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1. Introduction 
 
 Excitations in crystals can be described using formalism of dispersion relations of the 
normal modes or quasi-particles (phonons, magnons, etc.). These relations contain the most 
detailed information on the intermolecular interactions in solids. 
 The result of a neutron scattering experiment is the distribution of neutrons that have 
undergone an energy exchange ω = Ei - Ef,  and a wave vector transfer, Q = ki – kf , after 

scattering by the sample.: 
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coh is coherent scattering cross section, inc is incoherent scattering cross section. They are 
constants that can be found in tables (http://www.ncnr.nist.gov/resources/n-lengths/). S(Q,) 
functions depend only on the structure and dynamics of the sample and do not depend on the 
interaction between neutrons and the sample. Sinc(Q,) reflects individual motions of atoms. 
Scoh(Q,) provides the information on the structure and collective excitations in the sample.  

 
 
 
 The triple axis spectrometer is designed for measuring the Scoh(Q,) in monocrystals. 
Therefore this function is of special interest for us. 

Energy transfer  
 = Ei - Ef 

 
Momentum transfer 
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2. Elastic scattering and Structure of Crystals 
 

In the case of coherent elastic scattering, when ω = 0 (ki = kf ) only neutrons, that 
fulfill the Brags law are scattered by the sample: 

                                                   nλ = 2dhklsinhkl,                                                                      (2) 

where λ is a wavelength of neutron, dhkl  is a distance between crystal planes described by 
corresponding Miller indexes hkl. hkl denotes the angle between incoming (outgoing) scattering 
beam and the (hkl) plane. 
 For the analysis of the scattering processes in crystals it is convenient to use the concept of the 
reciprocal space. For an infinite three dimensional lattice, defined by its primitive vectors a1, 
a2 and a3, its reciprocal lattice can be determined by generating three reciprocal primitive 
vectors, through the formulae: 
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Note the denominator is the scalar triple product. Geometrically, the scalar triple product 
a1(a2a3) is the volume of the parallelepiped defined by the three vectors.  
 Let us imagine the lattice of points given by the vectors g1, g2 and g3 such that  is an 
arbitrary linear combination of these vectors: 

                         321 gggτ lkh  ,       (4) 

where h,k,l are integers. Every point of the reciprocal lattice, characterized by  corresponds 
in the position space to the equidistant set of planes with Miller indices (h,k,l) perpendicular 
to the vector . These planes are separated by the distance   

hkl
hkld

τ

2
         (6) 

 The Brag’s condition for diffraction can be expressed in the following vector form:  

Q = hkl        (7) 

A useful construction for work with wave vectors in reciprocal space is the Brillouin 
zone (BZ). The BZ is the smallest unit in reciprocal space over which physical quantities such 
as phonon or electron dispersions repeat themselves. It is constructed by drawing vectors from 
one reciprocal lattice points to another and then constructing lines perpendicular to these 
vectors at the midpoints. The smallest enclosed volume is the BZ.  
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Fig.1 Real (left) and reciprocal (right) two dimensional lattices and BZ (gray area) 
 
 

3. Inelastic Neutron Scattering and Phonons 
 

 
Fig.2  Phonon dispersion curves for Ge. 

 
Atomic vibrations in a crystal can be analyzed in terms of lattice waves which are the 

normal modes of the crystal. The frequencies of normal modes  are related to their wave 
vectors q (q = 2/) by the dispersion relations 

       = j(q),          (7) 

where the index j denotes a particular branch. For a crystal with N atoms per primitive unit 
cell there are 3N branches of the frequency spectrum. Three branches are acoustic ones for 
which   0 as q  0; the other 3N-3 are branches are optical branches for which  tends to 
a finite value as q  0. In certain directions of high symmetry the normal vibrations are 
strictly transverse or longitudinal. The energy quantum  is called phonon in analogy to the 

phonon for electromagnetic waves.  
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 If we want to measure the frequency of a phonon  for a certain q, the basic scattering 
conditions must fulfil the energy and momentum conservation laws: 

)()(
2

22 q
 fi

n
fi kk

m
EE        (9) 

Q = ki – kf = G  q 

When the above conditions are fulfilled, the function Scoh(Q,) shows a peak. We can held Q 
constant and vary ki (kf) to measure intensity of scattered neutrons at different energy 
transfers. In order to keep Q, and thus q, constant while varying ki, the scattering angle must 
change as well as the relative orientation of the crystal with respect to kf.  
 The intensity of neutrons scattered by phonon is proportional to the square of the 
dynamical structure factor F(Q): 

    2

)exp(exp)(~),(
2  
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Where sum is taken over all atoms in unit cell with coordinates rk , exp(-W) is a Debye-
Waller factor, ek denotes the polarization vector of the phonon. The scalar product  jqeQ   

means that only lattice vibrations polarized along the momentum transfer are visible. This 
makes possible to distinguish transverse (TA) and longitudinal (LA) acoustic modes. For TA 
modes eq, and therefore Q must be perpendicular to q, while for a LA mode, one must take 
Q q (Fig. 3) 

 

 
Fig. 3 Top: LA and TA phonons. Bottom: Neutron scattering diagram in the reciprocal space 
for TA (left ) and LA phonons  
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4. Triple Axis Spectrometer PUMA  
The three-axis instrument is the most versatile instrument for use in inelastic scattering 
because it allows one to probe nearly any coordinates in energy and momentum space in a 
precisely controlled manner. The three axes correspond to the axes of rotation of the 
monochromator (axis1), the sample (axis2), and the analyzer (axis3). The monochromator 
crystal selects neutrons with a certain energy from the white neutron beam emanating from 
the reactor. The monochromatic beam is then scattered off from the sample (second axis). The 
neutrons scattered by the sample can have a different energy from those incident on the 
sample. The energy of these scattered neutrons is then determined by the analyzer crystal 
(third axis). All three angles (M, S, A) can vary during an experiment, the sample table and 
analyzer are equipped with air pads, so that they can glide over the “Tanzboden” (dancing 
floor). Below, we describe in detail each component of a triple-axis spectrometer. 
 

Monochromator 
A crystal monochromator is used to select neutrons with a specific wavelength. Neutrons with 
this wavelength interact with the sample and are scattered off at a similar (elastic) or different 
wavelength (inelastic). The energy of the neutrons both incident on and scattered from the 
sample is determined by Bragg reflection from the monochromator and analyzer crystals, 
respectively. For a specific Bragg plane (hkl) characterized by an interplanar spacing dhkl, the 
crystal is rotated about a vertical axis. A pyrolytic graphite with d002 =  3.35 Å (PG(002)) and 
a copper with d220 = 1.28 Å (Cu(220)) monochromators are available at PUMA. The angular 
range of the monochromator 2M is of 15o - 115°. The PG(002) is usually used for energies 
below 50meV (>1.3Å). For higher incident energies the Cu(220) can be used. 

Sample table 
The sample table from the company Huber provides a possibility to vary independently both 
2s and S. It is equipped with a goniometer moving the sample in the three translation axes x, 
y and z and tilting. The tilt angle is ±15°. Single crystal experiments can be performed with an 
Euler cradle at PUMA. The sample environment includes magnets, pressure cells, cryostats 
and high temperature furnace. 

Analyzer 
Like the monochromator, the PG(002) analyzer consist of 20x5 separate analyzer crystal 
plates are mounted in an aluminum frame. There is an option to measure with the flat or 
horisontaly and verticaly focused analyser. The angular range of the analysator 2M is of  
-130o - 130°. 

Detector and monitor 
The detector consists of five counter tubes which are filled with a 3He pressure of 5 bar. To be 
able to monitor the neutron flux incident on the sample, a low-efficiency neutron counter 
monitor is usually placed before the sample. Such a monitor is required so that flux variation 
caused by, for example, the reactor power fluctuations and the change in reflectivity of the 
monochromator with neutron wavelength can be automatically corrected for.  
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Fig.4 PUMA spectrometer. 
 
 
 
Slits, Collimators, Filter 

Additional components like slits or collimators are used to define the beam cross 
section. Collimators (1- 4) are used for the improvement of the resolution and to specify 
the beam divergence. They consist of multiple parallel arranged Gd2O3 coated foils with a 
defined angle to the beam. The angular divergence of the collimator in the horizontal plane  
is defined by the distance between foils d and the length of the collimator l (tan  = d / l). 
Different collimators with a horizontal divergence between 10’ and 60’ are available at the 
instrument.  

One of the problems of the TAS method is the possible presence of higher harmonics 
in the neutron beam. Higher harmonics arise from higher order (hkl) in Bragg’s law (2). This 
means that if the monochromator (analyzer) crystal is set to reflect neutrons with a 
wavelength of  from a given (hkl) plane, it will also reflect neutrons with wavelength /n. 
This leads to the appearance of several types of spurious peaks in the observed signal. 
Different filters are used to eliminate the high-order neutrons and to reduce the background. 
There are a sapphire filter (Al2O3) and an erbium filter (Er) at PUMA. They are installed in 
front of the monochromator. Sapphire filter is used wavelengths > 1 Å and reduce the 
background inducing by the epithermal neutrons. Erbium filter is suitable as /2 filter for  
between 0.5 and 1Å as well as /3 filter for  between 0.7 and 1.6Å. 
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Components 
Axis PUMAs 

notation 
Description 

Monochromator M M mth Monochromator Theta 
 2M mtt Monochromator 2Theta 
  mtx, mty Monochromator Translation x-, y- direction 
  mgx, mgy Monochromator Goniometer x-, y- direction 
  mfh, mfv Monochromator Focus horizontal, vertical 
Sample S S psi Sample Theta 
 2S phi Sample 2Theta 
  stx, sty, stz Sample Translation x-, y-, z- direction 
  sgx, sgy Sample Goniometer x-, y- direction 
Analyzer A A ath Analyzer Theta 
 2A att Analyzer 2Theta 
  atx, aty Analyzer Translation x-, y- direction 
  agx, agy Analyzer Goniometer x-, y- direction 
  afh Analyzer Focus horizontal 
Collimators  alpha1 – alpha4 Collimation 
 
 

5. Experiment Procedure 
 
The aim of the experiment is to measure acoustic phonons in a germanium sample. The 
phonons will be measured for [110] (LA) and [001] (TA) directions in [220] BZ.  
The experimental procedure shall contain the following steps: 
 
Sample alignment 
It is very difficult to align a sample with triple axis spectrometer, if the sample orientation is 
absolutely unknown. A sample must be pre-aligned, this means that the vertical axis of the 
sample must be known and roughly perpendicular to the ‘Tanzboden’. Than we shall do the 
following steps: 
- Inform the control program of the spectrometer about a scattering plane of the sample. One 
must set two reciprocal vectors (in our case [110] and [001]) laying in the scattering plane. 
- Drive spectrometer (M, 2M, S, 2S, A, 2A,) to the position corresponding to [220] 
reflection. 
- Scan S and find the Brag’s peak.  
- Scan corresponding goniometer axes to maximize intensity of the peak. 
- Do the same for other reflection [004]. 
- Change the offset of the S so that the nominal S values correspond to intensity maxima for 
the above reflections. 
 
Phonons measurements 
For our measurements we will chose the const-kf configuration with kf = 2.662 Å-1 (Ef = 14.68 
meV). This means that we will scan the energy transfer  = Ei – Ef by varying incident 

energy Ei (ki). We are going to use PG(002) monochromator. 
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For LA phonon we will do constant-Q scans in the energy transfer range  = 0 – 21 meV (0 

– 8 THz) for the following points:  
Q(r.l.u.) = (2.1, 2.1, 0), (2.2, 2.2, 0), (2.3, 2.3, 0), (2.4, 2.4, 0), (2.5, 2.5, 0), (2.6, 2.6, 0), (2.7, 
2.7, 0), (2.75, 2.75, 0).  
 
For TA phonon we will do constant-Q scans in the energy transfer range  = 0 – 15 meV (0 

– 3.6 THz) for the following points:  
Q(r.l.u.) = (2, 2, 0.2), (2, 2, 0.3), (2, 2, 0.4), (2, 2, 0.5), (2, 2, 0.7), (2, 2, 0.8), (2, 2, 0.9), (2, 2, 
1).  
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Fig 5 Elements of PUMA 
 

a) PG Analyzer b) Soller collimator 

c) Sample table d) Shutter, filters and collimators 

e) Analyzer and Detector f) Detector, consists of 5 3He tubes 
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6. Preparatory Exercises 

1. Calculate angles M, 2M, S, 2S for the reflections [220] and [004] of germanium (cubic-
diamond, a = 5.66 Å), supposing that kf = 2.662 Å-1 = const, monochromator is PG(002), and 
check, if this reflections are measurable with our experimental setup. 
2. Before doing a scan it is important to check that all point in Q -  space are available, 

instrument angles do not exceed high or low limits. Also, an experimental scientist must be 
sure that the moving instrument will not hit walls or any equipment. Calculate instrument 
parameters (M, 2M, S, 2S) for the momentum transfers Q (r.l.u.) = (2.1, 2.1, 0), (2.75, 
2.75, 0) and energy transfers  = 0 and 21 meV. This can be done using an online triple-axis 

simulator:  
http://www.ill.eu/instruments-support/computing-for-science/cs-software/all-software/vtas/ 
 

7. Experiment-Related Exercises 
 

1. Plot obtained spectra for each Q as a function of energy (THz). Fit the spectra with 
Gaussian function and find centers of the phopon peaks. The obtained phonon 
energies plot as a function of q. 

2. Why triple-axis spectrometer is the best instrument to study excitations in single 
crystals? 

3. During this practicum we do not consider some problems that are very important for 
planning experiments with a triple axis instrument such as resolution and intensity 
zones [2]. Persons who have a strong interest to the triple-axis spectroscopy should 
study these topics by oneself. Advanced students should be able to explain our choice 
of Brillouin zone and parameters of scans for the phonon measurements. 

 

Useful formula and conversions 
 
1 THz = 4.1.4 meV 
 
nλ = 2dhklsinhkl, 

hkl
hkld

τ

2
  

 

f0 kkQ   

2cos222
fifi kkkkQ   

 

If ki = kf  (elastic scattering) 

 sin

4
sin2  ikQ  

 
E [meV] = 2.072 k2 [Å-1] 
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1. Applications of neutron powder diffraction 

 
Powder diffraction reveals information on the phase composition of a sample and the 
structural details of the phases. In particular, the positions of the atoms (crystallographic 
structure) and the ordering of magnetic moments (magnetic structure) can be obtained. In 
addition to the structural parameters, also some information on the microstructure (crystallite 
sizes/microstrains) can be obtained. The knowledge of the structure is crucial to understand 
structure – properties – relationships in any material. Thus, neutron powder diffraction can 
provide valuable information for the optimisation of modern materials. 
 
 
Typical applications: 
 

Material Task 

Lithium-ion battery materials Positions of Li atoms, structural changes/phase 
transitions at the electrodes during operation, 

diffusion pathways of Li atoms 

Hydrogen storage materials Positions of H atoms, phase transformations 
during hydrogen absorption/desorption 

Ionic conductors for fuel cells positions of O/N atoms, thermal displacement 
parameters of the atoms and disorder at different 

temperatures, 
diffusion pathways of O/N atoms 

Shape memory alloys stress-induced phase transforamtions, stress-
induced texture development 

materials with CMR effect magnetic moment per atom at different 
temperatures 

catalysers Structural changes during the uptake of sorbents

Piezoelectric ceramics Structural changes during poling in electric field, 
positions of O atoms 

Nickel superalloys Phase transformations at high temperatures, 
lattice mismatch of phases 

magnetic shape memory alloys Magneto-elastic effects, magnetic moment per 
atom at different temperatures and magnetic 

fields 
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2. Basics of Powder Diffraction 
 
Diffraction can be regarded as detection of interference phenomena resulting from coherent 
elastic scattering of neutron waves from crystalline matter. Crystals can be imagined by a 
three-dimenional periodic arrangement of unit cells. The unit cell is characterised by the 
lattice parameters (dimensions and angles) and the positions of atoms or molecules.  
For diffraction experiments the probe should have a wavelength comparable to interatomic 
distances: this is possible for X-rays, electrons or neutrons.  
 
 
Structure factor 
 
The structure factor describes the intensity of Bragg reflections with Miller indexes (hkl), 
based on the particular atomic arrangement in the unit cell 
 

 



n

j
jjjhkl RHiTbF

1

2exp


  

where 
Fhkl: structure factor of Bragg reflection with Miller indexes hkl.  
n: number of atoms in unit cell 
bj: scattering lengths (in case of neutron scattering) or atomic form factor (in case of X-ray 
diffraction) of atom j 
Tj: Debye Waller factor of atom j 
 
The scalar product H Rj consists of the reciprocal lattice vector H and the vector Rj, revealing 
the fractional atomic coordinates of atom j in the unit cell. 
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Thus, the structure factor can also be given as follows: 
 

 



n

j
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1

exp  

The intensity of a Bragg reflection is proportional to the square of the absolute value of the  

structure factor: 
2

hklFI   

 
 
Debye-Waller Factor 
 
The Debye-Waller Factor describes the decrease in the intensity of Bragg reflections due to 
atomic thermal vibrations. 
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1
exp)(  

 
vector uj reflects the thermal displacements of atom j 
 
 
Braggs' Law 
 
 
Braggs' Law provides a relation between distances of lattice planes with  Miller indexes hkl, 
i.e. dhkl, and the scattering angle 2 of the corresponding Bragg peak. Braggs' law can be 
illustrated in a simplified picture of diffraction as reflection of neutron waves at lattice planes 
(figure 4). The waves which are reflected from different lattice planes do interfere. We get 
constructive interference, if the path difference between the reflected waves corresponds to an 
integer multiple of the wavelength. 
The condition for constructive interference (= Braggs' law) is then: 
 

 ndhkl sin2  

 

 
Figure 1: Illustration of Bragg’s law: constructive interference of neutron waves, reflected 
from lattice planes, where , 2 are Bragg angles, 2=2dhklsin is the path difference and 
2=n is the constructive interference. 
 
Applying Bragg’s law one can derive the lattice spacings (“d-values“) from the scattering 
angle positions of the Bragg peaks in a constant-wavelength diffraction experiment. With the 
help of d-values a qualitative phase analysis can be carried out. 
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Ewald's sphere 
 
The Ewald's sphere provides a visualisation of diffraction with help of the reciprocal lattice. 
At first, we introduce the scattering vector Q and the scattering triangle (Figure 2). The 
incident neutron wave is described by a propagation vector ki, the scattered wave is given by 
kf. In the case of elastic scattering (no energy transfer) both vectors ki and kf  have the same 
length which is reciprocal to the wavelength. 
 


2

 fi kk  

 
 
remark:  

The length of the wave vectors are sometimes given as 

1

 fi kk  (This definition is found 

esp. in crystallographic literature, while the other one is more common for physists).  
 
The angle between vectors ki and kf is the scattering angle 2. The scattering vector   Q is the 
given by the difference between ki and kf : 

 

Q= k f− ki  

 sin

4Q  

 

 
Figure 2: Illustration of scattering vector and scattering angle resulting from incident and 
scattered  waves. 
 
In the visualisation of the diffraction phenomena by Ewald the scattering triangle is 
implemented into the reciprocal lattice of the sample crystal – at first, we consider diffraction 
at a single crystal (Figure 3). Note that the end of the incident wave vector coincides with the 
origin of the reciprocal lattice. Ewald revealed the following condition for diffraction: we 
have diffraction in the direction of kf, if its end point (equivalently: the end point of scattering 
vector Q) lies at a reciprocal lattice point hkl. All possible kf, which fulfil this condition, 
describe a sphere with radius , the so called Ewald's sphere. Thus we obtain a hkl 
reflection if the reciprocal lattice point hkl is on the surface of the Ewald's sphere. 
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Figure 3: Illustration of diffraction using the Ewald's sphere. 
 

Here, the radius of  Ewald's sphere is given by 1/ (For

2

ik we obtain a radius of ). 

 
We receive the following condition for diffraction: the scattering vector Q should coincide 
with a reciprocal lattice vector Hhkl (x 2): 
 

hklHQ


2 ; xxx
hkl clbkahH


 ; 

hkl

x
hklhkl d

dH
1




 

From this diffraction condition based on the reciprocal lattice we can derive Bragg's law:  
 



  sin2

2sin
42 hkl

hkl
hkl d

d
HQ


 

 
 
The Ewald's sphere is a very important tool to visualize the method of single crystal 
diffraction: At a random orientation of a single crystalline sample a few reciprocal lattice 
points might match the surface of Ewald's sphere, thus fulfil the condition for diffraction. If 
we rotate the crystal, we rotate the reciprocal lattice with respect to the Ewald's sphere. Thus 
by a stepwise rotation of the crystal we receive corresponding reflections.     
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Powder Diffraction in Debye-Scherrer Geometry 
 
In a polycrystalline sample or a powder sample we assume a random orientation of all 
crystallites. Correspondingly, we have a random orientation of the reciprocal lattices of the 
crystallites. The reciprocal lattice vectors for the same hkl, i.e. Hhkl, describe a sphere around 
the origin of the reciprocal lattice. In the picture of Ewald's sphere we observe diffraction 
effect, if the surface of the Ewald's sphere intersects with the spheres of Hhkl vectors. For a 
sufficient number of crystallites in the sample and a random distribution of grain orientations, 
the scattered wave vectors (kf) describe a cone with opening angle 2 with respect to the 
inident beam ki.  

In the so called Debye-Scherrer Geometry a monochromatic beam is scattered at a cylindrical 
sample. The scattered neutrons (or X-rays) are collected at a cylindrical detector in the 
scattering plane. The intersection between cones (scattered neutrons) and a cylinder (detector 
area) results in segments of rings (= Debye-Scherrer rings) on the detector. By integration of 
the data along the Debye-Scherrer rings one derives the conventional constant-wavelength 
powder diffraction pattern, i.e. intensity as a function of the scattering angle 2.  
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Figure 4: Illustration of powder diffraction in Debye-Scherrer Geometry. On the left: cones of 
neutrons scattered from a polycrystalline sample are detected in the scattering plane. On the 
right: resulting powder diffraction pattern. 
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Figure 5: Two dimensional diffraction data (detector height vs. scattering angle 2), collected 
at high-resolution powder diffractometer  SPODI, illustrating the Debye-Scherrer rings of a 
corundum sample. 
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Relations between Bragg positions and lattice parameters 
 
With the help of Braggs law one can derive the lattice spacings “d-values” directly from the 
positions of Bragg reflections. The d-values are related with the lattice parameters of the unit 
cell (the cell dimensions a,b,c and the cell angles ) and the Miller indexes (hkl) of the 
corresponding reflections. In the following, the relations are provided for the different crystal 
systems. 
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3. Information from powder diffraction experiments 
 

 
Figure 6: on the left: typical powder diffraction pattern. On the right: zoom on a single Bragg 
peak. 
 
In the following, we will consider the information which can be derived from different 
elements of the diffraction patterns. 
 
Positions (scattering angles) of Bragg reflections  
 
 phase identification (from d-values) 
 lattice parameters 
 symmetry information (space group) by lattice parameters and selection rules (systematic 

extinction of reflections) 
 
 
Intensity of Bragg reflections 
 
 crystallographic structure 

 positions of atoms (fractional atomic coordinates) 
 occupancies of atoms on their sites 
 thermal displacement parameters 

 magnetic structure 
 magnetic lattice (propagation vector) 
 magnetic symmetry (space group) 
 magnetic moment per atom 

 quantitative phase analysis 
 preferred orientation effects 
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Profiles of reflections 
 
The reflection profiles result in a convolution of the instrumental resolution function with 
broadening effects of the sample 
 
 microstructural information 

 microstrains 
 crystallite sizes 

 
 
Modulation/Profile of Background 
 
 short range order 
 disorder 
 amorphous contents 
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4. Evaluation of Powder Diffraction Data 
 
The methods of data treatment can be classified in analysis of phase composition or phase 
transformation, structure solution and structure refinement.  
Qualitative phase analysis is based on the determination of d-values and relative intensities (in 
particular intensities of strong reflections have to be considered). The phase identification is 
supported by crystallographic data bases (ICDD, ISCD), literature data and information from 
other methods (for instance, analysis of the chemical composition). Such kind of phase 
analysis is however typically carried out with X-ray diffraction.  
The majority of neutron powder diffraction studies is based on experiments at various 
temperatures to investigate phase transformation behaviour as a function of temperature. 
There is an increasing demand for parametric studies, i.e. diffraction studies under various 
environmental conditions (temperature, electric or magnetic field, mechanical stress, gas 
atmosphere...) with particular attention to reaction pathways/reaction kinetics. This kind of 
investigations require in general high-intensity powder diffraction. 
Powder diffracton data can be used either for phase identification or for the refinement of 
structural parameters, such as lattice parameters, fractional atomic coordinates, atomic 
occupancies and atomic displacement parameters by the full profile Rietveld analysis. In the 
Rietveld method, the full diffraction pattern is calculated by a structure model, taking into 
account the above mentioned structural parameters, as well as reflection profile parameters, 
instrumental parameters and background parameters. Using least-squares method, the 
experimental data can be fitted to the model in a stepwise refinement of the parameters. The 
complexity of the structures is directly dependent on the instrument specification, in 
particular, high-resolution powder diffractometers are designed for structure refinements on 
complex systems.   
Besides structure refinement, also structure solution can be done based on powder diffraction 
patterns by various methods. 



14 POWDER DIFFRACTOMETER SPODI 

 

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

-10000

0

10000

20000

30000

40000

50000

60000  I
obs

 I
calc

 difference plot
 Bragg positions

n
e

u
tr

o
n

 c
o

u
n

ts

2

46 %  T i

36 37 38 39 40

0

1000

2000

3000

4000

5000

6000

 1/2 (311)
c

n
e
u
tr

o
n
 c

o
u
n
ts

2

Cc

Cm

(111)
c

Figure 7: Data treatment of a measurement on the ferroelectric Pb0.99La0.01Zr0.54Ti0.46O3, 
carried out at 5 K at diffractometer SPODI (FRM II):  Diffraction pattern including 
experimental data, calculated data by Rietveld fit, Bragg reflection positions of the phases 
(space groups CC and Cm)  and difference plot (between experimental and calculated data). - 
zoom into the diffraction pattern, hightlighting a superlattice reflection of the CC phase. - 
structure model of the  CC  phase, view in the [001]c direction -  structure model of the  CC  

phase, view in the [010]c direction. In particular, the superstructure in the tiltings of oxygen 
octahedra can be seen. 
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5. Comparison between Neutron and X-ray diffraction 
 
  
I) X-rays are scattered at electrons, neutrons are scattered at nuclei  
 
In case of X-ray scattering, the scattering power of an atom (described by the atomic form 
factor f) is proportional to the number of electrons.  
Neutrons are scattered at nuclei. Thus the interaction (described by the scattering length b) 
varies between different isotopes of an element. Scattering length of neighbouring elements in 
the periodic system can be very different. 
 
implications: 
 
Localisation of light elements next to heavier ones  
 
X-ray diffraction is a powerful tool to determine the positions of heavy atoms, but the 
localisation of light atoms in the vicinity of much heavier atoms is often difficult or related 
with high uncertainties. Neutron diffraction is advantageous to localise light atoms such as H, 
D, Li, C, N, O. 
 
 
Localisation of neighbouring elements in the periodic table 
 
Neighbouring elements in the periodic table can hardly be distinguished by means of X-ray 
diffraction. Neutrons are advantageous for such cases: examples: Mn – Fe - Co – Ni or O – N. 
 
 
Q-dependence of intensities 
 
Since the size of electron clouds is comparable to the wavelength, the atomic form factor 
depends on sinorQTherefore the intensities of X-ray reflections decrease significantly 
for increasing Q (increasing scattering angles 2. 
As the range of the neutron–nuclei–interaction is by orders of magnitude smaller than the 
wavelengths of thermal neutrons, scattering lengths do not depend on Q. As a consequence, 
neutron diffraction patterns do not show a decrease of Bragg reflection intensities for higher 
scattering angles, enabling the analysis of larger Q-ranges. In particular, neutron diffraction is 
advantageous for the analysis of thermal displacement parameters. 
 
 
II) neutrons interact weakly with matter 
 
implications: 
 
sample volume 
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The flux from neutron sources much lower compared to X-ray tubes or even synchrotrons. In 
addition, neutrons interact weakly with matter. Therefore, much larger sample amounts are 
required compared to X-ray diffraction (“grams instead of milligrams”). On the other hand 
this weak interaction results in much higher penetration depths of neutrons, compared to 
laboratory X-ray diffractometers. Thus, polycrystalline bulk samples can be investigated. 
Furthermore, using large sample volumes avoids possible problems due to preferred 
orientation effects. In principle, bulk samples can also be investigated with high-energy 
synchrotron radiation. Anyhow in special cases the very low scattering angles related to low 
wavelength (in high-energy synchrotron studies) can cause difficulties. 
 
Sample environments 
 
The large penetration depths of neutrons facilitate the usage of sample environments like 
cryostat, furnaces, magnets... In general neutron scattering experiments are more powerful 
applying high or low temperatures. On the other hand, the small sample volume required for 
synchrotron studies gives better possibilities for high-pressure experiments. 
 
 
III) neutrons exhibit a magnetic moment 
 
Though neutrons do not have an electric charge, the internal charge distribution due to its 
three quarks along with the spin result in a magnetic moment of the neutron. 
 
implications: 
 
magnetic scattering 
 
The interaction between the magnetic moment of the neutron and a possible magnetic 
moment of an atom results in a magnetic scattering contribution, incidentally in the same 
order of magnitude as the nuclear scattering contribution. The magnetic scattering 
contribution can be easily detected by means of neutron diffraction. In synchrotron diffraction 
studies, possible magnetic scattering events are by several orders of magnitude weaker than 
the Thomson scattering.  
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6. Setup of the high-resolution neutron powder diffractometer SPODI at 
FRM II 
 
The main components of a constant-wavelength neutron powder diffractometer are: source,  
monochromator, sample and  detector. Between these components collimation systems are 
installed which have high impact on the instrumental resolution function and the neutron flux.  
 

thermal

neutrons

neutron guide  

monochromator  
angle: 2M 

mosaicity:  

secondary collimator  
2  

sample

detector 

primary collimator  
1 

detector collimator
3 

source

 
Figure 8: illustration of a typical instrumental layout, introducing the parameters used by 
Caglioti to describe the instrumental resolution function. 
 
 
Instrumental resolution function 
 
As shown by Calgioti, the instrumental resolution function of a constant-wavelength powder 
diffractometer can be approximated by: 

WVUFWHM   tantan2  
 
with the Caglioti parameters: 
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in this approach it is assumed that all components have Gaussian transmission profiles. The 
resolution function is determined by the horizontal beam divergences  the 
monochromator angle 2m and the mosaicity of the monochromator (Figure 8). As the 
impact of these parameters on the instrumental resolution function can be estimated, the 
Caglioti equations help to design an instrument to achieve a designated performance. 
However, it should be emphasised that in the approximations of Caglioti only the horizontal 
beam divergences are taken into account, neglecting vertical beam divergences by a vertical 
focusing monochromator or a vertical divergent neutron guide. Those effects are taken into 
account by ray-tracing methods, which allow a detailed modelling of the individual 
components. 
The powder diffractometer SPODI has been designed to achieve both high resolution and 
good profile shape. In its standard configuration (highest resolution mode) SPODI uses a 
unique very high monochromator take-off angle of 155° along with a large monochromator-
to-sample distance of 5 meters. An evacuated beam tube of about 4 m in length is located 
between the monochromator and the sample which also controls both vertical and horizontal 
neutron beam divergences at the sample position. Thus the natural neutron beam divergence 
in horizontal plane is 25’ only. It can be reduced down to even 5’ by optional Soller 
collimators in front of the sample. 
 
 
Monochromator 
 
At constant-wavelength diffractometers, the monochromatisation is perfomed using crystals 
followings Bragg's equation: 
 

 sin2 hkld , where the effective transmission band is determined by a derivative 

MM 



cot


 

 
The width of the wavelength band  strongly depends on the monochromator angle 2m 
and the mosaicity of the monochromator , i.em. Thus these parameters have a major 
impact on the instrumental resolution function and the flux on the sample.  
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Typically, the monochromator crystals are installed at a vertical focusing unit of 200 – 300 
mm, allowing optimization of the intensity distribution at the sample position with respect to 
the monochromator – sample distance or the sample height. On the other hand, the vertical 
beam divergence results in a smearing of the Debye-Scherrer rings along the detector height 
(this effect depends also on the sample height). At the high-resolution powder diffractometer 
SPODI, 15 Germanium wafer-stack crystals with a (551)-orientation are used. Different 
wavelengths between 1.0 and 2.6 Å can easily be selected by rotation of the monochromator 
unit (without changing the monochromator take-off angle 2m), i.e. by selecting different (hkl) 
reflection planes. In general, large wavelengths are advantageous to investigate structures 
exhibiting large d-values. This is the case for large unit cells, but in particular for magnetic 
ordering. With decreasing wavelengths, larger Q-values can be achieved. Thus, with lower 
wavelengths, more reflections can be observed in the same scattering angle range. Low 
wavelengths are in particular advantageous for the analysis of thermal displacement 
parameters or static disorder phenomena. 
 
 
Detector array 
 
At constant-wavelength diffractometers the data are collected in an angle-dispersive manner 
at equidistant 2 points. Detector systems based on 3He have been most commonly used due 
to their very high efficiency. Now, the world wide shortage of 3He demands and promotes the 
development of alternatives, in particular scintillator based systems.  
Classical high-resolution powder diffractometers, such as D2B (ILL), SPODI (FRM II), BT1 
(NIST), ECHIDNA (ANSTO) use multidetector/multicollimator systems. The data are 
collected by 3He tubes while the beam divergence is limited by Soller collimators. Such 
systems enable high Q-resolution over a broad scattering angle regime, while the resolution 
does not depend on the sample diameter. On the other hand, a multidetector concept requires 
a data collection by stepwise positioning of the detector array to collect the full diffraction 
pattern. Therefore, kinetic measurements are not feaible due to the fact that the sample must 
not change during the collection of a pattern. 
The detector array of SPODI consists of 80 3He tubes, which are position sensitive in the 
vertical direction. Thus, two-dimensional raw data are obtained, which allow to rapid check 
for sample crystallinity, alignment and possible preferred orientation effects. The 
conventional diffraction patterns (intensity vs. scattering angle 2) are derived from the two-
dimensional raw data by integration along the Debye-Scherrer rings. 
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7. Experiment: Phase- and structure analysis of lead titanate at various 
temperatures 

samples  

Lead zirconate titanates PbZr1-xTixO3 („PZT“) exhibit piezo-, pyro- and ferroelectric 
properties. Piezoelectricity describes the generation of an electric polarisation as a 
consequence of a mechanical deformation – or the other way round the development of a 
macroscopic strain by an electric field. The crystallographic condition of piezoelectricity is 
the lack of an inversion center: as the balance points of negative and positive charge do not 
coincide the displacements of the ions in the electric field results in a polarization. 
Pyroelectrticity refers to a spontaneous polarization of a material as a function of temperature. 
Ferroelectrics are special pyroelectric materials, in which the polarization can be switched by 
an electric field, resulting in a ferroelectric hysteresis. 

The electromechanical properties of PbZr1-xTixO3 can be understood by their phase 
transformation behaviour. At high temperatures they exhibit the perovskite structure with 
simple cubic symmetry (space group Pm-3m). Because of its symmetry (inversion center) this 
phase is not piezoelectric but paraelectric. During cooling, titanium-rich samples undergo a 
phase transition to a tetragonal phase (space group P4mm). This phase transformation is 
accompanied by atomic displacements. In particular, the Ti4+/Zr4+ are shifted in the opposite 
direction than  O2- ions, resulting in a dipole moment or a spontaneous polarisation. The 
material exhibits ferroelectric behaviour, with a polar axis in the direction of the pseudocubic 
c-axis, i.e. [001]c . Zirconium rich samples undergo a phase transition towards a 
rhombohedral phase (space group R3m) during cooling. In this case, the atomic displacements 
result in a polar axis in direction [111]c with respect to the parent pseudocubic lattice. 
Materials PbZr1-xTixO3 with compositions (Zr/Ti ratios) close to the so called morphotropic 
phase boundary between rhombohedral and tetragonal phase, show the highest piezoelectric 
response, i.e. the largest macroscopic strain as a function of the applied electric field. These 
compositions are therefore most interesting for technological applications. The piezoelectric 
properties can be modified further by adding doping elements to substitute Pb2+ or Ti4+/Zr4+ 
ions. 
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Figure 9: Structure models of the paraelectric cubic phase and the ferroelectric rhombohedral 
and tetragonal phases.  
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Figure 10: Phase diagram of PbZr1-xTixO3, illustrating regions of phase stability for 
paraelectric cubic phase PC, ferroelectric rhomboedral phases FR(HT) (= high temperature) and 
FR(LT) (= low temperature) and ferroelectric tetragonal phase FT. From B. Jaffe, W. R. Cook, 
H. Jaffe, Piezoelectric Ceramics and Related Issues, Academic Press, London, 1971. 

PbZr1-xTixO3, find extensive applications 

 transformation from mechanical in electric energy: ignition elements, lighters 

 transformation from electric in mechanical energy (actuators): loudspeakers, sonar 
transducers, Active control of vibration 

 transformation from mechanical force in an electric signal (sensors): strain gauges, 
microphones 

 data storage, information technology: capacitors, F-RAM 
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Experiment 

In the frame of the practical course, the temperature-dependent phase transformation behavior 
of a  PbZr1-xTixO3 with a composition on the tetragonal side should be investigated. 
Diffraction patterns at different temperature steps between room temperature and 600 °C will 
be collected with a vacuum high-temperature furnace. The structural changes at different 
temperatures will be investigated by an analysis of the lattice parameters. Based on the 
experimental data, the relations between the structural changes and the corresponding 
physical properties can be discussed. 

Following experimental procedures will be carried out 

 sample preparation, filling the sample material into a sample can, adjustment of the 
sample stick, installation of the sample stick into the furnace 

 short test measurement to check the sample adjustment and data quality 
 editing a program to run the data collection at various temperatures and starting the 

scans  
 data reduction: Derivation of diffraction patterns from the two-dimensional raw data 
 data analysis: analysis of the lattice parameter changes as a function of temperature 
 discussing the results with respect to structure – properties relationships 
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1 Introduction 

Many properties of solid matter like their mechanical, thermal, optical, electrical and 
magnetic properties depend strongly on their atomic structure. Therefore, a good 
understanding of the physical properties needs not only the knowledge about the particles 
inside (atoms, ions, molecules) but also about their spatial arrangement. For most cases 
diffraction is the tool to answer questions about the atomic and/or magnetic structure of a 
system. Beyond this, neutron diffraction allows to answer questions where other techniques 
fail. 

2 Crystallographic Basics 

In the ideal case a complete solid matter consists of small identical units (same content, same 
size, same orientation like sugar pieces in a box). These units are called unit cells. A solid 
matter made of these cells is called a single crystal. The shape of a unit cell is equivalent to a 
parallelepiped that is defined by its base vectors a1, a2 und a3 and that  can be described by its 
lattice constants a, b, c; ,  and   (pic. 1). Typical lengths of the edges of such cells are 
between a few and a few ten Ångström (1Å=10–10 m). The combination of various restrictions 
of the lattice constants between a ≠ b ≠ c; ≠  ≠ ≠ 90° (triclinic) and a = b = c;  =  
= 90° (cubic) yields seven crystal systems. The request to choose the system with the highest 
symmetry to describe the crystal structure yields fourteen Bravais lattices, seven primitive and 
seven centered lattices. 

Fig. 1: Unit cell with |a1|=a, |a2|=b, |a3|=c,  
 

Each unit cell contains one or more particles i. The referring atomic positions xi=xi*a1 + yi*a2 
+ zi*a3 are described in relative coordinates 0 ≤ xi; yi; zi < 1. The application of different 
symmetry operations (mirrors, rotations, glide mirrors, screw axes) on the atoms in one cell 
yield the 230 different space groups (see [1]). 
 
The description of a crystal using identical unit cells allows the representation as a 
threedimensional lattice network. Each lattice point can be described as the lattice vector t = 
u*a1 + v*a2 + w*a3; u, v, w  Z. From this picture we get the central word for diffraction in 
crystals; the lattice plane or diffraction plane. The orientations of these planes in the crystal 
are described by the so called Miller indices h, k and l with h, k, l  Z (see pic. 2). The 
reciprocal base vectors a*1, a*2, a*3 create the reciprocal space with: a*i * aj  = ij with ij=1 
for i=j and ij=0 for i≠ j. Each point Q=h*a*1 + k*a*2 + l*a*3 represents the normal vector of 



4  M. Meven 

a (hkl) Plane. Each plane cuts the crystal lattice along its base vectors a1, a2 and a3 at 1/h*a1, 
1/k*a2 and 1/l*a3. A Miller index of zero means that the referring axis will be cut in infinity. 
Thus, the lattice plane is parallel to this axis.  

Fig. 2: Different lattice planes in a crystal lattice, a3 = viewing direction 
 
The atoms in a unit cell are not rigidly fixed at their positions. They oscillate around their 
positions (e.g. thermal excitation). A simple description for this is the model of coupled 
springs. In this model atoms are connected via springs whose forces describe the binding 
forces between the atoms (e.g. van der Waals, Coulomb, valence). The back driving forces of 
the springs are proportional to the deviation xi of the atoms from their mean positions and to 
the force constant D, thus. F = -D*Δx (harmonic approximation). 
Therefore, the atoms oscillate with xi = Ai*sin(ν*t) around their mean positions with the 
frequency ν and the amplitude Ai. Both, ν and Ai are influenced by the force constant Dj of the 
springs and the atomic masses mi of the neighbouring atoms. The resulting lattice oscillations 
are called phonons in reference to the photons (light particles) in optics, which as well 
transport energy in dependence of their frequency. A more complex and detailed description 
of phonons in dependence on the lattice structure and the atomic reciprocal effects is given in 
lattice dynamics. In the harmonic approximation the displacements of an atom can be 
described with an oszillation ellipsoid. This ellipsoid describes the preferred spacial volume 
in which the atom is placed. Its so called mean square displacements (MSD) Ui

jk represent the 
different sizes of the ellipsoid along the different main directions j, k in the crystal. The 
simplest case is a sphere with the isotrope MSD Bi. In the next paragraph MSD are discussed 
from the point of view of diffraction analysis. 
A full description of a single crystal contains information about lattice class, lattice constants 
and unit cell, space group and all atomic positions and their MSD. If the occupancy of one or 
more positions is not exactly 100%, e.g. for a mixed crystal or a crystal with deficiencies 
there has to be used also an occupancy factor.  
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3 Structure Determination with Diffraction 

3.1 Introduction 
Diffraction means coherent elastic scattering of a wave on a crystal. Because of the quantum 
mechanical wave/particle dualism x-rays as well as neutron beams offer the requested wave 
properties: 
 
Electrons: E = hν; λ= c/ν 
Neutrons: Ekin = 1/2 * mn*v2 = hν = p2/2mn; λ= h/p; p ~(mn kB T) 
 
h: Planck’s constant; ν: oscillation frequency; λ: wavelength; c: light speed; p: impact; mn: 
neutron mass; kB: Boltzmann constant; T: temperature 
 
Only the cross section partners are different (x-rays: scattering on the electron shell of the 
atoms, neutrons: core (and magnetic) scattering) as explained in detail below. In scattering 
experiments informations about structural properties are hidden in the scattering intensities I.  
In the following pages we will discuss only elastic scattering (λin=λout). The cross section of 
the radiation with the crystal lattice can be described as following: 
Parallel waves of the incoming radiation with constant λ are diffracted by lattice planes which 
are ordered parallel with a constant distance of d. This is very similar to a light beam reflected 
by a mirror. The angle of the diffracted beam is equal to the angle of the incoming beam, thus 
the total angle between incoming and outgoing beam is 2 (see fig. 3). 

Fig. 3: Scattering on lattice planes 
 
The overlap of all beams diffracted by a single lattice plane results in constructive 
interference only if the combination of the angle , lattice plane distance d and wavelength 
λmeet Braggs law: 

2d sin = λ 
 
The largest distance dhkl = |Q| of neighboured parallel lattice planes in a crystal is never larger 
than the largest lattice constant dhkl ≤ max(a; b; c). Therefore, it can only be a few Åor less. 
For a cubic unit cell (a = b = c;  =  =  = 90°) this means:  
dhkl = a/ (h2+k2+l2) 
 
With increasing scattering angle also the indices (hkl) increase while the lattice plane 
distances shrink with a lower limit of dmin = λ/2. Therefore, scattering experiments need 

Q
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wavelengths λ in the same order of magnitude of the lattice constants or below. This is equal 
to x-ray energies of about 10 keV or neutron energies about 25 meV (thermal neutrons).  
 
Ewald Construction: In reciprocal space each Bragg reflex is represented by a point Q = 
h*a*1 + k*a*2 + l*a*3. A scattered beam with the wave vector k fulfills Braggs law if the 
relationship k = k0 + Q , |k|=|k0|=1/λ is true, as shown in fig. 4. During an experiment the 
available reciprocal space can be described by an Ewald sphere with a diameter of 2/λ and the 
(000)-point as cross point of k0 direction and the centre of the diameter of the sphere. The 
rotation of the crystal lattice during the diffraction experiment is equal to a synchronous 
movement of the reciprocal lattice around the (000)-point. If Braggs law is fulfilled, one point 
(h k l) of the reciprocal lattices lies exactly on the Ewald sphere. The angle between the k-
vektor and the k0-vektor is 2. The limited radius of 1/λ of the Ewald sphere limits also the 
visibility of (h k l) reflections to |Q| < 2/λ.  

 
Fig. 4: Ewald construction 

 
Determination of the Unit Cell: Following Braggs law the scattering angle 2 varies (for 
λ=const.) according to the lattice distance dhkl. Thus for a given λ and known scattering angles 
2 one can calculate the different d values of the different layers in the lattice of a crystal. 
With this knowledge is is possible to determine the lattice system and the lattice constants of 
the unit cell (although not always unambigously!).  
 
Atomic Positions in the Unit Cell: The outer shape of a unit cell does not tell anything about 
the atomic positions xi=(xi yi zi) of each atom in this cell. To determine the atomic positions 
one has to measure also the quantities of the different reflection intensities of a crystal. This 
works because of the relationship between the intensities of Bragg reflections and the specific 
cross section of the selected radiation with each element in a unit cell. Generally one can use 
the following formula for the intensity of a Bragg reflection (h k l) with Q (kinetic scattering 
theory): 
 
Ihkl ~ |Fhkl|

2 with Fhkl =n
i=1 si(Q) exp(2(hxi+kyi+lzi)) 

 

Q 
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The scattering factor F is a complex function describing the overlap of the scattering waves of 
each atom i (n per unit cell). si(Q) describes the scattering strength of the i-th atom on its 
position xi in dependence of the scattering vector Q, which depends on the character of cross 
section as described below. 
In this context one remark concerning statistics: For measurements of radiation the statistical 
error  is the square root of the number of measured events, e.g. x-ray or neutron particles. 
Thus, 100 events yield an error of 10% while 10,000 events yield an error of only 1%! 
 
Mean Square Displacements (MSD): Thermal movement of atoms around their average 
positions reduce the Bragg intensities during a diffraction experiment. The cause for this 
effect is the reduced probability density and therefore reduced cross section probability at the 
average positions. For higher temperatures (above a few Kelvin) the MSD Bi of the atoms 
increase linearly to the temperature T, this means B ~ T. Near a temperature of 0 K the MSD 
become constant with values larger than zero (zero point oscillation of the quantum 
mechanical harmonic oscillator). 
Thus, the true scattering capability si of the  i-th atom in a structure has to be corrected by an 
angle-dependent factor (the so called Debye-Waller factor): 
 
si(Q) → si(Q) * exp(-Bi(sin Q/)2) 
 
This Debye-Waller factor decreases with increasing temperatures and yields an attenuation of 
the Bragg reflection intensities. At the same time this factor becomes significantly smaller 
with larger sinλ~|Q|. Therefore, especially reflections with large indices loose a lot of 
intensity. The formula for anisotropic oscillations around their average positions looks like 
this: 
 

si(Q) → si(Q) * exp(-22(Ui
11 h

2a*2 + Ui
22 k

2b*2 + Ui
33 l

2c*2 + 
                                   + 2Ui

13 hl a*c* + 2Ui
12 hk a*b* + 2Ui

23kl b*c*)) 
 
The transformation between B and Ueq (from the Uij calculated isotropic MSD for a sphere 
with identical volume) yields  B = 82Ueq. 
For some structures the experimentally determined MSD are significantly larger than from the 
harmonic calculations of the thermal movement of the atoms expected. Such deviations can 
have different reasons: Static local deformations like point defects, mixed compounds, 
anharmonic oscillations or double well potentials where two energetically equal atomic 
positions are very near to each other and therefore distribute the same atom over the crystal 
with a 50%/50% chance to one or the other position. In all those cases an additional 
contribution to the pure Debye-Waller factor can be found which yields an increased MSD. 
Therefore in the following text only the term MSD will be used to avoid misunderstandings. 

3.2 Comparison of X-ray and Neutron Radiation 

X-Ray Radiation interacts as electromagnetic radiation only with the electron density in a 
crystal. This means the shell electrons of the atoms as well as the chemical binding. The 
scattering capability s (atomic form factor f(sin)) of an atom depends on the number Z of 
its shell electrons (f(sin(=0)/λ) =Z). To be exact, f(sin()/λ) is the Fourier transform of the 
radial electron density distribution ne(r): f(sin()/λ)=s ∫∞0 42ne(r) sin(µr)/µr dr with 
µ=4sin()/Heavy atoms with many electrons contribute much stronger to reflection 
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intensities (I~Z2) than light atoms with less electrons. The reason for the sinλ-dependence 
of f is the diameter of the electron shell, which has the same order of magnitude as the 
wavelength λ. Because of this there is no pointlike scattering centre. Thus, for large scattering 
angles the atomic form factors vanish and also the reflection intensities relying on them. The 
atomic form factors are derived from theoretical spherical electron density functions (e. g. 
Hartree-Fock). The resulting f(sinλ)-curves of all elements (separated for free atoms and 
ions) are listed in the international tables. Their analytical approximation can be described by 
seven coefficients (c; ai; bi; 1≤ i ≤ 3) , see [1]. 
 
Neutron Radiation radiation interacts with the cores and the magnetic moments of atoms. 
The analogon to the x-ray form factor (the scattering length b) is therefore not only dependent 
on the element but the isotope. At the same time b-values of elements neighboured in the 
periodic table can differ significantly. Nevertheless, the scattering lengths do not differ around 
several orders of magnitude like in the case of the atomic form factors f . Therefore, in a 
compound with light and heavy atoms the heavy atoms do not dominate necessarily the Bragg 
intensities. Furthermore the core potential with a diameter about 10-15Å is a pointlike 
scattering centre and thus the scattering lengths bn become independent of the Bragg angle 
and sinλ respectively. This results in large intensities even at large scattering angles. The 
magnetic scattering lengths bm can generate magnetic Bragg intensities comparable in their 
order of magnitude to the intensities of core scattering. On the other hand side the magnetic 
scattering lengths are strongly dependent on the sinλ value due to the large spacial 
distribution of magnetic fields in a crystal. Therefore, it is easy to measure magnetic 
structures with neutrons and to separate them from the atomic structure. 
 
Comparison: In summary in the same diffraction experiment the different character of x-ray 
and neutron radiation yield different pieces of information that can be combined. x-rays yield 
electron densities in a crystal while neutron scattering reveals the exact atomic positions. This 
fact is important because for polarised atoms the core position and the centre of gravity of 
electron densities are not identical any more. In compounds with light an heavy atoms 
structural changes driven by light elements need additional diffraction experiments with 
neutrons to reveal their influence and accurate atomic positions respectively. One has to take 
into account also that for x-rays intensitied depend twice on sinλ. Once bye the atomic form 
factor f, and twice by the temperature dependent Debye-Waller factor (see above). The first 
dependence vanishes if using neutron diffraction with b=const. and decouples the structure 
factors from the influence of the MSD. In general this yields much more accurate MSD Uij 
especially for the light atoms and might be helpful to reveal double well potentials. 

3.3 Special Effects 

From the relation I~|F|2 one can derive that the scattering intensities of a homogenous 
illuminated sample increases with its volume. But there are other effects than MSD that can 
attenuate intensities. These effects can be absorption, extinction, polarization and the Lorentz 
factor: 
 
Absorption can be described by the Lambert-Beer law: 
 
I = I0 exp(-µx) , µ/cm-1 = linear absorption coefficient, x/cm = mean path through sample  
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The linear absorption coefficient is an isotropic property of matter and depends on the 
wavelength and kind of radiation. For x-rays penetration depths are only a few millimetre or 
below (e.g. for silicon with µMoK=1.546 mm-1, µCuK=14.84 mm-1 with penetration depths of 
3 mm and 0.3 mm respectively). This limits transmission experiments to sample diameter of 
typically below 0.3 mm. To correct bias of intensities due to different scattering paths through 
the sample one has to measure accurately the sample size in all directions. Even for sphere 
liek samples the mean path lenghts depend on 2 In addition the sample environment must 
have an extraordinary small absorption  
Thermal neutrons have for most elements a penetration depth of several centimeters. Thus, 
sample diameters of several millimeters and large and complex sample environments 
(furnaces, magnets, etc.) can be used. On the other hand side one needs sufficiently large 
samples for neutron diffraction which is often a delicate problem.  
 
Extinction reduces also radiation intensities. But the character is completely different form 
that of absorption. In principle extinction can be explained quite easily by taking into account 
that each diffracted beam can be seen as a new primary beam for the neighbouring lattice 
planes. Therefore, the diffracted beam becomes partially backscattered towards the direction 
of the very first primary beam (Switch from kinetic to dynamic scattering theory!). Especially 
for very strong reflections this effect can reduce intensities dramatically (up to 50% and 
more). Condition for this effect is a merely perfect crystal.  
Theoretical models which include a quantitative description of the extinction effect were 
developed from Zachariasen (1962) and Becker and Coppens [2, 3, 4, 5, 6]. These models 
base on an ideal spherical mosaic crystal with a very perfect single crystal (primary 
Extinction) or different mosaic blocks with almost perfect alignment (secundary Extinction) 
to describe the strength of the extinction effect. In addition, it is possible to take into account 
anisotropic extinction effect if the crystal quality is also anisotropic. Nowadays extinction 
correction is included in most refinement programs [7]. In general extinction is a problem of 
sample quality and size and therefore more commonly a problem for neutron diffraction and 
not so often for x-ray diffraction with much smaller samples and larger absorption.  
 
Polarisation: X-ray radiation is electromagnetic radiation. Therefore, the primary beam of an 
x-ray tube is not polarized. The radiation hits the sample under an diffraction angle of  
where it can be separated into two waves of same intensity, firstly with an electrical field 
vector parallel E|| and secondly perpendicular E towards the -axis. Whilst the radiation 
with E|| will not be attenuated the radiation with E will be attenuated with E → cos(2) E. 
The polarization factor P for the attenuation has then the following formula (I  ~ E2): 
 
P = (1+cos(2)2)/2 
 
Additional optical components like monochromator crystals also have an impact on the 
polarization and have to be taken into account accordingly. 
  
Lorentz factor: The Lorentz factor L is a purely geometrical factor. It describes that during 
an - and -scan respectively of Bragg reflections towards higher 2 values for the same 
angular speed Δ/Δt an effectively elongated stay of the sample in the reflection position 
results.: 
 
L = 1/sin(2) 
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This has to be taken into account for any kind of radiation in an diffraction experiment. 
 

3.4 Summary of Theory of Method 

The different interactions of x-ray and neutron radiation with the atoms in a crystal make 
neutrons in general the better choice for a diffraction experiment. But on the other hand one 
has to take into account the available flux of x-rays and neutrons respectively. The flux of 
modern neutron sources like the Heinz Maier-Leibnitz neutron source (FRM II) is spread 
around a broad spectrum of neutron energies. In a sharp band of energies/wavelengths, e.g. 
∆/<10-3, there is the flux of neutrons several order of magnitude smaller than the flux of  x-
rays of a corresponding synchtrotron source or x-ray tube in the laboratory. The reason for 
this is the fact that in an x-ray tube most x-rays are generated in a small energy band, the 
characteristic lines of the tube target (K, K, etc.). Additional metal foil used as filter allow 
to cut off unwanted characteristic lines which yields quasi monochromatic radiation of a 
single wavelength.  
To use neutrons around a small energy band one has to use monochromator crystals. This 
reduces significantly the number of available neutrons for the diffraction experiment. Thus, 
the weak flux of neutrons and the weak cross section of neutrons with matter has to be 
compensated with large sample sizes of several millimeters. For the same reason the 
monochromatization of the neutrons is normally chosen to be not too sharp (resolution about  
∆λ/λ≈10-2 for neutrons, ∆λ/λ≈10-5 – 10-6 for synchrotron). 
 

3.5 From Measurement to Model 

To get a structural model from the experimentally collected integral Bragg intensities one 
needs several steps in advance. Firstly on has to make sure that all reflections are measured 
properly (no shading, no λ/2-contamination, no Umweganregung (Renninger-effect) ). 
Damaged reflections have to be excluded from further treatment. 
During data refinement not only the quantities of the relative intensities but also their errors 
are taken into account. The total statistical error  of an integral intensity Iobs of a single 
reflection is calculated as following: 
 
 = Iobs + Ibackground + (k Itotal)

2 
 
The part 

 = Itotal, Itotal = Iobs + Ibackground refers to the error caused by counting statistics. It 
contains as well the effective intensity Iobs as well as the contribution of the background. But 
there are other effects that influence the reproducibility of a measurement (and thus the total 
error), e.g. specific errors of the instrumental adjustment. Those errors are collected in the so 
called McCandlish-Factor k and contribute to the total error. Therefore, the total error cannot 
drop below the physically correct limit of the experiment and thus the impact of strong 
reflections does not become exaggerated in the refinement. The determination of k is done by 
measurent the same set of reflections several times during an experiment (the so called 
standard reflections). The mean variation of the averaged value represents k. In addition, the 
repeated measurement of standard reflections offers the opportunity to notice unwanted 
changes during experiment like structural changes or release from the sample holder.  
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To make sure the comparisability of all reflections with each other, all intensities and errors 
are normalized to the same time of measurement (or monitor count rate) and undergo the 
Lorentz and (in the x-ray case) polarization correction. 
Finally in advance of the data refinement there can be done an numerical (e.g. with DataP, 
[8]) or an empirical absoprtion if necessary. The quality of a measurement is checked in 
advance of the data refinement by comparing symmetry equivalent reflections and systematic 
extinctions to confirm the Laue group and space group symmetry. The result is written as 
internal R-value: 
 
Rint = (k=1

m(j=1
n

k (<Ik>- Ij)
2))/ (k=1j=1

n
k(Ij

2)k) 
 
Rint represents the mean error of a single reflection j of a group k of nk symmetry equivalent 
reflections, corresponding to its group and the total number m of all symmetrically 
independent groups. Therefore Rint is also a good mark to check the absorption correction. 
After these preliminary steps one can start the final data refinement. 
At the beginning one has to develop a structural model. The problem with that is that we 
measure only the absolut values |Fhkl| and not the complete structure factor Fhkl = |Fhkl|exp() 
including its phase . Therefore, generally the direct fouriertransform of the reflection 
information Fhkl from reciprocal space into the density information  in the direct space 
(electron density for x-rays, probability density of atomic cores for neutrons) with 
 
(x) ~ hkl Fhkl exp(-2(hx+ky+lz)) 
 
not possible. This can be done only by direct methods like patterson, heavy atom method or  
anomal dispersion for x-rays. 
In the so called refinement program a given structural model (space group, lattice constants, 
atomic form factors, MSD, etc.) are compared with the experimental data and fitted. In a leas 
squares routine those programs try to optimize (typically over several cycles) the free 
parameters to reduce the difference between the calculated structure factors Fcalc and 
intensities |Fcalc|

2 respectively and the experimentally found Fobs and  |Fobs|
2 respectively. To 

quantisize the quality of measurement there are several values in use: 
 
1. unweighted R-value: Ru = hkl |Fobs

2-Fcalc
2|/hkl Fobs

2 
This value gives the alignment of the whole number of reflections without their specific 
errors.  
 
2. weighted R-value: Rw = (hkl w (Fobs

2-Fcalc
2)2)/hkl w Fobs

4 
This value represents the alignment of the whole number of reflections including their 
specific errors or weights (w~1/2). Sometimes weights are adopted in a way to suppress 
unwanted influence of the refinement algorithm by weak or badly defined reflections.  Be 
aware that such corrections have to be done extremely carefully because otherwise the 
refinement adopts the data to the selected structural model and not the model to the 
experimental data! 
  
3. Goodness of Fit S: S2 =(hkl w (Fobs

2-Fcalc
2)/(nhkl-reflections - nfree parameter) 

 
S should have a value near one if the weighting scheme and the structure model fit to the 
experimental data set.  
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4 Sample Section 

4.1 Introduction 
La2-xSrxCuO4 is one of the cuprate superconductors with K2NiF4- structure for whose 
discovery the noble prize was granted in 1988 (Bednorz and Müller [9]) . Pure La2CuO4 is an 
isolator. Doping with earth alcali metals (Ca2+, Sr2+, Ba2+) on the La3+ lattice positions 
generates in dependence of the degree of doping superconductivity. Sr doping of x=0.15 
yields a maximum Tc of 38 K. 
 
Pure La2CuO4 undergoes at Tt-o=530 K a structural phase transition from the tetragonal high 
temperature phase (HTT) 
 
F4/mmm: a=b=5.384 Å, c=13.204 Å, ===90° at T=540 K 
 
to the orthorhombic low temperature phase (LTO)  
 
Abma: a=5.409 Å, b=5.357 Å, c=13.144 Å, ===90° at room temperature.  
 
The phase transition temperature Tt-o drops for La2-xSrxCuO4 with increased doping and 
disappears above x=0.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.. 6 left: J. Birgenau, G. Shirane, HTC Superconductors I, World Scientific (1989) 
Fig.. 6 right: Stuctural parts of La2CuO4 in the LTO phase 
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Fig. 7 left: tetragonal HTT phase   Fig. 7 right: orthorhombic´LTO phase 

 

4.2 Twinning 
During the transition into the low temperature phase the CuO6 octahedrons are tilted around 
their [010] axis. Thus, the two axes of identical length in the HTT phase, a1 and a2, are not 
equal in the LTO phase anymore. Instead, the longer one becomes the new a axis, the shorter 
one becomes the b axis. Whether a1 or a2 becomes the new a axis depends only on the real 
structure of the crystal, for instance grain boundaries or point defects. Therefore, one can find 
two equivalent crystallographic space groups in the LTO phase:  
 
Abma (a1 → a, a2 → b) and Bmab (a1 → b, a2 → a) 
  
For the structure factors in the LTO is valid: 
 
 FAbma(hkl)=FBmab(khl) 
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  Fig. 8 

(a) orthorhombic distortion with twinning correspondint to a (1-10) mirroring 
(b) corresponding reciprocal lattice 
(c) Overlay of  (110)- and (1-10)-mirroring in reciprocal space 

 
In the HTT phase only reflections with h, k, l of equal parity (g for even, u for uneven) are 
allowed - (uuu) and (ggg). They are called in the following main structrure reflections. 
In the LTO phase additional reflections occur, called super structure reflections: In the Abma-
Structure (ugg),  l≠0 and (guu), in the Bmab structure (gug), l≠0 and(ugu).  
Forbidden in both the HTT and the LTO phase are (uug), (ggu), (ug0) and (gu0).  
These extinction rules will become important later.  
In the real structure of the crystal there exist four domain types in total. They are separated 
into two pairs with the couple Abma1/Bmab1 (I/II) with the (1-10) mirror plane as grain 
boundary and the couple Abma2/Bmab2 (III/IV) with the (110) mirror plane as grain boundary 
(fig. 8). 
 
The following overlaps of reflections result from this twinning:  
 
- No splitting of the (00l) reflections, 
- triple splitting of the (hh0) reflections 
- fourfold splitting of the (h00) reflections. 
 
An equal distribution of the volumetric portion of each single domain yields a ratio of 
intensities of 1:2:1 for the triple splitting. The distance ∆ between the centre and the side 
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peaks of a (hkl) reflex gives because of (a+b)/2 = a1/2 an information about the orthorhombic 
a/b splitting. For the triple splitting of a (hh0) reflex is valid: 
 
∆ = 90°-2arctan(b/a) 
 
Thus, although the real crystal is twinned, one can quantify the orthorhombic distortion. 
 
The intensity contribution of the single domains corresponding to the whole intensity of a 
reflection can be described (taking into account the incoherent overlap of single intensities 
and the volumetric portions VA1 to VB2 of the domains) as follows: 
 
Iobs(hkl)            = IAbma1(hkl)  + IBmab1(hkl)  + IAbma2(hkl)  + IBmab2(khl) or  
 
Vtotal|Fobs(hkl)|2=VA1|FAbma1(hkl)|2 +VB1|FBmab1(hkl)|2 + VA2|FAbma2(hkl)|2 +VB2|FBmab2(hkl)|2  

 
  = (VA1 + VA2)|FAbma1(hkl)|2 + (VB1|+ VB2)|FBmab1(hkl)|2  
 
  = Vtotal {|FAbma(hkl)|2 + (1-) |FAbma(khl)|2 }  

 
with  being the relative portion of the volume of Abma domains to the crystal..  
 
Because of the extinction rules in the LTO phase for the super structure reflections is valid: 
Iobs(hkl) ~ |FAbma(hkl)|2 for Abma and Iobs(hkl) ~ (1-|FAbma(khl)|2 for Bmab. Thus, one can 
classify directly intensities to the volumetric portions of the domain types Abma and  Bmab  
respectively. Therefore, by using one single additional parameter  to describe the relation 
between the twins in the structure one can determine the orthorhombic single crystal 
structure! This holds true although the Bragg reflections contain contributions of up to four 
different domains. 
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4.3 Oxygen Position 
The oxygen atoms undergo the largest shift of their positions during the transition to the LTO 
phase. For the structure factor of a any Bragg reflection forbidden in F4/mmm is valid: 
 
 
F(hkl) ~ i si exp(-2(hxi+kyi+lzi) =F(hkl)apex oxygen+F(hkl)in plane oxygen+F(hkl)structure w/o O  
                                                        →F(hkl)apex oxygen+F(hkl)in plane oxygen 
 
In the LTO phase the atomic position of the apex oxygens is (x 0 z), the atomic position for 
the in-plane oxygens is (1/4 1/4 -z). This yields the following intensities for the superstructure 
reflections: 
 
F(hkl)apex oxygen = cos(2hx)cos(2lz) for h even or 
F(hkl)apex oxygen =  sin(2hx)cos(2lz) for h uneven 
 
In the case of x-rays the form factor fi~Zi, Zi=order number is much smaller for oxygen 
(Z=16) than for Cu (Z=29) and La (Z=57). Because of Iobs(hkl) ~ |F(hkl)|2 the oxygen shift is 
hardly measurable. In the case of neutrons the scattering lengths bi of all atoms are in the 
same order of magnitude (bO=5.803 barn, bCu= barn, bLa= barn, 1 barn = 10-24 cm-2). 
Therefore, the intensity contribution of the oxygen atoms increeases in relation to the other 
elements in the structure and allows a much more precise determination of the structural 
change of the oxygen positions 

5 Preparatory Exercises 

1. What is the fundamental difference between powder/single crystal diffraction and 
what are the advantages and disadvantages of both techniques (Compare d-values and 
orientations of different reflections in a cubic structure)? 

2. What is wrong with fig. 2? 

3. Which reflections are not allowed in a face centered structure (structure factor)? 

4. There is no space group F4/mmm in the international tables. Why (Which other space 
group in the international tables yields the same pattern in direct space)? 
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6 Experiment Procedure 

During this practical course not all physical and technical aspects of structure analysis with 
neutrons can be discussed in detail. Nevertheless this course is supposed point out the basic 
similarities and dissimilarities of x-rays and neutron radiation as well as their specific 
advantages and disadvantages in general and referring to single crystal diffraction. The 
sample selected for this practical course is most suitable for this purpose because of its special 
crystallographic peculiarities.  

6.1 The Instrument 

Fig. 5 shows the typical setup of a single crystal diffractometer with a single detector. 
Outgoing from the radiation source a primary beam defined by primary optics (in our case the 
beam tube) reaches the single crystal sample. If one lattice plane (hkl) fulfills Braggs laws, the 
scattered beam, called secondary beam, leaves the sample under an angle 2 to the primary 
beam. The exact direction of this beam depends only on the relative orientation of the sample 
to the primary beam.  
For the diffractometer shown in fig. 5 the movement of the neutron detector is limited to a 
horizontal rotation around the 2 axis. Thus, only those reflections can be measured, whose 
scattering vector Q lies exactly in the plane defined by the source, the sample and detector 
circle. This plane is also called scattering plane.  

 
Fig. 5: Scheme of a single crystal diffractometer 
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To direct the secondary beam towards the detector position one has to orient the sample 
around the three axes ,  and . These three axes allow a virtually random orientation of the 
crystal in the primary beam. During the experiment the sample has to stay exactly in the cross 
point of all four axes (2,  and ) and the primary beam. Additionally, for 2 =  = 
 = 0° the primary beam direction and the  axis on one hand side and the 2-, - and -axes 
on the other hand side are identical while the angle between the primary beam and the 2-is  
exactly 90°. Because of the four rotational axes (2, , ) this kind of single crystal 
diffractometer is often called four circle diffractometer. Another often used geometry - the so 
called -Geometrie - will not be discussed in detail here. 
 
Further details of the experimental setup: 
 
1. Beam source and primary optics: The primary beam is generated by a suitable source (x-
rays: x-ray tube, synchrotron; neutrons: nuclear fission, spallation source). The primary optics 
defines the path of the beam to the sample in the Eulerian cradle. Furthermore, the primary 
optics defines the beam diameter using slits to make it fit to the sample size for homogeneous 
illumination. This homogeneity is very important because the quality of the data refinement 
relies on the comparison of the intensity ratios between the different reflections measured 
during an experiment. Wrong ratios caused by inhomogeneous illumination can yield wrong 
structural details! Other components of the primary optics are collimators defining beam 
divergence and filters or monochromators which define the wavelength  of the radiation. 
 
2. Sample and sample environment: The sample position is fixed by the centre of the 
Eulerian cradle which is defined by the cross point of the axes  and .  As described 
above, the cradle itself has in combination with the -circle the task to orient the sample 
according to the observed reflection in a way that it hits the detector. The sample itself is 
mounted on a goniometer head. This head allows the adjustment of the sample in all three 
directions x; y; z, via microscope or camera. To avoid scattering from the sample 
environment and goniometer head the sample is usually connected to the head via a thin glass 
fibre (x-rays) or aluminum pin (neutrons). This reduces significantly background scattering. 
For experiments at high or low temperatures adjustable cooling or heating devices can be 
mounted into the Eulerian cradle. 
 
3. Secondary optics and detector: The 2 arm of the instrument hold the detector which – 
in the ideal case – catches only radiation scattered from the sample and transforms it to an 
electrical signal. There exists a variety of detectors, single detectors and position sensitive 1D 
and 2D detectors. Area detectors have a large sensitive area that allows the accurate 
observation of spatial distribution of radiation. Other components of the secondary optics are 
slits and collimators or analyser (as optional units). They fulfil the task to shield the detector 
from unwanted radiation like scattering from sample environment, scattering in air, wrong 
wavelengths or flourescence 
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6.2 Sequence of measurement in Theory  

1. Centering: In advance of the planned scientific program (profile analysis, Bragg data 
collection) the orientation of the sample in relation to the coordinate system of the 
diffractometer has to be determined. First of all the sample has to be centered optically to 
assure a homogeneous illumination of the sample. Afterwards, a reflection search routine has 
to be started to optimize the intensity of a found reflection by moving several angles after 
each other.  
In many cases there are some structural informations like the unit cell and hkl values of strong 
reflections available from previous studies, e.g. from powder diffraction, thus, one can limit 
the reflection search to 2 values around these strong reflections to spare some time and to 
classify manually the found reflections with the correct indices. 
 
2. Determination of orienting matrix and lattice constants: The comparison of the Q 
vectors of the found and centered reflections yields generally one or more suggestions for a 
suitable unit cell. This is done by a least squares routine minimizing the error bars between 
the calculated and measured Q vectors.  This method allows to determine accurately the 
orientation matrix Mo = (a* b* c*)T of the sample relative to the coordinate system of the 
diffractometer and the lattice constants of the unit cell.  
 
On HEiDi the axes are defined as following: x=primary beam, z || 2 axis, y=z x x.  
A proposed unit cell is only acceptable if all experimentally found reflections can be indexed 
with integer hkl , this means Q = (h k l)*Mo. In addition the found reflection intensities I offer 
a course check, e.g. whether extinction rules are followed or intensities of symmetrically 
identical reflections are identical. 
 
3. Profile analyses and scan types: During profile analysis reflex profiles are analysed via so 
called  scans. During this scan the sample is turned for n steps around a center position 0. 
This scan makes different crystallites in one large sample visible. In addition one has to take 
into account that even in perfectly grown crystals there are grain boundaries and slight 
mismatches of the crystallites. These mosaic blocks are perfect crystals whose orientations are 
misaligned only a few tenths of a degree or less. By the way, the axis position 22= is 
called the bisecting orientation of the Eulerian cradle.  
As long as the vertical aperture is large enough, a rotation of the crystal around a 0, that is 
equivalent to the ideal 0 Bragg angle of a reflex allows to catch the intensity portion of each 
crystallite in the sample in the neutron detector on the fixed 2 position, even those that can 
only be found for slightly differing . Therefore, a crystal with large mosaicity gives 
measurable intensities over a broader  area than a perfect crystal. Thus it gives a broader 
reflex profile. Also the tearing and cracking of a crystal creates broad but unregular profiles. 
Beside the crystal quality also the instrumental resolution limits the measurable profile widths 
in the following sense: The divergence of a primary beam in real experiment is limited, for 
instance to 0.2°.  
If a reflection fulfills Bragg’s Law at  the total divergence is a convolution of the 
divergence of the primary beam and the mosaicity/divergence of the sample. Thus, the 
reflection profile will never be sharper than the divergence of the primary beam itself. 
In addition one has to take into account that for larger diffraction angles a fixed detector 
window will not be sufficient to catch the whole reflection intensities during a rocking scan. 
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For a given spectrum ∆/ of the primary beam, with increasing scattering angle  angular 
range ∆ increases with sin(∆2)=tan()*∆/ for which all wavelengths in the interval 
±∆/ fulfilling Bragg’s law are distributed. Because of the limited width of the detector 
window this yields a cut off of intensities for larger scattering angles for -scans. 
To compensate this cut off effect it is necessary to begin at a certain 2-angle to move the 
detector window with the -angle.. This can be done by so called /2-scans. The start 
position of this 2range depends on the primary beam divergence and sample quality and has 
to be checked individually for each sample. 
  
4. Collection of Bragg reflections: If a sample was found good after the described 
preliminary studies one can start with the Bragg data collection. In this data collection all (or 
selected) reflections in a given 2 intervall are collected automatically. The usual strategy 
follows the rule „Only as many as necessary“. This means the following: On one hand side 
the quality of the measured reflections has to fulfil certain standards (like small standard 
deviations  and a good shape of the profiles) to reach an acceptable accuracy. On the other 
side there is only a limited amount of time available for each reflection due to the huge 
number of them (up to several thousands). and the limited beam time. A rule of thumb is 
therefore to measure about 10 non symmetry equivalent reflections for each free parameter 
used in the data refinement to get the correct structure. To achieve this goal a typical 
algorithm is to do a prescan with tmin per point of measurement in combination with a given 
larger (e.g. I/=4 and 25%, respectively) and a smaller  (e.g. I/=20 and 5%, respectively) 
relative error limit. tmin is chosen in a way that the statistics of strong reflections is fine 
already after the prescan. Weak reflections are also noticed in the prescan and stored as weak 
reflections without additional treatment. Reflections in between get an additional chance to 
improve their statistics by performing a second scan with a limited amount of time up to tmax- 
tmin. This method avoids to spend unreasonable beam time to weak reflections which will not 
help to improve the quality of the structure model. 

6.3 and in Practice 

1. Adjust optically the sample in the neutron beam : Alignment of the sample in the 
rotational centre of the instrument. This is necessary for a homogeneous  illumination of 
the sample for all possible orientations. 
 

2. Search for Bragg reflections and center them, ‚ “Reflex centering”: Sample and 
detector position are controlled by a special diffractometer software. The main goal is to 
find suitable angular positions for the detector first and afterwards for the sample to get a 
measurable signal. Afterwards the orientation of the sample in the Eulerian cradle have to 
be optimized for maximum intensity. 
 

3. Analyse profiles of selected reflections: Study different reflex profiles and reveal the 
impact of twinning 
 

4. Determine the orthorhombic lattice parameters a, b and c:  Estimate the misalignment 
of a and b in reference to  a1/2 in the real tetragonal cell. 
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5. Determine the average tetragonal unit cell: The centering of different reflections allows 
the calculation of all lattice constants including the averaged tetragonal parameters. 
 

6. Observe super structure reflections: Measuring pairs of (hkl)/(khl) allows the estimation 
of the volumetric contribution of each single domain to the whole crystal. 
 

7. Select measurement parameters for Bragg data collection: In order to optimize the 
number and statistical quality of collected Bragg reflections suitable scan parameters 
(time/step, no. of steps, stepwidths, etc.) have to be determined. 
 

8. Collect a Bragg data set  

6.4  Data analysis 

After having measured a Bragg data set one has to do the final step, the alignment of model 
and measurement: 
 
1. Data Reduction: In this process the measured reflection profiles are analysed and 

reduced to a simple list of all measured reflections and their integrated intensities 
including error bars and some other useful information. This so-called hkl-list is the base 
for the next step: 
 

2. Structure refinement: Here the measured hkl-list and our structure model are combined 
to determine structural details like atomic positions and mean square displacements.  

7 Experiment-Related Exercises 

1. Why is the optical adjustment of the sample so important? 

2. How large is the a/b-splitting at room temperature (=|a-b|/(a+b))? 

3. What is the benefit/enhancement of studying the room temperature structure with 
neutrons instead of X-rays? 
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Appendix (Tables and space groups from [1])
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Manual of the JCNS Laboratory Course Neutron Scattering



2 P. Link (TUM), A. Schneidewind, P. Cermak

Contents
1 Introduction and theoretical basics 3

1.1 Brillouin-zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Inelastic scattering processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Triple axis basics 5
2.1 Typical measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Normalization of the counting rates . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Resolution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Peak forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Description of the PANDA 11

4 Experiment 17
4.1 NICOS basics - sample alignment . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Conclusions 20

Contact 22



PANDA 3

1 Introduction and theoretical basics

This short summary is thought as a repetition of the basic knowledge needed for this experiment.
It is expected that you are familiar with the chapter 11 of the Lectures. You will need to know,
that scattering vector Q is defined as

Q = ki − kf , (1)

where ki and kf are incident and final wavevectors. If ki = kf , we speak about elastic scattering.
We can measure elastic scatterting on PANDA as well, but usually our users are interrested in
inelastic case.

You should be also familiar with the concept of the reciprocal lattice introduced in chapter 4.8
of the Lectures. Reciprocal lattice represents the Fourier transform of a real Bravais lattice
defining the crystalline arrangement in single crystal. It exists in reciprocal space (also known
as momentum space) and it is much harder to imagine than the Bravais lattice (existing in real
space). It can be shown that the reciprocal lattice of a Bravais lattice is a Bravais lattice again
having all symmetry elements of the original lattice. Each point hkl in the reciprocal lattice
refers to a set of planes (hkl) in real space. It is convinient to use reciprocal space to depict
equation (1), as can be seen in Fig. 1.

You shoul also know different types of the crystal lattices, the terms of unit cell as well as the
use of Miller’s indices.

1.1 Brillouin-zone

To simplify description of periodic lattice, it is useful to construct so called Brillouin zones.
For this, in the reciprocal lattice the perpendicular bisector planes of the vectors connecting one
lattice point with all the others are created (see also Fig. 2).

[000]

kf

ki

2Θs

qQ

[220]

kf

ki

2Θs

q

Q

[004]

Figure 1: Scattering diagrams for inelastic scattering of neutrons on a fcc crystal. The recip-
rocal [11̄0] plane is drawn. Notation similar to the text. The energy transfer is represented by
the different lengths of ki and kf
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a1 a2

1LE

g1
g2

1LE−1

Figure 2: 2-dimensional point lattice in the real and reciprocal spaces. The first Brillouin zone
is plotted around a reciprocal lattice point.

b)a)

Figure 3: Schematics of measurement in a) real space and in b) reciprocal space

Remark: The construction of the Brillouin zones is on the basis Bravais lattice. I.e.,

Germanium and Silicon have a fcc lattice with a 2-atomic basis. The scattering function is

influenced in a way that several refections vanish, others are amplified. The reciprocal lattice

stays to be of fcc symmetry.

The first Brillouin zones around the points of the reciprocal lattice fill the reciprocal space. By

this, points of high symmetry are easy to identify. They are used to be named by letters (see

Fig. 4).

Because of the periodicity of the lattice, we define q, which is measured from the center of the

Brilluin zone:

Q = G± q (2)

where G is a Bragg point in reciprocal space (satisfying equation 4.16 in the Lectures). See

Fig. 3 for example.
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1.2 Inelastic scattering processes

Inelastic scattering was introduced to you on the example of vibrating atoms - phonons in chap-
ter 11.2.2 of the Lectures. PANDA is cold triple axis instrument and it is most suited for study
of energy transfers between 0.1 - 5 meV. This energy range is often too low for optical phonon
study, but ideal for acoustic phonons, vibrations of ordered magnetic moments (magnons, spin
waves), crystal field excitations and interaction between them.

To shortly summarize and visualize inelastic scattering one can assume that the neutron initiates
an oscillation in the crystal. By this, the neutron looses energy or gains energy when scattered
on an oscillating atom which results in the annihilation of this oscillation. For the energy gain,
a decent mode has to be already excited in the crystal. Therefore at the temperature of absolute
zero, there is no energy gain scattering and at room temperature, both energy gain and loose
sides are almost equivalent.

What is now the advantage of neutrons for the study of lattice vibrations, compared to x-rays?
You know, that x-rays are easier to handle and available with much higher flux, especially
at synchrotron sources where in addition higher brilliance is achieved. The energy of thermal
neutrons is in average circa 30 meV which is related to a wavevector of 3.8 Å

−1
. The dimensions

of the reciprocal lattice is circa 2 Å
−1

for Germanium. X-rays with similar wave vectors have
energies of ≈ 10 keV. The excitation of a lattice vibration with an energy of 10 meV would be
according to a relative energy change of 10−6 for photons. For neutrons the change is in the
order of kinetic energies.

1.3 Dispersion relation

Typical purpose of the PANDA experiment is to determine the correlation ω(q) experimentally.
ω(q) is the dispersion relation of phonons or any other (quazi)particals in the crystal. It contains
all information about the dynamic properties of the studied material. Physical quantities as
velocity of sound (from phonons) or the contribution of the heat capacity can be deduced from
it. But, also the dominating interaction potentials between the atoms can be derived. For the
visualization the 3-dimensional relation is drawn for several directions of symmetry abreast (see
Fig. 4).

The physical principle of dispersion relation ω(q) of phonons is shown on example of one-
dimensional atomic chain in chapter 11.2.2 of the Lectures.

2 Triple axis basics

2.1 Typical measurement

At one time, clasical triple axis instrument did measure on point in reciprocal Q-energy space
(e.g. one point in Fig. 4). We look now at the correlation between the configuration of the
spectrometer and the variables Q and ∆E. The absolute values of ki and kf (incident and
outgoing wave vectors) are determined by the scattering angles at the monochromator and the
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Figure 4: Dispersion relation of Germanium at 80 K taken from [6]. Points of exceptionally
high symmetry are indicated by letters. (small picture).

analyzer crystals 2Θm and 2Θa, respectively 1. Having neutron waves we need

Ekin =
(~ kn)2

2m
, (3)

with p the momentum and m the mass of the neutron.
Thus, we know also

ω =
∆E

~
= ~
|ki|2 − |kf |2

2mn

. (4)

The orientation of the sample determines the direction of ki relatively to the crystal lattice (char-
acterized by the sample rotation angle ωs, sth in NICOS, see chapter 4.1) and the scattering
plane. Within the scattering plane 2Θs determines the direction of kf . Q results from eq. (1).

Conversely, we do not get the configuration of the instrument from ω and Q.

In standard experiments, the scans are done at constant Q or constant energy transfer ∆E.
While for very stiff dispersion modes, in the vicinity of the Brillouin zone center, constant-E is
chosen (Fig. 5(b)), most of the Brillouin zone is normally measured with const.-Q (Fig. 5(a)).
Please take time and think about the reason and how the different angles change during the two
measurements shown in the figures.

As demonstrated in fig. 6, the lengths of ki or kf can be fixed. This is a way to change the
resolution of the instrument optimizing the measurement for different problems.

1 2Θm and 2Θa are the relevant numbers. The rotation of the crystals Θm and Θa are fixed in relation to 2Θm/2
and 2Θa/2.
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(a) Example for constant-Q scans
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(b) A constant-E scan
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(c) corresponding points of the dispersion
relation

Figure 5: Examples for different scans (scattering triangles and dispersion relation.)
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a)

c)

b)

q

q

Qa = Qc

Qb

Figure 6: The same phonon excitation measured in different ways:
(a)↔(b): Measurements at different elastic peaks but with identical |ki| and |kf |.
(a)↔(c): Identical position of the reciprocal space measured with different ki.
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2.2 Normalization of the counting rates

Planning an experiment, it seems to be native to count the scattered neutrons in the detector
at every point for a useful time. But, the counting rate ZDet depends not only on the scatter-
ing cross section. It also depends on instrument parameters which possibly change during the
measurement or within a scan.

ZDet ∝ Iprim(ki) ·RMono(|ki|)
1

|ki|
S(Q, ω) RAnal(|kf |) · PDet.(|kf |). (5)

with R(|k|) the reflectivities of the Bragg crystals (on analyzer and detector), PDet.(|kf |) the
efficiency of the detector and Iprim.(|ki|) the incident intensity at the used energy. S(Q, ω) is
the scattering cross section of your crystal, which you want to measure.

In order to get that quantity we use a monitor detector usually mounted after the monochro-
mator and before the sample. The probability to be detected is for neutrons with a velocity v
proportional to the time t the neutrons stay in a monitor of the width d:

t =
d

v
=
dmn

~ |k|
(6)

One expects as monitor count-rate:

Zmonitor ∝ Iprim(ki) ·RMono(|ki|)
1

|ki|
(7)

To perform a measurement, events are counted in the detector until a particular number of
monitor counts is reached. The real count rate in the detector with monitor Z ′Det is:

Z ′Det =
ZDet

ZMoni

∝ S(Q, ω) RAnal(|kf |) · PDet.(|kf |). (8)

As you have seen in previous chapter, every point in reciprocal space Q can be achieved with
infinite number of combinations of ki and kf . Because the measured count rate normalized by
the monitor depends only on |kf |, it make sense to perform all measurements in constant |kf |
mode, where dependence (8) vanishes. If |kf | is varied by any reasons during the scan, the
corresponding corrections have to be done for the data analysis.

2.3 Resolution function

Up to now we did not consider the fact that at every point of the Q-ω-space the spectrometer is
pointing to the measured intensity is scattered in a finite volume around this point. A sharp (δ-)
peak in the scattering function at (Q0, ω0) gives a measured signal of the form:

ZDet(Q, ω) ∝ R(Q−Q0, ω − ω0). (9)

R is the resolution function and depends on the configuration of the spectrometer only. Ordinary
R is assumed to be Gaussian in its components.
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ω

Figure 7: Focused vs. unfocused measurement.

The measured signal results from the convolution:

ZDet(Q, ω) ∝
∫
S(Q′, ω′) R(Q′ −Q, ω′ − ω) dQ′dω′. (10)

For illustration take a contour line of the resolution function (exactly: the 2-dimensional projec-
tion of the resolution function). It is normally elliptically and shows the region of the scattering
function ’seen’ by the instrument. In fig. 7 the projections of the resolution function are plotted
into the dispersion relation, at the right the intensities to be expected, respectively. A measure-
ment is characterized to be focused if the short axes of the resolution ellipsoid is perpendicular
to the dispersion surface (to be measured).

It is important to understand in which cases a sharp resolution function is helpful or not. E. g.,
see a const.-Q-scan through a sharp ’horizontal’ dispersion surface:

S(Q, ω) = S0 δ(ω − ω0). (11)

The measurement is focused, i.e.

R(Q, ω) = e−
ω2

σω ·R(Q). (12)

Eq.(10) gives:

Z(ω) ∝ e−
ω2

σω

∫
R(Q)dQ. (13)

Expanding the resolution ellipsoid in the momentum coordinates, the measured intensity in-

creases. The line width depends only on e−
ω2

σω .

Reference: [7] Chap.4

The real form of the resolution function is influenced now by several effects: The Bragg-crystals
are not of perfect lattices but have a finite mosaicity (which means it consists of several small
single crystals, and their lattice parameters have weak deviations from the average). This ’mo-
saicity spread’ - given by the angle ηm - broadens the Bragg peaks e.g. at the monochromator.
Further influences are the finite angle resolution of the detectors, a finite size of the sample and
diverging beams.
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The beam reflected at the monochromator is a bunch of wave-vectors with a distribution pm(ki),
the transmission function of the monochromator. The analyzer has to be described in analogy.
To calculate the resolution function of the spectrometer, the two transmission functions have to
be convoluted with respect to 2Θs. This simulation can be done by software Takin [8]. You will
get some qualitative ideas about this within the experiment.

Reference: [3]

2.4 Peak forms

We learned: For sharp peaks in the scattering function we get a Gaussian signal in the mea-
surement. This will be found in most of the experiments. However, some compounds exhibit
broadened phonon resonances, so-called soft modes. They are originated by phonon-phonon-
and phonon-electron-interactions 2 and result in a finite lifetime τ of the single oscillation states.
Calculating the damped harmonic oscillator the line shape is identified to be Lorentzian:

S(ω) ∝ ω2

(ω2
0 − ω2)

2
+
(
ω
τ

)2 (14)

with the line width (FWHM):

δω =
1

2τ
. (15)

The resulting signal of such a ’soft’ peak is the convolution of a Lorentzian with a Gaussian
curve called Voigt profile. This profile is not easy to be calculated mathematically. In the case
of comparable widths of the single profiles it can be sufficient to take the width of the Voigt
curve as the sum of the widths of the Gaussian and the Lorentzian contributions.

If it is necessary for the data analysis to determine the peakwidths, the resolution function has
to be deconvoluted from the measured signal. This can be done by software.

References: [2], [4]

3 Description of the PANDA

PANDA is a three axis spectrometer (TAS) at the cold source of FRM II reactor at MLZ. The
first thermal TAS was built 1954 and generally improved 1959 by Bertram N. Brockhouse at
NRU Reactor in Chalk River. For his merit in the field of inelastic neutron scattering he got
the Nobel price 1994. Even if the intensities at the detector were increased by magnitudes, the
instrument is remote controlled and the safety is improved today, the general principle of the
method is still the same:

The beam of cold neutrons (energy E ≈ 5(30) meV, momentum p ≈ 1.5(4) · 10−24 kg m/s),
which has de Broglie wavelength

2 These effects are neglected by the assumption of harmonic oscillations.



12 P. Link (TUM), A. Schneidewind, P. Cermak

λ =
h

p
, (16)

or a wavevector of the length k = 2π
λ

, exits the moderator tank of the reactor through a beam
port. The neutrons enter a monochromator being of single crystals with a d-spacing d.

By the Bragg equation

nλ = 2d sin Θm (17)

the angle 2Θm defines the energy of a monochromatic neutron beam (wave vector ki, energy
Ei), which points to the sample to be investigated.

Direction and energy of the neutrons are changed at the sample following the inelastic scattering
laws. At the secondary spectrometer (analyzer) neutrons with the wave vector kf and the energy
Ef are selected by Bragg reflection at a second crystal and are counted in the detector. By this,
the momentum transfer (Q) of the neutrons to the sample as well as the energy transfer (∆E)
from the sample to the neutrons can be determined.

Q = ki − kf , ∆E = Ei − Ef . (18)

For useful statistics normally a fixed configuration of the instrument - related to a decent energy
and momentum transfer - is taken for counting at the detector. The scattering function of the
sample is therefore taken pointwise. These scans are measured at constant Q or at constant
energy E, depending on the experimental strategy (see below).

PANDA is located at the beamport SR2 in the experimental hall of FRM II and has a comparably
large neutron flux at low background. For more detail see:
http://www.mlz-garching.de/panda.

We now discuss the components of the three axis spectrometer. Photos of the main components
are collected at the gallery 16 for better understanding.

Shielding Since neutrons damage biological matter the region of the primary beam has to be
shielded. This is done by a so-called drum (in the case of PANDA blue / green colored) with
the monochromator in its centre. The drum is made of heavy concrete with a large amount of
chemically combined water, boron added. Also used are boron-treated (PE) sheets. Chemically
combined water and PE contain a large amount of hydrogen which is able to decelerate fast
neutrons. Boron as a large absorption coefficient for cold and thermal neutrons 3, and the
isotope emerging at the neutron capture is not radioactive. But, normally materials are activated
by the nuclear reactions and therefore activated (and the reactor emits hard Gamma radiation
also if the primary shutter is closed), so the shielding has to be opened only after measurements
of the remaining radiation even if the reactor is down. A part of the installation is shown here
at the photos. The drum is made to shield γ-radiation as well as neutrons.

During the movement of the monochromator axes a ring of the shielding which contains the
beam channel for the beam scatered at the monochromator is entrained. To avoid a closing of
the primary beam during the ongoing rotation, the ring partially consists of 11 so-called mobile

3 Typical reaction: 10
5 B + 1

0n→ 7
3Li + 4

2He + 2.8 Mev

http://www.mlz-garching.de/panda
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Notation:
Q Neutron source
M Monochromator
S Sample table
A Analyzer
D Detector
α1

collimators
α2

α3

α4

2Θm angles of the
Spectrometer-
axis

2Θs

2Θa

Abs Shielding
Sel Selector
Mob Mobile blocks
Sh Primary shutter

Figure 8: Schematic design of a three axis spectrometer.
Remark: all angles are counted in the region [−180◦, 180◦]. (0◦ is directed in beam,

positive angles are counter-clockwise.) 2Θs is therefore positive.

blocks (made of the same concrete as the ring) which are moved by an automatic control from
one side of the opening to the the other. The geometry and the control ensure a proper shielding
where necessary (see fig.8).

Monochromator In the rotation centre of the shielding the monochromator is positioned. It
consists of 121 single crystals of pyrolytic graphite (PG) mounted on a crystal holder. The
crystal holder and therfore the grapite lattice planes are rotated by the angle Θm to the primary
beam. The intensity of the monochromatic beam scattered at the angle 2Θm

4 depends on the
lattice parameter of the monochromator material (here PG) and on the incoming angle..

To avoid contamination of higher-order Bragg reflection in the incoming beam, n = 2, 3 . . .
(Gl. (17)), filter materials are positioned between monochromator and sample. In the case of
PANDA this is polycrystalline boron or, sometimes, pyrolytic graphite.

Maximum intensity at sample and detector can be achieved by focusing the monochromator and
the analyzer in horizontal and vertical direction. Here the 121 monochromator (55 analyzer)
crystals are curved in both directions by complex mechanics to get the crystal surfaces into
a paraboloid-like shape. The radius of the curvature depends on the neutron wavelength. By
taking into account the distances also a focus of the momentums is possible.

Sample table The sample is mounted on a table which can be moved on air-pressure. In
addition to motors rotating the sample and the analyzer/detector around the sample - giving
Θs and the scattering angle 2Θs, the sample orientation can be adjusted by goniometers and

4 Remark: Sometimes the angles Θm, Θs and Θa are named α1 to α3.
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l

d

α

Figure 9: Drawing of a Soller collimator. The divergence of the outgoing beam is
tan(α/2) = d/l, which is in the example ca. 18◦. On PANDA the collimation can be chosen
between 15 and 80 minutes.

translation stages. For studies of magnetism, the sample is normally positioned in a cryostat or
a cryomagnet - cooling down to temperatures of 0.03 K and appying fields up to 13.2 T.

Analyzer The analyzer is also located in a shielding, but here the reason is to decrease the
background in the detector. The crystal holder located again on a goniometer and translation
stages allows a horizontal focus of the analyzer, the crystals are mounted to have a fixed vertical
focus. The crystals are at the angle Θa to the beam, the detector is rotated by 2Θa.

Detector The neutrons are counted by a beamtube, filled with 3He under high pressure (ca 10
bar). A neutron can be trapped by a 3He nucleus and converted to 4He. The emitted γ quant
ionizate the gas and is detected like in a Geiger-Müller counter. This allows to count ca. 90%
of the incoming neutrons.

Diaphragms, collimators and attenuators In addition to the already described parts several
components are needed in the beam path dor beam conditioning. For example variable di-
aphragms (slits) are installed before and after the sample which are adjusted to the sample size
to decrease the background. A secondary shutter is mounted after the monochromator. More
diaphragms are with the primary shutter in the reactor wall and between the primary shutter and
the monochromator.

Beyond that in every part of the beam path so-called Soller collimators can be applied. It con-
tains of ca. 20 cm long, coated with white GdO2 foils, which are exactly parallel and therefore
limit the divergence of the beam . The value of the divergence is described by the angle α (see
fig. 9). Collimators with α = 15′ to α = 60′ are available. Small divergence corresponds with
high resolution but small intensity. The primary collimators are placed in the primary shielding
and are changed automatically, the others have to be changed by hand (motorization planned).
The beam size is limited only horizontally, i.e. within the scattering plane. For increase of
intensity we normally allow a large divergence of the beam in the direction perpendicular to the
scattering plane.

Sometimes, e.g. for alignment, the detector is in the straight beam or Bragg reflections have
a very large intensity. To avoid a saturation of the detectors, the incoming beam ist attenuated
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by PE-plates of different thicknesses which can moved into the beam (and combined) automat-
ically.

Monitor To compare or to combine data from different scans or measurements the intensities
are normalized to an intensity counted by the monitor in the primary beam. Its signal is propor-
tional to the incoming intensity. This is also important for energy scans, where the incoming
intensity changes with 2Θm due to the energy-dependent spectrum. Also different reactor power
can be corrected in this way (see paragraph 8).

Goniometer Monochromator, analyzer and sample are placed on 2-axis goniometers. This
allows tilts around two perpendicular to each other which meet in the centre of the beam. So
the sample does not move out of the beam centre during the tilt. The available angles are
limited (±15◦), the sample can be adjusted but has to be pre-oriented before measuring on the
three-axis instrument. It is also possible to translate the sample a few millimeters horizontally
and vertically.

Cover page: Overview over PANDA
From left: Monochromator shielding, sample table with 15T cryomagnet, analyzer box and
detector shielding.

Figure 10: (Following page) Components of PANDA taken in different phases of the construc-
tion.
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(a) Side view into the (opened)
Monochromator shielding onto the
PG-monochromator.

(b) PG-analyzer in the (opened) analyzer box.
The horizontal curvature is changed by
rotating the individual segments.

(c) Detailed view onto the sample table with
vacuum chamber. From bottom: Rotation
table, xy-stage, goniometer, z-stage

(d) Soller collimators in the automatic changer
for α1 (in the primary beam.)

(e) Typical sample mounting for use of
cryostat.

(f) Detector tubes to be built into the detector
shielding
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4 Experiment

PANDA is a complex research instrument, where normally measurements on samples at very low
temperature, high magnetic fields and / or high pressure are performed. Phonons for example
are measured to learn about the interaction potentials in solids. Measurements of spin wave
dispersions contribute to determine magnetic interactions.

The goal of this practice is to give inside to the potential of neutron scattering on a three-
axis spectrometer. To get results, you have to understand the functionality of the instrument and
measure resolution function of the instrument. Because of limited time of this practice, you will
not be able to measure and evaluate any dispersion realation, a normal experiment on PANDA
needs 7-10 days. Your PANDA labcourse will be going on like

1. Preparation

• Gather theoretical basics (lecture room).

• Talk about a strategy for the measurements and a plan of the experiment (lecture
room).

• Pass the security to the experimental hall.

• Safety instruction at the instrument PANDA.

2. Alignment

• Proof of the instrument alignment by scans of the monochromator or analyzer axis.

• Alignment of the sample, define the scattering plane, optimize background.

3. Measurements

• Determine the resolution elipsoid of the spectrometer for two different wave vectors
by measuring sets of scans around the Bragg peaks.

• Do the same for the horizontally flat geometry of PANDA.

• Do the same for different kf .

• Compare intensities and resolution in all cases.

4. Data analysis

• Learn how to plot the measured data (1D and 2D plots)

• Compare measured results with theoretical predictions in Takin software [8].

• Fit the dispersion relation of prepared dataset end evaluate the results.

4.1 NICOS basics - sample alignment

Our instrument control software is NICOS. It is written in Python and also all commands
and scriptings is done in Python. We will now illustrate how to use basic NICOS com-
mands on the procedure of sample alignment.
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(a) Put the sample on the sample table / in the cryo and enter the sample parameters to
nicos:

# define the name of the sample
Sample.samplename = ’NaCl’
# define the unit cell parameters and symmetry
Sample.lattice = (5.64, 5.64, 5.64)
Sample.angles = (90.0, 90.0, 90.0)
Sample.spacegroup = 225
# define the sample orientation, to have HHL plane
# within the scattering plane of the instrument
Sample.orient1 = (1.0, 1.0, 0.0)
Sample.orient2 = (0.0, 0.0, 1.0)

(b) Calculate the sample 2θ angle of the desired Bragg peak and drive the instrument
there.

# set the variable peak to hkl indices
# on which we will align PANDA
peak = (0,0,2)
# just calculate instrument angles
calpos(peak)
# drive sample 2theta to 50 (calculated position)
stt(50)

(c) Scan the sample rotation to find the peak:

# run continous scan of an axis (sample rotation)
# from 10 to 200 degrees)
contscan(sth, 10, 200)

(d) Perform a finer scan and rotate the sample to the fitted peak position:

# run scan (stop at every point) of sth
# from 53, 20 points, step 0.2, count 1s
scan(sth, 53, 0.2, 20, 1)
# move to the fitted value
sth(54.2)
# tell NICOS, that this is my 002 reflection
setalign(peak)

(e) Scan the goniometer on which the peak lies and move it to the fitted maximum
position:

# centered scan around 0,
# step size: 1 deg.
# 5 points on each side
# time: 1s per point
cscan(sgy, 0, 1, 5, 1)
# move to fitted value
sgy(0.2)
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(f) Perform a longitudinal scan to correct the sample lattice constants:

# perform centered scan around position "peak"
# step is 0.003 in l direction
qcscan(peak, (0,0,0.003), 12, 1)
# Question:
# center of the scan was at 1.984,
# how should we adjust lattice parameters?

(g) Repeat the procedure on a peak with θ ± 90◦ to get the scattering plane aligned.

(h) Adjust the sample slits (by running prepared script in NICOS)

run(’slits.py’)
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5 Conclusions

Congratulations, you just finished reading of the PANDA tutorial! If something was not
clear, we will be happy to answer your questions during the tutorial.

Have you ever thinked, why is our instrument called PANDA? Do you thing it is an
abbreviation of something else? Try to think about it! Most original solution could get
some small reward :)

Looking forward to see you,
PANDA Team
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PANDA public wiki page.

http://wiki.mlz-garching.de/takin
Takin - software for instrument resolution simulation.

http://wiki.mlz-garching.de/ufit
ufit - software for treting triple axis data.
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Jülich Centre for Neutron Science
Forschungszentrum Jülich
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1 Introduction

Neutron backscattering spectrometers are used to measure inelastic scattering with very high

energy resolution. What does this mean?

In inelastic scattering, scattering intensity is measured as function of the energy exchanged

between the scattered neutron and the sample. As in other areas of physics, a data set of the form
intensity-versus-energy is called a spectrum. An instrument that resolves inelastic scattering is

therefore called a spectrometer.

While elastic scattering experiments yield information about structure or texture of a sample,

inelastic scattering is used to investigate its dynamics. Specifically, inelastic neutron scattering

yields information about the thermal motion of atomic nuclei.

The most common instrument for inelastic neutron scattering is the triple-axis spectrometer. It

is routinely used to measure phonon and magnon dispersions, with energy exchanges of the

order of meV. In contrast, the high resolution of a backscattering spectrometer allows to resolve

very small energy shifts of the order of μeV. By the time-energy uncertainty relation, small

energy means long times. Hence, backscattering addresses relatively slow nuclear motion —

much slower than the lattice vibrations typically seen in triple-axis spectrometry.

What processes take place on the energy or time scale made accessible by neutron backscatter-

ing? For instance the following:

�hyperfine splitting of nuclear spin orientations in a magnetic field,

�rotations or hindered reorientations of molecules or molecular side groups,

�quantum tunneling,

�hydrogen diffusion in solids,

�relaxation (molecular rearrangements) in viscous liquids,

�innermolecular rearrangements in polymers.

During your lab course day, you will use the backscattering spectrometer SPHERES (SPec-

trometer for High Energy RESolution) to study one example of these applications.

2 Spectrometer Physics

2.1 Energy Selection by Backscattering

In crystal spectrometers, neutron energies are selected by Bragg reflection from crystals, ac-

cording to the Bragg condition
nλn V 3dhkl xno ( (1)

where dhkl is the distance of lattice planes ]hklc, and ( is the glancing angle of reflection

from these planes. The index n indicates that along with a fundamental wavelength λ1, integer

fractions λn V λ1/n are transmitted as well. To suppress these unwanted higher orders, ex-

perimental setups include either a mechanical neutron velocity selector (Fig. 1), or a beryllium
filter.
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Fig. 1: Rotor of a mechanical neutron velocity selector. The blades are coated with neutron
absorbing material. In SPHERES, such a selector is used as a pre-monochromator that reduces
the incoming white spectrum to about©7%. c• Astrium GmbH.

In practice, the parameters d and ( on the right-hand side of Eq. (1) are not sharp: Imperfec-

tions of the crystal lead to a distribution of lattice constants, characterized by a width δd. And

similarly, imperfections of the neutron optics (inevitable because the incoming beam, the sam-

ple, and the detector all have finite size) lead to a distribution of reflection angles, characterized

by a width δ( . By differentiating the Bragg equation (1), one obtains the relative width of the

wavelength distribution reflected by a crystal monochromator:

δλ

λ
V

δd

d
0 cot ( δ( . (2)

In usual crystal spectrometers, the second term is the dominant one. However, by choosing

( V =1◦, the prefactor cot ( can be sent to zero. This is the fundamental idea of the backscatter-

ing spectrometer. If a monochromator crystal is used in backscattering geometry, with ( � =1◦,
then the reflected wavelength distribution is in first order insensitive to the geometric imperfec-

tion δ( ; it depends only on the crystal imperfection δd and on a second-order )δ( +2 term.

The monochromator of SPHERES is made of silicon crystals in (111) orientation (Fig. 2).

The backscattered wavelength is λ V 3d111 V 7.38 Å, corresponding to a neutron energy of

2.08 meV. The crystals are cut from wafers produced by the semiconductor industry. They

are perfectly monocrystalline, so that their intrinsic resolution1 of δd/d � 21−6 is actually

too good because it does not match the spectrometer’s second-order geometric imperfection

)δ( +2 � 21−4. As a remedy, the crystals are glued to a spherical support so that the resulting

strain induces a lattice constant gradient of the order δd/d � 21−4.

1 In perfect crystals, the intrinsic resolution δd/d is limited by primary extinction: Say, each crystalline layer has

a reflectivity of about 10−6. Then only about 106 layers contribute to the Bragg reflection. This limits δλ/λ to

about 10−6.
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Fig. 2: The monochromator of SPHERES consists of hexagonal Si(111) wafers of 750 μm
thickness, glued onto a spherical support made of carbon fiber.

Fig. 3: The analyzers of SPHERES are made of the same Si(111) as the monochromator. For
small scattering angles, they are shaped as rings; for large scattering angles, they are approxi-
mately rectangular sections of a sphere.

2.2 Spectrometer Layout

In a crystal spectrometer, a monochromator is used to send a neutron beam with a narrow

energy distribution Ei©δE onto the sample. After the sample, a second monochromator, called

analyzer, is used to select a narrow energy distribution Ef©δE out of the scattered spectrum. In

SPHERES, we actually have a huge array of analyzers (Fig. 3), covering a solid angle of about

2.5, which is 20% of 5π. These analyzers send energy-selected neutrons towards 16 different

detectors, depending on the scattering angle ϑ.

Fig. 4 shows the complete layout of SPHERES. The incoming beam is pre-monochromatized

by a mechanical velocity selector. Then, it is transported by a focussing neutron guide into the

instrument housing where it hits a rotating chopper. The chopper rotor (Fig. 5) carries mosaic

crystals made of pyrolitic graphite on half of its circumference. When the incoming neutrons hit
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Fig. 4: Layout of the Jülich backscattering spectrometer SPHERES at FRM II.

Fig. 5: Schematic front view of the chopper rotor of SPHERES. The red bands indicate the
mosaic crystals that deflect the incident beam towards the monochromator.

these crystals, they undergo a Bragg reflection towards the monochromator.2 Otherwise, they

are transmitted towards a beamstop.

The backscattering monochromator selects a neutron band Ei ©δE as described above. Neu-

trons within this band are sent back towards the chopper. When they reach the chopper, the

rotor has turned by 71◦: the mosic crystals have moved out of the way; the neutrons coming

from the monochromator are transmitted towards the sample.

The sample scatters neutrons into 5π. About 20% of this is covered by analyzers. If a scattered

neutron hits an analyzer and fullfills the backscattering Bragg condition, it is sent back towards

the sample. It traverses the sample3 and reaches a detector. To discriminate energy-selected

neutrons from neutrons that are directly scattered from the sample into a detector, the time of

arrival is put in relation to the chopper phase.

2 As a side effect, the Bragg deflection by rotating mosaic crystals achieves a favorable phase-space transform
(PST): the incoming wavevector distribution is spread in angle, but compressed in modulus. This results in a

higher spectral flux in the acceptance range of the monochromator.

3 Of course not all neutrons are transmitted: some are lost, some are scattered into a wrong detector. This inac-

curacy is inevitable in neutron backscattering. We strive to keep it small by using rather thin samples with typical

transmissions of 90% to 95%.
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While the primary spectrometer (everything before the sample) is mainly in vacuum, the sec-

ondary spectrometer is not. To minimize neutron losses in the secondary spectrometer, the

entire instrument housing can be flooded with argon. For the labcourse, we preferentially re-

move the argon so that participants can accede the housing. However, since refilling takes at

least one full day, time constraints may prevent us from doing so. In this case, a video will be

shown to present the interior of the spectrometer.

2.3 Measuring Spectra

So far we have introduced a static arrangement with fixed energies Ei V Ef . Such an arrange-

ment is actually used to measure the fraction of elastic versus total scattering, called the Debye-
Waller factor for coherent scattering and the Lamb-Mössbauer factor for incoherent scattering.

More often, however, one wants to measure full spectra S)Q,ω+. Therefore, one must find a

way to modify the energy transfer

�ω V Ei Ef . (3)

This can be done using the Doppler effect: The monochromator is mounted on a linear drive

that performs a cyclic motion. In the monochromator’s rest frame, the backscattered energy is

always the value E0 V 3.19 meV given by the lattice constant of Si(111). Depending on the

monochromator’s velocity v, the value in the laboratory frame is

Ei)v+V
mn

3
)v0 0 v+2 (4)

where v0 V 742 m/s is the neutron velocity at E0 V mn/3 v
2
0 . The Doppler drive of SPHERES

has a linear amplitude of ©86 mm and achieves a velocity amplitude of ©5.8 m/s, resulting in

an energy range

41.8 μi [ < �ω < 41.=μi [ . (5)

This is called the dynamic range of the spectrometer.

When a scattered neutron is detected, its time of flight is traced back to the moment when it

has been backscattered by the monochromator. From the recorded trace of the linear drive, the

monochromator velocity at that moment is infered, ω is computed from (4) and (3), and the cor-

responding histogram channel is incremented. To determine S)Q,ω+, one needs to normalize to

the time spent in channel ω. This normalization is routinely done by the instrument’s raw-data

reduction program SLAW.

2.4 Instrument Characteristics

The performance of a spectrometer can be characterized by its resolution function. To obtain

the resolution function, one measures the spectrum of a purely elastic scatterer. Fig. 6 shows the

result of a resolution measurement from a user experiment on SPHERES. Note the logarithmic

intensity scale.

Conventionally, the resolution of an instrument is characterized by the full width at half max-
imum (FWHM). For SPHERES, a typical value is 0.65 μeV. Note however that the FWHM is
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ω

ω

Fig. 6: Resolution function of SPHERES, measured on a user provided sample at a low temper-
ature where the scattering is purely elastic.

not the full story: the quality of an instrument also depends on the shape of the resolution func-

tions, especially of the deep wings. The resolution of SPHERES is slightly asymmetric. This is

related to the )δ( +2 term in the wavelength spread of a backscattering analyzer: all deviations

from the perfect ( V =1◦ geometry lead to the transmission of longer wavelengths, never of

shorter ones.

Another important figure of merit is the signal-to-noise ratio (SNR). It depends strongly on the

ratio of scattering to absorption cross sections and on the thickness and geometry of the sample.

With argon filling, the best value obtained in user experiments has been 1700:1; without argon,

1200:1. On the other hand, for strongly absorbing samples it is sometimes less than 100:1.

3 Applications

In the following, two different applications of neutron backscattering are explained: hyperfine

splitting in a magnetic material, and methyl group tunneling.

3.1 Hyperfine Splitting

The measurement of hyperfine splitting has been historically the first application of neutron

backscattering,4 and to this day, it is the conceptually simplest one.

Since the neutron has spin S V 2/3, its magnetic quantum number can take the values Sz V
©2/3. In a scattering event, this quantum number can change. In more pictorial words: when a

4 A. Heidemann, Z. Phys. 238, 208 (1970).
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neutron is scattered, it may or may not undergo a spin flip.

As angular momentum is conserved, a change of Sz must be accompanied by an opposite

change of the magnetic quantum number Iz of the nucleus by which the neutron is scattered,

ΘIz V ΘSz. Therefore, spin-flip scattering is only possible if the sample contains nuclei with

nonzero spin I .

Nuclei with nonzero spin quantum number I possess a magnetic moment

μ V IgμN (6)

with the nuclear magneton

μN V
e�

3mp

V 4.264±21−8 eV/T. (7)

The g factor is different for each nucleus.5

A local magnetic field B leads to a splitting of energy levels,

E V IzgμNB, (8)

called hyperfine splitting. Consequently spin-flip scattering is accompanied by an energy ex-

change ΘE V ©gμNB. By measuring the neutron energy gain or loss©ΘE, one can accurately

determine the local field B in ferromagnetic or antiferromagnetic materials.

3.2 Molecular Rotation and Quantum Tunneling

Rotational motion of molecules or molecular side groups is one of the most important applica-

tions of neutron backscattering. Here, we specialize on the rotation of methyl (CH3) groups.

We consider these groups as stiff, with fixed6 CH bond length 1.097 Å and HCH angle 106.5.◦

The only degree of freedom is then a rotation around the RC bond that connects the methyl

group to the remainder R of the molecule. This RC bond coincides with the symmetry axis of

the CH3 group. The rotational motion can therefore be described by a wave function ψ that

depends on one single coordinate, the rotation angle φ.

The Schrdinger equation is {
B

∂2

∂φ2
V )φ+0 E

}
ψ)φ+V 1. (9)

For free rotation (V V 1), solutions that possess the requested periodicity are sine and cosine

functions of argument Jφ, with integer J . Accordingly, the energy levels are E V BJ2.

Given the value B V 781 μeV, it is obvious that free rotor excitations occur only far outside

the dynamic range of neutron backscattering. Conversely, if we observe an inelastic signal

from methyl groups on a backscattering spectrometer, then we must conclude that V 〈V 1: the

5 Tabulation: http://ie.lbl.gov/toipdf/mometbl.pdf.

6 Ignoring the variations of empirical values, which are of the order of©0.004 Å and©1.5◦.
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methyl group rotation is hindered by a rotational potential. This potential can be caused by the

remainder R of the molecule as well as by neighbouring molecules.

Due to the symmetry of the CH3 group, the Fourier expansion of V )φ+contains only sine and

cosine functions with argument 4mφ, with integer m. In most applications, it is sufficient to

retain only one term,

V )φ+
.
V V3 dpx)4φ+. (10)

The strength of the potential can then be expressed by the dimensionless number V3/B. In the

following we specialize to the case of a strong potential, V3/B 
 21, which is by far the most

frequent one.

In a strong potential of form (10), the CH3 group has three preferential orientations, separated

by potential walls. The motion of the CH3 group consists mainly of small excursions from the

preferred orientations, called librations. Essentially, they are harmonic vibrations.

At low temperatures, almost exclusively the vibrational ground state is occupied. Yet reorien-

tational motion beyond librations is possible by means of quantum mechanical tunneling: the

wave functions of the three localised pocket states ψm (m V 2, 3, 4) have nonzero overlap.

Therefore, the ground state is a linear combination of pocket states.7 Periodicity and threefold

symmetry allow three such combinations: a plain additive one

ψ1 0 ψ2 0 ψ3, (11)

and two superpositions with phase rotations

ψ1 0 i±i2π/3ψ2 0 i±i4π/3ψ3. (12)

In the language of group theory, state (11) has symmetry A, the degenerate states (12) are

labelled Ea, Eb. It is found that A is the ground state. The tunneling splitting �ωt between

the states A and E is determined by the overlap integral 〉ψm V ψn| (m 〈V n). It depends

exponentially on the height of the potential wall. Provided it falls into the dynamic range of

neutron scattering, it leads to a pair of inelastic lines at at©�ωt.

With rising temperatures, the occupancy of excited vibrational levels increase. This facilitates

transitions between A and E sublevels and results in a decrease of �ωt and a broadening of the

inelastic lines.

Upon further temperature increase, thermal motion of neighbouring molecules causes so strong

potential fluctuations that the picture of quantum tunneling is no longer applicable. Instead, the

motion between different pocket states can be described as stochastic jump diffusion.

Let pm)t+be the probability of being in pocket state m (m V 2, 3, 4). Assume that jumps

between the three main orientations occur with a constant rate τ−1. Then, the pm obye rate

equations

e

e t
pm)t+V

2

τ

{
pm 0

∑
n �=m

2

3
pn

}
. (13)

7 This is an extremely simplified outline of the theory. In a serious treatment, to get all symmetry requirements

right, one must also take into account the nuclear spins of the H atoms. See W. Press, Single-Particle Rotations in

Molecular Crystals, Springer: Berlin 1981.
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The stationary equilibrium solution is just pm V 2/4 for all m. When perturbed, the system
relaxes into equilibrium with a time dependence of i ˜s ) t/τ+. Explicit solution of the linear

differential equation system (13) yields τ V 3τ/4.

According to a fundamental theorem of statistical mechanics (the fluctation dissipation theo-
rem), the relaxation by which a slightly perturbed system returns into equilibrium has the same

time dependence as the pair correlation function in equilibrium. Therefore, we can employ the

solution of (13) to write down the self-correlation function of the protons that constitute our

methyl group. Fourier transform yields then the incoherent scattering function

S)q, ω+V a)q+δ)ω+0 b)q+
ω2 0 2

. (14)

The first term describes elastic scattering. The second term, the Fourier transform of the expo-

nential i ˜s ) t/τ+, is a Lorentzian with linewidth V τ−1; such broadening of the elastic line

is often called quasielastic.

4 Preparatory Exercises

1. Relate the relative wavelength spread δλ/λ to the relative energy spread δE/E.

2. In SPHERES, useable detectors are located at scattering angles 3θ ranging from 12.5◦

to 134◦. Calculate the corresponding wavenumbers in Å−1. Recommendation: use the

following constants in atomic units: �c V 2=84 eVÅ and mnc
2 V =51 MeV.

3. Convert dynamic range and resolution of SPHERES into GHz. To make contact with

optical spectroscopy, you might also wish to convert into cm−1.

4. Empirically, it is found that the centre of the resolution function can be fitted by a Gaus-

sian a i ˜s ) E2/3/σ2+. Derive an expression that relates the Gaussian standard deviation

σ to the FWHM.

5. Note that the above mentioned fit applies only to the very centre of the resolution function.

How does a Gaussian look like on the lin-log representation of Fig. 6? And a Lorentzian?

6. In SPHERES, the distance sample-analyzer is 2 m. Calculate the time neutrons need for

a round trip sample-analyzer-sample, and deduce the rotation frequency of the chopper.

7. Assume that the monochromator motion is perfectly sinusoidal. Sketch how the measur-

ing time per energy channel varies with �ω.

8. Draw a sketch of the expected backscattering spectrum S)q, ω+of a ferromagnetic mate-

rial with I 〈V 1.

9. Assume a hyperfine splitting of ΘE V 3 μeV. To which temperature do you have to

cool the sample to observe a 10% difference between the probabilities of energy gain and

energy loss scattering?

10. How do you expect ΘE to evolve when the sample is heated towards the Curie or Néel

temperature?
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11. Calculate the moment of inertia, I V
∑

mr2⊥, of a methyl group. Verify that the rota-
tional constant B V �

2/)3I+has a value of about 670 μeV.

12. Expand V )φ+around a potential minimum, and compare the resulting Schrödinger equa-

tion with that of a harmonic oscillator. Show that the splitting of oscillator levels is of the

order of meV.

13. Draw a coordinate system energy-versus-angle. Sketch V )φ+, the harmonic approxima-

tion, the ground state’s ψ)φ+, and the lowest oscillator energy levels. What does that

imply for the validity of the oscillator approximation?

14. Sketch the expected spectra for different temperatures.

5 Experiment Procedure

5.1 The experiment itself

After an initial discussion, the group chooses which experiment to perform: hyperfine splitting,

methyl group tunneling, or participation in an ongoing research project. For a given chemical

composition, the group computes the sample thickness that yields 90% transmission. Depend-

ing on the group’s interest, a sample is prepared, or a standard sample is used. The tutor shows

how to insert the sample in the instrument’s cryostat. Using the instrument’s graphical user

interface, starting a measurement is rather trivial. Log entries are written to the instrument log

wiki.

5.2 Raw data reduction

The program SLAW is used to convert raw neutron counts into S)Q,ω+. It is parametrized by

a script, called Slawfile. The tutor provides a sample script, which is then modified to

convert the results of the current experiment.

SLAW can save S)Q,ω+in a variety of output formats. Most relevant are plain tabular formats

recttab and spectab, and a self-documenting format y08 required by our standard data-

analysis software FRIDA.

5.3 Data evaluation

In a first approach, labcourse participants should analyse plain tabular data using whatever all-

purpose data-analysis software they are used to.

1. Plot a representative selection (choose a few Q) of measured spectra.

2. Determine the FWHM of the elastic line, and of the inelastic lines if there are any.

3. Try to fit these lines with a Gaussian, with a Lorentzian, with a squared Lorentzian.



SPHERES 13

4. Summarize the temperature dependence of the spectra.

For a more quantitative analysis, it is necessary to convolute a theoretical model with a measured
resolution function. This can be done with the data-analysis package FRIDA. For a tutorial, refer
to the SPHERES wiki.8

8 Follow the link at http://apps.jcns.fz-juelich.de/doku/spheres/start.
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Contact

SPHERES
Phone: 089/289-14875

Web: http://www.mlz-garching.de/spheres

Michaela Zamponi

Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH

Phone: 089/289-10793

e-Mail: m.zamponi@fz-juelich.de

Marina Khaneft
Phone: 089/289-11676

e-Mail: m.khaneft@fz-juelich.de
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1 Introduction 

Polarized neutron scattering and polarization analysis represents a powerful technique for the 
studies of complex ordering phenomena and dynamics of condensed matters. The elements of 
this technique and its advanced applications in particular in magnetism have been 
comprehensively covered in a number of recent lecture notes [1-4] and several seminal papers 
[5-7]. The aim of this exercise on Neutron Polarization Analysis is to provide you with some 
hands-on experience on the practical aspects of polarized neutron scattering based on the 
multi-detector time-of-flight spectrometer DNS at FRM II. The details on the handling of 
polarized neutrons and the fundamentals of polarization analysis will be demonstrated from a 
range of carefully designed experiments and exercises. 

In Section 2 of this manual, an overview of the instrument DNS as well as its unique 
capabilities will be given. Section 3 consists of necessary preparatory exercises and questions 
which can be studied before the experiment. Section 4 describes the details of the experiment 
procedure and provides the experiment-related exercises. 

2 Overview of the DNS instrument 

DNS is a versatile diffuse scattering cold neutron time-of-flight spectrometer with 
polarization analysis at the neutron guide NL6a, FRM II. DNS has the capability to allow 
unambiguous separations of nuclear coherent, spin incoherent and magnetic scattering 
contributions simultaneously over a large range of scattering vector Q and energy transfer E. 
A schematic layout of DNS is shown in Fig. 1. 

 

 
 

Fig. 1 The schematic layout of DNS 
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DNS has a number of unique features such as wide-angle polarization analysis, a large 
position-sensitive detector array and a high frequency double disc chopper system. With its 
compact design and the powerful double-focusing PG(002) monochromator, DNS is 
optimized as a high intensity instrument with medium resolution. The monochromatic neutron 
beams with the wavelength ranging from 2.4 to 6 Ǻ are available at DNS. Newly constructed 
polarizer and polarization analyzers, both using m = 3 Schärpf bender-type focusing 
supermirrors, perform very well. A polarized neutron flux as high as 5  106 n/(scm2) has 
been achieved at 4.74 Å. The polarization rate of the incident neutron beams is nearly 96%. 
The wide-angle polarization analysis in the horizontal scattering plane is achieved via using 
24 units of polarization analyzers simultaneously. The neutron spins are manipulated using a 
Mezei-type -flipper, followed by a set of orthogonal XYZ-coils situated around the sample 
position for providing guide fields. In addition to high polarized flux, the unique strength of 
DNS lies on its extreme versatility. DNS can be operated in a number of modes for a wide 
range of samples. There are three polarization analysis (PA) modes at DNS: uniaxial-PA for 
separation of coherent and spin-incoherent scattering in non-magnetic samples; longitudinal-
PA for separation of magnetic scattering in paramagnetic and antiferromagnetic samples; 
vector-PA for the determination of complex magnetic structures. 
 
Time-of-flight spectroscopy is another important application at DNS. The installation of 128 
position-sensitive 3He tubes of 1m height and half inch diameter has just been completed at 
DNS, and the commissioning is expected soon. This will increase the covered solid angle up 
to 1.9 sr. DNS will be running with a double disc chopper system with the frequency up to 
300 Hz. The setup with two phase-controlled choppers would allow to eliminate high-order 
(e.g. /2) background or to select only high orders. DNS is targeted as a high count-rate cold 
neutron time-of-flight spectrometer with medium resolution. DNS is thus ideal for the studies 
of spin dynamics in many novel magnetic materials. The technical details of DNS are shown 
in Table 1. 
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horizontal- and vertically 

adjustable double-focusing 
PG(002), d = 3.355 Ǻ 

(at NL6a) 
crystal dimensions 2.5  2.5 cm2 (5  7 crystals) 

Monochromator 

wavelengths 2.4 Ǻ    6 Ǻ 
chopper frequency  300 Hz 

repetition rate  900 Hz 
Double-chopper 

system 
chopper disks Titanium, 3 slits,  = 420 mm 
Non-polarized ~ 108  Expected flux at 

sample (n/cm2s) Polarized (polarizer: m = 3 
supermirror benders) 

~ 5106–107  

position sensitive 3He detector 
tubes 

128 units,  = 1.27 cm, height 
~100 cm 

total solid angle covered 1.9 sr 

Detector banks for 
non-polarized 

neutrons 

covered scattering angles in the 
horizontal plane 

0 < 2  135

polarization analyzers 24 units, m = 3 supermirror 
3He detector tubes 24 units,  = 2.54 cm, height 15 

cm 

Detector banks for 
polarized neutrons 

covered scattering angles in the 
horizontal plane 

0 < 2  150

i = 2.4 Ǻ (Ei = 14.2 meV) 4.84 Ǻ-1 Qmax 

i = 6 Ǻ (Ei = 2.28 meV) 1.93 Ǻ-1 
i = 2.4 Ǻ (Ei = 14.2 meV)  ~ 1 meV Expected energy 

resolution i = 6 Ǻ (Ei = 2.28 meV) ~ 0.1 meV 
Suitable samples single crystals, powders, soft matters (e.g. polymer, liquid etc.) 

Sample 
environments 

top-loading CCR, closed-cycle cold head, orange cryostat, cryo-
furnace, 3He/4He dilution cryostat (~20mK), cryomagnet (self-

shielding, vertical field up to 5T) 
 

Table 1 The technical details of the DNS instrument 
 

Typical scientific applications at DNS are the studies of complex magnetic correlations, such 
as in highly frustrated magnets and strongly correlated electrons, as well as the structures of 
soft condensed matter systems, such as the nanoscale confined polymers and proteins, via 
polarization analysis. The exploration of unusual magnetic properties can also be efficiently 
undertaken on single-crystal samples by reciprocal space mapping. Fig. 2(a) shows an 
example of the measured magnetic diffuse scattering patterns in frustrated spin-ice pyrochlore 
compound (Ho1-xYx)2Ti2O7, due to in-plane magnetic correlations as determined by the spin-
flip scattering of the initial Pz polarization [8]. In addition to the separation of magnetic cross 
section from nuclear and spin-incoherent ones, polarization analysis can also be used to 
explore possible anisotropy of spin correlations in complex materials. Polarized powder 
diffraction carried out at DNS is complementary to standard neutron powder diffraction and 
may be extremely useful for magnetic structure refinements, particularly in case of small 
magnetic moments by improving the signal to background ratio. Fig. 2(b) shows the magnetic 
and nuclear scattering of iron-based superconductor Sr2CrO3FeAs measured at DNS via 
polarization analysis and the corresponding Rietveld refinements [9]. Fig. 2(c) shows the 
magnetic diffuse scattering derived with the same approach on the {Mo72Fe30} molecule 
magnet [10]. DNS also represents a powerful instrument for the soft condensed matter 
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community for the separation of nuclear coherent scattering from often dominating spin 
incoherent scattering background in hydrogenous materials. 

 

 

                 
(a) 

 
(b) 

 

 
 

(c) 
 
Fig. 2 Examples of the scientific applications at DNS: (a) peculiar magnetic diffuse scattering 
patterns observed on the frustrated spin-ice pyrochlore compound (Ho1-xYx)2Ti2O7 via 
polarization analysis [8]; (b) magnetic and nuclear scattering of iron-based superconductor 
Sr2CrO3FeAs at 3.5 K as measured (blue) at DNS via polarization analysis and the Rietveld 
refinements (red) [9]; (c) differential magnetic scattering cross section measured at 1.5 K and 
the theoretical simulation with the three-sublattice spin model of the {Mo72Fe30} molecule 
magnet [10]. 
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3 Preparatory Exercises 

The practical aspects and the experimental setup of DNS with respect to polarization analysis 
have been addressed and discussed in great details in the lecture [1]. Therefore, it is strongly 
recommended to go through the relevant sections of the lecture notes thoroughly before the 
exercises. Try to answer the following general questions would greatly improve your 
understandings: 

1. What is the Larmor precession? How to calculate the Larmor frequency (L)? 

2. How neutron spins would respond to changing magnetic fields? What are adiabatic 
and non-adiabatic behaviour? 

3. How to produce polarized neutrons and how to analyze the spin state of the neutrons 
after the scattering process? 

4. What is the spin flipper? How does it work? 

5. What is the flipping ratio? What is the polarization rate of the neutron beams? 

6. What are nuclear coherent, spin incoherent, isotopic incoherent and magnetic 
scattering processes? Whether and how the spin states of the scattered neutrons would 
be changed in those scattering processes? 

 

 

 
(a) 

 
(b) 

Fig. 3 Preparatory exercises 
 
 

In addition to these general questions, the following exercises are provided: 

1. How strong the magnetic fields Hy should be provided in the coil of length L = 100 
mm to perform 90° turn for neutrons with =4 Å? (see Fig. 3(a)) 

2. A magnetic field H changes its space direction by 90° over a distance of L = 20 mm 
(as shown in Fig. 3(b)). How strong H should be to provide adiabatic evolution of the 
neutron spins guided by such fields? The neutrons wavelength is =4 Å. 
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4 Experiment Procedure and Experiment-related 
Exercises 

4.1 Manipulating neutron spins  

After the DNS instrument and its major instrument components are briefly introduced by the 
tutor, the first task for students is to learn how to manipulate neutrons spins via the Larmor 
precession and properly set guide fields. The following experiments are planned: 

 Alignment of the -flipper and z-compensation field coils for the incident neutrons 
with =4.74 Å 

 Alignment of the magnetic guide fields at the sample position along three orthogonal 
directions via XYZ-coils 

 Measurement of the flipping ratio and the polarization rate of the incident neutron 
beams at DNS 

In addition, the following exercises are provided: 

1. For neutrons with a wavelength =4.74 Å and a flight path of 10 mm through the 
flipper coil, how strong the flipping field would be required to achieve a -flip? 

2. The measured flipping ratio (R) is 25, what is the polarization rate (P) of the incident 
neutron beams? 

4.2  Demonstration of the principle of neutron polarization analysis 

The principle of neutron polarization analysis will be demonstrated here by the measurement 
of various standard samples. The following samples are planned, 

 

 (002) Bragg reflection of pyrolytic graphite: nuclear coherent scattering 

 Vanadium hollow-cylinder: nuclear spin-incoherent scattering 

 Non-magnetic alloy Ni0.89Cr0.11: isotopic incoherent scattering 

 A prototypical antiferromagnet: magnetic scattering 

 

The students are expected to perform the experiment to measure the spin-flip and non-spin-
flip scattering intensities of each sample via wide-angle polarization analyzers at DNS. The 
basic rules for the separation of different scattering cross-sections can thus be derived. The 
students will be encouraged to compare the results obtained at DNS to those reported in the 
seminal work by R.M. Moon [5]. 

The polarization efficiency can never achieve 100% due to polarization losses by 
depolarizations in the polarizer, the analyzer and the guide fields and the imperfections of the 
polarizer, the analyzer and the flipper. This would always lead to a finite flipping ratio even 
for an ideal non-spin-flip scatter. The correction for finite flipping ratio thus becomes an 
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important and always necessary practical issue in order to obtain a precise separation. 
Therefore, the following exercise related to the flipping ratio correction is provided, 

1. The measured flipping ratio from an ideal isotopic incoherent scatter Ni0.89Cr0.11 is 20, 
the spin-flip scattering intensity is I and the non-spin-flip scattering intensity is I, 
how to calculated the corrected intensities for I and I by taking into account the 
finite flipping ratio? 

 

4.3  Case studies 

In the final part, two case studies will be provided for students to maser neutron polarization 
analysis via the measurements on two real samples. The first one is the separation of nuclear 
coherent scattering from incoherent scattering in heavy water D2O [11]. The second case 
study is the measurement of magnetic ordering in the novel superconducting compound via 
the XYZ-method [9]. The following exercises are provided, 

1. How to separate nuclear coherent scattering from spin-incoherent scattering in soft 
condensed matter? 

2. How to obtain the magnetic scattering cross section via the XYZ-method? Which 
necessary corrections need to be done for a precise separation? 
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1 Introduction

The aim of this experiment is to study the dynamics of a polymer chain in solution by means of
Neutron Spin Echo (NSE) spectroscopy, the technique which offers the highest energy resolu-
tion in neutron scattering.

NSE is well suited for soft matter systems where the molecules or nanoscopic structures, like
membranes or micelles, exhibit fluctuating Brownian motions, driven by the thermal energy.
NSE enables to analyze these fluctuations on the nanosecond and nanometer time- and length-
scale (see also laboratory course lectures 14.33 - 37).

In this experiment poly(ethylene propylene) (PEP) with a molecular weight of 70 kg/mol is
dissolved in deuterated decane with a concentration of 3%. The dynamics of PEP polymer
in solution will be studied at room temperature. The results will be interpreted in terms of
the Zimm model, which allows to draw conclusions about the internal motions of the polymer
chains.

2 Neutron Spin Echo Spectroscopy

The neutron spin echo technique uses the neutron spin as an indicator of the individual velocity
change the neutron suffered when scattered by the sample. Due to this trick NSE accepts a
broad wavelength band and at the same time is sensitive to the velocity changes down to 10−5.
However, the information carried by the spins can only be retrieved modulo an integer number
of spin precessions and thus it is retrieved as intensity modulation proportional to the cosine
of a precession angle difference. The measured signal is the cosine transform I(Q, t) of the
scattering function S(Q,ω). All spin manipulations only serve to establish this special type of
velocity analysis. For details see Reference [1].

Due to the intrinsic Fourier transform property of the NSE instrument it is especially suited
for the investigation of relaxation-type motions, which contribute at least several percent to the
entire scattering intensity at the momentum transfer of interest. The Fourier transform property
yields the desired relaxation function directly without numerical transformation and tedious
resolution deconvolution. The resolution of the NSE may be corrected by a simple division.

The NSE instrument (see Figure 1) consists mainly of two large water-cooled copper solenoids
that generate the magnetic field that causes the precession of neutron spin (precession field). The
precession of the spin is limited by the π/2, which are in front of the entrance and respectively
exit of the first and second main solenoids; the π-flipper is located near the sample position.
The embedding fields for the flippers are generated by Helmholtz-type coil pairs around the
flipper locations. After leaving the last flipper the neutrons enter an analyzer containing 60 (30
x 30 cm2) magnetized CoTi supermirrors located in a solenoid set. These mirrors reflect only
neutrons of one spin direction into the multidetector. By the addition of compensating loops
the main coils and the analyzer coil are designed such that the mutual influence of the different
spectrometer components is minimized.

Depending on its velocity, each neutron undergoes a number of precessions in the first solenoid
before hitting the sample. After the scattering process the π-flipper inverts the spin orien-
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tation so that the rotation in the second solenoid exactly compensates the first if the speed

of the neutrons is not changed by the scattering (purely elastic process), whereas inelasti-

cally scattered neutrons collect a different phase angle of rotation, ΔΨ � Δv/v2 γ J , with

γ = 2π × 2913.06598 × 104 s−1 T−1. The distribution of the velocity changes Δv of the neu-

trons that suffer during scattering at the sample – in terms of it’s cos-Fourier transform – is

measured as polarization of the neutron beam at the end of the second solenoid after the last

π/2-flipper. Small velocity changes are proportional to the small energy changes �ω, ω being

the frequency of the Fourier transform. The time parameter (Fourier time) is proportional to

λ3J and here in first instance is controlled by the current setting of the main coils (i.e. J).

Fig. 1: Working principle of the NSE spectrometer [2].

The polarization is determined by scanning the magnetic field in one of the main coils with the

so-called phase coil. If first and second arm are symmetric, a maximum of the polarization is

measured. However, if the phase of the spins is shifted by 180 degree by variation of the field

of one coil, one gets to a minimum of intensity. With a 360 degree variation one gets to the

next maximum and so on. These oscillations are shown in Figure 2. The amplitude of such an

echo is normalized to the difference between maximum intensity (up-value), where all flippers

are switched off, and the minimum intensity where only the π-flipper is switched on (down-

value). Assuming that this normalization accounts for all imperfections of the polarization

analysis in the instrument, the result yields the desired degree of polarization reduction due to

inelastic/quasielastic scattering of the sample. Since the thus determined polarization reduction

also contains the effects due to field integral inhomogeniety a further renormalization step is

needed, which is equivalent to a resolution deconvolution in a spectroscopic instrument as e.g.

the backscattering spectrometer. In order to be able to perform this resolution correction the

same experimental and data treatment procedure has to be carried out with an elastic scatterer.

For a given wavelength the Fourier time range is limited to the short times (about 3 ps for J-NSE

instrument @ MLZ) by the lower limit of the field integral and to long times by the maximum

achievable field integral J =
∫
Bdl. The lower limit results from the lowest field values that

are needed as “guide” field in order to prevent neutrons from depolarization effects. The upper

limit results either from the maximum field that can be produced by the main solenoid, power-

supply and cooling combination or by the maximum field integral inhomogeniety (→ variation

of precession angle between different paths within the neutron beam) that can be tolerated re-
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Fig. 2: Echo group measured with the NSE instrument.

spectively corrected for, depending which condition applies first. The J-NSE may achieve a
J = 0.5 Tm corresponding to t = 48 ns at λ = 8 Å.

The scattering vectorQ is determined by the angle 2θ of the second arm of the spectrometer with
respect to the first one by Q = 4π/λ sin(θ). The Fourier time t is proportional to the magnetic
field of the main solenoids. At a given scattering vector Q, the magnetic field is successively
increased and an echo group is recorded for each setting to obtain I(Q, t) as a function of t.

2.1 Separation of coherent and incoherent scattering

By the use of polarized neutrons it is possible to separate the coherent and spin incoherent part
of the scattering, since the incoherent scattering changes the polarisation to −1/3. For different
scattering vectors Q the scattering intensity is measured, once in the spin-up configuration and
once in the spin-down setup. In the spin-up configuration all spin flippers are switched off and
the longitudinal, in forward direction (i.e. parallel to the magnetic field) polarized beam can
pass through the spectrometer. The analyzer in front of the detector transmits those polarized
neutrons. The measured intensity at the detector in this configuration is the maximum possible
intensity. In the spin-down configuration only the π flipper at the sample position is switched on,
which rotates the neutron spin orientation by 180◦. The spin direction is now against the mag-
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netic field direction and in the ideal case the analyzer completly absorbs the neutrons, so that
the minimal possible detector intensity is measured. Omitting background effects and assuming
perfect flipping ratio (ratio spin-up/spin-down =∞ in the direct beam) coherent and incoherent
scattering contributions can be separated as follow (with Up: detector intensity in the diffrac-
tion run with all flippers off, Down: detector intensity in the diffraction run with only π flipper
at sample position on, Icoh: coherent scattered intensity, Iinc: incoherent scattered intensity):

Up+Down = Icoh + Iinc (1)

Up−Down = Icoh − 1/3Iinc (2)

which gives
Up = Icoh + 1/3Iinc (3)

Down = 2/3Iinc (4)

respectively
Iinc = 3/2Down (5)

Icoh = Up− 1/2Down (6)

To include non-ideal flipping ratio and background count rate the calculation is more difficult.

3 Polymer dynamics

There are different models to describe the dynamics of large molecules. A nice overview is
given in the book ”Neutron Spin Echo in Polymer Systems”, which is also available online [3],
as well as in laboratory course lectures, chapter 13.

The conformation of a linear polymer chain follows a random walk, this means a chain segment
of length l can move freely around the neighboring segment (within the limitation of chemical
bonds). With a set of segment vectors rn = Rn − Rn−1, where Rn is the position vector
of segment n, the distance between segments, which are n steps apart, follows a Gaussian
distribution [3]:

Φ(R, n) =

(
3

2πnl2

)3/2

exp

(
− 3R2

2nl2

)
(7)

with l the segment length.

By summing up the scattering amplitudes of the centres of the segments of a polymer chain
with the correct phases, one obtains the scattering function of the polymer chain (see Lecture
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Fig. 3: Time development of the intermediate scattering function for a Gaussian chain in the
Rouse model. Center of mass diffusion denoted as DCM .

on Dynamics of Macromolecules for more details):

I(Q, t) = 〈
N∑

n,m=1

exp[iQ · (Rn(t)−Rm(t))]〉 (8)

A snapshot of the chain, i.e. the static structure factor, is obtained for t = 0. One gets the well
known Debye funktion:

I(Q) = NfDebye(Q
2R2

g) (9)

fDebye(x) =
2

x2
(e−x − 1 + x) (10)

withRg the radius of gyration of the chain. In Figure 3 the time evolution of the Debye function
is displayed.

3.1 Rouse dynamics

In the Rouse model the Gausssian polymer chain is described as beads connected by springs.
The springs correspond to the entropic forces between the beads and the distance between the
beads corresponds to the segment length of the polymer. The polymer chain is in a heat bath.
The Rouse model describes the movement of the single chain segments of such a polymer chain
as Brownian movement. Thermally activated fluctuations (by the stochastic force fn(t) with
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Fig. 4: Schematic representation of the polymer chain in the Rouse model [3] as a Gaussian
chain with beads connected by springs.

< fn(t) >= 0), friction force (with friction coefficient ζ) and the entropic force determine the
relaxation of polymer chains.

The movement of the chain segments is described by a Langevin equation:

ζ
dRn

dt
+

∂U

∂Rn

= fn(t) (11)

The Langevin equation can be solved and one can calculate with equation 8 the intermediate
scattering function, which is measured by NSE (for details, see the lecture on “Dynamics of
Macromolecules”):

I(Q, t) = exp(−Q2Dt)Iintern(Q, t) (12)

with a diffusive part with a relaxation rate proportional toQ2 and the part describing the internal
relaxation, which can be written for QRG >> 1:

Iintern(Q, t) =
12

Q2l2

∫ ∞
0

du exp(−u−
√

(ΓQt)h(u/
√

(ΓQt))) (13)

with the relaxation rate

ΓQ =
kBT

12ζ
Q4l2 (14)

and

h(u) =
2

π

∫
dx cos(xu)(1− e−x2)/x2 (15)

Note that the local relaxation rate depends on Q4. When I(Q, t)/I(Q, 0) is plotted against the
Rouse variable

√
ΓQt, all curves collapse onto a master curve if the Rouse model holds.
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With this model, for example, the dynamic of short polymers in the melt can be described.
With increasing molecular weight some other effects like the constraints imposed by mutual
entanglements of the polymer chains become important, which are described in the reptation
model by de Gennes (Nobel prize 1991). In this experiment polymers in solution, not in the
melt, are considered. The Rouse model then needs to be extended by hydrodynamic interactions
as will be described in the following section.

3.2 Zimm dynamics

Polymers in solution can be described by the Zimm model, where hydrodynamic interaction
between the chain segments mediated by the solvent are dominant. Moving chain segments
exert forces on other segments due to the flow of the surrounding solvent. Within some approx-
imations the system can be described by a Langevin equation analogous to that of the Rouse
model which includes the friction coefficient ξ = 6πηaseg with η the viscosity of the solvent.
The diffusion of a chain segment depends on its hydrodynamic radius aseg. More details can be
found in literature [3].

In general the intermediate scattering function for polymers in solution is

I(Q, t)

I(Q, 0)
= F

(
kB T Q

3 t

6π η

)
(16)

with a function F (x) which depends on the polymer conformation and the quality of the sol-
vent. The relaxation rate ΓQ = kB T Q

3/(6 π η) is mainly determined by the viscosity of the
solvent. Internal dynamics is dominant at higher scattering vectors Q, where also the typical Q3

dependence of the relaxation rate can be observed. At smaller scattering vectors the contribution
from the center of mass diffusion is more prominent so that rather aQ2 dependence of the relax-
ation rate is expected (see below). For not too small Q values and long polymer chains, where
the end-to-end distance of the chain segments follow Gaussian statistics (Gaussian chain), the
function F (x) can be written as:

F (x) =

∞∫
0

exp
(
−u− x2/3 2

π

∞∫
0

cos(y u x−2/3)

y2

×
[
1− exp

(
− y2/3√

2

)]
dy
)

du (17)

This more complex function can be approximated by a stretched exponential function over a
wide Q range:

F (x) ' exp
(
−
( x
b

)β )
(18)

with the parameters b ' 1.354 and β ' 0.85. For the evaluation of this experiment this
approximation of F (x) can be used.

3.3 Center of mass diffusion

With NSE spectroscopy the movements on length scales in the order of nanometer and time
scales in the order of nanoseconds can be observed. This matches e.g. the center of mass
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diffusion of macromolecules in solution or micelles. The mean square displacement of a par-
ticle is < r2(t) >= 6DCM t with the diffusion constant DCM = kBT/(6πηRG), where RG is
the hydrodynamic particle radius and η the viscosity (Stokes-Einstein-relation). The dynamic
structure factor which is measured by NSE is then

I(Q, t)/I(Q, 0) = exp
(
−1/6 < r2(t) > Q2

)
= exp

(
−DCMQ

2t
)

(19)

A simple diffusion therefore has a quadratic dependence on the the scattering vector Q.

4 Preparatory exercises

1. How fast do neutrons with a wavelength of 8 Å fly?

2. What is the value of the earth’s magnetic field?

3. What is the magnetic field at the surface of a common permanent magnet?

4. How many mm fall neutrons on their way from the entrance of the spectrometer to the
detector (about 7 m) due to gravity?

5. How many precessions does a neutron of λ = 8 Å perform in the main coils if the Fourier
time is set to 20 ns? (Angle Ψ = γ/v

∫
Bdl).

5 Experiment procedure

5.1 The experiment itself

First, the function of the key components of the neutron spin-echo spectrometer will be
explained and demonstrated.

The generation of the ”Spin Echo” will be demonstrated with an auxiliary phase coil, wound
around one of the main precession coils with a simple wire. With a laboratory DC-powersupply
connected to this coil, the magnetic field inside this main coil is slightly varied. A fully
symmetrical setup with identical magnetic path integrals in both main coils results in a
maximum count rate at the detector. Increasing the current in the auxiliary coil from this point
results in an additional phase shift of the neutron spin and thus the intensity varies from the
maximum to a minimum and further to the next maximum and so on. In this way, the echo
group is scanned.

The experimental sample under investigation is a polymer chain (PEP, polyethylenepropylene)
with a molecular weight of 70 kg/mol in solution (deuterated decane). The PEP concentration
is 3 wt %. The first experiment with the sample is to measure the elastic scattering by recording
the spin-up and spin-down intensity at the detector.
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• The coherent and incoherent scattering of the sample shall be extracted from this reading
and plotted versus the scattering vector Q.

The dynamics of the sample is measured. For some selected scattering vectors Q, a series of
Fourier times is measured for the sample, for a background sample containing everything but
the objects under investigation, in this case the pure deuterated solvent (d-decane), and for an
elastic scatterer as reference.

5.2 Data reduction

Each Fourier time is determined by measuring 2-3 oscillations of the echo bunch and fitting
the theoretical curve (a cosine oscillation with a gaussian envelope) to the measured points. In
short, the normalized amplitude of the fitted curve is the degree of polarization obtained in this
measurement. This procedure is done with a program called echodet, which creates the files
containing the intermediate scattering function I(Q, t)/I(Q, 0).

5.3 Data evaluation

The I(Q, t) vs. t is contained in the files b XXXXX as ascii-data.

• Read in the data with some data treatment program (e.g. free software qtiKWS10).

• Try to fit the data. First use a simple exponential function I(Q, t) = A exp (−Γt) and
determine the relaxation rate Γ. For diffusion like behaviour with the Stokes-Einstein
diffusion coefficient, Γ = DQ2 should be valid. Plot Γ/Q2 vs. Q to check the validity of
the model. It also allows for the determiation of the hydrodynamic radius of the particle
assuming a viscosity of d-decane of η = 0.954× 10−3 kg/(ms).

• Use a stretched exponential function as model function: I(Q, t) = A exp (−[Γt]β) and
determine the relaxation rate Γ and the stretching exponent β. The Zimm model would
predict that the rate depends on the viscosity η as Γ = kBT/(6πη)Q3. What is the
viscosity of d-decane? Does the Q-dependence of the model describes that of the data
correctly (i.e. is Γ/Q3 = const.)?

6 Experiment related exercises

Data evaluation (the bullet points in section 5):

1. Separate coherent and incoherent scattering from the elastic scan (diffrun) and plot it.

2. Evaluate the data containing I(Q, t)/I(Q, 0) vs t with the models as described in the
previous section and discuss the results.

General questions:
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1. Why are no iron yoke magnets used in the construction of a NSE spectrometer?

2. What is the maximum field inside the main precession coils of the J-NSE?

3. What determines the resolution of the spin echo spectrometer?

4. How does the signal look like if the scattering is spin-incoherent? (Hint: in this case 2/3
of all neutron spins get flipped in the scattering process.)

5. What is the measured effect of the spin echo spectrometer?

6. What is measured finally?
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Fig. 1: Representation of the protein
lysozyme, which has a very compact form.

Fig. 2: Molecular dynamics conforma-
tion of poly ethylene oxide in solution.

1 Introduction

The objective of this lab course is to clarify the essential concepts of small-angle neutron scat-
tering. Structures are only visible by a scattering experiment if there is an appropriate contrast.
For neutrons one often uses the exchange of 1H by 2H, i.e. deuterium. The contrast of this lab
course is achieved by using heavy water (D2O) as solvent. The materials (solutes) are natural
ones having normal protons.

The globular, compact lysozyme (Fig. 1) appears in chicken eggs and has anti-bacterial function.
The molecule is charged, which leads to repulsive interactions. So there is a short range order,
and the distance between the molecules can be determined.

The other molecule is the synthetic poly ethylene oxide (Fig. 2) with the chemical formula
of [-CH3-CH3-O-]n. It is one of the simplest water soluble polymers. The hydrogen bonds
of the oxygen are responsible for attractive interactions between water and the polymer. The
molecules form rather dilute coils in solution and the overall dimension of the coil will be
determined by SANS. Furthermore, the fractal structure of the coil will be determined.

2 Preparing solutions in Water

A lysozyme solution of 0.02g per ml of water must be prepared. We will weigh 0.02g of
Lysozyme and put it into a new Packard glas. With an Eppendorf pipette we will add exactly 1
ml D2O. These pipettes are extremely accurate with respect to the volume. From the solution
about 0.5 to 0.6ml are transferred to Hellma quartz cuvettes, which are 1mm thick. For the later
evaluation we need a highly accurate concentration. So all weights need to be written down as
exactly as possible.

For the poly ethylene oxide solution we chose the same concentration. Since the polymer exists
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in small platelets the tiny amount of polymer will not be that accurately prepared. Corrections
can be either done by chosing a different volume of heavy water or by just writing down the
exact weights. However, stay below 0.04g/ml for the concentration!

3 The Measurement at KWS-1 and/or KWS-2

These two solutions are now being measured in the small-angle neutron scattering instrument
KWS-1 (or KWS-2). The wavelength of neutrons is set to 7Å. The collimation is fixed to 8m.
The samples are placed as close as possible to the detector, to measure the largest Q values
possible. Both samples will be measured at detector distances 2m and 8m. The offset between
the sample position and the detector of about 30cm leads to effective detector distances of about
1.7m and 7.7m.

The sample holder will be filled with the two samples. In addition, the empty beam and a
plexiglass plate are measured for absolute calibration. For a good statistical measurement the
following times are set: 8m detector distance for 20min, and 2m detector distance 10min. The
total measuring time for the 4 positions will be about 2 hours. The measurement is typically
started before lunch, and can be evaluated in the afternoon. It is quite likely that an internal
employee will start separate measurements during the afternoon until the next morning in order
to use the valuable measuring time overnight.

4 Evaluation of the Scattering Data: Absolute Calibration

The measured data is raw data at first and describes the intensity on the detector. The data has
to be corrected for the effectiveness of the different detector channels. Then the empty beam
measurement is subtracted to account for the zero effect of the instrument. Then the intensities
are expressed as absolute units using Eq. 5.5 and are radially averaged, because for the isotropic
scattering samples, the intensity does not depend on the polar angle. To perform all these
steps we will be using a software available in our institute, called QtiKWS. However, since the
understanding of the Eq. 5.5, as such, is more important than the exact technical understanding
of the evaluation, the results are produced relatively quickly by the software, namely, dΣ/dΩ as
a function of the scattering vectorQ for our samples. This data will be provided for the students
to do the final evaluation. In the following, this evaluation is described.

5 Evaluation of Lysozyme Scattering Curves

The position of the maximum Qmax provides information on the typical distance of the proteins
in solution. This can be calculated to ` = 2π/Qmax. Knowing the weight of the protein in
water (0.02g/cm3) there is an alternative way to calculate the average distance. The molar
mass of the protein is 1.43 × 104g/mol. The number density of the protein is therefore n/V =
0.02g/cm3/(1.43 × 104g/mol) = 1.40 × 10−6mol/cm3 = 8.42 × 10−7Å−3. For a simple cubic
packing the typical distance is given by ` = 3

√
V/n. For a hexagonal close packed lattice the
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typical distance is ` = 6
√

16/27 3
√
V/n. This distance is the minimum distance of the planes

important for the scattering experiment, and the next neighbor distance of the hexagonal c.p.
lattice is

√
3/2 ` = 6

√
2 3
√
V/n. Both calculated distances of the cubic and hexagonal structure

are to be compared with the measured one.

6 Evaluation of the Polymer Scattering

In a first step we have to prepare the scattering data for background subtraction. We plot the
original data of the two detector distances in a log-log plot, i.e. log10(dΣ/dΩ)→ log10Q. After
this, we will see a plateau at high Q which indicates the constant incoherent scattering. Taking
the average of the last (say 10) points will give us the estimate of the background. A new
column with the background subtracted will be generated for the 8m and 2m measurements.
Finally, the two data sets should be combined to yield a single data set.

Now, we will aim at the overall appearance of the chain, i.e. we will determine the chain di-
mension. For this purpose the Guinier approximation can be applied. The general appearance
of the Gunier scattering law was already given in eq. 5.35 and reads:

dΣ

dΩ
(Q→0) =

dΣ

dΩ
(0) · exp

(
−1

3
Q2R2

g

)
(1)

For this purpose we plot the logarithm of the background corrected intensity against the square
of the scattering vector, i.e. ln(dΣ/dΩ) → Q2. The highest Q will lead to large values that
we are not interested in. So the plot has to be truncated to the rather small Q, say Q2 =
0..4× 10−4Å−2. Here, we do a linear regression and take the slope S as a result only. It has the
units Å2. From this we can calculate the radius of gyration using Rg =

√
−3S. From previous

measurements we know that it is roughly 60Å large.

For the fractal structure we plot the data in a log-log plot again (background corrected). There
is the Gunier region indicated by flat scattering at low Q. At high Q the data will have very
large noise, and maybe negative values might appear from the subtraction. In the middle, the
scattering should be linear, indicating a power law characteristic for fractal structures. Again,
we use a linear regression to determine the slope α. From the ideal polymer without interactions
we learned that the exponent would read α = 2 (see eq. 5.50). When taking the attractive
interactions of the solvent into account, the exponent would be rather α = 1.70. The reciprocal
value α−1 is called Flory exponent and takes the ideal values of 0.5 or 0.588 for non-interacting
chains and chains in a good solvent, respectively. Please make your own judgement!
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7 Preparatory Exercises

(I) Lysozyme in D2O

The first sample of the Neutron Lab Course at the SANS instrument KWS-1 (KWS-2) will
be Lysozyme in heavy water (D2O). This protein is rather globular (diameter ca. 5 nm). The
Coulomb interactions of this charged molecule lead to liquid-like short-range-ordering. This
will be observed in the SANS scattering experiment by a correlation peak. Simple estimations
will be made now:

1. Give the connection between the number density φ and the unit cell parameter assuming
a simple cubic lattice!

2. The chemical concentration c is usually given in g/L or mg/ml. The molar mass of the
molecule is 14307g/mol. What is the connection between the chemical concentration and
the number density?

3. The correlation peak appears at a scattering vector Qmax. How would it relate to the unit
cell parameter of a simple cubic lattice? What is the dependence of Qmax as a function of
the chemical concentration c?

4. Please rationalize the relations of the hexagonal close packed lattice with respect to the
cubic packing! The spacing of the planes is shorter by a value of rougly 0.916 (larger Q
value compared to cubic). The nearest neighbor has a larger distance of ca. 1.122 times
the cubic packing.

(II) Polymer in Solution

We will look on the overall dimension of the chain and on the fractal structure of the chain.

1. The Appendix B derived the Guinier scattering law for any shape of particles while in the
main manuscript the first application was the compact sphere. How has the compactness
of a polymer in a good solvent to be seen? Is there any restriction for the Gunier scattering
for polymers?

2. At large Q we observe a constant background from incoherent scattering. The hydro-
gen atom has a incoherent cross section of 80 × 10−24cm2, and the deuterium atom
2 × 10−24cm2. The concentration of hydrogen from the polymer is roughly 50 times
smaller than the concentration of deuterium from the heavy water. On the basis of these
numbers estimate the ratio of background from the polymer and the solvent!

3. The fractal structure means that looking inside a coil still finds the situation of the con-
nectivity of a chain on smaller length scales compared to the overall chain. The chain
is self-similar on length scales (between the overall coil dimension and the monomer di-
mension). The different exponents α of 2 and 1.7 for ideal chains and polymers in a
good solvent describe different compactness of the structure. Rationalize the difference
between a non-interacting chain and a chain that “feels” its own presence!
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1 Introduction 

 

 Ultra small angle (USANS) and small angle neutron scattering (SANS) experiments are 
performed by two different types of instruments to cover a combined Q-range from 10-5Å-1 up 
to 1Å-1. Double crystal diffractometers are used for USANS experiments, whereas the 
"standard" SANS experiment is performed using a pinhole camera. In principle, the Q-range 
of both instrument classes overlaps. Typical USANS instruments like S18 (ILL) or PCD 
(NIST) may reach maximum Q-vectors of 5⋅10-3Å-1. The disadvantage of these instruments is 
that they do not allow taking a full area image on a 2D position sensitive detector. On the 
other hand, the well-known pinhole instrument D11 at Institut Laue-Langevin (France) 
reaches a minimum Q-vector of 3⋅10-4Å-1 by use of largest possible wavelength 22Å and 
sample-to-detector distances (>40 m). But the required instrumental settings push both types 
of instruments to their limits, mainly due to signal-to-noise level and the reduced flux at 
sample position. The use of neutron lenses as additional elements of a pinhole SANS 
instrument has been tested to overcome this intensity problem [1].  
 An alternative design is realized by the KWS-3 instrument [2]. The principle of this 
instrument is a one-to-one image of an entrance aperture onto a 2D position-sensitive detector 
by neutron reflection from a double-focusing elliptical mirror. It permits to perform SANS 
studies with a scattering wave vector resolution between 10-4 and 10-3Å-1 with considerable 
intensity advantages over conventional pinhole-SANS instruments and double crystal 
diffractometers. Therefore it perfectly bridges the "Q-gap" between USANS and SANS: Very 
Small Angle Scattering (VSANS). The increasing need for these intermediate Q-vectors arises 
from the growing interest in biological and colloidal samples, which partially deal with length 
scales in the µm range. An investigation of the multilevel structures in partially crystalline 
polymer solutions performed using a combination of those three above depicted types of 
SANS instruments can be found in [3]. 
 
 

 
 
Figure 1: Focused VSANS fills space between USANS (double crystal diffractometer) 
and classical SANS instruments. 
 The main innovation and challenge of KWS-3 was to build a large mirror having a shape 
as close as possible to an ellipsoid and with a surface roughness less than 5 Å. The mirror is a 
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1.2 m long, 0.12 m wide and 0.05m thick toroidal double focusing mirror of 11 m focal 
length. At such a short mirror length with respect to the focal length, the toroidal shape is a 
good enough approximation to an elliptical shape. The reflection plane has been chosen to be 
horizontal, reducing the deterioration of the image due to gravity. A photo of the mirror is 
given in Figure 1. 
 

 
Figure 2:(left) layout of KWS-3;(right) toroidal mirror installed in vacuum its  chamber.  

 
 KWS-3 is optimized for very small angle scattering range from 10-4 to 3 10-3Å-1. For last 
cold source filling and instrument configuration the flux at the sample position (and detector) 
is near 11500 counts per full sample area by use 12.5Å wavelength with 20% wavelength 
spread, 2x2 mm2 entrance aperture and 20x100 mm2 beam size sample-to-detector distance at 
9.5 meters. 

2 VSANS applications 

 All applications of the classical SANS could be investigated by VSANS by taking into 
account Q-resolution of VSANS. The conventional fields of application of very small angle 
scattering studies are: 

 particles in solution [protein aggregates, polymers, micelles, ceramics];    
 porous materials [cement, paste, rocks, coal etc.]; 
 inhomogeneous metallic alloys; 

bulk samples with artificial regular structure [phase gratings]; 
and other inhomogeneities on a size range from 50 nm to 5 μm, often in addition to SANS 
spectra, but also diffraction, reflection and refraction studies on surfaces. 

3 Preparatory Exercises 

1. The contrast variation (CV) is a very important feature of the neutron scattering. What 
is the scattering length density (SLD) ? How to calculate the SLD? What is the 
definition of the scattering contrast ? How to carry out the contrast variation 
experiment in case of an aqueous solution of particles?  
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2. The standard Q-range of KWS-3 is from 10-4 to 3·10-3Å-1. What the size of particles 
could be investigated in this Q-range? What are the form factor P(Q) and structure 
factor S(Q)? In which case the scattering intensity dΣ/dΩ(Q) could be represented as a 
product of the structure factor and form factor dΣ/dΩ(Q)= dΣ/dΩ(0)⋅P(Q)⋅S(Q)? What 
is the physical “content” of the forward scattering dΣ/dΩ(0) [I(0)]? 

3. The standard wavelength at KWS-3 is 12.5Å. What are disadvantages of this 
wavelength? What should we correctly select before sample preparation? 

4. What is the difference between pine-hole SANS and focused SANS? Why the beam 
size at KWS-3 is 20cm2?  

4 Experiment Procedure 

Within the frame of this practicum we will explore aquaeous solution of monodisperse 
polystyrene (PS) microspheres with diameter 8000Å and the initial concentration 1% of 
particles in H2O. In future, this sample will be used at KWS-3 as “a standard sample” to check 
the performance of instrument, absolute calibration, instrument resolution.   
 In Table 1 there is collected information about PS microspheres obtained from the 
producer; additionally all necessary information about H2O and D2O is listed there.  
 
Table 1. Parameters of used components 

 Polystyrene Spheres H2O D2O 

Scattering Length Density [Å-2] 1.41·10-6 -0.56·10-6 6.50·10-6 

Density, 20°C [g/cm3] 1.05 1.0 1.05 

Radius [Å] 4000±45   

 
 The contrast variation is proposed to proceed simply by step-by-step adding of D2O to the 
initial H2O solution of spheres. To estimate how much of D2O we should add, the simulation 
of the forward scattering should be done as function of D2O concentration: 

, 

where VSpheres is volume of PS spheres, ρSpheres SLD of PS spheres, ρWater SLD of D2O/H2O 
mixture, ΦSpheres volume fraction of PS spheres in D2O/H2O mixture. We could rewrite the 
above-mentioned equation in terms of Φ0 and ΦD2O, the volume fraction of PS spheres in the 
initial H2O solution and volume fraction of D2O in D2O/H2O mixture respectively: 

. 

In Figure 3 the forward scattering  as a function of ΦD2O and Φ is plotted. At the 
starting point of the experiment (ΦD2O=0) we have PS spheres in pure H2O and maximal 
volume fraction of spheres ΦSpheres = Φ0 = 1%. Minimum of the plotted curve corresponds to 
the matching point of PS spheres in water. In Table 2 seven points around matching 
concentration are labeled with “CV” mark. In case of CV, from the scattering curves of 
above-mentioned samples we need to extract only “integral” parameter forward scattering to 
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extract information about minimum of the forward scattering, and plot it as function of D2O 
content. 
 
  

  
Figure 3. Forward scattering as a function of D2O and . 

  
Figure 4: Expected results. (Left) the scattering signal in case of D2O=0.04 and 0.76. In 
the amplified inset is the small angle part of the calculated scattering curves. In case of 

D2O=0.04 there is clear suppression of the forward scattering due to the hard sphere 
interactions. Calculated scattering curve in case of the sample with D2O= 0.76 shows no 
interaction term. Red curve is pure form factor of PS spheres without taking into account 
instrumental resolution function. (Right) Ration between D2O=0.04 and D2O=0.76 is 
plotted here. So the forward scattering and form factor of both sample are the same, and 
in case of D2O=0.76 sample S(Q) =1, therefore this ratio is the structure factor of 

D2O=0.04 sample. 
 

Next step is the investigation PS spheres in case of sample with D2O content 76% [PS content 
0.25%]. This point is located at the local maximum (see Figure 3). At this level of the dilution 
the structure factor is definitely undetectable. Please read carefully caption of Figure 4 to 
understand the logic of planned experiment. 
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Table 2. Samples for practicum; CV: samples for the contrast variation; FF, SF: sample for 
form and structure factor determination. 

ΦD2O 0 CV 3.6FF, SF 10 CV 20CV 30CV 40CV 50CV 60CV 76 FF 

ΦSpheres 1.00 0.96 0.9 0.8 0.7 0.6 0.5 0.4 0.24 

I(0)[104cm-1] 103 75.2 38 6.5 0.47 12.01 33.2 55.9 75.2 

 

5 The experiment and data reduction 

All samples listed in Table 2 we will measure with (Sample) and without (Sample-DB) 
beamstop. The first one should be measured much longer than the second one. Additionally 
the empty cell [with (EC)  and without (EC-DB) beamstop] and the black current  (BC) run 
will be measured and used for data reduction of all datasets.  
What to measure?  

 ISample, ISample-DB, IEC, IEC-DB, IBC [counts per current pixel, normalized by monitor] 
Sample transmission:  
   

Empty cell and black current subtraction:  
  
Absolute calibration:  

  

where d sample thickness, T sample transmission, εD detector efficiency,  ∆Ω solid angle per 
current pixel, <IEC-DB> counts on sample. 
 

6 Experiment-Related Exercises 

 
Within our “one-day-experiment” at KWS-3 it would be nice to get as much as possible 
information about above mentioned sample, like: 

a) the form factor P(Q) of PS spheres from sample with ΦD2O=0.76; “real” radius R and 
polydispersity of the PS microspheres; 

b) the structure factor S(Q) in case of ΦD2O=0.04 and decide about the interactions 
between spheres: could we neglect the structure factor S(Q) during data analysis? 
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c) the scattering length density of PS spheres by H2O/D2O contrast variation. At 
matching point, the SLD of microspheres and water are equal. Polystyrene in 
microspheres is amorphous or crystalline?      
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Fig. 1: Sketch of the reflectometer TREFF@NOSPEC in top view.

1 Introduction

The neutron reflectometry TREFF@NOSPEC at the neutron guide NL5-S is part of the neutron
guide laboratory at the research reactor FRM II in Garching. TREFF is a joint facility of JCNS
and the neutron optics group of FRM II. It is used for the investigation of magnetic layered
structures as well as neutron optical components for the installation and improvement of neutron
scattering instruments.

Figure 1 depicts the neutron reflectometer TREFF in the neutron guide hall of the FRM II re-
search reactor. Essentially, it consists out of a double monochromator, the collimation path, the
sample table with several stages of translation and rotation and, finally, the scattering arm with
a position sensitive detector. The distance between the collimation slits is 1820mm and 450mm
between the second slit and the centre of rotation of the sample table. For this experiment the
wavelength is set to λ=4.73 Å.

2 Preparatory Exercises

The following questions will be asked during the practical course at TREFF:

1. In the sketch (Figure 1 of the instrument you will find a Be-filter and a NG (neutron
guide) between the MC1 and MC2. What are they used for?
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Fig. 2: This drawing should help you to solve question 5.

2. In the introduction the used wavelength was given with λ=4.73 Å. Which other wave-
length are possible and how do you achieve these?

3. Depict a reflectivity curve of a substrate only

4. Depict a reflectivity curve of a substrate plus a layer

5. Calculate the divergence of a beam passing two slits S1 and S2 in a distance of L (see
Figure 2)

6. Calculate the angle of collimation of the neutron beam to sufficiently resolve reflectivity
oscillations of a 80nm thick monolayer on a substrate. What slit sizes follow for this
reflectometer

3 Experiment Procedure

The aim of this experiment is the investigation of a nickel monolayer deposited on a glass
substrate with unknown composition. Using neutron reflectometry the thickness of the nickel
layer should be determined.

1. Perform a reflectivity experiment on the sample’s back side and analyse the critical angle.
To get sufficient collimation of the neutron beam, 0.6mm slit size for S1 and S2 should
be taken.

2. Take the reflectivity curve of the Ni-monolayer system with the suitable collimation an-
gles, so speaking the slit size for S1 and S2 calculated in the section before

3. Do like 3) but with a slit size of 3mm for S1 and S2.

3.1 The experiment itself

We (in the end it will be you) will mount the sample on the sample table and pre-align it with
an appropriate tool (what could it be) parallel to the neutron beam. After some alignment scans
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with the neutron beam we will measure the reflectivity curve step by step of the sample (see
chapter Experiment Procedure).

3.2 Data reduction

The instrument saves the number of counts as a function of scattering angle.

3.3 Data evaluation

For systems such as multilayers the scattered intensity is determined by the difference in the
potential of each layer (contrast). The potential is given by the scattering length density
ρsld =

∑
j bjρj with the scattering lengths bj and the particle number densities ρj . The index

j runs over all kind of atoms of the layer. The scattering length density is comparable to the
optical density in light optics.
The refraction index of each layer is given by

n� 1− λ2

2π
ρsld = 1− δ

.
With the angle of total external reflection Θc ∼

√
2δ, which is usually small, it follows

kc,z = k sin(qc)� kqc =
2π

λ

√
2
λ2

2π
ρsld =

√
4πρsld

for the critical wave vector. For a monolayer system the reflected amplitude of each interface
rf,1 and rf,2 can be calculated by the Fresnel formulae (Equation 16 in chapter 12 of the
lectures book).
Neglecting roughness at the sample surface and at the interface between layer and substrate,
for the amplitude at the surface one gets

rf,1 =
kz,vac − kz,lay
kz,vac + kz,lay

and at the interface rf,2 =
kz,lay − kz,sub
kz,lay + kz,sub

with

kz,vac = k sin(q) , kz,lay =
√
k2z,vac − 4πρsld,lay and kz,sub =

√
k2z,vac − 4πρsld,sub

.
The superposition of both amplitudes yields the reflected amplitude of a monolayer sample

R = [rf,1 + rf,2 exp(2ikz,layd)]
exp(−2ikz,vacd)

[1 + rf,1rf,2 exp(2ikz,layd)]

with the film thickness d. The reflected intensity is given by re mean square of R. For
kz,vac > 3kc,z the intensity can be calculated in Born approximation by

|R|2 � π2

k4z,vac

[
ρ2sld,lay + (ρsld,lay − ρsld,sub)2 + 2ρsld,lay(ρsld,lay − ρsld,sub) cos(2kz,vacd)

]
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4 Experiment-Related Exercises

1. calculate from the reflectivity curve of the glass substrate the scattering length density
ρsld,sub

2. Describe the differences and explain them between the measurement of the Ni monolayer
with the 3mm slit and the slit size you have calculated.

3. Calculate the scattering length density ρsld,sub of the Ni monolayer using:
molar volume VNi=6.59 cm3 mol−1

Avogadro number NL=6.02 1023 mol−1

coherent scattering length bNi=10.3 fm

4. Determination of the thickness d of the Ni monolayer using the reflectivity formula in
Born approximation. At first, estimate d based on the distance of the fringes of the reflec-
tivity (see Data evaluation chapter).
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Fig. 1: Neutron time-of-flight spectrum of pentafluorotoluene, taken from [3]. Elastic scattering
happens at energy transfer zero, quasielastic scattering in a region of approximately 0±1 meV,
inelastic scattering at larger energy transfers.

1 Introduction

Scattering experiments are carried out in order to obtain information about the structure and
dynamics of the studied systems (e. g. crystals, liquids, nanoparticles). Optical microscopes
are simpler to understand and operate but their resolution is limited by the wavelength of light.
There are only few techniques which give access to the length scale of molecules and atoms.
Of those, one of the most important is scattering.

There are several kinds of scattering experiments, depending on the subject matter. In this
experiment we want to introduce you to quasielastic neutron scattering (QENS). Quasielas-
tic scattering is referring to a broadening of the elastic line in a spectrum. The extend of this
broadening is approximately 1 meV. Whereas in inelastic scattering (which will not be further
discussed in this experiment), discrete maxima or bands appear clearly separated from the elas-
tic line. While one can gain information about the structure or periodic motions (i. e. phonons)
of the sample using diffraction or inelastic scattering, respectively, it is possible to analyse
non-periodic motions (e. g. diffusion) with quasielastic scattering.

Prior to the experiment, you should read and understand these instructions, since you won’t
have much time to do so during the experiment. Along with this you should also work out
the question section. In the following, we will first follow the path of the neutrons from the
source over the sample to the detector. Afterwards, the theory of scattering will be roughly
introduced, so that one can understand which information can be obtained from the scattered
neutrons. Thereon the specific experiment will be explained.
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To carry out the experiment, you should bring this introduction, your answers to the questions,
paper and a pen. After having started the measurement of the reference sample, we will show
you the spectrometer TOFTOF. Afterwards we will prepare a sample, which we then will mea-
sure. Finally, we will evaluate the data together.

2 Basics

2.1 The neutron source FRM II

In general there are two techniques in order to “produce” neutrons – spallation and nuclear
fission. During spallation, huge nuclei (e. g. lead) are bombarded with protons, subsequently
split and, among others, emit neutrons. The FRM II is a nuclear reactor used as a neutron source.
Here, 235U captures a thermal neutron and thereby becomes unstable. The nucleus fissures and,
among others, emits three fast neutrons.

These fast neutrons must be slowed down (moderated) to thermal energies, that is room temper-
ature, in order to initiate a new fission. One neutron is needed for the fission, while the others
will be used for the neutron scattering experiments. The moderation occurs in D2O of about
300 K which encloses the core.

In order to further slow down the neutrons, and thereby match their energies to the ones of
atomic motions, a tank containing liquid D2 at 25 K is located close to the fuel element. From
this cold source several neutron guides lead the neutrons to the instruments. Inside these guides,
the neutrons are transported by total reflection at the inner walls. The time of flight spectrometer
TOFTOF is located at the end of neutron guide 2a in the neutron guide hall.

2.2 The time-of-flight spectrometer TOFTOF

The cold neutrons move with a velocity of several hundred m/s. Hence one can determine
the kinetic energy of the neutrons comfortably by a time of flight (TOF) measurement along a
certain distance. If one sets the initial energy of the neutrons before the scattering event to a
well-known value and measures the final energy (or velocity) after the scattering process, the
energy transfer can be determined. Since the position of the detectors is fixed, the scattering
angle is also known.

During time of flight spectroscopy the energy transfer is measured by a time of flight measure-
ment of the neutrons. The advantage of the time of flight technique is that a huge range of
momentum and energy transfer can be captured simultaneously.

TOFTOF is a multi chopper time of flight spectrometer with direct geometry [4]. This means
that all neutrons have (more or less) the same energy before interacting with the sample. After
being scattered by the sample, the energy transfer can be determined. Both, the tuning of the
energy of the incident neutrons (their wavelength) and the determination of the energy of the
scattered neutrons is done by time of flight.

The neutrons are directed to the spectrometer through a neutron guide, which has a supermirror
coating. The end of the guide is double focusing.
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Beam stopSample1 2 3 4 5 6 7Monitor
Detetors

2θ = 7.5°2θ = 140°
Fig. 2: Schematic drawing of TOFTOF. Following the neutron guide, first are choppers 1 & 2
which work together with 6 & 7 as velocity selector. Choppers 3 & 4 remove higher orders, 5
is the frame overlap chopper. The time needed for the neutrons to get from the sample to the
detectors encodes their energy.

The primary spectrometer consists of seven rotating chopper discs which are placed in evacuated
vessels (colored green on the cover page). The discs are made of carbon fiber composites and
are coated with neutron-absorbing boron. On opposing sides, slits have been manufactured into
the discs through which neutrons can pass. The first and last pair of choppers rotate in opposite
direction each.

The incoming white neutron beam is pulsed by the first pair of choppers (choppers 1 and 2,
pulsing choppers). This pulse still consists of neutrons with all velocities (or wavelength). Thus
the pulse spreads along the way to the last chopper pair. These last two choppers (choppers 6
and 7, monochromating choppers) select a narrow range of wavelengths out of the pulse. The
third and fourth chopper filter out higher orders (higher order removal choppers).

The fifth chopper is the frame overlap chopper. After the scattering process some neutrons fly
towards the detectors, where they will be registered as a function of arrival time. It is essential
that all scattered neutrons of one pulse are detected before the neutrons from the next pulse
arrive. The overlap of slow neutrons from a pulse with fast neutrons of the following pulse
inside the secondary spectrometer is called frame overlap. The frame-overlap-chopper blocks
out several pulses, in order to avoid such an overlap.

The energy resolution (i.e. the width of the elastic line) is mainly determined by the chosen
wavelength and the length of the neutron pulse that impinges on the sample. A good energy
resolution can be achieved with a high rotational speed of the chopper discs (up to 22000 rev-
olutions/minute). The energy resolution of the spectrometer can be changed continuously in
the range from roughly 5µeV to 5 meV (Fig. 3). By defining the energy uncertainty one can
modify the time of observation in the range from roughly 1 ps to 1 ns.

The intensity of the incident neutron beam is recorded with a monitor, which is located between
the primary spectrometer and the sample. An ionization chamber is used as a monitor, filled
with fissile matter (235U). The incoming neutrons trigger a fission and the high-energy nuclear
fission products generate a clear voltage pulse, due to their high ionization density.

After passing the monitor, the neutrons hit the sample. Most of the neutrons are transmitted and
are captured in the beamstop, but about 10 % of the neutrons are scattered in all possible direc-
tions. The neutrons that are scattered in the direction of the detector enter the flight chamber,
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Fig. 3: Calculated energy resolution of the TOFTOF spectrometer shown for several chopper
rotation speeds as function of the initial neutron wavelength. The chopper rotation speeds are
given in rounds per minute (rpm) [4].

which occupies the space between the sample and detectors. The chamber is filled with argon
in order to avoid unwanted scattering with air molecules.

Altogether 1000 3He-detectors (40 cm long and 3 cm in diameter) are placed tangential to the
Debye-Scherrer-circles and also tangential to an imaginary spherical surface with a radius of
4 m around the position of the sample. Thus the flightpath from the sample to the detectors
is 4 m long. The scattering angle 2θ covers a region from 7.5◦ to 140◦. The detection of the
scattered neutrons inside the 3He-detectors occurs via a (n,p)-reaction. Hereby the neutrons are
registered and tagged with a time stamp. The amount of detected neutrons is saved in time of
flight bins for each detector in raw data files.

3 Theory

3.1 Cross sections

The probability that a neutron is scattered by a nucleus is denoted by the scattering cross section
σ. It depends on:

1. the element

2. the isotope

3. the relative spin orientation of neutron and nucleus

Imagine a single crystal. The scattering cross section of every nucleus i can be decomposed
into σ±∆σi where σ is the average over the whole crystal. This averaged part of the scattering
cross section is called the coherent scattering cross section: scattered neutrons which can be
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nuclide / element σcoh (barn) σinc (barn) σabs (barn)
1H 1.758 80.27 0.3326
2H 5.592 2.05 0.0005
H 1.760 80.26 0.3326
C 5.551 0.001 0.0035
N 11.01 0.5 11.51
O 4.232 0.001 0.0002
F 4.017 0.001 0.0096
Al 1.495 0.01 0.231
P 3.307 0.005 0.172
V 0.02 5.08 5.08

Table 1: Coherent and incoherent scattering cross sections as well as absorption cross sections
of some selected nuclei or elements in their natural isotope composition, 1 barn = 100 fm2.
Source: [2].

described by this part of the scattering cross section “see” a regular lattice and interfere to a
regular scattering pattern.

In contrast, the ∆σ are distributed randomly throughout the crystal and the scattering of the
neutrons which can be described by the ∆σ does not interfere to a special pattern. This effect
is attributed to an artificial quantity, the incoherent scattering cross section.

The proton (1H) has the biggest incoherent cross section of all nuclei we study normally (about
80 barn, cf. Tab. 1). For practical purposes, the big difference between the incoherent scattering
cross section of the proton and the deuteron (2H) is of enormous importance. Using isotope
exchange, i. e. (partial) deuteration of molecules, specific parts of the sample can be masked.

Vanadium scatters at the employed wavelengths also mainly incoherently although not as strong
as the proton.

3.2 Principle of a scattering experiment

At a scattering experiment, two important values are recorded (cf. Fig. 4):

• The scattering vector Q is defined as the difference between the wave vector kf of the
scattered wave (f as “final”) and the wave vektor ki of the incident wave (i as “initial”).
The momentum gained or lost during the scattering process can be calculated by

∆p = ~Q = ~(kf − ki) . (1)

However, the momentum transfer is commonly not noted. Instead, the scattering vector
is commonly stated in units of inverse Ångstrom.

• The energy transfer ∆E is defined as the energy of the neutron after Ef and before Ei the
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Fig. 4: Schematic representation of a scattering experiment. ki,f,t are the wave vectors of the
initial (incoming), final (scattered) and transmitted neutrons, respectively. Q is the scattering
vector.

scattering process:

∆E = ~ω = ~(ωf − ωi) =
~2(|kf |2 − |ki|2)

2mn

. (2)

The energy transfer is measured in meV. Often, ω is written incorrectly instead of ~ω.

The absolute value of the wave vectors k is defined as |k| = 2π/λ, with an refractive index
n ≈ 1 (which is a very good approximation for neutrons). However, the scattering vector
cannot be measured directly, only the wave vector of the incident and scattered neutrons. Using
the law of cosine one obtains a general equation for converting ki and kf to Q:

|Q|2 = |ki|2 + |kf |2 − 2|ki||kf | cos(2θ) . (3)

In the case of elastic scattering, the energy transfer is zero. Hence |ki| = |kf | simplifies the
equation to

Q =
4π

λ
sin

(
2θ

2

)
(4)

where Q = |Q|. Roughly speaking a distance d in direct space corresponds to a Q value

Q =
2π

d
. (5)

Therefore one can extract information about the physical configuration of the nuclei in the
sample by analyzing the intensity of the elastic scattering as a function ofQ (the diffractogram),
cf. Fig. 6. Furthermore the intensity at a certain value of Q as a function of energy (a spectrum)
provides information about the motion of the nuclei (see Fig. 6).

3.3 Correlation & scattering functions

The position and the motions of the nuclei in any system can be described using correlation
functions. It can be shown that these correlation functions are what is measured with scattering
methods.
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Fig. 5: Left: Pair correlation, right: self correlation. In the case of pair correlation, the second
particle may be a different one than the first one but it doesn’t have to.

The pair correlation function Gpair(r, t) gives the probability to find a particle j at time t at the
place r if this or another particle i was at time t = 0 at the origin r = 0, as shown in Fig. 5. The
pair correlation function is

Gpair(r, t) =
1

N

N∑
i=1

N∑
j=1

∫
〈δ{r̃−Ri(0)} · δ{r̃ + r−Rj(t)}〉 dr̃ , (6)

with the number of particles N , an integration variable r̃ and the place Rj(t) of particle j at
time t. The angle brackets 〈〉 denote an ensemble average.

The self correlation function or auto correlation function Gself(r, t) gives the probability to find
one particle at time t at place r if this very particle was at time t = 0 at the place r = 0, see
again Fig. 5. It is defined as

Gself(r, t) =
1

N

N∑
i=1

∫
〈δ{r̃−Ri(0)} · δ{r̃ + r−Ri(t)}〉 dr̃ . (7)

In the following, we will assume that the samples are powder samples or liquids (i. e. not single
crystals) and will therefore use the absolute value of r, r, instead of the vector.

It is possible to calculate the pair and self correlation function from the scattered intensities.
Roughly, the calculation is as follows:

From the intensity of the scattered neutrons measured as function of momentum and energy
change, one obtains the double differential scattering cross section which can be seen as the
sum of a coherent and an incoherent part:

d2σ

dΩdE ′
=
kf
ki

N

4π

(
σcohScoh(Q,ω) + σincSinc(Q,ω)

)
. (8)

It denotes the probability that a neutron is scattered into the solid angle dΩ with an energy
change dE ′. N is the number of scattering nuclei and S(Q,ω) is called the scattering function.

The Fourier transform in time and space of the coherent scattering function Scoh(Q,ω) is noth-
ing but the pair correlation function Gpair(r, t) and the Fourier transform in time and space of
Sinc(Q,ω) is the self correlation function Gself(r, t).

Three functions are important:
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1. the correlation function G(r, t)

2. the intermediate scattering function I(Q, t) which is the Fourier transform (from r to Q)
of G(r, t)

3. the scattering function S(Q,ω) which is the Fourier transform (from t to ω) of I(Q, t)

All of them exist in two versions, considering pairs of particles (pair correlation function) or
only one particle (self correlation function).

For the intermediate scattering function I(Q, t) one can obtain further expressions – for a pair
correlation

Icoh(Q, t) =
1

N

N∑
i=1

N∑
j=1

〈
e−iQRi(0)eiQRj(t)

〉
(9)

and for the self correlation function

Iinc(Q, t) =
1

N

N∑
i=1

〈
e−iQRi(0)eiQRi(t)

〉
. (10)

At neutron spin echo spectrometers, the intermediate scattering function is measured – all other
neutron scattering spectrometers, including TOFTOF, measure the scattering function.

At TOFTOF, we mainly probe the non-periodic motions in disorded materials, for instance
diffusion processes in liquids. If a scatterer performs several motions simultaneously (but in-
dependently from each other), the resulting incoherent scattering function is a convolution in
energy space of the single scattering functions, for example

Stotal(Q,ω) = Sdiffusion(Q,ω)⊗ Sinternal motion(Q,ω) . (11)

As a convolution corresponds to a multiplication after Fourier transform, one can also write

Itotal(Q, t) = Idiffusion(Q, t) · Iinternal motion(Q, t) . (12)

If two scatterers perform two motions independently from each other and both cause incoher-
ent scattering, the recorded total incoherent scattering function is simply the sum of the two
scattering functions, for example

Stotal(Q,ω) = Ssolute(Q,ω) + Ssolvent(Q,ω) , (13)

which is also a sum after Fourier transform to the intermediate scattering function.

This decomposition of the scattering functions into parts is very important.

Due to the limited number of supporting points it is not possible to obtain the correlation func-
tion by numerical Fourier transform of the measured scattering function. Therefore, one pro-
ceeds the other way round: After inventing a plausible correlation function, one performs a
Fourier transform of this theoretical function to a scattering function and checks if this can
describe the data.

The hereby obtained theoretical scattering function Stheor(Q,ω) is fitted to the measured scatter-
ing function Smeas(Q,ω) after convolving the theoretical scattering function with the measured
instrumental resolution. The instrumental resolution is often determined using a vanadium sam-
ple which is an elastic, incoherent scatterer.
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4 Experiment

4.1 The system

In this experiment we will study the diffusive motions of molecules, e.g. n-alkanes or salt
solutions. By analyzing this system we want to learn more about the mechanism of molecular
self-diffusion, i.e. internal motions of the molecules and long-range diffusion processes.

4.2 Modelling the motions

Molecules in general are by far too complex to come up with a scattering function which de-
scribes all the motions correctly. Therefore, very simplified models are used. Assuming that the
molecule itself is rigid and moves as a whole, one obtains the scattering function

Sdiffusion(Q,ω) =
1

π

|Γd(Q)|
ω2 + Γd(Q)2

, (14)

a Lorentzian with a Q-dependent width |Γd(Q)|. If the diffusion follows exactly Fick’s law, one
obtains

|Γd(Q)| = D ·Q2 (15)

with the diffusion coefficient D which is normally given in m2/s.

Deviations from this ideal ∝ Q2 law indicate that the observed process is not ideal Fick diffu-
sion. A constant (too large) value of Γd at small Q can be a sign of confinement: the molecule
cannot escape from a cage formed by the neighbouring molecules. If the width Γd goes towards
a constant value at large Q, this can be a sign of jump diffusion which should rather be named
stop-and-go diffusion: the molecule sits for some time at a certain place, then diffuses for a
while, gets trapped again, . . .

Try to fit the data with one Lorentzian. If this model does not describe the data satisfactorily,
the assumption of a rigid molecule was probably not justified. The scattering function for a
localized motion can be written as:

Sintern(Q,ω) = A0(Q) · δ(ω) + (1− A0(Q)) · 1

π

|Γi|
ω2 + Γ2

i

, (16)

that is the sum of a delta-function and a Lorentzian (confer also figure 6). |Γi| gives the fre-
quency of the motion, A0(Q) is called the elastic incoherent structure factor (EISF) and it gives
information on the long time average position of the scatterer, in first approximation the size of
the localized motion.

As we assume that the molecule performs a local motion and long-range diffusion simultane-
ously but independently from each other, we have to convolve the two functions with each other.
The result is the sum of two Lorentzians:

S(Q,ω) = F (Q) ·
{
A0(Q)

π

|Γd(Q)|
ω2 + Γd(Q)2

+
1− A0(Q)

π

|Γd(Q)|+ |Γi|
ω2 + (|Γd(Q)|+ |Γi|)2

}
. (17)
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4.3 The experiment itself

We might either produce a sample together or fill an existing sample into the aluminium hollow
cylindrical container or a flat aluminium container. This sample is then measured at TOFTOF,
additionally a vanadium standard and the empty aluminum container will be measured. The
length and number of measurements will have to be adjusted to the available time, it will be
necessary to use some measurements of the preceding groups.

You will do all sample changes in the presence of a tutor who explains the procedure in detail.

4.4 Data reduction

The instrument saves the number of counts as a function of scattering angle and time-of-flight,
N(2θ, tof). The next step is the data reduction which applies several corrections and transforms
to get rid of many instrument-specific properties of the data and convert them to a scattering
function S(Q,ω).

Data reduction (and later on also data evaluation) is done using the program LAMP [5]. On the
Desktop lauch the icon “LAMP”. LAMP is used in many large scale facilities and it includes a
variety of different instrument routines. To start the program, in the main window upper part,
the working Path has to be set: just enter the folder path where you will work and create output
files. Then you need to choose the instrument where you are working, in this case search for
“toftof”.

LAMP is structured in “workspaces”. A workspace contains all necessary data like the time
of flight/energy transfer of the neutron, its 2θ/Q - values and the Intensity. It can also contain
information about the measurement settings or sample conditions (e.g. temperature). Any
operation on the data takes as an input a workspace and the output is stored in another workspace
w1, w2, etc...(pay attention to not overwrite workspaces during the data reduction). A list of
commands used to reduce data can be found in the manual [5] and in the TOF Data Reduction
[6].

Raw data files that have been measured under the same conditions (e.g. temperature) can be
added and treated as one data set. This will be done in the loading routine. After reading the
data files, the raw data N(2θ, tof) are normalized to the incoming neutron flux. The empty can
measurement is subtracted from the data and the sensitivity of each detector is calibrated using
the vanadium standard measurement. As vanadium is an incoherent scatterer, it should scatter
the same intensity in all directions. The only effect which causes deviations from an isotropic
scattering is the Debye-Waller-factor (DWF) which is well-known and can be corrected. This
is followed by the calculation of the energy transfer from the time-of-flight so that one obtains
S(2θ, ω).

The next step is to calculate the momentum transfer Q from the scattering angle 2θ and the
energy transfer ω using equation (3). During this step, we obtain about 1000 spectra with
relatively low statistics each and a varying value of Q as the energy transfer varies. To get a
better statistics and to have spectra which have the same Q for all values of energy transfer, the
1000 spectra are grouped into about n spectra of constant ∆Q in the same routine. A typical
reduction routine in given in table 4.4.
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Fig. 6: Left: Neutron diffraction patterns of solid pentafluortoluene at 100 K (λi = 6 Å), taken
from [3]. If the scattering vector is a reciprocal lattice vector, the positive interference of
neutron waves yields a maximum in the scattered intensity. The sharp features in the diffraction
pattern indicate an ordered lattice. Right: The spectra S(Q,ω) of pentafluortoluene (◦) and
vanadium (–) at a momentum transfer of Q = 1.1 Å−1, cf. also [3]. The solid sample shows
only an internal motion, can therefore be described by equation 16.

w1 = rdsum(‘File1’,‘FileEnd’) ; Read sample runs

w1 = normalise(w1,/monitor) ; Normalize to monitor

w2 = rdsum(‘FileEC1’,‘FileECEnd’) ; Read empty run

w2 = normalise(w2,/monitor)

w3 = w1 - w2 ; Subtract the background

e3 = sqrt(e1ˆ2 + e2ˆ2) ; Propagate the errors

w20 = rdsum(‘FileVan1’,‘FileVanEnd’) ; read vanadium run

w20 = normalise(w20,/monitor)

w4 = vnorm(w3,w20,min = 500 ,max = 600 ) ; Normalize w3 to vanadium

; spectra, integrated around

; the elastic channel

w5 = remove spectra(w4,[1,2,3,4]) ; Remove noisy detectors

w6 = t2e(w5) ; Convert from tof to energy

w7 = reb(w6, dE = 0.1) ; Rebin energy at constant dE

w8 = sqw rebin(w7,dQ = 0.1 , emin = -5) ; Rbin to S(Q,w) with a

; given dQ binning.

Table 2: Typical data reduction routine for TOFTOF.



14 L. Silvi, S. Busch, T. Unruh and W. Lohstroh

4.5 Data evaluation

For a quantitative analysis, fit the spectra with the functions given in section 4.2. For this
purpose, a fit-routine in LAMP can be used: menu TOOLS → FITTING with STRfit.
As the theoretical functions have to be convolved with the experimental resolution, the program
will ask for the converted and grouped spectra of vanadium.

The numbers shown in lower part of the window are the reduced χ2, which is a measure for the
quality of the fit, and the the fitted values of the parameters. Judge the fit quality by the reduced
χ2 and by visually inspecting the fits together with the data. Plot the obtained parameters for
the width, Γ, as function of Q2 and determine the diffusion coefficient.

If you measured the sample at different temperatures, repeat the procedure for all of them.

5 Questions to be answered before the experiment

1. Do you expect the vanadium sample to be activated by the neutron beam? What about the
aluminium container with the real sample? (2 min)

2. The vanadium standard sample at TOFTOF is a hollow cylinder with an outer diameter
of 22.5 mm and a height of 65 mm. The wall thickness is 0.6 mm. Which fraction of the
neutrons that hit the vanadium will be scattered? How big is the transmission?

3. Why do the samples measured at TOFTOF mostly have a transmission of about 90 %?
How can the transmission be adjusted? (3 min)

4. The substance to be measured is filled in a gap between the inner and the outer cylinder
of the sample container. The inner diameter of the outer cylinder is always 22.5 mm,
the inner cylinder can be chosen to have either 22.1 mm or 22.3 mm outer diameter. The
height of the cylinders is 65 mm. How large is the sample volume for the two different
inner cylinders? Which inner cylinder would you use? (5 min)

5. Please note where this handout could need improvement. (5 min)

6 Questions to be answered during the experiment

1. When measuring water-based samples, H2O is most often replaced by D2O when the
water is not the subject of the study. Why? The signal of the solvent has to be subtracted
in both cases! (2 min)

2. Why is the sample container made of aluminum? (2 min)

3. The Vanadium standard sample at TOFTOF (hollow cylinder, 2 cm outer diameter,
0.6 mm thickness) is a “7% scatterer”, meaning that it transmits 93% of the neutrons.
In the moment, TOFTOF has 1000 neutron detectors with an active area of 40x3 cm each
in 4 m distance from the sample. Estimate the efficiency of the monitor detector using the
Monitor rate and Signal Rate given by the control program. (5 min)
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∆E = Ef −Ei

Q = | ~Q|

Fig. 7: Dynamic range plot.

4. To calculate the energy of neutrons in meV with a well-known wavelength given in Å,
one can use a formula

E ≈ a

λ2
. (18)

Determine a numerical value for a. How big is the initial energy Ei of the neutrons in the
current experiment? (5 min)

5. What is the maximal energy transfer from the neutron to the sample? (1 min)

6. What is the maximal energy transfer from the sample to the neutron? (1 min)

7. Draw at least six scattering triangles (as shown in Fig. 4) for these points in the dynamical
range:

• Elastic scattering with a scattering angle of 7.5◦; with a scattering angle of 140◦ (the
first & last detector at TOFTOF)

• Same scattering angles with neutron energy gain

• Same scattering angles with neutron energy loss

(6 min)

8. Locate those points in this dynamic range plot and determine which area in this plot is
accessible in the current scattering experiment. (5 min)

9. How can you distinguish coherent and incoherent scattering in the diffraction pattern?
Which information can you extract from the spectra when they are caused by coherent or
incoherent scattering, respectively? (2 min)

10. Why do we measure Vanadium? (three reasons; for one it is important that Vanadium
scatters neutrons incoherently, for two it is important that the Vanadium signal does not
have a quasielastic broadening) (6 min)

11. Assume that the scatterers in your sample are partially trapped. They diffuse inside a
“cage” until they find a hole through which they can escape. How do the intermediate
scattering function I(Q, t) and the scattering function S(Q,ω) look like? (5 min)
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7 Constants

mn = 1.675 · 10−27 kg (19)

h = 6.626 · 10−34 J · s = 4.136 · 10−15 eV · s (20)

~ = 1.055 · 10−34 J · s = 6.582 · 10−16 eV · s (21)

e = 1.602 · 10−19 C (22)
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