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Abstract

Due to the available concurrency in modern-day supercomputers, the complexity of developing
efficient parallel applications for these platforms has grown rapidly in the last years. Many appli-
cations use message passing for parallelization, offering three main communication paradigms:
point-to-point, collective and one-sided communication. Each paradigm fits certain domains of
algorithms and communication patterns best. The one-sided paradigm decouples communica-
tion and synchronization and allows a single process to define a complete communication. These
are important features for runtime systems of new programming paradigms and state-of-the-art
dynamic load-balancing strategies. In any process interaction, wait states can occur, where a pro-
cess is waiting for another—idling—before it proceeds with its local computation. To eliminate
such wait states, runtime and application developers alike need support in detecting and quan-
tifying them and their root causes. However, tool support for identifying complex wait states in
one-sided communication is scarce. This thesis contributes novel methods for the scalable detec-
tion and quantification of wait states in one-sided communication, the automatic identification
of their root causes, and the assessment of optimization potential.

The methods for wait-state detection and quantification, as introduced by Böhme et al. and ex-
tended by this thesis, build upon a parallel post-mortem traversal of process-local event traces,
modeling an application’s runtime behavior. Performance-relevant data is exchanged just in
time on the recorded communication paths. Through the nature of one-sided communication,
information on such communication paths is not available on all processes involved, impeding
the use of this original approach for one-sided communication. The use of a novel high-level
messaging framework enables the exchange of messages on the implicit communication paths of
one-sided communication, while retaining the scalability of the original approach. This enables
the identification of previously unstudied types of wait states unique to one-sided communica-
tion: lack of remote progress and resource contention. Beyond simple accounting of waiting time,
other contributed methods allow pinpointing root causes of such wait states and identifying op-
timization potential in one-sided applications. Furthermore, they distinguish two fundamentally
different classes of wait-state root causes: delays for direct process synchronization (similar to
point-to-point and collective communication) and contention in case of lock-based process syn-
chronization, whose resolution strategies are diametrically opposed to each other. Finally, the
contributed methods enable the identification of the longest wait-state-free execution path (i.e.,
critical path) in parallel applications using one-sided communication. As only optimization of
functions on the critical path will yield performance improvements, its identification is key to
choosing promising optimization targets.

All of these methods are integrated into the Scalasca performance toolset. Their scalability and
effectiveness are demonstrated by evaluating a variety of applications using one-sided commu-
nication interfaces running in configurations with up to 65,536 processes.
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Zusammenfassung

Aufgrund der Nebenläufigkeit in modernen Supercomputern hat die Komplexität effiziente paral-
lele Programme zu entwickeln, in den letzten Jahren rapide zugenommen. Eine Vielzahl von Pro-
grammen nutzt

”
Message Passing“ zur Parallelisierung, welches drei Kommunikationsparadig-

men bereitstellt: Punkt-zu-Punkt, kollektive und einseitige Kommunikation. Jedes dieser Paradig-
men eignet sich für eine spezifische Klasse von Algorithmen. Einseitige Kommunikation entkop-
pelt die Kommunikation von ihrer Synchronisation und erlaubt es, alle Kommunikationparame-
ter auf einem Prozess zu definieren. Dies ist essenziell für Laufzeitumgebungen neuer Program-
mierparadigmen und bestimmte Strategien zum dynamischen Lastausgleich. In jeder Interaktion
zwischen Prozessen können potentiell Wartezeiten entstehen, wo ein Prozess auf einen anderen
wartet bevor er seine Berechnungen fortführen kann. Um solche Wartezeiten zu eliminieren,
benötigen Entwickler von Laufzeitumgebungen und Simulationen Unterstützung bei der Erken-
nung und Quantifizierung der Wartezeiten und ihrer Ursachen. Die bestehende Unterstützung
von einseitiger Kommunikation in Werkzeugen zur Leistungsanalyse ist nicht ausreichend. Diese
Dissertation beschreibt neue Methoden zur skalierbaren Erkennung und Quantifizierung von
Wartezeiten in einseitiger Kommunikation und ihrer Ursachen sowie des Optimierungspoten-
tials.

Die beschriebenen Methoden bauen auf eine nach der Messung durchgeführte, parallele Traver-
sierung von Prozess-lokalen Ereignisspuren auf, die das Laufzeitverhalten des Programms model-
lieren. Leistungsrelevante Daten werden bedarfsorientiert auf den aufgezeichneten Kommunika-
tionspfaden ausgetauscht. Durch die inhärenten Eigenschaften einseitiger Kommunikation steht
die Information über die Kommunikationspfade nach der Messung nicht auf allen beteiligten
Prozessen zur Verfügung, was die direkte Verwendung des ursprünglichen Ansatzes für die
Analyse von einseitiger Kommunikation erschwert. Eine neue, komplementäre Kommunikations-
Infrastruktur ermöglicht den Austausch von Nachrichten auf impliziten Kommunikationswegen,
während die Skalierbarkeit des ursprünglichen Ansatzes bewahrt bleibt. Dies ermöglicht die Iden-
tifikation bisher nicht untersuchter Typen von Wartezeiten wie sie in einseitiger Kommunikation
auftreten: Fehlender Kommunikationsfortschritt und Konflikte beim Resourcenzugriff. Jenseits
reiner Berechnung von Wartezeiten erweitern die beschriebene Methoden die Ortung von Ur-
sachen der Wartezeiten und die Abschätzung des Optimierungspotentials für Programme mit ein-
seitiger Kommunikation. Dabei wird zwischen zwei fundamental unterschiedlichen Klassen von
Ursachen für Wartezeiten unterschieden: Verzögerungen bei direkter Prozesssynchronization, wie
sie in der Punkt-zu-Punkt und kollektiven Kommunikation auftreten, und Zugriffskonflikte, wie
sie in Lock-basierter Prozesssynchronization auftreten. Die Strategien zur Auflösung dieser bei-
den Klassen sind genau entgegengesetzt. Des weiteren ermöglichen die beschriebenen Methoden
die Identifikation des kritischen Pfades in parallelen Programmen mit einseitiger Kommunika-
tion. Die Identifizierung von Funktionen auf dem kritischen Pfad ist eine Grundvoraussetzung
für die Wahl geeigneter Optimierungskandidaten.

Alle Methoden wurden im Scalasca Trace Analyzer implementiert. Ihre Skalierbarkeit und Effek-
tivität wird Anhand von verschiedenen parallelen Programmen mit einseitiger Kommunikation
auf bis zu 65,536 Prozessoren demonstriert.
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1. Introduction

In the past decades, scientific simulation has established itself, next to theory and experiment,
as the third pillar of research. Scientists can use simulations to verify theories where experiments
would prove to be too difficult, dangerous, or expensive. However, the persistent urge to improve
scope and detail of such simulations lead to a great demand in computational power. High-
performance computing (HPC) has been the foundation for scientific simulation for many years,
striving to meet the simulation’s demand in such power. From its very inception, the field of
high-performance computing has embraced concurrency to increase computing performance.
The key idea is that multiple processing elements working together will solve a given task better
than a single element. This means the parallel work helps to either solve a given problem faster
resulting in an improved time to solution or solve larger problems in the same time a single
element would solve a smaller problem, increasing problem resolution.

The following sections introduce the landscape of high-performance computing. They discuss
parallel system architectures as well as one-sided communication in the context of programming
models in high-performance computing. Furthermore, they present methods for the performance
analysis of parallel applications in HPC environments and examine the support of existing tools
for the automatic identification of complex performance metrics such as wait states and their
root causes in complex behavioral patterns of applications using one-sided communications.
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Figure 1.1.: Different variants of shared-memory architectures. All processors have access to a global
shared memory. (Based on [128])
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1.1. Parallel system architectures

Hardware architectures can be classified according to how they express parallelism and concur-
rency to the software, especially how parallel software can access the available memory. Systems
where processing elements share access to a single global memory are classified as shared-memory
architectures. In contrast, systems where processing elements only have access to parts of the
memory globally available are classified as distributed-memory architectures.

Shared-memory architectures. Shared-memory architectures allow multiple processing ele-
ments to access the full system memory. The most prominent form of shared-memory architec-
tures today is the symmetric multi-processor (SMP). It describes two or more identical processors
accessing a global shared-memory space. In the past decades, the processing elements in SMPs
have undergone a transition from uni-core to multi-core CPUs. This transition is based on the
continuously growing integration of transistors on a single chip. In 1965, Gordon Moore pub-
lished an article on the evolution of transistor density in processors, which became known as
Moore’s Law [101]. It observes the doubling of the number of transistors per processor roughly
every two years. This rate has been sustained over many decades since its initial publication,
although in 2010 the International Technology Roadmap for Semiconductors [10] updated this
observation to a doubling of transistors every three years and predicted this rate to continue
until 2020. Initially, the chips used the extra number of transistors to integrate more complex
hardware to improve the instruction rate of a single instruction stream. Additionally, the clock
rate increased, enabling more instructions per second. Such improvements directly benefit any
application without modifying the application itself. Around 2002, it became evident that fur-
ther optimizations for a single instruction stream were no longer feasible, as instruction-level
parallelism could not be exploited any further and higher clock rates raised problems with heat
dissipation and leakage [154]. Ever since, every new chip generation uses the still unbroken trend
towards higher transistor integration densities to integrate more cores into a single chip, increas-
ing the number of parallel instruction streams and fueling concurrency in the shared-memory
domain.

Next to uni-core and multi-core processing elements, SMPs can be further distinguished by their
costs of accessing the main memory. In uniform memory access (UMA) systems the time needed
per memory access is independent of both the processing element and the memory location being
processed [62]. Such uniformity was achieved in classic multiprocessing environments by con-
necting all processing elements to the same memory network—the memory bus (Figure 1.1a).
With increasing number of processing elements, this bus can become a serious performance
bottleneck. In non-uniform memory access (NUMA) systems access time depends on the pro-
cessing element and the memory location being processed [62]. The non-uniformity is usually
the result of a different interconnection network among the processors. Memory blocks show
affinity to a processing element to which it is local (Figure 1.1b). Accesses to local memory is
much faster than accesses to memory associated with another processing element. While this
allows for a better scalability with concurrent accesses to different parts of the memory through
multiple access paths, it also creates “locality effects” when different paths have different time
costs associated with them.
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Figure 1.2.: Distributed-memory architectures.

Most modern CPU architectures use caches to exploit locality of reference [46] in computations.
Coherence protocols are needed to ensure data consistency among different copies of data in
different caches. For NUMA architectures, implementations of such protocols in software bear a
significant overhead. Therefore, NUMA architectures soon provided hardware implementations
for these protocols, forming the now prevalent CPU architecture of cache-coherent NUMA (cc-
NUMA) systems. In such ccNUMA systems, high-speed hardware interconnects such as Intel’s
Quickpath

TM
[71] or HyperTransport

TM
[69] in AMD’s Direct Connect Architecture facilitate

the communication among the individual cores. These high speed interconnects can also build
the foundation for fast inter-node communication hardware such as Extoll [115] and NumaCon-
nect [136] that enable hardware support for larger global-address space systems [179]. Despite
such high-speed interconnects, in practice full hardware-enabled shared-memory access among
all processing elements of a cluster still poses serious scalability challenges that currently impede
pure shared-memory systems at large scale.

Distributed-memory architectures. In distributed-memory architectures, processes only have
access to their local memory. Remote memory can only be accessed by explicit communication
over an external network (Figure 1.2a). The time for such accesses is about an order of magnitude
higher than memory accesses in shared-memory systems discussed previously. Data needed by
multiple processing elements needs to be replicated and/or exchanged explicitly by the software.
Data consistency, such as coherency of replicated data, is then taken care of by software. Nev-
ertheless, the scalability of distributed-memory architectures has proven to be better than that
of shared-memory systems by several orders of magnitude. While current multi- and many-core
systems comprise tens or hundreds of cores, distributed-memory architectures may comprise
several tens of thousands of single-core nodes. The nodes of a cluster are connected through
a network. As the network is the primary means of communication in the parallel system, its
properties (topology, latency, and bandwidth) can be a significant performance factor for a sys-
tem [8, 45, 102]. Clusters with an extreme number of network nodes—so-called massively parallel
processors (MPPs)—are often custom-built, employing special low-latency, high-throughput net-
working devices connected in scalable network topologies, such as a fat tree or multi-dimensional
meshes and tori [62].

3



1. Introduction

Hybrid architectures. With the trend to multi-core processors, pure distributed-memory ar-
chitectures mostly vanished from the high-performance computing landscape. Instead, a system
architecture arose that combines both previous architectures, the hybrid distributed shared-
memory architecture (DSM) as shown in Figure 1.2b. Such systems may comprise several hun-
dreds of thousands or even millions of processing elements, combining parallelism between nodes
as well as on the nodes. Examples of such large-scale hybrid architectures are the IBM Blue Gene
solution, such as the JUQUEEN system at Jülich Supercomputing Centre, the Mira system at
Argonne Leadership Computing Facility, or the Sequoia system at Lawrence Livermore National
Laboratory, each comprising between almost half a million and three million cores, or the Cray
XE systems, such as the Hector at Edinburgh Parallel Computing Centre or Monte Rosa at the
Swiss National Supercomputing Centre with several tens of thousand processing elements.

As power consumption becomes more and more important, large-scale computing platforms cur-
rently move to heterogeneous systems using accelerators such as general-purpose GPUs (GPG-
PUs) to take compute load off the host CPU. Such accelerators are many-core chips, with up
to several hundred compute cores, using single instruction multiple threads (SIMT) [122] com-
putation, which is comparable to single instruction multiple data (SIMD) [55]. Each GPU has
individual memory separate from the host’s memory where data needs to reside during compu-
tation. Data either has to be copied explicitly by the user or implicitly by the runtime system
between host and GPU memory. As will be discussed in more detail in Section 1.2.1, several
software solutions exist to ease such memory handling. However, these architectures are still
multi-stage distributed-memory systems, with accelerators forming the second stage. Figure 1.2c
shows the schematic structure of such systems. While with CUDA GPUDirect RDMA, NVIDIA
GPUs can effectively communicate directly with other NVIDIA GPUs across the network (in-
dicated by the dotted line in the figure) [115, 132, 144], such features are not yet generally
and widely available for accelerator cards. Within a node, multiple host CPUs can have access
to multiple accelerators on the same node. Due to the distinctly different architecture of the
processing elements of host and accelerators, such systems are often classified as heterogeneous
architectures. Examples of such systems are the Cray XK systems, such as the Titan system at
Oak Ridge National Laboratory and the Blue Waters system at National Center for Supercom-
puting Applications, or the one-of-a-kind system Tianhe-1A at the National Supercomputing
Center, Tianjin, China. Each of these uses NVIDIA GPGPUs as accelerators.

However, accelerators do not necessarily have to be GPGPUs. Other heterogeneous systems use
Intel’s latest Xeon Phi [74] processor. It offers the advantages of accelerators in terms of energy
efficiency and offloading of computation for the host, but at the same time it can also be used
as a first class citizen in message-passing applications as it comprises up to 61 low-energy x86-
compatible compute cores per chip, being able to work as a general-purpose compute element.
Example for large systems using Xeon Phi processors is the Stampede system at the Texas
Advanced Computing Center and the Tianhe-2 system at the National Super Computer Center
in Guangzhou, China, which at the time of this writing held the title of the fastest supercomputer
in the world [96]. As heterogeneous systems show very good power efficiency and the costs for
GPGPUs are low due to their mass-marketability in the Gaming industry, they are growing to
be one of the most popular architectures among the fastest computing systems in the world.
However, the different levels of concurrency and their heterogeneity make them challenging
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to program. A challenge, that is addressed in several new programming paradigms for such
architectures.

1.2. One-sided communication in the context of programming
models in HPC

Addressing the multi-faceted parallel architectures in high-performance computing, some pro-
gramming models—both for shared and distributed memory—support very fine grained control
over parallelism to enable highly efficient application code for specific platforms. Other pro-
gramming models strive to minimize the programmer’s burden with the details of low-level
parallelism, such as load balancing or data locality strategies, providing a more abstract and
logical programming view to the user. The following sections will give a broad overview of pro-
gramming models in use in the HPC community today, provide details on message passing and
one-sided communication in particular, and give a range of potential applications for them.

1.2.1. Introduction to programming models in HPC

To exploit hardware properties optimally, low-level interfaces to parallelism are usually designed
very close to their target hardware architecture. Special purpose programming models exist for:
(1) multi-core systems, (2) many-core systems, (3) distributed memory system, as well as (4)

hybrid systems as outlined in the previous sections.

Programming multi-core systems. Although multi-processing and multi-threading were avail-
able to the programming community for some time, their initial use was on time-sharing systems,
where programmers using multiple instruction streams better utilize the different units of the
processor. In high-performance computing, however, a lot of application threads focus on the
use of the floating point unit. Thus, oversubscribing a processor with more instruction streams
than hardware threads available often does not yield the desired performance improvements. In
fact, the additional overhead of scheduling threads in and out may even decrease overall per-
formance. Therefore, supercomputing systems today schedule and even bind a single thread per
core. Multi-threading interfaces started to gain traction with the rise of the multi-core proces-
sors, where threading overheads amortize much better with more concurrent threads. Also, with
more threads sharing memory, common data needs to be replicated less often.

POSIX Threads (Pthreads) [114] give a very fine-grained control over threads, but may also be
complex to program, especially in terms of load balance and thread utilization. Nevertheless, as
one of the main threading interfaces on UNIX-style operating systems, HPC programmers also
adopted it in their simulation codes. The most prevalent multi-threading interface in HPC, how-
ever, is OpenMP [125]. Its interface is based on compiler directives that are inserted right before
code regions and describe how the following block should be parallelized, including necessary
thread synchronization. The compiler then inserts all the low-level threading calls into the code
during compilation. As virtually all compilers available on high-performance computing systems
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today support OpenMP, it effectively lowers the bar for non-expert programmers to incremen-
tally parallelize the relevant blocks of a larger simulation code. With the release of the fourth
version of the OpenMP standard, it also supports tasks, making it interesting for a broader
range of algorithms. Task-based programming has been a shared-memory programming model
for many years with prominent libraries such as Cilk [133] and more recently Cilk++ [91], Intel
Threading Building Blocks (TBB) [79] and the Habanero family of parallel languages [12, 29, 33].
One of the key concepts for balancing the work load among tasks is work stealing [20]. In work
stealing, a thread exposes its own work queue for other threads without work to steal parts of
it. This enables a dynamic balancing of work load even in situations of highly irregular initial
work load.

Programming many-core systems. Programming GPGPUs and accelerators in general usu-
ally involves the use of a special compiler along with the programming interface. NVIDIA pro-
vides CUDA [123] as the primary means to program their GPGPUs, next to the more general
OpenCL [78]. Both involve explicit compilation of the source code targeting the accelerator.
While CUDA is only available for NVIDIA products, OpenCL is a more portable programming
model, available for GPGPUs of multiple vendors and other types of accelerators. CUDA pro-
vides the GPUDirect programming interface enabling its GPUs to transparently interact with
other GPUs on the same node and across the network [132, 144] without involving the host CPU.
To allow for many different types of accelerators to be programmable by OpenCL, its interface
is much broader and sometime regarded as more complex than that of CUDA. To address
the complexity of programming accelerators in orchestration with their host CPUs portably,
directive-based programming models, such as HMPP [31], and OpenACC [124], arose. They
enable the definition of code blocks to be executed on the accelerator, while leaving the schedul-
ing and data transfers involved to the respective runtime system. Also other directive based
programming models, originally developed for distributed computing, such as XcalableMP [90],
are also starting to focus on supporting accelerators with XcalableACC [113]. Furthermore, also
OpenMP as the de-facto standard for shared-memory programming in HPC, seeks to extend its
tasking interface to support accelerators [17].

Programming distributed memory and hybrid systems. In high-performance computing,
system architectures with distributed memory have a long tradition. To program such archi-
tectures, data has to be explicitly replicated between processes. Such replication is done using
messages passed between processes. It is so fundamental to the programming of these architec-
tures that they are also named message-passing architectures [128].

The most prevalent interface used for message passing in high-performance computing is the
Message Passing Interface (MPI) [104]. Although it enables very fine-grained message exchange
through different message-passing paradigms (as discussed later), it can be regarded as a high-
level interface at the same time, as it already provides application-level guarantees on message
reliability and order. MPI defines three communication paradigms, which will be discussed in
more detail in the following sections. All paradigms in common is the specification of explicit
communication buffers that define the source and destination buffer.
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Similar to Pthreads for shared-memory, message passing is the low-level building block for higher-
level programming concepts. In the past years, approaches to enable shared-memory-like pro-
gramming on distributed memory architectures has gained attention of the HPC community. The
partitioned global address space (PGAS) programming model provides a shared-memory view
to the programmer, independent of the underlying hardware architecture. As such, developers
can use it on pure shared-memory, pure distributed-memory, and distributed shared-memory
architectures alike. The programming view provides a single logical global view on memory,
accessible from all processes. At the same time, this global view is partitioned, exposing the
notion of affinity to the programmer. This can ease programming even on pure shared-memory
systems, where non-uniform memory-access affects performance, but programming models such
as Pthreads and OpenMP do not expose such information, although for the latter, Schmidl and
colleagues recently provided library support to exploit memory affinity [140]. In scenarios in
which data exchange through shared memory is not available, a runtime system has to facilitate
remote data access. The partitioned global address space programming model can either be im-
plemented as a library, such as Global Arrays [119] or UPC++ [181], as an extension of existing
programming languages such as Unified Parallel C (UPC) [32] or Co-array Fortran [121, 134],
or as new languages such as Cray Chapel [21], IBM X10 [39, 137], and Habanero Java [33].

1.2.2. The message passing model

In high-performance computing, the prevalent interface for message passing is the Message
Passing Interface (MPI) [104]. Communication libraries implementing the MPI standard are
available on virtually all HPC platforms, providing maximum application portability across
platforms. As each platform may have a different MPI implementation, the performance of an
application may, however, vary considerably. Additional to portability, MPI provides high-level
abstractions for the communication infrastructure, mostly hiding implementation specifics from
the application developer.

All communication in MPI is bound to a communication context called communicator. Within
a communicator, all processes have a unique id, their rank, used for addressing of messages.
Communication using one communicator does not interfere with communication using another
communicator. In regard to explicit involvement of communicating processes, the interfaces can
be distinguished into three different paradigms: (1) point-to-point, (2) collective, and (3) one-
sided communication. None of these paradigms by itself is best for all algorithms in programming
distributed systems. Instead the individual paradigms complement each other in different com-
munication scenarios, providing the building blocks for implementing distributed algorithms of
any kind.

Point-to-point communication. Point-to-point or two-sided communication defines two ex-
plicit roles for the communicating processes. The sender is the source of the data, while the
receiver is the destination. Both, sender and receiver, are involved in the communication explic-
itly. Neither process has any knowledge or influence on the memory location of the data passed
in the message on the other side. Different communication protocols (modes) define how the
data transfer can be facilitated. In synchronous communication mode, the sender will wait for
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the receiver to acknowledge readiness for data reception. In buffered mode, the message payload
is copied to an internal buffer and sent from there. In this way, the communication library can
safely return to the application where the original communication buffer can be modified again
without affecting the ongoing communication. In ready mode, the sender assumes readiness of
the receiver and starts sending the data without waiting for prior acknowledgement.

Collective communication. In parallel applications in scientific computing, the processes are
often tightly coupled. Data then may need to flow from one process to all other processes (broad-
cast), from all processes to one process (gather), or all processes need to wait for each other,
before any single process can continue (barrier). Additionally to pure communication, some col-
lective communication may allow the combination of both communication and computation in a
single call (reduce). Variants of these reductions, where the result is available not just on one but
on all participating processes, are frequently used in scientific simulations to evaluate a global
stop criterion in iterative methods. All of these collective communication patterns explicitly in-
volve a group of processes. Such communication patterns can also be implemented by the user
using point-to-point communication. However, a user-level implementation may not yield best
performance across different platforms.

A collective communication interface abstracts from the effective communication pattern to a
certain communication task that should be achieved. It therefore decouples its implementation
from the user code and enables the use of specific optimizations in the message passing library
either in software [161] or hardware [60]. The runtime system can then choose the appropri-
ate communication pattern based on different communication parameters, such as the network
layout, distance between communication partners, or message size. This potential for optimiza-
tion drives more and more communication interfaces and programming frameworks to define a
collective communication interface [9, 105, 117].

One-sided communication. The third communication paradigm in message passing is one-
sided communication. Whereas in point-to-point communication the sender and receiver are also
the source and destination of the data, one-sided communication defines two new roles: (1) the
origin and (2) the target. The roles of origin and target are not defined by the direction of data
flow, as they can both be sending and receiving data during a one-sided data transfer. Their
role in the communication paradigms is rather defined by which process actively defines the
communication parameters and which process provides the memory location the one-sided data
transfer manipulates. Furthermore, one-sided communication often decouples the data transfer
from the memory and process synchronization, enabling communication primitives with less
overhead than comparable point-to-point transfers. This is especially useful for small message
transfers, where any overhead has a larger impact on the overall performance.

The origin process is the initiator of the call. It defines all communication parameters, including
memory locations on both processes. A one-sided communication involves two buffers, a local
one, provided by the origin, and a remote one, provided by the target. One-sided communication
can only be employed efficiently when all communication parameters are known to the origin
process. The target does not actively participate in the communication other than providing
the memory for the origin’s operation. The origin can both send (i.e., put) data to or receive
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(i.e., get) data from the target. Using hardware support, such as remote direct-memory access
(RDMA), the communication may complete without involving the target process CPU at all.
Synchronization and with it completion of one-sided operations is decoupled from the actual
operation and—depending on the interface semantics—may or may not involve the target. Ac-
tive target synchronization explicitly involves the target in the completion of the accesses. The
application on the target side therefore implicitly knows when the origin’s accesses have com-
pleted. Passive target synchronization does not explicitly involve the target and is therefore on
the application level agnostic to the origin’s access.

The fundamental operations in one-sided communication are put and get, similar to the load
and store processor instructions for the local memory. Additionally, most one-sided interfaces
also define atomic operations, allowing reduction operations and more complex operations, such
as fetch-and-increment and test-and-set, all of which perform more complex tasks than simple
data transfers. Such atomics are also modeled after local processor instructions, and ease the
effort of implementing distributed data structures [66, 89]. As part of the one-sided interface,
also these more complex calls don’t require an explicit matching call on the target.

To clarify terms used in this thesis, one-sided describes the nature of the communication or
programming interface in that only a single process defines the full communication. A remote
memory access (RMA) refers to the specific access of a target’s memory buffer through an oper-
ation, such as put or get. Remote direct memory access (RDMA) refers to hardware support for
RMA operations allowing the operation to complete without intervention of the target process-
ing element. In summary, RMA operations have a one-sided interface and may be implemented
using RDMA features of the network card.

The MPI interface is not as commonly used for one-sided communication as it is for point-to-
point and collective communication. The initial one-sided interface in MPI was defined with MPI
2.0 [103]. Several shortcomings in the initial design made it unsuitable for the efficient implemen-
tation of higher-level programming language runtime systems and libraries [28]. Therefore other
one-sided interfaces, such as ARMCI [118] and different flavors of SHMEM [37, 43, 131, 178],
were able to establish themselves for such uses. In 2012, the MPI 3.0 standard updated its one-
sided interface [106] to remedy the initial shortcomings and to provide a portable and efficient
interface for such usage scenarios.

Building on the one-sided communication concept, active messages [126, 171] can associate
functions—so-called handlers—with a message, to be executed after its arrival on the remote
process. In this way, origin processes may obtain remote-completion information by registering
a corresponding handler that sends an acknowledgement message from the target back to the
origin once the first message is received completely on the target side. As the origin does not
explicitly have to wait for the acknowledgement but instead is notified asynchronously about it,
it allows for effective overlap of communication with computation, which may reduce waiting
times in the communication. In the past years, active-message libraries became very popular
as the low-level programming interface for large-scale communication infrastructures. IBM’s
Blue Gene/P and Blue Gene/Q use the Deep Computing Messaging Framework (DCMF) [87]
and PAMI [40], respectively. Cray uses DMAPP [160] as the user-level interface to their Gem-
ini interconnect [170], and GASNet [27] is the active-message framework used to implement
Berkeley’s and other’s partitioned global address space (PGAS) runtime systems. Such libraries
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also form the foundation for higher-level programming models such as Charm++ [76] or Active
Pebbles [173].

1.2.3. Scope of application of one-sided communication

Depending on the distributed algorithm, developers can use one-sided communication to improve
their distributed algorithms, as shown by Siebert and Träff [146] and Sawyer and Mirin [138].
However, the detailed and explicit data exchange of message passing can become complex to
program. Chamberlain et al. [34] call this “programming in the fragmented view”, as the view
on the data is fragmented into multiple local parts on the individual processes. They propose
global-view programming instead. While for shared-memory architectures, this can be achieved
easily, distributed-memory architectures still require the explicit data copy. One-sided commu-
nication can provide the needed services, enabling higher-level, global view programming models
to be employed on large-scale distributed architectures. The most prominent of these are (1) the
partitioned global-address space programming model and (2) work stealing in task queues as
provided by distributed tasking libraries. Both approaches have gained interest among applica-
tion developers in the past years, as they enable programming on a higher level of abstraction,
where communication is implicitly handled by an underlying runtime system.

Partitioned global-address space. As already outlined in the previous sections, partitioned
global address space languages thrive to provide a shared-memory view independent of the un-
derlying hardware architecture. One key characteristic in shared memory programming is that
each thread can access shared data without the explicit involvement of another thread. One-
sided communication lends itself in such scenarios, as processes can engage in communication
independently. If data needs to be exchanged through message passing, only one-sided commu-
nication directly provides the required interface to the user. As such, all programming models
in global-view programming use one-sided communication in their runtime system to facilitate
the remote data exchange. The analysis of the performance of this underlying one-sided commu-
nication is therefore extremely important to runtime and compiler writers of those global-view
languages.

Task parallelization. With larger system sizes, load imbalances in applications can be the source
of significant waiting time, diminishing parallel efficiency. Therefore, the work-stealing scheduling
scheme has attracted more interest for large-scale systems since it was successfully implemented
for distributed-memory architectures [48, 50, 54, 98]. The foundation of such distributed-memory
tasking schemes are one-sided communication or active messages to allow for thieves to steal tasks
without explicit target intervention. With such scheduling libraries in place on the host CPU,
runtime systems may schedule CUDA [116] and OpenCL [78] tasks also on larger heterogeneous
systems with distributed memory.
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Figure 1.3.: Spiral models of software engineering and optimization. Both models are based on an
iterative approach.

1.3. Performance analysis of one-sided communication

The brief overview of existing hardware architectures has shown that with growing size, high-
performance computing systems can become challenging to use efficiently, as the amount of
concurrent process interactions becomes hard to keep track of. With some performance analysis
tools, developers can only assess the as-is situation of an application, without classification
into good or bad application behavior. A developer then has to rely on expert knowledge to
interpret the measurement data whether the recorded behavior needs improvement or not. More
advanced performance tools can identify inefficiencies and wait states in recorded application
behavior. In a wait state, an application mostly idles without performing any productive work.
However, in the complexity of modern supercomputing applications, just knowing the symptom
of a problem does not suffice to effectively resolve it, especially as the manual identification of
the root cause of the wait states often requires expert knowledge to succeed. It is therefore of
utmost importance that tools enable the automatic detection of such causes, codifying the expert
knowledge needed for identifying those parts of the code with the highest optimization potential.
Furthermore, as waiting times often materialize at points of process interaction, performance
tools should enable their identification and the correct quantification of the interaction’s effects
on other parts of the application and processes. As Van De Vanter and colleagues have pointed
out, software development tools, such as performance analysis tools, are of strategic value to the
whole high-performance computing infrastructure [167].

1.3.1. Performance optimization cycle

Software performance optimization is not a one-time engagement in the software engineering
process. As shown in Figure 1.3, it is quite similar to the spiral model of software engineering [22]
and in fact should be integrated into any iterative software development process. Boehm’s spiral
model distinguishes these phases: (1) determining the objectives, (2) evaluating alternatives,

11



1. Introduction

Sampling

Direct instrumentation

Measurement

Runtime summarization

Tracing

Representation

Online analysis

Post-mortem analysis

Analysis

Figure 1.4.: Combinations of different methods in measurement, data representation, and analysis.

(3) developing the code, and (4) planning the next phase. These phases improve the software
iteratively, creating several prototypes in the process and eventually leading to the production-
ready software package. As shown in Figure 1.3b, the stages of the performance optimization
cycle are: (1) measurement, (2) analysis, (3) evaluation of the results, and (4) code optimization.
An initial performance measurement may reveal several inefficiencies. After further investigation,
manually or automatically supported by a tool, a list of potential optimization targets will
emerge. The developer should address the most promising target first. After optimizing a specific
part of the code, the developer needs to re-evaluate the application’s performance, as the behavior
may have changed significantly depending on the optimization, now revealing a different list of
further optimization candidates. Given the scale of current supercomputers with up to a million
concurrent processes and the resulting complexity of process interaction, automating most of
the work in these steps is of prime importance.

Just like there is no single best programming model, there is also hardly a silver bullet in
performance evaluation of parallel applications. Therefore, a list of different approaches exist to
each of the stages in performance optimization, each with its own advantages and disadvantages.
Figure 1.4 shows how performance tools can combine the different methods in the three stages
of measurement, data representation, and analysis of performance data.

Measurement

To discuss an application’s performance, the developer needs to obtain measurement data. As
a broad overview of the application’s performance, developers commonly insert timing routines
manually into parts of the larger simulation codes to get an overall impression of the application
performance [11, 14, 148, 153, 172]. They measure specific metrics, such as the execution time of
specific code regions of the application (e.g., the initialization, an iteration, or the I/O). However,
without appropriate tool support, the insertion of timers into the application is only practical
for a limited number of code regions. Usually, they can only convey a coarse-grain view of the
application’s behavior during runtime. To investigate an application’s behavior more closely, a
more detailed view is desirable. To obtain such a view, performance analysis distinguishes two
fundamental methods: sampling and direct instrumentation.

Sampling interrupts the running application mostly in regular intervals to inspect the current
state of the application, before resuming the execution of the application. This has the advantage
that the number of interruptions and accompanying perturbations is easily manageable through
the sampling interval. However, this method cannot make any precise statement about the
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1.3. Performance analysis of one-sided communication

application for the time between two samples. The data obtained with sampling is usually
processed and evaluated statistically. Additionally, sampling does not have explicit access to
function parameters, which therefore cannot be analyzed directly.

Direct instrumentation explicitly inserts measurement code into the application at certain points
of interest, called events, such as function entry and exit, or synchronization and communication
points. A special software—the instrumenter—can do so either at the source code [100] or the
binary level [16]. Inserting the measurement code directly into those parts of the code that are
of particular interest guarantees recording their execution at runtime, generating measurements
with exact function-call count as well as matching send and receive events. In the case of pre-
instrumented libraries, as provided by MPI implementations [107], direct instrumentation can
also give access to function parameters, which can then be measured and analyzed later on. The
same holds for callback interfaces such as GASP [92, 152] or MPI Peruse [108]. However, the
insertion of this extra code may imply additional overhead. First, the insertion of additional
code creates a different executable and may therefore obstruct compiler inlining and also result
in a different memory footprint during measurement. Second, depending on the length of the
instrumented code sections, perturbation can be especially severe in situations where functions
are frequently called, for example getters and setters in object-oriented programming. Perfor-
mance tools based on direct instrumentation cannot eliminate either disadvantage completely,
but usually control them well enough in practice, e.g., by selective or dynamic instrumenta-
tion [111, 155, 162].

Data representation

Whichever method of information gathering is used, a measurement system must then decide
how to handle the gathered information. It can either summarize the information at runtime,
creating a so-called profile, or record individual data points in a so-called event trace.

A profile is a very compact representation of the applications behavior. As individual data points
of performance metrics are aggregated over runtime, the memory requirements are usually in-
dependent of the length of measurement. While statistical properties of the set of data points,
such as the minimum and maximum duration, can be computed and retained in the profile
information, the user does not have any access to individual data points beyond these prop-
erties. Especially dynamic behavior in applications, such as specific forms of load imbalances,
cannot be inferred from profile data alone. Furthermore, any aggregation at measurement time
perturbs the initial measurement. Depending on the complexity of the aggregation method, the
level of perturbation can range from low (for simple additions) to high (for complex statistical
metrics).

In contrast, an event trace is a detailed account of events in a process or thread during execution.
Commonly, event tracing requires more storage space than profiles, and the size of the trace often
depends on the length of measurement. However, some trace formats allow for almost constant
size trace files for specific applications [109]. Event traces can be processed in different ways. As
they still contain all details of the application’s runtime behavior, one can use them to create a
profile, visualize them, or use the event data for further automatic analysis. Depending on the
memory resources available to the application under measurement it may not always be practical
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to generate a full event trace for the full application. Even after a successful measurement, further
analysis still needs to process potentially large trace files, raising scalability requirements for
trace-processing tools.

Analysis and evaluation

Tightly connected with how measurement data is obtained and stored is the analysis and evalu-
ation of the data. The analysis can take place directly at measurement time (online) or after the
program finished execution (post-mortem). As with the approaches to measurement and storage
of performance data, each method of analysis has its merits and specific field of application. The
analysis of the measurement data and the evaluation of its results in a given performance tool
often directly depend on each other—i.e., the evaluation method directly relates to the analysis
methods applied to the measurement data.

The simplest evaluation method of analysis to implement in a performance tool is the manual
inspection of the measurement data without any further processing. Manual inspection of mea-
surement data needs a high degree of expert knowledge on part of the user. Especially novice
users may have difficulties in weighing the severity of an observed behavior, for example the time
spent in a specific part of the application or the time used for communication. Nevertheless, de-
pending on the presentation of the measurement data manual inspection can still deliver critical
insights in the detailed behavior of a parallel application. As the process of understanding may
be time consuming, manual analysis of the measurement data is done post-mortem.

Automatic performance analysis seeks to lower the costs in terms of time spent in the manual
evaluation of measurement data by identifying performance relevant information in the data
and guiding the user directly to those. The analysis works as a filter to the measurement data.
Depending on the analysis approach, a non-expert may still need further assistance, if the results
are either not filtered enough or filtered too strictly, hiding certain behavioral aspects of the
application. For the understanding of wait states in parallel applications, two factors are critical:
(1) the identification of a wait state and (2) the identification of its cause. It may depend on the
measurement approach whether the analysis step can extract such information automatically.

Online analysis provides direct insights into the application behavior while still keeping the
memory requirements low as measurement data is consumed or aggregated right away [169].
However, any additional computation at measurement time may induce further perturbation of
the measurement, leading to a distorted model of the application performance. Most online anal-
ysis approaches use only process-local data, which sometimes limits capabilities of the analysis
approach. To use measurement data available only on a remote process, this data needs to be
communicated explicitly. As this communication should be done transparently for the user, some
performance tools therefore use so-called piggybacking to exchange inter-process information—
either by using additional messages on the original application’s communication paths or by
adding additional data to the original application’s data transfers. However, the methods com-
monly used for piggybacking and may influence the application behavior significantly, as shown
by a study of Schulz et al. [142].

The post-mortem analysis avoids the drawbacks of online analysis, but often comes at a price as
well. As the analysis does not process the measurement data, but stores it until a later point in
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1.3. Performance analysis of one-sided communication

time, memory requirements are usually much higher. The key idea of post-mortem analysis is to
avoid perturbation of the original measurement run by avoiding any unnecessary computation
at measurement time, thus to be effective, the measurement system has to carefully balance
runtime overhead with memory requirements.

If set up properly, post-mortem analysis of event trace data enables deeper analysis strategies
than simple time accounting. For example, independent of the origin of the trace data (sampling
or direct instrumentation), timeline visualization is a common technique to understand the
evolution of the application behavior. It enables a detailed view of process interactions and
thus can enable the better understanding of execution patterns, yet, as screen space is limited,
developers may need further assistance to isolate points of interest in the timeline. Automatic
trace analysis methods, such as those presented in this thesis, seek to provide this assistance,
by identifying such points of interest in the application’s execution trace and enable effective
resolution of any inefficiencies.

1.3.2. Performance tools

Application developers can draw from a variety of performance analysis tools on HPC platforms
today, however, most of them either provide only limited support for one-sided communication
or focus only on single use-cases, platforms, interfaces, or programming models. This section
summarizes the capabilities of performance tools for high-performance computing applications,
focusing on their support of one-sided communication. As MPI is the prevalent programming
interface on high-performance computing systems, most performance tools unsurprisingly place
a particular focus on it, yet, this section also lists tools for other commonly used one-sided
communication libraries, such as ARMCI and SHMEM. As individual tools often support several
techniques within the taxonomy presented in the previous section, they can often not be classified
sharply into a single category. Therefore, the classification of tools is based on their main field
of application. Table 1.1 summarizes the discussion of this section; specific limitations marked
in the table are discussed in the remainer of this section.

Call-path profiling

Call-path profiling usually encompasses measurement results to be presented as a runtime sum-
mary broken down per call-path of the measured application. Such profiles can be obtained from
direct measurement, sampling, or a hybrid mix of the two techniques. Furthermore, the profile
can be created through runtime summarization or after measurement, based on a detailed event
trace. The lightweight MPI profiler mpiP [168][191] developed by the Oak Ridge National Labo-
ratory generates text-based profiles that summarize time spent in MPI. It can be used by simply
linking a pre-instrumented measurement library with the MPI application. It breaks down tim-
ings by individual call sites, which are detected by call-stack analysis within the measurement
library. To enable proper call-site identification, the user needs to enable debugging symbols
when compiling the application. PerfSuite [85][196], developed by NCSA, is a similar profiling
tool for MPI. Using sampling, it focuses on the creation of call-path profiles in combination
with hardware performance counters. It also allows derivation of new metrics using the exist-
ing ones. IBM provides the High Performance Computing Toolkit (HPCT) [139][186] for their
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Carnival [94] • • • ◦ ◦
Charm++ Projections [51] • • •
CrayPat, Apprentice

2
[47] • • • ◦ • ◦ • • •

HPCToolkit [158, 159] • • ◦ ◦ ◦ • • • •
IBM HPCST [41, 42, 70] • • • • ◦ • •
IBM HPCT [139] • • • •
Intel MPI Trace Analyzer [72] • • • •
Intel VTune Amplifier [73] • • ◦ ◦ • • • •
mpiP [168] • • •
Open∣SpeedShop [143] • • • • • • • • •
Paradyn [97] • •
Parallel Perf. Wizard [150, 151] • • • ◦ •
Paraver [130] • • • •
Perfsuite [85] • • • • • •
Periscope [59] • • • ◦ ◦
Score-P [81] ◦ • • • ◦ ★ ☆

Scalasca [26, 57] ◦ • • • ★
a

★ ★
a

★ ★

ShmemTracer [95] • • •
TAU [145] • • • • • • • •
Vampir [110, 112] ◦ • • • ◦ • ◦

• Supported ◦ With limitation ★ Thesis contribution ☆ Partial thesis contribution

Table 1.1.: List of related performance analysis tools in high-performance computing and the scope of
their support in terms of the detection of wait states and their root causes, specifically in one-sided
communication.

a
Extended existing functionality for one-sided communication.

pSeries, eSeries, and Blue Gene solution platforms. Like PerfSuite, it allows the collection of
performance-counter data. It uses binary instrumentation to collect performance relevant data
at runtime and can create both call-path time profiles and event traces for the instrumented
functions. Furthermore, it provides a timeline visualization for its event traces. The SHMEM
one-sided communication interface supports similar interposition of a pre-instrumented library
to the PMPI interface. Using this interface, ShmemTracer [95] developed by the San Diego Su-
percomputing Center, provides a lightweight tracing library. It creates binary trace files and
allows time profiling based on those traces. The trace files can also be processed by the related
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1.3. Performance analysis of one-sided communication

tool ShmemSimulator, based on the PSINS simulation framework [163], to simulate different
aspects of SHMEM’s network performance on a given platform. The Score-P [81][199] measure-
ment infrastructure supports the generation of Cube [147][182] performance profiles, as well as
event traces in the OTF2 trace format. Building on the work of Szebenyi et al. [155], Score-P
supports the commbination of sampling for user functions and direct instrumentation communi-
cation functions in a single measurement, to reduce measurement overhead. Using interposition
of pre-instrumented libraries, it supports the measurement of MPI and OpenSHMEM one-sided
communication. Further support for ARMCI, based on the generic OTF2 RMA event model,
is planned. For point-to-point and collective communication a research prototype supports the
lightweight estimation of wait states [93] during runtime summarization. Each of these five
performance tools and measurement infrastructures provides basic time profiles for one-sided
communication.

Rice University’s HPCToolkit [7][185] focuses on sampling-based call-path profiling to identify
scalability bottlenecks even at large scale [157]. As the sampling is also performed for the commu-
nication library call, it is agnostic to the communication paradigm, thus support arbitrary one-
sided communication interfaces. While it can provide insights also into implementation-specific
behavior, it relies heavily on expert knowledge to derive further information as to where wait
states originate from or how to resolve them. The TAU [145][200] open-source profiling frame-
work of the University of Oregon supports the measurement of MPI, ARMCI, and OpenSHMEM
one-sided communication. Furthermore, it also supports measurements of the one-sided commu-
nication runtime of Charm++ [18]. It provides extensive profile exploration using the graphical
user interfaces ParaProf [15] and PerfExplorer [67, 68]. While it generally supports the genera-
tion of trace data using the OTF [80] and OTF2 [52] trace formats, it refers the user to other
trace-based performance tools for further analysis.

Paradyn [97][193] of the University of Wisconsin, Madison, is an online performance tool. It
uses the Dyninst [16] binary instrumentation infrastructure to dynamically insert measurement
probes into the running applications. It creates call-path time profiles based on the instrumented
functions. Based on those profiles, time spent in one-sided communication can be evaluated by
the user. Open∣SpeedShop [143][192] is an open-source profiling tool developed by the Krell
Institute and Lawrence Livermore National Laboratory. It supports both static and dynamic
instrumentation using Dyninst [183]. Using dynamic instrumentation, it supports the online
aggregation of performance data to a graphical user interface using MRNet [135] It also allows
performance-counter and call-stack sampling as further measurement techniques. While the focus
lies in light-weight runtime summarization, it can also generate OTF [80] trace files. The further
analysis of such trace files is, similar to TAU, delegated to other trace-based performance analysis
tools.

Online analysis

The Periscope [59][197] performance tool of the Technical University Munich provides online
analysis of MPI applications. It uses piggyback messages to exchange inter-process performance
information. Using such information, it can identify wait states in the communication and can
pinpoint those to the source location where they occur. The wait-state detection, however, is
only available for point-to-point and collective communication. For one-sided communication it
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supports simple time profiling. The Charm++ framework provides its own performance analyzer
Projections [51]. Projections visualizes internal performance data that is used by the runtime
system itself to steer internal load distribution algorithms. To investigate and eliminate load
imbalances, it focusses on processor utilization, which it can analyze post-mortem based on event
traces obtained at runtime. It emphasizes processor utilization to investigate and eliminate load
imbalances, but relies on the user to identify problematic behavior.

Trace visualization

Trace visualizations commonly show timeline diagrams, potentially accompanied by other vi-
sualizations of corresponding data. Timelines are two-dimensional plots, where one dimension
is the (usually) normalized time during application execution and the other dimension is the
execution context, such as a process or thread. By plotting the timelines of several processes or
threads side by side, differences in behavior, expressed by calling functions at different times or
calling different functions altogether, can easily be spotted by the user.

Although the common application of HPCToolkit can be seen in the generation of runtime
summaries, it also supports the generation of traces from sampling data. An appropriate time-
line visualization helps users to identify load imbalances among processes [156]. Jumpshot [180]
is a classical timeline visualization tool developed by the Argonne National Laboratory. It is
distributed with the MPI Parallel Environment (MPE) [190]. It supports the visualization of
timelines for the full range of MPI functions, including MPI one-sided communication. The Intel
MPI Trace Analyzer [72][188] is a commercial tool to measure performance of MPI applications.
It supports both runtime summarization and tracing, and can visualize timeline diagrams includ-
ing one-sided communication. The commercial Vampir [110, 112][201] trace visualizer developed
at the Technical University of Dresden allows the investigation of trace measurements stored in
the OTF [80], EPILOG [176] and OTF2 [52] formats. Additionally to the trace visualization,
it also displays statistical data for the time range currently selected in the timeline view. It
supports the display of one-sided communication, however, relies on the expert knowledge of
the user to identify inefficiencies and their root causes. As its support for one-sided communica-
tion is based on the OTF2 generic RMA event model [6], it will readily support any one-sided
interface, such as ARMCI, supported by Score-P in the future. Paraver [130][195], developed
by the University of Barcelona, also focuses on the visualization of trace data using timelines.
The traces are based on a hybrid approach using sampling for application level functions and
direct instrumentation of the MPI library, obtained by its own measurement system Extrae [88].
Paraver’s unique feature is the visualization of metric streams—supporting function call infor-
mation as well as performance counter metrics. It further supports deriving new metric streams
from existing ones.

As the primary purpose of timeline visualization is to give a detailed account of the application
behavior, all of these visualization tools rely very much on expert knowledge to identify wait
states and further performance metrics.
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Automatic performance analysis

To reduce the amount of expert knowledge to effectively analyze the performance of parallel
applications, some tools employ additional automatic analysis methods to provide performance
metrics beyond basic time accounting. Using such tools lowers the entry bar for developers in-
vestigating and optimizing the performance of their parallel applications effectively. For their
supercomputing platforms, Cray provides the measurement and analysis system CrayPat [44]
and the corresponding graphical user-interface Apprentice

2
[47]. They automatically detect per-

formance bottlenecks and static load imbalance among processes, however, they do not detect
their root causes. As the SHMEM one-sided communication interface is commonly used on these
platforms, the native Cray tools support these naturally. The IBM High Productivity Comput-
ing Systems Toolkit (HPCST) [70][187] is another tool that focuses on the productivity aspect of
performance analysis. For their platforms, it provides a framework to identify problematic pro-
gramming patterns and suggests possible solutions for an identified pattern to the user [41, 139].
It uses static code analysis to identify problematic programming patterns and also accepts input
from other performance analysis tools.

Performance analysis tools targeted at partitioned global address space languages often support
one-sided communication interfaces naturally, as those languages use it extensively. In this con-
text, HPCST also supports tracking remote memory accesses in UPC and correlating them to the
corresponding program structures [42]. The Parallel Performance Wizard (PPW) [150, 151][194]
of the University of Florida relies on the callback-based instrumentation interface GASP [152] to
provide information on the one-sided communication runtime. This may comprise information
on the call sites of communication calls to enable relating implicit communication back to its
originating source location. However, although GASP is an open interface, the number of runtime
systems supporting it is limited. Currently, only the GASNet [27][184] runtime system seems to
support GASP, limiting its applicability in a larger context. Still, with GASNet being the major
runtime of choice for available open source compilers for Unified Parallel C (UPC) [165], PPW
provides a profiling framework for identifying bottlenecks in the original source code context of
UPC programs.

As mentioned in the previous sections, one-sided communication enables runtime systems to sup-
port global-view programming, similar to multi-threading and tasking, on distributed memory
architectures. It is therefore important to also evaluate the state of the art in multi-threading per-
formance tools as a reference point for tool support of such global-view programming models. In
particular, locks are available in both thread-based programming and one-sided communication.
For multi-threaded applications, HPCToolkit supports the identification of lock contention [158],
including blame shifting to identify its root cause. Furthermore, Tallent et al. presented work
on identifying bottlenecks in multi-threaded work-stealing approaches [159]. The Intel VTune
Amplifier XE [73][189] is a sampling-based performance tool, providing some automatic analysis
techniques for thread synchronization, including a locks-and-wait analysis, targeted to expose
waiting time due to lock contention in thread synchronization. Furthermore, it supports the
detection of idle time within the MPI implementation if used with Intel MPI.

The Carnival [94] performance tool, as presented by Meira Jr. and colleagues, directly focussed on
the understanding of performance phenomena rather than merely detecting them. It formally in-
troduced cause-and-effect analysis as a means to identify and attribute root causes to wait states
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and implements it in a pipeline of serial analysis steps. It performs trace-based identification of
points of process synchronization, however, its serial implementation limits its applicability to
current scales of concurrency. The Scalasca toolset [57], jointly developed by the Forschungs-
zentrum Jülich and the Technical University of Darmstadt, mostly use direct instrumentation
to create time profiles and event traces. While versions 1.x provided its own instrumentation
and measurement system to generate trace files in EPILOG format, it relies since version 2.0 on
Score-P to generate OTF2 event traces. Scalasca’s unique feature is the highly parallel search for
wait states in communication and synchronization, using a post-mortem communication replay
technique. As the contributions of this thesis are based on this approach, it is subject of more
detailed presentation in Section 2.

1.4. Contribution of this thesis

Ensuring application performance is a critical aspect of software engineering, particularly in
high-performance computing, where underperforming simulation codes may reduce the amount
of scientific output achievable in a given time. For developers of parallel simulation codes and
communication runtime systems alike to regard one-sided communication as a first-class com-
munication paradigm for their parallel software, proper software tools need to be available to
them. Especially on today’s large-scale supercomputing systems and even larger scale of fu-
ture systems, the concurrency presented to a software developer can be challenging to employ
efficiently.

Summarizing the requirements on state-of-the-art performance analysis methods for one-sided
communication to equal those available for the common paradigms, point-to-point and collective
communication, a generic performance-analysis solution should

• detect wait states in one-sided communication and synchronization;

• identify their root causes;

• guide users to appropriate optimization targets in the application; and

• work at large scale.

However, as the overview of performance analysis tools for one-sided communication in Sec-
tion 1.3.2 has shown, only a few of the tools address multiple of these requirements, and none
of them covers all. The performance analysis methods presented in this thesis directly address
these requirements. Specifically, it comprises the following contributions.

A generic formal event model for one-sided communication. Event-based performance
analysis is based on a formal event model, specifying place and extent of event information
recorded during measurement. The work presented in this thesis significantly contributed to
the definition of a generic event model for OTF2 [6], used in the Score-P measurement frame-
work, which is the measurement system for multiple performance tools, such as Scalasca [57],
Vampir [112], Periscope [59], and TAU [145].

Definition of wait-state patterns for passive target synchronization. In addition to the wait
state patterns for active-target synchronization defined in previous work, this thesis presents two
previously unstudied types of wait states: lack of communication progress and lock contention.

20



1.4. Contribution of this thesis

Both wait-state types occur in passive-target synchronization, a synchronization scheme com-
monly used by one-sided communication libraries.

Scalable detection of wait-states in one-sided communication. To identify performance
anomalies at scale, the methods detailed in this thesis build upon the parallel, post-mortem
traversal of process-local event traces used in Scalasca [56]. This enables process-local perfor-
mance data to be evaluated in parallel, while performance data relevant for the investigation of
process interaction is exchanged ad hoc on the recorded communication paths.

Replay-based communication on implicit communication paths. Scalasca’s replay infras-
tructure relies on the communication information to be available to the process-local replay.
For passive-target synchronization, such information cannot directly be inferred on the target
process. The work presented in this thesis introduces a high-level messaging framework based
on the active-message paradigm enabling communication on implicit communication paths of
an application, while retaining the overall parallel ad-hoc communication approach.

Classification of wait states as synchronization-based or contention-based. Synchroni-
zation-based wait states, as investigated by Böhme et al. [26], are fundamentally different from
contention-based wait states, such as those occurring at lock-based mutual exclusion. While the
former is caused by two activities not being concurrent, the latter is caused by two activities being
concurrent. This thesis formally introduces the concept of contention points as an additional
point of process synchronization in parallel application. Furthermore, it combines it with the
original wait-state formation model to form a unified wait-state formation model.

In summary, these contributions directly address the previously stated requirements for state-
of-the-art performance analysis methods and brings performance analysis methods for one-sided
communication on par with methods for point-to-point and collective communication.

Summary

Since about 2002, improvements of the serial performance of computing elements in processors
have slowed down significantly. Concurrency in multi- and many-core processors became the
new driver for performance improvements on the processor level. With parallelism on the node
and the processor level, the number of processing elements has grown rapidly in the last decade,
increasing complexity in understanding application behavior.

Software developers need portable development tools to help reducing this complexity and enable
their productivity [167]. This includes performance analysis tools that increase the understanding
of inefficient application behavior and its root causes to identify potential optimization targets
productively. Message passing is the most prevalent programming paradigm in high-performance
computing, providing three distinct communication paradigms: point-to-point, collective, and
one-sided communication. While the former two paradigms are well supported by performance
tools in HPC, support for the latter is not as extensive. Any lack of support of a specific commu-
nication paradigm will directly affect the level of productivity this paradigm can be employed
with. Before non-expert developers can regard one-sided communication as a first-class option
when choosing the best paradigm for their parallel application, its support by performance
analysis methods needs to equal the available support for the other two paradigms. Moreover,
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one-sided communication is often used in runtime systems of other parallel programming mod-
els. An extensive support of one-sided communication by performance analysis methods will
therefore directly affect optimization capabilities for such runtime systems.

This thesis contributes methods for the scalable and portable performance analysis of one-
sided communication constructs with respect to the identification and classification of inefficient
behavior and the identification of their root causes and corresponding optimization potential.
Its automatic detection of wait states and their root causes simplifies the understanding of an
application’s behavior and exposes those parts of the application responsible for inefficiencies.
In combination with the correct assessment of the critical path, it enables developers to analyze
their parallel application with any combination of communication paradigms.

Organization of the document

The remainder of this thesis is organized as follows. Chapter 2 discusses Scalasca’s parallel
communication-replay approach in more detail. Chapter 3 defines the performance metrics for
one-sided communication used by the Scalasca toolset and their scalable detection and quan-
tification in a parallel application. Based on this, Chapter 4 will show how these metrics relate
to and interact with the performance metrics of other communication paradigms used in multi-
paradigm applications. Chapter 5 demonstrates the applicability of the presented contributions
with computational kernels, benchmarks, and real world applications. Finally, Chapter 6 sum-
marizes the contributions of this thesis and proposes further work.
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2. Event-trace analysis using communication
replay

As outlined in the previous chapter, the analysis methods for one-sided communication presented
in this theses are based on the Scalasca framework. Therefore, this chapter reviews its workflow
and architecture, to enable a deeper understanding of the presented methods and extensions. It
places a focus on event tracing in general and Scalasca’s implementation of the replay approach
in particular.

Scalasca [198] is a trace-based performance analysis toolset predominantly for parallel applica-
tions [57]. Its analyzer processes event traces of parallel applications, automatically identifying
wait states in inter-process communication and thread synchronization. Beyond this identifica-
tion of wait states, the analysis provides performance indicators and root-cause information on
the identified wait states to further assist the performance optimization of those applications.
Figure 2.1 shows how the analysis process is embedded in the overall workflow. Scalasca uses
a combination of source-level instrumentation and pre-instrumented libraries to insert the nec-
essary measurement code into the parallel application. Versions 1.x of the Scalasca toolset use
its internal measurement system EPIK, whereas versions 2.0 and further use the Score-P mea-
surement system [81], a joint development of several performance tool groups. The prototype
implementation of the methods presented in this thesis are based on the EPIK measurement
system. The measurement system, as part of the application executable, can either create a
runtime summary, a detailed event trace, or both during application execution. As direct in-
strumentation can lead to significant changes in the application behavior, users should perform
one or more measurements creating runtime summaries, and use these to refine and optimize
the measurement configuration. Once the measurement configuration is suitably refined, the
user can configure the measurement system to create a measurement archive containing detailed
event traces. For each process in the application, an individual event trace is created in the
measurement archive. Each of these process-local events contains general information, such as
the time the event was recorded, and may also contain event-specific information, such as an id
of the function that is entered or left, or information on the interaction of processes and threads,
such as communication or synchronization partners. The analysis outputs a summarized wait-
state report similar to the summary report after runtime summarization. The wait-state report,
however, contains additional information on the location of wait states and further performance
metrics computed during trace processing.

Scalasca uses a parallel replay to process the event traces in a scalable fashion. A replay, in
Scalasca’s terminology, is the ordered processing of event-local traces. For each event, the replay
infrastructure can trigger callback functions registered by the analysis tool to perform specific
tasks. This approach is extremely flexible and enables a multitude of different tasks performed
on the trace data.
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Figure 2.1.: The Scalasca workflow.

Wait-state detection The parallel detection of wait states is the initial use case for the re-
play approach. The wait-state analyzer [58] registers callback functions for flow events,
effectively tracking the source context—the call path—of any event in the local trace. Fur-
thermore, the callback functions registered for communication and synchronization events
exchange timestamp information with the respective remote communication and synchro-
nization partner. The analyzer can then use this information to compute potential waiting
time, as defined in Chapter 3.

Timestamp synchronization Performance analysis methods comparing timestamp informa-
tion of different sources heavily rely on their comparability. To ensure the best possible
quality of timestamps, Scalasca uses the replay technique to validate and correct times-
tamps and effectively ensure the semantic validity of the measurement using the controlled
logical clock [13]. The algorithm uses the recorded communication events to trigger the
exchange of timestamps, just like the wait-state analysis does. When a violation of com-
munication semantics is encountered, such as a receive ending before its corresponding
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send started, the timestamps of the corresponding events are modified to reflect the cor-
rect semantics again. In principle, the replay technique also supports further post-mortem
timestamp synchronization schemes, such as the one presented by Doleschal et al., which
also corrects clock drifts beyond clock condition violations.

Performance simulation To help developers estimate the gain or costs of potential optimiza-
tions to their applications, Scalasca uses the replay approach also to simulate application
behavior [64]. In multiple replays, the callback functions first modify an existing event trace
according to a user-provided simulation configuration and then simulate the application
behavior through re-enacting communication and computation in real time. Modifications
can be the balancing of time spent in a certain call path across processes or the reduction of
time spent in a specific region, which simulates a performance optimization. The simulator
writes a modified measurement archive that can then be processed using the wait-state
analyzer.

Root-cause analysis Beyond the detection and quantification of waiting time in parallel ap-
plications, Scalasca uses the replay approach also to detect imbalanced code regions as the
source of these wait states [26]. Similar to the wait-state analysis, information about root
causes are exchanged at communication and synchronization points.

Critical-path analysis Additionally to the wait-state and root-cause analysis, Scalasca follows
dependencies between processes from the end to the beginning of the trace, to identify
activities of different processes and threads on the critical path [24]. It further derives
so-called performance indicators to reveal overall time lost due to load imbalances and
help developers identify optimization targets. The relevant information is exchanged by
callbacks triggered at communication and synchronization events.

This broad variety of applications demonstrates the flexibility of the overall approach. To enable
the replay, the approach relies on specific information being available in the trace. Specifically,
it requires a lossless tracking of communication and synchronization functions of a program.
This is, as is explained later in this chapter, due to its reuse of the applications’ measured
communication paths during the analysis, based on purely local information. If one process does
not record its part of a communication during measurement, it will not participate in analyzing
the same communication in the replay. In most cases this will lead to a deadlock during the
analysis. To ensure the consistency of the communication information distributed across the
participating processes, the measurement therefore uses direct instrumentation. This enables
the measurement system to track every communication in the application, ensuring that the
replay based on the measurement of any correct application will not deadlock.

Wait states, as introduced in Chapter 1, describe states where processes sit idle, waiting for
a remote process to perform a certain action, such as starting the communication. For the
identification and quantification of wait states, Scalasca compares the information on enter and
exit of corresponding communication functions. Such information is generally not available to the
local process without further communication of information on these dependencies to and from
other processes. While the analysis could estimate wait states by comparing the time actually
spent in communication to an ideal communication time [93], one cannot identify its cause. One
method to transfer the necessary information during measurement would be the use of so-called
piggyback messages. Such messages describe the additional payload being sent alongside of an
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2. Event-trace analysis using communication replay

application-level message. Piggyback messages enable the identification of wait states during
measurement as well as the aggregation of such information in a runtime summary. However,
they are limited to wait states that occur on the receiver side, as information only flows with
the original direction of the message, and not in opposite direction. By using event traces and
postponing a more detailed analysis until the end of the measurement, Scalasca can overcome
both shortcomings and accurately identify wait states on both the sending and the receiving
side of a communication. While this also increases memory requirements during measurement,
it allows to shift some of the computation done for a runtime summary to a time when it does
not influence the measurement anymore.

While the mere identification of wait states is more forgiving to individual wait states being
missed by any analysis process in general, the identification of root causes and the assessment
of the critical path of a parallel application need a rigorous identification of all synchronization
points to remain valuable, as will be explained in Chapter 4. As sampling cannot guarantee to
record all points of synchronization, direct instrumentation is required at least for such points.
Control flow information beyond the synchronizing calls may be collected either through direct
instrumentation or sampling methods, in a balance between accuracy and overhead [155].

In summary, the replay method employed by the Scalasca toolset commands the use of direct
instrumentation for all event sources that may cause the wait states. The flexibility of the
method then allows for an accurate identification of wait states and their root causes, as well as
for performance indicators helping in assessing optimization potential.

2.1. Event tracing

Event-based performance analysis models application behavior by recording state changes of the
application measured. Such execution state changes are called events. The information needed
to analyze the performance are encoded in event records. Because of the tight relation of event
records and events, the term event is also often used to refer to specific event records. As some
of this information is specific to single records, a set of multiple event records—the event set—is
used during measurement. The semantics of individual records in the event set and their relation
to each other is described by the event model, which forms the basis for modeling application
behavior and performance.

Examples for different events available to model the application behavior are those referring
to the flow of control during execution, such as entering and leaving a code region, and those
referring to points of interaction and synchronization of concurrent processes or threads in a
parallel application. Figure 2.2c lists the small subset of the EPILOG event set [176] used by
the EPIK measurement system of Scalasca 1.x relevant for the understanding of this chapter.
The events shown can roughly be classified in those describing the control flow (left) and those
describing communication (right). Events such as the collective exit CX (middle) belong to both.
It describes both the end of the respective function call and the communication involved in the
collective operation. For the events listed, the semantic description of EPILOG’s event model
includes that a send event S and a receive event R form a pair, i.e., one send event on the sending
process matches exactly one receive event on the receiving process. The send event S is recorded
before the actual communication is started, marking the earliest time the communication may
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Figure 2.3.: Timeline and event-stream view of control flow and communication events, including a joint
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have started. The receive event R is recorded after the actual communication is completed,
marking the latest time the communication may have completed. To compute the time spent
within a point-to-point communication, the send and receive events must be enclosed by enter
E and exit X events, describing the full duration of the function call used to perform the
communication, such as Send or Receive in Figure 2.2. Figure 2.2a shows a constructed example
of a typical timeline view as it is presented to the user by trace-visualization tools. Figure 2.2b
shows which events are part in constructing such a view. For each enter event, a corresponding
exit event must be present in the trace. The regions modeled by those events must not partially
overlap, i.e., they are either non-overlapping or one fully encloses the other. The collective exit
CX event matches with its preceding enter event (see Figure 2.2b), as it describes both the
collective communication and the end of the function call. Both of these events must be present
for all processes participating in the collective call.

A chronologically ordered sequence of events is called an event trace. Figure 2.3 shows how
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2. Event-trace analysis using communication replay

application behavior is represented by such an event trace. Figure 2.3a details a classic timeline
view of two processes A and B calling different functions over time. The duration of a call
is expressed by the width of the box in the timeline. Calls to functions within functions are
expressed by splitting the parent function’s box in two with the child function’s box in between.
In this example, function bar calls a communication function send on process A, while the
function baz on process B calls a different communication function, receive. Figure 2.3b shows
how this scenario would be represented by two streams of events. The measurement system
encodes state changes of the application using events of specific types. In this example, these
are event types for entering E and exiting X a function as well as sending S and receiving R
a message. The braces show how these events correlate to the individual functions.

The measurement system provides a calling context to individual events by recording changes to
the control flow using enter and exit events. By keeping track of these enter and exit events while
processing a trace, a performance tool can recover the information about the calling context for
the events being processed, without the need to explicitly store it as part of every event record.
For each enter, the tool stores an identifier for the current function call onto a stack—the call
stack. For each exit, the tool removes the top element of this stack. At any given time, the
contents of this stack from the bottom to the top yields the call path of an event. By combining
all recorded call paths, a performance tool can construct the call tree of an application, as shown
in Figure 2.3c. Using such call trees, performance tools can present analysis data in a compact
and intuitive way. The more detailed the call-path information is, the better it helps distinguish
communication in different parts of the application code and identifying the location of execution
hotspots and wait states.

Event traces provide a fine grained view of an application’s behavior over time. The applica-
tions for such a view are manifold and not only restricted to performance analysis. For example,
Kranzlmüller used event tracing to build graph structures for debugging message passing commu-
nication [83]. Calotoiu et al. [30] use event traces to detect manual implementations of collective
functions independent of the communication pattern used. The PSINS [163], Dimemas [88],
and Silas [64] simulation frameworks also use event traces for different aspects of performance
simulation.

Some performance tools, such as Vampir [112] and Jumpshot [177], display event traces in
timeline displays, and allow the detailed visual introspection of application behavior. As no
official standardization body for event trace formats exists today, different tools often use their
own proprietary trace format tailored to the specific needs of the tool in question. The range
of available trace formats includes SLOG2 [35], EPILOG [176], OTF [80], OTF2 [52], STF [75],
and ScalaTrace [120]. In many cases, however, the information encoded in such event traces is
similar enough that some tool providers offer either the conversion from one format to another
(e.g., Scalasca 1.x offered conversion scripts from its then native EPILOG format to SLOG2,
OTF, and Paraver’s native trace format). However, with growing trace sizes, it becomes more
impractical to store multiple copies of the same data in different formats. Therefore, programs
like Scalasca and Vampir support multiple trace formats natively through internal abstraction
layers, such as PEARL [56] in case of Scalasca. Furthermore, the trace-based performance tools
Scalasca, Vampir, and Periscope selected the OTF2 trace format as their main trace format, i.e.,
they all natively support the traces created by the Score-P measurement system.
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2.2. Definition of wait states based on event models

Based on an event model, wait states can be defined using the dependencies between events.
For example, in the Late Sender wait state, as shown in Figure 2.4a, the receiver is waiting for
the sender to send its message. It will not be able to receive the message until the sender has
started the communication. Thus, the time spent in the receive call before the sender entered the
communication call can be considered as waiting time. The amount of waiting time associated
with a wait state is expressed as ω, which is expressed formally through the following equation:

Late Sender: ω = {tS − tR , if tS > tR

0 , otherwise
(2.1)

Another example for wait states in communication are collective operations with an all-to-all
communication pattern: no process can complete the call before the last process started the
call. As a result, all processes wait for the last process to join before they return to the user
application. The time between the local enter event and the enter event of the last process to
join the call is identified as a Wait at N×N wait state (shown in Figure 2.4b). Assuming that t

i
E

represents the time of the enter event on process i and t
l
E represents the local enter time, then

the waiting time can be expressed formally as:

Wait at N ×N: ω = max(tE0
, tE1

, . . . , tEn−1) − tEl (2.2)

The definitions of these wait states only consider the relationship among event information, not
where (on which location) this information is locally available. It is the task of the analysis
process to communicate this information to the process performing the computation of the
waiting time accordingly. For example, Equations 2.1 and 2.2 compute the local wait state using
timestamps from multiple locations. For the Late Sender wait state, these are the timestamps
of the send event tS , which is recorded on the sending process, and the timestamp of the receive
event tR, which is recorded on the receiving process. For the Wait at N×N wait state, the enter
timestamps of all processes in the communicator need to be evaluated.

The point in time when such information is communicated may differ among tools. The KOJAK
performance analysis tools set—Scalasca’s predecessor—also performed an automatic search for
wait states [174]. However, it collated all trace-local information at the end of the measurement
and combined it to a single event trace holding all global information. This approach bore two
disadvantages: (1) the additional I/O to persistent storage to merge the local event traces to
a single global event trace and (2) the multiplexing of events belonging to multiple processes
is complicating parallel processing. Especially the second disadvantage is due to the fact that
this initial approach was never designed for parallel processing. Scalasca therefore follows a com-
pletely new approach that requires neither rewriting nor copying event traces after measurement,
hence, enabling efficient parallel processing at large scales.
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Figure 2.4.: Definition of typical point-to-point and collective communication wait states.

2.3. The communication-replay analysis method

Scalasca communicates the inter-process information just-in-time by replaying the communica-
tion pattern recorded in the trace. The general idea of this communication replay approach is
very similar to online analysis using piggyback messaging. There, performance-relevant informa-
tion is sent either included in the application’s original message or with an additional message on
the same communication path. The post-mortem communication replay technique mimics the
latter, sending performance-relevant information on the recorded communication path. Com-
pared to the online analysis approach using piggybacking, the post-mortem communication and
computation does not perturb the initial measurement. This enables more complex computa-
tions during analysis and even multiple passes over the recorded data. Moreover, as done by the
methods presented in this thesis, communication paths other than those explicitly recorded can
be used as well.

The heart of Scalasca’s parallel event-trace processing is the C++ event-trace interface library
PEARL [56]. It provides a high-level interface to event traces comprising three main parts that
enable easy parallel processing: (1) An event-class hierarchy that enables an abstract interface
to event information, independent of the trace format, (2) a callback infrastructure that allows
the execution of specific function calls, and (3) a replay mechanism that enables the parallel
processing of event traces.

The class hierarchy enables users to access event information independent of the binary trace
format. Basic event information, such as the timestamp of an event, is available for all event
types. Specific event information, such as communication information, is only available at the
corresponding event objects. Furthermore, it provides access to information not explicitly saved
with each individual event, such as the call path a particular event is associated with. The call-
path information, for example, is computed ad hoc by tracking enter and exit events during the
replay.

The callback infrastructure uses a publish-subscribe mechanism [19] to enable an arbitrary num-
ber of callback functions to be called when processing an event. It decouples the PEARL library
from any specific functionality of applications using it. The library allows the registration of so-
called callback functions to be executed on the processing of a certain event. PEARL allows two
types of events: native and user events. Native events correspond to the event types available in
the event model used to describe the application behavior, e.g., events for entering and leaving
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Figure 2.5.: Communication replay for the identification of the Late Sender and Late Receiver wait
state.Triggered by the communication events S or R , respectively, the potentially causing process
sends the time of its enter event E to the communication partner, where it is received by a handler
of the corresponding communication event and used to compute the waiting time. Note that the two
patterns are detected in subsequent replays of opposite direction.

a code region, sending and receiving a message, or entering and leaving a collective operation.
These event types are defined within the PEARL library. User events can be defined by the user
of a library and are represented by unique, user-defined integer values.

The replay mechanism allows the parallel processing of the individual process-local traces. It
starts at one end of the local event trace and advances to the next event until it reaches the
other end. Each replay starts and ends collectively for all processes. Further synchronization and
communication depends on the callback functions registered for a specific replay. For each event
in the event trace, the replay engine triggers the native event corresponding to the type of the
event processed. Then, the callback functions are executed in the order they were registered.
Each callback function can call other functions or signal further (user) events. Once the execu-
tion of a callback—including all of its directly called functions and further triggered callback
functions—has finished, the next registered callback is executed. This process is repeated for
all callbacks registered for the native event type, before the replay advances to the next event.
Scalasca uses replays in both directions of the event trace: a forward replay in chronological
order of the events in the trace and a backward replay in reverse-chronological order. While
the forward replay enables efficient flow of information between events in chronological order,
using the recorded communication graph, the backward replay enables data to flow in reverse
chronological order, using the inverted communication graph of the application. The ability to
invert the communication pattern is a key requirement for the detection of root causes and the
quantification of their costs as described in Chapter 4, but it also enables the detection and
quantification of wait states on the sending process, such as the Late Receiver . It is similar to
the Late Sender wait state, but here the sender waits for the receiver. To detect it, information
needs to be passed from the receiver to the sender.

Figure 2.5 shows the communication performed for the Late Sender and Late Receiver wait state
during wait-state detection. The callback function registered for the respective communication
events S and R , respectively, in the corresponding replay collects the event information of
its corresponding enter event E and sends it to the recorded communication partner of the
process. The callback function registered for the corresponding communication events R and
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S , respectively, on the communication partner receives the message and comput es the waiting
time using the local and the received enter timestamps.

Summary

Scalasca is a performance analysis toolset focussed on the identification of wait states in inter-
process communication and synchronization. It uses a trace-based parallel analysis method to
identify these wait states. The wait states are defined based on an event model used to describe
an application’s behavior. The communication and synchronization events in the trace must be
obtained by direct instrumentation to ensure all such events are recorded by the measurement
system. Using a parallel post-mortem traversal of process-local event traces in either chronolog-
ical or reverse-chronological event order to communicate inter-process information enables the
detection of wait states and their root causes described by such definitions. The high degree
of parallelism and the just-in-time communication of inter-process information on the recorded
communication paths enables an efficient automatic detection of wait states and their associated
waiting time.
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3. Wait states in one-sided communication

The knowledge-based identification of wait states in parallel programs is one of the key compo-
nents of the Scalasca performance analysis toolset. At its original release in 2006, the Scalasca
performance analysis toolset supported the detection of wait states in point-to-point and collec-
tive communication. While Scalasca’s predecessor KOJAK [175] already supported the detec-
tion of wait states in active-target synchronization of MPI’s one-sided communication [86] and
SHMEM [99], Scalasca itself initially did not support these with its replay-based analysis.

This chapter describes the contributions of this thesis to the overall trace-analysis framework.
Section 3.1 introduces the OTF2 generic event model for one-sided communication, including
examples of its use to model MPI, ARMCI, and SHMEM communication. Using this event model
to describe wait states in one-sided communication, Section 3.2 reviews previously published
types of wait states for active-target synchronization and introduces previously unstudied wait
states of passive-target synchronization. Section 3.3 then describes a novel analysis scheme to
discover and quantify these wait states.

3.1. A generic event model for one-sided communication

As explained in Section 2.2, Scalasca defines its wait-state patterns based on an event model.
Scalasca’s original measurement system uses the EPILOG [176] event model, including a events
for one-sided communication [65]. Since version 2.0, Scalasca supports the Score-P measurement
system [81] as its primary source of event traces, which uses the OTF2 [52] event trace for-
mat. This thesis contributed to the definition of the generic OTF2 event model for one-sided
communication [6] and uses it to describe the wait-state patterns in one-sided communication
interfaces. As the successor of EPILOG and OTF, it surpasses both in its modeling capabilities
using a smaller number of generic event types. The definition of these patterns using a generic
event model also emphasizes that they may occur in more than one specific interface.

One-sided interfaces separate communication and synchronization in data transfers. To identify
wait states, an analysis therefore has to consider both of them. Individual one-sided commu-
nication interfaces, such as the ones of MPI, ARMCI and SHMEM, often define an individual
set of RMA operations and synchronization functions. The semantics of individual operations
and synchronization functions, although named similarly, may differ across different interfaces.
For example, regarding local completion of an operation, ARMCI explicitly declares blocking
and non-blocking variants of its RMA operations, whereas OpenSHMEM, as the representative
for the SHMEM family of interfaces, only provides blocking operations and MPI defines only
operations that are implicitly non-blocking. Regarding remote completion, all three of these in-
terfaces provide functionality to ensure it explicitly. Any function ensuring either local or remote
completion is a candidate for containing a wait state.
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C Win Create S RmaSync Rl Release Lock A Atomic Cr Op Complete Remote

D Win Destroy Sg Sync Group Tr Try Lock W Wait Change T Op Test
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Figure 3.1.: The OTF2 event set for one-sided communication [6]. Different semantic groups are indi-
cated by dotted lines. Control flow events are part of the general OTF2 event model. Communication
context, active-target synchronization, passive-target synchronization, and remote-memory access
operations are part of the generic one-sided communication event model.

MPI one-sided communication has a very generic one-sided communication interface. The stan-
dardization body took much care in the design of the interface not to require a certain memory
model for a specific implementation. It uses abstractions to hide specific details of the remote
memory access. Although other one-sided communication interfaces do not use these abstrac-
tions, but rather expose the specific implementation detail, this thesis will use the name of the
corresponding MPI abstraction to ease the understanding of common behavior among one-sided
communication interfaces.

Figure 3.1 lists the generic one-sided communication event types of OTF2. A total of five se-
mantic groupings are indicated by the dotted frames: control flow, communication context,
active-target synchronization, passive-target synchronization, and remote-memory access oper-
ations.

The control flow events are not strictly part of the event model for one-sided communication, but
listed here for completeness. The enter E and leave events L model the entering and leaving of
a specific code region, such as function calls, and are part of the initial OTF2 specification [52].
As the beginning and end of the one-sided communication and synchronization functions are
also modeled by these events, they are included here for completeness. All remaining events in
the figure are part of OTF2’s generic event model for one-sided communication.

Some communication interfaces, such as MPI, provide multiple independent communication
contexts to the developer. As communications, such as collectives, are sometimes tightly coupled
to the communication context, it needs to be tracked adequately. As a general abstraction of
the different communication contexts provided by different one-sided communication interfaces,
the OTF2 event model uses the name window for accessible remote memory. OTF2 models
the creation and destruction of a common communication context using window-create C and
window-destroy events D , respectively. References to such a communication context by remote-
memory access operations and synchronizations can only occur after the window-create and
before the window-destroy record. For one-sided communication interfaces that provide implicit
global communication contexts, OTF2 assumes an implicit window creation during initialization
and a corresponding implicit destruction during finalization of the communication.

Creating such communication contexts is usually a collective operation over all processes of
the context, often involving process synchronization. As all processes in the communication
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context are involved in such a collective operation, it counts to the active-target synchronization
schemes. This type of collective communication and synchronization is modeled by explicit
event records. The collective-begin event Co is placed directly after the enter event and the
collective-end event Ce is placed directly before the leave event of the collective call. Next to
collective synchronization on the full window, one-sided communication interfaces often support
more lightweight synchronization schemes. The sync event S models pairwise synchronization,
while the sync-group event Sg models group-wise synchronization.

In passive-target synchronization, process and memory synchronization is done via shared re-
sources called locks. A lock is a token that a process has to acquire before the execution of specific
operations can continue. Depending on the one-sided interface, the actual acquisition of a lock
by the local process can occur at different times in the execution. The most common and most
intuitive behavior in lock acquisition is that the function to acquire the lock returns only after
the lock’s successful acquisition. The one-sided communication interfaces ARMCI and SHMEM
use this behavior for their interface semantics. For these kind of interfaces, the measurement
system places the lock-acquisition event Ac at the end of the call to mark the time the acqui-
sition was completed successfully. MPI one-sided communication follows a different approach.
It allows its lock function to return before the lock was acquired successfully. Modelling the
lock acquisition at the end of such the lock function would therefore lead to inconsistent lock
semantics, as multiple processes appear to own the lock. An MPI implementation is allowed to
delay the lock acquisition to a later point in the execution, as long as it guarantees that any
local remote-memory access operation to the corresponding window are scheduled after the lock
was really acquired. This enables MPI implementations to schedule RMA operations in passive-
target synchronization internally, at the expense of hiding the acquisition completely from the
user view. To mark the earliest time the lock could have been acquired by the local process, the
lock-request event Rq is written at the beginning of the lock function. Some one-sided interfaces,
such as OpenSHMEM, provide the middle ground between a completely non-blocking lock ac-
quisition and a fully blocking one: a non-blocking call that indicates on return whether the lock
was acquired or not. An unsuccessful locking is recorded using the try-lock Tr event, whereas a
successful locking results in a lock-acquisition event Ac record. Some communication interfaces
allow users to wait explicitly for values in the target window to change, which can be modeled
with the wait-change W event.

For remote-memory access operations, OTF2 can model both blocking and non-blocking local
completion semantics, as well as remote completion. The start of different types of RMA opera-
tions are modeled using the put P , get G , and atomic A events. The corresponding completion
events depend on the semantics of the corresponding call. The op-complete-blocking Cb event
records the local completion of a blocking operation. The op-complete-non-blocking Cn event
records the local completion of a non-blocking operation. Some interfaces allow the applications
to query remote completion on an operation, which is recorded by an op-complete-remote Cr

event. Similar to locks, interfaces may allow to test for local completion of a non-blocking op-
eration, as known from MPI point-to-point communication. This is recorded using the op-test
event T .

To demonstrate the expressiveness of these event types for use with different one-sided commu-
nication interfaces, the following sections will discuss how they are used to model MPI, ARMCI
and SHMEM communication. The event sub-model for one of these interfaces may not use the
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Figure 3.2.: OTF2 event model for MPI collective synchronization. In addition to standard enter and
leave events, collective events comprise an additional set of begin and end markers. Also creation
and destruction of windows are marked in the respective calls. All RMA operations are implicitly
non-blocking, thus they are modeled by the non-blocking event set. The fence call in MPI only
guarantees local completion; remote completion is guaranteed by the remote fence call. Therefore,
fence only store remote completion events for get operations.

full range of available event types, but rather only uses those applicable to the specific interface.
The individual event types keep their semantics across different models, enabling the definition
of generic wait-state patterns applicable to multiple one-sided communication interfaces.

3.1.1. MPI

MPI one-sided communication is based on the memory abstraction of a window. It emphasizes
the fact that often times not the complete memory can be accessed by remote processes, but
only a fraction. A reference to such a memory region is a window handle. The time between
start and completion of remote memory access operations and their synchronization is called an
epoch. MPI differentiates this further into access epochs on the origin, and exposure epochs on
the target. The latter define the time a window is accessible for remote memory access.

Window handles are always associated with a specific communication context, the so-called
communicator. Collective operations on a window are collective in context of the window’s
communicator. Naturally, users of MPI one-sided communication can define window handles
using any valid communicator. Furthermore, users can also create multiple distinct windows
using the same communicator. Operations on these individual windows are independent of each
other, no matter whether the same communicator was used during creation or not. To enable
the correct attribution of RMA operations to individual windows, the measurement system
can use specific window-definition events to hold all relevant information about the individual
windows defined by the application. Figures 3.2 to 3.4 showcase the relationship of the different
events used in the event model. The common prefix MPI for RMA operations and MPI Win for
synchronization calls is omitted for clarity.
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Completion records for remote-memory access operations

The standard RMA operations defined by MPI are neither explicitly blocking nor non-blocking.
It is dependent on the implementation whether an individual RMA operation blocks during ap-
plication execution or not. A user of MPI one-sided communication should therefore not assume
either case. As with explicitly non-blocking operations, all RMA operations must be enclosed by
corresponding synchronization calls. In the non-blocking case, these calls perform the necessary
synchronization; in the blocking case, they behave like no-ops regarding operation completion.
Semantically, the data transfer is only guaranteed to be completed after the corresponding syn-
chronization function. The OTF2 event sub-model for MPI therefore uses non-blocking record
types to model calls as non-blocking. It places the start of the operation (i.e., P , G , or A ) after
the enter E event of the respective region instance and the end of the operation right before the
leave L event of the corresponding instance of the synchronization-call region. Which type of
completion (local or remote) is recorded at a specific synchronization call depends on the RMA
operation and the synchronization call and is discussed in the following sections on the different
synchronization types in MPI.

Collective operations and synchronization

Processes create and destroy window handles collectively. As shown in Figure 3.2, all processes
record those operations in their respective calls. Both operations—creation and destruction of a
window—potentially synchronize the processes, but they do not complete pending RMA oper-
ations. Note that MPI uses the term free for the destruction of a handle. Any RMA operations
issued by the application must be completed by a synchronization function prior to the window
destruction. The fence synchronization call is collective on the full window. As the synchroniza-
tion call completes all pending operations, a single completion record can be used to mark the
completion record of multiple operations, as shown on process C, where two distinct get opera-
tions are completed by a single fence. Note that a fence in MPI only ensures local completion Cn

of pending operations. Remote completion Cr is ensured by the corresponding synchronization
call on the target. For put-like data transfers, neither process has the full information to mark
remote completion. Therefore, remote completion events are not recorded for those transfers.
For get operations, however, remote completion can be inferred from the local completion, as
the transfer should complete remotely when all data has been fully transferred at the latest.
Therefore the measurement system can record remote completion of the pending get operations
on process C at the end of its local fence operation.

Group-based synchronization

General active-target synchronization (GATS) also involves multiple remote processes, but it
is not collective. It separates the origin and target processes into separate groups, each with
distinct synchronization calls to open and close access epochs on the origin processes and ex-
posure epochs on the targets, respectively. Before RMA operations can be issued in general
active-target synchronization, an origin process needs to call MPI Win start. A single call to
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Figure 3.3.: OTF2 event model for MPI general active-target synchronization. Synchronization is mod-
eled via the sync-group events in the corresponding synchronization calls. The groups stored with
the event comprise the remote origin and target processes, respectively. The complete call only guar-
antees local completion of the operation; remote completion is guaranteed by the corresponding wait
call on the target. Therefore, complete calls only store remote completion events for get operations.

MPI Win start may start access epochs for multiple targets for a given window, which are spec-
ified as a parameter to the call. The access epochs to all targets of a given window are closed
by a call to MPI Win complete. It is not possible to close only a part of the open epochs on a
given window. Therefore, there is a single pair of start-complete calls for multiple targets for
a given window. This single pair of start-complete calls is matched by a single pair of calls to
MPI Win post and MPI Win wait, respectively. All target processes have to provide the ranks
of all origin process that specify them as targets when opening their access epoch. Figure 3.3
shows a standard scenario where two targets (processes B and C) open an exposure epoch for
the origins (processes A and D). The group relationships for synchronization are recorded using
the group-synchronization record Sg . Remote completion is reached at the end of the targets’
respective wait calls, however, for other than get operations the target again does not have
knowledge about any specific RMA operations of the exposure epoch at hand. Therefore analo-
gous to the collective synchronization, the completion of the accumulate operations of processes
A and D are modeled by non-blocking completion records only and the completion of the get
operations, as in the previous case in Figure 3.2, are modeled with both non-blocking completion
and remote completion records.

Lock-based synchronization

Passive-target synchronization does not have an explicit notion of access and exposure epochs.
As the target is passive—it does not actively open the window for access—it is the origin that
logically opens both its access epoch and the target’s corresponding exposure epoch at the
same time. As MPI ensures mutual exclusion in passive-target synchronization through locks,
these combined epochs are named lock epochs for the remainder of this thesis. To allow MPI
runtime systems to schedule concurrent accesses to a window flexibly, the call to acquire a lock
may be non-blocking, i.e., the call may return to the application before the lock is actually
acquired. All subsequent operations must either also be non-blocking and queued, or block
until after the successful acquisition of the lock. The measurement system does not have any
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Figure 3.4.: OTF2 event model for MPI passive-target synchronization. Locks model simultaneous
access and exposure epochs. The release-lock event also marks remote completion of any operation.
Flush calls, as introduced in MPI 3.0, enforce local completion of any operation. As always, get
operations complete remotely when they complete locally and all other operations complete remotely
at the release of the lock.

data at measurement time to infer whether a lock was acquired. Thus, for MPI, it can only
record the request for a lock Rq as shown in Figure 3.4. In this figure, process B and E are the
passive targets of processes A, C, D, and F’s operations. The lock epoch is ended by an unlock
call. This call is guaranteed to block until both local and remote completion of all pending
operations. Therefore, the completion of put and accumulate operations can be modeled by
both non-blocking and remote completion records.

MPI 3.0 [104] introduced additional synchronization calls for passive-target synchronization.
Now, developers can use various flavors of flush to ensure local and remote completion of pending
calls during a lock epoch. A flush (process F) ensures local and remote completion of any pending
RMA operations. A local variant of flush (process A) ensures only local completion of the
operation and remote completion is then ensured at the end of the lock epoch. MPI 3.0 and later
also supports explicitly non-blocking one-sided operations, namely the calls MPI Rput, MPI Rget,
MPI Raccumulate, and MPI Rget accumulate. These calls return a request handle as known from
non-blocking point-to-point communication to the application that can be used to test or wait
for local completion. A corresponding wait call (processes C, D, and F) therefore marks the
non-blocking completion Cn for every request separately. Note that these corresponding wait
calls are not special one-sided communication synchronization functions, but the same request
completion calls as for point-to-point communication. These calls only provide local completion
semantics, thus remote completion is marked at the end of the lock epoch.
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Figure 3.5.: OTF2 event model for ARMCI collective and active-target synchronization. Initialization,
finalization, and memory allocation are collective operations and modeled as such. Neither of these
has an effect on ongoing operations. A barrier synchronization invokes an all-fence operation on
every process, ensuring remote completion for any pending operation.

3.1.2. ARMCI

The Aggregate Remote Memory Copy Interface (ARMCI) [117] is the underlying one-sided
interface of the Global Arrays library. It has been designed by the Pacific Northwest National
Laboratory (PNL) to support its PGAS-style distributed data structures and computation calls
on them. PNL also provides an implementation of the interface with a library of the same name.
While this is the default link target for the Global Arrays library, other implementations of
ARMCI using MPI [49] or OSPRI [61] exist. Figures 3.5 and 3.6 show the OTF2 event model
for ARMCI using the generic one-sided communication events. A common ARMCI prefix to the
calls is omitted for clarity. As the communication context in ARMCI is always global, detailed
modeling of distinct memory allocations as separate windows is not performed. Therefore, the
collective calls to initialization and finalization therefore record the creation and destruction of
the global window definition, respectively (see Figure 3.5a). Allocation of target memory regions
are also collective and modeled as such, without creating additional window handle definitions.

ARMCI provides explicit blocking and non-blocking operations. Specifically, it provides a block-
ing and a non-blocking interface for its put, get, and accumulate operations. Examples of the
different RMA operations supported are shown in Figures 3.5b and 3.6. The blocking operations
are modeled using the start event for the operation at the beginning of the call and the respective
complete-blocking event at the end. The non-blocking operations are modeled using the corre-
sponding start event record in the starting call and the non-blocking completion record in the
call ensuring successful completion of the operation. For its non-blocking operations, ARMCI
supports explicit and implicit requests. Explicit requests can be used to test or wait for com-
pletion of a particular operation, as done for the request-based operations discussed in the MPI
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Figure 3.6.: OTF2 event model for ARMCI passive-target synchronization. A fence operation ensures
remote completion of any RMA operation to a specified target prior to the call. An all-fence operation
ensures the same for all targets of RMA operations prior to the call. The use of locks ensures mutual
exclusion of processes, yet does not have any effect on message ordering or completion.

sub-model. Implicit requests are used to wait for the completion of multiple requests at once,
either per target or for all pending requests. For put operations, developers can ensure remote
completion of pending requests using fence calls. Unlike the similar synchronization function of
MPI, the fence in ARMCI is a passive-target call. That is, an origin process can call it indepen-
dently of the target or any other process. A call to ARMCI Fence will ensure remote completion
on a single target (process A), a call to ARMCI AllFence (process C) on all targets since the last
synchronization. A call to the collective ARMCI Barrier implies calls to ARMCI AllFence on all
processes. Thus, additionally to synchronizing all processes in the communication context, all
put operations are ensured to have completed remotely as well. The atomic operations—fetch-
and-add and swap—are defined with a blocking interface only. Therefore, a specific operation is
modeled by records for the atomic operation start and the corresponding blocking completion
(processes C and D). The lock-based mutual exclusion routines ensure that the lock is acquired
before they return to the application. The measurement system therefore records the lock ac-
quisition right before leaving the function call. The unlock function places the lock-release event
after successful release before returning to the user application.

3.1.3. SHMEM

Unlike MPI, the SHMEM interface is not standardized. Initially designed by Cray for their
T3D systems, it was copied over the years by other vendors and experienced API changes as
it was ported to different platforms. As a result, a variety of different flavors of SHMEM exist
today. The most prominent are Cray SHMEM, SGI SHMEM, and OpenSHMEM. The former
two are actively supported communication libraries on CRAY and SGI platforms, respectively.
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(b) Active-target synchronization.

Figure 3.7.: OTF2 event model for OpenSHMEM collective and active-target synchronization. Initializa-
tion and memory allocation is a collective operation and modeled as such. The global communication
context is created during initialization, yet no destruction event is written, as finalization is implicit
on program termination. OpenSHMEM does not define non-blocking operations, thus operations are
modeled by a start event and a corresponding completion event. Barriers enforce remote completion
of prior RMA operations.

The latter is a recent community-driven development to consolidate the different functionalities
provided by the varying SHMEM interfaces with the objective of providing a single standardized
interface to SHMEM that incorporates all capabilities of the different SHMEM flavors assuring
application portability across different platforms.

Similar to ARMCI, SHMEM only supports a single global communication context. A single
window handle is sufficient and implicitly created during initialization, as shown in Figure 3.8.
Processes communicate based on symmetric objects. Symmetric objects have the same type,
size, and address across all connected processes. With symmetric objects, a process can compute
addresses of remote objects, purely based on the properties of their local counterparts. SHMEM
allows applications to dynamically allocate and resize symmetric objects using collective function
calls. The current OpenSHMEM 1.1 specification [36] only defines a blocking interface to its RMA
operations. This means that a remote-memory operation returns upon local completion of the
call. For put operations, the specification explicitly states that this does not guarantee remote
completion and the message ordering of subsequent put calls without further synchronization is
not guaranteed.
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Figure 3.8.: OTF2 event model for OpenSHMEM passive-target synchronization. A call to shemem quiet

ensures remote completion of RMA operations issued prior to the call. Locks ensure mutual exclusion
and also complete pending operations remotely.

To enable internal optimizations, SHMEM provides separate function calls for specific native
datatypes of C/C++ and Fortran as well as generic remote memory access calls operating on
type-opaque buffers. For brevity, Figure 3.8 only shows representative function calls of their
respective flavor and omits the common prefix shmem . As part of the general communication
routines, SHMEM defines three such flavors each for put and get routines, respectively. First, it
defines calls for single element buffers, named shmem TYPE (g∣p) for different TYPEs. These calls
are only available for native types in the C/C++ interface excluding the char type. Second, it
defines calls for contiguous buffers, named according to the pattern shmem TYPE (get∣put) for
different TYPEs. These calls are also available for C/C++ char as well as Fortran native types.
Finally, calls for strided buffers exist, named according to the pattern shmem TYPE i(get∣put)
for different TYPEs. According to their blocking behavior, each call region contains a put or get
record, respectively, as well as an event recording blocking completion, as shown in Figure 3.8.
No additional synchronization is needed to ensure local completion of the respective calls.

To ensure remote completion, SHMEM provides two different types of barriers. First, a call
to shmem barrier all ensures all prior put operations are completed remotely and also syn-
chronizes the processes in that no process will continue execution before the last process joined
the call. Second, a call to shmem barrier enables the same on a subset of the processes. The
subset is defined by a tuple of the lowest rank in the synchronizing processes, a logarithmic
stride (base 2) between consecutive processes, and the total number of synchronizing processes.
Calls to shmem fence enforce ordering of put calls relative to the synchronizing calls, but do not
guarantee remote completion. Calls to shmem quiet enforce the remote completion. Puts issued
before the call are guaranteed to be written to the symmetric memory before puts issued after
the call. The first call, shmem fence, ensures this ordering on a per-destination basis, the second,
shmem quiet across all programming elements. This is a weaker claim than remote completion,
and therefore no remote completion events are recorded in these calls.

Atomic operations in SHMEM are guaranteed to directly complete remotely. That is, an atomic
function call will ensure that subsequent accesses of the modified memory on the target process
will see the modification. SHMEM also provides a function to observe modification to local
memory by remote processes. Using shmem wait or shmem wait until blocks a process until the
corresponding condition is satisfied. For both functions, a wait-change record stores the time
the condition was satisfied.
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SHMEM also enables users to guarantee mutual exclusion using locks. Similar to the locking
semantics of ARMCI, the calls to shmem set lock return when the lock was successfully ac-
quired. Figure 3.8a shows how in this case an acquire-lock event is placed before leaving the
set-lock call (process A). Like in the other interfaces discussed, a call to unlock ensures local and
remote completion of all pending operations. The call to clear lock therefore contains remote-
completion events for the transfers issued during the lock epoch. Additionally to the classic lock
and unlock functionality, OpenSHMEM also defines a test-lock functionality. As demonstrated
in the figure on process B, the call returns to the user when the lock is currently held by another
process, in which case a try-lock event Tr is placed before the subsequent leave event of the call.
In case the lock is not held by another process at the time of the test, the lock is acquired by
the process and an acquire-lock event Ac is placed before the subsequent leave event.

3.2. Defining wait states

Wait states in inter-process communication occur when one process waits for a specific action
of another process before it proceeds. As one-sided communication involves only a single active
process, wait states may not be as obvious as with other communication paradigms. Never-
theless, wait states do occur and can be formally defined using an event model, such as the
previously detailed OTF2 model. While the communication in one-sided interfaces does not in-
volve the target process explicitly per definition, the synchronization of the data transfers may
or may not involve the target explicitly. These two main classes of synchronization in one-sided
communication are called active target and passive target synchronization. As not all one-sided
communication interfaces define both active and passive target synchronization, the wait-state
pattern described in this section only apply to interfaces with the corresponding functionality.

The remainder of this section introduces the terminology used to define wait-state patterns in
general and provides and an overview of all wait-state patterns in one-sided communication
as shown in Figure 3.9. In particular, it recapitulates the wait-state patterns for active-target
synchronization (Wait-State Patterns 1 to 5, shown with white background) as described in
prior work [63, 86, 99]. Furthermore, it introduces additional wait-state patterns for passive-
target synchronization (Wait-State Patterns 6 and 7, shown with gray background) and a new
synchronization-complexity indicator contributed by this thesis.

3.2.1. Terminology

To describe complex phenomena in the execution of a parallel program and their impact on
the overall application performance, it is necessary to define basic building blocks that can
subsequently be used and combined to define more complex interactions. The most fundamental
building block of event-based performance analysis is the event itself.

Definition 1 (Event) With p ∈ P identifying a process p out of the set of all processes P , an

event e
i
p ∈ Ep ⊆ E models the ith change of a state in the execution of a program on process

p, with Ep being the set of all state changes recorded on process p and E the set of all state
changes recorded. Examples of such changes are the entering or leaving of a function call and
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Figure 3.9.: An overview of wait-state patterns in one-sided communication. Patterns marked in gray
constitute previously unstudied wait-state patterns.

sending or receiving a message. The distinct time of any specific event in the program execution
is denoted by the function

Time ∶ E → R (3.1)

2

The execution of a program on a process p can thereby be modeled as an ordered sequence of
n events Ep = (e1p, e2p, . . . , eip, . . . , enp) ∈ E, where the events are ordered according to their time
in the execution. To create a contiguous view on the application execution over time using this
sequence of discrete events, the time between two consecutive events is defined as an activity.

Definition 2 (Activity) The ith activity a
i
p on a process p describes the time between two

subsequent events e
i
p and e

i+1
p in the process-local, ordered sequence of events Ep. This implicitly

defines the process-local, ordered sequence of activities Ap of size n − 1. As common in high-
performance computing, each process p ∈ P shall execute only a single activity on a single
compute element at any given time. Each activity is tied to a specific contiguous region in the
application code called the call-path, which is referenced by the function

Callpath ∶ A→ C (3.2)

Furthermore, for activities defined by subsequent enter and leave events to a specific code region,
the start and end time, respectively, is denoted by the functions

Enter ∶ A→ R (3.3)

Leave ∶ A→ R (3.4)

Finally, the duration of an activity is defined by

Duration ∶ A→ R (3.5)

2
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Evidently, Equations (3.3) to (3.5) are just short-hand for more elaborate usage of Equation (3.1),
as the following examples show.

Enter(aip) = Time(eip)
Leave(aip) = Time(ei+1p )

Duration(aip) = Time(ei+1p ) − Time(eip)

In the event model used in this thesis, the communication routines measured are atomic or
opaque in the sense that the model does not record any additional call-path information below
the captured communication interface function in the measurement. This means that the time
spent in a communication activity is defined directly by the timespan between its enter and leave
event and is not interrupted by other activities. In other words, the communication routines are
by definition leaf nodes in the call tree.

Definition 3 (Wait state) An activity a
i
p suffers a wait state, if and only if both of the fol-

lowing two conditions are met:

1. The completion of a
i
p depends on a remote event e

k
q denoting the kth event on process q.

2. The time of event e
k
q lies within the timespan of activity a

i
p, i.e.,

Enter(aip) < Time(ekq) ≤ Leave(aip)

The amount of waiting time in the ith activity a
i
p on process p is expressed by the amount of

time spent waiting for a specific event e
k
q on process q and is denoted by the function

ω ∶ A→ R

which is further defined by

ω(aip) = Time(ekq) − Enter(aip) (3.6)

2

3.2.2. Active target synchronization

Active target synchronization explicitly involves the target process in the completion of the re-
mote memory operation on the target. The term was coined by the MPI standard, which also
defines the most comprehensive active-target synchronization schemes. Any of these synchro-
nization schemes is a potential candidate for wait states, as processes explicitly wait for remote
events to occur. This can mean that either an origin process may wait for a target to allow the
remote memory access, or the target may wait for an origin to complete it.
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Figure 3.10.: The Wait at Create/Fence/Free and Early Fence patterns. Waiting time is marked in
red with the corresponding wait-state pattern name. Due to process synchronization inherent in the
operations, all participating processes have to wait for the last one to enter the call. The Early Fence
pattern indicates time that a target process spends waiting in a fence synchronization while origins
still have to complete their operations [2].

Wait at Create/Fence/Free and Early Fence

The most general active-target synchronization scheme is the use of collective memory fences.
That is, all processes using a specific window handle have to perform this synchronization and
cannot complete the call before every other process started as well. As such, this scenario is very
close to the Wait at N×N wait-state pattern discussed in Section 2.2. Additionally, this wait-state
pattern also occurs at other collective calls of one-sided communication interfaces, namely the
collective allocation and deallocation of memory segments suited for remote memory access.

Wait-State Pattern 1 (Wait at Create/Fence/Free) Let a
i
p be the activity of a collective

RMA synchronization call on process p (i.e., creating, freeing, or synchronizing a window).

Further let the activities a
ĩ
0, a

ĩ
1, . . . , a

ĩ
n−1 be the corresponding activities on the processes 0 to

n − 1 sharing the window handle.

Then the local waiting time ωp on process p is the difference of the latest enter time among the
processes 0 to n − 1 and the local enter time [86].

ωp = max (Enter(aĩ0),Enter(aĩ1), . . . ,Enter(aĩn−1)) − Enter(aip)
2

Figure 3.10 shows the different scenarios of this wait-state pattern. During window creation,
process C arrives late and processes A and B accumulate waiting time. Later, during a collective
fence operation, process B arrives late while A and C wait. Finally, process B arrives late again
during window destruction.

The cause of wait states at collective operations are work or communication imbalances among
the processes, as will be discussed in more detail in Chapter 4. As a sub-pattern of the Wait at
Fence pattern, the Early Fence pattern is an additional indicator for imbalance. It identifies those
parts of the wait state, where the local process already started the completing synchronization
call, but one or more origin process have not issued their respective accesses of this epoch.
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3. Wait states in one-sided communication

Wait-State Pattern 2 (Early Fence) Let a
i
p be the activity of a collective fence synchroniza-

tion call on process p. Further let the a
Last Op
q the activity of the last remote-memory operation

of process q to the local process p. Then, the last remote-memory access to the local process
in that epoch is determined by the maximum leave time of all individual last remote memory
access operations across all corresponding processes. Furthermore, the waiting time ωp is the
difference between the end of the last remote-memory access operation and the start of the local
synchronization activity a

i
p, if the end of the last remote-memory access operation is later than

the start of the local synchronization activity [86]:

ωp = max (Enter(aip),Leave(aLast Op
0 ), . . . ,Leave(aLast Op

n−1 )) − Enter(aip)
2

The premature epoch completion of Early Fence can be resolved in different ways. First, the
origin process could issue the access operation earlier, by changing the order of function calls
in the epoch. This might also be beneficial to the overlapping the communication with the
user function’s computation, but is only possible if there actually is time spent in other calls
during the epoch that are independent from the RMA operation in question. Second, instead
of changing the origin side of the epoch, the target may delay the start of the synchronization
by executing useful independent functions prior to the synchronization. Third, as part of a
general load balancing strategy, the work between origin and target could be balanced. This
would resolve the complete wait state and usually is the best way to address the underlying
problem.

Late Post

Besides the collective synchronization, MPI also defines a more fine-grained general active-target
synchronization. Here, synchronization is not performed among all processes of a communication
context, but only among a runtime-defined set. Each origin process specifies the target processes
it will access in a given access epoch and subsequently only synchronizes with the corresponding
targets. Similarly, each target specifies the origin processes it allows to access its memory on
start of the exposure epoch. In a correct MPI program, the two groups have to complement each
other: for each origin process p that has a target process q in the target group starting the access
epoch, target process q has to have p in its origin group starting the exposure epoch. Although
this synchronization is much more lightweight than the collective synchronization, wait states
can still form at different points of this synchronization scheme.

MPI does not strictly define which calls will block until the remote process sends an acknowl-
edgement, thus, the analysis algorithm has to apply a heuristic to determine which of the calls
involved suffered a wait state. During pattern detection, it first identifies the call that led to the
process synchronization before it actually computes the waiting time.

Wait-State Pattern 3 (Late Post) Let a
Post
q be the activity of a post call on a target q in a

general active-target synchronization. Let a
i
p the activity of a corresponding synchronization or

communication function on the origin process p. If and only if, the start of a
Post
q falls between
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Figure 3.11.: The Late Post pattern. Origin processes may block in different calls when accessing the
exposed window on the target. Process A does not block when starting the access epoch, but blocks
in the subsequent RMA operation. Process B blocks directly when starting its access epoch. Process
D does not block the starting of the access epoch and buffers the RMA operation. It then blocks
before it can complete the access epoch [2].

the start and end of the local activity a
i
p on process p, the waiting time ωp is determined by the

difference between the start of remote activity a
Post
q and the start of the local activity a

i
p [86].

ωp = {Enter(aPost
q ) − Enter(aip) , if Enter(aip) < Enter(aPost

q ) ≤ Leave(aip)
0 , otherwise

2

Figure 3.11 shows the different synchronization scenarios possible with general active-target
synchronization. In this example, processes A, B, and D wait for process C, which starts its
exposure epoch too late, causing waiting time on the origins. An access epoch can generally not
be completed before the exposure epoch has started. The MPI standard does not explicitly define
when a process has to wait for the start of the exposure epoch. Implementations may buffer the
start and any subsequent operations and perform all necessary actions in the complete call. Note
that while an implementation usually only uses one of those strategies (rendering the concrete
scenario in Figure 3.11 unlikely), it is not guaranteed that implementations restrict themselves
to a single strategy. The analysis algorithm therefore applies a heuristic to infer the actual point
of blocking from the recorded event traces. The different potential locations for wait states are:
(1) the start call of the access epoch (process B), (2) one of the remote memory access operations
(process A), or (3) the complete call of the access epoch.

Kühnal et al. originally also defined the Early Transfer wait state. It described the special case
of a Late Post wait state, when the wait state occurred in an RMA operation (process A).
The explicit name for this special case is purely based on reasons of internal classification of
wait states as communication and synchronization-related, not explicitly on differences in the
semantics of the pattern definition. To avoid confusion and ease the interpretation of analysis
results, the Early Transfer wait-state pattern is therefore now assimilated into the Late Post
pattern.
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Figure 3.12.: The Early Wait and Late Complete pattern. Process C enters the wait early, before
processes A and B signaled the completion of their access epoch. Process A is the last process to
signal completion. The time between the last remote memory operation and the complete call is
marked as Late Complete time [2].

Early Wait and Late Complete

Target processes in general active-target synchronization may potentially wait for origin pro-
cesses to complete their access epochs. To ensure that modifications to the window memory
become visible in the target’s memory consistently, the target needs to perform a memory fence
after closing the exposure epoch. To ensure that all modifications of the exposure epoch occur
before the memory fence is issued, the target needs to receive acknowledgements from all origins
that they have completed their accesses.

Wait-State Pattern 4 (Early Wait) Let a
Wait
p be the activity of a wait call on target process

p. Further, let a
Complete
q be the activity of the corresponding complete call on an origin process q.

Then, the waiting time of the target ωp is the difference of the latest start of completion activities
across all corresponding origins and the start of the targets wait activity a

Wait
p , if the end of the

last completion activities is later than the start of the local synchronization activity [86]:

ωp = max (Enter(aWait
p ),Enter(aComplete

0 ), . . . ,Enter(aComplete
n−1 )) − Enter(aWait

p )
2

Figure 3.12 shows the Early Wait wait state in a scenario with two origins. The two origin
processes A and B complete their access epochs while the target process C is already waiting
for their acknowledgement.

The Late Complete wait state is a sub-pattern of Early Wait . It is an indication that waiting
time may be reduced by moving the complete closer to the last remote memory operation to
enable the target to complete the exposure epoch earlier. However, this resolution cuts both
ways, as the separation of a non-blocking start of a communication and its completion may
enable communication-computation overlap. Moving the completion closer to the operation itself
may therefore reduce the possible overlap, reducing the overall gain from this optimization.
Schneidenbach et al. [141] pointed out this weakness in the MPI definition and proposed the
separation of data transfer completion and the acknowledgement of the completion of the current
access epoch.
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Wait-State Pattern 5 (Late Complete) Let process q be the last process to access the tar-
get process p. Further, let a

Last Op
q be the activity of the last remote-memory access operation from

process q to p and a
Complete
q be the activity of the corresponding completion call on q. Then, the

waiting time ωp on process p due to a delayed complete on process q is the difference between
the end of the last remote-memory access operation and the start of the complete [86].

ωp = Enter(aComplete
q ) − Leave(aLast Op

q )
2

In Figure 3.12, the Late Complete is indicated by the hatched area in the Early Wait wait state
on process C. As can be seen, the Early Wait wait state may be reduced by reducing the gap
between the put on process A and the corresponding complete.

Pairwise RMA process synchronizations

MPI and other one-sided communication interfaces often define several synchronization functions
for pending one-sided communication operations. Some often synchronize pending operations to
multiple targets or ensure operations from multiple origins complete on the target. Depending on
the defined synchronization semantics, this may involve a large number or remote processes and
even synchronize processes that did not exchange data. Such synchronization may be necessary,
as a target cannot distingiush whether a remote origin still has pending RMA operation that
have not arrived yet or whether the are none in the first place, until some form of information
exchange clarifies this. For example, if the synchronization function on the target has to guaran-
tee completion of remote accesses to its window, it has to collect information from all potential
origin processes.

The RMA pairwise synchronizations metric is a performance metric that counts such synchro-
nizations in a pairwise manner. This means, for each target the origin needs to synchronize with
(and vice versa) one synchronization is counted. , leading to multiple counts within single syn-
chronization functions if itfor multiple origins and targets. The sub-metric Unneeded pairwise
synchronizations counts the number of such synchronizations that were not needed to complete
an RMA operation, indicating that there is potential work to be saved. The user needs to eval-
uate the this metric and put it into perspective of the time needed for the synchronization. A
high number of unneeded synchronizations correlates may indicate the cause for a high time
spent in the synchronization.

3.2.3. Passive target synchronization

In passive-target synchronization, the target process does not actively participate in the syn-
chronization. Necessary synchronization is either performed by hardware on the target without
explicit software interaction, taken care of by additional communication threads, or implicitly
performed when the target calls into the communication library. Points of synchronization are
therefore not as obvious as with active-target synchronization. Nevertheless, synchronization
points may still exist implicitly. To infer whether a wait state occurred, inter-process informa-
tion needs to be evaluated.
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Figure 3.13.: The Wait for Progress pattern. Calls may either depend on a single remote event to occur,
such as the Get operation (a), or on multiple remote events, such as the AllFence synchronization
using two different heuristics (b and c). The no-overlap heuristic only classifies those times that do
not overlap with progressing remote regions as waiting time, which is a conservative lower bound.
The last-call heuristic classifies the time up to the start of the last remote call as waiting time,
serving as an upper bound.

Wait for Progress

When hardware support for one-sided data transfers is not available, an additional thread—
a so-called progress thread—can be used to ensure communication progress. However, not all
one-sided communication libraries use progress threads, as they may have a negative impact on
communication latency in general, as locking of critical regions in the messaging library will be
needed to ensure consistency. Furthermore, it may lead to cache thrashing, with further negative
impact on messaging but also on application performance in general. On the other hand, not
relying on a progress thread to advance the communication, but rather advancing any pending
communication every time the application calls into the communication library avoids these
issues. However, this may lead to waiting times when blocking operations on the origin process
wait for communication progress on the target. The question of whether to employ a progress
thread or not usually depends on the communication patterns and phases expressed by a specific
application. For one-sided communication runtime implementors as well as users of one-sided
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communication interfaces it is therefore important to identify the costs of not using a progress
thread to make an informed decision on which path to choose for a specific application and
platform.

Direct information on message progress is mostly not available from the communication library.
Therefore, the decision whether remote progress occurred or not has to be made following specific
heuristics. Two different approaches can be used to estimate the waiting time of a local process:
(1) the no-overlap heuristic and the (2) last-call heuristic.

The no-overlap heuristic only considers the times where the local activity does not overlap with
any of the remote activity it depends on. The motivation for this assumption is that some
unknown portion of the overlapping time is productively used for data transfer completion. Not
to falsely classify productive time as waiting time, this heuristic will usually underestimate the
real waiting time in this pattern and serves as a lower bound. The last-call heuristic considers
the full time from the beginning of the local activity to the start of the latest progressing remote
activity as waiting time. The motivation for this assumption is that no matter how much time
was spent productively with other remote processes, the local activity will always have to wait
for the start of the last remote activity it depends on. Therefore, this heuristic may overestimate
the real waiting time, but in that serves as an upper bound for the real (unknown) waiting
time.

Wait-State Pattern 6 (Wait for Progress) Let a
i
p be an activity on process p that requires

communication progress on one or more remote processes to complete. Further let D be the
set of remote activities a

k
q that provide progress (↝) for a

i
p. D does not contain more than one

activity of the same process, implying that each activity a
k
q ∈ D completely fulfills its part of

the required progress for activity a
i
p.

Then, the waiting time ω for the no-overlap heuristic is defined as the sum of all time spans
that do no overlap with any of the activities a ∈ D, whereas the waiting time for the last-call
heuristic is defined as the difference between the start of the latest activity a

k
q in D and the start

of the local activity a
i
p:

D = {akq ∣ akq ↝ a
i
p}

∀a
k
q , a

k
′

q′ ∈ D ∶ (akq ≠ ak
′

q′ ⇒ q ≠ q
′)

No-overlap heuristic ∶ ωp = Duration(aip) −Duration((
D
⋃ a

k
q) ∩ aip)

Last-call heuristic ∶ ωp = max
akq∈D

(Enter(akq)) − Enter(aip)

2

The calls to the library API are tracked on the target side, but not explicitly associated with
any origin-side call. The target therefore does not know which of the API calls provided remote
progress and for which origin potential progress was granted. To identify these, the target needs
the time of the enter and leave event on the origin.
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3. Wait states in one-sided communication

Figure 3.13 shows two typical situations for the Wait for Progress wait state. Figure 3.13a shows
how the get operation on process A cannot complete without remote progress given by process B.
Such a scenario is also common to remote-memory access operations that perform computations
at the target, where the operation is not directly supported by the communication hardware.
Figures 3.13b and 3.13c show a scenario where the two put operations of process C complete
locally, but the application also needs to ensure remote completion calling an allfence operation.
Process C therefore has to wait for confirmation from processes A and B that can be given at
the earliest when the respective remote process calls into the communication runtime after the
start of the synchronization activity on process C. The two figures provide a visualization of
how the two heuristics—no-overlap and last-call—classify the waiting time differently.

Lock Contention

As one-sided communication may be capable of directly modifying remote memory without
target intervention, synchronization mechanisms are needed to ensure data consistency. For
such purposes, one-sided communication interfaces usually provide lock-based mutual exclusion.
In lock-based synchronization, critical code sections can only be entered if a corresponding lock
is acquired. With exclusive locks, only a single process can acquire a lock at any single moment;
with shared locks, multiple origin processes can acquire a lock concurrently. As shared locks only
block other exclusive locks until release but allow concurrent shared locks to be acquired, they
present less chance of wait states and should be preferred in scenarios where the target memory
is not modified.

Naturally, the acquisition of any type of lock may lead to a wait state. Depending on the one-
sided communication interface, the specific time of acquisition of the lock may be unknown.
For example in MPI, MPI Win lock may return before the lock is actually acquired. Subsequent
remote memory access operations have to ensure the lock is acquired before they can be com-
pleted. As those operations are also allowed to return early, the lock acquisition may be delayed
until the call to MPI Win unlock.

A lock can be seen as a shared resource itself, with multiple processes competing for access to
it. The state when a process experiences wait states or delays due to other processes’ access to
the same shared resource is called contention. Wait states in the lock-based mutual exclusion
mechanisms are therefore a special case of the general resource contention that can also be
experienced with other shared resources, such as file systems or network devices.

In general, the Lock Contention wait state occurs when a process requests a lock that is currently
held by another process. It then has to wait for the release of the lock by that process. In general,
the information on the synchronization dependencies between the origin processes is not directly
available to the individual origin processes.

Wait-State Pattern 7 (Lock Contention) Let a
i
p and a

k
q be the activities of a passive-target

synchronization or remote-memory access operation on origin processes p and q. Assume that
a
i
p cannot complete before the acquisition of the corresponding lock held by process q. Assume

further that q releases the lock at the end of activity a
k
q .
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Figure 3.14.: The Lock Contention pattern. When multiple processes access the same window on the
same location, lock access chains build up. In this example, write accesses are protected by exclusive
locks (x), whereas read accesses are protected by shared locks (s). Depending on the one-sided
interface, the moment of lock acquisition may not be known explicitly, but can only be inferred by
checking the time of release of previous lock owners.

Then, the waiting time ωp is defined as the difference between the start of a
i
p and the end of a

k
q .

ω = {Leave(akq) − Enter(aip) , if Enter(aip) < Leave(akq) ≤ Leave(aip)
0 , otherwise

2

Figure 3.14 shows the different acquisition scenarios for MPI passive-target synchronization.
Similar to the relaxed blocking semantics of MPI general active-target synchronization, MPI
passive-target synchronization only requires the unlock to guarantee completion of all pending
RMA operations, as long mutual exclusion requirements of the requested locking types are met.
This implies that implementations may not block a locking call (as shown with processes B and
C) or subsequent RMA operations (as shown by process D), as long as their access to the target
is postponed until the actual access is granted by the target. Process A is the first process to
acquire an exclusive lock. As it did not have to wait, it is not relevant for the analysis process
to know which of the calls actually acquired the lock. In this example, processes B and C both
request a shared lock. They can acquire the lock concurrently, but have to wait until it is released
by process A. Process D requests an exclusive lock, and has to wait for process C, being the
last process to release the shared lock. Additionally, it acquired the lock in the remote memory
operation (Put) within the lock epoch. Finally, process E requests the lock, yet directly blocks
until the lock is released by process D.

3.3. Scalable detection of wait states in one-sided communication

Chapter 2 introduced the scalable replay-based analysis capabilities of the Scalasca toolset. This
section introduces the extensions to this infrastructure necessary to facilitate the identification
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Figure 3.15.: Communication during the detection of wait states in collective operations. The honeycomb
markers indicate specific events that are involved in the analysis process; the numbering is arbitrary
but unique. At every collective-end event of a fence operation, any previous access and exposure
epochs are opened and new ones are opened on all participating processes. Available memory in the
corresponding window of process C is indicated by a dotted rectangle. Transfer of information on
the end of RMA operations is indicated by solid arrows.

and quantification of the wait states in one-sided communication discussed in the previous
section, specifically the scalable detection of wait states in active-target synchronization [2] and
progress-related wait states of passive-target synchronization [4]. Furthermore, it discusses the
detection of wait states due to lock contention.

3.3.1. Active-target synchronization

Wait-state patterns in active-target synchronization comprise five individual patterns. Three
of these are distinct patterns, and the remaining two are sub-patterns that allow a deeper in-
sight into the state of its corresponding parent pattern. Active-target synchronization comprises
collective and group-based synchronization.

Collective synchronization

The wait states in collective memory allocation and synchronization are similar to the Wait at
N×N pattern discussed in Chapter 2. As synchronization or allocation information needs to be
exchanged among all processes a full synchronization of the window’s communication context
is implied. As the operations under measurement were collective, the analysis can also use col-
lective communication during the replay. Figure 3.15 shows an example scenario involving fence
synchronizations. The honeycomb markers indicate events that are involved in the detection of
waiting time in collective active-target synchronization. Assuming a semantically correct appli-
cation, the analysis algorithm can assume that all processes will eventually process the local
events modeling the same instance of the collective synchronization. The analysis algorithm can
therefore also dispatch collective communication calls at collective events ( 1 , 3 , 4 , 6 , 7 , and 8 )
without the risk of deadlock. Similar to the detection of wait states in collective communication,
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Figure 3.16.: Heuristic for process synchronization detection in implicitly synchronizing collective calls.
Waiting time is only computed in cases of overlap of all region instances across the processes.

a reduction determines the maximum enter and the minimum leave timestamps of all corre-
sponding calls. Combining these values with local enter and leave timestamps, each process can
then compute its local waiting time.

However, process synchronization in these collective calls is implicit. That is, its main purpose
is to complete all pending RMA operations locally and remotely. If no additional information is
provided through function parameters, the collective operation needs to complete a full infor-
mation exchange (N×N) or a barrier operation to obtain the missing information—implying full
synchronization of all participating processes. Some one-sided communication interfaces, such as
MPI, allow the user to provide additional information about the synchronization and dependen-
cies needed by the runtime. This may result in partial instead of full process synchronization.
There is no interface-level way to know whether the call was fully synchronizing or not. Thus,
the analysis uses a heuristic as shown in Figure 3.16 to decide whether a full synchronization
took place. If and only if the maximum enter time t

max
E is smaller than the minimum leave

time t
min
L , all processes share a common time span in this call and the call is considered to be

synchronizing. If the time of the last process entering the collective call is earlier than the time
of the first process leaving the call, the call is considered to be fully synchronizing and waiting
time is computed for the individual participating processes. If it is later, no waiting time is
computed.

While the wait state of collective synchronization uses collective communication, the amount
of waiting time in the sub-pattern Early Fence uses one-sided communication to transfer the
necessary data. During an access epoch, each origin process tracks the last leave time of its
accesses to the different targets at RMA operation events ( 2 and 5 ). Reaching the end of the
access epoch at the collective-end events ( 3 , 6 , and 8 ), before closing the access epoch using
a fence synchronization, each origin uses one-sided communication—namely an atomic accumu-
late operation—to send the timestamp of the last operation’s leave events to the appropriate
window location of the corresponding targets. A fence synchronization allows access to and from
every process sharing the same window, thus, the target does not have to know which origins
will send their access timestamps. The accumulate operation, as defined by MPI, allows the use
of reduction operators with the one-sided operation. Using the maximum operator, the atomic
operation will replace the value in the target window if the new value is larger than the value
already residing there. After all one-sided operations have been dispatched, another fence syn-
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Figure 3.17.: Communication during the detection of wait states in general active-target synchroniza-
tion.

chronization ensures the completion of all pending operations. Each target can then evaluate its
window buffer to obtain the maximum leave time of any one-sided operation accessing its target
buffer during the original application run.

Group-based synchronization

Similar to the detection of wait states in fence synchronization, the analysis recreates access
and exposure epochs of the original application to detect the Late Post , Early Wait , and Late
Complete wait states. Figure 3.17 shows example synchronization scenarios involving general
active-target synchronization. Triggered by synch-group Sg events, origin and target processes
issue calls to the same type of call it was recorded in. In Figure 3.17a, the target process A issues
a call to MPI Win post at event 1 and MPI Win wait at event 2 , while origin process B issues a
call to MPI Win start at event 3 and MPI Win complete at event 4 . All necessary information
to issue the respective calls is stored in the corresponding sync-group event. In Figure 3.12,
processes A and B proceed similarly using events 1 , 2 , 3 , and 5 , respectively. This way, each
target process explicitly exposes a window—shown as a dotted rectangle—that origin processes
can then use to put and get data to and from, respectively.
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The Late Post wait state (see Figure 3.17a) needs to identify the latest beginning of an exposure
epoch on potentially multiple targets. To do so, each target copies the local post enter timestamp
into its local window memory before it starts the exposure epoch ( 1 ). The origin processes can
then issue a get operation ( 3 ) on this memory location to collect and compare all necessary
timestamps. After the access epoch is closed upon processing the corresponding events of the
complete call on each origin process ( 4 ), it can determine the largest timestamp locally. Then,
each origin process searches for a possible overlap of this timestamp with local operations of the
corresponding access epoch. If found, the algorithm assumes that the overlapping call waited
for the exposure epoch of the target to start and computes the waiting time. If not found, the
algorithm assumes that none of the potential synchronization points lead to a wait state and no
waiting time is computed.

To detect the Early Wait pattern (see Figure 3.17b), the target needs to obtain the largest
enter timestamp of the completion call across the origin processes. In contrast to the get oper-
ation used for the Late Post detection, each origin process transfers its enter timestamp of the
MPI Win complete call using an accumulate operation to the target window. Using the maxi-
mum reduction operator, the one-sided operations can compute the largest enter timestamp in
place.

The Late Complete is a sub-pattern, similar to the Early Fence wait state discussed earlier. The
analysis needs to identify the time between the last RMA operation targeting the local process
and the corresponding complete. Again, each origin process uses the accumulate operation with
the maximum reduction operator to compute the largest leave timestamp in the target memory.
The resulting time of the last RMA operation to the local process and the last complete operation
timestamp may not stem from the same origin. This is still an intended behavior, as the Late
Complete pattern is an indicator for potential waiting-time reduction by moving the completion
of the epoch closer to the last operation. If the completion of an access epoch on one origin
can be moved prior to the last RMA operation of another origin, the completion on that other
origin process would be the remaining cause for an Early Wait wait state. However, moving
the completion of a non-blocking call closer to its start may effectively prevent computation-
communication overlap. Therefore, the amount of waiting time classified as Late Complete must
be regarded as an upper limit to the optimization potential of closing the gap between the last
operation and the corresponding complete.

3.3.2. Passive-target synchronization

In the message-replay algorithm used by Scalasca for point-to-point and collective communi-
cation, the events available in the process-local event traces enable triggering communication
as well as inferring implicit information about the individual communication, e.g., that data
received at a receive event contains timestamp information of the corresponding send on the
remote process. As the measurement system only records explicit involvement of a process us-
ing instrumented library calls, and the target process in passive-target synchronization does
not perform any of that kind, it becomes evident that the target process cannot generate any
viable events during measurements. This implies that the target process is unable to trigger
specific actions on certain events to aid the origin’s detection of wait states. Using active mes-
sages, the replay-based analysis can perform the data exchange necessary to identify wait states
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in passive-target synchronization scenarios. Specifically, the key requirements for the extended
communication infrastructure are the support of (1) inter-process communication not relying
on specific target-side event records, (2) communication on paths not explicitly recorded, (3)

asynchronous information exchange to enable runtime optimizations during event processing,
and (4) the support of target-side execution of arbitrary tasks based on the communicated mes-
sage. To enable the detection and quantification of wait states in passive-target synchronization
scenarios, this thesis contributes active-message extensions to Scalasca’s initial event processing
infrastructure that fulfills these requirements to explicitly support the exchange of inter-process
information in the absence of explicit event records to trigger specific communication and also
enable communication between arbitrary process pairs.

Active-message analysis infrastructure

Two-sided and collective communication are often used as the data exchange layer in cooperative
algorithms where the receiver actively receives a message. It knows and decides how the received
data needs to be processed locally. The knowledge of how the data needs to be processed emerges
from the context containing the explicit reception of the data. However, for unexpected messages,
the receiver does not have such a context, and therefore does not know how to process them in
the application. Any target-side processing of the data therefore needs to be part of the content
of the message. As already briefly touched in Chapter 1, active messages encode the context
with the message, enabling target-side execution of code after the one-sided transfer succeeded.
For specific message types, a message handler can be registered that will process a message ad
hoc at the receiver. The sender, knowing for which context it provides data in the message, also
sends the appropriate handler selection with the message. This effectively decouples the message
from its receiving context, as the receiver can provide the appropriate message context by calling
the handler selected by the sender.

To enable this, all processes need to agree on a specific set of message handlers to be used
for communication and how they are encoded. The complexity of actions that can be encoded
into a message largely depends on the communication interface and framework used. Some
interfaces have a rather restricted set of message handlers that focus on the notification of the
data and sending an acknowledgement of transfer completion back to the sender. Others allow
more complex message handlers, such as remote procedure calls.

Three classes form the cornerstones of the active-message framework: (1) A runtime class, which
defines the abstract framework messaging interface; (2) request classes, which define how data is
to be transferred between processes; and (3) handler classes, which define the data to be packed
by the sender, and how it is processed by the receiver.

The runtime class is designed as a singleton object, which is accessible throughout the application
using it. It is agnostic to the concrete actions that need to be taken to transfer or process
messages. It provides a high-level interface to send and receive requests, and executes the correct
handlers on message reception. The active-message runtime class provides an interface to advance
communication independently of the current execution context. This enables the use of a variety
of progress engines at the target. The current implementation uses explicit polling on the target,
which is integrated into the event replay mechanism. This means that the target explicitly calls
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into the runtime system to advance any pending requests. It polls at least once per event, which
enables communication progress as the analysis progresses through the event trace. Additionally,
it provides capabilities to continuously advance the communication while waiting at collective
synchronization points.

Request classes define all concrete actions needed to transfer data between processes. For each
communication interface used by the active-message framework, a distinct request class needs to
be implemented. In its current state, only a request class for MPI messaging is implemented, yet,
support for further communication interfaces can easily be achieved by implementing further
request classes. Note the MPI-based requests can also be used to analyze applications that do not
use MPI themselves, such as ARMCI- and SHMEM-only applications. Additional request classes
are therefore only necessary in cases where MPI is not available or a different implementation
is desired.

Handler classes define, independent of the message transfer, which data is packed at the sender
and how it is unpacked and processed at the receiver. An application using the active-message
framework, such as Scalasca’s parallel analyzer, needs to derive specific handlers for each distinct
task on the receiver side. Each handler provides an interface to pack all necessary data, as
well as an execute method, which is executed by the active-message runtime class on request
reception.

Using this flexible active-message framework, Scalasca’s parallel analysis supports two previously
unstudied wait states in passive-target synchronization. Each of these wait-state scenarios relies
heavily on the framework’s one-sided interface as described in the following sections.

Wait-state detection

In passive-target synchronization, two distinct wait-state patterns are detected: (1) the Wait for
Progress and (2) the Lock Contention wait-state patterns. This section details the algorithms
employed to identify instances of these patterns in the event trace and quantify their severity.

Wait for Progress. Contrary to its initial publication [4], the detection of Wait for Progress
wait states does not distinguish between single and multiple dependencies. This is due to the
fact that, while the original single-dependency algorithm summarized the waiting time already
at the target, the more advanced analyses described in Chapter 4 require per-instance data to be
transferred back to the origin. As the detection of this wait-state pattern in the case of multiple
dependencies also requires per-instance data to be sent back to the origin, the two algorithms
were merged into a single algorithm covering both cases.

The detection follows four phases:

1 The origin sends a search request to the target.

2 The target receives the request and identifies the activity by executing the corresponding
request handler.

3 The target sends a response request to the origin, containing the corresponding event data.
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Figure 3.18.: Detection workflow for the Wait for Progress wait-state pattern.

4 The origin receives the request and either temporarily stores the event data or computes
the waiting time once all responses have arrived.

These four phases are handled by two active-message handlers, as illustrated in Figure 3.18:
WfpRequest and WfpResponse. Process B, as the origin, packs two active-messages using the
WfpRequest::pack handler and sends them to processes A and C, respectively ( 1 ). Processes
A and C, receive these messages while processing an arbitrary event. They execute the message
handler WfpRequest::execute using the message content and search for a corresponding event
in their own event stream ( 2 ). In this scenario, process A finds the relating event ( ) prior to
the current event position, whereas process C identifies an event that has not been processed
by the replay. Upon finding the appropriate events, the WfpRequest handler then creates a
new active message using WfpResponse::pack handler ( 3 ). Processes A and C then send those
messages back to process B. Process B receives those messages and executes the target side
WfpResponse::execute handler using the message content. The message handler postpones the
wait-state analysis, buffering the information about the remote activities until all responses are
received ( 4 ). Once the target processes A and C have send their local information to the origin
process B, it performs the wait-state analysis using both heuristics. The detection of waiting
time with the last-call heuristic is straight forward. From all remote activities reported, the
last one is identified and the difference between its start and the start of the local activity is
classified as the waiting time. The detection of waiting time with the no-overlap heuristic is
more complex, and the general algorithm is given in Algorithm 1 in pseudo-code. The origin
stores all remote activity data until it received data about all dependencies. The data is held
in a list of all activities sorted by the enter time of the activity. Once the information about all
remote activities is available, the algorithm can investigate each activity and identify possible
overlap with the local activity. As all activities are sorted by their enter time, the algorithm
computes the overlap in a single pass over all activities. For this it maintains a reference time
t

ref
, which indicates the time up to which overlap with the local activity ap has been checked.

It is initialized with the start time of the local activity. For each activity aq in the list, the
enter time is then compared to the reference time. If the enter time of the remote activity is
larger than the reference time, the time span between them is classified as a waiting time. If the
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Algorithm 1: Compute Wait for Progress using the no-overlap heuristic

Input: Local activity a
i
p

Input: List ActivityList of remote API activities, ordered by enter time
Output: Waiting time ω

ω ∶= 0;

t
ref ∶= Enter(aip);

foreach activity a
API
q in ActivityList do

if t
ref
< Enter(aAPI

q ) then

ω ∶= ω + (Enter(aAPI
q )- tref

);
end

if t
ref
< Leave(aAPI

q ) then

t
ref ∶= Leave(aAPI

q );
end

if t
ref
≥ Leave(aip) then break;

end
return ω

leave time of the remote activity is larger than the reference time, the reference time is updated
to the remote activity’s leave time. Once the reference time exceeds the local leave time, the
computation is done. The total time spent in activity ap without overlap with the corresponding
remote activities is returned as the waiting time ω.

Lock Contention.

The time between requesting or acquiring a lock and its release by a process is called a lock
epoch. Lock contention leads to so-called contention chains, where multiple processes wait in
line to acquire ownership of the lock. To identify lock contention in one-sided communication,
the analysis needs to process the lock acquisition and release times of a lock. For one-sided
communication interfaces with blocking lock semantics, such as ARMCI and SHMEM, this is
directly modeled by the respective events, as discussed in Sections 3.1.2 and 3.1.3. For these
interfaces, the only activities of the lock epoch that need to be considered are the respective
activities for acquiring and releasing the lock. For one-sided communication interfaces with
non-blocking semantics, such as MPI, the lock acquisition time has to be computed during the
contention analysis. For these interfaces, all remote-memory access activities of the lock epoch
need to be available to the analysis process.

In a contention scenario, two or more origin processes wait for the access to a specific resource,
but do not explicitly know of each other. To identify contention, however, the individual local
information on the processes have to be compared to each other to (1) identify the order of
accesses to the resource and (2) quantify potential waiting time due to a blocked resource.
To enable contention analysis for one-sided communication interfaces, all origin processes need
to gather the needed information at a well-known location. It is important to note that any

63



3. Wait states in one-sided communication

Algorithm 2: Compute Lock Contention

Input: Stack EpochStack of lock epochs ordered by descending lock-release time
Output: Waiting time ωp

currentEpoch ← pop(EpochStack);
while NotEmpty(EpochStack) do

previousEpoch ← pop(EpochStack);
aq ← GetReleaseActivity(previousEpoch);
ap ← FindBlockedActivity(currentEpoch, aq);
if Enter( ap) < aq ≤ Leave( ap) then

ωp ← Leave(aq) − Enter(ap);
SendContentionInfoTo(q);
SendContentionInfoTo(p);

end
currentEpoch ← previousEpoch;

end

deterministic location will work, as long as all origin processes locking the same resource choose
the same location. A simple first choice is the process that owns the resource being locked.

The analysis follows two phases: (1) gather epoch information; and (2) compute and distribute
waiting time information [3]. In the first phase, each origin process caches the relevant lock
epoch data until it processes the lock-release event. Then, it creates an active-message request,
packed with the lock epoch information, and sends it to the target process. On the target side,
the request unpacks the data and stores it for later retrieval. As the active messages coming
in from the individual origin processes do not generally arrive in the same order the lock was
acquired and released by the application, the target needs to save incoming lock epochs until
it reaches a point where it can safely assume to possess the full information on all lock epochs
relevant for the contention analysis. Such points are reached at each collective or group-based
synchronization point of the window or at collective synchronization points that synchronize at
least all processes of the window’s communicator. At these points the active-message runtime of
Scalasca ensures that all requests are processed before continuing with the analysis. Independent
of the locking semantic, all one-sided communication interfaces ensure completion of pending
events with the release of the lock. Therefore, the release time of the lock is an indicator for
the actual locking order during the application measurement. The target therefore stores the
individual lock epochs provided by the origin processes in a data structure sorted by the release
time of lock in the respective epoch.

Once the analysis system can assume all distributed lock epochs have been collected and inserted
into the queue, it can start its contention analysis as described by Algorithm 2. The pseudo-code
given assumes a stack-like data structure to simplify the notation of the algorithm. Furthermore,
process p denotes the waiting process, whereas process q denotes the process that p is waiting
for. As the epochs are ordered in reverse-chronological lock-release order, the last lock epoch
in the contention chain is processed first. The epoch information (currentEpoch) is taken from
the stack to initialize the algorithm. Then, while more epoch information is available on the
stack, another epoch (previousEpoch) is taken from the stack to compute the waiting time. For
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the previous epoch, we identify the activity aq that released the lock, and ap the waiting activity
within the current epoch. This is done by finding overlap with one of the synchronization or
remote-memory access operations within the current epoch with the lock-release activity of the
previous epoch. If an overlapping activity is found, the waiting time is computed by the difference
between the leave event of aq and the enter event of ap, and the respective information is sent
to both processes q and p. Then, the algorithm moves on to the next epoch in the stack. The
algorithm finishes when no further epochs are in the stack, which means the top of the contention
chain is reached; the first epoch never suffers a wait state itself.

Summary

In event-based performance analysis, metrics are computed using an event model. Such an event
model defines the records that store the parameters of specific state changes in the application,
where they are recorded, and which semantic connections individual records have among each
other. This chapter introduces the OTF2 generic event model for one-sided communication,
suitable to cover the communication semantic of multiple one-sided communication interfaces in
high-performance computing. It demonstrates the applicability of this model by defining specific
sub-models for MPI one-sided communication, ARMCI, and OpenSHMEM. Using such event
models, wait-state patterns in one-sided communication are specified both for active-target and
passive-target synchronization. Furthermore, this chapter demonstrates how these wait-state
patterns can be identified in event traces using Scalasca’s replay-based analysis method. Wait
states in active-target synchronization are identified using one-sided communication transferring
the timestamp information needed in a replay of the recorded access and exposure epochs of the
application. Wait states in passive-target synchronization are identified using an extension of
the event-replay method, inspired by active messages, allowing the flow of information on other
than the recorded communication paths.
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Interpreting raw performance data can be challenging and time-consuming for developers, di-
minishing their productivity. The identification and quantification of wait states is already a first
step in forming an understanding of the measured data. However, wait states still only represent
the symptoms of the actual performance problems and they often materialize in significant tem-
poral and spatial distance to their root cause. Without knowing where a specific performance
problem stems from, developers potentially spend a lot of time tracing back a wait state to its
root cause. To retain productivity, performance tools need to identify a wait state’s root causes
automatically, and thus significantly reduce the time needed to optimize parallel applications.

Böhme et al. introduced two methods that proved valuable in identifying optimization potential
as well as root causes of wait states in the application. The first method—critical-path detection
alongside related performance indicators [24]—identifies those parts of the parallel execution of
an application that dominate its overall runtime as well as indicating how much performance
gain can be expected through better load balancing. Using this information, developers can easily
find suitable optimization targets. The second method—root-cause analysis [26]—spatially and
temporally tracks waiting time back to differences in execution time across processes within
synchronization intervals. Such differences are also called load imbalance or delays. The load of
a process in this context is the time needed to perform intentional tasks—both in computation
and communication. By identifying the imbalances that ultimately cause wait states cascading
through the execution, both in spacial and temporal terms, developers can focus on the cause
rather than the symptom of a performance problem.

Both methods build on the identification of critical points of process interaction, so-called syn-
chronization points. Moreover, both methods rely on complete synchronization information to
be available to the analysis. In case of incomplete synchronization information (i.e., a syn-
chronization point remains undetected), both methods may produce results ranging from small
inaccuracies to full loss of sensible analysis results. For the root-cause analysis, missing process-
synchronization information may lead to identifying the wrong call path as the root cause of
one or more wait states. For the critical-path analysis, missing process-synchronization informa-
tion may lead to identifying the wrong call paths and processes to be on the critical path. It is
therefore of prime importance to uncover all points of synchronization among the processes of
a parallel application to provide valuable insight into the application behavior. For applications
using multiple communication paradigms including one-sided communication, either method can
only succeed if one-sided communication is fully integrated.

The contribution of this thesis in this regard is threefold:
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1. It defines all critical points of process interaction in one-sided communication by specifying
the location of synchronization points and newly introducing contention points.

2. It enables the detection of root causes and the computation of the critical path in one-sided
communication scenarios.

3. It defines contention as an additional cause of wait states and extends Böhme et al.’s work
to provide a unified cost model for root-cause detection.

The remainder of this chapter introduces a unified cost model to identify root causes for both
synchronization-based and contention-based wait states, including a recapitulation of Böhme et
al.’s original definition [23] and the necessary extensions contributed by this thesis. Further-
more, it demonstrates how one-sided communication scenarios can be integrated into Böhme et
al.’s detection of the critical path. Finally, it provides details on the scalable implementation
used to detect both root causes and the critical path in parallel applications using one-sided
communication.

4.1. Root causes of wait states in one-sided communication

Böhme et al. investigated root causes for collective and point-to-point communication [26]. All
wait states that occur in these communication paradigms are based on process synchroniza-
tion and caused by load imbalance—in both computation and communication—among the cor-
responding processes. One essential characteristic of all synchronization-based wait states is
that one process is waiting for one or more other processes to begin a corresponding activity.
Contention-based wait states differ in this regard, as a process waits for another process to end a
certain activity. To understand this fundamental difference, it is necessary to first introduce the
definition of delays and their contribution to wait-state formation by Böhme et al.. Definitions
that only differ in their notation are marked as a direct citation. Definitions that needed to be
extended for the support of contention-based wait states are marked as based on Böme et al.’s
work.

4.1.1. Delay

For synchronization-based wait states, Böhme et al. show that wait states occur due to load
imbalance between processes [26]. To detect the function calls responsible for those imbalances,
the scope of the search needs to be determined. In synchronization-based wait states, a process
waits for a remote process to start a corresponding activity, such that both of the processes can
proceed with their local execution. Böhme et al. call such a point of waiting synchronization
point.

Definition 4 (Synchronization point [23]) A synchronization point S = (aip, akq)S is a tuple

of two activities A×A, where a
k
q is the activity containing the event of process q the completion

of activity a
i
p on process p depends on. 2
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After a mutual synchronization point, two or more processes are regarded as synchronized, that
is, they both continue their local execution at the same time. If at the next synchronization
point of the same processes one of these processes is waiting for the other, the cause for this lies
in the interval between those points, the synchronization interval.

Definition 5 (Synchronization interval [23]) A synchronization interval ζ(S ′,S) is defined

by two subsequent synchronization points S
′

and S between the same processes p and q. For
the determination of the interval itself it is not important which of the processes p and q is the
waiting process.

ζ(S ′,S) = ((ak
′

q , a
i
′

p), (aip, akq))
ζ

= ((ai
′

p , a
k
′

q ), (aip, akq))
ζ

Synchronization intervals may be shared by multiple processes, as is the case with collective
communication. In the wait-state formation model these are treated as pairwise superpositions
of individual intervals. When computing the pairwise load imbalance in the shared interval, all
participating processes are taken into account. 2

Within such a synchronization interval, the cause for the delayed arrival of the later process can
be either some intentional computation on the part of the later process, or some wait state on
that process due to an overlapping synchronization interval with another process. To separate
the time spent in intentional computation from the time spent waiting, Böhme et al. compute
the waiting-time-adjusted execution time of every call path in the synchronization interval.

Definition 6 (Waiting-time adjusted execution time [23]) Let c ∈ C be a specific call

path of all call paths C present in the application. Furthermore, let a
i
′

p and a
i
p be the first and

last activity of an interval of activities on process p, respectively. Then, the waiting-time-adjusted
execution time is a function

d ∶ A ×A × C → R≥0

returning the sum of time spent on activities cleared of any waiting time of the given call path
within the given interval of activities on the given process.

d(ai′p ,aip)(c) =
i−1

∑
j=i

′+1

Callpath(ajp)=c

(Duration(ajp) − ω(ajp)) (4.1)

2

By definition, the difference between the waiting-time-adjusted execution time d and the overall
time spent in the interval is the sum of all waiting time in the interval. Investigating the differ-
ences of time spent per call path in one or more activities on corresponding processes, Böhme
et al. define a delay as a cause of synchronization-based wait states [26].

Definition 7 (Delay [23]) Let ζ = ((ai
′

p , a
k
′

q )S ′ , (a
i
p, a

k
q)S) be the synchronization interval de-

fined by the synchronization points S ′ and S of processes p and q. Then, the excess execution
time δ is the positive difference in waiting-time-adjusted execution time between two call paths
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on different processes in the corresponding synchronization interval.

δζ(c) = {
d(ak′q ,akq )(c) − d(ai′p ,aip)(c) , if d(ak′q ,akq )(c) > d(ai′p ,aip)(c)
0 , otherwise

(4.2)

This excess execution time is called delay. 2

Böhme’s wait-state formation model identifies the cause of a wait state by definition as an
overload of the later process, rather than an underload of the waiting process. As a consequence,
the model does not consider negative differences in call paths—where the waiting process spent
more time than the delayed process—as these do not contribute to but rather mitigate the
consequences of a potential delay on process q in the corresponding synchronization interval.

The wait-state patterns of active-target synchronization in one-sided communication are—similar
to the wait states investigated by Böhme et al.—all synchronization-based. Also the Wait for
Progress wait-state pattern can be seen as a special case of a synchronization-based wait state.
The original wait-state formation model therefore naturally covers these wait-state patterns as
well.

4.1.2. Contention

Although, many of the wait-state patterns in one-sided communication are synchronization-
based, the Lock Contention wait-state pattern differs in key aspects from its synchronization-
based siblings. The event on the causing process does not mark the beginning of a concurrent
activity, but the end of an activity that must not be concurrent with the activity on the waiting
process, a characteristic that was not covered by Böhme et al.’s wait-state formation model. To
express this difference in the wait-state formation model, the points of process synchronization
due to contention are defined as contention points.

Definition 8 (Contention point) A contention point C = (ajp, alq)C is a tuple A × A, where

a
j
p is waiting for a

l
q to end. 2

This fundamental difference also has implications on the interval of activities investigated during
the root-cause analysis. The two essential differences are: (1) the remote activity on the process
causing the contention is included with any existing waiting time in the computation of pairwise
imbalance, while the blocked activity on the waiting process is not and (2) the time of the
blocked activity excluding its waiting time is part of the next interval. To reflect this, the wait-
state formation model is extended by the definition of pre-contention intervals.

Definition 9 (Pre-contention interval) A pre-contention interval κ is defined either by con-
secutive synchronization and contention points or two consecutive contention points between the
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same processes p and q.

κ(S ′,C) =((a
i
′

p , a
k
′

q )S ′ , (ajp, alq)C)
κ

(4.3)

κ(C′,C) =((a
j
′

p , a
l
′

q)C′ , (ajp, alq)C)
κ

(4.4)

Furthermore, κ
–

denotes the set of activities on the waiting process p excluding the synchro-
nization activity and κ

+
denotes the set of activities on the causing process q including the full

synchronization activity.

κ
–
= (ai

′+1
p , . . . , a

j−1
p ) (4.5)

κ
+
= (ak

′+1
q , . . . , a

l
q) (4.6)

2

Corollary 4.1 To avoid contention, the pre-contention interval κ
+

on the causing process q
needs to spend less or equal time in activities than the waiting process p in the corresponding
pre-contention interval κ

–
. 2

Delays—as the root cause of synchronization-based wait states—resemble imbalances in the
execution time of call paths leading up to the wait state. Identifying them with the ultimate
resolution strategy to balance the respective call paths works well for the common use case of
point-to-point and collective communication—explicit common data exchange phases between
multiple processes. This approach, however, is less suited for contention-based wait states.

Searching for delays in a contention scenario would always emphasize the additional function
calls present in κ

+
as a root cause due to the inherent asymmetry of the pre-contention intervals

κ
+

and κ
–
. As an example, consider the first two processes (A and B) in Figure 4.1 on page 73.

The example uses a common implementation strategy for MPI one-sided communication, where
a process is allowed to postpone obtaining the lock and performing the subsequent RMA op-
erations until the unlock operation, as discussed in Section 3.2.3. Assume that the y-axis is a
common synchronization point for all processes and processes A and B enter the corresponding
synchronization function Unlock0 and Unlock1, respectively, at the same time. Only the call to
Unlock0 in the pre-contention interval κ

+
on process A would be identified as the root cause,

as all other call paths are perfectly balanced between the processes. However, this would be
stating the obvious—i.e., the unlock function as the culprit—without any additional insight for
the user.

As stated by Corollary 4.1, the resolution for contentions of this kind of wait state is to reduce
the length of the pre-contention interval κ

+
in a way that the causing process A can release

the lock before process B tries to acquire it. The unified wait-state formation model therefore
considers contributions of all activities in the pre-contention interval to the waiting time caused
in the same proportions of those activities’ contributions to the overall time spent in the interval.
Large contributions thus identify higher potential of a function as a viable resolution target for
the contention.
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4.1.3. Propagation

Wait states can be caused directly by some intentional activity of the application. However,
synchronization and pre-contention intervals between different processes may partially overlap
and thus influence each other. As such, a wait state in a synchronization interval may delay a
process to cause a wait state at the interval’s end. Likewise, a wait state in a pre-contention
interval may push the activities of a process to overlap with those of another process, causing
the contention. Böhme classifies wait states as either direct or indirect and either propagating or
terminal [26]. This section discusses these definitions and shows how they apply to contention-
based wait states.

Definition 10 (Direct vs. indirect wait state [23]) A direct wait state is caused by inten-
tional computation or communication (i.e., load), which does not include waiting time. An
indirect wait state is caused by other direct or indirect wait states. 2

Seen in isolation and from the end to the beginning, an indirect wait state is part of a chain—the
propagation chain—that has terminal wait states at the end, potentially leading over indirect
wait states to a direct wait state, and eventually some intentional computation or communication
at the beginning. A wait state causing further wait states is said to propagate.

Definition 11 (Propagating vs. terminal wait state [23]) A propagating wait state is a
wait state that causes other wait states. A terminal wait state is a wait state that does not cause
further wait states. 2

The following properties of propagation chains follow directly from those definitions:

• At the beginning of any propagation chain are one or more activities with intentional
computation and communication—the causes.

• The first wait state in the propagation chain is direct, all following wait states are indirect.

• The last wait state in the propagation chain is terminal, all preceding wait states are
propagating.

As single wait states can propagate to multiple other wait states, the combination of multiple
propagation chains results in a tree-like structure. More precisely, it is a cycle-free graph with
multiple source nodes (the causes) and multiple sink nodes (the terminal wait states). As dis-
cussed later in Section 4.3.3, the classification in direct and indirect is done from the cause in
the direction to the terminal wait states, while the classification into propagating and terminal
wait states is done from the wait states in the direction of their cause. Böhme et al. originally
defined these relationships for synchronization-based wait states and they transfer seamlessly to
contention-based wait states without further adaptation.

Figure 4.1 shows these relationships in a scenario containing only contention. In this example,
all four processes A through D request exclusive access to the same resource and there are no
further wait states than the ones shown. The resource accessed by the processes is not shown.
Processes A and B concurrently request the resource and A is the first to gain access. Thus,
process A does not suffer a wait state. Process B is only second to gain access and has to wait
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Figure 4.1.: Direct and indirect wait states in resource contention scenarios. Direct wait states
materialize as short-term costs. Indirect wait states materialize as long-term costs. Suitable
imbalances mitigate short-term costs first, then long-term costs in the order of the distance in the
contention chain.

the full span of time process A needs to complete its access to the resource. As process A, in
this scenario, did not suffer a wait state since the last synchronization, the cause of process B’s
wait state needs to lie in activities on process A prior to the resource release—this includes both
the lock-protected resource access as well as the activities leading up to it in the pre-contention
interval. Process B’s wait state is therefore direct. Processes C and D both spend more time in
the user function Comp, therefore arriving after processes A and B at the contention point, yet
still at a time where A and B access the resource. If process B would not have waited for process
A, it would have released the resource at time t1. Any time process C waits for the contended
resource prior to t1 is therefore direct waiting time, as this is caused by intentional execution on
process B. The amount of direct waiting time is mitigated by the imbalance between processes B
and C in Comp. However, process C has to wait even longer than process B to acquire the resource.
This additional time is caused by process B waiting for the resource to become available. It is
waiting time that process B is not responsible for and therefore classified as indirect. Process D,
as the last process in the contention chain, is waiting for process C to release the resource. It
has no additional mitigation of contention time compared to process C, as it arrives at the same
time at the contention point. Therefore, the direct waiting time is the full duration of process C
holding the resource. Additionally, process D also suffers indirect waiting time radiating down
in the contention chain from processes A and B. The important property of contention scenarios
shown here is that imbalances can mitigate the waiting time.

As an example of how imbalance can mitigate contention, consider a company with a large
workforce and a cafeteria. Consider further, that all employees start and end their work at the
same time in the morning and evening, respectively—similar to a global barrier synchronization
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(b) Late Sender propagating to a Lock Contention wait state.

Figure 4.2.: Cost accounting with synchronization and contention-based wait states.

and the beginning and end of a code section. If all employees start their lunch break after
four hours of work, long queues will occur at the cafeteria. If some employees start their lunch
break earlier and others later, the overall concurrency reduces and less employees have to wait.
However, the employees starting the lunch break earlier will have to work longer after the break,
and vice versa. Effectively, the employees need to shift work between the before-lunch and after-
lunch parts of their work to retain an overall balanced load per day. If some of the contention
remains during the lunch break, some of the employees will have to work longer to make up for
the time lost waiting.

As seen in this example, contention-based and synchronization-based wait states can influence
each other and the resolution of wait states may have non-local effects. Figure 4.2 shows two
scenarios where wait states propagate in mixed scenarios of contention and synchronization.
Figure 4.2a shows how contention propagates further and causes wait states in the enclosing
synchronization interval. The contention-based wait state on process B spans the full length of
Unlock0 on process A. Assuming the load on processes A and B is equal after their respective
unlock function, the waiting time in the barrier on process A closing the synchronization inter-
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val is caused directly by the contention present in the synchronization interval. However, the
contention on process B is in turn caused by process A blocking the resource, therefore the wait
state in the second barrier on process A is indirectly caused by an activity in the pre-contention
interval κ

+
on the process A itself.

Just as the contention indirectly caused the wait state at the barrier, a delay can indirectly
cause contention. Figure 4.2b shows how a delay first causes a Late Sender wait state, which in
turn causes a contention wait state later on. In the synchronization interval of processes A and
B, the user function Comp0 is imbalanced, and the delay present on process A leads to a wait
state on process B. The pre-contention intervals κ

+
and κ

–
on processes B and C, respectively,

would be perfectly balanced. The waiting time for process C corresponds to the time of the
Late Sender wait state, delaying the synchronization activity and causing the contention. Note
that process C uses additional activities Comp1 and Comp2 as a controlled imbalance to ensure
the equal amount of waiting-time-adjusted execution time in the pre-contention interval with
process B. In this example, the additional functions act as placeholders to illustrate the general
technique of inducing a controlled imbalance to avoid contention. The time spent in the call to
Comp1 is equivalent to the non-waiting time of the Recv on process B, while the time spent in the
call to Comp2 is equivalent to the time needed for the synchronization activity Unlock0. These
functions do not necessarily have to be separate function calls, but could also be represented by
an imbalanced Comp0 (which is balanced between B and C in this example). Furthermore, it is
important to note that not all wait states at the end of contention chains are terminal. For the
sake of simplicity in this example, the lock contention in Figure 4.2b is regarded in isolation.
The waiting time classified as terminal wait state on process C may very well propagate in a
larger scope. However, this cannot be assessed from the scenario depicted in the figure alone.

When discussing the interaction of contention-based and synchronization-based wait states, it
is further important to note that any controlled imbalance that is introduced to resolve a con-
tention, may have to be matched by another controlled imbalance inverse to the original to
balance the overall load in the encompassing synchronization interval, as described in the cafe-
teria example.

4.1.4. A unified cost model

Böhme et al. use a cost model to quantify the impact of individual root causes of wait states.
The costs represent a call path’s contribution to the formation of wait states during application
execution. It is computed for a specific wait state from the aggregated time of activities in that
call path within the wait state’s synchronization interval. Contributions of wait states within
the interval are propagated to their sources, whereas contributions of waiting-time-adjusted
activities resemble a root cause. As synchronization-based wait states are caused by delays,
Böhme et al.’s original model only handles these as root causes. As the cause of contention does
not fit the original definition of delays, this thesis extends the original cost model to support
both types of wait states in a single unified cost model.

To distinguish call paths with mostly local influence on wait-state creation from those with far
reaching effects, Böhme et al. define short-term and long-term costs. Short-term costs comprise
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only the contributions to direct wait states. Long-term costs comprise all contributions to both
direct and indirect wait states.

Definition 12 (Short-term costs [23]) The short-term costs of a process-call-path tuple are
the sum of waiting-time contributions of that process and call-path to direct wait states through-
out application execution.

Short-term costs ∶ P × C → R (4.7)

2

Definition 13 (Long-term costs [23]) The long-term costs of a process-call-path tuple are
the sum of waiting-time contributions of that process and call-path to direct and indirect wait
states throughout application execution.

Long-term costs ∶ P × C → R (4.8)

2

Delay costs

The definition of short-term and long-term costs of delays are part of Böhme et al.’s initial cost
model. They first specify how contributions to direct wait states are computed as part of the
short-term costs and then specify how the costs of propagating wait states are computed as part
of the long-term costs.

Commonly, a synchronization interval can comprise several causes of wait states. Additionally,
delays are indicators of imbalance across processes, and the costs need to be proportional to the
amount of imbalance caused by the delays. Therefore, Böhme et al. define a scaling factor for
the computation of costs for a specific delay or wait state that ensures that costs are attributed
according to the respective delay’s or wait state’s size. This way, long delays and wait states
receive larger costs than short delays and wait states. This scaling factor is computed specifically
for each investigated synchronization interval and involves the aggregated time of all delays and
wait states in the interval.

Definition 14 (Delay-cost scaling factor [23]) For a synchronization interval

ζ = ((ai
′

p , a
k
′

q ), (aip, akq))
ζ
, let the sum of all delays δ̂ζ and the sum of all waiting times ω̂ζ , be

defined as:
δ̂ζ = ∑

c∈C

δζ(c) ω̂ζ = ∑
ak
′
q <a

l
q<a

k
q

ω(alq) (4.9)

Then, the scaling factor for any delay δ
ζ
(alq) in the synchronization interval ζ is defined by:

Delay-cost scaling factor ∶=
1

δ̂ζ + ω̂ζ
(4.10)

2

Using this scaling factor for each individual delay present in the synchronization interval, Böhme
et al. define the short-term delay costs.
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4.1. Root causes of wait states in one-sided communication

Definition 15 (Short-term delay costs [23]) The total short-term delay costs of a call path

c on process q is defined by the sum of all contributions to wait states ω(aip) over all synchro-
nization intervals ζ where call path c constitutes a delay (i.e., δ

ζ
(q, c) > 0).

Short-term delay costs (q, c) ∶= ∑
ζ=((ai′p ,ak

′
q ),(aip,akq ))

ζ

1

δ̂ζ + ω̂ζ
δ
ζ
(q, c)ω(aip) (4.11)

2

It is important to note that the short-term costs are computed only for the delays δ and not
for any wait states within the synchronization interval. This means that in the presence of wait
states in the synchronization interval, a portion of the waiting time is not distributed as costs.
Therefore, the overall short-term costs attributed to call paths may be smaller than the overall
waiting time detected for an application.

The costs for wait states are computed as part of the long-term costs, which comprise the full
contributions to direct and indirect wait states. As such, the overall long-term costs are equal
to the overall waiting time detected for an application.

Definition 16 (Long-term delay costs [23])

Long-term delay costs (q, c) ∶= ∑
ζ=((ai′p ,ak

′
q ),(aip,akq ))

ζ

1

δ̂ζ + ω̂ζ
δ
ζ
(q, c)ϕ(aip) (4.12)

2

As with short-term delay costs, the long-term delay costs are only computed for call paths
with delays δ. To reflect the contributions to indirect wait states, Böhme et al. introduce the
propagation costs ϕ, which, through its recursive definition, comprise all contributions to further
wait states in the execution.

ϕ(alq) = ∑
ζ=((ai

′

p ,a
k
′

q ),(aip,akq ))
ζ

a
k
′

q <a
l
q<a

k
q

1

δ̂ζ + ω̂ζ
ω(alq) (ω(aip) + ϕ(aip)) (4.13)

As delays can contribute indirectly to both synchronization-based and contention-based wait
states, the propagation costs need to reflect this appropriately. Therefore, the re-definition of the
original propagation costs to unified propagation costs, including costs of both synchronization
and contention, is deferred until after the introduction of the interval-delay costs.

Interval-delay costs

Owing to their definition—where an activity is not waiting for a remote activity to start but
to end—contention-based wait states need to be handled differently from synchronization-based
wait states. The definition creates an inherent inequality of the pre-contention intervals κ

+
and

κ
–
—the former containing more activities of the lock epoch than the latter. With Böhme’s

original heuristic assigning costs to per-call-path imbalance (delays) within the synchronization
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interval, the cost distribution applied to pre-contention intervals would overemphasize those
additional call paths as optimization targets. However, these are often the least viable activities
to change, as they may only contain the necessary communication and synchronization for the
data exchange and the user has little chance of changing them. As contention is resolved by
controlled per-call-path load imbalance within the pre-contention interval, attributing costs of
contention-based wait states as part of the delay-costs metric is counter-inductive. The unified
cost model therefore introduces the additional metric interval-delay costs. Just as the delay costs
indicate which call paths need to be balanced, the interval-delay costs indicate which call paths
are candidates for introducing controlled imbalance. Where the original cost model only strives
to achieve balanced execution times for all call paths in the synchronization interval, the unified
cost model integrates the special handling for pre-contention intervals that moves the focus from
a per-call-path balance to a more general per-interval balance. As such, the unified cost model
distributes the costs for a contention-based wait state among all call paths of activities in the
pre-contention interval κ

+
on the process causing the wait state relative to their duration in the

interval. This heuristic emphasizes longer activities as optimization targets, as these may pose
better opportunities for introducing a controlled per-call-path imbalance.

To facilitate a contention-free access, the interval κ
+

on the causing process q has to be shorter
or equal to the interval κ

–
on the waiting process p, as p only needs the requested resource

to be available and does not require it to be released by q directly before p’s acquisition. The
length (or duration) of κ

+
is defined by two factors: (1) the sum of wait-state-adjusted execution

times d̂κ+ and (2) any wait states in the interval that skew the activities in a way that leads
to the conflicting access of the two processes. If the sum of all wait-state-adjusted execution
times in the pre-contention interval d̂κ+ is smaller than the corresponding sum of wait-state-
adjusted execution times d̂κ– on the waiting process, the load between the processes would
already be appropriately imbalanced for contention-free access to the shared resource. In those
cases, the contention is only caused by the presence of wait states in the interval. Consequently,
the activities should not be considered as contributing to the contention and should not be
part of the distribution of interval-delay costs. Wait states, in contrast, are always considered
as causes in the cost distribution, as they constitute unwanted application inefficiencies. The
interval-delay costs reflect this algorithmically, using separate scaling factors sd and sω for the
contributions of waiting-time-adjusted execution time and waiting time, respectively.

Definition 17 (Interval-delay-cost scaling factor) For a pre-contention interval

κ = ((ai
′

p , a
k
′

q ), (aip, akq))
κ
, let the sum of all waiting-time-adjusted execution times d̂κ+ and the

sum of all waiting times ω̂κ+ , be defined as:

d̂κ+ = ∑
c∈C

dκ+(c) ω̂κ+ = ∑
ak
′
q <a

l
q<a

k
q

ω(alq) (4.14)

Furthermore, let the ratio of the sum of waiting time present in the pre-contention interval κ
+

to the waiting time caused on the waiting process ωκ– be defined by:

r = {
ω̂κ+

ωκ–
if ω̂κ+ ≤ ωκ–

1 otherwise
(4.15)
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Then the scaling factor sω for any waiting time present in the pre-contention interval κ
+

is
defined by

sω =
r
ω̂κ+

(4.16)

and the scaling factor sd for any waiting-time-adjusted execution time dκ+(c) in the pre-contention
interval κ

+
is defined by

sd =
1 − r

d̂κ+
(4.17)

2

Using this scaling factor for each individual activity present in the pre-contention interval, the
short-term interval-delay costs can be defined as follows:

Definition 18 (Short-term interval-delay costs) The total short-term contention costs

of a call path c on process q is defined by the sum of all contributions to wait states ω(aip) over
all pre-contention intervals κ

+
where call path c is part of an interval κ

+
> κ

–
.

Short-term interval-delay costs (q, c) ∶= ∑
κ=((ai′p ,ak

′
q ),(aip,akq ))

κ

1 − r

d̂κ+
dκ+(c)ω(aip) (4.18)

2

Similarly, the long-term interval-delay costs can be defined using the corresponding value for
activities in the pre-contention intervals. Analogous to the long-term delay costs, ϕ refers to the
unified propagation costs.

Definition 19 (Long-term interval-delay costs)

Long-term interval-delay costs (q, c) ∶= ∑
κ+=((ai′p ,ak

′
q ),(aip,akq ))

κ

1 − r

d̂κ+
dκ+(c)ϕ(aip) (4.19)

2

Unified propagation costs

It is in the nature of propagating wait states that they contribute to multiple other wait states
later in the execution. Such indirect wait states can be synchronization-based or contention-
based, as was already illustrated by Figure 4.2 on page 74. Böhmes’s original definition of prop-
agation costs only considers synchronization-based wait states and was fully defined in terms of
delays within synchronization intervals. Contention-based wait states may also propagate, there-
fore the unified propagation costs extend Böhme’s original definition to reflect this additional
property. The extension can be incorporated into the definition of the propagation costs ϕ(alq)
of a specific activity a

l
q using an additional operand. Analogous to Böhme’s original definition

of the propagation costs, the unified propagation costs of a specific call path are the sum of
separate recursive accumulations of the propagation costs of subsequent synchronization-based
wait states and the costs of subsequent contention-based wait states. Through this recursion, a
propagating wait state’s contribution to both synchronization-based and contention-based wait
states is achieved.
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Figure 4.3.: Example timeline diagram, showcasing the symbols used to define the unified wait-state
formation model.

As noted, the initial definition receives an extra operand summing up all contention-based con-
tributions to the long-term costs, resulting in the following definition of ϕ(alq). Note that the
propagating costs include the short-term and long-term costs of a wait state where it constitutes
a propagating wait state.

Definition 20 (Propagation costs, based on [23])

ϕsync.(alq) = ∑
ζ=((ai

′

p ,a
k
′

q ),(aip,akq ))
ζ

a
k
′

q <a
l
q<a

k
q

1

δ̂ζ + ω̂ζ
ω(alq) (ω(aip) + ϕ(aip)) (4.20)

ϕcont.(alq) = ∑
κ=((ai

′

p ,a
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′

q ),(aip,akq ))
κ

a
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′

q <a
l
q<a

k
q

r
ω̂κ+

ω(alq) (ω(ajp) + ϕ(ajp)) (4.21)

ϕ(alq) = ϕsync.(alq) + ϕcont.(alq) (4.22)

2

To aid the understanding of the symbols used in the formulae and their relationships in the
unified wait-state formation model, Figure 4.3 shows a timeline diagram with the basic enti-
ties labeled as they are used throughout this section. The first barrier (on the left) marks the
synchronization point S ′ at the beginning of the synchronization interval ζ, which connects the

activities a
i
′

p and a
k
′

q . The second barrier (on the right) marks the synchronization point S at

the end of the synchronization interval ζ. It connects the two activities a
i
p and a

k
q . Within this

synchronization interval, the two processes p and q access the same resource concurrently. The
scenario shown uses exclusive locks, leading to a contention point C at the unlock activities a

j
p

and a
l
q. The pre-contention intervals κ

+
and κ

–
span between the synchronization point S ′ and

contention point C on processes q and p, respectively. Note that κ
+

also contains the activity a
l
q

that is causing the contention. Furthermore, Figure 4.11 on page 94, demonstrating the imple-
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mentation of the overall cost accounting, provides an additional example scenario with including
synchronization-based and contention-based wait states.

4.2. The critical path in one-sided communication

Originally developed by Kelly et al. in 1959 as a project planning tool in engineering [77], to
coordinate concurrent activities in complex projects, critical-path analysis was soon adapted to
other scheduling scenarios, such as the scheduling of tasks in a distributed system. The general
idea of this approach as adapted by computer science is to model the execution of a parallel
application as a so-called program activity graph (PAG). Such a graph is a directed, cycle-free
graph that describes the activities of a (parallel) application and their relationships. The vertices
of the program activity graph are the activities. Subsequent activities on the same process are
connected through sequence edges; process interaction is indicated by communication edges.
Sequence edges point from the temporal predecessor to the successor; communication edges from
the sender to the receiver. Figure 4.4 shows an example program activity graph. To highlight
the difference between sequence and communication edges, the former are drawn as solid arrows
and the latter are drawn as dashed arrows.

Definition 21 (Critical path [23]) The critical path is the longest path through the pro-
gram activity graph of an application. The activities part of the critical path are called critical
activities. 2

The critical-path analysis does not model specific data or execution dependencies between
process-local activities but models the measured sequence of execution as the only local re-
lationship between activities. Process-local activities are therefore represented as a single se-
quence connected by sequence edges only. Communication edges connect distinct sequences of
activities. While for a serial application in this model every activity contributes to the critical
path and is therefore considered a critical activity. In a parallel application, the communication
between activities introduce dependencies where one activity can only complete with the start
of another an the potential for wait state arises. To enable the critical-path analysis, Böhme et
al. use the communication events available in the trace to model communication edges, while
the enter and leave events present in the trace are used to model the sequence of activities on
each process. The process-local set of activities Ap = (a0p, . . . , anp) on a process p (see Def. 2 on
page 45) represents the activities connected by sequence edges. As Böhme et al. point out, the
activities on the critical path do not contain waiting time, as waiting implies that a set of remote
activities is taking longer than the local activities up to the synchronization point. Shortening a
non-critical activity has no influence on the overall execution time, as it only increases waiting
time at a subsequent synchronization point. Shortening a critical activity, however, reduces the
overall execution time up to a synchronization point and therefore reduces the waiting time of
dependent processes.

Based on the infrastructure provided by Scalasca’s event-based trace analysis, Böhme et al.
implemented the replay-based critical-path detection for parallel applications [24]. Synchroniza-
tion and pre-contention intervals represent sub-graphs in the program activity graph where the
sequence of activities on one process is the longest of all processes in a specific interval. For
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a0p a1p a2p a3p a4p a5p a6p a7p

a0q a1q a2q a3q a4q a5q a6q a7q

a0r a1r a2r a3r a4r a5r a6r a7r

Figure 4.4.: Example program activity graph. Vertices are activities. Solid arrows depict sequence edges
between activities on the same process and dashed arrows depict communication edges between
activities on distinct processes.

each synchronization interval, the process arriving last at the synchronization point determines
the time taken for that synchronization interval for all participating processes. In a parallel ap-
plication, however, many concurrent and partially overlapping synchronization intervals among
processes exist. A sequence of activities of one process causing a wait state on another process at
the end of a synchronization interval may also be part of an overlapping synchronization interval
with a third process where the first process is waiting. By definition, the activities leading up
to a wait state cannot be part of the critical path. Thus, not all synchronization intervals have
activities on the critical path, and it is the task of the analysis to identify those that do.

The Scalasca parallel performance analyzer creates an analysis report that contains data sum-
marized over the runtime of the application. To present the critical path information in a sum-
marized form next to other performance metrics in the analysis report, Böhme et al. define two
metrics related to the critical path: (1) the critical-path profile and (2) the critical-path imbalance
indicator [24].

Definition 22 (Critical-path profile [23]) The critical-path profile is a function that maps
a process p ∈ P and call-path c ∈ C onto a positive real number. It represents the time spent in
critical activities by each process broken down into individual call-path contributions.

Critical-path profile(p, c) ∶ P × C → R≥0 2

The critical-path profile indicates the call-path and location of the critical activities. High values
on individual processes do not directly indicate strong imbalance problems; they have to be seen
in the context of the critical-path imbalance indicator.

Definition 23 (Critical-path imbalance indicator [23]) The critical-path imbalance
indicator ι is the difference between the time of a call path c spent on the critical path dcrit(c)
and the average time spent in that call path over all processes. As an imbalance only affects
the overall runtime if the time on the critical path is larger than the average time across all
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processes, Böhme et al. only include positive values.

ι(c) =max (dcrit(c) − avg(c), 0)

avg(c) = 1

P

P

∑
p=1

dp(c)

2

To enable critical-path detection for one-sided communication, only two steps are necessary: (1)

the identification of wait states in one-sided communication or synchronization constructs and
(2) the specification of the critical-path ownership transfer from one process to another.

How to detect wait states in one-sided communication was already covered in Chapter 3, leaving
only the specification of the correct transfer of the critical path open at this point. Directly
resulting from Definition 21, a sequence of critical activities never contains waiting time. In
accordance with its initial definition by Böhme et al., the transition points for the critical path
in one-sided communication scenarios must therefore be at synchronization and contention points
in the application. For the synchronization-based wait states in one-sided communication, the
integration with Böhme et al.’s initial implementation is straight-forward [5]. For contention-
based wait states, Definitions 8 and 9 need to be taken into account to identify additional
transition points for the critical path. In conjunction with the specific description of the replay-
based implementation of the critical path detection, Section 4.3.2 will feature a more detailed
discussion of each individual wait-state scenario possible in one-sided communication and how it
is handled in a specific example case starting on page 88. A detailed visual representation of how
the critical path is computed is shown in Figures 4.7 to 4.9 on pages 89 and 91. From the formal
perspective, once all synchronization and contention points are identified, the computation of
the critical-path profile and imbalance falls into place. Further performance indicators based
on the critical path defined by Böhme, such as the performance-impact indicators [23], can be
computed similarly.

4.3. A scalable analysis framework

As introduced in Chapter 2, a parallel replay—in Scalasca terminology—describes the concur-
rent, consecutive processing of a series of events in local event streams, where the processing of in-
dividual events can trigger specific actions, including inter-process communication. Scalasca uses
the recorded communication information—represented as specific events in the event streams—
to pass information among processes in the direction of the replay. Initially, Scalasca used only
the chronological or forward replay for its parallel wait-state search. To enable information to be
passed in reverse-chronological order Becker et al. introduced the backward replay [13]. Böhme
et al. used this infrastructure in the implementation of both the root-cause and critical-path
detection [26].

Figure 4.5 shows how the two types of replays are orchestrated in Scalasca to enable the computa-
tion of higher-level performance metrics beyond simple wait states, specifically the critical-path
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forward backward forward backward forward

1 2 3 4 5

critical path & cost accounting

synchronization & contention points
wait-state detection

Figure 4.5.: Five consecutive replay phases used in Scalasca. Each phase can use data structures built
up in prior phases. The replay direction is indicated by the heading and color of the individual phase.
Wait states are detected in the first two phases. Contention point data is computed in the first phase,
while synchronization point data is computed in phases one through three. Once synchronization
and contention point data is computed, phases four and five assess the overall costs and the critical
path.

and cost metrics. Each replay phase can build on the information gathered and computed in ear-
lier phases. The first phase identifies most of the wait states supported by the Scalasca analyzer.
Depending on the algorithm detecting a wait state, synchronization and contention point infor-
mation can already be computed directly for all processes involved. For one-sided communication
scenarios, the detection of progress-related wait states and lock contention already exchanges the
full synchronization information during the first phase. Also synchronization points in collective
functions can be determined fully during waiting-time detection in the first phase. For the other
wait-state patterns, synchronization point information is still incomplete. Each process with a
wait state knows about its synchronization point with the remote process, however, the causing
process does not know directly that it was involved in a wait state. The second replay phase lets
the synchronization information flow back to the causing processes.

One pattern, the Late Receiver wait state of point-to-point communication, occurs at the
sender—the source of information in a forward replay. To detect it, the timing information
must flow into the opposite direction—the sender needs information from the receiver. By using
the backward replay, the information flow for waiting time detection is natural in the direc-
tion of replay. There, the original receiver can send data to the original sender and enable the
computation of potential waiting time. Just like for the wait states identified in the first re-
play, the synchronization partner causing the Late Receiver wait state needs to be notified of
its involvement in the wait state during the subsequent replay phase. Thus, the third replay
phase—a forward replay—is needed to conclude the identification of the synchronization points.
After the third replay phase, all synchronization and contention points are known to all the
processes involved. Now, the critical path detection and cost accounting for root causes of wait
states can be performed in the last two phases. The remainder of this section will discuss the
communication needed in each replay phase to perform the outlined tasks.

4.3.1. Detection of synchronization and contention points

One of the key ideas of the backward replay is the inversion of the communication roles. If infor-
mation needs to flow from the receiver to the sender, their communication roles are inverted—a
sender posts a receive while the initial receiver sends the information. Becker et al. show how
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this can easily be achieved for point-to-point and collective communication, enabling efficient
and deadlock-free data flow in reverse-chronological order along the recorded communication
paths [13]. However, the inversion builds on the fact that communication information is present
on both sides of any point-to-point or collective communication. One-sided communication is
lacking a matching function call on the target to allow an easy inversion of the communication
paths. For one-sided communication, the existing approach therefore needs to be adapted.

One of the characteristics of one-sided communication is the separation of data transfer and
its corresponding memory and process synchronization. While the data transfer itself often
does not create synchronization points, its synchronization may do so. The Message Passing
Interface defines three synchronization schemes for one-sided communication [106], each with
the potential to block a local process until a certain action on a corresponding remote process is
taken, as discussed in Chapter 3. The synchronization schemes can be classified as either active
or passive target. In active target synchronization, the target process does not have to issue
matching communication, but matching synchronization functions. For the collective version of
active target synchronization, the wait-state detection algorithm already exchanges all necessary
synchronization point information, thus no additional exchange is needed. This is the case for
the Wait at Fence family of wait states described in Section 3.2.2 on page 47. However, the
information about synchronization points in general active-target synchronization—namely Late
Post and Early Wait wait states—still needs to be communicated after the wait state’s detection.
Similar to the Late Sender wait state pattern in point-to-point communication, information
to complete the synchronization point detection needs to be passed in the opposite direction
of the initial synchronization information. The information is therefore communicated during
the second replay phase. In contrast to point-to-point communication, however, the groupwise
synchronization of general active-target synchronization poses additional challenges owing to (1)

the requirements for a correct nesting of access and exposure epochs and (2) dynamic group sizes
for each epoch.

General active-target synchronization separates access and exposure epochs. Each is opened and
closed by a distinct set of calls on both origin and target of the remote memory operations. The
synchronization is group based; a target process needs to specify all origin processes it exposes
memory to when opening an exposure epoch, while an origin process needs to specify all target
processes it plans to access. It is erroneous for a target process to specify an origin process that
does not specify the same target process in its provided group. When starting an exposure and
an access epoch on the same process, the blocking semantics of the synchronization calls require
a strict order: the calls for the exposure epoch need to embrace the calls handling the access
epoch on the same window. The reason for this is simple. To ensure consistency, a target process
can open an exposure epoch purely based on local information—it does not need to wait for any
other process. It will therefore not wait for any origin processes to send an acknowledgement
for starting a corresponding access epoch. An origin process, however, can only start the real
access, after the respective target process has opened the exposure epoch, which means it will
have to wait for an acknowledgement of the corresponding target that the exposure epoch has
started.

If a process is both origin and target in the same epoch, it therefore has to first perform the
call with no external dependencies (post) and then the one with potential external dependencies
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(start). In such a scenario, näıvely inverting the communication direction using general active-
target synchronization for a backward replay would have the nesting of the necessary calls
inverted, potentially leading to a deadlock. Guaranteeing deadlock-freeness is not impossible,
however, yet it adds an additional level of complexity to ensure proper function in all possible
scenarios.

Furthermore, to ensure that all origin processes know about the location of valid remote memory
blocks on the target processes, one-sided communication in general, and MPI one-sided com-
munication in particular, often requires collective allocation of buffer space. As the data that
needs to be transferred during backward replay can be dynamic in size between access epochs,
and general active-target synchronization is group-based and not collective, ad-hoc allocation of
additional buffer space is not possible. Using a worst-case heuristic, allocating distinct memory
locations for all processes would be needed but may be prohibitive at large scales.

As an alternative, point-to-point communication provides (1) loose synchronization using its non-
blocking interface and (2) ad-hoc allocation of buffer space. However, it requires both the sender
and the receiver of information to actively take part in the communication. As the processes
receiving the synchronization information do not know yet whether a synchronization point
exists—it is the purpose of this communication to distribute this information—the data exchange
needs to include all potential synchronization partners. Compared to the normal point-to-point
communication, where only two processes interact, general active target synchronization has an
n ∶ m relationship. As a consequence, all processes in the access groups need to communicate with
all corresponding processes in the exposure groups and vice versa. In a worst case scenario, when
the program uses general active-target synchronization to synchronize a window over almost all
processes in an all-to-all-like communication pattern, every process would have to send p − 1
messages. However, in practice, the collective fence synchronization is much better suited for all-
to-all like synchronization and general active-target synchronization is used for exchanges with
pre-known and fairly static neighborhood topologies. In such scenarios, the communication and
memory requirements per process can be regarded as constant, as the size of the neighborhood
is independent of the overall number of processes.

Considering the advantages and disadvantages of the two communication approaches for the
backward replay discussed, the use of point-to-point communication wins over one-sided com-
munication owing to its simplicity and ease of implementation. Figure 4.6 illustrates the mes-
sage exchanges needed to complete the synchronization information in Early Wait and Late
Post wait-state patterns. In the example shown, process D and B as well as C and A share
a synchronization point. Process B causes an Early Wait wait state, as it is the last process
to complete its access epoch and the completion is started after process D starts to close its
corresponding exposure epoch. As the origin processes do not know whether they caused a wait
state, each target sends a message to every origin process. The message to the causing process
contains the actual waiting time ωw, all others zero. For the Late Post wait state the message
transfer is similar. Here, each origin process sends a message to every target. Process A, which
is regarded as causing the wait state on process C receives a message with the detected waiting
time ωs. Process B receives a message indicating zero waiting time and hence does not create a
synchronization point.

To handle wait state patterns of passive target synchronization—Wait for Progress and Lock
Contention—more changes to the original implementation are necessary. As an exception among
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Figure 4.6.: Communication during the synchronization point detection for the Early Wait and Late
Post wait-state patterns. In the backwards replay, the target (and potentially waiting) process sends
messages to all origins. Only the origin process causing the wait state receives the actual waiting
time, all others zero.

the synchronization-based wait states, the Wait for Progress pattern does not contain full syn-
chronization information at the events of the corresponding synchronization points. While the
waiting process can use the communication information stored in the local event of the origin—
comprising information about the communication context and the target—the corresponding
synchronization point on the target does not contain such information. On the target, a call
potentially providing progress may not even be a communication or synchronization call at all.
Therefore, all the necessary information is associated with the enter event of the respective activ-
ity on the target. Moreover, the origin process includes all necessary communication parameters
with its request and the target stores additional information separately. This communication in-
formation is then used in subsequent replays to exchange the necessary information with respect
to that synchronization point. Furthermore, a single function on the target may provide progress
to multiple RMA operations from distinct origins, resulting in multiple distinct synchronization
points associated with the same event.

Currently, the only contention-based wait state pattern detected by Scalasca is Lock Contention.
Its detection and quantification, as it is described in Section 3.2.3, is also done in the first analysis
phase. What makes resource contention stand out from the other wait state patterns is that the
waiting processes have no explicit connection in the event stream. That is, they have no explicit
event information that tells them which other process is waiting for them or which process they
are waiting for; they only know the resource they want to access. After the detection of a lock
contention wait state, as described in Section 3.3.2, the origin processes know which process
they cause to wait and which they are waiting for. During the fourth replay phase, each process
waiting due to lock contention determines the waiting-time-adjusted execution time of all call
paths in the pre-contention interval and sends it to the causing process. The causing process
receives this information and compares it to its corresponding pre-contention interval. It then
determines whether its local activities get partial costs attributed of the waiting time caused. If
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its own waiting-time-adjusted execution times—including the additional time needed to release
the lock—is less or equal to the corresponding times sent by the waiting process, the costs
are distributed among the wait states of the causing process in the pre-contention interval as
described by eqs. (4.18) and (4.19) on page 79.

4.3.2. Computing the critical path

The critical path constitutes the stream of activities—the critical activities—that determine the
length of a parallel execution. The activities in a synchronization interval on the process causing
the wait state at the interval’s end also determines the length of the interval. However, not all
of those activities are also critical activities. They are only candidates for critical activities, as
explained in Section 4.2. It is therefore the task of the critical-path analysis to identify those
synchronization intervals that actually contain critical activities.

MPI, SHMEM, and ARMCI, as common HPC communication libraries, need to be initialized
before their first use and shutdown explicitly before program termination to ensure system
resources are handled properly. For the critical path, the explicit shutdown before program
termination is an important factor. Such a function is commonly collective and synchronizes
all processes. This means a process can only terminate if all processes reached this point of
explicit shutdown. It therefore constitutes the end of the last synchronization interval of the
parallel execution. Clearly, any process arriving last at this point dictates when the overall
program exits at the earliest. For MPI, this routine is MPI Finalize. The critical-path analysis,
as introduced by Böhme et al., therefore starts with identifying the process causing wait states
during finalization for all other processes, which resembles the last synchroniztion point of the
execution. The activities on that process prior to this last synchronization point are therefore
critical activities. As the critical path does not contain any waiting time, any activity containing
waiting time cannot be a critical activity. As a consequence, the last waiting activity on the
process causing the last wait state in the programm cannot be part of the critical path. This
activity—more precisely its successor—therefore marks the beginning of the last interval of
critical activities—the last segment of the critical path. If a process’ activities directly after
a wait state are critical activities, the activities prior to the corresponding synchronization or
contention point on the process causing the wait state are also critical activities; their length
directly dictates when the critical activities on the waiting process can start and therefore
influences the length of the overall execution.

Using this characteristic of the parallel execution, the critical activities can be identified moving
in reverse-chronological (backward) direction through the trace. A flag indicating the current
ownership of the critical path is passed between processes at synchronization points. The anal-
ysis starts with critical-path ownership assigned to the process causing the wait states during
finalization at end of the last synchronization interval of the processes. Processing the trace from
the end to the beginning, the ownership of the critical path changes from the process owning
the critical path at any wait state to the process causing it. Using this approach, only a single
process owns the critical path at any given time of the analysis.

For every synchronization and contention point, the ownership information is exchanged from
the waiting process to the one causing the wait state. If the waiting process is not owning the
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Figure 4.7.: Computation of the critical path in active-target one-sided communication. As the detection
is done during backward replay, the change of ownership has to be tracked from right to left. Wait
states are indicated by hatched areas. The ownership of the critical path for a time interval is
indicated by an orange rectangle. The ownership may change at events in the respective regions
identified as synchronization or contention points.

critical path at that time, it cannot pass it to the causing process; it therefore passes a zero value
to the causing process, indicating that the causing process is not taking over the ownership of
the critical path. This way, the ownership of the critical path passes among the processes, finally
arriving at the beginning of the execution.

Figures 4.7 to 4.9 show the different types of wait states in one-sided communication and how the
critical path changes ownership in such scenarios. In the individual timeline figures, the critical
path is indicated by the highlighting orange rectangle potentially spanning multiple activities
on individual processes. Note that the direction of the timelines is in chronological order from
left to right, the computation of the critical path, however, is from right to left, as the analysis
is performed in reverse-chronological order. As the critical activities are determined during a
backward replay, the discussion of the critical-path ownership also follows the replay direction—
from right to left. For the purpose of these examples, one process is assumed to own the critical
path initially.

Figure 4.7a shows the critical path behavior for the collective wait-state patterns of the Wait
at Fence family. In the beginning of the analysis, the scenario depicted assumes process A
to own the critical path, as shown on the right edge of the timeline. In the collective free
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function it waits for process B, which enters the collective call late, causing wait states on
processes A and C. Therefore, process A transfers the ownership of the critical path to process
B. On the wait state at an intermediate fence call, process B is the culprit, yet, it already
owns the critical path, thus the critical path does not change ownership. In the third wait state
scenario in the figure, this time at the collective creation of the window handle, process C is the
process causing wait states on all other processes including process B, which is on the critical
path at that time. Therefore the critical path turns to process C. As these wait-state patterns
form at collective synchronization calls, the replay algorithm can use collective communication
to determine the ownership of the critical path. Böhme’s original implementation for similar
wait states at collective N×N operations use the communicator associated with the collective
operation. For one-sided communication, the communicator needs to be determined through
the associated window of the synchronization operation. Apart from this additional indirection,
the computation of the critical-path ownership is the same compared to the original collective
detection algorithm as introduced by Böhme et al. and explained below. All processes perform
a reduce operation with the process causing the wait state as the root. Each process provides
either the value 0, if it is not on the critical path at the time, or the value 1, if it is. The collective
operation uses the MPI_MAX operator to check whether any participating process is in fact on
the critical path. If the result of the reduction is 1, then one of the waiting processes owned the
critical path, and the causing process has to take over ownership. If the result of the reduction
is 0, none of the waiting processes owned the critical path, therefore the causing process cannot
take over any ownership.

Figure 4.7b shows how the critical path changes in case of an Early Wait wait state. As explained
in Chapter 3, in general active-target synchronization scenarios the target process has to wait
for every origin process to close its access epoch before it can close its corresponding exposure
epoch. In this example, the target (process C) owns the critical path prior to the evaluation of this
condition. Process A is the last process to complete the access epoch causing process C to wait.
The data structures storing the synchronization point information for the corresponding events
already contain mutual information—i.e., both processes of the synchronization point know
which process to send the information to and which to receive it from, respectively. Process
C therefore sends the critical path flag indicating 1 to process A, which then takes over the
ownership of the critical path until its next wait state in replay direction.

Figure 4.7c shows the transition of the critical-path ownership in the case of a Late Post wait
state. Here, origin processes wait for the target process to start the exposure epoch. In the
specific scenario shown in the figure, the start of the access origin blocks until the last target
process (B) opens its pending exposure epoch. Therefore, assuming process A is on the critical
path during its access epoch, it changes to process B at the mutual synchronization point.

Figure 4.8 shows a communication scenario with a Wait for Progress wait state. The AllFence

function call on process C has to wait for remote progress on processes A and B, with B being the
last process to provide remote progress. It is therefore identified as the process causing the wait
state on process C. During its detection in the first replay phase, both processes already obtain
all necessary information to communicate the critical-path ownership. Similar to the scenarios
of the general active-target synchronization, the waiting process C sends the critical-path flag
set to 1 to process B. Upon receiving the flag, process B takes over the ownership of the critical
path.
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Figure 4.9.: Computation of the critical path in Lock Contention scenarios. As it is done during backward
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Figure 4.9 shows the critical-path transition for contention-based wait states. Although the root
causes for contention-based wait states are determined differently in comparison to synchroni-
zation-based wait states, the transition of the critical path is computed similarly. The scenario
shown is the same as the initial contention scenario discussed in Section 3.2.3. Processes B and
C use a shared lock (S), whereas all other processes use exclusive locks (X). Assuming process E
owns the critical path when the replay encounters this locking scenario, all activities of its lock
epoch up to the activity that experienced the wait state are still identified as critical activities.
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Figure 4.10.: Computation of delay and interval-delay costs with contributions to both synchroniza-
tion-based and contention-based wait states. Dotted rectangles represent vectors of data; squares
represent a contribution of a specific activity to that data. Dashed arrows indicate data exchange be-
tween the processes. Solid arrows connected to the propagation cost vectors PropCostSym indicated
which activities are considered when computing the individual contribution.

Process E blocked in the Lock call—one of three different possible implementation scenarios.
Using the information exchanged during the wait-state detection, process E sends the critical-
path flag set to 1 to process D. Process D uses a second possible implementation scenario for lock
acquisition in MPI one-sided communication, it blocks during the RMA operation scheduled for
the target window. Again, all activities in backward direction from obtaining the critical path
up to the contended activity containing the wait state (indicated by hatched areas) are identified
as critical activities. Process D then sends the critical-path flag set to 1 to process C. Processes
B and C use a shared lock on the target window, so they can access it concurrently once process
A releases the lock. Consequently, both processes send the value of their critical-path flag to
process A. Process C, owning the critical path at that time sends a value of 1, whereas process
B sends a value of 0. After evaluating the messages from both processes B and C, process A
knows that it received ownership of the critical path.

4.3.3. Computing costs in the unified wait-state formation model

Figure 4.10 exemplifies the data flow needed to compute delay and interval-delay costs for call
paths on specific processes. In the scenario shown, a lock-contention scenario is embraced by
two barrier calls. Note that delay and interval-delay costs are computed in a backward replay,
thus the diagram is read from right to left, including the message exchange indicated by dashed
arrows. Dotted rectangles denote process-local data structures that correspond to vectors of
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per-call-path contributions to time spent in the interval, as in the case of the waiting-time-
adjusted execution time d⃗κ ; or scalar values, as in the case of the propagation costs ϕ. The
boxes within those rectangles denote the activities that contribute to the values stored in those
data structures. The solid arrows emerging from the propagation-cost rectangles of ϕA,ϕB, and
ϕC indicate which wait states contribute to the propagation costs. In the scenario shown, the
analysis starts and ends at barriers—synchronization points for all processes. Waiting time in
the barrier function, denoted by the cross-hatched areas, is stored with the synchronization
point information. Also, all processes involved know the process directly responsible for this
wait state. Böhme’s cost calculation for collective functions operates slightly different from the
point-to-point algorithm in that it uses multiple collective operations to compute delays. The
causing process C is the root of those collective operations and broadcasts its vector of activities
d⃗ζC and the vector of waiting times ω⃗ζC in the synchronization interval ζ to all participating
processes, here processes A and B. The waiting processes A and B then compare the vector
to their own vector of activities, d⃗ζA and d⃗ζB respectively. Doing so, each process identifies
individual contributions and the respective scaling factor and delay. In this specific scenario,
no delay can be identified; thus the waiting time ω⃗ζC on process C is fully responsible for the
waiting time in the barrier of processes A and B. The computed delay from each waiting process
is accumulated using a collective reduction with the causing process being the root again.

Process C suffers from a contention-based wait state with the waiting time ω⃗ζC . To enable a
proper cost distribution on the causing process B, process C computes and sends the vector
of waiting-time-adjusted execution times in the pre-contention interval, d⃗κ–C , along with the
total costs ϕC accumulated so far to process B. Process B then compares the received vector
of times in process C’s pre-contention interval d⃗κ–C with its own time vector d⃗κ+B . In this

scenario, the waiting-time-adjusted interval d⃗κ+B is longer than the corresponding interval d⃗κ–C
on process C. The activities in the different call paths in the pre-contention interval of process
B are therefore partially causing the wait states observed so far. To compute the correct ratio,
first, the excess time spent in d⃗κ+B in comparison to d⃗κ–C is computed. This excess time reflects
the overall imbalance in the absence of waiting time, the pre-contention intervals on processes
B and C contain. Owing to additional wait states on process B in the interval, the wait state
on process C is larger than the computed excess time. Process B therefore computes the ratio
of local contribution (excess time) to remote contribution (propagating wait states) for the
direct wait state on process C. The resulting ratio is the factor used to compute the individual
contributions of costs for the local activities in the pre-contention interval of process B. The rest
of the propagation costs, along with process B’s pre-contention interval vector d⃗κ–B , is sent on
to process A, higher in the contention chain.

The costs for process A are computed similarly. Process A receives the waiting-time-adjusted
execution time d⃗κ–B and propagation costs ϕB from process B. It then compares its own activities
in the pre-contention interval with the data received. Process A does not suffer waiting time
in this interval, thus none of the costs propagate further and they are completely attributed
to the corresponding call paths of the activities in the pre-contention interval according to the
activities’ individual contribution to the overall time spent in the interval.

Figure 4.11 exemplifies the communication and computation of delay and interval-delay costs in a
scenario with synchronization-based and contention-based wait states. Arrows indicate messages
sent between processes. Rectangles with dotted borders indicate the payload of these messages.
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~ωκ–C = {}

cCst = 1.5

cClt = 2

~dκ+B
= {C,L, P, U : 1}

~ωκ+B = {U : 1}
r = 1/1.5 = 0.66

sd = (1− r) ∗ 1/4 = 0.0833
sω = r ∗ 1/1 = 0.66

Intvl.Del.st = sd ∗ cCst ∗ ~dκ+B
= {C,L, P, U : 0.125}

Intvl.Del.lt = sd ∗ cClt ∗ ~dκ+B
= {C,L, P, U : 0.166}

~dκ–B = {C,L, P : 1}
~ωκ–B = {}

cBst = 1

cBlt = sω ∗ (cCst + cClt ) = 2.33

~dκ+A
= {C,L, P, U : 1}

~ωκ+A = {}
r = 0

sd = 1/d̂κ+
= 1/4 = 0.25

Intvl.Del.st = sd ∗ cBst ∗ ~dκ+A
= {C,L, P, U : 0.25}

Intvl.Del.lt = sd ∗ cBlt ∗ ~dκ+A
= {C,L, P, U : 0.5833}

Figure 4.11.: Example computation of contention and delay costs with contributions to both
synchronization-based and contention-based wait states. Arrows indicate messages sent between
processes. Rectangles with dotted borders indicate the payload of these messages. Values without
specific borders are computed using both local and received values. The x-axis uses an artificial time
unit to better illustrate the specific costs attributed to the individual call paths.
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4.3. A scalable analysis framework

Values without specific borders are computed using both local and received values. The x-axis
uses an artificial time unit to better illustrate the specific costs attributed to the individual
call paths. The scenario shows lock contention within a larger synchronization interval between
two barriers. As the cost is computed via backward replay, the barrier (B1) is evaluated first.
Process C arrives late, causing a synchronization-based Wait at Barrier wait state. Each process
determines the synchronization interval ζ consulting its local event stream and information
collected during the previous replay phases. In this scenario, the synchronization interval spans
to the barrier B0 for all processes. To retain clarity in the figure, the communication shown
for the analysis of the barrier wait state is simplified from the actual implementation that uses
a combination of different collective communication calls to compute the delay δ⃗ζC present in
the synchronization interval as well as the total amount of waiting time at the barrier B1. The
overall load in the synchronization interval is balanced, i.e., process C does not contain a delay
in its activities of the synchronization interval, leaving δ⃗ζC empty. It does, however, contain a
wait state in the unlock function U of process C. As this wait state is the sole cause of processes
A and B waiting for C at the subsequent barrier, it is attributed with the full long-term costs cClt ,
which is the sum of all waiting time at the barrier in this scenario. The wait state itself, with a
length of 1.5 corresponds to the short-term costs cCst of this wait state. Short-term and long-term
costs are sent to process B along with the vector of waiting-time-adjusted execution times d⃗κ–C
and the vector of waiting times ω⃗κ–C present in the pre-contention interval κ

–
. Process B then

evaluates the pre-contention interval of process C, to determine its own contributions. While
process C waits for 1.5 units, the sum of wait states in its pre-contention interval κ

+
is 1. The

remaining 0.5 units result from the larger sum of waiting-time-adjusted execution time of the
activities on B taking longer than the ones on C. The ratio r of wait states in the pre-contention
interval on process B to the wait state caused on process C is 1 to 1.5. Consequently, only a
third of the overall short-term and long-term costs are attributed to activities on process B
using the corresponding scaling factor sd of 1

12
(0.0833). Using this scaling factor the 1.5 units

of short-term costs cCst are distributed to the interval-delay costs of process B according to their
contribution to the pre-contention interval, each with 0.125 units. The same scaling factor is
also used for the 2 units of long-term costs cClt , each with 0.166 units. The contribution of the
wait state in function U is computed using the waiting-time scaling factor sω. It is applied to
the sum of short-term and long-term costs cCst and cClt , respectively, forming the long-term costs
cBlt . This is sent to the causing process of the wait state in U, process A, amounting to 2.33
time units. The short-term costs cBst sent along to process A are equal to the wait state caused,
in this case 1 unit. Process A does not experience any wait state in its pre-contention interval,
the causes for the remaining waiting time lies within the pre-contention interval on process A.
Hence, the waiting time ratio r is zero, as is the waiting time scaling factor. The scaling factor
for the waiting-time-adjusted execution time sd is 1

4
(0.25). Using this factor the interval-delay

costs are computed for both short term and long term, being 0.25 and 0.5833 for each call path
in the interval, respectively.

Summary

Böhme et al. initially defined a wait-state formation model suitable to identify root causes of
wait states in collective and point-to-point communication. All of the wait states present in those
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communication paradigms are based on process synchronization where one process explicitly
waits for another process to start a specific activity. This chapter integrates the synchronization-
based wait states in one-sided communication into Böhme’s original wait-state formation model.
Moreover, it presents a unified wait-state formation model by integrating lock contention as a
new type of wait state, with formation characteristics different from the synchronization-based
wait states, and introduces interval-delay as its root cause. Finally, this chapter shows how
Böhme’s performance indicators, such as the critical path, can be computed in the presence of
contention-based wait states.
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This chapter discusses performance measurements and analysis results obtained with the meth-
ods described in the previous chapters and implemented in the Scalasca parallel trace analyzer.
As many of these measurements are correlated to a specific publication, not all measurements
showcase the full range of methods discussed in this thesis. Nevertheless, in summary these mea-
surements provide a good overview of the scalability and effectiveness of the presented methods,
as indicated below:

SOR provides timings of all 5 phases during the analysis of trace measurements of a communi-
cation kernel across four different implementations including point-to-point and one-sided
active and passive-target synchronization up to a scale of 65,536 processes.

BT-RMA provides results of porting a data-exchange pattern from point-to-point to one-sided
communication using active-target synchronization in a well-known benchmark kernel and
subsequently optimizing it by using the scalable wait-state detection.

CGPOP provides results of optimizing an available implementation of a data-exchange pattern
using one-sided communication with active-target synchronization in a well-known proxy
application using the scalable critical path and root-cause detection.

SRUMMA provides timings of the wait-state detection in passive-target synchronization in the
one-sided communication interface ARMCI up to a scale of 32,768 processes.

NWChem provides measurement results for the simulation of the SiOSi3 input with the NWChem
simulation framework on 4,096 processes, acknowledging that progress-related wait states
were a significant factor for the communication time on the IBM Blue Gene/P and their
sparse distribution may fuel further imbalances throughout the execution.

Lock-Contention Microbenchmark provides measurement results for a controlled lock-conten-
tion scenario, demonstrating the effectiveness of lock-contention detection for MPI passive-
target synchronization and the identification of waiting time and their root-causes.

Together, these case studies provide examples for the detection of wait states in one-sided com-
munication with active and passive-target synchronization across two one-sided communication
interfaces (MPI and ARMCI) and for the detection of root causes for such wait states and the
critical path in applications using one-sided communication. Furthermore, they demonstrate
how this information can be used to optimize the one-sided communication patterns in parallel
applications.
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5.1. SOR

This case study focuses on the runtime of the five analysis phases of the Scalasca parallel
analyzer as described in the previous chapters for four different implementations of a halo-
exchange: (1) p2p, using the original point-to-point implementation, (2) rma-fence, using one-
sided communication with collective active-target synchronization, (3) rma-gats, using one-sided
communication with the group-based general active-target synchronization, and (4) rma-locks,
using one-sided communication with passive-target synchronization. The timings for each phase
are evaluated across a scale of 512 to 65,536 processes, to expose scale-dependent costs within
each phase and demonstrate their general scaling behavior.

The SOR benchmark is a computational kernel that iteratively solves Poisson’s equation using
a red-black successive over-relaxation method on a two-dimensional grid. The communication
pattern includes a nearest-neighbor halo exchange and a collective reduction for each iteration.
The halo exchange, originally using point-to-point communication, was re-implemented to use
one-sided communication in different synchronization schemes. The collective reduction is per-
formed after each iteration to test for convergence. The benchmark allows both the problem
size and the number of processes to be configured for a particular run, enabling both weak and
strong scaling.

For the presented scaling measurements, the benchmark was configured for weak scaling, keeping
the load per process constant. In principle, the benchmark runs either until the residual is
below a given threshold or until the maximum number of iterations is reached. For this case
study, the benchmark was configured to perform exactly 500 iterations by setting the residual
tolerance threshold to zero. This way, premature convergence is prevented and each measurement
performs exactly the configured maximum number of iterations with a significant amount of
communication load on the one side and a predictable trace size on the other.

Figure 5.1 shows the time needed to analyze measurements of four different SOR nearest-
neighbor exchange implementations: (1) point-to-point (fig. 5.1a), (2) one-sided communication
using fence synchronization (fig. 5.1c), (3) one-sided communication using general active-target
synchronization (fig. 5.1b), and (4) one-sided communication using passive-target synchroniza-
tion (fig. 5.1d). Each plot provides graphs for the total analysis time, as well as the time broken
down into the five phases. For all measurements, the phases two, three, and five show almost
constant scaling across all investigated process counts with minimal influence on the total anal-
ysis time. These phases are mostly responsible for the detection of synchronization points and
corresponding cost accounting for only a single wait state pattern, the Late Receiver in point-
to-point communication. With the substitution of one-sided for point-to-point communication
in the nearest-neighbor exchange in the application, these analysis phases have even less inter-
process communication and only set up and manipulate local data structures. As such, the time
needed for these phases are mostly dependent on the number of events in the process-local trace,
which in the configuration of this scaling experiment stays mostly constant. The remaining main
wait-state detection and cost accounting (phases one and four, respectively, as discussed in Sec-
tion 4.3) therefore dominate the total analysis time. For Figures 5.1a to 5.1c, the fourth phase,
which performs the majority of the cost accounting in backwards direction dominates the total
time needed by the analysis. This is mainly due to two reasons: first, the messages exchanged
during cost accounting are usually bigger, as they contain the vector of execution times in the
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Figure 5.1.: Timings of the five analysis phases for measurements of the original SOR implementation
using MPI point-to-point and collective communication, as well as modified implementations using
various RMA synchronization schemes as replacements for the point-to-point communication. For the
point-to-point and active-target synchronization scenarios the overall trend is similar with runtime
mostly dominated by the cost accounting in the fourth phase. For the passive-target synchronization
scenario the first phase with the detection of lock contention clearly dominates the overall runtime,
however, its costs appear mostly scale-independent.
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current synchronization interval, as well as the corresponding costs; second, especially the com-
putation of collective waiting time turns out to be a costly operation at scale, as the causing
process has to gather data to be distributed to the other waiting processes, leading to scale-
dependent runtime costs, which clearly shows on all four figures. The detection of wait states
in active-target synchronization constructs as part of the first analysis phase (see section 3.3)
performs well, as the analysis can utilize events on both sides of a data exchange.

In scenarios involving passive target synchronization, as shown in Figure 5.1d, the wait-state
detection dominates the total execution while showing good scalability overall. This is mostly
expected, as the use of the active-message framework to analyze passive-target synchronization
incurs additional runtime costs, compared to the analysis of active-target synchronization. First,
the active message runtime needs to call a progress routine on every event visited; second, the
active-message handlers are called out-of-order on the target side, thus the target process needs
to identify the correct event in the trace; and third, the active messages are unexpected at
the target, thus memory allocation for their reception has to occur ad-hoc and buffers are
subsequently not pre-posted. For the nearest-neighbor exchange used in the benchmark, the
overall scaling behavior is still very good. Scaling from 512 to 65, 535 processes, the analysis can
maintain 93% parallel efficiency, as the work of active-message handlers is almost constant across
processes, independent of the execution scale. A small scale-dependent influence is introduced
by additional collective synchronization needed to ensure completion of pending active messages
after each iteration.

In summary, this case study showed that the analysis of one-sided communication constructs with
active-target synchronization performs on a par with the analysis of comparable point-to-point
communication constructs. They perform significantly better than the detection of wait states in
passive-target synchronization. Here, the case study revealed a much higher scale-independent
overhead, due to the additional execution of the active-message runtime. Nonetheless, the overal
active-message framework proves effective in the integration with the overall replay approach
and shows good scalability. Future implementation improvements may increase its efficiency and
bring it closer to the performance shown for active-target synchronization.

5.2. BT-RMA

This case study focuses on the developer assistance during the substitution of one-sided for
point-to-point communication in an existing benchmark code. It demonstrates how performance
metrics obtained for one-sided communication influenced the optimization of the use of one-sided
communication in the code. The following description of different implementations therefore fol-
lows potential choices of a programmer new to one-sided communication and its synchronization
techniques; an expert programmer familiar with one-sided communication may directly choose a
particular synchronization scheme, suitable for the target platform. The case study was intially
conducted in the context of the initial publication of the scalable detection [2] on a fixed scale
on one platform with changing implementations of the nearest-neighbor exchange. Further mea-
surements were added here for different platforms and scales to demonstrate that on a different
platform, developers could have come to different conclusions during the optimization proce-
dures, as the severity of the detected wait states depends largely on the MPI implementation.
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The bt-rma benchmark is a modified version of the bt benchmark, part of the nas Parallel
Benchmark Suite 2.4 [11]. The bt benchmark solves three sets of uncoupled systems of equations
in the three dimensions x, y, and z. The systems are block tridiagonal with 5 × 5 blocks. The
domains are decomposed in each direction, with data exchange in each dimension during the
solver part, as well as a so-called face exchange after each iteration. Those exchanges originally
used non-blocking point-to-point communication. The modification replaces the point-to-point
communication with one-sided communication using different flavors of synchronization schemes.
For measurement purposes, five purely computational subroutines were excluded from instru-
mentation, lowering the runtime intrusion to about 1% and keeping the trace size manageable.

The initial development platform for the port of BT to one-sided communication was the IBM
Power6 575 cluster JUMP2 of Forschungszentrum Jülich running AIX and POE. The target
scale was 256 cores in st mode, using the class D problem size. The time spent in MPI is shown
in Figure 5.2a, separated into different sub-metrics available in the analysis reports for all four
implementation variants. The measurement results used for the plot are printed in Table A.5 on
page 121.

From a user’s perspective, the simplest form of synchronization with the MPI one-sided inter-
face is using fences. Fences synchronize all processes of a given window and do not need to
specify targets and origins explicitly. Thus, we developed our initial version of bt-rma using
fence synchronization for both data exchanges. The analysis results of the fence-only implemen-
tation clearly reveals that the application spends a large portion of the MPI time (supposedly)
productively in RMA synchronization, namely the MPI Win fence call. One-sided communica-
tion in MPI is inherently non-blocking and can be postponed by the runtime system until the
next synchronization function. As such, the synchronization call may include the time for the
data transfer as well as the process and memory synchronization. Here, the time spent in RMA
synchronization accounts for more than 44% of the overall application runtime, while around
6% of the total runtime is waiting time. As only a fraction of the time spent in RMA synchro-
nization is explicitly classified as waiting time, an undiscerning user may think this time to be
spent productively advancing the communiucation. Most of this time is spent during the solver
exchanges in the three dimensions. Using the performance metric Pairwise RMA process syn-
chronizations—which indicated the number of process synchronizations with other processes, as
explained in Section 3.2.2—showed that 98.1% of all pairwise synchronizations counted occur
in the same synchronization calls that exhibit the excessive use of time. Even more, 99.8% of
those pairwise synchronizations were unneeded as the solver only exchanges data to nearest
neighbors.

To reduce the number of pairwise synchronizations between processes, we modified the solver
to use general active-target synchronization (GATS), while the fence synchronization was left
untouched in the face exchange. As Figure 5.2a clearly shows, the use of general active-target
synchronization reduces the number of pairwise synchronizations by an order of magnitude. This
also positively influences the overall time spent in RMA synchronization in general, leading
to a seven-fold reduction in overall time spent in MPI during the application run. Although
significantly faster, active target synchronization still accounts for about 4.2% of the application
runtime, with Wait at Fence requiring 1.3% and Early Wait about 0.9%. In addition, this variant
uses 2.5 times more time for remote access operations compared to the fence-only version, now
spending 1.6% of the total time in the Early Transfer wait state. This indicates that in the
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(a) IBM Power6 AIX Cluster JUMP2
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(b) IBM Blue Gene/P JUGENE

Figure 5.2.: Time spent in MPI, broken down into waiting time and non-waiting time for communication
and synchronization in BT-RMA on the IBM Power6 system JUMP2 and the IBM Blue Gene/P
system JUGENE at Forschungszentrum Jülich. Bar plot shows time across all processes with hatched
areas denoting waiting time. Line plot shows the number of pairwise RMA process synchronizations.
For gats-single and gats-multi no unneeded synchronization were performed and the data points are
omitted for clarity.
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version using fence synchronization the MPI implementation is progressing more of the overall
RMA communication during the fence calls themselves than when using general active target
synchronization.

To reduce the waiting time in the collective fence synchronization and to eliminate the remain-
ing unneeded synchronizations between processes—potentially causing some of the unwanted
waiting time—we adapted the face exchange to use GATS synchronization with the same sin-
gle window, originally used for the fence exchange (see gats-single). While it further reduced
the synchronization time, waiting time in RMA operations increased significantly, ultimately
leading to an overall performance regression. This different behavior suggests that during fence
synchronization POE uses non-blocking RMA operations, whereas with GATS synchronization,
it performs the RMA operations directly, leading to more Late Post wait states.

Although, now all synchronizations are needed, it is still performed en bloc for all communi-
cation partners, thus we created individual windows for each communication buffer (see gats-
multi). Furthermore, we rearranged the GATS synchronization calls slightly, starting the expo-
sure epochs as early as possible and shortening the access epochs by moving the start/complete
calls close to the RMA transfers, decreasing the overall runtime again. In this configuration
BT-RMA is almost 1.7x faster than the first fence-based version, and on a par with the original
point-to-point communication.

With the availability of the IBM Blue Gene/P system JUGENE at Forschungszentrum Jülich,
the BT-RMA benchmark was run again in all variants on problem size D with an increased scale
of 1,024 processes in VN mode. Unfortunately, the general active target synchronization for the
Blue Gene/P systems at the time of investigation had difficulties coping with skewed access
and exposure epochs during the GATS synchronization of the solver phases, leaving the runtime
system exiting unexpectedly. As a workaround, we inserted a barrier call after each solver step
in the dimension x, y, and z when changing the synchronization mechanism to GATS. While
these measurements are not particularly interesting in terms of a performance comparison to the
original measurements on the JUMP2 system, they reveal several interesting changes in behavior
when moving to this platform (see Figure 5.2b).

First, with the greater scale, the impact of the unneeded pairwise synchronizations is more
severe; moving from fence to GATS synchronization for the solver results in a 30x reduction
in time spent in MPI and an 3.6x performance increase overall. This is understandable, as
the 4-fold increase in size leads to a 16-fold increase in pairwise synchronizations during the
fence synchronization. Second, when using fence synchronization in the solver step (fence only)
the inserted barrier calls hardly have any effect on the application behavior, as the fence calls
implicitly synchronize the processes. Third, the MPI implementation of the Blue Gene/P seems
to use non-blocking RMA operations, as the overall time spent in RMA communication across
all synchronization schemes is minimal and the majority of the time is spent in synchronization,
suggesting that the actual RMA operation call only initiate transfers, but most of the progress is
done during subsequent synchronization. This last aspect suggests that the optimizations done
for the multi-window synchronization variant are counter productive, leaving the single window
version as the fastest option on this platform.

On a third system of investigation, the IBM Blue Gene/Q system JUQUEEN currently installed
at Forschungszentrum Jülich, the behavior of the BT-RMA benchmark is yet again slightly dif-
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Figure 5.3.: Time spent in MPI, broken down into waiting time and non-waiting time for communication
and synchronization in BT-RMA on the IBM Blue Gene/Q system JUQUEEN at Forschungszentrum
Jülich. Bar plot shows time across all processes with hatched areas denoting waiting time. Line plot
shows the number of pairwise RMA process synchronizations. For gats-single and gats-multi no
unneeded synchronization were performed and the data points are omitted for clarity.

ferent, as shown in Figure 5.3. Like the MPI implementation of the Blue Gene/P, the Blue
Gene/Q’s MPI is a direct derivative of the popular open-source MPICH implementation. It is
therefore not surprising that it follows a similar strategy in the use of non-blocking RMA opera-
tions in combination with general active-target synchronization. As a result, the communication
time is very small, including only the time to set up the communication, performing the actual
transfer either concurrently to the computation or within the subsequent synchronization call.
Surprisingly, the MPI implementation deals much better with the fence synchronization in the
solver steps, although one has to take into consideration that the Blue Gene/Q has a much
higher core density compared to the Blue Gene/P, with 1,024 cores being available on half a
midplane. As more of the communication can be performed using shared memory, the commu-
nication and synchronization will be significantly faster between the processes. Nevertheless, it
remains evident that the high waiting time is connected to the unneeded synchronization with
processes other than the direct communication partners.

In summary, this study showed how the detection of waiting time in MPI one-sided commu-
nication with active-target synchronization can guide performance optimization engagements
across several implementation stages. Furthermore, with measurement results across three dif-
ferent HPC platforms and MPI implementations, it demonstrates that performance results and
development decisions based on those results may differ between platforms.

104



5.3. CGPOP

5.3. CGPOP

This case study also focuses on the developer assistance through specific performance metrics
during the implementation of a data exchange with one-sided communication, albeit, the per-
formance metrics focused on in this case study are the critical path and delay metrics. Here, the
application already had an initial implementation using one-sided communication, which was
abandoned at some point in the development process due to lack of performance. The purpose
of this study is to demonstrate the usefulness of the metrics in optimizing applications using
MPI one-sided communication with active-target synchronization. The results were initially pub-
lished as part of the scalable computation of those metrics for one-sided communication using
active-target synchronization [5].

The CGPOP miniapp [149] represents the conjugate gradient solver of Los Alamos National
Laboratory’s Parallel Ocean Program (POP) 2.0, which is the ocean model of the Community
Earth System Model (CESM) [164], a major climate code developed at the National Center for
Atmospheric Research. CGPOP was created to study the most critical part of the application
on different platforms without having to port the whole ocean simulation. It is implemented in
several different variants, one of which uses one-sided, point-to-point, and collective communi-
cation. As such, it provides an interesting test case for studying inter-paradigm influences. As
a test kernel, CGPOP provides different communication drivers to identify the communication
scheme that suits a given platform best. Next to 1D and 2D point-to-point variants, it also
provides a 1D halo exchange using one-sided communication and general active-target synchro-
nization. The 1D decomposition uses a space-filling curve to partition the data. According to
the developers, the one-sided kernel was not investigated deeply, as it did not seem to perform
en-par with the two-sided kernels. Experiments to gain more insights on where the time was
actually lost were conducted on a Linux/Infiniband cluster at RWTH Aachen University, using
the 180 × 120 tile-set on 60 processes.

Before any performance measurements could be taken, the code needed slight modifications.
Initially, group handles were frequently created and not freed, which exceeded the tracking ca-
pabilities of the Scalasca measurement system. As the measurement system already gives us
detailed insight into the code’s performance, we also disabled any application-internal timing
calls. This slightly modified version was used as the baseline of our study. Because the I/O time
needed to read in the input data was non-deterministic and dominated the overall execution
time, we isolated the solver steps in solver.esolver within the analysis report to focus our
attention on the performed iteration rather than the initialization. The initial measurements
revealed two issues: (1) the barrier, called in the solver step right before the one-sided data
exchange, experienced severe waiting time, and (2) despite the barrier, some origins experienced
Late Post wait states (see Table A.8). Initially, the Late Post waiting time was not intuitive,
as the barrier in front of it should have taken care of any imbalances leading to wait states.
However, the root-cause analysis revealed that an imbalanced barrier completion is responsible
for the Late Post wait state. This is an example of a cross-paradigm wait state, where wait
states or imbalances in one communication paradigm influence other paradigms as well. The
waiting time in the barrier is caused by delays in the function matrix mod matvec and its par-
ent function pcg chrongear linear. For both functions, the delay costs identify two processes
as the main contributors to the overall waiting time. The waiting time itself, however, is more
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Figure 5.4.: Comparison of runtimes between the original one-sided implementation of CGPOP and the
modified version.

wide-spread over the processes. With the underlying nearest-neighbor exchange, this indicates
that the barrier synchronization may be too heavy-weight in this case. As the barrier itself is
not functionally necessary at this point in the code—the one-sided synchronization itself will
take care of consistency—it was removed to see how the waiting time caused by the delay mate-
rializes in a more light-weight synchronization. As expected, the modifications partly dissolved
wait states due to the lighter-weight synchronization, which partly reappeared as Late Post wait
states. After all, the actual delay causing the initial barrier wait states was not changed. Over-
all, the waiting time decreased and the application core already showed a significant runtime
improvement. Furthermore, the critical-path profile shows both aforementioned user functions
(matrix mod matvec and pcg chrongear linear) to be on the critical path and indicates a
significant imbalance. A logical next step would now be to find ways of removing this load
imbalance, which, however, is beyond the scope of this thesis and should be done in closer
collaboration with the original developers.

In summary, this study demonstrated how the performance metrics of critical path and delay
could be used to identify root causes of underperforming communication pattern in one-sided
communication with active-target synchronization. Furthermore, it revealed that depending on
the implementation, processes might exit a barrier less aligned than expected, leading to imbal-
ance after the barrier. This means, though beyond the direct control of the user, barriers can
also be a (usually small) source of delay and their completion time should be accounted during
the root-cause analysis.
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Figure 5.5.: Scaling behavior of the different analysis phases (left) during the analysis of the strong-
scaling measurements of the SRUMMA benchmark. The timings for the application (green) reveal
that beyond 8,192 processes the decreasing local work and increasing communication leads to a
performance regression. The timings for the five analysis phases (blue) also show that the increasing
event count per process impacts the overall analysis time. With Get events increasingly dominating
the overall event counts, the throughput of the active-message framework shows good scalability
(right).

5.4. SRUMMA

This case study focuses on the scalability of the active-message framework for analyzing wait
states in one-sided communication with passive-target synchronization in a communication ker-
nel of a matrix-matrix multiplication. Demonstrating the applicability of the wait-state detec-
tion for one-sided communication beyond MPI, the investigated communication kernel is using
ARMCI, the one-sided communication interface used by the well-known partitioned global-
address space library Global Arrays.

The SRUMMA algorithm [84] for scalable matrix-matrix multiplication is a test case for the
scalability of the active-message framework developed to detect wait states in passive-target one-
sided communication. The procedure, which is based on remote memory access, is implemented
in Global Arrays to support the multiplication of distributed global arrays. This algorithm,
invoked as the ga dgemm call, employs an owner-computes model with each process computing a
block of the output matrix. The relevant blocks of the input matrices are obtained through non-
blocking get operations. The different block-block products are structured to avoid contention
from numerous simultaneous get requests directed at the same target process.
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Figure 5.6.: Normalized performance metrics of MPI and ARMCI in strong-scaling measurements of
the SRUMMA benchmark. Initially, the progress-related waiting time dominates the overall com-
munication (left figure; dark blue hatched area). At larger scales, the waiting time in the collective
communication, induced by ARMCI synchronization, takes over the dominant role (left figure; light
blue hatched area). Across the scales, the percentage of waiting time in ARMCI communication is
slightly reduced (right figure), as computation phases get shorter and more processes are communi-
cating concurrently—providing progress for remote accesses.

The measurements are configured for strong scaling of the multiplication of two 4096 × 4096-
element matrices on different numbers of processes. The square property of the matrix, coupled
with the blocked data distribution of the global arrays, results in all processes performing the
same number of floating-pointing operations between communication calls. The symmetry is
only broken by the differences in the cost of communication due to topological asymmetries.
Such regular calculations with seemingly coordinated communication are typically not expected
to incur a great Wait for Progress penalty. The measurements of this benchmark were performed
on the IBM Blue Gene/P system JUGENE at Forschungszentrum Jülich, which was decommis-
sioned at the end of 2012. Figure 5.5a shows the overall strong scaling behavior of the benchmark.
It can be seen that beyond 8,192 processes, the application fails to scale any further. This is
due to the increasing lack of computational work performed by the individual processes and
the benchmark-internal synchronization using ARMCI_AllFence() and MPI_Barrier() starting
to dominate the time of the benchmark run. Executed on 8,192 processes, about 79% of the
total benchmark time is spent in either ARMCI or MPI functions, with about 42% of the total
benchmark time being waiting time. Investigating the delay costs for the Wait at Barrier wait
states reveals that their root cause lies in delays induced by ARMCI_AllFence(). As the syn-
chronization time of the benchmark was not the primary focus of these experiments, they were
not investigated any further.

108



5.4. SRUMMA

While the initial implementation of the Wait for Progress detection was based on an implemen-
tation using ARMCI [4], the scaling timings of the different analysis phases shown in Figure 5.5a
are based on the new MPI-based implementation. Figure 5.5a shows that (1) the scaling behavior
of the analysis is independent of the applications scaling behavior and (2) the analysis time in-
creases across all scales. Figure 5.5b reveals that the scaling behavior of the analysis depends on
the number of one-sided operations performed by the application, or in other words, the number
of requests that need to be handled in the system. In the data-decomposition scheme present in
the benchmark, the number of communication calls grows linearly with the number of processes
with an estimated coefficient of 2.5, leading to the observed growth in analysis time because the
local request-response handling of the local processes is saturated. In the new implementation,
receive buffers are created ad hoc, as opposed to the pre-allocated dedicated communication
buffers per process of the original implementation. While this is much more scalable in terms
of memory requirements, it means that every active message is unexpected in terms of the MPI
communication layer. Too many unexpected messages at any given time may negatively impact
the per-message processing time.

The benchmark application has a balanced load of remote-memory-access operations per pro-
cess. For the analyzer, this means the number of requests necessary to analyze the complete
behavior is also quite balanced across all processes. With the largest measurement using 32,768
processes, the analyzer was able to maintain a processing speed of 11 million get operations
per second, thus handling an overall workload of almost 59 million get operations. In general,
communication patterns that overburden a single process with data accesses tend to reduce the
overall performance of the parallel analysis, as the overburdened process will dominate the over-
all analysis time. Request coalescing may further improve such situations, however, pathological
communication patterns may continue to influence the analysis performance.

Figure 5.6a shows an excerpt from the application’s performance metrics, indicating that with
the decomposition of the matrices across more processes, the execution is increasingly dominated
by synchronization. This can be explained by the complexity of the all-fence operations. Addi-
tionally, the figure shows a significant amount of waiting time in ARMCI communication—i.e.,
Wait for Progress wait states—which is contrasted with actual communication in Figure 5.6b
at different scales. The dominance of waiting time in comparison to actual communication is
significant. On the given platform, additional progress threads would automatically use a full
core, not allowing multiple progress threads to share a core. Therefore, the overall fraction of
waiting time is still low enough that the use of a dedicated core to run a helper thread is not
justified in this scenario. The severity of the pattern is attenuated slightly at larger scales, as
the computation load decreases and the probability of a target process to immediately provide
progress increases. Although it is expected that the impact of remote progress to be observable
for communication patterns as used by this benchmark, its dominance of the ARMCI communi-
cation profile is nonetheless surprising for fairly regular communication phases. For applications
with more irregular communication patterns, where individual processes communicate in irreg-
ular intervals, the impact of progress-related wait states may therefore be even higher, as the
likelihood of concurrent communication decreases.

In summary, this case study shows that progress-related wait states can significantly impact the
communication performance and induce further imbalance into a code. With the detection and
quantification of such waiting time as presented here, developers can obtain the information for
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Figure 5.7.: Performance analysis report of a simulation run of NWChem using the SiOSi3 input con-
ducted on 4096 cores on the IBM BlueGene/P system JUGENE of Forschungszentrum Jülich.

an informed decision on how to configure and run their simulations on platforms without explicit
software or hardware progress. While offering potential for further improving communication
performance and scalability, the presented analysis framework showed acceptable performance
on measurements up to 32,768 processes, proving the overall design to be feasible. Furthermore,
it demonstrates the applicability of this approach to investigate the performance of other one-
sided communication interfaces besides MPI, such as ARMCI.

5.5. NWChem

This case study focuses on the presence of progress-related wait states in a real-world simulation
scenario. It shows how the performance analysis can help quantify the overall loss in performance
of PGAS-style computations on a platform lacking remote communication progress.

The NWChem [166] framework for computational chemistry serves as a real life example for the
influence of progress-related wait states on the overall performance of a parallel application. The
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framework allows users to chose from multiple different algorithms common to computational
chemistry. The benchmark configured for these measurements performs a density functional
theory (DFT) calculation on the SiOSi3 input. DFT is a widely used single-determinant approach
to the many-electron problem [82, 127, 129]. All integral evaluations were performed using the
direct method, and the Fock matrix was constructed using the distributed data approach [53].

The NWChem framework exhibits a vast amount of call paths that would normally raise the
memory requirements significantly during measurement. Moreover, it comprises a lot of short
functions called with a high frequency, which would impact both memory requirements and
measurement overhead, potentially leading to drastically perturbed measurements, rendering
such measurements useless. To minimize the runtime overhead, the NWchem binary was only
instrumented at the main routine—to provide a root call-path node. This binary was then linked
with a pre-instrumented ARMCI library. As a result, the executable only contained minimal in-
strumentation. The measurement was conducted on the IBM Blue Gene/P system JUGENE
at Forschungszentrum Jülich on 4,096 processes using the SiOSi3 input. Figure 5.7 shows in
the middle pane that all ARMCI calls are directly connected to the root cnode nwchem and
no other call path information is present. In the left pane, the major source of waiting time
is computational imbalance at global synchronization points. Although the Wait for Progress
inefficiency pattern is not a major part of the overall waiting time in the presented NWChem
measurement—the overall waiting time is dominated by Wait at Barrier—it still has a signifi-
cant influence on the one-sided communication employed by Global Arrays. In this example, it
accounts for 20 percent of the ARMCI communication time that is used for the one-sided data
accesses. Figure 5.7 also reveals that the attributed waiting time is sparsely scattered across the
processes. It is likely that these highly irregular waiting times induce imbalances which them-
selves lead to further waiting times—a possibility that should be subject of a more detailed
investigation of NWChem performance, which is out of the scope of this work.

This case study demonstrates that progress-related wait states do occur in the real-world ap-
plications. Especially with higher-level frameworks building on one-sided communication, such
as PGAS runtimes, these may introduce chaotic, noise-like delays throughout the application
execution that are non-trivial to mitigate. In this context, it exemplifies that the wait-state
detection can be helpful for end user but also implementors of such frameworks to quantify
performance loss in parallel applications, as the basis for further action.

5.6. Lock Contention Microbenchmark

This case study focuses on the correct detection of lock-contention wait states, their root causes,
and the identification of the critical path in applications using MPI one-sided communication
with passive-target synchronization. It verifies the detection and cost accounting algorithms
presented in Sections 3.3.2 and 4.3, respectively, and shows how users need to interpret the
resulting performance profile.

The overall scenario is similar to the one shown in Figure 4.2 on page 74: a lock contention
scenario enclosed in collective barrier synchronization. Processes are partitioned into process 0
acting as the target for all RMA operations, and the rest of the processes, scheduling RMA
operations to update the window on the target process. After an initial barrier synchronization
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of all processes, all processes call the function foo() to simulate work with process-individual
workloads. The simulated workload is the lowest on target rank 0 and increases with rank, thus
the processes return from foo() in rank order. As the target has the lowest workload, it is the
first to return from the call to foo() and is guaranteed to lock its local window before any of the
other processes requested the lock. Locks on the local window are never postponed but block
until the lock is successfully acquired, as a local lock epoch needs to ensure that local loads and
stores to the window are appropriately protected. While the target holds the lock, it executes the
function bar() for 2 seconds to simulate local updates to the window before releasing the lock
again. The skew in the workload simulated by foo() ensures that the workers request the lock
after it has been acquired by the target rank 0. They form a contention chain waiting for rank
0 to release the lock. Each process calls foo() again for a duration of 100 microseconds after its
release of the lock. Finally, all processes are synchronized by another barrier operation.

The skew of the processes after completing the remote memory access leading to a subsequent
Wait at Barrier wait state is independent of the initial skew induced by the calls to foo on the
different processes; it only depends on the time needed to complete the RMA access and to pass
the lock ownership to the next process.

The benchmark was executed on two nodes of a Linux Cluster with InfiniBand network using
Open-MPI 1.10.2. Figure 5.8 shows screenshots of Vampir timeline views of selected regions
of the measurement, as well as the corresponding Cube report as generated by Scalasca’s trace
analyzer. In the timeline views, user functions are shown in grey and MPI functions are shown in
blue. Figure 5.8a shows the start of the lock contention, where each process initially calls function
foo() for a rank-dependent duration. At time 0.5620s process 0 locks its local window—indicated
by the short blue rectangles between the rectangles corresponding to calls to foo() and bar().
This call to MPI Win lock() is too short on all participating processes for Vampir to place the
name of the call in the respective timeline at this zoom level, thus it is represented only by a
short blue rectangle. The same applies to the RMA operations following the locks on processes
1 and higher. Process 0, as the target, obtains an exclusive lock and executes the function bar()

for 2 seconds. The remaining processes each block in the call to MPI Win unlock(), waiting for
the target to release the lock. Figure 5.8b shows a detailed view of the time interval in which
the target releases its lock on the window and passes the lock to process 1. Process 1 obtains the
lock and performs its RMA operation, releasing the lock again. Process 2, however, is unable to
obtain the lock directly from process 1, as the target (process 0) is busy with the execution of
foo() after its release of the lock and does not provide target-side progress for remote accesses.
Process 2 can obtain the lock only after process 0 provides progress again within the barrier
operation (Figure 5.8c). The total waiting time amounts to 2.1 seconds—2 seconds of bar()

(during the initial lock) and 0.1 seconds of foo() after the release of the lock awaiting further
target-side progress. As the barrier spans all processes, process 0 has to wait for the last process
to join and continues to provide progress for all remaining processes. The call to foo() before
the barrier is rank independent and lasts for 100 microseconds.

The Cube performance report shown in Figure 5.9a reflects the observed behavior. The time
spent in the Lock Contention wait state is about 2 seconds for process 1, which requested the
lock right after process 0 and had to wait for the end of the 2 second execution of bar().
The waiting time on process 2 is not classified as Lock Contention but as Wait for Progress
(not directly shown), as insufficient progress was the last factor extending the overall waiting
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(a) Start of lock contention

(b) Unlock of initial lock

(c) End of lock contention

Figure 5.8.: Timeline view of the start and the end of a lock contention scenario. The execution time
of the initial call to function foo() is skewed across the processes to ensure that process 0 acquires
the lock first and the accesses of the remaining processes are queued. When process 0 releases the
lock after the call to function bar(), process 1 completes its access and releases the lock again,
yet process 0 does not provide further progress for the completion on the other processes. Starting
the enclosing barrier synchronization, process 0 provides progress again, enabling completion of the
pending lock epochs on the remaining processes.
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(a) Cub e analysis rep ort highlighting Lock Contention time.

(b) Cub e analysis rep ort highlighting Critical Path Profile time.

Figure 5.9.: Cube analysis report highlighting Lock Contention time and the time distribution of the
Critical Path Profile.
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time. However, for the remaining processes, progress was provided and the waiting time is
classified as contention-based. The waiting time on processes 2 and higher is increased by about
100 microseconds compared to process 1 as further progress was only provided again after the
execution of foo() on the target process.

Highlighted in Figure 5.9b is the contribution to the critical path of each process in the function
MPI Win unlock, which illustrates the serialization of processes during the lock contention. Only
process 1 is not present on the critical path owing to process 2 not waiting for the process 1 to
return the lock but for process 0 to provide target-side progress and grant the lock. Furthermore,
the analysis report suggests that the benchmark’s overall execution time could be reduced by
a better load balancing of the function call bar() across all processes. In the measurement,
the full 2 seconds of the call to bar() on the target process 0 is part of the critical path. If
balanced, only 0.17 seconds (2 seconds spread across 12 processes) would remain on the critical
path. The remaining 1.83 seconds of the call to bar() are part of the 1.93 seconds of Critical
Imbalance time. It is important to note that the analysis cannot determine whether bar() can be
balanced across multiple processes, so it is up to the developer to decide on a viable optimization
strategy.

In summary, this case study shows that lock contention is correctly identified by the analysis.
Furthermore, it showed that depending on the MPI implementation, wait states due to insuf-
ficient target-side progress may also influence the waiting time withing a contention chain, as
origin processes may wait for both, an origin process to release the lock and the target process
to grant the lock again after its release. This case study also highlighted the critical-path metrics
in such a scenario and how to interpret them to obtain optimization targets.

Summary

This chapter presents analysis results of a variety of applications using one-sided communica-
tion, both of MPI and ARMCI. The scaling study of the SOR benchmark demonstrates the
scalability of the presented approaches, ensuring that application developers can inspect ap-
plication behavior and detect waiting times at large scales. The study of a modified version
of the NAS Parallel Benchmark’s BT kernel using general active-target synchronization in dif-
ferent scenarios shows how the identified wait states differ on different platforms and how the
presented methods can assist developers in fine tuning one-sided synchronization and access
patterns. Moreover, the analysis of the CGPOP benchmark demonstrates how wait states in
multi-paradigm communication scenarios can interact and underline the necessity of a holistic
tool support of communication paradigms available to developers. The studies of SCRUMMA
and NWChem demonstrate the effectiveness of the contributed analysis framework based on a
high-level active-message scheme. Finally, the lock-contention micro benchmark demonstrates
the effective identification of lock contention and lack of target-side progress on an easy to follow
example, while also providing insight on the interpretation of the corresponding root-cause and
critical-path metrics in the analysis report.
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This chapter summarizes the motivation and contributions to the performance analysis of one-
sided communication, as described in this thesis. Furthermore, it presents ideas for new research
areas to follow up on the presented work.

Message passing is one of the most prominent programming paradigms in high-performance
computing. Users can choose from three main communication paradigms: point-to-point, collec-
tive, and one-sided. While the first two are often well supported by many tools, the latter often
suffers from no or only partial support. However, for developers to use a programming paradigm
effectively, comprehensive tool support is essential to the understanding of the behavior of the
application. Lack of tool support may therefore drive users away from using one-sided communi-
cation, even if it would fit the intended use in an algorithm or application. Focussing on scalable
performance analysis techniques, this thesis helps to close the existing gap, and enables effective
tuning of parallel applications using one-sided communication.

On the path toward this goal, this thesis presents a generic event model for one-sided commu-
nication, capable of describing semantics of multiple one-sided communication interfaces (e.g.,
MPI, SHMEM, and ARMCI) in use in high-performance computing today. Using this event
model, performance analysis tools, such as Scalasca, can define wait-state patterns that help
to identify and quantify the time a process is idle, waiting for a remote event to occur. This
new generic event model is used to describe well-studied as well as previously unstudied wait-
state patterns across multiple one-sided communication interfaces. Based on these definitions,
this thesis further presents scalable methods for identifying inefficient communication and syn-
chronization behavior in large-scale event traces. To enable the presented analysis techniques
of passive-target synchronization, this work also contributes an active-message communication
framework. Extending the existing communication infrastructure of Scalasca, which was lim-
ited to the replay of explicitly recorded interaction among processes, this framework permits
analysis methods to send information between arbitrary processes while still being embedded in
Scalasca’s general replay algorithm.

Building on prior work of Böhme et al., this work extends the detection of root causes of wait
states and the identification of the critical path in message passing applications to support
one-sided communication. A crucial contribution to the support of lock-based synchronization
in the root-cause detection is the introduction of contention points. Such points of process
synchronization differ significantly from the type of synchronization point in parallel applications
that were the basis for Böhme et al.’s analysis. This dissertation extends the formal framework
used to identify root causes of wait states and expose the critical path in message passing
applications, integrating contention points into Böhme et al.’s cost model. In doing so, this work
presents advanced performance analysis techniques for one-sided communication on a par with
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similar methods existing for point-to-point and collective communication, enabling developers to
choose one-sided communication in suitable scenarios without accepting a lack of tool support.

This dissertation also provides starting points for further research in performance analysis of one-
sided communication. The analysis methods presented in this thesis still need to be ported into
the production versions of the Score-P measurement system and the Scalasca parallel analyzer
and released for public use. This work is already in progress. Exposure to a broader audience
will present further chances to refine the implementation.

The root-cause detection of lock contention in one-sided communication can also be extended
to cover shared-memory programming paradigms. Lock-based synchronization is a common
technique to synchronize execution streams in shared-memory programming interfaces, such
as POSIX threads and OpenMP. Both interfaces are often used in high-performance computing
to handle intra-node-level parallelism, while MPI is used for inter-node-level parallelism. Re-
cently, Böhme et al. already extended their techniques to OpenMP parallelism [25]; the support
of root-cause detection in lock-based synchronization in OpenMP and similar interfaces would
be a natural next step.

Furthermore, contention also occurs in other situations common to parallel programming where
mutual exclusion needs to be guaranteed: network links, file systems, or the CPU memory sys-
tem. Similar to the lock-based synchronization in one-sided communication, the synchronization
in these scenarios is implicit. Access order and synchronization partners need to be inferred
through secondary information. In some cases, a medium may also multiplex parts of several
concurrent accesses, creating an additional layer of complexity. To support these scenarios, mea-
surement systems would have to be extended to record the necessary information, data exchange
algorithms have to be developed, and in the case of multiplexed concurrency, cost attribution
may need to be adapted.

Overall scalability in terms of memory consumption may also benefit from exploring different
load balancing techniques for gathering lock-epoch information. Instead of collecting the full
epoch information at the target, temporally distinct parts of the contention chain could be
gathered across multiple processes, lowering the memory footprint of the individual processes,
especially in scenarios where a huge number of processes access a single target. Processes with
connecting parts of the contention chain would then exchange data of the first and last epochs
with the corresponding neighbors.

As one-sided communication is often used as the communication layer for higher-level program-
ming paradigms, particularly partitioned global address space languages, the methods shown
here may also function as the basis for higher-level metrics helping users to decide which in-
structions lead to wait states in the communication infrastructure. Finally, new research oppor-
tunities may also arise with the advent of new performance analysis interfaces such as MPI T
and a callback interface currently in design by the MPI For:w um. As soon as a broader range of
MPI implementations support these emerging interfaces, the information gained through them
may benefit tools greatly. For example, an implementation may trigger a callback on the target
when a process acquires a lock and enable a tool to record the provided information. Then,
heuristics to determine lock order can easily be replaced with explicitly recorded information.
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A.1. SOR

Table A.1.: Execution times in seconds of the parallel analysis of the SOR benchmark using point-
to-point communication on scales from 512 to 65,535 processes on the IBM Blue Gene/Q system
JUQUEEN at Forschungszentrum Jülich.

Processes Total [s]
1 2

Phase [s]
3 4 5

512 4.80 1.53 0.58 0.35 1.99 0.35
1, 024 4.93 1.55 0.58 0.36 2.09 0.35
2, 048 5.25 1.64 0.57 0.35 2.34 0.34
4, 096 5.67 1.74 0.57 0.38 2.64 0.34
8, 192 6.30 1.84 0.58 0.35 3.18 0.35

16, 384 7.34 2.03 0.58 0.35 4.05 0.34
32, 768 8.92 2.41 0.58 0.35 5.25 0.34
65, 536 14.67 3.55 0.57 0.34 9.87 0.34

Table A.2.: Execution times in seconds of the parallel analysis of the SOR benchmark using one-sided
communication with general active-target synchronization on scales from 512 to 65,535 processes on
the IBM Blue Gene/Q system JUQUEEN at Forschungszentrum Jülich.

Processes Total [s]
1 2

Phase [s]
3 4 5

512 3.92 1.81 0.52 0.08 1.30 0.19
1, 024 3.86 1.85 0.52 0.08 1.21 0.20
2, 048 4.19 1.90 0.52 0.08 1.46 0.22
4, 096 4.39 1.99 0.53 0.08 1.57 0.22
8, 192 4.90 2.10 0.52 0.08 1.99 0.21

16, 384 5.36 2.41 0.51 0.08 2.16 0.20
32, 768 7.36 2.95 0.51 0.08 3.62 0.20
65, 536 12.08 4.48 0.52 0.08 6.81 0.19
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Table A.3.: Execution times in seconds of the parallel analysis of the SOR benchmark using one-sided
communication with fence synchronization on scales from 512 to 65,535 processes on the IBM Blue
Gene/Q system JUQUEEN at Forschungszentrum Jülich.

Processes Total [s]
1 2

Phase [s]
3 4 5

512 2.88 1.11 0.02 0.07 1.60 0.07
1, 024 3.05 1.09 0.02 0.07 1.80 0.07
2, 048 3.44 1.17 0.02 0.07 2.10 0.07
4, 096 4.04 1.27 0.02 0.07 2.61 0.07
8, 192 4.76 1.35 0.02 0.07 3.26 0.07

16, 384 5.99 1.58 0.02 0.06 4.26 0.07
32, 768 8.22 2.06 0.02 0.07 6.01 0.07
65, 536 12.88 3.23 0.02 0.06 9.49 0.07

Table A.4.: Execution times of the parallel analysis of the SOR benchmark using one-sided communi-
cation with passive-target synchronization on scales from 512 to 65,535 processes on the IBM Blue
Gene/Q system JUQUEEN at Forschungszentrum Jülich.

Processes Total [s]
1 2

Phase [s]
3 4 5

512 44.59 40.80 0.33 0.43 2.56 0.47
1, 024 44.95 40.91 0.33 0.43 2.82 0.46
2, 048 45.22 40.97 0.33 0.43 3.01 0.48
4, 096 45.83 41.10 0.32 0.42 3.51 0.48
8, 192 46.59 41.29 0.34 0.43 4.06 0.47

16, 384 47.73 41.60 0.34 0.43 4.87 0.49
32, 768 50.52 42.17 0.34 0.43 7.07 0.50
65, 536 55.92 43.50 0.32 0.43 11.17 0.50
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A.2. BT-RMA

Table A.5.: Performance metrics for different variants of bt-rma running on 256 cores of the IBM
Power6 575 system JUMP2. All values are aggregated across all processes and inclusive, that is,
they include the time for sub-patterns (indicated through indentation).

Metric [s] fence-only gats-fence gats-single gats-multi

Total time 109, 361.68 61, 197.15 61, 958.75 60, 503.99
Execution time 58, 109.23 54, 420.63 54, 280.99 54, 219.74
MPI time 51, 252.45 6, 776.52 7, 677.76 6, 284.25

Collective 0.77 1.37 5.89 1.53
Wait at Barrier 0.75 1.34 5.87 1.51

RMA Synchronization 48, 703.78 3, 701.09 2, 294.03 3, 476.01
Wait at Fence 6, 080.03 878.34 – –
Early Wait – 1, 536.29 912.73 1, 923.75

Late Complete – 1.84 40.26 1.99
Late Post – 0.47 2.17 0.92

RMA Communication 1, 324.92 1, 881.20 4, 034.39 1, 603.23
Late Post – 797.09 2, 893.84 848.56

Metric [occ.] fence-only gats-fence gats-single gats-multi

Pair-wise sync. 5.988⋅10
9

7.763⋅10
7

1.234⋅10
7

1.234⋅10
7

Unneeded pair-wise sync. 5.976⋅10
9

6.529⋅10
7

– –
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A. Measurement Data

Table A.6.: Performance metrics for different variants of bt-rma running on 1,024 cores of the IBM
Blue Gene/P system JUGENE. All values are aggregated across all processes and inclusive, that is,
they include the time for sub-patterns (indicated through indentation).

Metric [s] fence-only gats-fence gats-single gats-multi

Total time 862, 852.50 235, 560.79 233, 595.01 234, 197.46
Execution time 220, 392.94 214, 204.01 213, 868.62 213, 798.25
MPI time 642, 459.56 21, 356.78 19, 726.39 20, 399.21

Collective 246.88 1, 686.25 2, 088.60 2, 938.56
Wait at Barrier 238.62 1, 674.79 2, 076.28 2, 926.07

RMA Synchronization 639, 439.77 16, 901.96 13, 675.91 14, 115.94
Wait at Fence 16, 302.48 187.76 – –
Early Wait – 2, 656.19 2, 661.14 2, 824.42

Late Complete – 43.45 40.92 41.88
Late Post – – – –

RMA Communication 1, 920.77 1, 980.18 1, 972.15 1, 981.52
Late Post – – – –

Metric [occ.] fence-only gats-fence gats-single gats-multi

Pair-wise sync. 9.844⋅10
10

6.241⋅10
8

9.871⋅10
7

9.871⋅10
7

Unneeded pair-wise sync. 9.832⋅10
10

5.253⋅10
8

– –

Table A.7.: Performance metrics for different variants of bt-rma running on 1,024 cores of the IBM
Blue Gene/Q system JUQUEEN. All values are aggregated across all processes and inclusive, that
is, they include the time for sub-patterns (indicated through indentation).

Metric [s] fence-only gats-fence gats-single gats-multi

Total time 230, 257.89 176, 749.02 174, 062.99 174, 520.64
Execution time 201, 582.36 161, 964.02 160, 466.29 160, 584.66
MPI time 28, 675.53 14, 784.99 13, 596.69 13, 935.98

Collective 0.96 1.92 2.35 2.07
Wait at Barrier 0.93 1.88 2.32 2.03

RMA Synchronization 27, 884.91 14, 137.09 12, 954.35 13, 216.67
Wait at Fence 14, 462.19 473.45 – –
Early Wait – 2, 795.67 2, 777.35 2, 927.43

Late Complete – 16.48 17.16 16.53
Late Post – 404.98 400.50 441.50

RMA Communication 726.62 572.44 567.98 605.03
Late Post – – – –

Metric [occ.] fence-only gats-fence gats-single gats-multi

Pair-wise sync. 9.844⋅10
10

6.241⋅10
8

9.871⋅10
7

9.871⋅10
7

Unneeded pair-wise sync. 9.832⋅10
10

5.253⋅10
8

– –
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A.3. CGPOP

A.3. CGPOP

Table A.8.: Performance metrics of the isolated call-tree of solver.esolver in the CGPOP benchmark
with the 180 × 120 input tiles on 60 cores of the RWTH cluster.

Metric [s] original modified

Total time 125.21 108.26
MPI time 59.78 34.28
Synchronization 56.20 34.28
Collective 52.98 –

Wait at Barrier 51.95 –
Completion 0.87 –

RMA Synchronization 3.23 34.28
Late Post 1.56 26.21

A.4. SRUMMA

Table A.9.: Execution times of the parallel analysis of the SRUMMA benchmark on scales from 128 to
32,768 processes on the IBM Blue Gene/Q system JUQUEEN at Forschungszentrum Jülich.

Processes Total [s]
1 2

Phase [s]
3 4 5

Gets/Proc.

128 0.36 0.14 0.02 0.02 0.16 0.02 112
256 0.68 0.23 0.03 0.02 0.38 0.03 128
512 1.18 0.36 0.05 0.03 0.70 0.04 224

1, 024 1.58 0.46 0.06 0.03 0.98 0.05 256
2, 048 3.31 0.80 0.16 0.04 2.25 0.07 448
4, 096 4.24 1.01 0.17 0.04 2.93 0.09 512
8, 192 9.54 2.05 0.38 0.05 6.91 0.14 896

16, 384 12.57 2.49 0.46 0.06 9.40 0.16 1, 024
32, 768 27.82 5.28 1.10 0.08 21.11 0.25 1, 792
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A. Measurement Data

Table A.10.: Selected performance metric from measurement runs of the ARMCI SRUMMA matrix-
multiply benchmark across different scales, ranging from 128 to 32,768 processes.

Processes Total [s] User [s] MPI [s] MPI Sync. [s] Wait at Barrier [s]

128 4.583⋅10
4

1.517⋅10
4

1.152⋅10
3

1.148⋅10
3

1.148⋅10
3

256 2.750⋅10
4

1.530⋅10
4

2.796⋅10
2

2.514⋅10
2

2.514⋅10
2

512 3.193⋅10
4

1.551⋅10
4

7.736⋅10
2

6.898⋅10
2

6.897⋅10
2

1, 024 3.659⋅10
4

1.595⋅10
4

1.532⋅10
2

8.686⋅10
1

8.669⋅10
1

2, 048 4.656⋅10
4

1.694⋅10
4

2.495⋅10
3

6.159⋅10
2

6.156⋅10
2

4, 096 6.235⋅10
4

1.870⋅10
4

8.816⋅10
3

3.288⋅10
3

3.287⋅10
3

8, 192 1.072⋅10
5

2.209⋅10
4

2.129⋅10
4

1.516⋅10
4

1.516⋅10
4

16, 384 2.474⋅10
5

2.874⋅10
4

8.088⋅10
4

6.244⋅10
4

6.244⋅10
4

32, 768 9.474⋅10
5

4.458⋅10
4

4.195⋅10
5

2.702⋅10
5

2.701⋅10
5

Processes MPI Comm. [s] Late Sender [s] ARMCI [s] ARMCI Sync. [s]

128 3.324⋅10
−1

2.836⋅10
−1

2.951⋅10
4

1.239⋅10
4

256 8.333⋅10
−1

7.291⋅10
−1

1.192⋅10
4

3.660⋅10
3

512 2.608⋅10
0

2.262⋅10
0

1.564⋅10
4

4.630⋅10
3

1, 024 8.117⋅10
0

7.192⋅10
0

2.048⋅10
4

5.339⋅10
3

2, 048 2.543⋅10
1

2.306⋅10
1

2.712⋅10
4

7.422⋅10
3

4, 096 1.082⋅10
2

9.911⋅10
1

3.484⋅10
4

1.103⋅10
4

8, 192 5.662⋅10
2

5.179⋅10
2

6.387⋅10
4

2.796⋅10
4

16, 384 2.425⋅10
3

2.251⋅10
3

1.378⋅10
5

9.081⋅10
4

32, 768 9.905⋅10
3

8.814⋅10
3

4.833⋅10
5

3.917⋅10
5

Processes ARMCI Comm. [s] Wait for Progress (Comm.) [s]

128 1.712⋅10
4

1.696⋅10
4

256 8.256⋅10
3

7.937⋅10
3

512 1.100⋅10
4

1.042⋅10
4

1, 024 1.511⋅10
4

1.439⋅10
4

2, 048 1.961⋅10
4

1.843⋅10
4

4, 096 2.342⋅10
4

2.196⋅10
4

8, 192 3.398⋅10
4

2.999⋅10
4

16, 384 3.854⋅10
4

3.237⋅10
4

32, 768 5.678⋅10
4

4.360⋅10
4
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[56] Markus Geimer, Felix Wolf, Andreas Knüpfer, Bernd Mohr, and Brian J. N. Wylie. A
parallel trace-data interface for scalable performance analysis. In Proc. of the 8th Interna-
tional Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA), Ume̊a,
Sweden, volume 4699 of Lecture Notes in Computer Science, pages 398–408. Springer, June
2006.

[57] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd
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[99] Bernd Mohr, Andrej Kühnal, Marc-André Hermanns, and Felix Wolf. Performance analysis
of one-sided communication mechanisms. In Proc. of the Conference on Parallel Computing
(ParCo), Malaga, Spain, September 2005. Minisymposium Performance Analysis.

[100] Bernd Mohr, Allen D. Malony, Sameer S. Shende, and Felix Wolf. Towards a performance
tool interface for OpenMP: An approach based on directive rewriting. In 3rd European
Workshop on OpenMP (EWOMP), Barcelona, Spain, September 2001.

[101] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965.

[102] Csaba Andras Moritz and Matthew I. Frank. LoGPC: modeling network contention in
message-passing programs. SIGMETRICS Perform. Eval. Rev., 26(1):254–263, June 1998.

136



Bibliography

[103] MPI Forum, editor. MPI-2: Extensions to the Message-Passing Interface, chapter 6: One-
sided communication, pages 109–144. MPI Forum, July 17th 1997.

[104] MPI Forum, editor. MPI: A Message-Passing Interface Standard. Version 3.0. MPI
Forum, September 2012.

[105] MPI Forum, editor. MPI: A Message-Passing Interface Standard. Version 3.0, chapter 5:
Collective Communication, pages 141–222. In MPI Forum [104], September 2012.

[106] MPI Forum, editor. MPI: A Message-Passing Interface Standard. Version 3.0, chapter 11:
One-Sided Communication, pages 403–472. In MPI Forum [104], September 2012. Chapter
edited by W. Gropp and T. Hoefler and R. Thakur.

[107] MPI Forum, editor. MPI: A Message-Passing Interface Standard. Version 3.0, chapter 14:
Tool Support, pages 555–590. In MPI Forum [104], September 2012.

[108] MPI Peruse 2.0 - A Performance Revealing Extensions Interface to MPI, March 2006.

[109] Frank Mueller, Xing Wu, Martin Schulz, Bronis R. de Supinski, and Todd Gamblin. Scala-
Trace: Tracing, analysis and modeling of HPC codes at scale. In Kristján Jónasson, editor,
PARA (2), volume 7134 of Lecture Notes in Computer Science, pages 410–418. Springer,
2010.
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