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ABSTRACT

IZA DP No. 11407 MARCH 2018

What Matters for Environmental Quality 
in the Next-11 Countries:
Economic Growth or Income Inequality?

This study uses 1971-2013 panel data to explore the implications of growth, wealth disparities 

and energy consumption on carbon emissions in a sample of Next-Eleven (N-11) countries. 

It uses modern econometric techniques to highlight a long-run interplay between selected 

variables in the carbon emissions function for all the N-11 nations and long-run interactions 

among the series analyzed. Contrastingly, it also shows that economic growth, income 

inequalities and energy consumption accelerate CO2 emissions. In addition to examining 

the effects of the wealth disparities square, the study also uses the Environmental Kuznets 

Curve hypothesis in the context of the N-11 states. Its findings suggest that policymakers 

should curb rising income inequalities through effective redistributive measures such as tax 

transfers (cash transfers) and taking up other expenditure programs for the poor. Moreover, 

the Indian government should emphasize on an energy-reducing strategy policy to reduce 

income inequalities and achieve sustainable development.
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1. Introduction 

As emerging economies grow at the expense of massive energy consumption (EC) they face 
several difficult challenges in various areas. Among these, environmental quality is one of the 
biggest concerns as it impacts climate change and poverty levels via a myriad of effects on 
agriculture productivity and people’s health (Hallegatte and Rozenberg, 2017). Countries 
require greater volumes of energy to sustain their economic growth and development. Given 
the inelastic nature of the supply of natural resources such as land, drinking water and clean 
air, as human activities increase with population the accumulated goods produced in the 
countries in the form of pollution and greenhouse gas emissions (GHGs) grow 
disproportionately in relation to the planet’s capacity. Increase in economic activities reflects 
in higher growth rates and per capita GDP which leads to additional environmental concerns 
as emission levels accumulate along with rising demand for energy. The environmental 
repercussions of these worry not only domestic economies but also worldwide large states 
that are interconnected due to globalization; hence, all countries are likely to be affected by 
GHGs and face the risk of climate change although with different intensities in different 
regions.1  

As stated by economic theory poverty alleviation in the developing world needs significant 
government efforts along with sustainable economic progress otherwise poverty reduction 
policies will be inefficient. Practical evidence reveals that most industrialized, developing 
nations are expanding their economic activities and output levels thus seeking to diminish 
carbon emissions. As production and income differences are profoundly intertwined these in 
turn lead to large wealth disparities both in the short- and long-run. Thus, the developing 
world is faced with myriad challenges. Climate change (for example, rising sea levels, 
storms, droughts, floods) is one of the most severe of these as it drives substantial CO2 
emissions that cause global warming. Environmental degradation generated by rising carbon 
emissions and climate change is also a pressing problem as it threatens sustainable economic 
progress in the long-term and also the quality of living standards. It is generally recognized 
that climate change is a vital issue that needs to be addressed in energy and ecological 
economics.  

Recent available data from the Intergovernmental Panel on Climate Change (IPCC, 2006) 
shows that carbon emissions were a major determinant of GHG emissions globally, with a 
76.7 percent share in the total volume. These represented a mix of fossil fuels, deforestation 
and other factors at 56.6, 17.3 and 2.8 percent respectively. Hence, rising per capita CO2 
emissions are commonly used as proxy for environmental pollutants often linked with higher 
per capita incomes. As suggested by various scholars (inter alia, Holtz-Eakin and Selden, 
1995; Kijima et al., 2010; Ozturk and Acaravci, 2010; Raza et al., 2015), carbon emissions 

                                                           
1 Climate change is a huge threat to human health, global food security and economic development, as well as to 
the natural environment. In light of its severe consequences on global well-being, international organizations 
and governments need to work together to mitigate its risks and cut greenhouse gas emissions that are leading 
the climate to change. 
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are a main source of global warming and climate change with an alarming echo for 
governments worldwide in recent years that they should work to protect environmental health 
via a number of policy tools such as taxes and reliance on renewable energy. These 
guidelines proposed by policymakers have generated extensive intergovernmental debates, 
particularly in developing nations -- the 1997 Kyoto Protocol developed by Japan is a 
relevant example of efforts to diminish the carbon footprint that leads to global warming. The 
Protocol entered into force in 2005 and represents a binding agreement to the UN Framework 
Convention on Climate Change (UNFCCC) (Halicioglu, 2009; Ozturk and Acaravci, 2010).  

Given the existing global warming and increasing concerns about scarce energy sources and 
the concept of sustainable development and environmental quality issues for society as a 
whole we believe that exploring the interplay between carbon emissions, progress and wealth 
disparities in the context of N-11 nations2 is a scientific endeavor worth considering by both 
scholars and policymakers. It is important to validate empirically the causality, if any, 
between economic development and income differences on the one hand and environmental 
degradation on the other in N-11 states. This is essential because understanding the direction 
of causality will provide valuable insights into the best way to preserve environmental health; 
such an exercise will also offer examples of best practices to other developing economies. If 
environmental degradation persists in N-11 countries amid increased production levels and 
associated massive EC, its impact will transmit like a domino throughout the globe.  Hence, 
N-11 and other developing economies seeking to mitigate climate change will need to 
strengthen collaboration to address the implications of higher progress and energy 
consumption domestically. Consequently, powerful nations constantly blaming developing 
countries for the rising carbon footprint can also be minimized.  

Our methodological approach involves examining the interaction between the series. It  is 
based on an innovative model of panel cointegration developed by Pedroni (2004), panel 
cointegration by Kao (1999), fully modified OLS (FMOLS) proposed by Philips and Hansen 
(1990) and dynamic OLS (DOLS) created by Stock and Watson (1993). Extant literature does 
not commonly apply such frameworks. This is a major limitation of these works because 
scholars elude empirical investigations of the relationships between carbon emissions, growth 
and wealth disparities which can lead to inaccurate results on the Environmental Kuznets 
Curve’s (EKC) assumptions and misguide policymakers whose aim is to protect 
environmental health worldwide. The economic rationale behind using these models is that 
the interplay between selected variables fluctuates as a result of changing economic 
parameters, natural calamities, energy and environmental strategies and regulatory and 
technological innovations.  

Our study uses annual data series from 1971 to 2013 on a per capita basis for wealth 
disparities, growth and carbon emissions in the context of N-11 nations selected because of 
their potential for becoming some of the largest economies in the 21st century based on their 
contributions to global GDP, share of energy demand and CO2 emissions to world energy 
                                                           
2 N-11 nations include Bangladesh, Egypt, Indonesia, Iran, Mexico, Nigeria, Pakistan, Philippines, Turkey, 
South Korea and Vietnam.  
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demand and carbon footprint. The N-11 states are increasingly recognized as major 
influencers in the global open economy and environmental policies next to BRICS (Brazil, 
Russia, India, China and South Africa) economies, but dissimilar to the latter in terms of 
economic growth patterns accompanied by a greater degree of trade and financial openness. 
N-11 countries could surpass their rivals and become major market participants despite being 
exposed to a larger number of challenges relative to BRICS nations as a result of their strong 
economic reforms targeted at sustainable economic growth in the long term. For instance, we 
note Nigeria’s efforts to remove corruption, Turkey’s struggle to get access to the European 
Union and Pakistan’s success in improving corporate laws, the tax system and its financial 
system via solid economic and financial schemes.  

N-11 countries are enjoying rapid growth and are participating in global trade and investment 
projects (except for Iran which is a closed economy affected by EU and US imposed 
sanctions). They are faced with rising energy demand triggered by investment and 
industrialization activities that use less energy-efficient technologies to boost economic 
progress; this is a major cause of environmental degradation. To limit their carbon footprint, 
Mexico and Nigeria introduced incentives for businesses to enhance national production via 
more efficient energy technology. In 2007, N-11’s contributions to global GDP stood at 7 
percent with EC at 9 percent of worldwide demand and 9 percent of total GHG emissions 
(Sachs, 2007). The upward trend in economic progress increased EC’s share to 11 percent of 
global consumption which further aggravated environmental degradation (Yildirim et al., 
2014). According to Sachs’ (2007) projections, in 2050 the N-11 nations’ total GDP could be 
two-third that of the Group of Seven (G7) countries, meaning that N-11 nations could have a 
major impact on the political, economic, energy and environmental global landscape. CO2 
emissions measured in kg per capita and income inequality measure as the GINI coefficient 
for the N-11 nations from 1971 to 2013 is presented in Figures 1 and 2 respectively. The 
pattern differs among the nations more in case of income inequalities than in the case of CO2 
emissions.  

The rest of this study is organized as follows: Section 2 reviews major scholarly works in this 
field. Section 3 details the methodology and the data used for our analysis. Section 4 gives 
the results of our study and discusses their significance. Section 5 provides concluding 
remarks, policy implications and indicates future research avenues. 

 

2. Review of Related Studies 

Kuznets’ (1955) landmark study linking the inverted U-shaped interplay between wealth 
disparities and progress3 prompted many researchers to investigate the role of growth in 
income inequalities empirically leading to many cross and individual country studies.  

                                                           
3 The inverted U-shaped hypothesis shows the non-linear relationship between the series indicating that 
economic growth initially increases income inequalities and narrows them after reaching a particular level. 
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Dollar and Kraay (2002) argue that growth is good for the poor as there is evidence of a 
trickled down effect from the production process that not only creates employment 
opportunities and increases agriculture productivity but it also reduces income inequalities by 
improving income distribution to the poorest. However, Kashwan’s (2017) findings 
contradict this. Kashwan is of the view that development does not favor the poor because it 
does not benefit the entire population (haves and have-nots) equally. As a consequence, 
preference for environmental quality declines over time. In contrast, Sachs (2014) postulates 
that rising concerns about the impact of economic growth on environmental quality are 
driven by higher income inequalities. This implies that economies in the globalized world 
may be good at achieving higher progress, but they fail to maintain an equitable distribution 
of income with sustainable environmental quality. Therefore, some scholars (for example, 
Torras and Boyce, 1998; Boyce, 1994, 2008; Magnani, 2000; Ravallion et al., 2000; Newton, 
2009; Drabo, 2011; Cushing et al., 2015; Jorgenson, 2015; Islam, 2015; Laurent, 2016) 
underline that challenges of environmental quality are caused by social issues mainly 
generated by wealth disparities and power inequalities. Given ecological crises (loss of 
environmental quality), which could be triggered by wealth inequalities, the nexus between 
income disparities and environmental quality has become the most pressing problem of our 
time adding to the debatable complexity of environmental and developmental economics 
(Hao et al., 2016 June et al., 2011; Zhang and Zhao, 2014; IPCC, 2014; Berthe and Elie, 
2015; Jorgenson et al., 2016; Wolde-Rufael and Idown, 2017). Hence, it is essential to 
explore major academic achievements on the effects of income inequalities, EC, progress and 
urbanization on CO2 emissions.  

 

2.1. CO2 Emissions and the income inequality nexus 

Using a panel analysis, Torras and Boyce (1998) found that income levels enhanced 
environmental quality in low income nations and deteriorated it in high income states. 
Eriksson and Persson (2003) report that the reduction of income inequality via greater 
democracy is beneficial for environmental quality as it lowers pollution levels. Similarly, 
Drabo (2011) observes that income inequalities were detrimental to environmental quality for 
90 developed and emerging states. Baek and Gweisah (2013) highlight that wealth 
differences and economic growth increase environmental quality, whereas energy 
consumption harms the US economy. Berthe and Elie (2015) argue that individuals’ 
economic behavior is detrimental to environmental quality. Baloch et al., (2017) document 
the positive effects of income inequalities and income per capita on environmental health in 
the context of Pakistan. Kasuga and Takaya (2017) point out the harmful impact of wealth 
disparities on air quality in commercial zones but they do not identify any significant 
consequences of income inequalities in the industrial areas of Japan.  

 

2.2. The interplay between CO2 Emissions and Energy Consumption  



6 
 

Acaravci and Ozturk (2010) observed a long-run positive association among selected 
variables for a panel of 19 European states along with evidence of an inverted U-shaped EKC 
hypothesis. Al Mulali et al., (2012) identified a similar nexus for seven regions. Saboori and 
Sulaiman (2013a) found long-term interaction between CO2 emissions and energy 
consumption in the context of Malaysia. Saboori and Sulaiman (2013b) emphasized a long-
run positive nexus among CO2 emissions and energy consumption for a number of ASEAN 
countries. Shahbaz et al., (2014) confirmed this relationship in the case of United Arab 
Emirates and indicated that the deterioration in environmental quality was driven by energy 
consumption. Begum et al., (2015) documented a range of positive effects of EC on CO2 
emissions within the Malaysian economy. Mercan and Karakaya (2015) also detailed a long-
term positive impact of EC on CO2 emissions in selected OECD countries. Bilgili et al.’s 
(2016) study also has similar findings.  

 

2.3. The nexus between CO2 Emissions and Economic Growth  

Nnaji et al., (2013) report a positive impact of fossil fuel consumption and development on 
CO2 emissions in Nigeria. Wang (2013) notes the reducing effect of differentiated output 
growth on CO2 emissions in the US and China. Salahuddin and Gow (2014) claim that 
progress has no long-term implications on environmental degradation in the Gulf 
Cooperation Council countries. Kivyiro and Arminen (2014) emphasize the long-run 
economic growth-CO2 emissions nexus for six sub-Saharan African states. Lau et al., (2014) 
found that CO2 emissions stimulated economic growth in Malaysia. Allali et al., (2015) 
reveal a positive impact of development on CO2 emissions in Algeria. Similarly, Abid (2015) 
observed both a short-run and a long-run interplay between growth and the carbon footprint 
in Tunisia, in addition to unidirectional causality running from progress to CO2 emissions. In 
a similar vein, Begum et al., (2015) underline that in Malaysia, CO2 emissions are negatively 
linked with economic growth. Esso and Keho (2016) also identified a positive long-term 
relationship among CO2 emissions and progress and a bi-directional causal link between 
variables within the Nigerian economy. 

 

3. Model Building and Data Description  

3.1. Model 

Given our research objective and the context of theoretical and empirical literature discussed 
earlier we specified the basic CO2 emissions function as noted below to understand the nature 
of interaction and the effects of the key variables on the CO2 function (CO2 emissions). 
Because of the limited number of annual time series available (the use of a larger number of 
variables in the same model would result in over parameterization, that is, consumption of 
freedom on the one hand and the inclusion of related variables that would trigger 
multicollinearity issues on the other) we estimate different versions of our basic models to 
avoid estimation problems:  
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2 ( , , )CO f ENERGY GINI GDP=        (1) 

The functional form of Eqn. 1 can be represented as: 

2 0 1 2 3t t t t tLNCO ENERGY LNGINI LNGDPα β β β µ= + + + +         (2) 

where, LNCO2 emissions represent CO2 emissions per capita -- proxy of environmental 
quality; LNENERGY denotes EC per capita; LNGINI is the net GINI coefficient -- proxy of 
income inequality; LNGINI2 is the GINI coefficient squared, used to understand whether it 
has an inverted U-shape or not; LNGDP is GDP per capita -- proxy of economic development 
and tµ  is the error term; all series are in natural logarithmic form to confirm their 

smoothening. 0α  is the fixed effect and 1β , 2β  and 3β  are slope coefficients. 

According to the EKC hypothesis, the long-term interplay between EC, wealth disparities and 
economic growth on CO2 emissions can be captured by Equation 3. The EKC hypothesis 
describes an inverted U-shaped link among environmental degradation and economic growth. 
We are interested in identifying an inverted U-shaped connection between environmental 
degradation and income inequalities which can be obtained mathematically by embedding the 
squared value of the GINI coefficient in the array of regressors:  

2
2 0 1 2 3 4t t t t t tLNCO ENERGY LNGINI LNGINI LNGDPα β β β β µ= + + + + +      (3) 

 

3.2. Methodological approach  

We seek to explore the causal interactions among carbon CO2 emissions, EC, income 
inequalities and economic development via modern econometric techniques. This analysis 
involves a three-step scientific approach. First, we determine the integration order of the 
series based on panel unit root tests. Second, we apply panel cointegration tests to verify the 
existence of any long-term relationships. Finally, we examine the size and direction of any 
potential causal interactions among our series. 

 

3.2.1. Panel unit root tests 

We apply standard time series unit root tests on the determinants of CO2 emissions, total 
energy consumption, income inequalities and GDP per capita. Narayan and Smyth (2009) 
argue that the Augmented Dickey-Fuller (ADF) test has a low power to reject the null 
hypothesis of stationarity, particularly for short periods. Hence, recent academic works claim 
that panel stationarity tests are more powerful compared to individual time series ones (for 
example, Al-Iriani, 2006). We use the panel unit root tests suggested by Levin et al., (2002), 
IPS, Im et al., (2003), Hadri (2000) and Beitung (2000). These are generally more robust than 
the first generation of panel tests (Narayan and Smyth, 2009). 

Moreover, the first generation panel unit root tests are applied to panel data which neglects 
both structural breaks and cross-sectional dependence. These are commonly used in the 
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carbon emission-energy consumption literature. These are similar to the ADF-based IPS test 
which assumes a heterogeneous unit root (Im et al., 2003). In contrast, Breitung (2000) and 
Levin et al., (2002) point out a homogenous unit autoregressive root. LLC and IPS test the 
null hypothesis of time series integration. Hadri (2000) suggests a residual-based Lagrange 
Multiplier test for the null of level or trend stationarity that includes heterogeneous 
disturbance terms. 

 

3.2.2. Panel Cointegration tests 

3.2.2.1. Pedroni Residual Panel Cointegration test (2004) 

Pedroni (2004) detailed seven statistics for panel data cointegration tests in a heterogeneous 
sample. Out of these seven, four capture the effect of within dimensions whereas three 
calibrate the between dimensions. The former statistics are referred to as panel cointegration 
statistics while the latter are known as group mean panel cointegration statistics. Pedroni’s 
statistics are obtained via the extension of the two-step residual-based strategy developed by 
Engle and Granger (1987). We apply the parametric ADF statistics and non-parametric PP 
statistics for panel as well as for group dimensions. Both these tests are focused on a null 
hypothesis (no cointegration) and an alternative hypothesis of cointegration ( 0iρ ∠  for all i). 
The first step in estimating the seven test statistics is to model the following panel regression 
and store the residuals: 

, 1, , 2, , 3,1 2 3 , m, , ,i t i i i i t i i t i i t i i t t imy x xt x xα ρ β β β β ε= + + + + + +          (4) 

t=1, 2, …, T; i=1, 2, …, N; and m = 1, 2, …, M 

where, T refers to the time observation, N refers to cross-section observation and M explains 
the number of regression variables. Pedroni noted that partial slope coefficients 
 𝜷𝜷𝟏𝟏𝟏𝟏,  𝜷𝜷𝟐𝟐𝟏𝟏 , . . . ,  𝜷𝜷𝒎𝒎𝟏𝟏 are varied across the individual members of the panel.  𝜶𝜶𝟏𝟏  is the member 
specific intercept or the fixed effect parameters. Deterministic time trends, specific to the 
individual numbers of the panel, are captured by the parameter 𝝆𝝆𝟏𝟏  .   

We obtain the residual îtε  by running the cointegration regression. The estimated residual 
requires the following structure. For non-parametric statistics, we estimate: 

, , 1 ,ˆ ˆ ˆi t i i t i tε ψ ε κ−= +     

For parametric statistics, we estimate:  

*
1 , , ,

1

ˆ ˆ ˆ ˆ
K

it i it i k i t k i t
k

ε ψ ε ψ ε µ− −
=

= + ∆ +∑  

Second, we take the first difference of the original data series of each country and compute 
the residual of the differenced regression: 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝜃𝜃1𝑖𝑖∆𝑥𝑥1𝑖𝑖,𝑖𝑖 + 𝜃𝜃2𝑖𝑖∆𝑥𝑥2𝑖𝑖,𝑖𝑖 +  … + 𝜃𝜃𝑚𝑚𝑖𝑖∆𝑥𝑥𝑚𝑚𝑖𝑖,𝑖𝑖  + 𝜔𝜔𝑖𝑖𝑖𝑖    (5) 
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Third, we estimate the long-run variance (𝐾𝐾�11,𝑖𝑖
−2 ) from the residual (𝜔𝜔𝑖𝑖𝑖𝑖) of the differenced 

regression. Fourth, we estimate the appropriate autoregressive model based on the residual 
(𝜀𝜀�̂�𝑖𝑖𝑖) of the original cointegration equation. The seven statistics are obtained by working with 
the mean and variance adjustment terms detailed by Pedroni (2004) as: 

The panel v-statistics is: 

𝑍𝑍𝑣𝑣 ≡ 𝑇𝑇2𝑁𝑁
3
2(∑ ∑ 𝐾𝐾�11,𝑖𝑖

−2𝑁𝑁
𝑖𝑖=1 𝜀𝜀�̂�𝑖𝑖𝑖−12𝑁𝑁

𝑖𝑖=1 )−1                         (6) 

The panel 𝜌𝜌 -statistics is: 

𝑍𝑍𝜌𝜌 ≡ 𝑇𝑇√𝑁𝑁�∑ ∑ 𝐾𝐾�11,𝑖𝑖
−2𝑇𝑇

𝑖𝑖=1 𝜀𝜀�̂�𝑖𝑖𝑖−12𝑁𝑁
𝑖𝑖=1 �

−1 ∑ ∑ 𝐾𝐾�11,𝑖𝑖
−2 (𝜀𝜀�̂�𝑖𝑖𝑖−1∆𝜀𝜀�̂�𝑖𝑖𝑖 − 𝛾𝛾�𝑖𝑖)𝑇𝑇

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1          (7) 

The panel t-statistics (non-parametric) is: 

𝑍𝑍𝑖𝑖 ≡ �𝜎𝜎�2 ∑ ∑ 𝐾𝐾�11,𝑖𝑖
−2𝑇𝑇

𝑖𝑖=1 𝜀𝜀�̂�𝑖𝑖𝑖−12𝑁𝑁
𝑖𝑖=1 �

−12 ∑ ∑ 𝐾𝐾�11,𝑖𝑖
−2 (𝜀𝜀�̂�𝑖𝑖𝑖−1∆𝜀𝜀�̂�𝑖𝑖𝑖 − 𝛾𝛾�𝑖𝑖)𝑇𝑇

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1         (8) 

The panel t-statistics (parametric) is: 

𝑍𝑍𝑖𝑖∗ ≡ ��̃�𝑠𝑁𝑁,𝑇𝑇
∗2 ∑ ∑ 𝐾𝐾�11,𝑖𝑖

−2𝑇𝑇
𝑖𝑖=1 𝜀𝜀�̂�𝑖𝑖𝑖−12𝑁𝑁

𝑖𝑖=1 �
−12 ∑ ∑ 𝐾𝐾�11,𝑖𝑖

−2 𝜀𝜀�̂�𝑖𝑖𝑖−1∗ ∆𝜀𝜀�̂�𝑖𝑖𝑖∗𝑇𝑇
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1                 (9) 

The group 𝜌𝜌-statistics is: 

𝑍𝑍�𝜌𝜌 ≡ 𝑇𝑇𝑁𝑁−12 ∑ (∑ 𝜀𝜀�̂�𝑖𝑖𝑖−12𝑇𝑇
𝑖𝑖=1 )−1𝑁𝑁

𝑖𝑖=1  ∑ (𝜀𝜀�̂�𝑖𝑖𝑖−1∆𝜀𝜀�̂�𝑖𝑖𝑖 − 𝛾𝛾�𝑖𝑖)𝑇𝑇
𝑖𝑖=1                            (10) 

The group t-statistics (non-parametric) is: 

𝑍𝑍�𝑖𝑖 ≡ 𝑁𝑁−12 ∑ (𝜎𝜎�𝑖𝑖2 ∑ 𝜀𝜀�̂�𝑖𝑖𝑖−12𝑇𝑇
𝑖𝑖=1 )−

1
2𝑁𝑁

𝑖𝑖=1 ∑ (𝜀𝜀�̂�𝑖𝑖𝑖−1∆𝜀𝜀�̂�𝑖𝑖𝑖 − 𝛾𝛾�𝑖𝑖)𝑇𝑇
𝑖𝑖=1                              (11) 

The group t-statistics (parametric) is: 

𝑍𝑍�𝑖𝑖∗ ≡ 𝑁𝑁−12 ∑ (∑ �̃�𝑠∗2𝜀𝜀�̂�𝑖𝑖𝑖−12∗𝑇𝑇
𝑖𝑖=1 )−

1
2𝑁𝑁

𝑖𝑖=1 ∑ 𝜀𝜀�̂�𝑖𝑖𝑖−1∆𝜀𝜀�̂�𝑖𝑖𝑖∗𝑁𝑁
𝑖𝑖=1                   (12) 

where, 𝛾𝛾�𝑖𝑖 = 1
2

(𝜎𝜎�𝑖𝑖2 − �̂�𝑠𝑖𝑖2)  and  �̃�𝑠∗2 = 1
𝑁𝑁
∑ �̂�𝑠∗2𝑁𝑁
𝑖𝑖=1  

The null hypothesis of no cointegration is: 

H0: 𝜌𝜌𝑖𝑖 = 1 for all i=1, 2, …, N 

The alternative hypothesis can be written as: 

H1:  𝜌𝜌𝑖𝑖 < 1 for all i=1, 2, …, N 

where a common value for  𝜌𝜌𝑖𝑖 = 𝜌𝜌 is not required. The alternative hypothesis for within 
dimension-based statistics is represented as: 

H0:  𝜌𝜌𝑖𝑖 = 𝜌𝜌 < 1 for all i=1, 2, …, N 

assuming a common value for  𝜌𝜌𝑖𝑖 = 𝜌𝜌 . Under this hypothesis, all statistics diverge to 
negative infinity. Hence, we need the left tail of the standard normal distribution to reject the 
null hypothesis. 
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3.2.2.2. Kao’s Residual Panel Cointegration test (1999) 

Consider the model:  

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 +  𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑒𝑒𝑖𝑖𝑖𝑖 ,               (13) 

𝑖𝑖 = 1, 2, … . ,𝑁𝑁, 𝑡𝑡 = 1, 2, … ,𝑇𝑇 

in which 𝑒𝑒𝑖𝑖𝑖𝑖 , is I (1), the slope coefficient 𝛽𝛽 is cross-section invariant (the cointegrating 
vector is homogeneous) and the intercept 𝛼𝛼𝑖𝑖  is heterogeneous.  

𝑦𝑦𝑖𝑖𝑖𝑖 =  ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖=1   𝑎𝑎𝑎𝑎𝑎𝑎   𝑥𝑥𝑖𝑖𝑖𝑖 =  ∑ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1    are restricted to be most I(1) with 
𝑢𝑢𝑖𝑖𝑖𝑖 ~ (0,𝜎𝜎2𝑢𝑢 ) 𝑖𝑖. 𝑖𝑖.𝑎𝑎, and  𝜖𝜖𝑖𝑖𝑖𝑖 ~ (0,𝜎𝜎2𝑢𝑢 ) 𝑖𝑖. 𝑖𝑖.𝑎𝑎, the error process 𝑤𝑤𝑖𝑖𝑖𝑖 =  (𝑢𝑢𝑖𝑖𝑖𝑖, 𝜖𝜖𝑖𝑖𝑖𝑖)! is 
independent across i  and it seems to fulfil the invariant principle. 

Chihwa Kao suggested the DF tests by using AR(1) which denotes LSDV (Least Square 
Dummy Variables) residuals�̂�𝑒𝑖𝑖𝑖𝑖 =   𝜌𝜌�̂�𝑒𝑖𝑖,𝑖𝑖−1 +  𝑣𝑣𝑖𝑖𝑖𝑖, where AR(1) parameter 𝜌𝜌 is homogeneous. 
This shows that 𝑒𝑒𝑖𝑖𝑖𝑖 ,is I(1), is a unit root. Based on the OLS residuals 𝜌𝜌 is:   

𝜌𝜌 � =  ∑ ∑ �̂�𝑒𝑖𝑖𝑖𝑖 �̂�𝑒𝑖𝑖,𝑖𝑖−1𝑇𝑇
𝑖𝑖−2

𝑁𝑁
𝑖𝑖=1
∑ ∑ �̂�𝑒2𝑖𝑖,𝑖𝑖−1𝑇𝑇

𝑖𝑖−2
𝑁𝑁
𝑖𝑖=1

                       (14) 

𝑦𝑦𝑖𝑖𝑖𝑖∗ =   𝑦𝑦𝑖𝑖𝑖𝑖 −  𝜎𝜎𝑜𝑜𝑢𝑢𝑜𝑜 𝜎𝜎𝑜𝑜𝑜𝑜−2𝑥𝑥𝑖𝑖𝑖𝑖            (15) 

𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝜎𝜎𝑜𝑜𝑜𝑜−1𝑥𝑥𝑖𝑖𝑖𝑖                       (16) 

in which 𝜎𝜎𝑜𝑜𝑜𝑜 is the long-run variance of 𝜖𝜖𝑖𝑖𝑖𝑖 conditional of 𝑢𝑢𝑖𝑖𝑖𝑖 and 𝜎𝜎𝑜𝑜𝑢𝑢𝑜𝑜  is the long-run 
covariance of 𝜖𝜖𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑖𝑖𝑖𝑖  : 

𝑠𝑠𝑒𝑒2 =  
∑ ∑ (𝑒𝑒 ,�

∗
𝑖𝑖𝑖𝑖 𝜌𝜌�𝑒𝑒

∗
𝑖𝑖,𝑖𝑖−1)2𝑇𝑇

𝑖𝑖−2
𝑁𝑁
𝑖𝑖=1

𝑁𝑁𝑇𝑇
                    (17) 

where, 𝑒𝑒 ,�
∗
𝑖𝑖𝑖𝑖 =   𝑦𝑦𝑖𝑖𝑖𝑖∗ − 𝛼𝛼 ,�

∗
𝑖𝑖𝑖𝑖 −  𝑥𝑥𝑖𝑖𝑖𝑖∗𝛽𝛽 ,�

∗
    𝛼𝛼 ,�

∗
𝑖𝑖 = 𝛼𝛼�𝑖𝑖,   𝛽𝛽 �

∗
=  𝜎𝜎𝑜𝑜𝑜𝑜 𝛽𝛽,�  − 𝜎𝜎𝑜𝑜𝑜𝑜−1𝜎𝜎𝑜𝑜𝑢𝑢𝑜𝑜 .   

Both 𝛼𝛼�𝑖𝑖,   𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽,� are the LSDV estimators𝛼𝛼𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽: 

𝐷𝐷𝐷𝐷𝜌𝜌∗ =  
√𝑁𝑁𝑇𝑇(𝜌𝜌�−1)+

√𝑁𝑁𝑒𝑒�𝑣𝑣,
2

 
𝑒𝑒�𝑜𝑜𝑣𝑣,

2

�3+
36𝑒𝑒�𝑣𝑣,

4

5𝑒𝑒�𝑜𝑜𝑣𝑣,
4

                      (18) 

𝐷𝐷𝐷𝐷𝑖𝑖∗ =  

(𝜌𝜌�−1)�∑ ∑ (𝑒𝑒 ,�
∗
𝑖𝑖,𝑖𝑖−1 )

2𝑇𝑇
𝑖𝑖−2

𝑁𝑁
𝑖𝑖=1

𝑠𝑠𝑒𝑒
+ √

6𝑁𝑁𝑒𝑒�𝑣𝑣,
2

2𝑒𝑒�𝑜𝑜𝑣𝑣,
2

�𝑒𝑒
�𝑜𝑜𝑣𝑣,

4

2𝑒𝑒�𝑣𝑣,
2+ 3𝑒𝑒�𝑣𝑣,

2

10𝑒𝑒�𝑜𝑜𝑣𝑣,
2

                 (19) 

�̂�𝑒𝑜𝑜𝑣𝑣,
2 is a constant coefficient of the long-run conditional variance,𝜎𝜎2𝑜𝑜𝑣𝑣 =  𝜎𝜎2𝑜𝑜𝑢𝑢 −

𝜎𝜎2𝑜𝑜𝑢𝑢𝑜𝑜 𝜎𝜎−2𝑜𝑜𝑜𝑜 and �̂�𝑒𝑣𝑣,
2 is a constant estimator of the contemporaneous variance 𝜎𝜎2𝑣𝑣 =  𝜎𝜎2𝑢𝑢 −

𝜎𝜎2𝑢𝑢𝑜𝑜 𝜎𝜎−2𝑜𝑜 . The term 𝜎𝜎2𝑜𝑜𝑢𝑢 reflects the long-run variance of  𝑢𝑢𝑖𝑖𝑖𝑖 , whereas 𝜎𝜎𝑢𝑢𝑜𝑜 is the 
covariance between 𝑢𝑢𝑖𝑖𝑖𝑖 and𝜖𝜖𝑖𝑖𝑖𝑖. The estimator of contemporaneous variance can be calculated 
as: 
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Ω �   =  �
𝜎𝜎�𝑢𝑢,

2 𝜎𝜎�𝑢𝑢𝑜𝑜,
2

𝜎𝜎�𝑢𝑢𝑜𝑜,
2 𝜎𝜎�𝑜𝑜,

2 � = ∑ ∑ 𝑤𝑤�𝑖𝑖𝑖𝑖 𝑤𝑤� `𝑖𝑖,𝑖𝑖−1𝑇𝑇
𝑖𝑖−2

𝑁𝑁
𝑖𝑖=1

𝑁𝑁𝑇𝑇
                 (20) 

To estimate the long-run variance and covariance we need to choose an appropriate 
bandwidth and a kernel estimator. The DF statistics are asymptotically standard normally 
distributed as T →  ∞  𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁 → ∞. The ADF statistics follows AR(1): 

�̂�𝑒𝑖𝑖𝑖𝑖 =   𝜌𝜌�̂�𝑒𝑖𝑖,𝑖𝑖−1 + 𝛾𝛾1∆�̂�𝑒𝑖𝑖,𝑖𝑖−1 + ⋯+ 𝛾𝛾𝜌𝜌∆�̂�𝑒𝑖𝑖,𝑖𝑖−𝜌𝜌 +  𝑣𝑣𝑖𝑖𝑖𝑖𝜌𝜌           (21) 

which notices that �̂�𝑒𝑖𝑖𝑖𝑖 depends on the lagged change of the LSDV residuals. ADF panel t 
statistics test as: 

𝐴𝐴𝐷𝐷𝐷𝐷 =  

∑ (𝑒𝑒𝑖𝑖
`𝑄𝑄𝑖𝑖𝑣𝑣𝑖𝑖)

𝑁𝑁
𝑖𝑖=1

𝑠𝑠𝑣𝑣�[∑ (𝑒𝑒𝑖𝑖`𝑄𝑄𝑖𝑖𝑒𝑒𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ]

+ √6𝑁𝑁𝜎𝜎�𝑣𝑣2𝜎𝜎�𝑜𝑜𝑣𝑣

�𝜎𝜎�𝑜𝑜𝑣𝑣,
2

2𝜎𝜎�𝑣𝑣,
2+ 

3𝜎𝜎�𝑣𝑣,
2

10𝜎𝜎�𝑜𝑜𝑣𝑣,
2

             (22) 

with  𝑄𝑄𝑖𝑖 = 𝐼𝐼 −  𝑋𝑋𝑖𝑖𝜌𝜌�𝑋𝑋𝑖𝑖𝜌𝜌!𝑋𝑋𝑖𝑖𝜌𝜌�
−1
𝑋𝑋𝑖𝑖𝜌𝜌! 

Here, 𝑋𝑋𝑖𝑖𝜌𝜌 denotes the matrix of the observations on the 𝜌𝜌 progressors(∆�̂�𝑒𝑖𝑖,𝑖𝑖−1 + ⋯+ ∆�̂�𝑒𝑖𝑖,𝑖𝑖−𝜌𝜌), 

𝑒𝑒𝑖𝑖 ,is the observations vector on �̂�𝑒𝑖𝑖,𝑖𝑖−1 and 𝑠𝑠𝑣𝑣2 =  
∑ ∑ 𝑣𝑣�2𝑖𝑖,𝑖𝑖𝜌𝜌𝑇𝑇

𝑖𝑖−2
𝑁𝑁
𝑖𝑖=1

𝑁𝑁𝑇𝑇
 , 𝑣𝑣�2𝑖𝑖,𝑖𝑖𝜌𝜌 is the estimate of 𝑣𝑣𝑖𝑖𝑖𝑖𝜌𝜌 . 

𝐼𝐼𝐼𝐼 𝑥𝑥𝑖𝑖𝑖𝑖  regressors are not cointegrated, then the tests can be implemented as a multiple 
regressor case. To find the finite simple properties of the test, Kao used the Monte Carlo test 
statistics to the simulation study of:  

𝐷𝐷𝐷𝐷𝜌𝜌 =  √𝑁𝑁𝑇𝑇(𝜌𝜌�−1)+3√𝑁𝑁
�51 5⁄

                   (23) 

𝐷𝐷𝐷𝐷𝑖𝑖 =  �5𝑖𝑖𝜌𝜌
4

 + �15𝑁𝑁
8

                     (24) 

in which, 𝑡𝑡𝜌𝜌 =  
(𝜌𝜌�−1)�∑ ∑ (𝑒𝑒 ,�

∗
𝑖𝑖,𝑖𝑖−1 )

2𝑇𝑇
𝑖𝑖−2

𝑁𝑁
𝑖𝑖=1

𝑖𝑖𝑒𝑒
, is the t- statistics 𝜌𝜌 = 1. 

  

3.3. Data Description  

We work with annual data covering 1971-2013 for N-11 countries (Bangladesh, Egypt, 
Indonesia, Iran, Mexico, Nigeria, Pakistan, the Philippines, Turkey, South Korea and 
Vietnam). Our study includes CO2 emissions (CO2) in kg per capita, EC per capita in kg of 
oil equivalent and per capita real GDP (GDP) in constant 2010 US $, used as the proxy of 
economic growth borrowed from the World Development Indicators (WDI, 2014). The GINI 
coefficient which measures income distribution is collected from SWIID (2015).  

Table 1 gives the mean values and standard deviations of the data series for N-11 countries. 
The descriptive statistics reveal that the data series is fairly dispersed, but the standard 
deviations are homogeneous. The table shows that South Korea had the highest means of CO2 
emissions (6677.444) and energy consumption (2670.633), Turkey had the highest GDP 
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mean (6953.612) and Mexico registered the highest mean of the GINI coefficient (47.381). 
The lowest means of CO2 emissions (184.668) and energy consumption (131.617) were in 
Bangladesh and the lowest GINI coefficient (31.088) and GDP (757.444) in Pakistan. 
Moreover, South Korea had the highest volatility in the case of CO2 emissions (3273.488), 
energy use (1617.452) and GDP per capita (7000.265). The highest volatility of the GINI 
coefficient was in Nigeria (3.788). 

Table 1: Descriptive statistics and pairwise correlation of the variables used (before taking logarithm) 
1971-2013 

 
Country 

 

CO2 Emission 
(kg per capita) 

Energy use 
(kg of oil 
equivalent per 
capita) 

GINI 
Coefficient  
 

GDP Per 
Capita 
(constant 
2010 US $)  

Period 

Bangladesh Mean 184.6679 131.6169 35.6024 478.7004 1971-2013 
 Std. dev. 111.5216 36.0876 3.6501 153.0717  
Egypt Mean 1571.8980 565.2152 34.7121 1678.9820 1971-2013 
 Std. dev. 591.6827 215.2245 3.1993 567.0324  
Indonesia Mean 544.1110 570.7360 34.4496 1850.4450 1971-2013 
 Std. dev. 63.2482 197.5233 2.4222 811.6094  
Iran Mean 1003.7160 1601.7570 42.1453 5125.8290 1971-2013 
 Std. dev. 265.7120 730.2027 2.3876 1356.7030  
Mexico Mean 3612.8430 1351.3720 47.3807 7611.2000 1971-2013 
 Std. dev. 475.7381 202.9817 2.6974 1091.1430  
Nigeria Mean 653.8632 690.1914 43.9710 1660.8320 1971-2013 
 Std. dev. 182.6912 52.4181 3.7889 390.0648  
Pakistan Mean 637.2212 402.9434 31.0879 757.4445 1971-2013 
 Std. dev. 218.6540 76.2916 1.3293 198.7942  
Philippines Mean 793.1211 455.8078 42.8155 1651.0720 1971-2013 
 Std. dev. 119.4988 25.1957 2.1218 265.2116  
Turkey Mean 2761.7970 1009.3280 43.3288 6953.6120 1971-2013 
 Std. dev. 893.7635 284.4049 3.3541 2028.9190  
South Korea Mean 6677.4440 2670.6330 31.4508 11037.9000 1971-2013 
 Std. dev. 3273.4880 1617.4520 1.3821 7000.2650  
Vietnam Mean 819.7588 408.2190 36.1794 807.2760 1984-2013 
 Std. dev. 523.8860 145.0561 2.3461 361.5859  
Aggregate Mean 2570.0630 909.9553 38.5304 3680.1670  
 Std. dev. 2510.8410 898.2884 6.0420 4091.1380  
Pairwise correlation matrix      

CO2  emissions 1.0000     
Energy consumption 0.9968    1.0000    

GINI Coefficient  0.9529    0.9472    1.0000   
GDP  0.9832    0.9855    0.9378    1.00000  

Note: CO2 emissions are carbon emissions per capita in kg.  EC is the energy use per capita in kg of oil 
equivalent. GINI coefficient is the level of income inequality. GDP per capita is the gross domestic per capita in 
constant 2010 US $ terms. 

 

4. Results and Discussion 
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4.1 Cross-sectional dependence test 

This study applies the cross-sectional dependence (CD) test developed by Pesaran (2004) to 
verify the cross-section dependence across the 11 countries under investigation. Table 2 gives 
the results of the test applied to CO2 emissions, energy consumption, income inequality and 
GDP per capita variables. We reject the null hypothesis of cross-sectional independence for 
all the variables, except for income inequality.  

Table 2: Cross-sectional dependence test  
 

 

 

 

 

 

 

Note: All variables are taken in their natural logarithm form to give smoothness to the variables.   

 

4.2. Unit root tests’ results 

We use the unit root tests developed by Levin, Lin and Chu (LLC), Im, Pesaran and Shin 
(IPS), Hadri (2000), and Breitung (2000) to verify the existence of unit roots. Levin et al., 
(2002) proposed the panel-based ADF test and assumed homogeneity in the dynamics of the 
autoregressive coefficients for all panel units. Under the LLC (2002) unit root test, the null 
hypothesis indicates the presence of a unit root; the alternative hypothesis claims there is no 
unit root. The IPS (2003) test which solves the serial correlation problem by accepting 
heterogeneity between units in a dynamic panel framework shows that under the null 
hypothesis of non-stationarity the statistic follows the standard normal distribution 
asymptotically.  

Variable CD-test p-value Corr abs(corr) 

lnco2 25.99 0.000 0.558 0.669 

Lnenergy 36.88 0.000 0.782 0.791 

Lngini 0.34 0.736 0.002 0.455 

(lngini)2 0.37      0.714     0.003     0.456 

Lngdp 30.29       0.000     0.651     0.701 



14 
 

Table 3. Panel unit root tests  

Variable in level  lnco2 Lnenergy Lngini (lngini)2 lngdp  
 Statistic  P-value Statistic  P-value Statistic  P-value Statistic  P-value Statistic  P-value 

Levin, Lin & Chu t* 0.70918  0.7609 0.59461 0.7239 -0.13778 0.4452 -0.22137 0.4124 -1.27480 0.1012 
Im, Pesaran and Shin W-stat -0.17824 0.4293 0.13655 0.5543 0.67573 0.7504 0.63161 0.7362 2.85995 0.9979 
Hadri Z-stat 12.60050 0.0000 13.9522 0.0000 7.75064 0.0000 7.69224 0.0000 13.02360 0.0000 
Breitung t-stat -0.13619 0.4458 3.01039 0.9987 0.70121 0.7584 0.78079 0.7825   1.88511 0.9703 
Variable  in first difference           
Levin, Lin & Chu t* -8.44605  0.0000 -8.56690 0.0000 -3.15038 0.0008 -3.22668 0.0006 -5.68608 0.0000 
Im, Pesaran and Shin W-stat -11.0753 0.0000 -9.28139 0.0000 -3.93814 0.0000 -3.94892 0.0000 -8.89460 0.0000 
Hadri Z-stat -0.23116 0.5914 3.61663 0.0001 1.30529 0.0959 1.21132 0.1129 1.20651 0.1138 
Breitung t-stat -4.95811 0.0000 -4.79859 0.0000 -3.56289 0.0002 -4.50790 0.0000 -6.24552 0.0000 
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4.3. Panel cointegration results 

After applying panel unit root tests, we proceed to panel cointegration tests. Cointegration 
can be described as a systematic long-term interplay among two or more economic variables 
(Yoo, 2006). Based on the Pedroni test findings, Table 4 gives the cointegration between 
selected variables at the 5 percent level of significance for both the frameworks. Therefore, 
we have long-run interactions among series. The Kao (1999) residual cointegration results 
also support cointegration at the 5 percent level of significance. Thus, there is strong evidence 
of a long-term relationship between the series. This is consistent with Lee (2005) and 
Sadorsky (2009). We used the Wasteland test cointegration (2007) to establish the long-run 
relationship among the series. It also confirms cointegration among selected variables.  

Table 4: Panel cointegration test results 

.  

4.4. Long-run Elasticity 

We first present the outcomes of the empirical interplay between EC, economic growth, 
income inequalities and CO2 emissions. Pedroni (2004) recommended a superior test relative 
to single equation methods that can be used to explore the cointegration vector. This assumes 
that the null hypothesis is in a natural form. We seek to identify a strong interaction between 
total EC, economic development, income inequalities and CO2 emissions for all panel 
countries. Equation (7) points out the regression between these four factors. The dependent 
variables include carbon emissions, a function of total energy consumption, GDP per capita 
and income inequalities.  

Table 5: Panel long-run results 

 Series: lnco2, lnenergy, lngini 
lngini2, lngdp 

Statistics  P – value 

Padroni Cointegration test Panel v  weighted statistic -0.577556  0.7182 
Panel σ  weighted statistic -1.887474  0.0295 
Panel ρρ  weighted statistic -4.260884  0.0000 
Panel adf  weighted statistic -2.234407  0.0127 
   
group σ statistic -1.682348  0.0463 
group ρρ statistic -5.530865  0.0000 
group adf statistic -2.483712  0.0065 

Westeland cointegration test Gt -2.755   0.006    
 Ga     -14.062   0.026    
 Pt     -8.596   0.005    
 Pa -11.521   0.007    
KAO Cointegration test ADF test -2.768727  0.0028 

CO2  EMISSION : Dependent variable  
 FMOLS 

Model1               Model2 
 DOLS 

Model1       Model2 
 Random effect 

Model1    Model2  
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Note: Optimum lag obtained from SIC criteria; *and ** indicate rejection of the null hypothesis at the 1% and 
5% levels of significance respectively. 

Table 5 presents the findings of the FMOLS, DOLS and Random effect estimation methods 
which highlight whether EC, wealth disparities and level of income per capita stimulate CO2 
emissions in the N-11 countries. The Hausman test confirms the random effects model as a 
preferred model over the fixed effects model which helps avoid the cross-sectional effects 
and also allows us to cross-examine our long-run outcomes returned by FMOLS and DOLS. 
Both FMOLS and DOLS tests show consistent results that demonstrate a positive interplay 
running from EC, income inequalities and level of income to CO2 emissions at the 1 percent 
level of significance.  

The long-run elasticities of CO2 emissions with respect to total energy consumption are 
estimated at 0.589, 0.626 and 0.584 in Model 1 (without EKC) and 0.594, 0.586 and 0.57 in 
Model 2 (with EKC).  This means that a 1 percent increase in energy consumption leads to a 
0.58 to 0.59 percent rise in CO2 emissions. These findings indicate a monotonic relationship 
between CO2 emissions and energy consumption for all N-11 countries. There is no doubt 
that CO2 emissions are driven by unsustainable energy consumption patterns. 

Our results confirm the presence of an inverted U-shaped relationship between income 
inequalities and carbon emissions for N-11 countries. Initially, CO2 emissions increase; they 
start declining after a threshold level of income inequality. We identified an environmental 
EKC interplay among income inequalities and CO2 emissions. The threshold level of wealth 
disparity for all N-11 nations varied from 41 to 45. If a country has a level of inequality 
below 40, reducing the gap will trigger a decrease in carbon emissions. If inequality is higher 
than 45, reducing inequality will have no beneficiary effects on environmental quality.    

Regarding the long run elasticity of CO2 emissions with respect to wealth disparity, we found 
inelasticity coefficients in Model 1 (without EKC), but elasticity in Model 2 (with EKC) 
when including the GINI coefficient squared. The coefficient of income inequality is 0.862, 
0.437 (insignificant) and 0.78 in Model 1. A 1 percent increase in income inequality drives a 
0.78 to 0.86 percent growth in carbon emissions. Our results illustrate that rising income 
inequalities force poor people to use low cost fuels which release more carbon emissions. By 
contrast, falling income inequalities improve environmental quality. The coefficients for 
wealth disparity and income inequality square in Model 2 are 21.267, 16.94 and 20.00, and -
2.798, -2.276 and -2.636 respectively. Further, the estimated threshold levels are 44.66, 41.27 
and 44.41. Our study found an inverted ‘U’ shape relation between the level of income 

 Without 
EKC 

With EKC Without 
EKC 

With EKC Without 
EKC 

With EKC 

Lnenergy 0.589455* 0.592152* 0.626768* 0.586308* 0.584288*    0.570516*    

Lngini 0.862505* 21.26711* 0.437516 16.94047** 0.780637* 20.00548* 
lngini2  -2.798858*  -2.27681**  -2.63679*   
Lndgdp 0.456898* 0.449064* 0.401824* 0.381898* 0.453617* 0.453848*    
       
Adj R2 0.9737 0.9754 0.9835 0.9859 0.7227 0.7266 
Threshold level  44.66  41.27  44.41 
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inequality and CO2 emissions. This result shows that wealth disparities decreased CO2 
emissions when the level of income inequalities was more than 45 percent and increased CO2 
emissions when income inequality was less than 40 percent. In countries with more equal 
distribution of income, a rise in inequality has a bad effect on the environment. Similarly, 
countries with more unequal income distribution policies towards lowering inequalities will 
causes environment degradation. So in both the cases, level of wealth distribution plays a 
critical role in environment quality. This indicates that the rich people are more responsible 
for the degradation in environmental quality as compared to poor people because when the 
rich become richer, they try to invest their wealth in leading industries to get higher returns 
without caring about their impact on environmental quality. But in the case of poor people 
where environment forms a part of their livelihood strategy they try and protect their 
environment. 

The estimated long-run elasticity of CO2 emissions with respect to GDP per capita is 0.456, 
0.401 and 0.453 for Model 1 (without EKC) and 0.449, 0.381 and 0.453 for Model 2. This 
implies that a 1 percent increase in GDP per capita induces CO2 emissions of 0.38 to 0.44 
percent. We found a positive long-run interaction among CO2 emissions and GDP per capita. 
This shows that a rise in disposable incomes motivates households to consume pollution free 
fuel (renewable energy) for their activities.  

 

5. Concluding remarks, policy implications and Future research directions 

This research explained the nexus between CO2 emissions, energy consumption, income 
inequalities and GDP per capital for N-11 countries over the period 1971-2013. It explored 
this topic because scholars have paid little attention to the interplay between CO2 emissions 
and wealth disparities in an era of globalization. To the best of our knowledge there is no 
study that explores the interactions between income disparities and carbon emissions in the 
context of N-11 nations. Hence, this leads to questions like whether income levels or income 
inequalities matter in CO2 emissions. We considered two models. In each model, the 
dependent variable was CO2 emissions and the independent variables were energy 
consumption, income inequality and GDP per capita. Model 1 used all variables in linear 
form as in extant literature. In Model 2, we added income inequality square as an independent 
variable to verify the environmental Kuznets curve hypothesis for the N-11 countries. 

Our results show that all coefficients were positive and statistically significant. Income 
inequalities, economic development and energy consumption stimulated CO2 emissions in 
selected countries. Therefore, in the long-run an increase in energy consumption, income 
inequalities and income levels will increase CO2 emissions. This is happening in the N-11 
states because for the sake of economic growth and poverty reduction the governments’ 
policies enable growth without paying much attention to the health of the environment. 

Our findings also highlight an inverted U-shaped interaction between wealth inequality and 
environment pollutants (CO2 emissions). Wealth disparity had both positive and negative 
effects in the countries that we studied. In countries with equal income distribution, a rise in 
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inequality had a bad effect on the environment. Similarly, in countries with more unequal 
income distribution policies towards lowering inequality can lead to environment 
degradation. So, in both the cases the level of wealth distribution played a critical role in 
environment quality. This indicates that the rich people are more responsible for deterioration 
in environmental quality as compared to poor people because when the rich becomes richer 
they invest their wealth in leading industries to get higher returns without caring about their 
impact on environmental quality. But in the case of poor people where the environment forms 
a part of their livelihood strategy, they try and protect their environment. 

Therefore, policymakers and governments in N-11 nations can increase environmental 
protection by applying carbon taxes and trading schemes. Moreover, governments can also 
encourage both national and foreign investors to work with energy efficient technologies 
when increasing production levels. In addition, N-11 governments should adopt energy 
reduction policies not only to preserve environmental quality but also to distribute already 
scarce resources to sectors with high growth potential and use resource-saving technologies.  

Future analyses are warranted in terms of applying the Quantile-on-Quantile Regression (Q-
Q-R) approach developed by Sim and Jhou (2015), or the Non-Linear Autoregressive 
Distributed Lag framework detailed by Pesaran et al., (2001) who postulate the possibility of 
an empirical examination of non-linear cointegration and asymmetric dynamic relationships. 
Based on these methodologies, academics can examine which groups are the main 
influencers of environmental quality (the lower section or the upper section). Our study also 
provides reliable and consistent empirical findings that can be valuable for policymakers 
when implementing comprehensive environmental strategies for sustainable economic 
development and growth.  
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Figure 1: CO2 Emissions (kg per capita) 
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Figure 2: Income inequality (GINI coefficient) 
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