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ABSTRACT
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A Unique Bond: Twin Bereavement and 
Lifespan Associations of Identical and 
Fraternal Twins*

Empirical analyses of twin mortality often use models with dependent unobserved frailty 

terms capturing genetic and childhood environmental determinants. This ignores that 

mortality rates can be co-dependent due to bereavement effects, i.e. to a time-dependent 

causal effect of the loss of the co-twin on the mortality rate of the surviving twin. We 

develop a novel methodology and perform an empirical analysis based on a comprehensive 

model incorporating both types of dependence. We prove full identification without 

functional-form restrictions and we estimate models with data on twin pairs from the 

Danish Twin Registry. Among men, the loss of an identical co-twin at age 75 causally 

reduces the remaining lifetime on average by more than a year. This bereavement effect 

is less severe among non-identical twins or if the loss occurs at a higher age. Estimates 

of correlations between the frailty terms by zygosity and the ensuing implications for the 

relative importance of mortality determinants are highly sensitive to whether bereavement 

is taken into account.
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1 Introduction

Twin mortality has been an important research topic since many decades. First and fore-

most, the comparison of the association of lifetimes of identical twins with the association

of lifetimes of fraternal twins is informative on the role of genetic mortality determi-

nants. This extends to cause-specific mortality and rates at which illnesses occur. In the

literature, the most elaborate approach involves the estimation of bivariate survival mod-

els with unobserved mortality determinants called “frailty terms”. The latter terms are

individual-specific but may be stochastically related among twins, and the correlation is

allowed to depend on the zygosity of the twin pair (e.g., see Hougaard et al., 1992a,b;

Yashin and Iachine, 1995a; Wienke et al., 2001). Frailty terms allow for a convenient in-

terpretation as a summary measure of the effects of the underlying genetic predisposition

and childhood environmental determinants. In bivariate models with frailty terms, the

association of lifetimes of twins is driven by the correlation of their frailty terms. If frailty

terms are more strongly correlated among identical twins then this indicates that genetic

background is important.

However, there is a second major reason for why twin lifetimes can be correlated, and

this concerns causal bereavement effects of the loss of the co-twin on the mortality rate

of the surviving twin. Due to the unique bond that twins share, the loss of the co-twin

can have severe effects on the surviving twin. Studies of bereaved twins document that

the loss of the co-twin causes psychological stress that can also lead to a health deteri-

oration.1 Ultimately this may lead to a higher mortality rate. Of course one may think

of other events in the adult life of twins that affect the association of their lifetimes, but

bereavements are particularly relevant for the analysis of mortality because by definition

bereavements mostly occur in the age span where mortality rates are high, that is, at high

ages. This is why bereavements are potentially important drivers of lifetime associations

especially among the elderly. Ignoring bereavement effects in twin mortality analysis may

lead to biased results. To see this, note that bereavement effects may be present even if

1Segal et al. (1995, 2002); Segal and Ream (1998) and Woodward (1988) document how the loss of the
co-twin can cause severe emotional stress. Besides feelings of despair, depersonalization (numbness, shock),
rumination (preoccupation with the deceased) and loss of control, bereaved twins also show symptoms
such as loss of appetite and vigor and other physical symptoms (Segal and Blozis, 2002). Chronic stress
due to bereavement is a major cause of disease; see e.g. Stroebe and Stroebe (1987); Stroebe et al. (1993),
Sanders (1980; 1999) and Selye (1936; 1955).
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genetic and early-life environmental characteristics are irrelevant. In that case, the as-

sociation of twins’ lifetimes may be wrongly attributed to those characteristics. What is

more, in real life, bereavement effects may be stronger among identical twins because of

how their social environment reacts to the loss, and this strengthens the association of

their lifetimes, which in turn may lead to incorrect inference on the effects of genes on

mortality.2

Adverse bereavement effects on mortality are of interest in their own right. They

involve health care costs and they may inspire policymakers to design treatments to

ameliorate their size. Twin bereavement effects on mortality have been analyzed by e.g.

Tomassini et al. (2001; 2002) and Hougaard et al. (1992a). However, these and other

existing empirical studies on this topic base their results on the estimation of univariate

survival models for one member of each twin pair, where an indicator of the realized

mortality of the co-twin is included as an exogenous time-dependent covariate. Clearly, this

ignores longevity dependence due to correlated unobserved individual characteristics. This

drawback is the mirror image of the above-mentioned limitation of the frailty approach,

namely that one of the two types of dependence of lifetimes is ruled out by construction.3

As already pointed out by Hougaard et al. (1992a), this may bias the results.

Given the interest in each type of dependence between twin lifetimes, there is a need for

an integrative approach that provides consistent estimates for each type of dependence in

the presence of the alternative type. Indeed, in her discussion of Hougaard et al.’s (1992a)

paper, Flournoy (1992) argues that a super-model is needed that accounts for both effects

simultaneously: the bereavement effect and the influence of unobserved correlated factors.

This is a challege precisely because it is difficult to disentangle two reasons for one observed

association.

This paper develops and applies such an integrative approach. We introduce a bivari-

ate survival model for twin lifetimes which incorporates bereavement effects as well as

2One could claim that stronger bereavement effects among identical twins are to some extent due to
genetic factors. However, this stretches the range of what constitute genetic effects and this would limit
the usefulness of twin studies to assess the contribution of genetic factors in the population as a whole.
We return to this in the final section of the paper.

3Tomassini et al. (2002; 2001) match each bereaved twin to two unbereaved twins based on zygosity,
age, and sex and compare the two resulting mortality rates after the age when bereavement takes place.
This ignores the endogeneity of the time of bereavement caused by shared genetic factors, or in other
words, the dependence of the underlying frailty terms.
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unobserved frailty terms that may capture genetic and childhood effects. As seen from a

single twin, the model includes mortality of the co-twin as a time-dependent covariate.

In addition, each of the twins’ own mortality rates is allowed to depend on an individual-

specific frailty term that may be correlated with the co-twin’s frailty term. Note that this

accounts for the endogeneity of the co-twin’s mortality as a covariate. Each frailty term is

assumed to affect the corresponding individual mortality rate in a multiplicative fashion.

Thus, the model can be seen as an extension of the familiar Mixed Proportional Hazard

(MPH) model (see e.g. Van den Berg, 2001).

In the paper we formally prove that with minimal covariate variation between twin

pairs, all components of the model are identified from the observable joint distribution of

twin lifespans conditional on observed covariates. This includes the identification of the

bereavement effect and the joint distribution of the frailty terms. Identification does not

require covariate values to differ by twin within the twin pair, and it does not require

functional-form assumptions on the force of mortality or the distribution of the frailty

terms. In general, in the estimation of models with unobserved confounders, identification

is a valuable property, as it implies that the results are not driven by such functional-form

assumptions. Our identification result extends to cause-specific mortality.

We estimate the model with data on 9,270 twin pairs in the Danish Twin Registry

born in Denmark between 1873 and 1930. This includes 2,808 identical (monozygotic) and

6,462 fraternal (dizygotic) pairs. For our purposes, a major advantage of these cohorts is

that right-censoring of lifetimes is relatively rare. Indeed, 81% of the twins are observed

to die before 2004. In the data, the observed covariates do not vary within same-sex twin

pairs.4

We also examine whether the estimated correlation of the twins’ frailty terms is sen-

sitive to whether bereavement is taken into account or not, for each zygosity. More in

general, we show how estimated effects change when one of the two sources of lifetime

dependence is ignored.

At least three strands of literature are connected to our study. First, as already

mentioned, there is the literature on bivariate survival models with unobserved frailty

terms, including applications to twin mortality. In the twin context, this adjusts standard

4The majority of the data comprises same-sex twin pairs, since collection of their records had priority
in the early years of the Twin Registry which is the first ever nationwide twin register in the world.
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variance-decomposition methods to deal with mortality outcomes. Secondly, there is the

wider literature on bereavement effects on mortality. Most of this literature concerns con-

jugal bereavement (e.g., see Bowling, 1987; Lichtenstein et al., 1998; Lindeboom et al.,

2002; Manor and Eisenbach, 2003; Van den Berg et al., 2011). These studies tend to

find sizeable effects, reflecting both economic loss and emotional hardship. In contrast to

spouses, most adult twins have separate families and separate economic support systems,

so that twin bereavement effects can be expected to mostly reflect emotional hardship.

This suggests that by comparing the magnitudes of conjugal and twin bereavement effects,

we may identify the relative importance of the emotional component in the total conjugal

effect. As such, our analysis makes a contribution to wider bereavement literature.

A third relevant body of work concerns the identification of bivariate duration models

that contain causal effects as well as unobserved heterogeneity. In the so-called Timing-

of-Events approach, the realization of some event (say, a treatment) may causally affect

the hazard rate of some duration outcome variable. The duration until treatment has its

own hazard rate, and the Timing-of-Event model postulates MPH-type specifications for

each of the two hazard rates, where the unobserved determinants of the hazard rates may

be mutually dependent. Clearly, this resembles our twin bereavement model. Abbring and

Van den Berg (2003) prove identification without functional-form assumptions. However,

this requires observed covariates to have different effects on each of the two hazard rates

of the individual. In applications of the latter model, it generally does not make sense

to expect covariate effects on treatment and outcome to be identical. In contrast, in

our current setting, same-sex twins have identical covariate values. Consequently, their

identification result cannot be straightforwardly extended to our setting. At the same time,

in our setting, the two hazard rates naturally have symmetric specifications as functions

of their determinants, whereas the Timing-of-Event model does not assume symmetry.5

The outline of the paper is as follows. In Section 2 we introduce the mortality model

with bereavement effects and we prove identification. Section 3 presents the twin dataset

from the Danish Twin Registry while Section 4 discusses the estimation method. Subse-

quently, the estimation results are in Section 5. Section 6 concludes.

5Interestingly, the Timing-of-Events approach has been fruitfully used to study conjugal bereavement
effects on mortality, where there is no compelling reason to impose symmetry restrictions across the male
and female mortality rates, and where covariate values differ within couples (see Van den Berg et al.,
2011; Gourieroux and Lu, 2015; Lu, 2017).
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2 Model and identification result

In this section we introduce a new bivariate model for twin life-spans. Each twin is exposed

to the risk of dying at every age t ∈ [0,∞), given that he has reached that age. Since we

are interested in measuring the causal effect of the end of one life-span on the subsequent

residual life-span of the other (the bereavement effect), we specify the mortality rate (or

“hazard”) of each twin j = 1, 2 conditional on the realization of the life-span of the co-

twin Tk = tk. In addition, we condition on observable characteristics x of the twin pair

and the realization of frailty terms Vj.

Model 1. The hazard rates of T1|(T2 = t2, x, V1) and T2|(T1 = t1, x, V2) are given by

θ(t|T2 = t2, x, V1) = λ(t)φ(x)δ(t, t2, x)I(t>t2)V1

θ(t|T1 = t1, x, V2) = λ(t)φ(x)δ(t, t1, x)I(t>t1)V2,

where the vector of frailties V = (V1, V2)′ is assumed to be drawn from a bivariate distribu-

tion G(v1, v2) and the bereavement effect function is multiplicative in two of its arguments

δ(t, tk, x) = δa(t− tk)δb(tk, x).

The function λ(t) captures the dependence of the mortality hazard on age and φ(x)

incorporates the effect of covariates. I(t > tk) denotes the indicator function that is equal

to one when the loss of the co-twin has occurred and zero otherwise. As long as both twins

are alive, each twin j faces the mortality hazard λ(t)φ(x)Vj. Once the co-twin has died,

the mortality hazard of the surviving twin is rescaled by δa(t− tk)δb(tk, x), reflecting the

bereavement effect. Here, the first multiplicative term δa describes the dependence of the

bereavement effect on the time passed since the loss occurred, while δb accounts for the

dependence on the age at the time of bereavement and covariates x.6

Conditional on observed twin pair characteristics x, Model 1 allows for two types of

dependencies between life-spans T1 and T2. The first is introduced through the joint dis-

tribution of V1 and V2 capturing similarities in genetic makeup and childhood experiences

of the two twins. The second is introduced through the function δ(t, tk, x) reflecting the

6The identification result below can be straightforwardly extended to cases where the bereavement
effect function differs between the two durations. Thus, if the two spells can be distinguished in the data,
it is possible to identify two separate bereavement effects δ1(t, t2, x) and δ2(t, t1, x).
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effect of bereavement. Note that conditional on x and V , the only dependence between

life-spans T1 and T2 comes from the bereavement effect function δ(t, tk, x). Consequently,

this function can be given a causal interpretation as the effect of the end of one life-span

on the remaining length of the other.

The bereavement effect in Model 1 can be said to generate a local dependence between

T1 and T2, as it only affects the hazard rate of the surviving twin after the loss has

occurred. In contrast to this, the time-constant unobserved factors V give rise to a global

dependence. This reflects the fact that genetic dispositions and characteristics shaped

during childhood influence the mortality hazard of the two twins over their whole lifespan.

The difference between global and local dependence is key to the identification of our

model.

The local nature of the bereavement effect in Model 1 rules out anticipatory effects. In

particularly, it rules out a scenario in which a twin anticipates the future date of death of

his co-twin and is affected by this knowledge to the degree that his own mortality hazard

today is affected. Furthermore, the unobservable influences V are assumed to be time-

constant, thus ignoring twin-pair specific unobservable shocks, such as local epidemics or

major events within the extended family.

Model 1 is a symmetric version of the Timing-of-Events model (Abbring and Van den

Berg, 2003) in the sense that the functions λ, φ and δ are identical for the two twins.

Moreover, the lifespan of each twin can potentially be affected by the death of its co-twin.

We assume that the bereavement effect function is multiplicative in a function of the time

t−tk since the bereavement. We do not impose that x varies within twin pairs. As we shall

see, in the 1873-1930 birth cohorts in our data, only pair-specific covariates are observed,

with the exception of the twin’s sex which is the same within the majority of twin pairs. If

the value of φ(x) is identical within each twin pair then the identification approach used

for the Timing-of-Events model cannot be adopted.

As prerequisites for identification of Model 1, we impose the following regularity as-

sumptions:

Assumption 1. The vector x is k-dimensional with 1 ≤ k <∞ and φ : X → U ⊂ (0,∞).

The set X ⊂ Rk contains at least two values.

Assumption 2. δa : R+ → (0,∞) with lims↓0 δa(s) <∞ and for δb : [0,∞)×X → (0,∞)
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it holds that @ c ∈ (0,∞) s.t. δb(0, x) = cφ(x)−1 ∀x ∈ X .

Assumption 3. For the function λ : [0,∞) → (0,∞) it holds that for all t ∈ (0,∞)

lims↓t λ(s) <∞ and has integral Λ(t) :=
∫ t

0
λ(τ) dτ <∞, ∀ t ≥ 0 and further

Λ̃(t, s) :=

∫ t

s

λ(τ)δa(τ − s) dτ <∞, ∀ {(t, s) ∈ [0,∞)2 : t > s}.

For some a priori chosen t0, t∗0 and x0, it holds that
∫ t0

0
λ(τ) dτ = 1,∫ t∗0

0
λ(τ)δa(τ) dτ = 1 and φ(x0) = 1.

Assumption 4. V is an R2
+-valued time-invariant random vector (V1, V2)′ and is drawn

from a distribution G which does not depend on x and has a finite positive mean. G is

such that P (V ∈ (0,∞)2) = 1. Furthermore, for all (t, x) ∈ (0,∞)×X
lims↓tE(Vj|Tj ≥ s, Tk = t, x) = E(Vj|Tj ≥ t, Tk = t, x).

Assumption 5. ∃ an open set Ψ ∈ (0,∞)2 with t1 > t2 ∀ (t1, t2) ∈ Ψ s.t. at all points

(t1, t2) ∈ Ψ the function ∆(t1, t2, x) = Λ̃(t1, t2)δb(t2, x) is continuously differentiable with

respect to t2.7

For Assumption 1 a single dummy variable x suffices that does not need to vary across

the two hazards, provided that it has an effect. In such a case, φ(x) takes on only two

values on X . Assumption 3 restricts the baseline hazard function to be continuous from

the right for all t ∈ (0,∞). Note that this does not rule out the piecewise constant case or

most functional forms. Furthermore, given that this property only has to hold for strictly

positive values, functional forms with lims↓0 λ(s) = ∞ such as the Weibull function are

not ruled out. However, the magnitude of the instantaneous bereavement effect must have

a finite limit. Consequently, functional forms of δa with lims↓0 δa(s) =∞ are excluded in

Assumption 2.

Proposition 1. If Assumptions 1-4 are satisfied, then the functions λ, φ, δa, δb from Model

1 are non-parametrically identified from the distribution of (T1, T2)|x.

The proof is in Appendix A.1 (for λ and φ) and Appendix A.2 (for δa and δb). Note that

G remains undetermined in Proposition 1. This leads to:

7Alternative assumption 5: The open set Ψ ∈ (0,∞)2 could also exist for t1 < t2 ∀ (t1, t2) ∈ Ψ s.t. at
all points (t1, t2) ∈ Ψ the function ∆(t2, t1, x) is continuously differentiable with respect to t1.
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Proposition 2. If Assumptions 1-5 are satisfied, then Model 1, which is characterized

by the functions G, λ, φ, δa, δb, is non-parametrically identified from the distribution of

(T1, T2)|x.

The proof is in Appendix A.3.

In the empirical analysis with models that contain unobserved confounders, non-

parametric identification is a valuable property, as it implies that the results are not fully

driven by ad hoc functional-form assumptions. If the model is not non-parametrically

identified then the estimation of a model with parametric functions G, λ, φ, δa, δb may

give a priori sensible point estimates but these would be fully driven by the parametric

functional forms. In particular, estimation with a different set of parametric functions

may lead to identical point estimates.

We make two minor comments about the identification results. First, the results can

be applied to the study of cause-specific mortality. The hazard rates then represent rates

of mortality due to a specific cause. This requires that death due to other causes can

be regarded as independent right-censoring of the duration until death to that particu-

lar cause. Secondly, the proofs of the propositions do not use the assumption that the

marginal distributions of the frailty terms V1 and V2 are identical. Hence, this assumption

is superfluous. For cases where there is some natural ordering of twins within twin pairs,

this motivates a model extension in which the marginal distributions are allowed to be

different. Alternatively, this overidentifying restriction may be used for a model specifica-

tion test. It may be an interesting topic for further research to see if the overidentifying

information can be used to identify models that are less restrictive insome other direction.

3 The Danish Twin Registry

The Danish Twin Registry was first established in 1954 with the goal of following up on

all same-sex twins who were born since 1873 and who survived as twins at least until

the age of 6. However, there is some selectivity in the very early cohorts, with twins who

died young less likely to be included in the sample. Furthermore, covariates are barely

observed if the pair did not survive as twins until January 1, 1943. Therefore, we restrict

attention to twin pairs still alive at that date. We use cohorts from 1873 to 1930, assuring
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that we observe uncensored lifespans for most twins before January 1, 2004, when our

window of observation ends. While the registry contains some different-sex twin pairs,

most effort was devoted to following up on same-sex and particularly monozygotic twin

pairs. We refer to Skytthe et al. (2002) and Hauge et al. (1968) for detailed descriptions

of the registry and the way in which it has been collected.

The resulting sample includes 2,870 monozygotic and 6,625 dizygotic twin pairs, 1,239

of which are different sex twin pairs. Twins still alive on January 1, 2004 or who emigrated

at a prior date have right-censored lifespans. Overall, the death date is observed for 80%

of the individuals in our sample. For each twin pair in our sample, we observe zygosity,

sex, region of birth and date of birth. The information on zygosity has been shown to be

highly accurate, with a misclassification rate below 5% (see Holm, 1983; Lykken, 1978).

We restrict attention to an indicator for being born in Copenhagen to distinguish between

rural and urban areas in Denmark. Additional distinctions between small towns and rural

areas outside of Copenhagen proved to be uninformative.

In the Registry, each twin pair’s two members are distinguished by labels 1 and 2.

Since the data were manually copied from parish books, and since traditionally the first-

born twin member was recorded first, it seems likely that twin 1 is the first-born and

twin 2 the second-born. However, there is no solid evidence for this and therefore this

variable is typically not used in studies with the Registry (e.g., see Hougaard et al.,

1992b; Herskind et al., 1996). In our sample, a Kolmogorov-Smirnov test for equality of

distribution functions of T1 and T2 fails to reject the null hypothesis of equal distributions

in our sample (significance level 0.05). Therefore, we do not use this variable in our

analyses.

For our purposes it is important to point out that Denmark did not witness major

epidemics between 1873 and 2004. Cross-national comparisons reveal that Denmark stands

out as the country with the lowest excess mortality for the 1918/1919 worldwide influenza

pandemic (see Canudas-Romo and Erlangsen, 2008; Ansart et al., 2009). Furthermore,

Denmark remained neutral in both World Wars, and despite being occupied by Germany

during the Second World War, casualties were negligible compared to the rest of Europe.
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4 Empirical implementation

In this subsection we explain how we estimate the model of Section 2 with the data of the

Twin Registry. We choose flexible specifications for the model determinants λ, φ, δ and G

and we estimate the various model versions with Maximum Likelihood.

The vector of frailties (V1, V2) for each twin pair is assumed to be drawn from a Cherian

bivariate Gamma distribution. This family of distributions is often used for twin frailty

terms in mortality models (e.g., see Yashin and Iachine, 1995b; Wienke et al., 2001, 2002)

as it allows for the interpretation of the individual frailty term as the sum of a shared

twin pair-specific term Ṽ0 and an individual-specific term Ṽj:

Vj = Ṽ0 + Ṽj for j ∈ 1, 2.

Here, each term Ṽ1, Ṽ2 and Ṽ0 is independently drawn from a Gamma distribution. With

this structure, the bivariate Gamma distribution of (V1, V2) has identical marginal distri-

butions, which makes sense. Their mean is normalized to one, and consequently the joint

distribution of (V1, V2) can be fully described by two parameters: the variance σ2 of Vj

and correlation ρ of V1 and V2. The latter is computed as the ratio of the shared and

total variation ρ = Var(Ṽ0)/(Var(Ṽ0 + Ṽj). Recall that our sample includes monozygotic

(MZ) and dizygotic (DZ) twin pairs. Accordingly, we estimate separate parameters for

both types of zygosity: σ2
MZ , ρMZ and σ2

DZ , ρDZ .8

For a twin pair with right-censored lifespans at t1 and t2 the bivariate survival function

S(t1, t2|x) = P (T1 > t1, T2 > t2|x) can now be expressed as

S(t1, t2|x) =

S∗(t1, t1|x)−
∫ t1
t2
St2(t1, τ |x) dτ , for t1 ≥ t2

S∗(t2, t2|x)−
∫ t2
t1
St1(τ, t2|x) dτ , for t1 < t2

8A key assumption for the identification result in Section 2 is that G does not depend on covariates x.
Zygosity will be excluded from x such that Propositions 1 and 2 can be applied to the separate samples
of monozygotic and dizygotic twin pairs. This way, the two distributions GMZ and GDZ are identified.
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with S∗(t1, t2|x) = (1 + σ2φ(x)[Λ(t1) + Λ(t2)])−
ρ

σ2

(1 + σ2φ(x)Λ(t1))−
(1−ρ)
σ2 (1 + σ2φ(x)Λ(t2))−

(1−ρ)
σ2 (1)

and with partial derivatives Stj(t1, t2|x) = ∂S(t1,t2|x)
∂tj

for (j = 1, 2). For a few of the twin

pairs the life-span of one twin is right-censored while the co-twin is observed to live

past this censoring point. Here, right-censoring may occur e.g. due to emigration. As

a consequence, bereavement could have occurred any time between the censoring point

and ∞. This is taken into account by taking the expectation over all possible times of

bereavement.

Since our dataset only includes twin pairs for which both twins survive past January

1, 1943, this left-truncation has to be taken into account in the likelihood function. We

denote the respective truncation age of twin j on January 1, 1943 by t0j . With this the

survival function is

S(t1, t2|T1 > t01, T2 > t02, x) = S(t1, t2|x)S(t01, t
0
2|x)−1

For given functions φ, λ, δa, δb, this leads to the following likelihood contribution of a

twin pair:

L(t1, t2, c1, c2|x) = [ c1c2S(t1, t2|x)− c1(1− c2)St2(t1, t2|x)

−(1− c1)c2St1(t1, t2|x) + (1− c1)(1− c2)St1,t2(t1, t2|x) ]

S(t01, t
0
2|x)−1. (2)

Here, c1 and c2 denote the censoring indicators for T1 and T2 and St1,t2(t1, t2|x) =
∂2S(t1,t2|x)
∂t1∂t2

. The functional forms of S, St1 , St2 and St1,t2 and details of the derivations

are presented in Appendix A.4.

To proceed, we now discuss the specifications of the functions φ(x), λ(t), δa(t− tk) and

δb(tk, x). The baseline hazard (or force of mortality, or duration dependence) function λ(t)

is specified as λ(t) = eα1t+α2t2+α3t3 . This generalizes the Gompertz function eα1t which is

commonly used in models for high-age mortality and is known to give a reasonably good fit

12



across a wide range of ages. However, in our setting, it is particularly important to have a

flexible functional form, since we aim to estimate the impact of an intermediate event later

in life, and the estimate of that impact may be biased if the baseline hazard is misspecified.

For this reason we do not impose α2 = α3 = 0. As a further precautionary measure against

misspecification of λ, we allow it to vary across birth cohorts. Early-life health conditions

improved over the birth years in our sample, and Gavrilov and Nosov (1985) show that the

more recent cohorts faced disproportionally high gains in mortality reductions at higher

ages. We therefore allow the parameter vector (α1 α2 α3) to be different across three

different birth cohort intervals: 1873-1899, 1900-1915 and 1916-1930.

Covariate effects enter the hazard through φ(x) = eβ
′x, as is common in proportional-

hazard types of models. The function δa(t − tk) in the bereavement effect function is

specified as a piecewise constant function of t−tk. Specifically, log δa(t−tk) = δtq, allowing

for three time intervals for t − tk, each represented by values q ∈ {1, 2, 3}: up to 1 year,

2 to 4 years and after 4 years. (Note that the notation δtq should not be taken to suggest

that δa depends on t rather than on t−tk.) Furthermore, we take log δb(tk, x) = δagel +δx′x,

where δagel reflects how the bereavement effect depends on the age interval l in which tk

occurs. We allow for three age intervals for tk, each represented by values l ∈ {1, 2, 3}:
below 65, 66 to 79 and above 80.

5 Empirical analysis

5.1 Estimation results

The estimation results (with the exception of the vectors of the baseline hazard param-

eters) are shown in Table 1. Four different model versions are estimated. Models III and

IV are comprehensive models whereas Models I and II are restricted models estimated

for the purpose of comparing our comprehensive approach to the two approaches used in

the two strands of the twin mortality literature discussed in Section 1. In Model I, the

only possible dependence between twin lifespans conditional on covariates is generated

by the bereavement effect. This model does not allow for systematic unobserved lifetime

determinants of the twins. The diametrically opposite approach is represented by Model

II which is a correlated frailty model that does not include a bereavement effect. Model

13



III synthesizes Models I and II. Model IV simply extends Model III by allowing for a more

extensive set of determinants of the bereavement effect.

When comparing the estimates of the correlated Gamma frailty distribution in Model

II to those from Models III and IV, one finds considerably higher estimates of the variance

and the correlation parameters in Model II. This applies to monozygotic (σ2
MZ , ρMZ) as

well as dizygotic (σ2
DZ , ρDZ) twin pairs. The reduction in the estimates of the correlation

parameters means that ignoring bereavement effects leads to an overestimation of the

importance of genetic and childhood-environmental characteristics as mortality determi-

nants. The estimated correlations in Model II not only reflect the influence of shared

genetic and environmental determinants but also capture the causal dependence between

twin lifespans due to a bereavement effect.

Perhaps even more importantly, the correlation parameter for monozygotic twins de-

creases by more than the correlation parameter for dizygotic twins, once we account for a

bereavement effect.9 This means that studies based on correlated frailty models that ig-

nore bereavement effects tend to overestimate the importance of genetic factors in lifetime

durations. Below we return to this finding.

The bereavement effect estimates in Model I are enormous. For example, they imply

that a monozygotic male twin who is 75 years old and has lost his co-twin at the age of

70 would die on average 2.2 years earlier compared to if he had never experienced this

loss. In Models III and IV we find considerably lower estimates (28% lower residual life

expectancy in Model IV). This illustrates how strongly the estimates of the bereavement

effect are biased if shared unobserved genetic and environmental childhood factors are

ignored.

Figure 1 shows the shape of the baseline hazard functions in Model IV for each of

the three birth cohort intervals c = 1, 2, 3 (1873-1899, 1900-1915, 1916-1930).10 Evidently,

younger cohorts have a considerably lower mortality hazard at higher ages compared to

the older cohorts. This change in the aging process over time is known as the late-life

mortality deceleration (see Gavrilov and Nosov, 1985). The covariate effects reported in

9For this parameter the associated 90% confidence intervals for the estimates in Model II and IV do
not overlap.

10Since few individuals reached ages above 95, the relevant age period is 55-95. Note that due to
left-truncation and right-censoring at ages that vary in the sample, it is not informative to display raw
mortality figures.
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Table 1 are fully in line with those in the literature, especially in studies using the Danish

Twin Registry. We therefore refer to that literature for detailed discussions. As pointed

out in this literature, to some extent the estimated zygosity effect in β may be affected

by disproportionately high early-life mortality selection among one or both members of

MZ twin pairs.

The bereavement effect in Model IV is piecewise constant in the time since bereave-

ment, accounting for three successive time intervals. The three parameter estimates are

all significantly positive and of similar size, suggesting persistence of the effect. The size

of the estimated bereavement effect for dizygotic twin pairs is only half the size of that

of monozygotic twin pairs. This is in line with findings in psychological studies (see Segal

and Bouchard, 1993; Segal et al., 1995) based on survey data with bereaved twins. These

studies construct measures of grief intensities and find significantly higher grief intensities

for monozygotic twins. The finding that bereavement effects are larger for monozygotic

twins explains why the estimated frailty correlation parameter for monozygotic twins is

so sensitive to whether bereavement effects are taken into account. To put this differently:

ignoring that bereavement effects are larger for monozygotic twins leads to an overesti-

mation of the importance of genetic drivers of mortality.

In Model IV, the bereavement effect also depends on the age at bereavement. Evidently,

there is a decrease in the bereavement effect in the age at which the loss occurs. In

particular, the effect of losing the co-twin at the age of 80 compared to experiencing no

bereavement is relatively small, with an implied decrease in residual life expectancy of

0.68 years (Table 2: monozygotic males at age 85). This is also in line with findings from

psychological studies with bereaved twins who find a negative correlation between grief

intensities and the age at which bereavement is experienced (see Segal et al., 1995).

We performed a range of sensitivity analyses. The fit of the model deteriorates signif-

icantly if we impose a simple Gompertz functional form for the baseline hazard λ(t). The

same applies if we only allow for a second-order polynomial in log λ(t) or if we impose

the restriction that the function λ(t) does not depend on the birth year. Allowing for

a fourth-order polynomial in log λ(t) does not further improve the fit of the model. We

tried to estimate the model separately by birth cohort intervals of 10 or 15 years but the

resulting subsamples turned out to be too small for reliable inference. Moderate increases

of the lowest ages at which lifetimes are left-truncated do not have important implications
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for the empirical findings.

5.2 Residual life expectancies

One advantage of our modeling approach at the individual level is that it enables us

to predict residual lifetimes as a function of the time at which the loss of the co-twin

is experienced. Expected residual lifetimes are relevant for health care policy and are

frequently calculated within the demographic and gerontological literature. The expected

residual lifetime at age s is computed as (see e.g. Lancaster, 1990)

µ(s, x) =

∫∞
s
S(t|x) dt

S(s|x)
.

Expected residual lifetimes for monozygotic and dizygotic male and female twins, as

implied by the estimated Model IV, are presented in Table 2. A male monozygotic twin

who has reached the age of 75 and lost his co-twin at the age of 70 will live on average for

6.42 remaining years. If he never experiences twin bereavement, he will live on average for

8.09 years longer. A similar pattern is observed for female twins. Since the dependence of

the bereavement effect on sex is insignificant, we set this effect to zero in our calculations

for Table 2.

6 Conclusion

The contribution of this paper is twofold. First, we demonstrate that a symmetric duration

model with dependent unobserved determinants and a causal effect of one duration on the

hazard of the other duration is identified from minimal covariate variation. This model

has a wider relevance for the empirical study of parallel systems and networks and for

epidemiological research. In the most extreme case, the model allows the two durations

to be indistinguishable in terms of observed characteristics. So even if the two durations

can not be indexed and the only observable covariates are characteristics of the pair, the

identification result applies.

Second, our empirical analysis unites two models that previously have only been used

separately in studies analyzing twin lifespans. We thus disentangle the effects of inter-

est in this strand in the literature: the causal effect of bereavement on the one hand,
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and the influence of genetic factors and early childhood experiences on the other. This

has implications for both strands of literature. We find significantly positive bereavement

effects that decrease in magnitude with the age at bereavement and that are more pro-

nounced in monozygotic twin pairs than in dizygotic pairs. If the influence of unobserved

time-constant correlated factors is ignored, as in previous studies on twin bereavement,

bereavement effects are severely overestimated.

Likewise, ignoring bereavement effects in twin mortality analysis leads to biased re-

sults. Our empirical results suggest that studies that aim to shed light on the importance

of genetic and early-life environmental characteristics and that ignore bereavement effects

tend to overestimate the importance of those characteristics as mortality determinants.

Moreover, they tend to overestimate the importance of genetic factors in lifetime dura-

tions. The latter is at least partly due to the fact that bereavement effects are larger

among monozygotic twins.

We view it as an interesting topic for further research to examine under which condi-

tions models are identified that allow bereavement effects to vary with individual-specific

unobserved characteristics. In particular, it may be that such characteristics have genetic

determinants, and this would imply that the individual magnitude of the bereavement

effect has a genetic component. Even if such genetic determinants do not have direct ef-

fects on over-all mortality, they would still have implications for mortality, by way of their

indirect pathway through bereavement effects. In this respect, genome-wide association

studies may provide interesting insights into which genes are involved.
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Figure 1: Baseline hazard functions based on estimates of Model IV with a generalization
of the Gompertz baseline hazard: λ(t) = exp(α1t + α2t

2 + α3t
3) where the parameter

vector (α1 α2 α3) is birth-cohort interval specific.
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Appendix

A.1 Identification of λ and φ

The survival function of Z|x with Z = min{T1, T2} is derived as follows

P (Z > t|x) = P (T1 > t, T2 > t|x)

=

∫ ∞
0

∫ ∞
0

P (T1 > t|x, V1)P (T2 > t|x, V2), dG(v1, v2)

=

∫ ∞
0

∫ ∞
0

e−φ(x)Λ(t)(V1+V2), dG(v1, v2)

=

∫ ∞
0

e−φ(x)Λ(t)W , dGW (w) with W = V1 + V2. (3)

For the second equality we exploit that before the first death has occurred no bereavement

effect is experienced yet. Consequently, conditional on x and V the events (T1 > t) and

(T2 > t) are independent. We further use Assumption 4 which implies G(v1, v2|x) =

G(v1, v2).

The distribution of Z has a hazard rate of the mixed proportional form: θz(t|x,W ) =

θ(t|T2 ≥ t, x, V1)+θ(t|T1 ≥ t, x, V2) = λ(t)φ(x)W with frailty W = V1+V2 drawn from dis-

tribution GW . The results by Elbers and Ridder (1982) (see also Lancaster, 1990; Van den

Berg, 2001, for an overview) on the identification of the mixed proportional hazard model

imply that, under Assumptions 1-4, the model in Equation (3), characterized by the func-

tions λ, φ and GW , is identified. In particular, Assumption 1 assures sufficient covariate

variation in form of at least one dummy variable.11 Further, we require the distribution of

W to be independent of x and to have a positive and finite mean. Assumption 4 assures

the independence of (V1, V2) and x. From this the independence of W = V1 + V2 directly

follows. Similarly, as V1 and V2 are assumed to have finite positive mean, so does W .

11See also Kortram et al. (1995) for the case of only two possible values for φ(x).
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A.2 Identification of δa and δb

We consider the following hazard rate,

θ(t|Tk = 0, x, Vj) = λ̃j(t)φ̃j(x)Vj with λ̃j(t) = λ(t)δa, φ̃j(x) = φ(x)δb(0, x), (4)

where the frailties Vj are drawn from GVj |Tk=0,x for j, k ∈ {1, 2} and j 6= k. This hazard

rate can be said to have a mixed proportional form as it is proportional in t, x, and an

unobserved frailty term.

We now demonstrate that the conditional frailty distribution GVj |Tk=0,x does not de-

pend on x. Its density is given by:

f(vj|Tk = 0, x) =
θk(0|x, Vj)Sk(0|x, Vj)f(vj|x)

θk(0|x)Sk(0|x)

=

∫∞
0
λ(0)φ(x)vk dG(vk|x, Vj)f(vj|x)∫∞

0
λ(0)φ(x)vk dG(vk|x)

=
E(Vk|x, Vj)f(vj|x)

E(Vk|x)
. (5)

According to Assumption 4 (V1, V2) are independent of x. Therefore, Equation (5) sim-

plifies to

f(vj|Tk = 0, x) =
E(Vk|Vj)f(vj)

E(Vk)
. (6)

Note that the right hand side of (6) does not depend on x. From Equation (6) it also

follows that the distribution of (Vj|Tk = 0) for j, k ∈ {1, 2} and j 6= k has a positive and

finite mean, since G(v1, v2) has this property.

Assumption 2 states that the functions φ(x) and δb(0, x) are not proportional, assuring

that the function φ̂(x) = φ(x)δb(0, x) generates sufficient exogenous variation.

Thus, following Elbers and Ridder (1982), under Assumptions 1-4, the mixed pro-

portional hazard model defined by {λ̃, φ̃, GVj |Tk=0,x} is identified. Since λ is known from

Appendix A.1, this in turn identifies δa. Similarly, since φ is known from Appendix A.1,

the function δb(0, x) follows as a function of x.

To identify δb(t, x) as a function of t and x, we exploit information on the jump of the
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hazard rate at the moment of bereavement

lims↓t θ(s|Tk = t, x)

θ(t|Tk = t, x)
=
φ(x)δb(t, x) lims↓t δa(s− t)λ(s)E(Vj|Tj ≥ s, Tk = t, x)

φ(x)λ(t)E(Vj|Tj ≥ t, Tk = t, x)

= δb(t, x) lim
s↓t

δa(s− t)
lims↓t λ(s)

λ(t)
. (7)

Assumptions 2 and 3 assure the existence of lims↓t δa(s− t) and lims↓t λ(s). Accordingly,

the second equality directly follows from Assumption 4, stating that lims↓tE(Vj|Tj ≥
s, Tk = t, x) = E(Vj|Tj ≥ t, Tk = t, x). Note, that the left hand side of Equation 7 is

observable for all (t, x) ∈ (0,∞)×X . Since lims↓t δa(s− t), lims↓t λ(s) and λ(t) are known

from previous steps, we can trace out the function δb(t, x) over (0,∞)×X .

Together, Appendix A.1 and Appendix A.2 thus prove Proposition 1.

A.3 Proof of Proposition 2

. Recall that the functions λ, φ, δa, δb in Model 1 are identified under Assumptions 1-4.

The only function that remains undetermined is the bivariate frailty distribution G. For

this we adopt the additional Assumption 5.

The observable density f(t1, t2|x) for t1 > t2 can be expressed as follows

f(t1, t2|x) =

∫ ∞
0

∫ ∞
0

f(t1|T2 = t2, x, V1)f(t2|x, V2) dG(v1, v2)

= c(t1, t2, x)

∫ ∞
0

∫ ∞
0

V1V2e
−φ(x)(Λ(t2)+∆1(t1,t2,x))V1e−φ(x)Λ(t2)V2 dG(v1, v2)

= c(t1, t2, x)∂2
s1,s2
LG
(
φ(x)(Λ(t2) + ∆1(t1, t2, x)), φ(x)Λ(t2)

)
,

with c(t1, t2, x) = λ(t1)λ(t2)φ(x)2δa(t1 − t2)δb(t2, x), ∆(t1, t2, x) = Λ̃(t1, t2)δb(t2, x) and

bivariate Laplace transform LG with cross derivative ∂2
s1,s2
LG.

Absolute monotonicity and complete monotonicity:

Definition 1. Let Ω be a nonempty open set in Rn. A function f : Ω → R is ab-

solutely monotone if it is nonnegative and has nonnegative continuous partial deriva-

tives of all orders. f is completely monotone if f ◦ m is absolutely monotone, where
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m : x ∈ {ω ∈ Rn : −ω ∈ Ω} → −x.12

This definition states that a function f is completely monotone if it’s derivatives of all

orders exist, and if these derivatives are continuous and have switching signs for each

order (starting with a positive first derivative). It follows directly that if a function f

is completely monotone then all derivatives of second order of f will also be completely

monotone. Since the bivariate Laplace transform LG(s1, s2) is known to be a completely

monotone function, it directly follows from Definition 1 that the cross derivative of L
given by ∂2

s1,s2
LG(s1, s2) = ∂2LG(s1,s2)

∂s1∂s2
is also completely monotone.

Tracing out the Laplace transform: The function f : R2
+ → R2

+ is given by f(t1, t2) =

(φ(x)(Λ(t2)+∆(t1, t2, x)), φ(x)Λ(t2)). It maps the vector (t1, t2) on the vector of arguments

of the Laplace transform (s1, s2), with s1 = φ(x)(Λ(t2) + ∆(t1, t2, x)) and s2 = φ(x)Λ(t2).

In the following we will show that we can vary (t1, t2) on an open set such that f(t1, t2)

will also attain all values in a nonempty open set. Under Assumption 5 (with t1 > t2 ∀
(t1, t2) ∈ Ψ) it holds that at all points (t1, t2) in the open set Ψ the first derivatives of f

exist and are continuous and f has Jacobian

Jf (t1, t2) =

[
φ(x)λ(t1)δ(t1, t2, x) φ(x)(λ(t2) + ∂∆(t1,t2,x)

t2
)

0 φ(x)λ(t2)

]
.

Note, that the determinant of Jf is given by det(Jf (t1, t2)) = φ(x)2λ(t1)λ(t2)δ1(t1, t2, x),

and since under Assumptions 1-4 the functions φ, λ, δa, δb can only attain strictly positive

(and finite) values on Ψ, it follows that det(Jf (t1, t2)) 6= 0 ∀ (t1, t2) ∈ Ψ. Assumption 5

assures that ∂∆(t1,t2,x)
t2

exists and is continuous on Ψ. Therefore, on the nonempty open

set Ψ the function f(t1, t2) is continuously differentiable with invertible Jacobian Jf .

Using the inverse-function theorem it follows that there exists an nonempty open set

Υ ⊂ (0,∞)2 such that the function f(t1, t2) attains all values in Υ when t1 and t2 vary

over Ψ ⊂ (0,∞)2.

12For n = 1 this definition reduces to the familiar definitions in Widder (1946).

28



A.4 Derivation of the likelihood function

In the following the functional forms of S, St1 , St2 and St1,t2 are derived. We start with

the survival function S(t1, t2|x) = P (T1 > t1, T2 > t2|x):

S(t1, t2|x) =

S∗(t1, t1|x)−
∫ t1
t2
St2(t1, τ |x) dτ , for t1 ≥ t2

S∗(t2, t2|x)−
∫ t2
t1
St1(τ, t2|x) dτ , for t1 < t2

Here, S∗(t1, t2|x) denotes the survival function in the absence of a bereavement effect

S∗(t1, t2|x) =

∫∫ ∞
0

P (T1 > t1|x, V1)P (T2 > t2|x, V2) dG(v1, v2)

=

∫∫∫ ∞
0

eφ(x)Λ(t1)(Ṽ0+Ṽ1)eφ(x)Λ(t2)(Ṽ0+Ṽ2) dG(ṽ0)dG(ṽ1)dG(ṽ2)

=

∫ ∞
0

eφ(x)[Λ(t1)+Λ(t2)]Ṽ0 dG(ṽ0)

∫ ∞
0

eφ(x)Λ(t1)Ṽ1 dG(ṽ1)

∫ ∞
0

eφ(x)Λ(t2)Ṽ2 dG(ṽ2)

= (1 + σ2φ(x)[Λ(t1) + Λ(t2)])−
ρ

σ2 (1 + σ2φ(x)Λ(t1))−
(1−ρ)
σ2 (1 + σ2φ(x)Λ(t2))−

(1−ρ)
σ2 .

The last three equalities follow from the assumption that G(v1, v2) is a Cherian bivariate

Gamma distribution, i.e. the terms Ṽ0, Ṽ1, Ṽ2 are independent and drawn from univariate

Gamma distributions: Ṽ0 ∼ Γ(ρσ−2, σ−2) and Ṽ1, Ṽ2 ∼ Γ((1− ρ)σ−2, σ−2).

In the following Stj is derived. For this purpose we define the functions ga, gb and gc

ga(s1, s2, x) = 1 + σ2φ(x)[Λ(s2) + ∆(s1|s2, x)]

gb(s1, s2, x) = 1 + σ2φ(x)[2Λ(s2) + ∆(s1|s2, x)]

gc(s, x) = 1 + σ2φ(x)Λ(s).

with ∆(s1|s2, x) =
∫ s1
s2
λ(u)δa(u− s2)δb(s2, x) du.

We can now derive Stj(tj, tk|x) =
∂S(tj ,tk|x)

∂tj
= −P (Tj = tj, Tk > tk|x). Let tj ≥ tk with
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j, k ∈ {1, 2}, j 6= k

Stk(tj, tk|x) =

∫∫ ∞
0

P (Tj > tj|Tk = tk, x, Vj)P (Tk = tk|x, Vk) dG(vj, vk)

= φ(x)λ(tk)∫∫∫ ∞
0

(Ṽ0 + Ṽk)e
φ(x)[Λ(tk)+∆(tj |tk,x)](Ṽ0+Ṽj)eφ(x)Λ(tk)(Ṽ0+Ṽk) dG(ṽ0)dG(ṽj)dG(ṽk)

= φ(x)λ(tk)gb(tj, tk, x)−( ρ

σ2
+1)gc(tk, x)−(

(1−ρ)
σ2

)ga(tj, tk, x)−(
(1−ρ)
σ2

+1)

[ρga(tj, tk, x) + (1− ρ)gb(tj, tk, x)].

This yields

Stj(tj, tk|x) =


∂S∗(tj ,tj |x)

∂tj
+
∫ tj
tk
St1,t2(t1, τ |x) dτ , for tj > tk

φ(x)λ(tk)gb(tj, tk, x)−( ρ

σ2
+1)gc(tk, x)−(

(1−ρ)
σ2

)

ga(tj, tk, x)−(
(1−ρ)
σ2

+1)[ρga(tj, tk, x) + (1− ρ)gb(tj, tk, x)] , for tj ≤ tk.

Finally, St1,t2(t1, t2|x) = ∂2S(t1,t2|x)
∂t1∂t2

= P (T1 = t1, T2 = t2|x) = f ∗(max{t1, t2},min{t1, t2})
with

f ∗(tj, tk) = φ(x)2λ(tj)λ(tk)δa(tj − tk)δb(tk, x)

gb(tj, tk, x)−( ρ

σ2
+2)ga(tj, tk, x)−(

(1−ρ)
σ2

+1)gc(tk, x)−(
(1−ρ)
σ2

+1)

[ρ(ρ+ σ2)ga(tj, tk, x)gc(tk, x) + ρ(1− ρ)gb(tj, tk, x)gc(tk, x)

ρ(1− ρ)gb(tj, tk, x)ga(tj, tk, x) + (1− ρ)2gb(tj, tk, x)2].

In the estimation, the integrals
∫ t1
t2
St2(t1, τ |x) dτ and

∫ t2
t1
St1(τ, t2|x) dτ are evaluated

using numerical integration methods.
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