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Abstract  

Ceramic based oxygen transport membranes (OTM) have attracted much attention for 

alternative production concepts to generate high purity oxygen at low energy 

consumption, particularly if good thermal integration in high-temperature industrial 

process is realized. For a practical application relevant design, an asymmetric 

membrane consisting of a thin dense membrane layer supported by a porous substrate 

was in the focus of the current research. To ensure long-term operation and lifetime, the 

membrane must maintain both its mechanical stability and functional property. 

However, strength of the mechanically supporting substrate material usually decreases 

with increasing total pore volume even though high porosity may enhance the 

functional properties, such as permeability. Besides, differences in thermo-mechanical 

behavior, in particular creep, of dense and porous membrane material may also lead to 

structure instability. Hence, the main purpose of the present work is to study the 

porosity dependency of thermal-mechanical properties of selected oxygen transport 

membrane materials, and the mechanical compatibility of the porous / dense membrane 

layers in the asymmetric membrane design. 

Due to its long-term chemical stability under application relevant environments along 

with good permeation values, the perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) was chosen as 

most suitable and furthermore, representative OTM material in this study. In particular, 

aiming towards an advanced characterization of different microstructures and potential 

associated effects onto thermo-mechanical behaviour, LSCF porous supports with 

different microstructures were produced by different synthesis methods, including dry 
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pressing, tape- and freeze-casting. Elastic and plastic behaviour at room- and high- 

temperature were investigated with bending and compressive test setup, respectively, 

especially concentrating onto the anisotropic behaviour of freeze-casting materials and 

the ferro-elastic behaviour the rhombohedral phase. The results of porous samples were 

compared and discussed along with that of dense LSCF. In terms of materials stability, 

the apparent rhombohedral – cubic phase transition was investigated in detail with HT-

XRD. In particular a potentially operation relevant surface degradation was observed 

and studied in further detail with respect to temperature and stress effects. 

As an alternative substrate material, 3 mol% Y2O3 doped ZrO2 (3YSZ) produced by 

freeze-casting and pressing & sintering was also investigated focusing onto the porosity 

dependency of mechanical behaviour. In fact, 3YSZ was chosen due to its high 

mechanical / chemical stabilities compared to other OTM materials. Overall, the effect of 

porosity (between 45% and 65%) and pore morphology (lamellar and spherical) on 

bending strength and gas permeability was investigated on the basis of 3YSZ. 

Overall, the work for LSCF was mainly concentrated on the effect of the porous 

structures on the creep behavior; for 3YSZ was focused on the correlation of mechanical 

parameters and functionally important gas permeability. The combination of both 

studies offers a wider view, considering a broad range of mechanical properties from 

room temperature to application relevant temperatures, on the relationship between 

different pore arrangements and gas permeability which should be optimized to 

warrant a high permeation of the layered membrane arrangement. 

 

  



Kurzfassung 

 

 iii 

Kurzfassung  

Keramikbasierte Sauerstofftransportmembranen (OTM) haben als alternative 

Produktionskonzepte um bei niedrigem Energieverbrauch hochreinen Sauerstoff zu 

erzeugen viel Aufmerksamkeit erregt, insbesondere wenn eine gute thermische 

Integration im Hochtemperatur-Industrieprozess beabsichtigt wird. Für ein für 

praktische Anwendungen relevantes Design stand eine asymmetrische Membran, 

bestehend aus einer dünnen, dichten Membranschicht, die von einem porösen Substrat 

getragen wurde, im Fokus der aktuellen Forschung. Um langfristigen Betrieb und 

Lebensdauer zu gewährleisten, muss die Membran sowohl ihre mechanische Stabilität 

als auch ihre funktionelle Eigenschaft beibehalten. Jedoch nimmt die Festigkeit des 

mechanisch tragenden Substratmaterials gewöhnlich mit zunehmendem 

Gesamtporenvolumen ab, obwohl hohe Porosität die funktionellen Eigenschaften, 

insbesondere die Permeabilität, verbessern kann. Daneben können auch Unterschiede 

im thermomechanischen Verhalten, insbesondere Kriechen, von dichten und porösen 

Membranmaterialen zur Strukturinstabilität führen. Der Hauptzweck der vorliegenden 

Arbeit besteht daher darin, die Porositätsabhängigkeit von thermisch-mechanischen 

Eigenschaften ausgewählter Sauerstofftransport-Membranmaterialien und die 

mechanische Kompatibilität der porösen / dichten Membranschichten im 

asymmetrischen Membrandesign zu untersuchen. 

Aufgrund seiner langzeitigen chemischen Stabilität unter anwendungsrelevanten 

Umgebungen mit guten Permeationswerten wurde der Perovskit La0.6Sr0.4Co0.2Fe0.8O3-δ 

(LSCF) als am besten geeignet und weiterhin repräsentatives OTM-Material für diese 
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Studie ausgewählt. Insbesondere mit dem Ziel einer weiterentwickelten 

Charakterisierung unterschiedlicher Mikrostrukturen und potenziellen Wirkungen auf 

das thermomechanische Verhalten, wurden LSCF-poröse Träger mit unterschiedlichen 

Mikrostrukturen durch unterschiedliche Syntheseverfahren, einschließlich 

Trockenpressen, Band- und Gefrierguss, hergestellt. Das elastische und plastische 

Verhalten bei Raum- und Hochtemperatur wurde mit Biege- und 

Kompressionsversuchen unter Berücksichtigung des anisotropen Verhaltens von 

Gefriergusswerkstoffen und des ferro-elastischen Verhaltens der rhomboedrischen 

LSCF Phase untersucht. Die Ergebnisse der porösen Proben wurden mit denen des 

dichten LSCF verglichen und diskutiert. Weiterhin wurde der offenbar rhomboedrisch-

kubische Phasenübergang des LSCF im Detail mit HT-XRD untersucht. Insbesondere 

wurde auch eine potenziell betriebsbedingte Oberflächenschädigung beobachtet und 

hinsichtlich Zusammenhang zwischen Temperatur- und Spannungseffekten näher 

untersucht. 

Als alternatives Substratmaterial wurde zusätzlich auch 3 Mol-% Y2O3-dotiertes ZrO2 

(3YSZ), das durch Gefriergießen und Pressen & Sintern hergestellt wurde, mit der 

Fokussierung auf die Porositätsabhängigkeit des mechanischen Verhaltens untersucht. 

Hierbei wurde 3YSZ aufgrund seiner hohen mechanischen / chemischen Stabilität im 

Vergleich zu anderen OTM-Materialien gewählt. Insgesamt wurde dabei die 

Auswirkung der Porosität (zwischen 45% und 65%) und der Porenmorphologie 

(lamellar und sphärisch) auf Biegefestigkeit und Gaspermeabilität ermittelt. 

Insgesamt konzentrierte sich die Arbeit für LSCF vor allem auf den Effekt der porösen 

Strukturen auf das Kriechverhalten; im Fall von 3YSZ lag der Fokus auf der Korrelation 

von mechanischen Parametern und funktionell wichtiger Gaspermeabilität. Die 

Kombination beider Studien bietet eine erweiterte Betrachtung unter Berücksichtigung 

einer breiten Palette von mechanischen Eigenschaften von Raumtemperatur bis zu 
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anwendungsrelevanten Temperaturen, insbesondere hinsichtlich der Beziehung 

zwischen verschiedenen Porenanordnungen und der Gaspermeabilität, die optimiert 

werden sollte, um eine hohe Permeation der Schichtmembrananordnung zu 

gewährleisten. 
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Introduction 

Global warming and climate change, which have already caused an observable sea level 

rising, glacier retreat and arctic shrinkage, are increasing challenging issues for human 

subsistence [1]. One of the major causes for global warming is attributed to the emission 

of greenhouse gases. The main greenhouse gases in the Earth's atmosphere are water 

vapor, carbon dioxide, methane, nitrous oxide, and ozone [2,3]. Energy production and 

industrial sectors including cement production are both considered as major sources of 

human made CO2 emissions. To reduce the atmospheric and marine accumulation of 

greenhouse gases, which are released by burning fossil fuels, an artificial carbon 

sequestration process has been proposed as a way to mitigate or defer global warming 

[4]. Oxyfuel combustion is one of the most appropriate concepts to produce a CO2 rich 

flue gas ready for sequestration and at the same time also increase combustion 

efficiency. 

Furthermore, Oxygen is one of the most important commercial gases for industrial 

applications. Global oxygen production is reported to be approximately 100 million 

tons per year [5]. Considering the development of clean and sustainable energy 

technologies, for instance, pre-combustion solid fuel gasification and oxyfuel 

approaches [6,7], which require the use of pure oxygen, the demand for pure oxygen is 

expected to increase even more in the future. Nowadays, most of the oxygen that is 

separated from air for industrial applications is produced by using cryogenic 

distillation and pressure swing adsorption [5]. In the last 30 years, an appealing 

alternative for oxygen production has emerged, which is based on the development of 
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the ceramic based oxygen transport membrane (OTM) materials [5–9]. OTM is 

supposed to be able to generate high purity oxygen at low energy consumption, 

particularly if good thermal integration in high-temperature industrial process is 

realized. With respect to application relevant membrane designs, an asymmetric 

membrane consisting of a thin dense membrane layer supported by a porous substrate 

was suggested to ensure high permeation rate and relative higher mechanical stability 

[10–15]. 

For application as membranes in power plant, the materials should exhibit high oxygen 

conductivity, chemical and structural stability in long-term operation, compatibility of 

thermal expansion with metallic structures, and a high resistance to mechanical failure 

(e.g. fracture stress). The present work focuses on the mechanical properties of 

membrane layers and potential substrate materials based on in-house experience and 

literature. Mechanical data, in particular temperature dependencies of strength, elastic 

modulus and creep as well as creep rupture tests were carried out to supply basic 

materials characteristics needed for modeling of room and elevated temperature 

lifetime under application relevant stress levels. The effect of membrane layers on the 

mechanical stability of substrate materials as well as the effect of the substrate 

constraints on the mechanical stability limits of the membrane coating are assessed. 

Materials tested with respect to permeation and chemical stability at the partners 

facilities were characterized with respect to effects of operation relevant conditions on 

the mechanical stability.  
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Chapter 1.                

Literature Review 

Mixed ion-electron conductivity (MIEC) materials with high oxygen permeation are 

currently exploited as promising oxygen transport membranes (OTMs) for gas 

separation. Perovskites like Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) 

have been proposed for OTM application, since they exhibit strong oxygen permeation 

at elevated temperatures. In this chapter, the functional and designing principles of the 

OTM are reviewed. Mechanical properties important for long-term reliability of OTM 

materials under application conditions are introduced. Considering the asymmetric 

membrane design, with a dense membrane layer on porous support, the specialties of 

porous ceramics are emphasized. At the end, information on the materials investigated 

in the present work is reviewed and summarized in details. 
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1.1. Oxygen transport membrane (OTM) 

An oxygen transport membrane can be described as a barrier between two enclosures, 

which preferentially allows oxygen ions to permeate under the action of an electrical 

potential gradient or a chemical potential gradient (i.e. oxygen partial pressure) as 

driving force [8]. Since oxygen is transported in an ionic form through the membrane 

material, there must be a simultaneous electron flux in the opposite direction to  

compensate the oxygen ion flux and to maintain electric neutrality [8,9]. Therefore, a 

suitable membrane material is not only an ionic but also an electronic conductor, hence 

also called Mixed Ionic–Electronic Conducting (MIEC) membrane (Figure 1.1).  

 Essentially, OTMs consist of a thin, dense ceramic membrane where oxygen ions 

diffuse across the membrane, usually via interstitials or vacancies triggered by the 

stoichiometry of the material. Among the MIEC materials, most of the high oxygen 

permeation materials belong to the fluorite or perovskite type ceramic. These structures 

have a high tolerance of non-stoichiometry that permits them to obtain a high number 

of oxygen vacancies and/or interstitial sites and consequently enhance the oxygen ionic 

conduction [16]. 
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Figure 1.1 Single phase mixed ionic-electronic conducting (MIEC) membrane. 

1.1.1. Transport mechanism 

The transport of oxygen through a dense mixed ionic–electronic conducting material 

involves three successive steps (Figure 1.2) [17,18]:  

(i) the surface-exchange reaction on the feed side, i.e. dissociation of oxygen 

molecules into oxygen anions at the high partial pressure side. This process 

can be described by: 

 (1.1) 

 

(ii) the simultaneous lattice diffusion of oxygen ions and electron/electron holes 

in the bulk phase. 
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(iii) the surface-exchange reaction on the sweep side; recombination of oxygen 

anions into oxygen molecules on the low partial pressure side of the 

membrane. This step can be described by: 

 (1.2) 

 

 

Figure 1.2 Different steps involved in oxygen transport during oxygen permeation. 

The oxygen permeation rate is determined by the slowest process. Each mechanism has 

the potential to become the rate-controlling step and the slowest process will limit the 

overall permeation flux. For relatively thick membranes (thickness > 100 μm), solid state 

diffusion commonly controls the process and oxygen flux can be described by the 

Wagner equation [19]: 

 (1.3) 
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where 𝐽𝑂2
 is the oxygen permeation flux, 𝑅 is the gas constant, 𝐹 is the Faraday constant, 

𝐿 is the membrane thickness, 𝑃𝑂2

′  and 𝑃𝑂2

′′  are the oxygen partial pressures at the high-

pressure side and low pressure side, respectively, 𝜎𝑒𝑙 is the electronic conductivity, and 

𝜎𝑖𝑜𝑛 is the ionic conductivity. 

1.1.2. Asymmetric membrane 

The overall oxygen permeation of an oxygen transport membrane depends on several 

factors such as material composition [20], powder preparation method [21], sintering 

temperature [22,23], membrane shape [24] and thickness. As stated by Wagner’s 

equation [19,25], the flux through a dense membrane is proportional to the inverse of 

the membrane thickness. Reducing membrane thickness results in higher oxygen fluxes 

[26–30] until other mass transport or surface kinetic phenomena start to limit the 

permeation process. For practical applications, high permeation fluxes are essential and 

the optimized membrane thickness should be in the range of several microns (10 – 50 

μm) [15]. Therefore, for practical applications, where high oxygen fluxes are necessary, 

thin membranes are required to increase the flux of oxygen by minimizing the ion 

diffusion limitation. Recently, with respect to application relevant membrane designs, 

an asymmetric membrane consisting of a thin dense membrane layer supported by a 

porous substrate was suggested [10–15], as shown in Figure 1.3. The aim of asymmetric 

membranes is not only to boost the gas transport but also to enhance the mechanical 

stability of the entire thin layer membrane structure, which therefore renders the 

mechanical properties of the porous substrate critical for the reliability of the whole 

component [31–33], hence being the focus of various recent studies [31,32,34–36].  
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Figure 1.3 Fracture cross-section (SEM image) of an asymmetric membrane assembly 

consisting of porous support and dense membrane layer from La0.6Sr0.4Co0.2Fe0.8O3-δ [15]. 

However, during operation at high temperatures, this approach brings mechanical 

stability issues due to the high thermal expansion coefficient (CTE) observed in most of 

OTM ceramic materials [37]. A CTE mismatch between the dense layer and the 

substrate may generate cracks that could compromise performance. To avoid this 

problem, the porous substrate may be fabricated from the same material as the dense 

layer, or the CTEs of the two materials should be matched.  

In addition, the introduction of a porous substrate also generates a source of resistance 

to the oxygen flow. Since gas diffusion through the pores is the main transport 

mechanism through the support, the architecture of the pore structure should provide a 

compromise between maximizing gas flow and mechanical properties. All of these 

resistances (surface exchange, solid state diffusion across the membrane, and gas 

diffusion through the porous structure) are intrinsic to the process and thus cannot be 

eliminated. As a result, it is critical to understand the controlling mechanisms and 
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ameliorate them as a function of membrane composition, membrane architecture, and 

operation conditions. 

The support engineering is then crucial and the substrate has to fulfill certain 

mechanical, microstructural and physio-chemical requirements, which are [38]: (i) to 

confer a good mechanical integrity on the porous support/dense top layer assembly and 

to avoid possible damage under harsh conditions, (ii) to minimize the pressure loss 

through the support in order to allow the membrane to operate at high flow rates and 

(iii) to provide a high mixed electronic and ionic conductivity and a high density of 

Triple Phase Boundary (TPB) where ion, electron and gas can meet for the oxygen 

reduction reaction. Indeed, due to the limited reaction site density at the interface 

porous support/dense layer, it is necessary that the porous support has a high TPB 

density, where the gaseous oxygen (in the case of O2 separation) and the electronic and 

ionic conductive phases contact. 

1.1.3. Membrane materials 

Although in the past decades, significant developments have been achieved, there are 

still several issues in mixed conducting ceramic membranes, such as chemical and 

mechanical stability problems and the necessary too high operating temperature to 

obtain application relevant oxygen permeation fluxes [19]. Overall, the criteria for the 

membrane material selection can be summarized as follows [8,16]:  

• considerable high oxygen permeation flux under high temperature operation 

condition;  

• stability for long-term operation under the application relevant temperature, 

oxygen partial pressure range, and corresponding working atmosphere; 

• sufficient mechanical strength; 
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• compatibility with the other cell components;  

• considerably low cost of the materials and fabrication; 

• suitable high temperature sealing of the membranes.  

From an economic point of view, it has been suggested that a sufficiently high oxygen 

permeation flux of at least 1 ml (STP)/cm2min (7.44×10-2mol/cm2s) should be reached, 

although a higher value of 3.5 ml (STP)/cm2min (2.604×10-6mol/cm2s) would be needed 

to match the requirements of current technological applications [16,39]. 

Among ceramic membranes with mixed ionic-electronic conducting characteristics, 

most of the best compounds in terms of oxygen permeation properties are fluorite-type  

(AO2) and perovskite-type (ABO3) [8]. As driving force, sufficiently low or high values 

of oxygen partial pressure are necessary to obtain required mixed ionic-electronic 

conduction, where electronic defects are generated for charge compensation of the 

excess of ionic defects relative to the stoichiometric composition. 

The ideal fluorite structure consists of anions in simple cubic packing with half of the 

interstices occupied by cations, as shown in Figure 1.4(a), and is termed after the CaF2 

structure. Oxygen-deficient fluorite-related structures such as ZrO2 and CeO2 doped 

with CaO or Y2O3 are important solid oxide electrolytes materials [8]. More recently, it 

has been an interesting research direction to introduce enhanced electronic conduction 

in fluorite matrices in the form of dual-phase membranes. Notable examples include 

yttria-stabilized zirconia doped with either titania [40] or ceria [41]. This type of 

structure tends to have cations occupying all cation sites, while leaving many of the 

oxygen anion sites empty, leading to a high oxygen deficiency [42,43]. 

The perovskites oxides of the type ABO3 (rare earth metal ions at A sites and transition 

metal ions at B sites), such as LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and BSCF (Ba0.5Sr0.5Co0.8Fe0.2O3-

δ) have attracted much attention in the last decades due to its high permeation fluxes 
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and excellent stabilities [12,16,19,44,45]. Perovskite is a structural family of inorganic 

materials with the structure of CaTiO3 [46]. The ideal perovskite has cubic symmetry 

with the space group Pm3m, as shown in Figure 1.4(b). The transition metal ions (B) are 

located in the center of the cube, forming an octahedral with 6 nearest oxygen ions. The 

angles between the six equal B-O bonds are 90 °. A-ions are located at the corners 

surrounded by twelve equidistant oxygen ions. The perovskite structure is preserved if 

the tolerance factor (t) as given in the following equation is between 0.8 and 1 as stated 

by Goldschmidt [47]: 

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑡) =
𝑟𝐴 + 𝑟𝑂

√2(𝑟𝐵 + 𝑟𝑂)
 (1.4) 

where 𝑟𝐴, 𝑟𝐵 and 𝑟𝑂 are the ionic radii units of the A site cation, B site cation and oxygen. 

If the bond length is roughly assumed to be the sum of two ionic radii, the 𝑡 value of an 

ideal cubic perovskite should be equal to 1.0. However, Goldschmidt found that, as an 

experimental fact, most cubic perovskites have 𝑡 values in the range of 0.8–0.9, and 

distorted perovskites occur in somewhere wider range of 𝑡  [48]. In fact, almost all 

known perovskite compounds have 𝑡 values in the range of 0.75–1.00 [49].  Hayashi et 

al. [49] suggested that A site cation should have large ionic radii to obtain large free 

volume and B site cation should be selected to regulate the tolerance factor to 

approximately 0.96. 
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Figure 1.4 The ideal structure of (a) fluorite [50] and (b) perovskite [51]. 

1.2. Mechanical characteristics 

Under application conditions, different stresses will be induced into the membrane 

materials by different operation condition factors, such as high pressure difference 

between the two sides of the membranes, thermal and chemical gradients, thermal 

expansion incompatibilities with other parts of the membrane module, as well as tensile, 

compressive or bending stresses from stacking and joining into integration modules 

[8,19,52]. To guarantee the robustness of the membrane modules over long operation 

periods, risks of mechanical failure need to be estimated and reduced to tolerable levels. 

Knowledge of deformation and fracture behavior of the membrane materials is 

necessary for the assessment of the mechanical stability of the membrane components. 

For long-term application under high temperatures and stress, creep deformation and 

creep damage can be critical and need to be investigated. 
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In the following sections, basic principles and theoretical backgrounds of the 

mechanical investigations performed within the present study are introduced. 

1.2.1. Elastic behavior 

Experimentally, the respond of solid materials with low strain 𝜀 is proportional to the 

applied stress 𝜎. This phenomenon is described by Hooke's law [53]: 

𝜎 = 𝐸𝜀 (1.5) 

where 𝐸 is Young’s or elastic modulus, a quantity used to characterize the resistance of 

a material to elastic deformation under uniaxial load. 𝜀 is the strain of the material 

defined as:  

𝜀 =
𝐿 − 𝐿0

𝐿0
 (1.6) 

where 𝐿 is the length under the applied stress, and 𝐿0 is the original length.  

When the stress is increased above the reversible elastic strain limit either direct fracture 

without significant plastic deformation or plastic deformation and then fracture follows 

[54].  

Elastic moduli can be determined with different static or dynamic methods. For brittle 

materials, uniaxial and biaxial bending tests are widely used. As macroscopically non-

destructive method, micro-indentation is also often used. The three-point bending test 

[55] is a widespread method for analyzing material behavior, where brittle materials 

associated clamping problems do not permit tensile testing [55]. The alignment is easily 

achieved and specimens with simple geometric shapes can be used.  

The biaxial ring-on-ring bending test is also frequently used. Stress distribution is 

symmetrical and homogeneous around the center of disc-shaped specimen. Stresses 
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across the disc thickness vary from compressive (at the loading-ring side) to tensile (at 

the supporting-ring side). But in this test, specimen unevenness and frictional effects 

can have a huge influence on stress distribution [56]. 

Although mostly bending tests are possible, the uniaxial compression test is also 

frequently performed to obtain stress-strain behavior for different temperatures for 

brittle materials. The deformation rate (or loading rate) can be controlled. With small 

deformations, the stress distribution is uniaxial. Therefore, elastic parameters, such as 

Young’s modulus, permanent deformation or Poisson’s ratio can be easily determined 

from the stress-strain curves. 

Micro-indentation test [57] is an easily operated and fast method for measuring elastic 

moduli. The advantage of this method is that it is macroscopically non-destructive and 

the use of a very small surface area during the investigation. The disadvantage is that 

the results from indentation test are strongly localized, i.e. the material need to be 

homogeneous. Typically, strength determination is not possible via micro-indentation. 

The Impulse Excitation Technique (IET) is a non-destructive dynamic mechanical test 

for the investigation of Young’s moduli. It is based on the natural frequency of the 

tested materials. This technique allows the determination of a quasi-continuous elastic 

modulus - temperature dependency under various atmospheres [58].  

From an atomic view, the elastic modulus is directly related to bonding forces between 

atoms [53,54]. Hence, as the temperature increases, the elastic modulus generally 

decreases. An empirical relationship that fits the data for several ceramics is [54]: 

𝐸 = 𝐸0 − 𝑏𝑇 𝑒𝑥𝑝 (
−𝑇0

𝑇
) (1.7) 

where 𝐸0 is elastic modulus at absolute zero; 𝑏 and 𝑇0 are empirical constants; and 𝑇0 is 

about half the Debye temperature. As the temperature increases, the vibration 
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frequency of the atoms (and hence the interatomic spacing) is enhanced and the 

bonding force is slightly decreased. 

However, for polycrystalline ceramics there is an additional effect due to grain 

boundaries [54]. At high temperatures, due to the contribution of grain boundary 

sliding and grain boundary softening, a rapid decrease can occur in values of elastic 

moduli [54]. Besides, in real ceramic, microstructural effects, such as porosity and 

second phases, have also an influence on the mechanical constants. In particular, a 

detailed review of the influence of porosity on mechanical properties is given in Section 

1.3.2. 

1.2.2. Strength and fracture 

Most ceramics are brittle at room temperature, which means, they fracture with very 

little plastic deformation. From atomic level, brittle fracture happens via separating two 

planes of atoms. But the calculated “theoretical” strength from this atomic principle is 

much larger than experiments data [53,54]. In the work of A. A. Griffith [59], it is 

suggested that the presence of preexisting cracks in the surface or inside the ceramic 

and/or the sharp corners, that might be introduced during processing, act as stress 

concentrators. The basic idea is an energy balance: the energy consumed in forming 

new surface as a crack propagates against the elastic energy released. The critical 

condition for fracture, then, occurs when the rate at which energy is released is greater 

than the rate at which it is consumed [53,54]. In another words, the stress intensity 

exceeds the critical stress intensity factor (or more commonly termed the fracture 

toughness) and then unstable crack growth occurs [53,54]. For a “Griffith” crack of 

length 2c, the fracture stress is given by the Griffith equation [54]: 

𝜎𝑓 = √2𝐸𝛾/𝜋𝑐 (1.8) 
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where 𝜎𝑓 is the fracture stress, 𝐸 the elastic modulus and 𝛾 the surface energy. 

Hence, the Griffith equation shows that fracture stress depends on the [54]: 

• elastic modulus (a property of the material); 

• surface energy (a property of the material); 

• crack length. 

1.2.3. Weibull analysis 

Since the fracture stress of a ceramic specimen depends on the crack length, it is usually 

analyzed on the basis of the so-called “weakest link” approach. The “weakest link” 

theory is to consider a chain the strength of which is determined by the weakest link 

[60,61]. 

Ceramics usually exhibit large scatter in measured fracture stresses. Hence, a 

probabilistic approach needs to be applied to present this scatter in a quantitative way 

so that these materials can be used safely. The most popular method is to use Weibull 

statistics, which are based on the weakest link approach.  

According to the two-parameter Weibull statistics, the cumulative failure probability 

𝑃(𝜎) of a brittle material subjected to a stress 𝜎 is given by (see ASTM C1239-13) [62]: 

𝑃(𝜎) = 1 − 𝑒𝑥𝑝 [− (
𝜎

𝜎0
)

𝑚

] (1.9) 

where 𝜎0 is a normalization factor known as the characteristic fracture strength or scale 

parameter, which corresponds to a failure probability of 63.21% and is hence a weak 

criterion for assessing the reliability of brittle materials; 𝑚 is the Weibull modulus or 

shape parameter of the distribution, indicating how rapidly the fracture stress falls 

when approaching 𝜎0, and hence also being a measure of the fracture stress diversity. 
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Ceramic materials typically show a volume or surface area dependency of the strength. 

The reason is again related to the preexisting cracks. These cracks can be randomly 

distributed throughout the volume of the sample or in the surface or edges of the 

specimen due to machining effects. With a larger body, the probability of finding a 

larger crack increases. Consequently, the sample becomes weaker. In addition, the 

geometry and the loading condition of the sample will influence the stress distribution 

during loading. The term effective volume (V𝑒𝑓𝑓) (effective area for surface defects that 

can be used equivalently) is used to indicate how “effectively” the body is being 

stressed. For uniaxial tension, V𝑒𝑓𝑓 is equal to the actual volume of the sample. The 

effect of effective volume can be expressed mathematically via the following Equation 

(1.10), where fracture stress values are connected to a certain failure possibility and also 

a specific effectively deformed area or volume [54,61]: 

𝑃(𝜎) = 1 − 𝑒𝑥𝑝 [− (
𝑉𝑒𝑓𝑓

𝑉0
) (

𝜎

𝜎0
)

𝑚

] (1.10) 

In one sample, different kinds of defects might exist; for example, pores and inclusions 

introduced during sintering and surface flaws introduced during grinding. The 

different defect types may lead to different Weibull distributions and different Weibull 

moduli that superimpose and require careful deconvolution of the data, i.e. for a body 

with two different types of volume defects, the respective dual Weibull distribution is 

represented by the equation [54]: 

𝑃(𝜎) = 1 − 𝑒𝑥𝑝 [− (
𝑉𝑒𝑓𝑓,1

𝑉0
) (

𝜎

𝜎1
)

𝑚1

− (
𝑉𝑒𝑓𝑓,2

𝑉0
) (

𝜎

𝜎2
)

𝑚2

] (1.11) 

where for defect type 1, corresponds to effective volume 𝑉eff,1, characteristic fracture 

strength 𝜎1, and Weibull modulus 𝑚1; for defect type 2, corresponds to 𝑉eff,2, 𝜎2, and 𝑚2. 
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Furthermore, proof testing has become one of the standard practices in many 

engineering applications [63–65] in terms of warranting production orientated 

mechanical reliability. The typical reason for employing proof-testing is as follows: 

within a population, there may be specimens which are sufficiently weak, so that the 

function of the material and hence entire component is severely impaired. Proof-testing 

the population and hence the entire batch of components will necessarily remove these 

weak specimens. Furthermore, there is a guaranteed minimum strength and related 

time to failure for the remaining components, which ensures the successful operation of 

the material beyond that value [66]. In proof testing, ceramic components are loaded to 

stresses that exceed those expected in service in order to break the week components 

and thus truncate the lower end of the fracture stress distribution. In this manner, weak 

components are eliminated before they can be placed in service. When the material is 

loaded thereafter in service, the failure process is assumed to result from flaws which 

require stresses or times to failure in excess of the proof-load conditions [67,68]. Some of 

the important applications for proof testing include the various uses of aerospace 

industry [63], electrical porcelain insulators [64], and optical fibers [65]. 

1.2.4. Creep behavior 

Creep occurs when a solid material is subjected to a stress at high temperatures for long 

time. It is a slow and continuous plastic deformation, for ceramic materials, typically 

when the temperature 𝑇 > 0.5𝑇𝑚, where 𝑇𝑚 is the melting point in Kelvin [53]. Sooner 

or later, creep will lead to failure or structural instabilities already under low stress 

exposure, which will render the end of the lifetime of the ceramic components. In 

general, creep behavior is affected by extrinsic and intrinsic parameters, such as stress, 

temperature and grain size. The typical strain behavior associated with creep under 

constant stress over time is illustrated in Figure 1.5(a). Increasing the temperature 
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and/or stress (Figure 1.5b) results in an increase in both the instantaneous strain and the 

steady-state creep rates and a decrease in the time to failure [53]. 

 

Figure 1.5 (a) Typical strain versus time creep curves with three distinct regimes. (b) 

Effect of increasing stress and or temperature on the creep response of the material [53]. 

In general, the creep response of a solid is determined by measuring the strain rate as a 

function of applied stress. This is done, simply by applying a load to the sample at 

elevated temperatures, and measuring its deformation as function of time. There are 

three distinct regimes in a general creep curve [53,54]: 

Regime I: Primary or transient creep. At this stage, the creep rate decreases with time 

from an initially high value. This stage of creep is often represented by an equation of 

the form [53,54]:  

𝜀 = 𝛽𝑇𝑚 (1.12) 

where 𝛽 is a constant, and 𝑚 varies from 0.03 to 1.0 depending on the material, stress, 

and temperature. 
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Regime II: Secondary or steady-state creep. In this regime, the strain rate is constant and 

the deformation may continue for a long time. This is the most important regime. The 

equation for secondary creep is [53,54]:  

𝜀 = 𝐾𝑡 (1.13) 

where 𝐾 is a constant that depends on stress and temperature. 

Regime III: Tertiary creep. The strain rate accelerates rapidly just prior to specimen 

failure. Formation of cracks or nucleation and growth of cavities is observed in 

microstructure. In ceramics, the tertiary creep stage is often very short or entirely 

missing [61].  

Furthermore, in ceramics, many mechanisms, some of which are not sufficiently well 

understood, have been proposed [53,61]. The problem is further complicated by the fact 

that different mechanisms may be operative over different temperature and stress 

regimes. From a practical point of view, secondary creep is the most important stage 

and is the major concern for lifetime prediction. The mechanisms for this stage are 

discussed in the next sections.  

In general, creep rate of the secondary creep regime is a convoluted function of stress,  

temperature, grain size and shape, microstructure, volume fraction and viscosity of 

glassy phases at the grain boundaries, dislocation mobility, etc. [53]. This complex 

dependence can often be represented mathematically in a general form as [69]: 

𝜀̇ = 𝐴 (
1

𝑑
)

𝑚

𝑃𝑂2

𝑝𝜎𝑛𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
) (1.14) 

where 𝐴  represents an empirical constant, 𝑑  grain size, 𝑚  grain size exponent, 𝑃𝑂2
 

oxygen partial pressure, 𝑝  oxygen pressure exponent, 𝜎  applied stress, 𝜎  stress 

exponent, 𝐸𝑎 apparent activation energy, 𝑅 gas constant and 𝑇 the absolute temperature. 
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There are mainly three categories of creep mechanism for ceramic materials: diffusion 

(Nabarro-Herring and Coble), viscous, or dislocation creep. 

 

Figure 1.6 Nabarro-Herring creep [54]. 

Diffusion-controlled creep is due to atomic diffusion. Considering a single crystal as 

shown in Figure 1.6, vacancies would move from the faces under tension to those under 

compression and the atoms move in the contrary direction, resulting in a permanent 

shape change. This is the so-called Nabarro-Herring creep [70]; the diffusion path is 

through bulk material. It usually occurs at higher temperatures where bulk diffusion is 

faster than grain boundary diffusion [54]. However, at lower temperatures, or in the 

case of solids with very fine grains, grain boundary diffusion may be the faster path, 

which is known as Coble creep [71]. For both creep mechanisms, it is assumed that the 

grain boundaries are perfect sources or sinks for vacancies. 

Viscous creep (also called “grain boundary sliding”) is controlled by the viscous flow of 

intergranular glassy phases formed during fabrication which are present in many 

structural ceramics. If these phases softens at high temperature, then we get creep by 
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grain boundary sliding. The creep rate is controlled by the viscosity of the glassy phase, 

which is a function of temperature [53,54]. 

Dislocation creep occurs by dislocation motion (i.e., glide and climb). This type of creep 

is typical for metals [53] and usually not relevant for ceramics.  

All the creep mechanisms can be described by the general Arrhenius equation form, but 

the various creep mechanisms give different m, p and n values and some of these are 

summarized in Table 1.1. From the analysis of creep data, values of m and n might be 

obtained and thus, in principle, one can identify the predominant mechanism. 

Table 1.1 Creep equation exponents and diffusion paths for various creep mechanisms 

[54,61]. 

Creep mechanism m n Diffusion path 

Dislocation creep mechanism    

Dislocation glide climb, climb controlled 0 4-5 Lattice 

Dislocation glide climb, glide controlled 0 3 Lattice 

Dissolution of dislocation loops 0 4 Lattice 

Dislocation climb without glide 0 3 Lattice 

Dislocation climb by pipe diffusion 0 5 Dislocation core 

Diffusional creep mechanisms    

Vacancy flow through grains 2 1 Lattice 

Vacancy flow along grain boundaries 3 1 Grain boundary 

Interface reaction control 1 2 
Lattice/grain 

boundary 

Grain boundary sliding mechanisms    

Sliding with liquid 3 1 Liquid 

Sliding without liquid (diffusion control) 2-3 1 
Lattice/grain 

boundary 
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For a given ceramic, a specific creep mechanism may dominate at certain temperatures 

and stresses. This can be represented on a creep deformation map, as illustrated in 

Figure 1.7. Such a map should be based on a large amount of experimental data. The 

creep behavior of a material can be analyzed in terms of experimental results with 

multi-linear fitting routines in order to obtain the creep parameters as illustrated in 

Figure 1.8. 

 

Figure 1.7 Schematic of a creep deformation map for a polycrystalline material (after 

Frost and Ashby, 1982)[61]. 

 

Figure 1.8 Various experimental approaches to determine mechanisms involved in 

secondary creep.  
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1.3. Porous ceramics 

1.3.1.  General description of a porous solid 

Most materials, both naturally and artificially, are to some extent porous, their physical 

properties such as density, thermal conductivity and strength are all dependent on the 

different porous structures. A scheme of the dependency of different physical 

properties on porosity is shown in Figure 1.9. In certain applications such as filters, 

insulators or catalytic supports, pores enable functionality and are introduced 

deliberately. The introduction of porosity is therefore an extremely useful and powerful 

tool for greatly extending the range of properties offered by a ceramic component [72]. 

In an asymmetric membrane OTM design, the porous support supposes not only to 

boost the gas transport but also to enhance the mechanical stability of the entire 

structure of the thin membrane layer, which therefore renders the mechanical 

properties of the porous substrate critical for the reliability of the whole component [31–

33].  

 

Figure 1.9 Dependency of physical properties on the amount of porosity [72]. 
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Porosity of a solid is an overall characteristic, which is defined as the fraction of pore 

volume 𝑉𝑝𝑜𝑟𝑒 to the total volume 𝑉𝑡𝑜𝑡𝑎𝑙 [73]. If the volume of solid material is denoted by 

𝑉𝑠𝑜𝑙𝑖𝑑, and the pore volume as 𝑉𝑝𝑜𝑟𝑒 = 𝑉𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑠𝑜𝑙𝑖𝑑, the porosity can be defined as: 

𝑃 =
𝑉𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑠𝑜𝑙𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
=

𝑉𝑝𝑜𝑟𝑒

𝑉𝑡𝑜𝑡𝑎𝑙
 (1.15) 

The porosity can be expressed either as a fraction or as a percentage. Different 

classifications of pores are quoted by different standards [74], for example the 

accessibility of the pores to an external fluid, the shape of the pores, or the pore size. 

Figure 1.10 shows typical kinds of pore types in a porous solid. With respect to the 

accessibility to an external fluid, the pores, which are absolutely isolated from other 

pores, as in region (a), are described as closed pores. On the other hand, the continual 

porous network connected to the external surface of the analyzed body, like (b) (c) (d) (e) 

and (f), is referred to as open pores. The pore volume used in Equation (1.15) can be 

either the volume of the open pores, which leads to the open porosity, or that of the 

strictly closed pores, which leads to the closed porosity, or that of both types of pores 

together, then leading to the total porosity. 

According to their different shapes, pores can be cylindrical (like (c) and (f)), ink-bottle 

shaped (b), funnel shaped (d) or slit-shaped. Besides, the roughness of the external 

surface, like the area around (g), should be distinguished from porosity. A simple way 

to distinct it is that the pore depth is larger than its width. 
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Figure 1.10 Schematic cross-section of a porous solid [74]. 

Pore size generally refers to pore width, which is the distance between two opposite 

walls of the pore, for example, the width of a slit-shaped pore and the diameter of a 

cylindrical pore. The pore classification according to pore size is recommended by 

IUPAC, which is defined as following [74]: 

• Macropores: with width larger than 50 nm. 

• Mesopores: with widths between 2 and 50 nm. 

• Micropores: with widths smaller than 2 nm. 
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Figure 1.11 Measurement ranges of important characterizing methods of pores [73]. 

The complexity and variety of porous material has led to the application of many 

experimental techniques for their characterization. Large effort has been expended in 

the development and refinement of different porosity measurement methods. The 

principal techniques utilized for measuring porosity include image analysis method, 

fluid saturation method, mercury intrusion porosimetry, helium pycnometry and 

radiation scattering method [73]. Different methods rely on completely different 

physical principles, which leads to different advantages and limitations in application. 

Figure 1.11 gives an overview of commonly used methods and their range of validity 

with respect to different pore sizes. 

Therefore, the results obtained by different methods cannot be directly compared to 

each other. Some methods have only access to open pores (i.e. methods using a fluid), 

while some others may have access to closed pores (i.e. methods using a radiation). 



Chapter 1 Literature Review 

 

 28 

Even when a method is used, the obtained porosity value also depends on the 

experimental conditions, for instance, the size of the molecular probe (fluid 

displacement, adsorption) or the magnification (image analysis). Hence, for a record 

value of porosity, it represents not only a physical property of the material, but also the 

method used for the determination. Furthermore, comparisons and correlations 

between different methods helps to characterize the porous structure [75]. 

1.3.2.  Porous structure and mechanical properties 

Materials with a porous structure are common in nature. The most important parameter 

to describe a porous structure is its overall porosity. Moreover, there is the matter of the 

character of the porosity, namely, morphology. Some natural porous materials, such as 

wood and cork, have prismatic and unidirectional honeycomb-like cells, while others, 

such as trabecular bone and sponges have randomly oriented polyhedral cells [76,77]. In 

these cases, their properties are strongly linked to their microstructure (optimized 

during thousands of years) and the material. 

Some properties of a material, such as lattice parameter and thermal expansion 

coefficient, have no dependency on porosity. These properties depend only on atomic 

scale phenomena and are not affected by the long range interference of the pores [78]. 

Some properties dependent only on the overall porosity, but not the character of 

porosity, such as density and heat capacity. Such properties can be characterized using 

a rule of mixtures for the pore volume (P) and the solid phase (1-P) [78]: 

𝑋 = 𝑋𝑠(1 − 𝑃) + 𝑋𝑝𝑃 (1.16) 

where X is the property of the porous material, Xs the same property of the referred to 

the solid, and Xp the property of the pore phase (usually zero, but there are some 

exceptions like the refractive index or the dielectric constant). At last, but not the least, 
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the largest, most complex and important group of properties dependent on both the 

overall porosity and the character of porosity. Properties like mechanical properties, 

electrical and thermal conductivity and permeability, etc. require a more exhaustive 

description of the structure to fully characterize the material [79]. In these cases, 

different structural parameters need to be considered to describe the porous structure. 

Some of the most important structural parameters are [80]: 

• Cell size and its distribution 

• Strut thickness and its distribution 

• Strut shape and morphology (i.e. dense or hollow struts) 

• Cell window opening 

• Degree of anisotropy (of porosity, pore size, etc.) 

• Surface to volume ratio 

Mechanical properties of porous ceramics are very important, not only with respect to a 

structural function, but also for other cases where the primary function is non-

mechanical. Also in such non-mechanical applications, stresses can be induced into the 

materials and must be survived for the component to continue serving its desired non-

mechanical functions. 

Mechanical property - porosity dependencies have been characterized mainly 

experimentally in the last decades. First attempts to link the mechanical properties with 

porosity were done by Duckworth via fittings of different materials strengths from the 

work of Ryshkewitch on porosity [81]: 

𝜎 = 𝜎0𝑒𝑥𝑝 (−𝑏𝑃) (1.17) 

where 𝜎 is the effective material strength, 𝜎0 the strength of the solid material without 

porosity, 𝑃 the porosity, 𝑏 can be derived as the slope of ln 𝜎 vs. 𝑃. This relationship is 
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not valid for porosity higher than 0.5. The values of the exponent b was specified by 

Knudsen [82]: b = 6 for cubic packing of grains, b = 9 for rhombohedral. The same 

equation was applied to elastic modulus by Spriggs [83] to fit the available data for 

materials with low to moderate porosity (P = 0.11 ~ 37.0 %) and a good agreement was 

obtained between experimental results and exponential fit. Rice modified and extended 

the application of the equation to higher porosities [84]: 

𝐸 = 𝐸0(1 − 𝑒𝑥𝑝 (−𝑏(1 − 𝑃))) (1.18) 

A further extension with second-order term was proposed by Wang [85] to improve the 

accuracy of the calculated effective elastic modulus in the porosity range from 0 to 0.38, 

yielding:  

𝐸 = 𝐸0𝑒𝑥𝑝 (−(𝑏𝑃 + 𝑐𝑃2)) (1.19) 

Rice summarized and discussed the Minimum Solid Area (MSA) concept based on a 

range of idealized pore structures by selecting and combining a series of existing 

models [79]. The minimum solid area model assumes that the idealized porous 

structure can be obtained by stackings of uniform solid spheres or pores (Figure 1.12a) 

in certain patterns. In case one, when the stacking element is solid particles, for a body 

to be a solid, it must have sphere-to-sphere contact. The limit is point contact between 

particles. The porosity of these models is ~< 50 %. In case two, when the stacking 

element is pores, the pores can vary from much smaller to much larger dimensions than 

the pores in case one. The minimum solid areas for stacked particles are the bond areas 

between them (Figure 1.12b); for stacked pores are the minimal web structure cross-

section area between pores (Figure 1.12c). Rice states that the minimum areas of the 

solid cross-sections between pores will dominate the transmission of stress (i.e. strain, 

fracture toughness or strength)  and the conductive flux (electrical conductivity, thermal 
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conductivity, permeability, etc.) normal to the plane of the slab [79]. Therefore, the 

change of MSA will directly lead to the change of the related properties of interest. 

 

Figure 1.12 Example of idealized pore architecture with Minimum Solid Area modeling. 
(a) Idealized stacking of uniform solid spheres or pores in cubic array. (b) and (c) cross-
sections of solid spheres or pores, respectively. Shadowed parts are regions of pores. 
Horizontal dashed lines indicate repeat cell structure and minimum sold areas (MSA) 
are designated [79]. 

From a certain model, a complete evaluation of the MSA values and the corresponding 

range of porosity can be done by incrementally changing the size of the pore or 

spherical particle. The plot of the MSA values (and hence the property of interest) over 

the corresponding porosity can be obtained as shown in Figure 1.13. At the initial part 

of the plots, it is a nearly linear decrease of the minimum solid area (and hence the 

property value of interest) on a semi-log plot versus porosity. And after a critical 

porosity value, the property of interest starts to decrease very rapidly to zero.  The first 

part of the curves with the semi-log plots also explained the exponential forms of the 

above empirical equations (Equation (1.17)). 
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Figure 1.13 The relationship of ratios of calculated minimum bond area per cell to the 
cell cross-section and corresponding porosity for different solid sphere stacking 
configurations [79]. 

 

Figure 1.14 Idealized stackings in an open cell foam. (a) Stacking of open cells in 
orthorhombic array [79]. (b) The 3-dimensional structure of an open unit cell [86]. 

Another type of model based on the minimum solid area concept is the idealization of 

the microstructure of a porous material to a representative unit cell composed by an 
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arrangement of struts, as shown in Figure 1.14. In this model, Gibson and Ashby [77,86–

89] assumed the mechanical properties (strength, elasticity, fracture toughness, creep 

rate, etc.) are determined by the properties of the material and dimensions of the struts. 

Parameters for calculation include the shape of the polyhedral unit cells (rectangular 

prism, hexagonal prism, etc.), the stacking arrays of the unit cells (cubic, orthorhombic, 

etc.) and modes of fracture (brittle crushing, plastic yielding, and elastic buckling). With 

different fracture modes, this approach can be applied to materials of different nature 

i.e. polymers, metals, and ceramics [77,86,88,89]. 

Analytical models have also been proposed to describe the porosity effect on steady-

state creep derived on the basis of the creep rates of dense material and idealizations of 

the porous microstructure. For example, the stacking struts model of Gibson and Ashby 

[77,86–89] assumes that the deformation is solely controlled by the bending of the cell 

struts. Similarly the  stacking struts model of Hodge and Dunand [90] assumes that the 

deformation is controlled by the strut compression parallel to the applied stress. 

Another approach is based on the nonlinear homogenization theory of Castañeda [91]. 

Here, a porous material is considered as a composite with a solid phase and an “empty” 

phase. Both approaches described briefly above predict that the stress exponent of the 

porous body should be identical to that of the dense materials [92,93]. 

1.4. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) 

The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) has been mostly developed for the use as a 

cathode material in solid oxide fuel cells (SOFCs) and proposed for OTM application, 

since it exhibits a high oxygen permeation at elevated temperatures and in addition, 

possesses an excellent stability under application temperature and atmospheres [19,94–

97]. Under application relevant conditions, an OTM is operated at high temperatures (~ 
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850 °C) and is exposed to high pressure differences across both sides of the membrane. 

Under these conditions, the OTM must maintain its structural and geometrical stability 

over an operation time of several years. Concentrating on dense and selected tape-cast 

materials, mechanical properties have been studied systematically to estimate long term 

reliability under application relevant loads [98–102]. 

The La1−xSrxCo1−yFeyO3−δ perovskites have a rhombohedral symmetry at low temperature, 

and transform at higher temperature to a cubic symmetry by a second order phase 

transition. The transition temperature depends on the amount of doping [103,104]. The 

transition temperature of LSCF is ∼750 °C in air. Along with this transition, a significant 

increase of the mechanical characteristics was reported [45,98,100,103], for example the 

apparent Young's modulus increases by ∼50% [100,103]. 

A non-linear deformation behavior as well as a hysteresis in stress–strain curves has 

been observed especially at low temperatures due to the ferro-elasticity behavior of the 

rhombohedral phase [98,105]. A typical non-linear stress–strain curve is schematically 

illustrated in Figure 1.15, which can experimentally be observed using an axial 

mechanical load [98]. At the beginning of the loading, the displacement increases 

almost linearly with stress. Above a critical stress σc, the strain should show a 

progressive increase with applied stress, a region in which some ferro-elastic domains 

are switched by the applied stress. After most possible (or achievable) domains are 

switched, the displacement will increase linearly with the stress whilst some possible 

remaining domains switch. At the beginning of unloading, the displacement decreases 

linearly with the stress due to elastic recovery deformation and then non-linearly due to 

domain back-switching. After removing the stress, a non-recoverable remnant strain 

might be observed. The stress–strain curve of the sequential cycle generally should 

show a hysteresis; however, there will be no hysteresis if the applied maximum stress is 

high enough to switch all domains completely [98]. 
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Since there are two equivalent directions of the rhombohedral structure, a spontaneous 

reorientation of domains can occur under mechanical stress [106]. Ferro-elastic domain 

switching may increase the fracture toughness of materials [107], and cause stress 

relaxation in zones of higher stress. Hence, ferro-elasticity is an important non-linear 

deformation mechanism that needs attention to understand the mechanical behavior of 

LSCF perovskite. In fact, LSCF ferro-elastic domain switching has even been observed 

in-situ under compressive load application [101]. 

 

Figure 1.15 Typical stress–strain curve of ferro-elastic material. The symbols σc, E, and ε 

represent critical stress, apparent Young’s modulus, and strain, respectively [98]. 

Due to the nonlinear behavior associated with the existence of the LSCF rhombohedral 

phase, elastic parameters, such as Young’s, shear and bulk moduli and Poisson’s ratio, 

cannot be simply evaluated from stress–strain curves of tensile or compressive tests 

[108]. Rather than having constant values, they will vary according to the thermo-

mechanical loading path history [108]. In a recent work [108], the apparent Young’s 

modulus of dense LSCF was evaluated from the slopes of different parts of the stress–

strain curves, namely, the initial and the last parts of the loading curve and beginning 
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part of the unloading curve. In fact, the unloading Young’s modulus, which appears to 

be mainly related to the elastic response without significant energy consumed by 

domain reorientation, was generally higher than the loading ones.  

A summary of elastic moduli of selected LSCF material variants with different porosity 

measured with different methods is given in Table 1.2. In general, elastic modulus 

decreases with increasing porosity and with increasing temperature below ~700 °C. A 

sudden increase of the elastic modulus occurs above ~700 °C due to the phase transition 

of LSCF perovskite from rhombohedral phase to cubic phase. The temperature 

dependency of elastic modulus measured by impulse excitation method is shown in 

Figure 1.16, as well as the internal friction, which is a measure of the damping of the 

resonance frequency. Overall elastic moduli measured with different test methods show 

significant differences especially at low porosity (below 10%). For all the measurements 

with porosity lower than 10%, nanoindentation method yielded the highest moduli 

compared to other methods. 

Table 1.2 Reviewed elastic modulus data of selected LSCF materials. 

Composition 
E 

[GPa] 
Porosity T [°C] Test method Ref. 

La0.8Sr0.2Co0.2Fe0.8O3 161 0.041 

RT 
Resonance 

(IET) 

Chou et al. 

[109] 

La0.6Sr0.4Co0.2Fe0.8O3 152 0.046 

La0.4Sr0.6Co0.2Fe0.8O3 167 0.035 

La0.2Sr0.8Co0.2Fe0.8O3 188 0.051 

La0.58Sr0.4Co0.2Fe0.8O3−δ 

78 

0.06 

RT 
Ring-on-ring 

bending 

Huang et al. 

[100] 
62 200 

63 400 



1.4 La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) 

 

 37 

67 600 

70 700 

115 800 

La0.6Sr0.4Co0.2Fe0.8O3−δ 

164 

0.02 

23 

Resonance 

(IET) 

Kimura et al. 

[110] 

158 100 

149 200 

130 300 

115 400 

107 450 

102 500 

100 550 

101 600 

104 650 

105 700 

130 750 

147 800 

157 850 

165 900 

La0.6Sr0.4Co0.2Fe0.8O3−δ 

60 
0.06 

22 

Ring-on-ring 

bending 

Lipińska-

Chwałek et 

al. [111] 

123 800 

13 
0.46 

22 

20 800 

La0.6Sr0.4Co0.2Fe0.8O3−δ 

147 0.052 

RT 

Resonance 

(IET) 
Chen et al. 

[112] 
174 0.052 

Nano-

indentation 
122 0.152 Chen et al. 

[113] 90 0.241 
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48 0.398 

32 0.469 

La0.58Sr0.4Co0.2Fe0.8O3−δ 45 ± 20 0.041 
RT 

Ring-on-ring 

bending 

Pećanac et al. 

[32] La0.6Sr0.4Co0.2Fe0.8O3−δ 12 ± 4 0.46 

La0.58Sr0.4Co0.2Fe0.8O3−δ 

121 

0.06 

20 

Compressive 

test 

Araki et al. 

[98] 

92 200 

88 300 

101 600 

105 800 

 

 

Figure 1.16 Young’s modulus and internal friction of La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) as a 

function of temperature [45]. 

Considering the working conditions of membrane materials, elevated temperatures and 

high pressure, especially the creep behavior needs to be investigated, since it is one of 
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the key parameters to define their lifetime limits. Creep rates of selected LSCF materials 

for membrane application are compiled in Table 1.3 and Figure 1.17 with the 

corresponding applied stresses and temperatures. 

Table 1.3 Review of creep rates of dense LSCF [102]. 

Composition Porosity 
Grain 

size [μm] 

Stress 

[MPa] 
T [°C] 

Creep rate 

[s-1] 
Ref 

La0.58Sr0.4Co0.2Fe0.8O3−δ 0.034 0.6 ± 0.2 

20 

750 1.9 × 10-10 

Huang et al. 

[102] 

800 2.2 × 10-10 

850 9.3 × 10-10 

900 6.3 × 10-9 

950 4.2 × 10-8 

30 

750 4.2 × 10-10 

800 5.3 × 10-10 

850 2.2 × 10-9 

900 1.5 × 10-8 

50 

750 8.9 × 10-10 

800 1.8 × 10-9 

850 6.3 × 10-9 

900 5.3 × 10-8 
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(a) (b) 

Figure 1.17 Steady-state creep rate of LSCF under compressive stress in air: (a) creep 

rate as a function of 1/T, (b) creep rate as a function of the applied stress. [102] 

 

Huang et al. [102] reported high temperature (750 to 950 °C) creep studies in air and 

vacuum (pO2 = 4mbar) on A-site deficient La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF58) revealed an 

increase of the creep rate with decreasing oxygen partial pressure [102]. The creep rate 

in vacuum was about one order of magnitude higher compared to the creep rate in air 

although the same cubic structure exists. Furthermore, a transition in the apparent 

activation energy between 800 and 850 °C was reported for both air and vacuum. The 

apparent activation energy was ~ 250 kJ/mol in the temperature range 700 to 800 °C 

under vacuum and ~ 480 kJ/mol for the temperature range of 850 to 950 °C for both 

atmospheres. The stress exponent of the creep law was in the range 1.9 to 2.5 for all 

temperatures, which apparently excluded a transition of creep mechanism. 

In order to evaluate the long-term performance of the membrane structure, a maximum 

tolerable creep deformation of 1 % per year (3.2 × 10-10 s-1) in a compressive mode is 

suggested to warrant reliable long term operation [114–116]. Furthermore, this stress 

values are selected after calculations by Schulz et al. [52], who obtained 30 MPa for the 

loading state that can appear during membrane operation.  
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Figure 1.18 Comparison of steady-state creep rates of various membrane and substrate 

materials investigated under compressive stress of 30 MPa in air [117].  

 
Figure 1.19 Steady-state creep rate of BSCF [115] and BSCF-Z100·X (cooling runs) [118]. 
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Figure 1.18 illustrates a comparison of creep rates of different materials from literature 

[117]. The dashed line indicates the 1% creep strain per year limit. From the creep data, 

cerium oxides show the lowest creep rates and FeCrAlY alloy showed stronger creep 

deformations than the ceramics (in the case of a porous substrate even higher creep 

rates can be expected). The tests performed at 700 °C, 800 °C and 900 °C resulted in 

significantly higher creep rates than the tolerable 1% per year. The creep rates of 

LSCF38 and LSCF58 are all higher than the other ceramic membrane materials and 

higher than the 1% per year criteria, which can be critical for application. Therefore, a 

reduction of the application stresses or operation temperatures appears to be necessary. 

Figure 1.19 shows the creep rate of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) [115] and 

Ba0.5Sr0.5(Co0.8Fe0.2)1-xZrxO3−δ (BSCFZ) [118] upon cooling from literature. In fact, 

compared to the ceramic materials results in Figure 1.18, BSCF and BSCFZ have even 

higher creep rates when the temperature is higher than 850°C. 

1.5. 3 mol% Y2O3 stabilized ZrO2 (3YSZ) 

 Yttria-stabilized zirconia (YSZ) is widely used and studied due to its high ionic 

conductivity at elevated temperatures [119], high chemical inertness and its hardness 

[120]. Its applications include as electrolytes in solid oxide fuel cells [121], in chemical 

sensors [122,123], in thermal barriers coating [124,125], and to create optical devices like 

switchable mirrors or filters [126].  

Pure zirconia (ZrO2) has three different polymorphs, i.e., monoclinic (m), tetragonal (t) 

and cubic (c) phases, as illustrated in Figure 1.20. These phases can be obtained 

depending on temperature and compositional ranges under equilibrium conditions 

[127]. By doping zirconium oxide, ZrO2, with yttrium oxide, Y2O3, a tetravalent ion (Zr4+) 

is substituted by a trivalent one (Y3+). Due to charge neutralization, oxygen vacancies 
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are formed, increasing the ionic conductivity as well as stabilizing the desired 

tetragonal or cubic structures [128].  

 

Figure 1.20 Schematic representation of the three ZrO2 polymorphs: (a) cubic, (b) 

tetragonal, and (c) monoclinic. [129] 

Overall, 8 mol% yttria stabilized zirconia (8YSZ) with cubic structure has the highest 

ionic conductivity and good chemical stability over wide temperature and oxygen 

partial pressure range [130], while the highest fracture toughness of ZrO2 is achieved by 

doping with 3 mol% yttria [131], leading to its use as anode substrate material in solid 

oxide fuel cells [132]. According to ZrO2–Y2O3 phase diagram [133], at concentration of 

3–7 mol% Y2O3, both cubic and tetragonal phases can be retained in the microstructure. 

The microstructure of these ceramics consists of a cubic phase matrix in which 

tetragonal phase is dispersed, which is termed as partially stabilized zirconia (PSZ) 

[134]. In a crack-growth associated stress state, a transformation of the tetragonal phase 

to monoclinic phase occurs, which is the basics of the so-called  transformation 

toughening [129,131,135].  

In particular, 3 mol% yttria stabilized zirconia (3YSZ) exhibits an extremely fine grained 

microstructure, which yields excellent mechanical properties including high toughness, 

and strength and a composition containing only the tetragonal phase at room 

temperature, therefore, often being called tetragonal zirconia polycrystal (TZP). 
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Variations of elastic moduli (E*) and shear moduli (G*) of 3YSZ and 8YSZ with porosity 

as determined by impulse excitation technique (IET) are shown in Figure 1.21 [136]. The 

“zero porosity” elastic moduli from these experiments were 217 GPa for 3YSZ and 220 

GPa for 8YSZ [136]. 

 

(a) (b) 

Figure 1.21 Variation of elastic moduli (E*) and shear moduli (G*) with porosity of (a) 

3YSZ and (b) 8YSZ [136]. 

 

  
(a) (b) 

Figure 1.22 Strength of ZrO2 ceramics as measured by symmetrical biaxial flexure test: 

(a) strength versus tetragonal phase content (density 5.6 ± 0.1 g·cm-3), (b) strength and 
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grain size as a function of density (tetragonal content ≥ 70%). [135] 

 

The partially stabilized zirconia (PSZ) ceramics often show high strengths and in fact 

generally, high tetragonal phase containing ceramics possess a high strength, whereas 

high monoclinic phase containing ceramics exhibit a lower strength, as illustrated in 

Figure 1.22(a) [135]. When the zirconia specimens contain a monoclinic phase of ~ 90%, 

the strength is only about 100 MPa. When the tetragonal content is increased to ~ 30%, 

the strength increases rapidly and a final high strength about 700 MPa is maintained for 

tetragonal contents between 30 and 100%. Besides, the strength increases with 

increasing density as often observed for ceramic materials, see Figure 1.22(b) [135]. 

 

Figure 1.23 Compressive strength dependence on porosity in freeze-cast 3YSZ samples 

frozen at a rate of 2 K/min (A), 25 K/min (C), and with a honeycomb morphology (B). 

Isotropic samples by sacrificial method are also represented (D). The experimental 

points of the other conditions are represented in grey for comparison. [137] 
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In the work of Seuba et al. [137], the fracture behavior of undirectional porous freeze-

cast 3YSZ ceramics was investigated with uniaxial compresive test. Their compressive 

strength dependence on porosity in different freeze-cast samples is shown in Figure 

1.23. Samples with porosity of 45% revealed varying compressive strength between 50 – 

300 MPa. In another work of Seuba et al. [138], they suggested that wall thickness is the 

key morphological influence parameter on mechanical reliability and strength of 

macroporous materials. Both Weibull modulus and strength tended to increase for 

smaller wall thicknesses and this was attributed to the reduced probability of finding a 

catastrophic defect in thinner walls. They also suggested that strength in a freeze-cast 

3YSZ is mainly determined by the total porosity and the effect of morphological 

parameters like wall thickness is relatively weak. 

The creep behavior of 3YSZ has been widely studied due to the fact that it was the first 

true polycrystalline ceramic shown to be superplastic with an elongation of ˃ 100% 

[139–143]. A comparison of the creep strain rates measured at 1450°C from different 

publications is given in Figure 1.24a. The high temperature creep was reported to be 

related to a diffusion controlled behavior [140,141], with a change in the stress exponent 

from n ~ 2 at high stresses to n ~ 3 at low stresses [140,141,144] (Figure 1.24b) and the 

activation energy being essentially constant at ~ 550 kJ·mol-1 [141,145,146]. But in these 

studies, the test temperature was much higher than the working temperature of an 

OTM component. 

In the frame of solid oxide fuel cells (SOFC) technology, the anode support usually 

consists of either nickel and 8 mol% yttria stabilized zirconia (Ni-8YSZ) or nickel and 3 

mol% yttria stabilized zirconia (Ni-3YSZ). The creep behavior of such porous Ni-YSZ 

composites has been intensively studied [93,147,148] and a similar conclusion has been 

drawn based on the studies of Ni-3YSZ and Ni-8YSZ, which is that the overall creep 

behavior of the composites is primarily controlled by the ceramic matrix phase [147,148]. 
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In a SOFC component, the material is under load at the similar working temperature (~ 

800°C) as in an OTM module. 

  

(a) (b) 

Figure 1.24 Creep rates of 3YSZ at 1450°C: (a) strain rate vs stress for low- and high-

purity 3YSZ tested [149], (b) variation in strain rate with stress [141,142]. 

 

Morales-Rodriguez et al. [147] reported the compressive creep properties of Ni-3YSZ in 

temperatures ranging from 950°C to 1250°C in reduced atmosphere, as shown in Figure 

1.25. At 1200 - 1250°C under stresses from 3 to 14 MPa, average values of stress 

exponent n = 4.0 ± 0.4 and activation energy Q = 610 ± 20 kJ/mol were obtained for the 

materials with 20% Ni cermet, while average values of n = 3.9 ± 0.1 and Q= 640 ± 50 

kJ/mol were obtained for the materials with 40 % Ni. Higher Ni amount resulted in 

higher creep rates. Both creep parameters decreased with increasing stress and/or 

temperature, similar as reported for high-purity monolithic YSZ [147].  
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(a) 

 

(b) 

Figure 1.25 Strain rate vs strain curve for Ni-3YSZ with 40% Ni: (a) deformed between 

1200 and 1250°C under low stresses, (b) deformed between 950 and 1150°C under high 

stresses. [147]. 
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Based on the fact that the creep behavior of the Ni-YSZ composites is primarily 

controlled by the ceramic matrix phase [147,148], Kwok et al. [93] applied three-

dimensional (3D) microstructural simulation on porous Ni-YSZ materials. 3D image 

data of the Ni–3YSZ and Ni–8YSZ samples was acquired by FIB serial sectioning, as 

shown in Figure 1.26. The creep responses by numerical homogenization of Ni and 

dense and porous YSZ are given in Figure 1.27. It shows that the creep rate of the Ni is 

about 9 and 7 orders of magnitude faster than that of 3YSZ and 8YSZ, respectively. The 

creep rates of porous YSZ differ from that of a theoretically dense material, as expected. 

The similar strain rates of porous Ni-8YSZ and porous 8YSZ indicated that the YSZ 

phase is essentially carrying most of the applied load. 

 

 

Figure 1.26 Finite element mesh of reconstructed microstructures. The Ni and YSZ 

phases are colored white and grey respectively [93]. 
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Figure 1.27 Creep rate of Ni, 3YSZ, and 8YSZ at 800°C for the relevant stress range 

[93,148]. 
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Chapter 2.           

Experimental 

2.1. Materials production 

Within the framework of the present thesis, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) samples with 

different porosity and different porous structures, produced at the IEK-1 

(Forschungszentrum Jülich) as porous substrate material, were tested with respect to 

elastic, fracture and creep behavior with bending and compressive tests. Furthermore, 3 

mol% Y2O3 stabilized ZrO2 (3YSZ), produced by the Univerity of Valencia, was also 

tested as porous substrate material with different porosity and different porous 

structures to reveal the effect of porosity and porous structure on mechanical behavior 

(elastic modulus and fracture strength from bending test) comparing with the effect on 

gas permeability behavior. Whereas for LSCF the work mainly concentrated on the 
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effect of the porous structures onto the creep behavior, for 3YSZ the work concentrated 

mainly on the correlation of mechanical parameters and functionally important gas 

permeability, hence offering via the combination of both studies a wider view 

considering a broad range of mechanical properties from room temperature to 

application relevant temperatures, the relationship to different pore arrangements and 

the gas permeability which should be optimized to warrant a high permeation of the 

layered membrane arrangement.  

2.1.1. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) samples with different microstructures were produced at 

IEK-1 by different synthesis methods, including dry pressing, tape- and freeze-casting.  

2.1.1.1. LSCF-PS (pressed LSCF samples) 

To obtain a microstructure with round shaped pores, LSCF was blended with 10 and 30 

wt% Spheromers CA15 from (MICROBEADS) with a diameter of 15 µm as pore former. 

Phase pure LSCF powder delivered by Solvay with an average particle size of 2.5 µm 

and a specific surface area of 2 m2 was used. Subsequently the powder was uniaxial dry 

pressed to bars (4x4x30 mm3) using a pressure of 50 MPa and sintered at 1250°C for 5 h. 

Spheromeres leaving ball shaped pores after burn out, providing a closed or open 

porosity, depending on the ratio of pore former to ceramic powder. 

2.1.1.2. LSCF-TCL (tape-cast laminated supports) and -DPD (Sandwich 

samples) 

Supports with membrane were also manufactured by a tape-cast process. Sequential 

tape-casting was employed to manufacture sheets of asymmetric membranes as 
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described by Schafbauer et al. [150]. For this purpose, two slurries were produced. The 

slurry for membrane manufacturing contained no pore former, while the slurry for 

support production contained 30 wt% corn starch in relation to ceramic powder. 

Supports were cast with a doctor blade gap of 1.9 mm. For all samples, phase pure 

LSCF powder delivered by Solvay with an average particle size of 2.5 µm and a specific 

surface area of 2 m2 was used. 

Supported membranes were cast by the two-step sequential tape-cast procedure, 

casting first the thin membrane layer using slurry without pore former and a doctor 

blade gap of 1.9 mm. After drying the corn starch containing slurry was cast on top of 

the membrane foil again using a doctor blade gap of 1.9 mm. 

After air drying, support samples and supported membranes were cut from the green 

tape. To receive a sufficient thickness for the porous material two support foils were 

laminated together. For manufacturing of the membrane sandwich for creep rupture 

tests, supported membranes were laminated support to support with the membrane on 

the outer side. Lamination took place at 80 °C and a pressure of 2000 N/m2. Sintering of 

laminated supports and laminated supported membrane sandwiches was performed at 

1300°C for 5 h. Burn out of corn starch resulted in a well distributed network of pore 

channels with varying pore opening diameter after burn out and sintering [33]. 

Sandwich samples of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) with porous matrix and dense layers 

on both side for creep rupture testing were also produced by the procedure described 

above. A detailed description regarding manufacturing of BSCF sandwiches can be 

found in [151]. 
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2.1.1.3. LSCF-TCR [31] 

Porous specimens were prepared by tape-casting using La0.6Sr0.4Co 0.2Fe0.8O3-δ powder 

(H.C. Starck, Germany). A solvent based slurry with 20 wt% rice starch as pore forming 

agent in relation to the ceramic powder was used for tape-casting. Casting was 

performed by a doctor blade procedure with a casting gap of 700 µm. Details of the 

slurry preparation procedure as well as the ingredients can be found in [11,150]. After 

drying the flexible tape was cut to stripes and rolled to cylinders. After debindering, the 

samples were sintered at 1200 °C for 5 h in air resulting in a winding thickness of ~ 120 

µm (Figure 2.1).  

 

Figure 2.1 Rolled porous LSCF sample [31]. 

2.1.1.4. LSCF-FC (freeze-cast samples) 

Freeze-cast porous LSCF samples were obtained by freezing a ceramic water based 

slurry in liquid nitrogen. For all samples, phase pure LSCF powder delivered by Solvay 

with an average particle size of 2.5 µm and a specific surface area of 2 m2 was used. The 

slurry contained LSCF ceramic powder, binder (2.5 wt% PEG4000S, Clariant) and 

dispersant (2 wt%Dolapix C64, Zschimmer & Schwarz GmbH&Co). To vary the 
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porosity the solvent – ceramic ration was varied using 25 and 30 wt% LSCF powder, 

resulting in a porosity of 43 and 30 % respectively. 

An environmentally friendly water suspension containing the LSCF ceramic powder 

and organic additives as binder (2.5 wt% PEG4000S, Clariant) and dispersant (2 wt% 

Dolapix C64, Zschimmer & Schwarz GmbH&Co) was prepared and mixed in a 

planetary mixer. The slurry was poured into a Teflon mold attached to an aluminum 

base cooled at -50 °C that quickly freezes the solvent, from bottom to top. After 

complete freezing, the sample was placed in a freeze dryer (Martin Christ Epsilon 2-4) 

and ice crystals were sublimated at -22 °C (0.1 mbar) within 24 hours. The sample was 

then pre-sintered at 1200 °C under air during 5 hours, a step used to get a robust porous 

support for membrane layer deposition. Afterwards, the sample was sintered at 1280 °C, 

the final manufacturing temperature for dense membranes, however, a dense 

membrane layer was not applied to the current specimens since it would complicate the 

mechanical analysis of the substrate material. 

2.1.2. 3 mol% Y2O3 doped ZrO2 (3YSZ) 

Pressing / sintering and freeze-cast have been utilized at Universidad Politécnica de 

Valencia, Institute of Chemical Technology (ITQ), Valencia, Spain, as conventional and 

original ceramic shaping methods, respectively, based on 3 mol% Y2O3 doped ZrO2 

(3YSZ) powder. Details on materials preparation and testing are given in the following 

sections. 

Freeze-cast 3YSZ 

Freeze-cast samples were fabricated as follows: The 3 mol% Y2O3 doped ZrO2 (3YSZ) 

powder obtained from Tosoh was ball-milled in acetone during 48 h to ensure 
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homogeneity and a final average particle size of about 2 µm. Porous monoliths were 

elaborated by ice-templating using the freeze-cast technique according to optimized 

samples fabricated in previous works [152,153]. Basically, a slurry containing the 

ceramic powder, water (30-40 wt%) as solvent, a polyacrylate-based dispersing agent (1-

4 wt%), polyethylene glycol (1-4 wt%) (Sigma-Aldrich) and zirconium acetate complex 

(ZRA from Sigma-Aldrich, 24g.L-1) as structuring agent if desired was stirred for 24 h to 

get a good particle distribution. In order to evaluate the influence of the porosity 

percentage over the mechanical properties, samples with different initial ceramic 

powder loading of 57, 60, 63, 66 and 70 wt% have been fabricated. The shaping process 

was as follows: the slurry was poured into a Teflon mold to get a sample of 1 cm height 

and cooled using copper rod cooled by liquid nitrogen. After complete freezing, the 

samples were removed from the mold and ice crystals were sublimated by freeze 

drying at -53°C and reduced pressure during 24 h using a Scanvac commercial freeze-

dryer. The samples were then sintered at 1390°C under air during 6 h. Both heating and 

decreasing ramps were 2 K/min. To ensure that only the steady-state anisotropic 

structure was tested, disc-shape samples were cut out from the middle part of the 

cylinder samples, to exclude the denser top section as well as the isotropic and cellular 

zones [154,155]. The final diameter of the sample was 10 mm and the final thickness of 1 

mm was adjusted by grinding the sample firstly by grinding papers from P#120 to 

P#1000 and then by a final cloth polishing in 5 µm, 2 µm and 1 µm diamond suspension. 

Debris was removed by acetone cleaning followed by ultrasonic cleaning and drying at 

60°C. 

The influence of the presence of a dense top layer over the mechanical properties has 

also been studied. For this, a slurry made of an 8YSZ powder from Tosoh (previously 

ball milled during 24 h in acetone) and a binder (6wt% ethylcellulose in terpineol) in a 
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50:50 weight ratio has been prepared and screen-printed over the porous freeze-cast 

support. A list of samples and associated features is given in Table 2.1. 

Pressing & Sintering 

Pressed and subsequently sintered porous 3YSZ samples were fabricated based on the 

same 3YSZ powder from Tosoh used for the fabrication of freeze-cast samples. A 

mixture of 3YSZ powder and circular PMMA particles (Ø50 = 1.5 µm) pore former agent 

was ball-milled during 24 h to ensure homogeneity and uniaxally pressed into a 20 mm 

diameter mold under 150 kN for 3 min. After unmolding, samples were submitted to 

debinding and sintered in a one-step thermal treatment during 6 h at 1390°C to 

guarantee good mechanical stability. Both heating and decreasing ramps were 20 h. The 

final diameter and thickness were of 16 mm and 2 mm, respectively. Details see Table 

2.1. 

Table 2.1 List of samples and associated features. 

Abbr. Shaping technique 
Powder loading 

[wt%] 

Powder loading 

[vol%] 

FC57 

Freeze-cast 

 

57 18 

FC60 60 20 

FC60z 60 20 

FC63 63 22 

FC66 66 24 

FC70 70 28 

FC+TL 
Freeze-cast                             

+ screen-printing 
57 18 

PS42 
Pressing & 

sintering 
42 11 
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2.2. Mechanical characterization 

2.2.1. Ring-on-ring bending tests 

Ring-on-ring bending tests were performed on an electromechanical test machine 

(Instron 1362). The central displacement of the specimens was measured by a sensor in 

contact with the lower (side in tension load) surface of the sample. The displacement 

was monitored with a ceramic extension rod attached to a linear variable differential 

transformer (Sangamo, LVDT, range ± 1 mm with precision ± 1.25 μm). The load was 

applied with a 1.5 kN load cell (Interface 1210 BLR). A half-sphere was used for the 

loading set-up in order to assure the alignment and eliminate uncertainties and 

scattering in obtained results. For the ring-on-ring test, disc specimens were used. Tests 

were carried out from room temperature up to maximally 1000 °C. The temperature 

was monitored close to the specimen surface with a type K thermocouple. 

The ring-on-ring experimental set-up is illustrated in Figure 2.2. In this test, a disc shape 

sample is loaded between a loading ring and a support ring. The linear bending theory 

has been applied for the determination of fracture stress. 
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Figure 2.2 Experimental set-up of ring-on-ring bending test. 

In general, the elastic modulus is derived from the linear part of the load displacement 

curve (at low loads a non-linearity in the curve might be observed due to the specimen’s 

unevenness) after ASTM C1499-05 [156].  

𝐸 =
3(1 − 𝑣2) ∙ 𝑟1

2 ∙ ∆𝐹

2𝜋 ∙ 𝛥𝑓 ∙ ℎ3
× [(

𝑟2

𝑟1
)

2

− 1 − 𝑙𝑛 (
𝑟2

𝑟1
) +

1

2
(

1 − 𝜈

1 + 𝜈
) × (

𝑟2
2 − 𝑟1

2

𝑟3
2 ) × (

𝑟2

𝑟1
)

2

] (2.1) 

where ∆𝐹 is the force difference and Δ𝑓 the corresponding displacement change of the 

linear part of the load-displacement curve used for calculation, ℎ the specimen thickness, 

𝑟1, 𝑟2 and 𝑟3 are radius of loading ring, supporting ring and specimen, respectively.  

For linear behavior, as it might be expected for brittle fracture, the maximum stress is 

constant over the tensile loaded surface inscribed by the loading ring: 

𝜎𝑓 =
3(1 + 𝜈)𝐹𝑓

2𝜋 ∙ ℎ2
× [𝑙𝑛 (

𝑟2

𝑟1
) + (

1 − 𝜈

1 + 𝜈
) ×

𝑟2
2 − 𝑟1

2

2𝑟3
2 ] (2.2) 

where 𝐹f is the fracture load.  
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Due to the high dispersion of the mechanical results, statistical assessments were 

additionally applied using the two-parameter Weibull distributions as described in 

Section 1.2.3.  

Ring-on-ring bending fracture tests were performed for both LSCF and 3YSZ samples. 

The average dimensions of the samples as well as the tested specimen number of the 

different tested batches are summarized in the following table. Sample dimension need 

to meet the requirement according to DIN 51105:2010-08 [157]. Prior to test, samples 

were grinded and polished in order to achieve flat and parallel surfaces as well as 

homogeneous thickness along the discs also according to DIN 51105:2010-08 [157].  

3YSZ samples produced by freeze-cast and pressing and sintering, as described in 

Section 2.1.2 were all tested at room temperatures. 

Table 2.2 3YSZ samples for ring-on-ring bending test at room temperature. 

 

Number of valid 

specimens 

Production 

method 

Specimen 

Diameter [mm] 

Specimen 

Thickness [mm] 

Porosity 

[%] 

FC57 7 

Freeze-cast 

15.3 ± 0.1 1.4 ± 0.1 65.1 ± 2.5 

FC60 8 15.4 ± 0.1 1.5 ± 0.1 61.8 ± 3.0 

FC63 8 15.4 ± 0.2 1.7 ± 0.3 56.9 ± 2.7 

FC66 6 15.4 ± 0.1 1.7 ± 0.1 50.2 ± 2.2 

FC70 8 15.5 ± 0.1 1.5 ± 0.2 43.5 ± 2.9 

FC60a 15 15.1 ± 0.2 1.0 ± 0.1 61.3 ± 2.7 

FC60b 13 15.1 ± 0.2 1.1 ± 0.1 61.3 ± 2.7 

FC60z 5 16.5 ± 1.2 1.2 ± 0.1 45.7± 3.6 

FC+TL 9 

Freeze-cast                            

+ screen 

printing 

15.2 ± 1.1 1.5 ± 0.1 -- 
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PS42 8 

Pressing 

and 

sintering 

16.1 ± 0.1 2.0 ± 0.1 46.4 ± 2.3 

2.2.2. Three-point bending test 

In case of bar-shaped specimens, three-point bending test are performed with the 

Instron 1362 machine. The testing head is changed, while the auxiliary equipment 

(differential transformer, ceramic extension rod, loading cell, thermocouple) remain the 

same. The experiments were carried out according to the ASTM C1161 standard [158]. 

The experimental set-up of three-point bending test is illustrated in Figure 2.3. The 

corresponding relationships of fracture stress, Young’s modulus and fracture strain are 

listed below. 

𝜎 =
3 ∙ ∆𝐹 ∙ 𝐿

2 ∙ 𝑏 ∙ ℎ2
 (2.3) 

𝐸 =
∆𝐹 ∙ 𝐿3

4 ∙ 𝑏 ∙ ℎ3 ∙ ∆𝑓
 (2.4) 

𝜀 =
𝜎

𝐸
=

6 ∙ ℎ ∙ ∆𝑓

𝐿2
 (2.5) 

Where ∆𝐹 is the force in N and  ∆𝑓 is the deflection in mm of the linear region; 𝐿, 𝑏 and 

ℎ are length, width and height of the tested specimen in mm. The region of maximum 

stress is located in the middle of the tensile-loaded specimen side (central line of a bar 

specimen). 
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(a) (b) 

Figure 2.3 Experimental set-up of three-point bending test. 

 

In order to assess if differences in creep behavior, i.e. the higher creep rates of porous 

substrate materials, can be critical for the structural stability of the dense layer in an 

asymmetric membrane, sandwich samples of BSCF and LSCF with porous matrix and 

dense layers (~20 µm) on both side were tested with three-point bending set-up with 

respect to the creep rupture behavior of the dense layer. The initial tests concentrated on 

BSCF, since due to the higher elevated temperature creep rates [115,118] of this material 

more pronounced effects were expected in shorter experimental times. 

Experimental parameters along with the obtained central displacement as a measure of 

the creep deformation of the entire layered composite are given in Table 2.3. Both 

samples were tested at application relevant temperatures (  ˃750°C), and LSCF even at a 

slightly higher temperature and higher load to enhance creep effects, since in general 

LSCF possesses lower creep rates than BSCF under identical conditions. 
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Table 2.3 Experimental parameters of three-point bending creep rupture tests. 

Materials 
Geometry 

[mm3] 

Distance 

between 

supporting 

rods [mm] 

Temperature 

[°C] 

Time 

[h] 

Load 

[N] 
Note 

BSCF 28.3×6.82×1.55 

20 

875 2 4 

Central 

displacement 

78 µm 

LSCF-1 

~39.8×6.83×1.83 

955 - - 

Broken 

during 

loading 

LSCF-2 955 92 4-8 

Central 

displacement 

164 µm 

LSCF-3 

~950 

- - 

Broken 

during 

loading 

LSCF-4 

90 

8 Thermal 

couple not in 

heating zone 
LSCF-5 0 

LSCF-6 - - - As-received 

 

2.2.3. Compressive tests 

Uniaxial compression tests were performed to evaluate the elastic behaviour and creep 

deformation of the LSCF samples with different porosity and porous structures. Before 

compressive creep testing, the upper and lower ends of the samples were grinded and 

polished to obtain plane-parallel surfaces.  

2.2.3.1. Elastic properties of freeze-cast LSCF 

In this part of the studies, the elastic behavior of porous freeze-cast LSCF perovskite at 

room temperature as characterized by a quasi-static hysteresis compression test in order 
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to get insight into the influence of the ferro-elasticity on the apparent elastic parameters 

of such anisotropic materials. The LSCF powder was provided by Solvay where it was 

synthesized by solid state reaction. The measured average particle size was ca. 7 µm. 

Ice-templated porous LSCF supports were prepared using the freeze-cast technique. 

The sintered porous pellet was cut into one rectangular bar of 5.05×5.05×6.00 mm3 for 

mechanical testing.  

To evaluate the mechanical behavior, uniaxial compression tests were performed using 

a universal material testing machine (AGS-X, Shimadzu, Japan) at the Saitama 

University, Japan, which led to properties more representative of the global behavior 

than frequently used indentation testing [112,113]. Strain gauges (FLA, Tokyo Sokki, 

Japan) and a dynamic strain meter (DC-204R, Tokyo Sokki, Japan) were used, in which 

paired strain gauges were applied for each measurement to eliminate bending strains. 

One pair of strain gauges was glued along the loading direction to measure the 

longitudinal strain ( 𝜀𝑙 ), and a second pair was applied perpendicular to loading 

direction to assess the transverse strain (𝜀𝑡). Compressive stress (𝜎) was applied to the 

specimen at room temperature with a loading rate of 1 N/sec (0.039 MPa/s), followed by 

unloading at the same rate. For this study, a series of quasi-static hysteresis tests were 

performed. Such a quasi-static hysteresis test consist of several successive compressive 

tests: the specimen was loaded until a certain stress level is reached, after which the 

specimen was unloaded. This was repeated several times, while the maximum stress 

level was increased. The loading-unloading cycle was repeated with progressively 

increasing maximum stresses until fracture happened. The general idea was that during 

the loading certain damage processes take place, and it was assumed that during the 

unloading no extra damage growth occurs. The effects of the damage mechanics were 

then visualized by unloading the specimen and determining certain parameters, such as 

Young’s modulus, permanent deformation or Poisson’s ratio. 
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Here, the apparent Young’s modulus 𝐸 was calculated as the slope of the longitudinal 

strain 𝜀𝑙 - stress 𝜎 curves: 

𝐸 =
𝑑𝜎

𝑑𝜀𝑙
 (2.6) 

The apparent Poisson’s ratio 𝜈 was derived from the differential of the strains in the 

transverse 𝜀𝑡 and longitudinal directions 𝜀𝑙 under uniaxial stress: 

𝜈 = −
𝑑𝜀𝑡

𝑑𝜀𝑙
 (2.7) 

The apparent shear modulus 𝐺 and bulk 𝐾 modulus, which relate to the change in size 

and shape, respectively, can be expressed in terms of the apparent Young’s modulus 

and apparent Poisson’s ratio via: 

𝐺 =
𝐸

2(1 + 𝑣)
 (2.8) 

𝐾 =
𝐸

3(1 − 2𝑣)
 (2.9) 

2.2.3.2. Compressive creep 

Aiming at a characterization of potential substrate materials, creep behavior of 

La0.6Sr0.4Co0.2Fe0.8O3-δ samples with different porosity and different porous structures 

was investigated with uniaxial compressive set-up. Uniaxial compressive tests were 

carried out in IEK-2, Forschungszentrum Jülich, using an Instron 1362 

electromechanical testing machine, equipped with a high-temperature furnace. Samples 

were mounted between alumina loading pistons via alumina half-sphere (from top) and 

plate (from bottom), as shown in Figure 2.4. For displacement measurements, a linear 

variable differential transformer (Sangamo, LVDT, range ± 1 mm, precision 1.25 μm) 
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with alumina coupling rods was used. The load was determined with a 10 kN load cell 

(Interface 1210 ACK). The temperature was monitored during the test with a 

thermocouple located near the sample surface. The LVDT was assembled with the 

bottom of the half-sphere in the clamping device by an alumina rod so that the position 

change of the lower traverse relative to the upper specimen fixture was measured 

yielding information of the sample deformation. An annealing step was applied in 

beginning of each experiment for several hours in order to obtain thermal equilibrium 

of materials and to minimize chemical expansion effects as suggested by Rutkowski 

[159]. All tests were performed in the constant stress mode at constant temperature 

steps according to the general heating and loading profile illustrated in Figure 2.5. Also 

before each isothermal step an additional annealing period of 1 h was applied for 

minimizing thermal expansion effects of the testing machine that might affect the 

deformation rate. In some cases, cooling steps were also applied for the determination 

of creep rates. In all cases, each creep measurement was terminated after 24 h of a 

steady-state deformation or until an integral deformation of 100 μm was reached. 
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Figure 2.4 Compressive test set-up. The specimen is mounted between Al2O3 table and 

half sphere. 

 

Figure 2.5 Typical heating and loading profile for compressive creep tests in constant 

load mode. 
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Creep tests were carried out in air under the application of an axial compressive load in 

the temperature range 750 to 1000 °C. For elevated temperature tests, a heating rate of 8 

K/min was used. A compressive preload of 3 N (corresponding for an area of 20 × 10-6 

m2 to a stress of ~ 0.15 MPa) was applied during heating to keep the specimen fixed. To 

reach equilibrium condition at the test temperature, a dwell time of 1 h was chosen. 

Neglecting the area change of the samples by the creep deformation, the initial stress is 

used for the whole process. Stresses of 15 and 30 MPa were applied to determine the 

creep rate. Lower stresses did not yield sufficient deformations to determine accurate 

creep rates, higher stress could not be applied due to the brittleness of the highly porous 

specimens. Furthermore, this stress values are selected after calculations by Schulz et al. 

[52], who obtained 30 MPa for the loading state that can appear during membrane 

operation. Each creep measurement was terminated after 24 h of steady-state 

deformation or until an integral deformation of 100 μm was reached. For details on the 

creep testing procedure and instrumentation, see also [115,116]. 

The initial creep tests were carried out with LSCF-TCR samples, as described in Section 

2.1.1. Two samples were tested but at slightly different temperatures. Sample 1 was 

tested at room temperature (20 °C), 750 °C, 800 °C, 900 °C during heating as well as 

800 °C upon cooling; sample 2 was tested at 800 °C, 850 °C and 950 °C only during 

heating, where the test at 800 °C was carried out to verify the data obtained for the first 

specimen. Before and after the creep test, cross-sections of single small pieces of the 

samples were prepared and analyzed by scanning electron microscopy (SEM, Zeiss 

Supra 50). Porosity and grain size were assessed graphically from micrographs 

(Software AnalySIS). The average grain sizes were quantified from the SEM images, in 

terms of the equivalent circular diameter (ECD) values. 

Later, aiming at a characterization of potential substrate materials, creep behavior of 

La0.6Sr0.4Co 0.2Fe0.8O3-δ samples with different porosity and different porous structures 
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was investigated with uniaxial compressive set-up in succession, mainly in the 

temperature range 800 to 1000°C to avoid the low deformation rate below 800°C.  

Detailed production parameters of the tested LSCF samples are given in Table 2.4. 

Seven batches of LSCF samples were tested, which were produced by different 

synthesis methods, including pressing and sintering, tape-cast and freeze-cast. Sample 

production has been introduced in Section 2.1.1. Sample PS90 and PS70 are pressed 

samples with solid loading of 90% and 70% respectively. TCR and TCL are tape-cast 

samples either rolled into a cylinder or laminated into bars. FC30V and FC25V/P are 

freeze-cast sample with solid loading of 30% and 25% respectively. Since freeze-cast 

material has anisotropic porous structure, the loading can be either Vertical or Parallel 

to the freeze direction. Therefore, the letter V and P in the sample labels indicate the 

loading directions. Porosity and grain size was determined by images analysis method 

based on SEM images. 

Table 2.4. Details on the parameters of the tested LSCF samples. 

 
Dense PS90 PS70 TCR TCL FC30V 

FC25V

/P 

 
Pressing and sintering Tape-cast Freeze-cast 

Powder Spray drying 
Spray 

drying 

Solid 

state 

reaction 

Solid state 

reaction 

Pore 

former 
-- PMMA Starch Ice crystals 

Sintering 

temp./time 
1250°C / 5h 

1200°C / 

5h 

1300°C 

/ 5h 
1280°C / 5h 

Solid 

loading 

[wt%] 

-- 90 70 20 25 30 25 
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Porosity P 

[%] 

5.3 ± 

0.3 

26.3 ± 

1.7 

62.5 ± 

7.0 
35.7 ± 1.3 

37.0 ± 

1.6 

30.4 ± 

1.4 

43.4 ± 

3.0 

Grain size 

d [µm] 

3.1 ± 

0.2 

1.8 ± 

0.6 

1.9 ± 

0.1 

0.60 ± 

0.06 
3.3 ± 0.1 

3.0 ± 

0.2 

3.1 ± 

0.5 

 

The compressive creep rates were determined from the displacement-time curves 

recorded at each temperature using a linear fitting routine. The resulting strain rates 

were mathematically described by a simplified steady-state temperature activated 

Arrhenius approach [102,115–117,160]: 

𝜀̇ = 𝐴𝜎𝑛𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
) (2.10) 

where 𝐴  is a constant, 𝑛  the stress exponent, 𝐸𝑎  the activation energy, and 𝑅  is the 

universal gas constant. Applied stress 𝜎 and temperature 𝑇 are the experimental input 

parameters. A ln 𝜀̇ − ln 𝜎 plot permitted a determination of the 𝑛 value from the slope 

of the linear fit of experimental data measured at given temperature. The activation 

energy 𝐸𝑎 was calculated from a semi logarithmic ln 𝜀̇ −  1/𝑇 representation, where the 

slope yielded 𝐸𝑎/𝑅. 

2.3. Pressure drop measurement 

Pressure drop measurements were performed at Universidad Politécnica de Valencia, 

Institute of Chemical Technology (ITQ), Valencia. Basically, in this test the sample is 

placed in a homemade quartz reactor usually used for the assessment of gas permeation 

for asymmetric membranes, see details in the supporting information of [161]. 

Specifically, argon, nitrogen air and oxygen were fed at ambient temperature and the 

pressure drop ΔP across the membrane was monitored, while the inlet flow rate was 

varied from 50 mL/min to 400 mL/min. All streams were individually mass flow 
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controlled. Membrane gas leak-free conditions were achieved using elastomeric rings 

on both sides of the membrane. The permeate was analyzed at steady state by online 

gas chromatography using a micro-GC Varian CP-4900 equipped with Molsieve5A, 

Pora-Plot-Q glass capillary, and CP-sil modules. Membrane gas leak-free conditions 

were ensured by continuously monitoring the nitrogen trace concentration in the 

permeate gas stream. The data reported here were achieved at steady state after 1 h in 

the reaction stream. Each GC analysis was repeated three times to minimize the analysis 

uncertainty. The experimental uncertainty was less than 0.5%. 

Pressure drop was assessed for representative samples from all freeze-cast 3YSZ 

batches from Section 2.1.2 (except for FC+TL) to assess the impact of the hierarchical 

oriented microstructure on the gas flow resistance and compare it with the behavior of 

conventional and randomly organized porosity of sample PS42. 

2.4. Microstructural characterization 

2.4.1. X-Ray diffractometry (XRD) 

X-ray diffraction (XRD) is a non-destructive technique used for determining the atomic 

and molecular structure of a crystal. Samples for XRD are usually in the form of powder 

but also can be pressed or sintered pellets, and only a few milligrams are needed. The 

great advantage of the technique is that a vacuum is not required and that the X-rays 

can travel through a container before and after interacting with the specimen. As the 

basic principle of XRD, the crystalline atoms cause a beam of incident X-rays to diffract 

into many specific directions. By measuring the angles and intensities of these diffracted 

beams, the density of electrons within the crystal can be obtained, from which, some 
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parameters in the crystal can be determined, such as the mean positions of the atoms, 

their chemical bonds, their disorder, and various other information [54,162].  

Bragg invented X-ray crystallography and received Nobel Prize for this specific 

contribution. The basic principle of XRD is the Bragg’s law, as illustrated in Figure 2.6: 

when a monochromatic X-ray beam with wavelength 𝜆 is incident on paralleled lattice 

planes with spacing d and the incident angle θ, diffraction only happens if the path 

length difference between X-rays reflected by parallel planes is a multiple of the 

wavelength, as the following equation [162]: 

2𝑑 𝑠𝑖𝑛 𝜃 = 𝑛𝜆 (2.11) 

This expression gives the permitted angles of reflection, 𝜃, in terms of wavelength 𝜆 and 

the spacing of the reflecting planes, d. 

 

Figure 2.6 Bragg's law [163]. 

The LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) perovskites have a rhombohedral symmetry at low 

temperature that transforms to a cubic symmetry at higher temperatures, same as 

reported for LSCF with similar stoichiometry [99,100,105]. Along with this transition the 

mechanical parameters increase significantly [45,100]. The phase transition of LSCF has 
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attracted much attention but the transition temperature has not been fully specified. In 

the present work, room temperature (RT) and high temperature (HT) XRD experiments 

were carried out to establish the transition process in more details. 

High-temperature X-ray diffraction (HT-XRD) was used for lattice structure, phase 

stability and lattice parameters analysis. The diffractometer (D5000, Siemens) was 

equipped with secondary mono-chromator, a NaI scintillation counter and a Bühler 

HDK-S1 high temperature chamber utilizing copper anode (λ = 1.5418 Å). Additional 

XRD investigation at room temperature (RT) of the original small rod bulk specimen 

and the powder produced from the rod were carried out before HT-XRD experiments 

with a D4 ENDEAVOUR and a D8 ADVANCE diffractometer, both with a LYNXEYE 1-

dimensional detector also utilizing Cu radiation. 

Data were collected with steps of 0.02°. The lattice parameters were determined via 

Rietveld refinement using the software TOPAS (Version 4.2, Bruker AXS GmbH, 

Karlsruhe Germany). Crystal structures were extracted from the Inorganic Structure 

Database (ICSD, FIZ Karlsruhe, Germany) [164,165]. The experimental uncertainties for 

lattice parameters were around ± 0.001 Å. 

For X-ray powder diffraction investigation, the specimen was milled in an agate mortar. 

Tests were carried out in air as the LSCF specimen was sintered in air. The heating of 

the milled powder was performed firstly on a Pt-Rh heating tape with a lattice 

parameter of ~3.873 Å and secondly on a Pt heating tape with a 5 % higher lattice 

parameter of with a lattice parameter of ~3.926 Å that permitted a better resolution of 

the LSCF peaks. 

In the initial HT-XRD experiment (VA94B02), the powder specimen was applied on a 

PtRh heating tape, measured at RT then every 100 K from 100°C to 800°C and back to 
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100°C, with heating and cooling rate 0.1 K/s. 2θ data were collected with steps of 0.02°, 

from 20° to 70°. Details are given in Appendices Table A.1. 

The second HT-XRD experiment (VA94D02) was planned as shown in Appendices 

Table A.2. However, the measurement was stopped at the end of the Scan-No. 29 (2θ = 

~79°) about the maximum temperature of 1000°C due to a device error, which happened 

again in the next trial (VA94D04) at about 950°C. Due to the automatic stop of the 

heating, the sample was subsequently very fast cooled down (thermal shock) to RT. The 

status of the quenched sample at RT was also measured (VA94D05). Analysis was based 

on the results of the three tests. 

2.4.2. Metallographic preparation 

Polished surfaces of specimens were obtained by metallographic preparation for 

microscopy analysis. They were embedded in epoxy resin (Buehler Epoxy 2000, 

solidified at room temperature under atmospheric pressure for 48 h), manually grinded 

with silicon carbide abrasive paper (from P#500 to P#4000) and followed by 

semiautomatic polishing. The polishing was carried out with a Buehler Minimet 1000, 

involving cloth polishing in 3 µm and 1 µm diamond suspension and a final step of 0.05 

µm alumina suspension, each step for 30 min.  

2.4.3. Scanning electron microscope (SEM) 

SEM is a type of electron microscope that produces images of a sample by scanning the 

sample surface with a high-energy beam of electrons in a raster scan pattern. This 

electron beam generates a number of different types of signals, which are emitted from 

the area of the specimen where the electron beam is impinging. The induced signals 

contain information about the sample’s surface topography, composition and other 
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properties such as electrical conductivity. The signals are detected and the intensity of 

one of the signals is amplified and used as the intensity of a pixel on the image on the 

computer screen. The electron beam then moves to the next position on the sample and 

the detected intensity gives the intensity in the second pixel and so on. SEM can achieve 

resolution about 1 nanometer.  

The types of signals generated by the interactions between the electron beam and the 

specimen include secondary electrons (SE), back-scattered electrons (BSE), characteristic 

X-rays, Auger electrons, cathodoluminescence, as shown in Figure 2.7(a). Secondary 

electron detectors are standard equipment in all SEMs, but it is rare that a single 

machine would have detectors for all possible signals. 

The beam electrons interact with the sample distribute over a three-dimensional 

“interaction volume”, as shown in Figure 2.7(b). The interaction volume is greater than 

the specimen surface under the beam. Different signals have different maximum escape 

depths depending on their energy differences. The escape depth of SE is approximately 

5-50 nm; while BSE has an escape depth about a hundred times greater, and X-ray even 

greater. Greater escape depths generally lead to wider lateral dimension from which the 

signal can generate and thus lower potential resolution. The dimensions and shape of 

the interaction volume depend on accelerating voltage, atomic number and tilt. The 

dimensions of the interaction volume will increase with a higher accelerating voltage, 

and will decrease with higher atomic number elements. When the sample is tilted, the 

incident beam travels longer distance near the surface. Thus, relatively more SEs are 

generated within the escape depth than normal. 
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Figure 2.7 SEM beam - specimen interactions. [166] 

SEM images of polished samples surfaces were used for grain size and porosity 

evaluation. Grain size were recalculated into the diameter of a circle having an identical 

area. Hence the measured grain was given as equivalent circular diameter (ECD) in μm. 

Porosity was measured with image analysis method. SEM images of fractured 

specimens after mechanical tests were used for fractographic analysis. Fracture origins 

were identified using a stereoscope (Olympus SZH10) and SEM (Zeiss SUPRA 50VP). 

SEM was also used for phase analysis. Elemental analysis was carried out by energy-

dispersive X-ray spectroscopy (EDS, Inca, Oxford). 

2.4.4. Porosity measurement 

Porosity measurement was carried out with commercial software AnalySIS pro (version 

5.0, Olympus Soft Imaging Solutions GmbH). The wall thickness was measured by 

image analysis using the “local thickness” plug-in of the Fiji software [167]. 

The basic of Image Analysis is to set one proper threshold to the target gray-scaled 

image, see Figure 2.8(a), to extract objects (pores) from their background, see Figure 

2.8(b), due to the high degree of contract between the object and the background. 
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Thresholding creates binary images, see Figure 2.8(c), from gray-scaled ones by turning 

all pixels below some threshold to zero (the black regions in a binary image) and all 

pixels above that threshold to one (the white regions). If 𝑔(𝑥, 𝑦) is a thresholded version 

of 𝑓(𝑥, 𝑦) at some global threshold 𝑇, it can be defined as [75]: 

𝑔(𝑥, 𝑦) = {
1, if 𝑓(𝑥, 𝑦) ≥ 𝑇
0, otherwise

 (2.12) 

 

Figure 2.8 General processes of image analysis: a) Cut of original image; b) Setting 

threshold to select region of interested; c) Filling inner voids in struts and image 

binarizing. 

In our case, the pore area are the black regions and the white regions are the bulk 

material. Porosity 𝑃 can be calculated by using the sum of the black pixels divided by 

the total amount of pixels [75]: 

𝑃 =
𝐴𝑏𝑙𝑎𝑐𝑘

𝐴𝑡𝑜𝑡𝑎𝑙
 (2.13) 
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Chapter 3.                    

Results and Discussion 

3.1. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) 

3.1.1. XRD 

Room temperature (RT) XRD of bulk and powder samples 

To investigate the phase stability and homogeneity in bulk and powder material, an as-

sintered small rod bulk specimen was investigated via XRD at room temperature, as 

well as powder grinded from a rod. The spectra of the bulk specimen presented in 

Figure 3.1(a, b) indicate a single rhombohedral phase, while the powder Figure 3.1(c, d) 

showed both rhombohedral and cubic perovskite reflections (~ 60 weight % 
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rhombohedral and ~ 40 weight % cubic LSCF). Due to the strong overlap of the peak 

patterns, the dual phases could only be resolved via Rietveld refinement for peaks 

obtained at higher deflection angles of 135 – 140°, as shown in Figure 3.1(d). 

It appears that the as-sintered rod was only in an equilibrium state near the sample 

surface, since the RT-stable rhombohedra phase could only be detected with the bulk 

sample (the experimental acquisition depth of the XRD is less than 10 µm), while both 

HT-stable and RT-stable phases were discovered with the powder sample. 

Interestingly the occurrence of the cubic HT-form at RT appears to be less related to the 

cooling speed, it rather appears to depend on the specimens’ shape and grain size, since 

one measurement was stopped at 900°C with subsequent fast cooling down (thermal 

shock) to RT, and the result revealed only rhombohedral phase, see Figure 3.2(c, d), but 

before the fast cooling only cubic phase was detected at 900°C Figure 3.2(a, b). 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 3.1 RT- XRD of bulk (a, b) and powder (c, d) LSCF samples. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 3.2 XRD spectra of before (a, b) and after (c, d) quenching. 

High temperature powder XRD 

In the initial HT-XRD experiment, the powder specimen was applied on a PtRh heating 

tape, as described in Section 2.4.1. It was detected afterwards that at RT the lattice 

constant of PtRh (~3.873 Å) and the pseudo-cubic LSCF are very close, hence the peaks 

were difficult to be resolved. In a second experiment, a Pt heating tape was used, which 

has a 5 % higher lattice constant (~3.926Å), which avoided the peak interference and 

permitted an assessment of the rhombohedral – cubic phase change.  

The lattice structure used in the analysis was adjusted from La0.5Sr0.5Co0.5Fe0.5O3 (a = 

5.4519 Å, c = 13.2963 Å, ICSD collection code 167707 [164,165]) to the present 

stoichiometry of the rhombohedral structure, which can be imagined as a distorted 

cubic structure that is compressed or expanded in the direction of the diagonal of the 
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cube.  For visualization of the phase change, the lattice parameter of the hexagonal 

elemental cell was recalculated onto a pseudo-cubic elemental cell, as given below. This 

recalculation is a correct approximation for small distortions of the cubic lattice. The 

following parameters need to be defined: 

• 𝑎𝑟ℎ: a lattice parameter of the hexagonal erected, rhombohedral LSCF phase. 

• 𝑐𝑟ℎ: c lattice parameter of the hexagonal erected, rhombohedral LSCF phase. 

• 𝑎𝑐𝑢𝑏: a lattice parameter of the cubic LSCF phase. At a temperature of 25°C and 

100°C it is the lattice parameter of the second phase. 

• 𝑎𝑝𝑠.𝑐𝑢𝑏: recalculated from 𝑎𝑟ℎ, pseudo-cubic a lattice parameter 𝑎𝑝𝑠.𝑐𝑢𝑏 =  𝑎𝑟ℎ/√2. 

• 𝑐𝑝𝑠.𝑐𝑢𝑏 : recalculated from 𝑐𝑟ℎ , pseudo-cubic c lattice parameter 𝑐𝑝𝑠.𝑐𝑢𝑏 =

 𝑐𝑟ℎ/(2×√3). 

• 𝑉𝑟ℎ: elemental cell volume of the hexagonal erected, rhombohedra LSCF phase. 

• 𝑐𝑟ℎ/𝑎𝑟ℎ: axis ratio. 

Although different heating tapes were used in the two HT-XRD experiments, the 

resulting lattice parameters, as shown in Figure 3.3(a), especially in the temperature 

range of 200 – 600°C, were very close. In the initial test, the peaks were too close to be 

resolved, which means lack of accuracy. But the second experiment gave similar results, 

meaning the initial results are still correct. Both HT experiments (VA94B02.raw and 

VA94D02.raw) indicated that during heating already at 200°C an equilibrium state is 

reached and only the rhombohedral material exists. Lattice parameters a and c of the 

rhombohedral phase become equal to the cubic phase lattice parameter between 700 

and 800°C. A further possibility for visualization of the phase change is the presentation 

of the axis ratio 𝑐𝑟ℎ/𝑎𝑟ℎ. As the lattice structure changes to cubic, this ratio becomes 

√6 ≈ 2.44950. As shown in Figure 3.3(b), the ratio reached also √6 between 700 and 

800°C. Therefore, in the presentation of the lattice parameter as a function of 
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temperature, a phase change from rhombohedral to cubic is indicated at 750°C (with 50 

K to 100 K temperature steps). 

In the two graphs of Figure 3.3, a clear discontinuity in the temperature dependence of 

the lattice parameter can be seen during the heating phase from RT to 200°C. In this 

range the powder produced from the rod reveals both rhombohedral and cubic LSCF 

phases. It might be an artificial effect resulting from the Rietfeld analysis due to 

difficulties to refine both LSCF phases (only rhombohedra phase could be fitted in the 

case of the VA94B02 date due to the low quality of the data). The discontinuity does not 

occur in the cooling phase of the first HT-XRD investigation (Figure 3.3(a) VA94B02.raw, 

specimen single phase in equilibrium). The single-phase lattice parameters of the initial 

small rod that was obtained from the XRD surface measurement at RT, could be fitted 

onto an extrapolation of the HT-XRD data of 200°C to 700°C. In the temperature ranges 

from 200°C to 650°C for the rhombohedral phase and from 700°C to 1000°C for the 

cubic phase, the change of the lattice parameter appears to be approximately linear. 

The reliability of the temperature measurement was verified based on the phase change 

of BaCO3 at 811°C, indicating the that temperature difference (uncertainty) was less 

than ± 20 K near the thermocouple. For all experiments the temperature uncertainty 

might be attributed to chemical strain effects that add onto the linear thermal expansion. 

With increasing temperature, the oxygen deficiency increases and hence the elemental 

cell volume also increases [168]. 

In the higher angle range 2θ ~ 133 – 141°, the cubic reflection (3 3 2) will split into three 

rhombohedral reflections, (5 1 4), (5 0 8) and (1 0 16) during phase transition. As shown 

in Figure 3.4, when the temperature changes from RT to 750°C, the splitting of the (3 3 2) 

reflection of the cubic phase is still visible up to 650°C, and is not visible anymore above 

700°C, which indicates also a phase change between 650°C and 750°C. However, it 
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cannot be ruled out that there is a temperature gradient in the investigated specimen 

area (± 3 mm along the heating band with respect to the position of the thermocouple). 

 

(a) 

 

(b) 

Figure 3.3 Dependence of lattice parameters on temperature. 
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Figure 3.4 Observation of the peak splitting during phase transition in the 2θ range 133 

– 141°. The Kα2 peaks are moved. 
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Summarizing the results of this section, high temperature XRD investigations were 

performed to verify the exact rhombohedral - cubic phase change temperature of LSCF. 

The results indicated that the phase change completes at 750 °C. Furthermore, at 650°C 

no reflex splitting of the cubic 3 3 2 – peak can be seen anymore (no image shown), 

which supports the phase change between 650 °C and 750 °C. 

3.1.2. Microstructure 

Details on the LSCF samples are given in Table 2.4. The specimens, which had different 

porosities and pore structures, were investigated via a uniaxial compression test. 

Porosity was measured by image analysis method based on SEM images, illustrated in 

Figure 3.5. The different porosities and pore structure of LSCF samples can easily be 

noticed from the polished microstructures, as shown in Figure 3.5. Figure 3.5(a) is the 

dense LSCF material from uniaxial pressing. Few pores are observable in the cross-

section, corresponding to a porosity of about 5.3%. Figure 3.5 (b) and (c) are the uniaxial 

pressed samples with PMMA as pore former with typical spherical pores. Figure 3.5 (d) 

and (e) are tape-cast samples either rolled into a cylinder (TCR) or laminated into bulks 

(TCL) to obtain testable sample geometries. They both have starch as pore former, 

which results in a random pore geometry. Figure 3.5 (f), (g) and (h) are freeze-cast 

sample images vertical (FC30V and FC25V) and parallel (FC25P) to ice crystal growth 

direction, illustrating the long, aligned pores. 



3.1 La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) 
 

 89 

 

Figure 3.5 SEM images of polished surfaces of LSCF samples: (a) Dense, (b) PS90, (c) 

PS70, (d) TCR, (e) TCL, (f) FC30V, (g) FC25V and (h) FC25P. 

More details of the freeze-cast LSCF supports are illustrated in Figure 3.6, which exhibit 

a very high porosity with long aligned pores. Images were taken from cross-sections 

both parallel (Figure 3.6a) and perpendicular (Figure 3.6b) to the freeze-cast direction. 

The long, oriented pores are very distinct. Image analysis revealed a rather high 

porosity of 43.4 % and average grain size of 2.7 μm. Ferro-elastic domains are clearly 

visible at higher magnification in Figure 3.6c.  
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Figure 3.6 Microstructures of freeze-cast LSCF: a) parallel to freezing direction; b) 

perpendicular to freezing direction; c) grains with ferro-elastic domains.

The microstructural SEM investigations of LSCF-TCR samples before and after creep 

tests are summarized in Table 3.1. Samples were extracted parallel and perpendicular to 

the loading direction from the center of the specimens and in addition a load free 

reference piece from the edge of the rolled specimen.  

Porosity of all specimens was comparable, with an average value of 35 %. The aspect 

ratio of the pores was given as elongation values, which is between 1.2 ~ 1.5. The 

elongation is a result of the anisotropy due to the orientation of the powder particle 

caused by the shearing while tape-cast. The measured grain size is ~ 0.6 μm, which is 

similar as reported for dense LSCF [102].  
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The specimens did not show any detectable microstructural anisotropy with respect to 

the loading direction or micro-cracks after creep test. Furthermore, no obvious 

indication of grain growth or elongation could be found, and the grains remained 

equiaxed after creep test. Bulk diffusion related creep mechanism could be excluded 

since no substantial grain deformation was observed on cross-sections. In contrast, a 

combination of diffusion and dislocation creep is suggested according to the stress 

exponent. Ferroelastic domains were clearly visible in the SEM images as already 

shown in Figure 3.7. The visible segregation particles on the surface were investigated 

with energy dispersive X-ray spectroscopy (EDX) as cobalt-rich phase.  

Table 3.1 Microstructures of tape-cast LSCF before and after test. 

 
A. After loading B. After loading C. Without loading 

 

Cross-section 

perpendicular to the 

load axis 

Cross-section parallel 

to the load axis  

SEM 

Images 

   

Grain size 

(μm) 
0.60 0.58 0.63 

Porosity 34.8 % 35.9 % 36.5 % 

Elongation 1.5 1.2 1.5 
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Figure 3.7 SEM image of ferro-elastic domains in LSCF grains. 

3.1.3. Elastic properties of freeze-cast LSCF 1 

In this section, the elastic behavior of porous freeze-cast LSCF perovskite at room 

temperature was characterized by a quasi-static hysteresis compression test in order to 

get insight into the influence of the ferro-elasticity on the apparent elastic parameters of 

such anisotropic materials. 

The production of the freeze-cast LSCF is given in Section 2.1.1.4. The freeze-cast LSCF 

supports exhibit a very high porosity with long aligned pores as visualized in Figure 3.6. 

The measurement procedure is explained in Section 2.2.3.1. 

3.1.3.1. Stress – strain curves 

Similar as in Section 3.1.4 for porous tape-cast LSCF, the ferro-elastic behavior of freeze-

cast LSCF was investigated, however, in the current section concentrating on the stress-

                                                 
1 Section content published. Y. Zou et al. / Journal of the European Ceramic Society 36 (2016) 1651–1657. 

http://dx.doi.org/10.1016/j.jeurceramsoc.2016.01.034 
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strain curve. Since the material is highly porous and therefore mechanically relatively 

weak, a cyclic loading-unloading compression test was performed starting with a 

maximum load of 100 N (3.9 MPa), followed by a subsequent cycle with a maximum 

load of 200 N. For the following cycles, the load was increased by 200 N, and after 

reaching 1000 N, increased by 500 N in each cycle, which was continued until the 

material failed.   

Longitudinal (-), transverse (+) strain and applied stress are shown in Figure 3.8 as a 

function of time. A crack initiated during the 8th cycle at about 1500 N (60 MPa, 

longitudinal strain -0.315 %) while loading to 2000 N (78 MPa). However, it was 

possible to continue the test after this initial crack, which appeared to arrest, since the 

specimen remained macroscopically intact and no visible damage was observed. In the 

following 9th cycle, while loading to 2500 N (98.0 MPa), the specimen gradually crushed. 

Therefore, even though the strain and stress evolve smoothly in Figure 3.8, the 

processes after the crack initiation are not discussed in the subsequent sections. 

 

Figure 3.8 Evolution of Stress, longitudinal and transverse strain as a function of time 

for the load hysteresis test. 
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The stress-strain curves obtained from the compression test are shown in Figure 3.9 

with reversed axes, each cycle termed after its maximum load in N. Compressive stress 

is considered as negative values, the same for longitudinal strain, while transverse 

strain is defined as positive. In Figure 3.9a, the stress-strain curve of each single cycle 

shows a distinctive non-linear behavior. The entire group of curves of all tests exhibits a 

hysteresis behavior, which is typical for ferro-elastic materials [98]: the stress increases 

almost linearly with the strain at the beginning of loading, followed by a stress plateau 

region due to the domain-switching process (known as “critical stress”). The stress 

increases again after the completion of the domain-switching process. The stress-strain 

curves during unloading exhibit another nonlinear behavior due to back-switching 

process, resulting in a hysteresis and remnant strain. The similarity of the behavior of 

the freeze-cast and dense LSCF with respect to the stress-strain curves and the 

relationship to ferro-elastic behavior indicates that the experimental results are not 

affected by crushing effects at lower loads. 

Figure 3.9b shows the envelope curve of Figure 3.9a to emphasis the ferro-elastic 

behavior, and also for the use in further analysis. The stress plateau region, namely the 

domain-switching region, is within the strain region of -0.05 to -0.15 %, with a 

maximum critical stress of 22 MPa and a minimum critical stress of 6.3 MPa. The total 

residual strain after a stress exposure of ~60 MPa is -0.135 %, about 43 % of the 

maximum strain. 
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Figure 3.9 Stress - strain curves of circular compressive loading-unloading processes. 
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3.1.3.2. Elastic parameters 

Mechanical parameters, such as Young’s modulus and Poisson’s ratio cannot be directly 

evaluated when stress-strain curves are non-linear because of the ferro-elastic domain 

switching. Hence, the apparent elastic characteristics were evaluated continuously from 

stress-strain curves with respect to loading and unloading states. 

Apparent Young’s, shear and bulk moduli are shown in Figure 3.10 as functions of 

longitudinal strain. Apparent Young’s moduli were determined using Equation (2.6) as 

derivative of the slope of the stress-strain curve of the longitudinal part in Figure 3.9b, 

and apparent shear moduli were calculated using Equation (2.8) from apparent Young’s 

moduli and apparent Poisson’s ratio. Both moduli decrease from the starting of loading, 

and have minimum values at around -0.08 % longitudinal strain due to the 

progressively increasing strain related to domain switching, then increase again until 

the end of loading. At the beginning of unloading, both moduli exhibit even higher 

values than the end of loading, and continuously decrease until the end of unloading. 

The apparent Young’s modulus has a minimum value of ~11 GPa, close to the 13 GPa 

given in literatures for tape-cast LSCF material [111] (bending test, porosity 46 %), while 

apparent shear modulus has a minimum of ~4 GPa. 

The apparent bulk modulus has a relatively constant value of ~10 GPa in lower strain 

range (0 -- 0.10 %), and of ~20 GPa in higher strain range (-0.16 % -- 0.30 %). In the 

intermediate range (-0.10 % --0.16 %), also the second half of the domain switching 

region, a high peak is obtained, which can be considered as a transition jump between 

lower and higher strain range.  
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Figure 3.10 The evolution of Young’s, shear and bulk modulus as a function of the 

longitudinal strain. 

 

Figure 3.11 Comparison of Young's modulus with literatures. 



Chapter 3 Results and Discussion 

 

 98 

Seven groups of Young’s modulus, all measured at room temperature, are named with 

respect to the first author, the porosity of the material and experiment methods [98,109–

113], including the present work. The seven groups of results cover the porosity range 

from 2 % to 47 %. Kimura et al. [110], Chou et al. [109] and Chen et al. [112,113] 

measured the “dense” materials (porosity 2 %, 4.6 % and 5.2 % respectively) using the 

impulse excitation technique (IET), which is a dynamic and macroscopic method. Chen 

et al. [113] and Lipinska-Chwalek et al. [111] measured the materials with various 

porosities using nanoindentation and ring-on-ring bending test set up respectively. 

These five groups give only a single modulus value. The work of Araki et al. [98] and 

the present work used the stress-strain curves from compression tests. Therefore, the 

results of these two groups are shown as a range of Young’s modulus values.  

It is clear that the Young’s modulus decreases with increasing porosity, and the effect is 

more pronounced for lower porosities. The measured apparent moduli by different 

measurement techniques differ drastically at low porosity (below 10 %). The difference 

becomes trivial at higher porosity (above 40 %). For all the measurements with porosity 

lower than 10 %, nanoindentation method gave the highest modulus than the other 

methods, which may be due to: (i) the differences in chemical composition between the 

samples fabricated from different powders and processes; (ii) the localized 

measurement of indentation method which can give the modulus of the fully dense 

regions, whereas the other methods all measure the entire specimen volume and are 

affected by porosity. Three IET measurements from different publications are quite 

close considering the porosity differences and measurement error and are slightly lower 

than nanoindentation. Results from bending and compression tests are much smaller 

than IET and indentation method. We consider this phenomenon as the result of the 

ferroelastic behavior induced by the loading stresses or effects of the structural defects. 

The results from bending test are close to the lowest value from compressive test. The 



3.1 La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) 

 

 99 

same relationship exists in samples with much higher porosity (porosity 44 % with 

compression and porosity 46 % with bending). 

 

Figure 3.12 The evolution of Poisson’s ratio as a function of the longitudinal strain. (a) 

loading; (b) unloading. 
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Moreover, in the work of Lipinska-Chwalek et al. and the present work, samples, with 

similar porosities but different pore arrangements, show similar apparent Young’s 

moduli, which indicates that this parameter is not influenced by pore arrangement. 

However, the apparent crushing fracture stress  (59.6 MPa) of the crack initiation during 

the 8th cycle is much higher than the average apparent fracture stress of the porous 

LSCF with isotropic pore structure of Lipinska-Chwalek’s (~ 16 MPa obtained in 

bending test) [111]. This might be associated with benefit from the large, long, oriented 

pore structure, which not only provides large porosity but also relatively high 

mechanical stability along the pore direction compared to the homogenously 

distributed isotropic pore structure, but it has also to be considered that ceramics are 

typically stronger under compressive than under tensile stresses. 

The apparent Poisson’s ratios derived using Equation (2.7) from both the original stress-

strain curves (Figure 3.9a) and the envelope curve (Figure 3.9b) are shown in Figure 

3.12 as a function of longitudinal strain separately for loading (Figure 3.12a) and 

unloading (Figure 3.12b) processes. Cycles are termed according to their maximum 

loads in N, and the one derived from envelope curve is named as “Envelope”. Since the 

transverse strains of cycle 1 and 2 are extremely low, even almost invisible in Figure 3.8, 

the Poisson’s ratio was only evaluated from cycle 3 to 8, namely, starting from about -

0.05 % longitudinal strain. The Poisson’s ratio increases from 0.20 at the beginning of 

loading and reaches a maximum value of 0.5 at ~-0.14 % longitudinal strain; then 

decreases to a relative stable value of ~0.3. During unloading, stable values of Poisson’s 

ratio of around 0.35 are observed between -0.20 to -0.30 % longitudinal strain, indicating 

that the results are not biased by crushing effects at lower loads. The averages of 

Poisson’s ratio are 0.30 and 0.36 for loading and unloading, respectively, close to the 

value of 0.3 given in literature [110]. The Poisson’s ratio has a maximum value since the 
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transverse strain is not only related to a contribution of the lattice distortion but also 

domain switching. 

In this section, elastic parameters, namely Young’s, shear and bulk moduli as well as 

Poisson’s ratio of freeze-cast LSCF were investigated at room temperature by a quasi-

static hysteresis compression test. The evolution of these elastic parameters is studied as 

a function of the longitudinal strain. The elastic parameters showed extrema related to 

ferro-elastic domain switching. Young’s and shear moduli revealed minimum values, 

while bulk modulus and Poisson’s ratio demonstrated maximum values due to the 

transverse strain contributed by ferro-elastic domain switching. 

3.1.4. Ferro-elastic behavior2 

Porous La0.6Sr0.4Co0.2Fe0.8O3-δ specimens that were prepared by tape-cast (LSCF-TCR) 

were tested with uniaxial compression set-up to assess if ferro-elastic creep effects that 

have been reported for dense material [108] also exist for porous variations. The stress – 

strain curves obtained at room temperature (20°C) under loads of 15 MPa and 30 MPa 

are shown in Figure 3.13, where stress and strain were simply calculated using the 

initial geometry. During loading and unloading, the stress-strain curves were visibly 

non-linear, which is related to an orientation-switching of ferro-elastic domains under 

stress [98,101,105]. The deformation behavior under constant load related to ferro-

elastic domain switching has been reported for dense LSCF and termed “ferro-elastic 

creep” [98]. The existence of such twin-like ferro-elastic domains has been verified by 

SEM studies (Figure 3.7, cobalt-rich phase particles existed before the test).  

                                                 
2 Section content published. Y. Zou et al. / Ceramics International 41 (2015) 4064 – 4069. 

http://dx.doi.org/10.1016/j.ceramint.2014.11.100 
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The displacement increases almost linearly with stress at the beginning of the loading as 

illustrated in Figure 3.13. The strain shows a progressive increase with applied stress 

above a critical stress σc (insert in Figure 3.13(a)), a region in which some ferro-elastic 

domains are switched by the applied stress. After most possible (or achievable) 

domains are switched, the displacement increases more linearly with the stress, whilst 

some remaining domains switch. In the current study, the applied stress was too small 

to characterize the ferro-elastic response up to saturation. At the beginning of the 

unloading, the displacement decreases linearly with decreasing stress due to elastic 

recovery and then non-linearly due to domain back-switching. After unloading, some 

strain recovery might be expected, however, a non-recoverable remnant strain is still 

observed. 

 

Figure 3.13 Stress–strain curves measured at 20 °C under different loads. Inset(a): 

typical strain–stress curve of ferroelastic material after [15]. 
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Figure 3.14 shows the deformation as a function of time at 20 °C under constant loads of 

15 MPa and 30 MPa, respectively. While keeping the stress level constant, the strain 

gradually increased, which again similar as reported for dense LSCF [98] an indication 

of the ferro-elastic creep. The data yielded a stress exponent of 2.5 which is very similar 

to the value obtained from the elevated temperature creep tests (see following section), 

although the mechanism responsible for the apparent room temperature creep is related 

to a different mechanism. 

 

Figure 3.14 Ferro-elastic creep at 20 °C under stress of 15 MPa and 30 MPa. 
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3.1.5. High temperature creep 

3.1.5.1. Tape-cast LSCF (LSCF-TCR) creep behavior3 

The steady-state creep rates of the tape-cast porous LSCF measured in air in the 

temperature range 750°C to 950°C are compared in Figure 3.15 to the literature data of 

dense LSCF58 from Huang [102]. An increase of the creep rates with increasing 

temperature is expected for a thermally activated process. Similar as reported for dense 

material [102], indications for a transition to higher creep rates occurred between 750 °C 

and 800 °C. Note, similar creep rates were also obtained for the variant 

La0.38Sr0.6Co0.2Fe0.8O3-δ (LSCF38) from  [117] (see Figure 3.15). 

 

Figure 3.15 Steady-state creep rate o Steady-state creep rate of porous LSCF60 under 

compressive stress. 

                                                 
3 Section content published. Y. Zou et al. / Ceramics International 41 (2015) 4064 – 4069. 

http://dx.doi.org/10.1016/j.ceramint.2014.11.100 
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The activation energy was determined from the slops of the ln 𝜀̇ −  1/𝑇 plots. LSCF58 

and LSCF60 exhibit a rhombohedral to cubic phase transition. The transition 

temperature, and along with this the increase of the Young’s modulus by ~ 50 %, 

depends on the partial pressure of oxygen [45]. The transition temperature in air is 

identified to be between 700 and 800 °C [99]. Both the structural transition and the 

increase in Young’ modulus might influence the measured creep rate, although from 

the experimental data an effect of the phase transition from rhombohedral to cubic 

phase onto the creep behavior could not be verified. Nevertheless, the apparent 

activation energy in the temperature range 750 to 800 °C in air was not considered. The 

average apparent activation energy in the temperature range 800 to 950 °C was ~ 530 ± 

60 kJ/mol, which is an increase of ~ 10 % compared to dense LSCF58 which led to an 

average apparent activation energy of 480 kJ/mol [102]. 

 

Figure 3.16  Creep rates as functions of the applied stress 

The creep rates in air as functions of stress for different temperatures are shown in 

Figure 3.16. The stress exponent n of porous LSCF was determined from ln 𝜀̇ −  ln 𝜎 

plots. In the stress range between 15 MPa and 30 MPa the elevated temperature stress 
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exponent n is between 3.0 and 3.9, which is higher than for dense LSCF58 with an n of 

1.9 - 2.5 [102]. The stress exponent values indicate a dislocation creep mechanism at 

elevated temperatures.  

The origin of the difference in activation energy of dense and porous material becomes 

more apparent when plotting the ratio of the creep rates, i.e. for 30 MPa of porous to 

that of the dense LSCF material in Figure 3.17. The ratio increases exponentially with 

increasing temperature, from about 10 to 120. A similar effect has been reported for 

porous and dense BSCFZ  [160] (also shown in Figure 3.17), but the effect is stronger for 

LSCF, i.e. similar ratios are obtained for 50 K lower temperatures. Similar as suggested 

for BSCFZ, the observed effect might be a result of creep enhancements by surface 

diffusional effects. 

 

Figure 3.17 Ratio of creep rates of porous to dense material for LSCF and BSCFZ [160] 

for a stress of 30MPa. 
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In order to evaluate the long term performance of membrane structure, a maximum 

tolerable creep deformation of 1 % per year in a compressive mode is suggested to 

warrant reliable long term operation. Creep rates of porous LSCF60 are higher than 

those of dense LSCF58 [102] (see Figure 3.15) and all of them are higher than the 

acceptable rate of 3.2 × 10-10 s-1. Therefore, a reduction of the application stresses or 

operation temperatures appears to be necessary. 

The results of the microstructural SEM investigations are summarized in Table 3.1. 

Samples were extracted parallel and perpendicular to the loading direction from the 

center of the specimens and in addition a load free reference piece from the edge of the 

rolled specimen.  

Porosity of all specimens was comparable, with an average value of 35 %. The aspect 

ratio of the pores was given as elongation values, which is between 1.2 ~ 1.5. The 

elongation is a result of the anisotropy due to the orientation of the powder particle 

caused by the shearing while tape-cast. The measured grain size is ~ 0.6 µm, which is 

similar as reported for dense LSCF [102].  

The specimens did not show any detectable microstructural anisotropy with respect to 

the loading direction or micro-cracks after creep test. Furthermore, no obvious 

indication of grain growth or elongation could be found, and the grains remained 

equiaxed after creep test. Bulk diffusion related creep mechanism could be excluded 

since no substantial grain deformation was observed on cross-sections. In contrast, a 

combination of diffusion and dislocation creep is suggested according to the stress 

exponent. Ferro-elastic domains were clearly visible in the SEM images as already 

shown in Figure 3.7. The visible segregation particles on the surface were investigated 

with energy dispersive X-ray spectroscopy (EDX) as cobalt-rich phase.  
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3.1.5.2. Freeze-cast LSCF creep behavior 

The freeze-cast La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) exhibited a very high porosity with long 

aligned pores and was designed for the use as porous membrane supports, as shown in 

Figure 3.6. In fact, a rather high porosity of 44 % was determined by image analysis.  

High temperature creep tests were carried out for this material on two directions: 1. 

Loading direction parallel (P) to freeze direction; 2. Loading direction vertical (V) to 

freeze direction. Creep rates in the temperature range of 750°C to 1000°C with stress 

states of 30 MPa are shown in Figure 3.18(a) compared with creep rates of dense LSCF 

(porosity 3.4%) (Dense – 30 MPa)  [102] and the tape-cast LSCF 36% porosity (R – 30 

MPa) (Section 3.1.5.1) [31] from literature. The creep rates at 750 °C are at the limit of 

experimental resolution; therefore, the data do not permit a detailed interpretation. The 

tests along the freeze direction (P) reveal a lower creep rate than in the other direction, 

which can be related to the pore orientation, specifically, along the freeze direction 

more support walls are available to bear the load. From Figure 3.18 (a) it can be seen 

that the creep rates of freeze-cast LSCF in both directions are higher than the values 

obtained for the respective dense material, but lower than the tape-cast LSCF, which has 

in fact a lower porosity. Therefore, the freeze-cast LSCF appears to be more promising 

than the tape-cast material.  

The activation energies for the temperature range 850 – 1000°C for both directions are 

412 ± 40 kJ/mol (V) and 372 ± 77 kJ/mol (P), respectively. Both are lower than the data 

for dense LSCF (474 ± 24 kJ/mol for 850 – 950 °C) [102] and tape-cast LSCF (580 ± 60 

kJ/mol, 800 – 950°C) [31]. The stress exponents at 900 - 1000°C have average values of 

2.0 (V) and 1.8 (P), which indicates that the creep is dominated by a diffusional 

mechanism, and are similar as the stress exponent for dense LSCF reported in literature 

(1.9 - 2.5 in temperature range 750 - 950°C) [102]. 
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A linear fitting was performed for the creep rates from 800 to 1000°C. Then the data 

determined from these mathematical descriptions were used to calculate the creep rate 

ratio of the porous LSCF to dense LSCF, as shown in Figure 3.18 (b). The creep rates of 

porous materials increased more or less progressively with increasing temperature. The 

creep rates ratio between freeze-cast LSCF parallel to pore direction and the dense 

material almost remains constant along the temperature range, while the ratio between 

tape-cast and dense material increased most strongly and the ratio between the freeze-

cast vertical to pore direction and dense material indicates intermediate behavior. 

Therefore, the pore arrangement appears to have a significant influence on creep rates. 

  

(a) (b) 

Figure 3.18 (a) Creep rates of freeze-cast LSCF along two directions in comparison of 
creep rates of dense LSCF and tape-cast LSCF from literature; (b) Ratio of creep rates 
in natural logarithm. 

Further elevated temperature creep tests were performed in vacuum with this material 

for both directions in the temperature range of 800°C to 950°C with stress states of 8, 15, 

and 30 MPa. Creep rates are shown in Figure 3.19. The tests along the freeze direction (P) 

reveals lower creep rates. Furthermore, the creep rates in vacuum are always higher 

than in air, as can be seen in Figure 3.20. The activation energies for the temperature 
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range 800 – 950 °C for both directions are 440 ± 20 kJ/mol (V) and 331 ± 32 (P) kJ/mol, 

respectively, both being very similar as the ones for freeze-cast LSCF in air 412 ± 40 

kJ/mol (V) and 372 ± 77 kJ/mol (P). The stress exponents for the temperature range 800 - 

950 °C have average values of 2.0 (V) and 1.6 (P), respectively, which indicates that the 

creep is dominated by a diffusional mechanism. Values are similar as the stress 

exponent for freeze-cast LSCF measured in air (2.0 (V) and 1.8 (P) in temperature range 

900 - 1000°C). 

  

(a) (b) 
Figure 3.19 Creep rates in vacuum of freeze-cast LSCF along two directions. 

  

(a) (b) 
Figure 3.20 Creep rates in vacuum of freeze-cast LSCF along two directions in 

comparison with creep rates in air. 
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3.1.5.3. Comparison of creep behavior of LSCF with different porosity 

In Section 3.1.5.1 and 3.1.5.2, the creep behavior of porous tape-cast and freeze-cast 

LSCF materials was studied in detail. The influence of porosity on creep rate is 

remarkable and it seems that not only the overall fractional porosity but the different 

porous structures also affect creep rate, as illustrated in Figure 3.18. To investigate the 

effect of different porosity and porous structures on creep rate and how the creep rate 

varies from that of the dense LSCF, more porous samples by tape-casting, freeze-casting 

and uniaxial pressing, and a dense LSCF reference specimen obtained by uniaxial 

pressing, were tested and analysed in the following subsection. Details on the LSCF 

samples production are described in Section 2.1.1; tested samples details are given in 

Table 2.4 and relevant text; microstructures are illustrated in Figure 3.5. The specimens, 

which had different porosities and pore structures, were investigated via a uniaxial 

compression test as introduced in Section 2.2.3.2.  

  

(a) (b) 

Figure 3.21 Temperature dependency of creep rates of different LSCF samples. 

Elevated temperature creep tests were carried out for these materials for applied stress 

of 15 MPa and 30 MPa in the temperature range of 800°C to 1000°C. Creep rates in 

terms of their natural logarithm as a function of 1000/T (T in K) are shown in Figure 3.21. 
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The freeze-cast sample FC25 were tested in the loading direction both vertical (FC25V) 

and parallel (FC25P) to the freeze direction. All porous samples have higher creep rates 

than the respective dense material of similar grain size, as might be expected, and 

almost all the creep rates exceed the 1% creep strain per year criteria (3.2×10-10 s-1, 

ln(3.2×10-10) ≈ -21.9), which is suggested to be critical for application. [114] 

Comparing the “Dense” samples results to literature data by Huang et al. [102], under 

30 MPa and 900°C, the shown creep rate (1.38×10-9 s-1) in Figure 3.21 is about one order 

of magnitude lower than the data reported by Huang (1.5×10-8 s-1) as quoted in Table 1.3. 

The main reason for this distinct difference could be the grain size difference between 

current dense material (3.1 ± 0.2 μm) and the one of Huang (0.6 ± 0.2 μm). Assuming 

that the creep rate difference is only induced by the grain size, with the data under 30 

MPa and 900°C, the grain size exponent m can be roughly estimated with Equation (1.14) 

to be 1.7, same as reported for BSCF in literature [115]. 

Overall, LSCF samples show a clear increase in creep rates with increasing porosity. 

Regarding different synthesis methods, it seems that the tape-cast laminated material 

possesses the lowest creep rate compared to the others with similar porosity, while the 

specimen from uniaxial pressing leads to the highest creep rates. Reason for the 

difference between the different methods should be the focus of future studies. Samples 

with smaller grain size have higher creep rates, as expected from Equation (1.14). 

 According to Equation (2.10), the activation energy Ea can be calculated from the slope 

of ln(creep rates) - 1000/T (T in K) plots, as in Figure 3.21, and the stress exponent n 

from the plots of ln(creep data) – ln(stress) (plots given in Appendices A.2). Both 

parameters are summarized in Table 3.2. The stress exponent n ranges from 1.4 to 3.4 

and the activation energy from 297 to 530 kJ/mol, similar as reported by Huang et al. 

(the stress exponent in the range 1.9 to 2.5 for all temperatures, activation energy ~ 250 
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kJ/mol in the temperature range 700 to 800 °C) [102]. The samples with smaller grain 

size tend to have a higher n and Ea values. The TCR sample has the highest n and Ea 

values, which might be an artefact related to the rolled cylinder geometry. 

Table 3.2 Creep exponents and activation energies. 

 
Dense PS90 PS70 TCR TCL FC30V FC25V FC25P 

Porosity 

P [%] 

5.3 ± 

0.3 

26.3 ± 

1.7 

62.5 ± 

7.0 

35.7 ± 

1.3 

37.0 ± 

1.6 

30.4 ± 

1.4 
43.4 ± 3.0 

Grain 

size d 

[µm] 

3.1 ± 

0.2 

1.8 ± 

0.6 

1.9 ± 

0.1 

0.6 ± 

0.06 

3.3 ± 

0.1 
3.0 ± 0.2 3.1 ± 0.5 

n 1.4 2.1 1.8 3.4 1.8 2.4 2.1 1.5 

Ea 

[kJ/mol] 
321 358 479 530 346 433 356 297 

 

In general, the creep rate is determined by the species of the lowest diffusivity and in 

LSCF, it has been reported to be related to the diffusion of A-site cations [102]. Besides, 

different publications studying the porosity effect on steady-state creep have concluded 

that the stress exponent of the porous body should be identical to that of the dense 

materials [92,93]. Therefore, it appears to be reasonable to assume that for LSCF 

samples with the same lattice structure should have the identical stress exponent 

(identical creep mechanism) and identical creep activation energy (identical diffusion 

species and diffusion paths). 
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(a) (b) 

Figure 3.22 Single slope fitting of the creep rate data under 15 and 30 MPa for activation 

energy calculation. 

Considering the reasonable assumptions outlined above, then all the creep results in 

Figure 3.21 should have the same slope (same activation energy). Considering the large 

uncertainty of creep results due to the small deformation measurements, the slopes of 

the fitting lines in Figure 3.21 are possible to be the deviations from one single value. 

Therefore, a single slope fitting was applied separately to the creep data under 15 and 

30 MPa, as shown in Figure 3.22. The resulting best fitting slope and corresponding 

activation energy values are given in Figure 3.23Fehler! Ungültiger Eigenverweis auf 

Textmarke.. Activation energy values for 15 and 30 MPa agree very well to each other, 

as expected. A similar single slope fit was also applied to the plots of ln(creep data) – 

ln(stress) for stress exponent calculation, to obtain a best fitting stress exponent value of 

1.7, as illustrated in Figure 3.23. 

Table 3.3 Best fitting slope values for single slope fitting and corresponding activation 

energy.  

 Ea/1000R Ea 

 [K] [kJ/mol] 

15 MPa 44.022 365.9 

30 MPa 41.628 346.1 
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Figure 3.23 Single slope fitting of the creep rate data for stress exponent calculation. 

With the activation energy in Table 3.3 and the stress exponent 𝑛 = 1.7 (best fitting value 

from Figure 3.23), the values of ln 𝐴 term were then calculated for each single fitting 

lines. In Figure 3.24, the ln 𝐴 values are plotted as a function of porosity. The dashed 

lines are linear fitting of ln 𝐴 values from the group of samples produced by the same 

production method and the dense LSCF is considered as the base point of all sample 

groups. 

ln 𝜀̇ = 𝑛 ln 𝜎 −
𝐸𝑎

𝑅𝑇
+ ln 𝐴 (3.1) 

𝜀̇ = 𝐴′𝜎𝑛𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
+ 𝑏𝑃) 

(3.2) 

Considering the linearity of the ln 𝐴  on porosity to be proven by the results, then 

Equation (2.10) can be transformed into Equation (3.2), with an extra 𝑒𝑏𝑃 term related to 

porosity 𝑃. The parameter 𝑏 is corresponding to the different porous structure.  

In fact, the exponential term 𝑒𝑏𝑃 has been discussed intensively by R.W. Rice based on 

the Minimum Solid Area (MSA) concept [78,79]. As shown in Figure 1.13, based on 

different literature models, for low porosities, the minimum solid area (and hence the 
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property value of interest) approximately linear decreases on a semi-log plot versus P. 

Beyond a critical porosity Pc, the property of interest starts decreasing more rapidly, 

then nearly precipitously, going to zero. The creep rate, on the contrary, increases with 

increasing porosity. But the exponential term 𝑒𝑏𝑃 seems to be still useful with a positive  

𝑏 value, while in work of Rice, 𝑏 is negative for elastic modulus and fracture strength. 

  
(a) (b) 

Figure 3.24 Evolution of calculated ln 𝐴 values over porosity. 

As for a diffusion creep mechanism, the creep rate also depends on grain size, as 

described in Equation (1.14). In Figure 3.25, the ln 𝐴 values were calculated with creep 

rates normalized to a grain size of 1 μm. An inverse grain size exponent m = 1.7 was 

used in the calculations, which was calculated above using the “Dense” sample and 

results of Huang et al. [102]. Compared to Figure 3.24, the normalized values in Figure 

3.25 vary much less for the different porous structures. It also proofs that under the 

tested conditions, the creep behavior of the material is pre-dominantly determined by 

diffusion. A similar phenomenon has been reported for BSCF and BSCFZ in literature 

[118]. 
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(a) (b) 

Figure 3.25 Evolution of calculated ln 𝐴 values over porosity with normalization to grain 

size d = 1 μm.  

 

In this section, creep behavior of LSCF specimens prepared with uniaxial pressing, tape-

cast, and freeze-cast were investigated via uniaxial compression testing with respect to 

high temperature creep behaviour. All porous samples have higher creep rates than the 

dense material, as might be expected, and all of the creep rates exceed the 1 % creep 

strain per year criteria (3.2×10-10 s-1), which is considered to be critical for application. 

Overall, LSCF samples show a clear increase in creep rates with increasing porosity, but 

different porous structures seem to result in different creep rates. Furthermore, samples 

with smaller grain size have higher creep rates. After normalization to grain size 1 μm, 

the difference in creep rate become smaller, which indicates that also the grain size has 

a more pronounced influence on creep rates.  
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3.1.6. Creep rupture 

Sandwich samples of BSCF and LSCF with porous matrix and dense layers on both side 

(as illustrated in Figure 3.27a) were tested with three-point bending set-up with respect 

to the creep rupture behavior of the dense layer.  

In fact, after testing, micro-cracks along the grain boundaries were observed on the 

tensile side surface of BSCF dense layer after creep test at 875 °C for two hours that can 

be associated with creep rupture of the dense layer, as shown in Figure 3.26. Similar 

creep damage features have been reported for dense BSCF bulk materials in literature 

[169]. But no obvious cracks could be found on the tensile side of the LSCF sample, even 

though the sample had a much larger apparent deformation than the BSCF sample (see 

central displacement in Table 2.3).  

  

(a) (b) 

Figure 3.26 Intergranular crack on the tensile side of BSCF dense layer after a creep 

test at 875 °C for two hours. 

 

But interestingly, a remarkable surface difference was observed for LSCF samples 

between as-received and tested samples, and between the tensile side and the 

compressive side of the tested sample. Figure 3.27(b) presents the dense layer surface of 
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as-received sample. The material is quite dense but pores / pin holes are observable. 

Figure 3.27(c) is the dense layer surface of tensile side after creep test at 955 °C for about 

one hour. Secondary phases were observed on the sample surface, large amount of 

small crystals inside of grain boundaries and also large crystals grown out of grain 

boundary. There are two kinds of secondary phases from the EDX results: the darkest 

phase is CoFeCrOx and the less dark phase is SrCrOx. And these two kinds of 

crystallites exist almost always as couple. Besides, the matrix grain surface become 

much rougher than in case of the as-received samples due to an apparent thermal 

etching effect, and no pores / pin holes observable anymore. Figure 3.27(d) corresponds 

to the dense layer surface of compressive side after creep test. Only a few secondary 

phase crystallites exist on the surface and only SrCrOx phases could be detected. Pores / 

pin holes were still observable and matrix grain surface roughness is similar as that of 

the as-received sample. Besides, Cr was only detected on the secondary phase particles 

but neither in the matrix LSCF nor the as-received materials. It proved that the Cr was 

not in the original material but coming from the test environment. 

It can be speculated that during the bending test at high temperatures, reacting with Cr 

impurities (may be induced from tooling processes or the testing environment), LSCF 

degraded into SrCrOx and CoFeCrOx phases.  

 



Chapter 3 Results and Discussion 

 

 120 

  

(a) (b) 

  

(c) (d) 

Figure 3.27 SEM images of LSCF sandwich sample: (a) cross-section with all three 

layers; (b) dense layer surface of as-received sample; (c) dense layer surface of tensile 

side after creep test at 955 °C with CoFeCrOx (darkest) and SrCrOx (less dark) 

particles; (d) dense layer surface of compressive side after creep test with a few 

SrCrOx particles. 

 

Sr surface segregation and Cr deposition and poisoning of LSCF have been the focus of 

a large number of studies regarding SOFC application. Jiang and Chen presented a 

detailed review on the studies of Cr deposition and poisoning of SOFC cathodes [170]. 

A lot of studies suggested that SrO species are originally enriched or segregated at the 

surface of LSCF, which can be the result of decreased stability at the surface and 

structural distortion due to the abrupt termination of the lattice structure [171]. Majkic 



3.1 La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) 

 

 121 

et al. outlined on the basis of experiments using creep quenched samples that Sr 

segregation in La–Sr–Fe–Cr–O is a stress induced phenomenon [172]. Araki et al. 

studied the Sr segregation for annealed LSCF with and without compression and 

concluded that compressive stress resulted in larger but fewer segregation particles [99], 

however, no Cr in the segregated particles was reported suggesting that the used 

experimental set-up did not contain Cr-containing metals, contrary to the set-up used in 

the current work. 

The reaction of gaseous Cr species and surface segregated SrO would lead to the 

formation of Sr-Cr-O nuclei on the surface of LSCF and subsequent crystallization and 

grain growth of SrCrO4 and /or Cr2O3 solid phases [170]. Recent study of the surface 

segregation and Cr deposition on dense LSCF bar samples showed that both cobalt and 

strontium are segregated out of the LSCF lattice, forming individual SrO and CoOx 

particles [170]. But no Cr detected on the segregated CoOx. The authors suggested that 

the Cr deposition on LSCF preferentially takes place on segregated SrO rather than on 

Co3O4 [170].  

However, in the present study, both SrCrOx and CoFeCrOx particles were detected on 

the tensile side of the bending samples but only SrCrOx particles on the compressive 

side where in general much less secondary phase particles were observed. Therefore, in 

agreement with literature [170], Cr deposition on LSCF preferentially takes place on 

segregated SrO rather than on CoOx. But when the condition is more befitting for Cr 

deposition, i.e. under tensile stress in this case, both processes can be observed. 

To verify the origin source of the Cr element and the influence of the stress status on the 

surface degradation of LSCF, further two tests were performed without the thermal 

couple in the heating zone with different loads (see Table 2.3 sample LSCF-4 and LSCF-

5). Both tests were performed with three-point bending set-up at 950 °C for 90 hours. 
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LSCF-4 sample was loaded at 8 N, while in the case of LSCF-5, no load was applied. 

After the tests, SEM investigations were carried out to characterize creep rupture and 

surface degradation effects. 

No crack/delamination was observed for both samples. But secondary phases were 

found for both samples on both dense and porous layers. EDX results showed that the 

secondary phase was FeCoOx. There was no trace of Cr in the samples with all EDX 

results. Compared to the previous test, the thermal couple was removed from the 

heating zone, which was speculated to be the Cr source. Therefore, these results 

proofed that the Cr observed in the initial test that was reported previously came from 

the testing environment, namely, the thermal couple in the furnace; it was not in the 

original as-received sample.  

 

 

(a) LSCF-4 secondary phase on porous layer grains 
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(b) LSCF-4 tensile side: very small secondary phase particles on grain surfaces 

 

(c) LSCF-4 compressive side: large secondary phase particles, FeCoOx. 

 

Figure 3.28 SEM images of LSCF-4 samples after three-point-bending test. 
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Figure 3.28 presents a SEM images of the sample LSCF-4 after the three-point-bending 

test at 950°C for 90 hours. Secondary phases, FeCoOx, were found on both dense and 

porous layers. In Figure 3.28a, the secondary phase particles have already segregated as 

clusters on the grain surface. On the tensile side (Figure 3.28b), only very small 

secondary phase particles were found on grain surfaces. On the compressive side 

(Figure 3.28c), large secondary phase particles were observed. 

Figure 3.29 shows the SEM images of LSCF-5 sample after annealing at 950°C for 90 

hours. Secondary phases, FeCoOx, were found on both dense and porous layers. On the 

upper side (compressive side in the three-point-bending setup, Figure 3.29a), secondary 

phase particles were found. On the bottom side (tensile side in the three-point-bending 

setup, Figure 3.29b), almost no secondary phase particles were observed, while pin 

holes can be seen on the sample surface. 

SEM investigations were also performed for an as-received sample and results are 

shown in Figure 3.30. Secondary phases, FeCoOx, were found on one side (Figure 3.30b), 

similar as in Figure 3.29a. On the other side (Figure 3.30a), no phase particles were 

observed, while pin holes can be seen on the sample surface, similar as in Figure 3.29b. 

No surface crack and no lay delamination were found for all sandwich samples. 

Therefore, creep rupture seems not to be a problem to LSCF at the considered 

temperature, although some relaxation effects due to the remnant porosity of the 

membrane layer cannot be ruled out. Secondary phase particles, FeCoOx, existed 

already on one side of as-received samples that were maybe generated during the 

sintering process when the respective surface was in contact with the sintering plates. 

Cr species observed in the initial test were introduced from the thermal couple in the 

furnace. When thermal couple was removed in the subsequent tests from the heating 

zone, no Cr observed on the samples anymore. 
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(a) LSCF-5, upper side: secondary phase particles, FeCoOx. 

 

 

(b) LSCF-5, bottom side: no secondary phase particle. 

Figure 3.29 SEM images of LSCF-5 samples after three-point-bending test. 
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(a) LSCF-6, side 1 

 

(b) LSCF-6, side 2: secondary phase particles, FeCoOx 

Figure 3.30  SEM images of as-received LSCF sample. 
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In this section, to assess the creep behavior of asymmetric membrane, sandwich 

samples of BSCF and LSCF were tested with three-point bending set-up with respect to 

the creep rupture behavior of the dense layer. Due to the large morphological changes, 

it is not possible to conclude if creep rupture can be critical for LSCF, however, the 

creep rupture features observed for the dense BSCF layer on porous substrate verifies 

that creep aspects are of concern for asymmetric membranes operated at elevated 

temperatures, especially when the substrate material possess higher deformation rates 

than the dense layer under the respective conditions. For the dense BSCF layer a creep 

rupture strain of 0.1 % was estimated based on creep rates and deformation using 

formulas given in literature [173], a value that is similar to creep rupture strains 

published for dense BSCF bulk material [115]. 

3.2. Freeze-cast 3 mol% Y2O3 doped ZrO2 (3YSZ)4 

3.2.1. Microstructure 

Figure 3.31 illustrates the polished surface perpendicular (a-e) and parallel (f) of the 

freezing direction of freeze-cast specimens. Porosity of specimen FC57, FC60, FC63, 

FC66 and FC70 was evaluated from Figure 3.31(a-e) by image analysis, yielding the data 

in Table 3.4. Due to the high anisotropy of the pores, the morphological properties were 

characterized by measuring length and width in areas of 1 mm2 using the micrographs 

presented in Figure 3.31(a-e). The measured values and the length/width ratio as 

function of the powder loading are given in Figure 3.32 as obtained from the images of 

polished cross-sections, Figure 3.31(a-e).  

                                                 
4 Section content published. Y. Zou et al. / Journal of the European Ceramic Society 37 (2017) 3167–3176. 

http://dx.doi.org/10.1016/j.jeurceramsoc.2017.03.056 
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Figure 3.31 Top view (a-e) and cross-section (f) SEM micrographs of polished freeze-cast 
specimens: (a) FC57, (b) FC60, (c) FC63, (d) FC66, (e) FC70 and (f) FC+TL after sintering 
6 h at 1390°C.

 

Figure 3.32 Pore size parameters as a function of solid loading and length/width pore 
ratio. 
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(a)                                                                                (b) 

Figure 3.33 Wall thickness measured by image analysis: (a) wall thickness of FC63, used 

the same image as Figure 3.31c; (b) wall thickness distribution of all freeze-cast samples. 

As can be seen in the Figure 3.32, the pore dimensions of samples FC57 and FC60 are 

similar both in terms of length and width, but from sample FC63, the increment of the 

powder loading of the slurries causes an increment in pore length and a slight decrease 

in width. Considering the length/width ratio of the pore morphology of each sample, it 

can be appreciated how this value remains practically constant for samples FC57, F60 

and FC63 and increases significantly for samples FC66 and FC70. 

Regarding the freeze-cast samples without structuring agent (a-e), it can be observed 

that the final microstructure is directly influenced by the initial powder loading since its 

increase induces (i) a decrease of the overall porosity, (ii) an increase of the pore length 

(perpendicular to freeze direction), (iii) an increase of the interlamellar spacing and wall 

thickness and (iv) appearance of surface roughness between the ceramic walls. The wall 

thickness distributions are given in Figure 3.33, furthermore, the calculated mean wall 

thicknesses are also given in Table 3.4. With the powder loading, from 57% to 70%, the 

overall porosity decreases from 65% to 43% and the wall thickness increases from ~4 to 

~10 µm. With the increase of powder loading, the size of these asperities increases up to 

bridging with the laminar wall facing it, thus changing the pore morphology. This 
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observation has already been reported in literature [174] for highly concentrated 

solutions and might be explained by the engulfment of particle agglomerates created by 

particles repelled from the ice-water interface and subsequent tip healing. Figure 3.31f 

shows the cross-section of the sample with 8YSZ top layer (FC+TL). The porosity was 

not calculated since it varies through the thickness, which is a natural appearance of 

freeze-cast sample. A fully densified 8YSZ top layer can be seen. 

Figure 3.34 shows typical microstructures for freeze-cast porous samples without 

structuring agent FC60 (Figure 3.34a) and with structuring agent FC60z (Figure 3.34b). 

The clear effect of the ZRA structuring agent onto the microstructure with the formation 

of a honeycomb-like structure (Figure 3.34b) very different from the similar sample 

produced without ZRA can be observed (Figure 3.34a). This structuring effect has been 

reported and detailed in [175], where the main explanation for such microstructure is 

the slower incorporation of water molecules onto the crystal surface resulting in a 

smooth internal and faceted growth. Details inside the lamellar structure walls were 

obtained using SEM of polished surfaces of FC60 (Figure 3.34c) and FC60z (Figure 

3.34d). FC60 (Figure 3.34c) reveals a high density inside the lamellar walls with porosity 

about 1%. Other freeze-cast samples without ZRA structuring agent showed similar 

structure and porosity values (images not shown). FC60z with structuring agent 

showed a high porosity inside the honeycomb-like structure walls (Figure 3.34d) of 

about ~ 28%. 
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Figure 3.34 Top view FESEM micrographs of (a) FC60 and (b) FC60z. SEM micrographs 

of polished surfaces of (c) FC60 and (d) FC60z. 

To assess the suitability of the freeze-cast material for the application in asymmetric 

material systems, mechanical tests have also been performed for the 3YSZ freeze-cast 

support (FC57) coated with an 8YSZ dense top layer. This assembly can be defined as a 

prototypical asymmetric membrane for oxygen separation from air. Indeed, the 8YSZ 

material has been chosen due to its high ionic conductivity in comparison with 3YSZ 

[176–178] and also for its chemical and thermal compatibilities which makes the 

manufacturing of membranes easier.  

Figure 3.31f shows the polished cross-section of the FC+TL sample and Figure 3.35 

illustrates details of the FC+TL sample in FESEM micrographs. It can be observed that 

the 8YSZ top layer is fully densified and homogeneous across its thickness, which is of 
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about 15 μm (Figure 3.35a). Figure 3.35b and c present the surface of the top layer 

where a full grain consolidation can be observed, hence confirming the previous 

observation. Circular pinholes of approximately a few nanometers diameter are 

observable in a larger scale view, but should not be a problem for the application since 

they do not reach through the layer thickness.  

 

Figure 3.35 FESEM micrographs of FC+TL sample after sintering 6 h at 1390ºC: Cross-
section of the 8YSZ dense top layer (TL) supported by a 3YSZ freeze-cast porous 
support (a), top views of the dense top layer (b and c).

 

Figure 3.36 FESEM micrographs of cross-section (a) and surface (b) of the pressed / 
sintered 3YSZ with PMMA as pore former agent sample after sintering 6 h at 1390°C. 

Figure 3.36 shows the microstructure of the PS42 sample elaborated by pressing and 

sintering a mixture of 3YSZ powder and PMMA pore former agent and after sintering 6 

h at 1390°C. As expected, the sample has a randomly organized porosity all over its 

(b)

5 μm

(a)

5 μm
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volume. The pores are small in the micron range (about 1-2 µm) in agreement with the 

initial PMMA polymeric powder and its average size of 1.5 µm.  

3.2.2. Mechanical properties 

The uncoated and coated 3YSZ substrates were tested with ring-on-ring bending tests 

(ROR). In addition, one complementary FC60 batch was tested via a proof-test 

procedure (labelled as FC60a and FC60b). Elastic moduli and fracture stresses were 

determined using linear bending theory. A detailed summary of tested specimens and 

results is shown in Table 3.4.  

Mean fracture stress and mean elastic moduli are plotted as a function of porosity in 

Figure 3.37. These two properties show the same tendency with respect to porosity. 

PS42 (data in dashed frame) with isotropic pore structure has, as might be expected, a 

higher mean elastic modulus (16.5 ± 3.1 GPa) and mean fracture stress (56.0 ± 8.7 MPa). 

Batches FC57, FC60, FC63, FC66 and FC70 have similar mean elastic moduli (3.0 ~ 5.7 

GPa) and mean fracture stress (16.1 ~ 19.8 MPa). In fact, mechanical properties did not 

change much within the considered porosity range (40 % ~ 65 %). FC60z, which has a 

hexagonal structure, has a lower mean fracture stress than FC60, which might be 

expected, since a) all the sharp angles in the hexagon shapes are stress concentrate point, 

which can then lead to fracture at a lower overall stress state; b) the high porosity inside 

the honeycomb-like structure walls (Figure 3.34d) leads to a further reduction of the 

mechanical strength. The large uncertainty associated with the presented elastic moduli 

and mean fracture stresses reflects also the limited number of available specimens. 
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Table 3.4 Details of tested specimens and results. 

 

Number of 

valid 

specimens 

Specimen 

Diameter 

[mm] 

Specimen 

Thickness 

[mm] 

Porosity 

[%] 

Mean wall 

thickness 

[μm] 

Mean 

elastic 

modulus      

E [GPa] 

Mean 

fracture 

stress               

σf  [MPa] 

Inverse 

relative 

uncertainty of 

mean fracture 

stress η 

FC57 7 15.3 ± 0.1 1.4 ± 0.1 65.1 ± 2.5 4.1 ± 2.3 3.0 ± 0.9 16.2 ± 3.7 4.4 

FC60 8 15.4 ± 0.1 1.5 ± 0.1 61.8 ± 3.0 4.6 ± 2.8 3.7 ± 0.4 19.0 ± 1.6 11.9 

FC63 8 15.4 ± 0.2 1.7 ± 0.3 56.9 ± 2.7 7.3 ± 2.6 3.3 ± 3.1 16.1 ± 12.2 1.3 

FC66 6 15.4 ± 0.1 1.7 ± 0.1 50.2 ± 2.2 10.6 ± 4.1 4.6 ± 2.0 19.8 ± 6.7 3.0 

FC70 8 15.5 ± 0.1 1.5 ± 0.2 43.5 ± 2.9 10.2 ± 3.9 5.7 ± 4.1 17.7 ± 5.5 3.2 

FC60a 15 15.1 ± 0.2 1.0 ± 0.1 61.3 ± 2.7 -- 2.6 ± 0.8 12.5 ± 3.1 4.0 

FC60b 13 15.1 ± 0.2 1.1 ± 0.1 61.3 ± 2.7 -- 2.9 ± 1.2 12.6 ± 3.3 3.8 

FC60z 5 16.5 ± 1.2 1.2 ± 0.1 45.7± 3.6 -- 1.3 ± 0.5 5.2 ± 1.1 4.7 

FC+T

L 
9 15.2 ± 1.1 1.5 ± 0.1 -- -- 6.4 ± 1.5 23.7 ± 3.2 7.4 

PS42 8 16.1 ± 0.1 2.0 ± 0.1 46.4 ± 2.3 -- 16.5 ± 3.1 56.0 ± 8.7 6.4 

 

For the application, it will be an advantage if weak specimens can be removed from the 

production via a pre-test, a mechanical proof test. In such a proof test a discrete stress is 

applied that is sufficient to remove for example all specimens with a failure probability 

of 1 %. However, the proof testing might induce additional defects or cause the growth 

of already existing defects via subcritical crack growth, hence, in the current study it 

was assessed if the proof testing affects the material or if it is a means to increase the 

reliability. Hence, a proof testing was additionally performed for batch FC60b to assess 

if proof testing affects the fracture stress and the proof test results were compared with 

group FC60a, which was tested with the normal ROR testing procedure. 
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Figure 3.37 Mean fracture stresses (σf) and elastic moduli (E) versus porosity. Framed 

data points correspond to pressed sample PS42 and others freeze-cast samples. 

In the proof test, specimens were first loaded (100 N/min) to 20 N (~12 MPa, failure 

probability ~50%), and then unloaded. If the specimens survive the pro-load, then the 

specimens were loaded again until fracture. The specimens that did not survive the pre-

load were taken out and defined due to their limited quality as unsuitable specimens. 

Weibull plots of FC60a and FC60b with and without proof test are compared in Figure 

3.38. Data labelled FC60a are the results for the normal test procedure, FC60b for all 

specimens from proof test no matter if the specimens fracture or not during the first 

loading, FC60ab combines the results from the former two groups and finally FC60b-

Proof presents the results only those specimens that survived the first loading. The 

characteristic strength and Weibull modulus of FC60a are 13.7 MPa and 4.6, of FC60b 

are 13.9 MPa and 4.3, of FC60ab are 13.8 MPa and 4.6. 
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FC60b-Proof results in larger characteristic strength (15.3 MPa) and Weibull modulus 

(6.6). However, if the unsuitable data are added to the data set, the entire combined 

group of all samples (FC60ab) reveals good agreement with the initial test sets (FC60a 

and FC60b) that did not consider a proof test, hence confirming that the pre-load in 

proof testing did not influence in the specimens via subcritical crack growth. Therefore, 

the test procedure and results are reliable, verifying that proof testing is able to remove 

samples with lower fracture properties, hence, can be used in application to improve 

the in-service reliability. 

 

Figure 3.38 Weibull plots of proof-testing verification procedure results. 
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3.2.3. Pressure drop measurement 

For the application as support of asymmetric gas-separation membranes, fast gas 

diffusion through the pore system in required, i.e. high gas permeance or low flow 

resistance. In general, it can be expected that, contrary to mean fracture stress and 

elastic modulus, the flow resistance decreases with increasing porosity. In the current 

work the flow resistance was assessed in terms of the pressure drop and permeation 

flux of the substrate materials.  

 
Figure 3.39 Pressure drop measurement and gas permeation flux results with inlet gas 

(a) Ar, (b) O2, (c) air and (d) N2. All samples have a thickness of 1 mm. 

Figure 3.39 presents the pressure drop results in argon (a), oxygen (b), air (c) and 

nitrogen (d) and the derived gas permeation flux. For all samples, the pressure drop 

increases with the total inlet gas flow rate and with the ionic radius of gas molecules, as 
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might be expected. In comparison with the specimens produced via pressing and 

sintering, the freeze-cast materials lead to significantly lower pressure drops. As an 

example, a pressure drop of more than 95 mbar/mm for the PS42 sample is observed 

when using 50mL/min of air as inlet flow in comparison with the 4 mbar/mm obtained 

under the same conditions for all freeze-cast samples. The maximum pressure drop 

obtained under air for freeze-cast supports is about 32 mbar/min corresponding to an 

inlet flow of 400 mL/min, still far of the 95 mbar/min previously detailed. These 

observations confirm the advantages of a freeze-cast hierarchical porous structure, 

where pressure loss can be strongly minimized and gas transport boosted. In terms of 

application, it means that higher operating flow rates can be obtained for the 

asymmetric membrane and thus a higher efficiency. 

 
(a) 



3.2 Freeze-cast 3 mol% Y2O3 doped ZrO2 (3YSZ) 

 

 139 

 
(b) 

Figure 3.40 Plots of (a) gas permeation flux in different atmospheres; (b) Porosity 

dependence of pressure drop in Ar along with elastic modulus E, mean fracture stress 

σf, inverse relative uncertainty of mean fracture stress η. 

Figure 3.40a presents the gas permeation flux of freeze-cast samples in different 

atmospheres as a function of porosity. Below 57% porosity, gas permeation flux 

increases with increasing porosity. A decrease in permeation was observed when the 

porosity increases beyond 57%, which can be explained by the change of morphology at 

this point (see Figure 3.31a-e). Samples with porosity higher than 57% (FC60, FC57) 

have smaller wall thickness and smaller interlamellar spacing compared to the other 

samples, which leads to a higher tortuosity of the microporous structure, and further 

leads to a decrease in permeability.  

Figure 3.40b gives the porosity dependence of pressure drop in Ar along with mean 

elastic modulus E, mean fracture stress σf and the inverse relative uncertainty of mean 

fracture stress η. The inverse relative uncertainty of the average fracture stress is shown 

as a measure of the dispersion of the fracture stress data. A non-monotonous decrease 
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of the all these properties was observed with increasing porosity, as might be expected. 

An increase occurs with respect to all properties beyond porosity 57%, where the 

morphology changes.  

It is certain that besides the overall porosity, there are other pore structure parameters 

that play an important role on the strength of macroporous materials, which may refer 

to pore geometry, pore orientation and wall thickness. In the work of Seuba et al. [138], 

they suggested that wall thickness is the key morphological parameter on mechanical 

reliability and strength of macroporous materials. Both Weibull modulus and strength 

tend to increase with smaller wall thickness and this can be attributed to the reduced 

probability of finding a catastrophic defect in thinner walls. Similar effects are observed 

in the present work, see Figure 3.40b, elastic modulus, mean fracture strength and 

inverse relative uncertainty of mean fracture stress (For large number of tested 

specimens the inverse relative uncertainty of the average fracture stress basically 

becomes very similar to the Weibull modulus of a fracture stress distribution [179].) all 

increase after the morphology change point beyond 57% porosity.  

Seuba et al. [138] also suggested that strength is mainly determined by the total porosity 

and the effect of morphological parameters like wall thickness is relatively weak. In the 

present work, the influence of the morphological parameters seems to be rather strong. 

Figure 3.40b suggests that fracture stress may decrease with porosity, but the huge 

variation may also indicate that there is no fracture stress change with respect to 

porosity in the range 43% to 65%. This behavior suggests that the effect of 

morphological parameters on fracture stress almost overwhelm the contribution of total 

porosity. This phenomenon may be explained by the ring-on-ring test obtained fracture 

stress characterized in the present work instead of compression strength reported in 

literature. When the samples are loaded along freezing direction in a bending test, with 

long pores, namely, long walls, tend to have a leverage effect, will break with lower 
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loads. Therefore, in a bending test, the pore geometry, besides wall thickness and total 

porosity, is also an important morphological parameter on mechanical properties. 

Strong increases in all parameters are observed when changing the porosity from 43 to 

57%. The smallest increase is in fact observed for the elastic modulus which in terms of 

mechanical properties is an integral property that depends on all pores and defects in 

the volume, where a recent work [180] reports that larger pores have a stronger effect 

than small pores. Stronger effects are observed for the strength which is via the weakest 

link related to the largest defects in the material and the Weibull modulus, which 

indicates the reliability being related to the distribution of defects, i.e. a higher value 

indicates a more homogeneous distribution of defects. Looking at the failure strain it in 

fact increases rather continuously with values of 0.31, 043, 0.49, 0.51 and 0.54% for the 

considered porosities, indicating increasing strain tolerance, however also proving that 

the effect causing the discontinuous behavior in the other parameters is not reflected in 

the failure strain. Overall the observed increase in mechanical parameters indicates that 

increasing the porosity to 57% leads to a more homogeneous pore distribution (Weibull 

modulus) with average smaller pores (elastic modulus) and reduced maximum defect 

size, i.e. less large pores (strength), this smaller pores then also lead to an increase in 

flow resistance. 

In this section, mechanical properties and pressure drop effect of freeze-cast porous 

3YSZ material were studied and discussed in terms of the influence of overall porosity 

and pore structure. Comparing with porous 3YSZ material from conventional pressing 

and sintering production process, freeze-cast material appears to have inferior 

mechanical properties, i.e. elastic modulus and fracture strength, but as an advantage of 

lower pressure drop effect. Hence, as expected, minimizing the pressure loss goes along 

with a reduction of the mechanical stability. An optimized balance between the two 

aspects is needed to be achieved which should be the aim of future developments. 
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However, although all properties reveal a similar tendency, there is no monotonous 

decrease with increasing porosity, as might be expected. It appears that there is not only 

an influence of the overall porosity, the pore structure seems also to play an important 

role, which may refer to pore size, pore orientation and wall thickness. 

3.3. Comparison of LSCF and 3YSZ porous substrates 

In the current thesis, porous LSCF and 3YSZ samples with different porosity and 

different porous structures were both produced as porous substrates material for OTM 

components. Whereas for LSCF the work mainly concentrated on the effect of the 

porous structures on creep behavior, for 3YSZ the studies focused on the correlation of 

mechanical parameters and functional gas permeability. As a substrate material 

selection criteria, the compatibility with the dense functional layer is of great 

importance. But in this section, these two porous substrate materials are compared with 

each other only according to their mechanical behavior despite of the dense functional 

layer. For a dense LCSF membrane layer, a porous LSCF layer has obvious advantages 

with respect to thermal expansion and processing (i.e. sintering, bonding), whereas for 

the application of other layers, i.e. Ce0.9Gd0.1O1.95−δ,  a careful consideration of advantages 

and disadvantages of different potential substrate materials, also with respect to the 

apparent mechanical behavior, is necessary 

At room temperature, the dense LSCF has elastic moduli between 60 – 180 GPa 

depending on the used measurement techniques (IET), see Figure 3.11, while dense 

3YSZ yields an value of around 220 GPa by IET [136]. Porous LSCF from tape-casting 

and freeze-casting with porosity about 45% have elastic moduli of about 12 GPa (see 

Figure 3.11), while freeze-cast 3YSZ with porosity 43% has an elastic modulus of around 

6 GPa and uniaxial pressed 3YSZ with porosity 46% possesses an elastic modulus of 
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approximately 16 GPa, see Figure 3.37. Hence, in a dense state 3YSZ yields higher 

values, whereas in a porous state LCSF indicates a higher elastic modulus, however, 

note, as recently verified by Zhang et al. [180] such elastic moduli – porosity 

dependencies depend strongly on the actual pores size. 

In a ring-on-ring bending test, dense LSCF showed a bending fracture strength of 

approximately 70 MPa, while the tape-cast 46% porous LSCF revealed a strength of 

about 20 MPa  [32]. In the cyclic compressive loading test illustrated in Figure 3.8, 

freeze-cast LSCF with porosity about 44% showed an initial crack under a loading of ~ 

60 MPa for a longitudinal strain of -0.315 % and until a loading to about 98.0 MPa, the 

specimen was gradually crushed. Dense 3YSZ revealed a very high strength of about 

700 MPa with biaxial flexure test [135]. For freeze-cast 45% porosity 3YSZ under a 

compressive load, the crashing strength is between 50 – 300 MPa regarding to different 

porous structures, see Figure 1.23 [137]. In a ring-on-ring bending test, the freeze-cast 

3YSZ samples with porosity 43 – 65% had a fracture strength about 20 MPa, while the 

uniaxial pressed sample with 46% porosity had a much higher strength about 55 MPa, 

see Figure 3.37. 

Even though dense 3YSZ has much higher elastic modulus and fracture strengths than 

dense LSCF, considering porous material, the porous 3YSZ shows no apparent 

advantages over LSCF. When only considering the freeze-cast material, 3YSZ show an 

even smaller elastic modulus than LSCF. With respect to fracture strength, porous 3YSZ 

shows similar values as porous LSCF. It indicates that for high porosities (˃ 40%), the 

material with the higher bulk properties loses its mechanical advantages and the 

differences in mechanical behavior diminishes compared to that of dense materials. For 

porous materials, the overall fractional porosity and the porous structure are the most 

important parameters influencing the elastic modulus and fracture strength. Besides, 

smaller elastic modulus means smaller strain tolerance for similar fracture strengths, i.e. 
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smaller elastic modulus means larger fracture strain. When the material is under a 

strain controlled loading status, the freeze-cast 3YSZ might be survivor, however, 

design of membrane units also requires consideration of Weibull moduli and failure 

probabilities for room and application relevant temperatures, hence, requiring test 

series of larger number of specimens of the actual batches produced for the particular 

purpose since processing is known to be a factor that affects strongly these parameters. 

Comparing the creep rates of LSCF (Figure 3.21) and 3YSZ (Figure 1.27 [93]), LSCF 

yields much higher values than 3YSZ, i.e. about 2 to 3 orders of magnitude higher. 

Under application relevant temperatures, the creep deformation can release the stresses 

induced to the multi-layer component like an OTM and SOFC module. But on the other 

hand, for long-term operation, the creep deformation will change the geometry of the 

component and further can result in creep rupture and the component might lose its 

geometry integrity and cannot keep its functionality. Therefore, the 3YSZ material with 

relative low creep rates and known as super-plastic ceramic under high temperatures 

can be advantageous as a substrate material keeping its geometry integrity under long-

term operation conditions. 

Overall, only considering the mechanical properties like elastic modulus, fracture 

strength and creep responses, the porous freeze-cast 3YSZ, with larger fracture strain, 

lower creep rates and possible larger creep rupture strain, might be the better candidate 

as porous substrate material in OTM application. 
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Chapter 4.           

Conclusions 

In this thesis the mechanical behaviors of selected membrane and substrate materials 

have been compiled and documented.  

• High temperature XRD of LSCF 

The aim was to verify the exact rhombohedral - cubic phase change temperature of 

LSCF. The phase change completes at 750°C (50 K to 100 K temperature steps). 

Furthermore, at 650°C no reflex splitting of the cubic 3 3 2 – peak can be seen anymore 

(no image shown), which again indicates a phase change between 650 °C and 750 °C. 

• Elastic and fracture properties of freeze-cast LSCF 

Elastic parameters, namely Young’s, shear and bulk moduli as well as Poisson’s ratio of 

freeze-cast LSCF were investigated at room temperature by a quasi-static hysteresis 
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compression test. The evolution of these elastic parameters is studied as a function of 

the longitudinal strain. The elastic parameters showed extrema related to ferroelastic 

domain switching. Young’s and shear moduli revealed minimum values, while bulk 

modulus and Poisson’s ratio demonstrated maximum values due to the transverse 

strain contributed by ferroelastic domain switching. 

• Ferroelastic behavior of porous LSCF 

Compression stress-strain curves at room temperature revealed a non-linear behaviour 

similar as reported for dense LSCF58. Such a phenomenon can be explained by the 

ferroelasticity of the perovskite material in its low temperature stable rhombohedral 

phase, which was also reflected in a distinctive ferroelastic creep.  

• Creep properties of tape-cast, freeze-cast, and pressing LSCF 

LSCF specimens prepared with uniaxial pressing, tape-cast, and freeze-cast at IEK-1, 

Forschungszentrum Jülich GmbH, which had different porosities and pore structures, 

were investigated via an uniaxial compression test for high temperature creep 

behaviour. All porous samples have higher creep rates than the dense material, as 

might be expected, and all of the creep rates exceed the 1 % creep strain per year criteria 

(3.2×10-10 s-1), which is expected to be critical for application. Regarding different 

synthesis methods, it seems that the tape-cast material has the lowest creep rate 

compared to the other two methods with similar porosities, while the specimen from 

uniaxial pressing leads to the highest creep rates. Reason for the difference between the 

different methods is not yet clarified and should be the aim of future studies.  

Since the creep deformation appears to exceed an acceptable level, a strategy for 

reduction of the creep deformation should be a decrease of the operation temperature 

and/or operational loads by a respective design of the membrane module. However, 
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lower flux in case of lower temperature has to be considered. In order to compensate 

the material creep, a smart design of the support microstructure might be an option as 

reported for a new generation of supports with straight pore channels perpendicular to 

the load direction, manufactured by freeze drying. 

• Creep rupture of LSCF 

To assess the creep behavior of asymmetric membrane, sandwich samples of BSCF and 

LSCF were tested with three-point bending set-up with respect to the creep rupture 

behavior of the dense layer. Due to the large morphological changes, it is not possible to 

conclude if creep rupture can be critical for LSCF, however, the creep rupture features 

observed for the dense BSCF layer on porous substrate verifies that creep aspects are of 

concern for asymmetric membranes operated at elevated temperatures, especially when 

the substrate material possess higher deformation rates than the dense layer under the 

respective conditions. 

• Elastic and fracture properties of freeze-cast 3YSZ 

Mechanical properties and pressure drop effect of freeze-cast porous 3YSZ material 

were studied and discussed in terms of the influence of overall porosity and pore 

structure. Comparing with porous 3YSZ material from conventional pressing and 

sintering production process, freeze-cast material appears to have inferior mechanical 

properties, i.e. elastic modulus and fracture strength, but as an advantage of lower 

pressure drop effect. Note, although the low strength indicates inferior performance 

under external mechanical loads as might be induced by pressure differences or 

handling, it can be easily derived that the freeze-cast material has a rather high critical 

strain compared to tape-cast material, indicating that under the action of thermally 

induced strains (differences in thermal expansion), the material can be even superior. 

Hence, as expected, minimizing the pressure loss goes along with a reduction of the 
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mechanical stability. An optimized balance between the two aspects is needed to be 

achieved which should be the aim of future developments. However, although all 

properties reveal a similar tendency, there is no monotonous decrease with increasing 

porosity, as might be expected. It appears that there is not only an influence of the 

overall porosity, the pore structure seems also to play an important role, which may 

refer to pore size, pore orientation and wall thickness. 
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Appendices 

A.1 XRD measurement details. 

Table A.1 Initial measurement from RT to 800°C, sample on PtRh heating tape. 

Scan-No. T 
 Heating 

rate 
2θStart 2θend Δ2θ t/step 

Holding 

time 
Measure 

time 

  °C  K/s ° °  s s s s 

1 25  
 

20 70 0.02 3 0 7500 

2 100  0.1 20 70 0.02 3 600 7500 

3 200  0.1 20 70 0.02 3 600 7500 

4 300  0.1 20 70 0.02 3 600 7500 

5 400  0.1 20 70 0.02 3 600 7500 

6 500  0.1 20 70 0.02 3 600 7500 

7 600  0.1 20 70 0.02 3 600 7500 

8 700  0.1 20 70 0.02 3 600 7500 

9 800  0.1 20 70 0.02 3 600 7500 

10 700  0.1 20 70 0.02 3 600 7500 

11 600  0.1 20 70 0.02 3 600 7500 

12 500  0.1 20 70 0.02 3 600 7500 

13 400  0.1 20 70 0.02 3 600 7500 

14 300  0.1 20 70 0.02 3 600 7500 

15 200  0.1 20 70 0.02 3 600 7500 

16 100  0.1 20 70 0.02 3 600 7500 

17 25  20 70 0.02 3 600 7500   

  

 

    

Total time:   42:10:50 h 
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Table A.2 Second measurement from RT to 1000°C, sample on Pt heating tape. 

Scan-No. T Heating rate 2θStart 2θend Δ2θ t/step 
Holding 

time 
Measure 

time 

 
°C K/s ° ° s s s s 

1 25 20 80 0.02 5 0 15000 
 

2 25 133 141 0.02 10 0 4000 
 

3 100 0.1 20 80 0.02 5 600 15000 
4 100 0.1 133 141 0.02 10 0 4000 
5 200 0.1 20 80 0.02 5 600 15000 
6 200 0.1 133 141 0.02 10 0 4000 
7 300 0.1 20 80 0.02 5 600 15000 
8 300 0.1 133 141 0.02 10 0 4000 
9 400 0.1 20 80 0.02 5 600 15000 
10 400 0.1 133 141 0.02 10 0 4000 
11 500 0.1 20 80 0.02 5 600 15000 
12 500 0.1 133 141 0.02 10 0 4000 
13 600 0.1 20 80 0.02 5 600 15000 
14 600 0.1 133 141 0.02 10 0 4000 
15 650 0.1 20 80 0.02 5 600 15000 
16 650 0.1 133 141 0.02 10 0 4000 
17 700 0.1 20 80 0.02 5 600 15000 
18 700 0.1 133 141 0.02 10 0 4000 
19 750 0.1 20 80 0.02 5 600 15000 
20 750 0.1 133 141 0.02 10 0 4000 
21 800 0.1 20 80 0.02 5 600 15000 
22 800 0.1 133 141 0.02 10 0 4000 
23 850 0.1 20 80 0.02 5 600 15000 
24 850 0.1 133 141 0.02 10 0 4000 
25 900 0.1 20 80 0.02 5 600 15000 
26 900 0.1 133 141 0.02 10 0 4000 
27 950 0.1 20 80 0.02 5 600 15000 
28 950 0.1 133 141 0.02 10 0 4000 
29 1000 0.1 20 80 0.02 5 600 15000 
30 1000 0.1 133 141 0.02 10 0 4000 
31 900 0.1 20 80 0.02 5 600 15000 
32 900 0.1 133 141 0.02 10 0 4000 
33 800 0.1 20 80 0.02 5 600 15000 
34 800 0.1 133 141 0.02 10 0 4000 
35 700 0.1 20 80 0.02 5 600 15000 
36 700 0.1 133 141 0.02 10 0 4000 
37 600 0.1 20 80 0.02 5 600 15000 
38 600 0.1 133 141 0.02 10 0 4000 
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39 500 0.1 20 80 0.02 5 600 15000 
40 500 0.1 133 141 0.02 10 0 4000 
41 400 0.1 20 80 0.02 5 600 15000 
42 400 0.1 133 141 0.02 10 0 4000 
43 300 0.1 20 80 0.02 5 600 15000 
44 300 0.1 133 141 0.02 10 0 4000 
45 200 0.1 20 80 0.02 5 600 15000 
46 200 0.1 133 141 0.02 10 0 4000 
47 100 0.1 20 80 0.02 5 600 15000 
48 100 0.1 133 141 0.02 10 0 4000 
49 25 20 145 0.02 10 600 62500 

Total time:  153:14:10 h 

A.2 Stress exponent calculations for LSCF creep 

Table A.3 Summary of LSCF high temperature creep stress exponents. 

Temperature [°C] Average stress exponent n 
Dense 850-1000 1.37 

TCL 800-1000 1.82 
WP90 800-1000 2.12 
WP70 800 1.79 
FC30V 850-1000 2.35 
FC25V 850-1000 2.07 
FC25P 850-1000 1.52 

 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

 

 

(g)  

Figure A.1 Natural exponential plots of creep rate on stress for stress exponent 
calculation. 
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