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1 Introduction

This paper characterizes long-run and short-run optimal fiscal policy in the labor selection

framework, in which unemployed individuals are selected into new jobs based on idiosyncratic

hiring costs. We start by calibrating structural parameters so that an exogenous policy economy

displays empirically relevant business-cycle volatilities in the labor market. Keeping intact these

parameters, the cyclical volatilities of these quantities are dramatically smaller under optimal

policy. The reason is that wage determination (and hence surplus-sharing) in the calibrated

non-Ramsey economy implies inefficient use of resources, which optimal tax policy corrects.

The intuition is as follows: because societal returns from possible new jobs only depend on

individuals’ job search activities, in order for efficiency to be achieved in the decentralized

economy, newly-hired workers should receive the full surplus. If the surplus is split between

employers and firms, as it usually is, inefficient fluctuations ensue.

Our analysis focuses squarely on the selection phase of labor markets. In order to do so,

we purposefully omit search and matching and hence its well-known notion of labor market

tightness. Nonetheless, we analytically develop a highly-analogous concept of “tightness” in

the pure selection model. Like in the matching model, the selection framework’s tightness is

a primitive of the economy. For the Ramsey government to keep tightness, and hence labor-

market quantities, on its efficient path during business-cycle swings, optimal labor income tax

volatility is orders of magnitude larger than in first-generation macro-Ramsey “tax smoothing”

results, but is a few times smaller than the results based on search and matching labor markets

in Arseneau and Chugh (2012).

In the selection model, the distribution of hiring costs (which could be interpreted as “match-

quality” characteristics) is a technological primitive of the economy which leads to increasing

marginal costs of hiring from the pool of searching individuals. We construct the selection frame-

work’s general-equilibrium transformation function and, in turn, its model-consistent marginal

rates of transformation and labor-market wedges. Efficient allocations in the selection model

require a particular endogenous cost spread between the average cost of hiring and the marginal

cost of hiring.

To make our results more comparable to Arseneau and Chugh (2012) and, more broadly, the

macro-Ramsey literature that began in the 1980s, we develop the selection model’s appropriate

wedges — see Chari and Kehoe (1999, p. 1674) for more on the importance of wedges in

normative analysis — which in turn reveals the analytical concept of tightness in the labor

selection framework. The definition of this new concept of tightness is of course different than

in the matching literature, but it plays exactly the same crucial role as market tightness does in

the search and matching model for both efficiency considerations and optimal policy.
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In a decentralized economy with individualistic Nash bargaining, equilibrium wage dispersion

arises, and the endogenous cost spread manifests itself as a wage premium between the average

newly-hired employee relative to the marginal newly-hired employee. Our results show that

optimal policy ensures that the wage premium (and thus the hiring-cost spread) is identical to

its socially efficient value both in the long run and along the business cycle, independent of

the assumed exogenous distribution of idiosyncratic hiring costs. The cost spread, upon which

the wage premium depends, is what we define as “tightness” in the selection model; this new

concept is a useful innovation for researchers working with the labor selection framework.

As mentioned, our analysis intentionally abstracts from search and matching in order to

isolate the role of optimal fiscal policy in the selection model. Nonetheless, departures from

efficient tightness create distortions in labor markets in both the selection model and the match-

ing model. Despite the need by the Ramsey government to raise revenues via non-lump sum

taxation, efficient labor market dynamics, not surprisingly, are a primary goal. Our quantitative

results show that the Ramsey government achieves perfect wedge smoothing for all structural

parameter constellations, which is different than the wedge-smoothing results in Arseneau and

Chugh (2012). Referring to Arseneau and Chugh (2012, Table 5 on p. 957), there is only one

parameter set for which perfect wedge smoothing is achieved in the search and matching model.

This comparison of wedge dynamics provides a normative perspective on how the labor

demand mechanism operates differently in the selection model compared to the search and

matching model. This difference is known in the growing labor selection literature, but not

from the rigorous normative wedge perspective. Comparing the analytical results we discover to

those discovered in Arseneau and Chugh (2012), we find that, apart from the newly-developed

tightness concept, there is a deep connection between the selection model’s normative results and

the matching model’s normative results once endogenous labor supply is included. Considering

the two models separately, intuitively, optimal labor supply (more precisely, optimal labor-force

participation) depends on the likelihood of obtaining the average wage in both models. With

individual-specific Nash-bargained wages and constant-returns-to-scale production of goods, all

new hires in the search and matching model earn the same wage, but the average wage is larger

than the marginal wage in the labor selection model.

This difference in the average wage vs. the marginal wage arises from the different labor

demand mechanisms across the two frameworks, which in turn depends on the timing of hiring

costs. Recruiting costs include more than just vacancy posting costs, as documented at the

establishment level by Davis, Faberman, and Haltiwanger (2013). Figure 1 fixes this idea:

recruiting costs occur after a job match in the selection model, whereas they occur before a

match in the search model.

Our paper contributes to a growing literature that studies optimal policy in “frictional”
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Period t-1 Period t+1Period t

nt-1 nt

Selective hiring phase 
of hiring new workers

Matching phase of hiring 
new workers

Meeting between searching 
individual and available job

Figure 1: Timing of Recruiting Costs. Labor selection costs occur after a meeting between an
individual searching for a job and an open job opportunity, whereas vacancy posting costs (which are
abstracted from in this paper) occur before a contact.

labor markets.1 “Frictional” labor markets are those that depart from Walrasian labor markets

and allow for the possibility of unemployment, the availability of rents to be shared between

newly-hired workers and their respective production units, and have technological labor-market

primitives above and beyond those that are embedded in the standard aggregate consumption-

goods resource constraint. A few recent papers along this line are Arseneau and Chugh (2012),

Faia, Lechthaler, and Merkl (2014), Michaillat and Saez (2018), Cacciatore and Fiori (2016),

and Jung and Kuester (2015).

Most of these recent papers concentrate on the search and matching framework. The idea

of selection as an important margin of adjustment in firms’ hiring decisions is a long-standing

one, although it has not yet been much emphasized in the macro-labor literature. An early

important empirical firm-level contribution was Barron, Bishop, and Dunkelberg (1985, p. 50),

who adopted and found strong evidence for the view that “...most employment is the outcome of

an employer selecting from a pool of job applicants...” due to cross-sectional heterogeneity in the

pool of applicants. Davis, Faberman, and Haltiwanger (2013) add further evidence to the view

that, in their terminology, “hiring standards” play an important role among the many margins

of labor adjustment. Selection issues and their associated costs seemingly would be an important

component of hiring standards. As shown by Lechthaler, Merkl, and Snower (2010), the selection

model generates both empirically-relevant amplification in labor market measures and plausible

1These studies are relevant in the sense that policy makers have also recently been advocating policies targeting
labor markets. One prominent example is former Federal Reserve Chairman Ben Bernanke, who, in his memoir,
The Courage to Act (2015), states the importance of fiscal policy in supporting labor markets (for example, see
p. 504 and p. 576).
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correlations of key macroeconomic variables without extreme parameter assumptions. Chugh

and Merkl (2016) discuss the efficiency properties of the selection model. More recently, Baydur

(2017) shows that a selection framework can replicate the establishment-level behavior of the

hires-to-vacancy ratio along the employment growth dimension and various other features of the

data. However, unlike our work, none of these papers analytically characterizes selection-model

consistent distortions or corrective optimal fiscal policy.

The rest of the paper is organized as follows. Section 2 describes the economic environment.

Section 3 calibrates and quantifies an exogenous-policy economy to match empirical volatilities

in the job-finding rate, the unemployment rate, and in the labor-force participation rate. Using

the structurally-calibrated model, Section 4 studies the Ramsey problem. Section 5 analytically

develops the selection model’s general-equilibrium concepts of static and intertemporal marginal

rates of transformation and efficiency, and Section 6 shows which features of the decentralized

economy disrupt efficiency. Section 7 discusses several aspects of the model and results, and also

develops the analytics of the selection model’s concept of labor-market “tightness.” Section 8

concludes. A detailed set of Appendices proves the main results and provides many technical

details of the model, along with many quantitative robustness checks, that will be useful for

future research using the selection framework.

2 Model

This section presents the labor selection model, which is based on Lechthaler, Merkl, and Snower

(2010) and its variant with endogenous labor force participation in Chugh and Merkl (2016).

The model uses the “instantaneous hiring” view of transitions between unemployment and em-

ployment, in which new employees begin producing right away, rather than with a one-period

delay.

2.1 Labor Market Accounting

Suppose that nt−1 individuals produced output in period t− 1. At the beginning of period t, a

fraction ρ of these individuals separate from their production opportunities. Some of these newly-

separated individuals may immediately enter the period-t labor force, as may some individuals

who were non-participants in period t − 1; these two groups taken together constitute the

measure st of individuals searching and available to begin work in period t. However, unlike

models based on the Pissarides (1985) framework, there is no matching function that brings

(with probability less than one) individuals available for work into contact with production

opportunities. Rather, each individual available for work makes contact with (“matches” with)

a production opportunity. For the sake of clarity of the optimal policy analysis, each individual
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available for work makes only one contact per period. However, Chugh and Merkl (2016) show

that the number of per-period contacts can be generalized to N > 1 by embedding sequential

search in the selection framework.

Unemployed individual i has idiosyncratic match-quality costs, denoted by εi, which is a

draw from a cumulative distribution function F (ε), with associated density f(ε). It is only

unemployed individuals that are heterogenous; individuals who have been employed for more

than one period are identical in their characteristics. We refer interchangeably to an individual’s

ε as short-run “training costs,” short-run “operating costs,” or, most often, short-run “hiring”

costs. Regardless of terminology, these costs of shadowing other workers or “apprenticeship”

costs are measured in units of output, and marginal costs increase as more new employees are

hired.

Of the st unemployed individuals, (1 − ηt)st individuals turn out to be unsuccessful in

becoming employed, where ηt is the probability that an individual available for work is selected

and begins producing. This probability is taken as given by individuals, but, as described below,

it is endogenous to the environment. The measure

nt = (1− ρ)nt−1 + stηt (1)

of individuals are thus employed and produce in period t. Each of the (1 − ηt)st individuals

who does not find a job receives a government-provided unemployment benefit χ. With these

definitions and timing of events, the measured labor force in period t is lfpt = nt+(1−ηt)st. By

substituting (1), participation can alternatively be measured as lfpt = (1−ρ)nt−1 +st. Figure 2

summarizes the timing of the model.

Because integrating a worker into production is costly, profit-maximization requires that only

those individuals with sufficiently attractive characteristics are brought into the production pro-

cess. Integrating an individual into the production process entails costs, which is interpreted as

an average hiring cost that reflects training and other startup activities for each new worker.

There is thus a threshold ε̃t, which is a function of the state of the economy, for selection of

unemployed individuals once screening has revealed their types. Because individuals’ idiosyn-

cratic characteristics are defined as a cost, only those individuals with εit ≤ ε̃t are brought

into the production process. The probability that an unemployed individual is hired is thus

η(ε̃t) (= F (ε̃t)), and the aggregate number of individuals selected in period t is η(ε̃t)st.
2,3 The

2Depending on context, we sometimes emphasize the dependence of the hiring probability on ε̃t and sometimes
simply write ηt to conserve on notation.

3Readers familiar with endogenous separations in a search and matching model can see the parallels between
the endogenous mass of newly-hired workers who have idiosyncratic characteristics and the endogenous mass of
newly-separated workers who have idiosyncratic characteristics.
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Period t-1 Period t+1Period t

Aggregate 
state 

realized

nt-1 nt

Production (using nt 
employees) occurs, 

product markets 
and asset markets 

meet and clear

Employment 
separation 

occurs (ρnt-1 
employees 
separate)

Selection of 
applicants, who 
begin working 
immediately

nt = (1-ρ)nt-1 + ηtst

yields

Optimal 
labor-force 

participation 
decisions: st 
individuals 
search for 

jobs

(1-ρ)nt-1 individuals counted 
as incumbent workers

Wage 
determination 

occurs

Unselected 
participants receive 

unemployment 
transfer

Figure 2: Timing of events in decentralized economy.

next two subsections describe the household’s labor-force participation decision and the firm’s

selection (hiring) decision.

2.2 Households

There is a measure one of individuals in the economy. Each individual, whether employed, unem-

ployed, or outside the labor force, has full consumption insurance, which is modeled by assuming

that all individuals belong to a representative household that pools income and shares consump-

tion. This “large household” assumption is a tractable way of modeling perfect consumption-risk

insurance, and has been standard in the matching literature since Andolfatto (1996) and Merz

(1995) (which in turn are based on the seminal Hansen (1985) and Rogerson (1988) results for

RBC models.)

The subjective discount factor is β, the function u(.) is a standard strictly-increasing and

strictly-concave subutility function over consumption, and the function h(.) is strictly increasing

and strictly convex in the size of the labor force.4 For intuition and because it facilitates analogy

with both the RBC model and the basic search and matching matching model, it will be helpful to

interpret the measure 1− lfpt of individuals outside the labor force as enjoying leisure. We thus

use the terms leisure and non-participation interchangeably. Without any confusion between

4Given the definitions presented above, we sometimes will write h(lfpt).
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household-level variables and aggregate variables, the measure of participants st is understood

in this section to be a consequence of the household’s decisions, while the household takes as

given the selection threshold ε̃t and thus any functions of it (in particular the hiring rate η(.)

and the average wage of a new hire ωe(.)/η(.)).

The representative household maximizes expected lifetime utility

E0

∞∑
t=0

βt [u(ct)− h (nt + (1− ηt)st)] (2)

subject to the sequence of budget constraints

ct+
∑
j

1

Rjt
bjt+1 = (1−ρ)nt−1(1−τnt )wIt +

(
(1− τnt )ωet

ηt

)
ηtst+(1−ηt)stχ+bt+(1−τpr)Πt (3)

and perceived laws of motion for its employment level

nt = (1− ρ)nt−1 + ηtst. (4)

The rest of the notation is as follows. The wage each incumbent worker earns is wIt ; ωet/ηt

is the conditional average wage paid to a new hire (conditional on being hired); τnt is the

tax rate on labor income for both incumbent and newly-hired individuals; χ is a government-

provided unemployment benefit received by each unemployed (unselected) participant; end-of-

period holdings of a complete set of state-contingent government bonds are denominated as bjt+1

(j indexes the possible states in period t + 1); and Πt is aggregate operating profits of firms

that are distributed in lump-sum manner to households and are taxed by the government at

the rate τpr). As is well-understood in the Ramsey literature, flows of untaxed profits received

by households in and of themselves affect optimal-policy prescriptions.5 To make our results

as comparable as possible to baseline models that prescribe labor-tax-rate smoothing, in which

there are zero economic profits/dividends, our main analysis is conducted assuming τpr = 1.

The formal analysis of the household’s problem appears in Appendix A; here we simply

describe the household’s optimality conditions. Aside from the standard bond Euler conditions

u′(ct) = βRjtu
′(cjt+1), ∀j, (5)

the household’s labor-force participation (LFP) condition is

h′(lfpt)

u′(ct)
= ηt

[
(1− τnt )ωet

ηt
+ (1− ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}]
+ (1− ηt)χ, (6)

5See, for example, Stiglitz and Dasgupta (1971), Schmitt-Grohé and Uribe (2004), and Siu (2004) for examples
in various contexts of this type of taxation incentive.
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in which Ξt+1|t = βu′(ct+1)
u′(ct)

is the one-period-ahead stochastic discount factor and µht+1 is the

shadow value at time t + 1 of the household’s beginning-of-period t + 1 employment stock

nt. The LFP condition has straightforward interpretation: at the optimum, the household

makes available for hiring a fraction of individuals such that the MRS between participation

and consumption is equated to the expected payoff of participation. The payoff is either an

unemployment benefit χ in the event a given individual is not selected (which happens with

probability 1− ηt) or, if a given individual is selected, an immediate after-tax (expected) wage

(where the expectation is with respect to the possible realizations of worker characteristics)

plus an expected discounted continuation value. The LFP condition is thus simply a free-entry

condition on the part of households into the labor market, and it can be interpreted as the

private economy’s labor supply function.

2.3 Firms

The representative firm hires and makes wage payments to workers, some portion of which are

incumbent workers and some portion of which are new employees. As indicated in Figure 2,

wages are set after period-t selection has occurred. Mentioned in Section 2.2 was the conditional

average wage paid to a newly-hired worker. More precisely, define

ωe(ε̃t)

η(ε̃t)
≡
∫ ε̃t w(εit)f(εit)dεit

η(ε̃t)
(7)

as the conditional average wage paid to a new hire in period t. The notation w(εit) makes clear

that in the period in which he is hired, a worker’s wage may be conditioned on his idiosyncratic

operating cost.

Letting H(ε̃t)/η(ε̃t) denote the average idiosyncratic operating cost for each newly-selected

worker — with H(ε̃t) ≡
∫ ε̃t
−∞ εf(ε)dε — in period zero, the representative firm chooses state-

contingent decision rules for its desired employment stock and the threshold operating cost ε̃t

below which it is willing to hire in order to maximize discounted profits

E0

∞∑
t=0

Ξt|0

[
ztnt − (1− τht )

(
H(ε̃t)

η(ε̃t)

)
η(ε̃t)st − (1− ρ)nt−1w

I
t −

(
ωe(ε̃t)

η(ε̃t)

)
η(ε̃t)st

]
. (8)

In (8), τht is a government-provided hiring subsidy, and Ξt|0 is the period-0 value to the rep-

resentative household of period-t goods, which the firm uses to discount profit flows because

households are the ultimate owners of firms. Profits are given by the level of production revenue

net of hiring costs for newly-selected workers as well as wage payments to both incumbent and

newly-selected workers.
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Without any confusion between firm-level variables and aggregate variables, the hiring rate

ηt is understood in this section to be a consequence of the firm’s decisions, while the firm takes

as given the number of job-seekers st as well as, as is standard in search and matching models,

the wage-setting process. Because output is sold in a perfectly-competitive market, the firm’s

problem is to choose ε̃t and nt, ∀t, to maximize (8) subject to a sequence of perceived laws of

motion for its employment level,

nt = (1− ρ)nt−1 + stη(ε̃t). (9)

The formal analysis of the firm’s problem appears in Appendix B; here we simply intuitively

describe the outcome. The firm’s hiring (selection) condition is

(1− τht ) · ε̃t = zt − w(ε̃t) + (1− ρ)Et
{

Ξt+1|t
(
(1− τht+1) · ε̃t+1 + w(ε̃t+1)− wIt+1

)}
. (10)

At the optimum, the firm selects workers from the distribution of applicants until the post-

subsidy cost of bringing an individual into its production activities, ε̃t, is equated to the payoff

of hiring, which is the net marginal revenue product zt−w(ε̃t) plus, conditional on the individual

working beyond the first period of his employment relationship, a continuation value. The

continuation value is composed of the worker’s (future, post-subsidy) replacement cost, ε̃t+1, and

the differential between his future wage as an incumbent and a marginal (future) replacement

hire. The hiring condition is thus a free-entry condition on the part of firms into the labor

market, and it can be interpreted as the private economy’s labor demand function.

In symmetric equilibrium, firms’ period-t operating profits that are returned lump-sum to

households are Πt = ztnt − (1− ρ)nt−1w
I
t − ωe(ε̃t)st − (1− τht )

(
H(ε̃t)
η(ε̃t)

)
η(ε̃t)st.

2.4 Wage Determination

Labor-market models with frictions often assume generalized Nash bargaining over wages; for

the sake of comparability with search-and-matching models, we maintain this assumption. It

is important to note, however, that we have also computed the results with completely rigid

real wages along the business cycle, with real wages held fixed at their long-run Nash-bargained

values. This alternative equilibrium wage-determination mechanism changes none of the Ramsey

dynamic allocations (e.g., ε̃t, η(ε̃t), H(ε̃t), lfpt, nt, ct), but does, naturally, change the dynamics

of the fiscal instruments.

Each worker is assumed to bargain individually with the firm, and vice-versa. That is,

each bilateral worker-firm negotiation takes outcomes in all other worker-firm negotiations as

given; there are thus no strategic considerations in wage determination across employees. We
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assume that each worker’s wage can be conditioned on his idiosyncratic characteristics εit and

that all wages are re-bargained every period.6 Finally, the bargaining power of each newly-

selected worker is αE ∈ [0, 1], and the bargaining power of each incumbent worker is αI ∈ [0, 1].

The solutions to the formal wage-bargaining problems for incumbent workers and new workers is

presented in Appendix C. In what follows, we simply present the bargaining outcomes described

in Definition 1.7

Definition 1. Individually-Bargained Nash Wages. Suppose each worker-firm pair Nash

bargains over the real wage independently of every other worker-firm pair. If the Nash bargaining

power of every newly-hired worker is αE and if the Nash bargaining power of every incumbent

worker is αI , then the real wage earned by the marginal new hire is

w(ε̃t) =
χ

1− τnt
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
(11)

−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

[
(1− τht+1) · ε̃t+1 + w(ε̃t+1)− wIt+1

]}
,

the real wage earned by a new hire with idiosyncratic characteristics εit is

w(εit) =
χ

1− τnt
+ αE(1− τht ) (ε̃t − εit) +

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
(12)

−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1) · ε̃t+1 + w(ε̃t+1)− wIt+1

)}
,

the real wage earned by every incumbent worker is

wIt =
χ

1− τnt
+ αI(1− τht ) · ε̃t (13)

+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1) · ε̃t+1 + w(ε̃t+1)− wIt+1

)}
,

and (by integrating (12) over εit ≤ ε̃t) the average wage paid to a new hire is

ωe(ε̃t)

η(ε̃t)
=

χ

1− τnt
+ αE(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1) · ε̃t+1 + w(ε̃t+1)− wIt+1

)}
.

6These assumptions are also standard in DSGE matching models.
7Note that in the wage equations presented in Definition 1, aggregate productivity does not explicitly appear

because of substitution of the selection condition. This substitution of course does not imply that wages are
independent of aggregate productivity.

11



(14)

Several aspects of the wage functions (11), (12), (13), and (14) are useful to highlight. First,

the net-of-tax unemployment benefit χ is the lower bound of all wages because it is the payoff

an individual receives for sure if wage negotiations break down. Second, the continuation-value

component of each wage function is identical because no matter a worker’s type in period t, he

will be a (homogenous) incumbent worker in period t+ 1 if he remains employed.8 Third, both

new hires with εit < ε̃t and incumbent workers receive a premium over a marginal new hire.

These premia depend on their respective bargaining powers and the values they bring to the

firm over and above that of a marginal new hire.

Indeed, the wage functions (11), (12), and (13) imply wage differentials that are intuitive to

understand. A new hire with εit < ε̃t earns a premium over the marginal new hire

w(εit)− w(ε̃t) = αE(1− τht ) (ε̃t − εit) , (15)

which is the share of the operating cost savings he provides the firm that he is able to extract

through his bargaining power. An incumbent worker earns a premium over the marginal new

hire

wIt − w(ε̃t) = αI(1− τht ) · ε̃t, (16)

which is the share of the replacement cost savings (relative to a marginal new hire) he provides

the firm that he is able to extract through his bargaining power. Finally, the premium that the

average new hire earns over the marginal new hire is

ωe(ε̃t)

η(ε̃t)
− w(ε̃t) = αE(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
. (17)

This wage premium crucially depends on the endogenous cost spread between the average cost

of hiring and the marginal cost of hiring, ε̃t − H(ε̃t)
η(ε̃t)

, which is important in understanding the

results of the Ramsey analysis in Section 4 and its discussion in Section 7.

2.5 Government

The flow government budget constraint in period t is

(1− ρ)nt−1τ
n
t w

I
t + τnt

(
ωet
ηt

)
ηtst + τpr ·Πt (18)

+
∑
j

1

Rjt
bjt+1 = gt + bt + (1− ηt)stχ+ τht

(
Ht

ηt

)
ηtst,

8The wage of the marginal new hire, (11), is simply the wage of an arbitrary new hire (12) evaluated at εit = ε̃t.
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in which the left-hand side denotes period-t receipts and the right-hand side denotes period-t

payments.

2.6 Private-Sector Equilibrium

A symmetric private-sector equilibrium is made up of endogenous state-contingent processes

{ct, nt, st, ε̃t, wIt , w(ε̃t), ωe(ε̃t)}∞t=0 that satisfy seven sequences of conditions: the representative

household’s LFP condition (6), the representative firm’s selection condition (10), the three Nash-

bargained wage conditions (11), (13), and (14), the aggregate law of motion for employment

nt = (1− ρ)nt−1 + η(ε̃t)st, (19)

and the aggregate goods resource constraint

ct + gt +

(
H(ε̃t)

η(ε̃t)

)
η(ε̃t)st = ztnt. (20)

The private sector takes as given stochastic processes {zt, gt, τnt , τht }∞t=0 and the fixed parameters

(τpr, χ, n−1).9

3 Exogenous Fiscal Policy

Before studying the model’s implications for optimal tax policy, we study its cyclical properties

under an exogenous fiscal policy. In this section, we set the hiring subsidy to τht = 0 ∀t and allow

the labor income tax rate to follow a stochastic process, while the government budget constraint

is balanced in every period via a lump-sum tax levied on households. Given this, we calibrate

the model so that it generates empirically-relevant business-cycle fluctuations, especially along

important labor-market dimensions, when driven by empirically-relevant government spending

and labor-income tax rate processes.

3.1 Data Targets

Table 1 presents empirical facts regarding U.S. labor markets.

3.2 Calibration

The quarterly exogenous separation rate of employment is set to ρ = 0.10, in line with U.S.

data. The rest of this section rationalizes the baseline values for the other structural parameters

of the economy.

9The H(ε̃t)
η(ε̃t)

term in the resource constraint denotes the average hiring cost per newly-hired employee η(ε̃t)st.
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yt ηt ut lfpt nt wt τnt

Relative standard deviation 1 3.72 5.15 0.20 0.60 0.52 1.92
Autocorrelation 0.87 0.82 0.91 0.68 0.94 0.91 0.66
Correlation with y 1 0.79 -0.86 0.39 0.78 0.56 0.20

Long-run lfp 0.74

Table 1: Cyclical dynamics of U.S. labor markets. Quarterly business-cycle statistics (1964:1-

2005:1) for y, s, n, and w taken from Arseneau and Chugh (2012, Table 1). The business-cycle statistics

for wages are taken from Gertler and Trigari (2009). The long-run participation rate of 74 percent as

well as the cyclical properties of participation are from Veracierto (2008). Business-cycle statistics for ηt
taken from Chugh and Merkl (2016, Table 3), and the empirical tax rate series comes from the work of

Jones (2002).

Distribution of Idiosyncratic Characteristics. The distribution of idiosyncratic char-

acteristics plays an important role in the economy. In their analysis of efficiency in the labor

selection model, Chugh and Merkl (2016) use several distributional assumptions: a normal distri-

bution, a uniform distribution, and a log-normal distribution. Regardless of their distributional

choice, a main message that emerges is that efficient labor market fluctuations in the selection

model are larger than efficient fluctuations in the search and matching model. To get started

on shedding economic intuition on Ramsey-optimal policy outcomes (the analysis of which is

in Section 4) versus exogenous-policy outcomes, the quantitative analysis that follows uses the

logistic distribution, with the mean parameter set to µε = 0.30 and the cross-sectional standard

deviation σε parameterized to obtain the unconditional volatility of the job-finding rate from

the data. We note that we have also used other distributional forms, and the analytical results

presented in Sections 5, 6, and 7 are independent of distributional assumptions.

Bargaining Powers and Government-Provided Unemployment Benefits. The pa-

rameter setting for bargaining power αE of new workers and the government-provided unem-

ployment benefit χ are chosen to match a steady-state hiring rate of 62% and cyclical variation of

the hiring rate reported in Table 1. The two values are αE = 0.384 and χ = 0.70. Regarding the

bargaining power of incumbent workers, αI , the main results presented set αI = αE = 0.384, but

there are several robustness checks contained in Appendix I in which αE and αI are permitted

to differ.

Utility. Standard balanced-growth preferences are used, u(ct) = ln ct and h(lfpt) =(
κ

1+1/ι

)
lfp

1+1/ι
t . The parameter ι is the elasticity of labor-force participation with respect

to the conditional (conditional on being hired) average real wage of a newly-selected worker(
ωet
ηt

)
, which we set to ι = 0.20 in order to match the relative volatility of participation of 20

percent reported in Table 1. The scale parameter is set to κ = 6.35 to deliver a steady-state
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Parameter Value Description/Notes

Preferences
β = 0.99 Households’ quarterly subjective discount factor
ι = 0.20 Elasticity of participation with respect to real wage
κ = 6.35 Labor subutility parameter

Labor Markets
χ = 0.70 Unemployment benefits
αE = 0.38 Nash bargaining power of newly-hired workers
αI = 0.38 Nash bargaining power of incumbent workers
ρ = 0.10 Quarterly job separation rate
µε = 0.30 Mean parameter of logistic distribution
σε = 0.19 Cross-sectional SD of distribution for new hires’ idiosyncratic characteristics

Exogenous Government Spending Process
ḡ = 0.14 Long-run level of government spending (excluding unemployment transfers)
ρg = 0.97 Quarterly persistence of log g process
σεg = 0.027 Standard deviation of log TFP shock

Exogenous TFP Process
ρz = 0.95 Quarterly persistence of log TFP process
σεz = 0.01 Standard deviation of log TFP shock

Exogenous Tax Policy
τ̄n = 0.20 Long-run labor-income tax rate
ρτn = 0.66 Quarterly persistence of log tax process
στn = 0.02 Standard deviation of log tax shock

Table 2: Baseline calibration of structural parameters.
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participation rate of 74 percent. The quarterly subjective discount factor is set to β = 0.99.

Exogenous Processes. The three exogenous processes are productivity, government spend-

ing, and the labor tax rate, each of which follows an AR(1) process in logs:

ln zt = ρz ln zt−1 + εzt , (21)

ln gt = (1− ρg) ln ḡ + ρg ln gt−1 + εgt , (22)

and

ln τnt = (1− ρτn) ln τ̄n + ρτn ln τnt−1 + ετ
n

t . (23)

The innovations εzt , ε
g
t , and ετ

n

t are distributed N(0, σ2
εz), N(0, σ2

εg), and N(0, σ2
ετn

) respectively,

and are independent of each other. Matching the mean, persistence, and standard error for the

empirical tax-rate series reported above requires setting τ̄n = 0.20, ρτn = 0.66, and στn = 0.047.

The steady-state level of government spending ḡ is calibrated so that it constitutes 20 percent

of steady-state output; the resulting value is ḡ = 0.14. It is important to note that g is spending

excluding unemployment transfers. When including transfers, total government outlays are

ḡ + χ(1 − η)s in the steady state; given our calibrated values, we have ḡ+χ(1−η)s
gdp = 0.25. We

choose parameters ρz = 0.95, ρg = 0.97, σεz = 0.01, and σεg = 0.027, consistent with the

RBC literature and Chari and Kehoe (1999). Also regarding policy, we assume that the steady-

state government debt-to-GDP ratio (at an annual frequency) is roughly 0.5, in line with the

calibrations of Schmitt-Grohé and Uribe (2004), Arseneau and Chugh (2012), and many others.

3.3 Results

Table 3 presents simulation results for the calibrated exogenous-policy model. The top panel

presents dynamics when all three exogenous processes are active, and the lower panel presents

results conditional only on shocks to TFP. Compared with the empirical evidence presented in

Table 1, the small-scale model performs well. In particular, the volatilities of unemployment,

the hiring rate, and the participation rate are all in line with the data.10,11

10If we were to use, in the spirit of Hagedorn and Manovskii (2008), “extreme” parameter values for new
workers’ Nash bargaining power (αE = 0.03) and the outside unemployment benefit (χ = 0.75), volatilities for
the unemployment rate and the job-finding rate are much larger than in the data. Comparing with the first row
in Table 1, the relative standard deviations for this parametrization are, respectively: 1, 5.58, 21.36, 0.23, 0.49,
0.11, and 0.04.

11An exception in the exogenous policy model’s cyclical results is the negative contemporaneous correlation
between lfp and y, which is opposite that of the empirical positive correlation. This negative contemporaneous
correlation between lfp and y also arises in the search and matching model of Arseneau and Chugh (2012). A
potential reason for the negative correlation obtained in these models is that the U.S. participation rate has a
different trend component than that of other labor market variables. To keep the model and the economic insights
simple, especially for the ensuing sections on optimal fiscal policy and the labor selection model’s macroeconomic
distortions, we leave addressing this issue outside the scope of this paper.

16



yt ηt ut lfpt nt wAV Gt τnt

All shocks
Relative standard deviation 1 3.72 9.07 0.20 0.45 0.47 1.92
Autocorrelation 0.95 0.91 0.95 0.96 0.94 0.89 0.66
Correlation with y 1 0.96 -0.97 -0.55 0.94 0.77 -0.20

TFP shocks
Relative standard deviation 1 3.50 8.68 0.14 0.39 0.43 –
Autocorrelation 0.96 0.95 0.97 0.97 0.97 0.95 –
Correlation with y 1 1 -1 -1 1 1 –

Table 3: Baseline model under exogenous policy. Long-run lfp = 0.74. Top panel: shocks

to TFP, government purchases, and labor-income tax rate. Bottom panel: shocks only to TFP. The

next-to-last column reports the weighted average of all newly-hired workers and incumbent workers,

wAVGt = 1
nt

(
ηtst

ωet

ηt
+ wIt (1− ρ)nt

)
.

4 Optimal Fiscal Policy

With the baseline calibration established, we now discard the exogenous process (23) for the

labor income tax rate and instead endogenize tax policy. As required for a Ramsey analysis,

lump-sum taxes are set to zero. The Ramsey government uses a proportional income tax that

is identical across all workers and a hiring subsidy. As shown in Section 7.6, this constitutes

a complete system of taxes. While taxes are now optimally chosen by a Ramsey government,

government purchases continue to follow the exogenous process (22).12

4.1 Ramsey Problem

A standard approach in Ramsey models based on neoclassical markets is to capture in a single,

present-value implementability constraint (PVIC) all equilibrium conditions of the economy

apart from the resource frontier. The PVIC is the key constraint in any Ramsey problem because

it governs the welfare loss of using non-lump-sum taxes to finance government expenditures.13

As is standard, we can construct a PVIC starting from the household flow budget constraint (3)

and using the household optimality conditions (5) and (6). However, because of the nature

of the environment, it cannot capture all of the model’s equilibrium conditions. As shown in

12Thus, we follow the standard convention in Ramsey analysis that spending is exogenous but the revenue side
of fiscal policy is determined optimally.

13See, for example, Ljungqvist and Sargent (2012, p. 625) for more discussion. The PVIC is the household
(equivalently, government) budget constraint expressed in intertemporal form with all prices and policies sub-
stituted out using equilibrium conditions. In relatively simple models, the PVIC encodes all the equilibrium
conditions that must be respected by Ramsey allocations in addition to feasibility. In complicated environments
that deviate substantially from neoclassical markets, however, such as Schmitt-Grohé and Uribe (2004) and Ar-
seneau and Chugh (2008), it is not always possible to construct such a single constraint.
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Appendix F, the PVIC is given by

E0

∞∑
t=0

βt
[
u′(ct)ct − h′(lfpt)lfpt − u′(ct)(1− τpr)Πt

]
= A0, (24)

in which the time-zero assets of the private sector are

A0 ≡ u′(c0)b0 +(1−ρ)

(
1− η0

η0

) [
h′(lfp0)− u′(c0)χ

]
n−1 +(1−ρ)u′(c0)(1−τn0 )

[
ωe0
η0
− wI0

]
n−1.

(25)

Several observations about the PVIC are in order. First, because employment is a state

variable, the household’s “ownership” of the initial stock of employment relationships, n−1, is

part of its time-zero assets, as shown in A0. Second, if labor markets were neoclassical, lfpt would

be interpreted as simply labor because there would be no notion of selection unemployment.

Third, as mentioned above, a spot, neoclassical labor market can be interpreted as featuring

ρ = 1 because there is no long-lived aspect to labor-market transactions. Fourth, with a constant-

returns production technology in a neoclassical environment, Πt = 0 ∀t. Imposing the last three

of these conditions collapses the PVIC (24), as well as the initial assets A0, to that in a standard

Ramsey model based on neoclassical markets.14

However, unlike in a neoclassical model, the PVIC (24) does not capture all equilibrium

conditions of the decentralized economy. In particular, Ramsey allocations must also respect

the selection condition (10), the Nash wage outcomes (11), (13), and (14), and the law of motion

for the aggregate employment stock (19). None of these restrictions is encoded in the PVIC (24).

The Ramsey problem is thus to choose state-contingent processes

{ct, nt, st, ε̃t, wIt , w(ε̃t), ωe(ε̃t), τ
n
t , τ

h
t }∞t=0 to maximize (2) subject to the PVIC (24), the LFP

condition (6), the selection condition (10), the Nash wage outcomes (11), (13), and (14), the law

of motion for the aggregate employment stock (19), and the aggregate resource constraint (20),

taking as given the stochastic processes {zt, gt}∞t=0.15 Finally, the Ramsey government has full

commitment as of period t = 0 to its policy functions for periods t > 0. We emphasize that the

statement of the Ramsey problem in and of itself does not depend on the particular functional

form for the distribution of idiosyncratic characteristics (although, of course, the quantitative

results will).

14In particular, we would have E0

∑∞
t=0

βt [u′(ct)ct − h′(nt)nt] = u′(c0)b0. This PVIC is identical to that in
Chari and Kehoe (1999) for an environment without physical capital.

15The dividend tax rate τpr is omitted from the list of Ramsey choice variables for convenience. As described
above, it is trivial to show that τpr = 1 is optimal in every period because taxing households’ receipts of lump-sum
dividend payments is non-distortionary. Furthermore, for comparability with Arseneau and Chugh (2012), χ is
viewed as an institutional parameter and hence not chosen during the course of “normal” fiscal policy.
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4.2 Computational Issues

The first-order conditions of the Ramsey problem are assumed to be necessary and sufficient,

and all allocations are assumed to be interior. As in the exogenous-policy baseline, we use

a nonlinear numerical solution algorithm to compute the deterministic Ramsey steady-state

equilibrium. As is common in the Ramsey literature, when characterizing asymptotic policy

dynamics (that is, the dynamics of the Ramsey equilibrium implied by the Ramsey t > 0 first-

order conditions), we use only the t > 0 Ramsey first-order conditions. We then use the first-

order accurate decision rules to simulate the Ramsey equilibrium in the face of productivity and

government spending realizations. The productivity and government spending realizations used

to conduct the Ramsey simulations are the same as those in the exogenous-policy experiments

in Section 3, which means that any differences between the Ramsey equilibrium and exogenous-

policy equilibrium are attributable entirely to the dynamics of tax policy.

4.3 Results

4.3.1 Ramsey Steady-State Results

Using the baseline parameter values described in Section 3.2, Table 4 presents steady-state

allocations for the Ramsey economy (upper panel) and for the exogenous-policy economy (middle

panel). The Ramsey government induces a higher long-run hiring probability η by heavily

subsidizing the decentralized economy’s hiring costs. The long-run subsidy is τh = 0.81. Not

reported in Table 4 is the wage premium between the average newly-hired employee relative

to the marginal newly-hired employee. In the Ramsey steady state, the ratio of average wage

ωe(ε̃t)/η(ε̃t) to the marginal wage w(ε̃t) is roughly 10%, which is about half the value of 19%

in the exogenous policy economy. Hence the Ramsey government shrinks the wage gap for new

hires to ensure efficient labor markets. The reason we don’t spotlight the numerical values for

the wage premium is that our calibration procedure was not designed to measure empirically-

relevant wage premia for newly-hired employees, but this is an interesting point for further

research.

We defer an in-depth discussion of model-consistent distortions and wedges to Section 5 and

Section 6, but it is worth pointing out that the inefficiencies in both labor demand and labor

supply shrink in the Ramsey-policy allocations compared to the exogenous-policy allocations.

As the last two columns in Table 4 indicate, both wedges are sharply smaller in the Ramsey

allocations compared to the exogenous-policy allocations (efficiency on each margin requires the

model-consistent wedge to equal one, as defined in Sections 5 and 6). An intratemporal wedge

(along the labor supply dimension) arises in the long-run Ramsey allocation because of the need

to raise revenue through proportional taxes. But the intertemporal margin (the labor demand
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labor labor
u lfp ε̃η(ε̃)−H(ε̃) n y τn τh supply demand

wedge wedge

Ramsey Policy.
0.0005 0.734 0.9674 0.734 0.712 0.214 0.806 0.797 1

Exogenous Policy.
0.043 0.740 0.1867 0.700 0.697 0.200 0 4.134 -3.271

Efficiency.
0.0005 0.761 0.9674 0.761 0.739 0 0 1 1

Table 4: Steady-state allocations. Upper panel: Ramsey-policy allocations. Middle panel:

Exogenous-policy allocations. Lower panel: Efficient allocations. Definition of y = c+ g.

dimension) is efficient, as can be seen by comparing the top panel of Table 4 with the bottom

panel, which display socially-efficient allocations. Another important point to note is that the

term ε̃η(ε̃)−H(ε̃) is identical in the Ramsey allocations and efficient allocations. As discussed

further in Section 7, ε̃η(ε̃)−H(ε̃) is the labor selection model’s analogue of market tightness in

the search and matching model.

In terms of long-run welfare, measured as the percentage of consumption compensation the

representative household would need to be induced to remain in the exogenous-policy environ-

ment, the gain is 3%.

Given the complete set of tax instruments included in our framework (which is discussed

further in Section 7.6), the natural hypothesis is that the endogenous Ramsey steady-state

multipliers other than the ones on the primitive technology of the model (here, the aggregate

goods resource constraint and the aggregate law of motion of employment) and the long-run

budget constraint (the PVIC) should be zero. In other words, all of the decentralized equilibrium

conditions aside from the long-run budget and the primitive technology of the economy should

not bind at the Ramsey equilibrium. Completely in line with this long-running macro-Ramsey

result, Table 5 shows that this indeed arises.

4.3.2 Ramsey Business-Cycle Results

Table 6 displays second moments for the Ramsey economy, using shocks to both government

spending and TFP (upper panel) or to TFP alone (lower panel). Focusing on TFP shocks,

the Ramsey-equilibrium volatilities of the hiring rate, the participation rate, and employment

itself are an order of magnitude smaller than in the comparable exogenous-policy equilibrium
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Ramsey multipliers λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

with respect to RC LOM PV IC SEL LFP w(ε̃t) ωe(ε̃t) wIt

1.753 0.467 0.042 0 0 0 0 0

Table 5: Ramsey steady-state endogenous multipliers. The Ramsey multiplier λ6 is with respect

to the real wage earned by the marginal new hire (11); the Ramsey multiplier λ7 is with respect to the

average real wage paid to a new hire (14); and the Ramsey multiplier λ8 is with respect to the real wage

earned by incumbents (13).

in the lower panel of Table 3. Regarding optimal labor-income tax rate volatility (fourth-to-last

column in Table 6), it empirically resembles that in the U.S. data (see Table 1), even though the

calibration was not designed to do so. Perhaps more importantly, from a theoretical perspective,

tax-rate volatility is orders of magnitude larger than the conventional “tax-smoothing” wisdom.

However, comparison with the optimal tax volatility in Arseneau and Chugh (2012, Table 4),

which, for ease of reference is repeated in the last two columns of Table 6, shows that it is much

smaller than in the search and matching framework. When both productivity and government

spending shocks are active, the volatility of the labor income tax and the proportional hiring

subsidy are, respectively, 1.4 and 3.1 in the selection framework versus 5.6 and 16.2, respectively,

in the search and matching framework. Thus, the optimal volatilities of these tax instruments

in the search and matching model using a Hagedorn and Manovskii (2008) calibration are four

to five times larger than in the selection model.

Whether it’s low volatility or high volatility of tax rates that emerges, what is crucial is the

volatility of model-appropriate wedges. Sections 5 and 6 provide the analytics of efficiency and

decentralized wedges, and Section 7 develops the analytical concept of market tightness in the

selection model and discusses various parts of the framework.

5 Efficient Allocations

The main focus in this section is on the nature of efficient allocations in this environment. Chugh

and Merkl (2016) have stated and solved the model-consistent efficiency problem, but, because

their analysis did not require it, did not define the model-consistent transformation function.

We extend the Chugh and Merkl (2016) efficiency results by characterizing the transformation

frontier for the labor selection model.
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yt ηt ut lfpt nt wAVGt τnt τht τn,ACt τs,ACt

All shocks
Relative standard deviation 1 0.03 5.29 0.23 0.23 0.42 1.41 3.04 5.58 16.23
Autocorrelation 0.95 0.95 0.93 0.97 0.97 0.95 0.95 0.95 0.67 0.89
Correlation with y 1 0.97 -0.95 0.06 0.08 0.97 -0.97 -0.97 -0.86 -0.98

TFP shocks
Relative standard deviation 1 0.04 5.39 0.04 0.03 0.43 1.44 3.12 5.37 15.15
Autocorrelation 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.91 0.90
Correlation with y 1 1 -1 -1 -1 1 -1 -1 -0.99 -1

Table 6: Optimal policy. Long-run lfp = 0.73. Top panel: shocks to TFP and government purchases.

Bottom panel: shocks only to TFP. Last two columns contain analogous results from Arseneau and Chugh

(2012, Table 4). The column labeled wAVGt reports the weighted average of all newly-hired workers and

incumbent workers, wAVGt = 1
nt

(
ηtst

ωet

ηt
+ wIt (1− ρ)nt

)
.

Efficient allocations {ct, st, ε̃t, nt}∞t=0 are characterized by four (sequences of) conditions:

h′(lfpt)

u′(ct)
= η(ε̃t)

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
, (26)

ε̃t = zt + (1− ρ)Et

{
βu′(ct+1)

u′(ct)

[
ε̃t+1 − η(ε̃t+1)

(
ε̃t+1 −

H(ε̃t+1)

η(ε̃t+1)

)]}
, (27)

ct + gt +

(
H(ε̃t)

η(ε̃t)

)
η(ε̃t)st = ztnt, (28)

and

nt = (1− ρ)nt−1 + stη(ε̃t). (29)

The efficiency conditions (26) and (27) are obtained by maximizing household welfare (2) subject

to the technological frontier defined by the sequence of goods resource constraints (28) and laws

of motion for employment (29). The formal analysis of this problem appears in Appendix D.

Condition (26) is a static dimension of efficiency and is analogous to static consumption-

leisure efficiency in the RBC model. Condition (27) is an intertemporal dimension of efficiency,

and it corresponds to the matching model’s efficient job-creation condition; it also corresponds to

the RBC model’s Euler equation for efficient capital accumulation. Even though the model does

not have physical capital in the strict RBC sense, the creation of an employer-employee relation-

ship is an investment activity that yields a long-lasting asset. Because of frictions, employment

thus inherently has both static and intertemporal dimensions in a selection framework, just as it

does in a matching framework. Together, conditions (26) and (27) define the two “zero-wedge”

conditions for the model, both of which are statements about labor markets.
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To highlight this “zero-wedges” view, Proposition 1 restates efficiency in terms of marginal

rates of substitution (MRS) and corresponding marginal rates of transformation (MRT). For the

intertemporal condition, this restatement is most straightforward for the non-stochastic case,

which allows an informative disentangling of the preference and technology terms inside the

Et(.) operator in (27).

Proposition 1. Efficient Allocations. The MRS and MRT for the pairs (ct, lfpt) and

(ct, ct+1) are defined by

MRSct,lfpt ≡
h′(lfpt)

u′(ct)
MRTct,lfpt ≡ η(ε̃t)

(
ε̃t −

H(ε̃t)

η(ε̃t)

)

IMRSct,ct+1 ≡
u′(ct)

βu′(ct+1)
IMRTct,ct+1 ≡

(1− ρ)
[
ε̃t+1 − η(ε̃t+1)

(
ε̃t+1 − H(ε̃t+1)

η(ε̃t+1)

)]
ε̃t − zt

.

Static efficiency (26) is characterized by MRSct,lfpt = MRTct,lfpt, and (for the non-stochastic

case) intertemporal efficiency (27) is characterized by IMRSct,ct+1 = IMRTct,ct+1.

Proof. See Appendix D.

Each MRS in Proposition 1 has the standard interpretation as a ratio of relevant marginal

utilities. By analogy, each MRT has the interpretation as a ratio of the marginal products

of an appropriately-defined transformation frontier.16 As per economic theory, then, efficient

allocations are characterized by an MRS = MRT condition along each optimization margin,

implying zero distortion on each margin. These efficiency conditions are the welfare-relevant

ones in this environment and hence must be the basis for any normative analysis. However,

rather than take the efficiency conditions as prima facie justification that the expressions in

Proposition 1 are properly to be understood as MRTs, each can be derived from primitives,

independent of the characterization of efficiency. Formal details of the following mostly intuitive

discussion appear in Appendix D.

5.1 Static MRT

To understand the static MRT, MRTct,lfpt , in Proposition 1, consider how the economy can

transform a unit of non-participation (leisure) in period t into a unit of output, and hence

consumption, in period t. By construction, this within-period transformation holds fixed all

allocations beyond period t. The transformation is described in terms of leisure because leisure

16We have in mind a very general notion of transformation frontier as in Mas-Colell, Whinston, and Green
(1995, p. 129), in which every object in the economy can be viewed as either an input to or an output of the
technology to which it is associated. Appendix D provides formal details.
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is a good (and hence gives positive utility), while participation is a bad (and gives disutility);

we proceed by describing transformation as occurring between goods.

A one-unit reduction in leisure allows a one-unit increase in st, which leads to a sequence of

further transformations. With probability η(ε̃t), the individual’s revealed operating cost is below

the cutoff ε̃t and he is selected to join a production opportunity; integrating the individual into

production entails a random operating cost. Newly-selected individuals with idiosyncratic traits

ε̃t generate zero value to the firm because they incur larger training costs than those newly-

selected individuals whose training costs are εit < ε̃t. This latter group with traits εit < ε̃t

generate positive value in the period in which they are hired due to the savings of training costs

compared to those with traits ε̃t.

The aggregate expected savings on training costs for those new individuals hired is thus∫ ε̃t
−∞ [ε̃t − εit] f(εit)dεit = ε̃tη(ε̃t)−H(ε̃t), where the equality follows from the definitions of η(ε̃t)

and H(ε̃t). This savings on period-t training costs allows an increase in period-t consumption.

The overall marginal transformation between leisure and consumption described thus far is

η(ε̃t)
[
ε̃tη(ε̃t)−H(ε̃t)

η(ε̃t)

]
= ε̃tη(ε̃t)−H(ε̃t).

However, this is not ceteris paribus because the larger stock of employment in period t has

intertemporal consequences — as per the aggregate law of motion (29), nt+1 would be larger.

Measuring only within-period effects requires controlling for this intertemporal effect. We show

in Appendix D that the appropriate adjustment leads to the lifetime social asset value of a match.

Hence, the overall within-period MRT between leisure and consumption is ε̃tη(ε̃t) − H(ε̃t), as

shown in Proposition 1. As mentioned earlier and as will be discussed further in Section 7,

ε̃tη(ε̃t)−H(ε̃t) is an important object in the labor selection model.

5.2 Intertemporal MRT

Now consider the intertemporal MRT (IMRT) in Proposition 1. The IMRT measures how many

additional units of ct+1 the economy can achieve if one unit of ct is foregone. By construction,

this transformation across periods t and t+ 1 holds fixed all allocations beyond period t+ 1.

A one-unit reduction in ct frees up resources that can be devoted to selection of individuals.

As (28) shows, resources devoted to “investment” in selection of individuals can be increased

by 1
H′(ε̃t)st

units, by selecting some marginally worse (in terms of higher idiosyncratic operating

costs) individuals who otherwise would not have been selected. Relaxing the selection criteria

increases period-t aggregate employment by η′(ε̃t)st
H′(ε̃t)st

= 1
ε̃t

units.17

The addition of 1
ε̃t

individuals to period-t employment has two effects. Because workers

17The simplification follows from using the Fundamental Theorem of Calculus to compute the derivatives of
the functions η(ε̃t) and H(ε̃t). As the goods resource constraint (28) shows, resources devoted to hiring are
denominated in consumption goods units.
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become productive in the period in which they are selected, period-t output, and hence period-t

consumption, rises by zt
ε̃t

units. This rise in period-t consumption must be netted from the

one-unit reduction in period-t consumption that started the thought experiment. Thus, we can

now view all effects on period-t + 1 consumption as arising from a (net) reduction of ct by

1− zt
ε̃t

= ε̃t−zt
ε̃t

(< 1) units.

The second effect of the additional 1
ε̃t

units of period-t employment is that, in period t+ 1,

there are 1−ρ
ε̃t

additional units of employment — that is, nt+1 rises by 1−ρ
ε̃t

units. Each of these

additional units of employment produces zt+1 units of output, and hence consumption. The

overall addition to period t + 1 consumption (starting, recall from immediately above, from a

reduction of period-t consumption by ε̃t−zt
ε̃t

units) described thus far is zt+1(1−ρ)
ε̃t

units.

However, this transformation is not ceteris paribus because the larger stock of employment

in period t + 1 has intertemporal consequences beyond period t + 1; measuring the marginal

transformation across only period t and period t + 1 requires controlling for this additional

intertemporal effect. We show using the implicit function theorem in Appendix D that the

appropriate adjustment factor is H(ε̃t+1)−ε̃t+1η(ε̃t+1)+ε̃t+1

zt+1
, which measures the one-period-ahead

social asset value of a match in period t + 1 (that is, valued from the perspective of period t).

The zt+1 term in this asset value serves only to convert units of labor into units of consumption

goods, so focus on the numerator. The social cost of selecting a worker in period t + 1 to

replace a worker selected in period t is ε̃t+1. Furthermore, due to uncertainty about individuals’

idiosyncratic characteristics, a replacement worker selected in period t + 1 entails an expected

operating cost H(ε̃t+1)− ε̃t+1η(ε̃t+1) =
∫ ε̃t+1
−∞ [ε− ε̃t+1] f(ε)dε. These total costs in period t+ 1

of selecting a replacement individual thus define the value of an individual selected in period t.

Putting together this logic leads to the IMRT shown in Proposition 1. The fully stochastic

intertemporal efficiency condition can thus be represented as

1 = Et

{
βu′(ct+1)

u′(ct)

[
(1− ρ) (H(ε̃t+1)− ε̃t+1η(ε̃t+1) + ε̃t+1)

ε̃t − zt

]}
= Et

{
IMRTct,ct+1

IMRSct,ct+1

}
. (30)

5.3 Nesting the RBC Model

These selection-based static and intertemporal MRTs apply basic economic theory to a general

equilibrium labor selection model. They compactly describe the two technologies — the selection

technology embodied by the costly hiring process, and the production technology ztnt — that

must operate for the within-period transformation of leisure into consumption and the trans-

formation of consumption across time. Due to the participation decision and the investment

nature of costly labor selection, employment inherently features both static and intertemporal

dimensions.
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To see how the efficiency concepts developed here nest the standard Walrasian notion of

consumption-leisure efficiency, suppose that ρ = 1, which makes employment a one-period,

though not a frictionless, phenomenon. With one-period employment outcomes, the intertem-

poral condition (27) simplifies to

ε̃t = zt. (31)

This can be combined with the efficiency condition (26), so that overall efficiency in the case of

one-period employment is characterized by the single within-period condition,

h′(lfpt)

u′(ct)
= η(ε̃t)ε̃t −H(ε̃t)

= η(ε̃t)zt −H(ε̃t)

= η(ε̃t)

(
zt −

H(ε̃t)

η(ε̃t)

)
. (32)

Viewed as a primitive, the “frictions” captured by the hiring costs are formally part of the MRT

of the economy, even though a neoclassical “labor wedge accounting” exercise would regard

them as wedges between the MRS and the marginal product zt of the production technology.

The selection framework’s full-turnover efficiency condition (32) is compared with the matching

model’s analogue in Section 7.4.2.

Moving all the way to the RBC model also requires discarding costly hiring. The RBC model

can be easily viewed as featuring H(ε̃t) = 0 and η(ε̃t) = 1 ∀t (in addition to ρ = 1). The one-

period efficiency condition (32) then reduces to the familiar h′(nt)
u′(ct)

= zt, with “participation” now

interchangeably interpretable as “employment” because there is no hiring-cost friction between

the two.

6 Decentralized Equilibrium Wedges

With the model-appropriate characterizations of static and intertemporal efficiency just devel-

oped, equilibrium wedges are defined as the deviations of MRS from MRT that arise in the

decentralized economy. These wedges measure inefficiencies, and, because the inefficiencies all

relate to the allocation of labor, it may be informative to think of them jointly as a “labor

wedge.” Understanding the determinants and consequences of these inefficiencies provides the

foundation for understanding optimal policy.
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6.1 Static Distortion — “Labor Supply Wedge”

In the decentralized economy with Nash bargaining and labor selection, the within-period (static)

equilibrium margin can be expressed as

h′(lfpt)

u′(ct)
= η(ε̃t)

(
ε̃t −

H(ε̃t)

η(ε̃t)

)[
χ

ε̃tη(ε̃t)−H(ε̃t)
+ αE(1− τnt )(1− τht )

]
(33)

= χ+ (1− τnt )(1− τht )αEη(ε̃t)

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
,

in which the term in brackets in the first line measures the static, or labor supply, distortion.

Comparison of either the first line or the second line in (33) with the static efficiency con-

dition (26) makes clear that sufficient conditions for the decentralized economy with Nash bar-

gaining and labor selection to achieve efficiency are: the decentralized economy features αE = 1;

the unemployment transfer is χ = 0; proportional labor income taxation is τnt = 0; and the

proportional hiring subsidy is τht = 0. These conditions are not necessary, however, because for

any arbitrary (αE < ξ, χ 6= 0), an appropriate setting for policy (τnt , τ
h
t ) achieves efficiency.

To obtain the second line of (33), substitute the wage premium of the average new hire relative

to the marginal new hire (ωe(ε̃t)η(ε̃t)
− w(ε̃t) in (17)) into the decentralized economy’s participation

condition (6); a few steps of algebra then yields the second line in (33). The second expression

in (33) highlights that the difference between the cost of hiring the marginal new employee

relative to the cost of hiring the average new employee (which, as stated in Proposition 1, is the

MRTct,lfpt) can equivalently be considered in terms of the wage premium ωe(ε̃t)
η(ε̃t)

− w(ε̃t) of the

average new hire over the marginal new hire. Our definition of the selection-model’s tightness

is this cost spread, or, equivalently, this wage premium.

6.2 Intertemporal Distortion — “Labor Demand Wedge”

In the decentralized economy with Nash bargaining and labor selection, the intertemporal equi-

librium margin can be expressed as

1 = Et

βu′(ct+1)

u′(ct)


(

1−ρ
1−τnt

) [(
αI(1− τnt+1) + (1− αI)(1− τnt )

)
(1− τht+1)ε̃t+1 −

(
h′(lfpt+1)
u′(ct+1) − χ

)]
(1− τht )ε̃t −

[
zt − χ

1−τnt

]
 .

(34)

Comparing the term in square brackets with the term in square brackets in the intertemporal

efficiency condition (30) implicitly defines the intertemporal distortion.
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6.3 Efficiency in Decentralized Equilibrium Without Taxes

Suppose the decentralized economy features zero taxes at all dates (τnt = τht = 0 ∀t). In this

case, expressions (33) and (34) make clear that efficient allocations require zero unemployment

benefits (χ = 0) and full Nash bargaining power for newly-hired workers (αE = 1). This latter

result is highly analogous to the efficient bargaining condition in matching models that was

originally developed by Mortensen (1982) and Hosios (1990). Section 7 describes further the

intuition behind this result, as well as several other issues regarding efficiency and optimal policy.

7 Analysis and Discussion of Optimal Taxation

Based on the welfare-relevant concepts of efficiency and wedges developed in Sections 5 and 6,

it is now straightforward to explain the optimal policy results through the lens of basic Ramsey

theory. In doing so, we also quantify the role of the two key features of the decentralized

bargaining economy that disrupt efficiency, as well as briefly discuss a few other aspects of the

model and results.

7.1 Wedge Smoothing...

A basic result in dynamic Ramsey analysis is that the least distortionary way for a government

to collect a present value of revenue through proportional taxes is to maintain low volatility

of distortions — “wedge smoothing” — across time periods. Keeping distortions constant (or

nearly constant) over time is the basic insight behind Barro’s (1979) partial-equilibrium tax-

smoothing result, which carries over to quantitative general equilibrium models, as first shown

by Chari, Christiano, and Kehoe (1991) and many others over the past two decades.

This basic Ramsey insight also applies to our model. As Table 7 shows, optimal policy

keeps both static distortions and intertemporal distortions completely stable over the business

cycle regardless of either the quantity of unemployment benefits or the bargaining power of new

employees. In the baseline calibration of the exogenous-policy equilibrium, volatility of the static

wedge relative to that of GDP is 5.4 and the volatility of the intertemporal wedge relative to

that of GDP is 5. These quantitative results make it quite clear that the basic Ramsey principle

of smoothing static distortions carries over to the labor-selection model.

Albanesi and Armenter (2012) recently showed that for a wide class of optimal-policy mod-

els, achieving zero intertemporal distortions is the primary goal. Their results generalize the

well-known zero-capital-taxation results of Chamley (1986) and Judd (1985). Existing zero in-

tertemporal distortions results apply only to the steady state, however; the result here (as well

as in the matching model of Arseneau and Chugh (2012)) is that intertemporal efficiency is
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SD(%) of static wedge SD(%) of intertemp. wedge Opt. tax dynamics

Parameter Set Exog. policy Opt. policy Exog. policy Opt. policy Vol. of τnt Vol. of τht
Baseline 5.40 0 5.00 0 1.41 3.04
αE = 1 3.67 0 5.66 0 0.31 1.06
χ = 0 0.83 0 0 0 2.91 0.15
αE = 1, χ = 0 0 0 0 0 0 0

Table 7: Volatility results. Volatility of static and intertemporal wedges in exogenous-policy equilibria

and Ramsey equilibria, and volatility of taxes in Ramsey equilibria. Volatility of labor income tax reported

as coefficient of variation relative to that of GDP, and volatility of hiring subsidy reported as absolute

level of around the long-run subsidy. Shocks are to TFP and government purchases. In all experiments,

the bargaining power of incumbent workers αI is set at its baseline value.

achieved not only in the long run, but also along the business cycle.18 Our model does not

include physical capital in the strict sense, but intertemporal efficiency is nonetheless a primary

concern of policy due to the asset nature of employment. For the overall economy, employment

is a form of capital; as Proposition 1 implies, long-lasting employer-employee relationships are in

fact the means by which consumption is transformed across time and hence the means by which

the economy “saves.” The intertemporal efficiency insight of Ramsey analysis is thus not limited

to a narrow notion of “physical capital,” but instead applies to any accumulation decision.19

7.2 ...Supports Efficient Labor-Market Fluctuations...

If static wedges are constant over time and intertemporal wedges are always zero, the decen-

tralized economy achieves efficient fluctuations. To see this, first recall the characterization of

efficient allocations in Proposition 1. Considering the deterministic case for clarity, the period t

and period t+ 1 static efficiency conditions can be written in intertemporal form as

u′(ct)

βu′(ct+1)
=

h′(lfpt)

βh′(lfpt+1)
· η(ε̃t+1)

η(ε̃t)
·

 ε̃t+1η(ε̃t+1)−H(ε̃t+1)
η(ε̃t+1)

ε̃tη(ε̃t)−H(ε̃t)
η(ε̃t)


=

h′(lfpt)

βh′(lfpt+1)
·
(
ε̃t+1η(ε̃t+1)−H(ε̃t+1)

ε̃tη(ε̃t)−H(ε̃t)

)
. (35)

Together with the intertemporal efficiency condition (27), the goods resource constraint (28),

and the law of motion (29), this expression describes the efficient fluctuation of the economy

between periods t and t+ 1.

18This difference arises from the fact that newly-matched employees begin working and producing output
immediately in our model, which implies a static component in forward-looking match-creation activities; whereas
the standard assumption in RBC models is that, due to time-to-build lags, newly-created physical capital does
not yield any contemporaneous output.

19Another recent example in which intertemporal efficiency is a central goal of policy, despite the absence of
“physical capital,” is the model of dynamic product creation and destruction in which Chugh and Ghironi (2015)
study optimal policy.
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Now, in the decentralized economy, suppose that the static wedge, even if not zero, is constant

across periods t and t+ 1. Condition (33) shows that static wedge (the term in brackets in (33))

smoothing implies

u′(ct)

βu′(ct+1)
=

h′(lfpt)

βh′(lfpt+1)
·
(
ε̃t+1η(ε̃t+1)−H(ε̃t+1)

ε̃tη(ε̃t)−H(ε̃t)

)
, (36)

which is identical to the implication (35) of period-by-period static efficiency. Thus, fluctu-

ations in the decentralized economy are efficient if static wedges are constant over time and

intertemporal wedges are always zero.

The goods-denominated term ε̃tη(ε̃t) −H(ε̃t) is crucial in the labor selection framework.20

As Table 4 shows, the efficient long-run value of ε̃η(ε̃)−H(ε̃) (lower panel) is identical to that

of the Ramsey planner (upper panel).

Table 7 showed that optimal policy achieves complete stabilization of both intertemporal

wedges and static wedges. The implication of wedge smoothing, then, is that Ramsey equilibria

display efficient fluctuations. Figure 3 illustrates this through impulse responses to a TFP

shock.21 Comparing this analysis to the analysis in Arseneau and Chugh (2012, Section VII.C),

ε̃tη(ε̃t)−H(ε̃t) is the labor selection framework’s analogue of labor-market tightness θt.

7.3 ...Which Requires Tax Volatility

The final step, then, is to describe how efficient fluctuations in tightness are decentralized using

tax policy. In baseline Ramsey models, the mapping from the Ramsey-optimal intertemporal

and static wedges to the set of available taxes is straightforward, and the mappings along each

margin are almost always independent of each other: the Ramsey-optimal intertemporal wedge

pins down the intertemporal tax independently of the static wedge, and the Ramsey-optimal

static wedge pins down the labor (or consumption) tax independently of the intertemporal

wedge.22

In our model, the mapping from a given period-t allocation to the pair of taxes (τnt , τ
h
t )

is defined by the wedge conditions (33) and (34). These two conditions jointly determine the

period-t tax policy (τnt , τ
h
t ) that supports the period-t Ramsey allocation, rather than each

wedge condition pinning down a single tax instrument in isolation.23 Except for the special

20The units of ε̃tη(ε̃t) −H(ε̃t) are in consumption goods, which can be inferred from, for example, the static

efficiency condition (26), in which the MRS h′(lfpt)
u′(ct)

is (as usual) denominated in consumption goods.
21The efficient and Ramsey impulse responses in all panels of Figure 3 are identical.
22A caveat to this simple decentralization is if an incomplete tax system is in place; this point is discussed

below.
23Aruoba and Chugh (2010) present another environment in which frictions (affecting monetary exchange)

imply joint mappings from wedges to taxes, and Arseneau, Chahrour, Chugh, and Finkelstein-Shapiro (2015)
present a customer search-and-matching framework that also implies joint mappings from wedges to taxes.
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Figure 3: Labor market responses to one-percent positive shock to zt in three different
equilibria. The efficient equilibrium in dotted lines, the baseline exogenous-policy equilibrium in dashed
lines, and Ramsey equilibrium in solid lines. The efficient responses and the Ramsey responses are
identical in each panel. Unless otherwise noted, vertical axes plot percentage deviation from respective
long-run equilibrium.
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case of (αE = 1, χ = 0) mentioned at the end of Section 6, the mapping from allocations to

taxes is a complicated endogenous object that can only be approximated quantitatively, and it

is apparent that wedge smoothing does not immediately imply tax smoothing, as it typically

does in Walrasian-based Ramsey analysis.

Intuitively, it is useful to think of the mapping from fluctuations in wedges to fluctuations

in taxes in the following way. Intertemporal efficiency is the paramount concern, which can be

thought of as requiring the efficient fluctuation in tightness

ε̃tη(ε̃t)−H(ε̃t)

ε̃t−1η(ε̃t−1)−H(ε̃t−1)
(37)

in every period t. Given the period-t state of the economy and, loosely speaking, expectations

of period-t + 1 allocations, an appropriate subsidy τht induces firms to hire a quantity of new

employees that, for a given level of unemployment, induces the efficient ε̃tη(ε̃t)−H(ε̃t) and thus

a zero intertemporal wedge. This argument is based on the discussion in Section 7.2. Depending

on parameter values and the size of realized shocks, the hiring subsidy τht may differ substantially

from τht−1; Table 7 shows that fluctuations in τh are indeed large for the baseline parameters.

The effect just described takes as given the measure of searching unemployed individuals and,

by implication, the labor-force participation rate. Now viewing hiring costs instead as given,

variation in τh between period t − 1 and t causes an inefficient fluctuation of search activity

and, in turn, ε̃tη(ε̃t)−H(ε̃t). Given the period-t state of the economy, an appropriate labor tax

rate τnt induces a rate of participation that, for a given quantity of potential job opportunities,

induces the efficient ε̃tη(ε̃t) − H(ε̃t) and thus a static wedge unchanged from period t − 1.

This argument is based on the static wedge condition (33), which is usefully thought of as the

equilibrium version of the LFP condition, along with the accompanying discussion of the wage

premium in Section 6.1. Again depending on parameter values and the size of realized shocks,

the tax rate τnt may differ sharply from τnt−1.

An appropriate combination of time-varying labor taxes and hiring subsidies thus jointly

achieves zero intertemporal distortions and static wedge smoothing, which is tantamount to

stabilizing the two-dimensional notion of the “labor wedge.” More generally, the mapping from

wedge smoothing to the dynamics of taxes in the model depends on whether or not the non-

tax components of the wedges fluctuate efficiently. If they do not, then tax variability offsets

inefficient fluctuations in the wedge; if they do, then tax variability is unnecessary.24,25

24We emphasize that this is an efficiency-based motivation for tax volatility, unlike the results in Aiyagari,
Marcet, Marimon, and Sargent (2002), Schmitt-Grohé and Uribe (2004), or Chugh (2006), in which the inability
(or undesirability) of the government to make debt repayments fully state contingent leads to large fluctuations
in tax rates in order to meet budget shocks; such a channel does not exist in our model because government debt
payments are fully state contingent.

25Although not formalized by Arseneau and Chugh (2008), the result that possibly-time-varying policy can
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7.4 Comparison with Matching Models

This subsection describes important parallels between the efficiency results we have derived for

labor-selection models and those that exist for matching models.

7.4.1 Matching Function

It appears that there is no matching function in the selection model. However, suppose there

were a “trivial” matching function. Denoting by vt the number of job vacancies, we could suppose

that there is a “matching function” defined over active job seekers and open job vacancies in any

period t that takes the Cobb-Douglas form sξtv
1−ξ
t , with ξ = 1. With this trivial specification, the

analogy with the Hosios condition for matching models, which requires that the Nash bargaining

power of workers equal the elasticity of aggregate matches with respect to the number of active

job seekers, is apparent: αE = ξ = 1. Furthermore, it is only new workers to whom this Hosios-

like condition applies because incumbent workers are not available for work in the labor market

at large; they are already joined to their current employer.26

7.4.2 “Labor-Market Tightness”

Figure 1 shows a crucial difference in the matching model vs. the selection model, which is the

timing of labor demand. Allowing for both endogenous LFP and instantaneous production in

the selection model helps us easily compare and contrast the selection model’s concept of “cost

spread” tightness with the matching model’s concept of tightness. There are both similarities

and differences across the two frameworks.

The most important similarity is that tightness in the selection model and in the search and

matching model is crucial for generating both “first-best” (efficient) allocations and “second-

best” Ramsey allocations. Mortensen (1982), Hosios (1990), Moen (1997), and others showed

the importance of market tightness for efficient allocations in matching markets, and Arseneau

and Chugh (2012) analogously showed its importance for “second-best” Ramsey allocations.27

Our results regarding ε̃η(ε̃)−H(ε̃) portray that the same idea is true for selection markets.

The most important difference is that, in the matching phase (which is the first portion of

period t in Figure 1), tightness appears contemporaneously in both the efficient LFP condition

and the efficient vacancy-creation condition before a match occurs. By contrast, in the selection

model, contemporaneous tightness — the cost spread — appears only in the efficient LFP con-

achieve efficiency in a search-and-bargaining economy is the idea of the “dynamic bargaining power effect” in
their monetary policy study.

26Leaving aside on-the-job search, which one could presumably incorporate into selection models as tractably
as can be incorporated in matching models.

27See Stiglitz (2014) for further discussion on the fiscal-policy terminology “second-best,” “third-best,” and so.

33



dition (26). In the efficient selection condition (27), tightness only shows up after a match has

occurred (which is the second portion of period t in Figure 1) and thus in future discounted-value

terms.

With full turnover of the workforce (ρ = 1), efficient selection is independent of the contem-

poraneous cost spread, but efficient labor supply, described in Section 5.3 and repeated here for

convenience,
h′(lfpt)

u′(ct)
= η(ε̃t)

(
zt −

H(ε̃t)

η(ε̃t)

)
, (38)

remains a function of the contemporaneous cost spread. In the matching model, though, full-

turnover of the workforce causes — as shown in Arseneau and Chugh (2012, Section V) —

neither period-t efficient labor supply nor period-t efficient labor demand to be independent of

period-t tightness, which spotlights the fundamental difference in labor demand across the two

frameworks.

7.5 Restoring the Optimality of Tax Smoothing

The non-tax components of the wedges that make tax variability optimal are inefficiently-low

worker bargaining power and the existence of positive unemployment transfers, as the preceding

analysis and discussions make clear. The second, third, and fourth rows of Table 7 document the

volatility of Ramsey-optimal wedges and taxes when, respectively, efficient selection (αE = 1)

is restored, unemployment transfers are assumed to be zero (χ = 0), or both. Each of these

experiments is conducted keeping all other parameters fixed at their baseline settings; the aim

of these experiments is thus not to preserve empirical relevance of the exogenous-policy model,

but rather to shed light on the quantitative importance of these two structural features in

determining the dynamics of optimal taxes.

Raising new workers’ bargaining power αE to unity by itself or reducing unemployment

transfers to zero by itself leads to an order-of-magnitude reduction in tax variability. What

raising αE and lowering χ have in common is that each shifts surplus-sharing through Nash

bargaining towards efficient surplus-sharing: the former because of the results we showed in

Section 5 and Section 6, the latter because, given the primitives of the model, χ has no role

in determining efficient allocations because it represents neither preferences nor technology.

Indeed, αE (and, for that matter, αI) also has no role in determining efficient allocations because

bargaining is only a feature of decentralization.

The first three rows of Table 7 show that it is really the combination of unemployment

transfers and low worker bargaining power for new employees that is important in driving the

tax volatility in the baseline model. If both structural parameters are simultaneously set to

their efficient values (the fourth row of Table 7), then both static and intertemporal wedges
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are completely stabilized across time. The mapping from wedges to taxes in this case is easy.

Comparing (34) with (30) shows that intertemporal efficiency is achieved with τht = 0 ∀t. In turn,

condition (33) shows that static wedge smoothing implies labor tax smoothing. Moreover, the

dynamics of all Ramsey allocations are identical regardless of the (αE , χ) pair in the decentralized

economy.

7.6 Optimal Taxation Issues: Completeness of Tax System

An important issue in models of optimal taxation is whether or not the available tax instruments

constitute a complete tax system. The tax system is complete in our model. Establishing this

is important for two reasons. First, at a technical level, proving completeness reaffirms that

the Ramsey problem as formulated in Section 4 is indeed correct. As shown by Chari and

Kehoe (1999, p. 1680), Correia (1996), Armenter (2008), and many others, incompleteness of

the tax system requires imposing additional constraints that reflect the incompleteness. Second,

it is well-understood in Ramsey theory that incomplete tax systems can lead to a wide range of

“unnatural” policy prescriptions in which the use of some instruments (in either the short run or

the long run) proxy for other, perhaps more natural, instruments.28 Demonstrating completeness

therefore establishes that none of our results is due to any policy instrument serving as imperfect

proxies for other, unavailable, instruments.

As Chari and Kehoe (1999, pp. 1679-1680) explain, an incomplete tax system is in place if,

for at least one pair of goods in the economy, the government has no policy instrument that,

in the decentralized economy, uniquely creates a wedge between MRS of those goods and the

corresponding MRT. Based on the model-appropriate concepts of MRTs and wedges developed

in Sections 5 and 6, it is trivial to show that the pair of instruments (τnt , τ
h
t ) constitutes a

complete tax system.

The argument is as follows: Proposition 1 proved that there are two margins of adjustment

in the economy. Completeness thus requires two policy instruments whose joint setting induces

a unique wedge in each of the two margins. The two instruments τnt and τht do exactly this. Even

though both instruments appear in both the static wedge (33) and the intertemporal wedge (34),

they appear in different relation to each other in the two different wedges. A policy pair (τnt , τ
h
t )

thus determines each wedge uniquely.

A consequence of completeness of the tax system is that the introduction of any additional

tax instruments into the environment necessarily implies indeterminacy of the decentralization

of Ramsey allocations. Some of the resulting new policy decentralizations would feature constant

labor income tax rates along the business cycle. If one were to prefer this way of “restoring the

28Stiglitz (2014) provides a high-level summary of the optimal taxation literature dating all the way back to
Ramsey (1927).
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optimality of tax-smoothing,” it must be driven by considerations outside the scope of the model.

The model does not provide any basis for preferring one decentralization over another, which

is a well-understood point in Ramsey models. Hence, loading redundant policy instruments

onto the static and intertemporal wedges would be an uninteresting way of restoring labor tax

smoothing.

8 Conclusion

As stated in the conclusion of Arseneau and Chugh (2012), it’s not just inefficient matching

markets that can generate large volatility in optimal tax rates. Instead, it’s any model that

departs from Walrasian labor markets that generates surpluses to be shared and in which de-

centralized surpluses are split in an inefficient manner that has the potential to generate large

volatility in fiscal policy instruments. Our results show that this occurs in the selection model,

which, at both face value and in terms of the model’s primitives, is seemingly quite different

from the conventional search and matching model. More importantly, it’s inefficiencies in labor

markets that are of utmost concern for reactive policy, be it optimal fiscal policy, optimal mon-

etary policy, or optimal regulatory policy. Both policy makers and researchers in policy-related

areas must be aware of the market primitives and its implied distortions in an economy before

deciding upon best policy paths.

Our paper has analytically developed the appropriate wedges for the labor-selection environ-

ment and a selection-model-consistent notion of market tightness. Taking together the growing

literature on optimal policy in “frictional” markets, one natural next step is to study both

positive and normative issues when labor markets feature both search and matching and labor

selection.
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A Household Optimization

The representative household maximizes expected lifetime utility

E0

∞∑
t=0

βt [u(ct)− h ((1− ηt)st + nt)] (39)

subject to the sequence of budget constraints

ct +
∑
j

1

Rjt
bjt+1 = (1− ρ)nt−1(1− τnt )wIt + ηt

(1− τnt )ωet
ηt

st + (1− ηt)stχ+ bt + (1− τpr)Πt, (40)

and perceived laws of motion for its employment level

nt = (1− ρ)nt−1 + ηtst. (41)

Let βtφt denote the Lagrange multiplier on the period-t budget constraint, and βtµht denote

the Lagrange multiplier on the household’s period-t perceived law of motion. The first-order

conditions with respect to ct, st, nt, and bjt+1 are

u′(ct)− φt = 0, (42)

−(1− ηt)h′((1− ηt)st + nt) + φt ((1− τnt )ωet + (1− ηt)χ) + µhtηt = 0, (43)

−µht − h′((1− ηt)st + nt) + (1− ρ)βEt
{
φt+1(1− τnt+1)wIt+1 + µht+1

}
= 0, (44)

and

u′(ct) = βRjtu
′(cjt+1), ∀j. (45)

With first-order conditions now computed, switch to the notation lfpt = (1− ηt)st + nt, which

follows from the accounting identities of the model.

From (43), we can isolate

µht =
(1− ηt)h′(lfpt)− u′(ct) ((1− τnt )ωet + (1− ηt)χ)

ηt
. (46)

Substituting this into (44),

(1 − ηt)h
′(lfpt) − u′(ct) ((1 − τnt )ωet + (1 − ηt)χ)

ηt
= −h′(lfpt) (47)

+ (1 − ρ)βEt

{
u′(ct+1)(1 − τnt+1)wIt+1 +

(
(1 − ηt+1)h′(lfpt+1) − u′(ct+1) ((1 − τnt+1)ωet+1 + (1 − ηt+1)χ)

ηt+1

)}
.
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Dividing by u′(ct) and using the notation Ξt+1|t ≡ βu′(ct+1)/u′(ct),

(1 − ηt)h
′(lfpt) − u′(ct) ((1 − τnt )ωet + (1 − ηt)χ)

ηtu′(ct)
= −h

′(lfpt)

u′(ct)
(48)

+ (1 − ρ)Et

{
Ξt+1|t

[
(1 − τnt+1)wIt+1 +

(
(1 − ηt+1)h′(lfpt+1) − u′(ct+1) ((1 − τnt+1)ωet+1 + (1 − ηt+1)χ)

ηt+1u′(ct+1)

)]}
,

which is a representation of the LFP condition that is useful for the Nash bargaining problem

in Appendix C because it is recursive in the term
(1−ηt)h′(lfpt)−u′(ct)((1−τnt )ωet+(1−ηt)χ)

ηtu′(ct)
.

To obtain the representation that appears in the main text, first recognize that the sec-

ond additive term under the expectation operator in the previous expression can be written

compactly as
µht+1

u′(ct+1) , so that

(1 − ηt)h
′(lfpt) − u′(ct) ((1 − τnt )ωet + (1 − ηt)χ)

ηtu′(ct)
= −h

′(lfpt)

u′(ct)
+(1−ρ)Et

{
Ξt+1|t

[
(1 − τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}
.

(49)

Rearranging,

(1− ηt)h′(lfpt)
ηtu′(ct)

=
(1− τnt )ωet + (1− ηt)χ

ηt
−h
′(lfpt)

u′(ct)
+(1−ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}
.

(50)

Expanding the terms on the left-hand side,

h′(lfpt)

ηtu′(ct)
−h
′(lfpt)

u′(ct)
=

(1− τnt )ωet + (1− ηt)χ
ηt

−h
′(lfpt)

u′(ct)
+(1−ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}
,

(51)

which allows canceling a couple of terms, to give

h′(lfpt)

ηtu′(ct)
=

(1− τnt )ωet + (1− ηt)χ
ηt

+ (1− ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}
. (52)

Multiplying by ηt gives

h′(lfpt)

u′(ct)
= ηt

[
(1− τnt )ωet

ηt
+ (1− ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}]
+ (1− ηt)χ, (53)

which is the representation of the LFP condition that appears as condition (6) in the main text.

It is also useful to express this as

h′(lfpt)

u′(ct)
− χ = ηt

[
(1− τnt )ωet

ηt
− χ+ (1− ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}]
(54)

because the term on the left-hand side of this latter representation turns out to appear in the

continuation values of all of the Nash wage equations derived in Appendix C. Furthermore, this

form of the LFP condition also allows for expression in terms of the value equations derived in

Appendix C, as shown below.
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For the Nash bargaining problem in Appendix C, define the value function associated with

the household problem as V(nt−1). The associated envelope condition is thus

V′(nt−1) = (1− ρ)
[
φt(1− τnt )wIt + µht

]
(55)

= (1− ρ)

[
u′(ct)(1− τnt )wIt +

(1− ηt)h′(lfpt)− u′(ct) ((1− τnt )ωet + (1− ηt)χ)

ηt

]
,

where the second line follows from (46). Finally, for use in Appendix C, the period t+1 envelope

condition can be expressed in discounted terms as

βu′(ct+1)

u′(ct)

V′(nt)

u′(ct+1)
= (1 − ρ)

βu′(ct+1)

u′(ct)

[
(1 − τnt+1)wIt+1 +

µht+1

u′(ct+1)

]
= (1 − ρ)

βu′(ct+1)

u′(ct)
(1 − τnt+1)wIt+1

+(1 − ρ)
βu′(ct+1)

u′(ct)

[
(1 − ηt+1)h′(lfpt+1) − u′(ct+1) ((1 − τnt+1)ωet+1 + (1 − ηt+1)χ)

ηt+1u′(ct+1)

]
.

(56)
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B Firm Optimization

The representative firm chooses state-contingent processes {ε̃t, nt}∞t=0 to maximize the present

value of discounted profits

E0

∞∑
t=0

Ξt|0

[
ztnt − (1− τht )

(
H(ε̃t)

η(ε̃t)

)
η(ε̃t)st −

ωe(ε̃t)

η(ε̃t)
η(ε̃t)st − (1− ρ)nt−1w

I
t

]
(57)

subject to the sequence of perceived laws of motion for its employment stock

nt = (1− ρ)nt−1 + stη(ε̃t). (58)

Letting βtµft denote the Lagrange multiplier on the period-t law of motion (58), the first-

order conditions with respect to ε̃t and nt are

µftη
′(ε̃t)st − ω′e(ε̃t)st − (1− τht )

(
H ′(ε̃t)

η′(ε̃t)

)
η′(ε̃t)st = 0 (59)

and

zt − µft + (1− ρ)Et
{

Ξt+1|t
(
µft+1 − wIt+1

)}
= 0, (60)

in which Ξt+1|t ≡ Ξt+1|0/Ξt|0 is the one-period stochastic discount factor. From (59), the value

to the firm of an employee can be measured as

µft =
ω′e(ε̃t) + (1− τht )

(
H′(ε̃t)
η′(ε̃t)

)
η′(ε̃t)

=
w(ε̃t)f(ε̃t) + (1− τht ) · ε̃tf(ε̃t)

f(ε̃t)

= w(ε̃t) + (1− τht ) · ε̃t, (61)

where the second line follows from the Fundamental Theorem of Calculus.

Substituting (61) into (60),

(1− τht )ε̃t = zt − w(ε̃t) + (1− ρ)Et
{

Ξt+1|t
[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
, (62)

which is the firm’s hiring (selection) condition that appears as expression (10) in the main text.

Define the value function associated with the firm problem as F(nt−1). The envelope condi-

tion is thus

F′(nt−1) = (1− ρ)
[
µft − wIt

]
= (1− ρ)

[
(1− τht )ε̃t + w(ε̃t)− wIt

]
, (63)
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where the second line makes use of (61). For use in the analysis of the Nash bargaining problems

in Appendix C, the period t+ 1 envelope condition can be expressed in discounted terms as

βu′(ct+1)

u′(ct)
F′(nt) = (1− ρ)

βu′(ct+1)

u′(ct)

[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]
= (1− ρ)Ξt+1|t

[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]
. (64)
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C Nash-Bargained Wages

This section presents the details of the derivation of the Nash wage equations given in Proposi-

tion 1. This requires first defining the values to the both household and the firm of a newly-hired

worker with idiosyncratic characteristics εit and any given incumbent worker at the time bar-

gaining occurs. Because of the timing of events in the model (see Figure 2), these values are

properly defined in the “second subperiod” of period t, immediately after worker selection has

taken place and thus each individual’s measured labor market status for period t is known. In

contrast, household-level decisions (in particular, the participation decision of how many indi-

viduals to send to look for jobs) occurs in the “first subperiod” of period t, before selection

has taken place. The temporal separation of events in the model requires that we construct

the bargaining-relevant value equations by simply accounting for the payoffs (viewed from the

perspectives of the household and the firm).

A further observation is in order, one that applies to firms and households. Regardless of

whether a given individual is a newly-hired or an incumbent worker in period t, he will be

an incumbent worker in period t + 1 if he remains employed. From the perspective of the

household (or the firm), the continuation value of any worker is thus identical to that of any

other worker (because it is only in the first period of employment that workers are heterogeneous)

and is measured by the envelope condition of the household (or firm) problem. It is thus already

apparent that the envelope conditions derived above measure the values of an incumbent worker,

although this is verified below.

C.1 Value Equations for Household

A labor-market participant who either was not selected in period t or was selected (or was an

incumbent) but fails to successfully complete wage negotiations is classified as “unemployed”

and receives a transfer from the government, and thus has value (measured in goods) to the

household

Ut = χ. (65)

There is zero continuation payoff to the household of an unemployed individual because the

household re-optimizes participation at the start of period t + 1, and unemployment is not a

state variable for the household at the start of period t+ 1. Note that, because the solution to

the Nash bargaining problem will yield an interior solution, in equilibrium it is only individuals

that were looking for work but were not selected that receive the unemployment transfer (which

justifies including only unemployment transfers for this group of individuals in the household

budget constraint (40)).
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C.1.1 Incumbent Workers

An incumbent worker in period t has value (measured in period-t goods) to the household

WIt = (1− τnt )wIt + Et

{
Ξt+1|t

V′(nt)

u′(ct+1)

}
(66)

= (1− τnt )wIt + (1− ρ)Et
{

Ξt+1|t(1− τnt+1)wIt+1

}
+(1− ρ)Et

{
Ξt+1|t

(
(1− ηt+1)h′(lfpt+1)− u′(ct+1)

(
(1− τnt+1)ωet+1 + (1− ηt+1)χ

)
ηt+1u′(ct+1)

)}
,

in which the first line follows from the discussion above, and the second line makes use of the

expression for the household’s envelope condition (56).

The surplus earned by the household from having an incumbent worker successfully complete

wage negotiations is thus

WIt −Ut = (1 − τnt )wIt − χ (67)

+ (1 − ρ)Et

{
Ξt+1|t

[
(1 − τnt+1)wIt+1 +

(1 − ηt+1)h′(lfpt+1) − u′(ct+1) ((1 − τnt+1)ωet+1 + (1 − ηt+1)χ)

ηt+1u′(ct+1)

]}
.

The goal of the next several steps is to rewrite this expression in a form convenient for the Nash

bargaining problem in Appendix C.

Comparing expression (67) with the LFP condition (48) allows for expressing the surplus

WIt −Ut as

WIt−Ut = (1−τnt )wIt −χ+
(1− ηt)h′(lfpt)− u′(ct) ((1− τnt )ωet + (1− ηt)χ)

ηtu′(ct)
+
h′(lfpt)

u′(ct)
. (68)

Rearranging,

(1−τnt )wIt +
(1− ηt)h′(lfpt)− u′(ct) ((1− τnt )ωet + (1− ηt)χ)

ηtu′(ct)
= WIt−Ut+χ−

h′(lfpt)

u′(ct)
, (69)

which is the period-t counterpart of the term inside expectations in expression (67). Making

this substitution,

WIt −Ut = (1− τnt )wIt − χ+ (1− ρ)Et

{
Ξt+1|t

[
WIt+1 −Ut+1 + χ− h′(lfpt+1)

u′(ct+1)

]}
= (1− τnt )wIt − χ+ (1− ρ)Et

{
Ξt+1|t [WIt+1 −Ut+1]

}
+ (1− ρ)χEtΞt+1|t

−(1− ρ)Et

{
Ξt+1|t

h′(lfpt+1)

u′(ct+1)

}
, (70)
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C.1.2 Newly-Hired Workers

A newly-hired worker with idiosyncratic characteristics εit in period t has value (measured in

period-t goods) to the household

WE(εit) = (1− τnt )w(εit) + Et

{
Ξt+1|t

V′(nt)

u′(ct+1)

}
, (71)

in which the first line again follows from the discussion above, and the second line makes use

of the expression for the household’s envelope condition (56). Note that the wage payment to a

newly-hired worker w(εit) can be conditioned on his idiosyncratic characteristics.

The surplus earned by the household from having a newly-selected individual successfully

complete wage negotiations is thus

WE(εit) −Ut = (1 − τnt )w(εit) − χ+ Et

{
Ξt+1|t

V′(nt)

u′(ct+1)

}
= (1 − τnt )w(εit) − χ+ (1 − ρ)Et

{
Ξt+1|t(1 − τnt+1)wIt+1

}
,

(72)

+(1 − ρ)Et

{
Ξt+1|t

(
(1 − ηt+1)h′(lfpt+1) − u′(ct+1) ((1 − τnt+1)ωet+1 + (1 − ηt+1)χ)

ηt+1u′(ct+1)

)}
= (1 − τnt )w(εit) − χ+ (1 − ρ)Et

{
Ξt+1|t

[
WIt+1 −Ut+1 + χ− h′(lfpt+1)

u′(ct+1)

]}
, (73)

in which the second line makes use of (56), and the third line uses expression (69) from the

derivation of the surplus expression WIt − Ut above. Breaking apart the terms inside the

expectation, we have

WE(εit)−Ut = (1− τnt )w(εit)− χ

+(1− ρ)Et
{

Ξt+1|t [WIt+1 −Ut+1]
}

+ (1− ρ)χEtΞt+1|t − (1− ρ)Et

{
Ξt+1|t

h′(lfpt+1)

u′(ct+1)

}
,

(74)

the form of the household’s surplus from a new employment relationship used in the derivation of

the Nash wage function below. Before proceeding, however we note that integrating the surplus

WE(εit)−Ut expressed as in the first line above gives

∫ ε̃t

−∞
WE(εit)f(εit)dεit −Ut = (1− τnt )

∫ ε̃t

−∞
w(εit)f(εit)dεit − χ

∫ ε̃t

−∞
f(εit)dεit

+Et

{
Ξt+1|t

V′(nt)

u′(ct+1)

}∫ ε̃t

−∞
f(εit)dεit (75)

= (1− τnt )ωe(ε̃t)− χη(ε̃t) + η(ε̃t)Et

{
Ξt+1|t

V′(nt)

u′(ct+1)

}
= η(ε̃t)

[
(1− τnt )ωe(ε̃t)

η(ε̃t)
+ Et

{
Ξt+1|t

V′(nt)

u′(ct+1)

}]
− η(ε̃t)χ.
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With this expression for the expected surplus to the household of having one of its unemployed

members selected for work, the LFP condition (54) derived in Appendix A can be expressed as

h′(lfpt)

u′(ct)
− χ = η(ε̃t)

[
(1− τnt )ωe(ε̃t)

η(ε̃t)
− χ+ (1− ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}]
= η(ε̃t)

[
(1− τnt )ωe(ε̃t)

η(ε̃t)
+ (1− ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}]
− η(ε̃t)χ

= η(ε̃t)

[
(1− τnt )ωe(ε̃t)

η(ε̃t)
+ Et

{
Ξt+1|t

V′(nt)

u′(ct+1)

}]
− η(ε̃t)χ

=

∫ ε̃t

−∞
WE(εit)f(εit)dεit − η(ε̃t)Ut

= η(ε̃t)

(∫ ε̃t
−∞WE(εit)f(εit)dεit

η(ε̃t)

)
− η(ε̃t)Ut, (76)

in which the third line uses the household-level envelope condition derived above and the fourth

line uses the definition of Ut. This expression states that optimal participation equates the (net)

marginal utility cost (denominated in goods) to the household of participation to the expected

surplus from having an unemployed individual selected for work. The expectation is taken over

both the probability of being selected as well as an individual’s idiosyncratic characteristics,

which are unknown at the time participation decisions are made.
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C.2 Value Equations for Firm

C.2.1 Incumbent Workers

An incumbent worker in period t has value (measured in period-t goods) to the firm

JIt = zt − wIt + Et
{

Ξt+1|tF
′(nt)

}
= zt − wIt + (1− ρ)Et

{
Ξt+1|t

[
(1− τht+1) · ε̃t+1 + w(ε̃t+1)− wIt+1

]}
, (77)

in which the first line follows from the discussion above, and the second line makes use of the

expression for the firm’s envelope condition (64).

Next, note from the hiring condition (62) that the last term on the right-hand side of (77)

is (1− τht )ε̃t + w(ε̃t)− zt; substituting this in (77) gives

JIt = (1− τht )ε̃t + w(ε̃t)− wIt . (78)

Comparing this expression with (77), we see that the value of an incumbent worker to the firm

can be expressed recursively,

JIt = zt − wIt + (1− ρ)Et
{

Ξt+1|tJIt+1

}
, (79)

and, furthermore, the relationship between the value to the firm of an incumbent worker and

the firm’s envelope condition is JIt = (1− ρ)F′(nt−1).
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C.2.2 Newly-Hired Workers

Similarly, a newly-hired individual with idiosyncratic characteristics εit in period t has value

(measured in period-t goods) to the firm

JE(εit) = zt − w(εit) + Et
{

Ξt+1|tF
′(nt)

}
= zt − (1− τht )εit − w(εit) + (1− ρ)Et

{
Ξt+1|tJIt+1

}
= zt − (1− τht )εit − w(εit) + (1− ρ)Et

{
Ξt+1|t

[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
.

(80)

The first line again follows from the discussion above, the second line uses the relationship proven

above between the envelope condition and the value to the firm of an incumbent worker, and

the third line substitutes the expression for the firm’s envelope condition (64).

Once again note that the wage payment w(εit) made to a newly-hired worker can be con-

ditioned on his idiosyncratic characteristics. An important implication of individual-specific

bargaining is that the “hiring condition” (62) does not hold with equality for only the marginal

new hire, but instead for every new hire whose εit ≤ ε̃t. That is,

(1− τht )εit = zt−w(εit)+(1−ρ)Et
{

Ξt+1|t
[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
, ∀εit ≤ ε̃t. (81)

Again noting from the hiring condition (62) that the last term on the right-hand side of (80)

is (1− τht ) · ε̃t + w(ε̃t)− zt, the value of a newly-hired worker with idiosyncratic characteristics

εit can be expressed as

JE(εit) = (1− τht )(ε̃t − εit) + w(ε̃t)− w(εit). (82)

Clearly, the value of a new hire with the threshold idiosyncratic characteristics ε̃t has value

JE(ε̃t) = 0, (83)

that is, and as is intuitive, the firm earns zero value from a new worker who was exactly on the

selection margin.
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C.3 Nash Bargaining

The firm bargains individually with each of its workers, whether an incumbent or a new hire

with idiosyncratic characteristics εit < ε̃t, in every period. For every worker, the firm and the

worker choose the real wage that maximizes the generalized Nash product

(Wt −Ut)
αK J1−αK

t , (84)

in which αK ∈ [0, 1], K ∈ {E, I}, measures the bargaining power of the worker (αI is the

bargaining power of an incumbent worker, αE is the bargaining power of a newly-hired worker).

For the different types of workers, Wt is replaced by either WIt or WE(εit), Jt is replaced by

either JIt or JE(εit), and αK is replaced by either αI or αE .

Using the generic notation Wt, Jt, and αK , the first-order condition of (84) with respect to

the period-t real wage (which in the various cases below is either wIt or w(εit) — here, denote it

simply wt) is

αK (Wt −Ut)
αK−1 J1−αK

t

(
∂Wt

∂wt
− ∂Ut

∂wt

)
+ (1− αK) (Wt −Ut)

αK J−α
K

t

∂Jt
∂wt

= 0. (85)

To simplify, multiply by Jα
K

t , and also multiply by (Wt −Ut)
1−αK , which gives

αKJt

(
∂Wt

∂wt
− ∂Ut

∂wt

)
+ (1− αK) (Wt −Ut)

∂Jt
∂wt

= 0. (86)

It is clear from the value equations above that, no matter the type of worker, the marginals

are ∂Jt
∂wt

= −1, ∂Ut
∂wt

= 0, ∂WIt

∂wIt
= 1−τnt , and ∂WE(εit)

∂w(εit)
= 1−τnt . Substituting these, the first-order

condition simplifies, for incumbent workers and newly-hired workers, respectively, to

WIt −Ut

1− τnt
=

αI

1− αI
JIt (87)

and
WE(εit)−Ut

1− τnt
=

αE

1− αE
JE(εit). (88)

C.3.1 Incumbent Workers

To obtain an expression for the period-t bargained wage of an incumbent, begin with the sharing

rule
WIt −Ut

1− τnt
=

αI

1− αI
JIt, (89)
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and substitute (70). This gives

wIt −
χ

1− τnt
+

1− ρ
1− τnt

Et
{

Ξt+1|t [WIt+1 −Ut+1]
}

+
(1− ρ)χEtΞt+1|t

1− τnt
−

(1− ρ)Et
{

Ξt+1|t
h′(lfpt+1)
u′(ct+1)

}
1− τnt

=
αI

1− αI
JIt.

Then, substitute the time-(t+ 1) sharing rule (89) in the third term on the left-hand side, which

gives

wIt −
χ

1− τnt
+

1− ρ
1− τnt

(
αI

1− αI

)
Et
{

Ξt+1|t(1− τnt+1)JIt+1

}

+
(1− ρ)χEtΞt+1|t

1− τnt
−

(1− ρ)Et
{

Ξt+1|t
h′(lfpt+1)
u′(ct+1)

}
1− τnt

=
αI

1− αI
JIt.

Next, substitute using (78) for both JIt and JIt+1, which gives

wIt −
χ

1− τnt
+

1− ρ
1− τnt

(
αI

1− αI

)
Et
{

Ξt+1|t(1− τnt+1)
(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)}

+
(1− ρ)χEtΞt+1|t

1− τnt
−

(1− ρ)Et
{

Ξt+1|t
h′(lfpt+1)
u′(ct+1)

}
1− τnt

=
αI

1− αI
(
(1− τht )ε̃t + w(ε̃t)− wIt

)
.

Rearranging,

wIt

[
1 +

αI

1− αI

]
=

χ

1− τnt
+

αI

1− αI
(
(1− τht )ε̃t + w(ε̃t)

)
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

[
h′(lfpt+1)

u′(ct+1)
− χ−

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)]}
.

Multiplying by (1− αI),

wIt =

(
1 − αI

1 − τnt

)
χ+ αI

(
(1 − τht )ε̃t + w(ε̃t)

)
+

(
1 − ρ

1 − τnt

)
Et

{
Ξt+1|t

[
(1 − αI)

(
h′(lfpt+1)

u′(ct+1)
− χ

)
− αI(1 − τnt+1)

(
(1 − τht+1)ε̃t+1 + w(ε̃t+1) − wIt+1

)]}
.

Finally, because it will be useful in further manipulations below, multiply and divide the last

term on the right-hand side by (1− αI), which gives

wIt =

(
1− αI

1− τnt

)
χ+ αI

(
(1− τht )ε̃t + w(ε̃t)

)
(90)

+

(
1− ρ
1− τnt

)
(1− αI)Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
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−
(

1− ρ
1− τnt

)
(1− αI)Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)}
.

Note that this expression is not a closed-form expression for wIt (even taking the continuation

value as given) because the endogenous wage w(ε̃t) also appears. A closed-form expression

requires also solving for a new hire’s wage, which is done below.

C.3.2 Newly-Hired Workers

To obtain an expression for the period-t bargained wage of a new hire, begin with the sharing

rule
WE(εit)−Ut

1− τnt
=

αE

1− αE
JE(εit), (91)

and substitute (74). This gives

w(εit)−
χ

1− τnt
+

(
1− ρ
1− τnt

)
Et
{

Ξt+1|t [WIt+1 −Ut+1]
}

+

(
1− ρ
1− τnt

)
χEtΞt+1|t −

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

h′(lfpt+1)

u′(ct+1)

}
=

αE

1− αE
JE(εit). (92)

Then, substitute the time-(t + 1) sharing rule (89) for incumbents in the third term on the

left-hand side, which gives

w(εit)−
χ

1− τnt
+

(
1− ρ
1− τnt

)(
αI

1− αI

)
Et
{

Ξt+1|t(1− τnt+1)JIt+1

}
+

(
1− ρ
1− τnt

)
χEtΞt+1|t −

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

h′(lfpt+1)

u′(ct+1)

}
=

αE

1− αE
JE(εit). (93)

Next, substitute using (78) for JIt+1 and using (82) for JE(εit), which gives

w(εit) −
χ

1 − τnt
+

(
1 − ρ

1 − τnt

)(
αI

1 − αI

)
Et
{

Ξt+1|t(1 − τnt+1)
(
(1 − τht+1)ε̃t+1 + w(ε̃t+1) − wIt+1

)}
+

(
1 − ρ

1 − τnt

)
χEtΞt+1|t −

(
1 − ρ

1 − τnt

)
Et

{
Ξt+1|t

h′(lfpt+1)

u′(ct+1)

}
=

αE

1 − αE

[
(1 − τht )(ε̃t − εit) + w(ε̃t) − w(εit)

]
.

(94)

Rearranging to isolate w(εit) gives us

w(εit)

[
1 +

αE

1 − αE

]
=

χ

1 − τnt
+

αE

1 − αE

[
(1 − τht )(ε̃t − εit) + w(ε̃t)

]
+

(
1 − ρ

1 − τnt

)
Et

{
Ξt+1|t

[
h′(lfpt+1)

u′(ct+1)
− χ−

(
αI

1 − αI

)
(1 − τnt+1)

(
(1 − τht+1)ε̃t+1 + w(ε̃t+1) − wIt+1

)]}
.
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Next, multiplying by (1− αE), we have

w(εit) =

(
1− αE

1− τnt

)
χ+ αE

[
(1− τht )(ε̃t − εit) + w(ε̃t)

]
(95)

+

(
1− ρ
1− τnt

)
(1− αE)Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
(1− αE)Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)}
,

which is the bargained wage for a newly-hired worker with idiosyncratic characteristics εit.

This expression is not a closed-form solution for w(εit) because the endogenous wage w(ε̃t) also

appears. However, at this stage of the analysis, it is not difficult to obtain closed-form solutions.
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C.3.3 Closed-Form Solutions for Bargained Wages

There are three more steps required to obtain closed-form expressions for bargained wages,

which completes the proof of Proposition 1. First, construct expressions for each of the three

period-t wages in which no other contemporaneous wage appears. Second, compute wage dif-

ferentials. Third, substitute wage differentials into the continuation value components of each

wage expression.

Using τnt in (95) and evaluating it at εit = ε̃t gives the bargained wage of the threshold new

hire,

w(ε̃t) =
χ

1− τnt
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
(96)

−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
.

Then, substitute (96) in (95), which gives the bargained wage for a new hire with idiosyncratic

characteristics εit,

w(εit) =
χ

1− τnt
+ αE(1− τht ) (ε̃t − εit) +

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
(97)

−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)}
.

Next, substitute (96) in (90), which gives the bargained wage for an incumbent worker,

wIt =
χ

1− τnt
+ αI(1− τht )ε̃t (98)

+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)}
.

Note that in all three wages (96), (97), and (98), the continuation value

(which is Et
{

Ξt+1|t
[
h′(lfpt+1)
u′(ct+1) − χ−

(
αI

1−αI
)

(1− τnt+1)
(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)]}
)

is identical because no matter what type a worker is in period t, he will be a (homogenous)

incumbent worker in period t + 1 if he remains employed. Moreover, the period-(t + 1) wage

differential w(ε̃t+1)− wIt+1 appears in all three.

These expressions allow us to explicitly compute wage differentials between the different

types of workers, which are intuitive to understand. A new hire with εit < ε̃t earns a premium
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over the threshold new hire

w(εit)− w(ε̃t) = αE(1− τht ) (ε̃t − εit) , (99)

which is the share of the operating cost savings he provides the firm that he is able to earn

through his bargaining power. An incumbent worker earns a premium over the threshold new

hire

wIt − w(ε̃t) = αI(1− τht ) · ε̃t, (100)

which, similarly, is the share of the replacement cost savings (relative to a marginal new hire)

he provides the firm that he is able to earn through his bargaining power.

Substitute w(ε̃t+1)− wIt+1 = −αI(1− τht+1) · ε̃t+1 into (96) to obtain

w(ε̃t) =
χ

1− τnt
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

[
(1− τht+1)ε̃t+1 − αI

(
(1− τht+1)ε̃t+1

)]}
,

which, in two steps can be simplified to, first,

w(ε̃t) =
χ

1− τnt
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− αI)(1− τnt+1)(1− τht+1)ε̃t+1

}
,

and then to

w(ε̃t) =
χ

1− τnt
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− αI(1− τnt+1)(1− τht+1)ε̃t+1

)}
. (101)

Next, substitute w(ε̃t+1)− wIt+1 = −αI(1− τht+1)ε̃t+1 into (97), which gives

w(εit) =
χ

1− τnt
+ αE(1− τht ) (ε̃t − εit) (102)

+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− αI(1− τnt+1)(1− τht+1)ε̃t+1

)}
.

Finally, substitute w(ε̃t+1)− wIt+1 = −αI(1− τht+1)(ε̃t+1) into (98), which gives

wIt =
χ

1− τnt
+ αI(1− τht )(ε̃t) (103)

+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− αI(1− τnt+1)(1− τht+1) · ε̃t+1

)}
.
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Expressions (101), (102), (103) are the forms of the wage solutions that appear in Proposition 1.

Integrating (102) gives the average wage paid to a new hire

ωe(ε̃t) =

∫ ε̃t

−∞
w(εit)f(εit)dεit

=

(
χ

1 − τnt

)∫ ε̃t

−∞
f(εit)dεit + αE(1 − τht )

∫ ε̃t

−∞
(ε̃t − εit) f(εit)dεit

+

(
1 − ρ

1 − τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− αI(1 − τnt+1)(1 − τht+1)ε̃t+1

)}∫ ε̃t

−∞
f(εit)dεit

=

(
χ

1 − τnt

)
η(ε̃t) + αE(1 − τht ) · η(ε̃t) ·

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+

(
1 − ρ

1 − τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− αI(1 − τnt+1)(1 − τht+1)ε̃t+1

)}
η(ε̃t),

in which the third line follows from the definition H(ε̃t) ≡
∫ ε̃t
−∞ εitf(εit)dεit. Dividing by η(ε̃t)

gives

ωe(ε̃t)

η(ε̃t)
=

(
χ

1− τnt

)
+ αE(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
(104)

+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− αI(1− τnt+1)(1− τht+1)ε̃t+1

)}
.

Finally, using the definition in (76), the continuation value that appears on the right-hand

side of all the wage functions (101), (102), (103), and (105) can be expressed as

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− αI(1− τnt+1)(1− τht+1)(ε̃t+1)

)}
=

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(∫ ε̃t+1

−∞
WE(εit+1)f(εit+1)dεit+1 − η(ε̃t+1)Ut+1 − αI(1− τnt+1)(1− τht+1)ε̃t+1

)}
.

Integrating (97) gives the average wage paid to a new hire

ωe(ε̃t) =

∫ ε̃t

−∞
w(εit)f(εit)dεit

=

(
χ

1− τnt

)∫ ε̃t

−∞
f(εit)dεit + αE(1− τht )

∫ ε̃t

−∞
(ε̃t − εit) f(εit)dεit

+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}∫ ε̃t

−∞
f(εit)dεit

−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)}∫ ε̃t

−∞
f(εit)dεit.

=

(
χ

1− τnt

)
η(ε̃t) + αE(1− τht )η(ε̃t)

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
η(ε̃t)

−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)}
η(ε̃t),
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in which the third line follows from the definition H(ε̃t) ≡
∫ ε̃t
−∞ εitf(εit)dεit. Dividing by η(ε̃t)

gives

ωe(ε̃t)

η(ε̃t)
=

(
χ

1− τnt

)
+ αE(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

)}
.

(105)
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D Efficient Allocations

A social planner in this economy optimally allocates the measure one of individuals in the

representative household to leisure, unemployment, and employment. There are several repre-

sentations of the planning problem available: suppose that ct, lfpt, nt, and ε̃t are the formal

objects of choice. Given the accounting identities of the model, the measure of individuals

available for work can thus be expressed st = lfpt − (1− ρ)nt−1.

The social planner problem is to maximize lifetime expected utility of the representative

household

E0

∞∑
t=0

βt [u(ct)− h (lfpt)] (106)

subject to the sequence of goods resource constraints

ct = ztnt −H(ε̃t)[lfpt − (1− ρ)nt−1], (107)

and laws of motion for the employment stock

nt = (1− ρ)nt−1 + [lfpt − (1− ρ)nt−1]η(ε̃t). (108)

The social planner takes into account the dependence of the hiring rate and the average

operating cost of a newly-selected worker on the threshold ε̃t, which is made explicit in the

notation here. Recalling that η(ε̃t) ≡
∫ ε̃t
−∞ f(ε)dε and H(ε̃t) ≡

∫ ε̃t
−∞ εf(ε)dε, we have η′(ε̃t) =

f(ε̃t) and H ′(ε̃t) = ε̃tf(ε̃t), by the Fundamental Theorem of Calculus.

Let βtλt be the Lagrange multiplier on the period-t goods resource constraint, and βtµt be

the Lagrange multiplier on the period-t law of motion for employment. The first-order conditions

of the social planner problem with respect to ct, lfpt, nt, and ε̃t are, respectively,

u′(ct)− λt = 0, (109)

−h′(lfpt)− λtH(ε̃t) + µtη(ε̃t) = 0, (110)

λtzt − µt + (1− ρ)βEt {µt+1 [1− η(ε̃t+1)] + λt+1H(ε̃t+1)} = 0, (111)

and

−λtstH ′(ε̃t) + µtstη
′(ε̃t) = 0. (112)
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D.1 Static Efficiency (Participation)

Isolating the multiplier µt from (112),

µt =
u′(ct) ·H ′(ε̃t)

η′(ε̃t)

= u′(ct) · ε̃t, (113)

in which we have substituted (109). Substituting this expression for µt in (110) gives

h′(lfpt)

u′(ct)
= ε̃tη(ε̃t)−H(ε̃t)

=

∫ ε̃t

−∞
[ε̃t − ε] f(ε)dε, (114)

in which the second line substitutes the definitions of H(ε̃t) and η(ε̃t). The term in square

brackets in the integral is unambiguously positive. Expression (114) is the static efficiency

condition that appears as condition (26) in the main text.

D.2 Intertemporal Efficiency (Hiring)

Next, substituting expression (113) for µt (and its time t+ 1 counterpart) in (111), we have

u′(ct) · ε̃t = u′(ct)zt + (1− ρ)βEt
{
u′(ct+1)H(ε̃t+1) + u′(ct+1) · ε̃t+1 (1− η(ε̃t+1))

}
= u′(ct)zt + (1− ρ)βEt

{
u′(ct+1) [H(ε̃t+1) + ε̃t+1(1− η(ε̃t+1))]

}
= u′(ct)zt + (1− ρ)βEt

{
u′(ct+1) [H(ε̃t+1)− ε̃t+1η(ε̃t+1) + ε̃t+1]

}
. (115)

Dividing by u′(ct),

ε̃t = zt + (1− ρ)Et

{
βu′(ct+1)

u′(ct)
[H(ε̃t+1)− ε̃t+1η(ε̃t+1) + ε̃t+1]

}
, (116)

which is the representation of efficiency along the intertemporal margin that appears as condi-

tion (27) in the main text.

D.3 MRS-MRT Representation of Efficiency

The efficiency conditions (114) and (116) can be described in terms of appropriately-defined

concepts of marginal rates of substitution (MRS) and corresponding marginal rates of trans-

formation (MRT). Defining MRS and MRT in a model-appropriate way allows us to describe

efficiency in terms of the basic principle that efficient allocations are characterized by MRS =

MRT conditions along all optimization margins.
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Consider the static efficiency condition (114). The left-hand side is clearly the within-period

MRS between consumption and participation in any period t. We claim that the right-hand side

is the corresponding MRT between consumption and participation. Rather than take the effi-

ciency condition (114) as prima facie evidence that the right-hand side must be the static MRT,

however, this MRT can be derived from the primitives of the environment (i.e., independent of

the context of any optimization).

First, though, define MRS and MRT relevant for intertemporal efficiency. To do so, first

restrict attention to the non-stochastic case because it makes especially clear the separation of

components of preferences from components of technology (due to endogenous covariance terms

inherent in the Et(.) operator). The non-stochastic intertemporal efficiency condition can be

expressed as
u′(ct)

βu′(ct+1)
=

(1− ρ) (H(ε̃t+1)− ε̃t+1η(ε̃t+1) + ε̃t+1)

ε̃t − zt
. (117)

The left-hand side of (117) is clearly the intertemporal MRS (hereafter abbreviated IMRS)

between ct and ct+1. We claim that the right-hand side is the corresponding intertemporal MRT

(hereafter abbreviated IMRT). Applying this definition to the fully stochastic condition (116),

we can thus express intertemporal efficiency as

1 = Et

{
βu′(ct+1)

u′(ct)

[
(1− ρ) (H(ε̃t+1)− ε̃t+1η(ε̃t+1) + ε̃t+1)

ε̃t − zt

]}
= Et

{
IMRTct,ct+1

IMRSct,ct+1

}
. (118)

Rather than take the efficiency condition (117) as prima facie evidence that the right-hand side

must be the IMRT, however, the IMRT can be derived from the primitives of the environment

(i.e., independent of the context of any optimization), which is shown next.

D.4 Proof of Proposition 1: Transformation Frontier and Derivation of MRTs

Based only on the primitives of the environment — that is, independent of the context of any

optimization — we now prove that the right-hand sides of (114) and (117) are, respectively, the

model-appropriate concepts of the static MRT and deterministic IMRT. Doing so thus proves

Proposition 1 in the main text. This requires defining the transformation frontier of the economy,

a joint description of the goods resource constraint and the law of motion for employment.

In order to define the within-period MRT between ct and lfpt, the within-period transfor-

mation frontier needs to be viewed in the space (ct, lfpt). In principle, this requires eliminating

the variable ε̃t between the period-t goods resource constraint (107) and the period-t law of

motion (108) to express them as a single condition. However, this cannot be done explicitly.
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The within-period transformation is thus implicitly defined by the pair of functions

ΨRC(ct, lfpt, ε̃t; .) ≡ ztnt − ct −H(ε̃t) [lfpt − (1− ρ)nt−1] = 0, (119)

which is condition (107), and

ΨLOM (lfpt, ε̃t; .) ≡ nt − (1− ρ)nt−1 − [lfpt − (1− ρ)nt−1] η(ε̃t) = 0, (120)

which is condition (108). The within-period transformation frontier is implicitly defined by the

pair of functions (119) and (120).

Computing the MRT between ct and lfpt requires total differentiation of (119) and (120),

due to the fact that ε̃t is the variable that we would like to, but cannot, eliminate between the

two expressions. Total differentiation gives:

MRTct,lfpt = −
ΨRC
lfpt

ΨRC
ct

+
ΨLOM
lfpt

ΨLOM
ε̃t

ΨRC
ε̃t

ΨRC
ct

= −
ΨRC
lfpt

ΨRC
ε̃t

ΨRC
ε̃t

ΨRC
ct

+
ΨLOM
lfpt

ΨLOM
ε̃t

ΨRC
ε̃t

ΨRC
ct

= −
ΨRC
ε̃t

ΨRC
ct

[
ΨRC
lfpt

ΨRC
ε̃t

−
ΨLOM
lfpt

ΨLOM
ε̃t

]
. (121)

The first term on the right-hand side of the first line is, by the implicit function theorem, the

slope ∂ct
∂lfpt

embodied directly in the period-t goods resource constraint. The second term on the

right-hand side of the first line is, by the implicit function theorem, the slope ∂ct
∂lfpt

computed

through the marginal effect of a change in lfpt on ε̃t embodied in the period-t law of motion —

hence the need for total differentiation.

Based on this computation and using the functions (119) and (120), the MRT is

MRTct,lfpt = −
[−H ′(ε̃t)st

−1

] [ −H(ε̃t)

−H ′(ε̃t)st
− −η(ε̃t)

−η′(ε̃t)st

]
= −H ′(ε̃t)

[
H(ε̃t)

H ′(ε̃t)
− η(ε̃t)

η′(ε̃t)

]
= −H(ε̃t) +

η(ε̃t)H
′(ε̃t)

η′(ε̃t)

= −H(ε̃t) +
η(ε̃t)ε̃tf(ε̃t)

f(ε̃t)

= −H(ε̃t) + ε̃tη(ε̃)

= ε̃tη(ε̃t)−H(ε̃t) (122)

=

∫ ε̃t

−∞
[ε̃t − ε] f(ε)dε, (123)
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which formalizes, independent of the solution to the social planning problem, the notion of the

static MRT on the right-hand side of the efficiency condition (114).

Before computing the IMRT, note that the implicit function theorem allows us to also com-

pute

∂ct
∂nt

= −
ΨRC
nt

ΨRC
ct

+
ΨRC
ε̃t

ΨRC
ct

ΨLOM
nt

ΨLOM
ε̃t

= − zt
−1

+
−stH ′(ε̃t)
−1

1

−stη(ε̃t)

= zt −
H ′(ε̃t)

η′(ε̃t)

= zt −
ε̃tf(ε̃t)

f(ε̃t)

= zt − ε̃t, (124)

which measures the marginal effect on period-t consumption of a change in period-t employment.

This effect has intertemporal consequences because nt is the stock of employment entering period

t+ 1. In constructing this, note that the first term on the right-hand side of the first line is, by

the implicit function theorem, the slope ∂ct
∂nt

embodied directly in the period-t goods resource

constraint; and the second term on the right-hand side of the first line is, by the implicit function

theorem, the slope ∂ct
∂nt

computed through the marginal effect of a change in nt on ε̃t embodied

in the period-t law of motion — hence, as above, the need for total differentiation. The second

line computes the necessary partials of the functions (119) and (120), and the fourth line uses

the Fundamental Theorem of Calculus to compute the derivatives of η(ε̃t) and H(ε̃t).

Next, define the period t+ 1 analogs of the functions (119) and (120):

GRC(ct+1, lfpt+1, ε̃t+1, ct; .) ≡ zt+1nt+1 − ct+1 −H(ε̃t+1) [lfpt+1 − (1− ρ)nt] = 0 (125)

and

GLOM (lfpt+1, ε̃t+1, ct; .) ≡ nt+1 − (1− ρ)nt − [lfpt+1 − (1− ρ)nt] η(ε̃t+1). (126)

The functions GRC(.) and GLOM (.) clearly have the same form as (119) and (120), but, for the

purpose of computing the IMRT, it is useful to view them as generalizations in that GRC(.) and

GLOM (.) are viewed as functions of both period-t and period t+1 allocations. This generalization

is emphasized by using the notation G(.), rather than Ψ(.), and by highlighting both ct+1 and

ct as arguments. The two-period (across period t and t+ 1) transformation frontier is implicitly

defined by the pair of functions (125) and (126).
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Computing the IMRT between ct and ct+1 thus requires computing the total derivative

∂ct+1

∂ct︸ ︷︷ ︸+
∂ct+1

∂ct︸ ︷︷ ︸ =
∂ct+1

∂nt
∂ct
∂nt

+
∂ct+1

∂ε̃t+1

∂ε̃t+1

∂nt
∂ct
∂nt

=

{
∂ct+1

∂nt
+
∂ct+1

∂ε̃t+1

∂ε̃t+1

∂nt

}
1

∂ct/∂nt

=

{
−
GRCnt
GRCct+1

+
GRC˜εt+1

GRCct+1

GLOMnt

GLOMε̃t+1

}
1

∂ct/∂nt
.

The right-hand side of the first line highlights that the effect of ct on ct+1 occurs through its effect

on nt (which is why we computed ∂ct
∂nt

), and the third line uses the implicit function theorem.

Using the functions (125) and (126), the IMRT is

IMRT

= −
[
−(1− ρ)H(ε̃t+1)

−1
+
−st+1H

′(ε̃t+1)

−1

−(1− ρ)(1− η(ε̃t+1))

−st+1η′(ε̃t+1)

]
1

∂ct/∂nt

= −(1− ρ)

[
H(ε̃t+1) + (1− η(ε̃t+1))

(
H ′(ε̃t+1)

η′(ε̃t+1)

)]
1

∂ct/∂nt

= −(1− ρ)

[
H(ε̃t+1) + (1− η(ε̃t+1))

(
ε̃t+1f(ε̃t+1)

f(ε̃t+1)

)]
1

∂ct/∂nt

= −(1− ρ) [H(ε̃t+1) + (1− η(ε̃t+1)) · ε̃t+1]
1

∂ct/∂nt

= −(1− ρ) [H(ε̃t+1) + ε̃t+1 − ε̃t+1η(ε̃t+1)]
1

∂ct/∂nt

= −(1− ρ) [H(ε̃t+1)− ε̃t+1η(ε̃t+1) + ε̃t+1]
1

∂ct/∂nt

=
(1− ρ) (H(ε̃t+1)− ε̃t+1η(ε̃t+1) + ε̃t+1)

ε̃t − zt
, (127)

in which the third line makes use of the Fundamental Theorem of Calculus to compute the

derivatives of η(ε̃t) and H(ε̃t), and the last line makes use of the slope (124). The sign convention

is that the IMRT is the negative of the slope of the two-period transformation frontier. This

derivation formalizes, independent of the social planning problem, the notion of the IMRT on

the right-hand side of the (deterministic) efficiency condition (116).
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E Equilibrium Wedges

To present the algebra behind the wedges defined, the following equilibrium conditions are

needed: the household’s LFP condition

(1 − ηt)h
′(lfpt) − u′(ct) ((1 − τnt )ωet + (1 − ηt)χ)

ηtu′(ct)
= −h

′(lfpt)

u′(ct)
(128)

+ (1 − ρ)Et

{
Ξt+1|t

[
(1 − τnt+1)wIt+1 +

(
(1 − ηt+1)h′(lfpt+1) − u′(ct+1) ((1 − τnt+1)ωet+1 + (1 − ηt+1)χ)

ηt+1u′(ct+1)

)]}
,

the bargained wage of the threshold new hire

w(ε̃t) =
χ

1− τnt
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
(129)

−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

[
(1− τht+1)(ε̃t+1) + w(ε̃t+1)− wIt+1

]}
,

the average wage paid to a new hire

ωe(ε̃t)

η(ε̃t)
=

(
χ

1− τnt

)
+ αE(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)(ε̃t+1) + w(ε̃t+1)− wIt+1

)}
,

(130)

and the selection condition

(1− τht )ε̃t = zt − w(ε̃t) + (1− ρ)Et
{

Ξt+1|t
[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
. (131)

E.1 Definition of Static Wedge

To obtain the decentralized economy’s static wedge, substitute (130) into the LFP condi-

tion (128), which, after a few steps of algebra, gives

h′(lfpt) − u′(ct)χ

η(ε̃t)u′(ct)
= αE(1 − τnt )(1 − τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+ (1 − ρ)Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ−

(
αI

1 − αI

)
(1 − τnt+1)

(
(1 − τht+1)(ε̃t+1) + w(ε̃t+1) − wIt+1

))}
+ (1 − ρ)Et

{
Ξt+1|t

[
(1 − τnt+1)wIt+1 +

(
(1 − ηt+1)h′(lfpt+1) − u′(ct+1) ((1 − τnt+1)ωet+1 + (1 − ηt+1)χ)

ηt+1u′(ct+1)

)]}
.

(132)

Using the period-(t+ 1) value (78), the second line above can be re-written as

h′(lfpt) − u′(ct)χ

η(ε̃t)u′(ct)
= αE(1 − τnt )(1 − τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+

(
1 − ρ

1 − τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ−

(
αI

1 − αI

)
(1 − τnt+1)JIt+1

)}
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+ (1 − ρ)Et

{
Ξt+1|t

[
(1 − τnt+1)wIt+1 +

(
(1 − ηt+1)h′(lfpt+1) − u′(ct+1) ((1 − τnt+1)ωet+1 + (1 − ηt+1)χ)

ηt+1u′(ct+1)

)]}
.

(133)

Next, the Nash surplus sharing rule (89) for incumbent workers allows us to rewrite the second

line yet again,

h′(lfpt)− u′(ct)χ
ηtu′(ct)

= αE(1− τnt )(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+ (1− ρ)Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− (WIt+1 −Ut+1)

)}
+ (1− ρ)Et

{
Ξt+1|t(1− τnt+1)wIt+1

}
. (134)

+ (1− ρ)Et

{
Ξt+1|t

(
(1− ηt+1)h′(lfpt+1)− u′(ct+1)

(
(1− τnt+1)ωet+1 + (1− ηt+1)χ

)
ηt+1u′(ct+1)

)}
.

Then, noting from (67) that the third line can be rewritten in period-t terms, we have

h′(lfpt)− u′(ct)χ
ηtu′(ct)

= αE(1− τnt )(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+ (1− ρ)Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ− (WIt+1 −Ut+1)

)}
+ WIt −Ut −

[
(1− τnt )wIt − χ

]
.

Finally, based on the recursion in WIt−Ut stated in (70), the second and third lines immediately

above cancel. Rearranging, we have that in the decentralized Nash bargaining economy with

taxes and unemployment benefits,

h′(lfpt)− u′(ct)χ
u′(ct)

= αE(1− τnt )(1− τht ) · (ε̃tη(ε̃t)−H(ε̃t)) , (135)

in which, recall, αE is the Nash bargaining power of each newly-hired worker. To represent this

in terms of a wedge in the static efficiency condition (114), we have

h′(lfpt)

u′(ct)
= (ε̃tη(ε̃t)−H(ε̃t))

 χ

η(ε̃t)
(
ε̃t − H(ε̃t)

η(ε̃t)

) + αE(1− τnt )(1− τht )

 , (136)

in which the term in brackets is the wedge between MRS and MRT. Four conditions are sufficient

for the decentralized economy to achieve static efficiency: the decentralized economy features

αE = 1; the unemployment transfer is χ = 0; proportional labor income taxation is τnt = 0; and

the proportional hiring subsidy is τht = 0. These conditions are not necessary, however, because

for any arbitrary (αE < 1, χ 6= 0), an appropriate setting for policy (τnt , τ
h
t ) achieves efficiency.
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E.2 Definition of Intertemporal Wedge

To obtain the decentralized economy’s intertemporal wedge, first substitute the bargained wage

of the threshold new hire (129) into the selection condition (131), which gives

(1− τht )ε̃t = zt −
χ

1− τnt

−
(

1− ρ
1− τnt

)
Et

{
βu′(ct+1)

u′(ct)

(
h′(lfpt+1)

u′(ct+1)
− χ−

(
αI

1− αI

)
(1− τnt+1)

[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

])}

+ (1− ρ)Et

{
βu′(ct+1)

u′(ct)

[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
.

Slightly re-arranging terms,

(1− τht )ε̃t = zt −
χ

1− τnt

− (1− ρ)Et

{
βu′(ct+1)

u′(ct)

(
1

1− τnt

)(
h′(lfpt+1)

u′(ct+1)
− χ

)}
+ (1− ρ)

(
αI

1− αI

)
Et

{
βu′(ct+1)

u′(ct)

(
1− τnt+1

1− τnt

) [
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
+ (1− ρ)Et

{
βu′(ct+1)

u′(ct)

[
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
.

Next, combining the square-bracketed terms on the third and fourth lines yields

(1− τht )ε̃t = zt −
χ

1− τnt

− (1− ρ)Et

{
βu′(ct+1)

u′(ct)

(
1

1− τnt

)(
h′(lfpt+1)

u′(ct+1)
− χ

)}
+ (1− ρ)Et

{
βu′(ct+1)

u′(ct)

[
1 +

(
αI

1− αI

)(
1− τnt+1

1− τnt

)] [
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
.

Slightly re-writing terms in the third line gives

(1− τht )ε̃t = zt −
χ

1− τnt

− (1− ρ)Et

{
βu′(ct+1)

u′(ct)

(
1

1− τnt

)(
h′(lfpt+1)

u′(ct+1)
− χ

)}
+ (1− ρ)Et

{
βu′(ct+1)

u′(ct)

[
αI(1− τnt+1) + (1− αI)(1− τnt )

(1− αI)(1− τnt )

] [
(1− τht+1)ε̃t+1 + w(ε̃t+1)− wIt+1

]}
.
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Then, use the period-(t+1) version of the wage differential (100) to rewrite once again the third

line, which gives

(1− τht )ε̃t = zt −
χ

1− τnt

− (1− ρ)Et

{
βu′(ct+1)

u′(ct)

(
1

1− τnt

)(
h′(lfpt+1)

u′(ct+1)
− χ

)}
+ (1− ρ)Et

{
βu′(ct+1)

u′(ct)

[
αI(1− τnt+1) + (1− αI)(1− τnt )

(1− αI)(1− τnt )

]
(1− αI)(1− τht+1)ε̃t+1

}
.

Cancelling the (1− αI) terms and re-arranging then gives

(1− τht )ε̃t = zt −
χ

1− τnt

−
(

1− ρ
1− τnt

)
Et

{
βu′(ct+1)

u′(ct)

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
+

(
1− ρ
1− τnt

)
Et

{
βu′(ct+1)

u′(ct)

[
αI(1− τnt+1) + (1− αI)(1− τnt )

]
(1− τht+1)ε̃t+1

}
.

In non-stochastic terms,

u′(ct)

βu′(ct+1)
=

(
1−ρ

1−τnt

) [(
αI(1− τnt+1) + (1− αI)(1− τnt )

)
(1− τht+1)ε̃t+1 −

(
h′(lfpt+1)
u′(ct+1) − χ

)]
(1− τht )ε̃t −

[
zt − χ

1−τnt

]
(137)

The sufficient conditions for intertemporal efficiency in the decentralized equilibrium are the

same as those that achieve static efficiency: αE = 1; χ = 0; τnt = 0 ∀t; and τht = 0 ∀t.

67



F Derivation of Implementability Constraint

The derivation of the present-value implementability constraint (PVIC) follows that laid out

in Lucas and Stokey (1983) and Chari and Kehoe (1999). For notational convenience, in what

follows we use the definition uet = (1− ηt)st where possible and also use lfpt = uet +nt to con-

serve on notation. In deriving the implementability constraint, the sequence of the household’s

perceived (based on expectations dated E0) laws of motion for employment,

nt = (1− ρ)nt−1 + ηtst, (138)

the sequence of labor-force-participation conditions (based on expectations dated E0)

u′(ct)

(
(1− τnt )ωet

ηt

)
=

(
1− ηt
ηt

) [
h′(lfpt)− u′(ct)χ

]
+ h′(lfpt) (139)

− (1− ρ)βu′(ct+1)(1− τnt+1)wIt+1

− (1− ρ)βu′(ct+1)

(
1− ηt+1

ηt+1

) [
h′(lfpt+1)− u′(ct+1)χ

]
+ (1− ρ)βu′(ct+1)

(
(1− τnt+1)ωet+1

ηt+1

)
(140)

will be useful. Note that the mechanism by which wages are determined in the decentralized

economy are irrelevant in constructing the PVIC.

Start with the household flow budget constraint in equilibrium:

ct+
∑
j

1

Rjt
bjt+1 = (1−ρ)nt−1(1− τnt )wIt +ηt

(1− τnt )ωet
ηt

st+(1−ηt)stχ+ bt+(1− τpr)Πt. (141)

Multiply by βtu′(ct) and, conditional on the information set at time zero, sum the sequence

of budget constraints over dates and states starting from t = 0 to arrive at the present-value

budget constraint:

E0

∞∑
t=0

βtu′(ct)ct + E0

∞∑
t=0

∑
j

βtu′(ct)
1

Rjt
bjt+1 (142)

= E0

∞∑
t=0

βtu′(ct)(1− τnt )wIt (1− ρ)nt−1 + E0

∞∑
t=0

βtu′(ct)

(
(1− τnt )ωet

ηt

)
ηtst

+ E0

∞∑
t=0

βtu′(ct)(1− ηt)stχ+ E0

∞∑
t=0

βtu′(ct)bt + E0

∞∑
t=0

βtu′(ct)(1− τpr)Πt.

Now begin to impose equilibrium conditions on this present-value budget constraint. For ease of

notation, drop the E0 term, but it is understood that all terms are conditional on the information

set at time zero.
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First, in the second summation on the left-hand side, substitute the sequence of state-

contingent bond Euler equations, u′(cs) = βRjsu
′(cjs+1), ∀j, s:

∞∑
t=0

βtu′(ct)ct +
∞∑
t=0

∑
j

βt+1u′(cjt+1)bjt+1 (143)

=
∞∑
t=0

βtu′(ct)(1− τnt )wIt (1− ρ)nt−1 +
∞∑
t=0

βtu′(ct)

(
(1− τnt )ωet

ηt

)
ηtst

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)bt +
∞∑
t=0

βtu′(ct)(1− τpr)Πt.

The term
∑
j u
′(cjt+1)bjt+1 can be expressed as the payoff of a synthetic risk-free bond, u′(ct+1)bt+1,

which then allows canceling terms in the second summation on the left-hand side with their coun-

terpart terms in the next-to-last summation on the right-hand side, leaving only the time-zero

bond-return term:

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βtu′(ct)(1− τnt )wIt (1− ρ)nt−1 (144)

+
∞∑
t=0

βtu′(ct)

(
(1− τnt )ωet

ηt

)
ηtst +

∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0.

Second, in the first term on the second line, substitute ηtst = nt − (1 − ρ)nt−1 (i.e., using

the law of motion (138)) to get

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βtu′(ct)(1− τnt )wIt (1− ρ)nt−1 (145)

+
∞∑
t=0

βtu′(ct)

(
(1− τnt )ωet

ηt

)
nt −

∞∑
t=0

βtu′(ct)

(
(1− τnt )ωet

ηt

)
(1− ρ)nt−1

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0.

Collecting the terms on the right-hand side of the first line and the right-hand side of the second

line gives

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βtu′(ct)(1− τnt )

[
wIt −

ωet
ηt

]
(1− ρ)nt−1 (146)

+
∞∑
t=0

βtu′(ct)

(
(1− τnt )ωet

ηt

)
nt

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0.

The square-bracketed expression in the first line is completely independent of the protocol by
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which wages are determined.

Next, use the sequence of LFP conditions (139) to substitute for the sequence of terms

u′(ct)
(

(1−τnt )ωet
ηt

)
in the summation in the second line, which gives

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βtu′(ct)(1− τnt )

[
wIt −

ωet
ηt

]
(1− ρ)nt−1 (147)

+
∞∑
t=0

βt
(

1− ηt
ηt

) [
h′(lfpt)− u′(ct)χ

]
nt +

∞∑
t=0

βth′(lfpt)nt

− (1− ρ)
∞∑
t=0

βt+1u′(ct+1)(1− τnt+1)wIt+1nt

− (1− ρ)
∞∑
t=0

βt+1
(

1− ηt+1

ηt+1

) [
h′(lfpt+1)− u′(ct+1)χ

]
nt

+ (1− ρ)
∞∑
t=0

βt+1u′(ct+1)

(
(1− τnt+1)ωet+1

ηt+1

)
nt

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0.

Proceeding slowly: distributing the terms on the right-hand side in the first line above and

slightly re-arranging the third and fifth lines yields

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βtu′(ct)(1− τnt )wIt (1− ρ)nt−1 (148)

−
∞∑
t=0

βtu′(ct)

(
(1− τnt )ωet

ηt

)
(1− ρ)nt−1

+
∞∑
t=0

βt
(

1− ηt
ηt

) [
h′(lfpt)− u′(ct)χ

]
nt +

∞∑
t=0

βth′(lfpt)nt

−
∞∑
t=0

βt+1u′(ct+1)(1− τnt+1)wIt+1(1− ρ)nt

− (1− ρ)
∞∑
t=0

βt+1
(

1− ηt+1

ηt+1

) [
h′(lfpt+1)− u′(ct+1)χ

]
nt

+
∞∑
t=0

βt+1u′(ct+1)

(
(1− τnt+1)ωet+1

ηt+1

)
(1− ρ)nt

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0.

The summation on the right-hand side of the first line cancels with the summation on the fourth

line, leaving only the time-zero term; similarly, except for the time-zero term, the summation in
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the second line cancels with the summation on the sixth line, which gives

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βt
(

1− ηt
ηt

) [
h′(lfpt)− u′(ct)χ

]
nt +

∞∑
t=0

βth′(lfpt)nt (149)

− (1− ρ)
∞∑
t=0

βt+1
(

1− ηt+1

ηt+1

) [
h′(lfpt+1)− u′(ct+1)χ

]
nt

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0

− (1− ρ)u′(c0)(1− τn0 )

[
ωe(ε̃0)

η(ε̃0)
− wI0

]
n−1,

in which the period-zero value of the pre-determined stock of employment (stated in period-zero

marginal utility terms) appears on the last line. Note that in the period-zero term, we have

included the functional dependence of ωe(ε̃0) and η(ε̃0) on ε̃0; we will maintain this notation in

the subsequent steps.

The remainder of the derivation of the PVIC follows that in Arseneau and Chugh (2012,

Appendix E). Use the law of motion nt = (1− ρ)nt−1 + ηtst to substitute for the sequence of nt

terms that appears in the first summation on the right-hand side, which gives

∞∑
t=0

βtu′(ct)ct = (1− ρ)
∞∑
t=0

βt
(

1− ηt
ηt

) [
h′(lfpt)− u′(ct)χ

]
nt−1 (150)

+
∞∑
t=0

βt
(

1− ηt
ηt

) [
h′(lfpt)− u′(ct)χ

]
ηtst +

∞∑
t=0

βth′(lfpt)nt

− (1− ρ)
∞∑
t=0

βt+1
(

1− ηt+1

ηt+1

) [
h′(lfpt+1)− u′(ct+1)χ

]
nt

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0

− (1− ρ)u′(c0)(1− τn0 )

[
ωe(ε̃0)

η(ε̃0)
− wI0

]
n−1.

Next, the first summation on the right-hand side cancels with the fourth summation on the

right-hand side, leaving only the time-zero term:

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βt
(

1− ηt
ηt

) [
h′(lfpt)− u′(ct)χ

]
ηtst +

∞∑
t=0

βth′(lfpt)nt (151)

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0

+ (1− ρ)

(
1− η(ε̃0)

η(ε̃0)

) [
h′(lfp0)− u′(c0)χ

]
n−1

− (1− ρ)u′(c0)(1− τn0 )

[
ωe(ε̃0)

η(ε̃0)
− wI0

]
n−1.
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Expanding and re-arranging the first summation on the right-hand side gives

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βth′(lfpt) (1− ηt) st +
∞∑
t=0

βth′(lfpt)nt (152)

−
∞∑
t=0

βtu′(ct)(1− ηt)stχ

+
∞∑
t=0

βtu′(ct)(1− ηt)stχ+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0

+ (1− ρ)

(
1− η(ε̃0)

η(ε̃0)

) [
h′(lfp0)− u′(c0)χ

]
n−1

− (1− ρ)u′(c0)(1− τn0 )

[
ωe(ε̃0)

η(ε̃0)
− wI0

]
n−1.

Cancelling the summations involving (1− ηt)stχ gives

∞∑
t=0

βtu′(ct)ct =
∞∑
t=0

βth′(lfpt) (1− ηt) st +
∞∑
t=0

βth′(lfpt)nt (153)

+
∞∑
t=0

βtu′(ct)(1− τpr)Πt + u′(c0)b0

+ (1− ρ)

(
1− η(ε̃0)

η(ε̃0)

) [
h′(lfp0)− u′(c0)χ

]
n−1

− (1− ρ)u′(c0)(1− τn0 )

[
ωe(ε̃0)

η(ε̃0)
− wI0

]
n−1.

Finally, collecting terms, using the identity lfpt = (1− ηt)st + nt, and reintroducing the condi-

tional expectation E0, we have the present-value implementability constraint

E0

∞∑
t=0

βt
[
u′(ct)ct − h′(lfpt)lfpt − u′(ct)(1− τpr)Πt

]
= A0, (154)

where

A0 ≡ u′(c0)b0+(1−ρ)

(
1− η(ε̃0)

η(ε̃0)

) [
h′(lfp0)− u′(c0)χ

]
n−1−(1−ρ)u′(c0)(1−τn0 )

[
ωe(ε̃0)

η(ε̃0)
− wI0

]
n−1.

(155)

An important note is that the wages (and hence the wage differential) contained in A0 have

nothing to do with how wages are determined. That is, they have nothing to do with whether

wages are determined via individual-specific generalized Nash bargaining, collective bargaining,

a rigid wage norm, and so on.
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G Ramsey Problem

As stated in Section 4.1, the Ramsey government’s problem conditional on t = 0 for its policy

functions for t > 0 is to maximize

E0

∞∑
t=0

βt [u(ct)− h (nt + (1− η(ε̃t))st)] (156)

subject to the sequence of goods resource constraints

ct + gt +

(
H(ε̃t)

η(ε̃t)

)
η(ε̃t)st = ztnt, (157)

the sequence of laws of motion for the aggregate employment stock

nt = (1− ρ)nt−1 + η(ε̃t)st, (158)

the PVIC

E0

∞∑
t=0

βt
[
u′(ct)ct − h′(lfpt)lfpt − u′(ct)(1− τpr)Πt

]
= A0 (159)

(in which

A0 ≡ u′(c0)b0 + (1 − ρ)

(
1 − η(ε̃0)

η(ε̃0)

)[
h′(lfp0) − u′(c0)χ

]
n−1 + (1 − ρ)u′(c0)(1 − τn0 )

[
ωe(ε̃0)

η(ε̃0)
− wI0

]
n−1 (160)

is the time-zero assets of the private sector), the sequence of selection conditions

(1− τht ) · ε̃t = zt − w(ε̃t) + (1− ρ)Et
{

Ξt+1|t
(
(1− τht+1) · ε̃t+1 + w(ε̃t+1)− wIt+1

)}
, (161)

the sequence of LFP conditions

h′(lfpt)

u′(ct)
= η(ε̃t)

[
(1− τnt )ωe(ε̃t)

η(ε̃t)
+ (1− ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}]
+(1−η(ε̃t))χ,

(162)

the sequence of Nash wage outcomes for marginal new hires

w(ε̃t) =
χ

1− τnt
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
(163)

−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

[
(1− τht+1)(ε̃t+1) + w(ε̃t+1)− wIt+1

]}
,

the sequence of the average wage paid to a new hire

ωe(ε̃t)

η(ε̃t)
=

χ

1− τnt
+ αE(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
(164)
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−
(

1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)(ε̃t+1) + w(ε̃t+1)− wIt+1

)}
,

and the sequence of Nash wage outcomes for incumbent workers

wIt =
χ

1− τnt
+ αI(1− τht )(ε̃t) (165)

+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)(ε̃t+1) + w(ε̃t+1)− wIt+1

)}
.

The Ramsey choice variables are ct, nt, st, ε̃t, w
I
t , w(ε̃t), ωe(ε̃t), τ

n
t , and τht for t > 0. For ease of

notation, the sequences of constraints contain the sequences of terms lfpt; when we compute the

Ramsey first-order conditions below, we will use the model’s definition lfpt = nt + (1− η(ε̃t))st.

Associate the sequence of multipliers λ1,t with the first sequence of constraints, the sequence

of multipliers λ2,t with the second sequence of constraints, the multiplier λ3 with the PVIC, the

sequences of multipliers λ4,t, λ5,t, λ6,t, λ7,t, and λ8,t with the final four sequences of constraints,

respectively.

For further ease of notation in writing the Ramsey first-order conditions, define

ΦRC
t (·) ≡ ztnt −

(
ct + gt +

(
H(ε̃t)

η(ε̃t)

)
η(ε̃t)st

)
, (166)

ΦLOM
t (·) ≡ (1− ρ)nt−1 + η(ε̃t)st − nt, (167)

ΦSEL
t (·) ≡ zt − w(ε̃t) (168)

+ (1− ρ)Et
{

Ξt+1|t
(
(1− τht+1) · ε̃t+1 + w(ε̃t+1)− wIt+1

)}
− (1− τht ) · ε̃t,

ΦLFP
t (·) ≡ η(ε̃t)

[
(1− τnt )ωe(ε̃t)

η(ε̃t)
+ (1− ρ)Et

{
Ξt+1|t

[
(1− τnt+1)wIt+1 +

µht+1

u′(ct+1)

]}]
+ (1− η(ε̃t))χ−

h′(lfpt)

u′(ct)
, (169)

Φ
w(ε̃)
t (·) ≡ χ

1− τnt
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

[
(1− τht+1)(ε̃t+1) + w(ε̃t+1)− wIt+1

]}
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− w(ε̃t), (170)

Φ
ωe(ε̃)
t (·) ≡ χ

1− τnt
+ αE(1− τht )

(
ε̃t −

H(ε̃t)

η(ε̃t)

)
+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

[
(1− τht+1)(ε̃t+1) + w(ε̃t+1)− wIt+1

]}

− ωe(ε̃t)

η(ε̃t)
, (171)

and

ΦwI

t (·) ≡ χ

1− τnt
+ αI(1− τht )(ε̃t) (172)

+

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
h′(lfpt+1)

u′(ct+1)
− χ

)}
−

(
1− ρ
1− τnt

)
Et

{
Ξt+1|t

(
αI

1− αI

)
(1− τnt+1)

(
(1− τht+1)(ε̃t+1) + w(ε̃t+1)− wIt+1

)}
− wIt .

Thus, the formal statement of the Ramsey problem is to maximize

E0

∞∑
t=0

βt [u(ct) − h (nt + (1 − η(ε̃t))st)] + E0

∞∑
t=0

βtλ1,tΦ
RC
t (·) + E0

∞∑
t=0

βtλ2,tΦ
LOM
t (·) (173)

+ λ3 · E0

∞∑
t=0

βt
[
u′(ct)ct − h′(lfpt)lfpt − u′(ct)(1 − τpr)Πt

]
−λ3

(
u′(c0)b0 + (1 − ρ)

(
1 − η(ε̃0)

η(ε̃0)

)[
h′(lfp0) − u′(c0)χ

]
n−1 + (1 − ρ)u′(c0)(1 − τn0 )

[
ωe(ε̃0)

η(ε̃0)
− wI0

]
n−1

)
+ E0

∞∑
t=0

βtλ4,tΦ
SEL
t (·) + E0

∞∑
t=0

βtλ5,tΦ
LFP
t (·)

+ E0

∞∑
t=0

βtλ6,tΦ
w(ε̃)
t (·) + E0

∞∑
t=0

βtλ7,tΦ
ωe(ε̃)
t (·) + E0

∞∑
t=0

βtλ8,tΦ
wI

t (·).

For t > 0 (and supposing that Ramsey allocations are interior), the Ramsey first-order

conditions with respect to ct, nt, st, ε̃t, w
I
t , w(ε̃t), ωe(ε̃t), τ

n
t , and τht are, respectively:

u′(ct) + λ1,t
∂ΦRC

t (·)
∂ct

+
1

β
λ4,t−1

∂ΦSEL
t−1 (·)
∂ct

+ λ4,t
∂ΦSEL

t (·)
∂ct

+
1

β
λ5,t−1

∂ΦLFP
t−1 (·)
∂ct

+ λ5,t
∂ΦLFP

t (·)
∂ct

+
1

β
λ6,t−1

∂Φ
w(ε̃)
t−1 (·)
∂ct

+ λ6,t
∂Φ

w(ε̃)
t (·)
∂ct

+
1

β
λ7,t−1

∂Φ
ωe(ε̃)
t−1 (·)
∂ct

+ λ7,t
∂Φ

ωe(ε̃)
t (·)
∂ct

+
1

β
λ8,t−1

∂ΦwI
t−1(·)
∂ct

+ λ8,t
∂ΦwI

t (·)
∂ct

+ λ3
[
u′′(ct) · ct + u′(ct) + u′′(ct)(1− τpr)Πt

]
= 0, (174)
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−h′(lfpt) + λ1,t
∂ΦRC

t (·)
∂nt

+
1

β
λ2,t−1

∂ΦLOM
t−1 (·)
∂nt

+ λ2,t
∂ΦLOM

t (·)
∂nt

+
1

β
λ5,t−1

∂ΦLFP
t−1 (·)
∂nt

+ λ5,t
∂ΦLFP

t (·)
∂nt

+
1

β
λ6,t−1

∂Φ
w(ε̃)
t−1 (·)
∂nt

+
1

β
λ7,t−1

∂Φ
ωe(ε̃)
t−1 (·)
∂nt

+
1

β
λ8,t−1

∂ΦwI
t−1(·)
∂nt

+ λ3
[
h′′(lfpt) · lfpt + h′(lfpt)

]
= 0, (175)

−(1− η(ε̃t) · h′(lfpt) + λ1,t
∂ΦRC

t (·)
∂st

+ λ2,t
∂ΦLOM

t (·)
∂st

+
1

β
λ5,t−1

∂ΦLFP
t−1 (·)
∂st

+ λ5,t
∂ΦLFP

t (·)
∂st

+
1

β
λ6,t−1

∂Φ
w(ε̃)
t−1 (·)
∂st

+
1

β
λ7,t−1

∂Φ
ωe(ε̃)
t−1 (·)
∂st

+
1

β
λ8,t−1

∂ΦwI
t−1(·)
∂st

+ λ3
[
(1− η(ε̃t)) · h′′(lfpt) · lfpt + h′(lfpt) · (1− η(ε̃t))

]
= 0, (176)

h′(lfpt) · η′(ε̃t) · st + λ1,t
∂ΦRC

t (·)
∂ε̃t

+ λ2,t
∂ΦLOM

t (·)
∂ε̃t

+
1

β
λ4,t−1

∂ΦSEL
t−1 (·)
∂ε̃t

+ λ4,t
∂ΦSEL

t (·)
∂ε̃t

+
1

β
λ5,t−1

∂ΦLFP
t−1 (·)
∂ε̃t

+ λ5,t
∂ΦLFP

t (·)
∂ε̃t

+
1

β
λ6,t−1

∂Φ
w(ε̃)
t−1 (·)
∂ε̃t

+ λ6,t
∂Φ

w(ε̃)
t (·)
∂ε̃t

+
1

β
λ7,t−1

∂Φ
ωe(ε̃)
t−1 (·)
∂ε̃t

+ λ7,t
∂Φ

ωe(ε̃)
t (·)
∂ε̃t

+
1

β
λ8,t−1

∂ΦwI
t−1(·)
∂ε̃t

+ λ8,t
∂ΦwI

t (·)
∂ε̃t

− λ3
[
η′(ε̃t) · st · h′′(lfpt) · lfpt + h′(lfpt) · η′(ε̃t) · st

]
= 0, (177)

1

β
λ4,t−1

∂ΦSEL
t−1 (·)
∂wIt

+
1

β
λ5,t−1

∂ΦLFP
t−1 (·)
∂wIt

+
1

β
λ6,t−1

∂Φ
w(ε̃)
t−1 (·)
∂wIt

+
1

β
λ7,t−1

∂Φ
ωe(ε̃)
t−1 (·)
∂wIt

+
1

β
λ8,t−1

∂ΦwI
t−1(·)
∂wIt

+ λ8,t
∂ΦwI

t (·)
∂wIt

= 0, (178)

1

β
λ4,t−1

∂ΦSEL
t−1 (·)

∂w(ε̃t)
+ λ4,t

∂ΦSEL
t (·)

∂w(ε̃t)

+
1

β
λ6,t−1

∂Φ
w(ε̃)
t−1 (·)

∂w(ε̃t)
+ λ6,t

∂Φ
w(ε̃)
t (·)

∂w(ε̃t)
+

1

β
λ7,t−1

∂Φ
ωe(ε̃)
t−1 (·)
∂w(ε̃t)

+
1

β
λ8,t−1

∂ΦwI
t−1(·)

∂w(ε̃t)
= 0, (179)

1

β
λ5,t−1

∂ΦLFP
t−1 (·)
∂wIt

+ λ5,t
∂ΦLFP

t (·)
∂wIt

+ λ7,t
∂Φ

ωe(ε̃)
t (·)
∂wIt

= 0, (180)

1

β
λ5,t−1

∂ΦLFP
t−1 (·)
∂τnt

+ λ5,t
∂ΦLFP

t (·)
∂τnt

+
1

β
λ6,t−1

∂Φ
w(ε̃)
t−1 (·)
∂τnt

+ λ6,t
∂Φ

w(ε̃)
t (·)
∂τnt
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+
1

β
λ7,t−1

∂Φ
ωe(ε̃)
t−1 (·)
∂τnt

+ λ7,t
∂Φ

ωe(ε̃)
t (·)
∂τnt

+
1

β
λ8,t−1

∂ΦwI
t−1(·)
∂τnt

+ λ8,t
∂ΦwI

t (·)
∂τnt

= 0, (181)

and

1

β
λ4,t−1

∂ΦSEL
t−1 (·)
∂τht

+ λ4,t
∂ΦSEL

t (·)
∂τht

+
1

β
λ6,t−1

∂Φ
w(ε̃)
t−1 (·)
∂τht

+
1

β
λ7,t−1

∂Φ
ωe(ε̃)
t−1 (·)
∂τht

+ λ7,t
∂Φ

ωe(ε̃)
t (·)
∂τht

+
1

β
λ8,t−1

∂ΦwI
t−1(·)
∂τht

+ λ8,t
∂ΦwI

t (·)
∂τht

= 0. (182)
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Ramsey period-zero policy and its relationship with the timeless perspective.

The Ramsey policy functions that emerge from the first-order conditions are decided upon in

t = 0, and the Ramsey government is, as is standard, committed to implementing them for

t > 0. Now consider the case of t = 0. In t = 0 (and provided the t = 0 present-value of lifetime

government spending is sufficiently large), the Ramsey government would want to confiscate the

entire inelastic stock of n−1.

If we allowed full confiscation, which is an extreme case, of n−1 from the private sector,

then the business-cycle results we present for Ramsey allocations will not be from a timeless

perspective (because n−1 = 0 6= nRAMs s, where nRAMs s is the eventual Ramsey steady state.

If we instead take the other extreme case of completely forbidding the Ramsey government

from confiscating n−1, then (and only then) would the business-cycle results we present for

Ramsey allocations be from a timeless perspective.

None of the main Ramsey business-cycle results of this paper, though, depend on whether

we allow for no confiscation, partial confiscation, or full confiscation of n−1, because there are no

“wedges” created by confiscation of the initial assets of the economy. In fact, full confiscation of

n−1 (provided that the t = 0 present-value of lifetime government spending is sufficiently large)

would be Ramsey-optimal (in the sense that it would lead to the highest possible steady-state

welfare for the economy).

Finally, if one wanted to permit an incomplete set of instruments (in our model, dropping

either the labor income tax or the proportional hiring subsidy, and/or fixing either one of them

to some particular numerical value which generically would not be the Ramsey government’s

policy setting), additional constraints on the Ramsey planning problem beyond those listed

above would be required — see Chari and Kehoe (1999, p. 1679 - 1680, 1683) for more.
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H Ramsey Taxation and Pigouvian Taxation

As Tables 8 and 9 show, part of the Ramsey optimal taxes are Pigouvian in nature. Holding

the structural parameters fixed at their values stated in Table 2 and permitting lump-sum taxes

(which zeros out the Lagrange multiplier λ3 on the present-value government budget constraint),

the long-run Pigouvian corrective labor-income tax rate is τn is 8.3%, the corrective hiring

subsidy τh is 55.5%, and, as implied by the corrective nature of Pigouvian analysis, there are

zero wedges along both the labor-supply and the labor-demand margins.

Table 10 displays Ramsey steady-state allocations for several parameters; in each case, the

long-run value of ε̃η(ε̃)−H(ε̃) are identical to each other (machine-level precision 1e−16). Fig-

ures 4 and 5 show this in further detail by allowing, respectively, the unemployment benefit χ

and newly-hired employees’ Nash bargaining power to vary across a wide range of values. Focus-

ing on the first two panels of each Figure, the Ramsey steady-state values for ε̃η(ε̃)−H(ε̃) and

η(ε̃) are identical to the socially-efficient values. Figure 6 slightly extends Figure 5 by allowing

for both αI = 0.70 and αI = 1.
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labor labor
η u lfp ε̃η(ε̃)−H(ε̃) n y τn τh supply demand

wedge wedge

Ramsey Policy.
0.993 0.0005 0.734 0.967 0.733 0.733 0.216 0.810 0.797 1

Exogenous Policy.
0.620 0.040 0.740 0.187 0.697 0.697 0.200 0 4.144 -3.271

Efficiency.
0.993 0.0005 0.761 0.967 0.761 0.761 0 0 1 1

Pigouvian.
0.993 0.0005 0.761 0.967 0.761 0.761 -0.015 0.453 1 1

Table 8: Steady-state allocations. Upper panel: Ramsey-policy allocations. Second panel:

Exogenous-policy allocations. Third panel: Efficient allocations. Lower panel: Pigouvian allocations.

Multipliers λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

with respect to RC LOM PV IC SEL LFP w(ε̃t) ωe(ε̃t) wIt

Ramsey Policy.
1.750 0.524 0.042 0 0 0 0 0

Pigovian Policy.
1.677 0.501 0 0 0 0 0 0

Table 9: Steady-state endogenous multipliers. The multiplier λ6 is with respect to the real wage

earned by the marginal new hire (11); the multiplier λ7 is with respect to the average real wage paid to

a new hire (14); and the multiplier λ8 is with respect to the real wage earned by incumbents (13).

80



I Ramsey Steady State for Alternative Parameter Sets
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labor labor
η u lfp ε̃η(ε̃)−H(ε̃) n y τn τh supply demand

wedge wedge

Ramsey Policy.
0.993 0.0005 0.754 0.967 0.753 0.753 0.207 0.795 0.805 1

Ramsey Policy (χ = 0).
0.993 0.0005 0.753 0.967 0.753 0.753 0.086 -0.756 0.803 1

Ramsey Policy (αE = 1).
0.993 0.0005 0.753 0.967 0.753 0.753 0.218 0.895 0.805 1

Ramsey Policy (χ = 0, αE = 1).
0.993 0.0005 0.753 0.967 0.753 0.753 0.192 0 0.808 1

Table 10: Steady-state allocations. Ramsey allocations for several structural calibrations. In each

panel, all other parameter values are set as in the baseline calibration described in Section 3.2.
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Figure 4: Ramsey steady-state as a function of χ. Except for the government provided unemploy-
ment benefit χ, all other parameter values are set as in the baseline calibration described in Section 3.2.
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Figure 5: Ramsey steady-state as a function of αE. Except for the newly-hired employees’ bargain-
ing power αE , all other parameter values are set as in the baseline calibration described in Section 3.2.
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I = 1

Figure 6: Ramsey steady-state as a function of αE. Except for the newly-hired employees’ bargain-
ing power αE and the two values of αI , all other parameter values are set as in the baseline calibration
described in Section 3.2.
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Figure 7: Ramsey steady-state as a function of σε. Except for the cross-sectional dispersion σε of
idiosyncratic characteristics, all other parameter values are set as in the baseline calibration described in
Section 3.2.
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