationen auf Gebäudeebene erarbeitet Unter Berücksichtigung dieser Anforderungen konnten im Rahmen des Projektes fünf Berechnungsmethoden erarbeitet werden Die prototypische Implementierung für drei Methoden hiervon erfolgte auf Basis der bestehenden CDP // Collaborative Design Platform

Das Projekt wurde u a mit freundlicher Unterstützung durch die Stiftung Bayerisches Baugewerbe und Euroboden GmbH durchgeführt

Eckdaten

CDP // Energy

Forscher:

Technische Universität München Lehrstuhl für Architekturinformatik Lehrstuhl für Gebäudetechnologie und klimagerechtes Bauen, TU München

Prof Frank Petzold, Prof Thomas Auer, Gerhard Schubert (Projektleitung), Cécile Bonnet, Ata Chokhachian, Ivan Bratoev

Projektunterstützung:

Stiftung Bayerisches Baugewerbe Euroboden GmbH

Zielgruppen- und prozessorientierte Untersuchung freier BIM-Werkzeuge

Prof. Petra von Both, Steffen Wallner, Karlsruher Institut für Technologie (KIT)

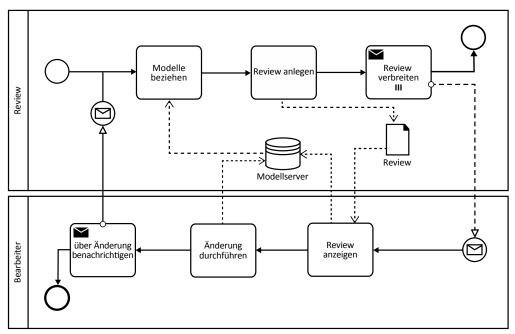


Abbildung 18: BPMN für Nutzungsszenario "Zusammenführen"

In Deutschland beschäftigen nach einer Strukturerhebung des Statistischen Bundesamtes aus dem Jahr 2016 ca 90 % der Architektur- und Ingenieurbüros weniger als zehn Mitarbeiter Studien belegen, dass die dort erwirtschafteten Überschüsse oft nicht ausreichen, um kosten-intensive BIM-Softwarelösungen von kommerziellen IT-Unternehmen zu nutzen Auf der anderen Seite existieren verschiedene kostenfreie Tools die in Forschungs- und Community-Projekten sowie die von kommerzieller Seite aus entwickelt wurden Hier mangelt es derzeit aber noch an einer systematischen Untersuchung und praxisbezogener Bewertung solcher Werkzeuge, um deren praxisbezogene Anwendbarkeit einschätzen zu können

Die Identifizierung, prozessbezogene Analyse und Bewertung frei verfügbarer BIM-Tools ist Gegenstand des Forschungsvorhabens "BIM-Tools Overview" Das Forschungsprojekt gliederte sich in folgende Arbeitsschritte:

- Identifizierung relevanter BIM-Prozesse und Entwicklung von Nutzungsszenarien
- Suche nach freien Tools und Ableiten von Softwareklassen
- · Definition der Bewertungskriterien

- Testen und Bewerten der Tools
- Zuordnung zu den Nutzungsszenarien
- Aufbereiten der Ergebnisse für die Öffentlichkeit auf einer Website

Es zeigte sich, dass bei Weitem mehr Quellen durchsucht werden mussten, als freie Tools gefunden wurden Während der Arbeitsvorbereitung wurde daher ein Wiki-System eingerichtet, wodurch redundante Suchen verhindert werden konnten

Die BIM-Prozesse wie auch die Bewertungskriterien wurden basierend auf eigenen Kenntnissen sowie bezugnehmend auf Prozessbeschreibungen in aktueller Literatur, wie BIM-Leitfäden und Normen, entwickelt Ein in diesem Kontext wichtiges Dokument war die "Information Delivery Manual"-Methode Obwohl aus dem Dokument zwar nicht direkt relevante Prozesse abgeleitet werden konnten, unterstreicht dass der Datenaustausch wesentlich für jeden BIM-Prozess ist Andere Quellen wie der BIM-Leitfaden für Deutschland, der BIM-Referenzprozess sowie Veröffentlichungen diverser Autoren liefern Argumente für BIM, indem sie Potenziale und Zielsetzungen aufzeigen Es fanden sich

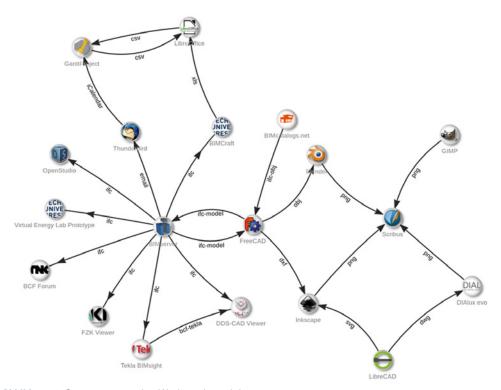


Abbildung 19: Gesamtprozess über Werkzeuginteraktion

dort jedoch keine praxistauglichen Nutzungsszenarien, die direkt auf die anvisierte Zielgruppe angewendet werden konnten Basierend auf den Arbeiten von Hausknecht und Liebich wurden daher – auch unter Einbeziehung eigener Expertise – sechs Szenarien entwickelt und in der BPMN Notation formalisiert Die Suche nach den Tools war im Wesentlichen online gestützt und bezog auch online verfügbare wissenschaftliche Publikationsdatenbanken mit ein Für die Auswahl, Untersuchung und Bewertung

der gefundenen Tools wurden Kriterien hinsichtlich Funktionalität, Ergonomie und Zuverlässigkeit festgelegt Zudem musste ein relevantes Tool:

- 1 kostenfrei zu beziehen und ohne Lizenzgebühren kommerziell zu nutzen sein
- 2 eine Registrierung zur Nutzung verlangen können
- 3 auf einem heutzutage gängigen Betriebssystem laufen

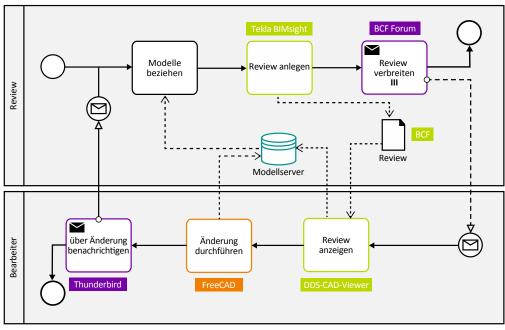


Abbildung 20: Nutzungsszenario mit eingeordneten Tools

Konzeption und Konstruktion

Im Vergleich zu anderen Tools enthält Blender eine sehr große Menge an Funktionen, Menüs und Untermenüs. Das ist dem universalen Ansatz des Tools geschuldet. Um Blender effektiv zu nutzen, bedient

Das Tool weist zwar eine überdurchschnittliche Lernkurve auf, jedoch hilft der methodische und detaillierte Aufbau der Benutzeroberfläche, ein besseres Verständnis für Design- und Konstruktionsprozess in der Architektur zu erlangen (Dour Wissens um Strategien, um mit den vielen Werkzeugen das gewünschte Ergebnis zu erreichen. Mitunter

und alle Funktionen in eigenständigen Skripten umgesetzt sind, ist ein Nutzer nicht nur auf die vorgege Funktionen beschränkt, sondern kann Algorithmen und Funktionen selber schreiben. Hervorzuheben ist das Add-on Sverchok, welches die grafische Programmierung von parametrischer Geometrie erlaubt und damit dem Grasshopper Plugin des kommerziellen Rhinoceros 3D-Modellierer ähnelt.

Durch die große Anzahl an Funktionen zum Erzeugen von Geometrie, kann Blender gut in der frühen Phase der Konzeption als auch der Konstruktion eingesetzt werden. Blenders Austauschformate liefern allerdings keine für die Architekturdomäne relevante Semantik. In einem möglichen Workflow, kann Blender dennoch zum Modellieren der Geometrie eines Gebäudemodells genutzt werden. Danach würde über das -Dateiformat ein Export nach Fi Semantik für ein Gebäudemodell hinzugefügt und dieses als IFC exportiert werden kann.

Präsentation

Da mit Blender aus den 3D-Geometrien Videos, Animationen und Bildern hergestellt werden können, lässt es sich gut zum Erzeugen von Portfolios oder zur Entwurfspräsentation nutzten. Dabei sind zwei mögliche Workflows denkbar: Ein IFC-Gebäudemodell liegt vor und wird zum Beispiel mit FreeCAD über das kann das Modell durch weitere Details (Billboards, Landschaftsobjekte, usw.) angereichert werden. Mit Hilfe des großen Umfangs an Funktionen zum Einstellen der Rendering-Engine werden individuelle fotorealistische Darstellungen erzeugt. Diese können dann in einem Layout Tool wie Sci Poster, Flyer, Magazin arrangiert werden.

Um fotorealistische Renderings zu erzeugen, kann die interne, auf Ray-Tracing basierende Engine mit Hilfe entsprechen verschiedenen Shadern oder mathematischen Funktionen. In jedem Element können die Parameter des Shaders oder der Funktion eingestellt und Ergebnisse als Output-Parameter über die Kanten

Mit Blender4Web existiert ein Add-on, das es erlaubt, ein 3D-Modell, welches in Blender erzeugt oder nach einem Import nur angepasst wurde, auf einer Website zu veröffentlichen und interaktiv sowie Plugin-in frei im Browser anzuzeigen.

Einstieg

Funktionsumfang, der das Tool zum Teil unübersichtlich erscheinen lässt. Dank einer sehr aktiven Community gibt es jedoch eine ebenso große Menge an teilweise sehr guten YouTube Videos, die vollständig und auf verschiedenen Niveaus den Designprozess für das reine Modellieren von 3D-Szenen, über Animation und komplexe physikalische Simulation von Grund auf zeigen und erklären.

- deo, das die Möglichkeiten des parametrisierten Entwerfens aufzeigt. tikel zur Verwendung von Blender, um Physically Based Shading umzu
- fotorealistisch zu rendern.
- Wiki, zur Nutzung von Blender in der Architektur. Neben Tutorials sind dort vor allem eine größere Menge von Texturen, Materialien, Modellen und Skripten zu finden, die frei nutzbar sind.
- keine spezielle BIM Funktion und zielt auf das einfachere Erstellen von Innenraumvisualisierungen ab.

Thorsten Klooster Kennwert KW GmbH, Berlin

Digitalisierung im Bauen zeitigt den Widerspruch von Hightech (IoT, BIM) und Lowtech (das Bauen). Gebäude wandeln sich zu interaktiv physischen (Bau-)Systemen eigener Art, bestehend aus Hardware und Software in Beziehung zu einer Materialkomponente. "It does offer one serious improvement ... offers better chances for mankind to mop up its own rubbish." (Bruce Sterling)

Nach diesen Kriterien konnten etwa 80 Tools identifiziert werden Sie wurden 13 Software-klassen zugeordnet und mit einer kurzen Beschreibung im Wiki-System hinterlegt Aus dieser Menge wurden dann etwa 19 Tools in einer ersten Grobanalyse als praxistauglich ausgewählt und nach einem Kriterienkatalog detailliert bewertet

Für die Auswahl dieser Tools spielte die Möglichkeit des Datenaustausches eine wesentliche Rolle Ein Tool wurde nur dann detailliert bewertet, wenn es in irgendeiner Form einen sinnvollen Datenaustausch zu anderen freien Tools aufweist, da der größte Mehrwert der BIM-Methode in der Reduzierung von Mehrfacheingaben liegt Die weiteren Kriterien beschreiben die Gebrauchstauglichkeit und Funktionalität der Tools Insgesamt sind es 30 Kriterien, welche je nach Softwareklasse und Komplexitätsgrad differieren

Es konnten generelle Aussagen zur Qualität der Tools von kommerziellen Anbietern, aus Forschungsprototypen und Community-Projekten gemacht werden So fanden sich auf kommerzieller Seite hauptsächlich Viewer ohne Funktionen zur Modellanreicherung Die Forschungsprototypen waren wider Erwarten unterrepräsentiert und selten funktionsfähig Vor allem außerhalb des BIM-Kontextes war die Auswahl an Tools aus Community-Projekten sehr groß Es konnten dort Tools identifiziert werden, die das Modellieren erlauben und eine gute Gebrauchstauglichkeit aufweisen

Zur Aufbereitung der Ergebnisse auf der Website wurde ein Konzept entwickelt, das die formale Zuordnung der Tools zu den Nutzungsszenarien erlaubt Die Form der Website war damit von den Inhalten getrennt und in drei Ansichten aufgeteilt: eine Willkommensseite, auf der die zugrunde liegende Motivation und eine kurze Beschreibung des Aufbaus der Website formuliert ist Für jedes Nutzungsszenario wird zudem eine Beschreibung angezeigt sowie ein BPMN-Diagramm, mit dem die Tools per Hyperlink verknüpft sind Zusätzlich wird auf Grundlage der Prozessbeschreibung ein idealisierter und ein unterstützter Prozess beschrieben Für jedes Tool wird die Liste der Bewertungskriterien und ein ausführliches Review angezeigt

Die hier gewonnenen Informationen über freie Tools sollen kleinen Unternehmen helfen, den Anschluss an die kostenintensive Einführung von BIM im Planungsprozess nicht zu verlieren Es wurde erwartet, dass gerade Forschungsprototypen eine ergiebige Quelle für solche

Tools sind Leider konnte dies nicht bestätigt werden, da die Tools entweder gar nicht verfügbar, nicht kommerziell nutzbar oder kaum gebrauchstauglich waren Im Gegenzug zeigten gerade die Community-Projekte durch Transparenz und Maßnahmen zur Qualitätssicherung, dass freie Tools auch im Kontext von BIM-Prozessen umsetzbar und gebrauchstauglich sind Die Ergebnisse sind auf der Website https://bimtoolsoverview building-lifecclemanagement de veröffentlicht

Eckdaten

BIM Tools Overview

Forscher:

Karlsruher Institut für Technologie (KIT), Fachgebiet Building Lifecycle Management (BLM) Prof Petra von Both Steffen Wallner (Projektleitung)

Plotbot/Crawler

Entwicklung eines neuartigen webbasierten und sensorgeführten Bewegungsautomaten für den Auftrag und die Erneuerung komplexer Schichtsysteme zur Funktionalisierung von Gebäudeoberflächen

Prof. Heike Klussmann, BAU KUNST ERFINDEN, Universität Kassel

Das Forschungsvorhaben Plotbot/Crawler zielt auf die Entwicklung eines webbasierten und sensorgeführten Bewegungsautomaten für Fassaden Mit diesem mobilen Roboter sollen komplexe Schichtsysteme zur Funktionalisierung von Gebäudeoberflächen aufgebracht werden Mittels einer konsistent verzahnten Werkzeug-Software-Logik werden Oberflächen von Bauelementen beliebiger Geometrie instantan angesteuert oder nach einer zuvor digital erstellten Bearbeitungssystematik beschichtet

Mit der Entwicklung des Plotbot/Crawlers beantwortet das Forscherteam Fragen zum Thema Physical Computing im Bauwesen Dies sind interaktive, physische Systeme, die auf die reale Welt einwirken und sich mit der Beziehung zwischen Mensch und der digitalen Welt befassen Plotbot/Crawler, Database und Gebäudeoberfläche bilden in exemplarischer Weise ein solches System Es ist ein Verbund informatischer, softwaretechnischer Komponenten mit physisch-mechanischen und elektronischen Teilen, die über eine Dateninfrastruktur kommunizieren

Mittels eines solchen Verbunds kann notwendige Automatisierungstechnik durch Verfahren der Selbstoptimierung, Selbstkonfiguration, Selbstdiagnose und Kognition intelligenter werden und die Menschen in zunehmend komplexen Arbeits- und Lebenssituationen besser unterstützen Die Entwicklung derartiger Systeme für das Bauwesen ist bislang wenig fortgeschritten Sie ist aber von Interesse, weil sie z B im Hinblick auf die Erfordernisse einer nachhaltigen und wirtschaftlichen Umstrukturierung der Gebäudesubstanz (Effizienzhäuser)

Abbildung 22: Plotbot/Crawler, Ausstellung BAU 2017, Forschungsinitiative Zukunft Bau

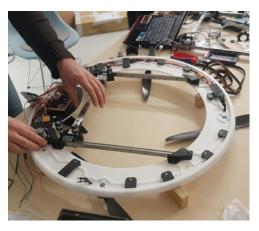
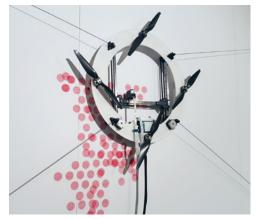



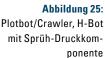
Abbildung 23: Plotbot/Crawler, mobile Basis, Konstruktion im Lab Bau Kunst Erfinden

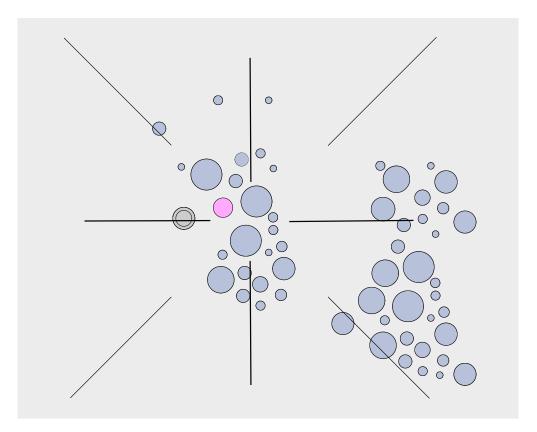
Abbildung 24: Plotbot/Crawler, mobile Basis an Testfläche

Sichtweisen Bauen im Jahr 2030

Anica Meins-Becker Bergische Universität Wuppertal, Fakultät für Architektur und Bauingenieurwesen

Zeiten für die Bau- und Immobilienwirtschaft, was Prognosen generell schwierig macht. Ich bin allerdings der Meinung, dass wichtige Themen wie nachhaltiges und ressourcenschonendes Bauen, die Digitalisierung der Prozesse und die Anwendung der Methode BIM bis 2030 weiter an Bedeutung gewinnen werden.


einen gleichermaßen konzeptuellen wie handlungsorientierten Ansatz bietet, für diesen Sektor die Potenziale einer technologieorientierten sowie flexiblen Produktion zu erschließen


In Bezug auf die Positionier- und Wiederholgenauigkeit sowie den angestrebten möglichst
flexiblen Einsatz des Plotbot/Crawlers an Fassaden unterschiedlicher Bauart, Oberfläche
und Größe hat sich das Prinzip der seilgestützten Roboterführung als am besten geeignet herausgestellt Zur Positionierung der
mobilen Basis wird diese vertikal ausgerichtet
an vier Seilen befestigt, die jeweils an den Eckpunkten der Fassade oben-links/oben-rechts/unten-links/unten-rechts bzw der zu bearbeiteten Fläche verankert sind Die Wege und Positionen sind über die Seillängen präzise steuerbar und werden durch Wind, Schlupf oder

andere mechanische Einflüsse nicht beeinträchtigt Für die Aufnahme der Funktionswerkzeuge wurde ein H-Bot im Zentrum der mobilen Basis entwickelt Dieses zweiachsiges System dient zur Werkzeugaufnahme und gezielten Steuerung und Positionierung des Funktionswerkzeugs an der Wand

Mit dem Aufbringen und der Erneuerung des DysCrete-Schichtsystems hat das Forschungsprojekt eine konkrete Anwendung als Aufgabenstellung Bei DysCrete handelt es sich um einen farbstoffsensitivierten energieerzeugenden Beton Hierbei werden Funktionsschichten, die Licht nach den Prinzipien der technischen Photosynthese in elektrische Energie umwandeln können, auf die Betonoberfläche aufgetragen - wobei manche dauerhaft mit dem Beton verbunden sind, während andere in regelmäßigen zeitlichen Abständen erneuert werden, die den üblichen Renovierungszyklen für Fassadenanstriche entsprechen Der Fassadenroboter Plotbot/Crawler eignet sich zum Auftragen dieser Funktionsschichten, lässt sich aber auch so modifizieren, dass er noch andere Funktionssysteme aufnehmen kann Die Modifikation des Plotbot/Crawlers ermöglicht die Integration verschiedener und spezifischer Funktionssysteme in die gebaute Substanz über ein Druckverfahren Als Beispiele für solche Funktionssysteme können u a gedruckte Sensorsysteme, Physical-Computing-Fassaden, Effektpigmentbeschichtungen, Fotobetonfassaden, mehrfarbige Gebäudegrafiken, Leitsysteme, lichtreflektierende oder nachleuchtende Oberflächen, dekorative Schichtsysteme sowie Versiegelungen gelten Eine weitere Modifikation des Plotbot/Crawlers ist die In-situ-Nutzung als 3-D-Drucker Diese Modifikation ist beispielsweise dazu geeignet, geometrisch komplex gebaute Substanz historischer Gebäude in situ zu erneuern (Sandstein- oder Ziegeldruck)

Abbildung 26: Plotbot/Crawler, Zeichnung

Gesucht sind Lösungen, die einerseits diese Potenziale ausschöpfen und gleichzeitig die besonderen Erfordernisse des Bauwesens berücksichtigen Das Forschungsvorhaben bietet in dieser Hinsicht einen eigenständigen und zugleich exemplarischen Ansatz Neuartig und von Vorteil ist die additive Zusammenführung bzw die eindeutige Schnittstellendefinition des Verbunds von "Hightech" (Plotbot/Crawler) und "Lowtech" (Fassadenelement)

Das System Plotbot/Crawler erfüllt die Anforderung, die sich aus der Analyse der Strategie Industrie 4 0 an Robotiksysteme ergeben Das projektierte System ist vergleichsweise kompakt und mobil Es nutzt in neuartiger Weise Sprüh- und Drucktechniken, denen aufgrund ihrer Effizienz und vielfältigen Anwendungspotenziale eine wachsende Bedeutung für die Materialforschung und das Bauwesen zukommt Der Prototyp P2 wurde im Januar 2017 erstmals auf der BAU 2017 - Weltleitmesse für Architektur, Material und Systeme am Stand der Forschungsinitiative Zukunft Bau präsentiert und unter Realbedingungen getestet Der Prototyp P3 wird im Februar 2018 auf der bautec Berlin gezeigt

Eckdaten

Plotbot/Crawler

Forscher:

Forschungsplattform BAU KUNST ERFINDEN, Universität Kassel, www baukunsterfinden org Prof Heike Klussmann Thorsten Klooster (Projektleitung) Roman Polster, Jan Juraschek Nils Kühn, Christian Wagner

Projektunterstützung:

KENNWERT, www kennwert com

Digital Hut

Entwurf und Produktion eines "Minimalhaus-Prototyps" unter Einsatz digitaler Technologien in der Entwicklung und Fertigung

Prof. Julian Krüger, Hochschule Wismar, Prof. Hans Sachs, Hochschule Ostwestfalen-Lippe

Vor dem Hintergrund der rasanten Entwicklungen und Verbreitung digitaler Technologien sind wir in Zukunft mehr und mehr herausgefordert, gesellschaftliche, wirtschaftliche und politische Strategien neu zu formulieren In zunehmend kürzeren Intervallen öffnen sich immer größere Spielräume für innovative Konzepte in der Interaktion von Menschen und Objekten, der intelligenten Automatisierung und Individualisierung in der Produktion Ziel des Forschungsprojektes war der Entwurf und die Produktion eines "Minimalhaus-Prototyps" unter Einsatz digitaler Technologien in der Entwicklung und Fertigung

In dem mehrphasigen Projekt wurden digitale Produktionsmethoden eingesetzt, um ein variables und reduziertes Leichtbausystem zu entwickeln, das durch den Nutzer selbst ohne den Einsatz aufwendiger Werkzeuge konfiguriert (per App) und errichtet werden kann Durch Einsatz innovativer Materialbearbeitung und Nutzung nachhaltiger Baustoffe in Kombination mit einem adaptiven Raumkonzept wurde insbesondere versucht, die Anforderungen einer mobilen und vernetzten Gesellschaft zu

erfüllen Hierbei geht es vorwiegend um die Verbindung von (Software-)Schnittstellen: die Kollaboration der Nutzer (Prinzipien der "Open Innovation" und "Mass Customisation"), die lokale, digitalisierte Fabrikation und die individuell angepasste Gestaltung/Produktion von hochwertigen Räumen

Die Digital Hut ist ein experimenteller Baukasten für die digitale Gebäudeplanung Das Bausystem befindet sich in einem permanenten Prozess der Verwandlung, da die Nutzer wichtiger Teil des Entwicklungsprozesses sind Durch die hohe Adaptivität ergibt sich eine große Anzahl von Einsatzmöglichkeiten, wie z B die Nachverdichtung von ungenutzten Stadträumen oder auch der Einsatz für temporäre Bauten als Impulsgeber für nachhaltige und innovative Architektur

Auf Basis verschiedener Testreihen im Bereich der Form-Programmierung bestimmter Halbzeug-Materialien wie Holzplatten und Kompositplatten wurden individualisierbare, einfach fügbare bzw steckbare Konstruktionssysteme getestet und entwickelt Diese adaptiven Konstruktionssysteme bilden den Kern für das Bausystem Digital Hut Sie sind intergraler Bestandteil der Prozesskette und bildeten die Basis für den parametrischen architektonischen Entwurf – ästhetisch wie konstruktiv

Im Laufe des Projekts wurde zudem ein Storyboard entwickelt, das die digitale Prozesskette vom Kunden zum fertigen Gebäude beschreibt und dokumentiert Es zeigt den Ablauf einer fiktiven Bauaufgabe in urbanem Kontext – vom 3-D-Scan der bestehenden Bebauung bis zum DIY-Zusammenbau des generierten, vorfabrizierten Stecksystems vor Ort

Durch die immer höhere Gewichtung digitaler Werkzeuge in sämtlichen Prozessen (welche die Abwicklung und Gestaltung unseres Alltags bestimmen) werden auch sämtliche Bauprozesse automatisiert, parametrisiert, dh flexibler und vor allem digitaler In dem Konzept-Storyboard wird ein mögliches Szenario

Abbildung 27: Holzknotenpunkt M 1 : 1

beschrieben, wie das digitale Bausystem Digital Hut eingesetzt werden kann Die Fallstudie zeigt eine Baulücke bzw städtische "Leerstelle", die exemplarisch bebaut bzw nachverdichtet werden soll

Das primäre Tragsystem des Digital Hut ist eine Konstruktion aus Holz, die aus Plattenmaterial CNC gefräst, geschnitten oder ausgelasert werden kann Holz ist als nachwachsender, umweltverträglicher Rohstoff für ein nachhaltiges Bausystem besonders geeignet und bietet neben den ökologischen eine Vielzahl weiterer Vorteile wie z B die gute Verfügbarkeit, relativ geringe Kosten, die CNC-Bearbeitbarkeit und geringes Gewicht

Von zentraler Bedeutung im Entwurfsprozess war die Entwicklung eines statisch bestimmten Holzknotenpunktes, der die Stabilität des Digital Hut gewährleisten kann und zudem einfach zu montieren ist Eine wichtige Maßgabe war hierbei, dass die Verbindung der einzelnen Holzteile ohne zusätzliches Werkzeug und Verbindungsmaterial möglich ist, um einen einfachen und intuitiven Aufbau zu gewährleisten

Der Prototyp des Digital Hut wurde als Fragment eines Gebäudes im Maßstab 1:1 konzipiert, welches auf dem Messestand des BBSR auf der BAU 2017 in München präsentiert wurde Alle fundamentalen Komponenten (Dach/Wand/Boden/Öffnung) einer Behausung wurden exemplarisch durch den Prototyp gezeigt, um einen räumlichen Eindruck des digitalen Holzbausystems zu vermitteln

Die Auflösung der Grenzen zwischen den Disziplinen Architektur, Design, Informationstechnologie, Management, Produktentwicklung sowie der Materialwissenschaft spielte bei der Entwicklung des Forschungsprojektes Digital Hut eine Schlüsselrolle

Der realisierte 1:1-Prototyp und die beschriebene Prozesskette des Digital Hutzeigen einen grundlegenden Ansatz für die Entwicklung eines digitalen Bausystems, das unter dem Einsatz einer umfassenden Vernetzung und Automatisierung sämtlicher Entwicklungs- und Fertigungsprozesse die aktuelle Praxis der Entwicklung, des Baus und der Nutzung bzw Steuerung eines Gebäudes von Grund auf infrage stellt und aus der Perspektive einer digitalen, intelligenten Steuerung der Prozesse konzeptionell neu entwickelt

Abbildung 28: Gefaltete Schindeln aus Aluminiumkompositmaterial

Abbildung 29: Gelasertes Text-Modell M 1:20

Eckdaten

Digital Hut

Forscher:

Hochschule Wismar Prof Julian Krüger

Hochschule Ostwestfalen-Lippe Prof Hans Sachs

Entwicklung und Ausrichtung der BBSR-Forschung zur Digitalisierung und zu BIM

Sebastian Goitowski, Bundesinstitut für Bau-, Stadt- und Raumforschung

Die Digitalisierung hat sich in den letzten Jahren zu einem omnipräsenten Schwerpunkt für alle mit dem Bauen verknüpften Disziplinen entwickelt Dieser Effekt ist u a der Popularität der Methodik BIM — Building Information Modeling geschuldet, die häufig als Synonym mit der Digitalisierung des Bauwesens gesetzt wird Auch im wissenschaftlichen Bereich ist ein Anstieg der Forschungsaktivitäten messbar Umso wichtiger ist die synergetische Verknüpfung dieser Aktivitäten für eine zielgerichtete Beforschung des digitalen Themenkomplexes

Das Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) als Ressortforschungseinrichtung des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) betreibt sowohl Eigenforschung als auch Forschungs- und Förderprogramme auf den Gebieten des Bauwesens sowie der Raumund Stadtentwicklung Die Beforschung von Bauthemen im Rahmen der Forschungsinitiative Zukunft Bau zeigt in den letzten fünf Jahren ein stetiges Wachstum des Forschungsbedarfs auf dem Gebiet der Digitalisierung vor allem in Bezug auf BIM seitens der Praxis und zunehmende Forschungsaktivitäten durch wissenschaftliche Institutionen Quantifizierbar ist dies vor allem mit dem Anstieg der Anzahl an Anträgen mit digitalem Hintergrund respektive BIM auf über 10 % der eingegangenen Anträge je Antragsrunde Auch die Anzahl der beauftragten Forschungsvorhaben durch das BMUB für den öffentlichen Hochbau hat in diesem Bereich zugenommen So stehen beispielsweise die Etablierung digitaler Prozesse, Identifizierung der Potenziale durch die Anwendung von BIM, Datendurchgängigkeit und -austausch sowie die sinnvolle Unterstützung durch Softwarelösungen und -umgebungen verstärkt im Fokus

Durch die Einbettung des BBSR in das Bundesamt für Bauwesen und Raumordnung (BBR), das für die Abwicklung von Bundesbaumaßnahmen zuständig ist, findet eine enge Rückkopplung zwischen dieser Forschung mit dem in den Bauabteilungen vorhandenen Praxisbedarf statt So werden derzeit die aktuellen BIM-Pilotprojekte des BMUB durch Forschungsvorhaben des BBSR wissenschaftlich begleitet und unter den Gesichtspunkten von Planung, Ausführung und Betrieb ausgewertet Zudem werden in weiteren Studien gezielt Anwendungsfälle untersucht, die sich schrittweise auf Grundlage des bauteilorientierten Ansatzes als digitale Teilprozesse integrieren lassen Hierzu sollen sukzessive die notwendigen Rahmenbedingungen geschaffen werden Darunter ist z B die Mengenermittlung und automatisierte Erstellung von Leistungsverzeichnissen anhand von Bauwerksinformationsmodellen zu nennen sowie die Nutzung der BIM-Methode für die Nachhaltigkeitsbetrachtung Die Erkenntnisse dieser Forschungen fließen direkt in die laufenden und zukünftigen BIM-Pilotprojekte des BMUB ein und können als Orientierung für andere öffentliche und nicht öffentliche Baumaßnahmen genutzt werden

Abbildung 30: Der Forschungsbedarf auf dem Gebiet der Digitalisierung steigt stetig

Abbildung 31: Ziel des BIM-Dialogs: die Vernetzung von Forschungseinrichtungen und Praxis

Durch die Auftragsforschung im Zusammenspiel mit dem breiten Spektrum an Forschungsanträgen zum Thema Digitalisierung des Bauens steht der Forschungsinitiative Zukunft Bau das Potenzial für eine umfassende und zielgerichtete Beforschung der Digitalisierung und insbesondere BIM im Sinne des öffentlichen Hochbaus und des deutschen Bauwesens zur Verfügung Zur effektiven Nutzung dieses Potenzials und der zielgerichteten Forschungskoordinierung wurde die Entwicklung eines Masterplans beauftragt

Ziel des Forschungsvorhabens ist die Entwicklung des Masterplans zur Unterstützung des BBSR bei der Forschungskoordinierung und die strategische Begleitung hinsichtlich seiner Ausrichtung in Fragen zu BIM und Digitalisierung Zudem soll der Masterplan als Leitlinie für eine konsistente Beforschung der Digitalisierung seitens potenzieller Forschungsnehmer des BMUB und BBSR dienen

Die Grundlage für die Studie bildet die Betrachtung der bisherigen Forschung in Deutschland und ihrer Ergebnisse sowie die aktuellen Entwicklungen und Tendenzen hinsichtlich des kurz- und mittelfristigen Forschungsbedarfs in Deutschland Hierzu wird ein wissenschaftlicher BIM-Dialog unter Federführung des BBSR etabliert Dieser soll als regelmäßig stattfindende Veranstaltung zu einer verstärkten Vernetzung der Hochschulen und Forschungseinrichtungen mit der Praxis zum Thema Digitalisierung und BIM führen, um so den Austausch von aktuellen Forschungsbedarfen, -vorhaben, -ergebnissen und -erfahrungen zu fördern und die Bildung eines gemeinsamen BIM-Verständnisses sowie die Verzahnung der Forschung zu unterstützen

Der wissenschaftliche BIM-Dialog soll drei- bis viermal jährlich bis 2019 tagen und mit zum Teil

wechselnden Experten zu verschiedenen Themenschwerpunkten besetzt werden Erste Ergebnisse werden bereits als Orientierungshilfe für Antragsteller in kommenden Antragsrunden der Forschungsinitiative Zukunft Bau erwartet

Für eine zielgerichtete, synergetische Beforschung des digitalen Themenkomplexes, die zu einer Reduzierung von Redundanz und somit effektiven Nutzung der Forschungsressourcen und -kapazitäten führt, ist die verstärkte Vernetzung der Akteure der Wissenschaft und der Baupraxis nach dem Vorbild des kollaborativen und kooperativen Ansatzes der BIMMethode eine Chance, die wahrgenommen werden sollte Der im Rahmen des Forschungsvorhabens "BIM-Masterplan" stattfindende wissenschaftliche BIM-Dialog im BBSR bietet Interessierten eine mögliche Plattform, um sich am Austausch zur Forschungsausrichtung der Baudigitalisierung zu beteiligen

Eckdaten

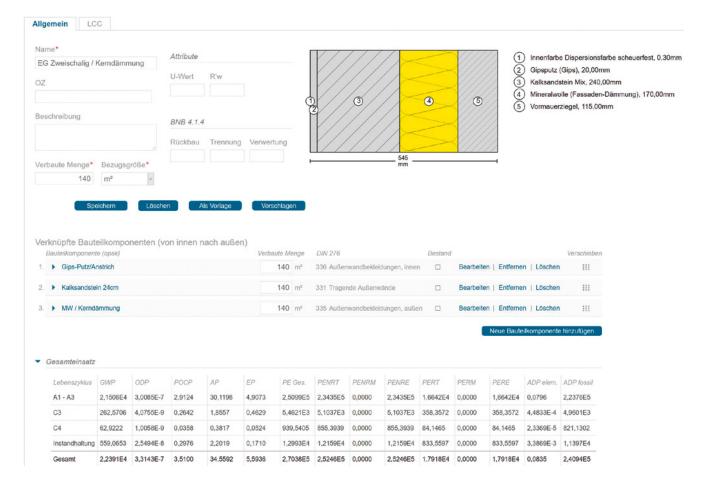
BIM Masterplan

Forscher:

Leibniz Universität Hannover, Bauhaus-Universität Weimar

Prof Katharina Klemt-Albert (Projektleitung)

eLCA – Neue Schnittstelle zur EnEV-Berechnung ergänzt den digitalen Workflow in der Gebäudeplanung


Stephan Rössig, Bundesinstitut für Bau-, Stadt- und Raumforschung

Neue digitale Schnittstelle schafft Synergien und reduziert den Aufwand für die Bestimmung der Umweltwirkungen eines Gebäudes erheblich.

Die Ökobilanzierung, auch Lebenszyklusanalyse genannt, ist das Instrument zur Ermittlung der globalen Umweltwirkungen (z B graue Energie) von Gebäuden Im Gegensatz zu den klassischen Nachweisen werden hier zusätzlich die aus der Materialität resultierenden Umweltwirkungen in die Bilanzierung einbezogen

Abbildung 32: eLCA Bauteilvorlage

Die Dateneingabe der detaillierten Bauteilaufbauten wurde in eLCA bereits sehr anwenderfreundlich realisiert Jedoch muss fast jeder am Projekt beteiligte Fachplaner das Gebäude für seine Planungsleistung neu erfassen, da die Durchgängigkeit in der Datenverarbeitung, wenn überhaupt, nur eingeschränkt gegeben ist Die aktuelle Version von eLCA setzt genau an diesem Punkt an und integriert über eine neue Schnittstelle die Gebäudeökobilanzierung in den digitalen Workflow der Bauplanung Sie ermöglicht nun die Weiterverarbeitung der bereits für den EnEV-Nachweis erfassten Daten als Grundlage für eine Gebäudeökobilanz Diese Synergie reduziert den Arbeitsaufwand einer Gebäudeökobilanz erheblich Nach der Entwicklung und Erprobung in einem Pilotprojekt mit der Firma BKI steht diese Möglichkeit des Datentransfers nun allen interessierten Softwareherstellern frei zur Verfügung

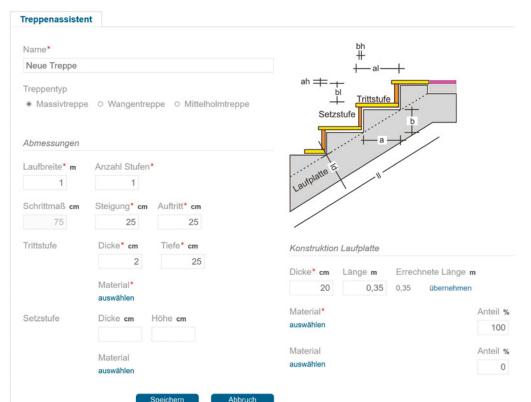


Abbildung 33: eLCA Bauteilassistent für das Modellieren von Treppen

Ökobilanzierung für Gebäude, Definition

Die Ökobilanz für Gebäude quantifiziert und qualifiziert die globalen Umweltwirkungen, die das Errichten und Nutzen eines Gebäudes über den Bilanzierungszeitraum von 50 Jahren verursachen Zu berücksichtigen ist der Einsatz, der für den Bau verwendeten Baustoffe sowie die in der Nutzung anfallenden Energiemengen bezogen auf den jeweiligen Energieträger Hierbei sind diese Prozesse über den gesamten Lebenszyklus (Herstellung, Instandhaltung, Nutzung und Entsorgung) in Abhängigkeit zur Nutzungsdauer abzubilden Die erfassten Daten werden dann hinsichtlich der Nachhaltigkeitsaspekte analysiert, mit dem Ziel, eine gute Gebäudequalität mit möglichst geringen Belastungen für die Umwelt zu erreichen

eLCA, Bauteile modellieren

Die Kernkomponente in eLCA bildet der sogenannte Bauteileditor Der Bauteileditor ermöglicht dem Anwender die sehr einfache Erfassung aller Projektbauteile Zur Kontrolle der Eingaben steht dem Anwender eine dynamische Grafik zur Verfügung Diese Grafik zeigt das sich in der Bearbeitung befindliche Bauteil in einem eigenen Kontrollfenster an Alle in einem Bauteil erfassten Materialschichten werden mit den dazugehörigen Materialstärken, mit Schraffur und Füllmuster maßstäblich abgebildet und ermöglicht so eine sofortige visuelle Kontrolle der Eingabe

eLCA, Bauteilvorlagen

Um dem Nutzer den Einstieg in die Welt der Ökobilanzierung von Gebäuden so leicht wie möglich zu machen, hält eLCA eine Auswahl an vorgefertigten Bauteilen als sog öffentliche Bauteilvorlagen vor Diese Bauteilvorlagen können einfach in ein Projekt übernommen werden Projektspezifische Anpassungen im Bauteilaufbau sind jederzeit einfach und nachvollziehbar möglich Zusätzlich kann jeder Anwender die vorhandenen Bauteilvorlagen durch eigene Konstruktionen ergänzen

eLCA, Variantenvergleich

Für die Optimierung eines Gebäudemodells steht dem Anwender ein Variantenvergleich zur Verfügung Schnell können einzelne Materialschichten ausgetauscht und der daraus resultierende Einfluss auf das Gebäude analysiert werden

eLCA, Assistenten

In der praktischen Anwendung hat sich gezeigt, dass es Bauteile gibt, die sich nicht so einfach modellieren lassen, wie man es von den Standardbauteilen gewohnt ist Um auch diese Bauteile vollständig erfassen zu können, bietet eLCA spezielle Assistenten an, die den Nutzer bei der Erstellung unterstützen Die notwendigen Materialinformationen werden in speziellen Formularen abgefragt und durch Beispiel-

Prof. Thomas Auer
Lehrstuhl für Gebäudetechnologie und klimagerechtes
Bauen an der Fakultät für
Architektur der Technischen
Universität München (TUM)

Aufladen von geometrischen mit semantischen Informationen und einer Integration logischer Verknüpfungen (Skripting) hat das Potenzial, Bauen stärker zu industrialisieren mit dem Ziel einer echten "mass customization". Dies wird auch digitalen Produktionsprozessen Vorschub leisten.

Bilanzierungszeitraum:

Bezugsfläche (NGF):

Hinweis:

Diese Projektvariante enthält 1 Baustoffe mit einer abweichenden Nutzungsdauer.

Benchmarksystem

BNB - BN_2015

Gesamt INKL. A1 - A3, B6, C3, C4

Indikator Einheit Gesamt / m²NgFa Zielwert BNB Benchmark
GWP kg CO2-Äqv. 10,4599970865 100,00

100.00

100.00

100,00

40.00

60.00

6.62

100.00

Abbildung 34: Einblendung der Richtwerte der relevanten deutschen Zertifizierungssysteme des Nachhaltigen Bauens als Vergleichsmaßstab

POCP

PE Ges

PENRT

PERT

KSB 1.2.1

AP

EP

skizzen ergänzt Aktuell bietet eLCA diese Assistenten für das Modellieren von Fenstern,

Treppen, Stützen und Streifenfundamenten an

0.0296325430

kg Ethen-Äqv. 3,8432551215E-3

kg PO4-Äqv. 2,7782943158E-3

kWh 46.914709645218

kWh 36 084821998899

kWh 10.829887646319

ka SO2-Äav.

Synergien nutzen, digitaler Workflow ergänzt

Viele der für eine Gebäudeökobilanz benötigten Daten (Wandaufbauten in Materialschichten mit den dazugehörigen Flächen) bilden auch die Grundlage des verpflichtenden EnEV-Nachweises und wurden in diesem Zusammenhang bereits erhoben Um diesen Aufwand nicht erneut unter dem Aspekt der Ökobilanz betreiben zu müssen, wurde über eine Schnittstelle die weitere Verwendung dieser bereits erfassten Daten realisiert Die für die EnEV-Berechnung erfassten Daten können so an die Ökobilanzierungssoftware eLCA übergeben werden und stehen unmittelbar zur weiteren Bearbeitung bzw Auswertung zur Verfügung

EnEV2eLCA

Nach einem initialen Projektimport ordnet eLCA die aus der EnEV-Berechnung übergebenen Materialdatensätze automatisch den entsprechenden Ökobilanzdatensätzen zu Nicht automatisch zuordenbare Datensätze werden farblich hervorgehoben und sind komfortabel über den bekannten eLCA-Auswahldialog projektspezifisch zu ergänzen Nach der erfolgten Materialzuweisung wird der abschließende Projektimport gestartet eLCA erstellt auf Basis dieser Daten ein Projekt mit allen übergebenen Bauteilen der KG 300, den Haustechnikkomponenten der KG 400 sowie den Energiedaten für den Gebäudebetrieb

Die Bauteile werden der bekannten eLCA-Struktur (in Anlehnung an die DIN 276) zugeordnet und stehen dem Nutzer schichtengenau zur weiteren Bearbeitung bzw Bewertung zur Verfügung Die eLCA-Bauteilgrafiken werden automatisch erzeugt und dokumentieren anschaulich das Importergebnis Alle weiterführenden Bearbeitungsschritte können, wie gewohnt, einfach und uneingeschränkt in dem eLCA-Modell durchgeführt werden Sollten Bauteile über diesen Workflow nicht erfasst worden sein, können diese wie gewohnt, z B über die integrierten Bauteilvorlagen, ergänzt werden

Einordung der Ergebnisse, Benchmark

Die für ein Gebäude errechneten Ergebnisse sind für den ungeübten Anwender nicht einfach zu interpretieren Um dem Nutzer dennoch eine schnelle Einordung seiner Ergebnisse zu ermöglichen, können im eLCA die Richtwerte der relevanten deutschen Zertifizierungssysteme des nachhaltigen Bauens als Vergleichsmaßstab eingeblendet werden

Mit dem hier vorgestellten Workflow wird die arbeitsaufwendige und komplexe Erstellung einer Gebäudelebenszyklusanalyse nochmals erheblich vereinfacht Der zeitaufwendige Prozess der Zusammenstellung und Erfassung von Bauteilen mit den dazugehörigen Flächen konnte über die Weiterverwendung der bereits im EnEV-Nachweis vorhandenen Gebäudedaten erheblich reduziert werden

Mit der Integration der Lebenszyklusanalyse in den digitalen Workflow der Gebäudeplanung unterstützt der Bund die Vereinfachung und weitere Verbreitung der Gebäudeökobilanz und Nachhaltigkeitsbewertung Mit eLCA stellt der Bund allen interessierten Nutzern ein frei zugängliches Ökobilanzierungstool für Gebäude zur Verfügung

Initiative "Effizienzhaus Plus" – Sieben Jahre Plus!

Petra Alten, Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Bauen der Zukunft

Der verantwortungsvolle Umgang mit Ressourcen und der Schutz des Klimas ist eine zentrale gesamtgesellschaftliche Aufgabe Ein wichtiger Ansatzpunkt hierbei ist das Thema Energieeffizienz In besonderer Verantwortung steht im aktuellen Umweltbericht der Vereinten Nationen der sich bis 2060 weltweit im Durchschnitt fast verdoppelnde Gebäudebereich Es gilt die hier bereits heute großen Einsparpotenziale beim Energieverbrauch (36 %) und bei den ${\rm CO_2}$ -Emissionen (39 %) auszuschöpfen

Initiative "Effizienzhaus Plus"

Deutschland bekennt sich zur Klimaneutralität Gesucht werden hochenergieeffiziente Gebäudestandards, um das Pariser Klimaschutzabkommen einzuhalten

Die Initiative "Effizienzhaus Plus" des Bundesbauministeriums verfolgt seit 2011 das Ziel, Gebäudestandards zu entwickeln, die den energetischen Anforderungen zukunftsgerechten Bauens entsprechen Ein Effizienzhaus Plus erwirtschaftet mehr Energie, als es für seinen Betrieb

Abbildung 35: Entwicklung in Zahlen und Fakten benötigt Es entspricht den energetischen Anforderungen zukunftsgerechten Bauens Da davon auszugehen ist, dass in Deutschland nicht alle Gebäude die gebäudebezogenen Klimaschutzziele 2050 erreichen werden, dient ein Effizienzhaus Plus gleichzeitig auch als Kompensationsmaßnahme auf dem Weg zur Klimaneutralität im Gebäudebereich ab 2050 Das Bundesbauministerium unterstützt die Verbreitung dieses klimagerechten Gebäudestandards gezielt mit einer klaren Definition des "Effizienzhaus Plus"-Gebäudestandards, mit Förderprogrammen sowie mit der kostenlosen Bereitstellung des "Effizienzhaus-Plus"-Rechners zur standardisierten Bewertung eines Effizienzhaus Plus

Bundesmodellvorhaben "Effizienzhaus Plus" in Berlin

Diese Unterstützung lohnt sich Das Fraunhofer-Institut für Bauphysik (IBP) prognostiziert bei einem 15%-Marktanteil von "Effizienzhaus Plus" im Neu- und Altbau jährliche $\rm CO_2$ -Einsparpotenziale ab 2030 in Höhe von 6 Mio $\,$ t/a und ab 2050 bis zu 14 Mio t/a Das entspricht 2030 einem Anteil von 8% und ab 2050 einem Anteil von 33% an den Zielen des nationalen Klimaschutzplans

Geleitet von diesen hoffnungsvollen Zahlen läuft die Initiative "Effizienzhaus Plus", die Bundeskanzlerin Angela Merkel 2011 ins Leben rief, auch in den nächsten Jahren weiter Vor sieben Jahren legte sie mit der Eröffnung des

ersten bundeseigenen "Effizienzhaus Plus"-Forschungs- und Modellvorhabens in Berlin, den Grundstein für die Erforschung dieser innovativen Gebäudegeneration

Dabei wurde der Standort des ersten "Effizienzhaus Plus"-Prototyps gut gewählt Es handelt sich um den ursprünglichen Gründungsstandort der Technischen Universität Berlin an der heutigen Wissenschaftsachse Berlin City West Inzwischen überprüften zwei Testfamilien das mit dem Goldstandard nach dem Bundesbewertungssystem "Nachhaltiges Bauen" zertifizierte Modellvorhaben auf seine Praxistauglichkeit Wissenschaftlich begleitet durch das Fraunhofer-Institut für Bauphysik (IBP) und das Berliner Institut für Sozialforschung bewies das Gebäude in diesen Zeiten, dass es alle gestellten Anforderungen erfüllt Ohne Verzicht auf Ästhetik und Lebensqualität zeigte das Haus beispielhaft, dass es mehr ist: innovatives Kleinkraftwerk, intelligenter Energiemanager, 24-Stunden-Tankstelle, wertvolles Ressourcendepot und attraktive Wohlfühloase Neben den Testfamilien besuchten über 30 000 Interessierte das Leuchtturmmodell der Zukunft

Netzwerk "Effizienzhaus Plus"

Aus dem Leuchtturmprojekt des Bundes in Berlin erwächst seit 2011 das Netzwerk "Effizienzhaus Plus" Es bündelt die durch den Bund geförderten "Effizienzhaus Plus"-Modellvorhaben im Wohnungsbau, im Bildungsbau und

Abbildung 36: Informations- und Kompetenzzentrum für zukunftsgerechtes Bauen (IKzB)

Abbildung 37: Zeitstrahl Effizienzhaus Plus

im Quartier sowie die "Effizienzhaus Plus"-Forschungsaktivitäten im Ausland wie z B in Japan und Tschechien Es vermittelt vielfältige Erkenntnisse zu diesem Gebäudestandard über eine Internetseite und einen Newsletter und bietet über 150 Partnern aus Wissenschaft, Wirtschaft und Planung sowie Handwerk einen zeitnahen Wissensaustausch über gewonnene Erkenntnisse aus den Modellvorhaben Das Netzwerk wirbt mit einer Vielfalt von zum Teil prämierten baulichen Konzepten, dass Energieeffizienz und anspruchsvolle Baukultur keinen Widerspruch darstellen müssen Es beinhaltet auch Erkenntnisse aus weiteren Begleitforschungsvorhaben zum Bauen im "Effizienzhaus Plus"-Standard des Bundesbauministeriums

Informationsangebote im Internet

www forschungsinitiative de/effizienzhaus-plus/

www effizienzhaus-plus-rechner de/

www bauen-der-zukunft de

Sebastian Otto
Referat BI 1 – Allgemeine
Angelegenheiten des
Bauwesens,
Bundesministerium für
Umwelt, Naturschutz, Bau
und Beaktorsicherheit

■ Die Digitalisierung hält in alle Prozesse des Planens und Bauens Einzug. Ein kooperatives Miteinander aller Beteiligten setzt sich immer mehr durch. Effizienzsteigerungen u. a. durch höhere Planungsqualität und weniger Medienbrüche werden sowohl in der Planung wie auf der Baustelle erzielt.

Informations- und Kompetenzzentrum für zukunftsgerechtes Bauen

Anhaltend hohe Nachfragen nach Informationen zum "Effizienzhaus Plus"-Standard und Besichtigungsanfragen dieser neuen Gebäudegeneration erforderten vom Netzwerk einen festen baulichen Standort Ab 2017 wurde der Bundesprototyp in Berlin in ein Informationsund Kompetenzzentrum für zukunftsgerechtes Bauen umgebaut In den nächsten Jahren besitzt das Netzwerk somit eine gebaute Dialogund Informationsplattform in einem "Baudenkmal" der "Effizienzhaus Plus"-Häuser An dieser Stelle soll sein Standort als "Thinktank" verstärkt zur Diskussion über nachhaltiges, klimagerechtes Bauen anregen und mit wissenschaftlich fundiertem Informationstransfer den Dialog zum Bauen der Zukunft versachlichen

Das barrierefreie, zweigeschossige Gebäude steht mit 130 m² auf zwei Gebäudeebenen, einem überdachten Vorbereich mit Lademöglichkeiten für Elektromobile (Auto, Fahrrad) und einem großzügigen Gartenbereich mit Terrasse sowohl für bundeseigene als auch für externe Veranstaltungen zur Verfügung Das voll möblierte und mit Konferenztechnik ausgestattete Gebäude ermöglicht ein vielfältiges Veranstaltungsangebot mit Einblicken in die Bauforschungsinitiativen "Effizienzhaus Plus" und Zukunft Bau Ergänzend erwarten Interessierte Führungen, Tagungen, Ausstellungen und Veranstaltungen sowie Webinare zum zukunftsgerechten Bauen Darüber hinaus informiert das Informations- und Kompetenzzentrum für zukunftsgerechtes Bauen auch über weitere aktuelle baupolitische Themen wie z B über den Wettbewerb "RE:frame Energieeffizienz - Neue Ideen für klimafreundliche Gebäude"

https://www.dena.de/themen-projekte/ projekte/gebaeude/ideenwettbewerbklimafreundliches-bauen-und-sanierenbegehrlich-machen/

Im Auftrag des Bundesbauministeriums ist das Team der ZEBAU GmbH mit der Programmgestaltung und Betreuung des Informations- und Kompetenzzentrums für zukunftsgerechtes Bauen beauftragt Das Informations- und Kompetenzzentrum für zukunftsgerechtes Bauen lädt in seine Räume im ersten "Effizienzhaus Plus" des Bundes ein, um sich aktiv am Wandel des Gebäudebereiches zu beteiligen und die notwendige Anpassung an die Klimaneutralität ab 2050 im Gebäudebereich mitzugestalten

www bauen-der-zukunft de

Informations- und Kompetenzzentrum für zukunftsgerechtes Bauen

Adresse:

Fasanenstraße 87a 10623 Berlin Öffnungszeiten: Donnerstag und Samstag von 13 00 bis 18 00 Uhr

Bitte beachten Sie geänderte Öffnungszeiten an Feiertagen

Anreise mit öffentlichen Nahverkehrsmitteln in Berlin:

Station Zoologischer Garten (Bahnlinien: U2, U9, S5, S7, S9, S75)

Weitere Informationen unter:

www bauen-der-zukunft de

E-Mail: effizienzhaus@zebau de

Tel: 040 380 384 0

Bildungsbauten im "Effizienzhaus Plus"-Standard

Arnd Rose, Bundesinstitut für Bau-, Stadt- und Raumforschung

Bildungsbauten, die die Anforderungen des "Effizienzhaus Plus"-Standards erfüllen, gehören zu den energieeffizientesten Gebäuden überhaupt Im Rahmen des Förderprogramms "Bildungsbauten im "Effizienzhaus Plus"-Standard" wird bis 2022 in elf (Teil-)Projekten untersucht, wie das Ziel der positiven Energiebilanz in der Praxis umgesetzt werden kann und welche Erkenntnisse sich aus diesen Pilotprojekten für die Planung zukünftiger Bildungsbauten ableiten lassen

Insgesamt sieben Bauherren stellen sich der Herausforderung, einen Bildungsbau zu realisieren, der jahresweise bilanziert mehr Energie produziert, als für Betrieb und Nutzung erforderlich ist Die Bandbreite der Bauaufgaben ist dabei groß und reicht vom Erweiterungsbau einer Grundschule in Giebelstadt bei Würzburg bis zum Neubau eines kompletten Fakultätsgebäudes für die Hochschule Ulm Neben einem weiteren Forschungs- und Seminargebäude (Hochschule Ansbach, Campus Feuchtwangen) nehmen zwei berufliche Schulzentren (Hockenheim und Mühldorf am Inn) und zwei Gymnasien (Kaufbeuren und Neutraubling) am Förderprogramm teil Die beiden Gymnasien haben dabei die Besonderheit, dass in einem ersten Schritt zunächst ein Erweiterungsbau errichtet wird und im Anschluss daran die Bestandsgebäude aus den 1970er-Jahren im "Effizienzhaus Plus"-Standard saniert werden Für alle Projekte ist nach Baufertigstellung ein 24-monatiges technisches Monitoring vorgesehen, um den Betrieb der Gebäude zu optimieren und das Erreichen der energetischen Ziele zu überprüfen

Gebäudekubaturen

Die wichtigsten Weichenstellungen für die energetische Performance eines Gebäudes erfolgen bereits während des Entwurfs Die beiden klassischen Parameter Ausrichtung und Kompaktheit sind für Bildungsbauten dabei von unterschiedlicher Bedeutung Die Nutzung solarer Wärmegewinne über die Fenster ist aufgrund der für den Unterricht notwendigen konstanten Lichtverhältnisse weniger ein Thema als das Verhindern einer sommerlichen Überhitzung der Räume Da ein niedriges Verhältnis der Gebäudehüllfläche zu dessen Volumen den Heizwärmebe-

darf verringert, wurden die Neubauten im Förderprogramm grundsätzlich deutlich kompakter entworfen als die entsprechende Altbebauung

Hochwertige Gebäudehüllen

Alle Projekte setzen auf hochwärmedämmende Gebäudehüllen Neben der Verwendung von Bauteilen mit niedrigen U-Werten wird darauf geachtet, Wärmebrücken soweit wie möglich zu vermeiden In Kaufbeuren und Ulm sollen für die vorgehängten hinterlüfteten Fassaden z B Abstandhalter aus GfK eingesetzt werden Neue Fassaden erhalten auch die beiden zu sanierenden Altbauten Kompromisse müssen hier lediglich im Bereich der Bodenplatten eingegangen werden, da für den Bestand nur eine innenseitige Dämmung infrage kommt

Anlagentechnik

Für die Wärmeversorgung nutzen alle Projekte Wärmepumpen zur Deckung der Grundlast, wobei durchaus sehr unterschiedliche Konzepte für deren Auslegung und Betrieb verfolgt werden Grundsätzlich lässt sich unterscheiden zwischen zentralen Systemen mit hoher Leistung und kleineren dezentralen, miteinander verschalteten Wärmepumpenanlagen Woimmer es möglich ist, wird auf lokale Ressourcen zurückgegriffen Die reversiblen Wärmepumpen der in Flussnähe gelegenen Schulen in Neutraubling und Mühldorf am Inn z B nutzen Grundwasser nicht nur als Wärmequelle, son-

Abbildung 38:

Die im Oktober 2017 offiziell eingeweihte Luise-Otto-Peters-Schule in Hockenheim ist der erste fertiggestellte Bildungsbau im Förderprogramm

Abbildung 39: Führung durch die Wärmezentrale der Luise-Otto-Peters-Schule in Hockenheim während der Einweihung am 13 Oktober 2017

dern auch für die Kühlung im Sommer Die Abdeckung von Spitzenlasten erfolgt teilweise über Nah- bzw Fernwärmeanschlüsse

Alle Projekte verfügen über kontrollierte Lüftungsanlagen Bei drei Schulen (Kaufbeuren, Neutraubling und Giebelstadt) werden die dezentralen Lüftungsgeräte mit Deckensegeln zur Heizung/Kühlung hydraulisch verschaltet Hierdurch entsteht ein neuartiges System, das mit nur einer raumweisen, in der Lüftungsanlage bereits integrierten Regelung auskommt

Nutzerstrom

Für "Effizienzhaus Plus"-Bildungsbauten wird per Definition in der Berechnung der Energiebilanz zusätzlich zu den nach EnEV bilanzierten Stromverbräuchen ein pauschaler Wert von 10 kWh/m²a Endenergie (bzw 15 kWh/m²a falls nicht ausschließlich hochenergieeffiziente Geräte verwendet werden) für den Nutzerstrom angesetzt Aufgrund der sehr unterschiedlichen Nutzungen und Ausstattungen der Projekte im Förderprogramm wurde im Vorfeld anhand der Anschlussleistungen aller Geräte für einige Gebäude der Nutzerstromverbrauch detailliert prognostiziert Für den Hochschulneubau in Ulm, der mit den Fakultäten für Elektro- und Informationstechnik sehr energieintensive Nutzungen beherbergt, ergab die Berechnung einen Ansatz von 16 kWh/m²a Für die Schulbauten liegen die Prognosen im Bereich von 10 kWh/m²a Wie sich die einzelnen Verbrauchsanteile (insbesondere der Schulküchen) in der Praxis zusammensetzen, wird Teil der Auswertung des Monitorings sein

Energieerzeugung

Alle Gebäude im Förderprogramm nutzen großflächige Photovoltaikanlagen (PV) zur Stromerzeugung Während bei den ein- und zweigeschossigen Gebäuden zum Ausgleich der Jahresenergiebilanz im Verhältnis zur Grundfläche genügend Dachfläche für PV-Anlagen zur Verfügung steht, müssen bei besonders kompakten Gebäuden zusätzliche Flächen genutzt werden Mit Ausnahme von Mühldorf am Inn, wo ein neuer Carport errichtet wird, stehen bei allen Projekten ausreichend Dachflächen auf den jeweiligen Liegenschaften zur Verfügung

Ziel: Hoher Eigennutzungsgrad

Die Projekte sind nicht darauf ausgelegt, möglichst hohe absolute Energieüberschüsse zu erzielen und in das Stromnetz einzuspeisen Vielmehr ging die Forderung nach einer mindestens ausgeglichenen Energiebilanz einher mit dem Wunsch, möglichst viel der auf der Liegenschaft generierten erneuerbaren Energie auch vor Ort zu verbrauchen Der sog Eigennutzungsgrad kann erhöht werden, indem am Tag produzierte überschüssige Energie zwischengespeichert wird Hierin gehen die Projekte unterschiedliche Wege In Ulm, Neutraubling und Kaufbeuren können Warmwasser-Pufferspeicher mit Überschussstrom beladen werden und so Energie stundenoder tageweise vorhalten In Hockenheim und Mühldorf sind große unterirdische Eisspeicher errichtet worden, die über solarthermische Absorber regeneriert werden können und die eher auf einen saisonalen Effekt ausgelegt sind

Abbildung 40: Der neue Erweiterungsbau im "Effizienzhaus Plus"-Standard verbindet die Bestandsgebäude des Jakob-Brucker-Gymnasiums in Kaufbeuren

Abbildung 41: Der Eisspeicher des Berufsschulzentrums Mühldorf am Inn während des Betoniervorgangs

Vernetzte Gebäude

Bei verschiedenen Projekten existieren günstige Voraussetzungen, um Energieüberschüsse direkt für benachbarte Gebäude zu nutzen, ohne das öffentliche Stromnetz zu belasten Bei Erweiterungsneubauten wie in Giebelstadt oder Neutraubling können grundsätzlich die Bestandsgebäude direkt angebunden werden In Feuchtwangen wird eine Vernetzung der neu entstehenden Gebäude des Hochschulcampus vorgerüstet In Ulm wird ein besonderer Weg eingeschlagen, indem eine intelligente Vernetzung mit den vor Ort bestehenden Energienetzen erfolgt: Das Gebäude nutzt den Rücklauf einer Fernkälteversorgung als Energiequelle für eine reversible Wärmepumpe Dabei wird der Rücklauf wieder heruntergekühlt, wodurch Energie eingespart wird, die in der Kältezentrale des Netzes ansonsten hätte aufgewendet werden müssen

Das Ziel, ein Gebäude zu errichten oder zu sanieren, das in der Jahresbilanz weniger Energie verbraucht, als vor Ort erzeugt wird, kann im Bereich von Bildungsbauten auf unterschiedliche Weise erreicht werden Doch auch wenn es bereits heute möglich ist, solche Gebäude mit Komponenten zu errichten, die am Markt verfügbar sind, muss für deren Planung doch in vielen Bereichen technisches Neuland betreten werden: Für die projektierten Kombinationen der Komponenten und deren technisches Zusammenspiel liegen bislang kaum übertragbare Erkenntnisse vor Die wissenschaftliche Untersuchung der Pilotprojekte im Programm "Bildungsbauten im 'Effizienzhaus Plus'-Standard" liefert daher eine wichtige Grundlage für

die Breitenanwendung neuer Energieeffizienztechniken im Bereich von Nichtwohngebäuden

Eckdaten

"Effizienzhaus Plus"-Bildungsbauten

Projekte und Monitoringteams:

Luise-Otto-Peters-Schule in Hockenheim, Monitoring: INA Planungsgesellschaft

Forschungs- und Studienzentrum Feuchtwangen Monitoring: INA Planungsgesellschaft

Berufsschulzentrum Mühldorf am Inn Monitoring: Hochschule Rosenheim

Jakob-Brucker-Gymnasium Kaufbeuren, Gymnasium Neutraubling und Grundschule Giebelstadt Monitoring: TU Dresden

Hochschule Ulm, Ersatzneubau Oberer Eselsberg Monitoring: Fraunhofer Institut für Bauphysik (IBP)

5. Kongress ZUKUNFTSRAUM SCHULE 2017

Prof. Philip Leistner, Fraunhofer-Institut für Bauphysik IBP, Stuttgart

Räume und Gebäude für Erziehung und Bildung sind in der öffentlichen Debatte unvermindert präsent Bildungsqualität und Investitionsbedarf, verpasste Chancen und versäumte Trends sorgen für Aufsehen Um die Herausforderungen der Bau- und Schulentwicklung konkret aufzugreifen, ist ein Austausch von Fachleuten und Fachwissen unverzichtbar Der Kongress ZUKUNFTS-RAUM SCHULE bietet das passende Format und adressiert die aktuellen Handlungsfelder

Die Behandlung der konkreten Gestaltungsschwerpunkte beim Schulbau setzt zweierlei voraus: eine Analyse der aktuellen Bedarfe und Bedürfnisse sowie eine strukturierte Aufbereitung dazu passender Erkenntnisse und Erfahrungen So wurde das Programm für den 5 Kongress ZUKUNFTSRAUM SCHULE entwickelt Die Einbindung aktueller Projektergebnisse, die im Rahmen der Forschungsinitiative

Für die zeitliche Aktualität sprichtz B die Eröffnung der ersten "Effizienzhaus Plus"-Schule im Rhein-Neckar-Kreis kurz vor Kongressbeginn Mit ihr beginnt die Erprobungsphase dieses innovativen Gebäudestandards "Effizienzhaus Plus" im Bereich der Nichtwohngebäude Nicht nur in puncto Energieeffizienz erweist sich eine thematische Ausweitung der Anwendungsfelder des Kongresses in Richtung Hochschulen als wertvoll Spezifische Fragestellungen wurden in diesem Jahr erstmals in das Programm integriert Der inhaltliche Kern des Kongressprogramms lässt sich mit folgenden Leitgedanken zusammenfassen:

Zukunft Bau entstanden, ist daher naheliegend

Energieeffiziente und ressourcenschonende Schulen

Allein das wirtschaftliche Potenzial energieeffizienter Schulgebäude ist bei Weitem noch nicht ausgeschöpft, auch wenn die kommunale und zugleich gesellschaftliche Bedeutung erkannt wird An der Spitze der Umsetzung steht heute der "Effizienzhaus Plus"-Standard mit einem geprüften Gewinn an Primärenergie Sie speisen eine praktikable Wissensquelle, von der andere, auch weniger ambitionierte Projekte profitieren können

Identitätsstiftende und partizipativ gestaltete Schulen

Die Verantwortung und das Bewusstsein der Architektur werden heute nicht nur bei der ästhetischen und funktionalen Schulgestaltung erwartet, mehr denn je treffen Architekten auf ein Bedürfnis nach partizipativen Entwicklungs- und Gestaltungsprozessen Deren Koordination und Moderation stellt Anforderungen auch an die urbane bzw kommunale Einbindung der Schulgebäude

Lehr- und lernförderliche Schulen

Die Erkenntnis von der Schule als "drittem Pädagogen" hat sich bestätigt und etabliert, ihre praktische Berücksichtigung bleibt jedoch eine vielschichtige Herausforderung Licht- und Luftqualität, Raumklima und Raumakustik müssen mit pädagogischen und baulichen Zielen, Inhalten und Konzepten in Einklang zu bringen sein Dabei erweisen sich Änderungen der Schullandschaft

Abbildung 42: Zum Kongressbeginn begrüßte Prof Klaus Sedlbauer die Gäste

Abbildung 43: Lother Fehn Krestas vom Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit stellte auch den zeitlichen Kongressbezug zur ersten "Effizienzhaus Plus"-Schule her

Abbildung 44: Fachspezifische Information und Diskussion in den thematischen Workshops – Kongressleiter Prof Philip Leistner moderiert den integralen Schulbau

Abbildung 45: Begegnungen und Fachgespräche sind Markenzeichen des Kongresses

infolge demographischer und pädagogischer Entwicklungen als dynamischer Begleiter Als gesellschaftlicher Maßstab und gestalterische Herausforderung steht die Inklusion mit Teilhabechancen und -möglichkeiten im Fokus

Sichere und gesunde Schulen

Von der Präventionskultur bis zur baulichen und technischen Ausstattung reichen die untrennbar erforderlichen Voraussetzungen für Sicherheit und Gesundheit in Schulen Die Priorität dieser Kategorien ist unbestritten und auch das Handwerkszeug zur praktischen Umsetzung hat sich erheblich erweitert, z B im Bereich der Schulverpflegung

Bewegungsfreundliche und sportliche Schulen

Bewegung, körperliche Aktivität und Sport benötigen mehr Beachtung und Berücksichtigung bei der Schulgestaltung, um gerade bei deutlich längerem Aufenthalt in Schulen die gesundheitliche und soziale Entwicklung zu fördern Die Dringlichkeit dieser Forderung bezieht sich sowohl auf sportpädagogisch geeignete Sport- und Schwimmhallen als auch auf weitere Bewegungsareale, wie nachhaltige Sportfreianlagen

Diese Leitgedanken trugen den 5 Kongress ZU-KUNFTSRAUM SCHULE und wurden von den fast 600 Gästen aktiv und lebendig aufgegriffen Beginnend mit Plenarvorträgen namhafter Persönlichkeiten zu verschiedenen Blickwinkeln der Bauund Schulentwicklung griffen Fachbeiträge in den drei thematischen Workshops Einzelaspekte auf und stellten konkretes Lösungswissen vor Auf der Internetpräsenz www zukunftsraum-schule de werden diese Beiträge für künftigen Austausch zur Verfügung stehen Die im Kongressformat räumlich und thematisch unmittelbar integrierte Gelegenheit, Fachgespräche an Ausstellungs-

ständen fortzusetzen, erwies sich erneut als wichtiger Bestandteil der Kommunikation für das Profil der Teilnehmerinnen und Teilnehmer Es zeigt, dass Schulplaner und -träger sowie Behörden und Unternehmen die Schwerpunkte bilden Deren durchweg positives Resümee kann als Bedarf an und Votum für die Fortsetzung des Kongresses ZUKUNFTSRAUM SCHULE gewertet werden

Nachhaltige Gestaltung von Schulgebäuden erfordert neben politischer Entscheidung und finanzieller Ausstattung ein interdisziplinäres Zusammenwirken von Nutzern und Gestaltern, Forschern und Praktikern Effiziente Gebäude und ihr Umfeld sowie Räume, die Leistung und Wohlbefinden fördern, stehen in Wechselwirkung und müssen nach wirtschaftlichen Maßstäben gestaltet werden Die aktuell diskutierte Digitalisierung wird dabei weder um die Schule noch um den Bau einen Bogen machen Es geht also um Konzepte und Lösungswege zu ihrer sinn- und wertvollen Umsetzung in die Praxis, von der auch die bekannten Handlungsfelder, wie z B Energieund Ressourcenbilanz, Inklusion u a profitieren

Eckdaten

5. Kongress ZUKUNFTSRAUM SCHULE 2017

Projektleitung:

Fraunhofer-Institut für Bauphysik IBP, Stuttgart Prof Philip Leistner

Abbildung 46: 3dTEX - Geschäumtes Abstandsgewebe

3dTEX: Textiles Leichtwandelement

Prof. Claudia Lüling, Frankfurt University of Applied Sciences

Vorfertigung und Leichtbau sind im Bauwesen wie in der Automobil- und Luftfahrtindustrie essenziell zur Steigerung von Qualität und Nachhaltigkeit Im Gegensatz zum klassischen textilen Leichtbau zeigt 3dTEX, wie durch den Transfer dreidimensionaler textiler Herstelltechnologien und im Zusammenspiel mit Verfahrenstechniken wie Schäumen textile Wandelemente mit integrierter Trag- und Dämmstruktur entstehen

Im Fokus des Vorhabens stehen Abstandstextilien, deren Eignung als verlorene Schalung zur Herstellung von Leichtwandelementen untersucht wird Abstandstextilien sind in einem Arbeitsgang gefertigte Gewebe oder Gewirke, deren Flächen untereinander durch sogenannte Polfäden in definierter Distanz verbunden sind Durch Anordnung und Abstände der Textillagen zueinander und durch die Nutzung der entstandenen Kavitäten für andere Materialien haben sie das Potenzial, Funktionen eines Außenwandelements zu übernehmen Im

Gegensatz zu klassisch rein zugbeanspruchten Membrankonstruktionen ohne klimatischen Mehrwert können Abstandstextilien dabei unter Nutzung ihrer Beanspruchbarkeit auf Zugkräfte und in Kombination mit anderen Leichtmaterialien wie porigen und druckstabileren Materialien zu einem zug- wie druckstabilen und dämmenden Materialverbund werden Sie eignen sich für die industrielle wie auch eine in-situ-Fertigung selbsttragender, wärmebrückenfreier, dämmender, ein- wie mehrschaliger Bauelemente

Zu Beginn wurden Recherchen zur Fertigung von Abstandstextilien, zur Herstellung von Schäumen und zu den potenziellen Materialitäten beider Technologien unternommen Ebenso wurden bereits existierende Anwendungen von Textilien bzw Abstandstextilien im Bereich Wandelemente im Produkt- wie Forschungsbereich recherchiert Im Produktbereich werden geschäumte Textilien derzeit für eine Variante von Big-Bags mit stabiler Au-

ßenwand für den Transport von viskosem Material verwendet Im Forschungsbereich wurde bislang das Ausschäumen von Abstandsgewirken für die Herstellung von Multimaterialelementen in Formwerkzeugen für die Automobilindustrie untersucht

Erste eigene Demonstratoren, unter Nutzung der Textilien als verlorene Schalung, wurden nach der Auswertung der Recherche in der Größe 30 cm × 30 cm ausgeschäumt Unter Verwendung marktüblicher und als Matratzenauflagen verwendeter PE-Abstandsgewirke und handelsüblicher PU-Bauschäume war das erste Ziel herauszufinden, wie sich Abstandstextilien als verlorene Schalung verhalten Dabei zeigt sich, dass der verwendete Bauschaum in seinem Ausbreitungsverhalten "faul" ist So können die Polfäden innerhalb des Abstandstextils als einfache Barriere wirken, wenn sich der Schaum in einer anderen Richtung einfacher ausbreiten kann Entsprechend drückt der Schaum nur durch die Oberfläche, wenn der Schauminnendruck im Textil zu hoch wird Gestalterisch ergeben sich Formanalogien zu pneumatisch erzeugten Architekturelementen Aufgrund ihrer Elastizität haben Abstandsgewirke dabei das Potenzial zu komplexen, dreidimensionalen Strukturen Abstandsgewebe eignen sich aufgrund ihrer wenig drapierfähigen Textilstruktur eher für planare Elemente Sie sind zudem mehrlagig produzierbar und eignen sich so auch für hinterlüftete Wandelemente

In der Zwischenbilanz zeigte sich, dass zum einen die Textiltechnologien (Gewirke oder Gewebe) und die Schäumtechnologien (mechanische, physikalische oder chemische Verfahren) in Bezug zu den als Faser- oder Schaummaterial verwendeten Werkstoffen gesetzt werden müssen Zum anderen stellen potenzielle Verfahrenstechniken zur Herstellung geschäumter Abstandstextilien eine weitere Bezugsgröße dar: Die Textilien können mit voll oder teilexpandiertem Schaum gefüllt oder es können Partikelschäume eingebasen werden Die Partikelschäume können entweder voll expandiert und verklebt oder teilexpandiert verwendet werden, um z B unter Hitzeeinwirkung final zu expandieren Entsprechend sind für letzteres eher unelastischere Gewebe geeignet, während sich für das Befüllen mit bereits expandierenden Partikelschäumen auch die elastischeren Gewirke eignen Parallel wurde zur Zwischenbilanz über eine quantitative Auswertung der recherchierten Faser- und Schaummaterialkennwerte versucht, eine potenzielle Monomaterialkombination aus Fasern und Schäumen zu definieren, die die Recyclingfähigkeit und das Brandverhalten

Abbildung 47: 3dTEX – Leichtwandelement aus geschäumtem einlagigen Abstandsgewirke

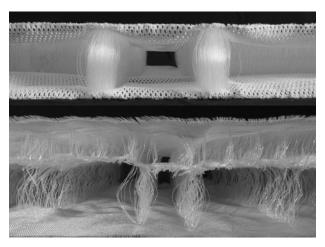


Abbildung 48: 3dTEX – Textile Schalung: oben Abstandsgewirke einlagig, unten Abstandsgewebe zweilagig

Abbildung 49: 3dTEX – Fügung über Klettverschlüsse; hinterlüftete Leichtwandelemente aus geschäumtem zweilagigen Abstandsgewebe

Abbildung 50: 3dTEX – Experimentelle Seminararbeiten FRA-UAS: Gefaltete Gebäudehülle aus teilgeschäumtem Abstandsgewirke

des angedachten Wandelements aus geschäumten Abstandstextilien erhöht

Nach Tests mit unterschiedlichen Textilgeometrien und Ort- bzw Partikelschäumen unterschiedlichen Expandierverhaltens und unterschiedlicher Materialitäten wurden speziell gefertigte textile Demonstratoren der Größe 80 cm × 80 cm geschäumt Für das einlagige Gewirke wurde versuchsweise endexpandierter EPS-Partikelschaum verwendet, für das zweilagige Abstandsgewebe PU-Ortschaum

Es wurde nachgewiesen, dass sich im Verbund mit Schäumtechnologien strukturdifferenzierte Monomaterialien und Halbzeuge mit einstellbaren mechanischen, bauphysikalischen und gestalterischen Eigenschaften ergeben Die realisierten Demonstratoren aus projektspezifisch konfektionierten, ein- und zweilagigen Abstandstextilien zeigen dabei ausgeschäumt unterschiedliche Gestaltungsoptionen je nach Abstandsgewirken wie -geweben Zudem wurden optimierte Materialkombinationen aus mineralischen Schäumen und Fasern für recycelbare Bauteile mit gutem Brandschutzverhalten evaluiert, die über programmierte Formgebungen und lichtleitende, Licht emittierende, stromerzeugende und temperaturamplitudensenkende Fasern im nächsten Schritt weiter funktionalisierbar sind

Abbildung 51: Gefaltete Gebäudehülle aus teilgeschäumtem Abstandsgewirke

Eckdaten

3dTEX

Projektleitung:

Frankfurt University of Applied Sciences Fachbereich 1: Architektur · Bauingenieurwesen · Geomatik Prof Claudia Lüling

HYBAU – Bauliche Hygiene im Krankenhaus

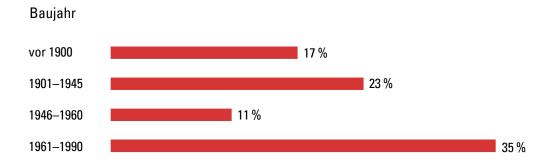
Planungsempfehlungen für die bauliche Infektionsprävention in den Bereichen der Operation, Notfall- und Intensivmedizin

Wolfgang Sunder, Technische Universität Braunschweig

Die Hygiene in Gesundheitseinrichtungen spielt eine entscheidende Rolle beim Schutz der Menschen vor Infektionen und damit schwerwiegenden Krankheitsverläufen In Krankenhäusern treffen bereits immungeschwächte Personen aufeinander und es können im Laufe des Aufenthaltes weitere Infektionserkrankungen entstehen

Im Februar 2018 erscheint im Rahmen der Schriftenreihe "Forschung für die Praxis" eine Planungsbroschüre, in der dargestellt wird, wie bauliche Strukturen in Krankenhäusern so gestaltet werden, dass sie nachhaltig infektionspräventiv auf Patienten und Klinikmitarbeiter wirken können

Jährlich werden in Deutschland ca 19,1 Mio Personen vollstationär behandelt Hiervon erkranken jährlich bis zu 600 000 Patienten an einer nosokomialen Infektion Jedes Jahr versterben daran etwa 10 000 Menschen Daraus resultiert ein enormer personeller und volkswirtschaftlicher Schaden Der infektiöse Hospitalismus wird u a auf mangelnde Hygiene und eine erhöhte Restverschmutzung auf Oberflächen, die im direkten und indirekten Kontakt zu Patienten stehen, zurückgeführt


Ein interdisziplinäres Forschungsteam mit Experten aus den Bereichen Bauwesen (Institut für Industriebau und Konstruktives Entwerfen, Technische Universität Braunschweig), Materialwissenschaften (Institut für Baustoffe, Massivbau und Brandschutz, Technische Universität Braunschweig) und Hygiene (Institut für Hygiene und Umweltmedizin, Charité-Universitätsmedizin Berlin) hat dieses Thema aufgegriffen und untersuchte seit September 2014 in dem Forschungsprojekt "HYBAU", wie baulich-funktionelle Abläufe im Krankenhaus hygienesicher optimiert, sinnvolle Materialien eingesetzt und dadurch neue Gebäudestrukturen effizient und nachhaltig gestaltet werden

Das Projekt wurde vom Bundesministerium für Bau- und Raumordnung (BBR) und der Forschungsinitiative Zukunft Bau gefördert (Kennzeichen SWD – 10 08 18 7 – 14 04) Beteiligt waren zudem Krankenhausträger, Hersteller medizinischer Geräte, Ausstatter und Planer Das Forschungsprojekt profitierte von der einzigartigen Zusammensetzung der involvierten drei Forschungseinrichtungen und der Beteiligung der weiteren Partner aus dem Krankenhausbau

Abbildung 52: Hygiene im Krankenhaus spielt eine entscheidene Rolle

Standort - Wann wurde das Krankenhaus erbaut?

Standort – Wann wurden die letzten baulichen Maßnahmen ausgeführt?

Bauliche Maßnahmen

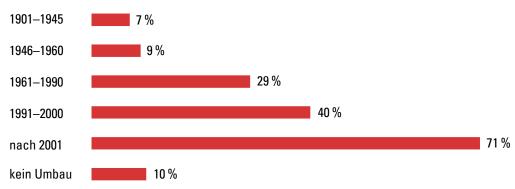


Abbildung 53: Wann wurde das Krankenhaus erbaut? Wann wurden die letzten baulichen Maßnahmen ausgeführt?

Abbildung 54: Blick in den Operationsbereich

Standort – Wo befindet sich Ihr Krankenhaus?

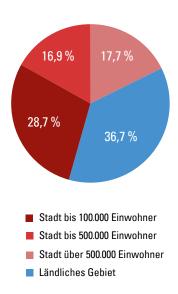


Abbildung 55: Standort Krankenhaus

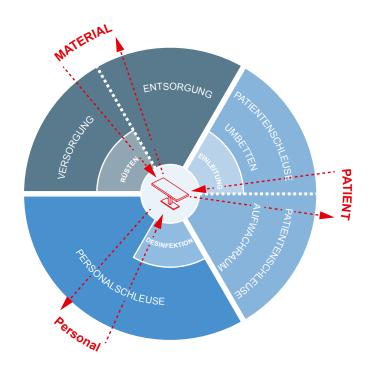


Abbildung 56: Abstufung Hygienerelevanz – möglichst separat geführte Prozesse von Patient, Mitarbeiter und Material

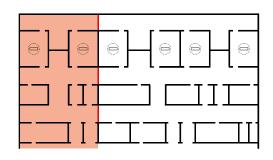
Methoden

Die in dem Forschungsprojekt angewandten Methoden konnten die Anforderungen von hygienekritischen Bereichen und Details sowie Vorschläge zu Verbesserungen von Räumen und Abläufen in den Bereichen Operation, Notfallaufnahme und Intensivstation sinnvoll erfassen und bewerten So wurden beispielsweise anhand einer breit angelegten Nutzerbefragung Anforderungen an hygienekritische Bereiche sowie Vorschläge zur Verbesserung von Räumen und Abläufen erfasst und bewertet

Zudem wurde auch eine umfangreiche empirische Untersuchung der baulichen Parameter im Rahmen des Krankenhaus Infektions Surveillance-Systems (KISS) des Nationalen Referenzzentrums (NRZ) für Surveillance der Charité Berlin durchgeführt An der Umfrage nahmen 621 deutsche Krankenhäuser teil Ziel der Umfrage war, das vorhandene Wissen zur baulichen Ist-Situation in Krankenhäusern zu sammeln, zusammenzufassen und kritisch zu bewerten

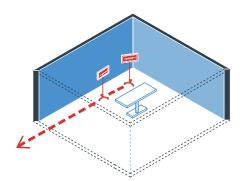
Als Ergebnis der Umfrage kann u a festgehalten werden, dass 65,4% der teilnehmenden Krankenhäuser im ländlichen Gebiet bzw in Städten mit bis zu 100 000 Einwohnern, 16,9% in

Städten zwischen 100 000 und 500 000 Einwohnern und die restlichen 17,7 % in Städten mit über 500 000 Einwohnern liegen (s Abb 55) Nach 2001 wurden, abhängig vom Baujahr, zwischen 41 % und 91 % aller Krankenhäuser baulich wesentlich verändert (s Abb 53)

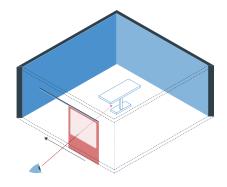

Mögliche hygienerobuste Planungsempfehlungen für Bau, Prozess und Material

Die aus der interdisziplinären Zusammenarbeit abgeleiteten Planungsempfehlungen bauen auf den im Forschungsprojekt durchgeführten Untersuchungen der Disziplinen Bau, Material und Hygiene auf Mit diesen Empfehlungen können bei der Neu- oder Umplanung der Bereiche Operation, Notfallaufnahme und Intensivstation in Krankenhäusern die baulichen Strukturen so gestaltet werden, dass sie nachhaltig infektionspräventiv auf Patienten und Klinikmitarbeiter wirken können Am Beispiel des Operationsbereichs (OP) soll im Folgenden dargestellt werden, wie die baulich-funktionale Gestaltung und der verbesserte Einsatz hygienesicherer Materialien die Hygiene in diesem Bereich unterstützen können

Wird bereits in der Planungsphase eines Krankenhauses berücksichtigt, welche Prozesse


Abbildung 57:

Temporäre Abtrennbarkeit für Häuser mit einem sehr heterogenen OP-Spektrum


Abbildung 58:

Medizintechnische Geräte zum Boden mit möglichst wenig Kontakt; fest installierte Geräte möglichst von der Decke installiert

Abbildung 59:

Türen mit Sichtfenster zur Kontrolle und Kommunikation einrichten

Sichtweisen

Helga Kühnhenrich

Leiterin des Referates II 3 – Forschung im Bauwesen, Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR)

■ Die Digitalisierung im Bauwesen wird nicht nur der Effizienzsteigerung dienen. Sie wird auch eine innovativere Architektur hervorbringen.

in einer OP-Einheit ablaufen, kann dies eine sinnvolle Raumplanung ermöglichen Bisher werden nur wenige konkrete baulich-funktionale Anforderungen an den OP gestellt, sodass diesem Defizit entgegengewirkt werden soll Der invasive Eingriff am OP-Tisch steht im Zentrum einer jeden OP und stellt ein hohes Risiko der Infektionsübertragung dar Eine separate räumliche Wegeführung für Klinikmitarbeiter, den Patienten und die Ver- und Entsorgung des Materials sollte gewährleistet sein Dabei ist zu beachten, dass die operationsnahen Bereiche eine höhere Hygienerelevanz haben als die operationsfernen (s Abb 56) Im OP-Raum sollten medizintechnische Geräte möglichst wenig Kontakt zum Boden haben und fest installierte Geräte an der Decke befestigt werden Zusätzlich sollten sich in diesem Raum so wenig Geräte bzw Instrumente wie nötig befinden Eine gesammelte externe Lagerung in der Nähe des OP-Raumes ist empfehlenswert (s Abb 57) Dadurch wird zum einen die gründliche Reinigung gewährleistet und zum anderen werden hygienische Abläufe unterstützt

OP-Räume sollten in sich abgeschlossen sein und möglichst wenige, aber ausreichend dimensionierte Türen einschließlich Durchblickfenster haben Dadurch werden Betriebsabläufe vereinfacht, die Kontrolle wird gewährleistet und hygienisches Handeln erleichtert (s Abb 59) Es ist auf eine temporäre Abtrennbarkeit und die dadurch mögliche Isolierung von OP-Bereichen für Häuser mit einem sehr heterogenen OP-Spektrum zu achten (s Abb 57) Die zuvor genannten Planungsempfehlungen müssen in die jeweiligen örtlichen Planungsgegebenheiten umgesetzt und mit den Krankenhaushygienikern abgestimmt werden Außerdem richten sich die hygienischen Anforderungen an die baulich-funktionale Gestaltung der jeweiligen **OP-Abteilung**

In Bezug auf den Materialeinsatz wurde u a das patientennahe Bauteil Boden im OP-Bereich betrachtet und folgende Anforderungen wurdendefiniert:

- Der Bodenbelag darf keine Gefahr für den Nutzer darstellen Stürze und ähnliche Gefährdungen können durch eine entsprechende Rutschhemmung des Belages vermieden werden
- Je härter ein Material ist, umso höher ist der Widerstand gegen permanente Verformungen wie Kratzer Daher sollte eine ausreichende Kratzfestigkeit erzielt werden
- Scheuerbeständigkeit beurteilt die Beständigkeit eines Materials gegen wiederholtes
 Reinigen, wobei aufgrund der hohen Reinigungsrate in OP-Räumen eine hohe Scheuerbeständigkeit anzustreben ist
- Die Materialien sollten der hohen Belastung widerstehen, ohne wesentlichen mechanischen Abrieb/Abnutzung zu erfahren Ein hoher Verschleißwiderstand ist aufgrund der hohen Belastung in OP-Räumen erforderlich
- Die Materialien sollten flüssigkeitsdicht sein.
- Bodenbeläge sollten elektrisch (ab-)leitfähig sein, um eine mögliche elektrostatische Entladung der elektronischen Geräte zu ermöglichen und somit deren Fehlfunktionen zu vermeiden
- Die oberste Schicht eines Belages sollte gegen die Einwirkung von Desinfektionsmitteln beständig sein und der Belag seine Oberflächeneigenschaften beibehalten
- Eine leichte Reinigbarkeit von Oberflächen ist essentiell für den OP-Raum Neben unbeschädigten Oberflächen (keine Kratzer, Blasenbildung) und einem minimalen Fugenanteil ist eine geringe Rauheit empfehlenswert

Das Auftreten und die zunehmende Verbreitung multiresistenter Keime und nosokomialer Infektionen in deutschen Krankenhäusern stellt ein großes Problem dar Seitens der Medizin und der Krankenhausverwaltungen wird viel zu dessen Vermeidung und Eindämmung unternommen Die räumlichen Gegebenheiten und Strukturen der Klinikbauten standen dabei bisher allerdings nicht im Fokus der Betrachtungen präventiver Maßnahmen

Es gibt aber durchaus Wechselwirkungen zwischen der Anordnung, Aufteilung und Größe der hygienerelevanten Räume bzw Bereiche eines Krankenhauses und der Gefahr des Auftretens und der Verbreitung sowie der Abwehr der krankenhausspezifischen Infektionen

Die Planung und Realisierung künftiger Klinikbauten könnte einen nennenswerten Beitrag zur Abwehr nosokomialer Infektionen leisten, wenn auf die Gestaltung hygieneoptimierter Gebäude- und Raumstrukturen größeres Augenmerk als bisher gelegt würde Bei aller notwendigen Planung eines hochkomplexen und hygienerobusten Krankenhauses darf der Architekt neben der räumlichen Gestaltung die wichtigste Funktion von Gesundheitsbauten nicht vergessen, nämlich Krankheiten der Patienten zu erkennen, zu behandeln und im Idealfall zu heilen Die Herausforderungen an die Architektur bleiben also bestehen

Eckdaten

HYBAU – Bauliche Hygiene im Krankenhaus

Forscher:

TU Braunschweig, Institut für Industriebau und Konstruktives Entwerfen (IIKE) Prof Carsten Roth, Wolfgang Sunder (Projektleitung), Jan Holzhausen

TU Braunschweig, IBMB – Institut für Baustoffe, Massivbau und Brandschutz, Prof Harald Budelmann, Inka Dreßler

Charité Berlin, Institut für Hygiene und Umweltmedizin Prof Petra Gastmeier, Andreas Haselbeck

Projektpartner:

Deutsches Kupferinstitut Berufsverband e V

Franz Kaldewei GmbH & Co KG, Ahlen

Konrad Hornschuh AG, Weißbach

Kusch+Co GmbH & Co KG, Hallenberg

Meiko Maschinenbau GmbH & Co KG, Offenburg

Objectmöbel-concept UG, Lüdinghausen

OWA Odenwald Faserplattenwerk GmbH, Amorbach

Architektengruppe Schweitzer & Partner, Braunschweig

Reiss Büromöbel GmbH, Bad Liebenwerder

Resopal GmbH, Groß-Umstadt

Saint-Gobain Glass France, Courbevoie/Aachen

Sana Kliniken AG, Ismaning

Schön Klinik Verwaltung GmbH, Prien am Chiemsee

Sika Deutschland GmbH, Stuttgart

Städtisches Klinikum Braunschweig gGmbH

Tarkett Holding GmbH, Frankenthal

Vorwerk & Co Teppichwerke GmbH & Co KG, Hameln

TN-Technologie für den Einsatz in Architekturverglasungen

Walter Haase, Universität Stuttgart

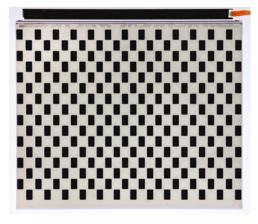


Abbildung 60 und 61:

TN-Modul in zwei unterschiedlichen Schaltzuständen: alle Pixel im Zustand "an" (rechts), 50% der Pixel im Zustand "an" und 50% der Pixel im Zustand "aus" (unten)

Für die Steuerung des Licht- und Energieeintrags in Gebäuden stehen sowohl mechanische Sonnenschutzsysteme als auch schaltbare Verglasungen auf Basis smarter Materialien mit Wechseleigenschaften zur Verfügung Die meisten kommerziell verfügbaren, schaltbaren Verglasungssysteme erfüllen jedoch die Anforderungen an Schaltgeschwindigkeit, Farbneutralität oder Temperaturunempfindlichkeit nicht optimal

Aus der Bildschirmtechnik sind Anzeigesysteme bekannt, die zur Regelung des Lichtdurchgangs und damit zur Anzeige von Bildern und Schriften die sogenannte TN-Technologie (engl "twisted nematic") nutzen Sie weisen ein extrem schnelles Umschaltverhalten von transparent zu verdunkelt bei einer vernachlässigbar geringen Farbverfälschung auf Nachteilig bei der TN-Technologie ist die im Vergleich mit anderen schaltbaren Systemen deutlich geringere maximale Transmission

Das Ziel des Forschungsvorhabens war daher die Klärung der Frage, ob sich TN-Verglasungen als Alternative zu bisher bekannten schaltbaren Systemen eignen

Um die Anwendungsmöglichkeiten der TN-Technologie in Fassadenverglasungen zu evaluieren, erfolgte zunächst die Festlegung eines geeigneten Zellenaufbaus der schaltbaren Einheit (Zelle/Modul) Esfolgte die Herstellung der schaltbaren TN-Module und deren Einbindung in eine Isolierverglasung

Durch spektrometrische Vermessung, die Bestimmung der Schaltgeschwindigkeiten und die Durchführung von Langzeitversuchen zur Ermittlung der Alterungsbeständigkeit von Kleinmustern der TN-Zellen konnten die empirischen Daten für die Bewertung der TN-basierten Isolierverglasung zusammengetragen werden Die hierfür eingesetzten TN-Module vom Typ GV66 wurden von der Firma BMG MIS GmbH hergestellt Jeder Bildpunkt dieser TN-Module lässt sich über eine eigene elektrische Zuleitung in die Zustände "an" (minimale Durchlässigkeit) oder "aus" (maximale Durchlässigkeit) schalten Eine Anzahl von 45 dieser TN-Module wurde in eine geschosshohe Raumverglasung integriert Diese Isolierverglasung kam in der Südfassade eines Raumes des Fassadentestgebäudes des Instituts für Leichtbau Entwerfen und Konstruieren (ILEK) zum Einsatz Die Ansteuerung der Verglasung basierte auf einer einfachen Temperaturregelung Es folgten empirische Untersuchungen im Testraum zur Bestimmung der Effektivität der Verglasung im Hinblick auf die Licht- und Energiedurchgangsregelung sowie die Vermeidung von Blendungen

Die entwickelte schaltbare Verglasung erlaubt es, die Funktionen Blendvermeidung und Raumhelligkeitsregelung voneinander zu entkoppeln Durch die kleinteilige Strukturierung in viele einzeln ansteuerbare Bildpunkte ist es zudem möglich, grafische Inhalte und Texte auf der Verglasung darzustellen In Sekundenbruchteilen können einzelne Bereiche der Verglasung unabhängig voneinander angesteuert werden, um damit auf schnelle Änderungen der Bestrahlungsstärke zu reagieren Dadurch wird eine gezielte

Abbildung 62:

Raumhohe Isolierverglasung mit 45 integrierten TN-Modulen Grafikdarstellung auf der TN-Verglasung (Holzschnitt "Sky and Water I" von M C Escher) Blickrichtung von außen in den Raum (ganz links)

Abbildung 63:

Abdunklungsmuster mit Gradierung von maximaler Durchlässigkeit (unten) zu minimaler Durchlässigkeit (oben) Blickrichtung von außen in den Raum

Abbildung 64: Textdarstellung auf der TN-Verglasung, Blick von innen nach außen

Sonnen- und Blendschutzfunktionalität bei bestmöglicher Gesamthelligkeit im Raum erreicht

Trotz weiterer zu lösender Aufgaben besitzt die TN-Verglasung ein großes Potenzial, um sowohl den Nutzerkomfort zu steigern als auch den Energieverbrauch zur Gebäudekonditionierung zu reduzieren Weitere diesbezügliche Untersuchungen werden derzeit unternommen mit dem Ziel einer möglichst vollständigen Bewertung des Systems in energetischer und komforttechnischer Sicht

Eckdaten

TN-Verglasungen

Forscher:

Universität Stuttgart, Institut für Leichtbau Entwerfen und Konstruieren (ILEK), Walter Haase (Projektleitung), Bürde Gültekin, Mohammed Metwally, Julian Rettig

Die Zukunft des Bauens

Interview mit Robert Kaltenbrunner

Komm. Direktor des Bundesinstituts für Bau-, Stadt- und Raumforschung, Leiter der Abt. Bau- und Wohnungswesen

Die aktuellen Debatten im Bauwesen drehen sich um die Steigerung der Fertigstellungszahlen im Wohnungsbau sowie um den Einsatz bestimmter Fertigungsmethoden wie serielles Bauen oder der Vorfertigung großer Baueinheiten. Sind dies auch die Themen, die die Zukunft des Bauens bestimmen werden?

Die derzeitige absolute Priorisierung des Neubaus halte ich, in seiner Einseitigkeit, für problematisch In der heutigen Zeit, in welcher der Umfang von Gebäudesanierungen jenen der Neubautätigkeit drastisch übersteigt, stellt sich ebenso die Frage nach der Haltung gegenüber dem Vorhandenen

Betrachtet man die angestrebten Ziele der Energiewende – hier soll bis 2050 ein nahezu klimaneutraler Gebäudebestand in Deutschland erreicht werden –, wird schnell klar, dass eine Fokussierung auf den Neubau keinesfalls ausreichen wird Aber auch der demographische Wandel erfordert zukünftig eine intensive Beschäftigung mit dem Altbau Jedoch fehlen uns Informationen über den Bestand an altersgerechten oder barrierefreien Wohnungen in Deutschland

Das Bundesinstitut für Bau-, Stadt- und Raumforschung misst daher der Auseinandersetzung mit dem Gebäudebestand zukünftig eine noch größere Bedeutung bei Wir wollen hierzu ein eigenes Forschungscluster etablieren Die Sanierungsquote dümpelt seit Jahren bei etwa 1 %. Wie wollen Sie hier eine Steigerung erreichen?

Es ist zunächst wichtig, die Sanierungstätigkeit genau zu beobachten, um dann steuernd eingreifen zu können Informationen zum Gebäudebestand haben daher eine hohe politische Relevanz

Für die Sanierungsquote gibt es jedoch keine einheitliche, verbindliche Definition Und die Sanierungstiefe selbst ist sehr unterschiedlich Es handelt sich oftmals um extrem kleinteilige Maßnahmen, sie ist von verschiedener energetischer Qualität und auf differierende Vergleichsgrößen bezogen, etwa Gebäudehülle oder Anlagentechnik Es erscheint uns unabdingbar, alsbald einen geeigneten Indikator zur Verbesserung der Energieeffizienz im Gebäudebereich für die unterschiedlichen Sanierungsintensitäten zu finden

Das BBSR hat bereits mehrfach durch umfangreiche empirische Erhebungen die Struktur der Investitionstätigkeit in den Wohnungsund Nichtwohnungsbeständen erfasst Danach betrugen die Bauleistungen an bestehenden Gebäuden im Jahre 2016 im Wohnungsbau rund 136 Mrd €, davon 38 Mrd € energetische Sanierung Im Nichtwohnungsbau wurden 58 Mrd € in die Bestände investiert, davon entfielen fast 19 Mrd € auf die energetische Sanierung Deutschlandweit bietet diese Untersuchung die einzige Quelle mit belastbaren Daten Ein Rückschluss auf die Qualität der durchgeführten Maßnahmen ist derzeit aber noch nicht möglich Wichtige Voraussetzung für ein umfassendes Monitoring des Gebäudebestandes und einer damit verbundenen erfolgreichen Steuerung der Energiewende im Gebäudesektor ist eine regelmäßige Erfassung der Daten Durch einmalige Datenerhebung erfolgt zwar eine wertvolle Momentaufnahme zum Zustand der Immobilien; diese ist aber zu ergänzen durch kontinuierliche Beobachtungen der Entwicklungstrends

Wie wird sich die Digitalisierung auf das Bauen auswirken?

Es gibt einen weitverbreiteten Vorwurf, der da lautet: In Deutschland werde oft noch geplant und gebaut wie vor 50 Jahren: mit Senkblei und Zollstock, nach Augenmaß und auf Zuruf Das mag zwar übertrieben erscheinen Dennoch steht die Frage im Raum, warum in den vergangenen zehn Jahren die Produktivität am Bau nur um 4 % zugelegt hat, im verarbeitenden Gewerbe hingegen mit 34% rund achtmal so schnell gewachsen ist Mit der Digitalisierung mag hier eine große Zukunftshoffnung verbunden sein; sie ist aber kein Selbstzweck Und die Methode der Gebäudedatenmodellierung (vulgo: BIM) stellt auch nur einen Aspekt neben anderen dar Generell besteht die Erwartung, dass eine höhere Effizienz und Transparenz zur Beschleunigung der Prozesse, zu mehr Termintreue, Kostensicherheit und -einsparung führen Zugleich muss man davon ausgehen, dass die Verfügbarkeit neuer Werkzeuge in allen Bereichen der Wertschöpfungskette Bau mittelbaren Einfluss auf Gestaltungsprinzipien und Materialwahl in der Architektur haben wird Allerdings: Bislang sind digitale Technologien und Methoden kaum im Baubereich selbst entstanden, sondern werden im Regelfall aus anderen Branchen übertragen Die Grundfrage lautet, unter welchen Voraussetzungen es möglich ist, eine höhere Bauqualität durch eine Digitalisierung der Prozesse im deutschen Bauwesen zu erreichen Dabei sollte die Erschließung neuer Effizienzpotenziale ebenso im Fokus stehen wie die Stärkung der Wettbewerbsfähigkeit und Innovationskraft des deutschen Baugewerbes Dazu gehört es auch, Fehlentwicklungen rechtzeitig zu identifizieren und Reboundeffekte, die aus einer unreflektierten Applikation digitaler Werkzeuge und Methoden entstehen können, vorzubeugen Forschungsfragen zur Digitalisierung im Bauwesen sollten also stets auf steuernde Effekte für die zukünftige Entwicklung abzielen

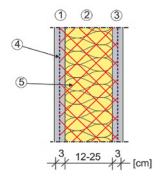
Worauf müssen wir uns zukünftig in der Gebäudeherstellung einstellen?

Über die Beschäftigung mit der Energieeffizienz wird bisher meist ein relevanter Aspekt ausgeblendet: die Ressourcenfrage Die aber ist der eigentliche Schlüssel zu einem neuen Bauen Denn das Bauen ist eine ungemein ressourcenhungrige Angelegenheit Es verschlingt nicht nur Rohstoffe, sondern auch Energie und produziert dabei auch noch reichlich Reste, die auf der Deponie landen Doch deren Kapazitä-

ten sind genauso endlich wie die globalen Rohstofflager Sand, auf den ersten Blick ein banales Material, ist schon heute in bestimmten Regionen Mangelware, was zu illegalen Abbau-Aktionen und organisiertem Sandschmuggel führt Ressourcenschonung wird künftig zum zentralen Thema, allein schon wegen der Preisentwicklung der Werkstoffe, wie unschwer an den Kosten für Stahl oder Kupfer ablesbar ist Abhilfe bietet das Recycling, doch gerade beim Bauen sind die Werkstoffe meist untrennbar miteinander verbunden oder bereits als Komposite eingebaut worden Ein stoffgerechtes und echtes Recycling, das nicht Downcycling bedeutet, ist nach dem heutigen Stand der Technik nur sehr bedingt möglich

Wie sehen Ansätze aus, das Recyclingproblem zu lösen?

Hier setzt das Konzept "Cradle-to-Cradle" (C2C) an, das allmählich in den Fokus der Gebäudeplanung rückt und im Prinzip den kontinuierlichen Kreislauf der Stoffe vorsieht – auch in der Technosphäre Das aber setzt nicht nur ein neues Denken voraus, das viele heute etablierte Standards infrage stellt, sondern es bedarf neuer Planungstools, neuer Gebäudekonzepte und vor allem neuer Bauprodukte Diese tauchen auch langsam in den Produktkatalogen auf


Das Prinzip von C2C setzt voraus, dass Produkte so konzipiert sein müssen, dass sie nicht zu Abfall werden, sondern rückführbar sind Die Hersteller sollen also Interesse daran haben, ihre Produkte wieder zurückzubekommen Neben dem Design der Produkte ist dabei die Rücknahmesystematik die Herausforderung

Großformatige energieeffiziente Fassaden aus Textilbeton mit Sandwichtragwirkung – Entwicklung von Herstellmethoden, Bemessungs- und Fügekonzepten

Ann-Christine von der Heid, RWTH Aachen

Sandwichelemente mit Deckschichten aus Stahlbeton weisen üblicherweise Schalendicken von mindestens 8 bis 9 cm auf Die ökologischen sowie energetischen Anforderungen an die Gebäudehüllen werden sich in den nächsten Jahren weiter verschärfen Dies bedeutet eine kontinuierliche Vergrößerung der Außenwandstärke durch dickere Dämmungen Um dem entgegenzuwirken, sollen dünne textilbewehrte Schalen die gängigen Stahlbetonschalen ersetzen

de jedoch verworfen, da die Sandwichtragwirkung maßgebend von dem später eingebauten Dämmstoff und dessen Verbund abhängt Um flexibel in der Wahl des Dämmstoffes zu sein, wurde entschieden, diesen nicht in der Bemessung anzusetzen Mit dem neuen Ansatz wird die Sandwichtragwirkung daher ausschließlich über die Verbundmittel hergestellt, sodass der Dämmstoff frei gewählt werden kann Durch die dünnen Deckschichten aus Textilbeton konnten zur Konstruktion und Beschrei-

- Außenschale aus textilbewehrtem Beton
- 2 Tragender Dämmkern
- (3) Innenschale aus textilbewehrtem Beton
- (4) Textilbewehrung
- Textiles Schubgitter

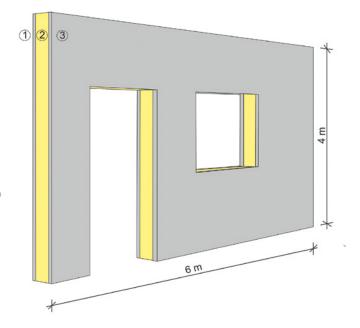


Abbildung 65: Projektziel des Forschungsvorhabens – zwei dünne Textilbetondeckschichten mit einem nichtmetallischen Verbundmittel

Mit diesem Forschungsvorhaben wurde das übergeordnete Ziel verfolgt, die technischen Grundlagen zur Herstellung und Bemessung von großformatigen, leichten und energieeffizienten Sandwichelementen für Außenwände mit Deckschichten aus textilbewehrtem Beton und innen liegender Wärmedämmung zu schaffen (Abb 65) Ursprünglich war geplant, eine Verbundtragwirkung der Betondeckschichten über die innen liegende Dämmung zu erreichen (Sandwichtragwirkung) Dieser Gedanke wur-

bung des Tragverhaltens weder die Konstruktionsprinzipien und Verbundmittel noch die Bemessungsmodelle von üblichen Stahlbetonsandwichelementen übertragen werden

Um das Forschungsziel zu erreichen, wurden sechs Arbeitspakete (AP) festgelegt In AP1 wurden Anforderungsprofile aus statisch-konstruktiver, bauphysikalischer und herstellungstechnischer Sicht aufgestellt Darauf aufbauend wurden Sandwichelemente entworfen und

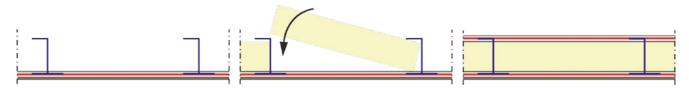
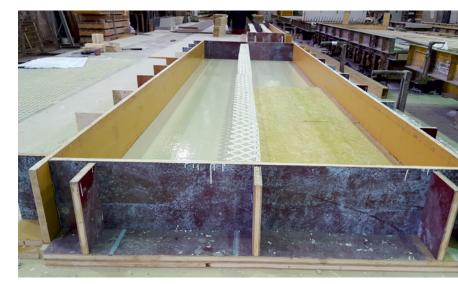



Abbildung 66: Schema Produktion

vorbemessen, um anschließend die Mindestanforderungen an die Baustoffe festzulegen In AP2 wurden geeignete Betonrezepturen für dünne Textilbetondeckschichten entwickelt Die Deckschichten sollen mit Verbundmitteln mit geringer Wärmeleitfähigkeit verbunden werden Ausgangspunkt dafür waren punktförmige GFK-Verbundmittel und streifenförmige Schubgitter Ausschlaggebend für die Wahl der Verbundmittel war die Einbindetiefe in die dünnen Deckschichten sowie die Tauglichkeit im Herstellungsprozess Für die weitere Bearbeitung des Projektes wurde deshalb ein linienförmiges Schubgitter aus einem mit Epoxidharz getränkten alkaliresistenten (AR) Glas einem punktförmigen Verbundmittel vorgezogen In AP3 wurde die Herstelltechnik für Sandwichelemente entwickelt (Abb 66-67) Als vorrangige technische Herausforderung stellte sich die lagesichere Positionierung der Textilien und Schubgitter heraus, da die Textilien zum Aufschwimmen neigen Parallel dazu wurden in AP4 die unter Werksbedingungen hergestellten Probekörper Tragfähigkeitsuntersuchungen unterzogen Im Einzelnen wurden Versuche zur Tragfähigkeit der textilen Bewehrung an Plattenstreifen, zur Verankerung der Verbundmittel im Beton und zur Druck- und Abschertragfähigkeit der Sandwichelemente sowie zur Tragfähigkeit der Transportanker durchgeführt Anschließend wurde die Gesamttragfähigkeit des Systems an sieben Sandwichstreifen untersucht (Abb 68) Die Prüfkörper unterschieden sich zwischen der Anzahl der eingebauten Schubgitter, der Breite und der Höhe Aus produktionstechnischen Gründen konnten keine großformatigen Prüfkörper ohne Dämmstoff hergestellt werden Daher wurden fünf Prüfkörper mit einer weichen Mineralwolle und zum Vergleich zwei Prüfkörper mit einer tragfähigen extrudierten Polystyrol(XPS)-Dämmung untersucht In den letzten zwei Arbeitsschritten wurden die Versuchsergebnisse durch Simulationen mit dem FE-Programm ABAQUS genauer analysiert Anhand der experimentellen und numerischen Untersuchun-

gen wurden praxisgerechte Bemessungsmodelle hergeleitet, die das Tragverhalten der dünnwandigen Sandwichelemente beschreiben Hierzu wurden zwei Ansätze verfolgt: Der vereinfachte Ansatz für quadratische/rechteckige Platten und der Ansatz für geometrisch anspruchsvolle Platten Bei Letzterem werden die Schnittgrößen der Schubgitter mithilfe eines FE-Programms ermittelt und anschließend mit den experimentell ermittelten Widerständen ver-

Abbildung 67: Einbau der nicht tragenden Dämmung

Abbildung 68: Verformungsbild eines Großkörperversuchs mit Mineralwolldämmung

Abbildung 69: Sandwichplatte mit Toraussparung

glichen Da die Elemente nicht mit konventionellen Befestigungselementen aus dem Stahlbetonbau mit dem Gebäude verbunden werden können, wurden neue Befestigungs- und Anschlussdetails entwickelt Den Abschluss des Projektes stellte ein Demonstratorbauteil im Maßstab 1:1 dar (Abb 69)

Das Ziel des Forschungsvorhabens, die Funktionsfähigkeit von Sandwichwandelementen mit zwei dünnen Deckschichten nachzuweisen, konnte erfüllt werden Die Tragfähigkeit wurde anhand von experimentellen und numerischen Untersuchungen ermittelt und kann als sehr zufriedenstellend bewertet werden In dem System ermöglichen die variablen Abstände der Schubgitter eine individuelle und wirtschaftliche Anpassung an die zu erwartenden Einwirkungen Neben der Elementtragfähigkeit stellt ebenfalls die Herstellung der großformatigen Sandwichelemente mit Erfahrung und Geschick im Umgang mit dem Werkstoff kein Problem dar

Eckdaten

Großformatige energieeffiziente Fassaden aus Textilbeton mit Sandwichtragwirkung

Forscher:

RWTH Aachen Institut für Massivbau (IMB) Prof Josef Hegger, Norbert Will, Ann-Christine von der Heid

RWTH Aachen Institut für Bauforschung (ibac) Cynthia Morales-Cruz

Hering Bau GmbH & Co KG Reiner Grebe

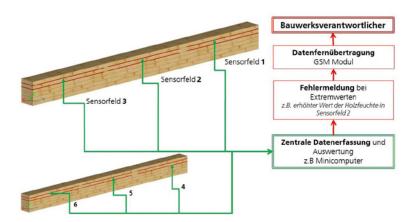
H₂O_WoodController

Entwicklung eines sicherheitsrelevanten Überwachungssystems für feuchtetechnische Problemstellungen im Holzbau

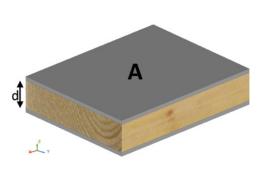
Daniel Heite, Fraunhofer-Institut für Bauphysik, Stuttgart

Die meisten Bauschäden im Holzbau sind auf eindringende Feuchte zurückzuführen Aufgrund der vielen möglichen Schadensursachen, wie Alterung von Abdichtungen, Planungs- und Montagefehlern etc , ist es nahezu unmöglich vorherzusagen, wo ein Schaden auftritt Da aber im Baubereich Überwachungssysteme bisher kaum vorhanden sind, besteht Bedarf an einer möglichst lückenlosen Überwachung des Bauwerkszustands

In den letzten Jahren werden vermehrt Forschungsvorhaben im Bereich der Bauwerksüberwachung initiiert – auch die Holzfeuchteüberwachung steht im Fokus der Forscher Diese greifen jedoch alle auf verfügbare, im Anwendungsbereich stark limitierte Messverfahren zurück So können vielfach nur wenige Sensoren angeschlossen werden, der Messbereich der Sensoren ist stark lokal begrenzt und vielfach sind Batteriewechsel an den Sensoren und Messgeräten notwendig


Der "H₂O Wood-Controller" kompensiert diese Anwendungsrestriktionen und ermöglicht eine nahezu flächendeckende und kostengünstige Analyse des Bauwerkszustands Das Funktionsprinzip des Sensors wird im Folgenden am Beispiel einer neu entwickelten Brettschichtholz-Sensorlamelle erläutert:

Diese Sensorlamelle besteht aus drei Schichten Fichtenholz Die Leimfugen sind durch Einlage von Drahtgittern elektrisch leitfähig ausgeführt Die Drahtgitter werden über Kabel kontaktiert und mit einem neu entwickelten Widerstandsmessgerät verbunden Die Mittellage der BSH-Sensorlamelle wird als elektrischer Leiter betrachtet, sodass über den "Leitungswiderstand" die Holzfeuchte ermittelt wird


- Sinkender "Leitungswiderstand" = steigende Holzfeuchte
- Steigender "Leitungswiderstand" = sinkende Holzfeuchte

Für die Sensorlamelle wird die Mittellage des Sensorfeldes (Massivholz Fichte) als elektrischer Leiter betrachtet, der je nach Feuchtegehalt unterschiedliche elektrische Leitfähigkeiten aufweist

Anhand der Gleichung $R = \frac{\rho \times d}{A}$ kann der Leitungswiderstand R in Ω eines beliebigen Mate-

Abbildung 71: Mögliche Variante der Messstellenkontaktierung

Abbildung 72: Nachrüstlösung der Sensorlamellen mit dünnen vorgesetzten Lamellen

rials mit beliebigen Dimensionen, berechnet werden Hierbei bedeuten ρ = spezifischer Widerstand in Ω mm²/m, d = Dicke in m und A = Fläche in mm²

Der spezifische Widerstand bei den jeweiligen Temperatur- und Feuchtebedingungen kann durch Umstellen der Gleichung (1) nach ρ , über den gemessenen Widerstand R berechnet wer-

den Die Rückführung der gemessenen Widerstandswerte auf den spezifischen Widerstand hat den Vorteil, dass die Dimension A der Sensorfelder, besonders im Hinblick auf eine praktische Anwendung als flächendeckendes Holzfeuchteüberwachungssystem, beliebig variiert werden kann

Zur Ermittlung des spezifischen Widerstandes von Fichtenholz wurden 16 Sensorlamellen mit den Abmessungen 260 × 100 mm, bei einer Gesamtdicke von 15 mm, hergestellt Diese wurden unterschiedlichen Klimabedingungen ausgesetzt und der elektrische Widerstand permanent gemessen Zur Bestimmung der Holzfeuchte erfolgten einige gravimetrische Messungen Über eine finale Darrprobe konnte somit die Holzfeuchte der Sensorlamellen zum Zeitpunkt der gravimetrischen Messung genau bestimmt und der spezifische Widerstand der Holzfeuchte zugeordnet werden

Die Näherungsgleichung R $_{\rm spez}$ = 2E-0,5 u $^{-10}$ beschreibt den Zusammenhang zwischen Holzfeuchte u und spezifischem Widerstand R $_{\rm spez}$ von Fichtenholz bei 20 °C

Für das Anwendungsbeispiel Holzbetonverbundbrücke ergibt sich folgendes mögliches Überwachungskonzept:

Abbildung 73: Ansicht der Brücke Neckartenzlingen mit montierten Sensorlamellen im Zwischenlagerbereich

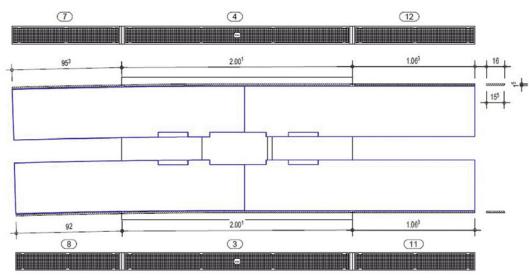


Abbildung 74:
Zeichnerische Darstellung
der Brückenauflager mit
Sensorlamellen

Vollflächige Überwachung des Übergangsbereiches

 Holz – Beton – Größtes Schädigungspotenzial (Beschädigungen in der Abdichtungsebene und dadurch bedingter Feuchteeintritt können viele Jahre unbemerkt das Tragwerk schädigen)

Überwachung der Auflagerbereiche

 Verstopfung von Entwässerungssystemen führen hier öfter zu Auffeuchtungen und Beschädigungen im Auflagerbereich.

Unterseitige Überwachung

 Erkennung von bauphysikalisch dauerhaft schlechten Bedingungen (z B dauerhaft feuchte Umgebungsbedingungen durch stark wuchernden Bewuchs im Auflagerbereich)

Durch die große Bandbreite der Sensordimensionen ist eine Anpassung an viele bauliche Bedingungen, Konstruktionsdetails und Anwendungsfälle denkbar Zusätzlich bietet das Messgerät die Möglichkeit, das Überwachungskonzept durch weitere Sensoren, z B Luftfeuchte und Temperatur, zu erweitern

Vorrangiges Ziel des Forschungsvorhaben, war es, ein umfassendes System zur Bauwerksüberwachung im Holzbau zu realisieren, um die vielfältigen Anschluss- und Einbausituationen zu berücksichtigen Der Schwerpunkt lag deshalb auf der Entwicklung eines Verfahrens zur flächenbasierten Holzfeuchtemessung Ein weiteres Ziel war die Entwicklung eines auf diese Anwendungen angepassten Messgerätes mit der Möglichkeit zur zuverlässigen Datenfernübertragung und der flexiblen Verwendung unterschiedlichster Sensorik Die umfassenden

Labormessungen zeigen, dass das Funktionsprinzip der flächenbasierten Holzfeuchtemessung gute und reproduzierbare Ergebnisse liefert Lediglich die Messung sehr hoher Holzfeuchten >20 % ist fehlerbehaftet Prototypen des Messgerätes und der Sensoren wurden im Nachgang zum Projekt an einer neu errichteten Holzbrücke in Neckartenzlingen installiert und werden im Dauereinsatz untersucht

Eckdaten

H20 WoodController

Forscher:

Fraunhofer-Institut für Bauphysik IBP, Valley

Daniel Heite (Projektleitung)

Innovative Wohnkonzepte werden erprobt: die Modellvorhaben der Variowohnungen

Anne Bauer, Bundesinstitut für Bau-, Stadt- und Raumforschung

Gesellschaftliche Veränderungen verlangen ein Umdenken bei Planung und Bau von Wohnraum Der Wandel hin zu immer vielfältigeren Lebensformen, einer mobileren Gesellschaft und die fortschreitende Urbanisierung lassen die Nachfrage nach kostengünstigen, kleinen und variablen Wohnungen in Städten und Ballungsgebieten steigen Mit dem Förderprogramm für Modellvorhaben zum nachhaltigen und bezahlbaren Bau von Variowohnungen werden in 21 Projekten innovative Wohnkonzepte für Studierende und Auszubildende erprobt und erforscht

Seit Jahren steigt die Nachfrage nach Wohnraum in den deutschen Städten und Ballungsgebieten Die Mieten, besonders in prosperierenden Metropolregionen, Großstädten und Hochschulstandorten, sind deutlich gestiegen Dort wird es immer schwieriger, bezahlbaren Wohnraum zu finden Eine mobiler werdende Gesellschaft, in der doppelte Wohnsitze nicht mehr die Ausnahme sind, neue und sich stetig wandelnde Formen des individuellen und ge-

meinschaftlichen Lebens und eine alternde Gesellschaftverstärken insbesondere die Nachfrage nach kleinen und variablen Wohnungen Neben älteren Menschen, Geflüchteten, Young Professionals und Pendlern sind es die Studierenden und Auszubildenden, die von der angespannten Situation betroffen sind

Vor diesem Hintergrund hat das Bundesbauministerium Ende 2015 im Rahmen der Forschungsinitiative Zukunft Bau das Förderprogramm für Modellvorhaben zum nachhaltigen und bezahlbaren Bau von Variowohnungen aufgesetzt Gefördert werden zukunftsfähige Wohnungsbauprojekte für Studierende und Auszubildende Sie halten festgelegte Höchstmieten (bis zu 320 € pro Wohnplatz und Monat) ein und schaffen innovative, schnell zu errichtende und dabei nachhaltige Wohnlösungen So wird schon bei der Planung von Variowohnungen die spätere Nachnutzung mitgedacht Flexible und leicht veränderbare Grundrisse machen die Wohnungen anpassbar für zukünftige Nutzungen und beispielsweise für Familien oder Senioren

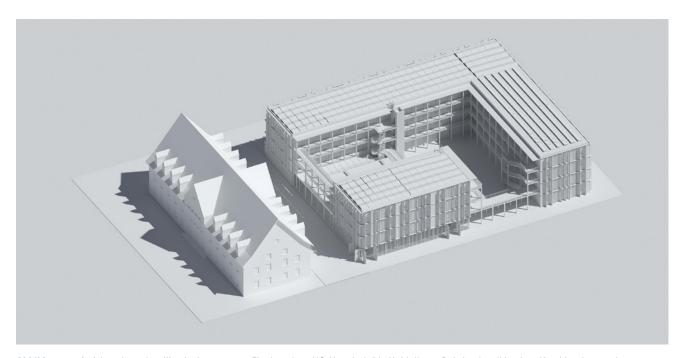


Abbildung 75: Auf den ehemals militärisch genutzten Flächen des "US-Hospitals" in Heidelberg-Rohrbach soll in einer Kombination aus innovativem Holzbau und der Umnutzung zweier Altbauten ein selbstverwaltetes Studierendenwohnheim für gemeinschaftliches Leben und Lernen mit 158 Wohnplätzen entstehen Der im Rahmen des Programms geförderte Neubau mit großzügigen Gemeinschaftsflächen soll als Holzbau errichtet werden Dieser wird zu einem hohen Grad vorgefertigt und verzichtet auf metallische Verbindungen

Abbildung 76: Auf dem früheren Standort eines Plattenbauriegels in Berlin-Marzahn entsteht ein städtebaulich neu gestaltetes Quartier Den Schlusspunkt der fünf geplanten Gebäude setzt ein Bau mit 126 Vario-Wohneinheiten Die Planung bietet ein differenziertes und großzügiges Angebot an Gemeinschaftsflächen in Innen- und Außenraum Besonders die Außenbereiche wie Grillplatz und Sportstätten können unter den Hausbewohnern und in die Nachbarschaft identitätsstiftend wirken

Abbildung 77: In Hamburg-Harburg entsteht ein Azubiheim mit 190 Wohnplätzen ausschließlich für Auszubildende mit gültigem Lehrvertrag Da die Fläche ursprünglich für die Wache der freiwilligen Feuerwehr vorgesehen war, macht die Integration dieser Feuerwache eine Schaffung von Wohnraum an dieser Stelle erst möglich

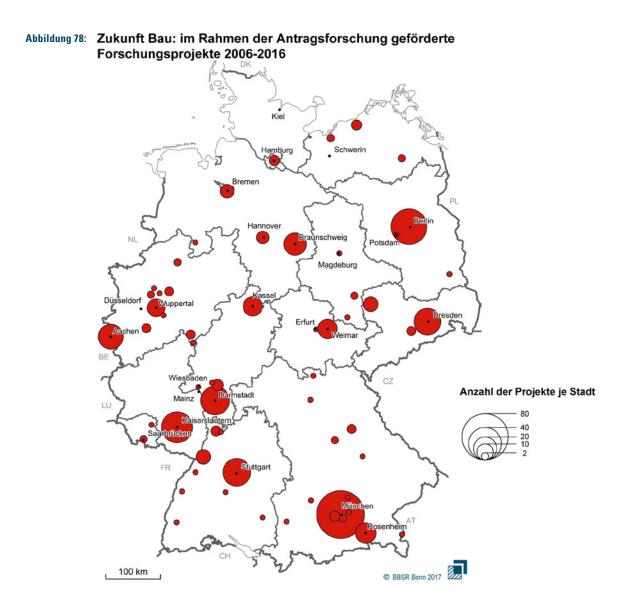


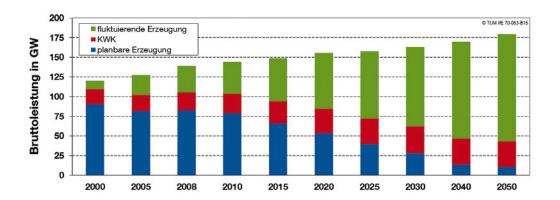
Abbildung 79: Die ehemalige
Zahnklinik in Erfurt wird durch
das Studierendenwerk
Thüringen als Wohnhaus mit
251 Wohneinheiten umgebaut
Das zwölfgeschossige Gebäude
in unmittelbarer Nähe zur
Universität ist als StützenRiegel-System aus Stahlbeton
konstruiert Eine Modernisierung mit einem hohen Maß an
Modularität und Vorfertigung
von Elementen als Baukastensystem sind so möglich

Die Erprobung innovativer Wohnkonzepte soll Antworten darauf geben, wie Nachverdichtung den Anforderungen einer alternden und sich wandelnden Gesellschaft und dem Anspruch individueller Wohnbedürfnisse in Gemeinschaft anpassbar funktionieren könnte Ein spezielles Augenmerk liegt dabei auf Innovationen im Bereich des modularen und vorgefertigten Bauens und der Frage, wie sich hohe architektonische Qualität mit niedrigen Mieten vereinbaren lässt

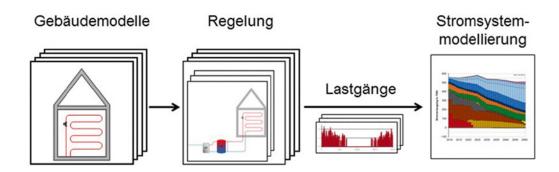
Die Höhe der Förderung hängt von dem Innovationspotenzial des jeweiligen Projekts ab, was sich aus dem Erfüllungsgrad verschiedener Förderkriterien zusammensetzt Ziel ist es, Bauzeiten zu verkürzen und Kosten zu sparen durch optimierte Planungsprozesse, elementund modulbasierte Vorfertigung und eine serielle Produktion (Förderbaustein 1) Um die Nebenkosten zu senken und bezahlbare Mieten sicherzustellen, sollen besondere Aufwendungen zur Senkung der Betriebskosten (FB 5) in die Projekte implementiert werden Neben der geforderten Flexibilität (FB 4) bilden innovative Konzepte zum Wohnen in Gemeinschaft (FB 6), die mitgedachte (nachrüstbare) Barrierefreiheit (FB 3) und eine ökologische Freiraumgestaltung (FB 7) nachhaltige Aspekte des Wohnens ab Die Bebauung von Restflächen und eine hohe städtebauliche Qualität (FB 2) sowie die bauliche Vorhaltung der Möglichkeit, das Erdgeschoss für nicht wohnliche Zwecke zu nutzen (FB 8), sorgen für ressourcenschonende Nachverdichtung und Vernetzungen in bestehende Quartiere hinein

Eine integrierte wissenschaftliche Begleitung in jedem Projekt untersucht die innovativen Planungs-, Bau- und Nachnutzungsprozesse

Anforderungen an Variowohnungen und deren Umsetzung in die Praxis werden dokumentiert und analysiert, um Grundlagen für die Entwicklung und die nachhaltige Nutzung von innovativen Wohnkonzepten zu schaffen Die geforderte Nachhaltigkeitszertifizierung bietet eine zusammenfassende und vergleichbare Darstellung der Nachhaltigkeitsaspekte der Projekte und dient als integrales Planungsinstrument Das Bundesinstitut für Bau-, Stadt- und Raumforschung, das für die fachlich-wissenschaftliche Betreuung und administrative Umsetzung des Programms zuständig ist, setzt die gewonnenen Erkenntnisse in einer projektübergreifenden Querauswertung in den übergeordneten fachlichen und aktuellen Kontext Ein vom BBSR beauftragtes Team aus sol·id·ar planungswerkstatt, Hochschule Ostwestfalen-Lippe und Hochschule für Technik und Wirtschaft Berlin ist dabei unterstützend tätig


21 Projekte an verschiedenen Hochschulstandorten wurden durch ein Expertengremium zur Förderung ausgewählt Dabei reicht die Bandbreite von der kleinen innerstädtischen Baulückenschließung mit 20 Wohnplätzen bis zu dem Neubauvorhaben mit rund 400 Wohnungen So entstehen rund 2 650 Wohneinheiten überwiegend für Studierende, aber auch für Auszubildende Diese stehen den Mietern spätestens ab 2020 zur Verfügung, denn alle Projekte müssen bis Ende 2019 umgesetzt werden Erste Maßnahmen haben bereits mit dem Bau begonnen Gefördert werden öffentliche Träger wie Studierendenwerke und Wohnungsbaugesellschaften sowie zahlreiche Projekte von kleinen privaten Investoren mit insgesamt 36 Mio €

Gebäude als intelligenter Baustein im Energiesystem – Lastmanagement-Potenziale von Gebäuden im Kontext der zukünftigen Energieversorgungsstruktur in Deutschland


Manuel de-Borja-Torrejón, Technische Universität München

In Deutschland wird der Ausbau erneuerbarer Energie gefördert Um die daraus resultierende schwankende Stromerzeugung (Abb 80) zu nutzen, wird im Stromsektor u a der Ansatz verfolgt, den Verbrauch an die Erzeugung anzupassen Die Raumheizung verspricht hierfür Potenzial Im Hinblick auf den bestehenden Sanierungsstau im Gebäudebereich ist eine solche Sektorenkopplung zudem als Begleitmaßnahme zum Erreichen der Klimaziele zu betrachten

In diesem Projekt wurde die Auswirkung einer stärkeren Interaktion zwischen Gebäude- und Stromsektor untersucht Um den Einfluss von Gebäuden und ihres Lastmanagement-Potenzials auf das Stromsystem bis ins Jahr 2050 zu analysieren, wurde ein gekoppelter Simulationsansatz gewählt Hierbei werden detaillierte Gebäudemodelle und deren Wärmeerzeugung inklusive Regelung mit einem Stromsystemmodell gekoppelt (Abb 81)

Abbildung 80: Exemplarische Entwicklung der Bruttoleistung der Kraftwerke in Deutschland, mit stark steigendem erneuerbaren fluktuierenden Anteil, bei sinkendem Anteil planbarer konventioneller und steuerbarer Erzeugung aus KWK

Abbildung 81: Methodik der Modellkopplung zwischen Gebäudemodellen, Anlagentechnik und Regelung sowie Stromsystemmodellierung

Gerhard Schubert Senior Researcher, Head of the CDP Research Group

Technical University of Munich Department of Architecture Department of Informatics (affiliate membership) Chair for Architectural Informatics

von Analysen und Simulationen in frühen Planungsphasen erweitert den Ermessensspielraum planerischer Entscheidungen. Prozesse mit Fachplanern, Stakeholdern und Bürgern verschieben sich in frühe Planungsphasen und verändern die Form der Zusammenarbeit nachhaltig.

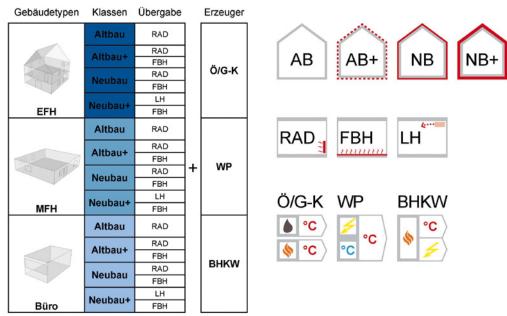


Abbildung 82: Überblick der Gebäudemodelle und der berücksichtigten Wärmeerzeuger

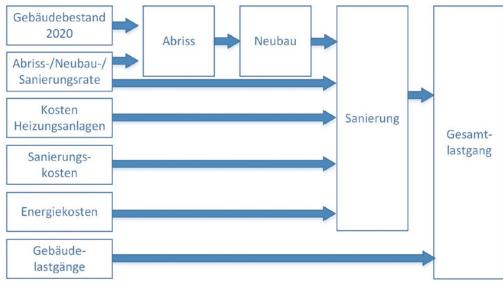


Abbildung 83: Überblick der Gebäudemodelle und der berücksichtigten Wärmeerzeuger

Die Gebäudemodelle sind nach Gebäudetypen und in Energieeffizienzklassen eingeteilt, wobei die in (s o) umgesetzte Typisierung als Ausgangsbasis dient Es werden die Gebäudetypen Einfamilienhaus (EFH), Mehrfamilienhaus (MFH) sowie Bürogebäude (Büro) modelliert, wodurch insgesamt ca 75% des Endenergieverbrauchs für Raumwärme berücksichtigt werden Jeder Gebäudetyp wird in die vier Energieeffizienzklassen Altbau (AB), Altbau+ (AB+), Neubau (NB) und Neubau+ (NB+) eingeteilt Darüber hinaus werden je nach Gebäudetyp und Energieeffizienzkategorie unterschiedliche Wärmeübergabesysteme betrachtet Die verschiedenen Gebäudemo-

delle werden im Weiteren mit Wärmeerzeugern kombiniert (Abb 82) Hier stehen neben konventionellen Erzeugern wie Gas- und Ölkessel auch Wärmepumpen zur Verfügung

Die Entwicklung der Gebäude- und Anlagenstruktur und deren Veränderung bis 2050 durch Abriss, Neubau und Sanierung wurden im Projekt betrachtet Dazu wurde ein Softwaretool zur Auswahl von Sanierungsentscheidungen und Anlagentechniken unter Berücksichtigung verschiedener Szenarien implementiert (Abb 83) Ausgehend vom aktuellen Gebäude- und Anlagenbestand (s o) berücksichtigt das Auswahltool zunächst den Abriss- und



Abbildung 84: Schematische Darstellung des Stromsystemmodells

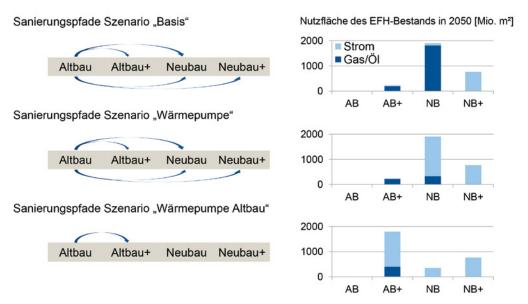


Abbildung 85: Ermittelte Bestandsflächen des Gebäudetyps Einfamilienhaus (EFH) im Jahr 2050 nach Energieträger für Raumheizung, für die Untersuchungsszenarien "Basis", "Wärmepumpe" und "Altbau Wärmepumpe"

Neubau von Gebäuden Anschließend wird ein festgelegter Anteil der Gebäude saniert, was sowohl bauliche Maßnahmen als auch einen Austausch bzw Neubau der Heizungssysteme miteinschließt Mithilfe der ermittelten neuen Gebäudeverteilung und der aus der Simulation gegebenen Lastgänge wird ein Gesamt-Stromlastgang ermittelt und an das Stromsystemmodell übergeben

Der Einfluss einer strombasierter Beheizung des Gebäudebestands wird mithilfe des Stromsystemmodells IMAKUS (s o) analysiert, dessen Ziel es ist, die gegebene Stromnachfrage zu allen betrachteten Zeitpunkten kostenminimal zu decken (Abb 84) Als Ausgangspunkt dient der bestehende Kraftwerkspark in Deutschland sowie aktuell bestehende

Pumpspeicherwerke Im Modell IMAKUS können unterschiedliche Ziele für den Anteil der erneuerbaren Energien an der Stromnachfrage vorgenommen werden Für die Untersuchungen im Rahmen des Projektes wurden 80% bis ins Jahr 2050 angenommen Ergebnis des Modells sind u a ein optimaler Kraftwerks- und Speicherausbau Berücksichtigung findet dabei die Systemzuverlässigkeit durch die Berechnung der gesicherten Kraftwerksleistung

Basierend auf dem beschriebenen Vorgehen werden verschiedene Szenarien für die Sanierung der Gebäude und Anlagentechnik untersucht Im Szenario "Basis" wird die Sanierung möglichst wirtschaftlich durchgeführt, in "Wärmepumpe" sowie in "Altbau Wärmepumpe" werden bei der Anlagentechnik Wärme-

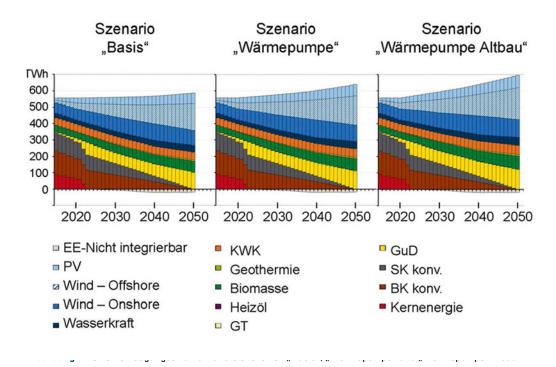



Abbildung 86: Gesamter Gebäudelastgang der Stützjahre für die Szenarien "Basis", "Wärmepumpe" und "Wärmepumpe Altbau"

pumpen erzwungen, wobei in Letzterem nur auf Altbau+ saniert wird (Abb 85) Die Analyse erfolgtfürmehrere Stützjahre Die resultierenden Gesamtlastgänge des Gebäudebestands sind in Abb 86 gegenübergestellt Diese wurden den restlichen Stromnachfragen Deutschlands aufsummiert, um die zukünftige Entwicklung der Stromerzeugungsstruktur bei den genannten Szenarien zu analysieren (Abb 87)

Der Einfluss des Lastmanagement-Potenzials auf das Stromsystem wird mit den Szenarien "Wärmepumpe" und "Wärmepumpe Altbau" analysiert Im Szenario "Wärmepumpe" werden zudem die Varianten "optimiert" und "nicht optimiert" gegenübergestellt, wobei in "optimiert" der Stromlastgang der Gebäude auf Basis des Strompreises angepasst wird Die Ergebnisse wurden hinsichtlich Zusammen-

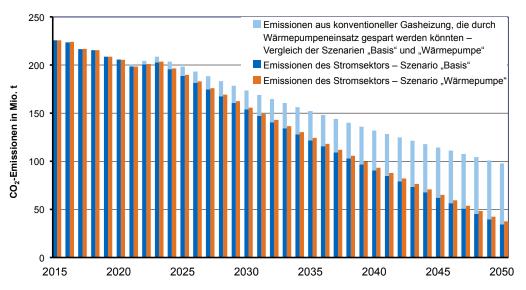


Abbildung 88: Gegenüberstellung der CO₃-Emissionen Vergleich der Szenarien "Basis" und "Wärmepumpe"

setzung der Stromerzeugung, Ausbau und Verhalten von großtechnischen Speicheranlagen und Entwicklung von ${\rm CO_2}$ -Emissionen untersucht

Die Kopplung der Raumheizung mit dem Stromsystem hat in allen Szenarien eine Erhöhung der Stromnachfrage bis 2050 zur Folge Diese Zusatznachfrage kann zu einem großen Teil aus erneuerbaren Energien gedeckt werden Die Emissionen für elektrische Wärmeerzeugung bewegen sich weit unter denen mit konventioneller Gasheizung (Abb 88) Durch das Lastmanagement verstärkt sich dieser Trend Außerdem können Speicherinvestitionen reduziert und Speicherverluste durch eine direktere Nutzung der erneuerbaren Energien verringert werden Die Sektorenkopplung bringt nach dieser Untersuchung in erster Linie positive Aspekte Allerdings könnte es notwendig sein, dafür die Netzkapazität signifikant auszubauen

Eckdaten

Gebäude als intelligenter Baustein im Energiesystem

Forscher:

Technische Universität München
Lehrstuhl für Gebäudetechnologie und
klimagerechtes Bauen
Prof Thomas Auer
Dennis Atabay,
Manuel de-Borja-Torrejón,
Rita Dornmair
Philipp Kuhn
Johannes Maderspacher
Florian Sänger

Machbarkeitsuntersuchungen zu kontinuierlichen und schalungsfreien Bauverfahren durch 3-D-Formung von Frischbeton

Mathias Näther, TU Dresden

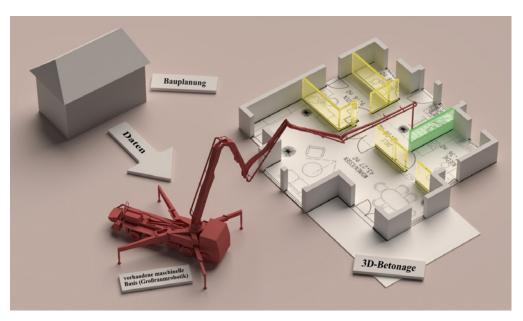
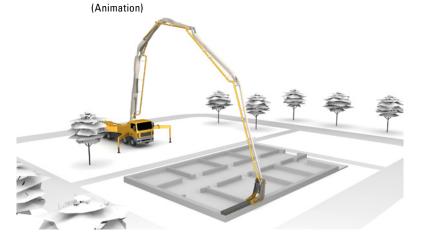



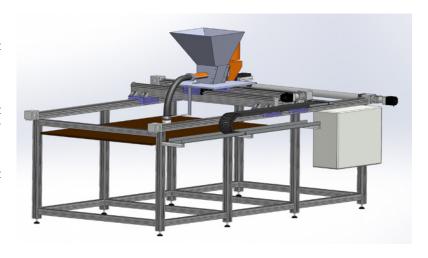
Abbildung 89: Die wesentlichen Elemente der Beton-3-D-Druck-Technologie

Der übliche Ortbetonbau ist sehr arbeits- und zeitintensiv Aktuell wird weltweit daran geforscht, 3-D-Druckverfahren auf Bauprozesse zu überführen Dies könnte die Defizite des konventionellen Betonbaus reduzieren, Kosten senken und die Arbeitsproduktivität steigern Im Forschungsvorhaben sollte die Machbarkeit eines neuartigen, schalungsfreien Betonbauverfahrens auf interdisziplinärer Ebene (Maschinenbau, Baustofftechnik, Baubetrieb) untersucht werden

Abbildung 90: Beton-3-D-Druck direkt auf der Baustelle

Unter der Berücksichtigung von bisherigen internationalen Forschungsergebnissen wurde zunächst analysiert, mit welchen Maßnahmen und unter welchen Bedingungen eine Anwendung effizienterer, schalungsfreier Formungssysteme für Beton realisiert werden kann Im Gegensatz zu den bisher bekannten Ansätzen lag in diesem Forschungsvorhaben ein besonderer Fokus auf der praxistauglichen Umsetzung: Das innovative Bauverfahren soll direkt auf der Baustelle (Ortbetonbau) ausgeführt werden, die gerätetechnische Basis stellen etablierte Baumaschinen dar und als Baustoffe sollen im Massivbau übliche Betone zum Einsatz kommen

Bekannte additive Fertigungsverfahren wurden innerhalb des Forschungsprojektes analysiert und die Übertragbarkeit auf das Bauwesen geprüft Anschließend wurden Anforderungskriterien für den Baustellenprozess definiert und auf interdisziplinärer Ebene untersucht Untersuchungsgegenstand der Professur für Baumaschinen waren technische Lösungen zu Betonförderung, Druckkopf und Mechanismen für die Großraumrobotik Das Institut für Baustoffe untersuchte die rheologischen Eigen-


schaften der Frischbetone, mechanische Eigenschaften der Festbetone und entwickelte geeignete Betone für den 3-D-Druck Die baubetrieblichen Schwerpunkte wurden durch das Institut für Baubetriebswesen untersucht Im Fokus der Analysen standen dabei die baubetriebliche Prozessoptimierung, Untersuchungen zu den erforderlichen Datenstrukturen und Datenformaten sowie Wirtschaftlichkeitsbetrachtungen zu Kosten- und Zeitreduktionspotenzialen

Als technologisches Konzept ist vorgesehen, dass ein Druckkopf schichtweise Beton austrägt, während er von einem Großraummanipulator präzise entlang der vorgegebenen Bahnen bewegt wird Nach dem Vergleich verschiedener Robotik-Konzepte stand die Autobetonpumpe im Fokus der maschinellen Untersuchungen Die Autobetonpumpe hat serienmäßig die notwendige Betonfördertechnik installiert und ihr Auslegermast ist von der mechanischen Struktur her als Großraummanipulator geeignet Für die computergesteuerte Bewegung des Mastes wurden Steueralgorithmen entwickelt und in Zusammenarbeit mit dem Praxispartner an einer handelsüblichen Maschine getestet Durch den Abgleich der gemessenen Koordinaten der automatisch gesteuerten Mastspitze mit der vorgegebenen Bewegungsbahn konnten Aussagen zur Positioniergenauigkeit von Autobetonpumpen getroffen werden

Die Hauptaufgaben des Druckkopfes umfassen das dosierte Austragen des Frischbetons sowie die Formgebung der einzelnen Betonschichten Für die technische Umsetzung wurden verschiedene Lösungskonzepte für die einzelnen Teilaufgaben erarbeitet und bewertet Diese dienen künftig als Grundlage für die Weiterentwicklung des Gesamtsystems

Die baustofflichen Analysen befassten sich zunächst mit der Auswahl der Ausgangsstoffe und Bestimmung geeigneter Zusammensetzungen von druckbaren Betonen Diese sollten so gewählt werden, dass der Beton im frühen Alter (0-3 Stunden) eine hohe Grünstandfestigkeit und eine schnelle Aushärtung aufzeigt, ohne dabei an Verarbeitbarkeit und Pumpbarkeit im frischen Zustand einzubüßen Im Ergebnis wurde ein Szenarienkatalog mit verschiedenen Ausgangstoffen erarbeitet Anschließend wurden geeignete Methoden entwickelt, um die mechanischen Eigenschaften, die Fähigkeit der Extrudierbarkeit und Verbaubarkeit verschiedener Betone zu prüfen Dabei wurde eine ganzheitliche Vorgehensweise zur experimentellen Materialprüfung druckbarer

Betone erarbeitet, welche mehrere Untersuchungsverfahren kombiniert Mithilfe dieses neuen experimentellen Vorgehens "Labor-Versuchsstand" für den 3-D-Druck wurden 3-Dgedruckte Probekörper für die Bestimmung von Druck- und Biegezugfestigkeit erzeugt sowie systematisch getestet In der finalen Phase wurden weitere druckbare Betone mit verschiedenen Ausgangsstoffen entworfen und für unterschiedliche Anwendungsfälle charakterisiert Experimentelle Untersuchungen bestätigen die Machbarkeit der schalungsfreien Extrusion von Frischbeton durch 3-D-Druck Die entwickelten druckbaren Feinbetone zeichnen sich durch gute Extrudierbarkeit, ausreichende Verbaubarkeit und hohe Druckfestigkeit aus

Innerhalb der baubetrieblichen Untersuchungen wurden zunächst anwenderseitige Anforderungen und mögliche Anwendungsszenarien erarbeitet Als Hauptanwendung wurde für den ersten Entwicklungsschritt der Ersatz für Mauerwerksbau definiert Die meisten Anwendungsfelder ergeben sich im Wohnungsbau, vorrangig bis fünfgeschossig Anschließend wurde eine Analyse der erforderlichen Datenstrukturen und Datenformate durchgeführt Die Basis bildet dabei die Prozesskette bestehender, kleinformatiger 3-D-Druckverfahren Die Analyse der Wirtschaftlichkeit wurde anhand eines Beispielgebäudes in Größe eines Einfamilienhauses durchgeführt Dabei wurden die Baukosten und terminlichen Auswirkungen für die Wandfertigung im angestrebten Verfahren gegenüber dem Mauerwerksbau untersucht Im Ergebnis konnte nachgewiesen werden, dass mit dem angestrebten Verfahren signifikante Reduzierungen der Baukosten und Ausführungszeiten realisierbar sind

Abbildung 91: Labor-Versuchsstand für den Beton-3-D-Druck (CAD-Darstellung)

Abbildung 92: Ausschnitt einer gedruckten Beton-Wand (oben)

Abbildung 93: Probekörper

Mit den Erkenntnissen aus der Forschungsarbeit konnte die Machbarkeit der angestrebten Betonbautechnologie nachgewiesen werden Zentrale Ergebnisse sind:

- Auflistung konkreter Anforderungen an die Maschinentechnik (Druckkopf, Robotik, Betonförderung),
- geeignete Feinbetonrezepturen einschließlich Methoden zur Prüfung der betontechnologischen Eigenschaften,
- Wirtschaftlichkeitsanalysen zu Kosten und Ausführungszeiten,
- Demonstration in Laborversuchen im Maßstab 1:5 mithilfe eines Versuchsstandes

Sowohl von technischer als auch von wirtschaftlicher Seite sind damit die Grundlagen für die Weiterentwicklung dieses Bauverfahrens geschaffen Die Auszeichnung der Forschungsarbeiten mit dem "bauma Innovationspreis 2016" und das wachsende Interesse von Industrie und Öffentlichkeit unterstreichen zudem den hohen Stellenwert dieses Projektes Deshalb ist aus Sicht der Projektbeteiligten die Weiterführung der Forschungsarbeiten bis zur praxistauglichen Umsetzung der Technologie dringend anzuraten

Eckdaten

Beton-3D-Druck

Forscher:

Technische Universität Dresden Professur für Baumaschinen Prof Jürgen Weber (Projektleitung) Prof em Günter Kunze Mathias Näther

Technische Universität Dresden Institut für Baustoffe Prof Viktor Mechtcherine Venkatesh Naidu Nerella

Technische Universität Dresden Institut für Baubetriebswesen Prof Rainer Schach Martin Krause

Trends und Strukturen der Baukonjunktur

Christian Schmidt, Bundesinstitut für Bau-, Stadt- und Raumforschung

Das Interesse der breiten Öffentlichkeit an der Entwicklung der Bautätigkeit in Deutschland fokussiert sich fast ausschließlich auf den Neubau von Wohnungen Das gilt umso mehr in Zeiten mit einem starken Zuzug in die Ballungsräume, die eine hohe Anziehungskraft insbesondere auf junge und gut ausgebildete Menschen haben Mit diesem sehr einseitigen Blickwinkel wird aber das Bild der Baubranche sehr stark verzerrt, denn eigentlich sind es die Maßnahmen in die bestehenden Gebäude, die das Baugeschehen bestimmen

Der Hintergrund für diese unausgewogene Darstellung und Wahrnehmung der konjunkturellen Lage der Bauwirtschaft ist im Wesentlichen mit der Datenlage zu erklären Für das Bauhauptgewerbe und die damit häufig verbundenen Neubauaktivitäten liefert die amtliche Statistik verlässliche und zeitnahe Informationen Bauinstallation und sonstige Sparten des Ausbaugewerbes hingegen, die besonders bei Bestandsmaßnahmen tätig werden, sind statisch untererfasst Über 90 % der Firmen im Ausbaugewerbe liegen unterhalb der Erfassungsgrenze von weniger als zehn Beschäftigten Im Ausbaugewerbe sind aber inzwischen höhere Umsätze und mehr Beschäftigte zu verzeichnen als im Hauptgewerbe Daneben erstellen aber auch andere Wirtschaftszweige ebenfalls in erheblichem Umfang Bauleistungen, so Teile des verarbeitenden Gewerbes und der Dienstleistungsbereiche Diese Bauleistungen werden aber nur unzureichend in der amtlichen Statistik berücksichtigt Weiterhin wird die Bautätigkeit im Bestand in der Bauinvestitionsrechnung nicht separat ausgewiesen, obwohl Bestandsmaßnahmen den größten Teil der Bautätigkeit umfassen Das ist insbesondere auch für die zunehmenden energetischen Sanierungsmaßnahmen von Bedeutung Ebenso erfolgt keine regionale Unterteilung nach Ost und West Diese Lücken schließt das Deutsche Institut für Wirtschaftsforschung (DIW), Berlin, mit der Bauvolumenrechnung, die das DIW im Auftrag des BMUB und BBSR im Rahmen der Ressortforschung der Forschungsinitiative Zukunft Bau durchführt Auf Basis eines vom DIW Berlin entwickelten komplexen Schätzmodells werden jährlich Berechnungen und Prognosen durchgeführt, um die Informationslücken der amtlichen Statistik zu schließen Die Aktivitäten und Strukturen der Bauwirtschaft können auf dieser Basis umfassend dargestellt werden Ergebnisse der aktuellsten Berechnungen werden hier vorgestellt

Im Jahr 2016 flossen in Deutschland rund 350 Mrd € (in jeweiligen Preisen) in die Erstellung und Erhaltung von Bauwerken Dies entspricht rund 11 % des Bruttoinlandsproduktes (BIP) Dominiert wird das deutsche Bauvolumen dabei mit über 57 % vom Wohnungsbau,

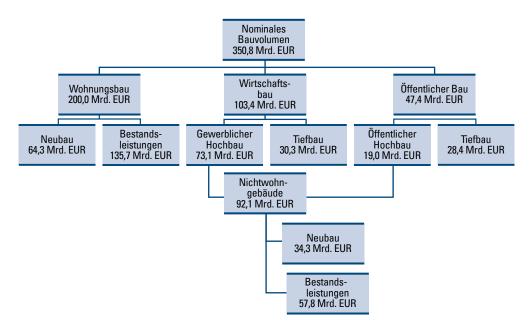


Abbildung 94: Bauvolumen im Jahr 2016 nach Baubereichen (zu jeweiligen Preisen)

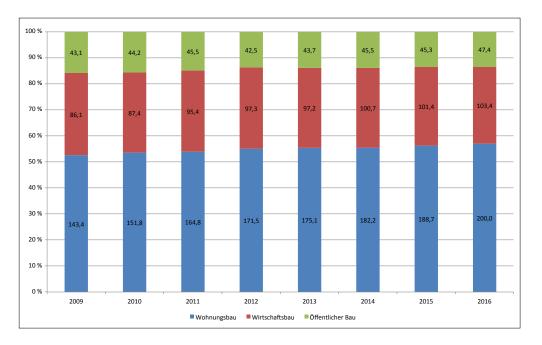


Abbildung 95: Nominales Bauvolumen nach Baubereichen 2009 bis 2016 (zu jeweiligen Preisen in Mio. €)

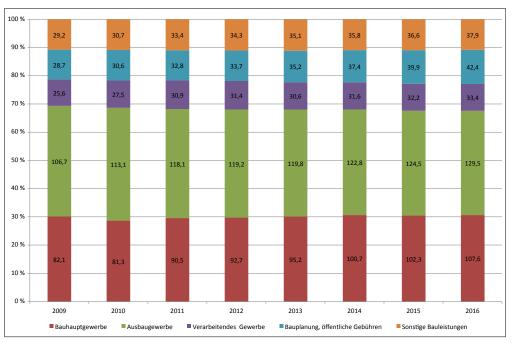
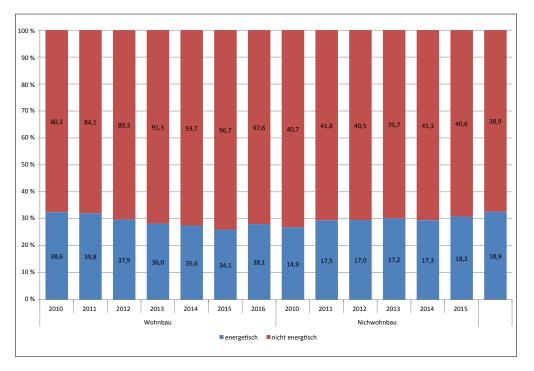



Abbildung 96: Nominales Bauvolumen nach Produzenten 2009 bis 2016 (zu jeweiligen Preisen in Mio. €)

wobei der Anteil insbesondere in den letzten Jahren zugenommen hat Vor allem der Neubau von Mehrfamilienhäusern verzeichnet seit Jahren zweistellige Zuwachsraten Das Wachstum war in diesem Segment in den neuen Bundesländern von 2012 bis 2015 sogar höher als im Westen, bedingt vor allem durch die hohe Wohnungsnachfrage in Berlin Am aktuellen Rand zeigt sich jedoch eine Gegenbewegung, weil auch in den westdeutschen Großstädten erheblich investiert wurde Knapp 30% des Bauvolumens entfallen auf den Wirtschaftsbau, auf den öffentlichen Bau rund 13%

Der größte Teil der Bautätigkeit erfolgt im Gebäudebestand Die relative Bedeutung der Bestandsmaßnahmen ist zwar aufgrund des Booms im Wohnungsneubau abnehmend, noch immer machen sie aber fast 68 % des gesamten Wohnungsbaus aus In den neuen Ländern haben die Bauleistungen an bestehenden Gebäuden mit nahezu 78 % einen noch höheren Anteil als im Westen mit 66 % Im Nichtwohnbau hatten die Bestandsleistungen mit zuletzt rund 63 % eine geringere Bedeutung als im Wohnungsbau Auch hier gibt es deutliche Unterschiede zwischen West und Ost In den westlichen Bundesländern entfallen im Nichtwohnbau rund 63 % auf die Bestandsmaßnahmen, in den östlichen Bundesländern fällt der Anteil mit über 77 % deutlich höher aus

Abbildung 97:

Struktur der Bestandsleistungen 2011 bis 2016 nach energetischen und nicht energetischen Sanierungsmaßnahmen (zu jeweiligen Preisen in Mio. €)

Da Bestandsleistungen überwiegend von Betrieben des Ausbaugewerbes erbracht werden, ist das Ausbaugewerbe mit 129,5 Mrd € erbrachter Bauleistung weiterhin die wichtigste Produzentengruppe und liegt deutlich vor dem Bauhauptgewerbe mit rund 108 Mrd € Das Ausbaugewerbe erbringt somit rund 37 % des gesamten Bauvolumens Bemerkenswert ist weiterhin die Tatsache, dass auf das Bauhauptgewerbe der gleiche Anteil des Bauvolumens entfällt wie auf die übrigen Produzentengruppen, die nicht zum Baugewerbe zählen Dafür dürften neben dem Einsatz von kostenintensiver Gebäudetechnik und höheren staatlichen Steuern und Gebühren auch ein veränderter Materialeinsatz, höhere Vorfertigungsanteile sowie zunehmende Subunternehmerleistungen verantwortlich sein

Die Struktur der Bestandsleistungen kann noch detaillierter nach Teilmodernisierung, Vollmodernisierung, Instandhaltung und energetischer Sanierung differenziert werden Grundlage sind Berechnungen der Heinze GmbH, die für die Jahre 2010 und 2014 im Rahmen der Ressortforschung durchgeführt wurden Die Ergebnisse fließen in die Berechnung des Bauvolumens mit ein und werden fortgeschrieben Im Ergebnis entfallen fast drei Viertel aller Sanierungsmaßnahmen im Hochbau auf Teilmodernisierungen, wobei im Wohnungsbereich die teilweisen Modernisierungen sogar einen Anteil von rund 82% haben Im Nichtwohnbau liegt der Anteil mit 56 % deutlich darunter Die Vollmodernisierungen haben im Wohnungsbau zuletzt zwar deutlich zugelegt, bewegen sich aber immer noch auf dem Niveau der Ausgaben für Instandsetzungsmaßnahmen

Ein wesentlicher Teil der Voll- und Teilmodernisierungen entfällt auf energetische Sanierungsmaßnahmen Hier gab es jedoch in den letzten Jahren einen negativen Trend Wesentliche Gründe für diese Entwicklung ist die Reduktion der Förderung bei der Errichtung von Photovoltaikanlagen sowie sinkende Preise für Heizenergie Zuletzt gab es insbesondere im Wohnungsbau einen deutlichen Zuwachs bei der energetischen Sanierung, sodass rund 38 Mrd € im Jahr 2016 dafür aufgewendet wurden Im Nichtwohnungsbau zeigen die energetischen Maßnahmen einen leichten positiven Trend Rund 18 Mrd € wurden 2016 dafür eingesetzt Im Hochbau insgesamt liegt das Volumen bei fast 57 Mrd €, sodass fast 30% der Bestandsleistungen auf energetische Sanierungsmaßnahmen entfallen Wegen der besonderen Bedeutung der Bestandsleistungen wird diese sehr umfangreiche empirische Erhebung über durchgeführte Sanierungen voraussichtlich 2018 wiederholt werden Die strukturellen Ergebnisse daraus fließen in die Bauvolumenrechnung mit ein und verbessern in einem signifikanten Maße die Berechnungsergebnisse

Erschließung der Ressourceneffizienzpotenziale im Bereich der Kreislaufwirtschaft Bau

Claus Asam, Bundesinstitut für Bau-, Stadt- und Raumforschung

Abbildung 98: Abbruchbaustelle mit vorsortiertem Bauschutt

Der Bausektor steht sowohl vom Verbrauch an mineralischen Rohstoffen als auch von der Abfallentstehung her an erster Stelle der Rohstoff- bzw Abfallwirtschaft Er hat deshalb eine Schlüsselrolle bei der Verbesserung der Ressourceneffizienz die im Mittelpunkt des vom Bundeskabinett im März 2012 beschlossenen und gegenwärtig fortgeschriebenen Ressourceneffizienzprogramms steht Ziel des vorliegenden Berichtes ist es, den Stand und die bestehenden Defizite bei der Verwertung von Bauabfällen aufzuzeigen und Verwertungsalternativen zu entwickeln

Der vorliegende Bericht konzentriert sich auf die Herstellung, die Leistungsfähigkeit und die gegenwärtigen Einsatzgebiete von Recycling-Baustoffen sowie auf zukünftige Verwertungsalternativen. Neben der werkstofflichen Verwertung, die auf den physikalischen Eigenschaften der Recycling-Baustoffe beruht und als Regelfall praktiziert wird, wird die rohstoffliche Verwertung als neue Option eingeführt Darunter wird die Verwertung in einem stoffumwandelnden Prozess, in dem gezielte Veränderungen der chemischen bzw mineralogischen Zusammensetzung zur Generierung neuer Produkteigenschaften erfolgen, verstanden

Aufbereitung

Bauabfälle setzen sich aus Boden und Steinen, Straßenaufbruch aus Asphalt und Beton, Bauschutt aus Beton- und Mauerwerkbruch, gemischten Bau- und Abbruchabfällen sowie Abfällen auf Gipsbasis zusammen Innerhalb dieser Gruppen sind der Asphalt und die Gipskartonplattenabfälle vergleichsweise sortenrein, wohingegen Bauschutt aus dem Hochbau i d R ein Gemisch verschiedener Baustoffarten darstellt

Die zukünftige Aufgabe der Aufbereitung besteht darin, insbesondere aus den mineralischen Bauabfällen hochwertige Recycling-Baustoffe mit definierten Eigenschaften zu erzeugen.

Unterstützende Schritte dazu entscheiden sich bereits vor der eigentlichen Aufbereitung Durch den vorgelagerten selektiven Rückbau, die Vorsortierung auf der Abbruchbaustelle und/oder die Steuerung der Stoffströme über die Annahmegebühren wird eine Trennung nach sortenreinem Beton- bzw Mauerwerkbruch einerseits und nach mit Störstoffen verunreinigtem Material andererseits erreicht

Die Aufbereitung erfolgt derzeit in der Regel in drei Schritten **Im 1. Schritt** erfolgt die Zerkleinerung des Bauschutts in Brecheranlagen

Der 2. Schritt der Bauschuttaufbereitung ist die Klassierung Sie dient u a zur Erzeugung bestimmter Korngrößenverteilungen

Der 3. Schritt ist die Sortierung Üblicherweise werden mithilfe der Windsichtung als trockenem Sortierverfahren leichte Störstoffe wie Folien, Papier, Dämmstoffe etc abgetrennt Es können jedoch nur Fraktionen > 4 mm behandelt werden Mit speziellen nassen Sortierverfahren können auch leichte mineralische Baustoffe wie Porenbeton, leichte Gipsbaustoffe und Leichtbetone abgetrennt werden Die Fraktionen < 4 mm sind in entsprechend ausgelegten Maschinen ebenfalls sortierbar, wenn ein hoher Anfall an Schlamm in Kauf genommen wird Eine Trennung der unterschiedlichen Wandbaustoffarten kann mit den nassen Sortierverfahren nicht erreicht werden Dies kann jedoch mit der sensorgestützten Einzelkornsortierung, die seit Langem für die Aufbereitung von Kunststoffabfällen, Altglas, etc genutzt wird, erreicht werden Bisher hat sie in die Baustoffaufbereitung kaum Eingang gefunden, obwohl mehrfach nachgewiesen wurde, dass damit eine deutliche Qualitätssteigerung möglich ist

Verwertung

Für betonstämmige gibt es Möglichkeiten der werkstoffliche Verwertung für die Herstellung von Tragschichten und für die erneute Betonherstellung Für diese Einsatzgebiete liegen die technischen Vorschriften und die Anforderungen an die wasserwirtschaftliche Güte vor Mit den Aufbereitungstechnologien nach dem Stand der Technik lassen sich für diese Sektoren qualitätsgerechte Recycling-Baustoffe auf der Basis von Betonbruch herstellen

Für Recycling-Baustoffe, die aus Mauerwerkbruch hervorgegangen sind, ist die werkstoffliche Verwertung nur in eingeschränktem Umfang möglich Ziegel- und Kalksandsteinkörnungen können bis zu festgelegten Anteilen als Nebenbestandteile im Material für Tragschichten oder in recycelten Gesteinskörnungen vorhanden sein Für sortenreine Ziegelkörnungen besteht zusätzlich die Option, in der Vegetationstechnik verwertet zu werden

Für die **rohstofflich Verwertung** von Mauerwerkbruch bzw dessen Bestandteilen bestehen zwei Konzepte:

1 Zum einen wird der Mauerwerkbruch nach einer Trennung in Baustoffarten in sog Stoffsubkreisläufen als Rohstoffsubstitut für die Herstellung neuer Baustoffe eingesetzt Zum gegenwärtigen Zeitpunkt kann anhand der wenigen verfügbaren Informationen abgeschätzt werden, dass kaum mehr als 20% der natürlichen Rohstoffe durch Rezyklate ersetzt werden können

Abbildung 99: Recycling-Baustoffe aus Mauerwerkbruch

Abbildung 100: Recycelten Gesteinskörnung 16/32 mm

2 Zum anderen kann der gemischte Mauerwerkbruch als Rohstoff dienen Infrage kommt die Herstellung von keramischen Produkten oder Puzzolanen In Laborversuchen wurde nachgewiesen, dass er sich für die Herstellung von leichten Gesteinskörnungen eignet Der Einsatz als Puzzolan benötigt eine thermische Behandlung

Szenarien für Aufbereitungs- und Verwertungsstrategien

Ausgehend von einer im Projekt erstellten Verwertungsmatrix für die Bestandteile von Bauschutt wurden drei Szenarien entwickelt

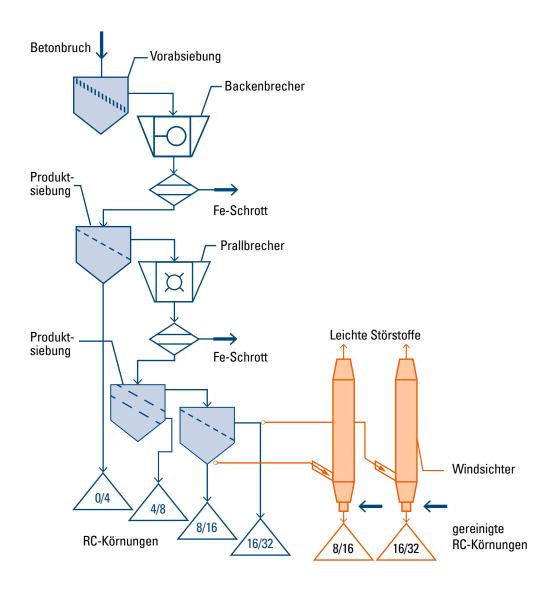


Abbildung 101: Vereinfachte Verfahrensfließbilder einer stationären Aufbereitungsanlage

Im Szenario 1 erfolgt die Aufbereitung und Verwertung nach dem Stand der Technik Der Recycling-Baustoff aus Beton wird im Straßenbau verwertet und für die Betonherstellung eingesetzt Aus dem Mauerwerkbruch wird ein geringer Teil der Ziegelpartikel händisch ausgelesen und z B für Dachbegrünungen oder Baumsubstrate verwertet Die überwiegende Menge an Mauerwerkbruch wird für Verfüllungen eingesetzt

Im Szenario 2 wird der Betonbruch wie im Szenario 1 aufbereitet und verwertet Beim Mauerwerkbruch wird angenommen, dass die Ziegelpartikel > 8 mm mit optischer Sortierung abgetrennt werden Dadurch ist für diesen Teil eine Verwertung z.B. als Pflanzsubstrate und als Bestandteil von Tragschichtmaterial möglich Ferner kann die Ziegelkörnung durch eine Mahlung auf Partikelgrößen < 150 µm aufbereitet und rohstofflich bei

der Ziegelherstellung eingesetzt werden Die Körnungen < 8 mm mit Mauerwerkzusammensetzung wären wiederum als Rohstoff für die Herstellung von leichten Gesteinskörnungen geeignet Für die Körnungen > 8 mm müssten andere Verwertungen gefunden werden

Im Szenario 3 wird bei den Recycling-Baustoffen aus Betonbruch weiterhin wie oben beschrieben vorgegangen Beim Mauerwerkbruch wird eine feinkornarme Zerkleinerung realisiert Die dabei trotzdem entstehende Fraktion < 8 mm wird als Rohstoff für die Herstellung von leichten Gesteinskörnungen und/oder von puzzolanischen Zusatzstoffen genutzt Die groben Fraktionen werden in einer mehrstufigen Sensorsortierung nach Ziegel, Kalksandstein, Porenbeton, Leichtbeton, Mörtel und Putz getrennt Alle Materialfraktionen werden nach dem Konzept der Stoffsubkreisläufe verwertet

Abbildung 102: Recycling-Baustoffe aus Betonbruch

Im Bericht konnte gezeigt werden, dass durch eine konsequente Anwendung und Weiterentwicklung von Aufbereitungs- und Verwertungstechnologien die Ressourceneffizienzpotenziale in der Kreislaufwirtschaft des Bauwesens erheblich verbessert werden können Eine Weiterentwicklung folgender Bereiche wird dringend empfohlen:

- Güteüberwachung unter besonderer Berücksichtigung der Heterogenität der recycelten Ausgangsstoffe
- Vorschriften für die Betonherstellung unter Berücksichtig der rohstofflichen Verwertung
- Lösungen für die Sortierung und Ermittlung der stofflichen Anforderungen als Voraussetzung für die Realisierung von Stoffsubkreisläufen
- Techniken für die Abtrennung von Gipsputzen und Estrichen aus Bauschutt
- Technologien für die rohstoffliche Verwertung von Gemischen bis hin zur Errichtung von Pilotanlagen
- Methoden zur Bewertung der Recyclingfähigkeit von neu entwickelten von Baustoffen und Verbundkonstruktionen

Eckdaten

Erschließung der Ressourceneffizienzpotenziale im Bereich der Kreislaufwirtschaft Bau

Projektleitung:

Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) Claus Asam

Forscher:

Institut für Angewandte Bauforschung Weimar gGmbH (IAB) Prof Anette Müller

Diskussion an der Schnittstelle von Architekturdebatte und Forschungsdiskurs

Martina Zwack, DETAIL transfer, München

2018 wird die Veranstaltungsreihe "Die Zukunft des Bauens", die in Kooperation von DETAIL research und der Forschungsinitiative Zukunft Bau stattfindet, bereits in die sechste Runde gehen In fünf deutschen Städten werden sich Experten mit zukunftsweisenden Architekturund Bauthemen auseinandersetzen Architekten und Wissenschaftler stellen innovative Bauvorhaben und Forschungsprojekte vor, for-

mulieren Antworten und zeigen Potenziale für neue Märkte auf Ein Rückblick und Ausblick

Architekturforschung wird häufig als theoretische Auseinandersetzung - nicht selten mit der Historie - verstanden; Bauforschung hingegen wird oftmals als etwas sehr Technisches oder als reine Ingenieurleistung interpretiert Dass die Wahrheit in der Mitte liegt und zukunftsorientierte Forschung direkten Einfluss auf alle am Bau Beteiligten hat, konnte die Veranstaltungsreihe "Die Zukunft des Bauens" bereits 20-mal beweisen Seit 2013 treffen sich jedes Jahr in fünf deutschen Städten Architekten und Ingenieure, Forscher und Planer, Industrie und Politik zum gemeinsamen Gedankenaustausch über brandaktuelle Themen an der Schnittstelle von Architekturdebatte und Forschungsdiskurs Nach einer tiefgehenden Diskussion in einer kleinen Expertenrunde werden die Themen in Form eines öffentlichen Symposiums an die interessierte Fachwelt weitergegeben Themenaufhänger sind dabei entweder hochspannende, geförderte Forschungsprojekte oder relevante Themen, die aus der Architekturdebatte und dem gesellschaftlichen Diskurs hervorgehen Wichtig ist bei jeder Veranstaltung immer der greifbare Projektbezug – deshalb sind immer auch Planer als Experten geladen, die ihre konkreten Bauten mit passendem Bezug zum Tagesthema vorstellen

Im Laufe der Jahre wurden somit beispielsweise Lebenswelten im demographischen Wandel genauso diskutiert wie neue Ressourcenansätze bei Material und Produkt Es wurden Modellprojekte aufgezeigt und Nachhaltigkeitskriterien analysiert, der Einfluss von neuen Mobilitätskonzepten auf die Stadt herausgestellt oder Innovationen beim Bauen im Bestand aufgezeigt Experten und Teilnehmer beantworteten im Jahr 2017 gemeinsam die Fragen: Wie reagieren Stadtplaner und Architekten auf aktuelle Anforderungen an das Wohnen? Welche individuellen, kostengünstigen und lebenswerten Lösungen gibt es? Welche Chancen bietet das Bauen im Bestand? Wie verändern neue Technologien den Einsatz von Materialien und wie viel Technik brauchen wir wirklich,

Abbildung 103: Moderatorin Eva Herrmann bei der Veranstaltung "Wandelbarer Wohnungsbau"

Abbildung 104: Expertenrunde bei der Veranstaltung "Wandelbarer Wohnungsbau"

um ein Gebäude hochwertig und behaglich zu gestalten? Digitale Planungsmethoden wie BIM und serielle Fertigungsprozesse eröffnen der Baubranche neue Perspektiven und Potenziale Durchgängige Prozessketten – vom Entwurf über Vorfertigung, Baustellenlogistik und Gebäudebetrieb bis zum Recycling - schaffen mehr Transparenz, sinkende Fehlerquoten und höhere Wirtschaftlichkeit beim Planen, Bauen und Nutzen Gleichzeitig verändern die Individualisierung in der Vorfertigung, neuartige Verarbeitungsmöglichkeiten für unterschiedliche Materialien und der wachsende Kostendruck die Sichtweise von Planern und Bauherren auf das modulare Bauen Moderner Systembau verspricht Individualität in der Serie und hohe Qualität zu attraktiven Preisen Nicht selten entzündet sich daran Kritik: Sind stark verdichtete Strukturen überhaupt noch urbane Lebensräume? Erlaubt der hohe wirtschaftliche Druck, dem das Bauen in der Großstadt heute unterliegt, noch lebenswerte und gleichzeitig bezahlbare Wohnungen mit einer lebendigen Diversität? Politik, Planer und Industrie suchen nach attraktiven Konzepten, die kostengünstige, serielle Neubaulösungen intelligent mit dem Bestand verbinden und gleichzeitig einen Beitrag zu Baukultur leisten Daneben können Mischkonzepte, die anpassbaren Raum für die verschiedenen Nutzergruppen bieten, es gleichzeitig schaffen, Wohnen und Arbeiten, private und öffentliche Räume wieder besser zu verbinden So entstehen trotz hoher städtischer Dichte Qualitäten und Freiräume für alle

Aus den vielen Einzelstimmen, Statements und Ergebnissen der vorhergegangenen Diskussionen haben sich für die Veranstaltungsreihe im Jahr 2018 folgende Themen herauskristallisiert:

- Modular Bauen: Große Bandbreite, vielfältige Potenziale
- Digital Planen und Bauen: Hohe Individualität in der Serie
- Reduzieren Recyceln Umnutzen:
 Alte Gebäude, einzigartige Markenzeichen
- Multitalent Fassade: Intelligent und identitätsstiftend
- Wohnformen im Wandel: Qualitäten und Freiräume für alle

Digitalisierung, Industrie 4 0 und technische Innovationen eröffnen der Baubranche völlig neue Möglichkeiten Die Wechselwirkungen zwischen Herstellungsprozess, Material, Konstruktion und Formen sind vielfältiger als je zuvor Die Schnittmenge zwischen Forschung und Anwendung wird immer größer Gleichzeitig steigt die Rolle der Baukultur als Regulativ

Abbildung 105: Informationsmaterial des BBSR bei der Veranstaltung "Wandelbarer Wohnungsbau"

Die nächsten Jahre versprechen spannende Entwicklungen für das Bauen Neben der Vermittlung dieses Know-hows ist es den Veranstaltern wichtig, den Austausch zwischen Architekten und Vertretern aus fachübergreifenden Disziplinen fördern Weitere Informationen unter: www detail de/veranstaltungen/die-zukunft-des-bauens/

Eckdaten

Die Zukunft des Bauens

DETAIL Business Development GmbH Prof Meike Weber, Martina Zwack (Projektleitung), Heike Kappelt

Die Veranstaltungsreihe wird von der Forschungsplattform DETAIL research der Architekturfachzeitschrift DETAIL in Kooperation mit der Forschungsinitiative Zukunft Bau des Bundesinstituts für Bau-, Stadt- und Raumforschung und des Bundesbauministerium durchgeführt

Martina Zwack
Projektleiterin DETAIL
transfer, München

■ Das Bauen der Zukunft wird bestimmt von der Kooperation aller Partner, ohne technische Barrieren und Limitierungen.
Das Planen ist digital, die Grenzen fließend: Virtuelle Realität und gebaute Umwelt werden eins – zugunsten von mehr Kreativität und architektonischer Experimente.

Bauen mit Weitblick – Systembaukasten für den industrialisierten sozialen Wohnungsbau

Markus Lechner, Technische Universität, München

Abbildung 106: Visualisierungen im System Tafelbau

Vielerorts herrscht weiterhin ein großer, sich verschärfender Mangel an bezahlbarem Wohnraum Politik und Wohnungswirtschaft müssen dringend sozial verträglich Wohnraum schaffen Gleichzeitig folgt Planen und Bauen unverändert archaischen Mustern Unter Wahrung architektonischer Vielfalt ist eine Industrialisierung des Wohnungsbaus erforderlich Mög-

liche Wege zur Industrialisierung und deren Umsetzungsfähigkeit werden im Projekt untersucht

Ziel ist ein "Systembaukasten Geschosswohnungsbau", der industrialisierten sozialen Wohnungsbau mit hoher nachhaltiger Bauqualität ermöglicht

Startpunkt war die Entwicklung eines Anforderungskataloges Basierend auf Förderkriterien und Baurecht der Länder werden alle Leistungsanforderungen definiert Dieser insbesondere durch den Partner der Wohnungswirtschaft initiierte Anforderungskatalog stellt alle Informationen für zukünftige Weiterentwicklungen zur Verfügung Aus den Anforderungen wurden die Funktions- und Produktstrukturen für einen Systembaukasten entwickelt

Ein Systembaukasten ist ein Baukastensystem eines spezifischen Systems aus einer Anzahl von Bausteinen (Baugruppen), die anwendungsspezifisch ausgewählt und unter Beachtung von Verträglichkeit miteinander kombi-

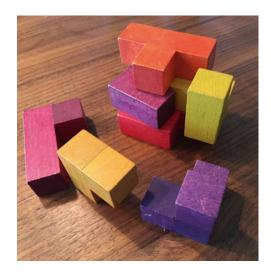
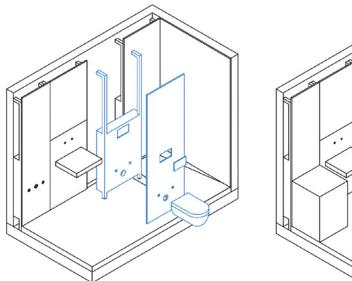
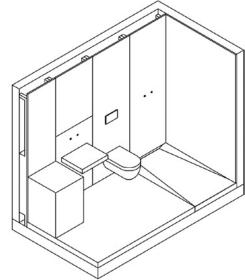


Abbildung 107: Konfiguration von Gebäuden aus Baugruppen-3-D-Tetris

niertwerden Die Bausteine besitzen normierte Gestalt- und Werkstoffeigenschaften, sind aufeinander abgestimmt, konkret und können wiederum aus (weniger komplexen) Bausteinen bestehen Beim Konfigurieren werden die Bausteine verwendet, ohne ihre Gestalt zu verändern

Der ursprüngliche Ansatz zur Entwicklung eines einzigen "Systembaukastens für den sozialen Wohnungsbau" ist daher nicht realisierbar Es kann immer nur ein Systembaukasten für ein spezifisches Bausystem (z B Betonfertigteil-Bauweise) entwickelt werden, da tragwerksplanerische, bauphysikalische und brandschutztechnische Eigenschaften stark differieren und eine vollständige Parametrisierung derzeit noch nicht zu bewältigen ist


Im Vorhaben wurden Bausteine mithilfe einer "Baugruppen"-Systematik entwickelt, die als Baugruppen-Gebäude (BG-G) jeweils Wohnungsgruppen oder Typengeschosse umfassen


Die digitale Definition der Baugruppen umfasst alle Elemente der Baukonstruktion (Schächte, Trennwände, Decken, Dachdecken) und der Technischen Gebäudeausrüstung (TGA) Sie enthält zudem alle zur Fertigung der Baugruppen erforderlichen Daten, stellt also eine vollständige Werkstattplanung für die ausführenden Firmen zur Verfügung Eine Baugruppe ist eine Planungseinheit und damit eine ideale Anwendung des Building Information Modellings (BIM), da die Daten einmal für wiederholende Anwendungen generiert werden (im Gegensatz zum heutigen "One-Design") Eine Parametrisierung in Teilbereichen, z B Fensterformate, Fassadenausführung oder Deckenspannweiten, ist möglich

Die im Vorhaben erprobten Systembaukästen verwenden eine Beton-Raummodul-Bauweise und eine hybride Tafelbauweise aus Holztafeln für Wände und Dach sowie Decken aus Spannbeton-Hohldielen

Damit konnte nachgewiesen werden, dass sich ein erforderlicher Wohnungsmix in Mittelgang-, Laubengang-, Punkthaus- und Spännergebäuden generieren lässt Die architektonische Gestaltungsfreiheit bleibt durch Teilparametrisierung und die Ergänzung durch Anbau-Baugruppen wie Balkone oder Laubengänge (BG-A) und Erschließungen (BG-E) erhalten

In mehreren Optimierungszyklen wurden Prozessanalysen durchgeführt, die insbesondere die Einsparpotenziale im Bereich der internen Planungs- und Produktionsoptimierung durch Wiederholungseffekte aufzeigen konnten Zusätzliche Einsparpotenziale entstehen durch hohe Stückzahlen gleicher Bauprodukte Eine Beschränkung dieser Effekte ist durch die der-

Prof. Frank Will
Technische Universität Dresden, Institut für Fluidtechnik,
Stiftungsprofessur für Bau-

maschinen

Digitalisierung und Automatisierung den Menschen als Maschinenführer nicht vollständig ersetzen – durch intelligente Assistenzsysteme, ergonomische Informationsbereitstellung und autonome Arbeitsprozesse wird sich seine Arbeit aber von der Steuerungsaufgabe hin zur Überwachung der Maschinenfunktionen wandeln.

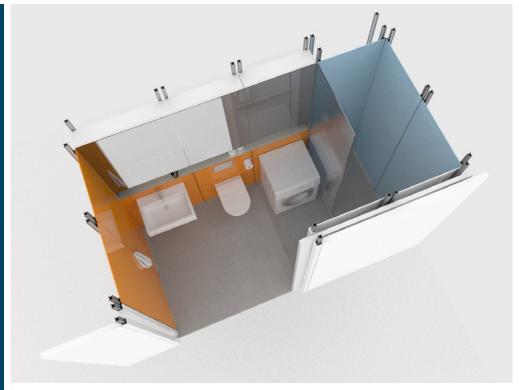


Abbildung 109 und 110: Zusammenfassung von Sanitärgegenstand, Wandoberfläche und UP-Technik zu Funktionseinheiten

zeitige Marktlage (Knappheit an Baustoffen, Produktionskapazitäten, Arbeitskraft) begründet

Die ursprünglich angestrebte Kostengrenze von 1 200 €/m² Nutzfläche brutto für die Kostengruppen 300, 400 und 700 nach DIN 276 konnte nicht nachgewiesen werden Es erscheint aber realistisch, durch die beschriebenen Industrialisierungsschritte zumindest ein

stabiles Preisniveau deutlich unter 2 000 €/m² erreichen zu können

Ergänzend wurde eine Reihe von weiteren Teilaspekten untersucht Dazu gehörten die Entwicklung eines Systembaukastens für behindertenfreundliche und -gerechte Bäder mit austauschbaren Installations-Baugruppen oder die tatsächlich erforderlichen Luftwechselraten Es wurde nachgewiesen, dass eine Luft-

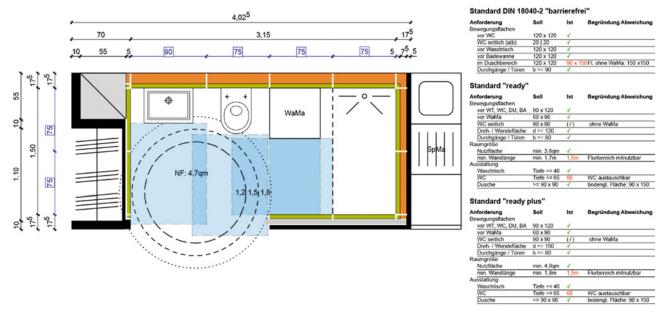


Abbildung 111: Konzeptüberprüfung für eine barrierefreie Nutzung nach DIN 18040-2 und ready-Studie

wechselrate von 0,2/h aus feuchtetechnischen Gründen ausreichend ist

Und es konnte nachgewiesen werden, dass Elektro-Direktheizungen in Deutschland inzwischen bei hochgedämmten Gebäuden und der fortschreitenden Veränderung des Energiemix unter Berücksichtigung der regulatorischen Randbedingungen ausführbar sind

[1] N Kohlhase, Strukturieren und Beurteilen von Baukastensystemen, Dissertation, Düsseldorf; VDI-Verlag, 1997

Für spezifische Bauweisen wurde die Entwicklung eines Systembaukastens basierend auf Baugruppen ermöglicht Die beteiligten Firmen haben damit firmenspezifische Systembaukästen entwickelt (Beton-Raummodule und hybride Holz-Beton-Tafelbauweise) Aufbauend auf den Ergebnissen können nun auch bauweisenspezifische, firmenunabhängige Systembaukästen entwickelt werden, die mittels Konfiguratoren durch unabhängige Planer verwendet und offen ausgeschrieben werden können Die vollständigen Werkstattzeichnungen werden daraus zur Verfügung gestellt Ideal wäre ein Open-Source-System, das die ergänzende Entwicklung und Ergänzung weiterer Baugruppen zulässt - damit wäre eine echte Industrialisierung erreicht

Eckdaten

Bauen mit Weitblick

Forscher:

Technische Universität München, Lehrstuhl für Holzbau und Baukonstruktion

Prof Stefan Winter (Projektleitung)

Technische Universität München, Professur für Entwerfen und Holzbau Prof Herrmann Kaufmann

Technische Universität München, Lehrstuhl für Gebäudetechnologie und klimagerechtes Bauen Prof Thomas Auer

Technische Universität München, Lehrstuhl für Industrial Design, Fraunhofer Institut für Bauphysik IBP, Joachim Brech, Kommunale Wohnungsgesellschaft mbH Erfurt, Max Bögl Modul AG, Regnauer Fertigbau GmbH & Co KG

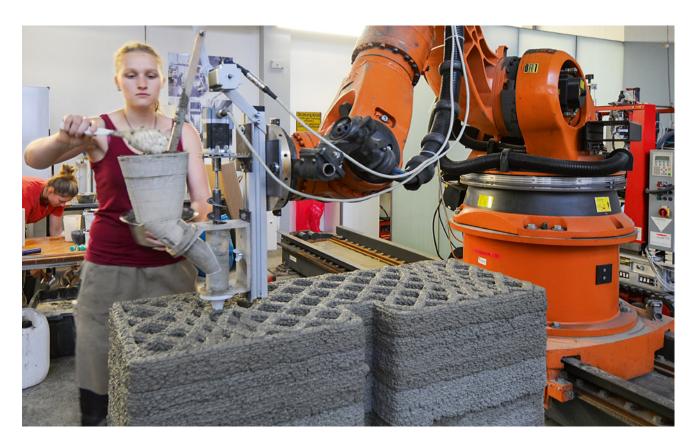


Abbildung 112: Herstellung eines multifunktionalen Wandelements durch Extrusion von Holzleichtbeton Auf dem Bild erkennbar sind Zonen unterschiedlicher Dichte und ein integrierter Installationsschacht

Additive Fertigung durch Extrusion von Holzleichtbeton

Klaudius Henke, Technische Universität, München

Formoptimierte Tragwerke, in den Bestand eingepasste Ergänzungsbauteile – die Einsatzmöglichkeiten additiver Fertigung beim Bauen sind groß Doch während sich die additive Fertigung in vielen Branchen bereits als ein neuer Standard etabliert hat, befindet sie sich im Bauwesen noch in einem sehr frühen Entwicklungsstadium In dem hier vorgestellten Forschungsvorhaben wurde untersucht, wie großformatige Bauteile durch die Extrusion von Holzleichtbeton additiv gefertigt werden können

Die additive Fertigung ("3-D-Druck") von Bauelementen oder ganzen Bauwerken kann mit verschiedenen Verfahren und Materialien realisiert werden Die meisten der bisherigen Forschungs- und Entwicklungsprojekte setzen dabei auf mineralische Werkstoffe, insbesondere auf Beton Beim 3-D-Betondruck kommen zwei Verfahren zum Einsatz: selektives Binden und Extrusion Beim selektiven Binden wird fließfähiges Material gezielt in dünne Schichten einer trockenen Schüttung eingebracht, wodurch diese in den Bereichen lokal verfestigt werden, wo das spätere Bauteil entstehen soll Bei der Extrusion werden die Betonbauteile durch das Ablegen von Frischbetonsträngen schalungsfrei aufgebaut Während sich das selektive Binden vor allem durch seine große geometrische Freiheit auszeichnet, ist die Extrusion im Vorteil, wenn es um die schnelle Herstellung großer Bauteile geht

In dem hier vorgestellten Forschungsvorhaben wurde der 3-D-Betondruck in der Verfahrensvariante Extrusion untersucht Dabei wurden die üblichen, schweren Gesteinskörnungen im Beton durch einen Leichtzuschlag aus dem nachwachsenden Rohstoff Holz ersetzt Dies stellt nicht nur einen Beitrag zur Schonung von Umwelt und endlichen Ressourcen dar, sondern führt auch zu einem vergleichsweise leichten, gut wärmedämmenden und gut zu bearbeitenden Werkstoff Es sollte gezeigt werden, dass dadurch – gegenüber vergleichbaren Lösungen mit Normalbeton – fertigungstechni-

sche Grenzen verschoben und neue Anwendungsmöglichkeiten erschlossen werden können

Als Extruder diente ein von einem Schrittmotor angetriebener Schneckenförderer, der den Frischbeton von oben nach unten durch eine Düse mit einer kreisförmigen Öffnung drückt Die Zufuhr des gemischten Betons erfolgte in kleinen Chargen von Hand über einen Trichter Mit dieser technisch einfach umzusetzenden Lösung konnte die Zeit zwischen Mischen und Ausbringen des Betons kurz gehalten werden Der im Projekt entwickelte Versuchsextruder ist modular aufgebaut und erlaubt es, verschiedene Schnecken, Düsen und Einfülltrichter zu testen

An einen Beton, der bei der additiven Fertigung durch Extrusion eingesetzt werden soll, werden sehr unterschiedliche, teils sich widersprechende Anforderungen gestellt Während der Frischbeton im materialverarbeitenden und -transportierenden System gut fließfähig sein muss, soll er nach dem Austreten aus der Düse möglichst schnell Festigkeit entwickeln Nur wenn dies gewährleistet ist, können eine praxisgerechte Baugeschwindigkeit und nennenswerte geometrische Freiheit erreicht werden Darüber hinaus werden an die Festbetoneigenschaften die gewöhnlichen Anforderungen bezüglich Festigkeit, Wärmeleitfähigkeit, Brand-

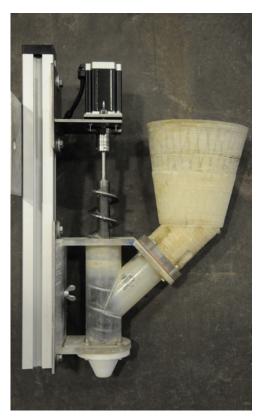


Abbildung 115: Versuchsextruder

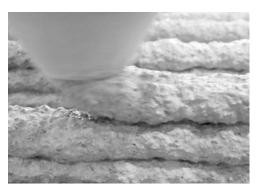


Abbildung 113: Extrusion von Holzleichtbeton

Abbildung 114: Durch Extrusion von Holzleichtbeton gefertigtes Testobjekt mit Überhang von 26 %

verhalten etc gestellt Für die im Projekt durchzuführenden Versuche musste daher ein diesen Anforderungen gerecht werdender Holzleichtbeton zusammengestellt werden Die Materialentwicklung erfolgte experimentell durch Variation der Betonrezeptur bezüglich ihrer Bestandteile und deren Mengenverhältnissen Der auf diese Weise entwickelte Holzleichtbeton besteht aus Portlandkalksteinzement und unbehandelten Weichholzspänen in einem Volumenverhältnis 1:1 Als Additive kamen Luftporenbildner, Stabilisierer und Beschleuniger zum Einsatz

Aus diesem Beton wurden verschiedene Testobjekte und Demonstratoren durch Extrusion additiv gefertigt Zu diesem Zweck wurde der Extruder von einem Industrieroboter entsprechend der angestrebten Bauteilgeometrie im Raum bewegt und die Bauteile durch Ablegen von schmalen Frischbetonsträngen schalungsfrei aufgebaut

Die Prüfungen der Testobjekte ergaben, dass die 3-D-gedruckten Bauteile aus dem im Projekt entwickelten Holzleichtbeton eine Druckfestigkeit von ca 10 N/mm² und eine Biegezugfestigkeit von ca 4 N/mm² bei einer Trockenrohdichte von ca 1 000 kg/m³ aufweisen und damit im Bereich von Leichtbetonen auf rein mineralischer Basis liegen Die ermittelte Wärmeleitfähigkeit beträgt ca 0,25 W/(m*K)

Abbildung 116:
Durch Extrusion additiv gefertigtes und mittels Fräsen partiell subtraktiv nachbearbeitetes Testobjekt aus
Holzleichtbeton

Forscher:

Eckdaten

von Holzleichtbeton

Technische Universität München, Lehrstuhl für Holzbau und Baukonstruktion, Prof Stefan Winter Klaudius Henke (Projektleitung) Daniel Telke

Additive Fertigung durch Extrusion

Es konnten Überhänge von bis zu 26 % realisiert werden Dies zeigt, dass der Einsatz von leichten Werkstoffen einen deutlichen Beitrag zur Steigerung der geometrischen Freiheit der additiven Fertigung durch Extrusion leisten kann

Der erhärtete Holzleichtbeton lässt sich überdies leicht mit handelsüblichen Werkzeugen zur Metallbearbeitung bearbeiten Das ermöglicht eine subtraktive Nachbearbeitung in Bereichen, in denen eine besondere Präzision (z B Bauteilanschlüsse) oder Oberflächenqualität erforderlich ist

Abschließend wurden mehrere großformatige Demonstratoren mit Abmessungen von bis zu $(L \times B \times H)$ 1 500 mm \times 500 mm \times 930 mm gebaut

In dem hier vorgestellten Forschungsvorhaben wurde der 3-D-Betondruck in der Verfahrensvariante Extrusion untersucht Dabei wurden die üblichen, schweren Gesteinskörnungen im Beton durch einen Leichtzuschlag aus dem nachwachsenden Rohstoff Holz ersetzt Es konnte gezeigt werden, dass dies Vorteile sowohl für den Fertigungsprozess (kleinere Masse, bessere Bearbeitbarkeit etc) als auch für die Eigenschaften des erhärteten Baustoffs (geringes Gewicht, geringe Wärmeleitfähigkeit etc) mit sich bringt Das Haupteinsatzgebiet dieser Material-Verfahrens-Kombination ist in multifunktionalen, monolithischen Hüllelementen ohne zusätzliche Wärmedämmung zu sehen

Anreize und Hemmnisse des Wohnungsneubaus

Alexander Schürt, Bundesinstitut für Bau-, Stadt- und Raumforschung

Die Wohnungs- und Immobilienmärkte entwickeln sich in den Teilräumen Deutschlands in sehr unterschiedliche Richtungen – von Marktanspannungen mit Wohnungsengpässen und drastischen Miet- und Preissteigerungen auf der einen Seite bis hin zu Bevölkerungsabwanderungen mit zunehmenden Leerständen und Problemen der Daseinsvorsorge auf der anderen Seite

In vielen boomenden Städten und Regionen sind die Wohnungssuche und der Immobilienerwerb zu einer zeitlichen und finanziellen Herausforderung für Haushalte geworden Kompromisse bei den Wohnungsansprüchen oder Ausweichbewegungen in andere Quartiere oder Gemeinden sind die Folge Die Baufertigstellungen haben zwar in den letzten Jahren merklich zugelegt Sie werden vom Mehrfamilienhausbau in den wachsenden Städten und Kreisen getragen, wohingegen der Eigenheimbau seit 2013 stagniert Die aktuellen Baugenehmigungszahlen sind 2017 allerdings insgesamt rückläufig; einzig der Geschosswohnungsbau bleibt stabil

2016 wurden insgesamt knapp 278 000 Wohnungen realisiert und 375 000 Wohnungen genehmigt Die Realisierung des in den letzten Jahren gestiegenen Bauüberhangs würde bereits eine gewisse Entlastung auf den Immobilienmärkten bringen Die tatsächlichen Wohnungsfertigstellungen reichen aber nicht aus, um den bis zum Jahr 2020 erwarteten jährlichen Neubaubedarf von über 350 000 Wohnungen zu decken Daher ist es wichtig zu wissen, welche Anreize und welche Hemmnisse bei der Realisierung von Neubauprojekten bestehen und wie und wo Wohnungen nachfragegerecht realisiert werden können

In Deutschland bestehen in den zahlreichen Wachstumsregionen gute Voraussetzungen für mehr Wohnungsneubau Die Nachfrage ist seit Jahren größer als das Angebot Das sorgt für stabile Marktsituationen, die das Risiko von Immobilieninvestitionen reduzieren Die gute Marktlage bietet Sicherheiten bei der Vermietung oder der Vermarktung von Objekten und ermöglicht es, höhere Preise zu erzielen

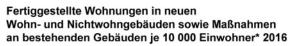
Abbildung 117: Neubau Mehrfamilienhäuser in gehobener Lage in Dresden – Striesen

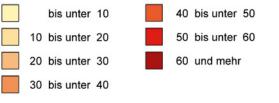
Abbildung 118: Neue Doppelhäuser auf kleinen Grundstücken, Aachen

Abbildung 119: Neubau in günstigeren Lagen südlich der Altstadt, Nürnberg – St Leonhard

Gleichzeitig haben andere Anlageformen mit sinkenden Renditen seit Jahren an Attraktivität verloren Die Zahl interessierter Immobilieninvestoren hat sich merklich vergrößert Die niedrigen Zinsen für Wohnimmobilienkredite ermöglichen es mehr Haushalten, den Traum der eigenen vier Wände zu realisieren; zumindest, wenn ausreichend Eigenkapital vorhanden ist Außerdem können so steigende Immobilienpreise bis zu einem bestimmten Niveau kompensiert werden So haben die Darlehenssummen und die Laufzeit der Sollzinsbindungen in den letzten Jahren spürbar zugelegt Gerade unter dem Gesichtspunkt der Altersvorsorge und einem "mietfreien" Leben im Alter hat die Wohneigentumsbildung weiterhin einen hohen Stellenwert in Deutschland Diese Antriebsfaktoren sorgen aber auch für einen weiteren Nachfragedruck auf die wachsenden Immobilienmärkte und treiben somit die Preise weiter nach oben

Das Interesse am Bau neuer Häuser oder Wohnungen ist bei potenziellen Bauherren – Unter-


nehmen, Anlegern und Privathaushalten - groß Dem stehen aber zahlreiche Hindernisse entgegen, die eine weitere Erhöhung der Neubauzahlen begrenzen Der größte Mangel besteht in verfügbaren und bezahlbaren Baugrundstücken Das sorat für lange und teilweise erfolglose Akquisen Der Wettbewerb um Grundstücke ist groß Gerade auf Gemeinwohl ausgerichtete Unternehmen können so kaum mit den stark steigenden Baulandpreisen mithalten Lange Planungs- und Genehmigungsverfahren sowie zunehmend komplexere Anforderungen und Vorgaben an den Wohnungsbau verlängern und verteuern die Immobilienprojekte Die Auslastung der bauausführenden und planenden Unternehmen ist groß, sodass Verzögerungen bei der Realisierung auch bereits genehmigter Projekte entstehen Der Bauüberhang hat in den letzten Jahren zugenommen Die Marktanspannungen drücken sich auch in den sinkenden Transaktionszahlen von unbebauten wie bebauten Grundstücken in den wachsenden Städten aus, wie sie von den Gutachterausschüssen für Grundstückswerte berechnet werden Gleichzeitig steigen die Transaktionsvolumina durch die deutlichen Preissteigerungen


Mit Neubau alleine können die derzeitigen Wohnungsengpässe nicht beseitigt werden Zusätzlicher Wohnraum lässt sich auch im Gebäudebestand schaffen, bspw durch Aufstockungen, Dachgeschossausbauten oder Umwandlungen von Nichtwohngebäuden in Wohnobjekte In den Städten bieten sich hierzu noch umfassende Potenziale Diese Maßnahmen der Innenentwicklung haben den Vorteil, bei entsprechend integrierten Lagen vorhandene Ressourcen und Infrastrukturen zu nutzen und Flächenneuinanspruchnahmen zu verringern Sie stoßen aber auch häufig auf große nachbarschaftliche Widerstände oder stehen in Konkurrenz zu anderen städtischen Nutzungen Daher sind in einigen Städten mit knappen Innenentwicklungspotenzialen Außenentwicklungsmaßnahmen, auch in größeren Maßstäben, unausweichlich, wie sie bspw in Freiburg im Breisgau (Dietenbach), Aachen (Richtericher Dell) oder Frankfurt a M (Am Eschbachtal - Harheimer Weg; neuer Stadtteil bei Niederursel) geplant werden Flexible Grundrisse und technische Ausstattungen bieten beim Neubau die Chancen, künftig besser im Bestand auf Nachfrageveränderungen reagieren zu können Außerdem sind regionale Kooperationen zwischen den Kommunen erforderlich, um abgestimmt die Möglichkeiten für das Wohnen, aber auch für Gewerbe, Verkehr und weitere Infrastruktur zu entwickeln

Baufertigstellungen insgesamt 2016

| Kiel | Ramburg | Schwerin | Polsdam |

Abbildung 120: Bautätigkeit in Deutschland im Jahr 2016

© BBSR Bonn 2017

*Bevölkerung: Stand 2015

100 km

Datenbasis: BBSR-Wohnungsmarktbeobachtung, Statistik der Baufertigstellungen des Bundes und der Länder Geometrische Grundlage: Kreise (generalisiert), 31.12.2015 © BKG/GeoBasis-DE Bearbeitung: J. Nielsen

Bei allem Engagement zur Schaffung von mehr Wohnraum im Zuge der akuten Engpasssituationen muss aber auch immer die mittelfristige Nachfrage an Wohnraum und Wirtschaftsimmobilien in den Städten und Regionen im Blick behalten werden Die Ausweitung des Neubaus darf nicht über das Ziel hinausschießen und somit

künftige Leerstände schaffen, wie sie vor allem in stagnierenden und schrumpfenden Räumen bereits in erheblichem Maße bestehen Daher ist eine dauerhafte und auch kleinräumige Wohnungs- und Immobilienmarktbeobachtung von hoher Relevanz, um Markttrends frühzeitig erkennen und vermitteln zu können

Einrichtung eines virtuellen "Museums der 1000 Orte" zur Präsentation der Kunst am Bau des Bundes

Ute Chibidziura, Bundesamt für Bauwesen und Raumordnung

Seit 1950 wird an Bundesbauten Kunst am Bau realisiert Über die Jahre sind so Tausende Kunstwerke entstanden, die allerdings auf Hunderte Liegenschaften weltweit verstreut und zumeist nicht zu besichtigen sind Um diesen reichen Kunstbestand dennoch öffentlich zu machen, sollte ein via Internet zugängliches "Museum der 1000 Orte" eingerichtet werden, in dem die Kunst am Bau des Bundes in ihrem baulichen und institutionellen Kontext vorgestellt wird

Kunst am Bau ist in Deutschland seit mehr als 65 Jahren ein fester Bestandteil der Bauherrenaufgabe des Bundes Sie wird regelmäßig bei Baumaßnahmen für gesamtstaatlich relevante Institutionen wie Regierung und Verfassungsorgane, Bundesbehörden und Bundesinstitutionen, Botschaften und Auslandsvertretungen, Polizei, Zoll und Bundeswehr sowie für Medizin-, Kultur- und Wissenschaftsinstitutionen beauftragt Über die Jahre sind so im In- und Ausland an die zehntausend Kunst-am-Bau-Werke entstanden, und nahezu alle bedeutenden Künstlerinnen und Künstler ihrer Zeit waren im Auftrag des Bundes tätig Zusammengenommen bildet die Kunst am Bau des Bundes eine großartige Sammlung an Nachkriegskunst, die sämtliche künstlerischen Strömungen und Ausdrucksformen umfasst und auch in Umfang und Vielfalt international einzigartig ist

Seit einigen Jahren wird dieser seit 1950 aufgebaute Kunstbestand wissenschaftlich und fotografisch dokumentiert und in einer vom BBR eigens erstellten Kunst-am-Bau-Datenbank erfasst Die dezentral lokalisierte Kunst am Bau des Bundes sollte nun zusammenhängend in einem virtuellen "Museum der 1000 Orte" präsentiert werden, sodass für die Entwicklung und Gestaltung einer entsprechenden Web-Applikation eine öffentliche Ausschreibung erfolgte

Das im Juni 2017 von Ministerin Hendricks eröffnete "Museum der 1000 Orte" bietet seinen Besuchern mehrere Wege zur Kunst: Einen schnellen, visuellen Zugang über die Startseite, wo ein Mausklick auf eine der Abbildungen direkt zu dem entsprechenden Kunstwerk oder Bauwerk verlinkt, während die Namen der Künstlerinnen und Künstler zu den hinterlegten Künstlerviten führen Alternativ zur intuitiven Nutzung ist ein systematischer Zugang zur Kunst über die Reiter Museum, Orte, Künstler und Kunstwerke möglich

Der mit Museum überschriebene Bereich bietet Wissenswertes zu Inhalt und Aufbau des "Museums der 1000 Orte", aber auch zur Geschichte der Kunst am Bau, zur baubezogenen Kunst in der DDR sowie zu den Regularien für die Kunst am Bau beim Bund Im Weiteren wird über Forschungen zu Kunst am Bau informiert und auf die Frage eingegangen, wie Kunst am Bau entsteht und warum sie überhaupt beauftragt wird

Der Reiter Orte listet die im Museum befindlichen Liegenschaften mit ihrer aktuellen Bezeichnung in alphabetischer Reihung auf Sofern eine Liegenschaft mehrere Bauwerke umfasst, ist das anhand der hinterlegten Bilder von den Bauwerken ersichtlich Hier kann sowohl nach Orten sortiert, als auch durch die Eingabe einer Postleitzahl gefiltert werden, um Kunstwerke im näheren Umkreis auszuwählen

Unter dem Reiter Künstler werden die Künstlerinnen und Künstler in alphabetischer Reihung ausgegeben und zu jeder Person bis zu drei im Onlinemuseum verfügbare Kunstwerke angezeigt Ein Klick auf den Namen oder das Foto des Kunstwerks verlinkt zur Vita der Künstlerin bzw des Künstlers und den im Museum befindlichen Werken

Im Bereich Kunstwerke können die Arbeiten in chronologischer oder alphabetischer Reihung dargestellt werden Sie lassen sich anhand verschiedener Kategorien nach Zugänglichkeit, Anbringungsjahr, künstlerischen Techniken oder Nutzergruppen filtern, um einen bestimmten Werkkreis zu erhalten Die Anwendung mehrerer Suchkriterien ist dabei ebenso möglich wie die Kombination vorkonfigurierter Kategorien mit einer Freitextsuche

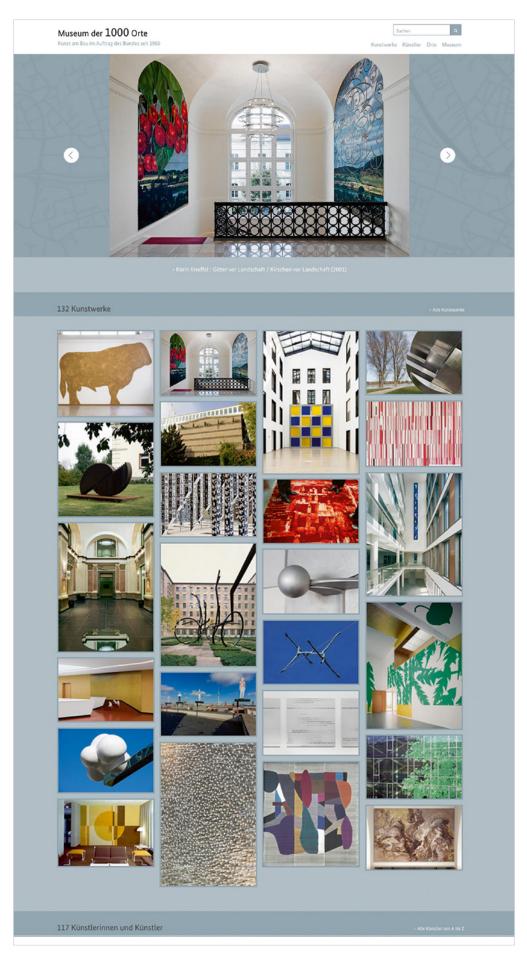
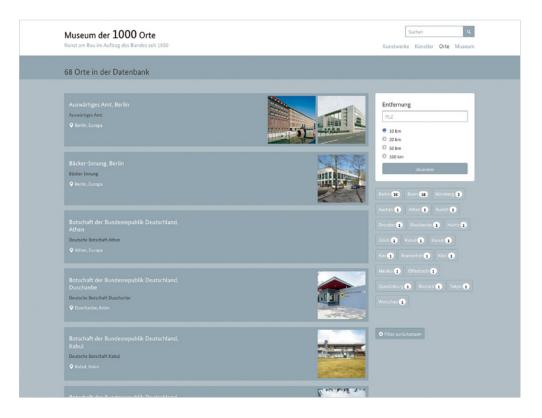
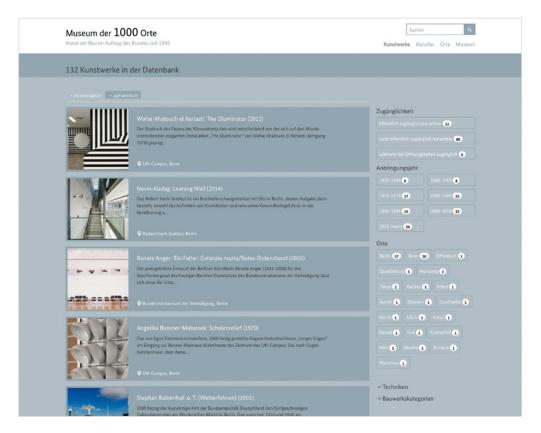




Abbildung 121: Startseite www Museum-der-1000-Orte de

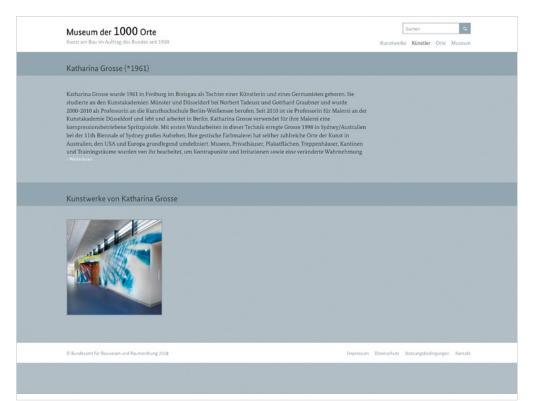

Abbildung 122: Reiter Orte

Abbildung 123: Reiter Kunstwerke

Die einzelnen Kunstwerke werden im "Museum der 1000 Orte" zunächst in einer Bilderfolge präsentiert und dann in ihrem baulichen und institutionellen Kontext unter Angabe von Literaturhinweisen ausführlich beschrieben Kerninformationen zu Material, Technik, Kosten und Vergabeart sowie zum Standort und zur öffentlichen Zugänglichkeit werden ebenso vermittelt wie Informationen zu den Künstlern Ein Ausschnitt des Stadtplans und ein Bild des Bauwerks mit Informationen zum Gebäude sowie zu dessen Nutzungsgeschichte runden das Angebot ab

Abbildung 124:

Katharina Grosse, o T (Wandarbeit), 2011, Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit in Berlin

Sämtliche Informationen zu einem Kunstwerk können in Form eines Projektblattes im PDF-Format ausgedruckt oder abgespeichert werden Auf dem Projektblatt befindet sich auch ein QR-Code Dieser soll zukünftig auf die örtliche Beschilderung der Kunstwerke übernommen werden, um direkt auf die Präsentation im "Museum der 1000 Orte" zu verlinken

Das "Museum der 1000 Orte" ist als wachsendes Angebot konzipiert, das peu à peu erweitert wird

Anders als "klassische" Museen präsentiert das Onlineangebot www Museum-der-1000-Orte de Kunstwerke, die seit 1950 für die dauerhafte Präsenz in und an Bauten des Bundes im Inund Ausland entstanden sind Es umfasst baubezogene Kunst der DDR ebenso wie Kunst am Bau von heute privatisierten Bundesbauten, zudem inzwischen verschollene oder nicht mehr existierende Kunstwerke; insofern ist das Onlinemuseum auch ein Archiv der Kunst am Bau, das kontinuierlich erweitert wird Einige der Kunstwerke werden im Onlinemuseum erstmals publiziert, sodass das "Museum der 1000 Orte" nicht nur für die breite Öffentlichkeit, sondern auch für die Forschung eine wichtige Informationsquelle darstellt

Eckdaten

www.Museum-der-1000-Orte.de

Projektleitung:

Ute Chibidziura, Bundesamt für Bauwesen und Raumordnung (BBR)

Umsetzung:

HauptwegNebenwege GmbH Köln

Bildnachweise 28 Krüger, Sachs				
Dilu	ildelivveise	28	Krüger, Sachs	
		29	Krüger, Sachs	
		30	georgejmclittle – stock.adobe.com	
Abb.	Autor	31	www.fotolia.com/Rawpixel Ltd.	
Titelbild	G. Schubert, Lehrstuhl für	32	BBSR	
1	Architekturinformatik, TUM	33	BBSR	
1	Universität Stuttgart, Institut für	34	BBSR	
0	Computerbasiertes Entwerfen (ICD)	35 36	Sabine Niemann, Zebau GmbH	
2	Universität Stuttgart, Institut für	36 27	Sabine Niemann, Zebau GmbH	
2	Computerbasiertes Entwerfen (ICD	37 20	Sabine Niemann, Zebau GmbH Landratsamt Rhein-Neckar-Kreis	
3	Universität Stuttgart, Institut für Computerbasiertes Entwerfen (ICD)	38	Dorothea Burkhardt	
4		39	BBSR	
4	Universität Stuttgart, Institut für Computerbasiertes Entwerfen (ICD)	40	Köhler Architekten	
5	Universität Stuttgart, Institut für	41	Andreas Reithmeier, aris	
3	Computerbasiertes Entwerfen (ICD)	41	Fraunhofer–Institut für Bauphysik	
6			Fraunhofer–Institut für Bauphysik	
U	Universität Stuttgart, Institut für Computerbasiertes Entwerfen (ICD)	43 44	Fraunhofer – Institut für Bauphysik	
7			Fraunhofer – Institut für Bauphysik	
,	Universität Stuttgart, Institut für Computerbasiertes Entwerfen (ICD)	45 46	• •	
0	Universität Stuttgart, Institut für	46	Frankfurt University of Applied Sciences	
8	Computerbasiertes Entwerfen (ICD)	47		
9	Lehr- und Forschungsgebiet	47	Frankfurt University of Applied Sciences	
9	Baubetrieb und Bauwirtschaft	48		
10	Lehr- und Forschungsgebiet	40	Frankfurt University of Applied Sciences	
10	Baubetrieb und Bauwirtschaft	49	Frankfurt University of Applied	
11	Lehr- und Forschungsgebiet	43	Sciences	
11	Baubetrieb und Bauwirtschaft	50	Christoph Lison	
12	Lehr- und Forschungsgebiet	50 51	Christoph Lison	
12	Baubetrieb und Bauwirtschaft	52	ugljesaras – stock.adobe.com	
13	TU München, Lehrstuhl für	53	TU Braunschweig, IIKE	
13	Architekturinformatik	54	VILevi – stock.adobe.com	
14	TU München, Lehrstuhl für	55	TU Braunschweig, IIKE	
14	Architekturinformatik	56	TU Braunschweig, IIKE	
15	TU München, Lehrstuhl für	57	TU Braunschweig, IIKE	
10	Architekturinformatik	58	TU Braunschweig, IIKE	
16	TU München, Lehrstuhl für	59	TU Braunschweig, IIKE	
10	Architekturinformatik	60	Institut für Leichtbau Entwerfen	
17	TU München, Lehrstuhl für	00	und Konstruieren (ILEK), Universität	
.,	Architekturinformatik		Stuttgart	
18	Kennwert GmbH	61	Institut für Leichtbau Entwerfen	
19	Karlsruher Institut für Technologie	0.	und Konstruieren (ILEK), Universität	
	(KIT)		Stuttgart	
	Institut Entwerfen und Bautechnik	62	Institut für Leichtbau Entwerfen	
	(IEB)	02	und Konstruieren (ILEK), Universität	
20	Karlsruher Institut für Technologie		Stuttgart	
20	(KIT)	63	Institut für Leichtbau Entwerfen	
	Institut Entwerfen und Bautechnik		und Konstruieren (ILEK), Universität	
	(IEB)		Stuttgart	
21	Karlsruher Institut für Technologie	64	Institut für Leichtbau Entwerfen	
	(KIT)	•	und Konstruieren (ILEK), Universität	
	Institut Entwerfen und Bautechnik		Stuttgart	
	(IEB)	65	Institut für Massivbau der RWTH	
22	Bau Kunst Erfinden	••	Aachen Universität	
23	Bau Kunst Erfinden	66	Institut für Massivbau der RWTH	
24	Bau Kunst Erfinden		Aachen Universität	
25	Bau Kunst Erfinden	67	Hering Bau GmbH & Co. KG	
26	Bau Kunst Erfinden	68	Institut für Massivbau der RWTH	
27	Krüger, Sachs		Aachen Universität	
	G -,			

69	Hering Bau GmbH & Co. KG
70	Fraunhofer IBP
71	Fraunhofer IBP
72	Fraunhofer IBP
73	Fraunhofer IBP
74	Fraunhofer IBP
75	Drexler Guinand Jauslin Architekten
76	thoma architekten für degewo
77	Winking Froh Achitekten BDA
78	Bundesinstitut für Bau-, Stadt- und
	Raumforschung
79	Baukonsult-knabe GmbH/Axel Knabe
80	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
81	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
82	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
83	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
84	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
85	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
86	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
87	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
88	Florian Sänger, TUM – Lst f. Energie
	wirtschaft und Anwendungstechnik
89	Technische Universität Dresden
91	Technische Universität Dresden
92	Technische Universität Dresden
93	Technische Universität Dresden
94	Technische Universität Dresden
95	BBSR
96	BBSR
97	BBSR
98	A. Müller
99	A. Müller
100	A. Müller
101	BBSR
102	Müller/Lander
103	DETAIL transfer
104	DETAIL transfer
105	DETAIL transfer
106	TU München, Lehrstuhl f. Holzbau
	und Baukonstruktion
107	Winter
108	TU München, Lehrstuhl f. Holzbau
	und Baukonstruktion
109	TU München, Lehrstuhl f. Holzbau
	und Baukonstruktion
110	TU München, Lehrstuhl f. Holzbau
	und Baukonstruktion
111	TU München, Lehrstuhl f. Holzbau
	und Baukonstruktion
112	Henke, TU München
113	Talke, TU München
	•

114	Henke, TU München
115	Henke, TU München
116	Henke, TU München
117	BBSR
118	BBSR
119	BBSR
120	BKG/GeoBasis-De
121	Bundesamt für Bauwesen und
	Raumordnung (BBR)
122	Bundesamt für Bauwesen und
	Raumordnung (BBR)
123	Bundesamt für Bauwesen und
	Raumordnung (BBR)
124	Bundesamt für Bauwesen und
	Raumordnung (BBR)
125	Bundesamt für Bauwesen und
	Raumordnung (BBR)

Abb.	Autor
Lothar Fehn Krestas	Bernd Lammel
Prof. Achim Menges	Boris Miklautsch, Werkstatt für Photographie
Gerhard Schubert	Federico Pedrotti Fotografo
Thorsten Klooster	BorisTrenkel
Anica Meins-Becker	Fotostudio Hosenfeldt
Prof. Frank Will	Will
Prof. Thomas Auer	Auer.
Sebastian Otto	BMUB
Helga Kühnhenrich	BBSR
Robert Kaltenbrunner	BBSR
Guido Hagel	Hagel
Martina Zwack	Zwack

Literaturhinweise des Herausgebers

ready – Neue Standards und Maßnahmensets für die stufenweise, altengerechte Wohnungsanpassung im Neubau

best practice – Soziale Faktoren nachhaltiger Architektur. 17 Wohnungsbauprojekte im Betrieb

RENARHIS – Nachhaltige energetische Modernisierung und Restaurierung historischer Stadtquartiere

Ökologische Baustoffwahl – Aspekte zur komplexen Planungsaufgabe "Schadstoffarmes Bauen"

ready kompakt – Planungsgrundlagen zur Vorbereitung von altengerechten Wohnungen

Materialströme im Hochbau – Potenziale für eine Kreislaufwirtschaft

WECOBIS – Webbasiertes ökologisches Baustoffinformationssystem

Nachhaltiges Bauen des Bundes – Grundlagen – Methoden – Werkzeuge

ÖKOBAUDAT – Grundlage für die Gebäudeökobilanzierung

Bauteilkatalog – Niedrigschwellige Instandsetzung brachliegender Industrieareale für die Kreativwirtschaft

Bauliche Hygiene im Klinikbau
– Planungsempfehlungen für die bauliche Infektionsprävention in den Bereichen der Operation, Notfall- und Intensivmedizin

Die Broschüren sind kostenfrei erhältlich Die Bestellhinweise sowie die Downloads finden Sie unter www forschungsinitiative de

Notizen

Notizen

IMPRESSUM

Herausgeber

Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR) Deichmanns Aue 31–37 53179 Bonn

Wissenschaftliche Begleitung und Redaktion

Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) Referat II 3 – Forschung im Bauwesen Guido Hagel guido.hagel@bbr.bund.de

Stand

Januar 2018

Gestaltung | Barrierefreies PDF | Lektorat

A Vitamin Kreativagentur GmbH, Berlin Dr. phil. Birgit Gottschalk, Nümbrecht

Druck

Silber Druck oHG, Niestetal

Kostenfreie Bestellungen

zb@bbr.bund.de Stichwort: Magazin Digitales Bauen

Nachdruck und Vervielfältigung

Alle Rechte vorbehalten.

Nachdruck nur mit genauer Quellenangabe gestattet.

Die von den Autoren vertretene Auffassung ist nicht unbedingt mit der des Herausgebers identisch.

Bundesinstitut für Bau-, Stadt- und Raumforschung

im Bundesamt für Bauwesen und Raumordnung

www.forschungsinitiative.de

ISBN 978-3-87994-222-0