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Abstract 

Operational availability of spatio-temporal vegetation and hydrological estimates are becoming 

increasingly attractive for hydrologic studies from local through regional and global scales, 

especially in remote areas and ungauged basins. More advancement and versatility in satellite-

based remotely sensed methods towards consistent and timely information for monitoring 

regional scale vegetation and hydrological fluxes may lead to efficient and unprecedented 

planning and management of agricultural practices and water resources. This thesis develops 

and analyses remote sensing methods for regional scale vegetation and land surface water fluxes 

estimation. Results from this study are validated at various test sites in the Rur catchment, 

Germany. These sites are equipped with sophisticated and state-of-the-art instruments for 

monitoring vegetation and hydrological fluxes.  

Second chapter in this thesis explains a direct retrieval method and validation of the Leaf Area 

Index (LAI) from time-series of multispectral RapidEye images. LAI, quantifying the amount 

of leaf material, considered as an important variable for numerous processes in hydrological 

studies that link vegetation to climate. In situ LAI measuring methods have the limitation of 

being labor intensive and site specific. Remote sensing LAI (LAIrapideye) were derived using 

different vegetation indices, namely SAVI (Soil Adjusted Vegetation Index) and NDVI 

(Normalized Difference Vegetation Index). Additionally, applicability of the newly available 

red-edge band (RE) was also analyzed through Normalized Difference Red-Edge index 

(NDRE) and Soil Adjusted Red-Edge index (SARE). The LAIrapideye obtained from vegetation 

indices with red-edge band showed better correlation with destructive LAIdestr (r = 0.88 and 

Root Mean Square Deviation, RMSD = 1.01 & 0.92) than LAI from vegetation indices without 

red-edge band. This study also investigated the need to apply relative and absolute atmospheric 

correction methods to the time-series of RapidEye Level 3A data prior to LAI estimation. 

Analysis of the RapidEye data set showed that application of the atmospheric corrections did 

not improve correlation of the estimated LAI with in situ LAI, because RapidEye Level 3A data 

are provided with simplified atmospheric corrections and the vegetation indices used for LAI 

retrieval ware already normalized. 

Third chapter investigates estimation of spatio-temporal latent heat using an energy balance 

approach and simplified regression between calculated latent heat (from energy balance) and 

downward shortwave radiation data from the Spinning Enhanced Visible and Infrared Imager 

(SEVIRI) onboard Meteosat Second Generation (MSG) Satellites. Mapping the spatio-temporal 
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variability of latent heat is crucial to better explain important area-wide hydrological 

compartments and on the long term variations of climate system components as it determines 

evapotranspiration. In addition to atmospheric demand, vegetation especially leaf area 

determine the amount of water loss to the atmosphere as evapotranspiration. Here, I evaluate 

the use of land surface temperature, albedo, LAI and net radiation estimated at a satellite 

platform on coarse spatial but high temporal resolution in a two source land-atmosphere energy 

exchange model for estimating latent heat. First, latent and sensible heat fluxes (LEEBM and 

HEBM,) were calculated using a two source energy balance model for points in time where input 

data from remote sensing were available. Secondly, a complete spatio-temporal dataset of latent 

heat (LEREG) was estimated through a linear regression fit of LEEBM to satellite-based shortwave 

radiation, in order to quantify the gap-free consistent latent heat. LEEBM showed a correlation 

coefficient (r) of 0.83, 0.80, 0.84, 0.90, 0.85 and a root-mean-square difference RMSD of 63.41, 

75.41, 66.16, 118.25 and 150.00 Wm-2 with in situ latent heat (LEEC) at five sites in the Rur 

catchment (Germany), namely, the lowland crop sites Selhausen and Merzenhausen, the low- 

and upland grassland sites Selhausen-Ruraue and Rollesbroich, and the forest site Wuestebach, 

respectively. LEREG exhibits correlation coefficient (r) of 0.83, 0.78, 0.86, 0.89, 0.83 and a 

RMSD of 51.15, 56.28, 47.46, 43.24 and 61.29 Wm-2 with LEEC at Selhausen, Merzenhausen, 

Selhausen-Ruraue, Rollesbroich and Wuestebach, respectively. While LEREG leads to a strong 

increase in the number of available hourly data points, correlation coefficients show only minor 

differences compared to LEEMB. The present study reveals a high ET rate (i.e., 641, 645, 644, 

626 and 616 mmyear-1) during 2011 and a comparatively low annual ET rate (i.e., 594, 593, 

597, 580 and 560 mmyear-1) in 2012 with respect to all test sites. In general, the ET rate shows 

an increasing trend again towards 2015.  

Operational and reliable estimates of rain, evapotranspiration and runoff with respect to space 

and time are crucial for water balance applications to monitor quantitative variability of water 

resources. On catchment scale, runoff is the balance between water received as precipitation 

and water lost as evapotranspiration. Therefore, fourth chapter explains balancing of solely 

remotely sensed evapotranspiration and rainfall to quantify annual runoff patterns. In this study, 

predicted runoff correlates very well (r = 0.95) with in situ runoff, and mean annual runoff for 

the whole Rur catchment observed at the Stah gauge was 232.92 mm (predicted) and 279.66 

mm (in situ) during 2012-2014. The approach of solely remotely-sensed water balance allows 

for the quantitative estimates of water balance and can be utilized for the water resources 

management at catchment scale. 
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In general, this thesis investigated the usability of remotely sensed data to derive time-series of 

LAI, evapotranspiration and annual runoff patterns. Dynamics of water and energy cycles are 

intimately linked at all scales at the land surface whereby density and type of vegetation play 

crucial role. Methods developed in this thesis, with minimum possible in situ inputs, will lead 

to better vegetation bio-physical and hydrological estimates on remotely sensed data especially 

in catchments with no or few ground-based networks. 
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Zusammenfassung  

Operationell verfügbare Daten raum-zeitlicher Muster von Vegetation und hydrologischen 

Größen wie Evapotranspiration und Grundwasserneubildung sind für hydrologische Analysen 

von großer Wichtigkeit. Dies gilt für alle Skalen, von der lokalen über die regionale zur globalen 

Ebene, insbesondere in unzugänglichen Regionen und Gebiete ohne (Pegel-) Messungen. 

Technische und methodische Entwicklungen in der satellitenbasierten Fernerkundung in 

Richtung konsistenter und zeitnaher Informationen über regionale Vegetation und Hydrologie 

führen zu nie dagewesenen Möglichkeiten im Agrar- und Wasserressourcenmanagement. Die 

vorliegende Dissertation entwickelt und analysiert Fernerkundungsmethoden zur regionalen 

Erfassung von Vegetationsmustern und Wasserflüssen an der Erdoberfläche. Die Ergebnisse 

werden in verschiedenen Teilen des Flusseinzugsgebietes der Rur in Deutschland validiert. Die 

Validationsstandorte sind mit hochmodernem Equipment ausgestattet, die es erlauben 

Vegetationsänderungen und Wasser- und Energieflüsse zu messen. 

Im zweiten Kapitel dieser Dissertation wird eine Methode zur direkten Ableitung des 

Blattflächenindex (leaf area index, LAI) von Zeitreihen des multispektralen RapidEye-

Satelliten entwickelt. LAI ist eine wichtige Variable für diverse hydrologische Prozesse. 

Regionale in situ Messungen des LAI sind limitiert durch Arbeitsaufkommen und lokale 

Charakteristika. Der regionale LAI wird anhand von verschiedenen Indizes aus Spektralkanälen 

errechnet, z.B. vom SAVI (Soil Adjusted Vegetation Index) und vom NDVI (Normalized 

Difference Vegetation Index). Zusätzlich zu diesen weit verbreiteten Indizes wird der „Red-

Edge“-Kanal von RapidEye verwendet, um den Normalized Difference Red-Edge index 

(NDRE) und den in dieser Arbeit erstmals beschriebenen Soil Adjusted Red-Edge index 

(SARE) für die LAI-Berechnung heranzuziehen. Letztere „Red-Edge“-basierte Indizes zeigen 

signifikant bessere Korrelationen mit destruktiven Messungen der Pflanzen (r = 0.88 und Root 

Mean Square Deviation, RMSD = 1.01 & 0.92) als Indizes die standardmäßig den nahinfraroten 

Kanal verwenden. Darüber hinaus wurde ermittelt, ob eine relative oder eine absolute 

atmosphärische Korrektur der RapidEye-Daten (Level 3A) vor Berechnung des LAI notwendig 

ist. Die Ergebnisse zeigen, dass beide zusätzlichen Korrekturmöglichkeiten keinen positiven 

Einfluss auf die Korrelationen zu den Bodenmessungen des LAI haben, da bereits eine 

rudimentäre Atmosphärenkorrektur der RapidEye Level 3A Daten vorliegt und die 

Vegetationsindizes normalisierenden Charakter besitzen. 
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Das dritten Kapitel untersucht die raum-zeitliche Abschätzung des latenten Wärmeflusses mit 

Hilfe eines Energiebilanzansatzes und einer vereinfachten Regression anhand von Daten des 

Spinning Enhanced Visible and infrared Imager (SEVIRI) Sensors an Bord des Meteosat 

Second Generation (MSG) Satelliten. Eine Kartierung der raum-zeitlichen Variabilität des 

latenten Wärmeflusses ist in der Lage, Kompartimente des hydrologischen Kreislaufs 

flächendeckend zu erfassen und langfristige Trends im Rahmen des überlagernden 

Klimasystems zu erklären. Die Nutzung der Landoberflächentemperatur und Nettostrahlung 

erfasst von einer geostationären Satellitenplattform in einem Land-Atmosphäre 

Energiebilanzmodell wird evaluiert für die Berechnung des latenten Wärmeflusses, bzw. der 

Evapotranspiration. Zunächst werden der latente und sensible Wärmefluss mit einem 

Zweiquellen-Energiebilanzmodell berechnet, an denen Fernerkundungsdaten verfügbar sind. In 

einem zweiten Schritt werden die durch Wolkenbedeckung entstandenen Lücken im Datensatz 

zum latenten Wärmefluss gefüllt, indem ein linearer Zusammenhang zu 

Satellitenbeobachtungen der kurzwelligen Strahlung gefunden wird. Dadurch entsteht ein 

lückenloser Datensatz des latenten Wärmeflusses, der Korrelationen (r) von 0.83, 0.80, 0.84, 

0.90, 0.85 und RMSD von 63.41, 75.41, 66.16, 118.25 und 150.00 Wm-2 mit Eddy Covarianz-

Stationen an fünf Standorten im Rureinzugsgebiet (Selhausen, Merzenhausen, Selhausen-

Ruraue, Rollesbroich and Wuestebach) aufweist. Zum Vergleich liefert das Lücken 

aufweisende Energiebilanzmodell Korrelationen (r) von 0.83, 0.78, 0.86, 0.89, 0.83 und RMSD 

von 51.15, 56.28, 47.46, 43.24 und 61.29 Wm-2 für die genannten Standorte.  Trotz der höheren 

Datendichte des lückenlosen Datensatzes ist keine Verschlechterung der Korrelation zu 

beobachten. Auf dieser Basis können nun Jahressummen der Evapotranspiration berechnet 

werden, die 2011 recht hoch ausfiel, während 2012 eher durch niedrige Jahressummen 

gekennzeichnet war. In der kurzen untersuchten Zeitspanne gibt es einen leicht zunehmenden 

Trend in Richtung des Jahres 2015.  

Operationell verfügbare und verlässliche Niederschlags-, Verdunstungs- und Abflussmengen 

in hoher räumlich und zeitlicher Auflösung sind Voraussetzung für Anwendungen im 

Wasserressourcenmanagement. Deshalb erstellt das vierte Kapitel eine Wasserhaushaltsbilanz 

aus rein fernerkundlichen Messungen. Niederschlag und im Kapitel zuvor berechnete 

Verdunstungsmengen werden bilanziert, und das Ergebnis mit jährlichen Abflussmengen 

verglichen. Der aus Fernerkundungsdaten bilanzierte jährliche Abfluss auf 

Subeinzugsgebietsebene korreliert sehr gut (r = 0.95)  mit Abflussmessungen im Gewässer. 

Langjährige Mittel (2012-2014) des Abflusses am Pegel Stah (des deutschen und belgischen 
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Teils des Rureizugsgebietes) liegen bei 232.92 mm (Fernerkundung) bzw. 279.66 mm (in situ). 

Rein fernerkundliche Wasserbilanzen sind in der Lage, auf Einzugsgebietsebene quantitative 

Informationen für ein Wasserressourcenmanagement zu liefern.  

Diese Dissertation untersucht somit die Nutzbarkeit von fernerkundungsbasierten Methoden 

zur räumlich und zeitlich hochaufgelösten Abschätzung des Blattflächenindex, 

Verdunstungshöhen und jährlichen Abflussmengen. An der Erdoberfläche sind die Wasser- und 

Energieflüsse eng miteinander verbunden, wobei die Vegetation eine zentrale Rolle in dieser 

Dynamik einnimmt. Deshalb werden die in dieser Dissertation entwickelten Methoden der 

Erdbeobachtung ein verbessertes biophysikalisches und hydrologisches Monitoring 

begünstigen. Dies triff vor allem für unzugängliche Regionen ohne systematische lokale 

Messnetze zu. 
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1. General Introduction 

1.1. Background and Motivation  

Land surface processes are not static and constantly changing at different spatial and temporal 

scales, whereby vegetation, water and energy cycles play a dominant role and have obvious 

effects on shaping many terrestrial ecosystems (Pan et al., 2008; Trenberth et al., 2009; Syed 

et al., 2010). Dynamics of water and energy cycles, mediated by the density and type of 

vegetation, are intimately linked at diverse spatial scales at the land surface (Schmugge et al., 

2002). Presence of vegetation greatly modifies and controls the distribution and variability of 

the energy (Yang et al., 1994) and hydrological fluxes (Rind, 1984). Vegetation, ranging from 

evergreen forests and crops to grass meadows, has the potential to alter water and energy 

balances through albedo, level of carbon dioxide (CO2) in the atmosphere, evapotranspiration, 

interception, infiltration and surface runoff (Rind, 1984; Arora, 2002). Timely and adequate 

estimates regarding the type, density and phenological information of vegetation are key 

variables for crop yield and stress evaluation and to understand factors responsible for 

environmental changes (Curran, 1983). More than half of the total solar energy received on the 

land surface is consumed as latent heat in the process of evapotranspiration (Trenberth et al., 

2009; Jung et al., 2010), however, this ratio is subjected to seasonal variations and dependent 

on the geographical location. Also, it can be linked to changing climate and land use patterns 

on the earth surface (Thompson et al., 2011). Globally, more than 60% of the rain received at 

the earth surface goes back to the atmosphere through the process of evapotranspiration (Oki 

and Kanae, 2006). Being a major component of the hydrological cycle, dynamics of 

evapotranspiration are crucial for the water balance at all scales ranging from local to 

continental and global. Water resources availability is directly affected by changes in climatic 

conditions. Balance between water inflow (mainly precipitation) and outflow (including 

evapotranspiration and runoff) on catchment-scale provide reliable information for agricultural 

and water resources management, combating water shortages (droughts) and floods and plan 

accordingly for LULC (land use land cover) changes. 

Precipitation, evapotranspiration, surface runoff and infiltration are major and important 

components of the hydrological cycle and there are many factors (both natural and human-

induced) that affect and modify these components. These components and the state-variables 

that modify and affect these components, e.g., vegetation, need techniques for temporal and 

spatial monitoring operationally in order to better analyze the effects of hydrologic variability 

with respect to space and time. While being more precise and accurate, the in situ observation 
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systems are often point- or footprint-based and hence, cannot represent/capture the spatially 

distributed nature of the hydrological processes (Wang et al., 2007; Yu and Ma, 2015). Remote 

sensing methods offer consistent and cost-effective data with a large range of spatial and 

temporal resolutions to better map the spatial and temporal explicit trends and patterns of 

various processes that affect the land surface hydrology. Precipitation, density/type of 

vegetation and the amount of evapotranspiration are the most important components that affect 

land surface hydrology from catchment to regional scales. Mapping the spatio-temporal 

dynamics of these components through remotely sensed methods would better describe 

catchment-scale hydrology, particularly, in ungauged or poorly gauged hydrological basins 

(Sivapalan et al., 2003; McGlynn et al., 2012). 

Operational and consistent monitoring of the spatial distribution and temporal variations in 

hydrological processes and its various components lead to better policy decisions, reforms, 

precautionary measures and preparedness to control or mitigate (and even avoid) the 

devastating effects of extreme hydrological events. Hydrological extremes in the form of floods, 

droughts (Kundzewicz and Kaczmarek, 2000), tornados and hurricanes adversely affect the 

landscape and cause shortage of food and clean drinking water, loss of life and damage to 

physical infrastructure. Droughts, cause shortage of water in the hydrological system (Van 

Loon, 2015), are considered a very strong factor endangering food security (Sheffield et al., 

2014) and lead to food price spikes. Droughts are also known as ‘the creeping disaster’ that 

often happen very slow (unnoticed) and bring large scale indirect devastating results 

(Kundzewicz and Kaczmarek, 2000; Van Loon, 2015).  

1.2. Vegetation and Hydrological Variables 

1.2.1. Leaf Area Index (LAI) 

The current global scenario of climate change may be linked to hydrological interactions in the 

soil-plant-atmosphere continuum (Arora, 2002; Gerten et al., 2004; Smith et al., 2011) and the 

spatio-temporal distribution of vegetation (Gu et al., 2011). Type, distribution and density of 

vegetation affect the energy and water exchange between the earth’s surface and atmosphere. 

Energy balance approaches, aiming to retrieve hydrological fluxes, use vegetation as an 

important parameter due to its impact on the distribution of incoming radiation into latent, 

sensible and soil heat fluxes. As the plant species composition of an area can be very complex, 

simplified vegetation indices, for instance, the Leaf Area Index (LAI) which can be derived 

from optical remote sensing imagery is an important variable for climatic and hydrological 
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models (Sellers et al., 1997). LAI is the ratio of total one-sided green leaf area per unit ground 

area (m2/m2). A variety of methods, ranging from ground-based (in situ) to satellite-based 

remote sensing methods, are employed to quantify LAI. In situ methods are classified in 

destructive and non-destructive methods using LAI meters/sensors, e.g., LI-COR and Delta-T 

Devices (Wilhelm et al., 2000; Stadler et al., 2015). Destructive methods involve physical 

removal of plants, whereas, LAI meters use radiative transfer models to compute LAI from 

intercepted light (mostly blue light) by the canopy through measurements taken above and 

below the canopy. Being site specific, in situ LAI measurements can be replaced with remote 

sensing method. Remotely sensed methods provide regional scale LAI and are grouped into 

physical (Verhoef, 1984; Wilhelm et al., 2000; Haboudane et al., 2004; Jacquemoud et al., 

2009) and empirical models (Clevers, 1989; Colombo et al., 2003; Walthall et al., 2004). 

Physical methods make use of specialized models to simulate canopy reflectance for deriving 

various canopy bio-physical variables. However, physical models, simulating canopy 

reflectance, require significant computational resources. LAI is widely derived from remotely 

sensed vegetation indices by establishing simple empirical relations (for instance, Eq. 1.1) 

between the respective vegetation index (VI) and LAI (Norman et al., 1995; Sprintsin et al., 

2007; Propastin and Erasmi, 2010): 

 

𝐿𝐴𝐼 =  
− log(1 − 𝑉𝐼)

𝑘(𝜃)
                                                           (1.1) 

 

Here, k(θ) is the light extinction coefficient. The Normalized Difference Vegetation Index 

(NDVI), its modified form of soil adjusted vegetation index (SAVI), Enhanced Vegetation 

Index (EVI), Difference Vegetation Index (DVI), and Ratio Vegetation Index (RVI) are 

generally used as vegetation indices. These indices are mathematical combinations of those 

spectral bands that distinguish green plants than other objects. Information from red (0.630 – 

0.685 µm) and near-infrared bands (0.760 – 0.850 µm) of the electromagnetic spectrum are 

widely used in these indices. Vegetation indices incorporating red-edge spectral band (0.690 – 

0.730 µm) in multispectral RapidEye imagery will improve retrieval of vegetation related 

information owing to its high sensitivity towards chlorophyll content of leaves. Furthermore, 

LAI over agricultural vegetation is heavily changing over the year. High spatio-temporal 

resolutions of RapidEye data are suitable for more reliable estimates of temporal course of 
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vegetation dynamics, especially over agricultural regions. However, data availability is highly 

affected by overcast weather conditions. High spatio-temporal estimates of LAI would lead to 

better estimates of variability in evapotranspiration for heterogeneous surfaces in order to 

quantify more accurate annual sums. 

Here, various satellite missions, carrying sensors for estimating vegetation related variables, are 

briefly discussed. All of the Landsat missions i.e., Landsat1-5 and Landsat6-7 provided data in 

visible (VIS) and near infrared (NIR) spectral channels for studying land surface. Satellite 

Probatoire d'Observation de la Terre (SPOT), with missions from SOPT1 through SPOT7, is a 

satellite-based high resolution optical Earth imaging system and delivers high resolution 

panchromatic and multispectral imagery in VIS, NIR and shortwave infrared (SWIR) channels 

since 1986. RapidEye of the Planet Labs (PlanetLabs), formerly belonged to BlackBridge, 

comprised of five identical satellites orbiting the earth provide data in five spectral bands i.e., 

blue (0.440 – 0.510 µm), green (0.520 – 0.590 µm), red (0.630 – 0.685 µm), red-edge (0.690 – 

0.730 µm) and near infrared (0.760 – 0.850 µm). Operating at an altitude of 630 km, RapidEye 

is capable of providing daily multispectral imagery in 5m spatial resolution. The new red-edge 

spectral band makes it more appropriate for retrieving and monitoring biophysical vegetation 

parameters (Delegido et al., 2011; Schumacher et al., 2016). ESA’s Sentinel-2 satellites with 

Multispectral Imager (MSI) onboard provide high resolution spectral images of the Earth's 

surface every 10 days with one satellite and every 5 days with 2 satellites. Sentinel-2 bands in 

the red-edge region are highly sensitive to green LAI and chlorophyll content (Ch) (Delegido 

et al., 2011). 

1.2.2. Evapotranspiration (ET) 

Evapotranspiration (ET) is the second largest component of the terrestrial water balance after 

rainfall and plays an imperative role in shaping water balance and weather system of an area. 

According to Thompson et al. (2011), ET dynamics can be linked to changing climate and land 

uses. The rate of ET is driven by many factors including meteorological variables, whereas 

vegetation (leaf area) and soil characteristics affect this rate. More precise and timely 

quantification of ET leads to better description of hydrological and meteorological processes. 

Being the largest component of the terrestrial energy budget, ET transfers most of the water 

(around 60%) back to the atmosphere received on the Earth as precipitation (Oki and Kanae, 

2006; Trenberth et al., 2009; Jung et al., 2010; McMahon et al., 2013). According to Jung et 

al. (2010), ET is considered as the central process of the climate system. 
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Different approaches are adopted to estimate evapotranspiration from a single point to global 

scale. In situ methods are more precise and accurate but cannot be applied on spatial scale owing 

to the spatial heterogeneity of land surfaces (Wang et al., 2007), nevertheless, in situ 

measurements are extensively used to calibrate and validate spatial ET products. Some well-

known in situ methods include pan evaporation, atmometers, lysimeters, scintillometers, eddy 

covariance (EC) and Bowen ratio (BR). On a regional scale, three main approaches are 

generally employed for mapping spatial scale evapotranspiration, i) Hydrological models, ii) 

Application of a water balance approach to ground-based catchment-scale measurements, and 

iii) Application of an energy balance approach to remote sensing data. Hydrological models are 

simplified representations of the real world water cycle and balance to predict and understand 

land surface hydrological processes (Wheater et al., 2008; Devi et al., 2015). A number of 

models have been developed to simulate hydrological processes for diverse spatial scales 

ranging from small catchments to global scales (Devi et al., 2015), for instance, SWAT model 

(Soil Water Assessment Tool), MIKE SHE model (Systeme Hydrologique European), 

TOPMODEL, HBV model (Hydrologiska Byrans Vattenavdelning model), and VIC model 

(Variable Infiltration Capacity). Model calibration with hydrological properties measured with 

traditional in situ methods is an integral part for the hydrological models (Pechlivanidis et al., 

2011). Approaches suitable with no or less in situ calibrations are preferred, for instance, the 

energy balance approaches on remotely sensed data. The water balance approach calculates 

time changes in terrestrial water storage (ΔS) through balancing ground-based water inflow 

(rainfall) and outflow (evaporation, transpiration, runoff and infiltration) of a hydrological 

domain (see section 1.2.3). The energy balance approach is based on the distribution of 

incoming net radiation (Rn) received on the earth surface (Eq. 1.2) and the availability of the 

amount of latent heat (LE) to cause evapotranspiration (transpiration from vegetation and 

evaporation from non-vegetated surfaces):  

 

𝑅𝑛 =   𝐿𝐸 + 𝐻 +  𝐺                                                   (1.2) 

 

Here, H and G are sensible and ground heat fluxes, respectively. Along with spatial variations, 

temporal changes in ET may occur on short time scales (less than an hour) due to its dependency 

primarily on the amount and duration of incoming solar radiations and some other 
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meteorological parameters. Generally, the energy balance methods are advantageous over other 

methods for computing evapotranspiration as these are independent of further water balance 

components, for instance, rainfall, runoff and moisture holding capacity of the soil (soil 

hydraulic properties) to estimate ET (Anderson et al., 2011). Several approaches based on the 

energy balance approach have been published (Norman et al., 1995; Anderson et al., 1997; 

Bastiaanssen et al., 1998a; Bastiaanssen et al., 1998b; Mecikalski et al., 1999; Allen and 

Bastiaanssen, 2005; Li et al., 2005; Allen et al., 2007; Kalma et al., 2008; Kustas and Anderson, 

2009; Anderson et al., 2011; Cammalleri et al., 2012; Colaizzi et al., 2012; Maes and Steppe, 

2012; Mokhtari et al., 2013; Mallick et al., 2014). The energy balance approach is continuously 

revised to minimize utilization of ancillary meteorological data needed to run the models, as 

described by Anderson et al., (1997) using ALEXI (Atmospheric Land EXchange Inverse 

model). Later, using DisALEXI (Disaggregated Atmosphere Land Exchange Inverse model), 

ALEXI fluxes were disaggregated from continental scale to field scale (Norman et al., 2003; 

Anderson et al., 2011). The energy balance models utilize land surface temperature (LST) as a 

key boundary condition, which is calculated (through Eq. 1.3) from the brightness temperature 

(TB(θ)), measured by a radiometer (Norman et al., 1995):  

 

𝑇𝐵(𝜃) =  [𝜀(𝜃)𝑇𝑅𝐴𝐷(𝜃)4 +  (1 − 𝜀(𝜃))𝑇𝑆𝐾𝑌
4 ]

1
4                                       (1.3) 

 

Here, ε(θ) is the directional thermal emissivity at a view zenith angle θ, TRAD is the radiometric 

surface temperature and TSKY represents the hemispherical temperature of the sky. 

The Penman-Monteith approach (Eq. 1.4) combines energy balance with mass transfer using 

standard climatological records to quantify evaporation from water surface (Allen et al., 1998): 

 

𝐸𝑇 =  
∆(𝑅𝑛 − 𝐺) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

∆ + 𝛾 (1 +
𝑟𝑠

𝑟𝑎
)

                                              (1.4) 
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 In Eq. 1.4, Rn is net radiation received, G is the ground heat flux, ∆ represents the slope of the 

saturation vapour pressure and temperature relationship, ρα is the mean air density at constant 

pressure, cp is the specific heat of the air, (es-eα) is the vapour pressure deficit of the air, γ 

represents psychrometric constant, rs and rα are bulk surface and aerodynamic resistances. This 

approach was further modified by many researchers for cropped surfaces incorporating 

resistance factors (Allen et al., 1998). Recently, Stanislaus et al. (2016) revealed an important 

omission of the radiative and sensible heat fluxes from one side of a leaf in the Penman-

Monteith approach (Eq. 1.4). They proposed coupling of canopy scale latent and sensible heat 

with radiative exchange and ground heat flux, incorporating changes in atmospheric forcing, to 

derive more accurate responses of latent and sensible heat. 

Land surface temperature is derived from brightness temperature measured by airborne or 

satellite-based radiometers (Eq. 1.3). Land surface temperature is closely linked to water and 

water related land surface processes, vegetation and weather related prediction modelling 

(Bastiaanssen et al., 1998a; Kalma et al., 2008). Thermal Infrared (TIR) remote sensing 

techniques are widely used for measuring land surface temperature. Some of the satellite 

missions carrying thermal infrared sensors include; Landsat4-5, Landsat7-8, AVHRR 

(Advanced Very High Resolution Radiometer), MODIS (Moderate Resolution Imaging 

Spectroradiometer). The National Aeronautics and Space Administration (NASA) has recently 

developed a thermal imager, TIRS (thermal infrared sensor) with two channels covering 10-

12.5 μm for measuring thermal data in continuity with previous Landsat missions (Reuter et al., 

2015). Landsat-8 mission carrying TIRS was launched in February 2013 with data availability 

to public in May 2013 (Markham et al., 2013). With the launch of first Meteosat, Meteosat-1, 

in 1977, the Meteosat First Generation (MFG, Metosat1-7) and Meteosat Second Generation 

(MSG, Meteosat8-10) satellites provide data of the land surface processes in visible and thermal 

bands. Recently, Metosat-11 was launched in July 2015 and stored in orbit. The Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) onboard the MSG geostationary satellites 

provide Land Surface Temperature, LAI, short and longwave downwelling radiation over areas 

including in the MSG disk (i.e., Europe, Northern Africa, Southern Africa and south America). 

1.2.3. Water Balance (Runoff Prediction) 

Remote sensing methods are becoming crucial for quantifying consistent spatio-temporal 

estimates of evapotranspiration and precipitation for water balance and water resources 

management. Water is directly linked to many human activities (e.g., agriculture, industry, 
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settlement, and waste management) and has obvious impacts/control on many terrestrial 

ecosystems. Owing to the potential threats of climate change to water cycle/water balance 

(Hattermann et al., 2015), proper planning and management of water resource is the need of 

the day. Out of plenty of water on the Earth, about 2.5% of the total water available on the earth 

is fresh water, and only a small amount of this fresh water is accessible due to storage in glaciers 

and deep in the ground (Oki and Kanae, 2006). Simultaneous occurrence of droughts and floods 

in different parts of the Earth has been challenging since long. Precipitation, evapotranspiration 

and surface runoff are integral components of the water cycle and define hydrology of an area. 

Most traditional methods for measuring ET and precipitation are site-specific and have no 

applicability beyond the point of measurement. With the advent of remote sensing technology, 

spatio-temporal ET and precipitation products are available operationally. Despite the spatio-

temporal availability of the required data, remotely sensed tools cannot compete with in situ 

methods in terms of uncertainty. Presently a number of satellite missions are operating to 

provide remotely sensed relevant data for evapotranspiration (MSG, MODIS, Landsat, AVHRR 

etc.) and precipitation (MPE, TRMM, GPM etc.). According to Milly (1994), long-term water 

balance of a finite area can be determined only by local water fluctuations in the form of 

precipitation (water inflow source), evapotranspiration (water outflow), arbitrated by terrestrial 

water storage. A generalized catchment scale water balance can be expressed as equation 1.5 

(Willmott et al., 1985; Milly, 1994; Ponce and Shetty, 1995; Schmugge et al., 2002; Montzka 

et al., 2008b; Usman et al., 2015): 

 

ΔS

ΔT
= 𝑃 −  𝐸𝑇 −  𝑄                                                           (1.5) 

 

Here, ΔS/ΔT is the change in water storage in soil, aquifers and reservoirs, P represents 

precipitation received, ET represents the amount of evapotranspiration (evaporation and 

transpiration) and Q represents total runoff (surface runoff, infiltration and base flow). For 

longer time-series (annual or more), change in terrestrial water (∆S) may be considered 

negligible (Milly, 1994; Babin, 1995; Ponce and Shetty, 1995; Montzka et al., 2008b), as the 

infiltrated water consequently joins stream water as base flow. Runoff patterns can also be 

linked with soil moisture (Scipal et al., 2005), therefore, runoff dynamics are capable of 

providing crucial information about the soil moisture conditions in the catchment. Remote 
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sensing techniques for estimating operational and consistent evapotranspiration and rainfall 

would better suit the catchment scale water balance applications. Runoff estimates through 

balancing solely remotely sensed ET and rainfall may lead to better estimates of runoff 

fluctuations in ungauged basins or catchments with little in situ networks. It will facilitate the 

decision making system and help mitigate the adverse effects of hydrological extremes, for 

instance, floods due to heavy rains and water scarcity from extreme droughts. 

In 1997, the Tropical Rainfall Measuring Mission (TRMM), a joint mission of the NASA and 

the Japan Aerospace Exploration Agency (JAXA), was launched with a design life time of 3 

years to study tropical rainfall throughout the globe. State-of-the-art on-orbit active/passive 

instrument of the TRMM mission provided unprecedentedly valuable information on tropical 

weather and climate patterns for weather and climate research (NASA-TRMM). The mission 

came to an end on in April 2015 after providing valuable global tropical rainfall data for nearly 

two decades. After the successful operation of the TRMM mission, the Global Precipitation 

Mission (GPM) was launched by NASA and JAXA in February 2014 (NASA-GPM). GPM is 

a network of satellites equipped with advanced radar/radiometer system to monitor global rain 

and snow from space to help understand earth’s water and energy cycles in more advanced 

manner from space. GPM’s sophisticated forecasting system will help mitigate the adverse 

effects of weather related natural calamities. The Multi-sensor Precipitation Estimate (MPE) of 

EUMETSAT (European Meteorological Satellites) is an instantaneous rain rate product 

(EUMETSAT's-MPE; Basarudin et al., 2014). The MPE algorithm is based on the assumption 

that cold clouds produce rain. It derives near real time rain rate from a combination of polar 

orbiting Special Sensor Microwave/Imager (SSM/I) measurements and brightness temperature 

data from Infrared channel of the Meteosat geostationary satellites (Derin and Yilmaz, 2014). 

1.3. Remote Sensing of Land Surface Hydrology 

Remote sensing techniques (both active and passive) have enormous potentials for monitoring 

hydrological processes at vast spatial scales (Scipal et al., 2005) and their impacts on terrestrial 

ecosystems. Remote sensing methods have explored operational monitoring of dynamic land 

surface parameters such as land surface temperature, energy fluxes, evapotranspiration, land 

cover changes, seasonal and evergreen vegetation, temporally covering large areas (Wagner et 

al., 2009). The development of new satellite remote sensing techniques has made the 

operational availability of data required for hydrological applications possible, however, 

traditional methods of in situ observations (limited to point or footprint scale) are still important 
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to validate and calibrate satellite-based remotely sensed products (Dadson et al., 2013). Data 

acquisition based on remotely sensed methods overcomes the spatio-temporal scale 

unavailability of hydrological variables for deriving various hydrological fluxes for land surface 

hydrology and several related disciplines. Many hydrological models have been revised to make 

efficient use of remotely sensed spatial information (Pietroniro and Prowse, 2002). Integration 

of remote sensing and modelling leads to better understanding the spatio-temporal patterns and 

variability of the water cycle and available water resources (Kite and Pietroniro, 1996; 

Loumagne et al., 2001; Moradkhani, 2008; Xu et al., 2014), especially in areas where no or less 

ground-based observations are available.  

1.4. Scientific Objectives and structure of the thesis 

The principal objective of this study is to use remotely sensed data for operational spatio-

temporal estimates of vegetation and hydrological fluxes for catchment-scale water balance 

analysis. Throughout this dissertation, it was attempted to minimize dependency on data 

measured through traditional in situ networks to compute remotely sensed estimates. With the 

mentioned approaches, the in situ measurements were exclusively utilized to validate estimated 

vegetation bio-physical variable and hydrological fluxes. Estimation and validation of 

vegetation and hydrological fluxes from remote sensing data in the Rur catchment may lead to 

better estimates of these variables for global applications. In this context, this dissertation is 

structured into 3 main data analysis chapters. After starting with an introduction to the study 

(this chapter), the second chapter explains the use of remotely sensed imagery (RapidEye) for 

deriving and validating fine spatial resolution time-series of surface bio-physical vegetation 

variable, the leaf area index (LAI), which has a very significant impact on modifying land 

surface hydrological and energy fluxes estimates and employed as an important state variable 

in many hydrological and energy balance models. Different vegetation indices are analyzed for 

deriving LAI, also, reflectance in the red-edge band is tested in vegetation indices to evaluate 

its sensitivity for estimating LAI. The effects of absolute and relative atmospheric corrections 

are also evaluated on the time-series of RapidEye imagery. The third chapter explains spatio-

temporal time-series estimation of the latent heat flux (causing evapotranspiration) using an 

energy balance approach. Presence of clouds causes gaps in the latent heat time-series. 

Therefore, a simplified regression relationship is established between calculated latent heat and 

satellite-based downwelling shortwave radiation to prepare a consistent time-series of latent 

heat to determine annual sum of catchment-scale evapotranspiration. The calculated latent heat 

is validated by comparing to the latent heat measured by the Eddy Covariance at five different 
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locations in the catchment. The fourth chapter explains prediction of sub-catchment scale 

annual runoff patterns throughout the catchment based on solely remotely sensed rainfall 

(Ground radar-based) and evapotranspiration (geostationary satellite-based) data using 

simplified water balance on annual and mean annual basis for better water resources 

management. Using the water balance on annual basis, changes in terrestrial water storage are 

neglected. The predicted sub-catchment scale runoff is compared to gauge data at the outlet of 

each sub-catchment. Finally, chapter five briefly summarizes the main conclusions derived 

from this study. It also covers a brief outlook for possible further research on the relevant topics. 
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2. Estimation and Validation of RapidEye-Based Time-Series of Leaf Area Index 
for Winter Wheat in the Rur Catchment (Germany)1 

 

2.1. Introduction 

Interactions among vegetation, soil, energy fluxes and carbon cycle have profound impacts on 

the climate system (Weiss et al., 2004; Mu et al., 2011). Vegetation greatly influences the 

climatic conditions prevailing in an area through modification of the hydrologic fluxes, such as 

transpiration/evaporation and interception (Arora, 2002). Therefore, indices describing 

vegetation properties, e.g., Leaf Area Index (LAI), contain important information that can be 

used to characterize vegetation dynamics and evapotranspiration fluxes in climate and 

hydrological models (Sellers et al., 1997; Ge, 2009). To achieve better agricultural productivity, 

adequate information on climatic variables and physical landscape properties is required which 

can be provided by remote sensing in a timely and operational manner (Atzberger, 2013) from 

field scale to regional scale (Rembold et al., 2013). LAI is an important bio-physical variable 

(Jonckheere et al., 2004) for various models used in hydrology, climatology and crop growth, 

and is defined as the ratio of total upper leaf area per unit surface area of the ground [m2/m2]. 

Accurate and timely estimates of LAI are useful for production estimation and stress evaluation 

of crops and environmental changes (Curran, 1983). There are several methods for measuring 

LAI whereof in situ measurements are the most reliable. However, in situ measurements of LAI 

are labor intensive and site specific so that an extrapolation to regional scale is limited. There 

are several approaches for estimating LAI from remotely sensed data, generally grouped into 

physical models and empirical models. Physical models include canopy reflectance models 

such as SAIL (Verhoef, 1984) and PROSAIL (Jacquemoud et al., 2009) to simulate the canopy 

reflectance as a function of canopy variables (including LAI). For instance, Haboudane et al. 

(Haboudane et al., 2004) simulated leaf and canopy reflectance spectra using PROSAIL to 

estimate LAI. Empirical models relate in situ LAI measurements to remotely-sensed vegetation 

indices using statistical transfer functions (Clevers, 1986; Clevers, 1988, 1989; Cohen et al., 

2003; Colombo et al., 2003; Walthall et al., 2004). Atzberger et al. (Atzberger et al., 2010) 

                                                           
1 Adapted from: Ali, M., Montzka, C., Stadler, A., Menz, G., Thonfeld, F., Vereecken, H., 2015. Estimation and 
Validation of RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat in the Rur Catchment 
(Germany). Remote Sens. 7, 2808-2831. 
 

http://en.wikipedia.org/wiki/Leaf
http://en.wikipedia.org/wiki/Surface_area


Estimation and Validation of RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat in 
the Rur Catchment (Germany) 

13 
 

analyzed two full spectrum methods using hyperspectral data [i.e. principal component 

regression (PCR) and partial least square regression (PLSR)] based on a leave-one-out (LOO) 

approach (Thorp et al., 2007; Mirzaie et al., 2014) to derive chlorophyll content in winter wheat. 

Despite requiring significant computational resources, models simulating the physical 

processes are preferred for accuracy and transferability (Deng et al., 2006). Sometimes, they 

even outperform empirical approaches (e.g. NN, neural network approach) (Vuolo et al., 2010). 

Asrar et al. (Asrar et al., 1984) established a procedure to estimate LAI and FPAR (fraction of 

photosynthetically active radiation) from spectral reflectance. LAI and spectral reflectance are 

interrelated (Asrar et al., 1984; Baret and Guyot, 1991) and many relationships have been 

developed between vegetation indices (combination of reflectance) and various vegetation 

parameters e.g., LAI, FPAR, chlorophyll concentration and biomass etc. (Baret and Guyot, 

1991; Haboudane et al., 2004). Deng et al. (Deng et al., 2006) used the simple ratio (SR) and 

the reduced simple ratio (RSR) to retrieve global and regional LAI maps. According to Walthall 

et al. (Walthall et al., 2004) using scaled NDVI (Normalized Difference Vegetation Index) 

without site specific calibration measurements is an efficient method to retrieve LAI. Area of 

green leaves exhibit more spatio-temporal variability and has more influence on the red and 

near infrared radiation in the canopy, therefore, many studies have incorporated reflectance data 

in these spectral regions to estimate LAI for large areas (Curran, 1983). Several VI have been 

developed, but I selected the most widely used indices i.e., the NDVI (Rouse et al., 1973) and 

its modified form to correct for soil reflectance the SAVI (Huete, 1988) along with their red-

edge based modifications.  

Presently, several remote sensors are operational that provide vegetation-related information 

with different spatial and temporal resolutions. Multispectral optical remote sensing techniques 

give more direct estimates of vegetation characteristics using the unique spectral reflectance 

(Xie et al., 2008), whereas microwave methods provide more information on the structural 

characteristics of vegetation (Vereecken et al., 2012). Some of the remote sensing based data 

sources for vegetation monitoring include: AVHRR (Advanced Very High Resolution 

Radiometers (Duggin and Piwinski, 1984)), Landsat (Barnett and Thompson, 1983; Chen and 

Cihlar, 1996; Turner et al., 1999; Cohen et al., 2003; Gao et al., 2012; Propastin and Panferov, 

2013), MODIS (Moderate Resolution Imaging Spectroradiometer), MISR (Multi-angle 

Imaging SpectroRadiometer), VIIRS [Visible/Infrared Imager Radiometer Suite], SPOT-

VEGETATION (Systeme Pour l'Observation de la Terre),  multispectral EO-1 Hyperon (Pu 
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and Gong, 2004) and airborne multispectral HyMap (Schlerf and Atzberger, 2006). In this study 

I have used the relatively new satellite system, RapidEye. To analyze the performance in 

estimating LAI time-series, I used RapidEye’s high spatio-temporal resolution and its newly 

available red-edge spectral band [RE (0.690 – 0.730 µm)]. Here I have attempted to validate 

the methodology previously used for MODIS LAI (Norman et al., 1995; Sprintsin et al., 2007; 

Propastin and Erasmi, 2010) to directly map LAI on high spatial resolution (5m) satellite 

imagery from RapidEye. 

RapidEye's satellites are the first commercial satellites to include a high spatial resolution red-

edge band, representing the wavelength region that exhibits rapid change in the reflectivity of 

vegetation from red (more absorption/low reflectance) to near infrared (NIR, maximum 

reflectance) (Curran, 1983; Ullah et al., 2012). Numerous studies have been carried out using 

the red-edge spectral information. Darvishzadeh et al.  (2009) derived LAI from (ground based) 

hyper-spectral vegetation indices and red-edge inflection point (REIP), but the REIP showed 

very poor correlation with LAI. Vuolo et al. (Vuolo et al., 2010) used multispectral RapidEye 

images to estimate LAI, canopy chlorophyll content (CCC) and leaf chlorophyll content (LCC). 

Ehammer et al. (2010) used RapidEye images to determine the fraction of incident 

photosynthetically active radiation (FPAR) and LAI of cotton and rice using the red-edge 

spectral information in calculating vegetation indices, but use of the red-edge band did not 

improve the vegetation indices. Eitel et al. (2011) studied early stress detection by examining 

utility of the red-edge and non-red-edge vegetation indices calculated on a time-series of 22 

RapidEye images of a piñon-juniper woodland in central New Mexico. Schuster et al. (2012) 

investigated the improvement of land use classification, especially in vegetation classes, using 

a RapidEye scene from July 2009 of a study site in Berlin (Germany). Filella and Penuelas 

(Filella and Penuelas, 1994) have confirmed high sensitivity of the red-edge spectral band to 

chlorophyll content of vegetation. Previous studies using RapidEye images (Eitel et al., 2007; 

Ehammer et al., 2010; Vuolo et al., 2010) did not discuss the benefits of the multi-temporal 

red-edge spectral band from RapidEye (Asam et al., 2013). Asam et al. (Asam et al., 2013) 

derived LAI for grassland in Bavarian alpine upland (Germany) on RapidEye imagery. Here, I 

investigate the retrieval of LAI time-series from vegetation indices with the red-edge spectral 

band, and correlate with in situ vegetation observations covering various stages of winter wheat 

growth. 

http://www.rapideye.com/rededge.html
http://www.rapideye.com/rededge.html
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Radiation from the earth surface interacts strongly with the atmosphere (Hadjimitsis et al., 

2010). This interaction affects in particular the time-series of vegetation observations under 

different atmospheric conditions. Variations in atmospheric conditions, sun-target-sensor 

geometries and illumination conditions lead to variations in satellite images acquired on 

different days of the year. Two approaches have been described in the scientific literature to 

account for these differences: absolute and relative correction (Yang and Lo, 2000). The 

absolute approach needs in situ optical properties of the atmosphere at the time of image 

acquisition (Hall, 1991). In the relative method, one image (target) is radiometrically 

normalized with another image (reference) acquired under the best optical properties of the 

atmosphere (Yang and Lo, 2000). In this study, effect of both the absolute and relative 

atmospheric correction on a time-series of RapidEye imagery was evaluated by the performance 

of the LAI estimation. 

The objectives of this study are: i) to evaluate the usability of RapidEye to derive LAI time-

series for winter wheat, ii) to investigate the need for absolute and relative 

atmospheric/radiometric correction, iii) to analyze the role of the red-edge band in LAI 

estimation, and iv) to evaluate the impact of soil contribution on LAI time-series using SAVI 

as vegetation index.  

2.2. Study Area 

The area under investigation in this study is the Rur catchment (Figure 2.1), located in the 

Germany-Belgium-Netherlands border area, near the city of Aachen (Montzka et al., 2008a; 

Montzka et al., 2008b; Hasan et al., 2014; Rudolph et al., 2015). The TERENO-initiative 

[Terrestrial Environmental Observatories (TERENO)] has established several test sites at 

different locations within this catchment covering cropland (Selhausen and Merzenhausen in 

Figure 2.1), grassland (Rollesbroich in Figure 2.1) and forests (Wuestebach in Figure 2.1) 

(Zacharias et al., 2011; Montzka et al., 2013). The southern part of the catchment is covered by 

the bedrock of the Eifel Mountains with a high annual precipitation and a moderate potential 

evapotranspiration, while the northern part receives relatively low annual precipitation and 

higher potential evapotranspiration (Bogena et al., 2005c). Winter wheat and sugar beet are the 

main crops cultivated in the area.  
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The Selhausen test field (area ≈ 0.8 hectare) is located in the southern part of the Lower Rhine 

Embayment, in the vicinity of the Rur river (near Dueren city) (Rötzer et al., 2014). The area 

is covered with Quaternary sediments, mostly fluvial deposits from the Rhine/Maas River and 

the Rur river system(Rudolph et al., 2015). They form the underlying sediments, whereas 

floodplain sediments belong to Pleistocene and Holocene sediments. Weakly inclined (<4°) in 

the east-west direction, high gravel content is present in the upper (eastern) part of the site 

(Weihermuller et al., 2007). Due to the specific geomorphology and textural properties, the soil 

surface water content is highly variable in space (Weihermuller et al., 2007). 

The other test area, Merzenhausen (area ≈ 7 hectares), is located approximately 12 km away to 

the northwest of the Selhausen test site, near Juelich (Germany). Geomorphologically weakly 

inclined and structured on a high terrace of the Rur river, the area is composed of fluvial 

deposed loess of Pleistocene/Holocene and with small gravels up to a depth of 165 cm 

(Weihermueller, 2005).  
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campaigns and image acquisitions over selected temporal calibration sites located worldwide 

(BlackBridge-RapidEye, 2013). In total 24 scenes were available for 2011 and 2012 covering 

two winter wheat growing seasons. For validation purpose, I considered only those images for 

which in situ LAI measurements were taken. When in situ and satellite acquisition date did not 

coincide, a nearest available image (date wise) to the in situ measurement was used (Table 2.1). 

 

 

 

Figure 2.2. Spectral Reflectance Curves for various features of the land surface plotted against 

different RapidEye’s spectral channels. Vertical bars represent spectral bands of the RapidEye 

imagery. (Source for the reflectance data is ASTER Spectral Library). 

 

2.3.2. In Situ LAI Measurements (LAIdestr)  

In situ LAI measurements were taken at several points within the winter wheat fields using 

destructive method, LI-COR LI 3100C (LAIdestr). Destructive methods (LAIdestr) produce more 

reliable results and provide a reference for the calibration of non-destructive measurements 

(Breda, 2003) including in situ LAI (non-destructive) and remotely sensed LAI. The destructive 

methods involved physical removal of above ground vegetation within a defined area. Eight 
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and seven collection points were selected for in situ measurements inside the  Selhausen and 

the Merzenhausen test fields respectively. The in situ LAI collection points were evenly 

distributed within the test fields (Figure 2.1) and remote sensing based LAI was acquired from 

the same points within the test fields. In the study area winter wheat is usually sown mid 

November and harvested at the end of July or start of August. Each year, the measurement 

campaign was started in March and carried out until the harvest time (July/August). The in situ 

data were collected twice a month during the growing season (March – July/August) of 2011 

and 2012 (Stadler et al., 2015). The time-series of LAI calculated on RapidEye images 

(LAIrapideye) were correlated with the time-series of destructive LAIdestr. Table 2.1 shows the 

availability of in situ LAI (LAIdestr) data along with the date and time of acquisition of 

RapidEye. To compare in situ LAI (measured in a 1x1 meter space) to satellite derived LAI (on 

5 meter spatial resolution), field averages were calculated.  

Table 2.1. In situ LAI and RapidEye time-series available for this study at both test fields 

 

Selhausen Merzenhausen 

RapidEye RapidEye 

Acquisition 

Time (UTC) 

Destructive 

LAI  

RapidEye RapidEye 

Acquisition 

Time (UTC) 

Destructive 

LAI 

2011 2011 

April 07 11:42:30 April 07 April 02 11:37:42 March 29 

April 24 11:42:04 April 18 April 07 11:42:27 April 15 

May 10 11:34:49 May 03 May 02 11:28:02 May 04 

May 21 11:44:59 May 18 May 21 11:44:56 May 23 

May 30 11:34:32 June 03 June 01 11:39:51 June 11 

June 27 11:43:00 June 27 June 27 11:42:57 June 20 

September 01 11:28:44 August 30  

2012 

April 03 11:39:35 March 30 

May 25 11:30:21 May 25 

June 08 11:47:27 June 12 

July 26 11:32:19 July 24 
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2.4. Approach / Methods 

The main objective of this study was to derive an accurate and reliable time-series of LAI on 

multi-temporal RapidEye images for the two intensively investigated winter wheat fields in the 

Rur catchment. For this purpose, LAI was estimated through a logarithmic relationship between 

LAI and respective vegetation indices (e.g., NDVI, SAVI, and their respective red-edge based 

modifications) calculated on RapidEye images. The LAI time-series (LAIrapideye) obtained from 

RapidEye images was then validated with the time-series of destructive LAI measurements 

(LAIdestr) in order to choose a more optimized vegetation index. Validation results of the LAI 

calculated on RapidEye imagery [standard L3A and processed images 

(atmospheric/radiometric correction)] with destructive LAIdestr were mutually compared. A 

flowchart (Figure 2.3) summarizes different vegetation indices and various approaches adopted 

for this study.  
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LAISAVI   LAISARE 

Destructive LAI 
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Figure 2.3. Flowchart description of the study. 
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2.4.1. The Need for Radiometric/Atmospheric Correction 

In this study, LAI computation on RapidEye imagery is based on several vegetation indices 

(NDVI, SAVI, NDRE and SARE). These indices are already normalized where difference of 

two spectral bands is normalized by the sum of the same spectral bands. Different atmospheric 

conditions affect the absolute reflectance of each band. Therefore the necessity for absolute and 

relative radiometric/atmospheric correction needs to be analyzed. Here, I focused on the 

correlation between in situ LAI (LAIdestr) and three processing levels for considering the 

radiometric/atmospheric conditions: i) relative radiometric normalization, ii) specific absolute 

atmospheric correction, and iii) standard RapidEye Level 3A delivery without further 

processing.  

The method used for relative radiometric normalization was the Iteratively Re-weighted - 

Multivariate Alteration Detection (IR-MAD) (Canty et al., 2004; Canty and Nielsen, 2008). 

The band-wise IR-MAD transformation was applied to a set of bi-temporal satellite images (all 

5 bands) to select invariant pixels from the two dates, i.e., reference image and target image. 

Satellite images acquired under the most appropriate atmospheric and illumination conditions 

were taken as reference to normalize the target. Generally, the satellite image acquired on June 

27, 2011 was used as the reference image in this study. If there was a large time gap between 

reference image and target images, it became difficult to find enough pseudo-invariant pixels 

for adequate normalization. Then, a temporally close already normalized image (April) was 

selected as reference image. The resultant normalized target image should appear as if it were 

acquired with the same sensor and atmospheric conditions of the reference image (Hall, 1991).  

For absolute radiometric/atmospheric correction, the Atmospheric Correction Algorithm, 

ATCOR-2 (Richter, 1996a, b) was applied to the time-series of RapidEye imagery. The 

ATCOR-2 incorporates image center (nadir)-based date, season and landuse-based atmospheric 

visibility, aerosol types (i.e., rural, urban, desert, maritime, spring, summer and winter etc.), 

spacecraft view angle, illumination azimuth angle and illumination elevation angle for the 

respective RapidEye image. Typically, ATCOR-2 is applied to flat terrains, which is given for 

the agriculturally intensively used region under investigation with 60 meter average elevation. 
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2.4.2. Estimation of LAI Time-series from RapidEye 

First, NDVI (Normalized Difference Vegetation Index) was calculated. NDVI is the difference 

of the reflectance at near infrared (NIR) and Red (RED) spectral bands normalized by the sum 

of the reflectance at these spectral bands (Eq. 2.1): 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
                                                (2.1) 

 
NDVI (Rouse et al., 1973) has wide applications providing information about vegetation and 

chlorophyll content in leaves. NDVI has good potential to extract useful information regarding 

dynamic changes in different vegetation types, making it a good indicator for investigating such 

changes temporally (Geerken et al., 2005; Xie et al., 2008). Beck et al. (Beck et al., 2006) 

presented a double logistic function for modeling time-series of MODIS NDVI for higher 

latitude environments. Based on NDVI, the fractional vegetation cover [FVCNDVI (Eq. 2.2)] was 

derived: 

 

𝐹𝑉𝐶𝑁𝐷𝑉𝐼 =  
𝑁𝐷𝑉𝐼 −  𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣  − 𝑁𝐷𝑉𝐼𝑠
                                  (2.2) 

 
as used by Zeng et al. and Xiao & Moody (Zeng et al., 2000; Zeng et al., 2003; Xiao and 

Moody, 2005). Here, NDVIs represents the NDVI values for bare soil while NDVIv represents 

the NDVI values at full vegetation cover in respective images of the time-series. The FVC was 

calculated to avoid mixed signals in satellite data (Xiao and Moody, 2005). For this purpose, 

NDVI was scaled between lowest NDVIs (bare soil) and highest NDVIv (dense vegetation) to 

calculate fractional vegetation cover (Eq. 2.2). For this model NDVIs and NDVIv were selected 

through histogram evaluation. Subsequently LAI was calculated through a given logarithmic 

relation (Eq. 2.3) between respective FVCNDVI and LAI (Norman et al., 1995, 1996): 

 

𝐿𝐴𝐼𝑁𝐷𝑉𝐼 =  
− log(1 − 𝐹𝑉𝐶𝑁𝐷𝑉𝐼)

𝑘(𝜃)
                      (2.3) 

 
Here, k(θ) is the light extinction coefficient for a given solar zenith angle. The solar zenith angle 

(θ) depends on terrain geometry, solar declination, solar elevation angle, latitudinal location 

and day of the year (Propastin and Erasmi, 2010). The light extinction coefficient is a measure 

of attenuation of radiation in the canopy. The model parameter, k(θ), was calibrated with in situ 
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LAI (also see section 5.2). Here, the aim was first to find a good correlation (r), whereas the 

estimated LAI magnitudes may not be in line with in situ LAI in terms of absolute prediction 

accuracy i.e., Root Mean Square Deviation [RMSD (Eq. 2.4)]:  

 

𝑅𝑀𝑆𝐷 = √∑
(𝐿𝐴𝐼𝑟𝑎𝑝𝑖𝑑𝑒𝑦𝑒(𝑖) − 𝐿𝐴𝐼𝑑𝑒𝑠𝑡𝑟(𝑖))2

𝑛

𝑛

𝑖=1
                       (4.4) 

 

Number of observations ‘n’ were different for both test sites under investigation [‘n = 11’ for 

Selhausen and ‘n = 6’ for Merzenhausen (Table 2.1)]. Second, the subsequent selection of 

adequate k(θ) will focus on the improvement of the RMSD. The extinction coefficient was 

optimized to reduce error between in situ LAI (LAIdestr) and LAIrapideye (LAI derived from 

vegetation spectral indices e.g., LAINDVI).  

A spatial separation into a calibration and a validation data set is performed in order to 

independently optimize k(θ) and validate the LAIrepideye results. Three points per field were 

selected for validation, whereas the point combination with the maximum distance sum was 

selected to adequately cover the within-field heterogeneity. The residual points were used for 

k(θ) calibration.  

2.4.3. Impact of the Soil Contribution on LAI Calculation 

The soil contribution to the reflectance in crop fields can be relatively high, especially in the 

early stages of crop growth, which can cause inaccurate estimates of LAI. To account for this, 

I also utilized the Soil Adjusted Vegetation Index (SAVI), developed by Huete (Huete, 1988), 

as vegetation index for LAISAVI estimation. The SAVI algorithm (Eq. 2.5) (Huete, 1988) has 

the same structure as NDVI with a modification to correct for the influence of the soil brightness 

of bare soils or soils with low vegetation: 

 

𝑆𝐴𝑉𝐼 = (
𝑁𝐼𝑅 − 𝑅𝐸𝐷

(𝑁𝐼𝑅 + 𝑅𝐸𝐷) + 𝐿
)  1 + 𝐿                                      (2.5) 

 

where L stands for soil brightness correction factor and its value is 0 for dense vegetation and 

1 for bare soil (Huete, 1988). Here, L = 0.25 was used keeping in view the status of vegetation 
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availability during the in situ measurement campaign. Like NDVI, SAVI was also used for LAI 

calculation using Eq. 2.3, however, unlike NDVI, SAVI is directly used in Eq. 2.3 without FVC 

calculation. SAVI reduces the impact of soil reflectances by incorporating the soil brightness 

correction factor (L). Therefore calculation of FVC before LAI estimation was not considered 

here.  

2.4.4. Role of the Red-edge Band 

The red-edge spectral band represents portion of the spectral reflectance where rapid changes 

occur in the reflectivity of vegetation (Figure 2.2). I have evaluated this portion of the solar 

spectrum (captured by RapidEye system) for vegetation by incorporating it into the vegetation 

indices for LAI calculation (i.e., LAINDRE and LAISARE). Red-edge based vegetation indices i.e., 

the Normalized Difference Red-edge index {NDRE (Eq. 2.6) (Gitelson and Merzlyak, 1994b, 

a; Sims and Gamon, 2002)} and the Soil Adjusted Red-edge index [SARE (Eq. 2.7)], are 

calculated by replacing the red spectral band (0.630 – 0.685 µm) with the red-edge (RE) spectral 

band (0.690 – 0.730 μm) in Eq. 2.1 (NDVI) and Eq. 2.5 (SAVI). The RE spectral band is more 

sensitive towards vegetation than the RED spectral band (Figure 2.2). The modified form of 

equations 2.1 and 2.5 for RE are shown as Eq. 2.6 and 2.7: 

 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
                                                          (2.6) 

 

𝑆𝐴𝑅𝐸 =  (
𝑁𝐼𝑅 − 𝑅𝐸

(𝑁𝐼𝑅 + 𝑅𝐸) + 𝐿
)  1 + 𝐿                                  (2.7) 

 

The new RE-based indices were renamed as Normalized Difference Red-edge index (NDRE) 

and Soil Adjusted Red-edge index (SARE) for NDVI and SAVI respectively. 

2.5. Results and Discussion 

2.5.1. Impact of the Absolute and Relative Atmospheric/Radiometric Correction 

One example of an additional atmospheric correction to the L3A data set is presented in Figure 

2.4. Here, it shows the difference in the visual appearance (i.e., natural color composite display) 

of standard L3A RapidEye (A), and IR-MAD corrected (C) images from the mosaic, while part 

B represents the reference image for IR-MAD normalization. In figure 2.4, part A and C were 
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acquired on April 2, 2011 while part B was acquired on April 24, 2011. Due to the normalization 

procedure, part C compares well to part B. This improvement needs to be verified statistically. 

Changes due to the phenological cycle are visible from B to C.  

 
 

 
 

Figure 2.4. Part of the standard L3A RapidEye image from April 02, 2011 (A). The reference 

image dated April 24, 2011 (B). IR-MAD processed image (C). RGB band combinations are 3-

2-1. 

 

For a single date, the results of different atmospheric correction strategies are highly correlated. 

However, the regression slope is different for each date, which affects the time-series analysis 

for a single pixel. Therefore, the analysis of different atmospheric correction strategies is 

mandatory prior to LAI time-series analysis. Before deriving LAI, different vegetation indices 

(i.e., NDVI, SAVI, NDRE and SARE), based on the standard L3A, IR-MAD and ATCOR 

processed RapidEye imagery were directly compared to LAIdestr (Table 2.2). Table 2.2 shows 

higher correlation coefficients for standard L3A RapidEye spectral indices with LAIdestr than 

the IR-MAD processed vegetation indices at both test sites. However ATCOR works well at 

the Merzenhausen site and presents higher correlations than L3A and IR-MAD except for red-

edge based indices (NDRE and SARE) where ‘r’ is similar for L3A and ATCOR imagery. All 

correlations are statistically significant (p < 0.05) except the NDVI and SAVI (IR-MAD 

processed) at the Merzenhausen winter wheat field.  
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Table 2.2. Direct comparison of different spectral vegetation indices calculated on RapidEye 

L3A, IR-MAD and ATCOR processed RapidEye data with LAIdestr for winter wheat at two 

different locations. Top numbers in each cell represent the r for the Selhausen field (2011-2012), 

the bottom numbers in each cell represent the Merzenhausen field (2011), in brackets the 

significance level (p-value) is given. 

 

Spectral 
Vegetation Index 

Different atmospheric correction methods 

 L3A IR-MAD ATCOR 
NDVI 0.85 (0.0005) 

0.85 (0.033) 
0.72 (0.0077) 
0.77 (0.075) 

0.60 (0.040) 
0.90 (0.012) 

NDRE 0.90 (0.0001) 
0.92 (0.009) 

0.70 (0.0104) 
0.83 (0.040) 

0.68 (0.014) 
0.92 (0.007) 

SAVI 0.85 (0.0005) 
0.85 (0.033) 

0.72 (0.0081) 
0.77 (0.075) 

0.60 (0.040) 
0.90 (0.012) 

SARE 0.90 (0.0001) 
0.92 (0.009) 

0.70 (0.0121) 
0.83 (0.040) 

0.68 (0.014) 
0.92 (0.007) 

 
 
 
As the overall correlation relationship between the different spectral vegetation indices is 

similar, and for simplification, the following analysis about the need for atmospheric correction 

for LAI derivation is based on NDVI-related spectral analysis only. For validating RapidEye-

derived LAI I used a general k(θ) = 0.25 in Eq. 2.3 for both test fields. Results are listed in 

Table 2.3. For these NDVI-based LAI (LAINDVI), ATCOR produced almost similar results like 

IR-MAD, whereas L3A was comparatively better correlated with in situ LAIdestr. Similar to 

direct comparison, LAINDVI derived from ATCOR processed imagery gave better correlation 

results for Merzenhausen (r = 0.89, RMSD = 2.30). ATCOR processing works differently for 

two separate fields with different levels of surface heterogeneity in terms of vegetation 

health/density. However, with respect to lower RMSD and consistency of better validation 

results for two separate sites, the L3A RapidEye imagery are preferred. It is evident from the 

temporal sequence (Figure 2.5) and scatter plot (Figure 2.6) that the LAINDVI (L3A) data have 

comparatively less uncertainty. The LAINDVI after ATCOR and IR-MAD processing are more 

scattered as compared to the LAINDVI from RapidEye L3A imagery (Figure 2.6). The same 
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scatter is visible in the temporal sequence (Figure 2.5) for LAINDVI calculated on IR-

MAD/ATCOR processed imagery. However, all the correlations are statistically significant (p 

< 0.05), except the IR-MAD processed LAINDVI (p = 0.138) at Merzenhausen (Table 2.3), which 

is not significant (p > 0.05). The LAINDVI calculated on the standard RapidEye L3A imagery 

show better correlation with the destructive LAIdestr [r = 0.82 and 0.78 for Selhausen and 

Merzenhausen respectively (Table 2.3)]. 

 
Table 2.3. Comparison of the LAINDVI (RapidEye standard L3A, IR-MAD and ATCOR 

processed) with LAIdestr, in winter wheat fields at Selhausen and Merzenhausen test sites. 

(Numbers in bold represent the best correlation in a column while underlined number represent 

the insignificant correlation) 

 

LAIrapideye and LAIdestr  
for winter wheat  
 

Selhausen (2011-12) Merzenhausen (2011) 

  r p-value RMSD   r p-value RMSD 

LAINDVI (L3A) 
[k(θ)=0.25] 
 

0.82 0.0010 0.99 0.78 0.05 1.09 

LAINDVI (IR-MAD) 
[k(θ)=0.25] 
 

0.71 0.0093 0.89 0.68 0.138 1.70 

LAINDVI (ATCOR)  
[k(θ)=0.25] 

0.68 0.014 0.91 0.89 0.016 2.30 
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Figure 2.5. Temporal sequence of field-average destructive LAIdestr with remote sensing based 

LAINDVI (RapidEye L3A imagery, IR-MAD and ATCOR processed) at Selhausen winter 

wheat field for 2011-2012. 

 
 

 
 

Figure 2.6. Scatter Plot of the LAINDVI (RapidEye standard L3A, IR-MAD and ATCOR 

processed) with LAIdestr for winter wheat field at Selhausen for 2011 and 2012 (blue) and at 

Merzenhausen for 2011 (red). 
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The preceding multispectral index of LAI (i.e., NDVI) is already normalized (difference of two 

spectral bands is normalized by the sum of the same spectral bands). This normalization could 

be a possible reason why absolute and relative atmospheric/radiometric corrections 

(normalization) do not satisfy my basic assumption for using it. The absolute and relative 

atmospheric/radiometric corrections normalize satellite images to the best atmospheric and 

illumination conditions in an absolute and relative way respectively. It removes or minimizes 

the influence of varying atmospheric and illumination conditions (Richter, 1996b). Use of 

additional radiometric correction may generate some unavoidable uncertainties in the remote 

sensing data (Gu et al., 2011) which is also evident in this study for ATCOR/IR-MAD 

processed LAINDVI with LAIdestr (Figures 2.5 and 2.6). The effect of additional noise due to 

additional absolute and relative radiometric/atmospheric processing may be more prominent 

when bare soil reflectance is dominant over vegetation (Figure 2.5). Moreover, the reduced 

sunlight during northern hemisphere winter (Figure 2.5) firstly increases the noise-to-signal 

ratio at a passive sensor and secondly the different light characteristics during winter cannot be 

completely considered with the ATCOR and IR-MAD methods. Decrease in the correlation 

coefficients (r) for ATCOR/IR-MAD processed indices in Table 2.3 (except for ATCOR at 

Merzenhausen) is another evidence of uncertainties in LAI estimation after the application of 

atmospheric/radiometric correction. Factors such as radiometry, the atmosphere, topography, 

sun glint effect and adjacent pixel influences, necessary for radiometric correction, are not fully 

corrected (Abdou et al., 2006), and inappropriate use (or unavailability) of these variables 

makes the radiometric correction more challenging (Gu et al., 2011).  According to Qi et al. 

(2000) the effect of atmospheric correction is not significant on remote sensing based estimation 

of vegetation variables. Comparison of the standard L3A and ATCOR/IR-MAD processed 

LAINDVI (Table 2.3 and Figures 2.5 and 2.6)  with LAIdestr  for both test sites make 

atmospheric/radiometric correction (ATCOR & IR-MAD) unnecessary for this validation study 

for winter wheat based on RapidEye Level 3A images. During on-ground processing, 

radiometric and sensor calibrations/corrections are applied to the Level 3A RapidEye imagery 

(BlackBridge-RapidEye, 2013). My results show that these calibrations (see section 2.3.1) 

provide satisfying LAI estimates, and there is no need to apply any further 

calibration/normalization like ATCOR and IR-MAD. The following analyses are therefore 

based on the L3A product without further atmospheric correction. 
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2.5.2. Estimation of LAI Time-series from RapidEye 

The ability of RapidEye data to adequately map in situ LAI is based on the adequate selection 

of the light extinction coefficient, k(θ), in Eq. 2.3. I evaluated a range of k(θ) from 0 - 1 in Eq. 

2.3 for several vegetation indices of winter wheat (Figure 2.7). It was found that the value of 

k(θ) has no effect on the correlation coefficient, it only affects the RMSD. Figure 2.7 shows 

that selecting an appropriate empirical k(θ) will reduce RMSD, but to minimize the RMSD for 

various vegetation indices different k(θ) have to be selected. The present analysis showed that 

the use of a single k(θ) is challenging for heterogeneous surfaces due to varying patterns of light 

transmission (Aubin et al., 2000) and leaf morphology (White et al., 2000). Aubin et al. (Aubin 

et al., 2000), White et al. (White et al., 2000) and Propastin & Erasmi (Propastin and Erasmi, 

2010) calculated k values for different vegetation types. Aubin et al. (Aubin et al., 2000) 

reported a mean k value of 0.54 with lowest (0.40) in a mixed forest whereas highest (0.98) in 

open coniferous forest. Propastin and Erasmi (Propastin and Erasmi, 2010) calculated the 

extinction coefficient for an agro-forestry area using 30m Landsat TM with a mean value of 

0.45 (lowest 0.32 and highest 0.68). Values of k calculated by Propastin and Erasmi (Propastin 

and Erasmi, 2010) were compatible with the k values for the same biome by White et al. (White 

et al., 2000). Generally, k(θ) is set at 0.50 for all types of canopies (random distribution of leaf 

angles (Chen et al., 1997)). However, most suitable k(θ) selection needs more experiments for 

different vegetation types and indices in different geographical regions for different spatial 

resolutions.  
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Figure 2.7. Comparison of the light extinction coefficient and RMSD for NDVI, NDRE, SAVI 

and SARE based LAI for the Selhausen and the Merzenhausen winter wheat fields. 

 
 

Table 2.4. Validation result through splitting the sample set into calibration and validation sets 

for LAI estimates from RapidEye 

 
 
 
 
 
 

 

 

 

 

The light extinction coefficient ‘k(θ)’ in Eq. 2.3 has no effect on the correlation coefficient, but 

it was sensitive towards the RMSD. Therefore, a more appropriate k(θ) was selected for 

different indices and test fields in order to get a minimum possible RMSD. To evaluate the 

applicability of the optimized k(θ) for producing robust results, sample points from each test 

site were split into calibration and validation sets. The k(θ) was optimized using the calibration 

set on the basis of lowest RMSD (Table 2.4). The cross validation was performed based on the 

validation set using the relevant optimized k(θ) from Table 2.4. This validation produced 

      LAIrapideye and LAIdestr 
for winter wheat 
 

Selhausen (2011-12) Merzenhausen (2011) 

k(θ)   r RMSD k(θ)   r RMSD 
LAINDVI  0.19 0.81 1.05 0.36 0.84 0.91 

LAINDRE 0.12 0.88 1.01 0.22 0.84 0.86 

LAISAVI  0.19 0.81 0.96 0.34 0.84 0.89 

LAISARE  0.12 0.88 0.92 0.21 0.85 0.84 
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consistent results as in Table 2.3. The model used here will generate reliable estimates of LAI 

if applied beyond the under observation test fields on the satellite data used in this study. The 

k(θ) varies with spectral indices used, vegetation type and surface heterogeneity.  

The LAINDVI and LAISAVI produced identical correlation results (Table 2.4) for both test sites. 

The k(θ) is also similar for both the LAINDVI and LAISAVI for Selhausen [k(θ) = 0.19], however 

Merzenhausen site has higher k(θ) and slightly different for LAINDVI and LAISAVI [k(θ) = 0.36 

and 0.34 respectively]. Difference in k(θ) is apparently due to the surface heterogeneity (in LAI) 

at both test sites. The Selhausen test field is more heterogeneous (Rudolph et al., 2015) as 

compared to the Merzenhausen site. Vegetation at the Merzenhausen test site is more 

homogeneous, healthier and dense, hence more light is trapped by the canopy causing higher 

k(θ) [Table 2.4]. Table 2.4 shows that using red-edge band instead of red band, reduces the light 

extinction coefficient, k(θ). For using NDVI, the effect of mixed signals (including soil 

reflection) is minimized by calculating FVC (Eq. 2.2). In SAVI the effect of soil reflection is 

reduced by incorporating soil brightness correction factor, L (Eq. 2.5). However identical 

results for NDVI and SAVI exhibit accuracy of the FVC calculation for NDVI and 

incorporating the soil brightness correction factor (L) in SAVI, in order to minimize the effect 

of bare soil reflections. Figure 2.8 (upper) shows identical temporal sequence for LAISAVI and 

LAINDVI. Apparently there was no advantage of replacing the NDVI by SAVI in this study. 

There is no improvement in the correlation statistics by correlating remotely sensed LAISAVI 

with LAIdestr as compared to the LAINDVI with LAIdestr. For smaller LAI, soil reflection (in red 

spectral band) affect LAI, however, for higher LAI near infrared reflectance from vegetation 

are dominant (Asrar et al., 1984). The in situ LAI data were taken from dates when there were 

enough plants in the test fields, i.e. when the need for soil adjustment in a spectral vegetation 

index is already reduced.  
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Figure 2.8. Temporal sequence of field-average destructive LAIdestr with remote sensing based 

LAINDVI and LAISAVI (upper) and LAINDRE and LAISARE (lower). 

 
A time-series of the newly available red-edge (RE) spectral band in NDRE, SARE (section 4.4) 

was analyzed and used for LAINDRE and LAISARE estimation. Correlation results of the LAINDRE 

and LAISARE with LAIdestr  are shown in Table 2.4, and plotted together with LAIdestr [Figure 2.8 

(lower)]. Ehammer et al. (Ehammer et al., 2010) analyzed the effect of incorporating RE in 

vegetation indices, but in all cases no improvement was reported. My analysis (Tables 2 & 4) 

showed two different results in correlation statistics by using RE for better estimates of 

vegetation indices. It is evident from Table 2.2 that NDRE and SARE (based on red-edge band) 

gave better correlation coefficients (r = 0.90 and r = 0.92 for Selhausen and Merzenhausen 

respectively) and higher correlation significance (p < 0.05). Second, LAINDRE and LAISARE 

exhibit better correlation coefficients for Selhausen (r = 0.88), whereas Merzenhausen presents 

identical correlation coefficient (r) for all indices except LAISARE which presents r = 0.85. It 

was already mentioned that for utilizing LAINDRE and LAISARE a reduced light extinction 

coefficient, k(θ) is optimal.  Besides surface heterogeneity, spectral band selection in vegetation 

indices also affects the k(θ) in Eq. 2.3. The LAINDRE and LAISARE is preferable here due to better 

and consistent correlation results. 
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Additionally the model [with a single k(θ) = 0.25] was applied to the northern part of the Rur 

catchment (on L3A data) to develop a winter wheat LAI map (Figure 2.9) for April, 2, 2011, 

using Rur catchment landuse map for 2011 (Lussem and Waldhoff, 2013). The LAINDVI map 

has a mean LAI of 2.44 with a standard deviation of ±1.55, whereas the LAINDRE has a mean 

LAI of 2.27 with standard deviation of ±1.25. The mean LAI (in both cases) for winter wheat 

seems very reasonable on this date from the growing season. 

Previous studies (Eitel et al., 2011; Schuster et al., 2012; Asam et al., 2013) reported 

improvement by using RE in vegetation based studies. According to Asam et al. (Asam et al., 

2013), red-edge based vegetation indices i.e., NDVIrededge (Gitelson and Merzlyak, 1994b) and 

red-edge ration index 1 (Ehammer et al., 2010) improve regression modelling. They declare 

red-edge band suitable for LAI mapping in grassland. Eitel et al. (Eitel et al., 2011) reported 

improvement in conifer woodland stress detection from satellite-based red-edge monitoring. 

According to Eitel et al. (Eitel et al., 2011) NDRE improves the stress detection in conifer 

woodland as compared to the traditionally used NDVI and green NDVI. Schuster et al. 

(Schuster et al., 2012) reported improvement in classification accuracy of the vegetation classes 

(land use) using RE. Spectral reflectance in RE is comparatively higher than in RED, and it 

represents gradual increase in reflectance towards NIR (as shown in Figure 2.2). Figure 2.2 

shows that the RE band is more sensitive towards vegetation (highly sensitive to the chlorophyll 

content (Filella and Penuelas, 1994)) than the red band. This study has shown that incorporating 

reflectance values captured in RE into various vegetation indices improve the validation results 

(Tables 2.2 and 2.4) as compared to the red-based vegetation indices (NDVI and SAVI).  
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Figure 2.9. Winter wheat LAINDRE map of the northern Rur Catchment for April, 2, 2011. 

 

2.6. Conclusions and Outlook 

The ability of RapidEye to provide time-series of leaf area index (LAI) for winter wheat was 

evaluated in the Rur catchment, Germany, focusing on two fields where destructive in situ LAI 

measurements (LAIdestr) were available. It was found that time-series of various spectral 

vegetation indices (NDVI, NDRE, SAVI, and SARE) were highly correlated to the time-series 

of LAIdestr, where the red-edge-based indices NDRE and SARE provided the best correlations. 

Three atmospheric correction methods, namely the Standard RapidEyeLevel 3A delivery, the 

additional relative narmalization method IR-MAD as well as the additional absolute ATCOR 

correction, were evaluated according to their correlation to in situ LAI. IR-MAD processed 

imagery show generally lower correlation than those on L3A images. For ATCOR, the direct 

correlation of the spectral index to LAIdestr is very high for a relatively homogeneous field 
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(Merzenhausen), but very low for a relatively heterogeneous field (Selhausen). Further analysis 

based on NDVI-related calculation of LAI found for ATCOR relatively large RMSE, whereas 

for the standard RapidEye L3A product a moderate RMSE was observed. With these results I 

came to the conclusion that additional atmospheric correction is not necessary for generating 

time-series of LAI from RapidEye. Therefore, the following analysis was performed on the 

standard L3A product only. 

In general, the estimation of LAI time-series for the two fields in focus was possible with 

adequate accuracy. The absolute prediction accuracy in terms of RMSD to predict LAIdestr time-

series by RapidEye was found to be sensitive to the selection of the light extinction coefficient 

k(θ). In this study the whole valid range (0-1) of k(θ) was optimized for minimizing the RMSD 

between LAI estimations from RapidEye (LAINDVI, LAINDRE, LAISAVI, and LAISARE) and 

LAIdestr for a calibration data set. For an independent validation data set the the optimized k(θ) 

was used to predict LAI. 

Owing to the surface heterogeneity of the two fields in focus, varying pattern of radiation 

transmission (Aubin et al., 2000) and selection of spectral bands, it was not possible to identify 

a single k(θ) valid for large area LAI mapping. Optimum k(θ) varied between 0.12 and 0.36, 

where in general it was lower for the Selhausen field than for the Merzenhausen field. 

Incorporating the soil contribution into the LAI estimation by the Soil Adjusted Vegetation 

Index (SAVI) resulted in the same optimum k(θ) and correlation coefficient, but it did not 

significantly improve RMSD. However, the implementation of the red-edge spectral band in 

the LAI estimation by the Normalized Difference Red-edge Index (NDRE) and the newly 

introduced Soil Adjusted Red-edge Index (SARE) reduced the optimum k(θ), slightly increased 

the correlation coefficient and slightly reduced RMSD. Results from the present study suggest 

the use of the red-edge spectral band in NDRE and SARE for better estimates of LAI on 

RapidEye satellite imagery. 

This validation study at hand was exclusively carried out for winter wheat, and further studies 

are needed for other crops and vegetation types (grasslands and forests). The high spatial 

resolution of RapidEye could be used for large scale SVAT (Soil Vegetation Atmosphere 

Transfer) models by providing generalized Plant Functional Type (PFT) parameters for 

different land cover types. Using more precise and high resolution estimates of remotely sensed 

LAI in hydrological and radiative transfer models may improve soil moisture (Hasan et al., 
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2014) and evapotranspiration retrieval (Duchemin et al., 2006). Remotely sensed fine 

resolution LAI maps identify the field scale variability of vegetation and it could be used to 

identify the subsoil heterogeneity in addition to geophysical methods (Rudolph et al., 2015). 

Moreover, the analysis of the red-edge spectral band impact to LAI estimation provides basic 

information also for the European Space Agency’s (ESA) Sentinel-2 mission (Delegido et al., 

2011). 
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3. A Simplified Approach to Derive Continuous Hourly Time-series of Latent Heat 
Flux by Remote Sensing Using a Two Source Energy Balance Model: A Case Study in 
the Rur Catchment, Germany2 
 

3.1. Introduction 

Evapotranspiration (ET) is the largest component of the energy budget of the land surface, 

where the incoming energy is partly utilized to convert liquid water into vapour (Trenberth et 

al., 2009; Jung et al., 2010). The process of evapotranspiration transfers the largest part of water 

received on the Earth as precipitation back to the atmosphere (Oki and Kanae, 2006; Jung et 

al., 2010; McMahon et al., 2013). ET is a central process of the climate system (Jung et al., 

2010) and considered as the second largest component of the terrestrial water balance after 

rainfall. Being a crucial factor of the hydrological cycle, spatial and temporal distribution and 

variability of the evapotranspiration is essential for numerous disciplines including hydrology, 

meteorology, land-atmosphere interaction studies, (bio)geosciences, runoff prediction, 

agriculture, drought control and monitoring etc. ET can be linked to the water balance and 

hydrological responses and in turn to changing climate and land use (Thompson et al., 2011). 

Evapotranspiration is the main source of transferring water (from soil and plants) back to the 

atmosphere, where direct evaporation from plant surface and transpiration from leaves 

constitute a major part of ET in addition to evaporation from the soil surface. It can be used to 

better explain the exchange of water and energy between soil, vegetation and atmosphere. 

Amount and distribution of solar radiation, surface temperature, air temperature, density and 

type of vegetation are the major factors controlling the rate of evapotranspiration. Wind speed 

affects ET by moving the water vapour away. However, wind speed is more effective under 

arid climatic conditions and less effective under humid conditions (Allen et al., 1998; Allen et 

al., 2005). 

Conventional methods for ET estimation, e.g. pan evaporation, atmometers, lysimeters, eddy 

covariance (EC), scintillometers and Bowen ratio (BR) are restricted to local measurements 

with a footprint of at most about a hectare, and hence do not fit for regional and continental 

                                                           
2Adapted from: Ali, M., Montzka, C., Jonard, F., Jadoon, K. Z., Graf, A., Vereecken, Harry., (in preparation). A 
Simplified Approach to Derive Continuous Hourly Time Series of Latent Heat Flux by Remote Sensing Using a 
Two Source Energy Balance Model: A Case Study in the Rur Catchment, Germany. 
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scale spatial distribution of ET on heterogeneous land surfaces (Wang et al., 2007). However, 

owing to their reliable and accurate results, the conventional measurements are used to validate 

remote sensing based ET for large geographical areas. To estimate evapotranspiration on a 

regional scale, energy balance approaches based on remote sensing data are widely employed 

(Norman et al., 1995; Anderson et al., 1997; Mecikalski et al., 1999; Li et al., 2005; Kalma et 

al., 2008; Kustas and Anderson, 2009; Anderson et al., 2011; Cammalleri et al., 2012; Colaizzi 

et al., 2012; Maes and Steppe, 2012; Mallick et al., 2014). The energy balance methods do not 

require information about further water balance components including rainfall, runoff and 

moisture holding capacity of the soil (soil hydraulic properties) for estimating ET (Anderson et 

al., 2011). Being an energy demanding process, an increase in the rate of evapotranspiration 

causes a decrease of surface temperature of the canopy (Maes and Steppe, 2012). If the energy 

storage in the canopy as well as energy advection are assumed to be negligible, ET can be 

calculated using the energy balance at the surface (Eq. 3.1):  

 

LE = 𝑅𝑛 − (G + H)                                                                   (3.1) 

 

where the latent heat (LE), energy transfer related to ET, is the residual of the surface net 

radiation (Rn), ground surface heat flux (G) and the sensible heat flux (H).  

Energy balance methods quantify the amount of latent heat which is a part of the incoming 

radiation that transforms liquid water to vapour (evaporation + transpiration). Owing to its 

dependency on the amount and duration of incoming solar radiation and other meteorological 

parameters, changes in ET may occur on short time scales. Therefore, monitoring the temporal 

and spatial anomalies in evapotranspiration are of enormous importance for various 

applications. The high sensitivity of soil surface temperature (TS) towards soil moisture (Kustas 

and Anderson, 2009; Mallick et al., 2014) makes soil moisture an important controlling factor 

for the exchange and distribution of water and energy fluxes on Earth surface (Vereecken et al., 

2008). Most remotely sensed soil moisture products represent only the upper few centimeters 

of the soil, causing comparatively larger uncertainties in areas with dense vegetation (Scipal et 

al., 2008; Jung et al., 2010). 

During the last decades, significant advancements have been reported in literature utilizing 

remotely sensed data to map evapotranspiration beyond the limit of in situ footprints, ranging 
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from local to regional scales. Satellite-based remote sensing data provide fine to coarse 

resolution information in an operational manner. In addition to spatial resolution, temporal 

consistency of satellite-based remotely sensed data is also important for mapping 

evapotranspiration, as changes in latent heat may occur on short time scales (less than an hour). 

ET retrieval methodologies and required remotely sensed data (without or with a minimum of 

in situ data) are needed operationally. Simultaneous availability of fine spatial and high 

temporal resolution data are required for retrieving spatio-temporal variability in 

evapotranspiration. Remotely sensed energy fluxes are widely utilized in energy balance 

models for calculating surface energy fluxes (e.g., latent heat, sensible heat and ground heat 

fluxes). However, no single satellite system is capable of measuring a global coverage of 

required energy fluxes in both fine spatial and high temporal resolution (Anderson et al., 2011; 

Cammalleri et al., 2013; Bai et al., 2015). Balancing the incoming solar radiation reaching the 

earth surface, Norman et al. (1995) proposed two types of parametrizations of the resistance to 

heat flow in his two source model, i.e. series and parallel. In the parallel model (not discussed 

here), interactions between the soil and canopy fluxes are not considered, while the series model 

(used here) considers this interaction (Li et al., 2005). In the series formulation both the soil 

and vegetation affect the microclimate within the canopy air space. Anderson et al. (1997) 

evaluated the energy balance through their model ALEXI (Atmospheric Land EXchange 

Inverse model) using surface temperature measured with ground-based infrared thermometers. 

ALEXI was the extension of the two source model (TSM) of Norman et al. (1995) based on the 

concept of resistance network in series (Norman et al., 2000; Anderson et al., 2011). Using 

surface temperature measured by Geostationary Operational Environmental Satellite (GOES-

8), Mecikalski et al. (1999) used the ALEXI model on continental scale (approximately 10 km 

spatial resolution). The design of ALEXI was aimed to reduce the need of ancillary 

meteorological data and takes advantage of high temporal resolution of geostationary satellites 

(Anderson et al., 2011). The Disaggregated Atmosphere Land Exchange Inverse model 

(DisALEXI) was designed for spatial disaggregation of the ALEXI fluxes to produce relatively 

fine spatial resolution (field-scale) surface energy fluxes using Thermal Infrared (TIR) images 

(Norman et al., 2003; Anderson et al., 2011). Li et al. (2005) evaluated the parallel and series 

model of Norman et al. (1995) for a wide range of soybean and corn crops as well as soil 

moisture conditions, where both the parallel and series model produced similar results in terms 

of root mean square difference. However, the series resistance parametrizations are preferable 

over the parallel one for heterogeneous landscapes containing a large range of vegetation cover 
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(Kustas and Norman, 1999; Kustas et al., 2005; Li et al., 2005). Colaizzi et al. (2012) compared 

ET derived from two different forms of TSM (i.e. TSEB-TC-TS and TSEB-TR) using component 

and composite soil surface and canopy temperatures. Mallick et al. (2014) demonstrated a novel 

approach called STIC (Surface Temperature Initiated Closure) which integrates the radiometric 

surface temperature into the Penman-Monteith (PM) equation for surface energy fluxes 

estimation. Due to the complexity of the process and dependency on various weather and 

meteorological parameters, mapping of latent heat on a high spatial and temporal scale has been 

challenging. In addition to complex weather variables, the presence of clouds is another factor 

restricting the operational availability of remotely sensed evapotranspiration. 

Most applications (like agriculture, water management, etc.) require ET mapping operationally 

from field to regional scale with narrow time steps. To overcome the unavailability of required 

data, several methods are employed to get consistent hydrological data for better interpretation 

of hydrology in an area. Previously several studies e.g., Alavi et al. (2006), Chen et al. (2012), 

Cristea et al. (2013), Falge et al. (2001), Irmak et al. (2003), Irmak et al. (2006), Kovoor and 

Nandagiri (2007), and Mecherikunnel et al. (1995), used regression models to predict gap-free 

energy fluxes and evapotranspiration from various weather variables affecting/controlling LE 

(evapotranspiration). Cristea et al. (2013) established a relationship between evapotranspiration 

and key variables affecting evapotranspiration, i.e., incoming solar radiation, air temperature, 

relative humidity and wind speed. According to Cristea et al. (2013), annual and growing season 

average solar radiation have the strongest correlation with calculated reference ET above the 

United States. Gong et al. (2006) conducted a sensitivity analysis to evaluate the effect of 

various weather variables on reference evapotranspiration. Results from Gong et al. (2006) 

show that reference ET is sensitive to changes in relative humidity followed by incoming solar 

radiation, air temperature and wind speed in the southeast region of China. Irmak et al. (2003) 

estimated reference evapotranspiration (ETo) from incoming solar radiation and mean air 

temperature (Rs-Tm) and net radiation and mean air temperature (Rn-Tm) through multilinear 

regression. Along with other methods, Alavi et al. (2006) used multiple regression by 

establishing a regression relationship (by selecting 10 and 20 day time windows) between latent 

heat flux, available energy (Rn-G) and vapour pressure deficit (D) to fill gaps in 

evapotranspiration data. Mecherikunnel et al. (1995) predicted outgoing longwave (OLR) and 

shortwave (SW) radiation using multiple linear models based on meteorological parameters 

during cloudy and cloudless conditions. Chen et al. (2012) used multiple regression with a 
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second order polynomial equation to estimate missing latent heat (LE). However, some of these 

studies were extensively based on ground measurements (Cristea et al., 2013), limited to daily 

time steps (Irmak et al., 2003; Kovoor and Nandagiri, 2007), only focused on gap-filling 

techniques (Falge et al., 2001; Alavi et al., 2006; Chen et al., 2012), or restricted to sensitivity 

analyses only (Gong et al., 2006; Irmak et al., 2006).  

The Satellite Application Facility on Land Surface Analysis (Land-SAF, 

http://landsaf.meteo.pt/) of European Meteorological Satellites (EUMETSAT) provides energy 

fluxes and vegetation data operationally, however, cloud presence reduced the number of hourly 

available estimates of latent heat. Keeping in view the sensitivity of downward shortwave 

radiation towards ET (Cristea et al., 2013) and its temporal consistency, downward shortwave 

radiation from Land-SAF was taken in this study as a main controlling meteorological variable 

to derive latent heat/ET. The relationship between latent heat estimates from the energy balance 

approach and downward shortwave radiation provides a linear function to estimate a complete 

hourly spatio-temporal time-series of latent heat for a period of five years. I have attempted to 

reduce the dependency on in situ data by performing a regression analysis between remotely 

sensed latent heat (from the energy balance approach) and shortwave radiation (from Land-

SAF). 

This study aimed to develop hourly consistent spatio-temporal time-series of evapotranspiration 

(ET) by applying the two source land-atmosphere energy exchange model of Norman et al. 

(1995) under humid conditions in the Rur catchment. I evaluated the use of satellite-based 

remotely sensed LAI, land surface temperature and net radiation for estimating the time-series 

of latent heat (causing ET). For this purpose, two approaches were used in this study. First, an 

hourly time-series of latent heat flux (LEEBM) was calculated using the two source energy 

balance approach (series formulations) using energy fluxes and vegetation information. 

Secondly, an empirical relation was established between calculated latent heat (LEEBM) and 

satellite-based down-welling shortwave radiation in order to estimate a consistent (gap-free) 

spatio-temporal time-series of latent heat (LEREG) for the study area. The calculated time-series 

of latent heat requires only remote sensing data and these estimates (LEEBM and LEREG) are 

subsequently compared to reference latent heat measured through Eddy Covariance (LEEC) to 

quantify the accuracy of the LE estimates at five test sites in the Rur catchment, Germany. 

 

http://landsaf.meteo.pt/
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3.2. Study Area 

This study was also carried out in the Rur catchment, Germany (also see section 2.2). Within 

the Rur catchment, various test sites have been established at different locations by the 

TERENO initiative [Terrestrial Environmental Observatories (http://teodoor.icg.kfa-

juelich.de/overview-de)]. The Soil Moisture and Ocean Salinity (SMOS) mission of the 

European Space Agency (ESA) and Soil Moisture Active-Passive (SMAP) mission of the 

National Aeronautics and Space Administration (NASA) are using this catchment as a 

validation area (Montzka et al., 2013; Han et al., 2015; Montzka et al., 2016; Colliander et al., 

submitted). I have selected five sites, namely, the lowland crop sites Selhausen and 

Merzenhausen, the low- and upland grassland sites Selhausen-Ruraue and Rollesbroich, and 

the forest site Wuestebach (Figure 3.1) (Zacharias et al., 2011; Graf et al., 2013; Montzka et 

al., 2013; Graf et al., 2014; Eder et al., 2015) as validation sites for satellite-based ET estimates. 

The Selhausen, Merzenhausen, and Selhausen-Ruraue test fields are located in the northern part 

of the catchment covered by crops; mainly winter wheat and sugar beet (Reichenau et al., 2016). 

Soils at the Selhausen area (the northern part of the Lower Rhine Embayment) exhibit a 

relatively high heterogeneity owing to the fraction of coarse material and grain size distribution 

(Rudolph et al., 2015). According to Weihermueller (2005), the Merzenhausen soil is composed 

of fluvial deposed loess with Pleistocene/Holocene and located on a high terrace of the Rur 

river. The Rollesbroich and Wuestebach sites are located in the southern part of the catchment 

which is mostly covered by the bedrock of the Eifel Mountains. The Rollesbroich site is mainly 

occupied by grasslands surrounded by forests in the vicinity and the Wuestebach site is 

dominantly covered by forests. The southern part of the catchment receives high annual 

precipitation with a moderate potential evapotranspiration (850–1300 and 450–550 mmyear-1, 

respectively) as compared to the northern part that receives relatively low annual precipitation 

and has a higher potential evapotranspiration (650–850 and 580–600 mmyear-1, respectively) 

(Bogena et al., 2005b; Han et al., 2015).  
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Figure 3.1. Rur Catchment, Germany, with Eddy Covariance sites. 

 

3.3. Data and Methods 

3.3.1. In Situ Flux Measurements 

In situ flux data are available from various Eddy Covariance (EC) sites in the Rur Catchment, 

Germany (also see section 3.2 and Figure 3.1). EC-based latent heat (LEEC), sensible heat (HEC), 

shortwave radiation, longwave radiation and net radiation data from 2011 to 2015 were used 

except for the Wuestebach site (available since 2013.) Shortwave radiation data at the 

Selhausen-Ruraue site were missing and therefore excluded from the comparison analysis of 

satellite-based shortwave radiation with in situ measurements. Latent and sensible heat fluxes 

are computed on 30 minute intervals (Graf et al., 2013), whereas the state variables (shortwave 

and longwave radiation) are averaged on 10 minute intervals. Hourly mean values were 

calculated for further processing. 

 

 

 



A Simplified Approach to Derive Continuous Hourly Time Series of Latent Heat Flux by Remote 
Sensing Using a Two Source Energy Balance Model: A Case Study in the Rur Catchment, Germany 

45 
 

3.3.2. Satellite-based Fluxes and Evapotranspiration Calculation 

A complete description of the approach is represented by the flow chart on Figure 3.2. For 

estimating evapotranspiration, I mainly used relevant data acquired by the Spinning Enhanced 

Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) 

geostationary satellites at a spatial resolution of 3km/pixel at nadir, i.e., ~5km for the area under 

investigation with an imaging repeat cycle of 15 minutes (Trigo et al., 2011). Data required for 

my model are leaf area index (LAI) and albedo, provided on a daily basis, land surface 

temperature estimated on 15 minute intervals, whereas energy fluxes, i.e. downwelling surface 

shortwave flux (DSSF) and downwelling surface longwave flux (DSLF) are estimated on 30 

minute intervals. Temporal consistency make Land-SAF based LAI, albedo, DSSF, DSLF and 

LST data an optimal candidate for generating long-term time-series at catchment scale. DSSF 

is the radiative energy in the spectral wavelength region of 0.3 μm and 4.0 μm reaching the 

earth’s surface. It is the integration of spectral irradiance over the wavelength interval 0.3 μm 

and 4.0 μm computed from level 1.5 SEVIRI data in the short-wave spectral regions 

corresponding to 0.6 μm, 0.8 μm and 1.6 μm (near infrared) (Trigo et al., 2011). With clear-sky 

conditions, DSSF is directly estimated and involves parametrization for the effective 

transmittance of the atmosphere (Trigo et al., 2011) based on the atmospheric transmittance 

and spherical albedo calculation methodology of Frouin et al. (1989). DSSF estimation under 

cloudy-sky conditions depends on a simplified physical description of the radiation transfer in 

the cloud-atmosphere-surface system of Gautier et al. (1980) and Brisson et al. (1999) based on 

cloud transmittance, cloud albedo and atmospheric transmittance between surface and clouds. 

Further details can be found on Land-SAF_DSSF (2011). DSLF is the total irradiance in the 

infrared spectral region (4-100 μm). Bulk parametrization schemes, merging clear-sky 

formulations with cloudy-sky formulations, are employed for DSLF estimation (Trigo et al., 

2011). Land surface temperature (LST) data are measured every 15 minutes. Land surface 

temperature (LST) is measured from the thermal infrared window (MSG/SEVIRI channels IR 

10.8, IR12.0 and MetOP/AVHRR-3 channels 4 and 5) using the generalized split-window 

(GSW) algorithm of Wan and Dozier (1996) through differential absorption in adjacent infrared 

bands and land surface emissivity correction for atmospheric effects (Land-SAF_LST, 2015). 

Hourly averaged values of DSSF, DSLF (from 30 min) and LST (15 min) were calculated. 

SEVIRI on board of MSG provide only downwelling fluxes (i.e. DSSF and DSLF). The 
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Upwelling surface shortwave flux (USSF) was calculated as a function of albedo (α) using 

equation 3.2:  

 

𝑈𝑆𝑆𝐹 =  𝛼 ∗ 𝐷𝑆𝑆𝐹                                                                            (3.2) 

 

whereas the upwelling surface longwave flux (USLF) was calculated according to Stefan 

Boltzmann’s law (Eq. 3.3):  

 

𝑈𝑆𝐿𝐹 = 𝜀 𝜎 𝑇4                                                                                   (3.3) 

 

from surface temperature (T), the Stefan Boltzmann constant (σ = 5.6703 x 10-8 W/m2K4) and 

surface emissivity (ε).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy Balance 

MODEL INPUT 

Satellite Data 
(Albedo, LAI, LST, DSSF, DSLF) 

TA = a*LST ±b 

LEEC (in situ) 

LEEBM = LEC + LES 

Calculated Variables 
(USSF, USLF, Rnc, Rns, 
G, RA, RX, RC, TAC, fC) 

u, σ, ε, ρ, cp, γ 

DSSF 

Linear Regression Fit 

LEREG = a*DSSF ±b 

Figure 3.2. Flowchart description of the study for estimating evapotranspiration. 
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The energy balance model used in this study describes the exchange of energy fluxes between 

land surface (soil + vegetation) and atmosphere using a two-source energy balance approach. 

It is based on the distribution of energy [net radiation (Rn)] on the earth surface (Eq. 3.1) and 

derivation of the available latent heat [LE (λE)] which is associated with the process of 

evapotranspiration (transpiration and evaporation) from plants and soil (Anderson et al., 2007; 

Maes and Steppe, 2012). The available net radiation is the difference between downwelling and 

upwelling radiation of all wavelengths [Eq. 3.4 (Mecikalski et al., 1999; Anderson et al., 2000)]: 

 

𝑅𝑛 = (𝐷𝑆𝑆𝐹 − 𝑈𝑆𝑆𝐹) + (𝐷𝑆𝐿𝐹 − 𝑈𝑆𝐿𝐹 )                                                (3.4) 

 

Rn,c  (Eq. 3.5) represents the net radiation divergence in the canopy (vegetation) and computed 

as the difference of net radiation (Rn) and Rn,s:  

 

𝑅𝑛,𝑐  =  𝑅𝑛 −  𝑅𝑛,𝑠                                                                                              (3.5) 

 

where Rn,s is the component penetrating to the soil [Eq. 3.6 (Norman et al., 1995)]:  

 

𝑅𝑛,𝑠 = 𝑅𝑛 e0.9 log (1−𝑓𝑐)                                                                                      (3.6) 

 

fc (Eq. 3.7) is the fractional vegetation cover (Norman et al., 1995): 

 

𝑓𝐶(𝜃) = 1 − exp (
−0.5 𝐿𝐴𝐼

cos(𝜃)
)                                                                         (3.7) 

 

Here, the subscripts s and c represent soil and canopy flux components. Vegetation cover highly 

affects the distribution of incoming net radiation into canopy and soil components. Accurate 

partitioning of the incoming solar radiation (Rn) and land surface temperature (LST) between 

soil and vegetation in two-source energy balance models promise better estimate of fluxes (LE, 

H and G). In literature (Norman et al., 1995; Anderson et al., 1997; Kustas and Norman, 1999; 

Mecikalski et al., 1999; Norman et al., 2000; Norman et al., 2003; Maes and Steppe, 2012), 

various approaches have been presented regarding the partitioning of the incoming radiation on 

the earth surface. However, due to the spatio-temporal unavailability of several parameters 
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(presented in literature) for hourly calculations, I adopted the generalized form (equations 3.5 - 

3.7) of splitting the incoming radiation into canopy and soil component. 

To run the energy balance model, radiometric land surface temperature (LST) is a key boundary 

condition used as composite of soil and canopy temperature (TS and TC). The TS and TC 

parameters were calculated using a linear simplification approach as described by Norman et 

al. (1995). Being a key parameter in land surface processes, LST have control over upward 

radiation affecting the amount of sensible and latent heat (Aires et al., 2001). LST is given by 

Eq. 3.8:  

 

𝐿𝑆𝑇 = [𝑓𝐶(𝜃)𝑇𝐶
4 + (1 − 𝑓𝐶(𝜃))𝑇𝑆

4]
1
4                                                                      (3.8) 

 

considering the fraction of vegetation. TS and TC are calculated through Eq. 3.8 using the linear 

simplification method proposed by Norman et al.(1995). Eq. 3.9 computes temperature within 

the canopy (TAC) by relating it to various resistances to heat flow and canopy/soil components 

of the land surface temperature: 

 

𝑇𝐴𝐶 = ( 

𝑇𝐴

𝑅𝐴
+

𝑇𝑆

𝑅𝑆
+

𝑇𝐶

𝑅𝑋

1
𝑅𝐴

+
1

𝑅𝑆
+

1
𝑅𝑋

 )                                                                                            (3.9) 

 

Here, RS, RA, and RX are the resistance to the heat flow above soil, aerodynamic resistance and 

heat resistance to the leaves of the canopy, respectively. Aerodynamic resistance (RA) and 

resistance (sm-1) to heat flow from canopy (RX), and soil (RS) were calculated using original 

formulation of  Norman et al.(1995). 

Spatio-temporal ambient air temperature (TA) was estimated using linear regression (Eq. 3.10):  

 

𝑇𝐴 = 𝑎 𝐿𝑆𝑇 + 𝑏                                                                                                               (3.10) 

 

where ‘a’ and ‘b’ are the regression coefficients of land surface temperature with air 

temperature measured at various ground-based meteorological stations in the study area and 

surroundings. 

Soil heat flux (G) is another important variable of the energy balance model. Estimates of G 

will affect the overall model fluxes and any error in estimating G will lead to bias in the latent 
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and sensible heat fluxes (Choudhury et al., 1987). However, presence of vegetation will 

minimize this bias (Choudhury et al., 1987). G is commonly calculated as a constant fraction 

of the soil component of net radiation [G/Rn,s (Eq. 3.11)]: 

 

𝐺 = 0.35 𝑅𝑛,𝑠                                                                                                                   (3.11) 

    

Using the aforementioned remotely sensed data, two approaches were employed to quantify 

latent heat flux. 

 

3.3.2.1. Approach 1 

First, latent and sensible fluxes were calculated using the two source energy balance method. 

The two source energy balance model has the ability to compute surface energy balance for soil 

and vegetated canopy separately. The canopy and soil components of sensible heat are derived 

as function of temperature differences (Norman et al. 1995) using calculated component 

temperatures. The canopy component of sensible heat (Hc) was computed using temperature 

gradient between canopy (TC) and within the canopy (TAC) temperatures (Eq. 3.12):  

 

𝐻𝐶 = 𝜌𝐶𝑃

𝑇𝐶 − 𝑇𝐴𝐶 

𝑅𝑋
                                                                                                             (3.12) 

 

and the soil component of sensible heat (Hs) was computed from temperature gradient between 

soil (TS) and within canopy (TAC) temperatures (Eq.3.13):  

 

      𝐻𝑆 = 𝜌𝐶𝑃

𝑇𝑆 − 𝑇𝐴𝐶 

𝑅𝑆
                                                                                                          (3.13) 

 

Composite sensible heat (HEBM) was computed from HC and HS using Eq. 3.14:  

 

     𝐻𝐸𝐵𝑀 = 𝐻𝐶 + 𝐻𝑆                                                                                                               (3.14) 
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 In these equations, ρ is the air density, Cp is the specific heat of the air. By applying the 

component energy balance, soil evaporation (LEs) and canopy transpiration (LEc) are 

computed separately. LEs was calculated as residual of the soil component of net radiation 

(Rns), soil sensible heat (Hs) and ground heat flux (G) (Eq. 3.15):  

 

            𝐿𝐸𝑠 = 𝑅𝑛𝑠 − 𝐺 −  𝐻𝑆                                                                                                     (3.15) 

 

whereas, LEc was calculated as the residual of canopy component of net radiation (Rnc) and 

canopy sensible heat (Hc) (Eq. 3.16):  

 

            𝐿𝐸𝑐 = 𝑅𝑛𝑐 − 𝐻𝑐                                                                                                              (3.16) 

 

Composite latent heat (LEEBM, causing evapotranspiration) was computed as final output of the 

energy balance model using equation 3.17: 

 

   𝐿𝐸𝐸𝐵𝑀 = 𝐿𝐸𝐶 + 𝐿𝐸𝑆                                                                                                         (3.17) 

  

3.3.2.2. Approach 2 

The presence of clouds reduces the number of available hourly variables, causing large temporal 

and spatial gaps in the output time-series of LEEBM. Therefore, in addition to the aforementioned 

energy balance approach, a second approach was developed in this study by establishing an 

empirical relationship (Eq. 3.18) between LEEBM and DSSF:  

 

          LEREG = 𝑎𝑖 𝐷𝑆𝑆𝐹 + 𝑏𝑖                                                                                                    (3.18) 

  

The regression coefficients (ai and bi) were calculated by comparing hourly latent heat flux 

(LEEBM, calculated with approach 1) and remotely sensed downwelling surface shortwave flux 

(DSSF) from satellite. Based on this relationship, a complete spatio-temporal (gap-free) time-

series of latent heat flux for the Rur catchment was estimated using equation 3.18. Latent heat 

(LEREG) was converted to equivalent evapotranspiration units (mmyear-1) from energy units 

(Wm-2) using 28.4 Wm-2 = 1 mmday-1 (Allen et al., 1998; Allen et al., 2005) with subsequent 
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conversion to mmhour-1 and mmyear-1. Latent heat fluxes measured through Eddy Covariance 

(LEEC) from the five test sites (Figure 3.1), Selhausen, Merzenhausen, Selhausen-Ruraue, 

Rollesbroich and Wuestebach were only used as reference to assess the model performance [i.e. 

calculated LEEBM (approach 1) and LEREG (approach 2)] by calculating the correlation 

coefficient (r), the root mean squared difference [RMSD (Eq. 3.19)], the mean bias error [MBE 

(Eq. 3.20)], and the mean absolute error [MAE (Eq. 3.21)]:  

 

𝑅𝑀𝑆𝐷 = √
1

𝑛𝑣
∑(𝑀 𝑖 − 𝑂 𝑖)

2

𝑛𝑣

𝑖=1

                                                   (3.19) 

 

𝑀𝐵𝐸 =
1

𝑛𝑣

 ∑ 𝑀 𝑖 −  𝑂 𝑖

𝑛𝑣

𝑖=1

                                                    (3.20) 

 

𝑀𝐴𝐸 =
1

𝑛𝑣

∑|𝑀 𝑖 −  𝑂𝑖|

𝑛𝑣

𝑖=1

                                                 (3.21) 

 

Here, M is modelled (LEEBM and LEREG) and O is observed (EC) values, while nv is the number 

of available observations for validation. RMSD is the sum of the squared difference of modelled 

and observed LE and is more sensitive to outliers in the dataset (Willmott and Matsuura, 2005). 

According to Willmott and Matsuura (2005), MAE is more appropriate to assess model 

performance as compared to RMSD. To minimize the effect of outliers in the dataset, MAE 

were also calculated in addition to RMSD and MBE. 

 

3.4. Results and discussion 

3.4.1. Validation of LEEMB and HEMB (Approach 1) 

Net radiation (Rn) is the core variable (key quantity) of energy balance models for deriving 

latent and sensible heat fluxes. Before using the net radiation derived from satellite-based fluxes 

(through Eq. 3.4), its accuracy was evaluated by comparing it to in situ measurements by the 

radiation equipment (NR01, Hukseflux, NL) of the eddy-covariance stations.  

 



A Simplified Approach to Derive Continuous Hourly Time Series of Latent Heat Flux by Remote 
Sensing Using a Two Source Energy Balance Model: A Case Study in the Rur Catchment, Germany 

52 
 

Table 3.1. Correlation statistics of hourly in situ and remotely sensed net radiation (Rn) for Eddy 

Covariance sites in the Rur catchment, Germany, for five years (2011-2015). 

 

Rn (Wm-2) 2011-15 

 Statistics nv r RMSD MBE MAE 
 Selhausen 11896 0.97 45.92 8.97 31.44 

 Merzenhausen 7430 0.97 42.61 12.58 29.73 

 Selhausen-Ruraue No Data 

 Rollesbroich 14124 0.97 48.59 11.69 33.15 

Wuestebach (2013-12) 6239 0.97 54.26 4.28 37.83 

 
 

 

Figure 3.3. Scatter plots of hourly in situ and remotely sensed net radiation (Rn) for Eddy 

Covariance sites in the Rur catchment, Germany, for five years (2011-2015). 

 

Scatter plots (Figure 3.3) and correlation statistics in Table 3.1 demonstrate that satellite-

derived net radiation agrees well with in situ net radiation at four test sites. Correlation 

coefficient (r), RMSD, MBE, and MAE at Selhausen, Merzenhausen, Rollesbroich and 

Wuestebach for satellite-based net radiation and in situ Rn are enlisted in Table 3.1. The 
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Selhausen-Ruraue site was excluded here due to in situ data unavailability. The calculated Rn 

from remotely sensed energy fluxes can be a satisfactory candidate for running the energy 

balance model. They were incorporated in the energy balance models used in this study to 

retrieve time-series of latent and sensible heat. The hourly retrieved latent heat (LEEBM) and 

sensible heat (HEBM) were compared to in situ latent and sensible heat measured by Eddy 

Covariance (LEEC and HEC) at the five Eddy Covariance sites of the Rur catchment for the years 

2011through 2015 (Table 3.2a,b and Figure 3.4 and 3.5). 

 

Table 3.2. Correlation statistics on hourly in situ latent and sensible heat fluxes (LEEC and HEC) 

and remotely sensed latent and sensible heat (LEEBM and HEBM) for the Eddy Covariance sites 

in the Rur catchment, Germany, for five years (2011-2015). 

 

a) LEEBM and LEEC  (Wm-2) 2011-15 

EC Stations nv r RMSD MBE MAE 

 Selhausen 9110 0.83 63.41 16.26 39.63 

 Merzenhausen 10841 0.80 75.41 28.91 44.67 

Selhausen-Ruraue 8249 0.84 66.16 18.89 42.06 

 Rollesbroich 9484 0.90 118.25 62.09 70.96 

Wuestebach (2013-15) 3947 0.85 150.00 85.95 89.89 

b) HEBM and HEC  (Wm-2) 2011-15 

 Selhausen 9238 0.74 40.25 5.77 29.35 

 Merzenhausen 11069 0.78 37.73 -5.84 26.78 

Selhausen-Ruraue 8424 0.74 39.66 1.78 28.93 

 Rollesbroich 9927 0.61 43.81 -20.09 30.15 

Wuestebach (2013-15) 4524 0.80 68.43 -46.97 50.91 
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Figure 3.4. Scatter plots of hourly LEEC (in situ) and LEEBM (energy balance model) for the 

Eddy Covariance sites in the Rur catchment, Germany, for the years 2011-2015. 
 

 
 

 

 

Figure 3.5. Scatter plots of hourly HEC (in situ) and HEBM (energy balance model) for the Eddy 

Covariance sites in the Rur catchment, Germany, for the years 2011-2015. 
 
 

Due to partial unavailability of temporally coinciding calculated (LEEBM) and reference latent 

heat (LEEC), the available LEEBM observations for validation (nv) were less than the total number 
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of LEEBM observations. Accuracy of the calculated latent heat (LEEBM) and sensible heat (HEBM) 

was quantified in terms of correlation coefficient (r), RMSD (Eq. 3.19), MBE (Eq. 3.20) and 

MAE (Eq. 3.21) and listed in Table 3.2a,b. Using the aforementioned energy balance model, 

the calculated latent heat fluxes (LEEBM) were compared with the in situ LE (LEEC) at 

Selhausen, Merzenhausen, Selhausen-Ruraue, Rollesbroich and Wuestebach, respectively 

(Table 3.2a). The Rollesbroich and the Wuestebach sites represent the southern part of the 

catchment with grassland-forest mix and exclusively forest, respectively, representing different 

land use and topography (also see section 3.2). These two southern sites comparatively exhibit 

the highest absolute RMSD (118.25, 150.00 Wm-2), MBE (62.09, 85.95 Wm-2) and MAE 70.96, 

89.89 Wm-2), despite also showing a high correlation (r = 0.92 and 0.88 at Rollesbroich and 

Wuestebach, respectively). Scatter plots of the calculated LEEMB and measured LEEC for the 

five EC sites (Figure 3.4) exhibit an overestimation in LE calculation for all EC sites with 

prominently higher estimates at Rollesbroich (predominantly grassland with forest in the 

surrounding area) and Wuestebach (predominantly forest) as compared to the rest of the sites 

(predominantly croplands). This overestimation of the calculated LE (LEEBM) is also evident in 

Table 3.2a with higher RMSD, MBE and MAE at Rollesbroich and Wuestebach sites, 

respectively, as compared to Selhausen, Merzenhausen and Selhausen-Ruraue. The overall 

overestimation at Rollesbroich and Wuestebach could be due to the difference in landuse of the 

EC field and the surrounding area covered by the same pixel representing EC station. The pixel 

representing the EC station at Rollesbroich covers grassland with some surrounding forest and 

large water bodies which might cause an increase in ET as compared to the EC site. The 

Wuestebach site is dominantly covered with forests. The Rollesbroich and the Wuestebach sites 

show less scatter of the individual values (Figure 3.4). This reveals that the surrounding area of 

the Eddy Covariance station covered by the Land-SAF pixel was more homogeneous than the 

other three sites. 

High LAI at Wuestebach and Rollesbroich could be another possible reason for higher LE at 

these sites. Density, type, height and morphology of vegetation attenuate the incoming net 

radiation and thus have an obvious impact on its partitioning into canopy and soil components. 

Owing to this, my model overestimated latent heat (evapotranspiration) in the southern part of 

the Rur catchment dominated by forests with higher LAI throughout the year. Along with this 

overall overestimation at Rollesbroich and Wuestebach, the scatter plots (Figure 3.4) of LEEC 

and LEEBM showed some scatter (partial overestimation) at Selhausen, and Merzenhausen. For 
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all EC sites, most of the data are above the 1:1 line. Overestimation in the modelled LE (LEEBM) 

might be due to the coarse spatial resolution of the satellite data covering a heterogeneous 

surface. This overestimation is highly subjected to the degree of surface homogeneity and 

heterogeneity in land use (especially vegetation cover) of the pixel of satellite data representing 

Eddy Covariance station which is subjected to seasonal variations in grasses and crops. Prior to 

seasonal evaluation, a gap-free time-series of the latent heat (LEREG) was generated through 

linear regression fit of LEEBM and DSSF (Eq. 3.18) (also see section 3.4.2). To further 

investigate the higher model discrepancies, especially at the Rollesbroich and the Wuestebach 

sites, the calculated sensible heat fluxes (HEBM) were evaluated (Table 3.2b and Figure 3.5).  

HEBM exhibits better agreement (r > 0.70) with in situ sensible heat (HEC), as shown in Table 

3.2b except at Rollesbroich. Detailed validation statistics between HEBM and HEC at Selhausen, 

Merzenhausen, Selhausen-Ruraue, Rollesbroich and Wuestebach are presented in Table 3.2b. 

Figure 3.5 represents scatter plots of remotely sensed and in situ sensible heat for the EC sites. 

At the Wuestebach and the Rollesbroich site, the satellite-based estimates underestimate the in 

situ latent heat flux measurement (represented by negative MBE in Table 3.2b), where the forest 

site (Wuestebach) exhibits more underestimation in HEBM as compared to the site with grass 

surrounded by forest (Rollesbroich). Sensible heat at Merzenhausen is also slightly 

underestimated. Under tall forest trees (high LAI), remote sensors provide data of the top of the 

canopy only with unsuitable representation of the below canopy area. With the incoming 

radiation, the top of the canopy gets heated first as compared to the surface(s) below the canopy. 

Sensible heat was calculated from the temperature gradient (Eq. 3.12 and 3.13) of the canopy 

(TC), soil (TS) and within the canopy temperatures (TAC). Comparatively high elevation sites 

with higher LAI (Rollesbroich and Wuestebach) may have negative temperature gradients when 

TS < TAC. A negative temperature gradient of TS and TAC (for HS calculation) may lead to 

negative Hs resulting in an underestimation with respect to in situ data. This underestimation 

(mostly in the form of negative soil component of sensible heat) is reflected as overestimation 

in latent heat at these two EC sites (Table 3.2a) after applying the energy balance equations 

(Eq. 3.15 and 3.16). It is evident from those equations that accuracy of the estimated latent heat 

depends on the accuracy of the sensible heat estimates. 
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3.4.2. Validation of LEREG (Approach 2) 

Due to the abovementioned high overestimation for forest regions, and also because of large 

temporal gaps due to cloudiness, the model output (LEEBM) was not suitable to be used directly 

to calculate annual sums of the latent heat. In order to estimate a complete spatio-temporal latent 

heat dataset (LEREG) for 2011 through 2015, simple linear regression was applied to coinciding 

hourly LEEBM and downwelling surface shortwave flux (DSSF) throughout the study period, as 

discussed earlier (Eq. 3.18). Before establishing the linear regression relationship between 

satellite-based DSSF and calculated LE (LEEBM), the DSSF data were validated by comparing 

to in situ downwelling shortwave radiation measured by EC at hourly timescales (Figure 3.6 

and Table 3.3).  

 

Table 3.3. Correlation statistics of hourly in situ and remotely sensed Downwelling Shortwave 

Surface Flux (DSSF) for Eddy Covariance sites in the Rur catchment, Germany, for five years 

(2011-2015). 

DSSF (Wm-2) 2011-15  

  
EC Station  
 

 
nv 

 
r 

 
RMSD 

 
MBE 

 
MAE 

 Selhausen 30108 0.95 68.78 -3.83 36.14 

 Merzenhausen 19674 0.96 58.18 -4.97 31.32 

 Selhausen-Ruraue No Data 

 Rollesbroich 37130 0.96 62.51 -10.94 33.43 

Wuestebach (2013-12) 17881 0.95 57.98 -2.42 29.78 
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Figure 3.6. Scatter plots of hourly in situ and remotely sensed Downwelling Shortwave Surface 

Flux (DSSF) for Eddy Covariance sites in the Rur catchment, Germany, for five years (2011-

2015). 
 

The satellite-derived DSSF corresponds very well to the in situ measurements in terms of  

correlation coefficients (r), RMSD, MBE and MAE at Selhausen, Merzenhausen, Rollesbroich 

and Wuestebach as shown in Table 3.3. The Selhausen-Ruraue site was excluded here due to 

in situ data unavailability. High correlation coefficient values (> 0.90) exhibit strong correlation 

between in situ and Land-SAF DSSF on hourly timescale, whereas high RMSD values are due 

to the higher dynamic range of the incoming shortwave radiation. The scatter plots (Figure 3.6) 

of in situ and Land-SAF DSSF exhibit similar characteristics across EC sites with different 

elevation. Scatter in the DSSF data (combined for clear and cloudy-sky) in this study may be 

attributed to cloudy-sky conditions. Trigo et al. (2011) carried out a validation of Land-SAF 

DSSF for two stations in France separately for clear and cloudy-sky conditions. Their study 

revealed higher discrepancies for the site with cloudy-sky conditions. Cristobal and Anderson 

(2013) carried out a detailed regional scale evaluation of the DSSF product of Land-SAF, 

considering terrain classes (flat and hilly) and atmospheric conditions (clear, cloudy-sky and 

snow/ice) at hourly, daily and monthly time steps. Here, negative MBE revealed that on 

average, DSSF data from MSG geostationary platform were slightly underestimated as 

compared to the in situ DSSF during the five years study period. Nevertheless, the overall 
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accuracy of the satellite-based DSSF was satisfactory. Cristobal and Anderson (2013) also 

reported a negative MBE of -5 Wm-2 and -6 Wm-2 for flat and hilly terrain, respectively, between 

2008 and 2010 under all sky conditions (clear, cloudy-sky and snow/ice) at hourly timescale. 

The RMSD calculated by Cristobal and Anderson (2013), for all terrain and atmospheric 

conditions, are higher than those presented in this study.  

After establishing confidence in the satellite-derived DSSF flux, it was used in the regression 

analysis to derive a gap-free latent heat flux (LEREG) dataset. The regression equation (LEREG= 

0.43 x DSSF) was used for estimating latent heat from DSSF where the slope value 0.43 

represents the mean regression slope between LEEBM and DSSF from agricultural sites 

(Selhausen, Selhausen-Ruraue and Merzenhausen), where the model exhibits better results than 

the Rollesbroich and Wuestebach sites. The validation statistics in Table 3.2a revealed an 

overestimation in LE retrieval at the Rollesbroich and Wuestebach sites. These overestimations 

are also evident in Figure 3.7, where higher slope values are shown for comparatively higher 

LAI regions, i.e., Rollesbroich (grass and forest cover mix) and Wuestebach (forest cover) in 

the Eifel region. Therefore, instead of pixel-wise regression or catchment-scale mean regression 

slope, the mean slope value calculated for agricultural sites was applied equally to the whole 

catchment for deriving latent heat (LEREG) from DSSF (Table 3.4).  
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Figure 3.7. Regression slope of LEEBM and DSSF (pixel-wise) for the whole study period from 

2011 through 2015 for the Rur catchment. 

 

Regression analysis was kept independent of in situ LE (LEEC) and the in situ measurements 

were only used to perform independent validation of the estimated LEREG. Correlation statistics 

(correlation coefficient, RMSD, MBE and MAE) of LEREG with LEEC for the period 2011-2015 

are given in Table 3.4. It is evident from Table 3.4 that LEREG leads to a strong increase in the 

number of available hourly data points for validation (nv), correlation coefficients show only 

minor variations (as compared to Table 3.2a), but values representing absolute validation 

accuracy (RMSD, MBE and MAE) show a clear improvement (Table 3.4). The correlation 

coefficients in Table 3.4 are more or less similar to those given in Table 3.2a for LEEBM. RMSD, 

MBE and MAE are significantly reduced for the Rollesbroich and Wuestebach sites (Table 3.2a 

vs Table 3.4). Some improvement in RMSD, MBE and MAE can also be observed for 

Selhausen, Merzenhausen and Selhausen-Ruraue. Figure 3.8 shows scatter plots of LEREG with 

LEEC at the five Eddy Covariance sites in the study area. 
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Table 3.4. Correlation statistics on hourly in situ latent heat flux (LEEC) and remotely sensed 

latent heat (LEREG) for the Eddy Covariance sites in the Rur catchment, Germany, for five years 

(2011-2015). 

 

LEREG and LEEC  (Wm-2) 2011-15 

EC Stations nv r RMSD MBE MAE 

 Selhausen 23902 0.83 51.15 -0.74 31.96 

 Merzenhausen 28915 0.78 56.28 9.03 33.15 

Selhausen-Ruraue 21432 0.86 47.46 -2.99 30.17 

 Rollesbroich 26562 0.89 43.24 7.58 26.72 

Wuestebach (2013-15) 11736 0.83 61.29 25.94 34.67 

 

 

 

 
 

Figure 3.8. Scatter plots of hourly LEEC (in situ) and LEREG (through regression analysis from 

downwelling surface shortwave flux) for Eddy Covariance sites in the Rur catchment, 

Germany, for the years 2011-2015. 
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The scatter plots of LEREG with LEEC (Figure 3.8) show similar discrepancies in the modelled 

latent heat at Selhausen and Merzenhausen, and less overall overestimation of LEREG at 

Wuestebach, while LEREG at the Rollesbroich site shows no overall overestimation (Figure 3.4 

vs Figure 3.8). Although LEREG leads to comparatively better validation results especially at 

Rollesbroich and Wuestebach (Table 3.2a vs Table 3.4 and Figure 3.4 vs Figure 3.8), model 

discrepancies in LEREG were further evaluated through seasonal investigation (i.e., on monthly 

basis). These could be the effect of seasonal surface heterogeneity, especially at sites with crops 

inside the EC field and surrounding. To verify the effect of seasonality, a further seasonal 

comparison of the in situ and modelled LE was performed. For this purpose LEREG and LEEC 

were split into monthly datasets for the year 2012. With the monthly assessment it was found 

that during June-July the EC footprint represents the surrounding area very well (being 

homogeneously vegetated), hence LEEC are close to LEREG. The opposite is true at 

Merzenhausen and Selhausen (dominantly croplands) with the advent of winter wheat harvest 

season during August-September 2012, when the local EC footprint was not representing the 

area covered by the surrounding satellite data pixel. The winter wheat in the area (including the 

EC field) gets senescent in July and is harvested between mid-July and mid-August. The EC 

fluxes thus represent senescent wheat and bare soil conditions with little or no transpiration. 

Sugar beet, maize, grassland and forest fields in the same pixel, in contrast, continue to transpire 

and co-determine the LEREG estimates. 

To further investigate this discrepancy, the LEEC and LEREG for June and mid-August to mid-

September during 2012 were compared with the help of a scatter plot (Figure 3.9). A good 

agreement exists between in situ and remotely sensed LE during June 2012, where a scale 

difference between EC footprint of several hundreds of meters and remote sensing pixel of ~ 5 

km is of no consequence due to homogeneous crop conditions. There is more deviation from 

the 1:1 line during mid-August to mid-September due to less homogeneous crop conditions 

surrounding the EC field. At this point in time, winter wheat was already harvested in the EC 

field (on 30th July 2012) and only evaporation from soil contributed to EC measurements. A 

temporal sequence (Figure 3.10) of LEEC and LEREG, for the same time slot, can better visualize 

the temporal comparison of in situ and remotely sensed estimates of LE. June is representing a 

homogeneous surface as compared to the period from mid-August to mid-September. Figure 

3.10 (upper) shows improved adjustment between LEEC and LEREG in June. Higher estimates 

of the LEREG as compared to LEEC in figure 3.10 (lower) are due the coarse pixels of the satellite 



A Simplified Approach to Derive Continuous Hourly Time Series of Latent Heat Flux by Remote 
Sensing Using a Two Source Energy Balance Model: A Case Study in the Rur Catchment, Germany 

63 
 

data, which represents other vegetation surrounding the EC footprint. During this period winter 

wheat was already harvested and LEEC is only representing the soil evaporation. Increase in 

LEEC (Figure 3.10 lower) is due to rainfall events on the relevant days. This effect is similar for 

the apparent overestimation at Selhausen in early spring, when sugar beet was newly sown and 

most of the surface acts as bare soil. Footprint-based LE measuring methods (e.g. Eddy 

Covariance) do not represent the surrounding heterogeneous surface (Wang et al., 2007). 

Therefore in this study, Eddy Covariance based in situ latent heat data (LEEC) were only used 

to validate the remotely sensed latent heat (LEEBM and LEREG). It was not used in the linear 

regression due to its lack of representation of the surrounding area, covered by a single Land-

SAF pixel, might have resulted in a biased latent heat output (LEREG). The final latent heat flux 

(LEREG) was integrated to an annual sum and converted to equivalent evapotranspiration units 

of mmyear-1 (Figure 3.11). Figure 3.11 demonstrates the trend of evapotranspiration throughout 

the study period from 2011 through 2015. The southern part of the Rur catchment on the 

bedrock of the Eifel Mountains with higher elevation, low air temperature and higher rainfall 

rate exhibits comparatively low evapotranspiration compared to the northern part of the 

catchment [Figure 3.11 and 3.12, Table 3.5 (also see section 3.2)]. According to my results, 

2011 was the year with highest sum of ET [641, 645, 644, 626, 616 (mmyear-1) at Selhausen, 

Merzenhausen, Selhausen-Ruraue, Rollesbroich and Wuestebach, respectively (Table 3.5)]. 

According to the report of the European Drought Observatory, EDO  (EDO-2011a; EDO-

2011b), western, central and northern European countries (including extended areas of France, 

Germany, Great Britain, Denmark, Belgium, the Netherlands, Luxembourg and Hungary) had 

received less than 50% of the expected rain since December 2010 until May 2011, coupled with 

higher temperature and low cloudiness, enhanced the rate of evapotranspiration and vegetation 

water requirement. The period from January to May during the year 2011 was the driest period 

since 1975 by then with a rainfall deficit in most parts of the Europe (EDO-2011b). According 

to a report of the World Meteorological Organization (WMO, (WMO-2011)), a long-lasting 

dry spell was observed over extended parts of Europe (including Germany) from January 

through May during 2011. Data from the Global Precipitation Climatology Centre (GPCC, 

(GPCC-2011)) revealed a significant rain deficit period over extended areas of Europe which 

was observed, particularly, during the months from February to April 2011. In 2011, the 

southeastern parts of the United Kingdom had a driest March since 1953, whereas Switzerland 

experienced the whole year (2011) as one of the driest 10 year periods since 1864, accompanied 

with low water levels in rivers, lakes and groundwater, particularly in the areas of Jura and 
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Central Plateau (Hydrological yearbook of Switzerland 2011). According to the German 

Federal Hydrological Agency (BfG (BfG-2011)), rivers in Germany experienced very low 

levels, which also affected shipping in the Rhine River. Rudolph et al. (2015) pointed out paleo-

river structures at Selhausen during May 2011 on RapidEye multispectral image. This study did 

not find these paleo-river structures in the study area before or after May 2011 while evaluating 

a time-series of LAI during 2011-2012 (see chapter 2). Hypothetically, these paleo-river 

structures are important for subsoil hydrology only under (temporarily) dry conditions. 

According to my results, 2012 is marked with the lowest ET rate at all the test sites during the 

study period, with an ET rate of 594, 593, 597, 580 and 560 (mmyear-1) at Selhausen, 

Merzenhausen, Selhausen-Ruraue, Rollesbroich and Wuestebach, respectively (Table 3.5). 

2012 and 2013 exhibit comparatively wet conditions in the study area. The annual sum 

(mmyear-1) tends to increase again towards 2015 (Figure 3.12 and Table 3.5). Also during 2015, 

EDO reported drought conditions in Europe due to a prolonged rainfall deficit since April with 

temperature anomalies coupled with higher evapotranspiration towards July (EDO-2015). 

However, the Land-SAF data were only available until November, 11, 2015, therefore, 2015 

ET map represents a period from January, 1 to November, 11 during 2015. 

 

    

Figure 3.9. Scatter plot of hourly LEREG and LEEC for June and mid-August to mid-September 

during 2012 at Merzenhausen. 
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Figure 3.10. Temporal sequence of LEREG and LEEC during June 2012 (upper) and mid-

August to mid-September 2012 (lower) at Merzenhausen. 
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Figure 3.11. Annual evapotranspiration (mmyear-1) in the Rur catchment (2011-2015). 
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Table 3.5. Annual evapotranspiration (mmyear-1) for Eddy Covariance sites in the Rur 

catchment, Germany, for the years 2011-2015. 

 

Evapotranspiration (mmyear-1) 

EC Site 2011 2012 2013 2014 2015 

 Selhausen 641 594 608 629 625 

 Merzenhausen 645 593 613 628 628 

Selhausen-Ruraue 644 597 611 632 630 

 Rollesbroich 626 580 594 604 610 

Wuestebach  616 560 580 582 601 

 

 

 

 

Figure 3.12. Annual sum of evapotranspiration (mmyear-1) for Eddy Covariance sites, namely, 

Selhausen (SE), Merzenhausen (ME), Selhausen-Ruraue (RU), Rollesbroich (RO) and 

Wuestebach (WU) for a period of 2011 through 2015, in the Rur catchment, Germany. 
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3.5. Conclusions 

In this study, geostationary satellite-based operational energy fluxes and vegetation information 

were evaluated using an empirical simplification of an energy balance approach for a period of 

five years (2011-2015) to obtain continuous LE time-series. Validation results from this study 

have shown that, using remotely sensed energy fluxes (coarse spatial resolution of 5x5 km but 

high temporal resolution of 30 minutes), temporally consistent estimates of latent heat could be 

generated to derive evapotranspiration (Figure 3.11). The model worked well in crop areas, 

with different crop types having different plantation, senescent and harvest periods, leading to 

increased sub-pixel surface heterogeneity. However, uncertainty increases in areas with higher 

LAI (Eifel National Park) with less sub-pixel surface heterogeneity. LE estimates are purely 

remotely sensed and reference latent heat (LEEC) data were only used to perform validation. 

Validation statistics (on hourly LE estimates) at five Eddy Covariance sites in the Rur 

catchment (covering croplands, grassland and forests) are generally satisfactory. Agreement 

between reference LE and LEEBM (Table 3.2a) and LEREG (Table 3.4) was similar with 

reasonable reduction in model discrepancies (i.e., RMSD, MBE and MAE) for the latter. 

Furthermore, LEREG data have more hourly data points for validation and can be used to derive 

annual sums of latent heat. Using the regression based LE retrieval approach, gap-free time-

series of latent heat with subsequent evapotranspiration can be generated in an operational 

manner even in areas with no meteorological data availability. 

I hypothesize that surface heterogeneity within the respective pixel of the remote sensing image 

referring to each EC site was the major source of higher RMSD, MBE and MAE when modelled 

LE was compared to in situ LE. My model exhibited good agreement between remotely sensed 

and in situ hourly latent heat during June, when the area covered by the pixel representing EC 

site was homogeneously covered by green vegetation. Earlier and later in the vegetation period, 

the sowing and harvesting dates of different crop types can lead to strong LE contrasts between 

inactive (bare or senescent) and green fields, with the EC station representing only the type 

present on its field, while the pixel LE is a weighted average of both. Main sources of 

uncertainty in the calculated LE are related to this surface heterogeneity within the same pixel. 

Overestimated latent heat was observed at Rollesbroich and Wuestebach and exhibited very 

high RMSD, MBE and MAE as compared to the rest of the test sites. However, this 

overestimation was reduced for LEREG. The Wuestebach and the Rollesbroich sites are 

characterized by comparatively higher elevation, higher LAI (forest) and slightly lower surface 
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and air temperature as compared to Selhausen, Merzenhausen and Selhausen-Ruraue. Higher 

LAI, more cloudy conditions and a different temperature gradient within the canopy may have 

led to the overestimation in latent heat, especially in LEEBM, in the southern Rur catchment. 

Nevertheless, the southern part of the catchment is characterized by a comparatively lower 

annual ET sum than the northern part. Validation of coarse resolution latent heat with footprint-

scale in situ latent heat has been always challenging due to the scale mismatch. To bridge the 

gap between in situ and large scale remotely sensed fluxes, Norman et al. (2003) designed the 

disALEXI approach to disaggregate ALEXI fluxes from continental-scale to field-scale. 

Vegetation information (LAI) calculated at high spatial resolution will reduce the difference 

between LEEC and LEEMB/LEREG, as high resolution LAI captures surface heterogeneity more 

precisely (see chapter 2).  

This study reveals 2011 as the year with the highest ET rate in the study period, followed by 

the lowest rate in 2012 and a gradual increase in annual ET sum toward 2015. This temporal 

variability in annual ET sum can be linked with rain deficit conditions coupled with low 

cloudiness and higher than normal temperature in Europe as reported by the European Drought 

Observatory (EDO) especially during 2011 and 2015 (EDO-2011a; EDO-2011b; EDO-2015). 

The approach may be applied to another geographical area (with different set of meteorological 

and environmental conditions) in order to evaluate the robustness of the method beyond the 

study area. Alternatively, application on an even longer time-series may be suitable to evaluate 

the method for various years with different rainfall occurrence. It will help test the method on 

comparatively dry and wet conditions in the same area under investigation. Application of the 

method on high spatial resolution remote sensing data would produce more accurate and 

reliable estimates of ET and will reduce scale gap to reference observations for validation. 

Energy fluxes and vegetation information on high spatial resolution will further reduce model 

discrepancies by reducing the surrounding pixel area around Eddy Covariance point on relevant 

remote sensing data.  
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4. Towards a Solely Remotely-Sensed Water Balance for the Rur Catchment, 
Germany3 

 

4.1. Introduction 

Spatial and Temporal variability and distribution of water are crucial for weather and climatic 

systems and its variable patterns over the earth surface from local to regional scale. There are 

several factors that control/affect the spatio-temporal distribution of water and its movement on 

the earth surface and between soil and atmosphere. Temperature is an important variable among 

other factors that have profound impacts on the water cycle components (Sala et al., 2015). 

During the past decades, increase in the global temperature was observed with uncertainty about 

the future increase (Huntington, 2006). Climate models also revealed major changes to the 

climate in future i.e., precipitation patterns, temperature anomalies, hot extreme and heat waves 

coupled with less frequent cold extremes (Kundzewicz, 2008; Kundzewicz et al., 2009). 

Changes in climate affect the hydrological cycle (water cycle) and vice versa (Kundzewicz, 

2008). Climate change would affect the hydrological cycle and the balance of water between 

soil-vegetation and atmosphere (Oki and Kanae, 2006; Shelton, 2009) leading to hydrologic 

extremes in the form of floods (heavy rains) and extreme droughts (Kundzewicz, 2008). Better 

planning and management strategies are needed for water resources being vital for various 

human activities from domestic to agricultural and industrial use. Furthermore, better water 

management strategies and practices are also critical to mitigate antagonistic effects of 

hydrological extremes. Shortage of water may be directly linked to food production (Allen and 

Bastiaanssen, 2005). Hydrological processes like precipitation, evapotranspiration (ET), 

infiltration, subsurface flow, interception and runoff (Kundzewicz, 2008) are the main 

components of the water cycle and its spatio-temporal distribution and variation affect 

terrestrial water balance. Water balance approach is commonly used in hydrology for 

accounting the flow of water in and out of a system. Water balance is the separation of water 

added to a system (as precipitation) into major components i.e., evapotranspiration, runoff and 

storage as terrestrial water. Changes in terrestrial water storage may be neglected when water 

balance is applied on a longer temporal scale (Milly, 1994; Babin, 1995; Montzka et al., 2008b). 

For catchment-scale water balance applications, operational and reliable estimates of rain, 

                                                           
3 Adapted from:Ali, M., Montzka, C., Jadoon, K. Z., Diederich, M., Diekkrueger, B., Vereecken, H., (in 
preparation), Towards a Solely Remotely Sensed Water Balance for the Rur Catchment, Germany. 
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evapotranspiration and runoff with respect to space and time are crucial. Land cover types and 

materials, the degree of imperviousness both in urban and rural areas (Shuster et al., 2005; 

Montzka et al., 2008b; O'Driscoll et al., 2010) and inadequate measurement of water balance 

components may lead to uncertainties in the water balance. 

Precipitation is the primary water input source to a hydrological domain and its precise spatio-

temporal estimates are very crucial for land surface hydrology (Uijlenhoet, 2001; Kundzewicz, 

2008). Ground-based radar systems are capable of quantifying rainfall with respect to space and 

time (Uijlenhoet, 2001). Also, satellite-based techniques for rainfall estimations e.g., TRMM 

(Tropical Rainfall Measuring Mission), GPM (Global Precipitation Mission) and MPE (Multi-

sensor Precipitation Estimate) etc. are becoming useful for areas with no ground-based radar 

coverage and in situ information. After precipitation, evapotranspiration is the second largest 

component of the terrestrial water balance. Spatio-temporal variability in ET is very important 

for the hydrological cycle and weather system of an area and may be closely linked to changing 

climate and land use (Thompson et al. (2011). Evapotranspiration depends on incoming solar 

radiation and its partitioning into various components, i.e., latent heat (LE), sensible heat (H) 

and ground heat flux (G). This partitioning depends on various factors including land use, 

density and type of vegetation, type of climate, geographical location, topography, air 

temperature, time of the day and day of the year etc. (see chapter 3). Latent heat flux (LE) is 

responsible to transform liquid water into vapour. Energy balance is applied at the earth surface 

whereby latent heat is measured as residual of the energy balance (see chapter 3). Latent heat 

is converted to equivalent evapotranspiration (ET) units (mmyear-1) from energy units (Wm-2) 

using 28.4 Wm-2 = 1 mmday-1 (Allen et al., 1998; Allen et al., 2005).  

Runoff is referred as the component of the hydrological cycle that flows downstream instead of 

being evaporated or absorbed by the soil through infiltration to add soil moisture and replenish 

groundwater. Built-up parts in a catchment reduce infiltration rate and hence increase the rate 

of surface runoff. Topography may also affect the rate of infiltration and runoff, however, the 

slope-infiltration relationship is not very clear (Fox et al., 1997; Ribolzi et al., 2011). Runoff 

estimates with respect to space and time are crucial for managing water resource in an area for 

better allocation of water for various uses including agricultural, industrial and domestic use 

(Parajka et al., 2013; Viglione et al., 2013). Runoff/discharge characteristics are essential 

variables for hydrological extremes predictions especially drought (McKee et al., 1993) and 

flooding (Rogger et al., 2012) conditions in an area. The response of runoff, the balance 
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between precipitation and evapotranspiration may help to better plan hydrological risk 

management, e.g. to evaluate the effect of hydrological extremes (floods and droughts).  

Numerous hydrological models are employed to simulate hydrological processes at all scales 

(Devi et al., 2015), whereby calibration with in situ hydrological properties is an integral part 

(Pechlivanidis et al., 2011). Due to inconsistency of the in situ measurements, extrapolations 

of the available measurements are applied in space and time in the modelling procedures 

(Pechlivanidis et al., 2011). Various model parameters do not have physical interpretation and 

the hydrological simulations may become conceptual rather than physical (Wagener et al., 

2003). In this study, the catchment-scale water balance solely based on remotely sensed data to 

predict runoff provides useful information regarding the runoff patterns in the study area. This 

approach may be used in ungauged or poorly gauged basins for better water balance analysis. 

According to Parajka et al. (2013) runoff prediction in ungauged catchments is comparatively 

more accurate for catchments with humid conditions than arid conditions. In case of no or 

limited in situ data, runoff prediction solely based on remotely sense data is of utmost 

importance towards practical applications for operational decision making, utilization, planning 

and management of water resources especially in areas more vulnerable to water scarcity or 

inundation.  

This study is aimed to retrieve runoff solely from remotely sensed data for various sub-

catchments in the Rur catchment. Here, catchment and sub-catchments-scale runoff/discharge 

(Q) is quantified by incorporating satellite-based remotely sensed ET (calculated in this study) 

and radar-based precipitation, in order to assess the catchment-scale annual status and trend of 

water resource during 2011 through 2014. For this purpose, annual rates and four year annual 

means of evapotranspiration (ET) and precipitation (P) are balanced at various sub-catchments 

in the Rur catchment to estimate annual runoff from 2011 through 2014, where net terrestrial 

water storage is kept negligible. To quantify runoff, accuracy of rainfall and evapotranspiration 

especially from remote sensors (ground- and satellite-based) have profound impact on the 

accuracy of runoff. The estimated runoff is compared to in situ runoff. Furthermore, the effects 

of wet and dry conditions in the study area during the study period are also evaluated through 

annual hydrographs on sub-catchment scale. 
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4.2. Materials and Methods 

4.2.1. Hydro-geological Description of the Study Area 

 

 

 

Figure 4.1. Sub-catchments in the Rur catchment with Rur River and its main tributaries along 

with runoff measuring gauge locations. 

 

The Rur catchment is equipped with state-of-the-art hydrological and meteorological 

observatories at various test sites (TERENO; Bogena et al., 2005a; Bogena et al., 2005b; 

Bogena et al., 2005c; Bogena et al., 2006). The catchment can be divided into distinctive 

southern and northern parts. Located on the bedrock of the Eifel Mountains, the southern part 
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has a higher long-term annual precipitation of 850–1300 mmyear-1 and a moderate annual 

potential evapotranspiration of 450–550 mmyear-1. Due to Devonian and Carboniferous 

sedimentary rocks, the region is characterized by low permeability (low infiltration rates) and 

small groundwater storage volumes mostly exhibit direct runoff towards streams and reservoirs 

(Bogena et al., 2005a; Bogena et al., 2005c; Montzka et al., 2008a; Montzka et al., 2008b). 

Owing to different geological and topographical setting and high precipitation with 

comparatively low temperatures and evapotranspiration, the southern Rur catchment 

experiences higher runoff rate (Montzka et al., 2008b). This part is largely covered by forest 

and grassland. The northern part is predominantly arable land with fertile soil and characterized 

by a relatively low annual precipitation (650–850 mmyear-1) and a high potential 

evapotranspiration of 580–600 mmyear-1. This region has more groundwater recharge potential 

owing to the underlying loose rock aquifers (Bogena et al., 2005c) and experiences low surface 

runoff (Montzka et al., 2008b). The Rur catchment is mainly drained by the Rur River (165 km 

long) that originates in the southwest of the catchment in Rhenish Massif with maximum 

altitude of 720 m and annual rainfall of 1200 mm (Bogena et al., 2005c). The Rur River has 

many small and large tributaries including Urft, Olef, Vicht, Inde and Wurm (Figure 1), whereas 

the Rur itself is a sub-catchment of the River Maas (Meuse) with annual average rainfall of 700 

mm. The study area is marked with various small and large sub-catchments and more than half 

of the catchment is covered by consolidated rocks (Bogena et al., 2005b). Owing to the coarse 

resolution of the satellite data, only larger sub-catchments (Bogena et al., 2005a) [namely, Stah-

Rur (area 2135.15 km2), Randerath-Wurm (area 310.52 km2), Eschweiler-Inde (area 232.15 

km2), Zerkall-Rur (area 787 km2), Gemuend-Urft (area 344.55 km2) and Monschau-Rur (area 

143.63 km2)] were selected for water balance analysis in this study (Figure 1). In situ runoff 

measuring stations are located at the outlet of each sub-catchment (Figure 1). The Stah runoff 

station serves as the outlet for the whole Rur catchment incorporating all sub-catchments with 

area slightly smaller than the whole downstream area (2354 km2) of the Rur catchment. Like-

wise, Zerkall-Rur incorporates Monschau-Rur and Gemuend-Urft. The annual average runoff 

and flow at the gauging Stah is 348mm and 22.8m3s-1, respectively (Bogena et al., 2005a). 

4.2.2. Remotely Sensed Precipitation Estimates 

Radars are important active remote sensors (both ground-based and satellite-based), which emit 

electromagnetic radiation at microwave frequencies and sense back the reflected echoes. Radars 

became essential tool to estimate type, direction and intensity of precipitation. These abilities 
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of radar technology make it a first choice of operational data acquisition tool for meteorologists, 

hydrologists and researchers in other relevant fields (Fabry, 2015). Ground-based radar 

reflectivity data i.e. RADOLAN (Radar Online Adjustment) of German weather Service 

(DWD) were mainly used to estimate rainfall patterns for the study area. Using radar for 

precipitation estimates, radar reflectivity factor z (mm6m-3) is converted to rain rate (R) using 

z-R relationship between reflectance and rainfall (Eq. 4.1) (Bianchi et al., 2013; Fabry, 2015): 

                      𝑧 = 200𝑅1.6                                                                                         (4.1) 

 

Due to the large range (from 0.001 to 36000000 mm6m-3 for fog and large size hail, respectively) 

of the radar reflectivity factor (z), it is expressed in decibel of reflectivity (dBZ) where dBZ is 

10 times the log of z (Eq. 4.2):  

 

                     𝑑𝐵𝑍 = 10 log 𝑧                                                                                     (4.2) 

 

Equation 4.1 is modified as Equation 4.3 for converting dBZ to rain rate (mmh-1):  

              

                     𝑅 [𝑚𝑚ℎ−1] = (
10𝑑𝐵𝑍/10

200
)

1/1.6

                                                            (4.3)                                                                     

 

This conversion is very crucial for the application of radar-based surface hydrological estimates 

and lead to under-or-overestimation of the rain rate. The strength of echoes received at the radar 

receiver are affected by several factors, for instance, distance from radar, earth curvature, beam 

angle, topography (elevation and surface roughness), and non-precipitation targets like 

smoke/ash, aeroplanes, large fires, birds’ flocks and ground clutter. Furthermore, due to the 

lower melting layer, the winter months are more problematic and surface rain estimates are 

comparatively more contaminated. The region of the atmosphere where snow and rain coexist 

as snow is falling aloft and melt before reaching the ground is known as melting layer or snow 

region (Matrosov et al., 2007; Diederich et al., 2015a). Much more improved melting layer 

correction methods are needed for calculating more accurate rain rate during cold months 

(Diederich et al., 2015b, a). Extreme care is needed to filter-out unwanted echoes by non-

precipitation targets. Here, systematic discrepancies in radar rain estimates were minimized 

through Inverse Distance Weighting (IDW) based interpolated bias calculated between 

RADOLAN rain rate and in situ rain at various location in the Rur catchment. Annual sums 
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(mmyear-1) of rain were calculated on RADOLAN data for various large sub-catchments in the 

Rur catchment, Germany. 

The available satellite-based remote sensing precipitation data was not utilized in this study. 

The TRMM mission (with spatial covering of 50°N-50°S) had commenced in 1997, and came 

to an end in April 2015 after providing operational tropical rainfall estimates for hydrological, 

meteorological and weather related studies (NASA-TRMM; Derin and Yilmaz, 2014). The 

study area is laying outside the TRMM spatial coverage. GPM data was not incorporated due 

to unavailability during major part of the study period (NASA-GPM). MPE is more appropriate 

for the spatial distribution and strength of the convective rainfall estimates only (Heinemann et 

al., 2002; Derin and Yilmaz, 2014). 

4.2.3. Remotely-sensed ET estimates 

Annual sums of evapotranspiration were derived from the time-series of latent heat (LEREG) 

calculated through a simplified regression relationship (Eq. 3.18) established between 

calculated latent heat (LEEBM) and downwelling surface shortwave flux from the SEVIRI 

onboard the Meteosat second generation geostationary satellites (see chapter 3). Latent heat 

retrieval from satellite platform is highly affected by the presence of clouds causing gaps in 

hourly LEEBM making it unsuitable for calculating annual sums. DSSF under cloudy conditions 

are estimated based on cloud transmittance, cloud albedo and atmospheric transmittance 

between surface and clouds (as discussed in detail in chapter 3 section 3.3.2). 

4.2.4. Water Balance 

The water balance represents the hydrologic cycle in a linear way with rainfall as main input 

while total runoff (QT) and ET are the main output (Eq. 4.4):  

 

         𝑃 = 𝐸𝑇 + 𝑄𝑇  ± 𝛥𝑆                        (𝑤ℎ𝑒𝑟𝑒 ΔS = 0 𝑓𝑜𝑟  𝑚𝑚/𝑦𝑒𝑎𝑟)             (4.4) 

One assumption in this study is that net change in terrestrial water storage (∆S) is negligible on 

annual scale. The water balance separates incoming precipitation into major catchment losses, 

i.e., evapotranspiration and total runoff. Evapotranspiration (ET) is comprised of transpiration 

from vegetation and evaporation from bare soil and water bodies. Total runoff (QT) is comprised 

of surface runoff and groundwater flow or infiltration whereof surface runoff is the flow of 
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water into streams, while infiltration is the downward flow of water as soil moisture and further 

deep as groundwater recharge with strong link to the river system. Soil moisture greatly affect 

the distribution of total runoff into surface runoff and infiltration (Moradkhani, 2008).  

The infiltrated water is evaporated from the bare soil or transpired through vegetation goes back 

to the atmosphere or percolate further to groundwater. The groundwater is usually pumped-out 

for drinking purpose and other uses, while the rest is eventually exfiltrated to surface water as 

baseflow (Ponce and Shetty, 1995). According to L'vovich (1979),  deep percolation is very 

small and generally can be neglected. Therefore, in a water balance approach applied on a 

longer temporal scale, terrestrial water storage can be neglected (Milly, 1994; Babin, 1995; 

Montzka et al., 2008b) on practical grounds and Eq. 4.4 is adopted to assess sub-catchment and 

catchment-scale river/stream discharge/runoff (Q). In this study, I balance remotely sensed ET 

(also see chapter 3) and RADOLAN-based rainfall data to predict runoff from sub-catchment 

to catchment scale in the Rur catchment. The predicted runoff is then compared to runoff 

measured at various observatories located at the outlet of each sub-catchment (Figure 4.1). 

4.3. Results and Discussions 

4.3.1. Annual Runoff 

In this study, the annual status and trend of water in-flow and out-flow (on sub-catchment to 

catchment scale) in the Rur catchment was evaluated by analyzing temporal trends in 

precipitation, ET and total runoff on annual basis and for the mean of three years. Runoff was 

predicted for various sub-catchments in the study area (Figure 4.1) using equation 4.4 whereby 

remotely sensed ground radar-based reflectivity were converted to rain rate (mmh-1) and 

satellite-based latent heat (LEREG) was converted to equivalent evapotranspiration units (mmh-

1 and mmyear-1). Thus the water balance was applied solely on remotely sensed variables to 

quantify runoff. Predicted runoff data were then compared to in situ runoff measured at the 

outlet of each sub-catchment, namely Stah, Zerkall, Gemuend, Randerath, Eschweiler and 

Monschau as shown in figure 4.1. In situ runoff for the year 2011 was excluded due to 

unavailability. The Stah sub-catchment, with an area ~ 2153.15 km2, includes all other 

catchments as sub-catchments. Sub-catchment-wise detailed comparison of yearly 

precipitation, evapotranspiration, predicted runoff and in situ runoff during 2011 through 2014 

is shown in Table 4.1a,b and Figure 4.2.  
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Table 4.1a. Annual rate of radar-based rainfall, satellite-based ET, predicted and in situ runoff 

for various sub-catchments in the Rur catchment, Germany, during 2011-2012. 

 

Sub-

Catchments  

(Area in km2) 

2011 (mmyear-1) 2012 (mmyear-1) 

P ET QPredicted QInsitu P ET QPredicted QInsitu 

Stah  

(2135.15) 
722.94 631.64 91.30 

no 

data 
869.48 583.47 286.00 242.01 

Zerkall 

(787) 
801.46 630.00 171.46 

no 

data 
990.61 578.94 411.67 423.29 

Gemuend 

(344.55) 
727.87 632.77 95.09 

no 

data 
920.34 581.65 338.69 342.53 

Randerath 

(310.52) 
608.32 629.54 -21.22 

no 

data 
783.73 585.68 198.06 296.10 

Eschweiler 

(232.15) 
736.28 614.88 121.40 

no 

data 
923.35 567.94 355.41 330.77 

Monschau 

(143.63) 
967.04 622.42 344.62 

no 

data 
1201.40 567.36 634.05 790.95 

           

 

 

 

 

 

 

 

 



Towards a Solely Remotely-Sensed Water Balance for the Rur Catchment, Germany  

79 
 

Table 4.1b. Annual rate of radar-based rainfall, satellite-based ET, predicted and in situ runoff 

for various sub-catchments in the Rur catchment, Germany, during 2013-2014. 

Sub-catchments 
2013 (mmyear-1) 2014 (mmyear-1) 

P ET QPredicted QInsitu P ET QPredicted QInsitu 

Stah  748.39 601.18 147.22 359.94 878.54 613.01 265.54 237.03 

Zerkall 842.41 597.98 244.42 480.58 881.76 603.81 277.95 400.52 

Gemuend 793.42 600.59 192.83 360.82 821.73 606.06 215.67 312.58 

Randerath 683.35 602.11 81.24 302.25 896.07 615.22 280.86 306.02 

Eschweiler 789.19 583.16 206.03 333.77 936.89 598.96 337.93 290.05 

Monschau 1014.80 594.41 420.38 647.70 1032.80 591.46 441.37 573.61 

 

 

 

Figure 4.2. Comparison of the annual remotely sensed radar-based rain rate (RADOLAN), 

satellite-based ET, predicted and in situ runoff for various sub-catchments in the Rur catchment 

for the year 2011 through 2014. 
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During 2012 and 2014, better comparison was observed between in situ and predictive runoff 

with less difference between in situ and predictive runoff. This comparison is different in 2013 

and comparatively large difference was observed between in situ and predictive runoff 

throughout the Rur catchment. Lowest runoff was observed at the outlet of all sub-catchments 

in the study area during 2011 which was also declared as the driest year over major parts of 

Europe, including the study area, by the European Drought Observatory, EDO (EDO-2011a; 

EDO-2011b). Annual sum of rainfall from RADOLAN data utilized in this study also revealed 

lowest rainfall in 2011 as compared to the rest of the study period (Table 4.1a,b). ET and rainfall 

estimates in this study show highest rainfall and lowest evapotranspiration in 2012 during the 

study period and hence comparatively higher runoff was predicted (Table 4.1a). RADOLAN 

rain data revealed again less rainfall during 2013 in the Rur catchment as compared to 2012 and 

2014 (Table 4.1a,b), but still more than rainfall during 2011. Larger difference between in situ 

and predictive runoff due to higher in situ runoff during 2013 may be attributed to the 

subsurface flow (also called through flow) of the rainfall events during 2012. To further 

evaluate the temporal discharge patterns and difference of in situ and predicted rainfall in the 

Rur catchment, hydrographs were platted on annual in situ and predicted runoff for all sub-

catchments in the Rur catchment (Figure 4.3). The hydrographs show more or less similar 

runoff patterns during 2012 and 2014 with respect to in situ and predicted runoff. The year 2013 

exhibits different runoff pattern between in situ and predicted runoff throughout the Rur 

catchment. The Monschau sub-catchment is located in the region of less permeable rocks with 

forests and higher rainfall, therefore, overland flow dominates subsurface flow and the runoff 

rate is higher than in other sub-catchments. The Monschau sub-catchment exhibits higher runoff 

in 2012 with decreasing trend towards 2014, whereas, the rest of the catchments exhibit higher 

in situ runoff during 2013. Therefore, comparison between in situ and predictive runoff on 

longer temporal scale will minimize the effect of late subsurface flow in the catchment. 
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Figure 4.3. Hydrograph of annual in situ and estimated runoff for various sub-catchments in the 

Rur catchment for the years 2011-2014. 
 

4.3.2. Mean Annual Runoff 

The rate of infiltration and subsequent subsurface flow (baseflow) may affect annual runoff 

estimates solely from remotely sensed rainfall and evapotranspiration as net change in terrestrial 

water storage was kept negligible. Applications of this approach on short temporal scale may 

produce better results for rainfall events with more intensity as more intense rain may affect 

(minimize) the rate of infiltration i.e., decrease in recharge coefficient (Huang et al., 2013), 

such that a major part of rainfall becomes overland or surface flow. Also, this approach may be 

effective for large urbanized surfaces where imperviousness reduces the rate of infiltration 

(Montzka et al., 2008b). The infiltration capacity of the soil depends on soil properties e.g., 

hydraulic conductivity, porosity, and pore distribution (Baker, 1979; Haghnazari et al., 2015). 

Vegetation increases permeability and water storage capacity of the soil (Huang et al., 2013). 

A longer temporal scale may be used for obtaining better model results. Therefore, three years 

mean annual precipitation, evapotranspiration, predicted runoff and in situ runoff during 2012 
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through 2014 were also evaluated and the comparison have been presented in Table 4.2 and 

figure 4.4. Compared to the annual runoff rates, difference of in situ and predicted runoff is 

reduced for three years mean annual runoff rates, as evident from Table 4.2 and figure 4.4.  

 

Table 4.2. Mean annual rate of radar-based rainfall, satellite-based ET, predicted and in situ 

runoff for various sub-catchments in the Rur catchment, Germany, during 2012 through 2014. 

 

Sub-catchments  

 

2012-2014 (Mean Annual in mmyear-1) 

P ET QPredicted QInsitu  

Stah  832.14 599.22 232.92 279.66 

Zerkall 904.92 593.58 311.35 434.79 

Gemuend 845.17 596.10 249.07 338.64 

Randerath 787.72 601.00 186.72 301.46 

Eschweiler 883.14 583.35 299.79 318.20 

Monschau 1083.00 584.41 498.60 670.75 
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Figure 4.4. Mean annual remotely sensed radar-based rain rate (RADOLAN), satellite-based 

ET, predicted and in situ runoff for various sub-catchments in the Rur catchment for the year 

2012 through 2014. 
 

The scatter plot in figure 4.5 demonstrates the correlation result of this approach for various 

sub-catchments in the Rur catchment based on three year mean (i.e., 2012 through 2014). The 

predicted runoff correlates very well to the in situ runoff with correlation coefficient, r = 0.95, 

the root mean squared difference, RMSD = 106.92 mmyear-1, and mean bias error, MBE = -

94.18 mmyear-1. The predicted runoff with this approach exhibits underestimation which may 

be attributed partly to overestimation in ET. The Eschweiler gauge presents best model result 

i.e., close to 1:1 line, followed by the Stah gauge, however, considering area of the sub-

catchments (Table 4.1a), the Stah and the Zerkall may be ranked best than any other sub-

catchment. The Randerath, Gemuend and Zerkall can be ranked similar with respect to 

predicted runoff following the same distance from 1:1 line (Figure 4.5). The Monschau and 

Gemuend sub-catchments are located towards south in the Eifel region with comparatively 

higher rate of annual rainfall and lower rate of evapotranspiration at Monschau, whereas, 

Gemuend receive comparatively less rainfall (Tables 4.1a,b and 4.2, Figures 4.2 and 4.4). The 

Monschau sub-catchment is the smallest sub-catchment in the Rur catchment evaluated here, 
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but due to higher rainfall and lower ET rate, it exhibits higher annual and mean annual runoff 

throughout the study period. The mean annual rate of in situ and predicted runoff (279.66 and 

232.92 mm, respectively) observed at the Stah gauge is less than the average annual runoff (348 

mm) reported by Bogena et al. (2005a). Overall, the mean annual predicted runoff is 

underestimated as compared to the in situ runoff data for all sub-catchments. This 

underestimation may partially be attributed to the overestimation of remotely sensed 

evapotranspiration (also see chapter 3 section 4.2). Increasing the temporal scale from annual 

to three years mean annual rate, predicted runoff demonstrated comparatively better correlation 

to in situ runoff data. Less biased evapotranspiration from remote sensors and application on 

even longer time scale may further improve the estimation of runoff solely from remotely 

sensed data. 

 

 

 

Figure 4.5. Scatter plot of mean annual in situ and predicted runoff for various sub-catchments 

in the Rur catchment for the years 2012-2014. 
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4.4. Conclusion and Outlook 

This study evaluates the utilization of solely remotely sensed data to build water balance on a 

catchment scale. With radar-based rainfall (RADOLAN) and satellite-based 

evapotranspiration, annual (2011-2014) and mean (2012-2014) runoff data were calculated for 

various sub-catchments in the Rur catchment, Germany. The derived spatial and temporal 

runoff patterns were analyzed in comparison to in situ runoff patterns on annual and mean 

annual temporal scales. Variations in runoff patterns with respect to space and time may be 

used as a clue for understanding the water balance of an area and provide an appropriate guide 

towards agriculture and water related planning and practices especially to overcome events of 

hydrological extremes. During 2012-2014, as the observed mean annual runoff, both estimated 

and in situ, at the outlet of the Rur catchment at the Stah gauge was lower than the mean annual 

runoff equal to 348 mm reported in literature (Bogena et al., 2005a). Thus, it can also be linked 

with local to regional scale climatic changes and weather anomalies reported by the European 

Drought Observatory during the past several years (Kundzewicz et al., 2009) and also during 

the study period (EDO-2011a; EDO-2011b; EDO-2015). Apart from weather and 

meteorological impacts, further analysis of land use and land cover (LULC) changes may better 

explain the varying trend of runoff in the catchment. 

During the study period, the year 2011 was a drier period with less annual rainfall and 

comparatively higher evapotranspiration in the Rur catchment. Also lowest runoff was 

estimated throughout the catchment during 2011. Considering the alternate dry and wet periods 

in the catchment and current climate change scenario, consistent and operational analysis of the 

hydrological estimates must be carried out before and after the study period selected in this 

study. The robustness of the water balance analysis solely on remote sensing data must be 

examined in different geographical areas with a different set of weather and climatic conditions 

before extension to ungauged or poorly gauged basins. This approach exclusively applied to 

remotely sensed data would better manage water related issues especially in basins with water 

scarcity conditions and ungauged basins. More precise and accurate spatio-temporal estimates 

of rainfall and evapotranspiration from remote sensors mounted on satellite platforms would 

make the approach more widely applicable throughout the globe, especially in remote areas and 

regions with no or less in situ networks.  

Here, changes in the terrestrial water storage were kept constant and hence the water balance 

was applied on annual rainfall and evapotranspiration, however, better results were observed 
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for 3-years mean data (i.e., 2012 through 2014). It is concluded here that the current approach 

is more appropriate on larger temporal scales, for instance, larger than annual scale. 

Applications on larger temporal scale may lead to improved estimates of sub-catchment to 

catchment scale runoff. 
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5. Synthesis 
 

5.1. Final conclusion 

This thesis investigated direct retrieval methods of a vegetation bio-physical variable (i.e., LAI) 

and hydrological fluxes (i.e., rainfall, evapotranspiration and runoff) from remotely sensed data. 

Remote sensing methods employ sophisticated and state-of-the-art sensors/instrument to 

capture spatial information on regional scale in operational manner. Consistent availability of 

the relevant variables and state variables from remote sensing platforms is the foremost choice 

of data acquisition for spatio-temporal surface hydrological estimates. Approaches developed 

in this thesis for remotely sensed vegetation characteristics and hydrological parameters 

estimates were exclusively validated in the Rur catchment in the west of Germany near the 

border area of Netherlands-Belgium-Germany. The Rur catchment has well-equipped test sites 

(e.g., TERENO test sites) with in situ networks for measuring various hydrological and energy 

fluxes within the soil-vegetation-atmosphere continuum. The catchment is also covered by 

radar-based rain (RADOLAN) estimation (Diederich et al., 2015b). Throughout this thesis, it 

was tried to solely utilize remote sensing data and reduce dependency on the in situ 

measurements except for validation of remotely sensed vegetation bio-physical and 

hydrological estimates. Being site specific, in situ measurements have limited scope towards 

spatial extrapolation and hence cannot be applied on regional scale. Nevertheless, being most 

accurate and precise, in situ measurements are widely used for calibration and validation of 

remote sensing estimates. Sometimes, in situ information has been used in semi-empirical 

approaches for parameter calibration and cannot be excluded from the main algorithms to 

compute several required variables and state variables and also the required final output. 

5.1.1. Estimation and validation of LAI 

Various spectral vegetation indices (VI) calculated on satellite images contain important 

information easily compatible in various models used for retrieving soil moisture, 

evapotranspiration, plants growth, agriculture productivity and weather related estimates. The 

effects of changing atmospheric conditions on the time-series of RapidEye level 3A imagery 

were evaluated through the application of relative (IR-MAD) and absolute (ATCOR) 

atmospheric corrections. This study reports that relative and absolute atmospheric corrections 

are not necessary for LAI retrieval. Vegetation indices used for LAI retrieval are already 

normalized (i.e., difference of two spectral bands (red and NIR) is normalized by the sum of 
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the same spectral bands). It was concluded that correction applied on the producer level were 

enough for the level 3A RapidEye product for LAI retrieval. However, these corrections may 

be further tested under different climatic and illumination conditions in a different geographical 

location. LAI estimated incorporating newly available satellite-based red-edge band presented 

best correlation with in situ measurements for winter wheat. The red-edge band proved as a best 

substitute for the red spectral channel in NDVI and SAVI for estimating LAI and should be 

applied in future studies utilizing Sentinel-2 data. The light extinction coefficient k(θ) showed 

sensitivity towards the RMSD between LAIrapideye and LAIdestr. The most appropriate k(θ) 

selection depends upon VI, vegetation type, leaf angel, leaves distribution, density of 

vegetation, light penetration into the canopy and latitudinal location on the earth surface. 

5.1.2. Evapotranspiration 

Estimation and validation of latent heat calculated through the energy balance model (LEEBM) 

and regression analysis (LEREG) are presented here. LEREG exhibits better correlation statistics 

as compared to LEEBM. LEEBM presented suitable validation results for areas with crops in the 

northern Rur catchment and exhibited overestimation in the forested southern Rur catchment. 

In general, throughout the catchment higher model discrepancies are linked to the coarse spatial 

resolution (5km x 5Km) and its comparison to footprint scale Eddy Covariance data. 

Temporally the discrepancies are higher when the pixel representing EC station is not 

homogeneous with respect to vegetation. Within a pixel, the surface homogeneity is decreased 

when the EC station is surrounded by senescent vegetation close to harvest season or barren 

soil when vegetation is already harvested. Furthermore, another reason for the within pixel 

reduced homogeneity is the difference in planting and harvest time of various crops in the study 

area.  Utilization of finer spatial resolution satellite imagery will increase surface homogeneity 

surrounding the EC station.  

Downwelling Surface Shortwave Flux (DSSF) was used as the main controlling factor for ET 

and was used in pixel-wise regression with LEEBM (Figure 3.7). For final LEREG estimation, 

suitable regression slope was selected from the agricultural sites in Selhausen. The regression 

analysis was proved to be a better direct ET retrieval method to create a gap-free consistent 

latent heat (evapotranspiration) from remote sensing data by relating longer time-series of ET 

(with gaps) to a basic ET controlling/depending factor. LEREG leads to a strong increase in the 

number of available hourly data points for validation with minor variation in correlation 

coefficient and slight reduction in RMSD for Selhausen, Merzenhausen and Selhausen-Ruraue. 
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The root mean square difference (RMSD), mean bias error (MBE) and mean absolute error 

(MAE) are significantly reduced for Rollesbroich and Wuestebach sites owing to the utilization 

of best suitable regression slope from agricultural fields for LEREG estimation. This study 

reveals higher annual ET rate during 2011 with lowest annual rate in 2012 and again increasing 

trend in ET annual rate towards 2015. The higher ET rate during 2011 can be linked to regional 

perspective of increased temperature and shortage in rainfall reported by the European Drought 

Observatory (EDO-2011a; EDO-2011b). 

5.1.3. Water Balance  

The aim of this chapter was to develop water balance solely on remotely sensed 

evapotranspiration and rainfall to estimate annual and mean annual runoff at sub-catchment to 

catchment scale. For rainfall estimates, ground-based radar rainfall data (RADOLAN) from 

DWD was incorporated instead of using satellite-based precipitation e.g., MPE (best for 

convective rain only), GPM (unavailable) and TRMM (spatially outside the study area). 

Throughout the study period 2011 is marked as the driest year with less rainfall and more 

evapotranspiration coupled with higher temperature. In 2011, lowest runoff was observed at the 

outlet of all sub-catchments in the study area as compared to the rest of the study period. The 

year was also marked as the driest year by the European Drought Observatory EDO 

(http://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1051). The year 2012 records maximum 

rainfall and lowest evapotranspiration estimates and hence higher runoff estimates. 

Estimated runoff is comparable to the in situ runoff throughout the study area. Especially, the 

mean annual estimated runoff showed high correlation (r = 0.95) to in situ runoff. Overall, the 

mean annual estimated runoff is underestimated when compared to in situ runoff data. 

Application on even longer time scale may improve the estimation of runoff solely from 

remotely sensed data by reducing root mean squared difference and mean absolute error. The 

mean annual in situ and estimated runoff for the Rur catchment observed in this study is less 

than the average runoff reported in literature (Bogena et al., 2005a). Impacts of climate and 

land use/land cover changes induced uncertainties to hydrological processes may further be 

evaluated in connection with the spatio-temporal runoff patterns observed recently. 

 

 

 

http://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1051
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5.2. Outlook 

This thesis investigated estimation and validation of LAI, evapotranspiration, rainfall and 

runoff based on remote sensing techniques in the Rur catchment, Germany, may lead to better 

direct retrieval methods for continental and global scale applications. Estimated time-series of 

LAI was validated on winter wheat and further studies must be carried out to evaluate the 

robustness of the method on other vegetation and in other geographical areas with different set 

of climatic, illumination and soil conditions. The red-edge spectral band can further be tested 

for other crops, grasses (Asam et al., 2013) and forests (Schumacher et al., 2016) in the study 

area and beyond. Additionally, further analysis of the light extinction coefficient for 

heterogeneous surfaces with different vegetation types, incorporating different spectral 

vegetation indices, different illumination conditions and for different sensors acquiring 

multispectral imagery may lead to more appropriate and suitable light extinction coefficient 

selection for diverse spatial scale LAI mapping based on remote sensing data. 

Estimated latent heat derived on coarse pixel size lead to higher uncertainty under 

heterogeneous surface vegetation conditions when compared to Eddy Covariance 

measurements. This uncertainty can be reduced by using finer resolution remotely sensed 

energy fluxes and vegetation information. So far, no single satellite system provides data with 

fine spatial and temporal resolutions simultaneously. Next Meteosat mission, the Meteosat 

Third Generation (MTG) of EUMETSAT and ESA, with infrared and ultraviolet/visible 

sounding missions will provide crucial data for land surface processes. The satellite-based 

consistent monitoring with fine resolution spatial and temporal information are needed for more 

accurate and precise assessment of evapotranspiration and its impacts on the hydrology, 

weather, agricultural practices, irrigation and other relevant phenomena and processes. The 

energy balance approach with subsequent regression approach must be applied to an even 

longer period incorporating dry and wet years in the same study area or under similar climatic 

conditions. Also, the robustness of the model used must be analyzed in another geographical 

location under different set of weather and climatic conditions. Keeping in view the episodes 

of high and low annual rates in the catchment, further investigation through incoming years 

needed to better understand the annual trend in evapotranspiration rate in the catchment and 

beyond. 

The satellite-based precipitation estimates are increasingly used for hydrological applications, 

however, its accuracy is still inappropriate for several quantitative hydrological estimates and 
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catchment scale water balance studies. This thesis demonstrated utilization of ground-based 

radar rainfall estimates to quantify annual runoff patterns. Prediction of runoff based on 

remotely sensed data with more precise rainfall estimates from satellite platform (i.e., 

applications of the water balance purely on remotely sensed data) could lead to better and 

operational water related planning and management especially for ungauged or poorly gauged 

basins. It will timely and operationally help to ward off or mitigate the adversities from severe 

rains and extreme droughts. 
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