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1 Introduction1 

Fixed effect models have become increasingly popular in the field of sociology. The possibility to con-
trol for unobserved heterogeneity makes these models a prime tool for causal analysis (Gangl 2010; 
Brüderl and Ludwig 2015). Fixed effects models for continuous, dichotomous, and count dependent 
variables are widely used and available in Stata as well as many other software packages. A fixed ef-
fects estimator for polytomous discrete dependent variables, however, is not yet available for any 
statistical software package (Allison 2009, 44). The available alternatives for such dependent variables 
are the pooled multinomial logistic or probit regression (Wooldridge 2010; Rabe-Hesketh and Skrondal 
2012) and the multinomial logistic or probit regression with random-effects (Wooldridge 2010; Rabe-
Hesketh and Skrondal 2012). For both models we have to assume that any unobserved heterogeneity is 
independent of the observed covariates. 

In this paper, I present an implementation of the multinomial logistic regression with fixed effects 
(femlogit) in Stata. The femlogit command implements an estimator due to Chamberlain (1980). 
The implementation draws on the native Stata multinomial logit and conditional logit model imple-
mentations. The actual ml evaluator utilizes mata functions to implement the conditional likelihood 
function. 

Possible applications of the fixed effects estimator include analyses of effects on employment status 
with special consideration of part-time or irregular employment, and analyses of the effects on voting 
behavior that implicitly control for stable individual differences in party preference rather than having 
to measure it directly. 

After explaining the mathematical background and the implementation of the model, I will discuss the 
syntax of femlogit. Afterwards, I show the application of the ado and the interpretation of its 
results with a model of voting behavior with British election panel data and a model of the effect 
smoking on pre-term, full term, and post-term birth with multi-level data. 

                                                         
1  This manuscript is the modified version of the first submission of Pforr (2014), which includes parts that were 

cut in the course of the review process. The code fragments shown here are from the most recent version 
available. 
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2 Statistical model 

The statistical model was first proposed by Chamberlain (1980, 231). More extensive expositions are 
found in Lee (2002, 143ff.) and Pforr (2014). I assume a sample of individuals 1, ,i N=   with ob-

servations across time 1, , it T=  .2 The outcome variable jo  with 1, ,j J=   is a polytomous 

categorical variable with J  identical levels for all individuals and observation times. The values of the 
outcome levels are unrestricted: : jj o∀ ∈ . For each individual i  and each observation time t , the 

chosen outcome ity  is measured as the dependent variable and a vector of M  independent variables 

1, ,it it itMx x=x  . Next to the realized choices, I define *
itjy  to be the latent propensity for each 

individual i  at time t  to choose outcome j . With this notation at hand, I assume this relation be-

tween the propensities *
itjy  and the independent variables itx : 

 { } *1, , : itj ij it j itjj J y α ε∀ ∈ = + +x β . (1) 

In this equation, jβ  is the coefficient vector, which has to be estimated. On the other hand, ijα  is a 

random variable. The error term itjε  is a Type I (Gumbel-type) extreme-value random variable, i.i.d. 

across all outcomes j . The link to the chosen outcome is defined by: 

 { } ( )
{ }

* *

1, ,
1, , : Pr | , , Pr ma{ | , ,it j i it itk itj i itk J

j J y o y y
∈

 ∀ ∈ = = =  
α β { α β {



 . (2) 

With these assumptions, the probabilities of each outcome can be derived. To guarantee identifiability, 
an arbitrarily chosen outcome { }1, ,B J∈   is defined as the base outcome, and the respective 

coefficients are restricted to zero: 0iBα = , B =β 0 . From this follows: 

 ( )
( )

( )

( )

e{p
1 e{p

Pr | , ,
1

1 e{p

ij it j

ik it kk B
it j i it

ik it kk B

j B
y o

j B

α
α

α

≠

≠

 +
 ≠

+ += = 
 = + +

∑

∑

x β
x β

α β {

x β

 . (3) 

Up to this point, I have set up the assumptions for the pooled multinomial logistic regression, although 
I would have to rule out unobserved heterogeneity: : ij jj α α∀ = . 

The advantage of the femlogit model is that it allows for individual unobserved heterogeneity with 
respect to the intercepts. The heterogeneity terms ijα  are random variables with no restrictions on 

the joint distribution with the independent variables itx . Direct estimation of the individual ijα  cre-

ates an incidental parameters problem, which leads to inconsistent estimators with asymptotics solely 
based on N → ∞ . However, with additional assumptions it is possible to consistently estimate the 

                                                         

2  The subscript i  at iT  means that in principle the model allows for analyzing unbalanced panel data. However, 

the attrition process has to be at least at random, i.e. attrition is completely at random, once conditioning for 
the independent variables (Wooldridge 2010). 
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coefficient vector β . Firstly, we assume that the observed covariates are strictly exogenous condition-

al on the unobserved heterogeneity: 

 { } { }
1| , | , , , | ,1, , , 1, , :

it ij i it ij T it ij tii y y yt T j J f f fα α α∀ ∈ ∈ ≡ =x x x x

   . (4) 

Secondly, we assume that the error terms are independent across time. That is, autocorrelation is ruled 
out: 

 { } { }, 1, , , 1, , :i isj itjs t T j J ε ε∀ ∈ ∀ ∈ ⊥  . (5) 

Chamberlain (1980) states that under these additional assumptions the term 
1

i

it j

T
ij y ot

θ δ
=

≡ ∑ , where 

δ  denotes the Kronecker delta function with respect to ity  and jo , is a sufficient statistic for the 

unobserved heterogeneity ijα . The intuitive interpretation of this relation is that the sum of occur-

rences of an outcome j  for an individual i  across time is a sufficient statistic for her inclination 

towards that outcome. 

The existence of a sufficient statistic for the unobserved heterogeneity means that one can reformu-
late the likelihood function in such a way that the estimands ijα  disappear. The probability mass 

function for the sequence of chosen outcomes across time for individual i  conditional on the suffi-
cient statistic is 

 
( )

( )( )
1 1

| , , ,

1 1

Pr | , , ,

Pr | , , ,

y oi it j

i i i i oi it j

i i

T J
it j i i it j

T J
it j i i it j

y o
f

o r

δ

δ
r

= =

∈| = =

=
=

=

∏ ∏
∑ ∏ ∏

y α β { θ

υ

α β { θ

α β { θ
 . (6) 

The summation in the denominator is taken over all “potential” sequences of chosen outcomes 

( )1, ,
ii i iTr r≡ …υ  that fulfill the condition of the sufficient statistic iθ . The set i|  contains all 

sequences iυ  for which the sum of occurrences of each outcome j  is the same as for the realized 

sequence iy . Formally, this means: 

 ( ) { }1
1 1

, , | 1, , :
i i

i it j it j

T T

i i iT o y o ij
t t

j J rr r δ δ θ
= =

 
| ≡ ∀ ∈ = = 

 
∑ ∑  . (7) 

Technically, the set i|  is the set of all permutations of the realized sequence of chosen outcomes iy . 

With some algebra taking into account the assumptions and definitions above, equation (6) can be 
written as: 

 
( )

( )
1 1,

| , , ,

1 1,

e{p

e{p

i

it j

i i i i i

it ji i

T J
y o it jt j j B

T J
o it jt j j B

f
r

δ

δ
= = ≠

∈| = = ≠

=
∑ ∑

∑ ∑ ∑
y α β { θ

υ

x β

x β
. (8) 

Having derived the probability mass function, the simplified expression of the log-likelihood function 
of the femlogit model follows from its definition. The contribution to log-likelihood of individual i  is: 
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( ) | , , ,

1 1, 1 1,

ln | , ln

ln e{p

i i i i

i

it j it j
i i

i i i

T J J J

y o it j o it j
t j j B t j j B

f

r
r

δ δ
= = ≠ ∈| = = ≠

= =

 
= −  

 
∑ ∑ ∑ ∑ ∑

y α β { θβ y {

x β { β



. (9) 

Therefore the overall log-likelihood function for the sample – given a simple random sample of panel 
groups – is: 

 ( ) ( )
1

ln | , ln | ,
N

i i i
i

L
=

= ∑β y { β y { . (10) 

For the ML estimation, the gradient matrix of the log-likelihood function and the Hessian matrix is 
needed. Although these could be determined in the practical estimation process numerically, this 
would reduce numerical precision and considerably slow down the estimation process (cf. Gould, 
Pitblado, and Poi 2010, 20–24). I derived analytical expressions for the gradient matrix and the Hessian 
matrix. 

The gradient matrix is the ( 1)N J M× −  matrix of the partial derivatives of all individual contribu-

tions to the log-likelihood with respect to all coefficients jmβ . That is, the element in row a  and 

column b  in this matrix is the partial derivative of contribution individual a  to the log-likelihood 
with respect to the b -th coefficient. Note, that there are only ( 1)J M−  coefficients, as the coeffi-

cients of the outcome B  are constrained to zero. 

 
( )ln | ,i i i

jmβ
 ∂

=   ∂ 

β y {
g



  (11) 

The element for individual i  and the coefficient jmβ  in the gradient matrix is: 

 

( )

( ) ( )( )
( )

1

1 1 1,

1 1,

ln | ,

e{p

e{p

i

it j

i i

it j it ji i

i

it ji i

T
i i i

y o itm
tjm

T T J
o itm o it jt t j j B

T J
o it jt j j B

x

xr rr
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β

δ δ

δ

=

∈| = = = ≠

∈| = = ≠

∂
= −

∂ ∑

∑ ∑ ∑ ∑
∑ ∑ ∑

β y {

x β

x β



. (12) 

The Hessian matrix is the ( 1) ( 1)J M J M− × − . matrix of the partial derivatives of the overall log-

likelihood of the sample with respect to all pairs of coefficients jmβ  and knβ . 

 
( )2 ln ,

jm kn

L
β β

 ∂
=   ∂ ∂ 

β y {
H  (13) 

Here, the element of the Hessian matrix for the coefficients jmβ  and knβ  is: 
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From standard ML theory, it follows that the estimates of the coefficients of interest as described by 
(Wooldridge 2010) are: 
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  (15) 

This means that – provided that the aforementioned assumptions are valid – the ML estimation of the 
coefficient vector β  of the structural model described in equation (3) is the maximum of the sample 

analogue of the overall log-likelihood function conditional on the dependent and independent varia-

bles with respect to β . This estimator MLβ  converges in probability to the true coefficient vector β  

with N → ∞  and fixed iT . It converges in distribution with N → ∞  and fixed iT  to a multivariate 

normal distribution with the true coefficient vector as the mean and a variance-covariance-matrix as 
described in equation (15). 
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3 Implementation 

In this section, I explain the implementation of the femlogit model. Starting with a short introduction 
to how ML estimators are implemented in Stata in general, afterwards I show, how the statistical 
model derived in the first section corresponds to the notational framework of the  
ml/moptimize( ) command suites. Next, I explicate the concrete implementation of the femlogit 
model in the femlogit command. Here, I start with a detailed description of the evaluator, and con-
clude with the general layout of the ado. 

 

Figure 1:  Schematic illustration of ML estimation in Stata 

Maximum likelihood estimation in Stata – outside of existing estimation commands~– generally works 
along the structure depicted in figure 1 (Gould, Pitblado, and Poi 2010). At this point the log-

likelihood function ( )ln ,L β y {  and optionally the gradient and Hessian matrices have already been 

derived. The first step is to give Stata the dependent variable y  and the independent variables x , 

from which the coefficients of interest can be estimated. This information is passed to Stata via the 
existing Stata command suite ml or via the Mata analogue moptimize( ). In the second step, the 
algebraic expression of the log-likelihood function is translated so that it can be interpreted by Stata. 
This is accomplished by programming the so-called “evaluator” either as a Stata-ado or a Mata-
function. Generally, the evaluator expects to be given from ml or moptimize( ) the dependent 
and independent variables and a coefficient vector. The coefficient vector is either the initial vector, 
from which the iterative ML algorithm starts, or the vector of the previous ML iteration step. With this 
input, the evaluator calculates the log-likelihood, and optionally the gradient and the Hessian matri-
ces. This output is given back to ml or moptimize( ), from which the coefficient vector of the 
next ML iteration step is calculated. 

The femlogit model described above can best be implemented in Stata with the moptimize( ) 
Mata suite and the evaluator as a Mata function. With the mathematical derivations of the individual 
contributions to the overall log-likelihood function for the sample (eq. (9)), and the gradient and Hes-
sian matrices (eqs. (11)and (13)) at hand, I organize them in the moptimize( ) notation, following 
subsection “Mathematical statement of the moptimize( ) problem” in StataCorp LP (2009a, 
639ff.). 
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Find coefficients 

  b=(( b1), …, (bB-1), (bB+1), …, (bJ)) 

 where 

  b1: 1 x M, 

  … 

  bB-1: 1 x M, 

  bB+1: 1 x M, 

  … 

  bJ: 1 x M, 

 that maximize 

  ln L(b|y,x) 

 as defined in equation (10) where 

  y: ∑i=1..NNi  x 1, 

  x: ∑i=1..NNi  x M. 

This layout shows that the column vector y  represents the single dependent variable and the matrix 

x  represents the M  independent variables. Overall, there are N  panel groups, each with iT  obser-

vations. The coefficient column vectors are organized as 1J −  equations in the moptimize( ) 
terminology. Note that the coefficient vectors do not include terms for the constants. 

This abstract description provides the basis for the implementation of the femlogit model into Stata. In 
the following, I present the concrete implementation of the evaluator, the ML-call, and the ado wrap-
per, which allows to estimate the model for general problems. 

3.1 Evaluator 

The programming of the evaluator depends on the chosen method or type, where the first term is used 
for Stata evaluators and the latter term is used for Mata evaluators (StataCorp Lp 2009a; Gould, 
Pitblado, and Poi 2010, 48–51). If the individual contributions to the overall log-likelihood function 
for the sample depend on individual rows of the data matrix and the overall log-likelihood is the sum 
of these contributions across the rows of the data matrix, it is generally preferable to use a method or 
type from the lf-family. If the overall log-likelihood cannot be constructed as a sum across the rows 
of the data matrix, a method or type from the d-family is recommended. If the individual contribu-
tions to the overall log-likelihood function are derived from groups of cases in the data matrix, and 
the overall log-likelihood function is the sum across the groups of cases, a method or type from the 
gf-family should be chosen. The latter case applies to most panel-data and multi-level models. 

For the implementation of femlogit, I use a gf2-type evaluator. Besides the more straightforward 
consideration of the panel-data structure, this type allows an easier integration of the implemented 
ado into the svy command suite.3 The gf2-type evaluator expects to use the coefficient row vector 

                                                         
3  Note, that in the current version of the implementation, there is no support for weights and there is no con-

nection to the \stcmd{svy} command suite. 
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( ):1 1J M× −β , the independent variable matrix 
1

:
N

i
i

T M
=

×∑x  and the dependent variable col-

umn vector 
1

: 1
N

i
i

T
=

×∑y  as input, and returns the column vector ( )( )ln : 1i N ×β  of the individu-

al contributions for all panel-groups, the gradient matrix ( ): 1N J M× −g , as defined in equation 

(11), and the Hessian matrix ( ) ( ): 1 1J M J M− × −H , as defined in equation (13). 

Before laying out the programming of the evaluator, I define auxiliary terms, from which the expres-
sions in the equations (10), (12), and (14) can be constructed. For each panel group i  and for each of 
its permutations iυ , I define the scalar 1 :1 1iZ ×  and the row vector 2 :1 ( 1)iZ J M× −  as: 
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1 1 1,

2 2

2 1

e{p ,
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=
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∑

x β

  (16) 

With these expressions as building blocks for each panel group i  and for each of its permutations iυ , 

I define the scalars :1 1iA ×  and :1 1iB × , the row vectors :1 ( 1)iC J M× −  and 

:1 ( 1)iD J M× − , and the matrix : ( 1) ( 1)iE J M J M− × −  as: 
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x β

x
  (17) 

With these auxiliary terms, the column vector of the individual contributions to the overall log-

likelihood function ( )( )ln i β  – in Stata terminology lnfj – and the gradient matrix g  or S and 

Hessian matrix H  or H can be constructed in the following way: 
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( )

( )

1 1
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   (18) 

This completes the description of the correspondence between the statistical model and the 
 moptimize( ) command suite, so that I can map the model into a gf2-type evaluator. 

Code 1: femlogit_eval_gf2( ) – part 1 

*! version 1.0.0 16apr2014 13:35 mata_eval_moptgf2.mata 

version 11.0 

mata: 

mata set matastrict on 

void femlogit_eval_gf2(transmorphic scalar ML, real scalar todo, /* 

  */ real rowvector b, real colvector lnfj, real matrix S, /* 

  */ real matrix H) { 

 

  // declare variables 

  real colvector touse, id, yi, upsiloni 

  real matrix panelinfo, Xi, out2eq, X, E, T, Hc, Sc 

  real scalar N, M, J, i, A, B, j, m, Z1 

  real rowvector C, D, permuteinfo, Z2 

 

First I have to declare the objects that are used in the function. This step is necessary, as I use strict 
Mata syntax. 
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Code 2: femlogit_eval_gf2( ) – part 2 

  // get things from Stata 

  st_view(touse=.,.,st_local("touse")) 

  st_view(id=.,.,st_local("group"),st_local("touse")) 

  st_view(X=.,.,st_local("rhs"),st_local("touse")) 

   

  // auxilary matrix 

  out2eq=st_matrix(st_local("out2eq")) 

 

The estimation sample indicator, the panel group indicator, and the independent variables are accessed 
by referencing, which are stored in the macros touse, group, and rhs. I copy the matrix out2eq, 
which maps the indexes j  to the outcomes jo , from Stata to Mata: 

 

1

1

1

1

1
out2eq 0

1

1

B

B

B

J

o

o B
o

o B

o J

−

+

 
 
 
 −
 =  
 +
 
 
 − 

 

 

. (19) 

Code 3: femlogit_eval_gf2( ) – part 3 

  // derived information 

  J=rows(out2eq) 

  M=cols(X) 

  panelinfo=panelsetup(id,1) 

  N=panelstats(panelinfo)[1] 

 

From these objects, I derive the constants that make up the sample, i.e. the number of alternatives J , 
the number of independent variables M , and the number of panel groups N . For easier manage-
ment of the panel groups, I use the function panelsetup( ), which gives us a matrix  
panelinfo( ) that marks the cases, which belong to each panel group. 
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Code 4: femlogit_eval_gf2( ) – part 4 

  // init lnfj, S, H 

  lnfj=J(N,1,0) 

  if (todo>0) {  

    S=J(N,(J-1)*M,0) 

    if (todo==2) { 

      H=J((J-1)*M,(J-1)*M,0) 

    } 

  } 

 

The central outputs of the evaluator are lnfj, S, and H. These objects are initialized to contain zeros 
as elements. Note that the scalar todo is used to streamline the computation, following Gould et al. 
(2010, 79, 111) and the subsection “Example using type d” in StataCorp LP (2009a). This streamlining is 
also applied in the rest of code. 

Code 5: femlogit_eval_gf2( ) – part 5 

  // calculate lnfj, S, H 

  for(i=1;i<=N;i++) { // loop over panels 

    // create panel-wise variables (only one call per panel) 

    yi=moptimize_util_depvar(ML,1)[|panelinfo[i,1]\panelinfo[i,2]|] 

    Xi=X[|panelinfo[i,1],.\panelinfo[i,2],.|] 

 

To compute the column vector lnfj, I compute each of its N  elements. Analogously for the matrix 
gi, each of its N  row vectors are computed. For the matrix Hi, each of the N  addends of the sum 
shown in equation (18) are computed. Therefore, I loop over all N  panel groups. For each panel 
group 1, ,i N= … , I use the utility function moptimize_util_depvar() from the mopti-

mize()-suite and the matrix panelinfo created above, to create the column vector iy  that con-

tains the sequence of chosen outcomes across time for panel group i . Accordingly, I create the matrix 

ix  that contains the sequences of all independent variables across time for panel group i . 
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Code 6: femlogit_eval_gf2( ) – part 6 

    // init major auxiliary variables (A,B,C,D,E) 

    A=0 

    B=0 

    if (todo>0) { 

      C=J(1,(J-1)*M,0) 

      D=J(1,(J-1)*M,0) 

      if (todo==2) { 

        E=J((J-1)*M,(J-1)*M,0) 

      } 

    } 

 

To compute lnfj, S, and H from the defined auxiliary variable described in equations (16), (17), and 
(18), I first initialize the auxiliary terms 0iA = , 0iB = , iC = 0 , iD = 0 , and iE = 0  to contain 

zeros as elements. 

Code 7: femlogit_eval_gf2( ) – part 7 

    // calculate A,C 

    for(j=1;j<=J;j++) { // loop over outcomes 

      if (out2eq[j,2]!=0) { // exclude base outcome 

        A=A+quadcolsum((yi:==out2eq[j,1]):* /* 

        */ ((Xi*(colshape(b,M)'))[.,out2eq[j,2]])) 

        if (todo>0) { 

          for(m=1;m<=M;m++) { // loop over indep. vars 

            C[1,(out2eq[j,2]-1)*M+m]=quadcolsum((yi:==out2eq[j,1]) /* 

            */ :*(Xi[.,m])) 

          } 

        } 

      } 

    } 

 

Here, the auxiliary scalar iA  and the auxiliary row vector iC  is computed, as defined in equation (17). 
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Code 8: femlogit_eval_gf2( ) – part 8 

    // calculate B,D,E 

    // generate Upsilon_i=Set of permutations of y_i 

    permuteinfo=cvpermutesetup(yi) 

    // loop over permutations of y_i (upsilon_i in Upsilon_i) 

    while((upsiloni=cvpermute(permuteinfo))!=J(0,1,.)) { 

      // init minor auxiliary variables 

      Z1=0 

      if (todo>0) { 

        Z2=J(1,(J-1)*M,0) 

      } 

 

To calculate the auxiliary term iB , iD , and iE , I have to define the auxiliary terms 1iZ  and 2iZ . 

These objects are constructed from the set of all permutations of outcome sequences for each panel 
group i . Therefore, I use the functions cvpermutesetup() and cvpermute() to loop over of 
all permutations iυ  for each panel group i . For each permutation iυ  within each panel group i , I 

first initialize the auxiliary terms 1 0iZ =  and 2iZ = 0  to contain zeros. 

Code 9: femlogit_eval_gf2( ) – part 9 

      // calculate Z1,Z2 

      for(j=1;j<=J;j++) { // loop over outcomes 

        if (out2eq[j,2]!=0) { // exclude base outcome 

          Z1=Z1+quadcolsum((upsiloni:==out2eq[j,1]):*((Xi* /* 

          */ (colshape(b,M)'))[.,out2eq[j,2]])) 

          if (todo>0) { 

            for(m=1;m<=M;m++) { 

              Z2[1,(out2eq[j,2]-1)*M+m]= /* 

              */ quadcolsum((upsiloni:==out2eq[j,1]):*(Xi[.,m])) 

            } 

          } 

        } 

      } 

      Z1=exp(Z1) 
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Here, I compute the auxiliary terms 1iZ  and 2iZ , as defined in equation (16). Note that most of the 

computation is structurally analogous to the computation of iA  and iC  above, where iy  is ex-

changed with iυ . 

Code 10: femlogit_eval_gf2( ) – part 10 

      // fill up B,D,E with minor aux. var's 

      B=B+Z1 

      if (todo>0) { 

        D=D+Z2:*Z1 

        if (todo==2) { 

          E=E+(quadcross(Z2,Z2)):*Z1 

        } 

      } 

    } 

 

With the auxiliary terms 1iZ  and 2iZ  at hand, I compute the auxiliary terms iB , iD , and iE , as 

defined in equation (17). To safe computation time, the terms are summed up in passing within the 
same loop over all permutations iυ . 

Code 11: femlogit_eval_gf2( ) – part 11 

    // fill up lnfj,S,H with major aux. var's A,B,C,D,E 

    lnfj[i]=A-ln(B) 

    if (todo>0) { 

      S[i,.]=C-D:/B 

      if (todo==2) { 

        // Sum up H 

        H=H+((quadcross(D,D)):/(B^2))-(E:/B) 

      } 

    } 

  } 

 

After completion of the loop over all permutations iυ , the auxiliary terms iA , iB , iC , iD , and iE  

are computed. With these, I can fill in the elements of the column vector lnfj and the rows of the 
matrix S and sum up the cell entries of the matrix H for each panel group i , as described in equation 
(18). After completion of the loop over all panel groups i , all elements of lnfj, all rows of S, and all 
addends of H are computed. 
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Code 12: femlogit_eval_gf2( ) – part 12 

  // Push out scores and Hessian for robust variance matrix (preci-
sion issues!) 

  if (st_local("robust")!="" & st_local("constraints")=="") { 

    if (cols(S)==rows(H) & rank(H)==rows(H)) { 

      st_matrix(st_local("rvm"),(N/(N-1)):* /* 

      */ (invsym(-H)*quadcross(S,S)*invsym(-H))) 

    } 

  } 

  if (st_local("robust")!="" & st_local("constraints")!="") { 

    T=st_matrix(st_local("T")) 

    if (cols(S)==rows(T)) { 

      Sc=quadcross(S',T) 

      if (cols(H)==rows(T) & rows(H)==rows(T)) { 

        Hc=quadcross(T,H)*T 

        if (cols(Sc)==rows(Hc) & rank(Hc)==rows(Hc)) { 

          st_matrix(st_local("rvm"),T*((N/(N-1)):* /* 

          */ (invsym(-Hc)*quadcross(Sc,Sc)* /* 

          */ invsym(-Hc)))*T') 

        } 

      } 

    } 

  } 

} 

end 

 

At the end of the evaluator, the robust variance-covariance matrix is computed and put into a Stata 
matrix, where it can be accessed, when the ML algorithm has reached convergence. 

3.2 ML-call and ado wrapper 

In this section I briefly describe, how the ML problem is initialized, how the evaluator is called, and 
how this part is embedded in an ado wrapper, which makes it possible to apply the estimator to gen-
eral problems. The exposition of the ado wrapper proceeds from outside inwards, i.e. it starts with the 
command that a user posts to Stata. 

At first, the command posted by the user is parsed with syntax. This creates a reference to the de-
pendent variable, the independent variables, and the panel group indicator. Further, the optional base-
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outcome and the optional set of linear constraint equations are passed. Finally, the optional  
difficult instruction on how to deal non-concave regions of the log-likehood function is passed. 
Afterwards, observations with missing values on the dependent, independent or on the panel group 
indicator variables are marked for list-wise deletion with markout. Next, collinear independent vari-
ables are marked for exclusion in the model with _rmcoll. Following the implementation of 
mlogit, with the option mlogit indicators about the base-outcome are created. Subsequently, 
following the implementation of clogit panel groups without variance across time in the depend-
ent variables and independent variables without variance across time in all panel groups are marked 
for exclusion. Thereafter, a Stata matrix as defined in equation (19) is created, which maps the level 
indices of the dependent variables with the respective values. Afterwards, following the implementa-
tion of clogit, the overall log-likelihood function for the sample for a model without any inde-
pendent variables is computed, which is as the baseline for a likelihood-ratio test. Next, initial values 
for the coefficient vector β  are computed. Following the implementation of clogit, the initial 

values are the estimated coefficients of a pooled multinomial logit model. Subsequently, the submitted 
constraints are preprocessed and checked for correct specification. Thereafter, the ML problem is de-
fined as described above, i.e. the dependent, the independent and the panel group indicator variables 
are passed the ML problem definition. Further, the equation structure, the estimation sample indicator 
and the linear constraints definition are passed to the ML problem definition. Afterwards, the actual 
femlogit model is estimated using the implemented evaluator described above. Finally, the output is 
computed, returned to Stata and displayed. 

3.3 Data structure 

The implementation expects that the data are organized in long format, i.e. from the panel data per-
spective each observation represents a time points of one person. An illustrative example is shown 
with a modified version of the example data used in StataCorp Lp (2009b, 325ff.):4 

 

. use femlogitid.dta 

. list in 1/11 
     ┌────────────────────┐ 
     │   id   y   x1   x2 │ 
     ├────────────────────┤ 
  1. │ 1014   3    0    4 │ 
  2. │ 1014   0    1    4 │ 
  3. │ 1014   2    1    6 │ 
  4. │ 1014   1    1    8 │ 
  5. │ 1017   0    0    1 │ 
     ├────────────────────┤ 
  6. │ 1017   2    0    7 │ 
  7. │ 1017   1    1   10 │ 
  8. │ 1019   0    0    1 │ 
  9. │ 1019   2    1    7 │ 
 10. │ 1019   1    1    7 │ 
     ├────────────────────┤ 
 11. │ 1019   1    1    9 │ 
     └────────────────────┘ 

 

The first four observations belong to the person with the id 1014= . The independent variables are 
x1 and x2 and y1 is the categorical dependent variable with four levels {0,1, 2,3} . Note, that the 

                                                         
4  The data femlogitid.dta and syntax femlogit_example1.do can found in the online appendix. 
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different levels of the categorical dependent variable are stored in one variable and one case similarly 
to mlogit. In contrast, the implementation of clogit expects that the outcomes of the dependent 
variable for each time point are stored in long format. 
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4 Syntax 

The command femlogit is called with the following syntax. 

 

femlogit depvar [indepvars] [if] [in] [, group(varlist) baseoutcome(#)  
   constraints(clist) difficult or robust] 

 

depvar and indepvars may not contain factor variables or time-series operators. No prefix commands 
are allowed. Weights and vce() are not allowed at this point. 

4.1 Options 

group(varlist) specifies one or more identifier variables (numeric or string) for the matched groups. 
If not specified, the identifier variables from xtset are used. 

baseoutcome(#) specifies the value of depvar to be treated as the base outcome. The default is 
to choose the mode outcome. 

constraints(clist) specifies the linear constraints to be applied during estimation. The default is 
to perform unconstrained estimation. clist has the form # [-#] [, # [-#] ...]. 

difficult specifies that in non-concave regions of the likelihood function the ``hybrid'' method is 
used instead of the default “modified marquart” method (Gould, Pitblado, and Poi 2010, 15–17). 

or reports odds ratio effects. 

robust gives back Huber-White-sandwich estimator of the variance-covariance matrix 

4.2 Saved results 

Femlogit saves the following in e(): 

Scalars    

e(rank) rank of e(V) e(df_m) model degrees of freedom 

e(N) number of observations e(chi2) χ 2 

e(ic) number of iterations e(p) significance 

e(k) number of parameters e(N_drop) Number of observations 
dropped because of invariant 
dependent variable 

e(k_eq) number of equations in e(b) e(N_group_~p) number of groups dropped 
because of invariant depend-
ent variable 

e(k_dv) number of dependent varia-
bles 

e(r2_p) pseudo-R-squared 

e(converged) 1 if converged, 0 otherwise e(ibaseout) index of the base outcome 
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e(rc) return code e(baseout) the value of depvar to be 
treated as the base outcome 

e(ll) log likelihood e(k_out) number of outcomes 

e(k_ew_model) number of equations in over-
all model test 

  

Macros    

e(cmdline) command as typed e(predict) _predict 

e(cmd) femlogit e(user) femlogit eval gf2( ) 

e(eqnames) names of equations e(ml_method) gf2 

e(group) name of group() variable e(technique) nr 

e(chi2type) Wald or LR; type of mod-
el χ 2 test 

e(which) max 

e(vce) oim e(depvar) name of dependent variable 

e(title) title in estimation output e(properties) b V 

e(crittype) log likelihood e(marginsn~k) stdp stddp 

e(opt) moptimize e(marginsok) xb 

Matrices    

e(b) coefficient vector e(out) outcome values 

e(V) variance-covariance matrix of 
the estimator 

e(ilog) iteration log (up to 20 itera-
tions) 

e(Cns) constraints matrix e(gradient) gradient vector 

Functions    

e(sample) marks estimation sample   
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5 Applications 

In this section, I show with two illustrative examples, how the femlogit command can be used and 
how the results are interpreted.  

The first showcase example illustrates a typical application with panel data. Drawing on Skrondal and 
Rabe-Hesketh (2003), I analyze a model of the effect of the distance between the voter's and the par-
ties' positions on the left–right political dimension on the voter's electoral choice, applied to the 
1987–1992 panel of the British Election Study (Heath et al. 1993). The second example shows, how 
femlogit can be used with multi-level data. I build on Abrevaya (2006) and analyze a model of the 
effect of smoking during pregnancy on pre-term, full term, and post-term birth. The model is estimat-
ed with multi-level data of children nested in mothers. Note, that the described models are deliberate-
ly simple. The main intention is to show the specific advantage of the femlogit model. 

Both examples use data with a general multi-level structure: in the voting example, panel waves are 
nested within voters, and in the smoking example, children are nested within mothers. In comparison 
to alternative models, such as the pooled multinomial logistic regression or multinomial logistic re-
gression with random effects, the femlogit model has the specific advantage that it controls for possi-
bly confounding, unobserved heterogeneity at the top level. More explicitly, in the first example the 
femlogit model controls for unobserved heterogeneity at the level of the voters, and in the second 
example it controls for heterogeneity at the level of the mothers. 

In the rest of this section, I begin with the voting example and continue with the smoking-effect-
example. For each example, I shortly describe the data and the estimated model, and afterwards dis-
cuss the results of the femlogit in comparison to the pooled multinomial logistic regression and 
multinomial logistic regression with random effects. Finally, I generally discuss possible interpretation 
strategies of the femlogit model. 

5.1 Effect of ideological distance on voting behavior with British election panel 
data 

The first example takes up the example that Skrondal and Rabe-Hesketh (2003) use to illustrate the 
application of multilevel random-effects models for polytomous and ordinal dependent variables. They 
analyze data from the 1987–1992 panel of British Election Study (Heath et al. 1993) to estimate a 
model of the recalled vote choice for the Conservative, Labour, or Liberal party and a model of the 
rank order of the parties. Here, I concentrate on the recalled vote choice, and use the femlogit 
command to estimate the effect of the distance on the left–right policy dimension between the voter 
and the party on the vote choice. I control for the time-varying rating of perceived inflation and im-
plicitly for all time-variant factors at the voter-level. The analysis syntax for the first example is found 
in femlogit_example2.do, provided in the online appendix. 

The raw data is taken from Rabe-Hesketh and Skrondal (2012, 2:680f.).  Cleaning and preparation 
leads to these analysis data: 
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. describe 
Contains data 
  obs:         2,458                           
 vars:             9                           
 size:        46,702                           
─────────────────────────────────────────────────────────────────────────────── 
              storage   display    value 
variable name   type    format     label      variable label 
─────────────────────────────────────────────────────────────────────────────── 
serialno        int     \%8.0g                 Respondent number 
rldist2         float   \%9.0g                 Dist(Labour)-Dist(Conservative) 
rldist3         float   \%9.0g                 Dist(Liberal)-Dist(Conservative) 
male            byte    \%8.0g                 Male 
manual          byte    \%8.0g                 Manual worker 
inflation       byte    \%8.0g                 Perceived inflation 
age             float   \%9.0g                 Age in 10 yr units 
yr92            byte    \%8.0g                 1992 election indicator 
choice          byte    \%12.0g     choice     Recalled vote for party 
─────────────────────────────────────────────────────────────────────────────── 
Sorted by:  serialno 
     Note:  dataset has changed since last saved 

 

The dependent variable choice is a discrete variable with three alternatives “Conservatives”, “La-
bour”, and “Liberal”. In the femlogit model, four independent variables are used: the difference of the 
distance between the voter and the Labour party and the distance between the voter and the Con-
servative party (rldist2), the difference of the distance between the voter and the Liberal party and 
the distance between the voter and the Conservative party (rldist3), a rating of the perceived 
inflation (inflation), and a wave dummy (yr92). 

The data is in long format. As the summary command for panel data xtdes shows, the data contain 
information of 1,344 persons across both elections. For 1,114 persons, the time series across both 
waves is complete. For the remaining 230 persons, information at least for one wave is missing. 

 

. xtset serialno yr92 
       panel variable:  serialno (unbalanced) 
        time variable:  yr92, 0 to 1 
                delta:  1 unit 
. xtdes 
serialno:  2, 11, ..., 5997                                  n =       1344 
    yr92:  0, 1, ..., 1                                      T =          2 
           Delta(yr92) = 1 unit 
           Span(yr92)  = 2 periods 
           (serialno*yr92 uniquely identifies each observation) 
Distribution of T_i:   min      5\%     25\%       50\%       75\%     95\%     max 
                         1       1       2         2         2       2       2 
     Freq.  Percent    Cum. │  Pattern 
 ───────────────────────────┼───────── 
     1114     82.89   82.89 │  11 
      121      9.00   91.89 │  1. 
      109      8.11  100.00 │  .1 
 ───────────────────────────┼───────── 
     1344    100.00         │  XX 

 

The differences in the policy distances vary not only across voters and waves, but also across alterna-
tives. This allows us to specify the model as a mixed-logit model (Cameron and Trivedi 2009). That is, I 
estimate one coefficient for the alternative-varying policy distances and alternative-specific coeffi-
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cients for the alternative-invariant voters' rating of inflation and the wave dummy. In order to do this, 
I define constraints for the effects of the policy distances: 

. constraint 1 [Labour]rldist3=0 

. constraint 2 [Liberal]rldist2=0 

. constraint 3 [Labour]rldist2=[Liberal]rldist3 

 

With these constraints, the effect of the relative policy distance between the voter and the Liberal 
party plays no role for the propensity to vote for Labour in comparison to the Conservative party and 
vice versa, the relative policy distance between the voter and the Labour party is irrelevant for the 
propensity to vote for the Liberal party instead of the Conservative party. The third constraint guaran-
tees that the relative policy distances have the same effect on both propensities. 

The estimation output of femlogit for this model is this: 

 

. femlogit choice rldist2 rldist3 inflation yr92, group(serialno) const(1/3) b( 
> 1) 
note: 1097 groups (1964 obs) dropped because of all positive or 
      all negative outcomes. 
Iteration 0:   log likelihood = -156.16844   
Iteration 1:   log likelihood = -139.49392   
Iteration 2:   log likelihood = -138.19403   
Iteration 3:   log likelihood = -138.19006   
Iteration 4:   log likelihood = -138.19006   
Fixed-effects multinomial logistic regression     Number of obs   =        494 
                                                  Wald chi2(5)    =      45.69 
Log likelihood = -138.19006                       Prob > chi2     =     0.0000 
 ( 1)  [Labour]rldist3 = 0 
 ( 2)  [Liberal]rldist2 = 0 
 ( 3)  [Labour]rldist2 - [Liberal]rldist3 = 0 
─────────────┬──────────────────────────────────────────────────────────────── 
      choice │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
─────────────┼──────────────────────────────────────────────────────────────── 
Conservative │  (base outcome) 
─────────────┼──────────────────────────────────────────────────────────────── 
Labour       │ 
     rldist2 │  -.0590691   .0145332    -4.06   0.000    -.0875536   -.0305846 
     rldist3 │  (omitted) 
   inflation │   .8354586   .3692285     2.26   0.024      .111784    1.559133 
        yr92 │   .6791261   .2734095     2.48   0.013     .1432534    1.214999 
─────────────┼──────────────────────────────────────────────────────────────── 
Liberal      │ 
     rldist2 │  (omitted) 
     rldist3 │  -.0590691   .0145332    -4.06   0.000    -.0875536   -.0305846 
   inflation │   .5786913    .305657     1.89   0.058    -.0203854    1.177768 
        yr92 │  -.2315669   .2188483    -1.06   0.290    -.6605018    .1973679 
─────────────┴──────────────────────────────────────────────────────────────── 

 

The output header shows that 1,097 voters and respectively 1,964 observations are dropped, as for 
these voters there is no variance in the dependent variable across waves. That is, the model is estimat-
ed with 247 voters and 494 observations. The iteration log shows that the ML-algorithm converged 
after four steps. The log likelihood for the first step is the derived from the initial coefficient vector, 
which is the result of pooled multinomial logit with same variable structure. The header shows also the 
Wald test statistic of 45.69. The 5 degrees of freedom reflect the reduced number of free number of 
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parameters. Note that the command returns a Wald test instead of a LR test, as constraints were speci-
fied. 

The coefficient table shows the logarithm of the relative risk ratios for a one-unit change in the corre-
sponding variables. That is, with an increase in the relative distance between a voter and the Labour 
party by one unit ceteris paribus, the logarithm of the probability to vote for Labour divided by the 
probability to vote for the Conservative party decreases by 0.059. Equivalently, if ceteris paribus this 
relative distance increases by one unit, the odds to vote for Labour vs. voting Conservative increase by 
a factor of e{p( 0.059) 0.943− = , that is, they decrease by 6.7 percent. Similarly, with each unit 

increase in the inflation rating ceteris paribus, the odds to vote for Labour vs. voting Conservative 

( )e{p β  increase by 130.6 percent, and the odds to vote Liberal vs. voting Conservative increase by 

78.4 percent. The odds effects for other contrasts are interpreted by looking at the respective coeffi-
cient or variable differences. For example, if the inflation rating increases by unit ceteris paribus, the 
odds to vote Labour vs. voting Liberal increase by a factor of e{p(0.835 0.579) 1.293− =  or 29.3 

percent.  

As mentioned previously, the femlogit model allows for possibly confounding unobserved heterogenei-
ty at the level of the voter with respect to the preferences for a specific party. Alternative models have 
to rule this out or have to measure the heterogeneity. In table 1, I show the respective effects for the 
pooled multinomial logistic regression and the multinomial logistic regression with random effects. For 
the first model, panel-robust standard errors are used to take into account possible correlation across 
waves. The latter model is estimated with gsem, as described in StataCorp Lp (2009c, 407ff.). In the 
alternative models, heterogeneity is captured in the time-invariant variables male, age, and manu-
al. 

Table 1: Pooled, random-, and fixed-effects models for voting example 

 pomlogit remlogit femlogit 
 exp(beta) / se exp(beta) / se exp(beta) / se 
Labour    

Relat. policy dist. 0.896*** 0.818*** 0.943*** 
 (0.005) (0.011) (0.014) 
Inflation 2.134*** 3.812*** 2.306* 
 (0.236) (0.815) (0.851) 
1992 election 1.153 1.564* 1.972* 
 (0.112) (0.346) (0.539) 
Male 0.452*** 0.261***  
 (0.068) (0.082)  
Age 0.702*** 0.499***  
 (0.037) (0.056)  
Manual worker 1.952*** 5.188***  
 (0.302) (1.767)  
Constant 0.059*** 0.007***  
 (0.029) (0.007)  

Liberal    
Relat. policy dist. 0.896*** 0.818*** 0.943*** 
 (0.005) (0.011) (0.014) 
Inflation 1.735*** 2.938*** 1.784 
 (0.185) (0.584) (0.545) 
1992 election 0.808* 0.771 0.793 
 (0.080) (0.159) (0.174) 
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 pomlogit remlogit femlogit 
 exp(beta) / se exp(beta) / se exp(beta) / se 

Male 0.493*** 0.304***  
 (0.073) (0.092)  
Age 0.810*** 0.632***  
 (0.039) (0.066)  
Manual worker 0.900 1.235  
 (0.132) (0.393)  
Constant 0.102*** 0.013***  
 (0.048) (0.012)  

Var(alphaLab.)  14.672***  
  (2.988)  
Var(alphaLab.)  13.915***  
  (2.325)  
Cov(alphaLab., alphaLab.)  11.441***  
  (2.377)  
log. likelihood -1946.269 -1764.331 -138.190 
N obs. 2458 2458 494 
N groups 1344 1344 247 

Notes: * p < .05, ** p < .01, *** p < .001; base outcome: Conservative party; 
reference categories: 1987 election, female, not manual worker; pomlogit: 
pooled multinomial logisitic regression, remlogit: multinomial logistic regres-
sion with random-effects. 
 

5.2 Effect of smoking on birthweight with multi-level data 

The second example builds on Abrevaya (2006), whose data is used in condensed form as an example 
in Rabe-Hesketh and Skrondal (2012, 2:123ff.). Abrevaya uses a multi-level data of children nested in 
mothers. The data contain information about children's birthweight and gestation age at birth and the 
mothers' smoking behavior during pregnancy, prenatal care for the child, and other sociodemographic 
information. With this information, Abrevaya uses fixed-effects models for continuous dependent 
variables to estimate the effect of smoking on the children's birthweight. 

In this example, I switch perspective and analyze the timing of birth (pre-term/full term/post-term). I 
use the femlogit command to estimate the effect of smoking on the odds of pre-term birth vs. full 
term birth vs. post-term birth. The fixed-effects model implicitly controls for all constant variables at 
the level of the mother. Also, I control for prenatal care and prenatal visits to doctors, which vary 
within mothers across children. Finally, I control for birth year cohort dummies. 

The analysis syntax for the second example is found in femlogit_example3.do and provided in 
the online appendix. I use the shortened version of the data from Rabe-Hesketh and Skrondal (2012, 
2:123ff.). After cleaning and preparation, the analysis data is this: 
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. des 
Contains data from http://www.stata-press.com/data/mlmus3/smoking.dta 
  obs:         8,604                           
 vars:            19                          21 Jul 2007 11:49 
 size:       189,288                           
─────────────────────────────────────────────────────────────────────────────── 
              storage   display    value 
variable name   type    format     label      variable label 
─────────────────────────────────────────────────────────────────────────────── 
momid           float   \%9.0g                 Mother id 
idx             byte    \%9.0g                 Child number 
smoke           byte    \%9.0g      s          Smoke 
married         byte    \%9.0g                 Married 
hsgrad          byte    \%9.0g                 12 years of education 
somecoll        byte    \%9.0g                 13-15 years of education 
collgrad        byte    \%9.0g                 16+ years of education 
black           byte    \%9.0g      b          African-American 
novisit         byte    \%9.0g                 No prenatal visit to doctor 
gestage         byte    \%9.0g      gestage    Categorial gestation age at birth 
y1              byte    \%8.0g                 1990 birth cohort 
y2              byte    \%8.0g                 1991 birth cohort 
y3              byte    \%8.0g                 1992 birth cohort 
y4              byte    \%8.0g                 1993 birth cohort 
y5              byte    \%8.0g                 1994 birth cohort 
y6              byte    \%8.0g                 1995 birth cohort 
y7              byte    \%8.0g                 1996 birth cohort 
y8              byte    \%8.0g                 1997 birth cohort 
kessner1        byte    \%9.0g                 Adequate prenatal care (Kessner 
                                                index) 
─────────────────────────────────────────────────────────────────────────────── 
 
Sorted by:  momid 
     Note:  dataset has changed since last saved 

 
The data contain 8,604 observations. The dependent variable gestage is generated from gestation 
age in weeks, which is provided in the raw data, following the WHO-definition (World Health 
Organization 2011, 151). The main independent variable smoke is a dummy variable that indicates, if 
the mother smoked during pregnancy with the respective child. The first control variable for the fem-
logit model is the dummy variable novisit, which indicates if the mother visited the doctor during 
pregnancy. The second control variable is the dummy variables kessner1, which indicates if the 
overall prenatal care was adequate according to the Kessner index in contrast to inadequate or inter-
mediate (Kessner et al. 1973). I also control for a set of birth cohort dummies y1, …, y8. The birth 
cohort of 1998 is the reference category. 

As in the first example, the data is in long format. xtdes shows that the data contain information of 
3,978 mothers with up to three children. For 3,330 mothers, there is information for two children and 
for 648 mothers there is information for three children. 
 
. xtset momid idx 
       panel variable:  momid (unbalanced) 
        time variable:  idx, 1 to 3 
                delta:  1 unit 
. xtdes 
   momid:  14, 25, ..., 109039                               n =       3978 
     idx:  1, 2, ..., 3                                      T =          3 
           Delta(idx) = 1 unit 
           Span(idx)  = 3 periods 
           (momid*idx uniquely identifies each observation) 
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Distribution of T_i:   min      5\%     25\%       50\%       75\%     95\%     max 
                         2       2       2         2         2       3       3 
     Freq.  Percent    Cum. │  Pattern 
 ───────────────────────────┼───────── 
     3330     83.71   83.71 │  11. 
      648     16.29  100.00 │  111 
 ───────────────────────────┼───────── 
     3978    100.00         │  XXX 

 
The estimation results for the described femlogit model are these: 
 
. femlogit gestage smoke kessner1 novisit y1-y8, /* 
> */ b(2) group(momid) difficult 
note: 2919 groups (6275 obs) dropped because of all positive or 
      all negative outcomes. 
Iteration 0:   log likelihood = -817.11022   
Iteration 1:   log likelihood = -813.24731   
Iteration 2:   log likelihood = -813.23023   
Iteration 3:   log likelihood = -813.23023   
Fixed-effects multinomial logistic regression     Number of obs   =       2329 
                                                  LR chi2(22)     =      32.14 
                                                  Prob > chi2     =     0.0750 
Log likelihood = -813.23023                       Pseudo R2       =     0.0194 
─────────────┬──────────────────────────────────────────────────────────────── 
     gestage │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
─────────────┼──────────────────────────────────────────────────────────────── 
pre_term     │ 
       smoke │   .2835948   .3039032     0.93   0.351    -.3120446    .8792343 
    kessner1 │    -.21959   .1683691    -1.30   0.192    -.5495875    .1104074 
     novisit │   .2727011   .5076698     0.54   0.591    -.7223135    1.267716 
          y1 │   1.066149   1.165668     0.91   0.360    -1.218518    3.350816 
          y2 │   .9058572   1.162697     0.78   0.436    -1.372986    3.184701 
          y3 │   .8379417     1.1621     0.72   0.471    -1.439731    3.115615 
          y4 │    1.27221    1.16112     1.10   0.273    -1.003543    3.547962 
          y5 │    1.21856   1.169092     1.04   0.297    -1.072818    3.509937 
          y6 │   1.633868   1.231724     1.33   0.185    -.7802663    4.048003 
          y7 │   1.422654   1.254915     1.13   0.257    -1.036934    3.882243 
          y8 │   1.354895   1.257938     1.08   0.281    -1.110619    3.820409 
─────────────┼──────────────────────────────────────────────────────────────── 
full_term    │  (base outcome) 
─────────────┼──────────────────────────────────────────────────────────────── 
post_term    │ 
       smoke │   .3272824    .249783     1.31   0.190    -.1622832     .816848 
    kessner1 │  -.2699509   .1473989    -1.83   0.067    -.5588475    .0189457 
     novisit │  -.3393401   .5737103    -0.59   0.554    -1.463792    .7851115 
          y1 │  -.0426524     .92764    -0.05   0.963    -1.860793    1.775489 
          y2 │   -.024454   .9218789    -0.03   0.979    -1.831304    1.782396 
          y3 │  -.1014507   .9235822    -0.11   0.913    -1.911639    1.708737 
          y4 │  -.3240081   .9224428    -0.35   0.725    -2.131963    1.483947 
          y5 │  -.3278039   .9279563    -0.35   0.724    -2.146565    1.490957 
          y6 │  -.2718321   .9930388    -0.27   0.784    -2.218152    1.674488 
          y7 │  -.5344754   .9997496    -0.53   0.593    -2.493949    1.424998 
          y8 │  -.8619275   1.062914    -0.81   0.417    -2.945201    1.221346 
─────────────┴──────────────────────────────────────────────────────────────── 

 
The information in the header shows that 2,919 mothers and respectively 6,275 children are taken out 
of the analysis, as there is no variation in the dependent variable across children for these mothers. 
That is, 1,059 mothers with 2,329 children remain in the analysis. The iteration log, the log likelihood 

and the 2χ -statistic hold essentially the same information as in the first example. However, note that 

here a LR-test-statistic and McFadden-Pseudo-R2 are reported. 
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The table of coefficients looks different than in the first example, as I chose the second alternative full 
term birth as base outcome. Otherwise the interpretation is the same as in the first example. Smoking 
during pregnancy ceteris paribus increases the odds of pre-term birth vs. full term birth by the factor 
e{p(.286) 1.328=  or 32.8 percent. Similarily, it increases the odds of post-term birth by the factor 

e{p(.327) 1.387=  or 38.7 percent.5 

The femlogit model implicitly controls for all factors at the level of the mother that do no vary across 
children. Alternative models as the pooled or random-effects models have to rely on complete meas-
urement of these factors. Table \ref{tab2} shows the results for the femlogit and the alternative mod-
els.  

For the pooled and the random-effects model, heterogeneity at the level of the mother is controlled 
with five variables: the dummy variable married indicates that the mother is married, the set of 
dummies hsgrad, somecoll, and colgrad indicate several levels of education in contrast to less 
than 12 years of education. The dummy black indicates that the mother is African-American. For all 
models, the set of dummies y1, …, y8, which indicate the birth cohorts from 1990 to 1997, are also 
controlled for. Further, for the pooled model, cluster-robust standard-errors are reported, to control 
for auto-correlation within mothers across children. 

Table 2: Pooled, random-, and fixed-effects models for smoking example 

 pomlogit remlogit femlogit 
 exp(beta) / se exp(beta) / se exp(beta) / se 
Pre-term birth    

Smoked during pregnancy 1.352* 1.399* 1.328 
 (0.175) (0.205) (0.404) 
Adequate care (Kessner index) 0.730** 0.703** 0.803 
 (0.076) (0.084) (0.135) 
No visit of doctor 2.481** 2.763** 1.314 
 (0.699) (1.005) (0.667) 
African-American 1.902*** 2.168***  
 (0.290) (0.406)  
Married 0.735* 0.687*  
 (0.109) (0.122)  
12 years of educ. 0.849 0.816  
 (0.124) (0.142)  
13–15 years of educ. 0.750 0.697  
 (0.130) (0.136)  
> 15 years of educ. 0.585** 0.543**  
 (0.101) (0.106)  
Constant 0.116** 0.052***  
 (0.088) (0.045)  

Post-term birth    
Smoked during pregnancy 1.223 1.254 1.387 
 (0.137) (0.157) (0.346) 
Adequate care (Kessner index) 0.748** 0.725** 0.763 
 (0.068) (0.073) (0.113) 
No visit of doctor 1.185 1.142 0.712 
 (0.407) (0.469) (0.409) 

                                                         
5 The effects are significant for the same model with the complete data of Abrevaya (2006). 
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 pomlogit remlogit femlogit 
 exp(beta) / se exp(beta) / se exp(beta) / se 

African-American 1.094 1.089  
 (0.168) (0.193)  
Married 0.887 0.869  
 (0.117) (0.134)  
12 years of educ. 0.774 0.750  
 (0.101) (0.111)  
13–15 years of educ. 0.751* 0.722*  
 (0.108) (0.116)  
> 15 years of educ. 0.563*** 0.527***  
 (0.082) (0.086)  
Constant 0.107** 0.081**  
 (0.079) (0.065)  

Var(alphaPre-term birth)  1.815***  
  (0.326)  
Var(alphaPost-term birth)  1.155***  
  (0.229)  
Cov(alphaPre-term birth, alphaPost-term birth)  -0.089  
  (0.235)  
log. likelihood -4600.120 -4548.395 -813.230 
N obs. 8604 8604 2329 
N groups 3978 3978 247 

Notes: * p < .05, ** p < .01, *** p < .001; base outcome: Full term birth; birth cohort 
dummies y1, . . . , y8 included; reference categories: Not smoked during pregnancy, 
intermediate or inadequate prenatal care, at least one visit of doctor, not African-
American, not married, less than 12 years of education, birth cohort 1998; pomlogit: 
pooled multinomial logisitic regression, remlogit: multinomial logistic regression with 
random-effects. 

5.3 Interpretation 

Odds ratio and logit effects are criticized as unintuitive. Moreover, with this interpretation approach 
due to the arbitrary restriction assumption of the variance of the error term ε  in equation, effects 
across nested models or across different group cannot be easily compared (Allison 1999; Kohler, 
Karlson, and Holm 2011; Best and Wolf 2015; Breen, Karlson, and Holm 2013). For nonlinear cross-
sectional models, the interpretation of predicted probabilities and related constructs are recommended 
(Long and Freese 2006, 157ff.). This option is not given for the fixed-effects model. The probability 
expression in equation (3) cannot be evaluated, as the unobserved heterogeneity vector α  is not esti-
mated. Even if plausible values for α  are inserted in the equation, to conduct significance tests, one 
has to find plausible values for their variances and covariances with the other independent variables. 
Cameron and Trivedi (2009, 797) suggest for the binary logistic regression with fixed effects to inter-
pret predicted probabilities of the estimation equation (8), which can be generalized to the multino-
mial case. However, although this circumvents the problem of finding a plausible conditional distribu-
tion for the unobserved heterogeneity |fα { , the object of interpretation is more unintuitive than with 

the odds ratio and logit effects. With this approach, one interprets the effects of a unit or marginal 
change in the independent variables at a specific time tx  on the probability that a specific time series 

of outcomes ( )1, , Ty y…  is realized conditional on the probability of all permutations of the time 
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series. For realistic applications, any choice of the outcomes time series is arbitrary. Further, the inter-
pretation of the conditional probability remains intuitive, as the permutation can only be understood 
as an analogue for the general tendency to choose each outcome. In sum, the odds ratio effects inter-
pretation as shown above is the only viable option for the binary and multinomial fixed effects logistic 
regression. 
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6 Conclusion 

This article introduces an implementation of multinomial logistic regression with fixed effects as de-
rived by Chamberlain (1980). With this model it is possible to consistently estimate effects on multi-
nomial categorical dependent variables, when time-invariant unobserved heterogeneity is present. In 
particular, time-invariant unobserved heterogeneity may be correlated with predictor variables. The 
implemented ado femlogit is applied to real data. In the first example with British election panel 
data, the effect of perceived distance in the left--right political dimension between a candidate and a 
voter on voting behavior is estimated. In the second example with multi-level data, the effect of 
smoking during pregnancy on pre-term vs. full term vs. post-term birth is analyzed. The specific ad-
vantage of the femlogit model with the first examples is that the effect of policy distance on vote 
intention is estimated net of all time-invariant voter characteristics that may affect vote intention, 
perceived policy distance, or both. Analogously, in the second example we can estimate the effect of 
smoking behavior on birth timing under control of all stable characteristic of the mother, which may 
be correlated with both smoking behavior and birth outcomes. 
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